SERVICE
DESIGN PATTERNS

FUNDBMENTAL [)BSIGN SOWBMITONS FOR
SOAP/WSEDIL AND RES THEBAVER [SERVIETES

ROBERT DAIGNEAU ‘-"-.._'

With a Contribution by |
Tan RoBINSON

Forewords by
MaRrTIN FowLEr and IAN ROBINSON

Web Service API Styles

RPC API (18)

How can clients execute remote procedures over HTTP?

Message API (27)

How can clients send commands, notifications, or other
information to remote systems over HTTP while avoiding
direct coupling to remote procedures?

Resource API (38)

How can a client manipulate data managed by a remote
system, avoid direct coupling to remote procedures, and
minimize the need for domain-specific APIs?

Client-Service Interaction Styles

Request/Response (54)

What’s the simplest way for a web service to process a
request and provide a result?

Request/Acknowledge How can a web service safeguard systems from spikes in

(59) request load and ensure that requests are processed even
when the underlying systems are unavailable?

Media Type How can a web service provide multiple representations of

Negotiation (70)

the same logical resource while minimizing the number of
distinct URIs for that resource?

Linked Service (77)

Once a service has processed a request, how can a client
discover the related services that may be called, and also
be insulated from changing service locations and URI
patterns?

Request and Response Management

Service Controller (85)

How can the correct web service be executed without hav-
ing to write complex parsing and routing logic?

Data Transfer
Object (94)

How can one simplify manipulation of request and
response data, enable domain layer entities, requests, and
responses to vary independently, and insulate services from
wire-level message formats?

Request Mapper (109)

How can a service process data from requests that are struc-
turally different yet semantically equivalent?

Response Mapper (122)

How can the logic required to construct a response be
reused by multiple services?

Web Service Implementation Styles

Transaction Script (134)

How can developers quickly implement web service logic?

Datasource Adapter (137)

How can a web service provide access to internal resources
like database tables, stored procedures, domain objects, or
files with a minimum amount of custom code?

Operation Script (144)

How can web services reuse common domain logic without
duplicating code?

Command Invoker (149)

How can web services with different APIs reuse common
domain logic while enabling both synchronous and asyn-
chronous request processing?

Workflow Connector (156)

How can web services be used to support complex and
long-running business processes?

Web Service Infrastructures

Service Connector (168)

How can clients avoid duplicating the code required to use
a specific service and also be insulated from the intricacies
of communication logic?

Service Descriptor (175)

How can development tools acquire the information neces-
sary to use a web service, and how can the code for Service
Connectors be generated?

Asynchronous Response
Handler (184)

How can a client avoid blocking when sending a request?

Service Interceptor (1995)

How can common behaviors like authentication, caching,
logging, exception handling, and validation be executed
without having to modify the client or service code?

Idempotent Retry (206)

How can a client ensure that requests are delivered to a web
service despite temporary network or server failures?

Web Service Evolution

Single-Message
Argument (234)

How can a web service with an RPC API (##) become less
brittle and easily accommodate new parameters over time
without breaking clients?

Dataset Amendment (237)

How can a service augment the information it sends or
receives while minimizing the probability of breaking
changes?

Tolerant Reader (243)

How can clients or services function properly when some of
the content in the messages or media types they receive is
unknown or when the data structures vary?

Consumer-Driven
Contracts (250)

How can a web service API reflect its clients’ needs while
enabling evolution and avoiding breaking clients?

Service
Design Patterns

The Addison-Wesley
Signature Series

Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

’ SUCCEEDING ‘Ol AGILE
SADING WITH AGILE TESTING
AN SOFTWARE

Lt
Lr
DEVELOPMENT

vvAddison-Wesley

Visit informit.com/awss for a complete list of available products.

he Addison-Wesley Signature Series provides readers with
Tpraotical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one simple
premise: Great books come from great authors. Books in the series are
personally chosen by expert advisors, world-class authors in their own
right. These experts are proud to put their signatures on the covers, and
their signatures ensure that these thought leaders have worked closely
with authors to define topic coverage, book scope, critical content, and
overall uniqueness. The expert signatures also symbolize a promise to
our readers: You are reading a future classic.

PEARSON
——

vwAddison-Wesley Cisco Press ExAMyCRAM IBM e 33 PRENTICE g4M6E | Safari’

Press. + ¢e HALL &S S sonine

Service
Design Patterns

Fundamental Design Solutions

for SOAP/WSDL and
RESTful Web Services

Robert Daigneau

vvAddison-Wesley

Upper Saddle River, NJ ® Boston e Indianapolis ® San Francisco
New York ¢ Toronto ® Montreal © London ® Munich ® Paris ¢ Madrid
Capetown ® Sydney ® Tokyo e Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding in-
terests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Daigneau, Robert.

Service design patterns : fundamental design solutions for SOAP/WSDL
and restful Web services / Robert Daigneau.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-321-54420-9 (hardcover : alk. paper)

ISBN-10: 0-321-54420-X (hardcover : alk. paper)

1. Web services. 2. Web site development. 3. Simple Object Access
Protocol (Computer network protocol) I. Title.

TKS5105.88813.D35 2012

006.7'8—dc23

2011033436

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-54420-9
ISBN-10: 0-321-54420-X

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, October 2011

For Jobn, Alice, Heather, and Michelle

This page intentionally left blank

Contents

Foreword by Martin Fowlerc0itiitiiininnnennenns xi
Foreword by Ian Robinsoncoiiiitiitiinnnennennnn. xiii
Preface . ovvi it e e e et XV
Acknowledgmentsciiuiiin i e e xxiii
Aboutthe Authorttt it i ettt ie i XXV
Chapter 1: From Objects to Web Servicesccoiiiiiiennenn.. 1
What Are Web Services?o 2

From Local Objects to Distributed Objects 3

Why Use Web Services?iuiitiii i, 6

Web Service Considerations and Alternatives 7
Services and the Promise of Loose Coupling 9

What about SOA? e 10
Summary e 11
Chapter 2: Web Service APIStylesccovieiiiinnnnnnenn.. 13
Introductionttt e 13

Design Considerations for Web Service APIs 14

RPC AL . . e 18
ConSIderations « .. v v vttt et e 20

Message AP i e 27
Considerationsvuuit it e 29

Resource API o e 38
ConSIderations « .. v vt vttt ettt e 43

Chapter 3: Client-Service INteractionseeeeeenneeeenneans 51
Introductionvt it e 51
Request/Responseottt 54
Considerations v.vut et e e 56

vii

CONTENTS

Request/Acknowledge i, 59
Considerationsvuuit it e 62
Media Type Negotiation . . o« oo v e ei et e e e eeeannn 70
Considerationsot vttt e e 73
Linked Serviceiiuiiii i e 77
Considerationsuut i e 79
Chapter 4: Request and Response Managementccce0vuenn. 83
Introductiont e 83
Service Controller i i e 85
Considerationsouuuiit ittt e 89
Data Transfer Object 94
Data-Binding Considerationscuuiuiuenn.n. 98
General Considerationsc.o.uitiieennennnn.. 99
Request Mappero e 109
Considerationsuiut it 111
Response Mapperot 122
Considerationsoutiii i e 124
Chapter 5: Web Service Implementation Styles 131
Introduction 131
Design Considerations for Web Service Implementation 132
Transaction SCIIPE .« v v vttt ittt e et ettt e eeeas 134
Considerationsuutiii it e 135
Datasource Adapterouutiit it 137
Considerationsuvv vt ettt e 139
Operation SCript . . oo v e e 144
Considerationsttt 145
Command Invoker 149
Considerationsuutiii i e 150
Workflow Connectoriiuiiiiinninannennan. 156
Considerationsuvv vt ettt e 162
Chapter 6: Web Service Infrastructuresc.cvuvuvieneennn. 165
Introductionttt 165
Service CONMMECTOr v v v vt ittt e ettt ettt 168
Considerationsoutiii i 172
Service Descriptorttt e 175

Considerationsottt 177

CONTENTS v

Asynchronous Response Handler 184
ConSIderations « .. v vttt ettt et 188

Service Interceptor e 195
Idempotent Retry ittt 206
ConSIdEerations « .. v v v vt ettt et 211

A Quick Review of SOA Infrastructure Patterns 220

The Service Registry ooit i 220

The Enterprise Service Bus 221

The Orchestration Engine 224

Chapter 7: Web Service Evolutiono i, 227
INtroductiontvt it e e 227

What Causes Breaking Changes? 228
Structural Changes to Media Types or Messages 229

Service Descriptor Changescooviiuvnean... 230

Common Versioning Strategiesot ennnnnnneee. .. 232
Single-Message Argumentoueienrenenenennnn. 234

Dataset Amendmentvtitintnn i 237
ConSIderations vt vt ettt et 240

Tolerant Reader, 243
ConSIderations « .. v vt vttt ettt 244
Consumer-Driven Contractsooutteeennnnnnneee... 250
Considerations v vttt ettt e 254

How the Patterns Promote or Hinder Service Evolution 264
Appendix: Reference to External Patternsccovvveeenenn.. 269
GlOSSaTY v vvtt ittt it inteeeeeneeeenneaeeaneeneanennnnn 277
Bibliographyot inini ittt i e it e e e 297

This page intentionally left blank

Foreword

by Martin Fowler

One of the inevitable truisms of enterprise applications is that they are not
islands. You may be focused on solving a particular business problem, but in
order to do that you won’t be able to capture all the data you need yourself, or
develop all the processing. Even if you had the time, that data and processing is
being done elsewhere, and duplication is both wasteful and leads to messy
inconsistencies. As a result, almost all enterprise applications need to communi-
cate with other applications. These foreign systems are often not in the same
organization, but are provided by some third-party organization.

For many years, one of the hardest parts of this kind of collaboration was
just to get some kind of communication path. Often these applications were
written on different platforms, with different languages, on different operating
systems supporting different communication protocols. But in the past decade,
the web has appeared as a solution to the connection problem. Almost all sys-
tems can open port 80 and talk text over it.

But that still leaves many questions around how they should talk. Should
they use an RPC-style API, a message-oriented API, or this fashionable REST
stuff? Should logic be embedded in services directly or delegated to underlying
objects? How can we change services that are already in use without breaking
clients?

Generally in my series, the books have featured topics that haven’t been cov-
ered much elsewhere, but there have already been too many books about vari-
ous aspects of web services. As a result, when a draft of Robert’s book came to
me across the ether, I didn’t think I would be interested in it. What changed my
mind was that it brings together these key questions into a single handbook, in
a style that I like to see in a technical book that’s worth the effort of reading.

First, he takes the approach of breaking up the topic area into patterns, so
we have vocabulary to talk about these topics. Then he goes into each pattern,
explaining how each one works and how to choose between them. As a result,

x1

FOREWORD

you are able to see the various approaches to web service design and decide
what will work for you in your context. He provides code examples, so you can
see how these patterns might work in practice, yet the patterns are general
enough to apply to many technology stacks.

The result is a book that collects the important design decision points for
using web services in a style that focuses on principles that are likely to be valu-
able despite changes in technology.

Martin Fowler
http://martinfowler.com

http://martinfowler.com

Foreword

by lan Robinson

Distributed application development often starts well. And just as often it ends
badly. Point, add web reference, click: That’s the sound of a developer pointing
a loaded client at your carefully crafted service interface. By substituting tooling
for design, we somehow turned all that loose coupling into plain irresponsible
promiscuity; come release time, we all have to join the lockstep jump.

In a more cautious era, we’d have just said: “No. Don’t distribute.” And in
large part that advice still holds true today. A layer is not a tier. Blowing a three-
layered application architecture out to distributed proportions is foolishness
writ large, no matter how many open standards you implement.

But today’s applications are rarely islands. Where a business’s capabilities are
scattered across organizational boundaries, so too are the systems that auto-
mate them. Some form of service orientation, both within and between compa-
nies, is necessary if we are to support the distributed nature of the modern
supply chain.

The web, or rather, the technology that underpins the web, has proven enor-
mously resourceful in this respect. Whether or not you’re aware of—or even
carelessly indifferent to—the web’s prominent place in the history of distributed
systems, there’s inevitably something of the web about a sound majority of the
services you’ve built or used. For all its purported transport agnosticism, SOAP,
in practice, has tended to ride the HTTP train. Hidden, but not forgotten, the
web has shouldered the services burden for several years now.

When we look at the web services landscape today, we see that there are at
least three ways to accommodate the web in the software we build. The web
has succeeded not because of the overwhelming correctness of its constituency,
but because of its tolerance for the many architectural styles that inhabit and
sometimes overrun its borders. Some services and applications are simply
behind the web. They treat the web as an unwelcome but nonetheless necessary
narrow gateway through which to access objects and procedures. Adjust your

xiii

FOREWORD

gaze, and you’ll see that some services are on the web; that is, they treat HTTP
not as a brute transport, but rather as the robust coordination and transfer pro-
tocol described in RFC 2616. Last, you’ll see some (very few) that are of the
web. These use the web’s founding technologies—in particular, URIs and HTTP
and generalized hypermedia representation formats such as HTML—to present
a web of data, including data that describes how to access and manipulate more
data, to consumers.

This book brings together the need for caution and defensive design when
distributing systems with the several ways of using the web to enable distribu-
tion. As a compendium of sound strategies and techniques, it rivals the hard-
won experience of many of my friends and colleagues at ThoughtWorks. It’s a
book about getting things done on the web; it’s also a book about not backing
yourself into a corner. By balancing the (necessary) complexity of shielding a
service’s domain and data from that army of cocked clients with the simplicity
that begets internal quality and service longevity, it may just help you avoid the
midnight lockstep deployment.

Ian Robinson

Preface

When I started working on this book I wasn’t entirely sure what SOA and
REST were. I knew that I wasn’t the only one who felt this way. Most discus-
sions on these topics were rife with ambiguity, hyperbole, misinformation, and
arguments that appealed to emotion rather than reason. Still, as a developer
who had struggled with distributed object technologies, I was fascinated by web
services. I saw them as a pragmatic way to integrate systems and reuse common
business logic.

Since then, REST has gained significant momentum, WS* services have
established a solid foothold, and SOA was proclaimed dead [Manes]. Through
it all, my fascination with web services never waned. As mobile, cloud, and
Software-as-a-Service (SaaS) platforms cause software to become increasingly
distributed, the importance of web services will only continue to increase. We
live in exciting times indeed!

What Is This Book About?

This book is a catalogue of design solutions for web services that leverage
SOAP/WSDL or follow the REST architectural style. The goal was to produce a
concise reference that codifies fundamental web service design concepts. Each
pattern describes a known and proven solution to a recurring design problem.
However, the patterns are not meant to be recipes that are followed precisely. In
fact, a given pattern might never be implemented in exactly the same way twice.
This catalogue also doesn’t invent new solutions. Rather, the patterns in this
book were identified over long periods of time by developers who noticed that
certain problems could be solved by using similar design approaches. This book
captures and formalizes those ideas.

Services can be implemented with many different technologies. SOA practi-
tioners, for example, often say that technologies as diverse as CORBA and

XV

PREFACE

DCOM, to the newer software frameworks developed for REST and SOAP/
WSDL, can all be used to create services. This book focuses exclusively on web
services. Unfortunately, this term is somewhat overloaded as well. Some use it
to refer to any callable function that uses WSDL. The term has also been used
to describe RESTful services (re: [Richardson, Ruby]). This book uses the term
web service to refer to software functions that can be invoked by leveraging
HTTP as a simple transport over which data is carried (e.g., SOAP/WSDL ser-
vices) or by using HTTP as a complete application protocol that defines the
semantics for service behavior (e.g., RESTful services).

Who Is This Book For?

This book is aimed at professional enterprise architects, solution architects, and
developers who are currently using web services or are thinking about using
them. These professionals fall into two distinct groups. The first group creates
software products (e.g., commercial, open source SaaS applications). The sec-
ond develops enterprise applications for corporate IT departments. While this
catalogue is tailored for software professionals, it can also be used in academia.

What Background Do You Need?

Pattern authors often provide code examples to illustrate design solutions.
Most catalogues aren’t meant to be platform-specific, but the author must still
choose which languages, frameworks, and platforms to use in the examples.
While a plethora of new languages have become popular in recent years, I
decided to use Java and C# for two reasons. First, these languages have a signif-
icant market share (i.e., a large installed base of applications) and are quite
mature. Second, most readers probably use or have used these languages and
are therefore familiar with their syntax. I will assume that the reader has an
intermediate to advanced understanding of these languages and of several
object-oriented programming (OOP) concepts.

The patterns in this catalogue make heavy use of a few web service frame-
works popular with Java and C# developers. These frameworks encapsulate the
most common functions used by web service developers. This book does not
identify the patterns used within these frameworks. Instead, it identifies pat-

PREFACE v

terns that developers use when leveraging these frameworks to build web ser-
vices. Here are the frameworks that are used in this book:
e SOAP/WSDL frameworks:

— The Java API for XML Web Services (JAX-WS)
— Apache CXF

— Microsoft’s Windows Communication Foundation (WCF)
e REST frameworks:

— The Java API for RESTful Web Services (JAX-RS)
— Microsoft’s WCF

¢ Data-binding frameworks:

— The Java Architecture for XML Binding (JAXB)

— Microsoft’s DataContractSerializer and other serializers (e.g., Xn1Serializer)

It is assumed that the reader will at least have a basic acquaintance with the
following:

e JavaScript Object Notation (JSON)
e Extensible Markup Language (XML)

XML Schema Definition Language

XML Path Language (XPath)

Extensible Stylesheet Language Transformation (XSLT)
The Web Services Description Language (WSDL)

Organization of This Book

Following a general introduction in Chapter 1, the patterns in this catalogue are
grouped into six chapters.

e Chapter 2, Web Service API Styles: This chapter explores the primary API
styles used by web services. The ramifications of selecting the right style
cannot be underestimated because, once a style is chosen, it becomes very
hard to change direction.

PREFACE

¢ Chapter 3, Client-Service Interactions: This chapter presents the founda-
tions for all client-service interactions. These patterns may be used with
any service design style. Given an understanding of these patterns, you can
devise complex conversations in which multiple parties exchange data
about a particular topic over short or extended periods of time.

¢ Chapter 4, Request and Response Management: Software applications are
frequently organized into layers that contain logically related entities. This
chapter identifies the common Service Layer [POEAA] entities that are
used to manage web requests and responses. The intent of these patterns is
to decouple clients from the underlying systems used by the service.

¢ Chapter 5, Web Service Implementation Styles: Services may be imple-
mented in various ways. They may have intimate knowledge of resources
such as database tables, they may coordinate the activities of an Object
Relational Mapper (ORM) or direct calls to legacy APIs, or they may for-
ward work to external entities. This chapter looks at the ramifications of
each approach.

e Chapter 6, Web Service Infrastructures: Certain tasks are so generic that
they can be used over and over again. This chapter discusses some of the
most common and basic infrastructure concerns pertinent to client and
service developers. A few patterns common to corporate SOA infrastruc-
tures are also reviewed.

e Chapter 7, Web Service Evolution: Developers strive to create services that
will remain compatible with clients which evolve at different rates. This
goal, however, is quite difficult to achieve. This chapter reviews the factors
that cause clients to break and discusses two common versioning strate-
gies. You’ll also see how services can be augmented to meet client require-
ments while avoiding a major software release.

Supporting information is provided in the Appendix, Bibliography, and
Glossary.

The Pattern Form Used in This Book

There are many ways to present patterns, from the classic style of Christopher
Alexander [Alexander] to the highly structured forms of the Gang of Four
|GoF] and Pattern-Oriented Software Architecture [POSA] books. The conven-

PREFACE

tion used in this book was influenced by the Alexandrian form and the style
used in Enterprise Integration Patterns [EIP]. Hopefully you will find that the
conversational style makes the patterns easy to read. Only a few recurring
headers are used to demarcate content. Each design pattern is described using
the following conventions.

e Pattern name: The pattern name describes the solution in a few words.
The name provides a handle or identifier for the solution, and is a part of
the larger pattern language presented in the book. The goal was to use
evocative names that can be easily understood and used in everyday con-
versations. Many of the pattern names in this book are already quite
common.

e Context: The context follows the pattern name and is expressed in no
more than a few sentences. It identifies the general scenario in which the
pattern might apply. Of course, all of these patterns apply to web services,
but some are only relevant to certain situations. This section may refer to
other patterns to help set the context.

¢ Problem: The problem to solve is stated as a single question. You should
be able to read the problem and quickly determine if the pattern is relevant
to the design challenge you are facing. This section is marked off between
two horizontal bars.

e Forces: The forces provide more detail on the problem. This section, which
follows the problem definition, explores some of the reasons why the
problem is difficult to solve and presents alternative solutions that have
been tried but may not work out so well. The goal of this narrative is to
naturally lead you to the solution.

e Solution summary: This section provides a brief description of the design
solution, in a few sentences. Despite its terseness, you should be able to
quickly understand how the problem can be solved. The solution summary
typically describes the primary entities that comprise the design, their
responsibilities and relationships, and the way they work together to solve
the problem. The solution is not meant to be an absolute prescription that
has one and only one implementation. Rather, it should be viewed as a
general template that can be implemented in many different ways. The
written summary is usually accompanied by a diagram to supplement the
narrative. The primary mechanisms used in this book include sequence
diagrams and class diagrams. In some cases, the solution is modeled
through nonstandard graphical depictions. This section is demarcated by

PREFACE

two horizontal bars, just like the problem section. The intent was to make
it easy for readers to quickly find the problem and solution summary.

e Solution detail: This section presents several aspects of the solution in a
prosaic style. It expands on the solution summary to explore how the pri-
mary elements of the solution are employed in order to solve the problem
and resolve the forces. Since every solution has benefits and drawbacks, this
section reviews the consequences and additional factors you may need to
consider. T also point out related patterns that may be found elsewhere in
this book or in other pattern catalogues. This is done for a variety of rea-
sons. Some of the patterns in this book are actually specializations of exist-
ing patterns, and I felt that it was only right to acknowledge the original
source. Other patterns are complementary to the pattern being discussed,
or may be considered as an alternative.

¢ Considerations: This section discusses additional factors you may need to
consider when using the pattern. Such factors include design considerations,
related technologies, and a variety of other pertinent topics. Bulleted lists are
used to help the reader skim this section and hone in on specific topics of
interest. This section does not occur in each and every pattern.

e Examples: This section is meant to supplement the prior sections. You
should be able to understand the essence of a pattern without having to
read this section. Some patterns offer several examples to help you under-
stand the many ways in which the pattern may be implemented. Other
patterns only provide a few examples to facilitate understanding.

The examples in this book take many forms. The most common form is
Java and C# code. Other examples use XML, JSON, XSD, and WSDL. All
attempts were made to keep the examples as simple as possible, so a number
of things were left out (e.g., exception-handling blocks, thread management,
most queuing and database-related logic, etc.). In some cases, the examples
only include enough code to convey the basic idea of the pattern. In other
cases, the code examples provide much more detail because I felt that omit-
ting such detail would have left the reader with too many questions.

Please note that this is not meant to be a book on how to use a specific
API; there are many great books out there for such matters. Rather, these
code samples are provided to deepen your understanding of abstract
design solutions. Furthermore, just as the pattern descriptions provide a
template, so too do the code examples. This means that you probably
won’t want to copy any code verbatim.

PREFACE

Pattern Categories Not Covered

A vast array of topics has been included under the umbrella of service design.
However, many of these subjects are quite deep and have already been covered
extensively in other works. The content of this catalogue has therefore been con-
strained to only include the most fundamental solutions relevant to web service
design. The following topics have been avoided or only covered lightly.

¢ Enterprise integration patterns: While web services provide a great way to
integrate disparate applications, the topic of integration is exceedingly
deep. Hohpe and Woolf’s book, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions [EIP], does a great job
of showing how integration can occur through middleware solutions that
primarily leverage queuing technologies. This book builds on and refers to
many of their patterns.

e Workflow/orchestration: Workflow technologies provide the means to
define the flow of execution through a set of related activities managed by
a central controller. Workflows are frequently triggered by web services
and often interact with external web services to send or receive data.
Workflows may be relatively short in duration (i.e., a few seconds), or may
transpire over days, weeks, or even months. The subject of workflow is far
beyond the scope of this book, and is addressed by such catalogues as
http://workflowpatterns.com [van der Aalst, et al.].

e Event-driven architecture: An alternative to the “command and control”
architectural style exemplified by workflows is event-driven architecture
(EDA). With EDA, there is no centralized controller. Instead, clients and
services communicate with each other in a much more fluid, dynamic, and
often unpredictable way when specific events occur within their respective
domains. Sometimes the rules for EDA are described through choreogra-
phy. For more information on this topic I recommend the following:

www.complexevents.com/category/applications/eda/

¢ Choreography: Choreography, like EDA, is not a “command and control”
architectural style. Instead, it suggests that parties adopt a rules-based
approach that declares the sequence of allowed exchanges between parties
as if seen by an external observer. This concept has yet to see wide adoption.

www.complexevents.com/category/applications/eda/
http://workflowpatterns.com

PREFACE

e Security: Matters such as authentication, authorization, data confidential-
ity, data integrity, nonrepudiation, techniques used to harden network
infrastructures, and other security concerns are not discussed in any detail
as these subjects are incredibly deep and have been covered extensively in
other works.

Supporting Web Site and contact information

Companion information for this book may be found at

www.ServiceDesignPatterns.com

www.ServiceDesignPatterns.com

Acknowledgments

I’d like to acknowledge everyone who has assisted in this project. I could not
have done this without you.

I am indebted to a number of people from the Pattern Languages of Program-
ming Conference (PLoP) held in 2008. Kyle Brown played an instrumental role
by pointing me toward an effective pattern form. He instilled in me a strategy for
setting up the problem, forces, and constraints. I’d also like to thank my PLoP
2008 workshop mates for their feedback on early versions of a few patterns and
my writing style. This group included Paul Austrem, Philipp Bachmann, Geert
Monsieur, Mark Mahoney, Lise Hvatum, Bobby Woolf, and John Liebenau.

Bobby Woolf, Rebecca Wirfs-Brock, and Michael Stiefel volunteered to review
early versions of a few chapters. Your feedback helped steer me in the right direc-
tion. John Liebenau and Uwe Zdun also offered help in those early days.

My biggest thanks go to my official team of technical reviewers. Jim Webber
was incredibly gracious with his time and proved to be a reliable REST
resource. Eric Newcomer offered thoughts on how to fine-tune the book’s
scope. Marc Hadley kept me honest on several Java Specification Requests
(JSRs), and provided great input in several other areas. Scott Ambler offered
several suggestions to help make the patterns more readable. Elliotte Rusty
Harold’s expertise is world renowned, and his critiques were thought provok-
ing. Ian Robinson made a huge contribution by offering a very important pat-
tern to the book. Rebecca Wirfs-Brock, more than anyone else, recognized my
strengths and weaknesses. Her measured feedback was invaluable. I am, of
course, extremely grateful to Martin Fowler for accepting me into this presti-
gious series and working with me to sharpen the book’s content.

Last but not least, I must thank my editorial team, Chris Guzikowski, Raina
Chrobak, Chris Zahn, Julie Nahil, and Audrey Doyle. Without your patience,
support, and a little prodding, I would have never reached the finish line.

xxiii

This page intentionally left blank

About the Author

Robert Daigneau has more than twenty years of experience designing and
implementing applications and products for a broad array of industries from
financial services, to manufacturing, to retail and travel. Rob has served in such
prominent positions as Director of Architecture for Monster.com, and Manager
of Applications Development at Fidelity Investments. He has been known to
speak at a conference or two.

Rob can be reached at rob@ServiceDesignPatterns.com.

XXV

This page intentionally left blank

Chaptel' 1 From Objects

toWeb

Services

From Objects
to Web Services

Web services have been put into practical use for many years. In this time,
developers and architects have encountered a number of recurring design chal-
lenges related to their usage. We have also learned that certain design
approaches work better than others to solve certain problems. This book is for
software developers and architects who are currently using web services or are
thinking about using them. The goal is to acquaint you with some of the most
common and fundamental web service design solutions and to help you deter-
mine when to use them. All of the concepts discussed here are derived from
real-life lessons. Proven design solutions will also be demonstrated through
code examples.
Service developers are confronted with a long list of questions.

e How do you create a service API, what are the common API styles, and
when should a particular style be used?

e How can clients and services communicate, and what are the foundations
for creating complex conversations in which multiple parties exchange
data over extended periods of time?

e What are the options for implementing service logic, and when should a
particular approach be used?

e How can clients become less coupled to the underlying systems used by a
service?

e How can information about a service be discovered?

e How can generic functions like authentication, validation, caching, and
logging be supported on the client or service?

What Are Web
Services?

CHAPTER 1 FrROM OBJECTS TO WEB SERVICES

e What changes to a service cause clients to break?
e What are the common ways to version a service?

e How can services be designed to support the continuing evolution of busi-
ness logic without forcing clients to constantly upgrade?

These are just a few of the questions that must be answered. This book will
help you find solutions that are appropriate for your situation.

In this chapter, you’ll learn what services are and how web services address
the shortcomings of their predecessors.

What Are Web Services?

From a technical perspective, the term service has been used to refer to any
software function that carries out a business task, provides access to files (e.g.,
text, documents, images, video, audio, etc.), or performs generic functions like
authentication or logging. To these ends, a service may use automated work-
flow engines, objects belonging to a Domain Model [POEAA], commercial
software packages, APIs of legacy applications, Message-Oriented Middleware
(MOM), and, of course, databases. There are many ways to implement ser-
vices. In fact, technologies as diverse as CORBA and DCOM, to the newer
software frameworks developed for REST and SOAP/WSDL, can all be used to
create services.

This book primarily focuses on how services can be used to share logical
functions across different applications and to enable software that runs on dis-
parate computing platforms to collaborate. A platform may be any combina-
tion of hardware, operating system (e.g., Linux, Windows, z/OS, Android,
i0S), software framework (e.g., Java, .NET, Rails), and programming language.
All of the services discussed in this book are assumed to execute outside of the
client’s process. The service’s process may be located on the same machine as
the client, but is usually found on another machine. While technologies like
CORBA and DCOM can be used to create services, the focus of this book is on
web services. Web services provide the means to integrate disparate systems and
expose reusable business functions over HTTP. They either leverage HTTP as a
simple transport over which data is carried (e.g., SOAP/WSDL services) or use
it as a complete application protocol that defines the semantics for service
behavior (e.g., RESTful services).

FroMm LocaL OBJEcTs TO DISTRIBUTED OBJECTS

Terminology

Web service developers often use different terms to refer to equivalent
roles. Unfortunately, this has caused a lot of confusion. The following
table is therefore provided for clarification and as a reference. The first
column lists names used to denote software processes that send requests
or trigger events. The second column contains terms for software func-
tions that respond or react to these requests and events. The terms appear-
ing under each column are therefore synonymous.

Client Service
Requestor Provider
Service consumer Service provider

This book uses the terms “client” and “service” because they are com-
mon to both SOAP/WSDL services and RESTful services.

Web services were conceived in large part to address the shortcomings of dis-
tributed-object technologies. It is therefore helpful to review some history in
order to appreciate the motivation for using web services.

From Local Objects to Distributed Objects

Objects are a paradigm that is used in most modern programming languages to
encapsulate behavior (e.g., business logic) and data. Objects are usually “fine-
grained,” meaning that they have many small properties (e.g., FirstName, LastName)
or methods (e.g., getAddress, setAddress). Since developers who use objects often
have access to the internals of the object’s implementation, the form of reuse
they offer is frequently referred to as white-box reuse. Clients use objects by
first instantiating them and then calling their properties and methods in order
to accomplish some task. Once objects have been instantiated, they usually
maintain state between client calls. Unfortunately, it wasn’t always easy to use
these classes across different programming languages and platforms. Compo-
nent technologies were developed, in part, to address this problem.

From Local
Objects to

Distributed
Objects

From Local
Objects to

Distributed
Objects

CHAPTER 1 FrROM OBJECTS TO WEB SERVICES

Components were devised as a means to facilitate software reuse across dis-
parate programming languages (see Figure 1.1). The goal was to provide a
means whereby software units could be assembled into complex applications
much like electronic components are assembled to create circuit boards. Since
developers who use components cannot see or modify the internals of a compo-
nent, the form of reuse they offer is called black-box reuse. Components group
related objects into deployable binary software units that can be plugged into
applications. An entire industry for the Windows platform arose from this con-
cept in the 1990s as software vendors created ActiveX controls that could be
easily integrated into desktop and web-based applications. The stipulation was
that applications could not access the objects within components directly.
Instead, the applications were given binary interfaces that described the objects’
methods, properties, and events. These binary interfaces were often created
with platform-specific interface definition languages (IDLs) like the Microsoft
Interface Definition Language (MIDL), and clients that wished to use compo-
nents frequently had to run on the same computing platform.

Objects were eventually deployed to remote servers in an effort to share and
reuse the logic they encapsulated (see Figure 1.2). This meant that the memory
that was allocated for clients and distributed objects not only existed in sepa-
rate address spaces but also occurred on different machines. Like components,
distributed objects supported black-box reuse. Clients that wished to use dis-
tributed objects could leverage a number of remoting technologies like
CORBA, DCOM, Java Remote Method Invocation (RMI), and .NET Remot-

Customer
Object

(own}--(p—

Platform-Specific Object
Interface

Ul

Customer Component

A Single Process On One Machine

Figure 1.1 Components were devised as a means to facilitate reuse across
disparate programming languages. Unfortunately, they were often created
for specific computing platforms.

FroMm LocaL OBJEcTs TO DISTRIBUTED OBJECTS

E Proxy i i Stub '
v | Client f------3 -f---------l- --=> Customer Object 1

Server Process for Distributed Object

Network

Figure 1.2 Objects were frequently used in distributed scenarios.
When a client invoked a method on the proxy’s interface, the proxy
would dispatch the call over the network to a remote stub, and the

corresponding method on the distributed object would be invoked. As
long as the client and distributed object used the same technologies,
everything worked pretty well.

ing. The compilation process for these technologies produced a binary library
that included a Remote Proxy [GoF]. This contained the logic required to com-
municate with the remote object. As long as the client and distributed object
used the same technologies, everything worked pretty well. However, these
technologies had some drawbacks. They were rather complex for developers to
implement, and the process used to serialize and deserialize objects was not
standardized across vendor implementations. This meant that clients and
objects created with different vendor toolkits often had problems talking to
each other. Additionally, distributed objects often communicated over TCP
ports that were not standardized across vendor implementations. More often
than not, the selected ports were blocked by firewalls. To remedy the situation,
IT administrators would configure the firewalls to permit traffic over the
required ports. In some cases, a large number of ports had to be opened. Since
hackers would have more network paths to exploit, network security was often
compromised. If traffic was already permitted through the port, then it was
often already provisioned for another purpose.

Distributed objects typically maintained state between client calls. This led to
a number of problems that hindered scalability.

e Server memory utilization degraded with increased client load.

e Effective load-balancing techniques were more difficult to implement and
manage because session state was often reserved for the client. The result
was that subsequent requests were, by default, directed back to the server
where the client’s session had been established. This meant that the load
for client requests would not be evenly distributed unless a sophisticated

From Local
Objects to

Distributed
Objects

Why Use Web
Services?

CHAPTER 1 FrROM OBJECTS TO WEB SERVICES

infrastructure (e.g., shared memory cache) was used to access the client’s
session from any server.

e The server had to implement a strategy to release the memory allocated for
a specific client instance. In most cases, the server relied on the client to
notify it when it was done. Unfortunately, if the client crashed, then the
server memory allocated for the client might never be released.

In addition to these issues, if the process that maintained the client’s session
crashed, then the client’s “work-in-progress” would be lost.

Why Use Web Services?

Web services make it relatively easy to reuse and share common logic with
such diverse clients as mobile, desktop, and web applications. The broad reach
of web services is possible because they rely on open standards that are ubiqui-
tous, interoperable across different computing platforms, and independent of
the underlying execution technologies. All web services, at the very least, use
HTTP and leverage data-interchange standards like XML and JSON, and
common media types. Beyond that, web services use HTTP in two distinct
ways. Some use it as an application protocol to define standard service behav-
iors. Others simply use HTTP as a transport mechanism to convey data.
Regardless, web services facilitate rapid application integration because, when
compared to their predecessors, they tend to be much easier to learn and
implement. Due to their inherent interoperability and simplicity, web services
facilitate the creation of complex business processes through service composi-
tion. This is a practice in which compound services can be created by assem-
bling simpler services into workflows.

Web services establish a layer of indirection that naturally insulates clients
from the means used to fulfill their requests (see Figure 1.3). This makes it possi-
ble for clients and services to evolve somewhat independently as long as break-
ing changes do not occur on the service’s public interface (for more on breaking
changes, refer to the section What Causes Breaking Changes? in Chapter 7). A
service owner may, for example, redesign a service to use an open source library
rather than a custom library, all without having to alter the client.

WEB SERVICE CONSIDERATIONS AND ALTERNATIVES

(Client Applications)

Service
I Layer (Service) (Service) (Service) (Service) (Service) I
Domain Domain Table Code Commercial Legacy
Layer [Modelsj[ModulesJ [WorKﬂOWSJ[LibrariesJ[Packages J[Applications

Data Sources (Databases) (LDAP) (_ Fies) (Multimedia) (Middieware)

Figure 1.3 Web services help to insulate clients from the logic used to fulfill their
requests. They establish a natural layer of indirection that makes it possible for
clients and domain entities (i.e., workflow logic, Table Modules, Domain Models
[POEAA], etc.) to evolve independently.

Web Service Considerations and Alternatives

While web services are appropriate in many scenarios, they shouldn’t be used in
every situation. Web services are “expensive” to call. Clients must serialize all
input data to each web service (i.e., the request) as a stream of bytes and trans-
mit this stream across computer processes (i.e., address spaces). The web service
must deserialize this stream into a data format and structure it understands
before executing. If the service provides a “complex type” as a response (i.e.,
something more than a simple HTTP status code), then the web service must
serialize and transmit its response, and the client must deserialize the stream
into a format and structure it understands. All of these activities take time. If
the web service is located on a different machine from the client, then the time it
takes to complete this work may be several orders of magnitude greater than
the time required to complete a similar in-process call.

Possibly more important than the problem of latency is the fact that web ser-
vice calls typically entail distributed communications. This means that client and
service developers alike must be prepared to handle partial failures [Waldo,
Wyant, Wollrath, Kendall]. A partial failure occurs when the client, service, or
network itself fails while the others continue to function properly. Networks are
inherently unreliable, and problems may arise for innumerable reasons. Connec-
tions will occasionally time out or be dropped. Servers will be overloaded from

Web Service
Considerations

and
Alternatives

Web Service
Considerations

and
Alternatives

CHAPTER 1 FrROM OBJECTS TO WEB SERVICES

time to time, and as a result, they may not be able to receive or process all
requests. Services may even crash while processing a request. Clients may crash
too, in which case the service may have no way to return a response. Multiple
strategies must therefore be used to detect and handle partial failures.

In light of these inherent risks, developers and architects should first explore
the alternatives. In many cases, it may be better to create “service libraries”
(e.g., JARs, .NET assemblies) that can be imported, called, and executed from
within the client’s process. If the client and service have been created for differ-
ent platforms (e.g., Java, .NET), you may still use a variety of techniques that
enable disparate clients and services to collaborate from within the same pro-
cess. The client may, for example, be able to host the server’s runtime engine,
load the services into that environment, and invoke the target directly. To illus-
trate, a .NET client could host a Java Virtual Machine (JVM), load a Java
library into the JVM, and communicate with the target classes through the Java
Native Interface (JNI). You may also use third-party “bridging technologies.”
These options, however, can become quite complex and generally prolong the
client’s coupling to the service’s technologies.

Web services should therefore be reserved for situations in which out-of-pro-
cess and cross-machine calls “make sense.” Here are a few examples of when
this might occur.

e The client and service belong to different application domains and the
“service functions” cannot be easily imported into the client.

¢ The client is a complex business process that incorporates functions from
multiple application domains. The logical services are owned and man-
aged by different organizations and change at different rates.

e The divide between the client and server is natural. The client may, for
example, be a mobile or desktop application that uses common business
functions.

Developers would be wise to consider alternatives to web services even when
cross-machine calls seem justified.

e MOM (e.g., MSMQ, WebSphere MQ, Apache ActiveMQ, etc.) can be used
to integrate applications. These technologies, however, are best reserved for
use within a secured environment, far behind the corporate firewall. Fur-
thermore, they require the adoption of an asynchronous communications
style that forces all parties to tackle several new design challenges. MOM
solutions often use proprietary technologies that are platform-specific. For
complete coverage of this topic, see Enterprise Integration Patterns:

SERVICES AND THE PROMISE OF LOOSE COUPLING v

Designing, Building, and Deploying Messaging Solutions [EIP]. Web ser-
vices often forward requests to MOM.

e A certain amount of overhead should be expected with HTTP due to the
time it takes for clients and servers to establish connections. This added
time may not be acceptable in certain high-performance/high-load scenar-
ios. A connectionless protocol like User Datagram Protocol (UDP) can be
a viable alternative for situations like these. The trade-off, however, is that
data may be lost, duplicated, or received out of order.

® Most web service frameworks can be configured to stream data. This helps
to minimize memory utilization on both the sender’s and receiver’s end
because data doesn’t have to be buffered. Response times are also minimized
because the receiver can consume the data as it arrives rather than having to
wait for the entire dataset to be transferred. However, this option is best
used for the transfer of large documents or messages rather than for real-
time delivery of large multimedia files like video and audio. For situa-
tions like these, protocols such as Real Time Streaming Protocol (RTSP,
www.ietf.org/rfc/rfc2326.txt), Real Time Transport Protocol (RTP, http:/
tools.ietf.org/html/rfc3550), and Real Time Control Protocol (RTCP, http:/
tools.ietf.org/html/rfc3605) are usually more appropriate than HTTP.

Services and the Promise of Loose Coupling

Services are often described as being loosely coupled. However, the definitions
for this term are varied and cover a broad array of concerns. Coupling is the
degree to which some entity (e.g., client) depends on another entity. When the
dependencies are many, the coupling is said to be high or tight (e.g., high cou-
pling, tightly coupled). Conversely, when the dependencies are few, coupling is
considered to be low or loose (e.g., low coupling, loosely coupled).

It is certainly true that web services can eliminate the client’s dependencies
on the underlying technologies used by a service. However, clients and services
can never be completely decoupled. Some degree of coupling will always exist
and is often necessary. The following list describes a few forms of coupling that
service designers must consider.

¢ Function coupling: Clients expect services to consistently produce certain
results given certain types of input under particular scenarios. Clients are
therefore indirectly dependent on the logic implemented by web services.
The client will most certainly be affected if this logic is implemented

Services and
the Promise of

Loose
Coupling

www.ietf.org/rfc/rfc2326.txt
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3605
http://tools.ietf.org/html/rfc3605

CHAPTER 1 FrROM OBJECTS TO WEB SERVICES

—— incorrectly or is changed to produce results that are not in accordance
SOA? with the client’s expectations.

¢ Data structure coupling: Clients must understand the data structures that a
service receives and returns, the data types used in these structures, and the
character encodings (e.g., Unicode) used in messages. If a data structure pro-
vides links to related services, the client must know how to parse the struc-
ture for that information. The client may also need to know what HTTP
status codes the service returns. Service developers must be careful to refrain
from including platform-specific data types (e.g., dates) in data structures.

e Temporal coupling: A high degree of temporal coupling exists when a
request must be processed as soon as it’s received. The implication is that
the systems (e.g., databases, legacy or packaged applications, etc.) behind
the service must always be operational. Temporal coupling can be reduced
if the time at which a request is processed can be deferred. Web services
can achieve this outcome with the Request/Acknowledge pattern (59).
Temporal coupling is also high if the client must block and wait for a
response. Clients may use the Asynchronous Response Handler pattern
(184) to reduce this form of coupling.

¢ URI coupling: Clients are often tightly coupled to service URIs. That is,
they often either have a static URI for a service, or follow a simple set of
rules to construct a service URIL Unfortunately, this can make it difficult
for service owners to move or rename service URIs, or to adopt new pat-
terns for URI construction since actions like these would likely cause cli-
ents to break. The following patterns can help to reduce the client’s
coupling to the service’s URI and location: Linked Service (77), Service
Connector (168), Registry (220), and Virtual Service (222).

What about SOA?

Many definitions for Service-Oriented Architecture (SOA) have been offered.
Some see it as a technical style of architecture that provides the means to inte-
grate disparate systems and expose reusable business functions. Others, how-
ever, take a much broader view:

A service-oriented architecture is a style of design that guides all aspects of
creating and using business services throughout their lifecycle (from con-
ception to retirement). [Newcomer, Lomow, p. 13]

SUMMARY

Service Oriented Architecture (SOA) is a paradigm for organizing and uti-
lizing distributed capabilities that may be under the control of different
ownership domains. [OASIS Ref Model]

These viewpoints suggest that SOA is a design paradigm or methodology
wherein “business functions” are enumerated as services, organized into logical
domains, and somehow managed over their lifetimes. While SOA can help busi-
ness personnel articulate their needs in a way that comes more naturally than,
say, object-oriented analysis, there are still many ways to implement services. This
book focuses on several technical solutions that may be used to create a SOA.

Summary

By eliminating coupling to specific computing platforms, web services have
helped us overcome one of the main impediments to software reuse. However,
there are many ways to go about designing services, and developers are con-
fronted with a long list of questions that must be resolved. This book will help
you find the solutions that are most appropriate for your situation.

\ 4

Summary

This page intentionally left blank

Chapter 2

Web Service

Web Service API Styles A e

Introduction

In the book Patterns of Enterprise Application Architecture, Randy Stafford
describes how a Service Layer [POEAA] can be used to create a distinct Appli-
cation Programming Interface (API) for multiple client types. Stafford describes
how this API is composed of a set of services that establish a clear boundary
between one or more clients and a target domain or application. Web services
are an effective way to provide exactly this type of boundary. By behaving like
Facades | GoF], they also insulate clients from the underlying execution technol-
ogies. This makes it easier for various clients to reuse the service’s logic. It also
becomes easier for service owners to alter the domain logic as needed. Further-
more, web services provide a convenient point at which common behaviors like
transaction management and client authentication may be applied.

This chapter explores the most common API design styles for web services,
the merits of each, and their trade-offs. Table 2.1 provides an overview of
these styles.

Table 2.1 Web Service API Styles

Pattern Name Problem Description

RPC API (18) How can clients execute Define messages that identify the
remote procedures over remote procedures to execute and
HTTP? also include a fixed set of elements

that map directly into the parameters
of remote procedures. Have the client
send the message to a Uniform
Resource Identifier (URI) designated
for the procedure.

Continues

13

Design
Considerations

for Web Service
APIs

CHAPTER 2 WEB SERVICE API STYLES

Table 2.1 Web Service API Styles (continued)

Pattern Name

Problem

Description

Message API How can clients send com- Define messages that are not derived
(27) mands, notifications, or from the signatures of remote
other information to remote procedures. These messages may
systems over HTTP while carry information on specific topics,
avoiding direct coupling to tasks to execute, and events. Have the
remote procedures? client send the message to a
designated URI. Once the message is
received at the server, examine its
contents to determine the correct
procedure to execute.
Resource API How can a client manipu- Assign all procedures, instances of
(38) late data managed by a domain data, and files a URIL.

remote system, avoid direct
coupling to remote proce-
dures, and minimize the need
for domain-specific APIs?

Leverage HTTP as a complete
application protocol to define
standard service behaviors. Exchange
information by taking advantage of
standardized media types and status
codes when possible.

The ramifications of selecting the right style for your needs cannot be under-
estimated. The decision you make regarding the service API style may be one of
the most important decisions you will make. Once a style is chosen, it becomes
very hard to migrate to one of the alternatives.

Design Considerations for Web Service APIs

Regardless of the chosen style, the following factors should be considered when
designing service APIs.

¢ Encapsulation: Services should generally hide implementation details. The
client should never know if, for example, the service accesses a database
directly or uses a Domain Model [POEAA]. This helps to prevent clients
from becoming directly coupled to the means used to fulfill requests. Addi-
tionally, service designers should consider the consequences of carrying
domain model, database table, and stored procedure designs forward to the
API. Such design practices cause clients to become directly coupled to inter-
nal entities. If the domain models and table designs ever need to change,

DEsiGN CONSIDERATIONS FOR WEB SERVICE APIs

then the client must change as well. It might be said that we are designing
from the “bottom up” when we create APIs that simply make internal
domain entities accessible to external clients. Service APIs should, in most
cases, be designed from the “top down.” This means that the architect
should create an API that is driven by client needs, and this API should
reflect the use cases required by the various client applications [re:
Consumer-Driven Contract (250)]. APIs like these tend to hide internal
entities fairly well. Consequently, they provide a level of indirection that
enables internal entities to evolve or even be replaced while at the same
time minimizing the impact on clients.

The Service Contract: A Service Contract can be thought of as an agree-
ment that specifies how clients and services may interact. Each API style
has its own perspective on this concept. Regardless, all service APIs should
be designed with an emphasis on what type of information needs to be
exchanged, when such exchanges may occur, and at what rate. If the ser-
vice designer focuses on these external obligations, the API design often
arrives naturally. Developers should also consider what conditions must be
true before the service can be called (i.e., the pre-conditions), and what
should happen when the service completes (i.e., the post-conditions and
expected service behaviors) [Meyer, Bertrand]. Nontechnical requirements
(a.k.a. Quality of Service or QoS requirements) for matters such as client
authentication, data privacy, service response time, hours of operation,
and up-time (i.e., availability) should also be clarified. This information
provides the context necessary to produce an API that meets the needs of
its clients. Given this information, the developer can proceed to create the
logic behind the external API.

It is important to note that machine-readable contracts like WSDL can
only capture the most basic information required to use a service. Indeed,
information such as a detailed explanation of what the service really does,
when to use it, how to prepare requests, and how to handle failures is
often described through prose and in unit tests.

Autonomy: Consistent and reliable outcomes are more likely when the ser-
vice controls its own execution and has few dependencies on outside
forces. One implication is that web service APIs should usually discourage
or even prohibit distributed transactions (i.e., WS-Atomic Transactions).
When web service APIs allow for distributed transactions, service auton-
omy is compromised because the outcome is partially determined by exter-
nal entities (e.g., another service). Furthermore, distributed transactions
tend to inhibit service scalability because the locks a service places on

Design
Considerations

for Web Service
APIs

CHAPTER 2 WEB SERVICE API STYLES

internal entities (e.g., database tables) are often held for inordinate periods
of time. This is due, in part, to network latency, but may also be caused by
other factors (e.g., another service enlisted in the transaction has dropped
its connection, causing the entire transaction to hang). Compensation pro-

Design vides a reasonable, though imperfect, alternative to distributed transac-
Considerations tions. It is frequently used when data is exchanged between business
for Web Service . . X R

APIs organizations, or when services take minutes, hours, days, weeks, or

longer to complete. Web service developers can support compensation by
providing pairs of services that function as logical inverses of each other.
For example, a customer account management system may provide
“debit” and “credit” services. If a debit to a customer’s account must be
reversed, the client may invoke the “credit service” to compensate for the
debit. One must, however, recognize that the data shared between collabo-
rating systems may not be completely synchronized.

e Latency: Service and client developers alike must keep in mind that the
latency, or time it takes for a client to receive a response from web services,
will be significantly higher than calling similar in-process functions, even
when the service is located on the same machine. This is due to the fact
that all requests must be serialized as a stream of bytes, transmitted across
process boundaries, intercepted by a server process, deserialized on the
receiving end, and dispatched to the appropriate handler. A similar process
occurs when the service provides a response. The implication is that web
service developers should create APIs that minimize the number of net-
work round-trips required to get work done. Every attempt should be
made to design messages and media types that carry all of the information
required to complete a given use case. The downside is that this may result
in “larger” data payloads being sent back and forth. Nonetheless, latency
can usually be reduced when the service API favors the exchange of a few
“chunky messages” versus a “chatty conversation” wherein several
smaller messages must be exchanged to accomplish the same objective.

e Partial failures: Web service calls typically entail distributed communica-
tions wherein a local process (i.e., the client) attempts to call a remote pro-
cess (i.e., the service) over a network connection. Clients must be prepared
for services to fail, and vice versa, and each must be ready to handle situa-
tions in which the network fails or becomes saturated with traffic. Devel-
opers are far more likely to implement the necessary precautions (e.g.,
exception-handling blocks for communication errors, Idempotent Retry
[206], etc.) when a clear distinction is made between local and remote pro-
cesses. The Message API (27) and Resource API (38) styles tend to empha-

DEsiGN CONSIDERATIONS FOR WEB SERVICE APIs

size this distinction. In contrast, the RPC API style (18), especially when
used in conjunction with a Service Proxy (168), attempts to provide the
impression that a client is invoking a local procedure.

Binary message encoding of text-based data: The information exchanged
through RPC APIs (18) and Message APIs (27) is generally text-based.
Nonetheless, this text-based information may be encoded as binary data
before it is serialized as a stream of bytes and transmitted over the net-
work. Binary encoding has significant advantages. Consider XML Infos-
ets, which can be quite large. Binary encoding causes these payloads to be
compressed, thus helping to conserve network bandwidth and reduce
latency. Most web service frameworks enable developers to configure
whether or not a service should use binary encoding. When binary encod-
ing is selected, the framework will automatically convert text-based mes-
sages to binary data and back again. Of course, additional processing time
is required on both the client and the server to encode and decode binary
message payloads, but it is often worth it. The only way to really know is
to measure total response time.

Design
Considerations

for Web Service
APIs

\ 4

RPC API

CHAPTER 2 WEB SERVICE API STYLES

RPC API

A client application consumes or manipulates text-based information managed
by a remote system.

A 4
How can clients execute remote procedures over HTTP?

A

It’s not easy for clients to invoke remote software functions. They may estab-
lish connections to remote systems through “low-level” protocols like the BSD
Socket API. However, developers that use these mechanisms must convert the
data types defined on the remote computing platform to corresponding types on
the local platform. This can be a daunting task because different platforms use
different character encoding schemes (e.g., ASCII, EBCDIC, UTF-8, UTF-16,
Endianness) to represent and store data types. Developers that work at this
level must therefore understand how the remote platform encodes data and
how it interprets any byte stream received.

Remoting technologies like CORBA and DCOM have made it much easier
to share and use remote procedures. While they have abstracted away many
lower-level concerns, issues with interoperability can arise when the parties use
different technologies. For example, a distributed object exposed through
CORBA cannot be easily accessed by a client running on the .NET platform,
and vice versa. Third-party products may be used to bridge disparate platforms,
but they tend to be expensive and complex. Additionally, the TCP ports used by
different vendors aren’t standardized, so network administrators must often
open up nonstandard ports to allow external traffic through the firewall.

HTTP mitigates many of these issues because it enables clients and servers
that run on different computing platforms to easily communicate by leveraging
open standards. But how can clients use HTTP to execute remote procedures?
One approach is to send messages that encapsulate the semantics for procedure
invocation.

RPC API

v

Define messages that identify the remote procedures to execute and also include a
fixed set of elements that map directly into the parameters of remote procedures.
Have the client send the message to a URI designated for the procedure.

Request Message Contains . . .

(Procedure Name) Procedure
Sends > -l name is used
Request -~ AND S+ toselect...

g (Procedure Arguments) \

\ 1
\ ’
\ ’
\ .

N Response Message Contains
~. .- Returns

o (Procedure Results) - Results

,

A

The core concept behind RPC APIs is the idea of a Remote Procedure Call
(RPC). With RPC, the client sends a message to a remote server process and
blocks while waiting for a response. The request message identifies the proce-
dure to be executed, and also includes a fixed set of parameters that map
directly to the parameters of the remote procedure. When a message arrives at
the server, a server process inspects the message, invokes the procedure (i.e., ser-
vice) whose name is found in the message, and maps the message parameters
directly into the service’s input arguments. These tasks are usually performed by
service frameworks like JAX-WS and WCFE. Once the service has been invoked,
it may process the client’s request and return a response. The client can then
extract the results and resume execution.

This is the default service design style for many because it is relatively easy to
understand and implement. Developer productivity can be attributed, in part, to
the code generation capabilities of tools that come with popular frameworks like
JAX-WS and WCE These frameworks enable developers to create web services
in languages like Java or C# without having to know much about structural for-
mats (e.g., XML, JSON, etc.), encoding strategies (e.g., text versus binary, char-
acter encodings like UTF-8, etc.), or Service Descriptors (175) like WSDL.
Frameworks like these make it possible for developers to expose class methods
as web services by simply annotating methods with keywords. For frameworks
that leverage XML, such annotation also enables the automatic generation of

RPC API

\ 4

RPC API

CHAPTER 2 WEB SERVICE API STYLES

XSDs that describe the service’s input and output messages. For instance, if the
name of an annotated class method is GetStockQuote, then the framework may
generate XSDs that describe input and output messages named GetStockQuote and
GetStockQuoteResponse, respectively. From this, one may infer that messages for
RPC APIs are tightly coupled to the remote procedure (i.e., the service), and the
client, through association, becomes coupled to the procedure as well.

There are two basic ways to define Service Contracts when following this
APT style. The most common approach uses the XML Schema Language to
define reusable data types and messages, Web Services Description Language
(WSDL) to provide Service Descriptors (175), and specifications like WS-Policy
and WS-Security to define various rules on how the client should be authenti-
cated, how data should be encrypted, and so forth. The second approach for
RPC Service Contract definition includes the entire universe of non-XML
approaches. This includes specifications like JSON-RPC, and a plethora of pro-
prietary frameworks offered by various organizations, open source communi-
ties, and vendors.

Considerations

Service developers who implement RPC APIs should consider the following
issues.

¢ An inclination to create flat APIs: Developers that use this style are often
tempted to create service signatures that look like the signatures of normal
class methods. These signatures often have long parameter lists that look

like this:

@WebMethod (operationName = "ReserveRentalCar")
pubTlic RentalOptions ReserveRentalCar (

@WebParam(name = "RentalCity") String RentalCity,
@WebParam(name = "PickupMonth™) int PickupMonth,
@WebParam(name = "PickupDay") int PickupDay,
@WebParam(name = "PickupYear") int PickupYear,
@WebParam(name = "ReturnMonth™) int ReturnMonth,
@WebParam(name = "ReturnDay") int ReturnDay,
@WebParam(name = "ReturnYear") int ReturnYear,
@WebParam(name = "RentalType") String RentalType
)
{
// implementation would appear here

}

RPC API

The problem with this type of API is that it is inherently inflexible and
fragile. Clients must send procedure arguments in an exact order, and if
the need ever arises to add, remove, or reorder parameters, one can’t avoid
a breaking change. However, increased flexibility is possible if the service’s
signature is designed to only receive a Single-Message Argument (234).
With this pattern, the service developer may refrain from imposing a strict
element sequence and may instead design the message to contain optional
or repeating elements.

Proxies and service descriptors: Client applications typically use Proxies
(168) to connect to services that use this style. The purpose of proxies is to
make services easier to use by insulating the client from the network com-
munications logic that interacts with the service. Rather than connecting
directly to the service, clients select proxy methods whose names corre-
spond to the remote procedures. From the client’s perspective, it often looks
like a local call. Instead, the proxy actually establishes a connection to the
remote server and dispatches a message on behalf of the client. Proxies are
typically generated by client-side tools capable of reading Service Descrip-
tors (175). These artifacts describe how clients may call one or more ser-
vices. The most common descriptor language for web services is WSDL.
These must be synchronized to reflect the signatures of the services they
describe. Therefore, if a change occurs on a service signature, then the
descriptor must be updated (and vice versa). This implies that proxies must
be updated whenever the descriptor changes. Figure 2.1 illustrates this rela-
tionship. While it is true that proxies must be regenerated whenever a
breaking change occurs on the descriptor, there are a few occasions when a
descriptor may change and the proxy won’t need to be updated. For exam-
ple, the service owner can add new operations to a WSDL port (or inter-
face), and clients would only need to re-create their proxies if they wanted

Remote
Procedure
(i.e., Service)

Service
Descriptor

\

Figure 2.1 Since a bidirectional dependency exists between Service Descriptors
(175) and remote procedures, each must be regenerated when the other changes.
Proxies (168) may also need to be re-created when the descriptor changes.

RPC API

CHAPTER 2 WEB SERVICE API STYLES

to use those operations. (For more information on breaking changes, see
the section What Causes Breaking Changes? in Chapter 7.)

e Location transparency and proxies: Another hallmark of RPC and RPC
RPC API APIs is the concept of Location Transparency. Some interpret this princi-
ple to mean that the true location of a service should be completely hid-
den, and client developers should write roughly the same code to invoke
local or remote procedures. The thought is that, if the client application is
unaware of a service’s location, then the service can be moved as the need
arises. The implication, however, is that additional mechanisms must be
used to help the client locate and connect to the service. One approach is
to store the service’s location in a configuration file or database table that
is queried whenever a proxy method is invoked. For more coverage on this
topic, please see the Service Connector pattern (168).

Unfortunately, the application of this principle often obscures the abil-
ity of client developers to recognize distributed service interactions. The
problem typically occurs when client developers use Service Proxies (168).
In many cases, these proxies make it difficult for client developers to know
when they’re calling remote procedures. Consequently, they might not
implement the necessary logic to handle network-related failures like lost
connections, server crashes, and busy services. Fortunately, many develop-
ers have learned that the use of a proxy implies distributed communica-
tions, and that one must create exception-handling logic around the proxy
to handle communication errors.

e Achieving asynchrony: Services with RPC APIs may use the Request/
Acknowledge (59) interaction pattern rather than the default Request/
Response pattern (54). With this pattern the request is not processed when
it is received. Instead, the service forwards the message to an asynchronous
background process and returns a simple acknowledgment to the client.
By separating the receipt of the message from the time it is processed, the
system is better able to handle unanticipated spikes in request load and
can also better control the rate at which messages are processed. After a
message has been received, it can be forwarded through a queue or saved
to a database that is periodically polled by a background process.

® How to avoid blocking: Clients that use RPC APIs need not block after
sending a message. Rather, they may use an Asynchronous Response Han-
dler (184). This enables clients to perform other useful work while the
request is being processed.

RPC API

¢ Binary encoding: The information received or sent from RPC APIs may be
encoded as binary data, thus causing the payloads to be compressed. This
often conserves network bandwidth and helps to reduce latency. Most web
service frameworks enable developers to configure whether or not a ser-
vice should use binary encoding. When this option is selected, the frame-
work will automatically convert binary requests to text-based data, and
text-based responses to binary payloads. The downside is that additional
processing time is required on both the client and the server to encode and
decode these payloads. Developers should therefore measure the response
time for each service with and without binary encoding to determine
whether or not the additional compute time is justified.

Example: Using JAX-WS to Create an RPC API in Java

This example shows how a message uses a Document-Literal-Wrapped SOAP
binding style to map parameters directly into a remote procedure. The code
that follows shows a WSDL 1.1 port definition for a service that uses this bind-
ing. This port contains a single operation named GetFlightSchedules that receives
a GetF1ightSchedules message and returns a GetFlightSchedulesResponse message.

<wsd1:portType name="BargainAirServicePort">
<wsd1:operation name="GetF1ightSchedules">
<wsd1:input message="GetFlightSchedules"/>
<wsd1:output message="GetFlightSchedulesResponse"/>
</wsd1:operation>
</wsd1:portType>

The definitions for the messages received and returned from the
CGetFlightSchedules operation are listed here.

<wsd1:message name="GetFlightSchedules">
<wsdl:part name="parameters"
element="tns:GetF1ightSchedules" />
</wsd1:message>
<wsd1:message name="GetFlightSchedulesResponse">
<wsd1:part name="parameters"
element=" tns: GetFlightSchedulesResponse"/>
</wsd1:message>

Each message contains a single “message part” whose name matches the
name of the message. The GetFlightSchedules message part identifies a data struc-
ture that wraps the input parameters for the remote procedure of the same
name. The GetFlightSchedulesResponse message part defines the structure for the

\ 4

RPC API

v CHAPTER 2 WEB SERVICE API STYLES

response. The following listing shows the XSDs for these messages; the details
of the TravelConstraints XSD have been omitted.

<xs:element name="CetF1ightSchedules"> This is the procedure name
<xs:complexType>
RPC API <Xs:sequence>
<xs:element name="departConstraints" This is an argument
type="TravelConstraints"/>
<xs:element name="returnConstraints" This is another argument

type="TravelConstraints"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="CetF1ightScheduTesResponse">
<xs:complexType>
<Xs:sequence>
<xs:element name="GetFlightSchedulesResult"
type="TravelOptions" This 1is the response type
minOccurs="0" nillable="true" />
</Xs:sequence>
</xs:complexType>
</xs:element>

The GetFlightSchedules data structure identifies two input arguments named
departConstraints and returnConstraints. The GetFlightSchedulesResponse message
identifies the operation’s return type as being TravelOptions.

The Java code for the Service Endpoint Interface (SEI) that was generated
from the WSDL listed above is shown below. This SEI exemplifies one part
of the Service Controller pattern (85). Notice how the elements of the
GetFlightSchedules document wrapper map directly into the parameters of this
procedure.

@WebService(name="BargainAirServicePort",
targetNamespace="http://www.acmeCorp.org/schemas",
wsdTLocation="WEB-INF/wsd1/BargainAirService.wsd1")

public interface BargainAirServicePort{

@WebMethod

@WebResuTt(name="TravelOptions",
targetNamespace="http://www.acmeCorp.org")

@RequestWrapper(TocalName="GetF1ightSchedules",
targetNamespace="http://www.acmeCorp.org/Schemas",
className="org.acmeCorp.GetFlightSchedules")

@Responselrapper (locaTName="GetF1ightSchedulesResponse",
targetNamespace="http://www.acmeCorp.org/Schemas",
className="org.acmeCorp.GetFTightScheduTesResponse™)

public TravelOptions GetFlightSchedules(
@WebParam(name="departConstraints" // argument 1
targetNamespace="http://www.acmeCorp.org/Schemas")
TravelConstraints departContraints,
@WebParam(name="returnConstraints" // argument 2
targetNamespace="http://www.acmeCorp.org/Schemas")
TravelConstraints returnConstraints);

The implementation for the SEI is shown below.
@WebService(

targetNamespace="http://www.acmeCorp.org/schemas",

endpointInterface="org.acmeCorp.BargainAirServicePort")

public class BargainAirService implements BargainAirServicePort{

@Resource
WebServiceContext wscontext;

public TravelOptions GetFlightSchedules(
TravelConstraints departContraints,
TravelConstraints returnConstraints){

// implementation here

RPC API v

RPC API

A C# client that calls the service shown above might look similar to the code
that follows. Notice that the client declares and instantiates a proxy; it then
calls the proxy’s Open method to establish a connection to the service. This
makes it clear that a local object is not being used. The client instantiates and
populates a request object, then invokes a remote procedure by selecting its

name on the proxy.

BargainAirServiceClient proxy = new BargainAirServiceClient();
proxy.Open();

GetFlightSchedules request = new GetFlightSchedules();

// set departing and returning constraints here

GetFlightSchedulesResponse response =
proxy.GetF1ightSchedules(request);

v

RPC API

CHAPTER 2 WEB SERVICE API STYLES

The HTTP POST command and SOAP message sent by the proxy may look
something like this. These messages can get quite large, so the headers and
other tangential data were eliminated to keep the example short.

POST /BargainAirService HTTP/1.1

Host: www.acmeCorp.org

Content-Type: application/soap+xml; charset="utf-8"
Content-Length: ####

<s:Envelope xmIns:s="http://www.w3.0rg/2003/05/soap-envelope">
<s:Body>
<GetFlightSchedules> <!-- This is the remote proc name -->

<DepartConstraints> <!-- This is argument 1 -->
<StartCity>Boston</StartCity>
<DestCity>San Francisco</Dest(City>
<Month>2</Month>
<Day>22</Day>
<Year>2011</Year>
<Date>2011-02-22T00:00:00</Date>

</DepartConstraints>

<ReturnConstraints> <!-- This is argument 2 -->
<StartCity>San Francisco</StartCity>
<DestCity>Boston</DestCity>
<Month>2</Month>
<Day>24</Day>
<Year>2011</Year>
<Date>2011-02-24T00:00:00</Date>

</ReturnConstraints>

<MatchingFlights />

</GetFlightSchedules>
</s:Body>
</s:Envelope>

Note that the procedure name is usually identified in the SOAPAction and
WS-Addressing headers as well. These are used by most web service frame-

works to route the request to the correct web service handler. For more infor-
mation, see the Service Controller pattern (85).

MeEssaGe API

Message API

A client application consumes or manipulates text-based information managed

by a remote system. Message API

v

How can clients send commands, notifications, or other information to remote sys-
tems over HTTP while avoiding direct coupling to remote procedures?

A

Service APIs may be derived from the signatures of remote procedures. The
service owner must, however, consider several issues that arise from such a
strategy. If the signature of a procedure changes, then the web service APT must
change, and the client’s code must be altered to accommodate that change as
well. This may be acceptable if the service and client applications are managed
by the same organization. However, such changes require careful planning, a
significant degree of collaboration, and a concerted effort from all parties. If the
clients and services are managed by different organizations or businesses, this
approach could be impractical. This practice also assumes that either the service
owner has the authority to define the data structures that are exchanged, or the
clients will accept the message structures that are derived from their procedures.
However, there are many occasions in which message design cannot be driven
entirely by the service owner. This is especially true in large organizations or in
scenarios where business partners exchange data. Service developers in situa-
tions like these need an API style that recognizes a common set of related mes-
sages, but does not tie those messages to specific procedures.

Message API

CHAPTER 2 WEB SERVICE API STYLES

v

Define messages that are not derived from the signatures of remote procedures. These
messages may carry information on specific topics, tasks to execute, and events. Have
the client send the message to a designated URI. Once the message is received at the
server, examine its contents to determine the correct procedure to execute.

. Request Message Contains . . . A
Topic, Task, or Event
Identifier
Sends o> o Message Contents are used
Request -~ < AND > “~._ toselect...
Structured
' Message Content \ -
. \ J v

\ 1
v i

(Service)- 1 ->(Procedure)
* Response Message Contains . . . ‘

S ’/’/ Returns
T Standardized or <--7 Results
Proprietary Content

Services that have Message APIs (a.k.a. Document APIs) receive one or more
self-descriptive message types at a given URIL The body of the message contains
the data of primary interest. The message may optionally include headers.
These may be used to convey “control information” like client authentication
credentials, the expiration date of the request, and the URIs where errors
should be sent. Message APIs often receive or send standardized message for-
mats like SOAP; however, alternatives to SOAP and XML may also be used.
Message APIs that use XML but eschew both SOAP and XSD are frequently
called Plain Old XML (POX) services.

Clients use Message APIs by sending messages to a designated URI. Once the
message is sent, the client may optionally block while waiting for a response.
When a message arrives at the server, a web service deserializes and inspects the
message, then selects an appropriate procedure (i.e., handler) to process the
request. The web service therefore provides a layer of indirection by insulating
the client from the actual handler (i.e., remote procedure). Once the handler has
been invoked, it may process the client’s request and return a response. The cli-
ent can then extract the results and resume execution.

The name of this pattern is derived from the emphasis that is placed on mes-
sage design. In the course of gathering requirements and designing a service

MeEssaGe API

API, the parties identify logical messages they wish to exchange independent of
any remote procedure. This approach is frequently used when external entities
like industry consortiums drive requirements definition. The most common
way to define messages is through the XML Schema Language. However, mes-
sage structures may be defined through other means as well (e.g., Google’s Pro-
tocol Buffers).

The web services are typically created once messages have been identified
and designed. The API therefore provides a receiving endpoint, and the web ser-
vice acts as a dispatcher. Clients generally send one of three message types.
Command Messages [EIP] are used to ask the receiving system to carry out a
specific task (e.g., process loan). Event Messages [EIP| notify the receiver about
interesting events (e.g., inventory was depleted), and Document Messages [EIP]
are like business documents (e.g., purchase orders). The information used to
identify the message type may be found anywhere in the message. It could, for
example, be the name of the message itself, the first element in the message
body, or a parameter in the body. As you might expect, Message APIs provide
results through messages as well. These messages may contain the actual results
for the client request, or a simple acknowledgment that the request was
received and is being processed. The return message might also contain detailed
error information if a failure occurred during request processing. Message APIs
that use SOAP, for example, often return SOAP Faults that are specialized mes-
sages for specific types of errors.

Service Contracts for Message APIs frequently use the XML Schema Lan-
guage to define reusable data types and messages. They may optionally use
WSDL to define Service Descriptors (175), and specifications like WS-Policy and
WS-Security to define various rules on how clients should be authenticated, how
data should be encrypted, and so forth. Message APIs may also define message
structures through any one of the countless non-XML-based approaches offered
by various organizations, open source communities, and vendors.

Considerations

Message API developers should consider the following issues.

e Service descriptors and connectors: Message APIs often employ Service
Descriptors (175) to aid in the generation of code for client-side Service
Connectors (168). The most common mechanism for service description is
WSDL. This meta-language provides the means to define a set of related
“service operations” that clients may use. These operations are grouped

v

Message API

v CHAPTER 2 WEB SERVICE API STYLES

Message API

together into an abstract type (i.e., Port Type in WSDL 1.1 and Interface in
WSDL 2.0). Each operation also identifies the relevant XSDs for input and
output messages, and additional constraints (i.e., policies) for usage.
Examples of policies include the requirements for client authentication and
data encryption. Port/Interface types are then bound to a specific transport
protocol like HTTP, and exposed at a specific URIL. All together, these
items define an explicit interface.

Delegation of work: The logic used to process specific message types is
often triggered by a Command Invoker (149). This pattern may be
employed when the logic required to process a given document is suffi-
ciently complicated. In many cases, it becomes easier to manage the mes-
sage processing logic by separating it out from the receiving web service.
One can also alter the web service to receive new messages at the same
URI with little effort. An alternative to the Command Invoker is the
Workflow Connector (156). This approach is used when the receipt of a
message should trigger a complex or long-running process.

Achieving asynchrony: Services that use Message APIs often use Request/
Acknowledge interactions (59) rather than the Request/Response pattern
(54). With this pattern the request is not processed when it is received.
Instead, the service forwards the message to an asynchronous background
process and returns a simple acknowledgment to the client. By separating
the receipt of the message from the time it is processed, the system is better
able to handle unanticipated spikes in load and better control the rate at
which messages are processed. After a message has been received, it can be
forwarded through a queue or saved to a database that is periodically
polled by the background process.

How to avoid blocking: Clients that call these services may use an Asyn-
chronous Response Handler (184) to avoid blocking after a message has
been sent. This enables clients to perform other useful work while the
request is being processed.

Late binding: Responses from Message APIs often provide addresses to
related services clients may use. For more information, see the Linked Ser-
vice pattern (77).

Binary encoding of message payloads: Message APIs are able to conserve
network bandwidth and reduce latency by encoding the data they receive
or send in binary. Web service developers can often configure whether or

MeEssaGe API

not binary encoding is used, in which case the framework will automati-
cally convert binary requests to text-based data, and text-based responses
to binary payloads. Some frameworks always transmit data in as binary.
The downside of binary encoding is that additional processing time is
required on both the client and the server to encode and decode message
payloads. Developers should therefore measure the response time for each
service with and without binary encoding to determine whether or not the
additional compute time is justified.

Example: A Message API That Uses SOAP and WSDL

This example shows how a service that uses SOAP and WSDL can be used to
implement the Message API pattern. The first part of this example shows the
C# code used to implement the service. After walking through this code, the
WSDL associated with the service implementation will be presented.

The first code snippet shows a Service Controller (85) written in C#. This
class defines an abstract WSDL Port whose definition will be generated auto-
matically at runtime by the WCF framework. Notice that this interface identi-
fies two logical operations named Invoice and Contractor. While operations are
often considered to be synonymous with procedures, these are named for the
messages they receive. Notice that each operation receives a single message
argument. This is one very subtle characteristic that differentiates RPC APIs
(18) from Message APIs. While the former typically receives many arguments,
those arguments aren’t messages and may, in fact, be primitive data or complex
types. In contrast, Message APIs that leverage WSDL are specifically designed
to receive a single message argument.

[ServiceContract(Name = "Dropbox")]
public interface IDrophox

{

[OperationContract(Action = "http://acmeCorp.org/Dropbox/Invoice",
IsOneWay = true)]
void Invoice(InvoiceMessage invoice);

[OperationContract(Action = "http://acmeCorp.org/Dropbox/Contractor",
IsOneWay = true)]
void Contractor(ContractorMessage contractor);

The class definition for the InvoiceMessage is shown below. Note that it only
contains a single MessageBodyMenber (i.e., WSDL Message Part). This is because

\ 4

Message API

v CHAPTER 2 WEB SERVICE API STYLES

the WCF framework, by default, uses a Document-Literal-Wrapped SOAP
binding style.

[MessageContract (IsWrapped=false)]
public class InvoiceMessage

Message API {

[MessageBodyMember]

public Invoice Invoice { get; set; }

}

The complex type used as the message part is shown in the following.

[DataContract (Name="Invoice")]
pubTic class Invoice

{
[DataMember (IsRequired=true,Order=1)]
pubTic int ContractorId { get; set; }

[DataMember(IsRequired = true, Order = 2)]
public string PurchaseOrder { get; set; }

[DataMember (IsRequired = true, Order = 3)]
public DateTime StartDate { get; set; }

[DataMember (IsRequired = true, Order = 4)]
public DateTime EndDate { get; set; }

[DataMember (IsRequired = true, Order = 5)]
public decimal Hours { get; set; }

A partial implementation for this service follows. Note that this class imple-
ments the IDropbox interface. Not only does this force the MessageService class to
implement all of the methods on that interface, but it also wires up communica-
tions between the WCF framework and the service implementation. The result
is that the methods on this class will be invoked when specific messages identi-
fied on the IDropbox interface are received.

pubTic class MessageService : IDropbox

{

void IDropbox.Invoice(InvoiceMessage invoice)

// select procedure to process message here

}

void IDropbox.Contractor(ContractorMessage contractor)
{
// select procedure to process message here
}
}

MeEssaGe API

Now let’s turn our attention to the WSDL associated with the above code
listings. The first WSDL listing shows the logical operations on the abstract
WSDL port definition named DropBox. You should be able to see how these map
back to the class methods identified previously.

<wsd1:portType name="Dropbox">
<wsdl:operation name="Invoice">
<wsd1:input wsaw:Action="http://acmeCorp.org/Dropbox/Invoice"
name="InvoiceMessage" message="tns:InvoiceMessage"/>
</wsd1:operation>

<wsd1:operation name="Contractor">
<wsd1:input wsaw:Action="http://acmeCorp.org/ContractorInfo”
name="ContractorMessage" message="tns:ContractorMessage"/>
</wsd1:operation>
</wsd1:portType>

The definition for InvoiceMessage is shown below. Note how this message has a
single part that refers to a complex type named Invoice. The definition for the
Invoice type and element follows the message definition.

<wsd1:message name="InvoiceMessage">
<wsd1:part name="Invoice" element="tns:Invoice"/>
</wsd1:message>

<xs:complexType name="Invoice">
<Xs:sequence>
<xs:element name="ContractorId" type="xs:int"/>
<xs:element name="PurchaseOrder" nillable="true"
type="xs:string"/>
<xs:element name="StartDate" type="xs:dateTime"/>
<xs:element name="EndDate" type="xs:dateTime"/>
<xs:element name="Hours" type="xs:decimal"/>
</Xs:sequence>
</xs:complexType>

<xs:element name="Invoice" nillable="true" type="tns:Invoice"/>

Example: A Message API That Doesn’t Use WSDL

This example shows how a Message API can be implemented without WSDL.
This approach may be used with or without SOAP. The decision as to whether
or not WSDL should be used often depends on whether you want to leverage
WS* specifications like WS-Security or WS-ReliableMessaging.

The first code snippet shows an interface class written in C# for a service that
will be deployed to the NET/WCF framework. This class identifies the URI

Message API

Message API

CHAPTER 2 WEB SERVICE API STYLES

pattern used to intercept and route messages to a specific handler. In this case,
the handler is ReceiveMessage, and the URI pattern is defined by UriTemplate. The
RequestFormat annotation tells the WCF framework that the service expects an
XML message. The ReceiveMessage operation indicates that it will receive any
Stream of data. Therefore, a client may POST a message of virtually any structure
to a service that implements this interface.

[ServiceContract]
public interface IDropbox

{

[OperationContract]

[WebInvoke(Method = "POST",
RequestFormat = WebMessageFormat.Xml,
UriTemplate = "/dropbox")]

void ReceiveMessage(Stream stream);

}

The following code shows a rudimentary implementation for MessageService.
Note how the ReceiveMessage method receives the byte stream identified in the
IDropbox interface. Once this service is invoked, the MessageHelper class is called to
convert the incoming stream to an array of bytes. The MessageHelper then uses the
array to acquire the msgName (i.e., message name).

public class MessageService : IDropbox

{

pubTic void ReceiveMessage(Stream msgStream)

{
OutgoingWebResponseContext responseContext =
WebOperationContext.Current.OutgoingResponse;

try

byte[] msgBytes =
MessageHelper.GetStreamAsByteArray (msgStream) ;

string msgName = MessageHelper.GetRootNodeName (msgBytes);

After the message name has been retrieved, the service passes it to the
GetMessageProcessor method of the MessageProcessors class. This method returns a
class that knows how to process the current message. The details of how this
occurs have been excluded. If a class to process the message cannot be found, a
null value is returned, and this routine will exit with an HTTP code of 400.

MsgProcessor processor =
MessageProcessors.GetMessageProcessor (msgName) ;

if (nu11 == processor)

{

MeEssaGe API

responseContext.StatusCode = HttpStatusCode.BadRequest;
return;

}

At this point, we have an object that knows how to process the current mes-
sage. The message service then calls methods on this processor to provide it the
byte array for the message, and to invoke message processing. If all goes well, an
HTTP code of 200 is returned. If an exception occurs, the service will log infor-
mation about the error and return a code to indicate something went wrong.

processor. SetByteArray (msgBytes);
processor.Execute();

responseContext.StatusCode = HttpStatusCode.OK;
}

catch (Exception ex)

{

// would usually log error here

responseContext.StatusCode =
HttpStatusCode.InternalServerError;

responseContext.StatusDescription =
"Your message couldn't be processed. Please contact us";

The above snippets provided the code for the web service. The following
code listings provide details on a few of the classes used by this service. The
first class shown is MessageHelper. This class has two methods. The first method
takes the incoming byte stream, copies it to a memory buffer, then returns
a byte array that is used in subsequent operations. The second method,
GetRootNodeNanme, is critical. This operation uses a fast and efficient XPathNavigator
to retrieve the name of the root node in the incoming XML document. This is
the key information that is used to determine which object should be called to
process the message.

pubTic class MessageHelper
{
pubTlic static byte[] GetStreamAsByteArray(Stream stream)
{
MemoryStream memStream = new MemoryStream();
stream.CopyTo(memStreanm);
return memStream.ToArray();

}

Message API

v CHAPTER 2 WEB SERVICE API STYLES

Message API

pubTic static string GetRootNodeName(byte[] byteArray)
{

XPathDocument doc =
new XPathDocument(new MemoryStream(byteArray));

XPathNavigator docNav = doc.CreateNavigator();

docNav.MoveToRoot();
docNav.MoveToFirstChild();

return docNav.LocalName;

All message processors that handle client requests are defined as child classes
of an abstract class named MsgProcessor. This class keeps a byte array for the
inbound message and has minimal logic that enables the child class to deserial-
ize the message to a specific type for processing. The details of this class are
shown below.

pubTic abstract class MsgProcessor:ICloneable

{
private byte[] msgAsByteArray = null;

public MsgProcessor() {;}
pubTlic abstract void Execute();

public object Clone()
{

return this.MemberwiseClone();

}

public void SetByteArray(byte[] byteArray)

{
// Array is copied just in case this class is
// forwarded to another process

msgAsByteArray = new byte[byteArray.lLength];
byteArray.CopyTo(msgAsByteArray, 0);
}

protected object DeserializeMessage(Type targetType)
{
DataContractSerializer deserializer =
new DataContractSerializer(targetType);

return deserializer.ReadObject(
new MemoryStream(msgAsByteArray));

MeEssaGe API

This final class illustrates a concrete message processor class that inherits
from the base MsgProcessor class. As you can see, the first thing it does is call the
base class to deserialize the message to a type that it knows how to process. The
design of the invoice message should be assumed to be the same as what was
presented in the prior WSDL example. The remaining logic that processes the
Invoice is omitted since that is tangential to this example.

public class InvoiceProcessor:MsgProcessor
{
public override void Execute()
{
Invoice invoice =
(Invoice)DeserializeMessage(typeof (Invoice));
// logic to process the invoice message here
}
}

Message API

Resource API

CHAPTER 2 WEB SERVICE API STYLES

Resource API

A client application consumes or manipulates text, images, documents, or other
media files managed by a remote system.

v

How can a client manipulate data managed by a remote system, avoid direct cou-
pling to remote procedures, and minimize the need for domain-specific APIs?

A

HTTP makes it relatively easy for clients to reuse logic found in remote pro-
cedures while insulating them from underlying technologies. One way to invoke
these procedures is to have clients send messages that not only identify the pro-
cedure to execute, but also include elements that correspond to the procedure’s
arguments. When these messages are received at the web server, an underlying
service framework typically invokes a procedure given the name found in the
message. Web services that use this API style are relatively easy to implement
and use thanks to modern development tools, but the messages are tightly cou-
pled to the procedures. If the need ever arises to add, change, or remove proce-
dure arguments, then the related message structures must be updated, and the
client’s Proxy (168) will probably have to be regenerated as well. Developers
could instead create a service API that doesn’t tie messages directly to remote
procedures. These messages identify a topic of interest, an event, or a logical
command rather than a specific procedure name that is internal to the receiving
system. When they are received at the web server, a service framework or cus-
tom code uses the content found in the message to determine what procedure
should be invoked. While this loosens the dependencies between messages and
remote procedures, other factors should be considered.

Many web services use messages to form their own domain-specific API.
These messages incorporate common logical commands like Create, Read (i.e.,
Get), Update, or Delete. This CRUD approach, however, can lead to a prolifer-
ation of messages, even in relatively small problem domains. Consider, for
example, a set of services that manages company and contact information. In
this scenario, the client developer would have to use eight or more distinct mes-
sages, one for each combination of a domain entity (i.e., company or contact)
and CRUD operation. An API like this might include messages like “Create-
Company”, “GetCompany”, and so forth. The service owner would also have
to create response messages for the various service outcomes (e.g., “Create-
CompanyResp”, “GetCompanyResp”, etc.). Rather than creating a domain-

REesource API

specific API like this, one could leverage the standards defined in the HTTP
specification.

A\ 4
Assign all procedures, instances of domain data, and files a URI. Leverage HTTP
as a complete application protocol to define standard service behaviors. Exchange
information by taking advantage of standardized media types and status codes
when possible.

s Request Composed Of . .. A

Standardized Server Method
(i.e., GET, PUT, POST, DELETE)

AND
Sends ,,——>< [URI] >-~—~\ Are used to
Request <~ S~ select...
AND OPTIONALLY
;' Standardized or |
L Proprietary Media Type)
'\\ 4 Response may include a . . . A I«'
Standardized or 7 et
. ;) -" Returns
S J Proprietary Media Type eoor " Results
AND, OR
Standardized
Status Code
S J

A

Services that have Resource APIs use the requested URI and HTTP server
methods issued by the client along with the submitted or requested media type
to determine the client’s intent. These services often adhere to the principles of
Representational State Transfer (REST), but not every Resource API can be
considered RESTful. A quick review of the REST architectural style is therefore
provided, to help you better understand this pattern.

Resource APIs, as the name implies, provide access to resources. A resource
may be a text file, a media file (e.g., images, videos, audio), a specific row in a
database table, a collection of related data (e.g., products), a logical transaction,
a queue, a downloadable program, a business process (i.e., procedure)—almost
anything. Clients manipulate the state of these resources through representa-
tions. A database table row may, for example, be represented as XHTML,
XML, or JSON. Representations typically capture the current or intended state

Resource API

\ 4

Resource API

CHAPTER 2 WEB SERVICE API STYLES

of a resource. A client that receives a representation from a service is usually
acquiring the most recent state of that resource. When clients send representa-
tions to services, their intent is usually to alter the state of a resource. Resource
state is transferred when representations are exchanged between clients and ser-
vices. This is how the term “Representational State Transfer” was derived. A
sample representation that uses Atom Publishing Protocol (APP) is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<entry xmIns="http://www.w3.0rg/2005/Atom">
<title>Flight Confirmation</title>
<id>http://bargainair.net/itineraries/JK3N76</id>
<summary>BargainAir f1ight confirmation - August 12, 2010
- New York to London
</summary>
<link rel="depart-trip"
href="http://bargainair.net/itineraries/IK3N76/123"/>
<link rel="return-trip"
href="http://bargainair.net/itineraries/IK3N76/456" />
<updated>2010-06-09T16:57:02Z</updated>
</entry>

This representation shows how a client application may discover the services
that return detailed information about a customer’s flights. In this case, infor-
mation on the customer’s departing and returning flights can be discovered by
following the URIs found in the href tags. Each URI is a logical address to
which clients may send requests in order to invoke a service. These URIs may
be permanent or transitory addresses that clients may reference, save, book-
mark, and share. A business person could, for example, easily forward the URIs
shown above to her accounting department for approval. The following listing
demonstrates how URIs can be used to identify other resources.

http://www.acmeCorp.org/products
http://www.acmeCorp.org/products/Mode1205
http://ww.acmeCorp.org/orders/b0d891d1-3ddd-4d1a-a90f-h3138388aelf

The first URI shows how a client might access a collection of products. The
second references a specific product, and the last provides access to a customer’s
order. URI schemes like these make it easy to add new services for different
resources as the need arises. For example, acmeCorp.org can easily add a new
“store finder service” by receiving requests at a new URI.

A one-to-many relationship may exist between resources and URIs. That is,
a resource may have many addresses; much like a person can have a proper
name and nicknames. A single URI, however, should only be used to refer to a
single logical resource. This provides clients the means to uniquely identify and

http://www.acmeCorp.org/products
http://www.acmeCorp.org/products/Model205
http://www.acmeCorp.org/orders/b0d891d1-3ddd-4d1a-a90f-b3138388ae1f

REesource API

access specific resources or resource collections. Since each URI refers to a sin-
gle resource or collection of resources, services can often be added, changed, or
removed with minimal impact to other services.

Service Contracts for Resource APIs are composed of an application proto-
col (i.e., HTTP), the media types consumed or produced by the service, the ser-
vice’s status codes, and the URIs and URI schemes or patterns used to identify
resources.

Resource APIs use HTTP as an application protocol that prescribes several
standard service behaviors. It is expected that all web servers implement the
standard HTTP methods, and that all Resource APIs will respond to these
methods as follows.

® PUT is used to create or update resources.
e (ET is used to retrieve a resource representation.
e DELETE removes a resource.

e The behavior of POST varies. It can be used to create a subordinate of the
target resource identified in the client’s request, or for “nonstandard
behaviors” where other methods aren’t a good fit. For example, a mutual
fund service might accept requests to execute functions like “Exchange
Funds”, “Sell X Shares”, and “Sell Dollar Amount” through POST. This
method can also be used as a workaround when PUT and DELETE are dis-
abled on the web server or blocked at the firewall. In this situation, the
behaviors that would normally be carried out by other methods are tun-
neled through POST. Many REST advocates argue against tunneling through
POST since it tends to obfuscate the purpose of the request. P0STed requests
also can’t be cached by intermediaries.

e The OPTIONS verb may be used to discover what HTTP methods are sup-
ported at the target URL

e HEAD is used to acquire metadata about the media types exchanged at a
URL. It is similar to GET except that a representation is not returned.

e While the core methods are static, extensions to HTTP have been added
(e.g., WebDAV).

Resource APIs should respond to the methods listed above in the prescribed
manner. So, if a client issues a GET to acmeCorp.org/products, it should expect the
service to execute a Cet Products function. Since the semantics are predetermined
by HTTP, clients don’t have to learn a specialized API. However, they must still

v

Resource API

\ 4

Resource API

CHAPTER 2 WEB SERVICE API STYLES

know what methods may be used with each URI and when to use each method.
Additionally, it’s still up to the service developer to implement the function
according to the standards. Since the standard behaviors of PUT, GET, and DELETE
map roughly to the CRUD paradigm, some believe that Resource APIs should
only be used for CRUD use cases. This, however, is an incorrect assessment
because POST can be used to execute behaviors that don’t map well to CRUD.

The HTTP specification also identifies which methods should be “safe” and
which should be “idempotent.” Safe operations are supposed to have no side
effects. That is, they should not trigger write operations (i.e., creates, updates,
or deletes). GET, HEAD, and OPTIONS are supposed to be implemented as safe opera-
tions. Idempotence means that no matter how many times a procedure is
invoked with the same data, the same results should occur. GET, HEAD, PUT, DELETE,
and OPTIONS are idempotent. POST, on the other hand, is not. Therefore, if a client
repeatedly POSTs contact information to the same URI one should expect that
information will be written each time. There are times when POST should exhibit
idempotent behavior. For example, if a client sends the same order over and
over again, the client shouldn’t have to worry about duplicate orders. This
means that the service must differentiate one POST from another. The easiest
approach is to have the client insert a unique key (i.e., identifier) into the
request that is examined by the service before executing its main logic. If the
service finds that it has already processed a request with the identifier, it can
reject the new request. The problem is ensuring that these identifiers will indeed
be unique. Another approach is to have the client query a service to retrieve a
unique URI that may be used exclusively for the subsequent POST. This pattern is
known as Post-Once-Exactly [Nottingham, Marc].

Resource APIs usually take advantage of standard HTTP status codes as a
mechanism to provide results to the client. For example, rather than returning
an XML message, the service could return an HTTP code of 200 to indicate a
request has succeeded. If a resource has moved, the service could return a 301
code, and if the client sends a malformed message, the service might return a
400 error code to inform the client that their request isn’t understood and can’t
be processed. A long list of codes that cover common scenarios may be lever-
aged (re: www.w3.org/Protocols/rfc2616/rfc2616-sec10.html). These codes
enable clients and services to communicate in a standard way, and can also help
to optimize network utilization because minimal data is returned to the client.

The media types consumed or produced by the service are the most explicit
part of a Resource API contract. These define the required data structures (i.e.,
representations using formats like XML or JSON), character encodings (e.g.,
Unicode, ASCII), rules for parsing data, and standards for linking to other
resources. Media types can be altered or extended as long as these data struc-

www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

REesource API

tures, character encodings, rules for parsing, and standards for linking don’t
incur breaking changes in clients (for more on breaking changes, see the section
What Causes Breaking Changes? in Chapter 7). This means that services that use
this API style shouldn’t suddenly switch to using types that aren’t understood by
their clients. Indeed, unilateral changes cannot be allowed in “enterprise busi-
ness applications” where changes must generally be coordinated. Therefore, cli-
ents must have foreknowledge of the service’s media types and must also know
how to process them. All parties should also leverage standardized types (e.g.,
MIMEs) or use common vocabularies (e.g., Atom Publishing Protocol, Micro-
formats) when possible. However, if existing standardized types or vocabularies
cannot be used, then the parties may develop their own proprietary types and
vocabularies. Of course, this may limit the audience for the service.

Not every client will understand the media types used by a service. Some cli-
ents must delegate the handling of specific media types to specialized agents. A
service could, for example, wrap a representation in an “execution engine”
(e.g., Java applet, JavaScript) that the client is able to host and run. Other
media types may require the use of a plug-in that has specific knowledge of the
media type’s processing model. In this case, the client must have installed the
plug-in and have granted it appropriate execution privileges.

Considerations

Developers who create Resource APIs should consider the following issues.

e Use with disparate clients: Resource APIs are a great choice when you
have a wide mix of clients. Web browsers, feed readers, syndication ser-
vices, web aggregators, microblogs, mashups, AJAX controls, and mobile
applications are all natural clients for this style. This API style can also be
used in enterprise integration and workflow scenarios.

Resource APIs are especially effective when large documents and mes-
sages or binary files must be exchanged. The advantage is that media types
like these need not be wrapped in message envelopes that require clients
and services to use additional protocols (e.g., like the Message Transmis-
sion Optimization Mechanism or MTOM) to attach or detach the payload
to or from the message.

e Addressability: Resource APIs make it easy for clients to save and share
links to services. However, service owners must first decide whether or not
data should be directly addressable. The problem is that URIs often provide
malicious users with clues on how to mine an organization for information.

Resource API

v CHAPTER 2 WEB SERVICE API STYLES

Resource API

These “hackable” URIs make it easy for anyone to understand the meaning
of each URI segment, and to replace the content of specific segments in an
attempt to gain access to information that perhaps he shouldn’t see. A URI
may, for example, include customer account numbers as URI segments.
Such schemes are easy to exploit. The service owner could prevent mischie-
vous users from hacking these URIs by replacing simple account numbers
with meaningless UUIDs. This, however, is not enough. Service owners
should always implement the appropriate authentication and authorization
logic to confirm the identity of the caller and to constrain what each caller
can do. Nevertheless, some may consider direct resource addressability to
be too much of a security risk, even when the proper authentication and
authorization protections have been put into place. The alternative is to
funnel all requests through a Message API (27) or RPC API (18).

Code generation of service connectors: Client developers that use Resource
APIs often can’t take advantage of code generation tools. This is partially
due to the fact that most Resource API designers prefer not to offer Service
Descriptors (175). For those who appreciate code generation of client-side
Service Connectors (168), services that have Message APIs (27) or RPC
APIs (18) may be a better option.

Achieving asynchrony: Resource-oriented services typically use the
Request/Response pattern (54), but can also use the Request/Acknowledge
interaction pattern (59). With this pattern the request is not processed
when it is received. Instead, the service forwards the request to an asyn-
chronous background process and returns an acknowledgment (i.e., HTTP
code 202). By separating the message receipt from the time it is processed,
the system is better able to handle unanticipated spikes in load and control
the rate at which requests are processed.

How to avoid blocking: Clients that use this API style need not block after
sending a message. Rather, they may use an Asynchronous Response Han-
dler (184) to enable the client to perform other useful work as soon as a
message is sent.

Ability to support client preferences: Resource APIs often provide multiple
representations of the same logical resource. Rather than using a different
URI for each, you can use Media Type Negotiation (70) to enable clients
to indicate their preferences.

REesource API

¢ Late binding: Once a service has processed a request, clients often need to
call additional services in specific sequences. For example, a client that
calls an “Order Creation” service will frequently call “Order Update”,
“Order Cancel”, and “Order Status” services thereafter. The Linked Ser-
vice pattern (77) enables clients to discover related services that may be
called after receiving a service response.

e Ability to leverage commodity caching technologies: This API style lever-
ages commodity caching technologies designed specifically with HTTP in
mind. If, for example, a client requests a product that hasn’t changed
within the past day, and information on that product can be found in a
Reverse Proxy, then the cached representation will be returned and service
execution can be bypassed. This reduces the load on the Origin Server,
especially in cases where the service would have queried a database or per-
formed a CPU- or memory-intensive computation. Resource APIs are
therefore well suited for “read scenarios.” Clients can also implement
caches that may be checked for matching representations before sending
messages to services. Figure 2.2 illustrates the possibilities.

Intermediary
Cache

Service ' ' Service
Address Space Network Network Address Space

Figure 2.2 Representations from Resource APIs can be easily served up from
client, intermediary, and server caches. Whenever a representation can be
provided from a cache close to the client, associated performance costs related to
network latency can be avoided, and server loads can be minimized.

Resource API

v CHAPTER 2 WEB SERVICE API STYLES

¢ Resource APIs and REST: Earlier in this pattern I said that Resource APIs
often adhere to the principles of REST, but not every Resource API can be
considered RESTful. REST is an architectural style defined by several con-
straints [Fielding|. These include the following.

Resource API

— Client/server: All web services, regardless of the API, meet this constraint.

— Stateless: Not every Resource API is stateless. Some developers are less
concerned about super scalability and opt to create web services that main-

tain client state across multiple calls. For more information, see the section
Design Considerations for Web Service Implementation in Chapter 5.

— Cacheable responses: Most Resource APIs can leverage commodity
caching technologies. Whether you should or shouldn’t cache response
data is another discussion altogether. It should be noted that responses
from RPC APIs (18) and Message APIs (27) can also be cached by inter-
mediaries, but specialized infrastructures must often be used.

— Uniform interface: This is a fairly complex constraint. It suggests that a
uniform interface be used between all components (i.e., clients, interme-
diaries, and servers). For Resource APIs, this uniform interface is
defined through the HTTP specification. REST practitioners suggest
that Resource APIs must use the server methods (i.e., GET, PUT, POST, DELETE)
exactly as prescribed by the specification. Therefore, an API that relies
on POST for all logical operations is not RESTful.

This constraint also includes four architectural constraints. The first is
that all resources must be uniquely identified. This occurs through URIs.
The second and third subconstraints state that resources should be
manipulated through representations, and that messages must be self-
descriptive. Resource APIs usually meet these requirements. The last
constraint says that hypermedia should be the engine of application
state. In short, this means that hyperlinks should be used to guide client
applications through various workflow state transitions. Many Resource
APIs do not meet this requirement. For more information on this topic,
see the Linked Services pattern (77).

— Layered system: All web services, regardless of the API style, meet this
constraint if we look at them from the perspective of the Open Systems
Interconnection (OSI) Model.

— Code on demand: This constraint states that client applications can be
extended if they are allowed to download and execute scripts or plug-ins
that support the media type provided by the service. Adherence to this
constraint is therefore determined by the client rather than the APL

REesource API v

Example: A Resource API Implemented in Java and JAX-RS

This example shows a partial implementation of a Resource API for music
queries. The class named MusicGenreController is a Service Controller (85) that
maps client requests to a specific request handler. This handler, named
CGetArtistsInGenre, accepts a music genre and the starting characters of an artist’s
name as input. The controller uses the MusicSearch Command [GoF] to execute a
search for artists. The Artists Data Transfer Object (94) produces a JSON rep-
resentation that is returned to the client.

@Path("/genre")
pubTic class MusicGenreController {

private String NEXT_URI =
"http://www.acmeCorp.org/MusicService/artists";

@GET
@Path("/{genreName}/{artistNameStartsWith}")
@ProduceMime("application/json")

pubTic JAXBETement<Artists> GetArtistsInGenre(
@PathParam("genreName") String genreName,
@PathParam("artistNameStartsWith") String startsWith){

MusicSearch search = new MusicSearch(NEXT_URI);

Artists artists =
search.getArtists(genreName, startsWith);

return new JAXBETement<Artists>(
new QName("Artists"), Artists.class, artists);

This service enables clients to issue GET requests that look like this:

GET /MusicService/artists/genre/rock/rol1 HTTP/1.1
Host: acmeCorp.org

The representation for this resource might look something like this:

{"@StartsWith":"ro11","@Cenre": "rock",

"Artist":

[

{"Name":"Ro11ing Stones",
"URT":"http://www.acmeCorp.org/MusicService/artists/Rol1ing&Stones"},
{"Name":"RoT11ins Band",

"URIT": "http://www.acmeCorp.org/MusicService/artists/Rollins&Band"}

1}

Resource API

\ 4

Resource API

CHAPTER 2 WEB SERVICE API STYLES

Example: Procedure Invocation

Flickr, the popular image and video hosting web site, provides several APIs (re:
www.flickr.com/services/api/). The following are examples of Resource APIs
that enable clients to upload or replace standard binary photos.

http://api.flickr.com/services/upload/

http://api.flickr.com/services/replace/

Clients can also invoke procedures by issuing an HTTP GET or POST to URIs
that look like this:

http://api.flickr.com/services/rest/?method=X&argl=Y

This cannot be considered a RESTFul API because it doesn’t utilize the uni-
form interface of HTTP. In other words, a client could invoke an operation that
has side effects (e.g., a routine that writes to a database) without using PUT or
DELETE. Regardless, this API provides a simple way for client developers to exe-
cute procedures. It’s interesting to note that a specific invocation of a procedure,
inclusive of its arguments (as specified by the query strings), can be saved or

bookmarked.

Example: Conditional Queries and Updates

Clients can often help to minimize latency by specifying that representations
should only be returned if something has changed recently. Clients may, for
example, use standard HTTP header fields like If-Modified-Since to tell the ser-
vice to only return a response if the requested entity was modified after the time
specified. Here’s an example of a client request:

GET /products/pricelist HTTP/1.1
Host: acmeCorp.org
If-Modified-Since: Fri, 30 Sep 2010 18:00:00 GMT

In this case, the service should only return a representation if the price list
has changed since the date indicated in the If-Modified-Since header. If the
resource has not been modified, the service may return an HTTP code of 304 to
indicate that nothing has changed. This helps to optimize network bandwidth
because a full representation isn’t sent to the client. However, server load may
not be significantly reduced because the service must still execute the necessary
logic to retrieve the data and evaluate whether the resource has changed since
the date specified in the client’s header.

www.flickr.com/services/api/
http://api.flickr.com/services/upload/
http://api.flickr.com/services/replace/
http://api.flickr.com/services/rest/?method=X&arg1=Y

REesource API

The service owner has several options to reduce server load. One option is
to use the Service Interceptor pattern (195). An inbound interceptor may, for
example, be configured to check to see if the requested data can be found in a
distributed memory cache that is shared across web servers. If the requested
information can be found in this cache, then the information may be returned
directly from the interceptor, and the request handler will not be called. Server
utilization is optimized somewhat because the handler that would have pre-
sumably queried the database and formatted a response is not executed. How-
ever, the server still receives the request and, as a result, its load is higher than
it might otherwise be. Server load can be reduced by configuring Reverse Prox-
ies to cache responses. In this case, the proxy evaluates the client’s criterion
against its cache and will return a representation if the criterion is met.
Regardless of the caching approach, the service owner must determine how
long data may be kept in any cache before it is considered stale.

The Lost-Update Problem can be prevented through a similar conditional
statement.

PUT /products/pricelist/123 HTTP/1.1
Host: acmeCorp.org
If-Unmodified-Since: Fri, 30 Sep 2011 18:00:00 GMT

If requests are sent directly to a service that has no interceptors (including
Reverse Proxies), then the request will only be processed if the service deter-
mines that the resource has not been modified since the date provided in the cli-
ent’s request. Otherwise, the service will return a 412 status code to indicate
that a “precondition” has failed. In this case, the precondition is the modifica-
tion date. Again, server load can be reduced by using Service Interceptors (195)
that leverage distributed caches, or with Reverse Proxies.

Resource API

This page intentionally left blank

Chapter 3

Client-Service Interactions

Client-Service
Interactions

Introduction

All web services must be designed with a particular interaction style in mind.
That is, the developer must consider how a service and its clients will communi-
cate. This chapter presents the most fundamental design patterns that are used
for all web services, regardless of the service’s API style (i.e., Message, RPC, or
Resource). Given an understanding of these patterns, one may combine them in
many ways to create complex conversations in which multiple parties exchange
information about a particular topic over short or extended periods of time.
However, before we can approach these patterns, a familiarity with a few con-
cepts must be established.

The use of web services indicates a Client-Server model of distributed com-
puting. In this model, a client program (a.k.a. Requestor, Service Consumer,
Message Sender) sends a request to a server program (a.k.a. Service, Service
Provider, Message Receiver). The client program may have a user interface, or it
may run without user intervention as an unattended background process.
Examples of the latter include Unix daemons and Windows services. Of course,
server programs are always implemented as background processes. When a
server receives a request, it may process that request in its entirety or forward it
to another server. The server may or may not provide a response.

The most basic way clients can communicate with web services is through
point-to-point connections. In other words, the client connects directly to the
service. Once the client has established a connection, the parties may begin to
exchange data. Clients should generally use a single connection for multiple
data exchanges. This helps to minimize the latency associated with establishing
and tearing down the connections. Either party may terminate the connection

51

Client-Service
Interactions

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

at any time. Developers must remember that connections may also be dropped
due to network disturbances or server faults.

Regardless of what it looks like from the developer’s perspective, network
traffic is typically routed through intermediaries. A firewall, for example, is usu-
ally positioned between public networks and corporate servers. These can be
configured to block clients that either don’t provide the proper credentials (e.g.,
X.509 certificates) or don’t originate from white-listed (i.e., approved)
domains. Reverse proxies are often the next intermediary to intercept traffic.
They can be used to balance the load across a web server farm, and are fre-
quently used to manage “perimeter caches” as well. To this end, these interme-
diaries can be configured to intercept all client requests and check a cache to see
if a matching response can be found. If a recent response can be found in the
cache, it is returned from the proxy server, thereby avoiding a trip to the web
server and reducing its load.

HTTP is a connection-oriented protocol that requires the target server to be
available at the time a client sends a request. It is also synchronous because the
client’s request must be processed, to some extent, when it arrives. The client
has a similar time dependency and usually waits for the server to provide a
response. These factors illustrate a potential challenge for web services. Devel-
opers and architects must ensure high availability for the web servers and the
underlying systems (e.g., databases) used by the services, and must also allocate
sufficient system capacity (i.e., CPU, memory, internal network bandwidth,
etc.) to handle the normal client load and unanticipated spikes in load. The
types of client-service interactions that are adopted have a significant influence
on system availability and scalability.

This chapter presents the foundational patterns upon which all client-service
conversations are built. We’ll review synchronous exchanges, and we’ll see how
web services can be used in asynchronous conversations as well. We’ll look at
how the data structures that are exchanged can be negotiated, and we’ll see
how service addresses can be dynamically discovered at runtime. These patterns
are previewed in Table 3.1.

Table 3.1 Client-Service Interaction Patterns

CLIENT-SERVICE INTERACTIONS

Pattern Name

Problem

Description

Request/
Response (54)

What’s the simplest way for
a web service to process a
request and provide a result?

Process requests when they’re
received and return results over
the same client connection.

Request/
Acknowledge (59)

How can a web service safe-
guard systems from spikes in
request load and ensure that
requests are processed even
when the underlying systems
are unavailable?

When a service receives a request,
forward it to a background
process, then return an
acknowledgment containing a
unique request identifier.

Media Type
Negotiation (70)

How can a web service pro-
vide multiple representa-
tions of the same logical
resource while minimizing
the number of distinct URIs
for that resource?

Allow clients to indicate one or
more media type preferences in
HTTP request headers. Send
requests to services capable of
producing responses in the
desired format.

Linked Service (77)

Once a service has pro-
cessed a request, how can a
client discover the related
services that may be called,
and also be insulated from
changing service locations
and URI patterns?

Only publish the addresses of a
few root web services. Include the
addresses of related services in
each response. Let clients parse
responses to discover subsequent
service URIs.

These patterns may be combined in many ways to create complex conversa-
tions that involve multiple data exchanges. In other words, they may be used to
create interactions that include two or more parties where the roles of client and
server shift based on which system initiates a given exchange. A client may, for
example, initiate a conversation in which a request is sent to a service. The service
might then become the client by sending a request back to the initiator to get
more information. The flow of such conversations is frequently defined in work-
flows, which may be triggered when a service uses a Workflow Connector (156).

Client-Service
Interactions

Request/
Response

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Request/Response

A client uses a service to execute a business task, provide access to files or docu-
ments, or perform generic functions like authentication or logging. The request
must be processed immediately.

v
What's the simplest way for a web service to process a request and provide a result?

A

When a client uses a service, it usually wants the service to carry out its
orders immediately. If, for example, a traveler clicks on a link for the current
weather conditions in Munich, the intent is to see that information now. If a job
seeker uses a service to find local job openings, the goal is to see a listing after
the query is sent. In both of these scenarios, the service must provide an imme-
diate response to a specific client instance.

These are examples of the most basic type of client-service interaction. How-
ever, as trivial as it may seem, the act of invoking a remote service is far more
involved than calling a local method. Information must be sent from the client
process to the service process and back again to the client. Information may
also need to be returned to a specific client thread. There are, of course, many
ways to do these things. The simplest approach that can work should generally
be considered first. How can a service provide immediate results to a client with
minimal complexity?

REQUEST/RESPONSE

v

Process requests when they're received and return results over the same client
connection.

Service

L

Request/
Response

i
3
>
=

Request

[<——1 — Response ——
Connection
|
|
| T

L] | |

| | |

| | |

N AN J

' Y

A

Request/Response is the most basic and common of the client-service interac-
tion patterns. It’s easy to understand, and is the default pattern used by web ser-
vice frameworks and related APIs. It is used when the client must have an
immediate response or wants the service to complete a task without delay.
Request/Response begins when the client establishes a connection to the service.
Once a connection has been established, the client sends its request and waits
for a response. The service processes the request as soon as it is received and
returns a response over the same connection. This sequence of client-service
activities is considered to be synchronous because the activities occur in a coor-
dinated and strictly ordered sequence. Once the client submits a request, it can-
not continue until the service provides a response. It is often assumed that these
activities will complete within a few seconds.

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Considerations

The following issues should be considered before selecting a Request/Response
interaction style.

e Temporal coupling: In this pattern, the client generally assumes that the
service can always fulfill a request when it is received, and that a response
will be returned once the request has been processed. The implication is

Request/ that the underlying systems used by the service must always be opera-
Response

tional. If the service or systems it uses have crashed or have been brought
down for planned maintenance, then the client’s request may be rejected.
This highlights the effect of temporal coupling, or the dependency on tim-
ing, in this interaction. Since requests must be processed immediately and
responses returned without delay, temporal coupling is high. If these time
constraints can be loosened, then the risks associated with temporal cou-
pling can be mitigated.

Problems in meeting the client’s expectations for a timely response can
occur even when all of the systems used by the service are operational.
Since this pattern requires requests to be processed right away, a large vol-
ume of concurrent requests could overwhelm the system’s capacity. Service
architects must therefore understand the typical workload of the service
and scale the servers, databases, and network resources accordingly to
handle the expected loads. This may include “scaling up” by adding addi-
tional processors or memory to servers, or “scaling out” by adding addi-
tional servers to a cluster.

One may need to migrate away from Request/Response in order to mit-
igate the aforementioned risks. Availability and scalability issues can be
addressed through patterns like Request/Acknowledge/Poll (62) or
Request/Acknowledge/Callback (63). Both of these separate in time the
receipt of the request, the processing of the request, and the delivery of the
response. The former enables the client to submit a request and poll for a
response at its leisure. The latter requires the client to provide its own ser-
vice that receives callback messages. The downside with these patterns is
that they are much more complex to implement and debug than is
Request/Response.

Temporal coupling has other implications too. If the request takes more
than a few seconds to process, the client’s connection may time out, and
the response will be lost. The reasons for why this might occur are numer-
ous. The input data may incur activity that is compute- or I/O-intensive.

REQUEST/RESPONSE

Sometimes the service can be refactored for greater efficiency, and at other
times performance cannot be improved. High levels of network traffic can
also cause responses to be delayed. Request/Response should therefore
only be used when the average time to process a request and return a
response is “relatively short” and the client is designed to tolerate lost
responses. Otherwise, one should consider using the previously named
patterns.

Client-side blocking: By default, clients of Request/Response services
block and wait for responses. The time the client spends waiting may be
better spent working on other things. Fortunately, the client can overcome
this obstacle by using an Asynchronous Response Handler (184). This
enables the client to dispatch requests and receive responses on an alterna-
tive thread apart from the “main client thread.” The client may then
attend to other work on the main thread while the request is being pro-
cessed. Unfortunately, the connection could still time out, in which case
the response may be lost.

Intermediaries: Regardless of the fact that Request/Response involves a
point-to-point connection between a client and service, intermediaries can
be positioned between the two. Proxy servers, for example, may be used to
cache query results for Resource APIs (38). When a request passes through
a proxy, the proxy can check to see if the requested data can be found in
its cache. Data is returned from the cache rather than the service if it ful-
fills the client’s query. Firewalls are another type of intermediary. These are
used to block or filter network traffic and check client credentials. One
may, for example, define a firewall rule to check for the presence of an
X.509 certificate attached to a request. If the certificate is found, then the
request will be forwarded to the service; otherwise, it is blocked.

Request/Response is not RPC: Some equate Request/Response with
Remote Procedure Calls (RPCs). While they are similar in some ways,
there are some important differences. With classic RPC technologies like
CORBA and DCOM, the client usually waits for a response after the
remote procedure is invoked. Clients that use Request/Response services
don’t have to wait. Instead, they may leverage Asynchronous Response
Handlers (184) as was explained above. RPC protocols also require clients
to submit a fixed set of parameters. However, neither Resource APIs (38)
nor Message APIs (27) make this stipulation, and both of these can use
Request/Response.

Request/
Response

v CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Example: An RPC API That Uses the Request/Response Pattern

The following C# code shows a service that uses Request/Response. The class
FlightChecker encapsulates the flight search algorithms.

[ServiceContractAttribute]
public interface IBargainAirService

{
[OperationContractAttribute]
Request/ [FauTtContract(typeof(SafeFault))]
Response TravelOptionsMessage GetFlightSchedules(
TravelOptionsMessage request);
}

pubTic class BargainAirService : IBargainAirService

{
pubTic TravelOptionsMessage GetFlightSchedules(
TravelOptionsMessage request)

{
TravelOptionsMessage response = null;
FlightChecker checker = new FlightChecker(
request.DepartConstraints,
request.ReturnConstraints);

response.MatchingFlights = checker.GetMatchingFTights();

return response;
}
}

This service has very little logic of its own. Its primary responsibility is to
provide a publicly addressable endpoint that clients may call, to select the class
that fulfills the client’s request, and to return a response. This demonstrates a
clear separation of responsibilities (i.e., separation of concerns).

A Java client for this service is shown below. Notice that the client waits for
a response when it calls getFlightScheduTes.

BargainAirService proxy = new BargainAirService();

BargainAir port = proxy.getBargainAirPort();
TravelOptionsMessage request = new TravelOptionsMessage();

// populate request here

TravelOptionsMessage response = port.getFlightSchedules(request);

// do something with the response message

REQUEST/ACKNOWLEDGE

Request/Acknowledge

A client would like to manipulate a file or document, launch a business task, or
notify a system about an interesting event. Requests don’t need to be processed
right away. If a response is required, it doesn’t need to be delivered as soon as
the request has been processed.

v

How can a web service safeguard systems from spikes in request load and ensure
that requests are processed even when the underlying systems are unavailable?

A

A key consideration in the design of any web service is the degree of tempo-
ral coupling that should exist between the client and service. Temporal coupling
is considered to be relatively high when the request must be processed as soon
as it’s received. The implication is that the systems (e.g., databases, legacy or
packaged applications, etc.) behind the service must always be operational. If
systems have been taken offline, perhaps for maintenance reasons, then client
requests will be rejected. High temporal coupling also leaves systems vulnerable
to the effect of unanticipated spikes in request load. Since the capacity of a sys-
tem (i.e., memory, CPU, disk, network bandwidth, number of database connec-
tions) is usually based on average loads, a spike can cause excessive resource
utilization leading to systemic failures.

Temporal coupling is also high when the client blocks and waits for a
response. This can be a concern if the client could have spent the time waiting
for a response on other activities. Web service clients may use the Asynchronous
Response Handler pattern (184) to mitigate this issue, but more significant
problems remain. A client’s connection may time out if the request takes more
than a few seconds to process. This usually means that the response will be lost.
Additionally, if a web service launches a process that transpires over hours,
days, or months, then it’s just not feasible to have the client wait. All of these
issues can be abated if temporal coupling is reduced. This suggests the adoption
of an asynchronous request processing paradigm. In other words, clients may
send requests to web services, but they should not expect those requests to be
processed immediately, nor should they wait for responses.

The traditional way to support asynchronous processing is through network-
addressable message queues (i.e., Message-Oriented Middleware or MOM).
These technologies allow clients to send messages to remote systems at any time,
regardless of the operational state of the target system. Messages are stored in
the remote queue until the target system decides to retrieve them. If the client

Request/
Acknowledge

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

can’t connect to a remote queue, the client’s queuing infrastructure usually saves
the message to its own local queue and repeatedly attempts to send the message
until it finally succeeds. Distinct queue readers in the target system can also pro-
tect remote system resources from spikes in request load by throttling or control-
ling the rate at which requests are processed. Queues can also be used to receive
requests to execute long-running processes. Unfortunately, while queues can
help to reduce temporal coupling, they are best reserved for use within a secured
network, far behind the corporate firewall. One may mitigate some security con-
cerns by establishing a queue entry point on a hardened gateway, but the busi-
ness partner must use the same queuing technologies. If queues shouldn’t be
exposed beyond the corporate firewall, how can asynchronous processing be

Request/
Acknowledge

supported and temporal coupling reduced?

The web service could attempt to mimic the fire-and-forget characteristics of
queues by not returning a response (a.k.a. the One-Way or In-Only message
exchange pattern). In this approach, the service receives a request, processes it,
but doesn’t provide a response. While this eliminates the problem of client-side
blocking, it doesn’t let the client know whether or not a request has been
received and if it will be processed. It also doesn’t alleviate problems related to
unavailable resources (e.g., databases) or request spikes. How, then, can a web
service behave like a queue while also providing immediate client feedback?

A4

When a service receives a request, forward it to a background process, then return
an acknowledgment containing a unique request identifier.

Client Service Queue Request Processor

I
1

Request

Authenticate

Authorize

Generate Id or URI

P
P
—
P

Store and Forward Request

Acknowledgement Get Request

Request

> Process Request

A

REQUEST/ACKNOWLEDGE v

Request/Acknowledge may be used as an alternative to Request/Response
(54). The service typically performs the following steps.
Receive the request.
Authenticate client credentials (optional).
Authorize the client for the requested operation (optional).
Validate the request (optional).
Generate a Request Identifier or URL

Store and forward the request.

N A » o

Return an acknowledgment.

When the service receives a request, it typically authenticates and authorizes
the client, then validates portions of the request to ensure that it can be pro-
cessed. The service may use Service Interceptors (195) to complete these tasks.
If the client can’t be authenticated or is not authorized for the requested opera-
tion, or if the request is invalid, then the service will return a Negative
Acknowledgment (NAck) indicating the nature of the error and terminate.
Resource APIs (38) frequently return NAcks as HTTP status codes, while ser-
vices with RPC APIs (18) or Message APIs (27) generally return Document
Messages [EIP] containing error information. A very specific type of document
message used to convey errors for the latter two API styles is the SOAP Fault. If
a client receives a NAck, it may try to fix the problem and resubmit the mes-
sage, or it may decide to end the conversation.

If the client is authenticated and authorized, and if the request is valid, then
the service usually generates a Request Identifier or URI. This is a unique key
that can be used by all parties to refer to the request in future interactions. Once
this identifier is created, it is attached to the request, which is then forwarded to
an asynchronous background process by way of a queue or database table.
These processes (a.k.a. request processors) read and process each client’s
request. After the service has forwarded the request, it returns an Acknowledg-
ment (Ack) to the client and terminates. The acknowledgment might only be a
status code. A Resource API (38), for example, might only return an HTTP 202
code to indicate that the request has been received but has not yet been pro-
cessed. The acknowledgment could also be a document message containing the
request identifier somewhere in its body.

Request/
Acknowledge

Request/
Acknowledge

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Considerations

In many cases, the client’s interaction with the service will end when the
acknowledgment is sent. There are, however, scenarios in which the client must
receive a response or periodic updates. A customer may, for example, want to
know when the status of an order changes. The client application might also
want to receive the outcome from a long-running process. A traveler might, for
example, use a service to create a comprehensive travel package, but may not
receive confirmation for several hours or days. In both of these situations, it’s
not feasible to have the client maintain a connection to the service and wait for
the process to complete. It must have another way to receive updates and
results. The client might also want to have information relayed to other inter-
ested parties. A hotel, for example, might call a web service to update its room
availability. It may wish to have this information relayed to one or more travel
web sites.

There are three ways by which Request/Acknowledge can provide updates or
final results. The client can poll, callback messages can be sent to the client, or
messages can be relayed to interested parties. These variations are discussed in
the following list.

e Polling: The Request/Acknowledge/Poll variation of this pattern has been
discussed by many over the years (e.g., [Brown 1], [Snell]), and is probably
the easiest variation of Request/Acknowledge to implement. This pattern
requires the client to periodically poll a second web service for updates or
final results. Clients must first retrieve the prerequisite information from
the acknowledgment. Resource APIs (38) usually return URIs for the web
services that clients may poll. These URIs frequently contain the request
identifier somewhere in the path. RPC APIs (18) and Message APIs (27)
can provide the value of the request identifier anywhere in the acknowl-
edgment. In this case, the request identifier is extracted by the client and is
usually included as a parameter in the request to the polled service. Clients
may poll at their leisure and don’t have to poll on the same thread that
issued the request. Even if the client crashes, it can retrieve the final results
after a restart as long as the polling information was extracted from the
acknowledgment and saved before the crash. Figure 3.1 illustrates the gen-
eral sequence of activities in the Request/Acknowledge/Poll variation of
this pattern.

Request/Acknowledge/Poll has a few drawbacks. If the client doesn’t
poll frequently enough, there may be a significant delay between the time
updates or final results are ready and the time they are retrieved. If the cli-

REQUEST/ACKNOWLEDGE

| Client | | Service 1 |

Queue or Database

| Database

Request Processor

| | o L

Request

Store and Forward Request

Get Request

Request

Process
Request

Save

Request/
Acknowledge

Poll for Results

Response

|
|
|
|
I
| Query for Data
|
|
|
|
|

Figure 3.1 Request/Acknowledge/Poll enables clients to poll for results at their leisure.

ent polls too often, then excessive load may be placed on the web server,
and an inordinate amount of network traffic may be generated.

Request/Acknowledge/Callback can mitigate these problems, and can
also be used to deliver results in a more timely fashion.

e Callbacks and relays: Request/Acknowledge/Callback is equivalent to
Request/Acknowledge/Poll with one exception. Rather than having the cli-
ent poll a second service for results, a request processor (i.e., background
process) pushes information back to the client or forwards it to other par-
ties. This latter variation may be called Request/Acknowledge/Relay. To
make this happen, the client and server must switch roles. In other words,
the system that received and processed the request becomes the client, and
the system that sent the original request must offer a Callback Service that
receives results. Figure 3.2 depicts the general flow of events in the
Request/Acknowledge/Callback variation of this pattern.

In the Request/Acknowledge/Callback variation of this pattern, a list of
callback services must be acquired after the request has been processed.
This list could be retrieved from a local data store, or it might be passed in
with the original request itself. In the former approach, the request proces-
sor would first extract a key value from the request. This could be a cus-
tomer or account identifier, for example. The request processor would
then use this key to retrieve a list of callback services. The information

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

| Client | | Service 1 | Queue or Database

Request Processor Callback Service
| |

|
|
|
Store and Forward Request |
|
|
|

Request

Acknowledgment

Get Request

Request

Request/
Acknowledge

> Process Request

Get List of Callback Services

|
|
|
|
|
| Representation or Callback Message
|
|
|
|
|

-
|
|
|

Figure 3.2 Request/Acknowledge/Callback can be used when the status updates or final

results for a request must be delivered as soon as possible to one or more recipients. In

this variation of Request/Acknowledge, the request processor pushes a Representation or
Callback Message to a Callback Service.

used to create this list may have been keyed in manually, uploaded from
files, or registered by the client through some other web service (e.g., a
“subscription service”). The callback service list can also be passed in with
the original request. Clients of Resource APIs (38) might, for example,
send requests containing the URIs for their callback services. Clients of
RPC APIs (18) and Message APIs (27) can leverage WS-Addressing head-
ers for a similar purpose. However, when callback recipients are identified
in the request, special precautions must be taken to ensure that they can-
not be seen or altered by anyone except the authorized parties. The easiest
way to protect the request is through Transport Layer Security (TLS). WS-
Security can also be used to digitally sign and encrypt requests. This latter
approach is typically used when the request is passed through multiple
intermediaries. Once a callback list has been procured, the request proces-
sor is able to dispatch updates or results for the original request. Some-
times the same results will be sent to each service. At other times the
results must be formatted specifically for each target. The request proces-
sor may have to implement the Idempotent Retry pattern (206) if there’s a
chance that callback services might be unavailable.

REQUEST/ACKNOWLEDGE v

There are several things to consider before selecting Request/Acknowledge/
Callback. Tt is more complex to implement and debug than is Request/
Acknowledge/Poll. Capacity planning is also more challenging. If there’s a
one-to-one correspondence between requests and callback services, then the
level of system resources (e.g., CPU, memory, etc.) required to process
requests for Request/Acknowledge/Callback may only be slightly higher
than for Request/Response (54). However, if a single request generates mul-
tiple updates, if the results of a single request must be delivered to many call-
back services, or if the updates or results must be formatted in a variety of
ways for each recipient, then the system resources required can be orders of
magnitude higher.

The Request/Acknowledge/Callback pattern cannot be used if the origi-
nating client is unable or unwilling to provide a publicly addressable call-
back service. Some originating clients will not consider this pattern
because they would have to open a port to receive inbound traffic. While
various security measures (e.g., firewalls, X.509 certificates, SAML tokens,
private networks) could be leveraged to protect against unauthorized traf-
fic, some organizations do not wish to take the risk or allocate the neces-
sary funds. If this is the case, the only option to receive responses is
Request/Acknowledge/Poll.

A foundation for Publish/Subscribe: Publish/Subscribe is a classic design
pattern in which a Message Sender (i.e., Publisher) transmits messages to
an intermediary (e.g., web service) that enables interested parties (i.e., Sub-
scribers) to receive this information while keeping them ignorant of one
another. Each published message may have one or many Subscribers.

Request/Acknowledge/Relay and Request/Acknowledge/Poll provide
two different ways to realize this pattern. The former is more closely aligned
with what many consider to be the classic implementation of the Publish/
Subscribe pattern. In this approach, a web service receives messages from
Publishers and pushes information to one or more Subscribers. In the latter
approach, a web service receives messages, and information extracted from
these messages is persisted (e.g., to a database) by the service. Subscribers
must then pull information from another web service (e.g., an Atom Syndi-
cation feed) that queries the data persisted by the first web service.

Request/
Acknowledge

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Example: A Service That Implements Request/Acknowledge

The following listing shows how a Java service can use JMS to forward
requests. These are picked up by asynchronous background processes designed
to pull requests from a queue and process them.

@WebService(name="BargainAirService")
public class BargainAirService {

@WebMethod ()
Request/ public TripReservationAck ReserveTrip(
Acknowledge @WebParam(name = "request")
TripReservation request))
{

String requestId = System.currentTimeMillis().toString() +
java.util.UUID. randomUUI().toString();

request.setIdentifier(requestId);
FlightReservationsGateway.SendMessage(request);
TripReservationAck response = new TripReservationAck();
response.setRequestId(requestId);

return response;

}
}

public class FlightReservationsGateway {

public static void SendMessage(TripReservation request){
Context context = new InitialContext();

ConnectionFactory factory =
(ConnectionFactory)context. Tookup("queueConnFactory");

Queue queue = (Queue) context.lookup("flightReservations");

Connection conn = factory.createConnection();

Session session = conn.createSession(true,
Session.AUTO_ACKNOWLEDGE) ;

MessageProducer sender = session.createProducer(queue);
TextMessage msg = session.createTextMessage(request.toString());
sender.send(msg);

}
}

REQUEST/ACKNOWLEDGE v

Example: A Resource API That Implements Request/Acknowledge/Poll

This example shows how a Resource API (38) implemented in Java could sup-
port polling. The OrdersResourceController is a Service Controller (85) that maps
HTTP POST and GET requests to request handlers named PlaceOrder and GetOrder,
respectively. The first receives an order request and returns an acknowledgment
containing the URI of the service that should be polled. This URI is mapped by

the controller to the GetOrder method.
Request/

@Path("/orders™) Acknowledge

public class OrdersResourceController {

private static String BaseURL =
"http://orders.acmeCorp.com/";

public OrdersResourceController() {;}

@POST

@ConsumeMime ("application/xm1™)
@ProduceMime("text/plain")

public String PlaceOrder(Order order) {

String requestId = System.currentTimeMillis().toString() +
java.util.UUID. randomUUID() . toString();

order.setIdentifier(requestId);

// Assume this submits to a queue
(new FulfillmentGateway(order)).submit();

return BaselURL + requestId;

}

@GET
@Path("/{requestId}")
@ProduceMime("application/xm1")
public Order GetOrder(
@UriParam("requestId™)
String requestId){

return (new FulfillmentGateway(requestId)).getOrderStatus();
}
}

Request/
Acknowledge

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Example: Leveraging WS-Addressing for Request/Acknowledge/Relay

The OrderProcessor class below, written in C#, is an example of a request proces-
sor and Command [GoF] that can be instantiated from within a web service
method. This class processes requests and relays callback messages to callback
services. It gets the callback list from the WS-Addressing ReplyTo header. You
may assume that this object is enqueued by the web service to a background
process, dequeued by the background process, and executed there rather than
on the web server.

public interface IRequestProcessor

{

void Execute();

public class OrderProcessor:IRequestProcessor

{
OrderMessage request;
string replyto=null, from=null, msgIld=null;

pubTic OrderProcessor (OrderMessage request)
{
this.request = // perform deep copy of request
replyTo = OperationContext.Current.IncomingMessageHeaders.ReplyTo;
from = OperationContext.Current.IncomingMessageHeaders.From;
msgId = OperationContext.Current.IncomingMessageHeaders.Messageld;

}

pubTic void Execute()
{

// Logic to process order would go here
// Now, Tlet’s relay information to a shipper

ShipperMessage shipperMsg = new ShipperMessage(
request.OrderId, request.ShipToInfo);

ShipperDispatcher shipper = new ShipperDispatcher(replyTo,from);

shipper.Notify(shipperMsg, msgId);
}
}

The ShipperDispatcher class encapsulates the logic for relaying messages. It
dynamically constructs the appropriate connection to a shipper service given a
destination URI. The target service must implement the IShipperService interface.

[ServiceContract]
pubTic interface IShipperService

{

REQUEST/ACKNOWLEDGE v

[OperationContract]
ShipperMessage PickupOrder(ShipperMessage request);
}

pubTic class ShipperDispatcher{

private EndpointAddress destination;
private EndpointAddress initialSender;

pubTic ShipperDispatcher(EndpointAddress dest,
EndpointAddress sender) Request/

{ Acknowledge
destination = dest;

initialSender = sender;

}

pubTic void Notify(ShipperMessage shipperOrder,
Uniqueld correlationld)
{
ChannelFactory<IShipperService> factory =
new ChannelFactory<IShipperService>(
new WSHttpBinding(),
destination);

IShipperService shipper = factory.CreateChannel();

using(new OperationContextScope((IContextChannel)shipper))
{

SetMessageHeaders(correlationId);
using (shipper as IDisposable)

shipper.PickupOrder(shipperOrder);
}
}
}

private void SetMessageHeaders(UniqueId correlationId)
{
OperationContext.Current.OutgoingMessageHeaders.Messageld =
new Uniqueld(Guid.NewGuid().ToString());

OperationContext.Current.OutgoingMessageHeaders.RelatesTo
correlationId;

OperationContext.Current.OutgoingMessageHeaders.To =
destination.Uri ;

OperationContext.Current.OutgoingMessageHeaders.From =
initialSender

Media Type
Negotiation

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Media Type Negotiation

Clients that use services with Resource APIs (38) often have preferences for dif-
ferent media types.

A 4
How can a web service provide multiple representations of the same logical re-
source while minimizing the number of distinct URIs for that resource?

A

Web services that are used by large and diverse client populations must often
accommodate different media type preferences. Some clients may, for example,
prefer XML while others favor JSON. The service owner must therefore devise
a means by which clients’ preferences can be indicated. Each service must then
detect these preferences, format an appropriate response, and serialize the
response accordingly. There are many ways for a client to convey its prefer-
ences. Some use URIs for this purpose. With this approach, the preferred type
appears as the final segment of the URI, as a file extension, or as a query param-
eter in the URI. Examples are shown below.

http://acme.org/product/123/json
http://acme.org/product/123.html
http://acme.org/product/123.pdf
http://acme.org/product/123?fmt=json

This common approach does have a few advantages. It’s intuitive, easy to
read, and often works well with browsers. Since the URI encapsulates both
resource identification and the preferred representation type, it’s also easy to
test the service, save its address, and forward the address to interested parties.
However, this approach has several disadvantages as well. URIs should be used
to identify distinct resources. In this example, there really is only one resource
(i.e., information on product 123) that can be represented in four ways. The use
of multiple URIs in this example is misleading because it implies that there are
four different resources. Furthermore, if the client has a prioritized list of media
type preferences, then it must know how to formulate the correct URI for each
type, and must contact each service, one after the other. This has the unfortu-
nate side effect of increasing client-service coupling and overall latency. If the
request uses query strings to indicate client preferences, then intermediary cache
providers may consider each response to be unique whether or not the parame-

http://acme.org/product/123/json
http://acme.org/product/123.html
http://acme.org/product/123.pdf
http://acme.org/product/123?fmt=json

MEbpia TyPE NEGOTIATION

ters are the same across multiple requests (re: RFC 2616, section 13.9). This
strategy can also be tedious for service developers to implement because the
desired type must be parsed and separated from other URI segments that iden-
tify the business entity (e.g., product). A better approach is to leverage standard
HTTP protocols for content negotiation.

v

Allow clients to indicate one or more media type preferences in HTTP request head-
ers. Send requests to services capable of producing responses in the desired format.

Request Service | _
L--777 MediaType -=-=7777"""2 Framework | ~~"7=-.
e Preferences T

~. Response .-
ERRRREET Desired ~ <----- -
Media Type

A

Content negotiation (a.k.a. Conneg) is described in RFC 2616, section 12.
This specification describes how HTTP servers and clients can collaborate on
selecting a response that matches the client’s preferred language, character set,
and media type. While the original intent of the specification was to address the
needs of people sitting at browsers, the protocol can also be used to facilitate
polymorphic data exchange with automated clients. Media Type Negotiation
leverages this protocol in a way that enables services to provide multiple repre-
sentations of the same logical resource. This pattern is primarily used with
Request/Response (54).

The specification for content negotiation describes three basic approaches.
The most common of these is server-driven negotiation. In this approach, the cli-
ent provides its media type preferences through the Accept Request header. The
client can provide multiple preferences and can also indicate which media types
are most preferred. When a request is received, web service frameworks that
enable the Service Controller pattern (85) will route or select a Request Handler
(i.e., Web Method) based in part on how well the client’s preferences match up
to the handler’s Media Type Annotations (see Figure 3.3). Developers use these
annotations to indicate the media types consumed or produced (i.e., serialized)

Media Type
Negotiation

Media Type
Negotiation

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Service Controller

[Media Type Annotations]
Request Handler1

[Media Type Annotations]
Request Handler2
Accept
Headers

Figure 3.3 In server-driven negotiation, the service framework selects a request handler
(i.e., web method) based, in part, on how well the client’s preferences, as indicated
through HTTP Accept headers, match up to the handler’s Media Type Annotations.

by a given handler. This also eliminates the need to create additional web service
logic that parses and directs requests to an appropriate routine. A given handler
annotation usually only identifies one media type, but developers may include
more if the framework supports it. All popular frameworks automatically serial-
ize and deserialize generic types (e.g., application/xml, application/json, text/plain,
text/htnl). If you want to receive or return custom types, then you’ll have to
write custom serializers.

The logic used to select a handler varies per platform. However, they all fol-
low a few general rules. If the client doesn’t supply preferences, the web service
provides a default response. When the client provides a single type preference,
the framework will try to find an annotation that matches the client’s preference
exactly. If the client provides multiple preferences, or a handler is annotated to
produce multiple types, then the selection process becomes a bit more complex.
In short, the framework will try to find a best match between the client’s types
and the handler annotations. If the client provides multiple type preferences, the
framework will consider the client’s ranking of these preferences. The frame-
work will also select more specific types like application/vnd.acme.custSummary over
generic types like application/xml when possible.

A second negotiation style is client-driven negotiation. Here again, the client
sends a request containing its media type preferences through an HTTP Accept
Request header. A web service receives the request and responds by providing a
list of URIs the client may consider. For example, a client could send a request
asking for the technical specifications on a particular product. The service may
then provide a response containing Linked Services (77) that point to services

MEbpia TyPE NEGOTIATION

capable of producing acceptable media types. The client must then review the
list, select the service that best meets its needs, and send the “real” request.

Considerations

Developers considering Media Type Negotiation should consider the following.

e Server versus client-driven negotiation: Server-driven negotiation may be

appropriate when the service owner wishes to provide the client with "N"edii_T‘t’_Pe
egotiation

options while maintaining control over the media type selection process.
This variation on the pattern helps to simplify client logic, and also tends
to minimize network round-trips. The downside is that, when the client
does not provide explicit preferences, the server’s response might not be
recognized by the client, or it might be inappropriate for the intended use.

Client-driven negotiation may be appropriate when you want the client
to have more control over the types it receives. The drawback is that the
client must initiate two Request/Response (54) exchanges, one to query for
a list of service addresses and a second to obtain the ultimate response.

Server-driven negotiation can make it harder to leverage cached data.
As the number of types returned from a specific URI increases, the chances
of satisfying a request from an intermediary cache (i.e., Proxy Server) tend
to decrease. Clients using client-driven negotiation often have a better
chance of being served data from cache because a one-to-one ratio exists
between URIs and media types.

e Use with Service Controllers: Server-driven negotiation is most easily
implemented with frameworks that enable the Service Controller pattern
(85), as was described in the preceding paragraphs. One may achieve
server-driven negotiation without Service Controllers and Media Type
Annotation, but it can be a lot of work. In this case, custom service logic
must be created to extract the Accept Request header, interpret the client’s
preferences, and then select and create a response structure that meets the
client’s needs. Once the structure has been populated, the service must seri-
alize the response accordingly.

¢ Client-driven negotiation versus WS-Discovery: Client-driven negotiation
has similarities to WS-Discovery in that both provide a means for clients
to discover services while attempting to minimize coupling to service loca-
tions. WS-Discovery is a protocol in which clients send SOAP messages to
a multicast group in order to receive the addresses of services that meet
their requirements. This specification has exacting requirements for the

v CHAPTER 3 CLIENT-SERVICE INTERACTIONS

Media Type
Negotiation

structure of client “probe messages,” and is equally rigid regarding the
structure of responses. Client-driven negotiation, on the other hand, is a
flexible pattern whose implementation is left to the service owner.

e Possibility of code duplication: There is a possibility that the code in
request handlers may be duplicated. This risk can be mitigated if each
request handler delegates all processing to a common Command [GoF].

e Use of Service Connectors: Service Connectors (168) can assist with Media
Type Negotiation by encapsulating knowledge of the client’s preferred
types and by creating the necessary request headers. This information may
be hardcoded, but may also be read from a configuration file.

Example: Using HTI'TP Accept Headers to Indicate Preferred Types

Clients can indicate the priority of their preferences by using the q parameter in
an HTTP Accept header. The scale for this parameter ranges from 0 to 1, with
the most preferred type having a rank of 1. The example below shows how a
client has requested information on customer 123. The most preferred type is
the second version of a customer summary, followed by the first version of that
same type. The client will also accept any other representation that uses the
MIME type of application; the assumption is that the subtypes will most likely
be XML or JSON.

GET http://acmeCorp.org/customers/123

Accept: application/vnd.acme.custSummary.v2;
application/vnd.acme.custSummary.vl;
application/*;q=0.8

q=l'@v
0=0.9

Example: Server-Driven Negotiation

The following HTTP CET shows a client request where the most preferred type is
JSON, followed by any text format (e.g., HTML, rich text, plain text, etc.).

GET http://acmeCorp.org/stores
Accept: application/json;q=1.0,
text/*;q=0.9

The first request handler named getStores is capable of returning both XML
and JSON media types. Since the client has indicated that JSON is the preferred
type, the service framework will automatically serialize the response as that

MEbpia TyPE NEGOTIATION

media type. A second request handler named getStoresAsText performs the same
query, but returns the response as plain text.

@Path ("/stores™)
pubTic class StoreService {

@GET

@Produces("application/xm1")
@Produces("application/json")

public JAXBETement<Stores> getStores()
{

Stores stores = Stores.getStores();

return new JAXBETement<Stores>(
new QName("Stores"), Stores.class, stores);

}

@GET
@Produces("text/plain")
public String getStoresAsText()
{
return Stores.getStores().toString();

}

Example: Client-Driven Negotiation

The following HTTP response fragment shows how a web service can provide a
list of URISs the client may consider. The client must parse ProductData in order to
find a link relation that contains the media type it’s most interested in. Once a
link relation has been selected, the client may submit a request to the URI iden-
tified in the corresponding href attribute.

<ProductData>
<link rel="self"
href ="http://acmeCorp.org/products/123" />

<link rel="http://acmeCorp.org/products/getImage"
type="image/jpg"
href="http://images.acmeCorp.org/products/123" />

<link rel="http://acmeCorp.org/products/getIson"
type="application/json"
href= "http://data.acmeCorp.org/products/123" />

Media Type
Negotiation

v CHAPTER 3 CLIENT-SERVICE INTERACTIONS

<Tink rel="http://acmeCorp.org/products/getXML"
type="application/xml"
href= "http://data.acmeCorp.org/products/123" />

<link rel="http://acmeCorp.org/products/getPDF"
type="application/pdf"
href= "http://docs.acmeCorp.org/products/123" />
</ProductData>

Here we can see that subdomains (e.g., images, data, docs) are created for dif-

Media Type ferent media types. These domains may be deployed to different server clusters,
Negotiation

and scaled according to the anticipated workload.

LINKED SERVICE

Linked Service

A set of related software functions is exposed as web services. These services are
frequently called in specific sequences. For example, a client that calls an
“Order Creation” service will frequently call “Order Update”, “Order Cancel”,
and “Order Status” services thereafter.

A 4 Linked Service

Once a service has processed a request, how can a client discover the related ser-
vices that may be called, and also be insulated from changing service locations and
URI patterns?

A

Clients must, of course, have a way to acquire service URIs. One approach is
to store this information in configuration files on the client. If a service location
changes, the developer need only edit the configuration file and redeploy it.
However, service owners must give adequate notice, and client developers must
deploy the updated files at just the right time. If the configuration file is
deployed too early or too late, the client will probably break. The implication is
that client and service changes must be carefully coordinated. This may be fea-
sible in “small” environments, but it becomes untenable when many client
applications are affected. One can avoid this issue by leveraging sophisticated
software infrastructures. Client applications could, for example, query a central
Service Registry (220) to acquire current service addresses. Requests could also
be submitted to a “broker service” that finds and executes services on behalf of
clients. While these approaches insulate clients from changing service locations,
the client must know how to find and use these infrastructures. Response times
may also increase due to the overhead incurred by these intermediaries. Addi-
tionally, infrastructures like these often entail steep learning curves, significant
cash outlays, and vendor lock-in.

Web services are frequently called in specific sequences. For example, a client
that calls an “Order Creation” service will frequently call “Order Update”,
“Order Cancel”, and “Order Status” services thereafter. None of the aforemen-
tioned techniques helps the client to understand what they can do after any
given service call. Fortunately, service developers can leverage hyperlinks to
provide clients with properly formatted URIs that are both current and relevant
to the most recent request.

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

A4
Only publish the addresses of a few root web services. Include the addresses of re-
lated services in each response. Let clients parse responses to discover subse-
quent service URls.

Client Web Service 1 Web Service 2

| |
L I
|

Linked Service

Invoke Service

Process Request

Response with Addresses

|
I
I
I
> Parse Response |
I
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Invoke Service :
)

|
|
| Process Request

1
Response with Addresses

A

The Linked Service pattern is fairly easy to understand. The service owner
publishes one or a few “root services” that provide the initial “entry points” for
a set of related functions. When a service prepares a response, it includes
addresses of related services. If the client invokes an “Order Creation” service,
the response might, for example, contain addresses for “Order Update”,
“Order Cancel”, and “Order Status” services. Clients must parse each response
to acquire subsequent service addresses. All addresses included in the response
are supposed to be current and correctly formatted.

This pattern offers other significant benefits.

¢ Provides relevant addresses for each request: Responses may be constrained
to only provide service addresses that make sense given the context of the
most recent request. Continuing with the current example, if the client calls
an “Order Creation” service and the order could not be shipped immedi-

LINKED SERVICE

ately, then the response might contain addresses for “Order Update”,
“Order Cancel”, and “Order Status” services. On the other hand, if the
order was shipped, the response might only contain the URI of a “Shipment
Tracking” service. This pattern therefore provides an effective mechanism to
guide clients through valid workflow state transitions.

¢ Ensures correctly formatted addresses: Resource APIs (38) are frequently
accompanied by specifications that explain the URI patterns (i.e., URI
templates) clients must understand. It is the responsibility of each client to Linked Service
invoke services in accordance with these specifications. Unfortunately, it’s
all too easy for clients to construct invalid addresses. Clients may leave out
a URI path segment, put segments in the wrong order, or fail to encode
addresses properly (re: URL encoding). The Linked Service pattern can
abate these issues because each response contains preconstructed addresses
clients may use.

e Protects clients from changing URI patterns and service locations: Linked
Services provide an effective way to decouple clients from service locations
and even URI patterns. Clients can trust that each response contains only
the most current URIs for a set of related services. This makes it easy for
service owners to change their URI patterns, or even move a service to an
entirely different domain without breaking clients.

® Makes it easy to add or remove services: Service owners can introduce new
services with ease by adding information about them into the relevant
responses. Clients must, of course, be updated to recognize new links and
interact with the services referenced by these links. Service owners can also
exclude links to services they wish to discontinue. If a client attempts to
use a deprecated service, even though a link to that service has not been
provided in a response, the server can notify the client that the service has
been removed by returning an HTTP status of 410.

Considerations

Developers should consider the following when using the Linked Service pattern.

e Use with Resource APIs: This pattern is primarily used with services that
have Resource APIs (38). Nonetheless, services that have RPC APIs (18)
and Message APIs (27) are not barred from using this pattern. These ser-
vices may, for example, use WS-Addressing for this purpose.

Clients must know how to parse each response. Services with Resource
APIs (38) typically create responses containing one or more link relation

Linked Service

CHAPTER 3 CLIENT-SERVICE INTERACTIONS

elements. Each link relation has a link relation type that identifies the
semantics or meaning of the link, a link relation media type that identifies
the media types consumed or produced by the service, and a hyperlink ref-
erence that identifies the URI or address of the service.

Clients search link relations for specific relation types. If the client
wants to invoke an “Order Update” service, it might search for a relation
type of “OrderUpdate”. The client would then extract the corresponding
hyperlink reference to acquire the service URI, and prepare a request using
the media type identified in the link relation. Clients must have forehand
knowledge of what HTTP methods (i.e., GET, PUT, POST, DELETE) to use for each
Linked Service, and must also be familiar with the requisite media types.

e Security: Service owners should take precautions against man-in-the-
middle (MITM) attacks when responses are sent over public networks.
The problem is that an intermediary can intercept the response and change
it so that it refers to a malicious service. While such risks cannot be com-
pletely eradicated, they can be mitigated to a large extent by conducting all
client-service interactions over secure channels (e.g., TLS). One could also
use digital signing to protect the message from tampering, and encrypt the
service hyperlinks so that they can’t be read by unauthorized parties.

¢ Generation of hyperlinks: This pattern assumes that each service is capable
of generating the correct hyperlinks. Service developers might therefore
create classes that encapsulate these algorithms. These classes could be
used by all services, and would ensure that hyperlinks are generated in a
consistent manner.

Service owners must also consider how links to external services should
be acquired for use in responses. Ironically, the services that provide
hyperlinks could become tightly coupled to external service locations just
as clients had been. Web services must therefore have access to a shared
data store that provides consistent information regarding external services.
One could, for example, create a hashtable containing service lookup
information and cache it on each web server.

Example: Atom Publishing Protocol, Service Documents, and Link Relations

Atom Publishing Protocol (APP) provides a generic protocol that may be used
to convey information about related web services. Clients usually start by
retrieving a service document from a “root service.” This document provides
basic information clients may parse to discover subsequent services. The service

LINKED SERVICE v

document accomplishes this by grouping one or more Atom collections into a
workspace. Each collection can be used to signify an application domain. Cli-
ents may search these collections and acquire the address of the “root web ser-
vice” for a given application domain by parsing for a particular title. The
following service document shows two resource collections named Customers and
Loans. The href attribute provides clients the URI of the root service for each
application domain.

<?xml version="1.0" encoding="utf-8'?>

<service xml:base="http://acmeCorp.org/"
xmins:atom="http://www.w3.org/2005/Atom"
xmins:app="http://www.w3.org/2007/app"
xmIns="http://www.w3.0rg/2007/app" >

<workspace>
<atom:title>Acme Corp</atom:title>
<collection href="http://customers.acmeCorp.org" >
<atom:title>Customers</atom:title>
<accept>application/vnd.acme.cust+xml</accept>
</collection>

<collection href="http://loans.acmeCorp.org/" >
<atom:title>Loans</atom:title>
<accept>application/vnd.acme.LoanApplication+xml</accept>
</collection>
</workspace>
</service>

A client might then submit an HTTP POST to http://loans.acmeCorp.org in order
to create a new loan application. The service could respond with a response
that contains more link relations. The listing below shows a response that con-
tains links to services that enable the client to modify loan terms, cancel the
loan, or submit a new loan application. These are identified with the relation
type values modifyTerms, cancelApplication, and submitApplication, respectively.

<Loan>
<id>105</id>
<status>Created</status>
<updated>2010-06-10T14:45:32z</updated>

<link rel="self"
type="application/vnd.acme.LoanAppTication+xml"
href="http://Toans.acmeCorp.org/105" />

<link rel="http://loans.acmeCorp.org/modifyTerms"
type="application/vnd.acme.LoanAppTlication+xml"
href="http://Toans.acmeCorp.org/105" />

Linked Service

http://loans.acmeCorp.org

v CHAPTER 3 CLIENT-SERVICE INTERACTIONS

<Tink rel="http://loans.acmeCorp.org/cancelApplication”
type="application/vnd.acme.LoanAppTication+xml"
href="http://Toans.acmeCorp.org/105" />

<link rel="http://loans.acmeCorp.org/submitApplication”
type="application/vnd.acme.LoanAppTlication+xml"
href="http://Toans.acmeCorp.org/" />
</Loan>

This example assumes that the client knows that they should issue an HTTP
Linked Service GET to retrieve the current version of the loan, a PUT to modifyTerms, and a POST to
submitApplication. What’s not so evident is that the client should probably issue
an HTTP DELETE to invoke the cancelApplication operation.

Chapter 4

Request and Response
Management

Introduction

Software applications are frequently organized into layers that contain logically
related entities. Since layers consolidate and isolate the logic for a particular
concern, developers can often standardize behaviors, make isolated changes, or
swap out significant functionality without affecting other parts of a system.
Layering can also help to facilitate understanding of large and complex systems
since you can often focus on the purpose and design patterns used in individual
layers rather than trying to comprehend the entirety of a system at once.

Consider the layers that have become common in many applications. The
Presentation Layer contains logic that displays information and receives user
input. This layer uses business logic found in the Domain Layer [DDD] to fulfill
user requests. The Domain Layer, in turn, calls upon the entities in the Data
Source Layer, to read and write information to databases or other data stores
(e.g., files, messaging systems, etc.). From this, we can see that higher layers
depend on lower layers, but lower layers know nothing of the upper layers.

A Service Layer [POEAA] can be used to create a distinct API for multiple
client types. This API establishes a clear boundary between client applications
and the logic for a specific domain. The Service Layer is actually a part of the
Domain Layer. Services within this layer often fulfill client requests by coordi-
nating the actions of objects that are members of the Domain Model [POEAA].
They may also provide access to application workflows, code libraries, com-
mercial packages, and legacy applications. This chapter reviews a few patterns
that belong to the Service Layer. These patterns are used to manage web
requests and responses, and are outlined in Table 4.1.

83

Request and
Response

Management

Request and
Response

Management

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Table 4.1 Request and Response Management Patterns

Pattern Name

Problem

Description

Service Controller
(85)

How can the correct web
service be executed with-
out having to maintain
complex parsing and
routing logic?

Create a class that identifies a set of
related services. Annotate each class
method with routing expressions
that can be interpreted by a Front
Controller.

Data Transfer

How can one simplify

Create distinct classes to represent

Object (94) manipulation of request request and response data struc-
and response data, tures. Consolidate the mapping logic
enable domain layer enti- that reads and writes these struc-
ties, requests, and tures.
responses to vary inde-
pendently, and insulate
services from wire-level
message formats?

Request Mapper How can a service pro- Create specialized classes that lever-

(109) cess data from requests age structure-specific APIs to target
that are structurally dif- and move select portions of requests
ferent yet semantically directly to domain layer entities or
equivalent? to a common set of intermediate

objects that can be used as input
arguments to such entities. Load a
particular mapper based on key con-
tent found in the request.

Response Mapper How can the logic Create a class that consolidates the

(122) required to construct a data mapping and transformation

response be reused by
multiple services?

logic used to create a response.

SERVICE CONTROLLER

Service Controller

A web service uses an RPC API (18), Message API (27), or Resource API (38).
The service owner would like to use similar mechanisms to invoke web service
logic regardless of the API style.

A4

How can the correct web service be executed without having to maintain complex
parsing and routing logic?

A

All web services require a mechanism to receive requests, evaluate the
request’s meaning, and route requests to procedures (i.e., class methods, request
handlers), which implement the desired service behaviors. Service designers may
adapt the Front Controller pattern [POEAA] for this purpose. This pattern cen-
tralizes request processing by funneling all requests through a single handler
that evaluates information from the request to determine how it should be pro-
cessed. Java developers have traditionally used Java servlets for this purpose,
while .NET developers have used .NET HTTP handlers. Handlers for services
with Resource APIs (38) simply parse information from the URI. For example,
an HTTP GET issued to http://acmeCorp.org/customers/123 would normally indicate
that the client wants to retrieve information on customer 123. Handlers for ser-
vices with RPC APIs (18) and Message APIs (27) work a little differently. These
often look for information in SOAP headers. Therefore, an HTTP P0ST issued to
http://acmeCorp.org might be interpreted as a request to retrieve customer data if
the SOAPAction header contains GetCustomer. Once the handler has evaluated the
request, it selects and instantiates a Command [GoF] object, which encapsu-
lates the web service logic.

Several web-oriented frameworks (e.g., Apache Struts, Ruby on Rails,
ASP.NET MVC) strive to insulate the developer from the internal complexities
of Front Controllers. The Rails framework, for example, lets developers main-
tain the rules that correlate requests with subcontrollers (i.e., commands) in a
separate routing file. In a similar fashion, the ASPNET MVC framework
enables developers to define these rules in configuration files. These practices let
developers centralize the routing rules for large and complex applications.

Front Controllers that use these techniques work quite well for services
with Resource APIs (38) since Commands can usually be selected by simply
parsing the requested URI. However, the routing logic becomes more complex

Service
Controller

http://acmeCorp.org/customers/123
http://acmeCorp.org

Service
Controller

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

if different Comumands [GoF] must be selected based on the client’s preferred
media types. In this case, the developer may need to write a Service Interceptor
(195) that parses message headers and overrides the default Command associ-
ated with the requested URI. This same pattern may be required for services
with RPC APIs (18) and Message APIs (27) since the client’s intent is typically
provided in a message header or body. Unfortunately, these interceptors can be
rather complex to write. Some frameworks let developers configure the Com-
mands that should be triggered when specific message headers are found. This,
however, can be quite tedious. Developers could benefit from a simpler declara-
tive approach that can be interpreted by a Front Controller [POEAA].

v

Create a class that identifies a set of related services. Annotate each class method
with routing expressions that can be interpreted by a Front Controller.

Service Controller

Front [Routing Expression 1]
‘ "1 controller | ~777 Request Handler1

[Routing Expression 2]
Request Handler2

A

Service Controllers are created in programming languages like Java and C#
with ordinary classes. Each class contains one or more public methods that con-
trol the execution of business tasks and coordinate access to resources (e.g.,
documents, images, etc.). This pattern refers to these methods as Request Han-
dlers or Web Methods. The rules that define which handlers should be invoked
for different requests are provided through annotations known collectively as
Routing Expressions. These expressions precede each web method in the Ser-
vice Controller, and are used by the Front Controller [POEAA] of frameworks
like JAX-WS, JAX-RS, Axis2, and WCE. When a web server receives a request,
the framework selects and invokes handlers by evaluating various aspects of the
request against these expressions.

This pattern also makes it easy to leverage data-binding technologies that
automatically deserialize requests and serialize responses. This eliminates the
need to create custom logic that parses, extracts, and copies data to and from
objects that are used in the service. The underlying frameworks use various
technologies to accomplish this. The methods on Service Controllers can be

SERVICE CONTROLLER v

annotated with binding instructions to tell the framework how requests and
responses should be handled. The default options include XML and JSON, but
developers may also tell the framework to use a custom approach.

The types of routing expressions used in Service Controllers depend on the
service API style. Frameworks that support Resource APIs (38) employ URI
Templates, Request Method Designators, and Media Type Annotations (see
Figure 4.1).

URI Templates are expressions that define how requested URIs should be
parsed. In frameworks like JAX-RS and WCEF, these appear as annotations that
precede the handler’s signature. Templates divide URIs into multiple URI seg-
ments and query strings. A segment is an alphanumeric value that occurs
between delimiters such as forward slashes and semicolons. Consider the fol-
lowing URI:

http://ww.acmeCorp.org/products/123

This address contains three segments: www.acmeCorp.org, products, and 123. URI
templates can also indicate if a segment has fixed or variable content. The latter
is recognized when a sequence of characters is enclosed in curly braces. Con-
sider the following template:

http://www.acmeCorp.org/products/{ProductId}

This template contains two fixed segments and one segment with variable
content. Web service frameworks substitute variable segments at runtime with
the data sent in the request. This information is usually mapped to an input
parameter of a request handler. Therefore, a handler annotated with the tem-
plate shown above would receive requests that matched this pattern, and would
also map the value 123 into a variable named ProductId.

Service Controller
Routing Expression

— URI Templates

— Request Method Designators
[Routing Expression 2] — Media Type Annotations
Request Handler2

[Routing Expression 1]
Request Handlert | ----3

Figure 4.1 Frameworks like JAX-RS and WCF employ routing expressions,
which include URI Templates, Request Method Designators, and Media
Type Annotations. This information establishes the criterion that must be

met in order to execute methods on the Service Controller.

Service
Controller

http://www.acmeCorp.org/products/123
http://www.acmeCorp.org/products/{ProductId}
www.acmeCorp.org

Service
Controller

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Request Method Designators are a second type of routing expression used by
frameworks that support Resource APIs (38). Given the template shown above,
we might determine that distinct handlers should be created to support read,
update, and delete operations for a product resource. These handlers could use
the same URI template, but we would also need to indicate which server meth-
ods (e.g., GET, PUT, DELETE) should trigger each handler. In the current example, a
single “Product Controller” might have three handlers named ReadProduct,
UpdateProduct, and DeleteProduct that share the same URI template. The request
method designator provides the information that lets the framework decide
which handler should be executed.

Services that use Resource APIs (38) often provide clients the ability to indi-
cate their data type preferences through Media Type Negotiation (70). Service
Controllers that respond to these requests may contain multiple handlers that
invoke the same logic and share the same URI templates and Request Method
Designators. The only difference may be the data formats received and returned.
One handler might use XML, while another might use JSON. Frameworks like
JAX-RS and WCEF therefore use Media Type Annotations to indicate the media
types consumed and produced by the service. When a request is received, the
framework selects the handler whose URI templates, method designators, and
media type annotations best match the client’s criterion. The framework may
also optionally leverage data-binding technologies to automatically serialize and
deserialize input and output data according to the annotations.

Several frameworks that support RPC APIs (18) and Message APIs (27) also
use routing expressions in Service Controllers, but their syntax is a little differ-
ent. These annotations (see Figure 4.2) are used by services that exchange
SOAP messages and use WSDL Service Descriptors (175).

These frameworks parse SOAP messages in order to find a “best match”
against the expressions in the Service Controller. The expressions may include
explicit values for SOAPAction or WS-Addressing Action headers. Developers

Service Controller Routing Expression
[Routing Expression 1] — SOAPAction Header
Request Handlert ~ f----3 OR . .

— WS-Addressing Action
[Routing Expression 2] OR
Request Handler2 — Inferred from Method Name

Figure 4.2 Frameworks that support RPC APIs (18) and Message
APIs (27) use Routing Expressions that examine headers in order to
route SOAP messages to appropriate handlers.

SERVICE CONTROLLER

can also omit values for these items, in which case the framework will usually
infer the matching criteria from the name of the annotated method. For exam-
ple, if an annotated method is named GetCustomer and no other expressions are
provided, then the framework may route messages to that method if the SOAP-
Action header contains a URI with the value of GetCustomer. Of course, the spe-
cific rules regarding how the framework makes these decisions vary per
platform. As of this writing, most frameworks have relied on the SOAPAction
header because it is recommended in the WS-I Basic Profile 1.1. However, more
and more SOAP frameworks are supporting and encouraging adoption of WS-
Addressing mechanisms because these can be used with other transports aside
from HTTP. Client developers must therefore understand what information the
target platform uses to dispatch requests to handlers in order to construct
requests that will be properly routed.

Considerations

Developers should consider the following issues when using the Service Con-
troller pattern.

e Use of interface classes: Developers often create Service Interface Classes
that define request handlers and routing expressions, but don’t have any
implementation (note: JAX-WS refers to these as Service Endpoint Inter-
faces). Service Controllers that use these interfaces must implement meth-
ods that have the same signatures as the methods found in the interface
class. The controllers can omit routing expressions since they are defined
in the interface.

Interface classes have traditionally been used to provide a standard con-
tract for a family of related objects that exhibit different behaviors. Client
developers are encouraged to code to the interface rather than to the class
implementation. This makes it easier to alter a class’s logic without affect-
ing clients because coupling to internal classes is prevented. Service inter-
face classes aren’t used for quite the same reasons.

Service Interface Classes provide two key benefits. Routing expressions
are usually easier to manage because one doesn’t have to look through a
lot of service implementation code. One need only look at an interface
class, which is usually much smaller than the controller. Service interface
classes are also instrumental when using a practice known as Contract-
First, a subject that is introduced in the following paragraph.

Service
Controller

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

¢ Contract-First versus Code-First: Contract-First is most closely associated

with services that use SOAP and WSDL, but the concept can also be partially

applied to services that don’t use either. With Contract-First, the developer

first creates WSDL and XSDs and then feeds this information through a

binding compiler, which generates a Service Interface Class. The compiler

may also create Data Transfer Objects (94) if the interface leverages data-

binding technologies; Resource API (38) developers can leverage this tech-
nique as well.

The Code-First approach can be used with RPC APIs (18), Message

APIs (27), and Resource APIs (38). In this approach, the developer creates

a Service Controller, and possibly Data Transfer Objects (94). If service cli-

Service ents expect WSDL, then the framework will automatically generate WSDL

Controller and XSDs when clients query the base URI of the service.

For a detailed discussion of these topics, see the Service Descriptor

pattern (175).

¢ Enumeration of Service Controllers: Developers must determine how many
Service Controllers should be created for a given problem domain. Devel-
opers often create one controller for each logical resource in the problem
domain when designing a Resource API (38). A domain that involves cus-
tomers, orders, and products might therefore have three controllers. Each
controller would typically contain the handlers for CRUD operations (i.e.,
Create, Read, Update, and Delete) or nonstandard operations (i.e., POST)
that should be allowed for the resource. Resource controllers often include
handlers that provide access to related resource collections as well. A cus-
tomer resource controller might therefore have a handler for a collection of
orders that would refer to a separate order controller.

The controllers for RPC APIs (18) and Message APIs (27) are often
identified by enumerating the use cases in a given problem domain. These
use cases are then typically grouped into related sets (i.e., use-case pack-
ages). One controller may be created for each use-case package (e.g., cus-
tomer account management, order management, etc.), and each use case
within the package is implemented as a distinct request handler in the Ser-
vice Controller. The challenge is to determine how many use cases should
be implemented on a single controller since controllers that contain large
numbers of handlers can become quite difficult to manage.

SERVICE CONTROLLER

Example: A Resource Controller

The StoreService controller shown below defines a Resource API (38) that uses
JAX-RS. Clients can retrieve a collection of all Stores by issuing an HTTP CET to
http://someBaseURI/stores. Information on a specific store may be acquired by
sending a GET to a URI like this: http://someBaseURI/stores/123. Stores may be cre-
ated by issuing a POST to http://someBaseURI/stores and updated by sending a PUT to
a URI like http://someBaseURI/stores/123.

@Path("/stores™)
pubTic class StoreService {

@GET

@Produces("application/xm1")

public JAXBETement<Stores> getStoresAsXML()
{

Stores stores = Stores.getStores();

return new JAXBETement<Stores>(
new QName("Stores"), Stores.class, stores);

}

@Path("/{id}")
@GET
@Produces("application/xm1")
pubTic Store getStoreAsXML(@PathParam("id") String id)
{
// implementation here

}

@POST
@Consumes ("application/xm1")
@Produces("appTlication/xm1")
pubTic Store createStore(JAXBETement<Store> store)
{

// implementation here

}

@Path("/{id}")
@pPuT
@Produces("application/xm1")
public Store updateStore(@PathParam("id") String id)
{
// implementation here

}

Service
Controller

http://someBaseURI/stores
http://someBaseURI/stores/123
http://someBaseURI/stores
http://someBaseURI/stores/123

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

The definition for the Stores resource is shown below. This class encapsulates
access to a collection of stores.

@XmTRootElement(name = "Stores")
pubTic class Stores {
private static Collection<Store> stores = null;

public static Collection<Store> getStores() {
if(null == stores){
// instantiate stores collection and
// populate from database
}

return stores;

Service }
Controller }

The definition for the Store resource is shown below.

@XmTRootETement(name = "Store™)
@Xm1Type(name = "", propOrder = {"id", "address" })
pubTic class Store {

private Tong id;

private String address;

// other fields here

public Store() {;}

pubTic void setId(long storeld){
id = storeld,;
}

public Tong getId(){
return id;

}

public void setAddress(String addr){
address = addr;

}

pubTic String getAddress(){
return address;

}

// other getters and setters here

SERVICE CONTROLLER v

Example: An RPC Controller

This example shows the controller for an RPC API (18) that uses WCFE. The
interface class IBargainAirService defines a single handler (i.e., operation) denoted
by the OperationContract annotation. This routing expression indicates that the
framework should invoke this method when a SOAPAction header contains
GetFlightSchedules. The GetFlightSchedules handler includes a message of the type
TravelOptions, which is used in requests and responses. These are automatically
deserialized and serialized by the framework.

[ServiceContract]
public interface IBargainAirService

{
[OperationContract(Action="urn:GetF1ightSchedules™)]
TravelOptions GetFlightSchedules(TravelOptions request);

// other operations might appear here

}
The definition for the TravelOptions message is shown below.

[DataContract]
pubTlic partial class TravelOptions

{
[DataMember]
public TravelConstraints DepartConstraints{get;set;}

[DataMember]
public TravelConstraints ReturnConstraints{get;set;}

[DataMember]
public Flights MatchingFlights{get; set;}

The concrete implementation of BargainAirService is shown below.

public class BargainAirService : IBargainAirService
{
public TravelOptions GetFlightSchedules(TravelOptions request)
{
// implementation here
}
}

Service
Controller

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Data Transfer Object

A web service uses JSON or XML structures in requests or responses.

\4
How can one simplify manipulation of request and response data, enable domain
layer entities, requests, and responses to vary independently, and insulate services
from wire-level message formats?

A

Data Transfer One allure of web services is that data can be exchanged with clients by lever-

Object aging open standards like XML and JSON. However, when a service receives a
request, the data is often extracted and copied from the XML or JSON struc-
tures to meaningful domain objects (e.g., customers, products, etc.) because
these tend to be easier to work with. This process can be rather involved. The
developer must first deserialize or convert the request stream to the required data
format (e.g., XML, JSON). Data in these structures can then be parsed and cop-
ied to the target domain objects by using an API specific to the data format being
read. The same process happens in reverse when responses are returned. Regard-
less of the data formats or parsers that are used, developers must write a fair
amount of code to navigate through these structures and extract, convert, and
copy data to target domain objects (see Figure 4.3).

In an attempt to simplify this process, developers often modify domain
objects to leverage data-binding technologies like JAXB and .NET’s DataCon-
tractSerializer. With this approach, developers annotate the properties (i.e., get-
ter/setter methods, attributes) of domain objects to define how their data should
be used in requests or responses. When a request is received, the underlying

"oveam ¢~ Seriatze)< - Doman Obeos)e
JSON, XML Domain Objects

Figure 4.3 Developers must write a fair amount of code to navigate through request
structures in order to extract, convert, and copy data to meaningful domain objects that
can be used by the service. Similar code must be written for the response.

DATA TRANSFER OBJECT

technologies automatically deserialize the request stream, instantiate the
required objects, and shuttle data from the request to these objects. This pro-
cess happens in reverse when responses are returned. These technologies are
supposed to facilitate productivity since developers don’t have to work with
low-level streams, parse data, or use APIs specifically geared to a particular for-
mat like XML or JSON.

Unfortunately, several problems arise when domain objects are used in
requests and responses. Object graphs often have circular references, and when
these structures are serialized, a stack overflow exception may be thrown if the
serializer is unable to find a terminating node. One way to deal with this prob-
lem is to instruct the serializer to ignore certain properties when the object
graph is serialized. For example, if a graph of Company objects contains references
to Employee objects, and each Employee also refers to a Company object, the service
owner could alter the annotation to instruct the serializer to ignore the
Employee.Company relationship. He could also deliberately opt out of serialization
by not marking the Company property on the Employee object for serialization. This,
however, assumes that all services will retrieve the object graph in the same
way. If a different service retrieves an Employee object first, then the data for the
Company will be missing. Rather than instructing the serializer to ignore parent
references, developers can deal with the circular reference problem by leverag-
ing XMDs ID and IDREF constructs. The former functions like a primary key
on a database table row, while the latter is like a foreign key to a table. When
an object is prepared for serialization, it may be assigned a unique ID attribute,
and related elements in the same document can refer to that item through their
IDREF attribute. Unfortunately, this approach requires the XSDs to be modified
to support these attributes.

Developers who choose to annotate domain objects with data-binding
instructions must therefore contend with circular references. Of greater concern
are the dependencies that result between domain layer entities and the request
or response structures. The problem is that whenever domain objects are anno-
tated with XML or JSON serialization attributes, and these objects are used in
requests or responses, their structures are, in effect, projected out to clients.
This means that any change made to the object model will ripple out to clients,
forcing them to change as well. Likewise, a change to a request or response data
structure may require the Domain Model [POEAA] to change. Developers need
a way to define request and response structures that can vary independently
from domain layer entities.

Developers may therefore revert to using structure-specific APIs to parse data
from requests and to build responses rather than annotating domain objects
with data-binding instructions. While this provides a level of indirection

Data Transfer
Object

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

between domain entities and service messages, developers must still decide
where this logic should be located. They may be tempted to include it directly
within the service, but this tends to make the service harder to read and main-
tain. This also causes the service to become too familiar with the wire-level for-
mats and structures used in messages. If the structures or formats change, then
the service must change as well. This problem is further exacerbated if the pars-
ing logic must be used by a number of services and is duplicated. How, then,
can developers enable requests, domain layer entities, and responses to evolve
independently, provide a convenient means to manipulate message payloads,
and ensure that services are ignorant of wire-level formats?

Data Transfer v
Object Create distinct classes to represent request and response data structures. Consoli-
date the mapping logic that reads and writes these structures.

Data Transfer Object \
Property 1 \
Property 2 s |
Property 3 AN

- ___.| Domain Layer

Data Transfer Object .
Property 4 P

Property 5
Property 6

A

Data Transfer Objects [POEAA] (a.k.a. DTOs) are reusable classes that con-
tain related data and no business logic. They may be defined on the service side,
client side, or both sides of the communication channel. Their properties (i.e.,

DATA TRANSFER OBJECT

getters/setters) may wrap primitive data types (e.g., integers, strings, etc.) or
other DTOs. Data Transfer Objects were first described as a means to reduce
the number of method calls in distributed object systems (e.g., CORBA,
DCOM). However, this same pattern can also be used by web services to sim-
plify manipulation of request and response data and to decouple message struc-
tures from domain layer entities. Services have an easier time manipulating
request and response data because they don’t have to use APIs for JSON, XML,
or other formats. Domain layer entities are decoupled from request and
response structures because DTOs are created as separate entities whose sole
purpose is to define how data is received and returned from a service.

Data may be mapped into and out of DTOs through custom code or data
binding. With the former approach, DTOs can be populated from requests
through statements that use any number of APIs and frameworks for a given
format. The most common way to extract XML data is through DOM and
SAX parsers. DOM parsers load entire XML documents into memory and per-
mit random access to any node in the document. SAX parsers read forward
through documents and trigger events in a designated object whenever ele-
ments, attributes, or other content is found. The former approach is more flex-
ible, while the latter is more efficient on memory. Similar frameworks are
available for services that exchange JSON structures. Developers must also
create logic to convert DTO content to the necessary wire-level formats (i.e.,
XML, JSON, etc.) for responses, serialize these structures to byte streams, and
transmit the data back to the client. Regardless of the message format or
framework that is used, the logic required to move data into and out of Data
Transfer Objects should be centralized. As a first step, it is usually a good idea
to consolidate this logic within the DTO itself. If the code becomes sufficiently
complex, it may be better to extract it into separate Request Mappers (109)
and Response Mappers (122).

Developers may also use an approach known as Data Binding. This elimi-
nates the need to create custom code that reads and writes message structures.
Data binding can be realized in two ways. Both approaches enable developers to
create “mapping rules” that define how request items (i.e., elements, attributes,
objects, etc.) are written into DTOs, and how DTO properties (i.e., attributes,
getters) should populate responses. Some frameworks store mapping rules in
external configuration files. These rules are usually loaded into memory before
the service receives a request. When a message is received, the service must
explicitly invoke the framework’s deserialization process to convert the stream
to a target DTO type. Likewise, the service must explicitly invoke framework
operations to serialize and transmit responses. Castor, a data binding framework
that lets developers map XML messages to and from Java objects, is an example
of a binding framework that stores mapping rules in external files.

Data Transfer
Object

Data Transfer
Object

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

The second approach to data binding enables developers to annotate a class’s
properties (i.e., getters/setters) with keywords that are interpreted by the service
framework at runtime. This eliminates the need to explicitly load mapping rules
or invoke serialization processes. Given these annotations, the framework is
able to instantiate and populate the appropriate DTOs with request data. These
frameworks can also read, populate, and serialize response messages from
DTOs in the required format (i.e., JSON, XML). JAX-WS, JAX-RS, and WCF
are examples of frameworks that offer data binding through class annotations.

While data binding can eliminate a lot of custom parsing logic, it has some sig-
nificant trade-offs. Several of these issues are discussed in the following section.

Data-Binding Considerations

Developers who use Data Transfer Objects with data binding should consider
the following issues.

¢ Strong coupling to messages: Whether the mapping rules are defined in
external files or occur as annotations on class properties, data binding
causes Data Transfer Objects to become tightly coupled to request and
response structures. In other words, you’ll usually have to regenerate and
redeploy the related DTOs whenever the structures change. This being
said, coupling can be reduced when the annotations let items occur in any
sequence, and when items are marked as optional rather than required.
Service developers can eliminate coupling to message parts they don’t care
about by employing a hybrid solution that uses a Tolerant Reader (243). In
this approach, the reader extracts specific message fragments (e.g., customer
address, account information, order information, etc.) while ignoring the
rest. These fragments can then be automatically deserialized into corre-
sponding DTOs that leverage data binding. Nevertheless, these DTOs are
still tightly bound to the structure of the corresponding message fragments.

¢ Contract-First versus Code-First: These terms are commonly used by
developers who employ data binding technologies. With the former
approach, a developer defines service artifacts through meta-languages
first and then sends this information through a binding compiler to gener-
ate code. In the latter approach, the developer creates annotated classes
that are interpreted by a framework at runtime in order to produce meta-
data that can be consumed by client developer tools.
Contract-First is most closely associated with services that use SOAP
and WSDL, but the concept can also be applied to services that use neither.
With Contract-First, the developer creates WSDL and XSDs first, then

DatA TRANSFER OBJECT v

feeds this information through a binding compiler that generates a service
interface class [see Service Controller (85)]. These compilers also typically
create Data Transfer Objects from XSDs. Note that Resource API (38)
developers can leverage binding compilers as well to create DTOs from
XSD or even JSON schema.

The Code-First approach can be used with RPC APIs (18), Message
APIs (27), and Resource APIs (38). In this approach, the developer creates
a Service Controller, and possibly Data Transfer Objects. If the service
uses WSDL, the framework will automatically generate WSDL and XSDs
when clients query the base URI of the service. For a detailed discussion of
these topics, see the Service Descriptor pattern (175).

Data Transfer
Object

¢ Proprietary formats: While this book emphasizes open message formats like
XML and JSON, developers can use proprietary formats with HTTP as
well. Some teams, for example, use technologies like Google’s Protocol Buff-
ers to encode messages in an extremely compact and efficient binary format.
The client and service must, of course, use binding compilers created specifi-
cally for the format. It should go without saying, but platform-specific data
types and proprietary serialization mechanisms can hinder interoperability.

e Schema validation: Since schema validation can consume significant mem-
ory and CPU cycles, most popular frameworks (that support data binding)
disable automatic request validation. This means that the framework will
not throw exceptions when it is unable to map a part of the message. In
situations like these, the DTO content that could not be mapped is often
preserved in a special construct (e.g., WCF’s ExtensionDataObject).

General Considerations

This section provides an overview of several issues that developers should con-
sider, regardless of whether DTOs use custom code or data binding.

¢ Convenience: DTOs make it easy for services and other domain layer enti-
ties to manipulate message content without having to know anything
about wire-level formats.

e Naming: DTOs are often hard to distinguish from Domain Model
[POEAA] objects. Some developers prefix or suffix DTO classes with the
acronym Dto to facilitate identification (e.g., CustomerDto). These classes can
also be grouped into namespaces that indicate they’re DTOs (e.g.,
SomeCompany . AccountMgt.DTOs). When the classes are instantiated, it’s often help-
ful to use similar techniques (e.g., CustomerDTO customerDTO = new CustomerDTO();).

W CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

¢ Additional work effort: Data Transfer Objects require developers to create
additional code to move data from DTOs to domain layer entities, and
vice versa. This logic can be fairly simple when request and response struc-
tures are shallow. In more complex cases, developers may want to create
distinct Request Mappers (109) and Response Mappers (122).

¢ Client-specific Data Transfer Objects: Service developers should consider
whether or not custom Data Transfer Objects should be created for each
client when their structures vary yet are semantically equivalent. This
strategy could lead to a proliferation of services and Data Transfer
Objects. One could instead create Request Mappers (109) that translate

disparate requests into common objects used by a web service.
Data Transfer
Object e DTO size: As the breadth or depth of a Data Transfer Object increases, it

becomes harder to understand, maintain, and use. The size of a DTO can
also affect server performance and network utilization.

Service developers should consider how much of the content conveyed
in the request is actually relevant to the service. Consider a service that
receives a large and complex XML document designed by an industry
trade group. If a single Data Transfer Object is created to process the
entire document, then the framework will probably expend undue time
deserializing irrelevant content, thus incurring unnecessary server load.
For scenarios like these, it may be better to create smaller Data Transfer
Objects that correspond to smaller sections within the message (e.g.,
address information, product data, etc.). These message fragments can
then be surgically extracted by a Tolerant Reader (243) or Request Map-
per (109). Once the fragments have been extracted, the reader or mapper
can leverage the platform’s serialization APIs (e.g., JAXB, .NET DataCon-
tractSerializer) to instantiate and populate DTOs.

e Message formats and serialization: Developers should consider what mes-
sage formats will be used. XML tends to be quite bulky, while JSON is
more compact. The implication is that, for equivalent messages, JSON will
have lower network latency. The manner in which messages are serialized
makes a big difference too. The default approach is to serialize XML and
JSON as plain text. Some frameworks enable developers to serialize these
formats in binary form as well. This can help to reduce network latency.
Of course, the message sender and receiver must use the same serialization
algorithms (e.g., MTOM, BSON, WCE, Google Protocol Buffers, etc.).

e Promoting chunky data transfers: Services can encourage better network
utilization by using Data Transfer Object Collections. This pattern suggests

DATA TRANSFER OBJECT

that Data Transfer Objects should be designed to use collections when pos-

sible so that like data can be conveyed in a single request or response. Con-

sider the case where a client has to update information on five customers.

When Data Transfer Object Collections are not used, a client might call a

service five times, once for each customer update. This would incur five net-

work round-trips, which in turn would increase overall latency. The parties

may also be tempted to use distributed transactions to ensure data integrity.

Unfortunately, this strategy tends to inhibit scalability because locks on

underlying (table) resources are often held for inordinate periods of time. In

contrast to this approach, when Data Transfer Object Collections are used,

the client bundles all of the customer data into a Data Transfer Object that

is sent in a single request. This minimizes network traffic and reduces overall Data Transfer
latency. The size of the request payload increases, but this is generally offset Object

by the performance gains achieved through fewer network transitions. By
leveraging Data Transfer Object Collections, the service can process multi-
ple items within a single local transaction that it controls. This simplifies cli-
ent logic and ensures consistent error handling. If the service encounters a
problem, it can easily roll back its transaction, and return a response provid-
ing detailed error information on each item in the collection.

¢ Use with Tolerant Readers: The Tolerant Reader pattern (243) enables a
client or service to function properly even when some of the message con-
tent received is unknown or when the data structures vary. Tolerant Read-
ers often populate Data Transfer Objects. Developers can ensure loose
coupling to message structures when custom code, rather than data bind-
ing, is used to populate DTOs.

Example: A Data Transfer Object That Uses Custom Code

The DTO shown below, written in Java, uses custom code to acquire message
content while tolerating structural changes and missing items. Note that XPath-
Parser encapsulates the XPath processing logic used to fetch data from the
request stream; the implementation for this class has been omitted since it is
tangential to this example. You should assume that getNodeValueAsString does not
throw an XPathExpressionException when an item can’t be found, but instead
returns an empty string.

public class BillingAddress extends Address {
public static BiTlingAddress Get(XPathParser parser)

{
BillingAddress address = new BillingAddress();

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

try{

address.setId(
parser.getNodeValueAsString(
"//Bi1lingAddress/@id"));

address.setStreet(
parser.getNodeValueAsString(
"//BillingAddress/@street™));

address.setCity(
parser.getNodeValueAsString(
"//Bi1lingAddress/@city"));

address.setState(
DataTransfer parser.getNodeValueAsString(
Object "//Bil1ingAddress/@state"));

address.setZip(
parser.getNodeValueAsString(
"//Bi1lingAddress/@zip"));

}
catch(Exception ex){
// handle error here

}

return address;
}
}

The base class for BillingAddress is shown below.

pubTic abstract class Address {
private String id;
private String street;
private String city;
private String state;
private String zip;

public String getId() {
return id;

}

public void setId(String value) {
this.id = value;

}

pubTic String getStreet() {
return street;

}

DatA TRANSFER OBJECT v

public void setStreet(String value) {
this.street = value;

}

pubTic String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;
}

pubTic String getState() {
return state;

}

Data Transfer
Object

public void setState(String state) {
this.state = state;

}

public String getZip() {
return zip;

}

public void setZip(String zip) {
this.zip = zip;
}
}

Example: A Resource API That Receives and Returns [SON with Data Binding

In this example, a C# service receives a JSON request containing information
required to create quotes on a home loan. The response returns a series of
tables showing quotes for various types of loans. The first code fragment shows
the interface definition for the service.

[ServiceContract]
pubTic interface ILoanService
{
[OperationContract]
[WebInvoke(Method="POST",

BodyStyle = WebMessageBodyStyle.Bare,
RequestFormat = WebMessageFormat.Json,
ResponseFormat = WebMessageFormat.Json,

UriTemplate = "/Quotes™)]

LoanQuotes CreatelLoanQuotes(LoanInfo request);

}

Data Transfer
Object

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Here you can see how the request is received by a request handler that auto-
matically deserializes the request to a LoanInfo Data Transfer Object. This pro-
vides an intuitive way to extract information from the request and pass it into a
domain layer object. A Response Mapper (122) is used to convert the structure
returned from LoanCalculator.GetQuotes to a Data Transfer Object.

public class AcmeloanService : ILoanService

{

public LoanQuotes CreateloanQuotes (LoanInfo request)
{

Quotes quotes = (new LoanCalculator()).GetQuotes(
request.Purpose,
request.Terms,
request.LoanTypes,
request.FinancingType,
request.LoanAmount,
request.HomeValue,
request.State);

return (new QuotesMapper()).Execute(quotes);
}
}

The Data Transfer Object used in the request appears below. The binding
annotations eliminate the need to write code that parses the request and popu-
lates the target object.

[DataContract]
public class LoanInfo

{
[DataMember]
PubTic string Email{get; set;}

[DataMember]
public string Purpose { get; set; }

[DataMember]
public string FinancingType { get; set; }

[DataMember]
public int LoanAmount { get; set; }

[DataMember]
public int HomeValue { get; set; }

[DataMember]
public string State { get; set; }

[DataMember]
public string LoanTypes { get; set; }

DatA TRANSFER OBJECT v

The Data Transfer Objects used in the response follow.

[DataMember]
public string Terms { get; set; }

}

[DataContract]
pubTlic class LoanQuotes
{
[DataMember]
public List<RatesForLoanType> Quotes { get; set; }
}

[DataContract]

pubTic class RatesForLoanType
{ Data Transfer

[DataMember] Object
pubTic string LoanType { get; set; }

[DataMember]
pubTic List<RateTable> Rates;
}

[DataContract]
public class RateTable

{
[DataMember]
public decimal Rate { get; set; }

[DataMember]
pubTic decimal Points { get; set; }

[DataMember]
pubTic decimal APR { get; set; }

[DataMember]
public decimal ClosingFees { get; set; }

[DataMember]
public decimal Payment { get; set; }

Example: Abstract Data Transfer Objects

Abstract Data Transfer Objects can be used to define “base types” for a family
of structures used in requests or responses. Whenever an XSD contains a refer-
ence to an abstract type, the sender may insert a type derived from that abstract
type. This creates an effect similar to polymorphism. New types can be added
over time without requiring the client to be updated, unless they need or want
to use these new types.

Data Transfer
Object

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

In the following Java web service, the BuyProduct operation is defined on an
interface named MediaSvc. The message wrappers, BuyProduct and BuyProductRe-
sponse, are auto-generated. Both of these messages contain a Data Transfer
Object of the type Order, which contains a reference to an abstract element
named MediaType. The MediaSvc interface definition has been annotated with the
Xm1SeeAlso keyword so that the service can determine the specific subtype that
was sent. This annotation also provides the framework the necessary informa-
tion to generate the XSDs for the subtypes at runtime. Public fields are used
rather than getters and setters in order to keep the code listing shorter.

@WebService()
@Xm1SeeAlso({DSE.Movie.class, DSE.MusicAlbum.class})
public interface MediaSvc {
@WebMethod (operationName = "BuyProduct")
public Order BuyProduct(@WebParam(name = "request")
Order request);

}

@XmTAccessorType (XmlAccessType. FIELD)
@m1Type(name = "Order",

propOrder = {"CustomerAccountNumber", "Media"})
@XmTRootETement(name = "Order™)
public class Order {

@XmTETement (name="CustomerAccountNumber" , required=true)
public String CustomerAccountNumber;

@Xm1ETement (name="Media", required=true)
public MediaType Media;
}

@Xm1AccessorType(XmlAccessType. FIELD)
@Xm1Type(name = "MediaType",
propOrder = {"SKU", "Name"})
@Xm1RootElement(name = "MediaType")
pubTlic abstract class MediaType {

@Xm1ETement (name="SKU", required=true)
public String SKU;

@Xm1ETement (name="Name" , required=true)
public String Name;
// etcetera

}

@XmTAccessorType(XmlAccessType. FIELD)
@Xm1Type(name = "Movie",

propOrder = {"Description”, "Director"})
@XmTRootETement(name = "Movie")
public class Movie extends MediaType {

DATA TRANSFER OBJECT

@Xm1ETement (name="Description", required=true)
pubTic String Description;

@Xm1ETement (name="Director",required=true)
pubTic String Director;

// etcetera
}

@Xm1AccessorType (XmlAccessType.FIELD)
@Xm1Type(name = "MusicATbum",

propOrder = {"ArtistName", "RecordinglLabel"})
@XmI1RootETement(name = "MusicAlbum")
public class MusicAlbum extends MediaType {

@Xm1ETement (name="ArtistName", required=true) DataTransfer
Object

pubTic String ArtistName;

@Xm1ETement (name="Recordinglabel", required=true)
pubTic String RecordinglLabel;
}

@WebService(endpointInterface="ServiceContracts.MediaSvc")
pubTic class MediaService {

public Order BuyProduct(Order request) {

// common business Togic for Data Transfer Objects would appear here
}
}

The following listing shows key portions of the WSDL and XSD generated
from the preceding code.

<portType name="MediaService">
<operation name="BuyProduct">
<input message="tns:BuyProduct" />
<output message="tns:BuyProductResponse" />
</operation>
</portType>

<message name="BuyProduct">
<part name="parameters" element="tns:BuyProduct" />
</message>

<xs:complexType name="BuyProduct">
<Xs:sequence>
<xs:element name="request" type="tns:Order" minOccurs="0" />
</xs:sequence>
</xs:complexType>

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

<xs:complexType name="Order">
<Xs:sequence>
<xs:element name="CustomerAccountNumber" type="xs:string" />
<xs:element name="Media" type="tns:MediaType" />
</Xs:sequence>
</xs:complexType>

<xs:complexType name="MediaType" abstract="true">
<Xs:sequence>
<xs:element name="SKU" type="xs:string" />
<xs:element name="Name" type="xs:string" />
</xs:sequence>
</xs:compTexType>

<xs:complexType name="Movie">

DEENIERER) <xs:complexContent>
Object

<xs:extension base="tns:MediaType">
<Xs:sequence>
<xs:element name="Description" type="xs:string" />
<xs:element name="Director" type="xs:string" />
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="MusicAlbum">
<xs:complexContent>
<xs:extension base="tns:MediaType">
<Xs:sequence>
<xs:element name="ArtistName" type="xs:string" />
<xs:element name="RecordingLabel" type="xs:string" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

It should be noted that abstract types use the extension construct, which, as of
this writing, is not addressed by the WS-I Basic Profile, nor does the WS-I com-
pliance test suite include a test for it [Brown 2]. Regardless, popular service
frameworks have done a pretty good job of supporting this feature, and devel-
opers can effectively use this technique if they understand how it works.

REQUEST MAPPER

Request Mapper

A web service receives XML. The service owner has little to no control over the
design of request structures.

v

How can a service process data from requests that are structurally different yet se-
mantically equivalent?

A

In an ideal scenario, one organization controls the design of all message
structures that are exchanged. However, in the real world this doesn’t always
happen. In many cases, the service developer must collaborate with external
departments or businesses to design messages. Unfortunately, these groups may
not agree on what should be included or excluded, or how data should be orga-
nized. Each organization may lobby for structures that reflect their understand-
ing of the data. Others may insist that their structures be used. If these entities
are external customers that are important to the business, it is usually wise to
accommodate them. The net result is that the service developer may have to
accept multiple requests that are structurally different yet are used for the same
purpose. One could write distinct services for each client’s variation on a
request, but this would inevitably become a maintenance nightmare since the
logic that moves data from requests to domain layer entities (i.e., Table Mod-
ules, Domain Objects [POEAA]), not to mention the service’s control logic,
would have to be rewritten for each client. Depending on the chosen language
and platform, the service might also have to be recompiled and redeployed each
time a client’s structures changed.

Another way to process disparate request structures that are semantically
equivalent is to create a service that simply validates and enqueues each request
to a background process. This process would transform each request to a com-
mon structure that can be processed, and would also invoke the logic to process
those structures. This approach scales quite well because the rate at which
requests are processed can be easily controlled by the background process. How-
ever, it is more difficult for clients to acquire responses because the service that
receives the request only returns a simple acknowledgment. If the client needs a
response, it must either poll for it or deploy a service that receives callbacks.

Services that receive and process variant requests often revert to using lower-
level APIs rather than data-binding technologies (e.g., JAXB, NET’s Xml1Serializer)

Request
Mapper

Request
Mapper

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

in order to attain higher degrees of control and flexibility. These services may
implement the logic to parse each request directly, but this tends to bloat the
service code, making it hard to read and maintain. Service developers should
instead separate the logic used to translate messages from the core service logic.

v

Create specialized classes that leverage structure-specific APIs to target and move
select portions of requests directly to domain layer entities or to a common set of in-
termediate objects that can be used as input arguments to such entities. Load a par-
ticular mapper based on key content found in the request.

R EREEEEE Service [tomtttoooooooo- !

Domain
Layer Entities Request | _____,
(i.e., Domain Objects, Mapper Request

Table Modules, etc.)

A

Services typically have to process disparate yet semantically equivalent
requests when the service owner has little to no control over request structure
definitions. Request Mappers can be useful in this context because they elimi-
nate the need to create a service for each variant request. Request Mappers are a
specialization of the Mapper pattern [POEAA]. They are used to isolate request
structures from domain layer entities and enable each to evolve independently.
Request Mappers are responsible for parsing data from requests and moving this
data into domain entities like Table Modules or Domain Models [POEAA], or
into intermediate structures that can be used as inputs to these entities.

Mappers may be explicitly selected by the service implementation code.
Alternatively, the service may delegate this responsibility to a Factory Method
[GoF] or an Inversion of Control (IoC) container (for more information, see
Dependency Injection). These approaches return a generic interface after select-
ing an appropriate mapper. The logic used to select a mapper can vary greatly.
For instance, a factory method might parse the request for client credentials and
instantiate a specific mapper based on the client’s identity. Another common
approach is to select a mapper based on the qualified name of the root element
in the request. Regardless, once the service acquires an interface to a mapper, it

REQUEST MAPPER v

invokes one or more methods on the mapper’s interface in order to initiate pars-
ing and to acquire the resultant domain entities or intermediate objects.

Request Mappers often parse entire requests by loading the request into an
XML DOM. The advantage with this approach is that it enables the data to
be randomly accessed many times over. However, if a document is very large,
it can consume a significant amount of memory, which could exhaust heap
space if the request load is high. Mappers may be hardcoded to programmati-
cally select data from the DOM. The desired domain entities or intermediate
structures are created as the mapper reads this data. This hardcoded
approach, however, requires the mapper and service to be updated and rede-
ployed whenever request structures change. A better approach is to leverage
XSLT scripts to surgically extract and transform XML fragments. XSLT
scripts maintained in files can often be altered and redeployed without forcing
a full redeploy of the services. The output from the XSLT can even be deseri-
alized directly to common Data Transfer Objects (94) by leveraging the plat-
form’s data-binding APIs (e.g., JAXB); an example of this is provided in the
following code examples. A lighter-weight alternative to the XML DOM
involves a streaming parser like SAX. This type of parser doesn’t load entire
documents into memory, which makes it more appropriate for high-load sce-
narios. Streaming parsers read through documents in a forward-only fashion,
triggering events in the mapper as they go along. Each event that is fired in the
mapper acquires some portion of the data from the request. Once the entire
document has been read, the desired domain entities or intermediate struc-
tures will have been created. There exists yet another approach service design-
ers may use to map requests. Dynamic languages like JavaScript can be
leveraged by the host service to parse data. These mini scripts are typically
maintained in separate files, so they too can be altered and redeployed with-
out forcing a full redeploy of the services.

Considerations

The Request Mapper pattern should only be used after thoughtful consider-
ation of the following.

¢ Minimum criteria for adoption: The true value of Request Mappers is real-
ized when data must be extracted from requests that are semantically
equivalent yet structurally different. If all you need to do is map data from
a single request structure, then it may be better to encapsulate this logic in
Data Transfer Objects (94).

Request
Mapper

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Request Mappers are also useful when the service only needs a small
portion of the data in a request. This often occurs when requests are
designed by industry standards groups. Such requests usually carry infor-
mation that is extraneous to the service’s purpose. In cases like these, the
mapper can parse out and validate only what it needs and ignore the rest.

¢ Relation to different service API styles: Request Mappers are most often
used with Message APIs (27), but may also be used with Resource APIs
(38). They generally aren’t used with RPC APIs (18) because their message
structures are derived from the signatures of class methods. The Request
Mapper pattern implies that the developers must consider the design of the
XML message structures first, irrespective of any service implementation. It
should be noted that XML schemas aren’t always used. In fact, some imple-
menters only provide documentation depicting sample XML structures.

Request
Mapper

¢ Use in reducing client dependencies: Request Mappers can help to insulate
clients from domain layer entities (e.g., objects, record sets, etc.). This
means that a change to a domain layer entity won’t necessarily force cli-
ents to change and vice versa.

e JSON: Request Mappers aren’t used as much with JSON since their struc-
tures are usually driven by the service owner.

e Mapper specialization: Request Mappers are frequently responsible for
translating entire requests. However, specialized mappers that process
smaller XML fragments can also be created if the request structure is par-
ticularly complex. For example, an order request that contains customer
and product information may be processed by mappers designated for
each logical data type. This approach can help to simplify maintenance
quite a bit.

¢ Code complexity: Request Mappers can become quite complex. Develop-
ers may have to write a nontrivial amount of code to navigate through
XML, and extract, convert, and copy data to target objects. Specialized
mappers are often required to process data for specific clients. While
XPath and XSLT can be an effective tool to parse and convert requests,
developers can’t always just change XPath and XSLT when request struc-
tures change. Sometimes they must also alter the code for the mappers or
services, which may require the service to be recompiled and redeployed.
Additionally, XSLT isn’t very easy to read and maintain. Fortunately,
graphical tools capable of generating XSLT can be leveraged.

REQUEST MAPPER V

e Utilization of web server resources: Request Mappers can be CPU- and
memory-intensive, depending on the complexity of the work performed,
the size of the requests, and the technologies used to parse the request.

e Response time: Request mapping logic can increase latency. If average
response times become unacceptable, one should consider using the
Request/Acknowledge pattern (59) wherein the service forwards the
request to an asynchronous background process, usually by way of a
queue, and sends the client an acknowledgment. This background process
could invoke a Command [GoF] that uses a Request Mapper to transform
the request to a common structure. Clients that require a response would
have to use Request/Acknowledge/Poll or Request/Acknowledge/Callback.

Request
¢ Relation to integration patterns: The Request Mapper pattern is quite sim- Mapper

ilar to the Normalizer pattern [EIP]. The key difference is that normalizers
use a Message Router [EIP] to forward the request to a Message Translator
[EIP] over a Message Channel [EIP]. Queues are typically used as the chan-
nel between the router and translator, and this implies an asynchronous
paradigm. The request is also passed through several process boundaries.

Request Mappers are conceptually similar, but are quite a bit simpler.
They often select and transform the request within the process space of the
web service, and can be easily used in synchronous Request/Response (54)
exchanges and in asynchronous interchanges like Request/Acknowledge
(59). Another difference between the Request Mapper and Normalizer
patterns is that the former can be used to create target domain objects,
while the latter only converts between message types.

Example: A Request Mapper That Transforms a Request with XSL

In this example, a Resource API (38) receives invoices from a variety of trading
partners. Each of these partners has its own way of formatting invoices. The
following represents a simple invoice from the fictional Acme Corporation.

<AcmeInvoice>
<InvId>123</Invid>
<W0>456</W0>
<Services>
<svc 1d="678" time="3" />
<sve 1d="876" time="2" />
</Services>
</AcmeInvoice>

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Since all partners have their own format for invoices, the service must con-
vert each to a standard format. This target structure is shown below.

<Invoice>
<Invoiceld>Acme.123</Invoiceld>
<WorkOrder>Acme.456</WorkOrder>
<BilledHours>
<Bi1led><Bi11Code>678</Bi11Code><Time>3</Time></Billed>
<Bi1led><Bi11Code>876</Bi11Code><Time>2</Time></Billed>
</BilledHours>
</Invoice>

The service uses XSL to transform Acme’s invoice to the standard format. By
creating XSLT scripts for each partner, the service owner avoids having to

Request maintain programmatic XML navigation and conversion logic.
Mapper

<?xml version="1.0" encoding="150-8859-1"?>
<xs1:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<Invoice>
<xs1:apply-templates />
</Invoice>
</xs1:template>

<xsT:template match="AcmeInvoice/InvId">

<InvoiceId>Acme.<xs1:value-of select="."/></Invoiceld>
</xs1:template>

<xs1:template match="AcmeInvoice/W0">
<WorkOrder>Acme.<xs1:value-of select="."/></WorkOrder>
</xs1:template>

<xs1:template match="AcmeInvoice/Services">
<BiTledHours>
<xsT:apply-templates />
</BilledHours>
</xs1:template>

<xs1:template match="//svc">
<Billed>
<Bi11Code><xs1:value-of select="./@id"/></Bi11Code>
<Time><xs1:value-of select="./@time"/></Time>
</Billed>
</xs1:template>
</xs1:stylesheet>

REQUEST MAPPER

The request handler for the web service is shown below. Trading partners
may issue an HTTP POST to the service and provide a media type of application/
xml. The service sends the request stream to a MapperFactory responsible for creat-
ing a Request Mapper that knows how to handle the specific request. Once the
service has acquired a mapper, it invokes its Deserialize method in order to
acquire a fully populated Data Transfer Object (94) of type Invoice. The data
from this object may then be fed into domain entities such as Table Modules or
Domain Objects [POEAA].

@Path("/invoices")
pubTic class InvoiceHandler {

@POST
@Consumes ("application/xm1")
public void ProcessAT1Invoices(InputStream stream) {

BaseRequestMapper mapper = MapperFactory.getMapper(stream);
Invoice invoice = (Invoice)mapper.Deserialize();

// Pass data from standard Invoice into domain entities,
// set HTTP return code
}
}

The getMapper Factory Method [GoF] of the MapperFactory class calls another fac-
tory method in order to instantiate a Doclirapper class. This class instantiates an
XML DOM and populates it with data from the request stream. Once the
DocWrapper has been created, the name of the root node is retrieved and passed to
the getMapper method of the MapperList class. This information is used to determine
which concrete mapper should be used to handle the request. The DocWrapper is
then passed into the mapper, and all are returned to ProcessAl1Invoices.

public class MapperFactory {

pubTlic static BaseRequestMapper getMapper(InputStream stream)
throws ParserConfigurationException,
SAXException,
IOException,
(ToneNotSupportedException

DocWrapper doc = DocWrapper.getDocWrapper(stream);

String rootNodeValue = doc.getRootNodeName();

BaseRequestMapper mapper = MapperList.getMapper(rootNodeValue);
mapper. setDocWrapper(doc);

return mapper;

Request
Mapper

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

The code for DocWrapper is shown below. This class contains an XML DOM
and provides a few convenience methods.

public class DocWrapper {
private Document doc=null;

pubTic static DocWrapper getDocWrapper(InputStream stream)
throws ParserConfigurationException,
SAXException,
T0Exception
{
DocWirapper wrapper = new DocWrapper();
wrapper. ToadXMLDocument (stream) ;
return wrapper;

Request }
Mapper

private void ToadXMLDocument(InputStream stream)
throws ParserConfigurationException,
SAXException,
I0Exception

{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);
DocumentBuilder builder = factory.newDocumentBuilder();
doc = builder.parse(stream);

}

public String getRootNodeName(){
return getDocument().getFirstChild().getLocalName();
}

public Document getDocument() {
return doc;
}
}

The code for MapperList is shown below. This class contains a Hashtable that
holds Prototypical instances [GoF] of all possible Request Mappers that might
be used. These prototypes are loaded into the Hashtable through the Initialize
method. When MapperFactory calls this class’s getMapper method, the value
retrieved from the root node of the message is used as a key to find a prototypi-
cal instance in the hashtable. MapperList then clones the prototype and returns it
to MapperFactory.

pubTic class MapperList {

private static Hashtable<MessageTypes,BaseRequestMapper>
msgTypes = null;

REQUEST MAPPER V

pubTic static BaseRequestMapper getMapper(String msgName)
throws CloneNotSupportedException
{
MessageTypes currentMsg =
MessageTypes.valueOf (msgName . toUpperCase());

return (BaseRequestMapper)getInstance().get(currentMsg).clone();
}

pubTic static Hashtable<MessageTypes,BaseRequestMapper>
getInstance(){

if(null== msgTypes) Initialize();
return msgTypes;

}

Request
Mapper

private static void Initialize(){

// Togic to Tock the shared object has been omitted.
msgTypes = new Hashtable<MessageTypes,BaseRequestMapper>();

msgTypes.put (MessageTypes.AcmeInvoice,
new AcmeRequestMapper());

// other mappers would appear here

}
}

public enum MessageTypes {
AcmeInvoice

// other message types would appear here

The code for a concrete Request Mapper named AcmeRequestMapper is shown
below. This is a child class of BaseRequestMapper, which is shown later in this
example. The AcmeRequestMapper class uses generics to indicate that all incoming
requests should be converted to a target object of type Invoice. Each concrete
mapper class also provides the name of the XSLT file that should be used to
transform request content.

pubTic class AcmeRequestMapper extends BaseRequestMapper<Invoices{
pubTic String getXsTFileName() {
return // name of file could be retrieved from config file
// or a memory cache
}
pubTic String getPackageName(){
return // name of Java package containing the Invoice object
}
}

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

The BaseRequestMapper class contains the core logic for the Request Mapper
pattern. This class invokes the retrieved XSLT script by calling the Transform
method of xs1Transformer. The results of this transformation are returned to a
string buffer named resultsBuffer. The mapper then instantiates JaxBUnmarshaller
for the target object type. Recall that this type was defined by the child mapper
class. The mapper uses the JaxBUnmarshaller class to unmarshal the transformed
request.

public abstract class BaseRequestMapper<TargetType>
implements Cloneable{

public abstract String getXs1FileName();
pubTic abstract String getPackageName();

Request

Mapper private DocWrapper docWrapper;

@0verride
public Object clone() throws CloneNotSupportedException{
return super.clone();

}

pubTic TargetType Deserialize()
throws ParserConfigurationException,
SAXException, IOException,
TransformerConfigurationException,
TransformerException, JAXBException
{

Document doc = docWrapper.getDocument();

String resultsBuffer =
xs1Transformer.Transform(doc, getXs1FileName());

JaxBUnmarshaller<TargetType> unMarshaller =
new JaxBUnmarshaller<TargetType>();

TargetType returnObj =
unMarshaller.unMarshall(resultsBuffer, getPackageName());

return returnObj;

}

pubTic void setDocWrapper(DocWrapper wrapper) {
docWrapper = wrapper;
}
}

REQUEST MAPPER

The xs1Transformer class uses JAXP APIs to transform Acme’s request to the
standard XML invoice structure shown earlier. The source data is passed in as
an XML DOM, and the name of the file containing the XSLT script is also pro-
vided. The result of the transform is returned as a string.

public class xs1Transformer {

public static String Transform(Document src,String xs1FileName)
throws ParserConfigurationException, SAXException,
I0Exception, TransformerConfigurationException,
TransformerException

DOMSource xm1Source =new DOMSource(src);
Transformer xform = initTransformer(xs1FileName);
Request
Writer resultBuffer = new StringWriter(); Wz
StreamResult streamResult = new StreamResult(resultBuffer);

xform.transform(xm1Source, streamResult);

return resultBuffer.toString();
}

private static Transformer initTransformer(String xs1File)
throws TransformerConfigurationException

{
TransformerFactory factory =
TransformerFactory.newInstance();

StreamSource xs1Stream = new StreamSource(xs1File);

return factory.newTransformer(xs1Stream);
}
}

JaxBUnmarshaller deserializes the transformed request to the desired target type
object originally identified by the concrete mapper class AcmeRequestMapper.

public class JaxBUnmarshaller<TargetType> {
public JaxBUnmarshaller(){}

pubTic TargetType unMarshall(String xm1String,
String srcPackage)
throws JAXBException
{
TargetType returnObj = null;

W CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Request
Mapper

JAXBContext jc = JAXBContext.newInstance(srcPackage);
Unmarshaller unmarshaller = jc.createUnmarshaller();

StringBuffer buffer = new StringBuffer(xmiString);

StreamSource src =
new StreamSource(new StringReader(buffer.toString()));

return (TargetType)unmarshaller.unmarshal(src);
}
}

The Data Transfer Objects (94) used in this example are provided below.
XML schemas were created first, and the xjc binding compiler was used to gen-
erate the code.

@XmTAccessorType(Xml1AccessType. FIELD)
@Xm1Type(name = "", propOrder =
{"invoiceId", "workOrder","billedHours"})
@Xm1RootETement(name = "Invoice")
pubTic class Invoice {

@Xm1ETement(name = "Invoiceld", required = true)
protected String invoiceld;

@Xm1ETement(name = "WorkOrder", required = true)
protected String workOrder;

@m1ETement(name = "BilledHours", required = true)
protected BilledHours billedHours;

public String getInvoiceId() { return invoiceld;}
pubTic void setInvoiceld(String value) {invoiceld = value;}

public String getWorkOrder() {return workOrder;}
pubTic void setWorkOrder(String value) {workOrder = value;}

public BilledHours getBilledHours() {return billedHours;}
pubTic void setBilledHours(BilledHours value)
{biTledHours = value;}

}

@Xm1AccessorType(XmlAccessType. FIELD)

@m1Type(name = "BilledHours", propOrder = {"billed"})
pubTic class BilledHours {

@mlETement(name = "Billed") protected List<Billed> billed;

REQUEST MAPPER v

public List<Billed> getBilled() {
if (billed == null) {
billed = new ArraylList<Billed>();

}
return this.billed;
}

}

@XmTAccessorType(Xml1AccessType. FIELD)
@m1Type(name = "Billed", propOrder = {"bi11Code","time"})
public class Billed {

@Xm1ETement(name = "Bi11Code", required = true)
protected String bil1Code;

@Xm1ETement(name = "Time", required = true) Request
Mapper

protected BigDecimal time;

pubTic String getBiT1Code() {return bil1Code;}
public void setBillCode(String value) {bi11Code = value;}

pubTlic BigDecimal getTime() {return time;}
public void setTime(BigDecimal value) {time = value;}

Response
Mapper

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Response Mapper

A web service returns a text-based response.

v

How can the logic required to construct a response be reused by multiple services?
A

Services should generally provide a layer of indirection that insulates clients
from the means used to fulfill requests. The client should not know if, for exam-
ple, the service accesses a database directly or delegates work to object models,
workflows, software packages, or legacy applications. Even when the internal
mechanisms used to fulfill requests are well hidden, clients can still become
invisibly coupled to domain layer entities. If, for example, domain objects are
annotated with XML or JSON serialization attributes (e.g., JAXB, WCF), and
these objects are used directly in responses, then their structures are, in effect,
projected out to clients. This means that any change made to the object model
will also ripple out to clients, forcing them to change as well. This is why it’s
generally a good idea to create distinct data structures (i.e., messages or media
types) whose sole purpose is to carry request and response data in the form
required by the client. This enables the domain layer entities to vary indepen-
dently from the structures used by clients.

While such data structures can decouple clients from domain layer entities,
additional logic is required to move data to and from these structures. This
logic may be straightforward if there is a one-to-one relation between domain
entities and the response structures. However, the data used in responses is
often pulled from multiple sources. Additionally, there can be a significant dis-
parity between domain layer structures and response structures. This disparity
happens quite frequently when responses are defined by business partners,
industry consortiums, or trade groups. In situations like these, the service may
need to convert data types, merge or split data, aggregate data, and eliminate
duplicate data. The logic to transform and move data to these response struc-
tures could be included directly in the service, but this makes the service that
much harder to maintain and may also result in duplicate code if the logic is
used by many services.

One could mitigate this risk and promote reuse by moving this logic to the
domain layer entities. This, however, would create a dependency between the

RESPONSE MAPPER

source domain entities and the response structures. How can the logic that cre-
ates complex responses be reused while encouraging the independent evolution
of domain layer entities and the response structures used by clients?

v

Create a class that consolidates the data mapping and transformation logic used to
create a response.

e Service =~ [rmmmmmmmooooo-- '

Domain

Layer Entities Response | _____
(ie., Domain Objects, Mapper

Record Sets, etc.)

A

Response Mappers are a specialization of the Mapper pattern [POEAA].
They consolidate the data transformation, mapping, and serialization logic
used to create a specific response or family of responses. Response Mappers are
often selected and instantiated directly by services, but other techniques may
be used (e.g., IoC) to create these mappers as well. Once a mapper has been
instantiated, the service calls methods on the mapper as it iterates over data it
retrieves from domain layer entities. This causes the mapper to assemble the
data for the response in small increments. The service might also process the
request in its entirety and send the final results to the mapper in a single
method call. Regardless of whether the mapper receives data little by little or
all at once, the service usually calls the mapper at the end to acquire the final
response (see Figure 4.4).

Services may pass domain objects, Record Sets [POEAA], structs, and primi-
tive data to mappers. This data is typically copied to internal data structures
that compile the data in a form that roughly resembles the response format.
These may be implemented in many ways. An XML DOM may, for example,
be used if the output format is XML and the developer wishes to maintain com-
plete control over the shape of the response. This, however, can entail a signifi-
cant amount of custom coding. This code can be eliminated by copying
response data to Data Transfer Objects (94) that use data binding.

Response
Mapper

CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Service Domain Entities Resonse Mapper

|
Get Data I
L

t
|
|
|
|

Save Data

Select, Transform,
Get Data Store Data

Save Data

Select, Transform,
Store Data

Response
Mapper

Compile Results

Get Response >

Figure 4.4 A service may call mapper methods from within a loop as it iterates
over data it retrieves from the domain layer. This causes the mapper to compile
the data for the response in small increments. The service might also send the
final results to the mapper in a single method call. Regardless, the handler
usually calls the mapper at the end to acquire the response.

Considerations

Developers should consider the following issues when contemplating use of the
Response Mapper pattern.

¢ Minimum criteria for adoption: Response Mappers may be used to consol-
idate the logic that constructs complex responses. This makes it easier to
share this logic across multiple web services.

While the Response Mapper can be considered a relative of the classic
Builder pattern [GoF], the manner in which it is implemented and the
motivations for using it are somewhat different. The goal of the Builder
pattern is to separate the process used to create complex data structures
from those structures. This motivation holds true for response mappers
because the logic used to create responses is separated from the response

RESPONSE MAPPER

structures themselves. However, the more important goal is to remove this
construction logic from web services.

The Builder pattern suggests that it may be used when the representa-
tion of a complex object (in this case, a response) varies. Individual
Response Mappers should generally be designed to produce specific
responses. These mappers, however, may inherit from a base class that rep-
resents a family of mappers. After the service retrieves the data to be used
in a response, it could call a Factory Method [GoF], which returns the
appropriate mapper for a particular client. The service would then call
methods on the common mapper interface, and wouldn’t have to know
anything about the specific response message being returned.

Use in reducing client dependencies: Response Mappers can help to insu-
late clients from domain layer entities (e.g., objects, record sets, etc.). This
means that a change to a domain layer entity won’t necessarily force cli-
ents to change and vice versa.

Additional work effort: The effort expended to create and maintain
Response Mappers may not be worth it if the response is relatively simple
or isn’t returned from multiple services. If a single service returns a given
response, one might instead consider extracting the mapping logic to a
separate routine in the Service Controller (85).

Scope of responsibility: Sometimes it can be difficult to determine what
logic should remain in the web service and what should go into the
Response Mapper. In most cases, the service should generally perform the
bulk of the work, and should coordinate interactions with specific domain
layer entities. If the service uses a rich Domain Model [POEAA], it would
call methods on the model and give the mapper selected objects containing
information to be used in the response. In a similar fashion, if the service
uses Table Modules [POEAA], it would pass individual Record Sets
[POEAA] to the mapper. While it may be tempting to include business
logic within the mapper, this type of logic should remain in the Domain
Model [POEAA] or service.

Use with linked services: Response Mappers that are used by Resource
APIs (38) often construct URIs to related services and include these
addresses in the response. However, it may not be a good idea to put this
logic directly in the mappers if a common approach for URI construction
is required across several mappers. Instead, a consistent and reusable
approach for URI construction can often be ensured when the logic is

Response
Mapper

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Response
Mapper

extracted and encapsulated within separate classes that are called by
Response Mappers.

¢ Relation to integration patterns: Similarities exist between the Response
Mapper and Message Translator patterns [EIP]. Both patterns provide a
solution to convert data structures and types, and to alter data formats as
well. Message Translators, however, are frequently used as filters that are
deployed between clients and services or between services. Multiple trans-
lators can be arranged into a chain of filters between services. In contrast,
Response Mappers are used within a service.

Example: A Service with a Resource API That Uses a Response Mapper

In this example, a service with a Resource API (38) returns an invoice for a par-
ticular year/month period. This invoice has a list of work orders that contains
summaries of the hours billed for the period and the total cost of that work.
Each work order also contains a link to a URI where the client may obtain
detailed information on the work order. This first code fragment shows the
interface of the service. The client may request an invoice by submitting a GET to
a URI that looks like http://ww.acmeCorp.org/123/invoices/?yyyy=20108&mm=3.

[ServiceContract]
[Xm1SerializerFormat]
pubTlic interface IInvoiceService
{
[WebGet(BodyStyle = WebMessageBodyStyle.Bare,
RequestFormat = WebMessageFormat.Xml,
ResponseFormat = WebMessageFormat.Xml,
UriTemplate = "/{clientId}/invoices/?yyyy={year}&mm={month}")]
[OperationContract]
Invoice GetInvoice(string clientId, string year, string month);

}

The following code shows how the service might be implemented. The
request handler calls an object in a Domain Model [POEAA] to retrieve a list of
BilledHours. Each of these objects contains the hours a particular contractor has
billed to a given work order along with the contractor’s rate. The service then
instantiates a Response Mapper, iterates through the collection of BilledHours,
and passes each instance to the mapper. For each instance of BilledHours, the ser-
vice also updates the total work order hours and cost. The service then calls the
mapper’s GetResponse method. The response is automatically serialized as XML
since the Invoice and its contained objects use Data Transfer Objects (94) with
data-binding annotations.

http://www.acmeCorp.org/123/invoices/?yyyy=2010&mm=3

RESPONSE MAPPER

pubTic class InvoiceService : IInvoiceService
{
public Invoice GetInvoice(string clientld, string year,
string month)
{
IList<BilledHours> hoursBilled =
BiTlabTeHoursManager.GetBillableHoursForPeriod(
clientId, int.Parse(year), int.Parse(month));

InvoiceResponseMapper mapper = new InvoiceResponseMapper();
mapper.Initialize(clientId, year, month);

foreach(BilledHours contractorHours in hoursBilled){

WorkOrder wo = mapper.AddData(contractorHours);

Response
wo.Hours += contractorHours.Hours; Mapper
wo.Cost += contractorHours.Hours * contractorHours.Rate;

}
return mapper.GetResponse();

}
}

The abstract class ResponseMapper and the concrete class InvoiceResponseMapper
are shown below. The latter maintains a list of WorkOrder objects. Whenever the
AddData method on InvoiceResponseMapper is called, the mapper determines if it
already has the work order identified in the BilledHours object. If it doesn’t, it
creates a new WorkOrder. It also provides Linked Services (77) the client may use
to see the details of the work order. If the work order is found in the mapper’s
collection, it is updated to reflect the contractor’s data. Keep in mind that the
mapper should not contain any domain logic; it is only responsible for mapping
data. That’s why the service updates the work order’s hours and cost.

public abstract class ResponseMapper<InputType, ContainedType, ReturnType>
{

pubTic abstract ContainedType AddData(InputType inputData);

public abstract ReturnType GetResponse();
}

pubTic class InvoiceResponseMapper :
ResponseMapper<BilledHours, WorkOrder, Invoice>
{

private const string BaseURI = "http://www.acmeCorp.org/";

string clientId, month, year;
private IList<WorkOrder> workOrders = new List<WorkOrders();

v CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

Response
Mapper

pubTic InvoiceResponseMapper() { }

public void Initialize(string clientId, string year,
string month)
{
//skipped validation
this.clientId = clientId;
this.year = year
this.month = month;

}

pubTlic override WorkOrder AddData(BilledHours billedHours)

{
string workOrderId = billedHours.WorkOrderId;

WorkOrder workOrder =
workOrders.Find(
delegate(WorkOrder wo){return wo.Id == workOrderId;});

if(null== workOrder)
workOrder = CreateNewWorkOrderElement(workOrderId);

return workOrder

}

private WorkOrder CreateNewWorkOrderElement(string workOrderId)

{

WorkOrder workOrder = new WorkOrder();

workOrder.Id = workOrderId;
workOrder.UriLink = CreateLinkToWorkOrderDetail(workOrder);

workOrders.Add(workOrder) ;

return workOrder

}

private Urilink CreatelLinkToWorkOrderDetail(WorkOrder wo)

{
UriLink Tink = new UriLink();

Tink.Relation = RelationTypes.GetWODetails;
Tink.MediaType = MediaTypes.WorkOrder;

Tink.URI = String.Format("{0}{1}/workOrders/{2}",
BaseURI, clientId, wo.Id);

return Tink;

}

RESPONSE MAPPER v

pubTic override Invoice GetResponse()

{

Invoice invoice = new Invoice();

invoice.Id = String.Format("{0}.{1}.{2}",
clientId, year, month);

invoice.WorkOrders = this.workOrders;
return invoice;

}
}

The domain entity BilledHours is shown in the following code listing.

public class BilledHours

{
pubTic string WorkOrderId{get; set;}
public string ContractorId{get; set;}
public decimal Hours{get; set;}
public decimal Rate{get; set;}

}

Here are the Data Transfer Objects (94) used in this example.

[XmTRoot]
pubTic class Invoice

{
[XmTAttribute]
public string Id{get; set;}

[XmTETement]
public List<WorkOrder> WorkOrders{get; set;}
}

[XmTRoot]
pubTic class WorkOrder

{
[XmTAttribute]
public string Id{ get; set; }

[XmTAttribute]
public decimal Hours{ get; set; }

[XmTAttribute]
public decimal Cost { get; set; }

[XmTETement (ETementName = "Tink™)]
public Urilink Urilink{ get; set; }

Response
Mapper

W CHAPTER 4 REQUEST AND RESPONSE MANAGEMENT

[XmTRoot]
pubTic class UriLink

{
pubTic Urilink() { }

[XmTAttribute(AttributeName = "re1")]
public string Relation { get; set; }

[XmlAttribute(AttributeName = "type™)]
public string MediaType { get; set; }

[XmTAttribute(AttributeName = "href™)]
pubTic string URI { get; set; }

Response
Mapper

Chapter 5

Web Service
Implementation Styles

Introduction

Web services can be used for a variety of purposes. Some make it easier for
developers from different departments to use internal resources like databases
or domain objects. Others provide a standardized means to invoke common
business logic. Regardless of the purpose, developers must decide how much
logic should be included within each web service. This chapter looks at a few
common ways to implement web services. These patterns are listed in Table 5.1.

Table 5.1 Web Service Implementation Styles

Pattern Name

Problem

Description

Transaction
Script (134)

How can developers
quickly implement web
service logic?

Write custom logic for database access,
file manipulation, or other purposes
directly within the web service method.

Datasource
Adapter (137)

How can a web service
provide access to internal
resources like database
tables, stored proce-
dures, domain objects, or
files with a minimum
amount of custom code?

Create a web service that uses a special-
ized Datasource Provider. Leverage
developer tools that generate datasource
metadata and produce controllers that
not only encapsulate and interpret the
rules for request processing, but also
direct the actions of Datasource Provid-
ers and Message Formatters.

Operation
Script (144)

How can web services
reuse common domain
logic without duplicat-
ing code?

Encapsulate common business logic in
domain layer entities that exist outside of
the web service. Limit the logic within
web services to algorithms that direct the
activities of these entities.

131

Continues

Web Service
Implementation

Styles

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

Table 5.1 Web Service Implementation Styles (continued)

Pattern Name Problem Description

Command How can web services Create command objects that fully

Invoker (149) with different APIs reuse encapsulate common request processing
common domain logic logic. Instantiate and invoke these com-
while enabling both syn- mands from within the web service, or
chronous and asynchro- forward them to an asynchronous back-
nous request processing? ground process.

Workflow How can web services be ~ Use a Workflow Engine to manage the

Connector used to support complex life cycle and execution of tasks within

(156) and long-running busi- complex or long-running business pro-
ness processes? cesses. Identify a web service that will

trigger each logical business process. Use
Callback Services to receive additional
data for these long-running processes,
and forward messages from these Call-
back Services to the Workflow Engine.

Design
Considerations

for Web Service
Implementation

Design Considerations for Web Service Implementation

The following factors should be considered when writing web service code.

e Atomicity: Web services should be atomic and adhere to an “All-or-Noth-
ing” philosophy. In other words, they should guarantee that all tasks they
direct complete successfully or are entirely reversed. Database transactions
may be managed by the service itself or by lower-level domain layer enti-
ties (e.g., domain objects). If the service coordinates the work of these enti-
ties, it should always ensure that data is left in a valid state by instructing
the entities to commit or abort at the appropriate times.

¢ State management: Stateful web services allocate server memory for each
client session. These services save information from individual client
requests to session variables that can be accessed in subsequent requests.
This enables clients to use web services as if they were stateful local objects,
and can also help to reduce database load if the data kept in the session
variables would have normally been retrieved from a database. Unfortu-
nately, as the web server load increases, the memory needed to support
stateful web services usually increases as well. If too much memory is con-
sumed, then data may be swapped from memory to disk, thereby hurting
server performance. In the worst-case scenario, a server fault may occur.

DEsIGN CONSIDERATIONS FOR WEB SERVICE IMPLEMENTATION

The use of stateful web services can cause other scalability problems as
well. Client requests may have to be sent back to the server where the cli-
ent’s session was established unless an alternative mechanism for state
management is used. Client state could, for example, be stored in a distrib-
uted memory cache that is accessible to all web servers. It could also be
written to a file system or database. Both approaches, however, require
additional out-of-process calls which may add to the overall response
time. Access of information held in distributed memory caches can be very
fast, but data may be lost upon a crash. Information stored in a file system
or database can usually survive a server crash, but the data retrieval time
may lag.

These are just a few of the reasons why many create stateless web ser-
vices. With this approach, any server memory allocated for clients is
released at the end of each request. Since requests may be sent to any web
server, and temporary client data is rarely held in distributed state manage-
ment infrastructures, it becomes much easier to balance client load across
a clustered web server tier and scale the overall system. However, since the
server does not store data from previous requests, the size of each request
tends to increase, and this may cause network utilization to increase as
well. The web service may also have to retrieve more data from the data-
base on each request since nothing is saved in memory from prior requests.

For a more in-depth discussion of session state, I recommend Patterns
of Enterprise Application Architecture [POEAA] and Architectural Styles
and the Design of Network-based Software Architectures [Fielding].

Service composition: Consistent and reliable outcomes are more likely
when the web service controls its own execution and has few dependencies
on outside forces. One may certainly create complex web services that call
other web services, but the ramifications must be carefully considered.
First is the problem of network latency. The overall response time of a web
service that calls other web services may be unacceptable for certain situa-
tions. The service designer must also think about network and server fail-
ures. If a subordinate service is unavailable, then what should the parent
service do? Should the parent make multiple attempts to connect to the
service? Should the parent fail if a subordinate fails? If the parent decides
to fail, it may need to instruct its subordinates to undo any work that they
completed prior to the failure. How should it do this? The service designer
must also consider whether or not the client should be kept waiting as all
of this transpires. These are just a few of the questions that must be
answered when building composite services.

Design
Considerations

forWeb Service
Implementation

v CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

Transaction Script

The logic for a web service is relatively simple and is not reused in other web
services.

v
How can developers quickly implement web service logic?

A

Web services can be used to provide access to databases or to text or binary
files, offer a simplified API for a packaged application, make legacy applications
available to new clients, or provide domain-specific business logic. A decision
must be made regarding where the logic to manipulate these targets should be
located. In many cases, the most practical approach is to create this logic
directly within the web service method.

Transaction
Script

v

Write custom logic for database access, file manipulation, or other purposes directly
within the web service method.

Database

Web Service
Method

Other Data
Sources

A

Web services can be implemented as Transaction Scripts [POEAA] that have
intimate knowledge of databases, file systems, file types, or the APIs of third-
party packages and legacy applications. If the service performs a business func-
tion, it contains all of the validation logic, calculations, conditional statements,

TRANSACTION SCRIPT

and other logic required to implement the function. The most common type of
Transaction Script involves databases. In this scenario, the web method (a.k.a.
request handler) contains all of the code required to interact with a database.
This typically includes code to manage database connections and transactions,
execute SQL, and retrieve Record Sets [POEAA].

Considerations

Service developers should consider the following when thinking about using the
Transaction Script pattern.

e Simplicity: Transaction Scripts are easy to understand and are a natural
starting point for many. Implementation of service logic is straightforward
because the developer simply writes all of the code required to manipulate
databases, files, and other data sources (e.g., legacy applications and com-
mercial packages) directly within the web service method. This is often the
fastest approach in the face of looming deadlines because one doesn’t have
to spend the time creating Domain Models [POEAA], application Gate-
ways [POEAA], or common file-access libraries intended for reuse. This is
often a pragmatic approach when the logic is relatively simple and will not
be duplicated in other web services.

e Potential for long methods and code duplication: The code in Transaction
Scripts often becomes increasingly complex over time, which, of course,
makes it difficult to maintain. Since short methods are easier to understand
and manage, some may decide to extract portions of the web method out
into smaller specialized methods located within the same class as the web
method itself [i.e., the Service Controller (85)]. This can make the web
method easier to read and maintain, but tends to make the controller less
maintainable because it now contains a mix of web service methods and
supporting functions.

Developers who use this pattern are most concerned with speed of
implementation. The consequence is that the service’s logic may be dupli-
cated. Developers may decide to refactor the web service to use the Opera-
tion Script (144), Command Invoker (149), or Workflow Connector (156)
pattern if it becomes apparent that the service’s logic must be reused. In
most cases, this can be done with minimal impact to clients.

¢ Tight coupling to data sources and APlIs: Transaction Scripts have intimate
knowledge of and are tightly coupled to the underlying resources (i.e., file
systems, file types, databases, application APIs, etc.) that they use. When
these sources change, the service’s code usually has to be altered as well.

Transaction
Script

Transaction
Script

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

Example: A Service That Has an Intimate Understanding of a Database

This example in C# shows a Transaction Script that has an intimate under-
standing of a database table. In the first code snippet we see the interface defini-
tion for a Service Controller (85). Note that a Data Transfer Object (94) is used
to produce results as JSON.

[ServiceContract]
pubTic interface IEditorialService

{
[OperationContract]
[WebGet (ResponseFormat=WebMessageFormat.Json,
UriTemplate = "stories/{authorId}")]

List<Story> GetStoriesToReview(int authorId);

// other operations here

}

This code fragment shows the actual web service implementation. The code
for CommonDBLogic has been omitted.

pubTic class EditorialService : IEditorialService
pubTic List<Story> GetStoriesToReview(int authorId)

{
using(IDbConnection conn = CommonDBLogic.GetDBConnection())
{
IDbCommand cmd = CommonDBLog1ic.GetCommand(conn);
cmd. CommandText =
@"SELECT Id, Headline
FROM NewsStories
WHERE State = 1
AND WorkerId = @AuthorId
ORDER BY RowTimestamp DESC";
CommonDBLogic.AddParameter(cmd, "AuthorId", authorId);
List<Story> stories = new List<Story>();
using (IDataReader rdr = cmd.ExecuteReader())
{
while (rdr.Read())
stories.Add(
new Story(rdr.GetInt32(0), rdr.GetString(l));
}
}
return stories;
}

}

DATASOURCE ADAPTER v

Datasource Adapter

Several clients would like to use internal system resources, but access to these
entities must be controlled. The clients might be running on different comput-
ing platforms.

A4

How can a web service provide access to internal resources like database tables,
stored procedures, domain objects, or files with a minimum amount of custom code?

A

Database tables, stored procedures, domain object models, and files must
often be shared with clients that run on different computing platforms. The
organization could migrate all clients to a homogeneous platform. This, how-
ever, could be an impractical move. Rather than trying to create a uniform envi-
ronment, one could provide access to these resources through web services.
However, this too can cause a significant amount of work. Consider the follow-
ing C# web service that provides access to a database table.

pubTlic List<Story> GetStoriesToReview(int authorId)
{
using(IDbConnection conn = CommonDBLogic.GetDBConnection())

{

IDbCommand cmd = CommonDBLog1c.GetCommand(conn);

cmd. CommandText =
@"SELECT Id, Headline FROM NewsStories
WHERE State = 1 AND WorkerId = @AuthorId”;

CommonDBLogic.AddParameter(cmd, "AuthorId", authorId);
List<Story> stories = new List<Story>();

using (IDataReader rdr = cmd.ExecuteReader())
{
while (rdr.Read())
stories.Add(
new Story(rdr.GetInt32(0), rdr.GetString(1));

}
}
return stories;

}

Datasource
Adapter

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

While this code is relatively simple, it takes time to create and will require
periodic maintenance. How can a service developer provide access to data
resources without having to write so much code?

v

Create a web service that uses a specialized Datasource Provider. Leverage devel-
oper tools that generate datasource metadata and produce controllers that not only
encapsulate and interpret the rules for request processing, but also direct the ac-
tions of Datasource Providers and Message Formatters.

——— Metadata

[N Service | ____ .
Controller

Database

Datasource
Adapter

—
|

PR /A

Message
Formatters

Service Datasource
Framework Providers

Other Data
Sources

A

The Datasource Adapter is a variation on the Adapter pattern [GoF]. Adapt-
ers are used to convert one class interface to another interface, thereby making
it possible for classes that were previously incompatible to interact. A metaphor
can help to explain this. Americans who use laptop computers in Europe must
often use an adapter to convert the power cable’s interface (i.e., the plugs) to
one that is compatible with the wall socket. Services that function as Adapters
work much like this. They make internal resources like database tables, stored
procedures, domain objects, or files accessible to clients that normally couldn’t
use them. Datasource Adapters accomplish this objective with a minimum
amount of code. Several vendors (e.g., Microsoft, IBM, Oracle) use the term
“data service” when speaking of web services that use this pattern.

DATASOURCE ADAPTER

Service frameworks that support the Datasource Adapter pattern intercept
requests for specific web services. Requests are automatically translated into
one or more actions against a specialized Datasource Provider, which encapsu-
lates the logic required to manipulate a target resource. Typical providers
include Object Relational Mappers (ORMs) and components that manage spe-
cific file types. Once the provider has processed the request, the service frame-
work uses a Message Formatter to produce an appropriate response.

Datasource Adapters are usually created with graphical design tools. Devel-
opers begin the design process by selecting a target resource that should be
“web-enabled.” Some tools also provide the means to select the logical opera-
tions (e.g., Create, Read, Update, Delete) or specific SQL statements that should
be allowed. The tool may automatically select a Datasource Provider or enable
developers to select their own. The structure of request and response messages
must also be determined at design time. Some tools let developers design their
own message structures, while others impose a format derived from the target
resource. The information collected by the tool is saved at the end of the design
session. Some tools save this information as metadata in XML files while others
generate the code for Service Controllers (85). The information stored in meta-
data files is used by the service framework at runtime to interpret and translate
requests into actions against datasource providers. Controllers typically contain
pregenerated logic used to achieve a similar end. As the name implies, they con-
trol or coordinate actions against the providers.

Clients can often discover the contracts for these services. Services with RPC
APIs (18) or Message APIs (27) frequently use Service Descriptors (175) like
WSDL that support design-time generation of Service Proxies (168). Services
with Resource APIs (38) often let client developers query a root service to
retrieve Atom Publishing Protocol’s (APP’s) Service Document. Some client
tools can also generate Service Connector (168) code given this information.

Considerations

Service developers should consider the following when thinking about using the
Datasource Adapter pattern.

e Assumptions regarding providers: This pattern assumes developers use a
Datasource Provider that is compatible with the selected service frame-
work and developer tools. Even then, developers may have to spend time
creating custom code for the providers. Some ORMs, for example, require
developers to create the Domain Model [POEAA] entirely by hand. Other
ORM design tools are able to generate Domain Models from the database.

Datasource
Adapter

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

¢ Ease of use: This pattern makes it easy for clients to access resources they
normally wouldn’t be able to use. The tools promote rapid application
development, which makes them particularly useful in proof-of-concept
projects.

e Coupling: This pattern implies a “bottom-up” design approach. The risk
is that clients may become tightly coupled to the underlying resources
exposed by the web service. When changes are applied to the backing data
source, clients frequently have to change as well. This is a special problem
when database tables are the backing source. Consider, for example, what
might happen when tables are partitioned vertically (i.e., split into two
tables), or when columns are added or removed. Client developers must be
notified and may also have to re-create their Service Connectors (168).

¢ Custom code: While this pattern reduces the amount of code required to
manipulate backing data sources, one may have to create custom code to

Datasource handle such matters as client authentication, data encryption, data valida-
Adapter

tion, and data transformation. This can usually be accomplished with Ser-
vice Interceptors (195).

e Service API styles: Service developers should consider what API style
“works best” for the target resource. A Resource API (38) can be appro-
priate for database tables and some files, while RPC APIs (18) may work
better for stored procedures or object methods. Some tools impose a spe-
cific API style while others give you a choice.

o Access privileges: Service owners should consider who should be able to
access internal resources exposed in this manner. Should developers in
different departments of the same company be able to use the service? It
depends. Service owners should carefully consider whether or not these
resources should be exposed to groups outside of the company. Common
risks include mining for confidential information and denial-of-service
attacks.

e Latency: Developers should carefully consider the performance implica-
tions of calling several table-backed web services to complete a single use
case. The problem is that each call to a web service entails multiple net-
work traversals from the client, to the web service, to the database, and
back again, and each network hop has a significant impact on overall
latency. Therefore, a use case that involves several database tables could
result in a very chatty conversation with high latency. For cases like these,
performance can usually be improved if the use-case logic that manipu-

DATASOURCE ADAPTER v

lates these tables is moved into a single web service. The end result is that
clients need only call one web service rather than multiple services in order
to achieve the desired goal. This approach also helps to mitigate the prob-
lems associated with partial failures (i.e., when the client, server, or net-
work independently fails for some reason).

e Use with Domain Models: The Domain Facade pattern [POEAA] provides
a thin facade over a Domain Model [POEAA]. The service doesn’t imple-
ment any business logic of its own, but instead delegates all requests to the
underlying objects. The Datasource Adapter can be used for this purpose.
However, one must be careful about circular references. For more infor-
mation on this topic, see the Data Transfer Object pattern (94).

Example: WCF Data Services

This example uses a Domain Model [POEAA] that was automatically generated Datasource
from a database. This model includes several entities, but we’ll focus on Company Adapter
and Person objects. A many-to-many relationship exists between these entities.
Therefore, a Company may have a relationship with multiple Person(s), and vice
versa.

.NET developers can use the Visual Studio development environment to cre-
ate a service that binds to this domain model. The following code is all that is
required to get this service up and running. Notice that the name of the domain
model is provided to the DataService class from which CRMService inherits.

pubTic class CRMService : DataService<DomainModel.AcmeCorp>
{
pubTic static void InitializeService(
DataServiceConfiguration config)
{
config.SetEntitySetAccessRule("*", EntitySetRights.A11);
config.UseVerboseErrors = true;
}
}

Once the code is deployed, clients can query the base URI of the service to
acquire an APP Service Document that looks like this:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<service:base=
"http://acmeCorp.org/PeopleService/"
xmins:atom="http://www.w3.org/2005/Atom"
xmins:app="http://www.w3.0rg/2007/app"
xmIns="http://www.w3.0rg/2007/app">

v CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

<workspace>
<atom:title>People Service</atom:title>
<collection href="Companies">
<atom:title>Companies</atom:title>
</collection>
<collection href="People">
<atom:title>People</atom:title>
</collection>
</workspace>

</service>

This describes the services that clients may use to access Companies and People.
Clients can issue an HTTP GET to http://acmeCorp.org/PeopleService/Companies in
order to retrieve data for all companies. The response appears below.

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<feed xml:base="http://acmeCorp.org/PeopleService"
xmins:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

Datasource xmins:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
Adapter xmins="http://www.w3.0rg/2005/Atom">

<title type="text">Companies</title>
<id>http://acmeCorp.org/PeopleService/Companies</id>
<updated>2010-10-06T19:57:56Z</updated>

<link rel="self" title="Companies" href="Companies" />

<entry>
<id>http://acmeCorp.org/PeopleService/Companies(1)</id>
<title type="text" />
<updated>2010-10-06T19:57:56Z</updated>
<author>
<name />
</author>

<link rel="edit" title="Company" href="Companies(1)" />

<link
rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/People
type="application/atom+xml;type=feed"
title="People" href="Companies(1)/People" />

<category term="LabDbModel.Company"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

<content type="application/xml1">
<m:properties>
<d:Id m:type="Edm.Int32">1</d:Id>
<d:Name>Acme</d:Name>
</m:properties>
</content>
</entry>

http://acmeCorp.org/PeopleService/Companies

DATASOURCE ADAPTER v

<entry>
<id>http://acmeCorp.org/PeopleService/Companies(2)</id>
<title type="text" />
<updated>2010-10-06T19:57:56Z</updated>
<author>
<name />
</author>

<link rel="edit" title="Company" href="Companies(2)" />

<link
rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/People"
type="application/atom+xml;type=feed"
title="People" href="Companies(2)/People" />

<category term="LahDbModel.Company"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

<content type="application/xml">
<m:properties>
<d:Id m:type="Edm.Int32">2</d:Id>
<d:Name>Dunder Mifflin</d:Name>
</m:properties>
</content>
</entry>
</feed>

Datasource
Adapter

The format of this response is an extension to APP called Open Data Proto-
col (OData). Client developers can parse the link relations in this response and
submit additional requests to create, read, update, and delete related resources.
For example, a client may issue an HTTP PUT to http://acmeCorp.org/PeopleService/
Companies(2) to update information on “Dunder Mifflin”. When the framework
receives the request, it automatically translates it into an action against the
domain model.

http://acmeCorp.org/PeopleService/Companies(2)
http://acmeCorp.org/PeopleService/Companies(2)

Operation
Script

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

Operation Script

Common domain logic must be shared across a number of web services that
may have different API styles (see Chapter 2).

v

How can web services reuse common domain logic without duplicating code?

A

Web services often contain all of the business or data access logic required to
process a client’s request. The service may validate input data, perform calcula-
tions, select the tables, rows, or files that should be accessed, and execute SQL.
The service may also manage database transactions. Web services implemented
in this manner are called Transaction Scripts [POEAA], which effectively orga-
nize business logic into individual procedures. This pattern is relatively easy to
implement and may work well when the amount of logic in each service is
small. However, the code can also become quite complex, lengthy, and chal-
lenging to maintain over time, and portions may be replicated across a number
of web services. The risk, of course, is that duplicated code tends to be difficult
to synchronize, and inconsistencies are likely to arise.

To combat these problems the service developer can extract certain code
fragments out into smaller methods. This can help to make the web service eas-
ier to read and maintain. However, the developer must now determine where
the extracted methods should be located. The code could be placed in the same
class as the web service method, but this often does little to minimize duplicate
code. When a web service’s logic is particularly complex, it often makes sense to
push that logic to a separate layer and make the service as thin as possible.

v

Encapsulate common business logic in domain layer entities that exist outside of the
web service. Limit the logic within web services to algorithms that direct the activi-

ties of these entities.

Domain Models,
Table Modules,

Application Gateways,
etc.

OPERATION SCRIPT

Web services that implement the Operation Script pattern [POEAA] may con-
tain some application logic consisting of conditional (e.g., if, switch), iteration
(i.e., looping), and sequencing statements. However, the bulk of the domain logic
resides in external domain layer entities (e.g., Domain Models, Table Modules
[POEAA]). The service inspects the request and uses this information to deter-
mine which domain layer entities should be used. The service may pass request
data through without alteration, or may transform it in a way that can be con-
sumed by the target entities. If a response is to be returned, the service constructs
and populates the appropriate message with data from these entities.

Operation Scripts often function as the topmost transaction manager for the
entities that are used to fulfill the client’s request. They frequently start transac-
tions after requests are received but before target objects are instantiated. If
everything goes well, they commit the transaction, which causes the enlisted
entities to commit their work as well. If an exception is thrown before the end
of the transaction, the service will abort the transaction, causing the entities to
roll back all changes.

Considerations

Use of this pattern should be preceded by consideration of the following factors.

¢ Local versus distributed transactions: The transactions managed by Oper-
ation Scripts are usually local. In other words, the service typically man-
ages transactions that operate against a single data source (e.g., database,
queue, etc.). Distributed transactions that enlist multiple data sources may
be used; however, developers should carefully consider the ramifications.
Distributed transactions can be problematic when used in web services
because of their tendency to increase latency and contribute to lock con-
tention on database tables.

e Inversion of Control: Operation Scripts often use Inversion of Control
(IoC) containers to decouple web service logic from the actual objects used
to process requests (see Dependency Injection). IoC containers like Spring
enable developers to avoid direct instantiation of target objects. Instead, the
service asks the IoC framework to dynamically create and return an instance
of an object that implements a particular interface. The IoC framework typ-
ically looks at a configuration file to see what type of concrete class should
be loaded. IoC containers make it relatively easy to plug in new implementa-
tions of domain objects without affecting the service logic.

¢ Potential for duplication of application logic: Since the domain layer enti-
ties called by the web service encapsulate most of the common business

Operation
Script

v CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

Operation
Script

logic, code duplication can largely be avoided. However, the validation,
control-flow, and exception-handling logic that is left over in the web ser-
vice might still be replicated across services. To avoid code duplication, the
developer may decide to move this logic to a Command object [GoF] that
can be called from multiple services. For more information see the Com-
mand Invoker pattern (149).

e Application gateways: Web services sometimes provide access to propri-
etary APIs offered by commercial applications or legacy systems. Develop-
ers could direct activities against these APIs from directly within web
service methods. However, this creates a very strong coupling between the
web services and the backing APIL. Developers may, instead, encapsulate
the logic that manipulates these APIs in distinct Gateways [POEAA] that
provide a simplified interface or Facade [GoF] over the APL. The web ser-
vice can then call the gateway methods and be completely ignorant of the
APIs used by the commercial or legacy application. This makes it much
easier to swap out the provider (in this case, the system providing the API)
for a new one while maintaining a common web service API and the con-
trol-flow logic within the web service.

Example: A Service That Delegates Work to Domain Layer Entities

This example in C# shows how an Operation Script with a Resource API (38)
can delegate most of its work to domain layer entities. In this listing, you can
see that a service named GetAlbums instantiates an AlbumFinder object and executes
the method GetByArtistName in order to retrieve a list of albums for the artistName
extracted from the URI path. If results are found, the handler maps these results
onto a Data Transfer Object (94), which serializes the data as JSON. The
implementations of AlbumFinder and MusicAlbum have been omitted to keep this
example brief.

[ServiceContract]

public interface IMediaService

{
[OperationContract]
[WebGet (ResponseFormat=WebMessageFormat. Json,

UriTemplate = "music/albums/{artistName}")]

List<MusicATbum> GetATbums(string artistName);

}

OPERATION SCRIPT

pubTic class MediaService: IMediaService

{

public List<MusicAlbum> GetAlbums(string artistName)
{

DomainLayer.AlbumFinder finder = new DomainLayer.AlbumFinder();

List<DomainLayer.ATbum> albums =
finder.GetByArtistName(artistName);

if (null == albums)
{
WebOperationContext.Current.OutgoingResponse. SetStatusAsNotFound() ;

return null;

}
List<MusicAlbum> results = new List<MusicAlbum>();

// Map results to a Data Transfer Object
foreach (DomainLayer.ATbum album in albums)
results.Add(new MusicAlbum(album.Name,

artist.Name,
album.Genre));

Operation
Script

return results;

}
}

Example: A Service with Complex Application Logic

This Java example shows a web service that interacts with several domain
objects. As you can see, data is first extracted from the request. If the date range
is not valid, a fault message is thrown and the service terminates. Otherwise,
the service attempts to retrieve the customer’s unique identifier from the
request. If the customer provided a valid identifier, information about the cus-
tomer is retrieved from a database, and a Customer object is populated. Other-
wise, an object of this same type is initialized for new customers. A pricing list
is then retrieved given the class of vehicle the customer would like to rent. Next
we see that the rental cost is computed, the customer’s account is charged, and a
rental request is submitted to the pickup location. This last act also generates an
acknowledgment that is returned to the client.

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

The implementations of the domain objects and Data Transfer Objects (i.e.,
RentalCriteria, RentalAck) have been omitted because they are somewhat tangen-
tial to this sample. This example demonstrates how an ORM might be used to
initiate a database transaction. The specifics of this have been left out as well.

@WebMethod (operationName = "ReserveAuto™)
public RentalAck ReserveAuto(RentalCriteria request){

DateRange dateRange = new DateRange(request.getFromDate(),
request.getToDate());

if(! dateRange.isValid())
throw new InputDataValidationFault(
dateRange.getErrorMessage());

String customerId = request.getCustomer().getCustomerId();
Customer customer;

RentalAck response = null;

Operation
Script

// start transaction
SessionManager session = SessionFactory.CreateSession();

if(null != customerId){
customer = Customer.getById(customerId);
} else {
customer = Customer.initForNewAccount(request.getCustomer());

}
Pricelist pricing = new Pricelist(request.getVehicleClass());

Money cost = pricing.getRentalCost(request.getPickupLocation(),
request.getDropOfflLocation(),
dateRange) ;

customer. chargeAccount(cost);

Rentallocation rentallocation =
Rentallocation.getRentallocation(request.getPickuplocation());

ReservationRequest rentalRequest = new ReservationRequest(
customer,
request.getVehicleClass(),
pricing.getlistId(),
dateRange) ;

response = rentallocation.submitReservation(rentalRequest);
session.commit();

return response;

}

COMMAND INVOKER

Command Invoker

Equivalent requests may be received through multiple web services with differ-
ent API styles (see Chapter 2). The service owner would like to have the option
of processing the request synchronously or asynchronously.

A4

How can web services with different APIs reuse common domain logic while en-
abling both synchronous and asynchronous request processing?

A

Web services often contain application logic that directs how Domain Mod-
els [POEAA] and database tables are used to process requests. While the bulk
of the domain logic can be found in domain layer entities, the service might
still contain intricate conditional, looping, and sequencing statements that
direct these entities. There are times when even this logic may be duplicated
across web services. Consider a case in which the service owner must imple-
ment two service APIs for different clients. Perhaps the first service has a Mes-
sage API (27) while the second uses a Resource API (38). Developers may be
tempted to copy and paste code between equivalent services, but it would
probably become quite difficult to ensure consistent and reliable behaviors for
these services over time.

When web services contain application logic, a high degree of temporal cou-
pling usually exists because it is assumed that requests will be processed imme-
diately. Unfortunately, a spike in request load could overwhelm the web and
database servers. Service architects must consider other issues that might hinder
scalability as well. Consider a web service that occasionally receives requests
that take a “long time” (e.g., minutes or longer) to process. A product update
service might, for example, enable clients to update their entire catalogue or a
small portion of it. If the client uploads their entire inventory, then web server
capacity could be diminished to the point where other requests are rejected.
Web services that execute application logic as soon as requests are received can
therefore be hard to scale.

Developers often need a way to consolidate and reuse common application
logic that can be invoked from multiple web services. This shared logic could
also be encapsulated in a way that enables the request to be forwarded to a
background process for deferred processing.

Command
Invoker

Command
Invoker

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

v
Create command objects that fully encapsulate common request processing logic.
Instantiate and invoke these commands from within the web service, or forward
them to an asynchronous background process.

[Web Service 1 j (Web Service 2]

[Command j

Domain Models,
Table Modules,
Databases,
Packaged Applications,
etc.

A

When a web service is implemented as a Command Invoker, all domain and
exception-handling logic is removed from the web service and moved to Com-
mand objects [GOF]. The code that is left over in the web service does very little.
In its simplest form, the service selects a Command, provides request data to the
Command, and calls a method that causes it to begin processing the request.

Command Invokers offer several benefits. All recurring control-flow and
exception-handling logic for a given domain is consolidated within a single
entity. This enables the web service to remain ignorant of the Domain Models
[POEAA], Table Modules [POEAA], databases, or packaged applications used
to fulfill a client’s request. By encapsulating all of this logic within a separate
class, one enables it to be shared across a number of services. One could, for
example, create a Resource API (38) for one set of clients and a Message API
(27) for another and have each call the same Command. This ensures that
duplicate logic is avoided. Additionally, clients that don’t need to use web ser-
vices can invoke the Command directly.

Considerations

Service developers should consider the following issues.

¢ Invoking Commands from within the web service: Commands may be
invoked in a few ways. The simplest approach is to have the web service
instantiate the Command [GoF] on receipt of the request and direct it to
execute immediately (see Figure 5.1). This option may be considered if the

COMMAND INVOKER

| Client | | Service |
I I

1 | |
Request | |
|
ik
Create
Set Data
Execute
Process Request
Response
€-———————- T
|
Build Service |
Response |
Response |
| |
|| I I
| |

Figure 5.1 Commands [GoF] may be instantiated and executed
directly by the web service if the average request processing time
is relatively short (i.e., less than a few seconds) and there is
sufficient server capacity to handle spikes in request load.

average request processing time is relatively short (i.e., less than a few sec-
onds) and there is sufficient server capacity to handle spikes in request load.

Forwarding requests to background processes: The web service could also
use Request/Acknowledge (59) and forward the request to an asynchro-
nous worker (e.g., daemon, Windows service), which processes the request
in the background. This approach should be considered if the time
required to process a request might exceed a few seconds, or when spikes
in request load occur from time to time. There are two ways that Com-
mand Tnvokers can be used to support asynchrony. The service could
instantiate the Command [GoF] first, and then forward it to a background
request processor by way of a queue or database (see Figure 5.2). This
approach may be used for a number of reasons. The web service may, for
example, need to collect information that enables the Command to be
routed to the correct background request processor. Rather than adding
this information to the original request, it’s usually better to leave the
request alone and add this information to the Command object.

The web service might also forward the request directly to the back-
ground process and let it instantiate the Command (see Figure 5.3). This

Command
Invoker

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

Client Service Command Queue Request Processor

I I I I I
1 | | | 1
Request | | |
| —

Create

Set Data

Save Command

Acknowledgment

Get Command

Command

Execute

Process Request

Command
Invoker |

|
|
|
|
|
|
|
|
|
|
|
|
|
| | | |

Figure 5.2 Web services can instantiate Commands [GoF] and forward
them to asynchronous background processes (i.e., Request Processors)

by way of a queue or a database.

option may be considered when additional data isn’t required to route the
request. This approach also tends to minimize the amount of work per-
formed by the web service, and this helps to reduce web server memory
and CPU consumption, thereby promoting availability.

¢ Use with Request Mappers: Request Mappers (109) may be used to trans-
late request data to domain layer entities upon which the Command [GoF|
operates. This enables the Command to be unaware of the format and struc-
ture of data received or returned from the web service which, in turn, enables
the domain layer entities and message structures to vary independently.

¢ Command implementation patterns: Commands themselves can be imple-
mented in many ways. They may be implemented as Transaction Scripts
[POEAA] that have complete knowledge of the data sources (e.g., data-
bases) they interact with. They might also be designed to function as Opera-
tion Scripts [POEAA] that contain a minimum amount of domain logic and
instead delegate most of their work to a Domain Model [POEAA].

COMMAND INVOKER

Client Service Queue Request Processor Command
T T I I I
1 | | 1 |
Request | | |
Save Request :
Acknowledgment |
| |
| Get Request |
| Request |
Nl Sl |
: Create !
|
: Set Data
|
|
| Execute
| Process Request
|
| |
| e T | Command
|

| | | Invoker

Figure 5.3 Web services can forward requests directly to asynchronous
background processes (i.e., Request Processors) by way of queues or databases.
These processors retrieve requests, instantiate the required Commands [GoF],
and execute the commands.

Example: Command Processing in Asynchronous Background Processes

This example shows how a Command Invoker can be used in conjunction
with the Request/Acknowledge pattern (59). In this first code listing the
request is forwarded to an asynchronous worker for processing. A unique
“Request Identifier” (a.k.a. Correlation Identifier |EIP]) is generated and
injected into the request. RentalSystemGateway forwards the request to an asyn-
chronous background process, the details of which have been excluded. Once
the request has been forwarded, the request identifier is returned to the client
for future reference.

@WebMethod (operationName = "ReserveAuto™)
public String ReserveAuto(RentalCriteria request){

String requestId = System.currentTimeMillis().toString() +
java.util.UUID. randomUUI().toString();

request.setRequestId(requestId);

Command
Invoker

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

// Send to async background process by way of a queue
RentalSystemCateway.SendRequest(request);

return requestId;

}

The following code shows a simple asynchronous worker which polls for
incoming messages that are forwarded from the web service. This object exem-
plifies the Polling Consumer [EIP] pattern, and runs on a dedicated thread
within a background process. Again, most of this logic (e.g., exception han-
dling, logic to start/stop the thread, etc.) has been omitted to keep the sample
brief. AsyncWorker instantiates a specific Command | GoF] for each request
retrieved from the queue.

pubTic class AsyncWorker:BaseWorker

{
pubTlic void start()
{
while(isRunning)
{
// read request from a queue
RentalCriteria request = RentalSystemGateway.GetRequest();
RentalCommand command = new RentalCommand();
command. setRequest(request);
command. execute();
}
}
}

This final listing shows the actual Command [GoF] that fulfills the client’s
request. You may assume that RequestMsg is the base class for RentalCriteria.

pubTlic interface Command{
void setRequest(RequestMsg req);
void execute();
}
pubTic class RentalCommand impTements Command

{

RentalCriteria request;
public RentalCommand(){ }

public void setRequest(RentalCriteria req)
{
request = reg;

}

COMMAND INVOKER

pubTic void execute()
{

DateRange dateRange = new DateRange(
request.getFromDate(),
request.getToDate());

if(! dateRange.isValid())

{

// enqueue error message to be emailed out
return;

}

String customerId = request.getCustomerId();

Customer customer;

// start a transaction
SessionManager session = SessionFactory.CreateSession();

if(null != customerId){
customer = Customer.getById(customerId);
} else{ Command
customer = Customer.initForNewAccount(Invoker
request.getCustomer());

}

PricelList pricing = new Pricelist(
request.getVehicleClass());

Money cost = pricing.getRentalCost(
request.getPickupLocation(),
request.getDropOfflLocation(),
dateRange) ;

customer.chargeAccount(cost);

Rentallocation rentallocation =
Rentallocation.getRentallocation(
request.getPickupLocation());

RentalHold rentalHold = new RentalHold(
request.getRequestId(),
customer,
request.getVehicleClass(),
pricing.getListId(),
dateRange,
rentallocation);

rentalHold. submit(rentalHold);

session.commit();
}
}

Workflow
Connector

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

Workflow Connector

Web services are to be used by a complex business process that runs for min-
utes, hours, days, or weeks.

A4

How can web services be used to support complex and long-running business
processes?

A

Web services are often used to launch complex business processes that run
for extended periods of time. A web service may, for example, trigger tasks that
reserve flights, hotels, and car rentals for a vacation package. Processes like
these can take several minutes, hours, or even days to complete. A web service
that contained all of the code for a process like this would undoubtedly become
quite difficult to read and maintain. One could increase readability by extract-
ing portions of this logic out to specialized classes. The service would then
merely direct how and when these classes are used to conduct the business pro-
cess. However, web server scalability would still be compromised since the web
service instance remains in memory until the request has been fully processed.
As the load on the web server increases, the probability that new requests
would be rejected increases as well. Additionally, if the web server crashes, then
the client’s request may be lost. Most client connections would also time out on
a long-running process like this.

You could instead establish a Pipes and Filters [EIP] style of architecture. In
this approach, a web service would receive the request, save it to a database
table or queue, and return a response acknowledging the client’s request. A
background process (e.g., daemon or Windows service) would then poll the
database or queue and execute a single command (e.g., reserve flight) for each
retrieved request. Once a task has completed, the request would be forwarded
to the next background process to perform the next task (e.g., reserve hotel),
and so on. The request is therefore processed much like a baton is passed from
one runner to the next in a relay race. Web server scalability is promoted
because the work is off-loaded from the web servers. This pattern also provides
a relatively fault-tolerant way to conduct long-running business processes.
However, it can be challenging to understand the entire business process at a
macro level, and it can also be difficult to change or debug control-flow logic
since these rules are typically buried within individual services, configuration

WorkrLOW CONNECTOR

files, routing tables, and messages in transit. Furthermore, the status of a client’s
request can be difficult to ascertain for similar reasons.

The complexity of the software infrastructures required to support a Pipes
and Filters architecture should not be underestimated. Infrastructures that
direct the flow of control through a strict sequence of tasks are the simplest to
implement. However, most business processes aren’t that simple. The vacation
booking process could, for example, be designed to run the flight, hotel, and car
reservation tasks simultaneously. This raises several technical questions. Should
these tasks be created as separate threads of execution in a single “machine pro-
cess,” or should they run in separate processes? If the tasks are distributed
across threads or computer processes, how can the results of each task be syn-
chronized and come together to produce a final result?

Several business questions must be answered as well. In the current example,
what should happen if a hotel is sold out for the requested date range? Should
the flight reservations and automobile rentals be cancelled? With short-running
processes that operate on a single data source (e.g., database), the web service
could easily roll back all database changes made within the scope of a single
transaction. Unfortunately, transactions cannot be used in the same way for
long-running business processes. Web services that are exposed to external
business partners generally don’t support distributed transactions for reasons
relating to security and scalability. This means that another technique must be
employed to reverse the results of individual tasks. The common solution is
compensation. In the current example, let’s say that flight, hotel, and car reser-
vation tasks are distributed to different business partners and executed in paral-
lel. If the requested hotel is sold out, then the business process might dictate
that the car rental should be cancelled. Compensation would occur by calling a
web service that cancels the car rental and reverses any associated charges.
However, this isn’t always so easy. One may not be able to connect to a com-
pensating service due to network or server problems, and retry logic may be
required to ensure that the compensating requests are eventually delivered. The
bottom line is that these processes can become quite complex.

Time could be spent developing custom software infrastructures that manage
complex business processes like these. The infrastructure must know how and
when to instantiate a logical business process and what conditions cause the
process to terminate. Issues like task execution, exception handling, retries, task
compensation, failover, load balancing, and resource optimization must be
addressed. Most businesses would be wise to refrain from building these infra-
structures because of the related development and maintenance costs. Fortu-
nately, business developers can leverage powerful workflow technologies.

Workflow
Connector

Workflow
Connector

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

v

Use a Workflow Engine to manage the life cycle and execution of tasks within com-
plex or long-running business processes. ldentify a web service that will trigger each
logical business process. Use Callback Services to receive additional data for these
long-running processes, and forward messages from these Callback Services to the
Workflow Engine.

Workflow Engine
Issue Failure
Callback Message

Failure
Charge
Account

) . Trigger

Success

Complete
Flight
Reservation

Complete
Auto
Rental

A

A4
Issue Confirmation Callback | ._| Business
Calback Message Service Partners
Logical Business Process |

In the broadest use of the term, workflow describes how tasks performed by
humans or computers can be arranged to fulfill a specific business objective.
The Workflow Connector pattern uses this term to refer to business automa-
tion. Workflow technologies automate business processes by arranging tasks
(a.k.a. activities) into executable sequences. These tasks may execute code writ-
ten in a particular programming language, send data to a queue, read from and
write to databases, or invoke web services. Tasks that compensate (i.e., reverse
or undo) work performed in prior tasks may be included as well.

A sizable pattern language has been compiled for workflow. One notable cat-
alogue organizes workflow concepts into Control-Flow, Data, Resource, and
Exception-Handling patterns [van der Aalst, et al.]. The Control-Flow category
includes more than 40 patterns that describe how workflow tasks can be

WorkrLOW CONNECTOR

ordered and executed. The most basic of these include Sequence (i.e., serial exe-
cution of tasks), Exclusive Choice (e.g., if-else statements), and Structured
Loops (e.g., while, repeat-until loops). Advanced concepts like parallel task exe-
cution, thread synchronization (i.e., joins), task cancellation, and process termi-
nation are also discussed.

The rules for control flow are frequently saved in a Process Definition arti-
fact created with graphical design tools (see Figure 5.4). These tools typically let
developers depict control flow through UML activity diagrams and flowcharts.
Process Variables may be defined to store the input or output from individual
tasks. The information collected from these tools is often used to generate
declarative meta-languages like BPEL or XAML. Process definitions can often
be created manually and saved in XML files as well. In the end, these definitions
identify a sequence of activities that are executed by a Workflow Engine. Some
process definitions are precompiled for fast runtime execution while others are
interpreted. It all depends on the chosen tools and selected infrastructure.

Workflow (engine) technologies make it possible for developers to create
Process Managers |EIP] that govern entire workflow life cycles from process
instantiation to termination. These technologies trigger task execution, and
keep track of which tasks are executing, which are waiting or suspended, and
which must be resumed or restarted. The Workflow Engine also keeps track of
the values stored in process variables throughout the process lifetime. Many
workflow engines save the state of tasks and variables to a database before and
after tasks are executed. These Process Snapshots provide several benefits. One
may query the database to determine the status of any process instance. If a
process instance crashes, the database may be queried to determine the last task
that completed successfully, and the process may be restarted from that step.
This is one way Workflow Engines help to ensure fault tolerance.

Complete
Flight
Reservation

Flight Reservation
ID

Process Variable

Figure 5.4 Graphical workflow design tools let developers depict control
flow through UML activity diagrams and flowcharts. Information may be
mapped from one task to another through Process Variables.

Workflow
Connector

Workflow
Connector

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

The Workflow Connector pattern uses web services as a means to launch the
business processes managed by workflow engines. Developers designate a Trig-
ger Service that creates new process instances for a given process definition. So,
while a single “order fulfillment process” may be defined, one Process Instance
is created each time a client calls a trigger service. When a process is instanti-
ated, the workflow engine typically creates a unique Process Identifier. The
engine then executes the tasks according to the process definition. Once the
workflow has started, it often returns an acknowledgment and continues to
execute. The acknowledgment may be a SOAP message containing the process

identifier or a URI that uniquely identifies the process instance. Either approach
may be used by the client to refer to the process in the future.

Workflow Engines facilitate service composition by enabling services to be
assembled into complex processes (see Figure 5.5). The engine acts like a Medi-
ator [GoF], which uses web services to fulfill individual tasks within a workflow
while keeping each service independent of the others. Process definitions may
use one of several client-service interaction styles to call these services. Request/
Response (54) may be used if a quick response is needed and the target service
is relatively fast. The Request/Acknowledge pattern (59) may be used if the tar-
get service initiates a long-running process of its own. The developer may desig-
nate a Callback Service to receive responses from these services. Since multiple

Workflow Engine

Process Variable

Flight Reservation
ID

A

/
\
/ \\
; Trigger ool Receive Next
Client "{ Service Hes;;\si:ehght “Callback Message” Task
NN A

Request *, N Ack
\ .

Flight
Service
'=21 Client2

Figure 5.5 Workflow Engines enable services to be composed into complex processes.

.
. Callback
.
.
H

WorkrLOW CONNECTOR

process instances of the same type may be running concurrently, the engine
must extract information from each callback message to determine which pro-
cess instance should be contacted. This practice is known as correlation. The
engine may look for a Process Identifier or use other message content. Once the
correct instance has been identified, the Workflow Engine routes the Callback
Message to the task designated to receive the callback. If the time spent waiting
for the callback exceeds a threshold defined in the Process Definition, the engine
may remove the process from memory and persist its state (i.e., process vari-
ables, information on executing tasks, etc.) to a file system or database. When
the callback does arrive, the engine restores the proper instance into server
memory, and the task that was waiting for the callback will execute. This helps
to conserve server memory and also promotes scalability.

Workflow clients may or may not receive final responses; it all depends on
what type of business process is being automated. Some clients choose to peri-
odically poll a service in order to acquire final results. This enables the client to
pick up results at its leisure. Polling, however, can be inefficient, and the client
may not get its response as soon as it is ready. Client developers might therefore
choose to set up a Callback Service that can be invoked by the workflow when
it has completed (see Figure 5.6). The implication is that either the client must
provide callback information to the trigger service, or the workflow owner

Client Trigger Service Workflow Instance Callback Service
I I I I
1 | | |
Request with Callback Information | I |
| |
Create | |
|
|
> Create Process ID |
|
Process ID
e ______ I
Acknowledgment with Process ID |
—————————— [
Executive Process |
|
|
Final Results |
Process Results
Acknowledgment
L] T T T~ ——

Figure 5.6 Workflows may provide final results through Callback Services.

Workflow
Connector

CHAPTER 5 WEB SERVICE IMPLEMENTATION STYLES

must have this information on record for each client. For more information on
this topic, see Request/Acknowledge/Callback (63).

Considerations

Service designers would be wise to consider the following factors before using
the Workflow Connector pattern.

e Process complexity: Workflow technology may be overkill for simple con-
trol flows or for processes that are short-running. These technologies are
best reserved for complex and long-running business processes. Such pro-
cesses often include parallel task execution and asynchronous interactions
with external providers.

¢ A variety of choices: A wide variety of commercial and open source work-
flow engines have become available in recent years, and their capabilities
vary greatly. Some must be hosted on specialized application servers, while
others run on web servers or even on desktops. Some workflow frame-
works are lightweight software infrastructures that can be integrated
directly into the execution environment of the web server. Orchestration
Engines (224), on the other hand, are advanced computing platforms that
exist apart from the web server tier as separate servers in their own right.
These servers offer such features as load balancing and mechanisms to
control resource (i.e., CPU, memory) allocation. Unfortunately, the most
sophisticated workflow engines can be quite expensive and often contrib-
ute to vendor lock-in. Developers and IT support personnel must also pos-
sess specialized skills to effectively use them and keep them operational.

Workflow
Connector

® Business Activity Monitoring: Some workflow engines can be used in con-
junction with a specialized type of software classified as Business Activity
Monitoring (BAM) software. Since workflow engines often send process-
state information to “event sinks” (i.e., web services) or databases, BAM
software can leverage this information to produce reports and “dashboards”
showing business metrics and Key Performance Indicators (KPIs) in real
time. One could, for example, show the rate at which orders are fulfilled, or
monitor which tasks for a given process instance are being executed.

e Fase of use and maintenance: Workflow design tools generally make it
easy to define and alter process definitions. However, their ease of use fre-
quently masks the impact of these changes. These tools typically require a
high level of technical training, and usually aren’t meant for business ana-
lysts. In many cases, the promised productivity gains are often overstated
because the logic invoked in each task can still be quite complex and may

WorkrLOW CONNECTOR

require significant development time. Indeed, these tools often do more to
hide complexity rather than to reduce it. Testing can be a challenge too,
since the workflow engine is often tightly coupled to the service and can-
not be easily stubbed out.

Example: Microsoft Workflow Foundation

A plethora of workflow products are available, especially for the Java platform.
Microsoft has a high-end orchestration and integration product called BizTalk,
and a more modest engine that is a part of its .NET framework.

Figure 5.7 shows a workflow designer used to create Process Definitions. On
the left you can see the toolbox with an array of messaging, control-flow, and
other activity options. In the center is the designer itself. The behavior of each
activity (i.e., task) is set, in part, by selecting the activity and providing values in
the Properties window on the right. Process Variables are defined in the window
shown at the bottom.

AcmePartsivcxamb” X Properies 0 x

AutoPartsSve.distl Activities = aPantsSve CustamActivities Becaive(Quates
AutoPartsSve Customactivities

Workflow
Connector

WorkflowService Eapand Al Fes!

- ;
AutoPartsSve. dist2 Activities . 31 Search: Claar
] CrndGetDustributorinfe

AutaPartsSve. Codeletivities B Mise
Meszaging Comersationld partsOrderick. |
K Painter DisplayMame Receve Quates

W Comelmtionscope Ui Parallek Request Guotes 3

InitislzeComelation

va Receive

« ReceveAndsendRephy

+ Jend ‘“:J Panallel; Recerve Quotes 23

SendAndRecerveReply £ . D [l
- ey Foreach dist in dutnbutor.Values Expression Editor L
W, TransactedReceiveScope -
4 Control Flow Body Distributarld (String)
R Painter - Hise.1d
- Receive Quotes
Lancel

3 MName Versble type | Scope Deteult

PickBranch distributors IDictionany«String Get Bect Price Mew Dictionary(Of

¥ Sequence handle CorrelationHandle Get Best Price

SwitcheT> pansOrderAck PartsOrderdck Get Best Price New PastsOrderck

1 ‘Whil

i While partsOrderfieg PartsOrderdleg Get Best Frce New PartsOrderfle
Flowchart
Rarfra quotes List<Partsuates Get Best Price New List[0f PartsC
Primatives a
Transaction
Collection
Errer Handling
Migration

2 General « [Varinbles I W solution by el] B fesm Explor.

Figure 5.7 Microsoft’s Workflow Designer enables developers to construct
complex workflows by selecting activities from a toolbox that includes messaging,
control-flow, and a number of other activity options. Developers may constrain
workflow behaviors by setting the values for activity properties, and shared
variables may be defined for each workflow or child activity.

A

This page intentionally left blank

Chapter 6

Web Service Infrastructures

Introduction

Certain software functions are so generic that they can be used over and over
again by different web services and their clients. These functions are collectively
referred to as software infrastructure. Frameworks like Java Enterprise Edition
(Java EE) and .NET provide the most basic infrastructures for things like web
application hosting, database connectivity, and security. Software developers
frequently build their own infrastructures on top of these frameworks. Exam-
ples include frameworks for Object Relational Mapping (ORM) and workflow
management. Software infrastructures like these are the foundation, low-level
plumbing and glue used to build modern software. They also help to enforce
consistent behaviors.

Technology vendors and open source communities have created many infra-
structures to address the common needs of web services. The code examples in
this book have featured the JAX-WS, JAX-RS, and WCF frameworks. These
infrastructures are either a part of the “base framework” or can be easily incor-
porated to extend the capabilities of that framework. One of the most basic
infrastructural requirements provided by frameworks like these is web service
hosting (see Figure 6.1). This type of infrastructure provides the mechanisms to
receive client requests, dispatch requests to web services, manage the lifetime of
each service, and return responses to clients. When a client submits a request, it
must first acquire a connection from a connection pool managed by the web
server infrastructure. Once a connection has been established, the web server
infrastructure forwards the request to the service framework which invokes the
appropriate web service. However, before the service is activated, the infra-
structure must consider the service’s rules for instantiation; these are usually
configured by the service developer. The most common approach is to process
the client’s request by allocating one worker thread from a common thread
pool. The web service framework might also take advantage of data-binding

165

Web Service
Infrastructures

Web Service
Infrastructures

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Service

Requests) . . -
------------->{ | Connection }-\-----3 Listener/Dispatcher |----~ Thread
. l)) ' Service
. ----- Listener/Dispatcher Thread

Responses)

Lommmmmmmmome Connection |- o-----3 Listener/Dispatcher |---_.___ Service
"7 Thread

Connection Service
Pool Thread Pool

Figure 6.1 Web service frameworks like JAX-WS, JAX-RS, and WCEF are built
to run on top of web server infrastructures. All together, they provide the
mechanisms to receive client requests, dispatch requests to web services,

manage the lifetime of each service, and return responses.

technologies (e.g., JAXB, .NET’s XnlSerializer) in order to provide automatic
deserialization of the request. When the web service has finished processing the
client’s request, the framework may optionally serialize the response. The
response stream is then transmitted back over the client’s connection, and the
service thread and connection are released back to their respective pools so that
they can be reused for other requests.

Unless you work for a company like IBM, Oracle, or Microsoft, or are a
committer to an open source organization like the Apache Software Founda-
tion, you probably won’t need to develop low-level service frameworks like
these. Still, there are many infrastructure concerns that web service developers
must address. This chapter discusses a few of the most common and basic web
service infrastructure patterns, which are listed in Table 6.1.

Table 6.1 Web Service Infrastructure Patterns

Pattern Name Problem Description

Service How can clients avoid Create a library or set of classes that

Connector (168) duplicating the code encapsulates the logic a client must
required to use a specific implement in order to use a group of
service, and also be insu- related services. Create a high-level
lated from the intricacies interface that abstracts the details of

of communications logic? this logic, thereby making the classes
easier to use.

WEB SERVICE INFRASTRUCTURES

Table 6.1 Web Service Infrastructure Patterns (continued)

Pattern Name

Problem

Description

Service
Descriptor (175)

How can development
tools acquire the informa-
tion necessary to use a
web service, and how can
the code for Service Con-
nectors be generated?

Produce a standardized and machine-
readable description of related services
that identifies URISs, logical opera-
tions, messages, server methods, and
usage policies.

Asynchronous
Response
Handler (184)

How can a client avoid
blocking when sending a
request?

Dispatch requests on a separate thread
of execution apart from the main cli-
ent thread. Wait for the response on
this thread while attending to other
matters on the main thread.

Service
Interceptor (1995)

How can common behav-
iors like authentication,
caching, logging, excep-
tion handling, and valida-
tion be executed without
having to modify the cli-
ent or service code?

Encapsulate cross-cutting behaviors
within individual classes. Load these
classes into pipelines that are managed
by client or service frameworks.

Idempotent
Retry (206)

How can a client ensure
that requests are deliv-
ered to a web service
despite temporary net-
work or server failures?

Design the client such that common
connectivity exceptions are caught.
When a connection error occurs,
reconnect to the service and resend the
request. Limit the number of times
such attempts are made. Include a
unique identifier in each request so
that the service can identify duplicate
requests. Alternatively, send the
request to a unique URI designated
for the specific request.

While web services also use security and caching infrastructures, these con-

cerns are far beyond the scope of this book.

This chapter will close with a quick review of a few infrastructure patterns
that are frequently used in corporate SOA infrastructures.

Web Service
Infrastructures

Service
Connector

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Service Connector

A client wishes to interact with a service that has an RPC API (18), Message
API (27), or Resource API (38).

v

How can clients avoid duplicating the code required to use a specific service, and
also be insulated from the intricacies of communications logic?

A

Clients must know a lot about services in order to use them. A lot depends
on the service design style. Resource APIs (38) require clients to use certain
media types, set HTTP headers for various purposes, and issue specific server
methods in order to achieve a desired outcome. RPC APIs (18) and Message
APIs (27) often require the request to be formatted as XML. They may also
require the formatted request to be wrapped in a SOAP message that uses cer-
tain SOAP headers. Regardless of the service design style, the client must know
what URI to send the request to. The request must then be serialized into a
stream of bytes that can be transmitted over the network and deserialized by
the service. The client must perform a similar process when responses are
received from the service.

As a first step, one could create a simple utility class that encapsulates the
most basic APIs necessary to communicate with the target service. The follow-
ing listing provides an example of just such a class written in C#.
pubTic class WebClient
{ public WebClient(){ ; }

pubTic string Get(string uri)

{
return GetResponse(InitWebRequest("GET", uri));
}
public string CreateOrUpdate(string uri,string requestAsxML)
{

HttpWebRequest request = InitWebRequest("PUT", uri);

if (requestAsXML != nul1){
WriteXMLToRequestStream(request, requestAsXML);
}

return GetResponse(request);

}

SERVICE CONNECTOR

private HttpWebRequest InitWebRequest(string method,
string uriString)
{

Uri uri = new Uri(uriString);

HttpWebRequest request=
(HttpWebRequest)WebRequest.Create(uri);

request.Method = method;
request.Timeout = DEFAULT_TIMEOUT;
return request;

}
private void WriteXMLToRequestStream(HttpWebRequest request,
string requestAsXML)

{
UTF8Encoding encoding = new UTF8Encoding();
byte[] byteArray = encoding.GetBytes(requestAsXML);
request.ContentType = "text/xml1";
request.Contentlength = byteArray.Length;
Stream requestStream = request.GetRequestStream();
requestStream.Write(byteArray, 0, byteArray.Length);
requestStream.Close();

}

private string GetResponse(HttpWebRequest request)

{
WebResponse response = request.GetResponse();
Stream stream = response.GetResponseStream();
UTF8Encoding encoding = new UTF8Encoding();
StreamReader reader = new StreamReader(stream, encoding);
return reader.ReadToEnd();

Utilities like these free client developers from having to worry about the
communications-related APIs required to use a service. Since they are generic
and aren’t designed to be used with specific services, they don’t have to be
rebuilt when a service changes. However, clients must still implement additional
logic specific to each service. Certain services may require data to be encrypted
or demand that clients submit security claims (e.g., username/password tokens,
X.509 certificates, SAML tokens, etc.). The client must always know how to
acquire or construct the service’s address, select the appropriate server method,
format requests, and decode responses.

Each client application could develop a custom solution to meet the specific
requirements of the service. Of course, if the service is called by many client
applications, this would result in duplicate code that would be difficult to syn-
chronize and maintain. It would be much better to consolidate this logic so that
it can be reused by multiple clients.

Service
Connector

Service
Connector

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

v

Create a library or set of classes that encapsulates the logic a client must implement
in order to use a group of related services. Create a high-level interface that ab-
stracts the details of this logic, thereby making the classes easier to use.

+(Web Service

A

Service Connectors make services easier to use by hiding the specifics of com-
munications-related APIs. Connectors encapsulate many generic functions, and
also include additional logic that is quite specific to given services. Some of the
generic functions typically handled by connectors include the following.

e Service location and connection management: Connectors are responsible
for discovering service addresses, establishing connections to the service,
and capturing all connection-related exceptions. Connectors use the APIs
of the client’s computing platform to accomplish this. When the client has
finished communicating with the service, the connector disconnects from
the service and releases client-side resources.

¢ Request dispatch: Once a connection has been established, the connector
can send requests to the service on behalf of the client application. Web
service connectors must first serialize requests into a stream of bytes before
transmitting the stream over the network. The connector must also dis-
patch the request using the appropriate HTTP server method.

e Response receipt: Connectors are responsible for receiving response
streams as well. They may provide functions that help client applications
deserialize these streams into data types they can understand. Connectors
often capture all HTTP status codes returned from services as well. Once a
request is dispatched, the connector may block and return a response
directly to the next statement in the calling routine of the client applica-
tion. Alternatively, it may provide an Asynchronous Response Handler
(184) that enables the client to do other useful work while waiting for the
response.

Service connectors provide additional value beyond that of simple web utility
classes. Their purpose is to encapsulate the logic clients must use in order to
interact with a specific group of related services. To this end, service connectors
often provide operations (i.e., class methods) that correspond to specific use

SERVICE CONNECTOR v

cases in a given problem domain. These operations provide a high-level inter-
face that simplifies the client’s interaction with the service. Here are a few func-
tions these operations often provide:

e Constructing, retrieving, or acquiring the URI for the service
e Selecting and issuing the appropriate HTTP server method

e Converting input data from connector operations into the format (e.g.,
SOAP, XML, JSON, Atom Publishing Protocol, binary, etc.) required by
the service

e Deserializing and converting response streams into specific data structures
or types that can be easily consumed by the client application

e Implementing an Idempotent Retry (206) strategy specific to the needs of
the client

There are two types of Service Connectors. The first is the Service Proxy
(a.k.a. Proxy). This type of connector is a specialization of the Remote Proxy
[GoF] and is used with RPC APIs (18) and Message APIs (27). Web service
proxies are classes whose interfaces are typically derived from the metadata
contained in a service’s WSDL. These classes typically have methods whose
names match the operation names listed in the WSDL port or interface (note:
Port types are used in WSDL 1.x, while interfaces are used in WSDL 2.0). Cli-
ents are able to call services by executing methods on the proxy’s interface.
These methods usually have names indicating the use cases they fulfill (e.g., Cre-
ateOrder, CheckAvailability, PostResume). Once a method is called, the proxy con-
nects to the service, dispatches the request, and usually waits for a response.

Proxies hide the service’s URIs from clients. These URIs are frequently
retrieved from a configuration file. This makes it possible to change a service
address on the client without having to regenerate the proxy or recompile the
client application. However, the client must ensure that the configuration file is
always updated whenever service addresses change. Since this is usually a man-
ual effort, which is time-consuming and prone to error, some proxies query a
Service Registry (220) at runtime in order to resolve service locations. This
ensures that the proxy always uses the correct address. Another approach is to
have the proxy send requests to a Virtual Service (222). These services behave
as brokers and are responsible for forwarding messages to the actual services
that fulfill requests.

Proxies are typically created with code generation tools (e.g., wsimport for
Java, svcutil for WCF). Given the URI of a service’s WSDL, these tools will

Service
Connector

Service
Connector

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

output one or more class files that can be imported into the client code. While
the early WSDL-oriented code generation tools often formatted messages in
ways that were incompatible across disparate platforms, most of the newer
tools have adopted the standards of organizations like the Web Services
Interoperability Organization. This has helped to alleviate many interoperabil-
ity problems. The biggest problem here is that whenever a breaking change
occurs in the Service Descriptor (175), the proxy must be regenerated, and the
client may have to be rebuilt and deployed as well. (For more on breaking
changes, refer to the section What Causes Breaking Changes? in Chapter 7.)

The second type of Service Connector is the Service Gateway. This variation
on the connector is actually a specialization of the Gateway [POEAA], a pat-
tern used to encapsulate access to a remote system. Service gateways are used
with Resource APIs (38). Unlike service proxies, they usually aren’t generated
by tools. Instead, Service Gateways are manually created by the service owner,
the client, or a “developer community.” The method names on these classes
generally correspond to common use cases in the problem domain. Clients are
able to call services by executing methods on the gateway. Much like service
proxies, the method uses the native APIs of the local computing platform to
connect to the service, send requests, and wait for responses.

Service Gateways often hide many things in order to simplify client-service
interaction. They may, for example, hide service URIs and the processes used
to format inbound and outbound data structures. They may encapsulate the
logic which sets HTTP headers used for security credentials, Media Type Nego-
tiation (70), language selection, caching, or “Conditional Gets” [for more
information, see Resource API (38)]. Gateways may parse response content in
order to retrieve the addresses of related services [see the Linked Service pat-
tern (77)] or construct URIs for services they want to call. They may also con-
vert raw HTTP status codes into domain-specific data which makes sense in
the client application.

Unlike the Gateway pattern, the Service Gateway pattern doesn’t always
make it easy to swap out one service (resource) for another. In fact, Service
Gateways are usually designed for use with specific services.

Considerations
Developers who use Service Connectors should consider the following issues.
e Use in unit testing: Service Connectors can be used to facilitate unit test-

ing. One can usually modify the connector to prevent it from calling the
web service and have it instantiate an object that “stands in” for the ser-

SERVICE CONNECTOR

vice. These Test Doubles [Meszaros, Gerard] provide client developers the
ability to test integration with services that are in development or are
unavailable.

A convenient place to inject generic client-side behaviors: Service Connec-
tors provide a place where generic “cross-cutting” logic can be inserted
with ease. This type of logic is usually executed before requests are sent
or after responses are received. A few examples include the Idempotent
Retry pattern (206), request logging, request validation, exception han-
dling, and insertion of user credentials into the request. Service Connec-
tors can also reference local caches that can be checked to see if the client
has received recent data that would fulfill a new request. This can help to
avoid duplicate service calls. Connectors can also be configured to route
requests through a Proxy Server, which checks client credentials before
allowing access into certain subnets. The possibilities are endless. All of
these capabilities can be encapsulated by Service Interceptors (195) and
inserted into a pipeline (i.e., handler chain) of the connector’s web ser-
vice framework.

Connectors and client-service coupling: All connectors are coupled to the
services they are built for whether or not a Service Descriptor (175) is used.
In the case of RPC APIs (18), if a breaking change occurs in the WSDL, the
client’s Proxy must be regenerated. (For more on breaking changes, refer to
the section What Causes Breaking Changes? in Chapter 7.) While Resource
APIs (38) don’t typically use descriptors, the client’s Service Gateway is
coupled to the service nonetheless. All connectors must have intimate
knowledge of the service’s messages, media types, and related protocols
(e.g., when to issue a PUT, POST, etc.). If the service owner changes these
structures or protocols, the connector must be updated.

Most tools that generate Proxies enable client developers to configure
such things as service addresses, client authentication policies, and data
encryption policies. This enables the behavior of the client application to
change without having to recode and, in many cases, redeploy the entire
client. The problem is that the client developer must be notified of these
changes in advance so that the configurations can be made. If this is not
done, the proxy may throw an exception when the altered service is called.

Location transparency: Service Connectors are often criticized because
they often try to hide the fact that cross-machine calls are taking place.
Because of this, clients may not be aware of the potential latencies
involved, and may not always implement the necessary logic to handle

Service
Connector

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

network-related failures like lost connections, server crashes, and busy ser-
vices. However, many developers have learned that use of a Service Con-
nector typically implies distributed communications, and that one must
create exception-handling logic around the connector to handle communi-
cation errors.

Example: Examples of Popular Service Connectors

A number of Software-as-a-Service (SaaS) providers and their developer com-
munities have produced robust Service Connectors. Two notable examples
include

Amazon Web Services: http://aws.amazon.com/

Twitter: https://dev.twitter.com/docs/twitter-libraries

Example: A Typical Client-Service Interaction through a Service Proxy

The following Java code demonstrates how a client might interact with an RPC
API (18). This Service Proxy was generated from the service’s WSDL.

Service
Connector

BargainAirService proxy = new BargainAirService();

BargainAir port = proxy.getBargainAirPort();
TravelOptionsRequest request = new TravelOptionsRequest();

// populate request here

TravelOptionsRequest response = port.getFlightSchedules(request);

// do something with the response request

http://aws.amazon.com/
https://dev.twitter.com/docs/twitter-libraries

SERVICE DESCRIPTOR

Service Descriptor

A client application uses a web service that has an RPC API (18), Message API
(27), or Resource API (38). Client developers may use Service Connectors (168)
or development tools that are able to incorporate services into workflows.

A4

How can development tools acquire the information necessary to use a web service,
and how can the code for Service Connectors be generated?

A

Client applications must know the required URIs, media types, messages,
and server methods to use when invoking specific web services. Client develop-
ers could study the service documentation and manually create their own Ser-
vice Connectors (168) to encapsulate the required logic. Unfortunately, this
documentation may not be kept up-to-date or be very helpful. Even when the
documentation is well written, there’s no guarantee that developers will inter-
pret it correctly.

Rather than relying on traditional documentation, service owners could
describe services through unit tests, and client developers could consult these
tests when creating connectors. Such tests are primarily used as regression tests
to ensure that changes made to the service won’t cause breaks or alter expected
service behaviors. However, they can also be used to help client developers
understand how a service can be used. Unfortunately, this approach suffers
from the same drawbacks as traditional documentation. Service owners must
create and maintain up-to-date tests that are complete and easy to understand.
Client developers must also interpret these tests correctly in order to create the
necessary client code.

Traditional documentation and unit tests typically can’t be used as input to
code generation tools that produce Service Connectors (168) or by workflow
development tools, nor can this information be read by automated agents at
runtime. Service owners could supplement these approaches by providing
machine-readable service metadata.

Service
Descriptor

Service
Descriptor

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

v

Produce a standardized and machine-readable description of related services that
identifies URIs, logical operations, messages, server methods, and usage policies.

Usage
Policies

A

Service Descriptors provide a consolidated, machine-readable listing that
identifies a set of logical operations or resources that are managed by a single
organization. One might, for example, create one descriptor for customer man-
agement services and another for loan application services. The metadata for
each logical operation (or resource) identifies a single web service and the mes-
sages (or media types) it receives and returns. A web service that lets clients mod-
ify the terms of a loan could, for example, be identified by an operation named
modifyTerms and indicate that the service receives and returns a LoanApplication mes-
sage. Descriptors often provide a base URI for all web services in the descriptor.
The metadata for individual operations (or resources) can extend or override
this URI to define their own unique addresses. Usage policies may be associated
with individual operations (or resources) or with all of the operations appearing
in the descriptor. These policies identify such things as the protocols for authen-
tication, data encryption, data signing, and reliable message delivery.

XML has become the dominant way to express service metadata. This infor-
mation may be formally expressed through interface definition languages
(IDLs) like WSDL and the Web Application Description Language (WADL).
IDLs like these may be used by services with RPC APIs (18), Message APIs
(27), or Resource APIs (38).

The primary reason most people use descriptors is to help client developers
generate the code for Service Connectors (168). To this end, service metadata
may be imported directly into developer tools from web servers or acquired
from a Service Registry (220). The generated connectors provide an explicit
interface that typically contains “business-oriented” methods. So, a typical con-

SERVICE DESCRIPTOR

nector might have a method like ModifyLoanTerms. The motivation is to let devel-
opers focus on higher-level concerns rather than lower-level protocols like
HTTP. Descriptors are also used by many development environments to gener-
ate stubs for unit tests.

Considerations

Service developers should consider the following factors when thinking about
using the Service Descriptor (175) pattern.

e Relation to service contracts: A Service Contract can be thought of as an
agreement that specifies how clients and services may interact. Each ser-
vice API style has its own perspective on this concept. The contracts for
RPC APIs (18) and Message APIs (27) are usually defined with WSDL.

Practitioners who use Resource APIs (38) often see the contract as
being defined by the HTTP specifications, the media types used by each
web service, and sometimes the URI patterns documented for the service.
Developers who create this service API style may optionally use WSDL 2.0
or WADL to make this contract even more explicit and to also facilitate
code generation of Service Connectors (168) and client-side workflows.
However, adherents of REST typically argue that contracts like these are
unnecessary because the HTTP specification already prescribes a uniform
interface that encompasses application semantics, media types are sup-
posed to be self-descriptive, and service addresses can be discovered at
runtime through Linked Services (77). The notion of a consolidated con-
tract that unites media types, service addresses, and application semantics
to a higher business-oriented context is rejected. REST advocates often see
little benefit in generating Service Connectors (168) and contend that
descriptors cause clients to be tightly coupled to web services.

Service
Descriptor

e Service contracts and network efficiency: Regardless of the selected web
service API style, the service designer should consider the nature of the
client-service interactions imposed by the contract. These interactions
may be characterized as being “chatty” or “chunky.” Chatty contracts
are “fine-grained” and require the client to incur many network calls in
order to complete a typical use case in the problem domain. For exam-
ple, in the course of creating an order, a fine-grained service API might
require the client to call one service to retrieve a customer address and
another to acquire the contact information for that customer. In con-
trast, a coarse-grained interaction would return the customer address

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

and contact information in a single Request/Response (54) interchange.
The importance of this design strategy cannot be understated. Not only
does it help to minimize network latency, it also mitigates the risks asso-
ciated with network and server failures. The implication is that service
contracts should not simply mirror the fine-grained interfaces of the
objects used by the service to fulfill requests. Instead, a higher-level,
coarse-grained interface over these objects should be implemented to
improve network efficiency. This approach is known as the Remote
Facade pattern [POEAA]. Service designers should apply the Consumer-
Driven Contracts pattern (250) in order to arrive at the appropriate level
of granularity

¢ Coupling to Service Descriptors: Service Connectors (168) that are gener-
ated from Service Descriptors are, by definition, tightly coupled to them
and must be regenerated whenever a breaking change occurs on the
descriptor. (For more on breaking changes, refer to the section What

Causes Breaking Changes? in Chapter 7.) If the connector isn’t regener-

ated, then the client may experience runtime errors on its next attempt to

use the services listed in the descriptor. One may, however, avoid regenera-

Service tion when messages are extended to receive optional data structures [see
Descriptor the Dataset Amendment pattern (237)]. This is possible because most code
generation tools create connectors that ignore optional items. Connector
regeneration can also be avoided when new services are added to the
descriptor. In this case, the connector only needs to be regenerated if the
client wants to use the new services.

RPC APIs (18) can present special challenges since the information in
the descriptor depends on the signatures of internal class methods (i.e.,
web service methods), and vice versa (see Figure 6.2). This means that
whenever the signature of a web service method or a descriptor operation

Web Service
_-“7| Methods

. Service
(Client }----'>(Proxy) """ Descriptor . _
"3 Messages

Figure 6.2 Proxies generated from Service Descriptors must be re-created
whenever a breaking change occurs on the descriptor. These breaking
changes may be caused by changes to web service methods or by changes
within the messages used by a service.

SERVICE DESCRIPTOR v

changes, each must be updated, and the client’s Service Proxy (168) must
also be regenerated. In contrast, services with Message APIs (27) are less
coupled to the signatures of web service methods. Regardless of the API
style, client/descriptor coupling increases as the number of web services
found in the descriptor rises.

Contract-First versus Code-First: Service Descriptors may be created as
stand-alone documents and used to generate service-side artifacts. They
can also be automatically emitted by web service frameworks at runtime.
The former approach is frequently called Contract-First, while the latter is
called Code-First.

Contract-First is closely associated with services that have RPC APIs
(18) or Message APIs (27). With Contract-First, developers create descrip-
tors as stand-alone XML files. Complex data structures are defined in files
containing XML Schema Definition Language (i.e., XSDs), and Service
Descriptors are created with WSDL files that include or reference the
XSDs. Binding compilers can then be used to generate Service Interface
Classes and Data Transfer Objects (94) for the programming language in
which the service will be implemented (see Figure 6.3). Developers must
then create a Service Controller (85) that implements the interface class.
Developers creating Resource APIs (38) can leverage the Contract-First
concept too. However, these programmers only generate Data Transfer
Objects (94) from the media types defined in XML.

The Contract-First approach should be considered when messages are
designed by industry trade groups, or when the service owner has little
control over message design. Service developers who embrace the Design-
by-Contract [Meyer, Bertrand] philosophy often find this approach to be

(Service Interface Class)

Service Blndmg
Descriptor Comp||er

Figure 6.3 A Binding Compiler may be used to generate Service Interface
Classes and Data Transfer Objects (94) in a practice known as Contract-
First. Developers must then create a Service Controller (85) that
implements the interface class. Developers creating Resource APls (38) can
leverage this practice too, but may only generate Data Transfer Objects
from the media types defined through XML.

l€-nnnn

WhICh

is read by
generates Data Transfer Objects)

Service
Descriptor

W CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Service
Descriptor

useful as well. Contract-First lets groups define interfaces that are indepen-
dent of the code used to fulfill requests. Descriptors can be altered when
necessary, Service Interface Classes are regenerated when these descriptors
change, and the code in Service Controllers (85) is updated to accommo-
date these modifications.

The Contract-First approach has several benefits and disadvantages.
While it gives developers significant control over message formatting and
structure, they must have a good working knowledge of XML Schema
Definition Language and WSDL. Fortunately, most Integrated Develop-
ment Environments (IDEs) come equipped with graphical editors that sim-
plify XSD and WSDL maintenance. However, once these artifacts are
created, developers must often use arcane command-line utilities to gener-
ate the desired classes. Additionally, as of this writing, most binding com-
pilers impose several constraints. For instance, most compilers are unable
to produce Service Interface Classes for constructs like xsd:Restriction and
xsd:Choice.

The Code-First approach may be used with RPC APIs (18), Message
APIs (27), and Resource APIs (38). In this practice, classes known as Ser-
vice Controllers (85) are created in languages like Java and C# whose
methods are annotated with Routing Expressions. These annotations are
used by the service framework to determine which controller methods
should be invoked when requests are received. The framework may gener-
ate descriptors for the annotated controller when a client queries the base
URI of the service, depending on the service API style (see Figure 6.4).
Generation of WSDL for RPC APIs (18) and Message APIs (27) is widely
supported in many frameworks. Some frameworks that support Resource
APIs (38) reflect on the annotated classes and produce HTML help files
describing the URI patterns and allowed HTTP verbs. There are also
frameworks that support Resource APIs (38) which are capable of pro-
ducing Atom Publishing Protocol (APP) Service Documents.

Annotated Schema

Service |:> |:>(Service Descriptor)
Generator

Controller

is read by which
generates

Figure 6.4 In the Code-First practice, developers create annotated Service
Controllers (85) in languages like Java and C#. The web service
framework automatically generates descriptors for these controllers when
clients query the base URI of the service.

SERVICE DESCRIPTOR

Of course, the Code-First approach has several benefits and drawbacks
too. Developers don’t need to maintain separate artifacts (i.e., XSDs,
WSDL), nor do they have to become as familiar with these topics as do
Contract-First practitioners. Code-First can be a very efficient and produc-
tive way to create services. Unfortunately, the developer may have to for-
feit some control over message structure and formatting.

With Code-First, it is easy for clients to become coupled to internal
classes that are exposed through the web service interface. So, if a web
method exposes a Domain Object [POEAA] through annotation, then cli-
ents of this service will become dependent on that object’s interface. Cli-
ents that use this service must therefore be updated and redeployed
whenever the object’s interface changes. Code-First practitioners also have
to contend with circular references. Fortunately, many of these problems
can be circumvented by using Data Transfer Objects (94).

e The need for traditional documentation: The use of service descriptors
doesn’t mitigate the need for good documentation. Client developers usu-
ally still need specifications to use services correctly. Whether a descriptor
can be used by humans as documentation or for change management

depends on the type of descriptor that is used. WSDL, for example, isn’t Service
Descriptor

really intended for human consumption.

Example: Web Services Description Language (WSDL)

The following portrays a sample WSDL document. This fragment identifies
three operations. Note that each has its own URI.

<wsd1:portType name="LoanServicePort">
<wsd1:operation name="EvalEmploymentHistory">
<wsd1:input wsaw:Action=
"http://www.acmeLoans.org/EvalEmploymentHistory"
message="tns:EmploymentHistoryRequest" />
<wsd1:output
message="tns:EmpToymentHistoryResponse" />
</wsd1:operation>

<wsd1:operation name="CheckCredit">
<wsd1:input wsaw:Action=
"http://www.acmeLoans.org/CheckCredit"
message="tns:CheckCreditRequest" />
<wsdl:output
message="tns:CheckCreditResponse" />
</wsd1:operation>

Service
Descriptor

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

<wsd1:operation name="DoBackgroundCheck">
<wsdl:input wsaw:Action=
"http://www.acmeLoans.org/DoBackgroundCheck"
message="tns:DoBackgroundCheckRequest" />
<wsdl:output
message="tns:DoBackgroundCheckResponse" />
</wsd1:operation>
</wsd1:portType>

This descriptor was created using WSDL 1.1, a specification that doesn’t
support all of the HTTP verbs. It can therefore only be used for RPC APIs (18)
and Message APIs (27). WSDL 2.0 adds support for all HTTP verbs, and can
therefore be used with Resource APIs (38) as well. It is also much simpler than
1.1 and has become a W3C recommendation. Unfortunately, at the time of this
writing, there was sparse vendor support for 2.0. It may be some time before
2.0 becomes widely adopted since many organizations have invested so heavily
in WSDL 1.1.

WSDL has been praised and criticized for many reasons. Many find WSDL
to be overly complex. However, it is not meant to be directly created or read by
humans. Instead, developers generally use specialized tools to work with
WSDL. There have also been some problems with vendor compatibility.

While WSDL supports many transport bindings (e.g., HTTP, TCP, JMS,
etc.), one cannot easily switch from one protocol to the other because the
semantics for usage vary significantly. For example, services that use WSDL to
bind to message queues behave quite differently from those that use HTTP. The
former implies one-way messaging, while the latter uses Request/Response (54).
Additionally, the former may require the client to use platform-specific libraries,
while the latter is more interoperable.

Example: Web Application Description Language (WADL)

WADL was created as an application description language for RESTful services.
It was offered as a member submission to the W3C in August 2009. While
many have argued that REST doesn’t need an IDL, it has, as of this writing,
been used in several projects and software products. It remains to be seen if
WADL will be adopted on a wider scale. The following provides a simple exam-
ple of this meta-language.

<?xm] version="1.0" encoding="UTF-8" standalone="yes"?>
<application
<resources hase="http://acmeCorp.org">

<resource path="/{orderId}" >
<param name="orderId" style="template" type="xsd:string"/>

<method name="CET" id="getOrder">
<response>
<representation
mediaType="application/vnd.acmeCorp.acmeOrder+xml"/>
</response>
</method>

<method name="PUT" id="createOrder">
<response>
<representation
mediaType="application/vnd.acmeCorp.acmeOrder+xml"/>
</response>
</method>
</resource>

</resources>
</appTlication>

SERVICE DESCRIPTOR

Service
Descriptor

Asynchronous
Response

Handler

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Asynchronous Response Handler

A client calls a web service.

v

How can a client avoid blocking when sending a request?
A

When a client calls a web service, the thread that initiated the request often
blocks while waiting for a response. The time spent waiting for the response
could, in many cases, be used to perform other tasks. Depending on the nature
of the request and the efficiency of the service, the client could be kept waiting
for some time. Some would suggest that the service should be reengineered to
use an asynchronous pattern like Request/Acknowledge (59). This pattern can
certainly help to minimize the time a client blocks, but that is not the primary
motivation for using it. Indeed, moving to an asynchronous interaction style
like Request/Acknowledge isn’t easy, nor is it always recommended.

The semantics of synchronous and asynchronous conversational styles are
entirely different. Neither the service nor the client developer can simply switch
from one style to the other without significant effort. Consider an exchange in
which a client sends a request to register for a conference. In the synchronous
style, the client sends a request and receives an immediate response informing
the user she’s registered. In the asynchronous style, the client sends a request
and receives an acknowledgment informing her that the request is being consid-
ered. The client may receive the final response by polling the service or waiting
for a Callback Message. The synchronous style entails a single exchange of
information between the client and service. The asynchronous style involves
many more. How, then, can the client take advantage of the time a service pro-
cesses its request without having to migrate to a completely asynchronous inter-
action style?

ASYNCHRONOUS RESPONSE HANDLER v

v

Dispatch requests on a separate thread of execution apart from the main client
thread. Wait for the response on this thread while attending to other matters on the

main thread.
Client Service Connector Service
I I I
1 1 |
Request |
1
Request
Do Other Work
Process Request
Response
Response
<« — — — — — — — — L

A

The Asynchronous Response Handler pattern specifically addresses the prob-
lem of blocking on the client thread that calls a service. It enables clients to do
other things once the request has been sent. This pattern has two forms. The first
is the Polling Method, and the second is the Client-Side Callback. The difference
between the two is the way the Service Connector (168) handles the response.
With the polling method, the client must periodically invoke a method on the
connector to see if the response has been received. With the callback variation,
the connector notifies a Callback Handler when the response has arrived.

In the Polling Method variation on the Asynchronous Response Handler (see
Figure 6.5), the client first sends a request to the service by calling a special oper-
ation on the Service Connector (168). This causes the connector to spawn a
thread that dispatches the request and waits for a response. Once this thread is
started, the main thread receives control again and can attend to other work.
The main client thread must call the connector’s Polling Method periodically to

Asynchronous
Response

Handler

Asynchronous
Response

Handler

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Client Service Connector Service

Request

Request

> Do Other Work

Has Response Arrived?

< — — — — — — — — Process Request

> Do Other Work

Has Response Arrived?

Response

> Do Other Work

Has Response Arrived?

Get Response

Response
T T
| |

L

Figure 6.5 Polling Methods are implemented on Service Connectors (168). The
client calls a connector method, which spawns a new thread. This thread
dispatches the request and waits for a response. The client must call the Polling
Method periodically to determine if the response has arrived. The client can then
pick up the response from another connector method.

determine if a response has arrived. Once a response has been received, the next
call to the Polling Method will provide an affirmative result. The client may then
call another connector operation to acquire the response.

The tools used to generate Service Connectors (168) for RPC APIs (18) and
Message APIs (27) can often be used to create Polling Methods. Java developers,
for example, may use wsimport while C# developers can use svcutil. This pattern
can also be used with Resource APIs (38), but developers usually have to manu-
ally create their own custom connectors. Fortunately, this is not hard to do.

With Polling Methods, the client must check on the response’s arrival. If the
client doesn’t poll frequently enough, then there may be a significant delay
between the time the response arrives and the time the client picks up on the

ASYNCHRONOUS RESPONSE HANDLER

response. Therefore, if the client would prefer to act on the response as soon
as it arrives, one might consider using the Client-Side Callback variation of
this pattern.

Client-Side Callbacks work much like Polling Methods. The difference is
that the client doesn’t have to poll the connector (see Figure 6.6). Instead, a
Callback Handler is notified when the response arrives. This handler may be an
instance of a concrete class, an anonymous class, or an anonymous method. A
reference to the handler is provided to the connector when the client sends a
request. The connector will then spawn a separate thread, which dispatches the
request and waits for a response. Once this thread is started, the main client
thread receives control and can work on other tasks. When the response
arrives, the connector notifies the handler, which then pulls the response from
the connector.

Client Callback Handler Service Connector Service
| | | |
— - — |
Create | Asynchronous
| Response
c-——————-—-- | Handler
|
Invoke Async Method, Pass Reference to Handler |
|
Request |
< — — - - — — 4 - - - - — - — — 4
Process Response
Response
_______ |
Notification |
< — — — — — — — —
Get Response |
Do Other Work |
Response

<« — _ Pesponse [
L |
| |
Process Response | |
Synchronize Work | |
e - == ————— L [|
| |

Figure 6.6 Client-Side Callbacks are similar to Polling Methods. The difference is
that the client doesn’t have to poll the connector. When the client calls a connector
method to send a request, it passes the connector a reference to a Callback
Handler. The connector spawns a separate thread that dispatches the request
and waits for a response. When a response is received, the callback handler is
notified, and it pulls the response from the connector.

Asynchronous
Response

Handler

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

If you want to process the response in the main thread rather than in the
handler, you’ll need to synchronize the handler thread with the main thread.
This can be accomplished by passing the handler a reference to a shared data
structure. When the handler receives the response, it can write its data to this
shared structure after taking a lock on it. This prevents the main thread from
accessing the structure while the handler is updating it.

Most frameworks used with RPC APIs (18) and Message APIs (27) make it
easy to generate Service Connectors (168) that support this variation of the pat-
tern. As is true for Polling Methods, this pattern can be used with Resource
APIs (38), but custom connectors must be created.

The patterns described in this section have been discussed for many years
and predate the concept of web services. One early example of how this pattern
could be used with web services was provided at the International Conference
on Web Services in 2003 in a paper titled “Design and Implementation of an
Asynchronous Invocation Framework for Web Services” [Zdun, Voelter,
Kircher]. The authors present two patterns named Poll Object and Result Call-
back that are used in the Apache Axis framework.

Considerations

Developers who use the Asynchronous Response Handler pattern should con-
sider the following issues.

¢ Not a remedy for long-running operations: Asynchronous Response Han-
dlers may be used when the service consistently completes in a short
amount of time (i.e., less than a few seconds). If the service takes longer to
complete, timeouts on the connector can occur and the response may be
lost. If this becomes a frequent occurrence, the parties may want to con-
sider using a pattern like Request/Acknowledge/Poll (62) or Request/
Acknowledge/Callback (63).

® An effective way to launch concurrent web service requests: This pattern
can be used to launch several concurrent requests. The client may, for
example, need to call several services that have no dependencies. Rather
than calling each one in sequence and waiting for the response, the client
can submit several requests to be processed in parallel. The client may then
poll for the responses or use a callback handler to consolidate the results.
One must remember that the responses may not be returned in a predict-
able order.

ASYNCHRONOUS RESPONSE HANDLER v

e Temporal coupling: The Asynchronous Response Handler pattern is gen-
erally used with Request/Response (54). In this usage, it masks issues
related to temporal coupling. The reason is that the underlying systems
used by the service must be available when the client sends a request, and
if the client crashes, the service will not be able to return a response
because the connection has been lost. One may truly reduce temporal cou-
pling by using the Request/Acknowledge pattern (59).

Example: Polling Methods and RPC APIs

Developer tools for the Java and .NET platforms make it easy to generate Prox-
ies (168) that provide Asynchronous Response Handlers for RPC APIs (18) and
Message APIs (27). The following code demonstrates how a Java client can poll
for a response and perform other work in between the times it polls. This client
is contacting an RPC API (18).

BargainAirService proxy = new BargainAirService();

BargainAir port = proxy.getBargainAirPort();

TravelOptionsMessage request = new TravelOptionsMessage(); Asynchronous
Response
// Populate request with data here Handler

javax.xml.ws.Response<GetFlightSchedulesResponse> respBean =
port.getFTightSchedulesAsync(request);

while(!respBean.isDone()) {
// do other things here
}

GetFlightSchedulesResponse response = respBean.get();

TravelOptionsMessage travelOptions = response.getReturn();

This client instantiates the proxy [i.e., Service Connector (168)], and then
acquires a WSDL port reference. In the next several statements, the request
message is constructed. After the request has been prepared, the method
getFlightSchedulesAsync is called. This dispatches a request to the web service on a
separate thread. It also immediately returns a response bean of the type
javax.xml.ws.Response that extends java.util.concurrent.Future<T>. This enables the
client to poll the Service Connector to determine when the response has arrived.
When the service has returned a response, the client is able to retrieve it from
the response bean. It must then call the getReturn method to acquire the
unwrapped message.

Asynchronous
Response

Handler

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Example: Polling Methods and Resource APIs

It takes a bit more work to support Polling Methods for clients of Resource
APIs (38). The client developer must create a custom Service Connector (168)
that waits for a response on a separate thread. This example starts by showing
how a client might use a sample connector created in C#.

Connector connector = new Connector();

connector. PutRequest(
"http://www.acmeCorp.org/products”,
product.ToXMLString());

while (!connector.ResponseReceived)

{
// do other work

}

string productXML = connector.GetResponseAsString();

After the connector is instantiated, the target URI and the request contents
are provided to the PutRequest method. The client can then poll for the response.
Once the response has been received, the client can pick it up by calling the Get-
ResponseAsString method. The implementation for the connector class is shown
below.

pubTlic class Connector

{
private HttpWebRequest request=null;
private Thread thread=null;
private hool responseReceived = false;
private WebResponse response=null;

public Connector({;}

public void PutRequest(string uri, string xml)

if (null != thread) return;
thread = Initialize(uri, xml);

thread.Start();
}

private Thread Initialize(string uri_in, string xml)

{

responseReceived = false;
Uri uri = new Uri(uri_in);

request = (HttpWebRequest)WebRequest.Create(uri);

ASYNCHRONOUS RESPONSE HANDLER

request.Method = "PUT";

UTF8Encoding encoding = new UTF8Encoding();
byte[] byteArray = encoding.GetBytes(xml);

request.ContentType = "text/xml";
request.Contentlength = byteArray.Length;

Stream stream = request.GetRequestStream();

stream.Write(byteArray, 0, byteArray.Length);
stream.Close();

return new Thread(new ThreadStart(this.GetResponse));

}

private void GetResponse()

{
// The spawned thread blocks waiting for the
/] response here
response = request.GetResponse();
responseReceived = true;

}
public bool ResponseReceived
{ . Asynchronous
get {return responseReceived; }
Response
} Handler

public string GetResponseAsString()
{

if (! responseReceived) // throw an exception;
Stream stream = response.GetResponseStream();

StreamReader reader =
new StreamReader(stream, Encoding.GetEncoding("utf-8"));

thread = null;

return reader.ReadToEnd();

}

When the client invokes the PutRequest method, the connector initializes
the request given data from the client. A new thread responsible for retrieving
the response from the service is started. This enables the flow of control to
return back to the client immediately so that it can do other work. Once the
response has arrived, it is saved into a private field, a Boolean field is set to indi-
cate the response has arrived, and the thread terminates. The client can then
retrieve the response by calling the GetResponseAsString method.

Asynchronous
Response

Handler

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Example: Client-Side Callbacks and RPC APIs

The following code demonstrates how a client can use a Proxy [i.e., Service
Connector (168)] that supports Client-Side Callbacks. Notice how a reference
to a Callback Handler is passed into an operation that supports asynchronous
invocation.

BargainAirService proxy = new BargainAirService();
BargainAirPort port = proxy.getBargainAirPort();

TripReservationMessage req = new TripReservationMessage();
// populate the request message here
CallbackHandler callback = new CallbackHandler();

java.util.concurrent.Future<?> resp =
port.reserveTripAsync(req, callback);

After the client has instantiated the proxy and acquired a WSDL port refer-
ence, it populates the request message. The client then instantiates a Callback
Handler and passes that to a proxy method that supports asynchronous dis-
patching of requests. Note that the return of this method is of the type
java.util.concurrent.Future<T>, a construct that may be used to check the results of
an asynchronous operation, or even attempt to cancel it. In this example, T sim-
ply let the CallbackHandler do all of the work. When the client invokes the proxy
method reserveTripAsync, the proxy automatically creates a new thread, sends the
request to the service on that thread, and immediately allows the flow of con-
trol to return back to the client so that it will not be blocked. The proxy will
also wait for the service’s response on this new thread. When the response
arrives, the proxy invokes the callback handler shown below.

pubTic class CallbackHandler
implements AsyncHandler<ReserveTripResponse>

{
public void handleResponse(Response<ReserveTripResponse>
callbackResponse)
{
ReserveTripResponse response = callbackResponse.get();
TripReservationMessage reservation = response.getReturn();
// Do something with the reservation ..
}
}

Note that the (allbackHandler class uses an AsyncHandler and Response bean of the
type ReserveTripResponse. This is the name of the document wrapper generated by

ASYNCHRONOUS RESPONSE HANDLER

JAX-WS for the response message returned by the reserveTrip service. Within
this wrapper may be found the actual TripReservationMessage that we really want
to work with. The method getReturn is used to extract that message from the
document wrapper.

Example: Client-Side Callbacks and Resource APIs

The following example demonstrates how one might implement a C# Service
Connector (168) that supports client-side callbacks for a Resource API (38).

pubTlic interface ICallbackHandler

{
void Execute(WebResponse Response);
}
pubTic class Connector
{

private HttpWebRequest request=null;
private Thread thread=null;
private ICallbackHandler callback;

pubTic Connector(){;}

pubTlic void PutRequest(string uri, string xml,
ICallbackHandler callback)

{ if (null != thread) return;
this.callback = callback;
thread = Initialize(uri, xml);
thread.Start();
}
private Thread Initialize(string uri_in, string xml)
{

// same code as shown in previous
// Resource Service Connector example

}

private void GetResponse()

{
// The spawned thread blocks waiting for the
// response here
WebResponse response = request.GetResponse();
callback.Execute(response);

}

Asynchronous
Response

Handler

Asynchronous
Response

Handler

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

The PutRequest method of this class receives a reference to a class that imple-
ments the ICallbackHandler interface. When the client calls this method, the con-
nector launches the GetResponse method on a separate thread. When the response
is returned, the Callback Handler code listed below is executed.

pubTic class CallbackHandler:ICallbackHandler

{
public void Execute(WebResponse response)
{
Stream outputStream = response.GetResponseStream();
StreamReader reader = new StreamReader(outputStream,
Encoding.GetEncoding("utf-8"));
string productXML = reader.ReadToEnd();
// do something with XML, for example, load into an XML DOM
}
}

SERVICE INTERCEPTOR

Service Interceptor

A client or service must implement common behaviors like authentication,
caching, logging, exception handling, and validation.

A 4
How can common behaviors like authentication, caching, logging, exception han-
dling, and validation be executed without having to modify the client or service code?

A

Services created for disparate functional domains like marketing, finance,
customer management, and order fulfillment often require common behaviors
like authentication, caching, logging, exception handling, and validation. One
could code these behaviors directly within the client or service. This may be
manageable when there are only a few services. However, it’s likely that this
code will be copied and pasted many times over, and this inevitably leads to
maintenance problems.

One could use the Template Method pattern [GoF| and pull these common
behaviors up into an abstract base class. With this approach, base classes are
created to encapsulate generic behaviors that should be executed in a specific
sequence by the service or client. These base classes execute common behaviors
before or after specific events occur in their children. For example, a base ser-
vice class could be designed to invoke a method that authenticates client cre-
dentials before sending the request to the child class. Likewise, a base Service
Connector (168) could invoke a method that checks a local cache for recent
responses before allowing the request to be dispatched to the service. Unfortu-
nately, this pattern often results in code that becomes hard to maintain as the
number of common behaviors increases. It can also be quite difficult for child
classes to override, bypass, or add new generic behaviors.

Developers may therefore decide to abandon class inheritance and consider
using object composition. With this strategy, common behaviors are extracted
into small specialized classes where each class has a single responsibility. One
could, for example, create one class for authentication, another for logging, and
so forth. These classes are then instantiated and their methods are invoked only
when needed by the service or client. While this simplifies maintenance, a “hard
dependency” between the container object (i.e., client or service) and generic
behaviors arises. In other words, the client or service must know what generic
behaviors to implement. It would be better if the client and service were igno-
rant of such matters.

Service
Interceptor

Service
Interceptor

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Another common approach is to pull the cross-cutting behaviors out into
their own services. In this case, requests are routed from one service to the next
in a Pipes and Filters [EIP] architectural style. Therefore, if a client sends a
request to an “order service,” the call might first be directed to an authentica-
tion service, then to a logging service, and finally to the target service. While
this strategy enables common behaviors to be executed, and also eliminates
“hard dependencies,” it is a more complex architecture that increases latency. A
more pragmatic solution might leverage the Pipes and Filters concept while
minimizing out-of-process calls.

v

Encapsulate cross-cutting behaviors within individual classes. Load these classes
into pipelines that are managed by client or service frameworks.

Service
Framework

1 1

Inbound Outbound
Pipeline Pipeline
L 2 L 2

Concrete
Interceptor

Interceptor
Interface

A

Service Interceptors are a specialization of the Interceptor pattern [POSA2]
adapted for use with services and their clients. This pattern builds upon the
Pipes and Filters concept. In this case, the common behaviors are loaded into
pipelines that exist within the address space of the client or service. These pipe-
lines are created and managed by a container framework like Apache’s CXE,
Microsoft’s .NET, JAX-WS, JAX-RS, or Spring.

Developers can leverage standard Interceptors (i.e., filters) that are a part of
the framework. Most frameworks, for example, provide interceptors that sup-
port behaviors like authentication and schema validation. Developers can also
create custom interceptors to encapsulate and consolidate the logic for other
generic behaviors. One might, for example, create distinct interceptors for log-
ging, exception handling, and distributed (memory) cache management. In the

SERVICE INTERCEPTOR

latter scenario, one server-side interceptor could be created to save frequently
accessed data to the distributed cache, while a second could be used to deter-
mine if a client’s request can be fulfilled from the cache. Since common behav-
iors like these are consolidated into distinct classes, maintainability is
promoted, and duplicate code is minimized. It’s also easier to reuse these behav-
iors across multiple clients or services.

Each custom interceptor class must implement specific interfaces mandated by
the container framework. Developers usually identify the interceptors that should
be loaded and the sequence in which they should execute by providing instruc-
tions through configuration files. This makes it easy to add or remove behaviors
after the client or service has been deployed. It also eliminates dependencies
between the client or service and the common behaviors. If a new behavior is
added, or an existing behavior is removed through a configuration change, the
client or service need not be changed, rebuilt, or redeployed. The downside is that
some of these configuration files can become quite lengthy and difficult to read.
As an alternative to configuration, many frameworks also enable developers to
annotate the methods of Service Controllers (85) or Service Connectors (168)
with expressions that indicate the interceptors that should be loaded. While this is
quite convenient and easier to read than configuration files, coupling is higher
because the code must be changed whenever a behavior must be added or
removed. The client or service may also have to be rebuilt and redeployed.

The client or service framework reads the configuration files or reflects
upon the annotated classes at runtime in order to create an ordered list of
interceptors, which are then loaded to an inbound or outbound pipeline (see
Figure 6.7). The sequence in which they execute can usually be controlled
with greater certainty through configuration. Regardless, when a client calls a
service, the request passes through an outbound pipeline before it is received
at the server. Once the request is received at the server, it goes through an
inbound pipeline before it is dispatched to a request handler. In a similar fash-
ion, when a service returns a response, that response is passed through an out-
bound pipeline before being marshaled to the client. On the client side, the
response is sent through an inbound pipeline.

Frameworks often have a few common pipeline stages (see Figure 6.8). On
the inbound service side, interceptors generally execute before or after requests
are deserialized. Note that it is possible to circumvent service execution at any
stage and return control to the client. On the outbound service side, intercep-
tors may execute before or after the response is serialized. Client frameworks
generally have similar pipeline stages.

Service
Interceptor

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Client-Side
Framework

Server-Side
Framework

Requests

Requests Outbound Inbound Pipeline
Pipeline
fent Outbound

Responses Inbound Pipeline Pipeline

Inbound Pipeline
Request — Logging Authenticating Validating Caching Request
Interceptor Interceptor Interceptor Interceptor
Request
Handler
Outbound Pipeline
; - Exception
Response <1 Longg CaChmg Hanrfl)ling Response
Interceptor Interceptor Interceptor
Service
Interceptor

Figure 6.7 Interceptors can be loaded into pipelines that are managed by
client or server frameworks.

Inbound Pipeline Stages

Request - -f--------3 Pre-Deserialization J{ Post-Deserialization } R
T T ~. Request
Abort ! Abort | A
j ! J
RESPONSE €~ - === === —=— === —omo Y e \ Request
Handler
]
Outbound Pipeline Stages)
~” Response
Response <-[q-------- (Post-Serialization)<-{ Pre-Serialization)<—-""

Figure 6.8 Service frameworks generally segment pipeline processing into
two primary stages. In practice, specific web service frameworks segment
processing into finer stages.

SERVICE INTERCEPTOR

Example: Intercepting Validators

Runtime errors and wasted CPU cycles can be prevented, in part, when the data
structures contained in requests are validated before the service is allowed to
execute (see Figure 6.9). Many popular frameworks provide “built-in” inter-
ceptors that can be configured to validate requests against one or more XML or
JSON schemas. Developers may also choose to create custom interceptors when
there is a need to only validate select portions of these requests. This type of
validation may leverage XPath.

JAX-RS enables developers to validate XML or JSON schemas through
several means. The Apache CXF framework, for example, provides an exten-
sion to JAX-RS that enables developers to identify one or more schemas
against which all services deployed to a given base URI should use. The frag-
ment shown on the following page from a configuration file shows how this
can be done with the jaxrs:schemalocations element.

Client Service Framework Intercepting Validator Validation Error Handler Request Handler

|

|

Request | |
|

Request |

Validate Request
against Schema

> Retrieve Schema

> Select Validation
Error Handler

Create

|
|
| Prepare Response
|
Error Response |

L] L] | |

Figure 6.9 This sequence diagram illustrates how an Intercepting Validator
can circumvent service execution in the event of a validation error.

Service
Interceptor

Service
Interceptor

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

<beans xmIns:util="http://www.springframework.org/schema/util">
<jaxrs:server address="/">
<jaxrs:schemalocations>
<jaxrs:schemalocation>classpath:/schemas/Customer.xsd
</jaxrs:schemalocation>
<jaxrs:schemalocation>classpath:/schemas/Order.xsd
</jaxrs:schemalocation>
</jaxrs:schemalocations>
</jaxrs:server>
</beans>

JAX-WS lets developers annotate Service Controllers (85) with the @Sche-
mavalidation attribute to indicate that an intercepting validator should execute
when a response is received. The framework validates the entire SOAP message
against the schema found in the service’s WSDL. The following code shows
how a service developer can annotate a Service Controller to indicate that Sche-
maValidator should be used to handle validation exceptions.

@WebService
@SchemaValidation(handler = SchemaValidator.class)
public class WebServiceClass
{
@WebMethod
public RegisterForEventResponse RegisterForEvent
(@WebParam RegisterForEvent request) throws GenericFault {

// business Togic here
}
}

The class that handles the validation is shown below.

pubTic class SchemaValidator extends ValidationErrorHandler
{
public void warning(SAXParseException e) throws SAXException
{
// Allow warnings to be passed back in the packet
packet.invocationProperties.put("Warning", e);

}

pubTic void error(SAXParseException e) throws SAXException
{
// log error and return generic info to client
// Prepare generic error response

public void fatalError(SAXParseException) throws SAXException
{
// log error and return generic info to client }
// Prepare generic error response

SERVICE INTERCEPTOR

Example: Intercepting Loggers

Intercepting loggers may be loaded to the inbound service pipeline to record
each request, and responses may be logged by interceptors loaded in the out-
bound pipeline. The simplest and often most efficient approach is to save this
data directly to a file system. However, log files can consume a significant
amount of server disk space. Additionally, it can be difficult to correlate
requests and responses across log files or perform advanced queries when
requests and responses are logged this way. Loggers can instead be configured
to save requests and responses to database tables. This makes it much easier
to perform queries that provide statistics like the average and peak response
time per request type or per client. However, logging directly to a database
can increase the overall response time of the service. One may instead achieve
the same goal by using an Interceptor that writes the request to a queue
before sending it to the (web service) handler. An asynchronous background
process can then read this queue and log the necessary information to a data-
base (see Figure 6.10).

Service
| Client | Service Framework | Intercepting Logger | Queue Asynchronous Worker | Request Handler |mercept°r
| | | | | T
— . | — L :
Request | |
|
Request | :
|
Request |
Get Request |
- — — |
| Request I
| |
| |
| — |
| | > Log Request |
| | '
' [
| | Request T |
t T f
| | |
| | |
: | : Process Request
|
I Response | I
e — — — — — - - - — — — — I _p —_——— — - = B

Figure 6.10 Intercepting loggers often forward requests and responses through queues
to asynchronous background workers that save this data to a database. This belps to
minimize service response times and ensures that the data will be logged even if the
database is unavailable.

Service
Interceptor

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

The following C# class encapsulates the logic used to log requests for ser-
vices hosted by the WCF framework. The AfterReceiveRequest method executes
after a request has arrived at the service. This example uses Microsoft’s Enter-
prise Library Logging APIs to save the request.

public class Logger : BehaviorExtensionElement,
IDispatchMessageInspector,
IServiceBehavior
{
object IDispatchMessageInspector.AfterReceiveRequest(
ref System.ServiceModel.Channels.Message request,
ICTlientChannel channel,
InstanceContext instanceContext)
{
LogEntry TogEntry = new LogEntry();
logEntry.Message = request.ToString();

Logger.Write(logEntry);

return null;

}

void IDispatchMessageInspector.BeforeSendRepTy(
ref System.ServiceModel.Channels.Message reply,
object correlationState)
{
// Response Logging could occur here

}

The method ApplyDispatchBehavior is used to load the Logger class to the in-
bound service pipeline.

// Logger class continued ..

void IServiceBehavior.ApplyDispatchBehavior(
ServiceDescription serviceDescription,
ServiceHostBase serviceHostBase)
{
foreach (ChannelDispatcher channelDispatcher
in serviceHostBase.ChannelDispatchers)
foreach (EndpointDispatcher dispatcher
in channelDispatcher.Endpoints)
dispatcher.DispatchRuntime.MessageInspectors.Add(this);

The Logger class inherits from BehaviorExtensionElement and must therefore
implement the BehaviorType and CreateBehavior methods. This enables the class to
be instantiated and loaded through configuration.

SERVICE INTERCEPTOR

// Logger class continued ..

pubTic override Type BehaviorType
{

get { return typeof(Logger); }
}

protected override object CreateBehavior()

{

return new Logger();
}
} // end of Logger class

The Logger class can be configured to load by updating the web.config file.
Several steps must be completed in order to load the desired class. The ser-
vice’s behaviorConfiguration attribute must first be set to refer to an element in
the behaviors section (i.e., the LoadInterceptors element). This element refers to
a Logger behaviorExtension that identifies the class and assembly that contains the
interceptor.

<system.serviceModel>
<services>
<service name="AcmeCorp.BargainAirService"
behaviorConfiguration="LoadInterceptors">
<endpoint address="" binding="basicHttpBinding"
contract="AcmeCorp.IBargainAirService">
</endpoint>
</service>
</services>

<behaviors>
<serviceBehaviors>
<behavior name="LoadInterceptors">
<Logger/>
<!-Other interceptors could be Tlisted here -->
</behavior>
</serviceBehaviors>
</behaviors>

<extensions>
<behaviorExtensions>
<add name="Logger"
type="AcmeCorp.ServiceBehaviors.Logger,
AcmeCorp.ServiceBehaviors, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=nul1"/>
</behaviorExtensions>
</extensions>
</system.serviceModel>

Service
Interceptor

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Example: Intercepting Exception Handlers

Unexpected errors may occur in the course of service execution. For example, a
database connection may be lost right before the SQL can be executed. Rather
than creating redundant try/catch blocks for unanticipated errors in each
request handler, these exceptions can be caught by interceptors loaded to the
outbound service pipeline (see Figure 6.11). This strategy can be used to consol-
idate the handling of unexpected errors. The exception-handling logic left in the
handler should be specific to errors expected in the service.

The following example shows how interceptors can be used to trap unhan-
dled errors so that clients only see generic errors rather than specific internal
system errors. The ExceptionHandler class accomplishes this by using the excep-
tion name as a key to look up fault information from a memory-backed cache.
If the key can’t be found, a generic fault is created. While this example shows
how SOAP faults can be trapped, it could also be used in Resource APIs (38)
without much effort.

Service
Interceptor

Client Service Framework Request Handler Exception Handler

Request

|
|
|
|
Request |

Process Request
Exception

Handle Exception

Translate Exception

|
|
I
|
|
|
Error Response |

=" TTT T T T T T T T T T |
| | | |

Figure 6.11 The logic for unhandled or unanticipated exceptions can be consolidated
within a common Intercepting Exception Handler. This enables the web service to
concentrate on the exception-handling logic specific to the service’s function.

public class ExceptionHandler:IErrorHandler

}

pubTic bool HandleError(Exception error)
{

// log error here

return true;

}

pubTic void ProvideFauTt(Exception exception,
MessageVersion version,
ref Message fault)

{

string exceptionName = exception.GetType().Name;
FaultInfo faultInfo = GetFaultInfoFromCache(exceptionName);

if (null == faultInfo)
fauTtInfo = CreateGenericFaultInfo();

FaultException constructedFault =
CreateFaultException(faultInfo);

MessageFault msgFault =
constructedFault.CreateMessageFault();

fauTt = Message.CreateMessage(
version, msgFault, constructedFault.Action);

}

private FaultInfo GetFaultInfoFromCache(string exceptionName)
{

// Access a memory cache.

// Details of this have been excluded.

ExceptionCache exCache = ExceptionCache.Instance();

return exCache.GetFaultInfo(exceptionName);

}
private FaultInfo CreateGenericFaultInfo()
{
return new FaultInfo("", "999,An error occurred");
}

private FaultException CreateFaultException(FaultInfo faultInfo)
{

FauTtReason reason = new FaultReason(faultInfo.FaultReason);
FauTtCode code = new FaultCode(faultInfo.FaultCode);

return new FaultException(reason, code);

}

SERVICE INTERCEPTOR

Service
Interceptor

Idempotent
Retry

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Idempotent Retry

Every effort must be made to deliver a client’s request to a service. The
client-service interaction style may be Request/Response (54) or Request/
Acknowledge (59).

A4

How can a client ensure that requests are delivered to a web service despite tempo-
rary network or server failures?

A

Not every request must be processed. For example, the consequences of not
connecting to a restaurant-finder service are probably small. Some clients,
however, must make every effort to ensure that requests are delivered. These
clients must be prepared to handle many types of connectivity problems. For
example, a client could successfully connect to a service and send a request
only to see the connection drop while waiting for a response. When this hap-
pens, the client might assume that the request was lost and just resend it. How-
ever, unintended consequences could result if the service actually did process
the request before losing the connection. If the client naively resends the
request in this situation, the service might, for example, create two orders
when the client only wanted one.

Another, more basic problem must be anticipated. The client might not be
able to establish a connection with the service in the first place due to network
or server problems. These issues may be temporary or chronic. If the client
knew of alternative services, it could send requests to them as a fallback. Unfor-
tunately, it might not know of any alternative services to choose from. The cli-
ent could therefore deliver its requests to an intermediary responsible for
routing requests to available targets. While this can provide delivery assurances,
and can also help to reduce coupling with target services, it can be a rather
complex and expensive approach too. This pattern also tends to increase the
latency of responses. Therefore, using an intermediary to solve the basic prob-
lem of service connectivity may be an overly elaborate strategy.

Another option is to send requests to web services through message queues.
Queues enable clients to send requests even when the remote systems aren’t
operational. Messages are stored in the remote queue until the target system
decides to retrieve them. If the client can’t connect to a remote queue, the cli-
ent’s queuing infrastructure usually saves the message to its own local queue
and repeatedly attempts to send the message until it finally succeeds. While

IDEMPOTENT RETRY

queues can be used to help mitigate some service connectivity problems, they
are best reserved for use within a secured network, far behind the corporate
firewall. One may mitigate some security concerns by establishing a queue entry
point on a hardened gateway, but the business partner must use the same queu-
ing technologies. If queues generally shouldn’t be exposed beyond the corporate
firewall, how can a client ensure that requests are delivered to a web service?

Networks are inherently unreliable. Connections will occasionally time out
or be dropped. Problems will arise for innumerable reasons. Servers will be
overloaded from time to time, and as a result, they may not be able to receive or
process all requests. If a client can’t connect to a service or loses a connection,
or if the server reports that it is busy, sometimes the best solution is to simply
try again.

v

Design the client such that common connectivity exceptions are caught. When a
connection error occurs, reconnect to the service and resend the request. Limit the
number of times such attempts are made. Include a unique identifier in each request
so that the service can identify duplicate requests. Alternatively, send the request to
a unique URI designated for the specific request.

Create Unique
Request ID
o S e war (e
Get Unique URI
for Request

Timeouts
and
Dropped
Invoke Connections Catch

Service "| Exception

End

A

On first consideration, the Idempotent Retry pattern seems quite simple.
Whenever a client calls a service, it must be prepared to catch several connectivity-
related errors. If an error occurs, the client should try to reconnect to the ser-
vice and resubmit the request as long as it does not exceed a maximum retry

Idempotent
Retry

Idempotent
Retry

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

threshold. The client must abort further attempts once this limit has been
passed. On closer analysis, we see that this pattern entails much more than this
summary implies.

Clients must be prepared to catch and identify a number of connectivity
errors. Connection failures and dropped connections may occur when server
loads are high or servers fail, or when network problems arise. If a connection
error occurs or the client cannot receive a response within a programmed or
configured timeout period, the client’s framework will abort the operation and
may throw an exception. Timeouts help to ensure that the client won’t block
indefinitely. Client frameworks usually provide defaults that define how long
they’ll wait to establish a connection or receive a response. In most cases, devel-
opers will alter the default timeout value to a period that makes sense for the
majority of their use cases.

In some cases, the client might not be able to connect to the service because it
has an invalid URI This situation often can’t be reconciled when the service has
an RPC API (18) or Message API (27) because the Service Connectors (168)
employed by their clients frequently use fixed service URIs. In contrast, clients
of Resource APIs (38) often know only a few “root” service addresses ahead of
time. These clients frequently acquire links to related services [see the Linked
Services pattern (77)] in each response. If a client attempts to access a linked
service before the server has created or updated the underlying resources, then
an error will occur. This scenario is known as a race condition because the
server and client are racing against each other. If the client is faster, then the
links provided in the previous exchange may be invalid. However, if the client
waits awhile and tries again, the URIs will often be valid.

Clients detect connectivity errors in different ways. If the client uses a Service
Connector (168), the error may be intercepted, converted, and thrown as a
platform-specific exception by the connector. The client application must imple-
ment the appropriate exception-handling block to catch and identify these
errors. Service connectors that are created for Resource APIs (38) often check
for specific return codes. A resource service may, for example, return an HTTP
code of 503 to say that it is busy, and provide a Retry-After header that speci-
fies how long the client should wait before trying again. Once again, the con-
nector may convert these status codes to more meaningful exceptions for the
client. In any event, once the client has positively identified a temporary and
recoverable connection-related error, it may initiate its retry logic.

Clients must determine how long to wait before attempting a retry. They
may decide not to wait at all, or they might pause for a time. This delay time

IDEMPOTENT RETRY

may be set to be the same for all errors, or may vary depending on the type of
error that occurred. The client must also determine how to implement a wait. If
the client invoked the service on its main thread, the application would freeze if
the thread were put to sleep. A better approach would be to invoke the service
on a separate thread that may be put to sleep in between retries; this enables the
main client thread to continue with its work. If the wait time is very long (i.e.,
minutes or hours), then this technique usually shouldn’t be used. Instead, the
information required to call the service may be persisted to a data store like a
queue or database and picked up by an unattended background process at a
later time. Regardless of how this information is stored, once this wait period
has passed, the client or background process may try to connect to the service
again. If it succeeds, then the request may be sent.

Clients should not naively initiate retries after connectivity failures. If a client
assumes that a request may be resent after a lost connection, unintended side
effects could occur. The service may have processed the request even though the
connection was dropped. In order to assess whether or not unintended conse-
quences will result, the client developer must determine if the request is supposed
to be idempotent. An idempotent request is one that yields the same results no
matter how many times the service is called. The simplest example is a request
that deletes information. This type of request is idempotent because once the tar-
get of the delete is removed, it will always be deleted, and subsequent calls will
yield the same results. Depending on the application protocols and specific
server methods used, a create or update request may or may not be idempotent.
For example, PUTs issued to Resource APIs (38) are supposed to be idempotent
while P0STed requests are not. It is important to note that while the service may
be required by the HTTP specification to exhibit idempotence, the developer
must still implement the appropriate logic to ensure this quality. The service
must therefore identify duplicate requests regardless of the server method issued
by the client. This same recommendation holds true for RPC APIs (18) and
Message APIs (27) as well. Clients using these last two API styles should always
assume that create and update requests, or requests that don’t fit neatly into the
CRUD paradigm, are not idempotent.

Client developers must therefore pay special attention to requests that are
supposed to be idempotent. Clients using RPC APIs (18) and Message APIs
(27) often include unique request identifiers in requests so that services can
identify duplicates (see Figure 6.12). These clients may generate their own
unique identifiers, perhaps by using a Universally Unique Identifier (UUID).
Clients may also fetch a set of unique identifiers that had previously been

Idempotent
Retry

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

Client Web Service

T
|
|
Create Request ID |
|
|

Request

Check Request ID

Process Request

VY

Dropped Connection

Retry Request

> Check Request ID

Already Processed

é ____________
T T
| |
Idempotent Figure 6.12 Clients can inject unique identifiers into the
Retry request so that duplicate requests may be identified by the

service on retry attempts.

generated. Regardless of the approach, these identifiers must be created or
acquired by the client before connecting to the service. When a service
receives a request, it can look at the request identifier to determine if the
request was previously processed. If the identifier is new, the request will be
processed; otherwise, an error response is returned.

Clients using Resource APIs (38) often take a different approach. The client
may first send a query to a service asking for a unique URI that may be used for
the upcoming request. The client will then POST the request and perform all
retries against this URI (see Figure 6.13). If the request succeeds on any
attempt, a success response code (e.g., HTTP status code 200) is returned. If the
request was already processed, an error response is provided. The disadvantage
with this approach is that an extra network round-trip is required in order to
acquire the unique URL This pattern, known as Post-Once-Exactly [Notting-
ham, Marc]|, provides yet another way to ensure idempotence when using the
Retry pattern.

IDEMPOTENT RETRY

Client Web Service 1 Web Service 2

| |
L |
|

Get Unique URI

|
|
|
|
|
|
|
|
Request |

| > Process Request

Dropped Connection

> wat |

Retry Request
t

1
Already Processed

T |
I I

Figure 6.13 Clients can use the Post-Once-Exactly pattern in
conjunction with the basic Retry pattern to guarantee
idempotent request behavior.

Considerations

Developers should consider the following when using the Idempotent Retry
pattern.

e Minimum criteria for adoption: The Idempotent Retry pattern need not be
used when it’s acceptable for the call to fail. Certain use cases and applica-
tions do not require every request to succeed. These applications accept
the possibility that, from time to time, a service connection may fail or be
dropped. For example, an application with a user interface may simply
display an error message and let the user initiate the retry manually.

e Retries fail too: It should be evident that retries can fail. If a timeout,
dropped connection, or other connectivity error occurs during a retry, then
the client may try again. However, the client should not be allowed to retry

Idempotent
Retry

Idempotent
Retry

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

indefinitely as this could tie up client resources. Therefore, a limit must be
set on the number of times retries are allowed. This limit should be deter-
mined by the constraints of the use case under consideration.

Service owners should work with client developers to identify accept-
able retry limits. Guidelines for maximum retries, for delay times between
retries, and for maximum retry periods should be established. This infor-
mation is typically maintained on the client side, but may also be dynami-
cally provided by the server at runtime. For example, some services will
tell clients to perform a retry after a certain period of time if they are too
busy to handle a client’s request.

¢ Dealing with client-side crashes: Developers should consider the possibility
that the client may crash in between retries. If the request takes a “long”
time to create, then it may be worthwhile to persist the request to a data
store (e.g., database or queue) before initiating the retry loop. This means
that code must also be written to retrieve the request after a crash and
reinitiate the retry.

Example: Simple Retry Manager

This example in C# shows how a client can inject a Service Connector (168)
into a class that manages retries. Once the retryManager has been instantiated, the
number of retries that will be allowed and the time to wait between retries is set
by the call to SetRetryParameters. Note that the client would usually retrieve the
retry parameters from a configuration file or database. The call to the retryMan-
ager’s SetRetryReturnCodes method sets a list of HTTP return codes that are used
by the retryManager to determine when a retry should occur. SetConnectionErrors
sets a list of connectivity exceptions that cause the retryManager to attempt a
retry. The retryManager calls the service when the Execute method is invoked. The
details of the product and RetryErrorListRepository classes have been omitted. You
should assume that the request contains a unique identifier.

ServiceConnector connector = new ResourcePoster();
connector.Initialize(someUri, product.ToXMLString());

IRetryManager retryManager = new RetryManager();

// set the number of retries and wait time between retries
retryManager.SetRetryParameters(3, 1000);

retryManager. SetRetryReturnCodes(
RetryErrorListRepository.GetHttpErrorList());

IDEMPOTENT RETRY

retryManager.SetConnectionErrors(
RetryErrorListRepository.GetConnectErrors());

retryManager.SetConnector(connector);
retryManager.Execute();

The following is the base class for the Service Connector (168) in this exam-
ple.

pubTic abstract class ServiceConnector

{

pubTic abstract void Execute();

protected int DefaultTimeout

{

get { return // read from config file or cache; }

protected string TargetURI{ get; set;}
protected string Request{ get; set;}

protected string Response{ get; set;}
Idempotent
public void Initialize(string uri, string request) Retry
{
this.TargetURI = uri;
this.Request = request;

}

pubTic string GetResponse()
{

return this.Response;
}
}

The following class encapsulates the logic used to POST data to a URL. This
class inherits from ServiceConnector.

pubTic class ResourcePoster:ServiceConnector

{

public override void Execute()
{
base.Response = null;
ValidateInput();

HttpWebRequest request = InitializeRequest();

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

GetResponse(request);

}

private void ValidateInput()
{
if (String.IsNul10rEmpty(base.TargetURI))
throw new Exception("targetURI cannot be null or empty");

if (String.IsNull0rEmpty(base.Request))
throw new Exception(
"requestAsXMLString cannot be null or empty");

}

private HttpWebRequest InitializeRequest()

{
HttpWebRequest request = null;

Uri uri = new Uri(base.TargetURI);

request = WebRequest.Create(uri) as HttpWebRequest;

request.Method = "POST";
request.ContentType = "text/xml";
request.Timeout = base.DefaultTimeout;

Idempotent
Retry UTF8Encoding encoding = new UTF8Encoding();

byte[] byteArray = encoding.GetBytes(base.Request);

request.Contentlength = byteArray.Length;
WriteRequestToStream(request, byteArray);

return request;

}

private void WriteRequestToStream(HttpWebRequest request,
byte[] byteArray)
{
Stream stream = request.GetRequestStream();
stream.Write(byteArray, 0, byteArray.lLength);
stream.Close();

}

private void GetResponse(HttpWebRequest request)
{

WebResponse response = request.GetResponse();

StreamReader reader =
new StreamReader(response.GetResponseStreanm(),
Encoding.GetEncoding("utf-8"));

IDEMPOTENT RETRY

base.Response = reader.ReadToEnd();
}
}

The RetryManager class encapsulates the logic that implements the Idempotent
Retry pattern. This example runs on the thread of the caller, so when it pauses
in HandleRetryError, the caller’s thread will block. This class can be easily loaded
and executed on a separate thread so that the client isn’t blocked; this is left as
an exercise for the reader.

public class RetryManager : IRetryManager

{
public const int HTTP_OK = 200;

IList<WebExceptionStatus> connectionErrors = null;

bool doRetry = true;
int maxTries=0;
int tryCount = 0;

int waitTime=0;
ResourceErrors retryErrorList = null;
ServiceConnector serviceConnector = null;

int responseCode = HTTP_OK;
public RetryManager() { }

public void SetRetryParameters(int maxRetries,
int waitTimeBetweenRetries)
{
maxTries = maxRetries;
waitTime = waitTimeBetweenRetries;

}
pubTic void SetRetryReturnCodes(ResourceErrors errorlist)
{
retryErrorList = errorlist;
}

pubTic void SetConnectionErrors(
IList<WebExceptionStatus> connectErrors)

{

connectionErrors = connectErrors;

}

pubTic void SetConnector(ServiceConnector connector)

{

serviceConnector = connector;

}

Idempotent
Retry

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

pubTic void Execute()
{
tryCount = 0;
doRetry = true;

while (doRetry)
{
try
{
responseCode = HTTP_OK;

serviceConnector.Execute();

doRetry = false;
}

catch (Exception ex)
{

// log exception here
if (!(IsRetryError(ex))) throw;
HandTeRetryError(ex);

}
}

Idempotent }
Retry

private bool IsRetryError(Exception exception)
{

if (!(exception is WebException)) return false;

WebException webException = (WebException)exception;

if (null != webException.Response)
{
HttpWebResponse response =
(HttpWebResponse)webException.Response;

this.responseCode = (int)response.StatusCode;

return retryErrorList.ContainsKey(this.responseCode);

}
WebExceptionStatus status = webException.Status;

return connectionErrors.Contains(status);

}

private void HandleRetryError(Exception ex)
{

tryCount++;

IDEMPOTENT RETRY

if (tryCount == maxTries)

doRetry = false;
return;

}

Thread.STeep(waitTime);
}
}

Example: WS-Reliable Messaging

WS-Reliable Messaging (WS-RM) is a protocol that defines a standard XML-
based vocabulary that can be implemented by service frameworks to provide
message delivery assurances similar to traditional messaging systems. WS-RM
implementations provide the capability to retry sending messages on failed
attempts, and also make it possible for the developer to define rules which
determine how many times the message is delivered. One can instruct a frame-
work to send a message exactly once, at most once, at least once, and so on.
Developers can also configure their systems to ensure that messages are received
and processed in the exact order they were sent. This being said, the implemen-
tations for WS-RM can vary greatly, and not every framework is capable of
handling dropped connections.

There are two entities involved in WS-RM. These include the “RM Source”
and the “RM Destination.” Both of these agents exist on the client and service
side. When a client sends a request to a service, it functions as the RM Source,
and the service acts as the RM Destination. When the service returns a
response, the responsibilities are swapped. The presence of these agents is
largely hidden from the developer. The RM Source is responsible for starting
and terminating a “Reliable Messaging Session.” When an RM session is initi-
ated, both sides of the communication initialize a cache into which copies of
messages are saved. Different platforms implement this cache in different ways.
Some implementations use durable, persistent message stores. Others use local
(i.e., nondistributed) memory-backed caches.

RM conversations are initiated when the client’s RM Source sends a CreateSe-
quence message to the service. The RM Destination on the service responds with
a CreateSequenceResponse message that includes a unique SequencelID that is used by
the client to identify all of the messages that will be submitted in the sequence.
From that point on, each message sent by the client will contain a sequence
header that includes the sequence identifier and a message number. The value of

Idempotent
Retry

Idempotent
Retry

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

the first message number is always 1, and the value for each subsequent mes-
sage number is incremented by 1. The RM Source also saves a copy of each
message sent in its cache.

The RM Destination keeps track of each message that it receives by saving
copies into its own cache. Depending upon the “Delivery Semantics” defined in
the service’s policy the RM Destination may or may not immediately dispatch
messages forward to the actual service implementation code. If, for example,
the service has defined that all messages must be delivered in order, and the RM
Destination receives messages 1, 2, and 4, the RM Destination will hold on to
message 4 until it has received message 3. Once the RM Destination has
received message 3, it will forward messages 3 and 4 on to the service imple-
mentation. Given this, you should see that there may be a time delay on the RM
Destination side before the message is actually delivered to the web service
method. It should be noted that the aforementioned delivery semantics are not
a part of the WS-Reliable Messaging specification. Instead, they may be imple-
mented differently on each platform.

There are other times when the RM Destination will not send a message for-
ward to the service. This behavior occurs when the service has a policy of
“Exactly-Once” delivery and it receives duplicate messages. In order to enforce
this policy, the RM Destination looks in its cache for a message with a matching
SequencelD. If it receives a new message and finds a message with a matching
SequenceID in the cache, it knows that it has a duplicate message and will usually
just discard the message.

The RM Destination will periodically send a SequenceAcknowledgement message
back to the RM Source. The purpose is to let the RM Source know what mes-
sages have been received. Rather than sending one acknowledgment for each
message, the RM Destination minimizes network traffic by batching these
acknowledgments up into one message. When the RM Source receives a
SequenceAcknowledgement, it inspects it to see which messages the RM Destination
has reported as being missing. For each message the RM Destination reports to
be missing, the RM Source retrieves those messages from its cache and resub-
mits them. Note that the service uses its own RM Source agent to communicate
with the client’s RM Destination so that the same delivery assurances are pro-
vided for responses.

The following configuration file entry shows how WS-RM can be enabled
for WCF Services. Here you can see that a binding named ReliableHttpBinding is
created to support reliable messaging over HTTP. All messages must be deliv-
ered in order.

IDEMPOTENT RETRY W

<bindings>
<customBinding>
<binding name="ReliableHttpBinding">
<reliableSession ordered="true"
acknowledgementInterval="00:00:00.2000000"
maxRetryCount="3"/>
<httpTransport/>
</binding>
</customBinding>
</bindings>

The service designer must also modify the service configuration information
as is shown below.

<service name="AcmeCorp.Shipping"
behaviorConfiguration="AcmeCorp.defaultBehavior">

<endpoint address="" binding="customBinding"
contract="AcmeCorp.IShipping"
bindingConfiguration="ReliableHttpBinding">
</endpoint>
</service>

When the service is published, the following policy assertions appear in the
service’s WSDL. Notice how the acknowledgment interval has been carried over
from the declaration, and the delivery semantics indicate ExactlyOne, which
means that duplicates will be dropped.

<wsp:Policy wsu:Id="CustomBinding_IShipping_policy">
<wsp:ExactlyOne>
<wsp:All>
<wsrm:RMAssertion xmlns:wsrim=
"http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
<wsrm:InactivityTimeout Milliseconds="600000" />
<wsrm:AcknowledgementInterval Milliseconds="200" />
</wsrm:RMAssertion>
<wsaw:UsingAddressing />
</wsp:All>
</wsp:ExactTyOne>
</wsp:Policy>

<wsd1:binding name="CustomBinding_IShipping" type="tns:IShipping">
<wsp:PolicyReference URI="#CustomBinding_IShipping_policy" />
<!-- wsdl operations declared here -->

</wsd1:binding>

Idempotent
Retry

SOA
Infrastructure

Patterns

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

A Quick Review of SOA Infrastructure Patterns

There are many definitions for Service-Oriented Architecture (SOA). Some see
it as a style of technical design that enables heterogeneous systems to be inte-
grated through reusable business functions (i.e., services). Others consider SOA
to be a methodology that helps companies identify, create, deploy, integrate,
and govern the life cycle of any software asset that provides a useful service to
the organization or its business partners. This section provides a brief overview
of a few infrastructures that are frequently mentioned by SOA practitioners. It
is important to note that none of these are required to create a SOA.

Please keep in mind that the services in a SOA are not constrained to using
HTTP. In fact, software components that use standards, technologies, and pro-
tocols like JMS, MSMQ, TCP, UDP, and named pipes can all be “service-
enabled” and included in a SOA.

The Service Registry

One of the central infrastructures commonly used in SOA is the Service Regis-
try. A registry is a central repository that stores metadata for service-related
artifacts that embody the standards for a given corporation. The goal is to pro-
mote reuse of these artifacts and facilitate governance. Registries typically
house the following types of artifacts.

¢ Reusable messages and complex type definitions defined with the XML
Schema Definition Language.

e Reusable policies defined through WS-Policy. Policies define the rules for
how clients should be authenticated, how messages should be encrypted,
and other similar concerns.

e WSDL documents that identify the required communication protocols
(i.e., HTTP, JMS, etc.), input and output message types, policies, and
addresses for each service.

Registries frequently enable users to version artifacts. This being said, they
are not meant to replace Software Configuration Management (SCM) and ver-
sion control tools like Perforce, Git, or Subversion.

Developers may create composite applications by importing registry meta-
data into their development environment at design time. This ensures that
applications will use approved services and policies. Developers can also create

A Quick REVIEW OF SOA INFRASTRUCTURE PATTERNS

Client Service Connector Service Registry Service
T T T T
| | | |
| | 4
| | Publish Service Metadata

o |
Invoke Service |

|

Get Metadata

|

Service Metadata :

|

Execute Service
6 ______ M — - —_— — e —_— —_ —_ — =
T T LN

Figure 6.14 Service Registries store metadata for service-related artifacts that
embody the standards for a given company. The goal is to promote reuse of
these artifacts and facilitate governance. Registry metadata may be imported

at design time in order to create composite applications that use approved
services. They are also queried by Service Connectors (168) at runtime so that
client applications can locate, connect, and use registered services.

and publish their own “composite services” that use registered services. Infor-
mation from the registry is frequently used by specialized Service Connectors
(168) at runtime so that client applications can locate, connect, and use regis-
tered services (see Figure 6.14).

The Enterprise Service Bus

The Enterprise Service Bus (ESB, a.k.a. bus) is another infrastructure pattern
that figures prominently in SOA. One articulation of the concept appears in the
Message Bus pattern [EIP]. ESBs have three primary objectives:

e Message routing

® Message translation

e Protocol translation and transport mapping

SOA
Infrastructure

Patterns

SOA
Infrastructure

Patterns

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

First and foremost, ESBs function as Message Routers |EIP] that forward
requests to services and shuttle responses back to clients. The intent is to pro-
vide clients a means to invoke services while minimizing the client’s dependen-
cies on specific service implementations. ESBs provide a layer of indirection that
enables services to be added, upgraded, replaced, or removed while minimizing
the impact on client applications. This is possible because clients send messages
to the bus rather than communicating directly with target services. In other
words, the client’s dependencies shift to the bus. Clients frequently send mes-
sages through Virtual Services [IBM, ESB Patterns]. These look like the actual
target services to clients, but simply provide a common endpoint that receives
messages. Clients may also use special Channel Adapters [EIP] to connect to the
bus. ESBs route messages to the appropriate service according to predefined
rules. There are many ways to construct these rules. ESB administrators may,
for example, use SOAPAction or WS-Addressing headers, URI templates, or
content found deep within the message. These rules are often retrieved from
Service Registries (see Figure 6.15).

Clients that communicate with services through ESBs typically have to use a
standard set of messages often referred to as the Canonical Data Model [EIP].
The advantage with this approach is that you won’t need to create specialized
services designed to process requests from specific client applications. Since all
clients are forced to use the canonical model, a single service can be created to
process all requests. Unfortunately, this shifts the burden over to the client, and
clients may have to use a Message Translator [EIP] to convert their messages to
the canonical form. This logic can be encapsulated within a Service Connector
(168) that translates the client’s message to the canonical form, then sends the
transformed message to the bus. Once the bus has received a message, it may

Service
Registry

Message
Store

Virtual
Service A

Business

Virtual]
Intelligence

Service B

Client Enterprise Service Bus

Applications

Virtual
Service C

Target
Service A

Target
Service B

Target
Service C

Figure 6.15 ESBs provide a layer of indirection that enables services to be added,
upgraded, replaced, or deprecated while minimizing the impact on client applications.

A Quick REVIEW OF SOA INFRASTRUCTURE PATTERNS

use a Message Translator to convert the canonical message to the format
defined in the service’s contract. This enables the service’s contract and canoni-
cal data model to vary independently. A similar process is used to convert ser-
vice responses to the canonical form, and finally to the structures used by clients
(see Figure 6.16).

A third key function performed by ESBs is protocol translation and transport
mapping. This feature may be employed when the target service uses a protocol
or transport that is foreign to the client. A NET client application may, for
example, submit requests over HTTP to a Virtual Service [IBM, ESB Patterns]
hosted by an ESB. If the target service uses a different protocol like JMS, the
ESB would convert the message and use the JMS APIs to connect to the service.

Sophisticated ESBs perform many other useful functions. For example, they
frequently provide Guaranteed Delivery |EIP] of messages. If a target service is
unavailable, the ESB may persist the message to a Message Store [EIP] and try

Client Service Connector ESB Target Service

SOA

T
|

M | M Infrastructure
|

> Transform to Canonical Form

Send Message

Send Message

Patterns

> Transform to Service's Form

Send Message

Process
Request
Response
“ - — — — - — — — — — —

Transform Response
to Canonical Form
Canonical Response

|
|
|
|
|
|
> Transform to Client Message |
|
|
|
|
|
|

Custom Response

T
L | L
|
Figure 6.16 Clients that communicate with services through ESBs typically have to use
a standard set of messages that are defined independent of all services and client
applications. The bus may use a Message Translator [EIP] to convert the canonical
request to the format defined in the service’s contract.

SOA
Infrastructure

Patterns

CHAPTER 6 WEB SERVICE INFRASTRUCTURES

to send the message at a later time by using the Idempotent Retry pattern (206).
ESBs may also perform other generic functions like authentication, authoriza-
tion, and logging on behalf of target services. This removes the responsibility
from the target service, and ensures that policies are consistently enforced
throughout the company. Since the bus “sees” all of the messages carried
between clients and services in real time, a Wire Tap [EIP] can be established to
forward information from the bus to business intelligence applications.

The Orchestration Engine

ESBs often route messages to services that connect to Orchestration Engines.
These are centralized infrastructures that direct the activities of long-running or
complex workflows (see Figure 6.17). The activities, or tasks, found in these
workflows are often performed by services, though they need not be web ser-
vices that use HTTP. Workflows are typically created with graphical tools or
meta-languages like BPEL.

Orchestration Engines manage the lifetime of workflow or process instances.
Workflows are instantiated when messages are sent to Workflow Connectors
(156). Once a workflow has been initialized, the engine controls which activi-
ties in the workflow are executed, and also decides when the workflow should

Orchestration Engine

Context Variable

Flight Reservation
ID

\
/ &\
. Trigger L Gal Receive Next
Client "{ Service Resseg:‘tlaiglght “Callback Message” Task
Request °, s Ack ' Callback
. .

Service

=2 Client2

Figure 6.17 Orchestration Engines provide centralized infrastructures that direct
the activities of long-running or complex workflows.

A Quick REVIEW OF SOA INFRASTRUCTURE PATTERNS

be suspended or terminated. Workflows can execute a simple sequence of tasks,
they can use conditionals to select different paths in the workflow, and they can
also control loop iteration. More impressive is their ability to manage parallel
task execution.

Orchestration Engines can easily handle the fundamental service interaction
patterns. For example, if a task calls a service that uses the Request/Acknowledge
(59) interaction, the workflow may poll for a response or wait for a callback
message. If a Callback Service is used to receive a response, the engine will
route the callback message back to the specific workflow instance that initiated
the call. For more information on orchestration, see Patterns for Orchestration
Environments [Manolescu]. In-depth coverage of Workflow Patterns is also
provided at http://workflowpatterns.com/ [van der Aalst, et al].

Service Registries, ESBs, and Orchestration Engines are sophisticated infra-
structures. Vendor-backed solutions can be quite expensive, but free, open
source offerings have also become available in recent years. The features and
maturity of these products can vary drastically. Some organizations choose to
build their own custom infrastructures. This, however, can often be more costly
than vendor solutions if you tally up the total costs of development and ongo-
ing maintenance.

SOA
Infrastructure

Patterns

http://workflowpatterns.com/

This page intentionally left blank

Chapter 7

Web Service Evolution

Introduction

Service developers strive to maintain Backward Compatibility whenever a ser-
vice is changed. This condition exists when the service can successfully process
requests from clients that submit older versions of messages or media types.
Backward compatibility also means that a client won’t break if the service
returns a response using an updated data structure that the client may not fully
comprehend. Services can also be Forward Compatible. A client may, for exam-
ple, send “version 2” of a message, but the service may only know how to pro-
cess data found in the first version because it hasn’t been altered to work with
the newer message structure. This is a common occurrence when structures are
defined by external parties. If the service can still process the request without
crashing, it may be considered Forward Compatible [Orchard].

Backward and forward compatibility are quite difficult to achieve. A service
can only be forward-compatible if it is able to ignore new content. This means
that, while the service cannot process data that it is not yet aware of, it should
still be able to process the remainder of the request. As a practical matter, ser-
vice owners tend to spend the majority of their time worrying about backward
compatibility. The key problem that all service designers should be aware of is
that services can cause clients to break whenever the data structures they
receive or send are changed.

While changes to the internal logic of a service can certainly cause clients to
break, most of the focus in this chapter is on how changes to a service’s contract
(see Chapter 2) affect backward compatibility. We’ll look at the factors that
cause breaking changes, and briefly review two common versioning strategies.
We’ll also see how RPC APIs (18) can be designed to become less brittle and
more flexible, and we’ll review an approach that lets all services, regardless of
API style, to be augmented so that they may receive and process new data.
Finally, we’ll present an approach that helps all message recipients to become

227

Web Service
Evolution

What Causes
Breaking

Changes?

CHAPTER 7 WEB SERVICE EVOLUTION

more resilient, and another that ensures services will continue to meet the needs
of clients. This chapter concludes with a brief look back at how many of the
patterns in this book either support or hinder service evolution. Table 7.1 pre-
sents an overview of the patterns in this chapter.

Table 7.1 Patterns for Web Service Evolution

Pattern Name

Problem

Description

Single-Message
Argument (234)

How can a web service with an
RPC API (18) become less brit-
tle and easily accommodate
new parameters over time
without breaking clients?

Design each service operation
such that it only receives a
single message parameter that
contains all of the data for

a request.

Dataset
Amendment (237)

How can a service augment the
information it sends or receives
while minimizing the probabil-
ity of breaking changes?

Append optional data to
existing request and response
data structures.

Tolerant Reader
(243)

How can clients or services
function properly when some
of the content in the messages
or media types they receive is
unknown or when the data
structures vary?

Design the client or service to
extract only what is needed,

ignore unknown content, and
expect variant data structures.

Consumer-Driven
Contracts (250)

How can a web service API
reflect its clients’ needs while
enabling evolution and avoid-
ing breaking clients?

Client developers write
integration tests that express
the client’s expectations of a
service APIL. These tests are
given to the service owner,
who incorporates them into
the service’s test suite.

What Causes Breaking Changes?

A breaking change is any change that forces client developers to update their
code or change configurations. Clients that fail to makes the necessary changes
may experience runtime exceptions. The most common causes for breaking

changes include

e Moving services to different domains

¢ Changing the URI patterns clients use to address services

WHAT CAUSES BREAKING CHANGES? v

e Structural changes to media types or messages

e And Service Descriptor (175) changes

Among other things, the section titled How the Patterns Promote Service
Evolution at the end of this chapter provides tips on how the first two issues can
be mitigated. This section focuses on the last two bullet items.

Structural Changes to Media Types or Messages

Service developers must consider how clients may be affected by changes made
to the data structures exchanged with clients. In many cases, the required media
types or messages will be formally defined through a meta-language such as
XSD or JSON Schema. In other cases, these agreements will simply be listed on
a web page. Developers should be aware of what actions on these data struc-
tures may cause breaking changes. Several of these are listed below:

e Removing or renaming qualified elements or attributes

e Changing the data types of qualified elements or attributes

¢ Changing elements or attributes from being optional to being required

e Changing the order in which elements occur in a data structure

e Changing the hierarchical relationships between complex data structures
¢ Adding elements to the middle of a strict sequence of elements

e Changing the namespace of a data structure or its child structures

e Deprecating data structures

e Changing character encodings

Clients must be able to predict the layout and data types used in service data
structures. Changes like those that are listed above can make the processing rules
used by clients obsolete and cause them to break. The effect of some of these
changes can, however, be mitigated by using the Tolerant Reader pattern (243).

The service’s expectations regarding what information is required and what
is optional can be explicitly defined through “machine-readable” meta-lan-
guages like XSD and JSON Schema. These expectations might also be described
in text-based documents (e.g., Word, HTML, etc.) aimed at developers. Regard-
less of how these expectations are expressed, once the parties have agreed to

What Causes
Breaking

Changes?

What Causes
Breaking

Changes?

CHAPTER 7 WEB SERVICE EVOLUTION

“the contract,” and the service has been deployed, they can rarely be changed
without causing some disruption. Several common-sense guidelines should
therefore be considered. A service should, for example, never change an
optional request or response item to become required after it is released. This
action usually results in a breaking change. Conversely, a service can usually
loosen restrictions and change a required request item to become optional in
later releases without incurring breaking changes.

Another factor to consider is whether or not data structure items should
occur in a strict sequence. Consider an address structure that contains a street
name, city, state or territory, postal code, and country code. The order in which
these items occur really shouldn’t matter. Unfortunately, many tools encourage
the service designer to define structures that impose a specific sequence. It is
worth noting that Data Transfer Objects (94) that use data-binding instructions
can map data to or from message structures without imposing such strict
sequences. The service designer must, however, be familiar with how to use her
platform’s APIs and annotations to enable this outcome. For the greatest degree
of flexibility, the Data Transfer Object may avoid data-binding altogether and
instead leverage the Tolerant Reader pattern (243).

Some Resource APIs (38) use generic multipurpose media types like Atom
Publishing Protocol (APP) or Microformats. These types are relatively static
and change infrequently. Some contend that when these structures and proto-
cols are used, the probability of a breaking change is remote. However, generic
protocols like APP frequently carry domain-specific structures (e.g., products,
customers, inventory, etc.). With APP, one must embed proprietary types within
the APP content element. If a breaking change occurs on a type carried in this
element, APP cannot insulate the client from the effects.

Service Descriptor Changes

RPC APIs (18) and Message APIs (27) frequently use WSDL as a Service
Descriptor (175) to explicitly enumerate related services (i.e., logical opera-
tions) and to formally identify the data types received and returned by each
operation. Resource APIs (38) may use the Web Application Description Lan-
guage (WADL) or WSDL 2.0 for similar reasons. Artifacts created with these
meta-languages are considered to be backward compatible if the descriptor
contains all of the logical operations found in the prior interface, and alter-
ations made to the referenced data structures do not cause breaking changes.
New operations may therefore be added without breaking clients.

WHAT CAUSES BREAKING CHANGES?

The following list identifies a few descriptor changes that can cause problems
for clients.

e Changing the descriptor’s namespace.

e Removing (i.e., deprecating) or renaming service operations (WSDL) or
logical identifiers (e.g., WADL method IDs).

e Changing the order of parameters in a logical operation.

e Removing or renaming operation parameters. This includes changing the
service’s response to or from a null response.

¢ Changing operation input or response types.
e Changing service bindings (WSDL only).
e Changing service addresses.

e Asserting new policies (e.g., requiring a new form of client authentication
or encryption).

One issue with descriptors is caused by the fact that they are meant to group
a set of logically related operations. While a consolidated listing of related oper-
ations can be useful to clients for code generation, this approach also increases
client-service coupling. Problems may arise when a breaking change occurs on a
single operation appearing in the descriptor. Such a change may require clients
to regenerate their Service Connectors (168) even when they don’t care about
the affected operation. Clients can choose to ignore the upgrade if they never
call the affected service. However, if they eventually wish to use these services,
then the connectors must be regenerated. The degree of client-service coupling
for these services can therefore be decreased by minimizing the number of oper-
ations appearing in a single descriptor.

It is worth noting that Linked Services (77) provide much of the same infor-
mation that appears in Service Descriptors, albeit in a “late-bound” fashion at
runtime. The client must always be synchronized to know how to search Link
Relations and Service Documents (re: Atom Publishing Protocol). It is possible
that the service owner could remove or rename relation types or accepted media
types and not coordinate these changes with the client. This, of course, may
cause clients to break.

What Causes
Breaking

Changes?

Common
Versioning

Strategies

CHAPTER 7 WEB SERVICE EVOLUTION

Common Versioning Strategies

Services should be expected to change. New services may be added while others
are deprecated. The data structures they exchange may be altered as well. As we
saw in the preceding section some actions cause breaking changes while others
are backward compatible. Services may also be altered in ways that are not
immediately apparent. For example, the algorithm a service uses to calculate
shipping costs may change. To summarize, some service changes are overt and
are related to the Service Contract (see Chapter 2) while others are subtler.
Either type may call for a new release and version identifier.

Versioning techniques are used to identify service releases that encompass
distinct features and data structures. Versions provide information to help cli-
ents decide what release to use. The service owner may decide to support one
version at a time, or they might support multiple versions if clients migrate at
different rates. In the latter case, the service owner may have to maintain multi-
ple code-bases. This, of course, is a scenario that should be avoided, but is often
necessary to support business requirements.

A formal versioning strategy enables clients to clearly identify older versions
of service artifacts (e.g., messages, media types, descriptors, etc.) from newer
ones. To this end, a variety of techniques may be employed. The traditional
approach has been to identify major and minor releases along with revision
numbers. Major releases are rolled out when breaking changes occur on the ser-
vice contract or when the functionality of a service has changed significantly.
Minor releases generally correspond to optional upgrades (e.g., new logical ser-
vice operations) or to significant fixes or additions that do not incur breaking
changes [e.g., Dataset Amendments (237)]. Service releases with revision num-
bers may be used to identify a logical grouping of bug fixes that are less signifi-
cant than what might be found in a minor release. Clients usually only opt-in to
using major or minor service releases. As you might conclude, the decision
regarding what should incur a major, minor, or revision release varies per orga-
nization. Service owners must therefore create a versioning strategy that is tai-
lored to their needs and the needs of their clients.

COMMON VERSIONING STRATEGIES v

Example: A Client That Requests a Specific Version

The following shows how a client using a Resource API (38) may leverage
Media Type Negotiation (70) to request a specific version of a proprietary
media type.

GET http://acmeCorp.org/products
Accept application/vnd.acmeCorp.product+json;version=2.1

This request indicates that the client would like to receive a product data
structure that has a major version of 2 and a minor version of 1. The assump-
tion is that the service is able to produce multiple versions of this media type.

Example: Versioning by Date

Another common versioning strategy uses dates. The following URI shows how
a company might use this approach to version the data structures used by a
Message API (27).

http://www.acmeCorp.org/2011/10/14/Messages. xsd

This URI provides a unique identifier for a namespace containing message
definitions. It indicates that Messages.XSD was released on October 14, 2011. This
technique is typically used to identify a major release; the XSD itself may also
incorporate changes for minor releases. This practice provides an effective way
to identify schemas that clients and services should use when validating the data
structures they exchange.

Common
Versioning

Strategies

http://www.acmeCorp.org/2011/10/14/Messages.xsd
http://acmeCorp.org/products

Single-
Message

Argument

CHAPTER 7 WEB SERVICE EVOLUTION

Single-Message Argument

A web service receives data through an RPC API (18). Service developers are
using a Code-First strategy [see the Service Descriptor pattern (175)].

v

How can a web service with an RPC API (18) become less brittle and easily ac-
commodate new parameters over time without breaking clients?

A

RPC APIs (18) can be especially brittle. These services often have long
parameter lists. If the need ever arises to add or remove parameters, one usually
can’t avoid a breaking change. Service operations with these kinds of “flat APIs”
are inherently inflexible and fragile. Consider the following service signature.

@WebMethod (operationName = "ReserveRentalCar")

public RentalOptions ReserveRentalCar (
@WebParam(name = "RentalCity") String RentalCity,
@WebParam(name = "PickupMonth™) int PickupMonth,
@WebParam(name = "PickupDay") int PickupDay,
@WebParam(name = "PickupYear") int PickupYear,
@WebParam(name = "ReturnMonth") int ReturnMonth,
@WebParam(name = "ReturnDay") int ReturnDay,
@WebParam(name = "ReturnYear") int ReturnYear,
@WebParam(name = "RentalType") String RentalType

// implementation would appear here

Perhaps you might want to offer the renter the ability to supply an airport or
postal code as an alternative to selecting the RentalCity. These parameters could
be added to the end of this list, and many clients wouldn’t need to be updated
because most auto-generated Service Proxies (168) can ignore parameters they
don’t recognize as long as they occur at the end of an argument list. Regrettably,
the service’s signature starts to become disorganized. It would be better if we
could insert new parameters alongside the RentalCity so that the options for the
rental location are all kept together. Unfortunately, a breaking change usually
occurs whenever new parameters are inserted into the middle of the list. In situ-
ations like these, several tough questions must also be answered. Should the ser-
vice owner create a new service, retire the old one, and coax clients onto the
new service? Should he instead create a new service and keep the older one to
maintain backward compatibility? Neither option seems appealing.

SINGLE-MESSAGE ARGUMENT

If we had anticipated the need to add new rental location parameters, we
might have moved RentalCity to the end of the argument list so that all new
parameters for this topic would follow. However, this shuffling of parameters
would do little to alleviate our problems because the same situation would
likely occur time and again. How can an RPC API (18) become more flexible
and support the introduction of new parameters in a way that is backward
compatible?

v

Design each service operation such that it only receives a single message parame-
ter that contains all of the data for a request.

L 0.A

y
Message
Parameter

The Single-Message Argument pattern suggests that service developers who
use a Code-First strategy [see the Service Descriptor pattern (175)] should
refrain from creating signatures with long parameter lists. Signatures like these
typically signal the underlying framework to impose a strict ordering of param-
eters. This, in turn, increases client-service coupling and makes it more difficult
to evolve the client and service at different rates. RPC APIs (18) can instead be
designed to receive a single message argument. These messages may contain
primitive data types (e.g., integers, strings, etc.) or compound structures that
may be used to group logically related data. Each child element in the message
may be required or may be optional, the allowed values can be constrained or
open-ended, and the order in which data is serialized can be explicitly pre-
scribed or be allowed to vary. Each compound structure with the containing
message may, of course, contain other structures as well. Their content may be
required or not, constrained or open-ended, and the serialization order may

A

vary as well.

By deliberately pushing all arguments down into a single message argument,
the service designer has the opportunity to exert a greater degree of control over
how the message is formatted and serialized for transmission. Developers can
extend messages with ease by applying the Dataset Amendment pattern (237),
and may also reuse the structure across multiple services.

Single-
Message

Argument

v CHAPTER 7 WEB SERVICE EVOLUTION

Example: An Operation on an RPC API Receives a Single Message

The ReserveRentalCar service can be altered to receive a single message.

@WebMethod (operationName = "ReserveRentalCar™)
public RentalOptions ReserveRentalCar (
@WebParam(name = "RentalCriteria") RentalCriteria request
)
{
// implementation would appear here

}

The message received by this service is a RentalCriteria Data Transfer Object
(94). Getters and setters were omitted to keep the example brief.

@XmTAccessorType(XmlAccessType. FIELD)
@Xm1Type(name = "RentalCriteria")
@Xm1RootETement(name = "RentalCriteria")
pubTic class RentalCriteria {
@Xm1ETement (name="Rentallocation", required=true)
pubTic Rentallocation rentallocation;

@Xm1ETement (name="PickupDate", required=true)
public PickupDate pickDate;

@Xm1ETement (name="ReturnDate", required=true)
public ReturnDate returnDate;

Single- @Xm1ETement(name="VehicleCriteria")
Message public VehicleCriteria vehicleCriteria;
Argument }

The Rentallocation Data Transfer Object (94) provides a point of extensibility.
This structure can be extended by adding new optional parameters without
incurring breaking changes (for more information, see the section What Causes
Breaking Changes? earlier in this chapter).

@XmTAccessorType (XmlAccessType. FIELD)

@m1Type(name = "Rentallocation")

@Xm1RootETement(name = "Rentallocation™)

pubTic class RentallLocation {
@Xm1ETement(name="City") public String city;
@Xm1ETement (name="AirportCode") public String airportCode;
@Xm1ETement (name="ZipCode") public String zipCode;

}

DATASET AMENDMENT

Dataset Amendment

A web service has many clients. The service may define message structures
through proprietary protocols, or by using open standards like XML.

v

How can a service augment the information it sends or receives while minimizing
the probability of breaking changes?

A

Clients often request changes to data structures after a service has been
released. In an effort to avoid breaking changes, the service owner may decide to
introduce new services (i.e., request handlers) that process client-specific messages
or media types (for more on breaking changes, see the section What Causes
Breaking Changes? earlier in this chapter). Message APIs (27) and Resource
APIs (38) are quite flexible in that they usually can accommodate new structures
without breaking clients. A Resource API (38) may, for example, use Media Type
Negotiation (70) to route requests to handlers that are capable of processing cli-
ent-specific data structures. Services that have Message APIs (27) can likewise
receive and route client-specific requests to new handlers with minimal impact to
existing clients. Unfortunately, service logic is often duplicated when individual
services are created for each client application. In an effort to simplify service
logic, the service owner might try to encourage all client owners to adopt the data
requirements of the requestor. Regrettably, the service owner may encounter resis-
tance if the new structures are irrelevant or incompatible with their needs.

Service owners that use XML to exchange data might consider using Exten-
sion Points to allow for Wildcard-Content [Orchard]. This technique makes it
possible to add new data structures to existing XML-based messages or media
types without having to update published schemas or create additional service
handlers to support the new client requirements. Any party (i.e., client or ser-
vice) that receives a structure with an Extension Point can ignore the data in the
extension if it doesn’t recognize its content; otherwise, it can go ahead and pro-
cess it. The following Java class provides an example of this pattern:

@Xm1AccessorType(XmlAccessType. FIELD)
@Xm1Type(name = "Product”,
propOrder = {"CatalogueId", "Extensions"})
@Xm1RootElement(name = "Product")
pubTlic class Product {
@Xm1ETement (name="Catalogueld", required=true)
public String Catalogueld;

Dataset
Amendment

Dataset
Amendment

CHAPTER 7 WEB SERVICE EVOLUTION

@Xm1ETement (name="Extensions", required=false)
public ExtensionElement Extensions;

}

@Xm1AccessorType(XmlAccessType. FIELD)
@XmTRootETement(name = "ExtensionElement™)
pubTic class ExtensionElement {
@Xm1AnyETement (Tax=true)
public Object Extensions;

}
The associated XSD for this code looks like this:

<xs:complexType name="Product">
<Xs:sequence>
<xs:element name="Catalogueld" type="xs:string" />
<xs:element name="Extensions" type="tns:extensionElement"
minOccurs="0" />
</Xs:sequence>
</xs:complexType>

<xs:complexType name="extensionElement">
<Xs:sequence>
<xs:any processContents="lax" />
</Xs:sequence>
</xs:complexType>

While this practice is common, many have found that it can be problematic.
The first issue relates to how the structures within Extension Points are validated.
Implementers may constrain the allowed data structures by using the namespace
attribute. They may also use the processContents attribute (re: www.w3.org/TR/
xmlschema-1/#Wildcards) to prescribe how the content of the extension should
be validated. The problem with this approach is that such restrictions tend to
trigger many validation exceptions. Consequently, logic which catches and han-
dles each validation error must be created, and this results in a rather inefficient
and inelegant way to drive service logic. The service owner may therefore
decide to let the content of each extension be unconstrained. This means that
the service can’t predict what data types may be found in an extension until it is
parsed. Adding to this complexity is the possibility that extensions may contain
their own extensions. The service (or client) must therefore parse each exten-
sion in turn, figure out what it contains, and have a strategy for dealing with
whatever it finds. Strategies to parse and validate Extension Points may be real-
ized in many ways (e.g., programmatic logic, XPath, Schematron) and encapsu-
lated in Request Mappers (109), but other challenges remain.

Another problem with Extension Points pertains to the problem of nondeter-
minism. This occurs when an XML processor (i.e., client, service, or validating

www.w3.org/TR/xmlschema-1/#Wildcards
www.w3.org/TR/xmlschema-1/#Wildcards

DATASET AMENDMENT

XML parser) can’t figure out when a document or document fragment termi-
nates. A complex type may, for example, define a sequence of elements that con-
tains an optional telephone number element followed by an Extension Point. If
the client sends the telephone number, the processor can’t know if that should be
the last element or if the wildcard content in the extension might follow. One
solution is to make everything that precedes the extension a required element,
but this fundamentally alters the rules for how data is exchanged. The parties
could instead identify the extension as being a required element and mark it off
with Sentry Elements [Obasanjo] that surround the extension and act as delimit-
ers. This means that the sender must always provide an extension, but the con-
tents of it may be left blank. While this solves the problem of nondeterminism,
the party receiving this structure still has no way to predict what it might find.
These problems are not unique to data exchange formats like XML. Many of
these same issues must be addressed with other formats as well. How can ser-
vice messages, regardless of the format, support extensibility in a way that is
explicit and self-descriptive, yet does not break clients that use older structures?

A\ 4
Append optional data to existing request and response data structures.
Request or Response
Data Structure
E Data Transfer Object 1
E — ltem1
R > - ltem2
E — Item 3
' Insert Amendment Here (
: L Dataset Amendment 1
E Data Transfer Object 2
[N — ltem1
— ltem 2
— ltem 3---+
v
Data Transfer Object 3
— ltem1
Insert Amendment Here (
L Dataset Amendment 2

A

Dataset
Amendment

Dataset
Amendment

CHAPTER 7 WEB SERVICE EVOLUTION

The Dataset Amendment pattern suggests that service owners should append
primitive data or complex data structures to any Data Transfer Object (94) as
optional data. Web services can be designed to easily recognize and process
amendments when they appear in requests. Since amendments are optional,
breaking changes on the client side are generally avoided because most popular
service frameworks skip validation of these elements and hide them from the cli-
ent application. Still, their contents are frequently preserved by the framework
(e.g., WCF stores unanticipated data in an ExtensionDataObject). If, for example,
the client updates a structure (i.e., message or media type) received from a ser-
vice, and this structure contains an amendment with content the client doesn’t
recognize, the client can send the updated structure back to the originating ser-
vice or to another service that recognizes the amendment, and the receiver will
be able to deserialize and access the preserved amendment with ease.

Amendments to existing messages or media types are often described in a
minor release. This makes it possible for services or clients that use validating
parsers to deliberately select an appropriate validation scheme (e.g., XSD) for
the version they understand.

Considerations

Service developers should consider the following before using the Data Amend-
ment pattern.

e Optional data: The prerequisite for using this pattern is that the client’s
data must be optional. The service should be able to successfully process
the request whether or not an amendment can be found in the request.

¢ Doesn’t eliminate client-specific structures: This pattern does not eliminate
the need to create and maintain data structures for specific clients. It does,
however, provide the opportunity to evaluate how these structures might
be consolidated into common messages and media types that are used by
all clients.

¢ Ability to leverage data binding: Since the new structures are explicitly
defined as being a part of the parent message or media type, one can take
advantage of data-binding technologies to automatically deserialize or
serialize information in these structures. This helps to simplify data han-
dling on both the client and service sides.

¢ Potential for cluttered data structures: This pattern should be used with
restraint because it can result in bulkier transmissions that carry data that
may be irrelevant to many parties. Service designers may decide to accom-

DATASET AMENDMENT

modate client-specific needs by using this pattern in between major
releases. However, every effort should be made to work with all parties to
make the Dataset Amendments a formal part of the next major release.
This does not, however, mean that the content in the amendment should
be required.

e Use with abstract types: Service owners should be careful about introduc-
ing Dataset Amendments that are logically equivalent to other amend-
ments. As an example, the service owner might create two customer Data
Transfer Objects (94) which are structurally different in order to appease
two different client developer groups. This will, of course, increase service
complexity and reduce ease of maintenance. If the service owner cannot
sway the clients to adopt a common approach, then the owner may con-
sider using Abstract Data Transfer Objects (105) in the amendment. This
variation on the Data Transfer Objects pattern can be used to define “base
types” for a family of structures used in requests or responses. For exam-
ple, whenever an XSD contains a reference to an abstract type, the sender
may insert a concrete type derived from that type. This creates an effect
similar to polymorphism. New types can be added over time without
requiring the client to be updated.

Example: A Data Transfer Object That Supports Amendments
Dataset
The following C# code shows how a Data Transfer Object can support amend- Amendment

ments. The Order attribute on the FlightPreferences DTO is a platform-specific
trick that forces it to be appended to the parent DTO. The more important
attribute is the IsRequired value.

[DataContract]
pubTic class TripReservation

{
[DataMenmber]
public string Reservationld{get;set;}

[DataMenmber]
public ReservationStatus Status{get;set;}

[DataMember]
public TripItinerary Itinerary{get;set;}

// Data Amendment/ Minor release starts here ...

[[

Dataset
Amendment

CHAPTER 7 WEB SERVICE EVOLUTION

[DataMember(Order = 999, IsRequired = false)]
public FlightPreferences FlightPreferences{get;set;}

// Other amendments would occur here

}

[DataContract]
public class FlightPreferences
{
// An enumerated type indicating
// the traveler's preferences for aisle or window

[DataMember(Name = "SeatPreference", IsRequired = false)]
public SeatPreferences SeatPreference {get;set;}

// An enumerated type indicating the traveler's
// preferences for Economy, Business, or First-Class seating

[DataMember(Name = "TravelClass", IsRequired = false)]
public TravelClass TravelClass {get;set;}

TOLERANT READER

Tolerant Reader

A client or service expects changes to occur in a message or media type it
receives.

v

How can clients or services function properly when some of the content in the mes-
sages or media types they receive is unknown or when the data structures vary?

A

Rarely can a single software release produce messages or media types that
address all future needs. Indeed, Agile practices have taught us that it is more
effective and realistic to adhere to the concept of Emergent Design. The idea is
to deliver small incremental pieces of functionality over time, and let the system
design evolve naturally. Unfortunately, this introduces the possibility for break-
ing changes as data items are added to, changed, or removed from the message
(for more on breaking changes, refer to the section What Causes Breaking
Changes? earlier in this chapter). Message designers can prevent many issues if
they understand what causes breaking changes. For example, an optional mes-
sage element should never become required in future releases. Consumer-
Driven Contracts (250) can also help services ensure that client needs will be
met when messages change. In any case, message designers must be allowed to
make changes. The problem is that client developers may not be able to keep up
with these changes. How can a client continue to process service responses
when some of the content is unknown or the data structures vary?

Service designers often have to deal with message variability as well. For
example, some message structures may be owned and designed by business
partners, industry consortiums, or trade groups. In situations like these, service
developers may not be able to keep up with client applications that adopt newer
message versions. The service must therefore be forward-compatible and accept
content that it may not fully understand.

These scenarios suggest that clients should anticipate changes in service
responses, and services should, under certain conditions, expect changes in cli-
ent requests.

v

Design the client or service to extract only what is needed, ignore unknown content,
and expect variant data structures.

A

Tolerant
Reader

Tolerant
Reader

CHAPTER 7 WEB SERVICE EVOLUTION

Tolerant Readers gracefully handle change and the unknown. This concept
was described in the first part of the Robustness Principle [RFC 1122], also
known as Postel’s Law:

Be liberal in what you accept

Tolerant Readers extract only what is needed from a message and ignore the
rest. Declarative (e.g., XPath) or imperative approaches (i.e., static or dynamic
code) can be used to surgically extract the data of interest. It should go without
saying, but Tolerant Readers must always know the names and data types of
the message items they are interested in.

Schema validators can be overly conservative, and often throw exceptions
when the cause of the error can be addressed by the reader. Rather than imple-
menting a strict validation scheme, Tolerant Readers make every attempt to con-
tinue with message processing when potential violations are detected. Exceptions
are only thrown when the message structure prevents the reader from continuing
(i.e., the structure cannot be interpreted) or the content clearly violates business
rules (e.g., a money field contains nonmonetary values). Tolerant Readers also
ignore new message items (i.e., objects, elements, attributes, structures, etc.), the
absence of optional items, and unexpected data values as long as this information
does not provide critical input to drive downstream logic.

Considerations

Client and service developers should consider the following issues.

¢ Data access: Developers should consider when data can be extracted from
a message without having to traverse hierarchies. For example, a reader
might be able to use an XPath query like //order instead of /orders/order.
There will always, of course, be occasions when knowledge of a hierarchy
provides the requisite context to process a message. For example, informa-
tion about a spouse might only make sense in relation to an employee
structure (e.g., /employee/spouse). It is worth noting that a reader can also
ignore all hierarchies below the “context node” and still acquire the
desired item (e.g., /employee//spouse).

Tolerant Readers should let sibling items in a data structure (e.g., XML
elements in a complex type) occur in any sequence when the business rules
permit. One common scenario in which this cannot be done occurs when
the sequence of message items implicitly indicates the order in which data
should be processed.

TOLERANT READER

Tolerant Readers can ignore namespaces when processing XML. For
example, the XPath expression //*[Tocal-name()="order'] is able to acquire
an order node regardless of the associated namespaces.

e Preservation of unknown content: While Tolerant Readers should extract
and use only those parts of the message they are interested in, they
should also attempt to preserve unknown content when the message
must be passed on to other systems or back to the original sender. The
reason is that these parties may be interested in the very same data which
the reader doesn’t care about. There are many ways to accomplish this
goal. The easiest way is to simply save the original message (in a mem-
ory-based variable), then pass it on to the next party. Some frameworks
that use data binding provide special constructs that make it easy for
recipients to get what they need out of a message while also preserving
unknown content. An example of this is found in the ExtensionDataObject of
Microsoft’s WCFE.

e The second part of Postel’s Law: There is a second part to Postel’s Law. It
states, “(be) conservative in what you send”. This means that all message
senders should make every effort to conform to the agreed-upon protocols
for message composition because a message sender that commits a gross
violation of the “message contract” can cause significant problems, even
for a Tolerant Reader. One such example occurs when the message sender
fails to submit a required element or uses the wrong data type for some
item. Message senders can therefore facilitate effective communications by
using schema validation before sending a message. This stands in stark
contrast to the Tolerant Reader, which typically avoids schema validation
altogether.

e Use with Data Transfer Objects: Data Transfer Objects (94), a.k.a. DTOs,
are frequently used to decouple Domain Models [POEAA] or internal APIs
from message structures, and vice versa. One variation on this pattern
allows these classes to be annotated with data-binding instructions that
direct the recipient’s framework to map message content to or from one or
several DTOs. Since the developer doesn’t have to write parsing logic, it
becomes much easier to get or set message data. Unfortunately, binding
annotations cause the Data Transfer Objects to become tightly coupled to
the messages structures. The end result may be that a recipient which uses
DTOs (with data binding) may have to regenerate and redeploy these
classes whenever a message changes. This doesn’t mean that DTOs with
data binding should never be used. However, developers should consider

Tolerant
Reader

Tolerant
Reader

CHAPTER 7 WEB SERVICE EVOLUTION

limiting their use to situations where the constituent parts of a message are
relatively static and are modified through Dataset Amendments (237).
Alternatively, Data Transfer Objects can be created without data-bind-
ing instructions. These DTOs are Tolerant Readers in their own right. An
example of this approach is provided in the code example that follows.

e Consumer-driven contracts: Client developers who create Tolerant Read-
ers to receive service responses should demonstrate how the reader is sup-
posed to behave through a suite of unit tests. These tests can be given to
the service owner to help ensure that the client’s expectations will be met.
For more information, see the Consumer-Driven Contracts pattern (250).

Example: A Tolerant Reader That Extracts Address Information

This example shows how a Tolerant Reader written with Java and JAX-RS can
be designed to extract and validate only the message content that is required.
The source XML message looks like this:

<CustomerInfo>
<CustomerAccount>
<BillingAddress street="123 Commonwealth Ave"
city="Boston" state="MA" zip="12345" />
</CustomerAccount>

<ShippingAddress street="234 State Street"
city="Boston" state="MA" zip="67890" />

<ExtraStuffThatIsIgnored>
<item id="678" count="1" />
<item id="876" time="2" />
</ExtraStuffThatIsIgnored>
</CustomerInfo>

The saveAddresses service shown below receives an InputStream from the client
and passes it to the constructor of XPathParser, a class that encapsulates common
XPath processing logic. The implementation details for this class have been
omitted because they are tangential to the key concepts I wish to impart for this
pattern. Anyway, once an XPathParser has been acquired, the service calls static
methods on the BillingAddress and ShippingAddress classes in order to populate
Data Transfer Objects (94) of the same name. Information from these DTOs is
saved to a database; the logic for this has also been left out.

@Path("/addresses")
public class TolerantReader {

TOLERANT READER v

@pOST
@Consumes ("appication/xm1")
pubTic Response saveAddresses(InputStream stream) {

try{
XPathParser parser = new XPathParser(stream);

BiTlingAddress billAddress =
Bi1TingAddress.Cet(parser);

ShippingAddress shipAddress =
ShippingAddress.Get(parser);

// Save address information to a database here

}
catch(Exception x){
; // handle errors here

}

return
Response.status(Status.0K) . type("text/plain").build();
}
}

The BillingAddress and ShippingAddress Data Transfer Objects (94) mentioned
above extend a class named Address. This class is shown below.

Tolerant
Reader

public abstract class Address {
private String id;
private String street;
private String city;
private String state;
private String zip;

public String getId() {
return 1id;

}

pubTic void setId(String value) {
this.id = value;

}

public String getStreet() {
return street;

}

public void setStreet(String value) {
this.street = value;

}

W CHAPTER 7 WEB SERVICE EVOLUTION

pubTic String getCity() {
return city;

}

pubTic void setCity(String city) {
this.city = city;
}

public String getState() {
return state;

}

pubTic void setState(String state) {
this.state = state;

}

public String getZip() {
return zip;

}

public void setZip(String zip) {
this.zip = zip;
}
}

The DTOs shown below are the Tolerant Readers in this example. They have
been designed to tolerate changes in data structures and accept, for whatever the
business reason might be, the absence of individual address items (e.g., street, city,

Tolerant state, zip code). You should therefore assume that getNodeValueAsString does not
Reader

throw an XPathExpressionException when an item can’t be found, but instead returns
an empty string.

public class BillingAddress extends Address {
public static BillingAddress CGet(XPathParser parser)

{
Bi1lingAddress address = new BillingAddress();

try{

address.setId(
parser.getNodeValueAsString(
"//Bi1lingAddress/@id"));

address.setStreet(
parser.getNodeValueAsString(
"//Bi1lingAddress/@street™));

address.setCity(
parser.getNodeValueAsString(
"//Bi1lingAddress/@city"));

address.setState(
parser.getNodeValueAsString(
"//Bi1lingAddress/@state™));

address.setZip(
parser.getNodeValueAsString(
"//Bi1lingAddress/@zip"));
}
catch(Exception ex){
// handle error here

}

return address;
}
}

public class ShippingAddress extends Address {
pubTic static ShippingAddress Get(XPathParser parser)

{
ShippingAddress address = new ShippingAddressQ);

try{

address.setId(
parser.getNodeValueAsString(
"//ShippingAddress/@id"));

address.setStreet(
parser.getNodeValueAsString(
"//ShippingAddress/@street"));

address.setCity(
parser.getNodeValueAsString(
"//ShippingAddress/@city™));

address.setState(
parser.getNodeValueAsString(
"//ShippingAddress/@state™));

address.setZip(
parser.getNodeValueAsString(
"//ShippingAddress/@zip"));
}
catch(Exception ex){
// handle error here

}

return address;
}
}

TOLERANT READER v

Tolerant
Reader

Consumer-
Driven

Contracts

CHAPTER 7 WEB SERVICE EVOLUTION

Consumer-Driven Contracts

By Ian Robinson

A service has several clients, each with different needs and capabilities. Service
owners know who their clients are, and client developers can establish a channel
for communicating their expectations of the service’s API to service owners.
Such interactions typically occur within an enterprise or corporate environment.

v

How can a web service API reflect its clients’ needs while enabling evolution and
avoiding breaking clients?

A

Service APIs are often used by multiple clients in different contexts, but
designing a web service interface to support these different usages can be diffi-
cult. If an API is too coarse-grained, its use will be limited to a very specific con-
text. If it is too granular, clients will often have to supplement it with
functionality or data sourced from elsewhere. Getting the balance right depends
on understanding how clients expect to use the service. A client’s needs and
capabilities around message types and representation formats, as well as the
mechanisms used to invoke procedures and access resources, can vary from cli-
ent to client; these needs and capabilities should drive the design and evolution
of the service APL.

A good service API decouples clients from the internal implementation of a
service. But if the clients’ expectations of an API are not taken into account
when designing the service, the resultant interface can inadvertently leak a ser-
vice’s internal domain details. This is particularly true when wrapping a legacy
system with a service APL In the struggle to make legacy functionality accessible
through a web service interface, system and infrastructure details can make their
way into the service APL, thereby forcing the client to couple itself to the under-
lying system, and to what are often a lot of extraneous system-specific reference
data, method signatures, and parameter values. Data Transfer Objects (94),
Request Mappers (109), and Response Mappers (122) can help to prevent inter-
nal details from leaking to clients, but they do nothing to help service developers
understand what clients really need or how they expect to use a service.

The use of Extension Points can help to make message and media type sche-
mas backward- and forward-compatible. Extension points allow additional

CONSUMER-DRIVEN CONTRACTS

elements and attributes to be added to a message or resource representation at
certain predefined places in the schema. But while extension points enable com-
patibility, they do so at the expense of increased complexity. By adding container
elements to a message, they undermine the expressive power that comes from a
simple schema. New clients often bring with them additional needs, many of
which require the service API to evolve. If a service has to change to accommo-
date new requirements, it should do so in a way that doesn’t break existing cli-
ents. Maintaining backward and forward compatibility between different
versions of a service API helps localize the cost and impact of change. When an
API changes in a way that is neither backward- nor forward-compatible with pre-
vious versions of the API, there is a risk that it will introduce breaking changes
(for more on breaking changes, refer to the section What Causes Breaking
Changes? earlier in this chapter). Altering, testing, and rereleasing an updated cli-
ent in lockstep with the modified service API results not only in the cost of change
increasing, but also in it being shared between service and client owners.

Some service developers, in an attempt to prevent a service from having to
change, try to design a comprehensive service API that encompasses all current
as well as all future client needs and capabilities. These speculative APIs seek to
protect against having to be modified at a later date by “getting things right the
first time.” But no matter how much time and effort is invested in analysis and
design up front, a service may still have to modify its published API if a missed
requirement comes to light or an unanticipated change emerges sometime after
the service is released. Such modifications reintroduce the risk of breaking exist-
ing clients.

On top of these design issues, service owners need to understand the rela-
tionships between services and clients so that they can diagnose problems,
assess the impact of variations in service availability, and plan for evolving indi-
vidual services in response to new or changed business requirements. In this
context, service owners can benefit from understanding which clients currently
use their service, and how they use it. Knowing which clients currently use a
service API helps a service owner plan changes to the APT and communicate
those changes to client developers. Understanding how clients currently use an
API helps service developers test changes to the API, identify breaking changes,
and understand the impact of those breaking changes on each client.

Documentation can help communicate service and client requirements, and
so smooth the evolutionary growth of a service. Documentation that describes
each version of an API, its status, whether live, deprecated, or retired, and any
compatibility issues can help client designers understand how to use an API and
what to expect when the service changes. Client owners, in turn, can document
how their client expects to use the service, and which versions of an API it uses.

Consumer-
Driven

Contracts

CHAPTER 7 WEB SERVICE EVOLUTION

But unless the documentation is generated from code and schema artifacts, and
regenerated every time those artifacts change, it can quickly become out of date
and of little value. What the parties really need are a set of automated integra-
tion tests.

v
Client developers write integration tests that express the client's expectations of a
service API. These tests are given to the service owner, who incorporates them into
the service’s test suite.

Service API

. & Client
Internal Logic s

~
Tested by Service Tests

Consumer-Driven Contract

Consumer
Contract
Tests

Consumer-
Driven

Contracts

The Consumer-Driven Contract pattern helps service owners create service
APIs that reflect client needs; it also helps service owners evolve services with-
out breaking existing clients. Service owners receive integration tests from each
client and incorporate these tests into the service’s test suite. The set of integra-
tion tests received from all existing clients represents the service’s aggregate
obligations with respect to its client base. The service owner is then free to
change and evolve the service just so long as the existing integration tests con-
tinue to pass. Breaking tests help service developers identify breaking changes,
understand the impact of those changes on existing clients, and communicate
the changes and their impact to the relevant client owners.

Consumer-Driven Contracts can be used at several different stages in the ser-
vice development life cycle. During the design stage they can be used to shape
an API by capturing in code examples how it might be used. During the devel-

CONSUMER-DRIVEN CONTRACTS

opment stage, they help decouple development activities in different work
streams, while at the same time establishing a shared understanding of service
and client responsibilities. At this stage, client developers work against stub
implementations of a service API, and then share their integration tests with the
service owner. Finally, Consumer-Driven Contracts can be used after a service
has gone live, to record how specific clients actually use a service.

Client owners implement consumer contracts in the form of integration tests.
These tests are usually written against a stub version of the service. When the
contracts are given to the service owner, these stub implementations are
replaced with a real service instance; the assertions, however, remain the same.

Tests can focus on several different aspects of the service contract.

e Content: These tests check for the presence of certain elements and
attributes in messages and resource representations. They may also assert
the data types of specific values, and even check that more complex invari-
ants hold; that, for example, a <status> of rejected is always accompanied
by a <reason>. Though the examples here focus on XML-formatted mes-
sages and resource representations, the Consumer-Driven Contract pattern
is equally applicable to formats such as JSON and proprietary formats like
Google’s Protocol Buffers.

e Processing context: Such tests assert the presence or absence of certain
headers. A client may expect, for example, that an ETag header always
accompany cacheable responses.

¢ Behavior: These tests communicate the client’s expectations regarding the
service’s behavior, as evidenced by response codes, headers, and response
data. Such tests may check that calculations are correct, that changes to
state result in an event being published, or that the steps in a workflow
proceed as expected.

¢ Quality of service: These tests communicate expectations around things
such as response times, exceptions, security protocols, and compression
and encryption algorithms.

The Consumer-Driven Contract pattern is a natural complement to the Toler-
ant Reader pattern (243). Clients acting as Tolerant Readers can use consumer
contracts to communicate exactly which parts of a service API they use. When a
contract test fails in the service test suite as a result of an essential breaking
change to the API, the service owner can identify the relevant client from the
test, and thereafter negotiate a plan for supporting or migrating the client.

Consumer-
Driven

Contracts

CHAPTER 7 WEB SERVICE EVOLUTION

Considerations

When using Consumer-Driven Contracts, developers and service owners should
consider the following issues.

e Stub and real service implementations: Client developers typically write
their consumer contract integration tests against a fake implementation of
a service. At this stage, the tests are not real integration tests; they test nei-
ther the service nor the client’s behavior. Rather, they simply communicate
the client’s expectations of the service. For them to be useful as consumer
contracts, the tests should make it easy for service developers to substitute
a real service instance for the client’s use of a fake. The tests realize their
full value when they are handed over and run in a service (rather than cli-
ent) test suite; that is, when they are run against a real service instance.
This technique is different from clients using integration and certification
environments to certify a product for use, though it can be used to comple-
ment such procedures.

e Exchanging and versioning contracts: Service and client owners should
establish a means for exchanging tests and resolving contract disputes.
Tests should be version-controlled so that owners can identify when a con-
tract changed, and for what reason. Tests received from different clients
should be clearly identified and versioned independently of one another.
Many of today’s version control systems can import dependencies from

Contracts external repositories, thereby allowing different consumer contracts to be

pulled into a service test suite. Subversion, for example, provides support

for external definitions. Git has the powerful concept of submodules.

Consumer-
Driven

e Enforce contracts with every change to a service: Contract tests should be
run with every change to a service, regardless of whether the change
occurs to the API or in the internal service logic. Automated, self-checking
tests can be incorporated into a continuous integration pipeline, where
they will be executed with every check-in of service code.

e Modifying contracts: Tests written in the early stages of a service’s design
and development are different from those written once a service API has
been published. The former helps to shape the API, but may be modified as
service and client owners negotiate the scope and composition of the API.
The latter makes assertions about a published API and should not, there-
fore, be changed while that API is being used.

CONSUMER-DRIVEN CONTRACTS

¢ Platform dependencies: Contracts are often written as unit tests in a partic-
ular programming language. This can introduce unwelcome platform
dependencies for service developers if the platform used to develop the
contract is different from the platform used to develop the service. Schema
languages such as Schematron can be used to write platform-independent
tests for XML.

e Scope and complexity: The Consumer-Driven Contract pattern is applica-
ble where service owners can identify their clients, and clients can establish
a channel for sending contracts to service owners. This is usually the case
in enterprise web service environments, but may also apply in situations
where independent software vendors can solicit representative use cases
and tests from clients. No matter how lightweight the mechanisms for
communicating and representing expectations and obligations, service and
client owners must know about, agree on, and adopt a set of channels and
conventions, all of which add to the complexity of the delivery process.

o Test strategies: A comprehensive consumer contract suite of tests will
cover exceptional as well as happy-path uses of the service API. Though
focused primarily on unit testing, many of the patterns described in xUnit
Test Patterns, Refactoring Test Code [Meszaros, Gerard] can be applied to
these unusual cases. The book also describes several patterns, such as Test
Double, which help decouple test routines and the service under test from
other dependencies.

¢ Long-running, asynchronous services: Services that use the Request/
Acknowledge/Poll pattern (62) or Request/Acknowledge/Callback (63)
pattern can be difficult to test in a reliable and timely fashion end-to-end.
Nonetheless, consumers can still express their expectations of an acknowl-
edgment, a polled response, or a callback using XPath assertions, a Sche-
matron rules document, or similar. The book Growing Object-Oriented
Software, Guided By Tests [Freeman, Pryce| describes several strategies for
testing asynchronous code. Nat Pryce, one of the authors of that book,

also provides several interesting ideas at www.natpryce.com/articles/
000755.html.

e Reasonable expectations: Consumer contracts express a client’s expecta-
tions of a service API, but these expectations must be reasonable and capa-
ble of being fulfilled. Allowing consumer contracts to drive the specification
of a service API can sometimes undermine the conceptual integrity of that
APL. Service integrity should not be compromised by unreasonable
demands falling outside the scope of the service’s responsibilities.

Consumer-
Driven

Contracts

www.natpryce.com/articles/000755.html
www.natpryce.com/articles/000755.html

CHAPTER 7 WEB SERVICE EVOLUTION

Example: A Consumer Contract for Service Bebavior Implemented in C#
and NUnit

This example shows a simple consumer contract for a news service Resource
API (38). The contract has been written by developers of one of the service’s cli-
ents, and then given to the service owner who has incorporated it, together with
other consumer contracts, in the service’s continuous integration pipeline to
form a consumer-driven contract.

[TestFixture]
pubTic class NewsServiceConsumerContract
{
private IIntegrationContext context;
private HttpResponseMessage response;

[SetUp]
pubTic void Init()
{

context = CreateContext();

string xml =
@"<entry xmIns=""http://www.w3.0rg/2005/Atom"">
<title>Lilliput Siezes Blefuscudian Fleet</title>
<id>urn:uuid:89785900-7805-4A61-BC63-03691EEE752D</1d>
<updated>2011-06-01T06:30:00Z</updated>
<author><name>Jonathan Swift</name></author>

<content>Li1liput's Man-Mountain this morning...</content>
Consumer- </entry>";
Driven

Contracts

HttpContent content = new StringContent(xml);
content.Headers.ContentType =
new MediaTypeHeaderValue("application/atom+xm1");

response = context.Client.Send(new HttpRequestMessage
{
Method = HttpMethod.Post,
RequestUri = context.TargetUri,
Content = content
b;
}

[TearDown]
pubTic void Dispose()
{

context.Dispose();

}

CONSUMER-DRIVEN CONTRACTS

[Test]
public void ResponseIncludes201CreatedStatusCode()

{
Assert.AreEqual(HttpStatusCode.Created, response.StatusCode);

}

[Test]
public void ResponseIncludesLocationHeader()

{

Assert.IsNotNull(response.Headers.Location);

}

[Test]
public void ResponseBodyIncludesAnEditedETement()

{
XPathNavigator message = new XPathDocument(
response.Content.ContentReadStream) .CreateNavigator();
Assert.AreEqual(l, message.Select("//*[1ocal-name()="edited']").Count);

}

//Helper methods omitted
}

These contract tests have been written using the NUnit test framework. The
setup for each test uses an HTTP client to POST a news article to the service. The
tests then assert that the service has successfully created the article, assigned it a
URL and added an edited timestamp. The XPath expression used to select the
edited element is quite forgiving of structure—it looks for the element at any
depth in the response, ignoring any XML namespaces.

The tests use a pluggable IIntegrationContext to set up the HTTP client. Client
developers create an implementation of IIntegrationContext whose HTTP client is
configured with a fake Service Connector (168). Service developers replace this
implementation with one that lets the client communicate with a service run-
ning in a local or remote host environment. When the tests run in the service
test environment, the IIntegrationContext implementation used there connects the
client to a real service instance. The IIntegrationContext interface is shown below.

public interface IIntegrationContext : IDisposable

{
HttpClient Client { get; }
Uri TargetUri { get; }

}

When developing the consumer contract, the client developers create a
FakeNewsServiceIntegrationContext that returns an HTTP client configured with a

Consumer-
Driven

Contracts

W CHAPTER 7 WEB SERVICE EVOLUTION

fake response. This fake response exhibits the behavior expected of the service
by the client, as shown below.

pubTic class FakeNewsServiceIntegrationContext : IIntegrationContext
{

private readonly Uri targetUri;

private readonly HttpClient client;

pubTic FakeNewsServiceIntegrationContext()

{

targetUri = new Uri("http://localhost/news/articles/");

string xml =
@"<entry xmlns=""http://www.w3.0rg/2005/Atom
xmins:app=""http://www.w3.0rg/2007/app"">
<app:edited>2011-06-01T06:30:00Z</app:edited>
</entry>";

HttpContent content = new StringContent(xml);
content.Headers.ContentType =
new MediaTypeHeaderValue("application/atom+xm1");

HttpResponseMessage response = new HttpResponseMessage
{
StatusCode = HttpStatusCode.Created,
Content = content
h
response.Headers.Location =
new Uri("http://localhost/news/articles/123");

Consumer-
Driven . . .
Contracts HttpClientChannel endpoint = new FakeEndpoint(response);
client = new HttpClient {Channel = endpoint};
}

pubTic HttpClient Client

{
get { return client; }
}
pubTic Uri TargetUri
{
get { return targetUri; }
}
pubTic void Dispose()
{
//Do nothing
}

}

CONSUMER-DRIVEN CONTRACTS

The NewsServiceConsumerContract fixture creates an appropriate IIntegrationCon-
text by calling the CreateContext factory method before each test. CreateContext
instantiates an IIntegrationContext instance based on a couple of settings in a con-
figuration file. The code for CreateContext is shown below.

private IIntegrationContext CreateContext()
{
string contextAssembly =
ConfigurationManager.AppSettings["ContextAssenbly"];
string contextImpIName =
ConfigurationManager.AppSettings["ContextImpIName"];

if (contextAssembly == null)

{
Type testHostType = Type.GetType(contextImpIName);
return (IIntegrationContext) Activator.CreateInstance(testHostType);

}

return (IIntegrationContext) Activator.CreateInstance(
contextAssembly, contextImpIName);

When the consumer contract is run in the client’s test environment, the Cre-
ateContext method returns a FakeNewsServiceIntegrationContext instance. When the
tests are incorporated into the service test suite, the service developers can
reconfigure the test fixture to return a NewsServiceIntegrationContext that connects
the client to a real service instance. The code for NewsServiceIntegrationContext is
shown below.

public class NewsServiceIntegrationContext : IIntegrationContext
{

private readonly ServiceHost service;

pubTic NewsServiceIntegrationContext()
{
service = CreateNewsService();
service.Open();

}
pubTic HttpClient Client
{
get { return new HttpClient(); }
}

public Uri TargetUri

{
get { return new Uri("http://localhost:8888/news/articles/"); }

}

Consumer-
Driven

Contracts

Consumer-
Driven

Contracts

CHAPTER 7 WEB SERVICE EVOLUTION

pubTic void Dispose()
{

service.Close();

}

private ServiceHost CreateNewsService()

{
//Implementation omitted

}
}

NewsServiceIntegrationContext controls the lifetime of a service instance. Here
the service instance is running in a locally hosted environment. An alternative
implementation of InvoiceServiceIntegrationContext might connect the client to a
service instance running in a remote host environment. The Client property
returns a simple HTTP client, which the consumer contract uses to POST a news
article to the service.

Example: A Consumer Contract for Message Structure Implemented Using
ISO Schematron

Code-based consumer contracts work well when both the client and the service
are developed on the same platform. Many organizations, however, use multi-
ple development platforms. In such circumstances, it is not always possible or
feasible to exchange code-level contracts. This example shows a consumer con-
tract written using ISO Schematron, a powerful validation language. Using an
XSLT-based Schematron processor, a service owner can apply a Schematron
document to the messages produced by a service to validate their conformance
to the contract.

Schematron is a rule-based XML schema language for checking a docu-
ment’s structure and its conformance to complex business rules. Schematron
rules use XPath assertions to select XML elements and attributes and check
that their values conform to the business rules specified by the schema author.
As shown in Figure 7.1, a Schematron rules document, which in this instance
has been written by the client developers, is transformed into an intermediate
XSLT and applied to the XML to be validated. The skeleton implementation of
Schematron, which is available from the Schematron site, includes an XSLT
preprocessor that transforms the rules document into an XSLT transform. This
transform is applied to the XML to be validated, creating another XML docu-
ment that describes the validation results.

CONSUMER-DRIVEN CONTRACTS

Schematron

Rules
Document

A

A
Skeleton XSLT
Preprocessor Engine
A

y
Intermediate
XSLT

A
XML to Be XSLT
Validated Engine

A

<&

Results

Figure 7.1 A Schematron preprocessor uses a Schematron rules
document to create a validating transform. This intermediate
XSLT is applied to the document to be validated.

Consumer-
Driven

Contracts

The Schematron schema shown below validates that the necessary elements
are present in an invoice. The schema is authored by a client owner and then
given to a service owner to form a consumer contract.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://purl.oclc.org/dsd1/schematron">
<title>Invoice contract for client example.org</title>
<pattern>
<rule context="//*[Tocal-name()="Invoice']">
<assert test="count(.//*[1ocal-name()="Invoiceld']) = 1" >Expected
Invoiceld</assert>
<assert test="count(.//*[local-name()="WorkOrder']) = 1" >Expected
WorkOrder</assert>
<assert test="count(.//*[local-name()="Billed']) > 0" >Expected at
Teast one Billed element</assert>
</rule>
<rule context="//*[Tocal-name()='Billed']">

Consumer-
Driven

Contracts

CHAPTER 7 WEB SERVICE EVOLUTION

<assert test="count(.//*[local-name()="Bi11Code']) = 1" >Expected
Bi11Code</assert>
<assert test="count(.//*[local-name()="Time']) = 1" >Expected
Time</assert>
</rule>
</pattern>
</schema>

This schema checks that an Invoiceld element, a WorkOrder element, and at least
one Billed element are present in the context of an Invoice element. It also checks
that each Billed element contains Bil1Code and Time elements. As with the code
contract from the previous example, the XPath here is forgiving of depth and
namespace.

On receiving the schema, the service owner incorporates it in a unit test.

[Test]
pubTic void ApplySchematronConsumerContract()
{
Xm1Reader message = CreateInvoiceMessage();
ValidationResult result = Validate("Invoice.schematron.xml", message);

Assert.IsTrue(result.Success, result.ToString());

}

The ApplySchematronConsumerContract test calls a Validate helper method to exe-
cute the Schematron pipeline using the supplied consumer contract.

private ValidationResult Validate(string schematronUri, XmlReader message)
{

//Generate intermediate XSLT

Stream xs1tStream = new MemoryStream();

Xs1CompiledTransform xs1 = new Xs1CompiledTransform();

xs1.Load("iso_svr1_for_xs1tl.xs1");

xs1.Transform(schematronUri, null, xsTtStream);

xs1tStream.Seek (@, SeekOrigin.Begin);

//Generate results XML

Stream resultStream = new MemoryStream();
Xs1CompiledTransform xs1t = new Xs1CompiledTransform();
xs1t.Load(XmIReader.Create(xsTtStream));
xs1t.Transform(message, null, resultStream);
resultStream.Seek(0, SeekOrigin.Begin);

XElement results = XETement.Load(resultStream);
IEnumerable<XElement> failedAsserts =
results.Descendants(XName.Get (
"failed-assert", "http://purl.oclc.org/dsd1/svr1"));

CONSUMER-DRIVEN CONTRACTS v

return new ValidationResult {Success = failedAsserts.Count().Equals(@),
Errors = failedAsserts};

The Validate method applies the skeleton preprocessor (iso_svr1_for_xs1tl.xsl,
which is supplied with the Schematron implementation available on the Sche-
matron site) to the supplied rules document in order to generate an intermedi-
ate XSLT document. The method then validates the supplied message by
transforming it with this intermediate XSLT. If there are any failed assertions in
the output of this transformation, they are wrapped in a ValidationResult object.
The code for ValidationResult is shown below.

public class ValidationResult
{
public hool Success { get; set; }
public IEnumerable<XElement> Errors { get; set; }

}

Consumer-
Driven

Contracts

v CHAPTER 7 WEB SERVICE EVOLUTION

How the Patterns Promote or Hinder Service Evolution

This section briefly summarizes how many of the patterns in this book promote
or hinder service evolution.

e RPC API (18):

— RPC APIs tend to create tight dependencies between clients and the pro-
cedures (i.e., handlers) used to process requests. Developers can make it
easier to evolve the service if they use the Single-Message Argument pat-
tern (234). These messages can be easily extended to support new cus-
tomer requirements through the Dataset Amendment pattern (237).

— Service owners can support different versions of a given service, but this
may confuse client developers. Older services can be deprecated in favor
of newer ones, but the service owner must coordinate with client devel-
opers to determine the timing of such events.

e Message API (27):

— This pattern makes it very easy to add new message types, especially
when the service doesn’t use a Service Descriptor (175). The logic used
to process these messages can be easily rolled out without affecting cli-

The Patterns ents that use older message versions.

and Service . .
— Messages can be easily extended to support new customer requirements

through the Dataset Amendment pattern (237).

Evolution

e Resource API (38):

— This pattern makes it very easy to support new media types and repre-
sentation formats. Media Type Negotiation (70) can be used to meet
new customer data requirements while simultaneously supporting older
data requirements.

— New service logic can be introduced quite easily by providing clients new
URIs. If a URI must be deprecated, the service can return HTTP codes in
the 3xx range or use a URI Rewrite engine.

— Media types can often be extended to support new customer require-
ments through the Dataset Amendment pattern (237).

How THE PATTERNS PROMOTE OR HINDER SERVICE EVOLUTION v

e Request/Response (54):

— Responses can contain Linked Services (77).

— This interaction style introduces strong temporal coupling between the
client and service.

® Request/Acknowledge (59):

— Acknowledgments can contain Linked Services (77). Clients may use this
information to poll for continuing updates or to acquire the final
response. By including this information as Linked Services, the client
avoids becoming coupled to specific service URIs.

— Clients can pass URIs for callback services and relay services in with the
initial request. This helps to minimize the service’s coupling to specific
services owned by the client (or its partners), and enables the client
owner to easily add or change callback/relay service URIs and associated
logic over time. However, the messages and media types must be known
by all parties ahead of time.

e Linked Service (77):

— This pattern lets clients use new or altered services without becoming
coupled to the service’s address. The client must, however, know how to
parse each response to find information on the services it is interested in. The Patterns
It must also understand the requisite messages or media types, and must andiSenvice
know what server methods (i.e., GET, PUT, POST, DELETE) should be used at
various times.

Evolution

® Data Transfer Object (94):

— This pattern effectively decouples the client from internal objects, data-
base tables, and so on that are used to fulfill client requests. This makes
it possible to evolve the client and internal resources at different rates.

— Data Transfer Objects that rely on data-binding technologies increase
coupling between the DTO and message structures, making it harder to
evolve both.

— The Abstract Data Transfer Object (105) variation on this pattern may
be used to define a base type for a family of related structures.

v CHAPTER 7 WEB SERVICE EVOLUTION

® Request Mapper (109):

— Request Mappers let service owners support new customer data require-
ments without forcing the change onto all clients. This pattern also helps
to minimize the need to create separate services that process specific cli-
ent messages.

— Service evolution can be promoted through this pattern when it is used
with Message APIs (27) and Resource APIs (38).

® Response Mapper (122):

— Response Mappers provide a level of indirection between clients and the
internal objects, database tables, and so on used to create responses.
This lets the client and internal resources evolve at different rates.

— Specialized mappers can be created for specific clients.
— Response Mappers can be used to produce URIs for Linked Services (77).

— Service evolution can be promoted through this pattern when it is used
with Message APIs (27) and Resource APIs (38).

® Datasource Adapter (137):

— Datasource Adapters generally result in a tight coupling among the cli-

ThedP:tter'nS ent, service, and underlying resources (e.g., database table, domain
an ervice

Evolution object), thereby making it harder to evolve them at different rates.

— Developers can sometimes change service metadata to alter the service’s
behavior without requiring clients to be updated as well. One might, for
example, be able to alter the SQL used by an adapter to insulate the cli-
ent from column name changes on a table.

o Operation Script (144), Command Invoker (149), Workflow Connector
(156), and Orchestration (224):

— Services that implement or use these patterns provide a simplified inter-
face or Facade [GoF] over a complex set of activities. Since the client is
dependent on the service interface, the service owner can often change
the algorithms used to manipulate the objects or tables referenced by the
service without affecting the client.

How THE PATTERNS PROMOTE OR HINDER SERVICE EVOLUTION

Service Connector (168):

— The logic within connectors can often be altered to accommodate service
changes while leaving the client application unaffected.

— Connectors hide service URIs from clients, making it easier to change
service addresses as the need arises.

— Connectors that are generated from Service Descriptors (175) often need
to be re-created when the descriptor changes.

Service Descriptor (175):

— Service owners can augment descriptors to support different service ver-
sions, but this may confuse client developers. Older services can be dep-
recated in favor of newer services, but the service owners should usually
coordinate with client developers to determine the timing of such events.

— Breaking changes on descriptors usually require Service Proxies (168) to
be regenerated. The rollout of these changes often has to be carefully
coordinated with the client owners. (For more on breaking changes, see
the section What Causes Breaking Changes? earlier in this chapter.)

— Descriptors used in RPC APIs (18) are automatically regenerated when
the API is created through the Code-First practice. This often requires Ser-
vice Proxies (168) to be regenerated.

— Messages defined in descriptors can be easily extended to support new
customer requirements through the Dataset Amendment pattern (237).

Service Interceptor (195):

— Service Interceptors make it easy to add new generic behaviors without
having to update the client or service implementations. One can easily add
new rules for logging, authentication, data validation, data encryption,
message signing, caching, exception handling, and other similar functions.

Service Registry (220):
— Registries can be used to support a formal governance process that
guides service design from inception through retirement.

— Developer tools can frequently use registries to acquire up-to-date ser-
vice metadata.

— Service Connectors (168) can contact registries at runtime in order to
acquire recent service metadata.

The Patterns
and Service

Evolution

CHAPTER 7 WEB SERVICE EVOLUTION

o Enterprise Service Bus (221):

- By functioning as a Mediator [GoF], an ESB insulates clients from the
actual services used to fulfill their requests. This can make it easier to add
or change services as the need arises. However, the cost is often higher
complexity, higher latency, and increased capital expenditures. While cli-
ents become less coupled to the real services that process requests, they
often become tightly coupled to the bus. Additionally, developers may
have to spend additional time creating Message Translators [EIP].

e Tolerant Reader (243):

— This pattern enables the message recipient to become more robust
despite the fact that messages may contain unknown content and data
structures.

e Consumer-Driven Contract (250):

— Consumer-Driven Contracts are the union of all client expectations. Ser-
vice owners can use this pattern to understand how their clients are
affected when a service changes. This pattern also enables service devel-
opers to gain insight into how services must be altered in order to meet
the needs of all clients.

The Patterns
and Service

Evolution

Appendix

Reference to
External Patterns

The following convention is used in this appendix to reference external patterns:

Pattern Name [Reference]

The name of the pattern is followed by a cross reference to the Works Cited
in the Bibliography or to a web document.

External Patterns

The patterns follow:

Adapter [GoF]

Converts a class interface to another interface, thereby making it possible for
classes that were previously incompatible to interact. Adapters are some-
times called Wrappers because they encapsulate and hide the actual objects
used to fulfill client requests.

Command [GoF]

An object which encapsulates the logic used to process client requests. These
objects may be executed immediately, enqueued for deferred processing, per-
sisted, and logged.

Command Message [EIP]

A message which indentifies a logical operation the client would like to
invoke. Command messages also provide input data to these operations.

269

W AprPENDIX REFERENCE TO EXTERNAL PATTERNS

Content-Based Router [EIP]

Examines message content to determine where a message should be sent for
further processing. This pattern is often used when the logic for a logical
operation is spread across physical locations.

Correlation Identifier [EIP]

A unique identifier carried within a message that allows clients to match
responses with requests. This pattern is typically used with the Request/
Acknowledge pattern (59).

A.k.a. Request Identifier
Related: Asynchronous Completion Token, see

www.cs.wustl.edu/~schmidt/PDF/ACT.pdf

Data Transfer Object [POEAA]

This pattern is used with distributed object technologies like CORBA and
DCOM in order to optimize network traffic. Data Transfer Objects (DTOs)
are objects that encapsulate a set of related data that must be marshaled
between different processes.

Dependency Injection [www.martinfowler.com/articles/injection.html]

A pattern which separates the selection and instantiation of objects from the
clients that use these objects. Clients rely on an assembler to create the neces-
sary objects, and then communicate with these objects through common
interfaces. This eliminates direct dependencies between the client and the
objects they use.

Related: Inversion of Control (IoC)

Document-Literal-Wrapped
[www.ibm.com/developerworks/webservices/library/ws-whichwsdl/|

A WSDL pattern that specifies how RPC APIs (18) should format SOAP
messages. This pattern makes it relatively easy to validate messages against

XSDs. It accomplishes this by wrapping all procedure arguments within a
separate complex element whose name equals the target procedure name.

www.cs.wustl.edu/~schmidt/PDF/ACT.pdf
www.martinfowler.com/articles/injection.html
www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

APPENDIX REFERENCE TO EXTERNAL PATTERNS

Document Message [EIP]

A message which carries a business document like a purchase order or
invoice. The receiver decides how the document should be processed based
upon its content and type.

Domain Layer [DDD]

Domain logic is “business logic.” Therefore, a Domain Layer is that part of an
application or system which contains business logic. This layer may include
Domain Models and Table Modules [POEAA]. A Domain Layer may also be
divided further. It may, for example, have a Service Layer [POEAA] containing
web services that control the activities of Domain Objects.

Domain Model [POEAA]

An object model where each class encapsulates the data and behavior (i.e.,
business logic) of significant entities in the problem domain.

Event Message [EIP]

A message which carries data about a topic of interest to the receiver. The
receiver decides how the message should be processed based upon its content
and type.

A.k.a. Notification

Facade [GoF]

Provides a high-level interface to a subsystem. This interface hides the details
of the subsystem, thereby making it easier to use.

Factory Method [GoF]

An interface containing methods for object instantiation. Classes which
implement the interface encapsulate logic to instantiate the required classes,
thereby decoupling clients from these algorithms.

Front Controller [POEAA]

Receives all requests for a given web domain and invokes Commands |GoF]
based on request contents.

v AprPENDIX REFERENCE TO EXTERNAL PATTERNS

Gateway [POEAA]

An object which encapsulates the logic used to access an external system.

Related: Adapter |GoF], Facade |GoF|, Mediator |GoF]

Interceptor [POSA2]

Allows requests and responses to be manipulated before or after the target
service processes the request. Each Interceptor (a.k.a. Filter) may be added to
a “handler chain.” The client and service are unaware of the filter’s presence.

Mapper [POEAA]

An object that allows two objects to share data while keeping them indepen-
dent of each other. The objects that are referenced by the Mapper are totally
unaware of it.

Mediator [GoF]

An object that lets a set of objects communicate while keeping them indepen-
dent of one another. Objects notify the mediator of interesting events, and
the mediator propagates this information to the other objects. The objects
used by the Mediator must therefore be aware of its existence.

Message [EIP]

A data structure that packages information which may be exchanged
between two systems. While the EIP catalogue primarily uses this term to
refer to structures exchanged over messaging systems (e.g., queues), it is also
used to refer to information conveyed over HTTP.

Message Bus [EIP]

Software infrastructure that lets applications send and receive messages
without becoming directly coupled to each other. The Message Bus is the
base pattern for the Enterprise Service Bus (221).

Message Router [EIP]

Receives a message and forwards it to other processors (a.k.a. Filters) based
upon some set of conditions. The EIP catalogue goes into great detail on
several variations of this pattern (e.g., Content-Based Router, Dynamic
Router, etc.).

APPENDIX REFERENCE TO EXTERNAL PATTERNS

Message Store [EIP]

Stores message data to a central location that can be queried.

Normalizer [EIP]

Used to process requests that are formatted differently yet are semantically
equivalent. Normalizers route requests to Message Translators [EIP]. The
request is often passed through several process boundaries.

One-Way Message Exchange [www.w3.org/TR/soap12-part3/]
The WSDL specification describes this as a type of interaction in which a ser-
vice receives a request but doesn’t return a response.

A.k.a. In-Only [www.w3.org/TR/wsdl20-adjuncts/#in-only]|

Related: Fire-and-Forget

Operation Script [POEAA]

Contains application logic that directs the activities of entities (i.e., objects)
in a Domain Model [POEAA]. Each script typically fulfills a use case in an
application domain. Operation Scripts are different from Transaction Scripts
[POEAA] in that they delegate most of their work to domain objects.

Pipes and Filters [EIP]

An architectural style in which a large process is broken down into indepen-
dent steps called Filters. Messages are passed between processing steps by
way of the pipes (e.g., queues).

Post Once Exactly [http://tools.ietf.org/html/draft-nottingham-http-poe-00]

A mechanism that lets clients POST a request multiple times while ensuring the
request will only be processed once.

Prototype [GoF]

A design approach in which frequently used objects, or Prototypes, are cre-
ated ahead of time. These objects are typically managed by a class known as a
Registry. Clients contact the registry to request copies of Prototypes. The reg-
istry responds by returning a cloned (i.e., copied) instance of the desired class.

www.w3.org/TR/soap12-part3/
www.w3.org/TR/wsdl20-adjuncts/#in-only
http://tools.ietf.org/html/draft-nottingham-http-poe-00

v AprPENDIX REFERENCE TO EXTERNAL PATTERNS

Proxy [GoF]

Proxies control access to other objects, components, and services. They
behave as surrogates or stand-ins for the actual entities the client wishes to
use. Proxy interfaces are identical to the interfaces found on the target
objects, components, and services. From the client’s perspective, a proxy
looks much like the target entity. When a client invokes a proxy method, the
proxy formats and forwards the request to the target entity.

Related: Remote Proxy [GoF]

Record Set [POEAA]

An in-memory data structure containing tabular data.

Remote Proxy [GoF]
An object that acts as a surrogate for an entity that exists in a remote address

space.

Related: Proxy

Service Layer [POEAA]

Provides a distinct API which establishes a clear boundary between client
applications and domain-specific logic. The Service Layer is actually a part
of the Domain Layer [DDD]. Services often fulfill client requests by coordi-
nating the actions of Domain Objects and Table Modules [POEAA]. They
may also use workflow engines, code libraries, commercial packages, and
legacy applications.

Singleton [GoF]

Restricts instantiation of a class to one instance, and provides a common
interface which lets clients access this instance.

Table Module [GoF]

A class that controls access to a database table or view. Each table module
encapsulates the logic which manages CRUD (Create, Read, Update, Delete)
activities against the target table or view.

APPENDIX REFERENCE TO EXTERNAL PATTERNS W
Template Method [GoF]

A method which provides an outline for a generic algorithm. The specific
logic executed within each step of the algorithm is determined by the con-
crete classes that are instantiated.

Transaction Script [POEAA]

Organizes business logic by procedures (i.e., scripts). Each procedure con-
tains logic which directly accesses the target resource (e.g., database, file).

This page intentionally left blank

Glossary

ActiveX controls—

http://msdn.microsoft.com/en-us/library/aa751972(VS.85).aspx
AJAX—See Asynchronous JavaScript and XML

Anonymous Class—A temporary class that has no name (i.e., identifier).
Anonymous classes are defined and instantiated through in-line expressions
with the new operator.

Anonymous Method—A convention found in languages like C#, JavaScript,
and PHP where a block of code (i.e., function, method) can be passed into a
method as a parameter. Unlike traditional methods, these do not have names.

A.k.a. anonymous function

Apache Software Foundation Projects—

Project Associated URL

The Apache Software Foundation www.apache.org/

Apache web services projects http://ws.apache.org/

Axis2: A Web Services/SOAP/WSDL http://ws.apache.org/axis2/

engine

An HTTP Client http://hc.apache.org/httpclient-3.x/
JXPath: An XPath interpreter http://commons.apache.org/jxpath/

Apache CXF: An open source framework http://cxf.apache.org/
used to host web services (SOAP/WSDL

and RESTful/HTTP) and classic remoting

technologies (e.g., CORBA objects)

HTTPD: The Apache web server http://httpd.apache.org/

Log4]: A logging utility http://logging.apache.org/log4ij/

277

www.apache.org/
http://ws.apache.org/
http://ws.apache.org/axis2/
http://hc.apache.org/httpclient-3.x/
http://commons.apache.org/jxpath/
http://cxf.apache.org/
http://msdn.microsoft.com/en-us/library/aa751972(VS.85).aspx
http://httpd.apache.org/
http://logging.apache.org/log4j/

GLOSSARY

Project

Associated URL

Apache ODE: An Orchestration Engine
that uses the WS-BPEL standard

http://ode.apache.org/

Apache ServiceMix: An open source ESB

http://servicemix.apache.org/home.html

Apache Subversion: An open source cen-
tralized version control system

http://subversion.apache.org/

Apache Struts: An open source framework
that implements the MVC pattern

http://struts.apache.org/

Apache Thrift: An RPC framework for
cross-language service development origi-
nally developed by Facebook and contrib-
uted to Apache

http://thrift.apache.org/

Apache XMLBeans: An XML data-bind-
ing technology

http://xmlbeans.apache.org/

ASCII—The American Standard Code for Information Interchange.

http://en.wikipedia.org/wiki/ASCII

ASPNET MVC—A Microsoft framework which implements the MVC

pattern.

www.asp.net/mvc

Asynchronous JavaScript and XML (AJAX)—A number of client-side script-
ing techniques which leverage asynchronous background calls to web ser-
vices. These techniques promote dynamic and rich web applications, and
allow data to be retrieved or updated without having to load an entire web

page.

Atom Publishing Protocol—An XML vocabulary used to create and update

web-based resources over HTTP.

http://tools.ietf.org/html/rfc5023

Basic Authentication—Describes a simple mechanism to encode and trans-
mit client credentials (i.e., username and password) over HTTP. This proto-
col is not considered a secure mechanism for client authentication.

http://tools.ietf.org/html/rfc2617

www.asp.net/mvc
http://en.wikipedia.org/wiki/ASCII
http://ode.apache.org/
http://servicemix.apache.org/home.html
http://subversion.apache.org/
http://struts.apache.org/
http://thrift.apache.org/
http://xmlbeans.apache.org/
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc2617

GLOSSARY v

Black-box Reuse—A form of software reuse in which the implementation
details of a class or component are opaque and cannot be altered by the client
developer. Developers code to the public interface of these entities. Compo-
nents that use this form of reuse are typically distributed as binary libraries.

BPEL—See Business Process Execution Language

BSD Sockets API—A “low-level” C library for interprocess communications
over TCP/IP.

http://en.wikipedia.org/wiki/Berkeley_sockets

BSON—A framework that provides binary-encoded serialization of JSON-
like data structures.

http://bsonspec.org/

Business Process Execution Language (BPEL)—An open standard which
defines processes as a set of interactions with web services.

Cache—Software infrastructures that typically store data in memory or file
systems for use across multiple client requests. Caches help to minimize
redundant queries and computations by storing data from recent client
requests. If the results for a query can be found in a cache, then data is
returned from that cache. Caches may be implemented as client-side caches,
intermediary caches, and server caches. Network utilization can be opti-
mized and server load can be greatly reduced when data is served from
caches that are close to the client.

Related: Proxy Server, Reverse Proxy

Castor—An XML data-binding framework for Java.

www.castor.org/xml-framework.html

Common Object Request Broker Architecture (CORBA)—A set of vendor-
independent standards for distributed-object communications. CORBA tech-
nologies allow software components to be consumed by client applications
created for disparate computing platforms (i.e., operating systems, program-
ming languages, etc.).

www.omg.org/gettingstarted/corbafaq.htm

www.castor.org/xml-framework.html
www.omg.org/gettingstarted/corbafaq.htm
http://en.wikipedia.org/wiki/Berkeley_sockets
http://bsonspec.org/

GLOSSARY

Composition—Object composition occurs when a class contains or uses
other objects. For example, an Order object might contain a collection of
Order_Item objects.

Service composition is similar. Composite services are created by assem-
bling smaller, simpler services into larger, more complex processes. Compos-
ite services can invoke external services directly. The Workflow Connector
pattern (156) and Orchestration Engine pattern (224) may also be used to
create composite services.

Related: Conversations

Conversation—The exchange of topically related messages between two or
more parties, possibly including intermediaries and crossing organizational
boundaries. Conversations are usually initiated to carry out business tasks.

CORBA—See Common Object Request Broker Architecture

CRUD—An acronym which means “Create, Read, Update, Delete”. These
are the common logical operations performed by database-centric
applications.

Daemon—A software program that runs as an unattended background
process.

Data Binding—Software infrastructure that maps data in XML, JSON, or
proprietary formats to objects. Once mappings have been defined, the associ-
ated data-binding framework can deserialize source data structures to
objects, and vice versa.

Dataset—A collection of data. Datasets are often created as tabular data
structures, but may also use other forms (e.g., jagged arrays).

Deadlock—Occurs when two clients acquire locks on different resources,
then attempt to acquire locks on the resources being held by the other. The
clients remain at an impasse because they must wait for the other to release
its locks.

Denial of Service (DoS)—A malicious attack that seeks to render target serv-
ers unavailable or unresponsive. One of the most common ways to do this is
to flood the target web servers with invalid requests. This makes it difficult

GLOSSARY

for servers to handle legitimate client traffic, and often consumes an exces-
sive amount of server resources (e.g., memory, CPU, etc.).

Deserialize—The inverse of serialization. The act of converting data from a
byte stream into a local data structure (e.g., class) that can be acted upon by
a service.

A.k.a. Unmarshal

Digest Authentication—Describes a mechanism to encode and transmit cli-
ent credentials (i.e., username and password) over HTTP. This protocol is
considered to be more secure than Basic Authentication because of its use of
MDS5 hash functions to encrypt client credentials.

http://tools.ietf.org/html/rfc2617

Distributed Component Object Model (DCOM)—Microsoft’s proprietary
standard for distributed-object communications. DCOM lets software com-
ponents be consumed by client applications written in different program-
ming languages. It was often difficult to use these components on non-
Microsoft platforms.

Distributed Transaction—A distributed transaction exists when multiple net-
worked resources (e.g., databases, queues, caches, file systems, etc.) are
enlisted in a single “all-or-nothing transaction.” In other words, all of the
operations against the resources must complete successfully, or all operations
must be reversed.

WS-* services may use the WS-AtomicTransaction [WS-AT] specification
to implement distributed transactions through a Two-Phase Commit Proto-
col (2PC). In the first phase, services are invoked and a transaction coordina-
tor enlists each service into the global transaction. When a service completes,
it casts a vote to commit or abort its work. The transaction coordinator col-
lects these votes at the end of phase one. If even one service votes to abort,
the coordinator instructs all services to roll back their work in the second
phase. However, if all services voted to commit, the coordinator instructs
them to commit. 2PC requires services to maintain resource locks, typically
database locks, for the duration of the transaction. For this reason, it is best
used for transactions that are relatively short in duration. Additionally, since
it requires a high degree of trust between clients and services, it is usually
reserved for use within secure corporate networks.

http://tools.ietf.org/html/rfc2617

GLOSSARY

DLL—See Dynamic Link Library

Document Object Model (DOM)—A language-independent mechanism for
representing and manipulating XML, HTML, and XHTML documents.
DOM parsers load entire documents into memory and permit random access
to any node in the document through programmatic means or declarative
XPath scripts.

www.w3.org/DOM/
Domain Name System (DNS)—An Internet standard for naming, locating,
and addressing networked computers and services on the Internet or within

secure intranets. Networked computers are associated with domains, and
DNS records are replicated to distributed databases.

Domain Object—Individual classes within a Domain Model [POEAA] that
encapsulate the data and behavior of logical entities in a specific business
domain.

A.k.a. Entities [DDD], Reference Objects [DDD], Business Object
DoS—See Denial of Service

Dynamic Link Library (DLL)—A proprietary Microsoft standard for encap-
sulating code libraries as deployable binary units that can be reused by dif-
ferent client applications.

EBCDIC—Extended Binary Coded Decimal Interchange Code.
http://en.wikipedia.org/wiki/Ebcidic

Endianness—The rules which define how a specific computing platform
orders the bytes of 16-, 32-, or 64-bit words stored in memory.

A.k.a. Byte Order

Extensible Markup Language (XML)—
www.w3.org/ XML/

www.w3.org/DOM/
www.w3.org/XML/
http://en.wikipedia.org/wiki/Ebcidic

GLOSSARY

Extensible Stylesheet Language Transformations (XSLT)—An XML-based
language that defines how content from XML can be converted into other
formats and data structures.

www.w3.org/TR/xslt

Extensible XML Application Markup (XMAL)—A proprietary XML-based
language from Microsoft. When used with Windows Workflow (WF), it lets
developers describe business process workflows, much like WS-BPEL.

http://msdn.microsoft.com/en-us/library/ms735921(VS.90).aspx

Fail-Over—The ability to automatically switch over to a back-up resource
(e.g., server, computer disk, network, etc.) when a critical error occurs on the
primary resource.

Fault Message—A SOAP standard which lets services convey error informa-

tion to clients through responses.

Related: SOAP

Firewall—A network device that can be configured to permit, deny, encrypt,
decrypt, and forward requests to servers and services based upon a set of
rules defined by network administrators.

Git—A free and open sourced version control system originally developed by
Linus Torvalds. It is considered a distributed repository because it does not
require a central server. For more information, see http:/git-scm.com/.

Git Submodules—Provides the means to import dependencies from external
repositories into Git. For more information, see
www.kernel.org/pub/software/scm/git/docs/git-submodule.html

Google Protocol Buffers—An efficient protocol for serializing structured
data in a language- and platform-neutral manner.

http://code.google.com/apis/protocolbuffers/

www.w3.org/TR/xslt
www.kernel.org/pub/software/scm/git/docs/git-submodule.html
http://git-scm.com/
http://code.google.com/apis/protocolbuffers/
http://msdn.microsoft.com/en-us/library/ms735921(VS.90).aspx

GLOSSARY

Governance—The processes used by organizations to manage software
changes so that “Quality of Service” (QoS) standards are ensured, legal con-
tracts and regulations are upheld, and business goals are achieved.

Hypermedia—Text-based data formats which contain links to other
resources (e.g., images, audio, video, documents, files, and executable
programs).

Hypertext Transport Protocol (HTTP)—
www.w3.org/Protocols/rfc2616/rfc2616.html, www.w3.org/Protocols/

HTTP/AsImplemented.html, www.iana.org/assignments/http-status-codes

Interface Definition Language (IDL)—A meta-language used to define the
public interfaces of software components. Each interface defines a contract
that identifies the operations clients may call, the input arguments for each
operation, and the related return types. Clients bind to this contract, and
communicate with the software components through these interfaces. This
insulates clients from the implementation details of the component. Compo-
nents may run locally in the consumer’s process, or remotely on another
machine.

Related: CORBA, DCOM

Internet Information Services (IIS)—Microsoft’s web server.

www.lis.net/

Java API for RESTful Web Services (JAX-RS)—A Java API used to create
RESTful services and Resource APIs (38).
http://jcp.orglen/jsr/detail?id=311, https://jsr311.dev.java.net/

Java API for XML Processing (JAXP)—Provides XML parsers for DOM,
SAX, and StAX interfaces. Also provides an XSLT interface.
http://jcp.orglen/jsr/detail?id=206

Related: Document Object Model, Simple API for XML

Java API for XML Web Services (JAX-WS)—A Java API used to create web
services that have RPC APIs (18) or Message APIs (27).

http://jcp.orglen/jsr/detail?id=224, https://jax-ws.dev.java.net/

www.w3.org/Protocols/rfc2616/rfc2616.html
www.w3.org/Protocols/HTTP/AsImplemented.html
www.w3.org/Protocols/HTTP/AsImplemented.html
www.iana.org/assignments/http-status-codes
www.iis.net/
http://jcp.org/en/jsr/detail?id=311
https://jsr311.dev.java.net/
http://jcp.org/en/jsr/detail?id=206
http://jcp.org/en/jsr/detail?id=224
https://jax-ws.dev.java.net/

GLOSSARY

Java Architecture for XML Binding (JAXB)—Provides mechanisms to map
XML data to Java objects. Once mappings have been defined, the frame-
work has the information it needs to deserialize XML to objects, and to seri-
alize object data to XML documents.

https://jaxb.dev.java.net/
Related: XML Data Binding

Java Message Service (JMS)—A Java API for message queuing.
http://java.sun.com/products/jms/docs.html

JavaScript Object Notation (JSON)—A lightweight and platform-indepen-
dent data-interchange format.
www.ietf.org/rfc/rfc4627 . txt?>number=4627, www.json.org/

JSON RPC—A specification for encoding remote procedure calls through
JSON. For more information, see

http://json-rpc.org/.

JSON Schema—A vocabulary used to declare JSON data structures.
http://tools.ietf.org/html/draft-zyp-json-schema-02)

JUnit—A unit testing framework for Java. For more information, see

WwWw.junit.org/.

Latency—The time it takes for a service to provide a response or acknowl-
edgment. Latency is affected by many factors including network utilization,
server load, data payload size, data compression, and much more.

Late Binding—Runtime resolution of a service’s address, accepted media
types, and the server methods used to dispatch requests. Late binding can be
accomplished through many patterns including Linked Services (77) and
Media Type Negotiation (70). Service Connectors (168) and Service Regis-
tries (220) may also be used to resolve service URIs.

Load Balancing—A variety of software and hardware techniques used to dis-
tribute requests across one or more servers. When load balancing is used, cli-
ents don’t communicate directly with the web servers. Instead, the load

https://jaxb.dev.java.net/
http://java.sun.com/products/jms/docs.html
www.ietf.org/rfc/rfc4627.txt?number=4627
www.json.org/
http://json-rpc.org/
http://tools.ietf.org/html/draft-zyp-json-schema-02
www.junit.org/

GLOSSARY

balancer intercepts each request and uses an algorithm to determine which
server in the “server farm” (a.k.a. cluster) should handle the request. The
goal is to spread the work evenly across the servers.

Lost-Update Problem—Occurs when two clients attempt to update the same
resource at roughly the same time. Consider the case where client A and cli-
ent B both retrieve data on customer C at the same time. Let’s say client A
updates and saves this record, then client B does the same. If client A imme-
diately reads the data on customer C again, it may appear as though their
update was lost because they now see client B’s updates.

Man-in-the-Middle Attack (MITM)—Occurs when a third party intercepts
communications between a client and service. In the case of web services, the
malicious party co-opts the TCP connection between the client and the
server. The end result is that the client has a connection to the middleman,
which also has a connection to the target service. The middleman may
silently eavesdrop on the conversation to acquire information, or inject com-
mands to alter the flow of the conversation.

Media Type—Used to categorize data formats exchanged over the Internet.
Examples include plain text files, images, sound and video files, and even
software programs. Media types have two parts, referred to as the Content-
type and Subtype.

www.lana.org/assignments/media-types/

A.k.a. MIME, Content Type

Message Transmission Optimization Mechanism (MTOM)—Defines how
SOAP data may be serialized as binary data in a way that minimizes the size
of message payloads. Considered a WS-* specification.

www.w3.0rg/TR/2005/REC-soap12-mtom-20050125/

Microformat—A set of simple data formats that can be used in a variety of
applications.

http://microformats.org/
Microsoft Enterprise Library—A set of DLLs that provide common behav-
iors such as logging, authentication, caching, and so forth.

http://msdn.microsoft.com/en-us/library/ff648951.aspx

www.iana.org/assignments/media-types/
www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://microformats.org/
http://msdn.microsoft.com/en-us/library/ff648951.aspx

GLOSSARY v

Microsoft Interface Definition Language (MIDL)—A proprietary Interface
Definition Language used with Microsoft’s implementation of RPC.

http://msdn.microsoft.com/en-us/library/aa367091(VS.85).aspx

Microsoft Message Queuing (MSMQ)—Microsoft’s implementation of
queuing middleware.

http://msdn.microsoft.com/en-us/library/ms711472(VS.85).aspx

Multipurpose Internet Mail Extension (MIME)—Originally used to define
standard data types that could be attached to emails. Examples include plain
text files, images, sound and video files, and even software programs.
MIMEs are now used to identify standard media types that can be
exchanged by RESTful web services.

www.iana.org/assignments/media-types/

Related: Media Type

Nondeterministic Content Models—Occurs when an XML processor can’t
figure out when the end of an element or document occurs.

NUnit—A .NET port of the JUnit testing framework. For more information,
see

http://nunit.org

Object Relational Mapper—Object Relational Mappers (ORMs) move data
between relational databases and object models. They free developers from
having to create SQL and manage database transactions.

Related: Domain Model, Active Record, Data Mapper [POEAA]

Open Data Protocol (OData)—A Microsoft specification that extends Atom
Publishing Protocol. This protocol defines mechanisms for querying and
updating resources exposed over HTTP. (www.odata.org/)

Open Systems Interconnection (OSI) Model—A standard that defines com-
mon layers used by networked systems.

www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!'PDF-
E&type=items

www.iana.org/assignments/media-types/
http://msdn.microsoft.com/en-us/library/aa367091(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms711472(VS.85).aspx
www.odata.org/
www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDFE&type=items
www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDFE&type=items
http://nunit.org

GLOSSARY

Origin Server—The web server from which specific response data originates.
This term is used to differentiate web servers from web caches (e.g., proxies)
which can also provide response data.

Pipeline—A chain of independent processors (a.k.a. Filters) that are arranged
into a sequence where the output from one element is provided as the input
to the next. This concept was first articulated by Douglas Mcllroy.

Related: Pipes and Filters [EIP]

Plain Old XML (POX)—Refers to any use of XML which avoids standards
like SOAP. Developers that use POX messages often avoid XML Schema as
well. The argument is that use of such standards tends to bloat the message
payload.

Plug-In—A program that can be downloaded from a server on-demand.
These programs are typically hosted in applications like web browsers, email
clients, mobile devices, or consumer appliances (e.g., multimedia and gaming
stations, GPS devices, etc.). They often run in a “sandbox” and cannot
directly access the hardware subsystems of their host.

Postel’s Law—This principle was posited by John Postel, a computer scientist
and pioneer who played a significant role in the development of the Internet
and its standards. Postel’s Law has been found in many Request For Com-
ments (RFCs) as early as RFC 760 in 1980 (re: http://tools.ietf.org/html/
rfc760, section 3.2). RFC 1122 (re: http://tools.ietf.org/html/rfc1122#page-12)
suggests that one should “Be liberal in what you accept, and conservative in
what you send”. Other wordings for this principle have arisen over time. For
more information, see The Postel Center, www.postel.org/postel.html.

Proxy Server—See Reverse Proxy

Race Condition—This situation can occur when messages are processed
asynchronously. It happens when the completion time of two parallel tasks
in a logical workflow cannot be predicted. Since the tasks execute in parallel,
they are racing to provide input to downstream tasks. This can be a problem
if subsequent tasks expect to receive output from these tasks in a specific
sequence.

www.postel.org/postel.html
http://tools.ietf.org/html/rfc1122#page-12
http://tools.ietf.org/html/rfc760
http://tools.ietf.org/html/rfc760

GLOSSARY v

Regression Test—Practices used to ensure that any changes made to software
do not introduce runtime exceptions or cause unexpected program results.
Regression tests are typically created through a combination of unit tests and
functional tests.

Related: Governance

Remote Procedure Call (RPC)—Remote Procedure Call Protocol Specifica-
tion Version 2.

www.ietf.org/rfc/rfc1831.txt

Representational State Transfer (REST)—An architectural style that is
defined by a specific set of constraints. REST calls for layered client/server
systems that employ stateless servers, liberal use of caching on the client,
intermediaries, and server, a uniform interface, and optionally, code-on-

demand. For more information, see Fielding in the Works Cited in the
Bibliography.

Reverse Proxy—Receives Internet traffic addressed to internal web servers.
Provides Network Address Translation (NAT) which converts public
addresses to private internal addresses, load balancing, caching capabilities,
and data compression.

Robustness Principle—See Postel’s Law

Ruby on Rails—An open source web development framework

http://rubyonrails.org/
SAX—See Simple API for XML (SAX)

Scalability—The capacity of a “logical system” comprising one or more serv-
ers to maintain acceptable response times and throughput as load increases.

Schematron—A rules-based meta-language which makes it possible to check
an XML document’s structure and its conformance to complex business
rules.

www.schematron.com/

Secure Sockets Layer (SSL)—See Transport Layer Security (TLS)

www.ietf.org/rfc/rfc1831.txt
www.schematron.com/
http://rubyonrails.org/

GLOSSARY

Serialize—The act of converting data from a local in-memory data structure
(e.g., class) to a stream of bytes that can be transmitted over the network.
These objects are often, but not always, deserialized by the receiver (web ser-
vice or client) in the same form.

A.k.a. Marshal.

Related: Deserialize
Service Composition—See Composition

Servlet—A Java programming language construct commonly used to handle
web service requests.

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets2.html

Session—A bounded exchange of information between a client and server.
Sessions begin when the client first opens a connection to the server. They are
terminated when the client deliberately disconnects or when the server
decides a client’s session has been inactive for too long. The server typically
allocates memory that is used to store client data. This data may be accessed
by web services across multiple requests.

Related: Session Variables

Session Variables—Memory allocated on a server for a specific client session.
Once this memory is allocated, it is usually held until the client explicitly
releases it or the client’s session times out.

Related: Session

Simple API for XML (SAX)—Originally a Java-only API, but now available
in multiple programming languages. SAX parsers read forward through
XML documents and trigger events when elements, attributes, or other con-
tent is found. These events are triggered in custom classes created by devel-
opers. Each callback method that receives a SAX event contains code to
extract data from the element or attribute which triggered the event. Since
XML documents are traversed in a forward-only fashion, nodes that have
passed cannot be accessed again. SAX parsers also prohibit manipulation of
XML document data. However, these parsers are a memory-efficient alterna-
tive to the XML DOM and are often used in high load scenarios.

www.saxproject.org/

www.saxproject.org/
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets2.html

GLOSSARY v

SOAP—This term was originally coined as an acronym for “Simple Object
Access Protocol.” However, with SOAP 1.2, this translation was dropped.
The term “SOAP,” in its current usage, has no translation.

www.w3.org/TR/soap/
Software Configuration Management (SCM)—A set of activities and soft-
ware used to manage changes to software products. SCM encompasses ver-

sion control, reporting, and work-item management. Some SCM tools also
manage automated builds and provide defect tracking.

Related: Governance

Spring—A multipurpose open source framework.

www.springsource.org/about
SSL—See Secure Sockets Layer, Transport Layer Security
Subversion—See Apache Subversion

Subversion External Definitions—Provides the means to import dependen-
cies from external repositories into Subversion. For more information, see

http://svnbook.red-bean.com/en/1.1/ch07s04.html

svcUtil—A tool that generates proxies for .NET clients.
http://msdn.microsoft.com/en-us/library/aa347733.aspx

Transport Layer Security (TLS)—Used to ensure data privacy over unsecure
networks.

http://tools.ietf.org/html/rfc5246

Related: Secure Sockets Layer

Unicode Transformation Format (UTF)—For information on UTF-8, see
http://tools.ietf.org/html/rfc3629

UTE-16, see

http://tools.ietf.org/html/rfc2781

www.w3.org/TR/soap/
www.springsource.org/about
http://svnbook.red-bean.com/en/1.1/ch07s04.html
http://msdn.microsoft.com/en-us/library/aa347733.aspx
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc2781

GLOSSARY

Unified Modeling Language (UML)—A standard set of graphic notations
and diagramming techniques used to create logical and physical models
which depict various aspects of software systems.

www.uml.org/

Uniform Resource Identifier (URI)—A set of characters that identifies an
abstract or physical resource which is usually network addressable.

www.ietf.org/rfc/rfc3986.txt
Universally Unique Identifier (UUID)—A 128-bit value that is guaranteed to
be globally unique across space and time.

http://tools.ietf.org/html/rfc4122

URI Rewrite—A technique typically used to make URIs more readable and
friendly to search engines. URI Rewriting can also be used when a server
administrator wishes to redirect requests from one address to a new URI.

URI Template—Defines the rules for constructing URIs.
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
www.ibm.com/developerworks/web/library/wa-uri/

URL Encoding—A practice in which a URI is converted to a format which
can be transmitted using the ASCII character set even when the URI uses

non-ASCII characters. Spaces are normally replaced with the + sign, and
“unsafe” ASCII characters are replaced with the % sign.

WCF—See Windows Communication Foundation

Web Application Description Language (WADL)—A meta-language that
provides a generic approach to describe any web resource.
www.w3.org/Submission/wadl/

Web Distributed Authoring and Versioning (WebDAV)—Extends HTTP with
a set of methods and behaviors that allow remote users to edit and maintain

resources. This protocol is used in many applications, including the Subver-
sion version control system.

http://tools.ietf.org/html/rfc4918

www.uml.org/
www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/html/rfc4122
www.ibm.com/developerworks/web/library/wa-uri/
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
www.w3.org/Submission/wadl/
http://tools.ietf.org/html/rfc4918

GLOSSARY v

Web Services Addressing (WS-Addressing)—Specifies how information
about message senders and receivers may be provided in SOAP messages.
Considered a WS-* specification.

www.w3.org/TR/ws-addr-core/

Web Services Atomic Transactions (WS-AT)—Describes how web services
can be used in distributed transactions. Considered a WS-* specification.
http://docs.oasis-open.org/ws-tx/wsat/2006/06

Related: Distributed Transaction

Web Services Business Process Execution Language (WS-BPEL)—A meta-

language that lets developers describe control-flow logic for business pro-
cesses where each task is a web service. Considered a WS-* specification.

www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
Web Services Description Language (WSDL)—An XML-based meta-

language used to describe the interfaces of web services that send and receive
SOAP messages. Considered a WS-* specification.

www.w3.org/TR/wsdl

Web Services Discovery (WS-Discovery)—Describes how clients may send
SOAP messages to a multicast group in order to acquire service addresses.
Considered a WS-* specification.

http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01
Web Services Interoperability Basic Profile (WS-I Basic Profile)—A set of

standards that seeks to ensure interoperability across disparate web service
frameworks.

www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

Web Services Interoperability Organization (WS-I)—An organization that
establishes standards for web service interoperability.
WWWw.ws-i.0rg/

Web Services Interoperability Technology (WSIT)—An open source project,
originally backed by Sun, which sought to ensure that Java frameworks

www.w3.org/TR/ws-addr-core/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
www.w3.org/TR/wsdl
www.ws-i.org/
www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01

GLOSSARY

using WS-* standards would be compatible with Microsoft’s WCF
framework.

http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/

reference/tutorials/wsit/doc/index.html

Web Services Policy Framework (WS-Policy)—A generic framework that
describes how the capabilities, characteristics, constraints, and require-
ments for a web service can be described to clients. Considered a WS-*
specification.

www.w3.org/TR/ws-policy/
Web Services Reliable Messaging (WS-RM)—This specification defines how
clients and services can collaborate to ensure that messages are delivered

in the correct sequence and the correct number of times. Considered a WS-*
specification.

www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
Web Services Security (WS-Security)—A set of protocols that prescribe

how message integrity and privacy can be ensured. Considered a WS-*
specification.

www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

White-box Reuse—A form of software reuse in which the client developer
has access to the internal implementation of the code and can change it.

Windows Communication Foundation (WCF)—Microsoft’s framework for
web services. This framework supports RESTful web services and SOAP/
WSDL services.

http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
Windows Service—See Daemon

Wsimport—A tool that generates JAX-WS artifacts for Java clients.

https://jax-ws.dev.java.net/jax-ws-ea3/docs/wsimport.html

http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/index.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/index.html
www.w3.org/TR/ws-policy/
www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
https://jax-ws.dev.java.net/jax-ws-ea3/docs/wsimport.html

GLOSSARY v

X.509 Certificate—A Public Key Infrastructure (PKI) standard used to repre-
sent client credentials. These certificates are typically provided by third-party
certificate authorities (e.g., VeriSign) who ensure the identity of clients.

www.ietf.org/rfc/rfc2459.txt
XML—See Extensible Markup Language (XML)

XML Path Language (XPath)—A query language used to search XML
documents.

www.w3.org/TR/xpath/

XML Schema—A meta-language which lets developers define the structure,

content, and semantics of XML documents. XML processors can validate
XML documents against these schemas.

www.w3.org/XML/Schema
XMAL—See Extensible XML Application Markup (XAML)

XSLT—See Extensible Stylesheet Language Transformations (XSLT)

www.ietf.org/rfc/rfc2459.txt
www.w3.org/TR/xpath/
www.w3.org/XML/Schema

This page intentionally left blank

Bibliography

Works Cited

[Brown 1]
Brown, Kyle. Asynchronous Queries in J2EE.

www.javaranch.com/journal/2004/03/AsynchronousProcessingFromServlets.html

[Brown 2]
Brown, Kyle. Web Services Value Type Inberitance and Interoperability.

www.javaranch.com/journal/2004/03/AsynchronousProcessingFromServlets.html

[DDD]
Evans, Eric. Domain Driven Design (Addison-Wesley, 2003).

[EIP]

Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions (Addison-Wesley, 2003).

[Fielding]

Fielding, Roy T. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation. University of California Irvine, 2000.

www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

297

www.javaranch.com/journal/2004/03/AsynchronousProcessingFromServlets.html
www.javaranch.com/journal/2004/03/AsynchronousProcessingFromServlets.html
www.ics.uci.edu/~flelding/pubs/dissertation/top.htm

BIBLIOGRAPHY

[Fowler]
Fowler, Martin. Mocks Aren’t Stubs.

http://martinfowler.com/articles/mocksArentStubs.html

[Freeman, Pryce]

Freeman, Steve, and Nat Pryce. Growing Object-Oriented Software, Guided by
Tests (Addison-Wesley, 2010).

[GoF]

Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995).

[IBM, ESB Patterns]
https://www.ibm.com/developerworks/wikis/display/esbpatterns/ESB+and+
Connectivity+Patterns

[Manes]

Manes, Anne Thomas. SOA is Dead; Long Live Services. January 2009.

http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

[Manolescu]
Manolescu, Dragos A. Paiterns for Orchestration Environments.

http://hillside.net/plop/2004/papers/dmanolescu0/PLoP2004_dmanolescu0_0.pdf

[Meyer, Bertrand]

Meyer, Bertrand. “Applying Design by Contract.” In Computer (IEEE) 25(10):
October 1992, pp. 40-51.

http://se.ethz.ch/~meyer/publications/computer/contract.pdf

[Meszaros, Gerard]

Meszaros, Gerard. xUnit Test Patterns, Refactoring Test Code (Addison-
Wesley, 2007).

http://martinfowler.com/articles/mocksArentStubs.html
https://www.ibm.com/developerworks/wikis/display/esbpatterns/ESB+and+Connectivity+Patterns
https://www.ibm.com/developerworks/wikis/display/esbpatterns/ESB+and+Connectivity+Patterns
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
http://hillside.net/plop/2004/papers/dmanolescu0/PLoP2004_dmanolescu0_0.pdf
http://se.ethz.ch/~meyer/publications/computer/contract.pdf

BIBLIOGRAPHY v

Newcomer, Eric, and Greg Lomow. Understanding SOA with Web Services
(Pearson Education, 20035).

[Newcomer, Lomow]

[Nottingham, Marc]
Nottingham, Marc. Post-Once-Exactly. March 20035.

http://tools.ietf.org/html/draft-nottingham-http-poe-00

[OASIS Ref Model]

The OASIS Reference Model for Service Oriented Architecture 1.0. October
2006.

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

[Obasanjo]
Obasanjo, Dare. Designing Extensible, Versionable XML Formats. July 2004.
www.xml.com/pub/a/2004/07/21/design.html

[Orchard]
Orchard, David. Versioning XML Vocabularies. December 2003.
www.xml.com/pub/a/2003/12/03/versioning.html

[POEAA]

Fowler, Martin. Patterns of Enterprise Application Architecture (Addison-
Wesley, 2002).

[POSA2]

Schmidt, Douglas C., Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent and
Networked Objects (Wiley, 2000).

[Richardson, Ruby]

Richardson, Leonard, and Sam Ruby. RESTful Web Services (O’Reilly Media,
Inc., 2007).

www.xml.com/pub/a/2004/07/21/design.html
www.xml.com/pub/a/2003/12/03/versioning.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://tools.ietf.org/html/draft-nottingham-http-poe-00

BIBLIOGRAPHY

[Robinson]
Robinson, Ian. Consumer Driven Contracts: A Service Evolution Pattern.

http://martinfowler.com/articles/consumerDrivenContracts.html

[Snell]
Snell, James. Asynchronous Web Service Operations using JMS. October 2004.

www.ibm.com/developerworks/webservices/library/ws-tip-altdesign1/

[van der Aalst, et al.]

van der Aalst, Wil, Arthur ter Hofstede, Bartek Kiepuszewski, and Alistair
Barros. Workflow Patterns.

http://workflowpatterns.com/

[Waldo, Wyant, Wollrath, Kendall]

Waldo, Jim, Geoff Wyant, Ann Wollrath, and Sam Kendall. A Note on
Distributed Computing. 1994.

http://labs.oracle.com/techrep/1994/abstract-29.html

[Zdun, Voelter, Kircher]

Zdun, Uwe, Markus Voelter, and Michael Kircher. Design and Implementation
of an Asynchronous Invocation Framework for Web Services.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1270

Related Books, Papers, and Articles

Barros, Alistair, Marlon Dumas, and Arthur ter Hofstede. Service Interaction
Patterns: Towards a Reference Framework for Service-Based Business Process
Interconnection.

www.workflowpatterns.com/documentation/documents/
ServicelnteractionPatterns.pdf

http://martinfowler.com/articles/consumerDrivenContracts.html
www.ibm.com/developerworks/webservices/library/ws-tip-altdesign1/
http://workflowpatterns.com/
www.workflowpatterns.com/documentation/documents/ServiceInteractionPatterns.pdf
www.workflowpatterns.com/documentation/documents/ServiceInteractionPatterns.pdf
http://labs.oracle.com/techrep/1994/abstract-29.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1270

BIBLIOGRAPHY v

Brewer, Dr. Eric A. Towards Robust Distributed Systems.

www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
Burke, Bill. RESTful Java (O’Reilly Media, Inc., 2010).
Bustmante, Michele Leroux. Learning WCF (O’Reilly Media, Inc., 2007).

Fielding, Roy T. REST APIs Must Be Hypertext Driven. October 2008.

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Fielding, Roy T. It is okay to use Post. March 2009.

http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post
Hansen, Mark D. SOA Using Java Web Services (Pearson Education, 2007).

Hohpe, Gregor. Correlation and Conversations. May 21, 2004.

www.eaipatterns.com/ramblings/09_correlation.html
Josuttis, Nicolai M. SOA in Practice (O’Reilly Media, Inc., 2007).

Kanneganti, Ramarao, and Prasad Chodavarapu. SOA Security (Manning
Publications Co., 2008).

Lowy, Juval. Programming WCF (O’Reilly Media, Inc., 2007).

Luckham, David, and Brian Frasca. Complex Event Processing in Distributed
Systems. Program Analysis and Verification Group, Computer Systems Lab,
Stanford University, August 18, 1998.

Neto, I.S., and F. Reverbel. Lessons Learned from Implementing WS-
Coordination and WS-AtomicTransaction. Computer and Information Science,
2008. ICIS 08. Seventh IEEE/ACIS International Conference, May 14-16,
2008, pp. 367-372.

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http %3 A %2F % 2Fieeexplore.
ieee.org%2Fiel5 %2F4529779%2F4529780%2F04529847.pdf % 3Farnumber
%3D4529847&authDecision=-203

www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post
www.eaipatterns.com/ramblings/09_correlation.html
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4529779%2F4529780%2F04529847.pdf%3Farnumber%3D4529847&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4529779%2F4529780%2F04529847.pdf%3Farnumber%3D4529847&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4529779%2F4529780%2F04529847.pdf%3Farnumber%3D4529847&authDecision=-203

BIBLIOGRAPHY

Newcomer, Eric. Understanding Web Services (Addison-Wesley, 2002).

Resnick, Steve, Richard Crane, and Chris Bowen. Essential Windows
Communication Foundation (Pearson Education, 2008).

Wirfs-Brock, Rebecca, and Allan McKean. Object Design: Roles,
Responsibilities, and Collaborations (Addison-Wesley, 2002).

Wirfs-Brock, Rebecca. Responsibility Driven Design.

www.wirfs-brock.com/Design.html

www.wirfs-brock.com/Design.html

Index

A
Abstract Data Transfer Object, 105
Dataset Amendment, 241
ActiveX controls, 4, 277
Adapter [GoF], 269. See also Datasource
Adapter; Gateway [POEAA]
Address formatting, Linked Service
pattern, 79
Addressability, Resource API, 43-44
AJAX (Asynchronous JavaScript and
XML), 43, 278
Anonymous class, 187, 277
Anonymous method, 187, 277
Apache Subversion
external definitions, 291
URL for, 278. See also Version control
Apache URLs
Apache Software Foundation, 277
Axis2, 277
CXF, 277
ODE, 278
ServiceMix, 278
Software Foundation, 277
Struts, 278
Subversion, 278. See also Version con-
trol
Thrift, 278
web server, 277
web services projects, 277
XMLBeans, 278
APIs. See Web service API styles
Architectural Styles and...Software Archi-
tectures, 133
ASCII (American Standard Code for
Information Exchange), 278

303

ASP.NET MVC

definition, 278
Front-Controller, 85

Asynchronous JavaScript and XML

(AJAX), 43, 278

Asynchronous processing

Asynchronous Response Handler,
184

Command Invoker, 149

Consumer-Driven Contracts, 255

Correlation Identifiers, 270

Intercepting Loggers, 201

Message API, 30

Message Oriented Middleware, 59

relation to Temporal Coupling, 10

race conditions, 288

Request/Acknowledge, 59

Request Mapper, 113

Request/Response, 57

Resource APIs, 44

RPC AP, 22

Service Connector, 170

Asynchronous Response Handler, 184

Client-Side Callback, 185-188
forms of, 185-188
Message API, 30
overview, 184-188
Polling Method, 185
Request/Acknowledge, 59
Request/Response, 57
Resource API, 44

RPC APL, 22

Service Connector, 170
temporal coupling, 10
use for, 166

v INDEX

Asynchronous Response Handler,
considerations
launching concurrent web service
requests, 188
long-running operations, 188
temporal coupling, 189
Asynchronous Response Handler,
examples
Client-Side Callback and Resource
APIs, 193-194
Client-Side Callback and RPC APIs,
192-193
Polling Methods and Resource APIs,
190-191
Polling Methods and RPC APIs,
189
Asynchrony
Message API, 30
Resource API, 44
RPC API, 22
Atom Publishing Protocol, 278
breaking changes, 230, 231
Datasource Adapter, 139
Linked Services, 80
Open Data Protocol, 287
Resource API, 40
Service Connector, 171
Service Descriptor, 180
Atomicity, web service implementation,
132
Authentication
Basic Authentication, 278
breaking changes, 231
Datasource Adapter, 140
Digest Authentication, 281
Enterprise Service Bus, 224
Message API, 28, 30
Microsoft Enterprise Library, 286
Resource API, 44
Service Connector, 173
Service Contracts, 15
Service Descriptor, 176
Service Interceptor, 195, 267
web service API styles, 13
Autonomy, web service API styles,
15-16
Axis2, URL for, 277

B
Backward compatibility. See Web service
evolution
BAM (Business Activity Monitoring), 162
Basic Authentication, 278
Binary message encoding
BSON, 279
Data Transfer Objects, 100
Data Transfer Objects and Google
Protocol Buffers, 99
design considerations for web service
APIs, 17
Message API, 30
MTOM, 286
RPC AP, 23
Service Connector, 171
Black-box reuse, 279
components, 4
Blocking, avoiding. See also Asynchro-
nous Response Handler
client-side, Request/Response pattern,
57
Message API, 30
Resource API, 44
RPC API, 22
Books and publications
Architectural Styles and...Software
Architectures, 133
Growing Object-Oriented Software...,
255
Patterns of Enterprise Application
Architecture, 13, 133
Bottom up design, 15
Datasource Adapter, 140
BPEL (Business Process Execution Lan-
guage), 279
Apache ODE, 278
Orchestration Engine, 224
Workflow Connector, 159
WS-BPEL, 293
Breaking changes, causes of
media types, structural changes to,
229-230
messages, structural changes to,
229-230
Service Descriptor changes, 230-231
summary of causes, 228-229

Breaking changes, mitigating. See
Consumer-Driven Contracts;
Tolerant Reader

Breaking clients, avoiding, 79

Broker services

Linked Service, 77
Virtual Service, 222

BSD Sockets API, 279

BSON, 279

Business Activity Monitoring (BAM), 162

Business Process Execution Language
(BPEL), 279

Byte order. See Endianness

C
Cache/caching, 45, 279. See also Proxy
servers; Reverse proxy
commodity caching technologies, 45
Consumer-Driven Contracts, 253
HTTP Post, 41
Idempotent Retry, 173
Intercepting Exception Handler, 204
Origin Server, 288
perimeter caches, 52
Representational State Transfer, 289
Request/Response and intermediaries, 57
Resource APIs and REST, 46
Resource APIs and Service Interceptors,
49
Server-Driven Negotiation, 73
Service Gateway, 172
Service Interceptor, 195
web service state management, 133
WS-Reliable Messaging, 217
Cacheable responses, 46
Callback service
Orchestration Engine, 224
Request/Acknowledge, 63-65, 68
Workflow Connector, 158-162
Canonical Data Model [EIP], 222
Castor, 279. See also Data binding
Data Transfer Object, 97
Channel Adapters [EIP], 222
Chatty service contracts
Datasource Adapters and Latency, 140
Latency, 16
Service Descriptor, 177

INDEX v

Chunky data transfers, 100-101
Chunky service contracts, 177-178
Data Transfer Object, 100
Latency, 16
Circular references, DTOs, 95
Cited works, 297-300
Client preferences, supporting, 44
Client-driven negotiation, Media Type
Negotiation, 72-73
Client/server constraints, Resource API,
46
Client-service coupling, Service Connec-
tor considerations, 173
Client-service interactions
Client-Service Interactions, 51
summary of patterns, 53. See also
specific patterns
Client-side behaviors, Service Connector
considerations, 173
Client-Side Callback, 185-188, 192, 193
Client-side crashes, Idempotent Retry
considerations, 211-212
Client-specific DTOs, 100
Coarse-grained service contracts,
177-178, 250
Code on demand, REST, 46
Plug-in, 288
Code-First strategy
Data Transfer Object, 98
Service Controller, 90
Service Descriptor, 179-181
Single-Message Argument, 234
Code-First vs. Contract-First
data binding, DTOs, 98-99
Service Controllers, 90
Service Descriptors, 179-181
Collections, DTOs, 100-101
Command [GoF], 269
Command implementation patterns,
Command Invoker considerations,
152-153
Command Invoker, 149
alternative to Transaction Script, 135
benefits of, 150
description, 132
effects on web service evolution, 266
example, 153-155

INDEX

Command Invoker, continued
Message API, 30
Operation Script, 146
overview, 149-150
Transaction Script, 135
use for, 132
Command Invoker, considerations
command implementation patterns,
152-153
forwarding requests to background
processes, 151-152
invoking commands within web
services, 150-151
using with Request Mapper, 152
Command Messages [EIP], 29, 269
Commands, invoking within web
services, 150-151
Commodity caching technologies,
leveraging, 45
Apache CXF, 277
Common Object Request Broker
Architecture (CORBA), 279
Data Transfer Objects, 97, 270
distributed objects, 4
RPC API, 18
use in services, 2
Compensation, 157
service autonomy, 16
Workflow Connector, 157
Complex processes, running. See Work-
flow Connector
Composition. See Object composition;
Service composition
Connection management, 170
Connectivity problems, handling. See
Idempotent Retry
Connector coupling, Service Connector
considerations, 173
Consumer-Driven Contracts, 250. See
also Service contracts; Tolerant
Reader
backward and forward compatibility,
250-253
description, 228
design considerations for web service
APIs, 15
documentation, 251-252

effects on web service evolution,
268
integration tests, 252-253
overview, 250-253
uses for, 228
Service Descriptor, 179
Tolerant Reader, 246
Consumer-Driven Contracts,
considerations
complexity, 255
exchanging tests, 254
integration testing, 254
long-running asynchronous services,
255
modifying contracts, 254
platform dependencies, 255
real service implementation, 254
reasonable expectations, 255
scope, 255
stub implementation, 254
test strategies, 255
versioning contracts, 254
Consumer-Driven Contracts, examples
C#, 256-260
ISO Schematron, 260-263
NUnit, 256-260
Content negotiation. See Media Type
Negotiation
Content type. See Media type
Content-Based Router [EIP], 270
Contract-First vs. Code-First. See also
Code-First strategy
data binding, DTOs, 98-99
Service Controller, 89, 90
Service Descriptor, 179-181
Control flow, rules for, 159
Conversations, 280. See also Service
composition
Converting input data, Service Connec-
tors, 171
CORBA (Common Object Request Bro-
ker Architecture), 279. See also
Common Object Request Broker
Architecture
Correlation. See also Correlation Identi-
fier [EIP]
Workflow Connector, 161

Correlation Identifier [EIP], 270
Command Invoker, 153
Coupling
Asynchronous Response Handler, 189
client-service, Service Connector con-
siderations, 173
Command Invoker, 149
connector, Service Connector consider-
ations, 173
data binding, DTOs, 98
data structure, 10
Datasource Adapter, 140
function, 9-10
Idempotent Retry, 206
loose, 9-10
Media Type Negotiation, 70
Message API, 27
Operation Script, 146
Request/Acknowledge, 59
Request/Response, 56
Resource API, 38
Service Connector, 173
Service Controller, 89
Service Descriptor, 178, 231
Service Interceptor, 197
Single-Message Argument, 235
temporal, 10. See also Asynchronous
Response Handler; Request/
Acknowledge
Tolerant Reader, 101
Transaction Script considerations, 135
URI, 10. See also Linked Services; Reg-
istry; Service Connectors; Virtual
Services
Crashes, Idempotent Retry consider-
ations, 211-212
Cross-language service development. See
Apache URLs, Thrift
Cross-machine calls, 8
CRUD (Create, Read, Update, Delete),
38-39, 42,280
definition, 289
Idempotent Retry, 209
Resource API, 38, 42
Service Controller, 90
Table Module, 274
CXF. See Apache URLs, CXF

INDEX v

D
Daemon, definition, 280
Data binding See also Apache URLs,
XMLBeans; Castor; JAXB (Java API
for XML Binding); WCF
cause of breaking changes, 230
Data Transfer Object, 94-101
definition, 280
instructions for DTOs, 95
JAXB, 285
late binding, 285
leveraging with Dataset Amendment,
240
Request Mapper, 109, 111
Response Mapper, 123, 126
Service Controller, 86, 88
technologies, 86-87
Tolerant Reader, 245-246
Data binding, DTOs
considerations, 98-99
Contract-First vs. Code-First, 98-99
overview, 97-98
proprietary formats, 99
schema validation, 99
strong coupling to messages, 98
Data mapping, DTOs, 97
Data structures
accommodating variability. See Toler-
ant Reader
changing. See Dataset Amendment
coupling, 10
Wildcard-Content, 237
XML Extension Points, 237-239
Data Transfer Object Collections,
100-101
Data Transfer Object [POEAA], 270
Data Transfer Object
circular references, 95
data binding instructions, 95
data mapping, 97
Data Transfer Object Collections,
100-101
Dataset Amendment, example,
241-242
description, 84
effects on web service evolution, 265
overview, 94-98

W INDEX

Data Transfer Object, continued
parsing request data, 95-96
serializing/deserializing data, 94-95
Tolerant Reader considerations,

245-246
use for, 84

Data Transfer Object, considerations
chunky data transfers, 100-101
client-specific Data Transfer Objects,

100
collections, 100-101
convenience, 99
Data Transfer Object size, 100
message formats, 100
naming, 99
serialization, 100
Tolerant Reader patterns, 101
work effort, 100

Data Transfer Object, data binding
considerations, 98-99
Contract-First vs. Code-First, 98-99
overview, 97-98
proprietary formats, 99
schema validation, 99
strong coupling to messages, 98

Data Transfer Object, examples
abstract Data Transfer Object,

105-108
JSON requests, with data binding,
103-105
using common code, 101-103
Data type preferences, Service Controller,
88

Database access. See Datasource Adapter

Dataset, definition, 280

Dataset Amendment
abstract types, 241
client-specific structures, 240
cluttered data structures, 240-241
considerations, 240-241
description, 228
with DTOs, example, 241-242
example, 241-242
leveraging data binding, 240
optional data, 240
overview, 237-240
uses for, 228

Datasource Adapter. See also Adapter
[GoF]
creating, 139
description, 131
effects on web service evolution, 266
example, 141-143
overview, 137-139
use for, 131
Datasource Adapter, considerations
access privileges, 140
coupling, 140
custom code, 140
Domain Models, 141
ease of use, 140
latency, 140-141
provider assumptions, 139
service API styles, 140
DCOM (Distributed Component Object
Model), 281
Deadlock, definition, 280
Delay time, specifying, 208-209
Delegation of work, Message API, 30
DELETE method, Resource API, 41-42
Denial of Service (DoS), 280-281
Dependency Injection, 270. See also
Inversion of Control [[oC]
Deserializing data
definition, 7
description, 281
DTOs (Data Transfer Objects), 94-95,
100
response streams, 171
Digest Authentication, 281
Distributed objects, 3-6
Distributed transactions, 281. See also
WS-AT (Web Services Atomic Trans-
actions)
vs. Autonomy and Web Service Design
Considerations, 15-16
vs. Local Transactions, 145
DLL (Dynamic Link Library), 282
Document APIs. See Message API
Document Messages [EIP], 29, 271
Documentation
Consumer-Driven Contracts, 251-252
Service Descriptors, 181
Document-Literal-Wrapped, 270

DOM (Document Object Model), 282.
See also JAXP (Java API for XML
Processing)

Domain Fagade [POEAA], 141

Domain Layer [DDD], 271

Domain logic, reusing. See Command
Invoker; Operation Script

Domain Model [POEAA], 271. See also
ORM (Object Relational Mapper)

Domain Models, Datasource Adapter, 141

Domain objects, 282

Domain-specific APIs, minimizing. See
Resource API

DoS (Denial of Service), 280-281

DTO. See Data Transfer Object

Dynamic Link Library (DLL), 282

E
EBCDIC (Extended Binary Coded
Decimal Interchange Code), 282
Encapsulation
access to remote systems, 172
web service API styles, 14-15
Endianness, 282
Enterprise Service Bus. See ESB (Enter-
prise Service Bus)
Error handling, Request/Acknowledge
pattern, 61
Error Message [EIP], 271
ESB (Enterprise Service Bus)
Canonical Data Model [EIP], 222
Channel Adapters [EIP], 222
effects on web service evolution, 268
Message Routers [EIP], 222
Message Translator [EIP], 222-223
open source. See Apache URLs,
ServiceMix
primary objectives, 221
transport mapping, 223-224
Virtual Services [IBM, ESB Patterns],
222
ESB (Enterprise Service Bus), messages
canonical set, 222
converting to canonical form, 222-223
Guaranteed Delivery [EIP], 223-224
Message Stores [EIP], 223-224
Orchestration Engines, 224-225

INDEX v

routing, 222
workflow management, 224-225
Event Messages [EIP], 29
Evolution of web service. See Web service
evolution
Exception handlers, intercepting,
204-20S. See also Service Interceptor
Exception handling. See Service Interceptor
Extended Binary Coded Decimal Inter-
change Code (EBCDIC), 282
Extensible Markup Language (XML)
definition, 282
namespaces, ignoring, 245
Extensible Stylesheet Language Transfor-
mations (XSLT), 283
Extensible XML Application Markup
(XMAL), 283
External pattern descriptions. See also
specific patterns
Adapter [GoF], 269
Command [GoF], 269
Command Message [EIP], 269
Content-Based Router [EIP], 270
Correlation Identifier [EIP], 270
Data Transfer Object [POEAA], 270
Dependency Injection, 270
Document Message [EIP], 271
Document-Literal-Wrapped, 270
Domain Layer [DDD], 271
Domain Model [POEAA], 271
Error Message [EIP], 271
Fagade [GoF], 271
Factory Method [GoF], 271
Front Controller [POEAA], 271
Gateway [POEAA], 272
Interceptor [POSA2], 272
Mapper [POEAA], 272
Mediator [GoF], 272
Message Bus [EIP], 272
Message [EIP], 272
Message Router [EIP], 272
Message Store [EIP], 273
Normalizer [EIP], 273
One-Way Message Exchange, 273
Operation Script [POEAA], 273
Pipes and Filters [EIP], 273
Post Once Exactly, 273

W INDEX

External pattern descriptions, continued
Prototype [GoF], 273
Proxy [GoF], 274
Record Set [POEAA], 274
Remote Proxy [GoF], 274
Service Layer [POEAA], 274
Singleton [GoF], 274
Table Module [GoF], 274
Template Method [GoF], 275
Transaction Script [POEAA], 275

F

Facade [GoF], 271. See also Gateway
[POEAA]

Factory Method [GoF], 271

Failed retries, Idempotent Retry consider-
ations, 211-212

Fail-over, definition, 283

Fault message, 283. See also SOAP

Fine grained objects, 3

Fire-and-forget queues, 60. See also One-
Way Message Exchange

Firewalls, 57, 283

Forward compatibility. See Web service
evolution

Front Controller [POEAA], 85-86, 271.
See also Service Controllers

Function coupling, 9-10

G

Gateway [POEAA], 272. See also Adapter
[GoF]; Facade [GoF]; Mediator
[GoFJ; Service Gateways

GET method, Resource API, 41-42

Git, definition, 283

Git Submodules, definition, 283

Google Protocol Buffers, 283

Governance, 284. See also Regression
tests; SCM (Software Configuration
Management)

Growing Object-Oriented Software...,
255

Guaranteed Delivery [EIP], 223-224

H
Hackable URIs, 44
HEAD method, Resource API, 41-42

HTTP (Hypertext Transfer Protocol)
definition, 284
direct coupling to remote procedures,
avoiding. See Message API
methods supported, discovering, 41
remote procedure execution. See
Message API; RPC API
server methods, selecting, 171
status codes, Resource API, 42
HTTP client, URL for, 277
HTTPD, URL for, 277
Hyperlinks, Linked Services, 80
Hypermedia, definition, 284

I
Idempotent operations, Resource API,
42-43
Idempotent Retry
delay time, specifying, 208-209
description, 166
overview, 206-211
race conditions, 208
strategy, implementing, 171
use for, 166
Idempotent Retry, considerations
client-side crashes, 211-212
criteria for adoption, 211
failed retries, 211-212
Idempotent Retry, examples
message delivery assurance, 217-219
retry manager, 212-217
WS-RM (Web Services Reliable
Messaging), 217-219
IDL (Interface Definition Language), 284.
See also CORBA; DCOM
IIS (Internet Information Services), 284
In-Only. See One-Way Message
Exchange
Integration tests, Consumer-Driven
Contracts, 252-253
Intercepting
exception handlers, Service Interceptor
example, 204-205
loggers, Service Interceptor example,
201-303
validators, Service Interceptor example,
199-200

Interceptor [POSA2], 272. See also Ser-
vice Interceptor

Intermediaries, Request/Response pat-
tern, 57

Inversion of Control [IoC], 145. See also
Dependency Injection

ISO Schematron, Consumer-Driven
Contracts, 260-263

J
JAXB (Java API for XML Binding), 285.
See also Data binding

JAXP (Java API for XML Processing), 284.

See also DOM (Document Object
Model); SAX (Simple API for XML)
JAX-RS (Java API for RESTful Web Ser-
vices), 47, 284
JAX-WS (Java API for XML Web Ser-
vices), 284
JMS (Java Message Service), 285
JSON (JavaScript Object Notation)
binary-coded serialization. See BSON
definition, 285
DTOs with data binding, example,
103-105
with Request Mapper, 112
JSON RPC, 285
JSON Schema, 285
JUnit, 285
JXPath, URL for, 277

L
Late binding
definition, 285
Message API, 30
Resource API, 45
Latency. See also Response time
Datasource Adapter, 140-141
definition, 285
Request Mapper, 113
web service API styles, 16
Layered systems, 46
Leveraging commodity caching
technologies, 45
Linked Services
adding/removing services, 79
address formatting, 79

INDEX v

benefits of, 78-79
breaking clients, avoiding, 79
description, 53
effects on web service evolution, 265
examples, 80-82
overview, 77-79
Response Mapper, 125-126
use for, 53
Web service calls, sequence of, 77
workflow guidance, 78-79
Linked Services, considerations
hyperlinks, 80
security, 80
using with Resource APIs, 79-80
Load balancing, 5-6, 285-286
Local objects, 3-6
Location transparency, 22, 173-174
Loggers, intercepting, 201-303. See also
Service Interceptor
Long-running processes, 188. See also
Workflow Connector
Loose coupling, 9-10
Lost Update Problem, 49, 286

M
Man-in-the-Middle Attack (MITM), 286
Mapper [POEAA], 272. See also Request
Mapper; Response Mapper
Marshal. See Serializing data
Media preferences. See Media Type
Negotiation
Media Type Negotiation
content negotiation, 71-73
description, 53
media type preferences, 70
overview, 70-73
Request Handler, selecting, 71-72
URIs, as file extensions, 70
use for, 53
Media Type Negotiation, considerations
client-driven negotiations vs. WS-Dis-
covery, 73-74
code duplication, 74
server- vs. client-driven negotiations,
73
Service Connectors, 74
Service Controllers, 73

INDEX

Media Type Negotiation, examples
client-driven negotiations, 75-76
HTTP Accept headers, 74
indicating preferred types, 74
server-driven negotiations, 74-75

Media type preferences, 70

Media types. See also MIME (Multipur-

pose Internet Mail Extensions)
definition, 286
metadata, getting, 41
structural changes to, 229-230
Mediator [GoF], 272. See also Gateway
[POEAA]

Memory
releasing, 6
server utilization, 5

Message API
Asynchronous Response Handler pat-

tern, 30
asynchrony, 30
binary encoding, 30-31
blocking, avoiding, 30
Command Invoker, 30
Command Messages [EIP], 29
considerations, 29-31
delegation of work, 30
Document Messages [EIP], 29
effects on web service evolution, 264
Event Messages [EIP], 29
interacting with. See Service Connector
late binding, 30
message types, 29
overview, 14, 27-29
Request/Acknowledge pattern, 30
Service Connectors, 29-30
Service Contracts, 29-30
Service Descriptors, 29
Workflow Connector, 30

Message API, examples
SOAP and WSDL, 31-33
without WSDL, 33-37

Message Bus [EIP], 272

Message [EIP], 272

Message formats, DTOs, 100

Message Routers [EIP], 222,272

Message Stores [EIP], 223-224,273

Message Translator [EIP], 222-223
Message Transmission Optimization
Mechanism (MTOM), 286
Message types, Message API, 29
Message-Oriented Middleware (MOM),
web service alternative, 8-9
Messages. See also Request and response
management; WS-RM (Web Services
Reliable Messaging)
accommodating variability. See Toler-
ant Reader
delivery assurance, Idempotent Retry
example, 217-219
structural changes to, 229-230
Messages, ESB
canonical set, 222
converting to canonical form, 222-223
Guaranteed Delivery [EIP], 223-224
Message Stores [EIP], 223-224
Orchestration Engines, 224-225
routing, 222
workflow management, 224-225
Microformat, definition, 286
MIDL (Microsoft Interface Definition
Library), 287
MIME (Multipurpose Internet Mail
Extensions), 287. See also Media
type
MITM (Man-in-the-Middle Attack), 286
MOM (Message-Oriented Middleware),
web service alternative, 8-9
MSMQ (Microsoft Message Queuing),
287
MTOM (Message Transmission Optimi-
zation Mechanism), 286
MVC pattern. See ASP.NET MVC

N

NAck (Negative Acknowledgment), 61

Naming DTOs, 99

Negotiating media preferences. See Media
Type Negotiation

Network efficiency, Service Descriptors,
177-178

Nondeterministic content models, 287

Normalizer [EIP], 273

Notification. See Event Messages [EIP]
NUnit, 256-260, 287

o
Object composition, 280. See also Service
composition
Object Relational Mapper (ORM), 287.
See also Domain Model
Objects
distributed, 3-6
drawbacks, 5-6
fine grained, 3
load balancing, 5-6
local, 3-6
memory, releasing, 6
scalability, 5-6
server memory utilization, 5
in web services, 3—6
OData (Open Data Protocol), 142-143,
287
ODE. See Apache URLs, ODE
One-Way Message Exchange, 273. See
also Fire-and-Forget
Operation Script [POEAA], 273
Operation Scripts
alternative to Transaction Script, 135
description, 131
effects on web service evolution, 266
examples, 146-148
overview, 144-145
use for, 131
Operation Scripts, considerations
application gateways, 146
duplication of application logic, 145-146
Inversion of Control [IoC], 145
local vs. distributed transactions, 145
OPTIONS verb, Resource API, 41-42
Orchestration, effects on web service
evolution, 266
Orchestration Engines, 224-225
Origin server, 288
ORM (Object Relational Mapper), 287.
See also Domain Model
OSI (Open Systems Interconnection)
Model, 287
Out-of-process calls, 8

INDEX V

P
Parsing
request data, DTOs, 95-96
URIs with Service Controller, 87
Partial failures, web service API styles,
16-17
Patterns of Enterprise Application Archi-
tecture, 13, 133
Pipeline, 288. See also Pipes and Filters
[EIP]
Pipes and Filters [EIP]. See also Pipeline
alternative to Workflow Connector,
156-157
description, 273
Service Interceptor, 196
Plug-in, definition, 288
use with Resource API, 43
Polling, Request/Acknowledge pattern,
62-63
Polling Method, Asynchronous Response
Handler, 185-188
POST method, 41-42
Postel's Law, 244-245, 288. See also
Robustness Principle
Post-Once-Exactly, 42, 273
Post-Once-Exactly [Nottingham, Marc],
210
POX (Plain Old XML), 288
Procedure invocation with Resource API,
example, 48
Proprietary formats, data binding DTOs, 99
Prototype [GoF], 273
Provider. See Service
Proxies, RPC API, 21-22. See also Service
Connectors
Proxy [GoF], 274. See also Remote Proxy
[GoF]
Proxy servers, 57. See also Cache/caching;
Reverse proxy
Pryce, Nat, 255
Publish/Subscribe, 63-65
PUT method, Resource API, 41-42

Q

Queries, examples, 48-49
Queues, Request/Acknowledge pattern, 60

INDEX

R
Race conditions, 208, 288
Record Set [POEAA], 274
Reference Objects [DDD]. See Domain
objects
Registry, 273
Regression tests, 289. See also Gover-
nance
Relays, Request/Acknowledge pattern,
63-65
Remote Procedure Call (RPC). See RPC
(Remote Procedure Call)
Remote Proxy [GoF], 274. See also Proxy
[GoF]; Service Connectors
Representational State Transfer (REST),
40, 46, 289
Request and response management. See
also Data Transfer Object; Request
Mapper; Response Mapper; Service
Controllers
data exchange. See Data Transfer
Object
evaluating requests. See Service Con-
trollers
receiving requests. See Service Control-
lers
routing requests. See Service Control-
lers
serializing/deserializing data. See Data
Transfer Object
summary of patterns, 84
Request dispatch, Service Connectors,
170
Request Handlers, 71-72, 86
Request Identifier. See Correlation Identi-
fier [EIP]
Request Mapper. See also Mapper
[POEAA]
description, 84
effects on web service evolution, 266
example, using XSL, 113-121
overview, 109-111
use for, 84
using with Command Invoker, 152
Request Mapper, considerations
adoption criteria, 111-112
client dependencies, 112

code complexity, 112
integration patterns, 113
latency, 113
relation to other API styles, 112
response time, 113
using with JSON, 112
web server resources, 113
Request Method Designators, 88-89
Request/Acknowledge
alternative to Request/Response pat-
tern, 61
asynchronous processing, 59-60
common steps, 61
description, 53
effects on web service evolution, 265
error handling, 61
Message API, 30
NAck (Negative Acknowledgment), 61
overview, 59-61
queues, 60
RPC AP, 22
temporal coupling, 59
URI, generating, 61
use for, 53
Request/Acknowledge, considerations
callbacks, 63-65
polling, 62-63
Publish/Subscribe pattern, 63-65
relays, 63-65
Request/Acknowledge/Callback pat-
tern, 63-65
Request/Acknowledge/Relay pattern,
63-65
Request/Acknowledge, examples
leveraging WS-addressing, 68-69
Request/Acknowledge pattern, 66
Request/Acknowledge/Poll pattern, 67
Request/Acknowledge/Relay pattern,
68-69
Request/Acknowledge/Callback, 63-65
Request/Acknowledge/Poll, 67
Request/Acknowledge/Relay, 63-635,
68-69
Requester. See Client
Request/Response
description, 53
effects on web service evolution, 265

overview, 54-55
Request/Acknowledge, alternative to, 61
in an RPC API, example, 58
use for, 53
Request/Response, considerations
availability issues, 56
client-side blocking, 57
firewalls, 57
intermediaries, 57
proxy servers, 57
vs. RPC (Remote Procedure Call), 57
scalability issues, 56
temporal coupling, 56-57
Requests
forwarding to background processes,
151-152
handling structural differences. See
Request Mapper
Resource API
CRUD (Create, Read, Update, Delete)
approach, 38-39, 42
DELETE method, 41-42
effects on web service evolution, 264
GET method, 41-42
HEAD method, 41-42
HTTP status codes, 42
idempotent operations, 42-43
interacting with. See Service Connector
with Linked Service pattern, 79-80
media types, 42-43
OPTIONS verb, 41-42
overview, 14, 38-43
POST method, 41-42
Post-Once-Exactly pattern, 42
PUT method, 41-42
Representational State Transfer, 40
RESTful, 39
safe operations, 42-43
Service Contracts, 41
Resource API, considerations
addressability, 43-44
asynchrony, 44
blocking, avoiding, 44
cacheable responses, 46
client preferences, supporting, 44
client/server constraints, 46
code on demand, 46

INDEX v

disparate clients, 43
hackable URIs, 44
late binding, 45
layered systems, 46
leveraging commodity caching technol-
ogies, 45
Lost Update Problem, 49
REST constraints, 46
service connector code generation, 44
uniform interface, 46
Resource API, examples
conditional queries and updates, 48-49
implementation in Java and JAX-RS,
47
procedure invocation, 48
Resources
accessing. See Resource API
creating, 41
creating subordinates, 41
deleting, 41
discovering HTTP methods supported,
41
media type metadata, getting, 41
POST method, 41-42
updating, 41
Response management. See Request and
response management
Response Mapper. See also Mapper
[POEAA]
description, 84
effects on web service evolution, 266
overview, 122-124
use for, 84
Response Mapper, considerations
adoption criteria, 124-125
client dependencies, 125
example, 126-130
integration patterns, 125-126
linked services, 125-126
scope of responsibility, 125
work effort, 125
Response receipt, Service Connectors, 170
Response time, 113. See also Latency
REST (Representational State Transfer),
40, 46, 289
RESTful Resource API, 39
Retry manager, 212-217

INDEX

Retrying request delivery. See Idempotent
Retry
Reusing domain logic. See Command
Invoker; Operation Script
Reverse proxy, 289. See also Cache;
Proxy servers
RM Destination, 217-219
RM Source, 217-219
Robustness Principle, 244. See also
Postel's Law
Routing ESB messages, 222
Routing Expressions, 86
Routing expressions, 88§-89
RPC (Remote Procedure Call)
definition, 289
description, 19
vs. Request/Response pattern, 57
RPC API
Asynchronous Response Handler
pattern, 22
asynchrony, 22
binary coding, 23
blocking, avoiding, 22
considerations, 20-23
creating, code example, 23-26
creating flat APIs, 20-21
effects on web service evolution, 264
example, 58
increasing flexibility, 234-236
interacting with. See Service Connector
Location Transparency, 22
location transparency, 22
overview, 13, 18-20
proxies, 21-22
Request/Acknowledge pattern, 22
service contracts, 20
service descriptors, 21-22. See also
WSDL (Web Services Description
Language)
Service Proxies, 22
RPC controller, examples, 93
Ruby on Rails, 85, 289

S

Safe operations, Resource API, 42-43

SAX (Simple API for XML), 290. See also
JAXP (Java API for XML Processing)

Scalability

definition, 289

issues, 56

objects, effects of, 5-6

Schema. See XML Schema

Schematron, 289

SCM (Software Configuration Manage-
ment), 291. See also Governance

Secure Sockets Layer (SSL), 289. See also
TLS (Transport Security Layer)

Security

Linked Services, 80

Secure Sockets Layer (SSL), 289. See
also TLS (Transport Security
Layer)

TLS (Transport Security Layer), 291.
See also SSL (Secure Sockets
Layer)

WS-Security (Web Services Security),
294

Security, Linked Service pattern, 80

Serializing data, 7, 94-95, 100

Server- vs. client-driven negotiations, 73

Service addressability, Resource API,
43-44

Service addresses, discovering, 170

Service API styles, 13

Service composition, 280. See also Con-
versations

Service connector code generation, 44

Service Connectors

connecting to URIs, 171-172

connection management, 170

converting input data, 171

description, 166-167

deserializing response streams, 171

discovering service addresses, 170

effects on web service evolution, 267

encapsulating access to remote systems,
172

examples, 173-174

generating code for. See Service
Descriptors

generic functions, 170-171

HTTP server methods, selecting, 171

Idempotent Retry strategy, implement-
ing, 171

incorporating services into workflows.
See Service Descriptors

Media Type Negotiation pattern, 74

Message API, 29-30

overview, 168-172

request dispatch, 170

response receipt, 170

Service Gateways, 172. See also Gate-
way [POEAA]

Service Proxy Service Connector, 171,
174. See also Service Connectors

types of, 171-172

URI management, 171

use for, 166-167

Service Connectors, considerations

client-service coupling, 173

client-side behaviors, 173

connector coupling, 173

location transparency, 173-174

unit testing, 172-173

Service consumer. See Client
Service Contracts

chatty, 177-178

chunky, 177-178

coarse-grained, 177-178

design considerations for web services,
15

Message API, 29-30

Resource API, 41

RPC API, 20

Service Descriptors, 177-178

Testing, 253

Versioning Strategies, 232

web service API styles, 15

Service Controllers. See also Front

Controller [POEAA]
creating, 86

INDEX V

URI segments, 87
URI templates, 87
use for, 84

Web Methods, 86

Service Controllers, considerations

Contract-First vs. Code-First, 90
enumerating Service Controllers, 90
interface classes, 89

Service Controllers, examples

resource controllers, 91-92
RPC controller, 93

Service Descriptors

changing, 230-231

description, 166

documenting services, 175-176

effects on web service evolution, 267

generating code for Service Connectors,
176-177

Message API, 29

overview, 175-177

use for, 166

Service Descriptors, considerations

chatty service contracts, 177-178

chunky service contracts, 177-178

client-service interactions, specifying,
177

coarse-grained service contracts,
177-178

Consumer Driven Contracts, 178

Contract-First vs. Code-First, 179-181

coupling, 178-179

documentation, 181

network efficiency, 177-178

service contracts, 177-178

Service Descriptors, examples

with WADL, 182-183
with WSDL, 181-182

data binding technologies, 86-87
data type preferences, 88
description, 84

Media Type Negotiation pattern, 73
overview, 85-89

parsing URIs, 87

Request Handlers, 86

Request Method Designators, 88-89
Routing Expressions, 86

routing expressions, 8§8-89

Service descriptors, RPC API, 21-22
Service frameworks, Service Interceptor,
197-198
Service Gateways, 172-173. See also
Gateway [POEAA]
Service Interceptor. See also Interceptor
[POSA2]
configuration files, 197
description, 166
effects on web service evolution, 267

INDEX

Service Interceptor, continued
overview, 195-198
Pipes and Filters [EIP], 196
service frameworks, 197-198
Template Method [GoF], 195
use for, 166
Service Interceptor, examples
exception handlers, intercepting,
204-205
loggers, intercepting, 201-303
validators, intercepting, 199-200
Service Layer [POEAA], 274
Relation to Domain Layer, 271
Request and Response Management,
83
web service API styles, 13
Service libraries, 8
Service Oriented Architecture (SOA). See
SOA (Service Oriented Architecture)
Service provider. See Service
Service Proxies, 22
Service Proxy, 171, 174. See also Remote
Proxy [GoF]
Service Registry, effects on web service
evolution, 267
ServiceMix. See Apache URLs, Service-
Mix
Session, 290. See also Session variables
design considerations for web service
implementation, state manage-
ment, 132-133
problems with distributed objects, 5-6
Reliable Messaging, 217-218
Session variables, 290. See also Session
Simple API for XML (SAX), 290. See also
JAXP (Java API for XML Processing)
Single-Message Argument, 228, 234-236
Singleton [GoF], 274
SOA (Service Oriented Architecture), def-
inition, 10-11
SOA (Service Oriented Architecture),
infrastructure patterns
ESB (Enterprise Service Bus), 221-224
Orchestration Engines, 224-225
overview, 220
Service Registry, 220-221
workflow management, 224-225

SOAP, 31-33, 291. See also Fault
message

Software Configuration Management
(SCM), 291. See also Governance

Spring, definition, 291

SSL (Secure Sockets Layer), 289. See also
TLS (Transport Security Layer)

Stafford, Randy, 13

State management, 132-133. See also
Session

Struts. See Apache URLs, Struts

Subversion. See Apache Subversion

svcUtil, definition, 291

T
Table Module [GoF], 274
Template Method [GoF], 195, 275
Temporal coupling. See also Asynchro-
nous Response Handler; Request/
Acknowledge
Asynchronous Response Handler, 189
description, 10
Request/Acknowledge pattern, 59
Request/Response pattern, 56-57
Testing
Consumer-Driven Contracts, 254-255
integration tests, 252-253
regression tests, 289. See also
Governance
unit tests, 172-173
Thrift. See Apache URLs, Thrift
TLS (Transport Security Layer), 291. See
also SSL (Secure Sockets Layer)
Tolerant Reader. See also Consumer-
Driven Contracts
description, 228
DTO (Data Transfer Object), 101
effects on web service evolution, 268
example, 246-249
overview, 243-244
Postel's Law, 244
Robustness Principle, 244
uses for, 228
Tolerant Reader, considerations
consumer-driven contracts, 246
data access, 244-245
DTOs (Data Transfer Objects), 245-246

ignoring XML namespaces, 245
Postel's Law, 245
preservation of unknown content,
245
Top down design, 15
Torvalds, Linus, 283
Transaction Script
description, 131
example, 136
overview, 134-135
use for, 131
Transaction Script, considerations
alternative patterns, 135
code complexity, 135
long methods, 135
simplicity, 135
tight coupling, 135
Transaction Script [POEAA], 275
Transactions, distributed, 281
Transport mapping, ESB, 223-224
Transport Security Layer (TLS), 291. See
also SSL (Secure Sockets Layer)

U
UML (Unified Modeling Language), 292
Unit testing, Service Connector consider-
ations, 172-173
Unmarshal. See Deserializing data
Updating resources, 41
URI (Uniform Resource Identifier)
acquiring, 171. See also Linked Services
connecting to. See Service Connectors
constructing, 171
as file extensions, 70
generating, 61
retrieving, 171
segments, 87
templates, 87, 292
URI coupling, 10. See also Linked Ser-
vices; Registry; Service Connectors;
Virtual Services
URI Rewrite, 292
URL encoding, 292
UTF (Unicode Transformation Format),
291
UTEF-16, 291
UUID (Universally Unique Identifier), 292

INDEX v

v

Validation. See Service Interceptor

Validators, intercepting, 199-200

Version control, 232-233. See also
Apache Subversion

Virtual Services [IBM, ESB Patterns], 222

W
WADL (Web Application Description
Language), 182-183, 292
WCF (Windows Communication Foun-
dation), 294
Web Distributed Authoring and Version-
ing (WebDAV), 292
Web Methods, 86
Web server resources, 113
Web servers. See Apache URLs, web
server
Web service API styles. See also specific
APIs
autonomy, 15-16
bottom up design, 15
design considerations, 14-17
encapsulation, 14-15
latency, 16
partial failures, 16-17
service contracts, 15
summary of patterns, 13-14. See also
specific patterns
top down design, 15
Web service calls, sequence of, 77
Web service evolution, effects of patterns
Command Invoker, 266
Consumer-Driven Contract, 268
Datasource Adapter, 266
DTOs (Data Transfer Objects), 265
ESB (Enterprise Service Bus), 268
Linked Service, 265
Message API, 264
Operation Script, 266
Orchestration, 266
Request Mapper, 266
Request/Acknowledge, 265
Request/Response, 265
Resource API, 264
Response Mapper, 266
RPC API, 264

W INDEX

Web service evolution, effects of patterns,
continued
Service Connector, 267
Service Descriptor, 267
Service Interceptor, 267
Service Registry, 267
summary of patterns, 228. See also
specific patterns
Tolerant Reader, 268
Workflow Connector, 266
Web service implementation
atomicity, 132
design considerations, 132-133
service composition, 133
state management, 132-133
summary of patterns, 131-132. See
also specific paiterns
Web service infrastructures, 165-166. See
also specific patterns
Web service requests, launching concur-
rently, 188
Web services
alternatives, 7-9
considerations, 7-9
cross-machine calls, 8
description, 2
hosting. See Apache URLs, CXF
uses for, 6-7
Web Services Addressing (WS-Addressing),
68-69,293
Web Services Atomic Transactions
(WS-AT), 293. See also Distributed
transactions
Web Services Description Language
(WSDL)
definition, 293
Message API example, 31-33
Service Descriptor example, 181-182
Web Services Discovery (WS-Discovery),
73-74,293
Web Services Interoperability Basic Pro-
file (WS-I Basic Profile), 293
Web Services Interoperability (WS-I)
Organization, 293
Web Services Interoperability Technology
(WSIT), 293-294

Web Services Policy Framework (WS-Pol-
icy), 294
Web Services Reliable Messaging (WS-
RM). See WS-RM (Web Services
Reliable Messaging)
Web Services Security (WS-Security), 294
WebDAV (Web Distributed Authoring
and Versioning), 292
Wildcard-Content, 237
Windows Communication Foundation
(WCF), 294
Windows Service. See Daemon
Workflow, 158, 224-225
Workflow Connector
alternative to Transaction Script, 135
callback service, 160-162
compensation, 157
control flow, rules for, 159
correlation, 161
description, 132
effects on web service evolution, 266
example, 163
Message API, 30
overview, 156-163
Pipes and Filters [EIP] alternative,
156-157
use for, 132
Workflow Connector, considerations
BAM (Business Activity Monitoring),
162
ease of use, 162-163
maintenance, 162-163
process complexity, 162
variety of choices, 162
Workflow guidance, Linked Services,
78-79
Works cited, 297-300
Wrapper. See Adapter [GoF]
WS-Addressing (Web Services Address-
ing), 68-69, 293
WS-AT (Web Services Atomic Transac-
tions), 293. See also Distributed
transactions
WS-BPEL standard, 278
WS-Discovery (Web Services Discovery),
73-74,293

WSDL (Web Services Description
Language)
definition, 293
Message API example, 31-33
Service Descriptor example, 181-182
WSDL engine, URL for, 277
WS-I Basic Profile (Web Services Interop-
erability Basic Profile), 293
WS-I (Web Services Interoperability)
Organization, 293
Wsimport, 294
WSIT (Web Services Interoperability
Technology), 293-294
WS-Policy (Web Services Policy
Framework), 294
WS-RM (Web Services Reliable
Messaging)
description, 294
Idempotent Retry example, 217-219

INDEX

RM Destination, 217-219
RM Source, 217-219
WS-Security (Web Services Security), 294

X
X.509 Certificate, 295
XMAL (Extensible XML Application
Markup), 283
XML (Extensible Markup Language)
definition, 282
namespaces, ignoring, 245
XML Extension Points, 237-239
XML schema, 99, 295
XMLBeans. See Apache URLs,
XMLBeans
XPath (XML Path Language), 295
XPath interpreter. See JXPath
XSLT (Extensible Stylesheet Language
Transformations), 283

This page intentionally left blank

RPC API (18)

Web Service API Styles Pick One. .. Message API (27)
Resource API (38)
Request/Response (54)
Pick One. ..

Client-Service
Interaction Styles

Request/Acknowledge (59)

Pick Zero or More . ..

Media Type Negotiation (70)

Linked Service (77)

Request and Response

Service Controller (85)

Data Transfer Object (94)

Management Pick Zero or More . . . e
quest Mapper (109)
Response Mapper (122)
Transaction Script (134)
Datasource Adapter (137)
Web Service Pick One . . . Operation Script (144)

Implementation Styles

Command Invoker (149)

Workflow Connector (156)

Web Service
Infrastructures

Client-Side:

Pick Zero or More. . . .

Service Connector (168)

Asynchronous Response
Handler (184)

Service Interceptor (195)
Idempotent Retry (206)

Orchestration Engine (224)

Service-Side:

Pick Zero or More. . ..

Service Descriptor (175)
Service Interceptor (195)
Service Registry (220)
Enterprise Service Bus (221)

Orchestration Engine (224)

Web Service Evolution

Pick Zero or More. . .

Single-Message Argument (234)
Dataset Amendment (237)

Abstract Data Transfer Object
(105)

Tolerant Reader (243)

Consumer-Driven Contracts
(250)

Addison
Wesley

HALL

SAMS

and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we'll
take care of the rest.

It's quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/

*Valid for all books, eBooks and video sales at www.informit.com

1

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: From Objects to Web Services
	What Are Web Services?
	From Local Objects to Distributed Objects
	Why Use Web Services?
	Web Service Considerations and Alternatives
	Services and the Promise of Loose Coupling
	What about SOA?
	Summary

	Chapter 2: Web Service API Styles
	Introduction
	Design Considerations for Web Service APIs
	RPC API
	Considerations

	Message API
	Considerations

	Resource API
	Considerations

	Chapter 3: Client-Service Interactions
	Introduction
	Request/Response
	Considerations

	Request/Acknowledge
	Considerations

	Media Type Negotiation
	Considerations

	Linked Service
	Considerations

	Chapter 4: Request and Response Management
	Introduction
	Service Controller
	Considerations

	Data Transfer Object
	Data-Binding Considerations
	General Considerations

	Request Mapper
	Considerations

	Response Mapper
	Considerations

	Chapter 5: Web Service Implementation Styles
	Introduction
	Design Considerations for Web Service Implementation
	Transaction Script
	Considerations

	Datasource Adapter
	Considerations

	Operation Script
	Considerations

	Command Invoker
	Considerations

	Workflow Connector
	Considerations

	Chapter 6: Web Service Infrastructures
	Introduction
	Service Connector
	Considerations

	Service Descriptor
	Considerations

	Asynchronous Response Handler
	Considerations

	Service Interceptor
	Idempotent Retry
	Considerations

	A Quick Review of SOA Infrastructure Patterns
	The Service Registry
	The Enterprise Service Bus
	The Orchestration Engine

	Chapter 7: Web Service Evolution
	Introduction
	What Causes Breaking Changes?
	Structural Changes to Media Types or Messages
	Service Descriptor Changes

	Common Versioning Strategies
	Single-Message Argument
	Dataset Amendment
	Considerations

	Tolerant Reader
	Considerations

	Consumer-Driven Contracts
	Considerations

	How the Patterns Promote or Hinder Service Evolution

	Appendix: Reference to External Patterns
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

