
M A N N I N G

the art of

with Examples in .NET

ROY OSHEROVE

“Th e Art of Unit Testing provides a thorough,
incremental introduction to writing tests as part of the
programming process. Programmers looking to write

their fi rst test will fi nd easy-to-follow instructions,
while those who have been testing for a while will fi nd

ideas for refi ning their technique”
—Kent Beck, Th ree Rivers Institute

“Beautifully craft ed, detailed unit testing masterpiece.
Bravo, Bravo, Bravo!”

—Mohammad Azam, Microsoft MVP, HighOnCoding

“Th is book tells all the truth about unit testing,
even the unpleasant side of it.”

—Franco Lombardo, Molteni Informatica

“Roy knows testing.”
—Wendy Friedlander, Agile Solutions

“Unit testing, directly from theory to practice.”
—Francesco Goggi, Soft ware Engineer

Early Praise for The Art of Unit Testing

Licensed to Jeff Warwick <devon@cloverpoint.com>

The Art of Unit Testing
with Examples in .NET
Licensed to Jeff Warwick <devon@cloverpoint.com>

Licensed to Jeff Warwick <devon@cloverpoint.com>

The Art of Unit Testing
with Examples in .NET

Roy Osherove

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Jeff Warwick <devon@cloverpoint.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: manning@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher. Figure 3.2 is reproduced with permission from
NASA.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15% recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development Editor: Nermina Miller
209 Bruce Park Avenue Copyeditor: Andy Carroll
Greenwich, CT 06830 Proofreader: Anna Welles

Typesetter: Marija Tudor
Cover designer: Leslie Haimes

ISBN: 978-1-933988-27-6

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Licensed to Jeff Warwick <devon@cloverpoint.com>

www.manning.com

To my wife, Tal, and my sons,
Itamar and Aviv—my family
Licensed to Jeff Warwick <devon@cloverpoint.com>

Licensed to Jeff Warwick <devon@cloverpoint.com>

Brief contents
PART 1 GETTING STARTED 1
1 ❍ The basics of unit testing 3
2 ❍ A first unit test 21

PART 2 CORE TECHNIQUES 47
3 ❍ Using stubs to break dependencies 49
4 ❍ Interaction testing using mock objects 82
5 ❍ Isolation (mock object) frameworks 99

PART 3 THE TEST CODE 139
6 ❍ Test hierarchies and organization 141
7 ❍ The pillars of good tests 171

PART 4 DESIGN AND PROCESS 217
8 ❍ Integrating unit testing into the organization 219
9 ❍ Working with legacy code 239
vii

Licensed to Jeff Warwick <devon@cloverpoint.com>

Licensed to Jeff Warwick <devon@cloverpoint.com>

Contents
foreword xv
preface xvii
acknowledgments xix
about this book xx
about the cover illustration xxiii

PART 1 GETTING STARTED 1
1 The basics of unit testing 3

1.1 Unit testing—the classic definition 4
The importance of writing “good” unit tests 5 ❍ We’ve
all written unit tests (sort of) 5

1.2 Properties of a good unit test 6
1.3 Integration tests 7

Drawbacks of integration tests compared to
automated unit tests 9

1.4 Good unit test—a definition 11
1.5 A simple unit test example 12
1.6 Test-driven development 16
1.7 Summary 19

2 A first unit test 21
2.1 Frameworks for unit testing 22

What unit-testing frameworks offer 22 ❍ The xUnit
frameworks 25
ix

Licensed to Jeff Warwick <devon@cloverpoint.com>

x Contents
2.2 Introducing the LogAn project 25
2.3 First steps with NUnit 26

Installing NUnit 26 ❍ Loading up the solution 26
❍ Using the NUnit attributes in your code 29

2.4 Writing our first test 30
The Assert class 31 ❍ Running our first test with
NUnit 32 ❍ Fixing our code and passing the
test 33 ❍ From red to green 33

2.5 More NUnit attributes 34
Setup and teardown 34 ❍ Checking for expected
exceptions 36 ❍ Ignoring tests 38 ❍ Setting
test categories 39

2.6 Indirect testing of state 40
2.7 Summary 44

PART 2 CORE TECHNIQUES 47

3 Using stubs to break dependencies 49
3.1 Introducing stubs 50
3.2 Identifying a filesystem dependency in LogAn 51
3.3 Determining how to easily test LogAnalyzer 52
3.4 Refactoring our design to be more testable 55

Extract an interface to allow replacing underlying
implementation 55 ❍ Inject stub implementation
into a class under test 58 ❍ Receive an
interface at the constructor level (constructor
injection) 58 ❍ Receive an interface as a property
get or set 64 ❍ Getting a stub just before a
method call 66

3.5 Variations on refactoring techniques 74
Using Extract and Override to create stub
results 75

3.6 Overcoming the encapsulation problem 77
Using internal and [InternalsVisibleTo] 78 ❍
Using the [Conditional] attribute 79 ❍ Using #if
and #endif with conditional compilation 80

3.7 Summary 80
Licensed to Jeff Warwick <devon@cloverpoint.com>

Contents xi
4 Interaction testing using mock objects 82
4.1 State-based versus interaction testing 83
4.2 The difference between mocks and stubs 84
4.3 A simple manual mock example 87
4.4 Using a mock and a stub together 89
4.5 One mock per test 94
4.6 Stub chains: stubs that produce mocks or other stubs 95
4.7 The problems with handwritten mocks and stubs 96
4.8 Summary 97

5 Isolation (mock object) frameworks 99
5.1 Why use isolation frameworks? 100
5.2 Dynamically creating a fake object 102

Introducing Rhino Mocks into your tests 102 ❍
Replacing a handwritten mock object with
a dynamic one 103

5.3 Strict versus nonstrict mock objects 106
Strict mocks 106 ❍ Nonstrict mocks 107

5.4 Returning values from fake objects 108
5.5 Creating smart stubs with an isolation framework 110

Creating a stub in Rhino Mocks 110 ❍ Combining
dynamic stubs and mocks 112

5.6 Parameter constraints for mocks and stubs 115
Checking parameters with string constraints 115 ❍
Checking parameter object properties with
constraints 118 ❍ Executing callbacks for
parameter verification 120

5.7 Testing for event-related activities 121
Testing that an event has been subscribed to 122 ❍
Triggering events from mocks and stubs 123 ❍
Testing whether an event was triggered 124

5.8 Arrange-act-assert syntax for isolation 126
5.9 Current isolation frameworks for .NET 130

NUnit.Mocks 130 ❍ NMock 131 ❍ NMock2 131
❍ Typemock Isolator 132 ❍ Rhino Mocks 132 ❍
Moq 134
Licensed to Jeff Warwick <devon@cloverpoint.com>

xii Contents
5.10 Advantages of isolation frameworks 134
5.11 Traps to avoid when using isolation frameworks 135

Unreadable test code 135 ❍ Verifying the wrong
things 136 ❍ Having more than one mock per
test 136 ❍ Overspecifying the tests 136

5.12 Summary 137

PART 3 THE TEST CODE 139

6 Test hierarchies and organization 141
6.1 Having automated builds run automated tests 142

Anatomy of an automated build 142 ❍ Triggering
builds and continuous integration 144 ❍
Automated build types 144

6.2 Mapping out tests based on speed and type 145
The human factor of separating unit from integration
tests 146 ❍ The safe green zone 147

6.3 Ensuring tests are part of source control 148
6.4 Mapping test classes to code under test 148

Mapping tests to projects 148 ❍ Mapping tests
to classes 149 ❍ Mapping tests to specific
methods 150

6.5 Building a test API for your application 150
Using test class inheritance patterns 151 ❍
Creating test utility classes and methods 167 ❍
Making your API known to developers 168

6.6 Summary 169

7 The pillars of good tests 171
7.1 Writing trustworthy tests 172

Deciding when to remove or change tests 172 ❍
Avoiding logic in tests 178 ❍ Testing only one
thing 179 ❍ Making tests easy to run 180 ❍
Assuring code coverage 180

7.2 Writing maintainable tests 181
Testing private or protected methods 182 ❍
Removing duplication 184 ❍ Using setup methods
in a maintainable manner 188 ❍ Enforcing test
isolation 191 ❍ Avoiding multiple asserts 198 ❍
Licensed to Jeff Warwick <devon@cloverpoint.com>

Contents xiii
Avoiding testing multiple aspects of the same
object 202 ❍ Avoiding overspecification in
tests 205

7.3 Writing readable tests 209
Naming unit tests 210 ❍ Naming variables 211 ❍
Asserting yourself with meaning 212 ❍ Separating
asserts from actions 214 ❍ Setting up and tearing
down 214

7.4 Summary 215

PART 4 DESIGN AND PROCESS 217

8 Integrating unit testing into the organization 219
8.1 Steps to becoming an agent of change 220

Be prepared for the tough questions 220 ❍
Convince insiders: champions and blockers 220 ❍
Identify possible entry points 222

8.2 Ways to succeed 223
Guerrilla implementation (bottom-up) 223 ❍
Convincing management (top-down) 224 ❍
Getting an outside champion 224 ❍ Making
progress visible 225 ❍ Aiming for specific goals
227 ❍ Realizing that there will be hurdles 228

8.3 Ways to fail 229
Lack of a driving force 229 ❍ Lack of political
support 229 ❍ Bad implementations and first
impressions 230 ❍ Lack of team support 230

8.4 Tough questions and answers 231
How much time will this add to the current
process? 231 ❍ Will my QA job be at risk because
of this? 233 ❍ How do we know this is actually
working? 234 ❍ Is there proof that unit testing
helps? 234 ❍ Why is the QA department still
finding bugs? 235 ❍ We have lots of code without
tests: where do we start? 235 ❍ We work in several
languages: is unit testing feasible? 236 ❍ What if
we develop a combination of software and
hardware? 236 ❍ How can we know we don’t have
bugs in our tests? 236 ❍ I see in my debugger that
my code works fine: why do I need tests? 237 ❍
Must we do TDD-style coding? 237

8.5 Summary 238
Licensed to Jeff Warwick <devon@cloverpoint.com>

xiv Contents
9 Working with legacy code 239
9.1 Where do you start adding tests? 240
9.2 Choosing a selection strategy 242

Pros and cons of the easy-first strategy 242 ❍
Pros and cons of the hard-first strategy 243

9.3 Writing integration tests before refactoring 244
9.4 Important tools for legacy code unit testing 246

Isolate dependencies easily with Typemock
Isolator 246 ❍ Find testability problems with
Depender 248 ❍ Use JMockit for Java legacy
code 248 ❍ Use Vise while refactoring your Java
code 250 ❍ Use FitNesse for acceptance tests
before you refactor 251 ❍ Read Michael Feathers’
book on legacy code 253 ❍ Use NDepend to
investigate your production code 253 ❍ Use
ReSharper to navigate and refactor production
code 253 ❍ Detect duplicate code (and bugs) with
Simian 254 ❍ Detect threading issues with
Typemock Racer 254

9.5 Summary 254

Appendix A Design and testability 256

Appendix B Extra tools and frameworks 268

Index 284
Licensed to Jeff Warwick <devon@cloverpoint.com>

Foreword
When Roy Osherove told me that he was working on a book about unit
testing, I was very happy to hear it. The testing meme has been rising in
the industry for years, but there has been a relative dearth of material
available about unit testing. When I look at my bookshelf, I see books that
are about test-driven development specifically and books about testing in
general, but until now there has been no comprehensive reference for unit
testing—no book that introduces the topic and guides the reader from first
steps to widely accepted best practices. The fact that this is true is stun-
ning. Unit testing isn’t a new practice. How did we get to this point?

It’s almost a cliché to say that we work in a very young industry, but it’s
true. Mathematicians laid the foundations of our work less than 100 years
ago, but we’ve only had hardware fast enough to exploit their insights for
the last 60 years. There was an initial gap between theory and practice in
our industry, and we’re only now discovering how it has impacted our field.

In the early days, machine cycles were expensive. We ran programs in
batches. Programmers had a scheduled time slot, and they had to punch
their programs into decks of cards and walk them to the machine room. If
your program wasn’t right, you lost your time, so you desk-checked your
program with pencil and paper, mentally working out all of the scenarios,
all of the edge cases. I doubt the notion of automated unit testing was
even imaginable. Why use the machine for testing when you could use it
to solve the problems it was meant to solve? Scarcity kept us in the dark.

Later, machines became faster and we became intoxicated with interac-
tive computing. We could just type in code and change it on a whim. The
xv

Licensed to Jeff Warwick <devon@cloverpoint.com>

xvi Foreword
idea of desk-checking code faded away, and we lost some of the disci-
pline of the early years. We knew programming was hard, but that just
meant that we had to spend more time at the computer, changing lines
and symbols until we found the magical incantation that worked.

We went from scarcity to surplus and missed the middle ground, but
now we’re regaining it. Automated unit testing marries the discipline of
desk-checking with a newfound appreciation for the computer as a
development resource. We can write automated tests, in the language
we develop in, to check our work—not just once, but as often as we’re
able to run them. I don’t think there is any other practice that’s quite as
powerful in software development.

As I write this, in 2009, I’m happy to see Roy’s book come into print.
It’s a practical guide that will help you get started and also serve as a
great reference as you go about your testing tasks. The Art of Unit Testing
isn’t a book about idealized scenarios. It teaches you how to test code as
it exists in the field, how to take advantage of widely used frameworks,
and, most importantly, how to write code that’s far easier to test.

The Art of Unit Testing is an important title that should have been written
years ago, but we weren’t ready then. We are ready now. Enjoy.

MICHAEL FEATHERS
SENIOR CONSULTANT

OBJECT MENTOR
Licensed to Jeff Warwick <devon@cloverpoint.com>

Preface
One of the biggest failed projects I worked on had unit tests. Or so I
thought. I was leading a group of programmers creating a billing applica-
tion, and we were doing it in a fully test-driven manner—writing the test,
then writing the code, seeing the test fail, making the test pass, refactor-
ing, and starting all over again.

The first few months of the project were great. Things were going well,
and we had tests that proved that our code worked. But as time went by,
requirements changed. We were forced to change our code to fit those
new requirements, and when we did, tests broke and had to be fixed. The
code still worked, but the tests we wrote were so brittle that any little
change in our code broke them, even though the code was working fine.
It became a daunting task to change code in a class or method because we
also had to fix all the related unit tests.

Worse yet, some tests became unusable because the people who wrote
them left the project and no one knew how to maintain the tests, or what
they were testing. The names we gave our unit-testing methods were not
clear enough, and we had tests relying on other tests. We ended up
throwing out most of the tests less than six months into the project.

The project was a miserable failure because we let the tests we wrote do
more harm than good. They took more time to maintain and understand
than they saved us in the long run, so we stopped using them. I moved on
to other projects, where we did a better job writing our unit tests, and we
had some great successes using them, saving huge amounts of debugging
and integration time. Ever since that first failed project, I’ve been compil-
xvii

Licensed to Jeff Warwick <devon@cloverpoint.com>

xviii Preface
ing best practices for unit tests and using them on subsequent projects.
I find a few more best practices with every project I work on.

Understanding how to write unit tests—and how to make them main-
tainable, readable, and trustworthy—is what this book is about, no mat-
ter what language or integrated development environment (IDE) you
work with. This book covers the basics of writing a unit test, moves on
to the basics of interaction testing, and then introduces best practices
for writing, managing, and maintaining unit tests in the real world.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Acknowledgments
A big thank you to Michael Stephens and Nermina Miller at Manning,
who were patient with me every step of the long way in writing this book.

Thank you Jim Newkirk, Michael Feathers, Gerard Meszaros, and many
others, who provided me with inspiration and the ideas that made this
book what it is. And a special thank you to Michael for agreeing to write
the foreword to the book.

The following reviewers read the manuscript at various stages during its
development. I’d like to thank them for providing valuable feedback:
Svetlana Christopher, Wendy Friedlander, Jay Flowers, Jean-Paul S.
Boodhoo, Armand du Plessis, James Kovacs, Carlo Bottiglieri, Ken
DeLong, Dusty Jewett, Lester Lobo, Alessandro Gallo, Gabor Paller,
Eric Raymond, David Laribee, Christian Siegers, Phil Hanna, Josh
Cronemeyer, Mark Seemann, Francesco Goggi, Franco Lambardo, Dave
Nicolette, and Mohammad Azam. Thanks also to Rod Coffin, who did a
technical proofread of the final manuscript shortly before it went to press.

A final word of thanks to the early readers of the book in Manning’s
Early Access Program for their comments in the online forum. You
helped shape the book.
xix

Licensed to Jeff Warwick <devon@cloverpoint.com>

About this book
How to use this book

If you’ve never written unit tests before, this book is best read from start
to finish so you get the full picture. If you already have experience, you
should feel comfortable jumping into the chapters as you see fit.

Who should read this book

The book is for anyone who writes code and is interested in learning best
practices for unit testing. All the examples are written in C# using Visual
Studio 2008, so .NET developers will find the examples particularly use-
ful. But the lessons I teach apply equally to most, if not all, statically
typed object-oriented languages (VB.NET, Java, and C++, to name a
few). If you’re a developer, team lead, QA engineer (who writes code), or
novice programmer, this book should suit you well.

Roadmap

The book is divided into four parts.

Part 1 takes you from zero to sixty in writing unit tests. Chapters 1 and 2
cover the basics, such as how to use a testing framework (NUnit), and
introduce the basic automated test attributes, such as [SetUp] and [Tear-
Down]. They also introduce the ideas of asserts, ignoring tests, and state-
based testing.

Part 2 discusses advanced techniques for breaking dependencies: mock
objects, stubs, mock frameworks, and patterns for refactoring your code
to use them. Chapter 3 introduces the idea of stubs and shows how to
xx

Licensed to Jeff Warwick <devon@cloverpoint.com>

About this book xxi
manually create and use them. Chapter 4 introduces interaction testing
with handwritten mock objects. Chapter 5 merges these two concepts
and shows how isolation (mock) frameworks combine these two ideas
and allow them to be automated.

Part 3 talks about ways to organize test code, patterns for running and
refactoring its structure, and best practices when writing tests. Chapter
6 discusses test hierarchies, how to use test infrastructure APIs, and
how to combine tests in the automated build process. Chapter 7 dis-
cusses best practices in unit testing for creating maintainable, readable,
and trustworthy tests.

Part 4 talks about how to implement change in an organization and
how to work on existing code. Chapter 8 discusses problems and solu-
tions you would encounter when trying to introduce unit testing into
an organization. It also identifies and answers some questions you
might be asked. Chapter 9 talks about introducing unit testing into
existing code. It identifies a couple of ways to determine where to begin
testing and discusses some tools for testing untestable code.

Finally, there are two appendixes. Appendix A discusses the loaded
topic of designing for testability and the other alternatives that exist
today. Appendix B has a list of tools you might find useful in your test-
ing efforts.

Code conventions and downloads

You can download the source code for this book from the book’s site at
www.ArtOfUnitTesting.com, as well as from the publisher’s website at
www.manning.com/TheArtofUnitTesting.

All source code in listings or in the text is in a fixed-width font like
this to separate it from ordinary text. In listings, bold code indicates
code that has changed from the previous example, or that will change
in the next example.

Code annotations accompany some of the listings, highlighting impor-
tant concepts. In some cases, numbered bullets link to explanations
that follow in the text.
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.ArtOfUnitTesting.com
www.manning.com/TheArtofUnitTesting

xxii About this book
Software requirements

To use the code in this book, you need at least Visual Studio C#
Express (which is free), or a more advanced version of it (Professional
or Team Suite, for example). You’ll also need NUnit (an open source
and free framework) and other tools that will be referenced where
they’re relevant. All the tools mentioned are either free, open source, or
have trial versions you can use freely as you read this book.

Author Online

The purchase of The Art of Unit Testing includes free access to a private
forum run by Manning Publications where you can make comments
about the book, ask technical questions, and receive help from the
authors and other users. To access and subscribe to the forum, point
your browser to www.manning.com/TheArtofUnitTesting. This page
provides information on how to get on the forum once you are regis-
tered, what kind of help is available, and the rules of conduct in the
forum.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers
and the author can take place. It’s not a commitment to any specific
amount of participation on the part of the author, whose contribution
to the book’s forum remains voluntary (and unpaid). We suggest you
try asking him some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will
be accessible from the publisher’s website as long as the book is in print.
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.manning.com/TheArtofUnitTesting

About the cover illustration
The figure on the cover of The Art of Unit Testing is a “Japonais en Costume
de Cérémonie,” a Japanese man in ceremonial dress. The illustration is
taken from James Prichard’s Natural History of Man, a book of hand-colored
lithographs published in England in 1847. It was found by our cover
designer in an antique shop in San Francisco.

Prichard began the research for his study of the natives of the world in
1813. By the time his work was published 34 years later, he had gathered
much of the available research about various peoples and nations, and his
work became an important foundation for modern ethnological science.
Included in Prichard’s history were portraits of different human races
and tribes in their native dress, taken from original drawings of many art-
ists, most based on first-hand studies.

The lithographs from Prichard’s collection, like the other illustrations
that appear on our covers, bring to life the richness and variety of dress
and tribal customs of two centuries ago. Dress codes have changed since
then, and the diversity by region, so rich at the time, has faded away. It is
now often hard to tell the inhabitant of one continent from another, not to
mention a country or region. Perhaps, trying to view it optimistically, we
have traded a cultural and visual diversity for a more varied personal life.
Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the
fun of the computer business with book covers based on the rich diversity
of regional life of long ago—brought back to life by picture collections
such as Prichard’s.
xxiii

Licensed to Jeff Warwick <devon@cloverpoint.com>

xxiv About the cover illustration
Licensed to Jeff Warwick <devon@cloverpoint.com>

Part 1

Getting started

his part of the book covers the basics of unit testing.

In chapter 1, we’ll define what “good” unit testing means and compare
it with integration testing, and we’ll take a brief look at test-driven
development and its role in relation to unit testing.

Then, in chapter 2, we’ll take a stab at writing our first unit test using
NUnit. We’ll get to know NUnit’s basic API, how to assert things, and
how to run the test in the NUnit test runner.

T

Licensed to Jeff Warwick <devon@cloverpoint.com>

Licensed to Jeff Warwick <devon@cloverpoint.com>

1
The basics of unit testing

This chapter covers

• Defining unit testing and integration testing

• Exploring a simple unit-testing example

• Exploring text-driven development

here’s always a first step: the first time you wrote a program, the first time
you failed a project, and the first time you succeeded in what you were
trying to accomplish. You never forget your first time, and I hope you
won’t forget your first tests. You may have already written some tests,
and you may even remember them as being bad, awkward, slow, or
unmaintainable. (Most people do.) On the other hand, you may have had
a great first experience with unit tests, and you’re reading this to see what
more you might be missing.

This chapter will first analyze the “classic” definition of a unit test and
compare it to the concept of integration testing. This distinction is confus-
ing to many. Then we’ll look at the pros and cons of each approach and
develop a better definition of a “good” unit test. We’ll finish up with a
look at test-driven development, because it’s often associated with unit
testing. Throughout the chapter, we’ll also touch on various concepts that
are explained more thoroughly elsewhere in the book.

Let’s begin by defining what a unit test should be.

T

3

Licensed to Jeff Warwick <devon@cloverpoint.com>

4 CHAPTER 1 The basics of unit testing
Unit testing isn’t a new concept in software development. It’s been
floating around since the early days of the Smalltalk programming lan-
guage in the 1970s, and it proves itself time and time again as one of the
best ways a developer can improve code quality while gaining a deeper
understanding of the functional requirements of a class or method.

Kent Beck introduced the concept of unit testing in Smalltalk, and it
has carried on into many other programming languages, making unit
testing an extremely useful practice in software programming. Before
we get too far, we need to define unit testing better. Here’s the classic
definition, from Wikipedia.

DEFINITION A unit test is a piece of a code (usually a method) that invokes another
piece of code and checks the correctness of some assumptions after-
ward. If the assumptions turn out to be wrong, the unit test has failed.
A “unit” is a method or function.

Unit testing will be performed against a system under test (SUT).

DEFINITION SUT stands for system under test, and some people like to use CUT (class
under test or code under test). When we test something, we refer to the
thing we’re testing as the SUT.

This classic definition of a unit test, although technically correct, is
hardly enough to enable us to better ourselves as developers. Chances
are you already know this and are getting bored reading this definition
again, because it appears in any book or website that discusses unit test-
ing. Don’t worry. In this book, we’ll go beyond the classic definition of
unit testing by addressing maintainability, readability, correctness, and
more. But this familiar definition, precisely because it is familiar, gives
us a shared base from which to extend the idea of a unit test.

No matter what programming language you’re using, one of the most
difficult aspects of defining a unit test is defining what’s meant by a
“good” one.

1.1 Unit testing—the classic definition
Licensed to Jeff Warwick <devon@cloverpoint.com>

Unit testing—the classic definition 5
1.1.1 The importance of writing “good” unit tests

Most people who try to unit-test their code either give up at some point
or don’t actually perform unit tests. Instead, they either rely on system
and integration tests to be performed much later in the product lifecycle
or they resort to manually testing the code via custom test applications
or by using the end product they’re developing to invoke their code.

There’s no point in writing a bad unit test, unless you’re learning how
to write a good one and these are your first steps into this field. If
you’re going to write a unit test badly without realizing it, you may as
well not write it at all, and save yourself the trouble it will cause down
the road with maintainability and time schedules. By defining what a
good unit test is, we can make sure we don’t start off with the wrong
notion of what we’re trying to write.

To succeed in this delicate art of unit testing, it’s essential that you not
only have a technical definition of what unit tests are, but that you describe
the properties of a good unit test. To understand what a good unit test is,
we need to look at what developers do when they’re testing something.

How do you make sure that the code works today?

1.1.2 We’ve all written unit tests (sort of)

You may be surprised to learn this, but you’ve already implemented
some types of unit testing on your own. Have you ever met a developer
who has not tested his code before handing it over? Well, neither have I.

You might have used a console application that called the various
methods of a class or component, or perhaps some specially created
WinForm or WebForm UI (user interface) that checked the function-
ality of that class or component, or maybe even manual tests run by
performing various actions within the real application’s UI. The end
result is that you’ve made certain, to a degree, that the code works well
enough to pass it on to someone else.

Figure 1.1 shows how most developers test their code. The UI may
change, but the pattern is usually the same: using a manual external
tool to check something repeatedly, or running the application in full
and checking its behavior manually.
Licensed to Jeff Warwick <devon@cloverpoint.com>

6 CHAPTER 1 The basics of unit testing
Figure 1.1 In classic testing, developers

use a GUI (graphical user interface) to

trigger an action on the class they want

to test. Then they check the results.

These tests may have been useful, and they may come close to the clas-
sic definition of a unit test, but they’re far from how we’ll define a good
unit test in this book. That brings us to the first and most important
question a developer has to face when defining the qualities of a good
unit test: what is a unit test, and what is not.

A unit test should have the following properties:

❂ It should be automated and repeatable.
❂ It should be easy to implement.
❂ Once it’s written, it should remain for future use.
❂ Anyone should be able to run it.
❂ It should run at the push of a button.
❂ It should run quickly.

Many people confuse the act of testing their software with the concept
of a unit test. To start off, ask yourself the following questions about
the tests you’ve written up to now:

❂ Can I run and get results from a unit test I wrote two weeks or
months or years ago?

1.2 Properties of a good unit test
Licensed to Jeff Warwick <devon@cloverpoint.com>

Integration tests 7
❂ Can any member of my team run and get the results from unit tests I
wrote two months ago?

❂ Can I run all the unit tests I’ve written in no more than a few min-
utes?

❂ Can I run all the unit tests I’ve written at the push of a button?
❂ Can I write a basic unit test in no more than a few minutes?

If you’ve answered “no” to any of these questions, there’s a high proba-
bility that what you’re implementing isn’t a unit test. It’s definitely some
kind of test, and it’s as important as a unit test, but it has drawbacks com-
pared to tests that would let you answer “yes” to all of those questions.

“What was I doing until now?” you might ask. You’ve done integration
testing.

What happens when your car breaks down? How do you learn what
the problem is, let alone fix it? An engine consists of many parts work-
ing together, each relying on the others to help produce the final result:
a moving car. If the car stops moving, the fault could be with any of
these parts, or more than one. It’s the integration of those parts that
makes the car move. You could think of the car’s movement as the ulti-
mate integration test of these parts. If the test fails, all the parts fail
together; if it succeeds, the parts all succeed.

The same thing happens in software. The way most developers test
their functionality is through the final functionality of the user inter-
face. Clicking some button triggers a series of events—various classes
and components working together to produce the final result. If the
test fails, all of these software components fail as a team, and it can be
difficult to figure out what caused the failure of the overall operation.
(See figure 1.2.)

As defined in The Complete Guide to Software Testing, by Bill Hetzel,
integration testing is “an orderly progression of testing in which soft-
ware and/or hardware elements are combined and tested until the entire
system has been integrated.” That definition of integration testing falls

1.3 Integration tests
Licensed to Jeff Warwick <devon@cloverpoint.com>

8 CHAPTER 1 The basics of unit testing

Figure 1.2 You can have many failure points in an integration test. All the units have

to work together, and each of them could malfunction, making it harder to find the

source of the bug.

a bit short of what many people do all the time, not as part of a system
integration test, but as part of development and unit tests.

Here’s a better definition of integration testing.

DEFINITION Integration testing means testing two or more dependent software mod-
ules as a group.

To summarize: an integration test exercises many units of code that
work together to evaluate one or more expected results from the soft-
Licensed to Jeff Warwick <devon@cloverpoint.com>

Integration tests 9
ware, whereas a unit test usually exercises and tests only a single unit
in isolation.

The questions from the beginning of section 1.2 can help you recognize
some of the drawbacks of integration testing. Let’s look at them and try
to define the qualities we’re looking for in a good unit test.

1.3.1 Drawbacks of integration tests compared to automated unit tests

Let’s apply the questions from section 1.2 to integration tests, and con-
sider what we want to achieve with real-world unit tests:

❂ Can I run and get results from the test I wrote two weeks or months
or years ago?

If you can’t do that, how would you know whether you broke a fea-
ture that you created two weeks ago? Code changes regularly during
the life of an application, and if you can’t (or won’t) run tests for all
the previous working features after changing your code, you just
might break it without knowing. I call this “accidental bugging,” and
it seems to occur a lot near the end of a software project, when devel-
opers are under pressure to fix existing bugs. Sometimes they intro-
duce new bugs inadvertently as they solve the old ones. Wouldn’t it
be great to know that you broke something within three minutes of
breaking it? We’ll see how that can be done later in this book.

Good tests should be easily executed in their original form, not man-
ually.

DEFINITION A regression is a feature that used to work and now doesn’t.

❂ Can any member of my team run and get the results from tests I
wrote two months ago?

This goes with the last point but takes it up a notch. You want to
make sure that you don’t break someone else’s code when you
change something. Many developers fear changing legacy code in
older systems for fear of not knowing what other code depends on
what they’re changing. In essence, they risk changing the system
into an unknown state of stability.
Licensed to Jeff Warwick <devon@cloverpoint.com>

10 CHAPTER 1 The basics of unit testing
Few things are scarier than not knowing whether the application still
works, especially when you didn’t write that code. If you knew you
weren’t breaking anything, you’d be much less afraid of taking on
code you’re less familiar with because you have that safety net of
unit tests.
Good tests can be accessed and run by anyone.

DEFINITION Legacy code is defined by Wikipedia as “source code that relates to a no-
longer supported or manufactured operating system or other computer
technology,” but many shops refer to any older version of the applica-
tion currently under maintenance as legacy code. It often refers to code
that’s hard to work with, hard to test, and usually even hard to read.
A client of mine once defined legacy code in a down-to-earth way:
“code that works.” Many people like to define legacy code as “code
that has no tests.” The book Working Effectively with Legacy Code by
Michael Feathers uses this as an official definition of legacy code, and
it’s a definition to be considered while reading this book.

❂ Can I run all the tests in no more than a few minutes?

If you can’t run your tests quickly (seconds are better than minutes),
you’ll run them less often (daily, or even weekly or monthly in some
places). The problem is that, when you change code, you want to get
feedback as early as possible to see if you broke something. The
more time between running the tests, the more changes you make to
the system, and the (many) more places to search for bugs when you
find that you broke something.
Good tests should run quickly.

❂ Can I run all the tests at the push of a button?

If you can’t, it probably means that you have to configure the
machine on which the tests will run so that they run correctly (set-
ting connection strings to the database, for example), or that your
unit tests aren’t fully automated. If you can’t fully automate your
unit tests, you’ll probably avoid running them repeatedly, as will
everyone else on your team.

No one likes to get bogged down with configuring details to run tests
just to make sure that the system still works. As developers, we have
more important things to do, like writing more features into the system.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Good unit test—a definition 11
Good tests should be easily executed in their original form, not man-
ually.

❂ Can I write a basic test in no more than a few minutes?

One of the easiest ways to spot an integration test is that it takes time
to prepare correctly and to implement, not just to execute. It takes
time to figure out how to write it because of all the internal and
sometimes external dependencies. (A database may be considered an
external dependency.) If you’re not automating the test, dependen-
cies are less of a problem, but you’re losing all the benefits of an
automated test. The harder it is to write a test, the less likely you are
to write more tests, or to focus on anything other than the “big stuff”
that you’re worried about. One of the strengths of unit tests is that
they tend to test every little thing that might break, not only the big
stuff. People are often surprised at how many bugs they can find in
code they thought was simple and bug free.

When you concentrate only on the big tests, the logic coverage that
your tests have is smaller. Many parts of the core logic in the code
aren’t tested (even though you may be covering more components),
and there may be many bugs that you haven’t considered.

Good tests against the system should be easy and quick to write.

From what we’ve seen so far about what a unit test is not, and what fea-
tures need to be present for testing to be useful, we can now start to
answer the primary question this chapter poses: what is a good unit test?

Now that we’ve covered the important properties that a unit test
should have, let’s define unit tests once and for all.

DEFINITION A unit test is an automated piece of code that invokes the method or
class being tested and then checks some assumptions about the logical
behavior of that method or class. A unit test is almost always written
using a unit-testing framework. It can be written easily and runs
quickly. It’s fully automated, trustworthy, readable, and maintainable.

1.4 Good unit test—a definition
Licensed to Jeff Warwick <devon@cloverpoint.com>

12 CHAPTER 1 The basics of unit testing
This definition sure looks like a tall order, particularly considering how
many developers I’ve seen implementing unit tests poorly. It makes us
take a hard look at the way we, as developers, have implemented test-
ing up until now, compared to how we’d like to implement it. (“Trust-
worthy, readable, and maintainable” tests are discussed in depth in
chapter 7.)

DEFINITION Logical code is any piece of code that has some sort of logic in it, small as
it may be. It’s logical code if it has one or more of the following: an IF
statement, a loop, switch or case statements, calculations, or any other
type of decision-making code.

Properties (getters/setters in Java) are good examples of code that
usually doesn’t contain any logic, and so doesn’t require testing. But
watch out: once you add any check inside the property, you’ll want to
make sure that logic is being tested.

In the next section, we’ll take a look at a simple unit test done entirely
in code, without using any unit-testing framework. (We’ll look at unit-
testing frameworks in chapter 2.)

It’s possible to write an automated unit test without using a test frame-
work. In fact, as they have gotten more into the habit of automating
their testing, I’ve seen plenty of developers doing this before discover-
ing test frameworks. In this section, I’ll show what writing such a test
without a framework can look like, so that you can contrast this with
using a framework in chapter 2.

Assume we have a SimpleParser class (shown in listing 1.1) that we’d
like to test. It has a method named ParseAndSum that takes in a string of
0 or more comma-separated numbers. If there are no numbers, it
returns 0. If there’s a single number, it returns that number as an int. If
there are multiple numbers, it adds them all up and returns the sum
(although, right now, the code can only handle 0 or 1 number).

1.5 A simple unit test example
Licensed to Jeff Warwick <devon@cloverpoint.com>

A simple unit test example 13
Listing 1.1 A simple parser class to test

public class SimpleParser
 {
 public int ParseAndSum(string numbers)
 {
 if(numbers.Length==0)
 {
 return 0;
 }
 if(!numbers.Contains(","))
 {
 return int.Parse(numbers);
 }
 else
 {
 throw new InvalidOperationException(
"I can only handle 0 or 1 numbers for now!");
 }
 }
 }

We can create a simple console application project that has a reference
to the assembly containing this class, and we can write a SimplePar-
serTests method as shown in listing 1.2. The test method invokes the
production class (the class to be tested) and then checks the returned
value. If it’s not what’s expected, it writes to the console. It also catches
any exception and writes it to the console.

Listing 1.2 A simple coded method that tests the SimpleParser class

class SimpleParserTests
 {
 public static void TestReturnsZeroWhenEmptyString()
 {
 try
 {
 SimpleParser p = new SimpleParser();
 int result = p.ParseAndSum(string.Empty);
 if(result!=0)
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

14 CHAPTER 1 The basics of unit testing
Console.WriteLine(
@"***SimpleParserTests.TestReturnsZeroWhenEmptyString:

Parse and sum should have returned 0 on an empty string");
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }
 }
 }

Next, we can invoke the tests we’ve written by using a simple Main
method run inside a console application in this project, as seen in listing
1.3. The Main method is used here as a simple test runner, which
invokes the tests one by one, letting them write out to the console.
Because it’s an executable, this can be run without human intervention
(assuming the tests don’t pop up any interactive user dialogs).

Listing 1.3 Running coded tests via a simple console application

public static void Main(string[] args)
 {
 try
 {
 SimpleParserTests.TestReturnsZeroWhenEmptyString();
 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }
 }

It’s the test method’s responsibility to catch any exceptions that occur
and write them to the console, so that they don’t interfere with the run-
ning of subsequent methods. We can then add more method calls into
the Main method as we add more and more tests to the project. Each
test is responsible for writing the problem output (if there’s a problem)
to the console screen.
Licensed to Jeff Warwick <devon@cloverpoint.com>

A simple unit test example 15
Obviously, this is an ad hoc way of writing such a test. If you were
writing multiple tests like this, you might want to have a generic
ShowProblem method that all tests could use, which would format the
errors consistently. You could also add special helper methods that
would help check on various things like null objects, empty strings, and
so on, so that you don’t need to write the same long lines of code in
many tests.

Listing 1.4 shows what this test would look like with a slightly more
generic ShowProblem method.

Listing 1.4 Using a more generic implementation of the ShowProblem method

public class TestUtil
 {
 public static void ShowProblem(string test,string message)
 {
 string msg = string.Format(@"
---{0}---
 {1}

", test, message);
 Console.WriteLine(msg);
 }
 }

public static void TestReturnsZeroWhenEmptyString()
 {
 //use .NET's reflection API to get the current

 method's name
 // it's possible to hard code this,
 //but it’s a useful technique to know
 string testName = MethodBase.GetCurrentMethod().Name;
 try
 {
 SimpleParser p = new SimpleParser();
 int result = p.ParseAndSum(string.Empty);
 if(result!=0)
 {
 //Calling the helper method
 TestUtil.ShowProblem(testName,
"Parse and sum should have returned 0 on an empty string");
Licensed to Jeff Warwick <devon@cloverpoint.com>

16 CHAPTER 1 The basics of unit testing
 }
 }
 catch (Exception e)
 {
 TestUtil.ShowProblem(testName, e.ToString());
 }
 }

Unit-testing frameworks can help make helper methods more generic
like this, so tests are written more easily. We’ll talk about that in chapter
2. But before we get there, I’d like to discuss one important matter: not
just how you write a unit test, but when during the development process
you write it. That’s where test-driven development comes into play.

Once we know how to write structured, maintainable, and solid tests
with a unit-testing framework, the next question is when to write the
tests. Many people feel that the best time to write unit tests for soft-
ware is after the software has been written, but a growing number of
people prefer writing unit tests before the production code is written.
This approach is called test-first or test-driven development (TDD).

NOTE There are many different views on exactly what test-driven develop-
ment means. Some say it’s test-first development, and some say it
means you have a lot of tests. Some say it’s a way of designing, and
others feel it could be a way to drive your code’s behavior with only
some design. For a more complete look at the different views people
have of TDD, see “The various meanings of TDD” on my blog
(http://weblogs.asp.net/rosherove/archive/2007/10/08/the-various-
meanings-of-tdd.aspx). In this book, TDD means test-first develop-
ment, with design taking a secondary role in the technique (which
isn’t discussed in this book).

Figures 1.3 and 1.4 show the differences between traditional coding
and test-driven development.

1.6 Test-driven development
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://weblogs.asp.net/rosherove/archive/2007/10/08/the-variousmeanings-of-tdd.aspx
http://weblogs.asp.net/rosherove/archive/2007/10/08/the-variousmeanings-
http://weblogs.asp.net/rosherove/archive/2007/10/08/the-variousmeanings-of-tdd.aspx

Test-driven development 17
Figure 1.3 The traditional way of writing unit tests.

The dotted lines represent actions people treat as optional.

Figure 1.4 Test-driven

development—a

bird’s-eye view. Notice

the spiral nature of the

process: write test, write

code, refactor, write next

test. It shows the

incremental nature of

TDD: small steps lead

to a quality end result.

Start
Licensed to Jeff Warwick <devon@cloverpoint.com>

18 CHAPTER 1 The basics of unit testing
Test-driven development is different from traditional development, as
figure 1.4 shows. You begin by writing a test that fails; then you move
on to creating the production code, seeing the test pass, and continuing
on to either refactor your code or to create another failing test.

This book focuses on the technique of writing good unit tests, rather
than on test-driven development, but I’m a big fan of doing test-driven
development. I’ve written several major applications and frameworks
using TDD, have managed teams that utilize it, and have taught more
than a hundred courses and workshops on TDD and unit-testing tech-
niques. Throughout my career, I’ve found TDD to be helpful in creat-
ing quality code, quality tests, and better designs for the code I was
writing. I am convinced that it can work to your benefit, but it’s not
without a price (time to learn, time to implement, and more). It’s defi-
nitely worth the admission price, though.

It’s important to realize that TDD doesn’t ensure project success or
tests that are robust or maintainable. It’s quite easy to get caught up in
the technique of TDD and not pay attention to the way unit tests are
written: their naming, how maintainable or readable they are, and
whether they test the right things or might have bugs. That’s why I’m
writing this book.

The technique of test-driven development is quite simple:

1 Write a failing test to prove code or functionality is missing from the end product.

The test is written as if the production code were already working, so
the test failing means there’s a bug in the production code. For
example, if I wanted to add a new feature to a calculator class that
remembers the LastSum value, I would write a test that verifies that
LastSum is indeed a number. The test will fail because we haven’t
implemented that functionality yet.

2 Make the test pass by writing production code that meets the expectations of your test.

It should be written as simply as possible.

3 Refactor your code.

When the test passes, you’re free to move on to the next unit test or
to refactor your code to make it more readable, to remove code dupli-
cation, and so on.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Summary 19
Refactoring can be done after writing several tests or after writing each
test. It’s an important practice, because it ensures your code gets easier
to read and maintain, while still passing all of the previously written tests.

DEFINITION Refactoring means changing a piece of code without changing its func-
tionality. If you’ve ever renamed a method, you’ve done refactoring. If
you’ve ever split a large method into multiple smaller method calls,
you’ve refactored your code. The code still does the same thing, but it
becomes easier to maintain, read, debug, and change.

The preceding steps sound technical, but there’s a lot of wisdom behind
them. Done correctly, TDD can make your code quality soar, decrease
the number of bugs, raise your confidence in the code, shorten the time
it takes to find bugs, improve your code’s design, and keep your man-
ager happier. If TDD is done incorrectly, it can cause your project
schedule to slip, waste your time, lower your motivation, and lower
your code quality. It’s a double-edged sword, and many people find
this out the hard way.

In this chapter, we defined a good unit test as one that has these quali-
ties:

❂ It’s an automated piece of code that invokes a different method and
then checks some assumptions on the logical behavior of that
method or class.

❂ It’s written using a unit-testing framework.
❂ It can be written easily.
❂ It runs quickly.
❂ It can be executed repeatedly by anyone on the development team.

To understand what a unit is, we had to figure out what sort of testing
we’ve done until now. We identified that type of testing as integration
testing because it tests a set of units that depend on each other.

The difference between unit tests and integration tests is important to
recognize. You’ll be using that knowledge in your day-to-day life as a

1.7 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

20 CHAPTER 1 The basics of unit testing
developer when deciding where to place your tests, what kind of tests
to write when, and which option is better for a specific problem. It will
also help you identify how to fix problems with tests that are already
causing you headaches.

We also looked at the cons of doing integration testing without a
framework behind it: this kind of testing is hard to write and automate,
slow to run, and needs configuration. Although you do want to have
integration tests in a project, unit tests can provide a lot of value earlier
in the process, when bugs are smaller and easier to find, and there’s less
code to skim through.

Lastly, we talked about test-driven development, how it’s different
from traditional coding, and what its basic benefits are. TDD helps you
make sure that the code coverage of your test code (how much of the
code your tests exercise) is very high (close to 100 percent of logical
code). It helps you make sure that your tests can be trusted by making
sure that they fail when the production code isn’t there, and that they
pass when the production code works. TDD also has many other bene-
fits, such as aiding in design, reducing complexity, and helping you
tackle hard problems step by step. But you can’t do TDD without
knowing how to write good tests.

If you write tests after writing the code, you assume the test is OK
because it passes, when it could be that you have bugs in your tests.
Trust me—finding bugs in your tests is one of the most frustrating
things you can imagine. It’s important that you don’t let your tests get
to that state, and TDD is one of the best ways I know to keep that pos-
sibility close to zero.

In the next chapter, we’ll start writing our first unit tests using NUnit,
the de facto unit-testing framework for .NET developers.
Licensed to Jeff Warwick <devon@cloverpoint.com>

2
A first unit test

This chapter covers

• Exploring unit-testing frameworks in .NET

• Writing our first test with NUnit

• Working with the NUnit attributes

• Understanding indirect state testing

hen I first started writing unit tests with a real unit-testing framework,
there was little documentation, and the frameworks I worked with did
not have proper examples. (I was mostly coding in VB 5 and 6 at the
time.) It was a challenge learning to work with them, and I started out
writing rather poor tests. Fortunately, times have changed.

This chapter will get you started writing tests even if you have no idea
where to start. It will get you well on your way to writing real-world unit
tests with a framework called NUnit—a .NET unit-testing framework.
It’s my favorite framework in .NET for unit testing because it’s easy to
use, easy to remember, and has lots of great features.

There are other frameworks in .NET, including some with more features,
but NUnit is where I always start. I sometimes then expand to a different
framework if the need arises. We’ll look at how NUnit works, its syntax,
and how to run it and get feedback when the test fails or passes. To accom-
plish this, I’ll introduce a small software project that we’ll use throughout
the book to explore the testing techniques and best practices.

W

21

Licensed to Jeff Warwick <devon@cloverpoint.com>

22 CHAPTER 2 A first unit test
First, we need to look at what a unit-testing framework is, and at what
it enables us to do that we couldn’t and wouldn’t have done without it.

Consider the advantages an integrated development environment
(IDE) gives you as a developer. Unit-testing frameworks offer similar
advantages for testing.

To this day, in many IDEs for other environments (such as Unix), the
steps involved in getting a final binary output from your code aren’t as
simple, and may require manually calling other external tools to do
parts of this big task. When using a modern IDE like Visual Studio
.NET or Eclipse for Java, you do all your coding tasks within that
environment, in a structured manner. You write the code, you compile
it, you build any resources (like graphics and text) into it, and you cre-
ate the final binary—all that building and compiling with no more than
a couple of keystrokes.

Doing things completely manually would be error-prone and time-con-
suming, and people would defer doing that as much as possible. These
problems are alleviated by tooling. In the same way, unit-testing frame-
works help developers write tests more quickly with a set of known
APIs, execute those tests automatically, and review the results of those
tests easily.

2.1.1 What unit-testing frameworks offer

Up to now, the tests you’ve done were limited:
❂ They were not structured.

You had to reinvent the wheel every time you wanted to test a fea-
ture. One test might look like a console application, another uses a UI
form, and another uses a web form. You don’t have that time to spend
on testing, and the tests fail the “easy to implement” requirement.

❂ They were not repeatable.

Neither you nor your team members could run the tests you’d writ-
ten in the past. That breaks the “repeatedly” requirement and pre-

2.1 Frameworks for unit testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

Frameworks for unit testing 23
vents you from finding regression bugs. With a framework, you can
more easily and automatically write tests that are repeatable.

❂ They were not on all your code.

The tests didn’t test all the code that matters. That means all the code
with logic in it, because each and every one of those could contain a
potential bug. (Property getters and setters don’t count as logic,
unless you have some sort of logic inside them.) If it were easier to
write the tests, you’d be more inclined to write more of them, and get
better coverage.

In short, what you’ve been missing is a framework for writing, running,
and reviewing unit tests and their results. Figure 2.1 shows the areas in
software development where a unit-testing framework has influence.

Figure 2.1 Unit tests are written as code, using libraries from the unit-testing frame-

work. Then the tests are run from a separate unit-testing tool, and the results are

reviewed (either in the UI or as text) by the developer or an automated build process.
Licensed to Jeff Warwick <devon@cloverpoint.com>

24 CHAPTER 2 A first unit test
Table 2.1 How unit-testing frameworks help developers write and execute
 tests, and review results

Unit-testing frameworks are code libraries and modules that help
developers unit-test their code, as outlined in table 2.1. They also have
another side—running the tests as part of an automated build, which I
cover in later chapters.

At the time of this writing, there are more than 150 unit-testing frame-
works out there—practically one for every programming language in
public use. A good list can be found at http://www.xprogramming.com.
Consider that .NET, alone, has at least 9 different unit-testing frame-
works; among these, NUnit is the de facto standard.

Unit-testing practice How the framework helps

Write tests easily and in a structured manner. Framework supplies the developer with a class library
that holds
• base classes or interfaces to inherit.
• attributes to place in your code to note your tests

to run.
• assert classes that have special assert methods

you invoke to verify your code.

Execute one or all of the unit tests. Framework provides a test runner (a console or
GUI tool) that
• identifies tests in your code.
• runs tests automatically.
• indicates status while running.
• can be automated by command line.

Review the results of the test runs. The test-runners will usually provide information
such as
• how many tests ran.
• how many tests didn’t run.
• how many tests failed.
• which tests failed.
• the reason tests failed.
• the ASSERT message you wrote.
• the code location that failed.
• possibly a full stack trace of any exceptions that

caused the test to fail, and will let you go to the var-
ious method calls inside the call stack.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://www.xprogramming.com.Consider
http://www.xprogramming.com.Consider

Introducing the LogAn project 25
NOTE Using a unit-testing framework doesn’t ensure that the tests we
write are readable, maintainable, or trustworthy, or that they cover all
the logic we’d like to test. We’ll look at how to ensure that our unit
tests have these properties in chapter 7 and in various other places
throughout this book.

2.1.2 The xUnit frameworks

Collectively, these unit-testing frameworks are called the xUnit frame-
works, because their names usually start with the first letters of the lan-
guage for which they were built. You might have CppUnit for C++,
JUnit for Java, NUnit for .NET, and HUnit for the Haskell program-
ming language. Not all of them follow these naming guidelines, but
most of them do.

In this book, we’ll be using NUnit, a .NET unit-testing framework that
makes it easy to write tests, run them, and get the results. NUnit
started out as a direct port of the ubiquitous JUnit for Java, and has
since made tremendous strides in its design and usability, setting it
apart from its parent and breathing new life into an ecosystem of test
frameworks that’s changing more and more. The concepts we’ll be
looking at will be understandable to Java and C++ developers alike.

The project that we’ll use for testing in this book will be simple at first,
and will only contain one class. As the book moves along, we’ll extend
that project with new classes and features. We’ll call it the LogAn proj-
ect (short for “log and notification”).

Here’s the scenario. Your company has many internal products it uses
to monitor its applications at customer sites. All these products write
log files and place them in a special directory. The log files are written
in a proprietary format that your company has come up with that can’t
be parsed by any existing third-party tools. You’re tasked with build-
ing a product, LogAn, that can analyze these log files and find various
special cases and events in them. When it finds these cases and events,
it should alert the appropriate parties.

2.2 Introducing the LogAn project
Licensed to Jeff Warwick <devon@cloverpoint.com>

26 CHAPTER 2 A first unit test
In this book, we’ll write tests that verify LogAn’s parsing, event-recog-
nition, and notification abilities. Before we get started testing our proj-
ect, though, we’ll look at how to write a unit test with NUnit. The first
step is installing it.

As with any new tool, you’ll need to install it first. Because NUnit is
open source and freely downloadable, this task should be rather sim-
ple. Then we’ll see how to start writing a test with NUnit, use the vari-
ous built-in attributes that NUnit ships with, and run our test and get
some real results.

2.3.1 Installing NUnit

You can download NUnit from www.NUnit.org or www.NUnit.com.
NUnit is free to use and is an open source product, so you can get the
source code for NUnit, compile it yourself, and use the source freely
within the limits of the open source license. (See the license.txt file in
the program directory for license details.)

NOTE At the time of writing, the latest version of NUnit is 2.2.8. The exam-
ples in this book should be compatible with most future versions of
the framework.

To install NUnit, run the setup program you downloaded. The installer
will place a shortcut to the GUI part of the NUnit runner on your
desktop, but the main program files should reside in a directory named
something like c:\Program Files\NUnit-Net-2.0 2.2.8. If you double-
click the NUnit desktop icon, you’ll see the unit test runner shown in
figure 2.2.

We’ll be using this GUI to run our tests shortly.

2.3.2 Loading up the solution

If you have the book’s code on your machine, load up the ArtOfUnit-
Testing.sln solution from the Code folder inside Visual Studio 2008.

2.3 First steps with NUnit
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.NUnit.org
www.NUnit.com.NUnit
www.NUnit.com.NUnit

First steps with NUnit 27
Figure 2.2 The NUnit GUI is divided into three main parts: the tree listing the tests

on the left, messages and errors at the top right, and stack trace information at the

bottom right.

NOTE The C# Express Edition of Visual Studio 2008 (or above) is fine for
use with this book.

We’ll begin by testing the following simple class with one method (the
unit we’re testing) inside it:

public class LogAnalyzer
{
 public bool IsValidLogFileName(string fileName)
 {
 if(!fileName.EndsWith(".SLF"))
 {
 return false;
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

28 CHAPTER 2 A first unit test
 return true;
 }
}

This method may not seem complicated, but we’ll test it to make sure it
works. In the real world, you’ll want to test any method that contains
logic, even if it seems to be simple. Logic can fail, and we want to know
when it does. In the following chapters, we’ll test more complicated
scenarios and logic.

The method looks at the file extension to determine whether a file is a
valid log file or not. Our first test will be to send in a valid filename,
and make sure the method returns true.

Here are the first steps for writing an automated test for the IsValid-
LogFileName method:

1 Add a new class library project to the solution, which will con-
tain your test classes.

2 To that library, add a new class that will hold your test methods.

3 Add a new method to the preceding test case named IsValid-
LogFileName.

We’ll touch more on test-naming and arrangement standards later in
the book, but the basic rules are listed in table 2.2.

Table 2.2 Basic rules for placing and naming tests

Object to be tested Object to create on the testing side

Project Create a test project named [ProjectUnderTest].Tests.

Class For each class, create at least one class with the name [ClassName]Tests.

Method For each method, create at least one test method with the following name:
[MethodName]_[StateUnderTest]_[ExpectedBehavior].
Licensed to Jeff Warwick <devon@cloverpoint.com>

First steps with NUnit 29
For example, the name for our LogAn test project would be
AOUT.Logan.Tests (with AOUT standing for Art of Unit Testing).
The name for the LogAnalyzer test class would be LogAnalyzerTests.

Here are the three parts of the test method name:
❂ MethodName—The name of the method you’re testing
❂ StateUnderTest—The conditions used to produce the expected

behavior
❂ ExpectedBehavior—What you expect the tested method to do under

the specified conditions

In our test of the IsValidLogFileName method, the state or condition is
that we’re sending the method a valid filename, and the expected
behavior is that the method will return a true value. Our test method
name might be IsValidFileName_validFile_ReturnsTrue().

We haven’t used the NUnit test framework yet, but we’re close. We
still need to add a reference to the project under test for the new testing
project. Do this by right-clicking on the test project and selecting Add
Reference. Then select the Projects tab and select the LogAn project.

The next thing to learn is how to mark the test method to be loaded and
run by NUnit automatically.

2.3.3 Using the NUnit attributes in your code

NUnit uses an attribute scheme to recognize and load tests. Just like
bookmarks in a book, these attributes help the framework identify the
important parts in the assembly that it loads, and which parts are tests
that need to be invoked.

NUnit provides an assembly that contains these special attributes. You
just need to add a reference in your test project (not in your production
code!) to the NUnit.Framework assembly. You can find it under the
.NET tab in the Add Reference dialog box. Type Nunit and you’ll see
several assemblies starting with that name; add nunit.framework.

NUnit needs at least two attributes to know what to run:
Licensed to Jeff Warwick <devon@cloverpoint.com>

30 CHAPTER 2 A first unit test
❂ [TestFixture] —The [TestFixture] attribute denotes a class that
holds automated NUnit tests. (If you replace the word “Fixture”
with “Class”, it makes much more sense.) Put this attribute on your
new LogAnalyzerTests class.

❂ [Test] —The [Test] attribute can be put on a method to denote it as
an automated test to be invoked. Put this attribute on your new test
method.

When you’re done, your test code should look like this:

[TestFixture]
 public class LogAnalyzerTests
 {
 [Test]
 public void IsValidFileName_validFile_ReturnsTrue()
 {

 }
 }

TIP NUnit requires test methods to be void and accept no parameters.

At this point, you’ve marked your class and a method to be run. Now,
whatever code you put inside your test method will be invoked by
NUnit whenever you want.

How do we test our code? A unit test usually comprises three main
actions:

❂ Arrange objects, creating and setting them up as necessary.
❂ Act on an object.
❂ Assert that something is as expected.

Here’s a simple piece of code that does all three, with the assert part
performed by the NUnit framework’s Assert class:

2.4 Writing our first test
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing our first test 31
[Test]
 public void IsValidFileName_validFile_ReturnsTrue()
 {
 //arrange
 LogAnalyzer analyzer = new LogAnalyzer();

 //act
 bool result = analyzer.IsValidLogFileName("whatever.slf");

 //assert
 Assert.IsTrue(result, "filename should be valid!");
 }

Before we go on, you’ll need to know a little more about the Assert
class, because it’s an important part of writing unit tests.

2.4.1 The Assert class

The Assert class has static methods and is located in the NUnit.Frame-
work namespace. It’s the bridge between your code and the NUnit
framework, and its purpose is to declare that a specific assumption is
supposed to exist. If the arguments that are passed into the Assert class
turn out to be different than what we’re asserting, NUnit will realize
the test has failed and will alert us. We can optionally tell the Assert
class what message to alert us with if the assertion fails.

The Assert class has many methods, with the main one being
Assert.IsTrue (some Boolean expression), which verifies a Boolean
condition. But there are many other methods.

This one verifies that an expected object or value is the same as the
actual one:

Assert.AreEqual(expectedObject, actualObject, message);

Here’s an example:

Assert.AreEqual(2, 1+1, "Math is broken");

This one verifies that the two arguments reference the same object:

Assert.AreSame(expectedObject, actualObject, message);
Licensed to Jeff Warwick <devon@cloverpoint.com>

32 CHAPTER 2 A first unit test
Here’s an example:

Assert.AreSame(int.Parse("1"),int.Parse("1"),
"this test should fail").

Assert is simple to learn, use, and remember.

Now that we’ve covered the basics of the API, let’s run a test

2.4.2 Running our first test with NUnit

It’s time to run our first test and see if it passes or not. To do that, we
need to have a build assembly (a .dll file in this case) that we can give
to NUnit to inspect. After you build the project, locate the path to the
assembly file that was built.

Then, load up the NUnit GUI and select File > Open. Enter the name
of your test’s assembly. You’ll see your single test and the class and
namespace hierarchy of your project on the left, as shown in figure 2.3.
Click the Run button to run your tests. The tests are automatically
grouped by namespace (assembly, typename) so you can pick and
choose to run only by specific types or namespaces. (You’ll usually
want to run all of the tests to get better feedback on failures.)

As you can see, we have a failing test, which might suggest that there’s
a bug in the code. It’s time to fix the code and see the test pass.

Figure 2.3 NUnit test failures are shown in three places: the test hierarchy on the left

becomes red, the progress bar at the top becomes red, and any errors are shown on

the right.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing our first test 33
2.4.3 Fixing our code and passing the test

A quick look through the code reveals that we’re testing for an upper-
case filename extension, and our test is sending in a lowercase filename
extension, which makes our code return false instead of true. Our test
could also have failed if our code threw an exception of any kind. An
unhandled exception in your code is considered a failure, unless your
code is supposed to throw an exception under specific circumstances.
(We’ll see how to test for deliberate exceptions in section 2.5.2.)

If we fix the if statement in the production code to look like this, we
can make the test pass:

if(!fileName.ToLower().EndsWith(".slf"))

But this is a sign that the name of our test may need changing, and that
we need another test to make sure that sending in an uppercase exten-
sion works. (We know that it works now, but who’s to say that some
programmer working on this feature won’t break it in the future?) A
better name for our current test might be
IsValidFileName_validFileLowerCased_ReturnsTrue().

If you rebuild the solution now, you’ll find that NUnit’s GUI can
detect that the assembly has changed, and it will automatically reload
the assembly in the GUI. If you rerun the tests, you’ll see that the test
passes with flying (green) colors.

2.4.4 From red to green

NUnit’s GUI is built with a simple idea in mind: all the tests should
pass in order to get the “green” light to go ahead. If even one of the
tests fails, you’ll see a red light on the top progress bar to let you know
that something isn’t right with the system (or your tests).

The red-green concept is prevalent throughout the unit-testing world,
and especially in test-driven development (TDD). Its mantra is “Red-
Green-Refactor,” meaning that you start with a failing test, then pass it,
and then make your code readable and more maintainable.
Licensed to Jeff Warwick <devon@cloverpoint.com>

34 CHAPTER 2 A first unit test
Now that you’ve seen how easy it is to create unit tests that run auto-
matically, we’ll look at how to set up the initial state for each test, and
how to remove any garbage that’s left by your test.

A unit test has specific points in its lifecycle that you’ll want to have
control over. Running the test is only one of them, and there are special
setup methods that run before each test run, as we’ll see in the next sec-
tion.

2.5.1 Setup and teardown

For unit tests, it’s important that any leftover data or instances from
previous tests are destroyed and that the state for the new test is recre-
ated as if no tests have been run before. If you have leftover state from
a previous test, you might find that your test fails, but only if it’s run
after a different test, and it passes other times. Locating that kind of
dependency bug between tests is difficult and time-consuming, and I
don’t recommend it to anyone. Having tests that are totally indepen-
dent of each other is one of the best practices I will be covering in part
2 of this book.

In NUnit, there are special attributes that allow
easier control of setting up and clearing out state
before and after tests. These are the [SetUp] and
[TearDown] action attributes. Figure 2.4 shows the
process of running a test with setup and teardown
actions.

For now, make sure that each test you write uses a
new instance of the class under test, so that no
leftover state will mess up your tests.

Figure 2.4 NUnit performs setup and teardown actions

before each and every test method.

2.5 More NUnit attributes
Licensed to Jeff Warwick <devon@cloverpoint.com>

More NUnit attributes 35
We can take control of what happens in the setup and teardown steps
by using two NUnit attributes:

❂ [SetUp]—This attribute can be put on a method, just like a [Test]
attribute, and it causes NUnit to run that setup method each time it
runs any of the tests in your class.

❂ [TearDown]—This attribute denotes a method to be executed once
after each test in your class has executed.

Listing 2.1 shows how we can use the [SetUp] and [TearDown] attri-
butes to make sure that each test receives a new instance of LogAna-
lyzer, while also saving some repetitive typing.

Listing 2.1 Using [SetUp] and [TearDown] attributes

using NUnit.Framework;

namespace AOUT.LogAn.Tests
{
 [TestFixture]
 public class LogAnalyzerTests
 {
 private LogAnalyzer m_analyzer=null;

 [SetUp]
 public void Setup()
 {
 m_analyzer = new LogAnalyzer();
 }

 [Test]
 public void IsValidFileName_validFileLowerCased_ReturnsTrue()
 {
 bool result =

m_analyzer.IsValidLogFileName("whatever.slf");

 Assert.IsTrue(result, "filename should be valid!");
 }

 [Test]
 public void IsValidFileName_validFileUpperCased_ReturnsTrue()
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

36 CHAPTER 2 A first unit test
 bool result =
m_analyzer.IsValidLogFileName("whatever.SLF");

 Assert.IsTrue(result, "filename should be valid!");
 }

 [TearDown]
 public void TearDown()
 {
 m_analyzer = null;
 }
 }
}

You can think of the setup and teardown methods as constructors and
destructors for the tests in your class. You can only have one of each in
any test class, and each one will be performed once for each test in your
class. In listing 2.1 we have two unit tests, so the execution path for
NUnit will be something like that shown in figure 2.5.

NUnit contains several other attributes to help with setup and cleanup
of state. For example, [TestFixtureSetUp]and [TestFixtureTearDown]
allow setting up state once before all the tests in a specific class run, and
once after all the tests have been run (once per test fixture). This is use-
ful when setting up or cleaning up takes a long time, and you want to
only do it once per fixture. You’ll need to be cautious about using these
attributes. You may find that you’re sharing state between tests if
you’re not careful.

Next, we’ll look at how we can test that an exception is thrown by our
code when it should be.

2.5.2 Checking for expected exceptions

One common testing scenario is making sure that the correct exception
is thrown from the tested method when it should be.

Let’s assume that our method should throw an ArgumentException
when we send in an empty filename. If our code doesn’t throw an
exception, it means our test should fail. We’re going to test the method
logic in listing 2.2.
Licensed to Jeff Warwick <devon@cloverpoint.com>

More NUnit attributes 37
Figure 2.5 How NUnit calls SetUp and TearDown with multiple unit tests in the same

class: each test is preceded by running SetUp and followed by a TearDown method run.

Listing 2.2 The LogAnalyzer filename-validation logic we’d like to test

public class LogAnalyzer
 {
 public bool IsValidLogFileName(string fileName)
 {
 if(String.IsNullOrEmpty(fileName))
 {
 throw new ArgumentException("No filename provided!");
 }
 if(!fileName.EndsWith(".SLF"))
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

38 CHAPTER 2 A first unit test
 return false;
 }
 return true;
 }
 }

There’s a special attribute in NUnit that helps us test exceptions: the
[ExpectedException] attribute. Here’s what a test that checks for the
appearance of an exception might look like:

[Test]
[ExpectedException(typeof(ArgumentException),
 ExpectedMessage ="No filename provided!")]
 public void IsValidFileName_EmptyFileName_ThrowsException()
 {
 m_analyzer.IsValidLogFileName(string.Empty);
 }

There are several important things to note here:

❂ The expected exception message is provided as a parameter to the
[ExpectedException] attribute.

❂ There’s no Assert call in the test itself. The [ExpectedException]
attribute contains the assert within it.

❂ There’s no point getting the value of the Boolean result from the
method because the method call is supposed to trigger an exception.

Given the method in listing 2.2 and the test for it, this test should pass.
Had our method not thrown an ArgumentException, or had the excep-
tion’s message been different than the one expected, our test would
have failed—saying either that an exception was not thrown or that the
message was different than expected.

2.5.3 Ignoring tests

Sometimes you’ll have tests that are broken and you still need to check
in your code to the main source tree. In those rare cases (and they
should be rare!), you can put an [Ignore] attribute on tests that are
broken because of a problem in the test, not in the code.
Licensed to Jeff Warwick <devon@cloverpoint.com>

More NUnit attributes 39
Figure 2.6 In NUnit, an ignored test is marked in yellow (the middle test), and the

reason for not running the test is listed under the Tests Not Run tab on the right.

It can look like this:

[Test]
[Ignore("there is a problem with this test")]
 public void IsValidFileName_ValidFile_ReturnsTrue()
 {
 /// ...
 }

Running this test in the NUnit GUI will produce a result like that
shown in figure 2.6.

What happens when you want to have tests running not by a
namespace but by some other type of grouping? That’s where test cate-
gories come in.

2.5.4 Setting test categories

You can set up your tests to run under specific test categories, such as
slow tests and fast tests. You do this by using NUnit’s [Category] attri-
bute:

[Test]
[Category("Fast Tests")]
 public void IsValidFileName_ValidFile_ReturnsTrue()
 {
 /// ...
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

40 CHAPTER 2 A first unit test
When you load your test assembly again in NUnit, you can see them
organized by categories instead of namespaces. Switch to the Catego-
ries tab in NUnit, and double-click the category you’d like to run so
that it moves into the lower Selected Categories pane. Then click the
Run button. Figure 2.7 shows what the screen might look like after you
select the Categories tab.

So far, we’ve run simple tests against methods that return some value
as a result. What if our method doesn’t return a value, but changes
some state in the object?

Throughout this chapter and the next, we’ll be using state-based test-
ing methods in our unit tests.

DEFINITION State-based testing (also called state verification) determines whether the
exercised method worked correctly by examining the state of the sys-
tem under test and its collaborators (dependencies) after the method is
exercised.

2.6 Indirect testing of state

Figure 2.7 You can set up categories of tests in the code base and then choose a par-

ticular category to be run from the NUnit GUI.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Indirect testing of state 41
Let’s consider a simple state-based testing example using the LogAna-
lyzer class, which we can’t test simply by calling one method in our
test. Listing 2.3 shows the code for this class.

Listing 2.3 Testing the property value by calling IsValidLogFileName

public class LogAnalyzer
 {
 private bool wasLastFileNameValid;

 public bool WasLastFileNameValid
 {
 get { return wasLastFileNameValid; }
 set { wasLastFileNameValid = value; }
 }

 public bool IsValidLogFileName(string fileName)
 {
 if (!fileName.ToLower().EndsWith(".slf"))
 {
 wasLastFileNameValid=false;
 return false;
 }

 wasLastFileNameValid = true;
 return true;
 }
 }

As you can see in this code, LogAnalyzer remembers what the last out-
come of a validation check was. Because the logic depends on having
another method invoked first, we can’t simply test this functionality by
writing a test that gets a return value from a method; we have to use
alternative means to see if the logic works.

First, we have to identify where the logic we’re testing is located. Is it
in the new property called wasLastFileNameValid? Not really; it’s in the
IsValidLogFileName method, so our test should start with the name of
that method. Listing 2.4 shows a simple test to see if the outcome is
remembered.

Saves state of result
for later assertions
Licensed to Jeff Warwick <devon@cloverpoint.com>

42 CHAPTER 2 A first unit test
Listing 2.4 Testing a class by calling a method and checking the value of a property

[Test]
 public void IsValidLogFileName_ValidName_RemembersTrue()
 {
 LogAnalyzer3 log = new LogAnalyzer3();
 log.IsValidLogFileName("somefile.slf");
 Assert.IsTrue(log.WasLastFileNameValid);
 }

Notice that we’re testing the functionality of the IsValidLogFileName
method by asserting against code in a different location than the piece
of code under test.

Listing 2.5 shows another example (that will be used again in chapter
3). This one looks into the functionality of a built-in memory calcula-
tor. (Take a look at Calculator.cs under CH3 and CalculatorTests.cs in
the book’s sample code.)

Listing 2.5 The Add()and Sum() methods

public class Calculator
 {
 private int sum=0;

 public void Add(int number)
 {
 sum+=number;
 }

 public int Sum()
 {
 int temp = sum;
 sum = 0;
 return temp;
 }
 }

The Calculator class works a lot like the pocket calculator you know
and love. You can click a number, then click Add, then click another
number, then click Add again, and so on. When you’re done, you can
click Equals and you’ll get the total so far.

Asserts on
property value,
not return value
Licensed to Jeff Warwick <devon@cloverpoint.com>

Indirect testing of state 43
Where do you start testing the Sum() function? You should always con-
sider the simplest test to begin with, such as testing that Sum() returns 0
by default. This is shown in listing 2.6.

Listing 2.6 The simplest test for Calculator’s Sum()

[Test]
 public void Sum_NoAddCalls_DefaultsToZero()
 {
 Calculator calc = new Calculator();
 int lastSum = calc.Sum();
 Assert.AreEqual(0,lastSum);
 }

We can’t write any other test without first invoking the Add() method,
so our next test will have to call Add() and assert against the number
returned from Sum(). Listing 2.7 shows our test class with this new test.

Listing 2.7 The two tests, with the second one calling the Add() method

[SetUp]
 public void Setup()
 {
 calc = new Calculator();
 }

 [Test]
 public void Sum_NoAddCalls_DefaultsToZero()
 {
 int lastSum = calc.Sum();
 Assert.AreEqual(0,lastSum);
 }

 [Test]
 public void Add_CalledOnce_SavesNumberForSum()
 {
 calc.Add(1);
 int lastSum = calc.Sum();
 Assert.AreEqual(1,lastSum);
 }

Asserts on default
return value

Tests the Add() method
indirectly by checking return
value from Sum()
Licensed to Jeff Warwick <devon@cloverpoint.com>

44 CHAPTER 2 A first unit test
Notice that this time the tests initialize the Calculator object in a
[SetUp]-related method. This is a good idea, because it saves time writ-
ing the tests, makes the code smaller, and makes sure Calculator is
always initialized the same way. It’s also better for test maintainability,
because if the constructor for Calculator changes, you only need to
change the initialization in one place instead of going through each test
and changing the new call.

So far, so good. But what happens when the method we’re testing
depends on an external resource, such as the filesystem, a database, a
web service, or anything else that’s hard for us to control? That’s when
we start creating test stubs, fake objects, and mock objects, which are
discussed in the next few chapters.

In this chapter, we looked at using NUnit to write simple tests against
simple code. We used the [SetUp] and [TearDown] attributes to make
sure our tests always use new and untouched state. We used [Ignore]
to skip tests that need to be fixed. Test categories can help us group
tests in a logical way rather than by class and namespace, and [Expect-
edException] helps us make sure our code throws exceptions when it
should. Finally, we looked at what happens when we aren’t facing a
simple method with a return value, and we need to test the end state of
an object. This attribute is handy, and you’ll use it in many of your
future tests.

This isn’t enough though. Most test code has to deal with far more dif-
ficult coding issues. The next couple of chapters will give you some
more basic tools for writing unit tests. You’ll need to pick and choose
from these tools when you write tests for various difficult scenarios
you’ll come across.

Finally, keep the following points in mind:

❂ It’s common practice to have one test class per tested class, one test
project per tested project, and at least one test method per tested
method.

2.7 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

Summary 45
❂ Name your tests clearly using the following model: [Metho-
dUnderTest]_[Scenario]_[ExpectedBehavior].

❂ Use the [SetUp] and [TearDown] attributes to reuse code in your
tests, such as code for creating and initializing objects all your tests
use.

❂ Don’t use [SetUp] and [TearDown] to initialize or destroy objects that
aren’t shared throughout the test class in all the tests, because it makes
the tests less understandable. Someone reading your code won’t
know which tests use the logic inside the setup method and which
don’t.

In the next chapter, we’ll look at more real-world scenarios, where the
code to be tested is a little more realistic than what you’ve seen so far.
It has dependencies and testability problems, and we’ll start discussing
the notion of integration tests versus unit tests, and what that means to
us as developers who write tests and want to ensure our code’s quality.
Licensed to Jeff Warwick <devon@cloverpoint.com>

46 CHAPTER 2 A first unit test
Licensed to Jeff Warwick <devon@cloverpoint.com>

Part 2

Core techniques

aving covered the basics in previous chapters, we’ll now introduce the
core testing and refactoring techniques that are necessary for writing
tests in the real world.

In chapter 3, we’ll begin by learning about stubs and how they help us
break dependencies. We’ll go over refactoring techniques that make
code more testable, and we’ll learn about seams in the process.

Then, in chapter 4, we’ll move on to mock objects and interaction test-
ing and look at how mock objects differ from stubs.

Lastly, in chapter 5, we’ll look at isolation frameworks (also known as
mock object frameworks) and how they solve some of the repetitive
coding involved in handwritten mocks and stubs. Chapter 5 also com-
pares the leading isolation frameworks in .NET and uses Rhino Mocks
for examples, showing its API in common use cases.

H

Licensed to Jeff Warwick <devon@cloverpoint.com>

Licensed to Jeff Warwick <devon@cloverpoint.com>

3
Using stubs to break
dependencies

This chapter covers

• Defining stubs

• Refactoring code to use stubs

• Overcoming encapsulation problems in code

• Exploring best practices when using stubs

n the previous chapter, we wrote our first unit test using NUnit and
explored the different testing attributes that are available, such as
[ExpectedException], [SetUp], and [TearDown]. We also built tests for
simple use cases, where all we had to check on were simple return values
from simple objects.

In this chapter, we’ll take a look at more realistic examples where the
object under test relies on another object over which we have no control
(or which doesn’t work yet). That object could be a web service, the time
of day, threading, or many other things. The important point is that our
test can’t control what that dependency returns to our code under test or
how it behaves (if we wanted to simulate an exception, for example).
That’s when we use stubs.

I

49

Licensed to Jeff Warwick <devon@cloverpoint.com>

50 CHAPTER 3 Using stubs to break dependencies
Flying people into space presents interesting challenges to engineers
and astronauts, one of the more difficult being how to make sure the
astronaut is ready to go into space and operate all the machinery. A full
integration test for a space shuttle would require being in space, and that’s
obviously not a safe way to test astronauts. That’s why NASA has full
simulators that mimic the surroundings of a space shuttle’s control deck,
which removes the external dependency of having to be in outer space.

DEFINITION An external dependency is an object in your system that your code under
test interacts with, and over which you have no control. (Common
examples are filesystems, threads, memory, time, and so on.)

Controlling external dependencies in your code is the topic that this
chapter, and most of this book, will be dealing with. In programming,
we use stubs to get around the problem of external dependencies.

DEFINITION A stub is a controllable replacement for an existing dependency (or col-
laborator) in the system. By using a stub, you can test your code with-
out dealing with the dependency directly.

Let’s look at a real example and make things a bit more complicated for
our LogAnalyzer class, introduced in the previous chapters. We’ll try to
untangle a dependency against the filesystem.

3.1 Introducing stubs

Test pattern names

xUnit Test Patterns by Gerard Meszaros is a classic pattern reference book
for unit testing. It defines patterns for things we fake in our tests in at
least five ways, which I feel confuses people (although it’s detailed). In
this book, I chose to use only three definitions for fake things in tests:
fakes, stubs, and mocks. I feel that this simplification of terms makes it
easy for readers to digest the patterns, and that there’s no need to know
more than those three to get started and write great tests. In various
places in the book, though, I will refer to the pattern names used in xUnit
Test Patterns so that you can easily refer to that definition if you’d like.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Identifying a filesystem dependency in LogAn 51
Our LogAnalyzer class application can be configured to handle multiple
log filename extensions using a special adapter for each file. For the
sake of simplicity, let’s assume that the allowed filenames are stored
somewhere on disk as a configuration setting for the application, and
that the IsValidLogFileName method looks like this:

public bool IsValidLogFileName(string fileName)
 {
 //read through the configuration file
 //return true if configuration says extension is supported.
 }

The problem that arises, as depicted in figure 3.1, is that, once this test
depends on the filesystem, we’re performing an integration test, and we
have all the associated problems: integration tests are slower to run,
they need configuration, they test multiple things, and so on.

This is the essence of test-inhibiting design: the code
has some dependency on an external resource,
which might break the test even though the code’s
logic is perfectly valid. In legacy systems, a single
class or method might have many dependencies on
external resources over which your test code has lit-
tle, if any, control. Chapter 9 touches more on this
subject.

Figure 3.1 Our method has a direct dependency on the

filesystem. Our design of the object model under test

inhibits us from testing it as a unit test; it promotes

integration testing.

3.2 Identifying a filesystem dependency in LogAn
Licensed to Jeff Warwick <devon@cloverpoint.com>

52 CHAPTER 3 Using stubs to break dependencies

“There is no object-oriented problem that cannot be solved by adding a
layer of indirection, except, of course, too many layers of indirection.” I
like this quote (from a friend of mine) because a lot of the “art” in the
art of unit testing is about finding the right place to add or use a layer
of indirection to test the code base.

You can’t test something? Add a layer that wraps up the calls to that
something, and then mimic that layer in your tests. Or make that some-
thing replaceable (so that it is itself a layer of indirection). The art also
involves figuring out when a layer of indirection already exists instead
of having to invent it, or knowing when not to use it because it compli-
cates things too much. But let’s take it one step at a time.

The only way we can write a test for this code, as it is, is to have a con-
figuration file in the filesystem. Because we’re trying to avoid these
kinds of dependencies, we want our code to be easily testable without
resorting to integration testing.

If we look at the astronaut analogy we started out with, we can see that
there’s a definite pattern for breaking the dependency:

1 Find the interface or API that the object under test works against. In
the astronaut example, this was the joysticks and monitors of the
space shuttle, as depicted in figure 3.2.

2 Replace the underlying implementation of that interface with something
that you have control over. This involved hooking up the various
shuttle monitors, joysticks, and buttons to a control room where test
engineers were able to control what the space shuttle interface was
showing to the astronauts under test.

Transferring this pattern to our code requires more steps:

1 Find the interface that the method under test works against. (In this
case, “interface” isn’t used in the pure object-oriented sense; it refers to
the defined method or class being collaborated with.) In our LogAn
project, this is the filesystem configuration file.

3.3 Determining how to easily test LogAnalyzer
Licensed to Jeff Warwick <devon@cloverpoint.com>

Determining how to easily test LogAnalyzer 53
2 If the interface is directly connected to our method under test (as in this
case—we’re calling directly into the filesystem), make the code test-
able by adding a level of indirection to the interface. In our example,
moving the direct call to the filesystem to a separate class (such as
FileExtensionManager) would be one way to add a level of indirec-
tion. We’ll also look at others. (Figure 3.3 shows how the design
might look after this step.)

3 Replace the underlying implementation of that interactive interface with
something that you have control over. In our case, we’ll replace the
instance of the class that our method calls (FileExtensionManager)
with a stub class that we can control (StubExtensionManager), giving
our test code control over external dependencies.

Our replacement instance will not talk to the filesystem at all, which
breaks the dependency on the filesystem. Because we aren’t testing the
class that talks to the filesystem, but the code that calls this class, it’s OK
if that stub class doesn’t do anything but make happy noises when run-
ning inside the test. Figure 3.4 shows the design after this alteration.

Figure 3.2 A space shuttle simulator has realistic joysticks and screens to simulate

the outside world. (Photo courtesy of NASA)
Licensed to Jeff Warwick <devon@cloverpoint.com>

54 CHAPTER 3 Using stubs to break dependencies
Figure 3.3 Introducing a layer

of indirection to avoid a direct

dependency on the filesys-

tem. The code that calls the

filesystem is separated into a

FileExtensionManager class,

which will later be replaced

with a stub in our test.

In figure 3.4, I’ve added a new interface into the mix. This new inter-
face will allow the object model to abstract away the operations of what
a FileExtensionManager class does, and will allow the test to create a
stub that looks like a FileExtensionManager. You’ll see more on this
method in the next section.

Figure 3.4 Introducing a stub to break the dependency
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 55
We’ve looked at one way of introducing testability into our code
base—by creating a new interface. Now let’s look at the idea of code
refactoring and introducing seams into our code.

I’m going to introduce two new terms that will be used throughout the
book: refactoring and seams.

DEFINITION Refactoring is the act of changing the code’s design without breaking
existing functionality.

DEFINITION Seams are places in your code where you can plug in different function-
ality, such as stub classes. (See Michael Feathers’ book, Working Effec-
tively with Legacy Code, for more about seams.)

If we want to break the dependency between our code under test and
the filesystem, we can use common design patterns, refactorings, and
techniques, and introduce one or more seams into the code. We just
need to make sure that the resulting code does exactly the same thing.
Here are some techniques for breaking dependencies:

❂ Extract an interface to allow replacing underlying implementation.
❂ Inject stub implementation into a class under test.
❂ Receive an interface at the constructor level.
❂ Receive an interface as a property get or set.
❂ Get a stub just before a method call.

We’ll look at each of these.

3.4.1 Extract an interface to allow replacing underlying implementation

In this technique, we need to break out the code that touches the file-
system into a separate class. That way we can easily distinguish it and
later replace the call to that class from our tested function (as was
shown in figure 3.3). Listing 3.1 shows the places where we need to
change the code.

3.4 Refactoring our design to be more testable
Licensed to Jeff Warwick <devon@cloverpoint.com>

56 CHAPTER 3 Using stubs to break dependencies
Listing 3.1 Extracting a class that touches the filesystem, and calling it

public bool IsValidLogFileName(string fileName)
{
 FileExtensionManager mgr =
 new FileExtensionManager();
 return mgr.IsValid(fileName);
}

class FileExtensionManager
 {
 public bool IsValid(string fileName)
 {
 //read some file here
 }
 }

Next, we can tell our class under test that, instead of using the concrete
FileExtensionManager class, it will deal with some form of Extension-
Manager, without knowing its concrete implementation. In .NET, this
could be accomplished by either using a base class or an interface that
FileExtensionManager would extend.

Listing 3.2 shows the use of a new interface in our design to make it
more testable. Figure 3.4 showed a diagram of this implementation.

Listing 3.2 Extracting an interface from a known class

public class FileExtensionManager : IExtensionManager
 {
 public bool IsValid(string fileName)
 {
 ...
 }
 }
public interface IExtensionManager
 {
 bool IsValid (string fileName);
 }

//the method under test:
public bool IsValidLogFileName(string fileName)

Uses the extracted class

Defines the
extracted class

Implements
the interface

Defines the
new interface
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 57
 {
 IExtensionManager mgr =
 new FileExtensionManager();
 return mgr.IsValid(fileName);
 }

We’ve simply created an interface with one IsValid (string) method,
and made FileExtensionManager implement that interface. It still works
exactly the same way, only now we can replace the “real” manager with
our own “stub” manager to support our test.

We still haven’t created the stub extension manager, so let’s create that
right now. It’s shown in listing 3.3.

Listing 3.3 Simple stub code that always returns true

public class StubExtensionManager:IExtensionManager
 {
 public bool IsValid(string fileName)
 {
 return true;
 }
 }

This stub extension manager will always return true, no matter what
the file extension is. We can use it in our tests to make sure that no test
will ever have a dependency on the filesystem, but also so we can cre-
ate new and bizarre scenarios where we can simulate serious system
errors like making the stub manager throw an OutOfMemoryException
and seeing how the system deals with it. Later in this chapter, we’ll add
configurability to the stub class so it can emulate many things and be
used by multiple tests.

Now we have an interface and two classes implementing it, but our
method under test still calls the real implementation directly:

public bool IsValidLogFileName(string fileName)
 {
 IExtensionManager mgr = new FileExtensionManager();

Defines variable
as the type of
the interface

Implements
IExtensionManager
Licensed to Jeff Warwick <devon@cloverpoint.com>

58 CHAPTER 3 Using stubs to break dependencies
 return mgr. IsValid (fileName);
 }

We somehow have to tell our method to talk to our implementation
rather than the original implementation of IExtensionManager. We need
to introduce a seam into the code, where we can plug in our stub.

3.4.2 Inject stub implementation into a class under test

There are several proven ways to create interface-based seams in our
code—places where we can inject an implementation of an interface
into a class to be used in its methods. Here are some of the most nota-
ble ways:

❂ Receive an interface at the constructor level and save it in a field for
later use.

❂ Receive an interface as a property get or set and save it in a field for
later use.

❂ Receive an interface just before the call in the method under test
using

• a parameter to the method (parameter injection).
• a factory class.
• a local factory method.
• variations on the preceding techniques.

The parameter injection method is trivial: you send in an instance of a
(fake) dependency to the method in question by adding a parameter to
the method signature.

Let’s go through the rest of the possible solutions one by one and see
why you’d want to use each.

3.4.3 Receive an interface at the constructor level (constructor injection)

In this scenario, we add a new constructor (or a new parameter to an
existing constructor) that will accept an object of the interface type we
extracted earlier (IExtensionManager). The constructor then sets a local
field of the interface type in the class for later use by our method or any
other. Figure 3.5 shows the flow of the stub injection.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 59
Figure 3.5 Flow of injection via a

constructor

Listing 3.4 shows how we could write a test for our LogAnalyzer class
using a constructor injection technique.

Listing 3.4 Injecting our stub using constructor injection

public class LogAnalyzer
 {
 private IExtensionManager manager;

 public LogAnalyzer ()
 {
 manager = new FileExtensionManager();
 }
 public LogAnalyzer(IExtensionManager mgr)
 {
 manager = mgr;
 }

 public bool IsValidLogFileName(string fileName)
 {
 return manager.IsValid(fileName);
 }
 }

public interface IExtensionManager
 {

Defines production code

Creates object
in production code

Defines constructor
that can be called by tests
Licensed to Jeff Warwick <devon@cloverpoint.com>

60 CHAPTER 3 Using stubs to break dependencies
 bool IsValid(string fileName);
 }

 [TestFixture]
 public class LogAnalyzerTests
 {
 [Test]
 public void
IsValidFileName_NameShorterThan6CharsButSupportedExtension_ReturnsFalse()
 {
 StubExtensionManager myFakeManager =
 new StubExtensionManager();
 myFakeManager.ShouldExtensionBeValid
 = true;

 //create analyzer and inject stub
 LogAnalyzer log =
 new LogAnalyzer (myFakeManager);

 //Assert logic assuming extension is supported
 bool result = log.IsValidLogFileName("short.ext");
 Assert.IsFalse(result,
 "File name with less than 5 chars should have failed
 the method, even if the extension is supported");
 }
 }

 internal class StubExtensionManager : IExtensionManager
 {
 public bool ShouldExtensionBeValid;

 public bool IsValid(string fileName)
 {
 return ShouldExtensionBeValid;
 }
 }

NOTE The stub analyzer is located in the same file as the test code because
currently the stub is used only from within this test class. It’s far eas-
ier to locate, read, and maintain a stub in the same file than in a dif-
ferent one. If, later on, I have an additional class that needs to use
this stub, I can move it to another file easily.

Defines test code

Sets up stub
to return true

Sends in stub

Defines stub
that uses
simplest
mechanism
possible
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 61
Notice that the test in listing 3.4 tests some domain logic that’s built on
top of the call to the FileExtensionManager. The domain logic in IsVal-
idLogFileName should make sure that the extension is supported, and
that the filename is long enough to be considered.

You’ll also notice that the stub object in listing 3.4 can be configured by
the test code as to what Boolean value to return when its method is
called. Configuring the stub from the test means the stub class’s source
code can be reused in more than one test case, with the test setting the
values for the stub before using it on the object under test. This also
helps the readability of the test code, because the reader of the code can
read the test and find everything she needs to know in one place. Read-
ability is an important aspect of writing unit tests, and we’ll cover it in
detail later in the book, particularly in chapter 7.

Another thing to note is that, by using parameters in the constructor,
we’re in effect making the parameters non-optional dependencies
(assuming this is the only constructor), which is a design choice. The
user of the type will have to send in arguments for any specific depen-
dencies that are needed.

Problems with constructor injection

Problems can arise from using constructors to inject implementations.
If your code under test requires more than one stub to work correctly
without dependencies, adding more and more constructors (or more
and more constructor parameters) becomes a hassle, and it can even
make the code less readable and less maintainable.

For example, suppose LogAnalyzer also had a dependency on a web
service and a logging service in addition to the file extension manager.
The constructor might look like this:

public LogAnalyzer(IExtensionManager mgr, ILog logger, IWebService
service)

 {
 // this constructor can be called by tests
 manager = mgr;
 log= logger;
 svc= service;
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

62 CHAPTER 3 Using stubs to break dependencies
One solution to these problems is to create a special class that contains
all the values needed to initialize a class, and to have only one parame-
ter to the method: that class type. That way, you only pass around one
object with all the relevant dependencies. (This is also known as a
parameter object refactoring.) This can get out of hand pretty quickly, with
dozens of properties on an object; but it’s possible.

Another possible solution to these problems is using inversion of con-
trol (IoC) containers. You can think of IoC containers as “smart facto-
ries” for your objects (although they are much more than that). A
couple of well-known containers of this type are Spring.NET and Cas-
tle Windsor. Both provide special factory methods that take in the type
of object you’d like to create and any dependencies that it needs, and
then initialize the object using special configurable rules such as what
constructor to call, what properties to set in what order, and so on.
They’re powerful when put to use on a complicated composite object
hierarchy where creating an object requires creating and initializing
objects several levels down the line. If your class needs an ILogger
interface at its constructor, for example, you can configure such a con-
tainer object to always return the same ILogger object that you give it,
when resolving this interface requirement. The end result of using con-
tainers is usually simpler handling and retrieving of objects, and less
worry about the dependencies or maintaining the constructors.

TIP Some of the more popular containers in the .NET world are Castle
Windsor, Microsoft Unity, and Spring.NET. There are also many up-
and-coming container implementations, such as Autofac, Ninject, and
StructureMap, which use a more fluent interface API, so look at them
when you read more about this topic. Dealing with containers is
beyond the scope of this book, but you can start reading about them
with Scott Hanselman’s list: http://www.hanselman.com/blog/ListOf-
NETDependencyInjectionContainersIOC.aspx.

Now, imagine that you have 50 tests against your constructor, and you
find another dependency you had not considered, such as a factory ser-
vice for creating special objects that works against a database. You’d
have to create an interface for that dependency and add it as a parame-
ter to the current constructor, and you’d also have to change the call in
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://www.hanselman.com/blog/ListOf-NETDependencyInjectionContainersIOC.aspx
http://www.hanselman.com/blog/ListOf-NETDependencyInjectionContainersIOC.aspx

Refactoring our design to be more testable 63
50 other tests that initialize the code. At this point, your constructor
could use a facelift. Whatever logic it does have is beginning to be hid-
den by the many parameters. Fortunately, using property getters and
setters can solve this problem easily, as we’ll see in section 3.4.4.

When you should use constructor injection

My experience is that using constructor arguments to initialize objects
can make your testing code more cumbersome unless you’re using
helper frameworks such as IoC containers for object creation. Every
time you add another dependency to the class under test, you have to
create a new constructor that takes all the other arguments plus a new
one, make sure it calls the other constructors correctly, and make sure
other users of this class initialize it with the new constructor.

On the other hand, using parameters in constructors is a great way to
signify to the user of your API that these parameters are non-optional.
They have to be sent in when creating the object.

If you want these dependencies to be optional, refer to the next section.
It discusses using property getters and setters, which is a much more
relaxed way to define optional dependencies than, say, adding different
constructors to the class for each dependency.

There are people who disagree with my approach and define construc-
tor arguments as non-optional arguments, using properties strictly for
optional ones. That way, the semantics of the class also imply the
proper usage of that class. I agree somewhat with this approach; my
problem is with its maintainability.

TIP You’ll find that dilemmas about what method to use in which situation
are common in the world of unit testing. This is a wonderful thing.
Always question your assumptions; you might learn something new.

If you choose to use constructor injection, you’ll probably also want to
use IoC containers. This would be a great solution if all code in the
world were using IoC containers, but most people don’t know what the
Inversion of Control principle is, let alone what tools you can use to
make it a reality. The future of unit testing will likely see more and
more use of these frameworks. As that happens, we’ll see clearer and
clearer guidelines on how to design classes that have dependencies, or
Licensed to Jeff Warwick <devon@cloverpoint.com>

64 CHAPTER 3 Using stubs to break dependencies
we’ll see tools that solve the dependency injection problem without
needing to use constructors at all.

In any case, constructor parameters are just one way to go. Properties
are often used as well.

3.4.4 Receive an interface as a property get or set

In this scenario, we add a property get and set for each dependency
we’d like to inject. We then use this dependency when we need it in our
code under test. Figure 3.6 shows the flow of injection with properties.

Figure 3.6 Using properties to

inject dependencies. This is

much simpler than using a

constructor because each test can

set only the properties that it

needs to get the test underway.

Using this technique (also called dependency injection, a term that can also
be used to describe the other techniques in this chapter), our test code
would look quite similar to that in section 3.4.3, which used construc-
tor injection. But this code, shown in listing 3.5, is more readable and
simpler to achieve.

Listing 3.5 Injecting a stub by adding property setters to the class under test

public class LogAnalyzer
 {
 private IExtensionManager manager;

 public LogAnalyzer ()
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 65
 {
 manager = new FileExtensionManager();

 }

 public IExtensionManager ExtensionManager
 {
 get { return manager; }
 set { manager = value; }
 }

 public bool IsValidLogFileName(string fileName)
 {
 return manager.IsValid(fileName);
 }
 }

 [Test]
 Public void
IsValidFileName_NameShorterThan6CharsButSupportedExtension_ReturnsFalse()
 {
 //set up the stub to use, make sure it returns true
 ...

 //create analyzer and inject stub
 LogAnalyzer log =
 new LogAnalyzer ();
 log.ExtensionManager=someFakeManagerCreatedEarlier;

 //Assert logic assuming extension is supported
 ...
 }
 }

Like constructor injection, property injection has an effect on the API
design in terms of defining which dependencies are required and which
aren’t. By using properties, you’re effectively saying, “This dependency
isn’t required to operate this type.”

When you should use property injection

Use this technique when you want to signify that a dependency of the
class under test is optional, or if the dependency has a default instance
created that doesn’t create any problems during the test.

Allows setting
dependency
via a property

Injects stub
Licensed to Jeff Warwick <devon@cloverpoint.com>

66 CHAPTER 3 Using stubs to break dependencies
3.4.5 Getting a stub just before a method call

This section deals with a scenario where you get an instance of an
object just before you do any operations with it, instead of getting it via
a constructor or a property. The difference is that the object initiating
the stub request in this situation is the code under test; in previous sec-
tions, the stub instance was set by code external to the code under test
before the test started.

Use a factory class

In this scenario, we go back to the basics, where a class initializes the
manager in its constructor, but it gets the instance from a factory class.
The Factory pattern is a design that allows another class to be respon-
sible for creating objects.

Our tests will configure the factory class (which, in this case, uses a
static method to return an instance of an object that implements IEx-
tensionManager) to return a stub instead of the real implementation.
Figure 3.7 shows this.

This is a clean design, and many object-oriented systems use factory
classes to return instances of objects. But most systems don’t allow

Figure 3.7 A test configures the factory class to return a stub object. The class under

test uses the factory class to get that instance, which in production code would

return an object that isn’t a stub.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 67
anyone outside the factory class to change the instance being returned,
in order to protect the encapsulated design of this class.

In this case, I’ve added a new setter method (our new seam) to the fac-
tory class so that our tests will have more control over what instance
gets returned. Once you introduce statics into test code, you might also
need to reset the factory state before or after each test run, so that
other tests won’t be affected by the configuration.

This technique produces test code that’s easy to read, and there’s a
clear separation of concerns between the classes. Each one is responsi-
ble for a different action.

Listing 3.6 shows code that uses the factory class in LogAnalyzer (and
also includes the tests).

Listing 3.6 Setting a factory class to return a stub when the test is running

public class LogAnalyzer
 {
 private IExtensionManager manager;

 public LogAnalyzer ()
 {
 manager = ExtensionManagerFactory.Create();
 }

 public bool IsValidLogFileName(string fileName)
 {
 return manager.IsValid(fileName)
 && Path.GetFileNameWithoutExtension(fileName).Length>5;
 }
 }

 [Test]
 Public void
IsValidFileName_NameShorterThan6CharsButSupportedExtension_ReturnsFalse()
 {
 //set up the stub to use, make sure it returns true
 ...

Uses factory in
production code
Licensed to Jeff Warwick <devon@cloverpoint.com>

68 CHAPTER 3 Using stubs to break dependencies
 ExtensionManagerFactory
 .SetManager(myFakeManager);
 //create analyzer and inject stub
 LogAnalyzer log =
 new LogAnalyzer ();

 //Assert logic assuming extension is supported
 ...
 }
 }

Class ExtensionManagerFactory
{
 Private IExtensionManager customManager=null;
 Public IExtensionManager Create()
 {
 If(customManager!=null)
return customManager;
 Return new FileExtensionManager();
 }
 Public void SetManager(IExtensionManager mgr)
 {
 customManager = mgr;
 }

}

The implementation of the factory class can vary greatly, and the
examples shown here represent only the simplest illustration. For more
examples of factories, read about the factory method and the Abstract
Factory Design patterns in the classic book Design Patterns, by the Gang
of Four (Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides).

The only thing you need to make sure of is that, once you use these pat-
terns, you add a seam to the factories you make so that they can return
your stubs instead of the default implementations. Many systems have
a global #debug switch that, when turned on, causes seams to automati-
cally send in fake or testable objects instead of default implementa-
tions. Setting this up can be hard work, but it’s worth it when it’s time
to test the system.

Sets stub into
factory class
for this test

Defines factory that can use
and return custom manager
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 69
Hiding seams in release mode

What if you don’t want the seams to be visible in release mode? There
are several ways to achieve that. In .NET, for example, you can put the
seam statements (the added constructor, setter, or factory setter) under
a conditional compilation argument, like this:

#if DEBUG
 MyConstructor(IExtensionManager mgr)
 {...}
#endif

There’s also a special attribute in .NET that can be used for these pur-
poses:

 [Conditional("DEBUG")]
 MyConstructor(IExtensionManager mgr)
 {...}

When you should use conditional compilation

First, you need to realize that we’re dealing with a different layer depth
here than the previous sections. At each different depth, we’re faking
(or stubbing) a different object. Table 3.1 shows three layer depths that
are used inside the code to return stubs.

Table 3.1 Layers of code that can be faked

Code under test Possible action

Layer depth 1:
the FileExtensionManager
variable inside the class

Add a constructor argument that will be used as the
dependency. A member in the class under test is now
fake; all other code remains unchanged.

Layer depth 2: the dependency returned
from the factory class into the class under
test

Tell the factory class to return your fake dependency by
setting a property. The member inside the factory class is
fake; the class under test isn’t changed at all.

Layer depth 3: the factory class that returns
the dependency

Replace the instance of the factory class with a fake fac-
tory that returns your fake dependency. The factory is a
fake, which also returns a fake; the class under test isn’t
changed.
Licensed to Jeff Warwick <devon@cloverpoint.com>

70 CHAPTER 3 Using stubs to break dependencies
The thing to understand about layers of indirection is that the deeper
you go down the rabbit hole (down the code-base execution call stack)
the better manipulation power you have over the code under test,
because you create stubs that are in charge of more things down the
line. But there’s also a bad side to this: the further you go down the lay-
ers, the harder the test will be to understand, and the harder it will be
to find the right place to put your seam. The trick is to find the right
balance between complexity and manipulation power so that your tests
remain readable but you get full control of the situation under test.

For the scenario in listing 3.6 (using a factory), adding a constructor-
level argument would complicate things when we already have a good
possible target layer for our seam—the factory at depth 2. Layer 2 is
the simplest to use here because the changes it requires in the code are
minimal:

❂ Layer 1 (faking a member in the class under test)

You would need to add a constructor, set the class in the construc-
tor, set its parameters from the test, and worry about future uses of
that API in the production code. This method would change the
semantics of using the class under test, which is best avoided unless
you have a good reason.

❂ Layer 2 (faking a member in a factory class)

This method is easy. Add a setter to the factory and set it to a fake
dependency of your choice. There’s no changing of the semantics of
the code base, everything stays the same, and the code is dead sim-
ple. The only con is that this method requires that you understand
who calls the factory and when, which means you need to do some
research before you can implement this easily. Understanding a code
base you’ve never seen is a daunting task, but it still seems more rea-
sonable than the other options.

❂ Layer 3 (faking the factory class)

You would need to create your own version of a factory class, which
may or may not have an interface. This means also creating an inter-
face for it. Then you would need to create your fake factory instance,
tell it to return your fake dependency class (a fake returning a
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 71
fake—take note!), and then set the fake factory class on the class
under test. A fake returning a fake is always a bit of a mind-boggling
scenario, which is best avoided because it makes the test less under-
standable.

Use a local factory method (Extract and Override)

This method doesn’t reside in any of the layers listed in table 3.1; it cre-
ates a whole new layer of indirection close to the surface of the code
under test. The closer we get to the surface of the code, the less we need
to muck around with changing dependencies. In this case, the class
under test is also a dependency of sorts that we need to manipulate.

In this scenario, we use a local virtual method in the class under test as a
factory to get the instance of the extension manager. Because the
method is marked as virtual, it can be overridden in a derived class,
which creates our seam. We inject a stub into the class by inheriting a
new class from the class under test, overriding the virtual factory
method, and finally returning whatever instance the new class is con-
figured to return in the overriding method. The tests are then per-
formed on the new derived class. The factory method could also be
called a stub method that returns a stub object. Figure 3.8 shows the
flow of object instances.

Figure 3.8 We inherit from the class under test so we can override its virtual factory

method and return whatever object instance we want, as long as it implements IEx-

tensionManager. Then we perform our tests against the newly derived class.
Licensed to Jeff Warwick <devon@cloverpoint.com>

72 CHAPTER 3 Using stubs to break dependencies
Here are the steps for using a factory method in your tests.
❂ In the class under test,

• add a virtual factory method that returns the real instance.
• use the factory method in your code, as usual.

❂ In your test project, create a new class:

• Set the new class to inherit from the class under test.
• Create a public field (no need for property get or set) of the inter-

face type you want to replace (IExtensionManager).
• Override the virtual factory method.
• Return the public field.

❂ In your test code,

• create an instance of a stub class that implements the required
interface (IExtensionManager).

• create an instance of the newly derived class, not of the class under test.
• configure the new instance’s public field (which you created ear-

lier) and set it to the stub you’ve instantiated in your test.

When you test your class now, your production code will be using your
stub through the overridden factory method.

Listing 3.7 shows what the code might look like when using this method.

Listing 3.7 Faking a factory method

public class LogAnalyzerUsingFactoryMethod
 {
 public bool IsValidLogFileName(string fileName)
 {
 return GetManager().IsValid(fileName);
 }

 protected virtual IExtensionManager GetManager()
 {
 return new FileExtensionManager();
 }
 }

[TestFixture]
 public class LogAnalyzerTests

Uses virtual
GetManager()
method

Returns
hardcoded
value
Licensed to Jeff Warwick <devon@cloverpoint.com>

Refactoring our design to be more testable 73
 {
 [Test]
 public void overrideTest()
 {
 StubExtensionManager stub = new StubExtensionManager();
 stub.ShouldExtensionBeValid = true;

 TestableLogAnalyzer logan =
 new TestableLogAnalyzer();
 logan.Manager=stub;
 bool result = logan.IsValidLogFileName("file.ext");
 Assert.IsFalse(result,
 "File name should be too short to be considered valid");
 }
 }

 class TestableLogAnalyzer
 :LogAnalyzerUsingFactoryMethod
 {
 public IExtensionManager Manager;

 protected override IExtensionManager GetManager()
 {
 return Manager;
 }
 }
 internal class StubExtensionManager : IExtensionManager
 {
 //no change from the previous samples
 ...
 }

The technique we’re using here is called Extract and Override, and you’ll find
it extremely easy to use once you’ve done it a couple of times. It’s a pow-
erful technique, and one I will put to other uses throughout this book.

TIP You can learn more about this dependency-breaking technique and
others in a book I have found to be worth its weight in gold: Working
Effectively with Legacy Code by Michael Feathers.

Extract and Override is a powerful technique because it lets you
directly replace the dependency without going down the rabbit hole
(changing dependencies deep inside the call stack). That makes it quick

Creates instance of
class derived from
class under test

Returns
what we
tell it to
Licensed to Jeff Warwick <devon@cloverpoint.com>

74 CHAPTER 3 Using stubs to break dependencies
and clean to perform, and it almost corrupts your good sense of object-
oriented aesthetics, leading you to code that might have fewer inter-
faces but more virtual methods. I like to call this method “ex-crack and
override” because it’s such a hard habit to let go of once you know it.

When you should use this method

Extract and Override is great for simulating inputs into your code under
test, but it’s cumbersome when you want to verify interactions that are
coming out of the code under test into your dependency.

For example, it’s great if your test code calls a web service and gets a
return value, and you’d like to simulate your own return value. But it gets
bad quickly if you want to test that your code calls out to the web service
correctly. That requires lots of manual coding, and mock frameworks
are better suited for such tasks (as you’ll see in the next chapter).
Extract and Override is good if you’d like to simulate return values or
simulate whole interfaces as return values, but not for checking inter-
actions between objects.

I use this technique a lot when I need to simulate inputs into my code
under test, because it helps keep the changes to the semantics of the
code base (new interfaces, constructors, and so on) a little more man-
ageable. You need to make fewer of them to get the code into a testable
state. The only times I don’t use this technique is when the code base
clearly shows that there’s a path already laid out for me: there’s already
an interface ready to be faked or there’s already a place where a seam
can be injected. When these things don’t exist, and the class itself isn’t
sealed (or can be made nonsealed without too much resentment from
your peers), I check out this technique first, and only after that move
on to more complicated options.

There are many variations on the preceding simple techniques to intro-
duce seams into source code. For example, instead of adding a parame-
ter to a constructor, you can add it directly to the method under test.
Instead of sending in an interface, you could send a base class, and so
on. Each variation has its own strengths and weaknesses.

3.5 Variations on refactoring techniques
Licensed to Jeff Warwick <devon@cloverpoint.com>

Variations on refactoring techniques 75
One of the reasons you may want to avoid using a base class instead of
an interface is that a base class from the production code may already
have (and probably has) built-in production dependencies that you’ll
have to know about and override. This makes implementing derived
classes for testing harder than implementing an interface, which lets
you know exactly what the underlying implementation is and gives you
full control over it.

In chapter 4, we’ll look at techniques that can help you avoid writing
manual stub classes that implement interfaces, and instead use frame-
works that can help do this at runtime.

But for now, let’s look at another way to gain control over the code
under test without using interfaces. You’ve already seen one way of
doing this in the previous pages, but this method is so effective it
deserves a discussion of its own.

3.5.1 Using Extract and Override to create stub results

You’ve already seen an example of Extract and Override in section
3.4.5. We derive from the class under test so that we can override a vir-
tual method and force it to return our stub.

But why stop there? What if you’re unable or unwilling to add a new
interface every time you need control over some behavior in your code

Figure 3.9 Using Extract and Override to return a logical result instead of calling an

actual dependency. This uses a simple fake result instead of a stub.
Licensed to Jeff Warwick <devon@cloverpoint.com>

76 CHAPTER 3 Using stubs to break dependencies
under test? In those cases, Extract and Override can help simplify
things, because it doesn’t require writing and introducing new inter-
faces—just deriving from the class under test and overriding some
behavior in the class.

Figure 3.9 shows another way we could have forced the code under
test to always return true about the validity of the file extension.

In the class under test, instead of virtualizing a factory method, we virtual-
ize the calculation result. This means that, in our derived class, we over-
ride the method and return whatever value we want, without needing
to create an interface or a new stub. We simply inherit and override the
method to return the desired result.

Listing 3.8 shows how our code might look using this technique.

Listing 3.8 Returning a result rather than a stub object from an extracted method

public class LogAnalyzerUsingFactoryMethod
 {
 public bool IsValidLogFileName(string fileName)
 {
 int len = fileName.Length;
 return this.IsValid(fileName) && len>5;
 }

 protected virtual bool IsValid(string fileName)
 {
 FileExtensionManager mgr = new FileExtensionManager();
 return mgr.IsValid(fileName);
 }
 }

 [Test]
 public void overrideTestWithoutStub()
 {
 TestableLogAnalyzer logan = new TestableLogAnalyzer();
 logan.IsSupported = true;

 bool result =
logan.IsValidLogFileName("file.ext");

 Assert.IsFalse(result,"...");
 }

Returns result from
real dependency

Sets fake
result value
Licensed to Jeff Warwick <devon@cloverpoint.com>

Overcoming the encapsulation problem 77
class TestableLogAnalyzer: LogAnalyzerUsingFactoryMethod
 {
 public bool IsSupported;

 protected override bool IsValid(string fileName)

 {
 return IsSupported;
 }
 }

When you should use Extract and Override

The basic motivation for using this technique is the same as for the
method discussed in section 3.4.5. This technique is even simpler than
the previous one. If I can, I use this technique over the previous one.

By now, you may be thinking to yourself that adding all these construc-
tors, setters, and factories for the sake of testing is problematic. It
breaks some serious object-oriented principles, especially the idea of
encapsulation, which says, “Hide everything that the user of your class
doesn’t need to see.” That’s our next topic. (Appendix A also deals with
testability and design issues.)

Some people feel that opening up the design to make it more testable is
a bad thing because it hurts the object-oriented principles the design is
based on. I can wholeheartedly say to those people, “Don’t be silly.”
Object-oriented techniques are there to enforce some constraints on
the end user of the API (the end user being the programmer who will
use your object model) so that the object model is used properly and is
protected from unforeseen ways of usage. Object orientation also has a
lot to do with reuse of code and the single-responsibility principle
(which requires that each class has only a single responsibility).

When we write unit tests for our code, we are adding another end user
(the test) to the object model. That end user is just as important as the
original one, but it has different goals when using the model. The test
has specific requirements from the object model that seem to defy the

3.6 Overcoming the encapsulation problem

Returns fake
value that was
set by the test
Licensed to Jeff Warwick <devon@cloverpoint.com>

78 CHAPTER 3 Using stubs to break dependencies
basic logic behind a couple of object-oriented principles, mainly encap-
sulation. Encapsulating those external dependencies somewhere without
allowing anyone to change them, having private constructors or sealed
classes, having nonvirtual methods that can’t be overridden: all these
are classic signs of overprotective design. (Security-related designs are
a special case that I forgive.) The problem is that the second end user
of the API, the test, needs them as a feature in the code. I call the
design that emerges from designing with testability in mind testable
object-oriented design (TOOD), and you’ll hear more about TOOD in
Appendix A.

The concept of testable designs conflicts in places with the concept of
object-oriented design. If you really need to consolidate these two
worlds (to have your cake and eat it too), here are a few tips and tricks
you can use to make sure that the extra constructors and setters don’t
show up in release mode or at least don’t play a part in release mode.

TIP A good place to look at design objectives that adhere more to the idea of
testable design is Bob Martin’s timeless SOLID design series of arti-
cles. SOLID stands for Single Responsibility Principle, Open Closed
Principle, Liskov Substitution Principle, Interface Segregation Princi-
ple, and Dependency Inversion Principles. These principles can be
found at http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

3.6.1 Using internal and [InternalsVisibleTo]

If you dislike adding a public constructor to your class that everyone
can see, you can make it internal instead of public. You can then
expose all internal related members and methods to your test assem-
bly by using the [InternalsVisibleTo] assembly-level attribute. List-
ing 3.9 shows this more clearly.

Listing 3.9 Exposing internals to the tests assembly

public class LogAnalyzer
 {
 ...
 internal LogAnalyzer (IExtensionManager extentionMgr)
 {
 manager = extentionMgr;
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Overcoming the encapsulation problem 79
 ...
}

using System.Runtime.CompilerServices;
[assembly:
 InternalsVisibleTo("AOUT.CH3.Logan.Tests")]

Such code can usually be found in AssemblyInfo.cs files. Using inter-
nal is a good solution if you have no other way of making things public
to the test code.

3.6.2 Using the [Conditional] attribute

The System.Diagnostics.ConditionalAttribute attribute is notable in
its non-intuitive action. When you put this attribute on a method, you
initialize the attribute with the string signifying a conditional build
parameter that’s passed in as part of the build. (DEBUG and RELEASE are
the two most common ones, and Visual Studio uses them by default
according to your build type.)

If the build flag is not present during the build, the callers to the anno-
tated method won’t be included in the build. For example, this method
will have all the callers to it removed during a release build, but the
method itself will stay on:

[Conditional ("DEBUG")]
public void DoSomething()
{
}

You can use this attribute on methods (but not on constructors) that
you only want called in certain debug modes.

NOTE These annotated methods won’t be hidden from the production
code, which is different from how the next technique we’ll discuss
behaves.

It’s important to note that using conditional compilation constructs in
your production code can reduce its readability and increase its “spa-
ghetti-ness.” Beware!
Licensed to Jeff Warwick <devon@cloverpoint.com>

80 CHAPTER 3 Using stubs to break dependencies
3.6.3 Using #if and #endif with conditional compilation

Putting your methods or special test-only constructors between #if
and #endif constructs will make sure they only compile when that
build flag is set, as shown in listing 3.10.

Listing 3.10 Using special build flags

#if DEBUG
 public LogAnalyzer (IExtensionManager extensionMgr)
 {
 manager = extensionMgr;
 }
#endif
...
#if DEBUG
 [Test]
 public void
IsValidFileName_NameLessThan6SupportedExtension_False()
 {
...
 //create analyzer and inject stub
 LogAnalyzer log =
 new LogAnalyzer (myFakeManager);
 ...
 }
#endif

This method is commonly used, but it can lead to code that looks
messy. Consider using the [InternalsVisibleTo] attribute where you
can, for clarity.

We started writing simple tests in the first couple of chapters, but we
have dependencies in our tests that we need to find a way to override.
We learned how to stub out those dependencies in this chapter, using
interfaces and inheritance.

A stub can be injected into your code in many different ways. The real
trick is to locate the right layer of indirection, or to create one, and then
use it as a seam from which you can inject your stub into running code.

3.7 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

Summary 81
The deeper you go down the layers of interactions, the harder it will be
to understand the test, and to understand the code under test and its
deep interactions with other objects. The closer you are to the surface
of the object under test, the easier your test will be to understand and
manage, but you may also be giving up some of your power to manipu-
late the environment of the object under test.

Learn the different ways of injecting a stub into your code. When you
master them, you’ll be in a much better position to pick and choose
which method you want to use when.

The Extract and Override method is great for simulating inputs into
the code under test, but if you’re also testing interactions between
objects (the topic of the next chapter), be sure to have it return an
interface rather than an arbitrary return value. It will make your test-
ing life easier.

Testable object-oriented design (TOOD) can present some interesting
advantages over classic object-oriented design, such as allowing main-
tainability while still permitting tests to be written against the code
base. If you really need them, there are several ways of hiding your
testable design in release mode, such as the [InternalsVisibleTo] and
the [Conditional] attributes.

In chapter 4, we’ll take a look at some other issues relating to depen-
dencies, and find ways to resolve them: how to avoid writing manual
stubs for interfaces, and how to test the interaction between objects as
part of your unit tests.
Licensed to Jeff Warwick <devon@cloverpoint.com>

4
Interaction testing using
mock objects

This chapter covers

• Defining interaction testing

• Understanding mock objects

• Differentiating mocks and stubs

• Exploring mock object best practices

n the previous chapter, we solved the problem of testing code that
depends on other objects to run correctly. We used stubs to make sure
that the code under test received all the inputs it needed so that we could
test its logic independently.

In this chapter, we’ll look at how you test whether an object calls other
objects correctly. The object being called may not return any result or save
any state, but it has complex logic that needs to result in correct calls to
other objects. Using the approach we’ve employed so far won’t do here,
because there’s no externalized API that we can use to check if something
has changed in the object under test. How do you test that your object
interacts with other objects correctly? We’ll use mock objects.

The first thing we need to do is define what interaction testing is, and
how it’s different from the testing we’ve done so far—state-based testing.

I

82

Licensed to Jeff Warwick <devon@cloverpoint.com>

State-based versus interaction testing 83
We defined state-based testing in section 2.6 of chapter 2. Let’s define
interaction testing, and then look at how we use it in our unit tests.

DEFINITION Interaction testing is testing how an object sends input to or receives
input from other objects—how that object interacts with other objects.

You can also think of interaction testing as being “action-driven test-
ing,” and state-based testing as being “result-driven testing.” Action-
driven means that you test a particular action an object takes (such as
sending a message to another object). Result-driven means you test that
some end result is now true (that a property value has changed, for
example). It’s usually preferable to check the end results of objects, not
their particular actions. But sometimes interactions between objects
are the end result. That’s when we need to test the interaction itself
(where the end result of calling a method on the object under test is
that the object then calls another object, such as a web service).

Interaction testing, in one form or another, has existed since the first
days of unit testing. Back then, there weren’t any names or patterns for
it, but people still needed to know if one object called another object
correctly.

Let’s look at an example of the two types of testing. Say you have a
watering system, and you have given your system specific instructions
on when to water the tree in your yard: how many times a day and
what quantity of water each time. Here’s how you’d test that it’s work-
ing correctly:

❂ State-based testing—Run the system for a specific amount of time (say 12
hours), and at the end of that time, check the state of the tree being
irrigated. Is the land moist enough, is the tree doing well, are its leaves
green, and so on. It may be quite a difficult test to perform, but assum-
ing you can do it, you can find out if your watering system works.

❂ Interaction testing—At the end of the irrigation hose, set up a device
that records when irrigation starts and stops, and how much water
flows through the device. At the end of the day, check that the device

4.1 State-based versus interaction testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

84 CHAPTER 4 Interaction testing using mock objects
has been called the right number of times, with the correct quantity
of water each time, and don’t worry about checking the tree. In fact,
you don’t even need a tree to check that the system works. You can
go further and modify the system clock on the irrigation unit, so that
it thinks that the time to irrigate has arrived, and it will irrigate
whenever you choose. That way, you don’t have to wait (for 12
hours in this example) to find out whether it works.

Sometimes state-based testing is the best way to go because interaction
testing is too difficult to pull off. That’s the case with crash test dum-
mies: a car is crashed into a standing target at a specific speed, and
after the crash, both car and dummies’ states are checked to determine
the outcomes. Running this sort of test as an interaction test in a lab
can be too complicated, and a real-world state-based test is called for.
(People are working on simulating crashes with computers, but it’s still
not close to testing the real thing.)

Now, back to the irrigation system. What is that device that records
the irrigation information? It’s a fake water hose, or a stub, you could
say. But it’s a smarter breed of stub—a stub that records the calls made
to it. That’s partly what a mock object is.

DEFINITION A mock object is a fake object in the system that decides whether the
unit test has passed or failed. It does so by verifying whether the object
under test interacted as expected with the fake object. There’s usually
no more than one mock per test.

A mock object may not sound much different from a stub, but the dif-
ferences are large enough to warrant discussion and special syntax in
various frameworks, as you’ll see in chapter 5. Let’s look at exactly
what the difference is.

The distinction between mocks and stubs is important because a lot of
today’s tools and frameworks (as well as articles) use these terms to
describe different things. There’s a lot of confusion about what each
term means, and many people seem to use them interchangeably. Once

4.2 The difference between mocks and stubs
Licensed to Jeff Warwick <devon@cloverpoint.com>

The difference between mocks and stubs 85
you understand the differences, you can evaluate the world of tools,
frameworks, and APIs more carefully and understand more clearly
what each does.

At first glance, the difference between mocks and stubs may seem small
or nonexistent. The distinction is subtle, but important, because many
of the mock object frameworks that we’ll deal with in the next chapters
use these terms to describe different behaviors in the framework. The
basic difference is that stubs can’t fail tests, and mocks can.

Stubs replace an object so that we can test another object without
problems. Figure 4.1 shows the interaction between the stub and the
class under test.

The easiest way to tell we’re dealing with a stub is to notice that the
stub can never fail the test. The asserts the test uses are always against
the class under test.

On the other hand, the test will use a mock object to verify whether the
test failed or not. Figure 4.2 shows the interaction between a test and a
mock object. Notice that the assert is performed on the mock.

Again, the mock object is the object we use to see if the test failed or not.

Figure 4.1 When using a stub, the

assert is performed on the class

under test. The stub aids in making

sure the test runs smoothly.
Licensed to Jeff Warwick <devon@cloverpoint.com>

86 CHAPTER 4 Interaction testing using mock objects
Figure 4.2 The class under test communicates with the mock object, and all

communication is recorded in the mock. The test uses the mock object to verify

that the test passes.

Figure 4.3 Our test will create a MockWebService to record messages that

LogAnalyzer will send. It will then assert against the MockWebService.
Licensed to Jeff Warwick <devon@cloverpoint.com>

A simple manual mock example 87
Let’s look at these ideas in action by building our own mock object.

Creating and using a mock object is much like using a stub, except that
a mock will do a little more than a stub: it will save the history of com-
munication, which will later be verified.

Let’s add a new requirement to our LogAnalyzer class. This time, it will
have to interact with an external web service that will receive an error
message whenever the LogAnalyzer encounters a filename whose length
is too short.

Unfortunately, the web service we’d like to test against is still not fully
functional, and even if it were, it would take too long to use it as part of
our tests. Because of that, we’ll refactor our design and create a new
interface for which we can later create a mock object. The interface will
have the methods we’ll need to call on our web service, and nothing else.

Figure 4.3 shows how our MockWebService will fit into the test.

First off, let’s extract a simple interface that we can use in our code
under test, instead of talking directly to the web service:

public interface IWebService
{
 void LogError(string message);
}

This interface will serve us when we want to create stubs as well as mocks.
It will let us avoid an external dependency we have no control over.

Next, we’ll create the mock object itself. It may look like a stub, but it
contains one extra bit of code that makes it a mock object.

public class MockService:IWebService
{
 public string LastError;

 public void LogError(string message)
 {

4.3 A simple manual mock example
Licensed to Jeff Warwick <devon@cloverpoint.com>

88 CHAPTER 4 Interaction testing using mock objects
 LastError = message;
 }
}

Our mock implements an interface, as a stub does, but it saves some
state for later, so that our test can then assert and verify that our mock
was called correctly.

NOTE According to xUnit Test Patterns by Gerard Meszaros, this would be
called a Test Spy.

Listing 4.1 shows what the test might look like.

Listing 4.1 Testing the LogAnalyzer with a mock object

[Test]
 public void Analyze_TooShortFileName_CallsWebService()
 {
 MockService mockService = new MockService();
 LogAnalyzer log = new LogAnalyzer(mockService);
 string tooShortFileName="abc.ext";
 log.Analyze(tooShortFileName);

 Assert.AreEqual("Filename too short:abc.ext",
 mockService.LastError);
 }

 public class LogAnalyzer
 {
 private IWebService service;

 public LogAnalyzer(IWebService service)
 {
 this.service = service;
 }

 public void Analyze(string fileName)
 {
 if(fileName.Length<8)
 {
 service.LogError("Filename too short:"
 + fileName);
 }
 }
}

Asserts against
mock object

Logs error in
production code
Licensed to Jeff Warwick <devon@cloverpoint.com>

Using a mock and a stub together 89
Notice how the assert is performed against the mock object, and not
against the LogAnalyzer class. That’s because we’re testing the interac-
tion between LogAnalyzer and the web service. We still use the same
dependency injection techniques from chapter 3, but this time the
mock object (used instead of a stub) also makes or breaks the test.

Also notice that we aren’t writing the tests directly inside the mock
object code. There are a couple of reasons for this:

❂ We’d like to be able to reuse the mock object in other test cases, with
other asserts on the message.

❂ If the assert were put inside the mock object, whoever reads the test
would have no idea what we’re asserting. We’d be hiding essential
information from the test code, which hinders the readability and
maintainability of the test.

In your tests, you might find that you need to replace more than one
object. We’ll look at combining mocks and stubs next.

Let’s consider a more elaborate problem. This time our LogAnalyzer not
only needs to talk to a web service, but if the web service throws an
error, LogAnalyzer has to log the error to a different external depen-
dency, sending it by email to the web service administrator, as shown
in figure 4.4.

Here’s the logic we’d like to test inside LogAnalyzer:

if(fileName.Length<8)
{
 try
 {
 service.LogError("Filename too short:" + fileName);
 }
 catch (Exception e)
 {
 email.SendEmail("a","subject",e.Message);
 }
}

4.4 Using a mock and a stub together
Licensed to Jeff Warwick <devon@cloverpoint.com>

90 CHAPTER 4 Interaction testing using mock objects
Figure 4.4 LogAnalyzer has two external dependencies: web service and email ser-

vice. We need to test LogAnalyzer’s logic when calling them.

Notice that there’s logic here that only applies to interacting with
external objects; there’s no end result returned to the caller. How do
you test that LogAnalyzer calls the email service correctly when the web
service throws an exception?

Here are the questions we’re faced with:

❂ How can we replace the web service?
❂ How can we simulate an exception from the web service so that we

can test the call to the email service?
❂ How will we know that the email service was called correctly or at all?

We can deal with the first two questions by using a stub for the web
service. To solve the third problem, we can use a mock object for the
email service.

DEFINITION A fake is a generic term that can be used to describe either a stub or a mock
object (handwritten or otherwise), because they both look like the real object.
Whether a fake is a stub or a mock depends on how it’s used in the current
test. If it’s used to check an interaction (asserted against), it’s a mock object.
Otherwise, it’s a stub.

In our test, we’ll have two fakes. One will be the email service mock,
which we’ll use to verify that the correct parameters were sent to the
Licensed to Jeff Warwick <devon@cloverpoint.com>

Using a mock and a stub together 91
email service. The other will be a stub that we’ll use to simulate an
exception thrown from the web service. It’s a stub because we won’t be
using the web service fake to verify the test result, only to make sure
the test runs correctly. The email service is a mock because we’ll assert
against it that it was called correctly. Figure 4.5 shows this visually.

Here’s the interface for the email service, followed by the mock email
service:

public interface IEmailService
 {
 void SendEmail(string to, string subject, string body);
 }

Listing 4.2 shows the code that implements figure 4.5.

Figure 4.5 The web service will be stubbed out to simulate an exception; then the

email sender will be mocked to see if it was called correctly. The whole test will be

about how LogAnalyzer interacts with other objects.
Licensed to Jeff Warwick <devon@cloverpoint.com>

92 CHAPTER 4 Interaction testing using mock objects
Listing 4.2 Testing the LogAnalyzer with a mock and a stub

public class LogAnalyzer2
 {
 private IWebService service;
 private IEmailService email;

 public IWebService Service
 {
 get { return service; }
 set { service = value; }
 }

 public IEmailService Email
 {
 get { return email; }
 set { email = value; }
 }

 public void Analyze(string fileName)
 {
 if(fileName.Length<8)
 {
 try
 {
 service.LogError("Filename too short:" + fileName);
 }
 catch (Exception e)
 {
 email.SendEmail("a","subject",e.Message);
 }
 }
 }
 }

 [TestFixture]
 public class LogAnalyzer2Tests
 {
 [Test]
 public void Analyze_WebServiceThrows_SendsEmail()
 {
 StubService stubService = new StubService();
Licensed to Jeff Warwick <devon@cloverpoint.com>

Using a mock and a stub together 93
 stubService.ToThrow= new Exception("fake exception");

 MockEmailService mockEmail = new MockEmailService();

 LogAnalyzer2 log = new LogAnalyzer2();
 //we use setters instead of
 //constructor parameters for easier coding
 log.Service = stubService
 log.Email=mockEmail;

 string tooShortFileName="abc.ext";
 log.Analyze(tooShortFileName);

 Assert.AreEqual("a",mockEmail.To);
 Assert.AreEqual("fake exception",mockEmail.Body);
 Assert.AreEqual("subject",mockEmail.Subject);
 }
 }

 public class StubService:IWebService
 {
 public Exception ToThrow;
 public void LogError(string message)
 {
 if(ToThrow!=null)
 {
 throw ToThrow;
 }
 }
 }

 public class MockEmailService:IEmailService
 {
 public string To;
 public string Subject;
 public string Body;

 public void SendEmail(string to,
 string subject,
 string body)
 {
 To = to;

Using properties instead
of constructor injection ?
Licensed to Jeff Warwick <devon@cloverpoint.com>

94 CHAPTER 4 Interaction testing using mock objects
 Subject = subject;
 Body = body;
 }
 }

Note that the public properties ? we’ve added will be used instead of a
constructor. We’ll use these setters to set the stub and mock, which will
make the code easier to read and maintain.

This code raises some interesting questions:

❂ Why are we doing several asserts in a single test? How easy would it
be to separate this test into three different tests with one assert each?
Could the three asserts be combined into a single logical test?

❂ It can be quite tedious to create manual mocks and stubs for each
test or test class. How can we overcome that?

❂ Couldn’t we have used the MockService from listing 4.1 as a stub?

We’ll explore answers to these questions in the rest of this and the next
chapter.

One important thing to consider is how many mocks and stubs you can
use in a test.

In a test where you test only one thing (which is how I recommend you
write tests), there should be no more than one mock object. All other
fake objects will act as stubs. Having more than one mock per test usu-
ally means you’re testing more than one thing, and this can lead to com-
plicated or brittle tests. (Look for more on this in chapter 7.)

If you follow this guideline, when you get to more complicated tests,
you can always ask yourself, “Which one is my mock object?” Once
you’ve identified it, you can leave the others as stubs and not worry
about assertions against them.

Next, we’ll deal with a more complex scenario: using a stub to return a
stub or a mock that will be used by the application.

4.5 One mock per test
Licensed to Jeff Warwick <devon@cloverpoint.com>

Stub chains: stubs that produce mocks or other stubs 95
One of the most common scamming techniques online these days fol-
lows a simple path. A fake email is sent to a massive number of recipi-
ents. The fake email is from a fake bank or online service claiming that
the potential customer needs to have a balance checked or to change
some account details on the online site.

All the links in the email point to a fake site. It looks exactly like the
real thing, but its only purpose is to collect data from innocent custom-
ers of that business. This simple “chain of lies” is known as a “phishing”
attack, and is more lucrative that you’d imagine. Most people respond
instinctively to these emails and do what’s asked. Consequently, it’s
one of the biggest threats to identity theft in the world.

How does this “chain of lies” matter to us? Sometimes we want to have
a fake component return another fake component, producing our own
little chain of stubs in our tests, so that we can end up collecting some
data during our test. A stub leads to a mock object that records data.

The design of many systems under test allows for complex object
chains to be created. It’s not uncommon to find code like this:

IServiceFactory factory = GetServiceFactory();
IService service = factory.GetService();

Or like this:

String connstring =
GlobalUtil.Configuration.DBConfiguration.ConnectionString;

Suppose you wanted to replace the connection string with one of your
own during a test. You could set up the Configuration property of the
GlobalUtil object to be a stub object. Then, you could set the DBConfig-
uration property on that object to be another stub object, and so on.

It’s a powerful technique, but you need to ask yourself whether it
might not be better to refactor your code to do something like this:

4.6 Stub chains: stubs that produce mocks or other stubs
Licensed to Jeff Warwick <devon@cloverpoint.com>

96 CHAPTER 4 Interaction testing using mock objects
String connstring =GetConnectionString();
Protected virtual string GetConnectionString()
{
 Return GlobalUtil.Configuration.DBConfiguration.ConnectionString;
}

You could then override the virtual method as described in section
3.4.5 in chapter 3. This can make the code easier to read and maintain,
and it doesn’t require adding new interfaces to insert two more stubs
into the system.

TIP Another good way to avoid call chains is to create special wrapper
classes around the API that simplify using and testing it. For more
about this method, see Michael Feathers’ book, Working Effectively with
Legacy Code. The pattern is called “Adapt Parameter” in that book.

Handwritten mocks and stubs have benefits, but they also have their
share of problems. Let’s take a look at them.

There are several issues that crop up when using manual mocks and
stubs:

❂ It takes time to write the mocks and stubs.
❂ It’s difficult to write stubs and mocks for classes and interfaces that

have many methods, properties, and events.
❂ To save state for multiple calls of a mock method, you need to write a

lot of boilerplate code to save the data.
❂ If you want to verify all parameters on a method call, you need to

write multiple asserts. If the first assert fails, the others will never
run, because a failed assert throws an exception.

❂ It’s hard to reuse mock and stub code for other tests.

These problems are inherent in manually written mocks and stubs.
Fortunately, there are other ways to create mocks and stubs, as you’ll
see in the next chapter.

4.7 The problems with handwritten mocks and stubs
Licensed to Jeff Warwick <devon@cloverpoint.com>

Summary 97
This chapter covered the distinction between stub and mock objects. A
mock object is like a stub, but it also helps you to assert something in
your test. A stub, on the other hand, can never fail your test and is
strictly there to simulate various situations. This distinction is impor-
tant because many of the mock object frameworks you’ll see in the next
chapter have these definitions engrained in them, and you’ll need to
know when to use which.

Combining stubs and mocks in the same test is a powerful technique,
but you must take care to have no more than one mock in each test.
The rest of the fake objects should be stubs that can’t break your test.
Following this practice can lead to more maintainable tests that break
less often when internal code changes.

Stubs that produce other stubs or mocks can be a powerful way to
inject fake dependencies into code that uses other objects to get its
data. It’s a great technique to use with factory classes and methods.
You can even have stubs that return other stubs that return other stubs
and so on, but at some point you’ll wonder if it’s all worth it. In that
case, take a look at the techniques described in chapter 3 for injecting
stubs into your design. (Only one mock framework currently allows
stubbing a full call chain in one line of code—creating stubs that return
stubs—and that’s Typemock Isolator.)

One of the most common problems encountered by people who write
tests is using mocks too much in their tests. You should rarely verify
calls to fake objects that are used both as mocks and as stubs in the
same test. (This is quite a narrow corner case. You verify a function
was called. Because it’s still a function, it must return some value, and
because you’re faking that method, you’ll need to tell the test what that
value will be. This value is the part in the test that’s a stub, because it
has nothing to do with asserting whether the test passes or fails.) If you
see “verify” and “stub” on the same variable in the same test, you most
likely are overspecifying your test, which will make it more brittle.

4.8 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

98 CHAPTER 4 Interaction testing using mock objects
You can have multiple stubs in a test, because a class may have multiple
dependencies. Just make sure your test remains readable. Structure
your code nicely so the reader of the test understands what’s going on.

You may find that writing manual mocks and stubs is inconvenient for
large interfaces or for complicated interaction-testing scenarios. It is,
and there are better ways to do this, as we’ll see in the next chapter. But
often you’ll find that handwritten mocks and stubs still beat frame-
works for simplicity and readability. The art lies in when you use which.

Our next chapter deals with mock object frameworks, which allow you
to automatically create, at runtime, stub or mock objects and use them
with at least the same power as manual mocks and stubs, if not more.
Licensed to Jeff Warwick <devon@cloverpoint.com>

5
Isolation (mock object)
frameworks

This chapter covers

• Understanding isolation frameworks

• Defining fake objects

• Using Rhino Mocks to create stubs and mocks

• Surveying advanced use cases for mocks and stubs

• Exploring arrange-act-assert and record-and-replay syntax

• Avoiding common misuses of isolation frameworks

n the previous chapter, we looked at writing mocks and stubs manually
and saw the challenges involved. In this chapter, we’ll look at some
elegant solutions for these problems in the form of a mock object
framework—a reusable library that can create and configure stub and mock
objects at runtime. These objects are usually referred to as dynamic stubs and
dynamic mocks.

We’ll start this chapter off with an overview of mock object frameworks
(or isolation frameworks—the word mock is too overloaded already) and
what they can do for us. We’ll then take a closer look at one specific
framework: Rhino Mocks. We’ll see how we can use it to test various
things and to create stubs, mocks, and other interesting things.

I

99

Licensed to Jeff Warwick <devon@cloverpoint.com>

100 CHAPTER 5 Isolation (mock object) frameworks
Later in this chapter, we’ll contrast Rhino Mocks with other frame-
works currently available to .NET developers, and we’ll finish with a
list of things to watch out for when using such frameworks in your tests.

Let’s start at the beginning: What are isolation frameworks?

We’ll start with a basic definition.

DEFINITION An isolation framework is a set of programmable APIs that make creat-
ing mock and stub objects much easier. Isolation frameworks save the
developer from the need to write repetitive code to test or simulate
object interactions.

This definition may sound a bit bland, but it needs to be generic in
order to include the various isolation frameworks out there.

Isolation frameworks exist for most languages that have a unit-testing
framework associated with them. For example, C++ has mockpp and
other frameworks, and Java has jMock and EasyMock, among others.
.NET has NMock, Moq, Typemock Isolator, and Rhino Mocks.

Using isolation frameworks instead of writing mocks and stubs manu-
ally, as in previous chapters, has several advantages that make develop-
ing more elaborate and complex tests easier, faster, and less error-prone.

The best way to understand the value of an isolation framework is to
see a problem and solution. One problem that might occur when using
handwritten mocks and stubs is repetitive code.

Assume you have an interface a little more complicated than the ones
shown so far:

public interface IComplicatedInterface
 {
 void Method1(string a, string b, bool c, int x, object o);
 void Method2(string b, bool c, int x, object o);
 void Method3(bool c, int x, object o);
 }

5.1 Why use isolation frameworks?
Licensed to Jeff Warwick <devon@cloverpoint.com>

Why use isolation frameworks? 101
Creating a handwritten stub or mock for this interface may be time-
consuming, because we’d need to remember the parameters on a per-
method basis, as listing 5.1 shows.

Listing 5.1 Implementing complicated interfaces with handwritten stubs

class MytestableComplicatedInterface:IComplicatedInterface
 {
 public string meth1_a;
 public string meth1_b,meth2_b;
 public bool meth1_c,meth2_c,meth3_c;
 public int meth1_x,meth2_x,meth3_x;
 public int meth1_0,meth2_0,meth3_0;

 public void Method1(string a,
string b, bool c,
int x, object o)
 {
 meth1_a = a;
 meth1_b = b;
 meth1_c = c;
 meth1_x = x;
 meth1_0 = 0;
 }

 public void Method2(string b, bool c, int x, object o)
 {
 meth2_b = b;
 meth2_c = c;
 meth2_x = x;
 meth2_0 = 0;
 }

 public void Method3(bool c, int x, object o)
 {
 meth3_c = c;
 meth3_x = x;
 meth3_0 = 0;
 }
 }

Not only is this test time-consuming and cumbersome to write, what
happens if we want to test that a method is called many times? Or if we
Licensed to Jeff Warwick <devon@cloverpoint.com>

102 CHAPTER 5 Isolation (mock object) frameworks
want it to return a specific value based on the parameters it receives, or
to remember all the values for all the method calls on the same method
(the parameter history)? The code gets ugly fast.

Using an isolation framework, the code for doing this becomes trivial,
readable, and much shorter, as you’ll see when you create your first
dynamic mock object.

NOTE The word fake was introduced in chapter 4 as a generic term for
either a stub or a mock.

Let’s define dynamic fake objects, and how they’re different from regular
mocks.

DEFINITION A dynamic fake object is any stub or mock that’s created at runtime with-
out needing to use a handwritten implementation of an interface or
subclass.

Using dynamic fakes removes the need to hand-code classes that imple-
ment interfaces or that derive from other classes, because this can be
generated for the developer at runtime by a simple line of code.

5.2.1 Introducing Rhino Mocks into your tests

In this chapter, we’ll use Rhino Mocks, an isolation framework that’s
open source and freely downloadable from http://ayende.com. It’s sim-
ple and quick to use, with little overhead in learning how to use the
API. I’ll walk you through a few examples, and then we’ll explore
other frameworks and discuss the differences among them.

The only thing you’ll need to do to use Rhino Mocks, after download-
ing and unzipping it, (assuming you have NUnit installed on your
machine) is to add a reference to the Rhino.Mocks.Dll. In the Add
Reference dialog of the test project, click Browse, and locate the down-
loaded DLL file (which you can get from http://www.ayende.com/proj-
ects/rhino-mocks/downloads.aspx).

Rhino Mocks allows us to create and use fakes in two different ways.
The first one is the record-and-replay model, and is the one you’ll be see-

5.2 Dynamically creating a fake object
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://ayende.com
http://www.ayende.com/projects/rhino-mocks/downloads.aspx
http://www.ayende.com/projects/rhino-mocks/downloads.aspx
http://www.ayende.com/projects/rhino-mocks/downloads.aspx

Dynamically creating a fake object 103
ing most in this chapter. The other is the arrange-act-assert model, which
I’ll be discussing near the end of this chapter.

Rhino Mocks contains in its API a class called MockRepository that has
special methods for creating mocks and stubs. The first one we’ll look
at is StrictMock(). The method is called with a generic parameter
matching the type of an interface or class that you’d like to fake, and it
dynamically creates a fake object that adheres to that interface at run-
time. You don’t need to implement that new object in real code.

5.2.2 Replacing a handwritten mock object with a dynamic one

As an example, let’s look at a handwritten mock object used to check
whether a call to the log was performed correctly. Listing 5.2 shows the
test class and the handwritten mock.

Listing 5.2 Asserting against a handwritten mock object

 [TestFixture]
 public class LogAnalyzerTests
 {
 [Test]
 public void Analyze_TooShortFileName_CallsWebService()
 {
 ManualMockService mockService = new ManualMockService ();
 LogAnalyzer log = new LogAnalyzer(mockService);
 string tooShortFileName="abc.ext";
 log.Analyze(tooShortFileName);
 Assert.AreEqual("Filename too short:abc.ext",
 mockService.LastError);
 }
 }
 public class ManualMockService:IWebService
 {
 public string LastError;

 public void LogError(string message)
 {
 LastError = message;
 }
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

104 CHAPTER 5 Isolation (mock object) frameworks
The parts of the code in bold are the parts that will change when we
start using dynamic mock objects.

We’ll now create a dynamic mock object, and eventually replace the
earlier test. Listing 5.3 shows a simple piece of code that creates a sim-
ulated object based on an interface using the record-and-replay syntax
in Rhino Mocks.

Listing 5.3 Creating a dynamic mock object using Rhino Mocks

[Test]
 public void Analyze_TooShortFileName_ErrorLoggedToService()
 {
 MockRepository mocks = new MockRepository();
 IWebService simulatedService =
 mocks.StrictMock<IWebService>();

 using(mocks.Record())
 {
 simulatedService
 .LogError("Filename too short:abc.ext");
 }

 LogAnalyzer log =
 new LogAnalyzer(simulatedService);
 string tooShortFileName="abc.ext";
 log.Analyze(tooShortFileName);

 mocks.Verify(simulatedService);
 }

A couple of lines rid us of the need to use a handwritten stub or mock,
because they generate one dynamically ?. The simulatedService
object instance is a dynamically generated object that implements the
IWebService interface, but there’s no implementation inside any of the
IWebService methods.

Next, we set the simulated service object into a “record” state. This is a
special state where each method call on the simulated object is recorded
as an expectation that something should happen to our simulated object
w. These expectations will later be verified by calling mockEngine.Verify-

Creates dynamic
mock object

?

Sets
expectation

w

Invokes
LogAnalyzer

e

Asserts expectations
have been met

?

Licensed to Jeff Warwick <devon@cloverpoint.com>

Dynamically creating a fake object 105
All() or preferably by calling mockEngine.Verify(mockObject). In this
case, we only have one expectation—that LogError() will be called with
the exact input of "file name was too short".

Then we invoke the object under test—our LogAnalyzer—by injecting
it with our mock object and sending in a short filename that should
make it invoke the logger internally e.

The last step in this test is to do some sort of assert. In this case, we’ll
need to find a way to assert that all the expectations have been met by
our mock object (that LogError was indeed called with the correct
string). We can do this by using mocks.Verify(simulatedService) ?.
The Verify(mock) method will go through each of the expectations that
we’ve set on our mock object and make sure they’re true (called cor-
rectly).

Expectations on mocks and stubs
An expectation on a fake object is an ad hoc rule that’s set on the object.

• Expectations on mocks—The rule will usually tell the object that a specif-
ic method call on that object is expected to happen later. It may also
define how many times it should be called, whether or not the object
should throw an exception when that call arrives, or perhaps that the
call to this method should never be expected. Expectations are usual-
ly set on mock objects during the recording phase of the object, and
they’re verified at the end of the test where the mock object lives.

You set expectations on mocks using the static method of MockRe-
pository.StrictMock<T> or MockRespository.DynamicMock<T>.

• Expectations on stubs—This wording may feel unintuitive at first, but
the rule can tell the stub what value to return based on expected
method calls, whether to throw exceptions, and so on. These expec-
tations aren’t to be verified at the end of the test. They’re there so
that you can run the test and simulate some alternative reality for
your code under test.

You create stubs and set expectations on them using
MockRepository.GenerateStub<T> or the instance method of
MockRepository.Stub<T>.
Licensed to Jeff Warwick <devon@cloverpoint.com>

106 CHAPTER 5 Isolation (mock object) frameworks
What happens if the implementation of log.Analyze() contains an
unexpected call to the service, either through an unexpected parameter
value or an unexpected method call that we never recorded?

public void Analyze(string fileName)
{
 if(fileName.Length<8)
 {
// expected "Filename too short:abc.extfile name was too short"
 service.LogError("bad string");
 }
}

The test will fail, but it won’t fail when calling the Verify() method. It
will fail before that, during the test run when the call to LogError() is exe-
cuted. The test will never get to the Verify() line because an exception
will be thrown before that. To understand why, we’ll review the idea of
strict and nonstrict mocks.

Let’s discuss what strict and nonstrict mocks mean, and why I consider
nonstrict mocks better for most tests.

5.3.1 Strict mocks

A strict mock object can only be called by methods that were explicitly set
via expectations. Any call that differs either by the parameter values
defined or by the method name will usually be handled by throwing an
exception. The test will fail on the first unexpected method call to a strict
mock object. I say “usually” because whether or not the mock throws
an exception depends on the implementation of the isolation frame-
work. Some frameworks allow you to define whether to delay all
exceptions until calling verify() at the end of the test.

This means that a strict mock can fail in two ways: when an unex-
pected method is called on it, or when expected methods aren’t called
on it (which is determined by calling Verify()).

5.3 Strict versus nonstrict mock objects
Licensed to Jeff Warwick <devon@cloverpoint.com>

Strict versus nonstrict mock objects 107
In Rhino Mocks, strict mocks are created by calling the StrictMock<T>
method. Unexpected method call exceptions will always be thrown,
even if your test contains a global try-catch clause, which you’d think
would catch such an exception thrown from the isolation framework.

5.3.2 Nonstrict mocks

Most of the time, nonstrict mocks make for less brittle tests. A nonstrict
mock object will allow any call to be made to it, even if it was not
expected. As long as the call doesn’t require a return value, it will do
what’s necessary for everything in the test to work out.

If a method that needs to return a value is called, and you did not set up
a return value when you set up that mock object, a Rhino Mocks non-
strict mock or stub object can return the default value for that method’s
return type (0 or null usually). Other frameworks may take different
approaches and may throw an exception if the method isn’t configured
to return anything.

A nonstrict mock can only fail a test if an expected method was not
called. You have to call the Verify(mock) method to find out if such a
call is missing from the interaction, or the test will pass.

The example in listing 5.3 uses a strict mock approach, which is why
running the test fails mid-test instead of when calling Verify(). By call-
ing MockRepository.DynamicMock<type>() instead of MockReposi-

tory.StrictMock<Type>(), you’ll get a test that only fails on the last line.

Listing 5.4 shows how the test from listing 5.3 would look if we used a
nonstrict mock object with Rhino Mocks.

Listing 5.4 Creating a nonstrict mock

[Test]
 public void Analyze_TooShortFileName_ErrorLoggedToService()
 {
 MockRepository mocks = new MockRepository();
 IWebService simulatedService =

MockRespository.DynamicMock<IWebService>();

 using(mocks.Record())
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

108 CHAPTER 5 Isolation (mock object) frameworks
//we expected "Filename too short:abc.ext"
 simulatedService.LogError("bad string");
}

 LogAnalyzer log = new LogAnalyzer(simulatedService);
 string tooShortFileName="abc.ext";
 log.Analyze(tooShortFileName);

mocks.VerifyAll();
}

Mocks created with an isolation framework can also be used as stubs.
We can tell them to return simulated values and create other interest-
ing effects. The next section shows how to do that.

To return values from fake objects, you’ll almost always want to create
a stub, and not a mock object. That means you can use either the static
MockRepository.GenerateStub<T> method or the Stub<T> instance
method. You’ll see this in the next section.

You won’t often need to, but you can also return values using mock
objects, so let’s look at how to do that. You can instruct the mock
object to return a value based on a method call by using a special class
called LastCall.

Listing 5.5 shows how we can return a value from a mock object when
the interface method has a nonvoid return value. For this example, we’ll
add an IGetResults interface into the system. During the recording
stage, we use the LastCall class to set the return value for that method
call when that specific input (a, in this case) is sent to the method.

Listing 5.5 Returning a value from a mock object using the LastCall class

[Test]
 public void ReturnResultsFromMock()
 {
 MockRepository mocks = new MockRepository();
 IGetResults resultGetter = mocks.DynamicMock<IGetResults>();

5.4 Returning values from fake objects
Licensed to Jeff Warwick <devon@cloverpoint.com>

Returning values from fake objects 109
 using(mocks.Record())
 {
 resultGetter.GetSomeNumber("a");
 LastCall.Return(1);

 resultGetter.GetSomeNumber("a");
 LastCall.Return(2);

 resultGetter.GetSomeNumber("b");
 LastCall.Return(3);
 }

 int result = resultGetter.GetSomeNumber("b");
 Assert.AreEqual(3, result);

 int result2 = resultGetter.GetSomeNumber("a");
 Assert.AreEqual(1, result2);

 int result3 = resultGetter.GetSomeNumber("a");
 Assert.AreEqual(2, result3);
}

As you can see in listing 5.5, there are three expectations set on the
mock object, and after each one we set the result to be returned from
these method calls. Our mock object will be smart enough to return the
correct value based on the input that was set in the expectation. If the
same input is set with different return values, they will be returned in
the order the code has added them.

You’ll notice that, after the recording stage ?, we call GetSomeNumber
with the b input, but the test will still pass, which means the order of
the calls doesn’t matter.

NOTE If we wanted the order to matter, we could use a concept called
ordered mocks, which are used to define the correct order in which
calls and return values should be executed. You can find out more
about ordered mocks on the Rhino Mocks website.

If we change the order of the last two asserts in the test (which both
input a), the test will fail because the recording order matters when the
input is the same for the expectations.

?

Forces method call
to return value
Licensed to Jeff Warwick <devon@cloverpoint.com>

110 CHAPTER 5 Isolation (mock object) frameworks
You can also use LastCall to set the method call to throw a specific
exception:

LastCall.Throw(Exception)

Or you can even execute your own delegate:

LastCall.Do(yourdelegatehere)

Again, it’s usually a bad idea to tell a mock to return a value and also to
verify mock expectations. In this case, your test may be overspecified;
it checks too many things and can break easily. A fake object should
either be used as a mock or as a stub, not both.

Stubs are usually more appropriate for returning fake values than
mock objects, and isolation frameworks can also create them.

A stub returns the appropriate responses when called and is never used
to see if a test passes or not. Calling VerifyAll() or Verify(stub)

won’t verify anything against stub objects—only against mocks. Most
isolation frameworks contain the semantic notion of a stub, and Rhino
Mocks is no exception.

5.5.1 Creating a stub in Rhino Mocks

Listing 5.6 shows how you create a stub object in Rhino Mocks.

Listing 5.6 Creating a stub is remarkably similar to creating a mock object

[Test]
 public void ReturnResultsFromStub()
 {
 MockRepository mocks = new MockRepository();
 IGetResults resultGetter = mocks.Stub<IGetResults>();
 using(mocks.Record())
 {
 resultGetter.GetSomeNumber("a");
 LastCall.Return(1);

 }

5.5 Creating smart stubs with an isolation framework
Licensed to Jeff Warwick <devon@cloverpoint.com>

Creating smart stubs with an isolation framework 111
 int result = resultGetter.GetSomeNumber("a");
 Assert.AreEqual(1, result);
 }

The syntax for creating a stub is almost the same as for mock objects.
But consider what happens if you run a test that doesn’t call an
expected method on the stub, but still verifies expectations. This is
shown in listing 5.7.

Listing 5.7 Verifying expectations on a stub object can’t fail a test

[Test]
 public void StubNeverFailsTheTest()
 {
 MockRepository mocks = new MockRepository();
 IGetResults resultGetter = mocks.Stub<IGetResults>();
 using(mocks.Record())
 {
 resultGetter.GetSomeNumber("a");
 LastCall.Return(1);

 }
 resultGetter.GetSomeNumber("b");
 mocks.Verify(resultGetter);
 }

The test in listing 5.7 will still pass because the stub, by definition, is
incapable of breaking a test. Any expectations set on it are purely to
determine the return value or the exceptions they should throw.

Rhino Mocks contains a handy feature that isn’t supported by most
frameworks (except Typemock Isolator). For simple properties on
stub objects, get and set properties are automatically implemented and
can be used as if the stub were a real object. You can still set up a
return value for a property, but you don’t need to do it for each and
every property on a stub object. Here’s an example:

ISomeInterfaceWithProperties stub =
 mocks.Stub<ISomeInterfaceWithProperties>();

Specifies a rule,
not an expectation

Will never fail on stubs
Licensed to Jeff Warwick <devon@cloverpoint.com>

112 CHAPTER 5 Isolation (mock object) frameworks
stub.Name = "Itamar";
Assert.AreEqual("Itamar",stub.Name);

We can also simulate an exception using expectations on a stub. Listing
5.8 shows how you would simulate an OutOfMemoryException.

Listing 5.8 Faking an exception using the LastCall class

[Test]
 public void StubSimulatingException()
 {
 MockRepository mocks = new MockRepository();
 IGetResults resultGetter = mocks.Stub<IGetResults>();
 using(mocks.Record())
 {
 resultGetter.GetSomeNumber("A");
 LastCall.Throw(
 new OutOfMemoryException("The system is out of memory!")
);
 }
 resultGetter.GetSomeNumber("A");
 }

This test will fail due to a nasty out-of-memory exception. That’s how
easy it is.

In the next section, we’ll use this ability to simulate errors when testing
a more complex scenario.

5.5.2 Combining dynamic stubs and mocks

We’ll use the example from listing 4.2 in chapter 4, where we talked
about LogAnalyzer using a MailSender class and a WebService class. This
is shown in figure 5.1.

We want to make sure that, if the service throws an exception, LogAna-
lyzer will use MailSender to send an email to an administrator.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Creating smart stubs with an isolation framework 113
Figure 5.1 The web service will be stubbed out to simulate an exception, and the

email sender will be mocked to see if it was called correctly. The whole test will be

about how LogAnalyzer interacts with other objects.

Listing 5.9 shows what the logic looks like with all the tests passing.

Listing 5.9 The method under test and a test that uses handwritten mocks and stubs

public void Analyze(string fileName)
{
 if(fileName.Length<8)
 {
 try
 {
 service.LogError("Filename too short:" + fileName);
 }
 catch (Exception e)
 {
 email.SendEmail("a","subject",e.Message);
 }
 }
 //..other logic
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

114 CHAPTER 5 Isolation (mock object) frameworks
 [Test]
 public void Analyze_WebServiceThrows_SendsEmail()
 {
 StubService stubService = new StubService();
 stubService.ToThrow= new Exception("fake exception");

 MockEmailService mockEmail = new MockEmailService();

 LogAnalyzer2 log = new LogAnalyzer2();
 //we use setters instead of
 //constructor parameters for easier coding
 log.Service = stubService;
 log.Email=mockEmail;

 string tooShortFileName="abc.ext";
 log.Analyze(tooShortFileName);

 Assert.AreEqual("a",mockEmail.To);
 Assert.AreEqual("fake exception",mockEmail.Body);
 Assert.AreEqual("subject",mockEmail.Subject);
 }
 }
 public class StubService:IWebService
 {
 ...
 }

 public class MockEmailService:IEmailService
 {
 ...
 }

Listing 5.10 shows what the test could look like if we used Rhino
Mocks.

Listing 5.10 Converting the previous test into one that uses dynamic mocks and stubs

 [Test]
 public void Analyze_WebServiceThrows_SendsEmail()
 {
 MockRepository mocks = new MockRepository();
 IWebService stubService =
 mocks.Stub<IWebService>();
 IEmailService mockEmail =
Licensed to Jeff Warwick <devon@cloverpoint.com>

Parameter constraints for mocks and stubs 115
 mocks.StrictMock<IEmailService>();

 using(mocks.Record())
 {
 stubService.LogError("whatever");
 LastCall.Constraints(Is.Anything());
 LastCall.Throw(new Exception("fake exception"));

 mockEmail.SendEmail("a","subject","fake exception");
 }

 LogAnalyzer2 log = new LogAnalyzer2();
 log.Service = stubService;
 log.Email = mockEmail;

 string tooShortFileName = "abc.ext";
 log.Analyze(tooShortFileName);

 mocks.VerifyAll();
 }

The nice thing about this test is that it requires no handwritten mocks,
and it’s still readable for the developer.

You might notice a line in listing 5.10 that you haven’t come across yet
?. That’s a parameter constraint that makes sure the exception is
thrown no matter what we send the stub as a parameter. Parameter
constraints are the topic of the next section.

Isolation frameworks enable us to easily test the value of parameters
being passed into our mock objects. In the coming sections, we’ll look
at the various ways you can check parameters, such as strings, proper-
ties, and full object models, using very little code.

5.6.1 Checking parameters with string constraints

Consider the following scenario. We’d like to test that our LogAnalyzer
sends a message of this nature to the error log:

"[Some GUID] Error message"

5.6 Parameter constraints for mocks and stubs

Ensures
exception
is thrown

?

Licensed to Jeff Warwick <devon@cloverpoint.com>

116 CHAPTER 5 Isolation (mock object) frameworks
Here’s an example:

"33DFCC9D-D6C5-45ea-A520-A6018C88E490 Out of memory"

In our test, we don’t care about the GUID (globally unique identifier)
at the beginning, but we care what the error message is. In fact, we
don’t really have control over the GUID. (We could gain control by
creating some sort of IGuidCreator interface and stubbing it out in the
test, but that might prove a little too much work for what we need.)

Parameter constraints allow us to specify demands or rules to our
mocks and stubs for each specific parameter to a method call. Isolation
frameworks allow you to create these parameter constraints, and each
framework has its own syntax for doing so.

The simplest way to use constraints, as shown in listing 5.11, is by
using the LastCall class in conjunction with one of the constraints
classes. In our case, it would be the Contains class, which takes as a
constructor the inner string to search for.

Listing 5.11 Using a string constraint in a test

 [Test]
 public void SimpleStringConstraints()
 {
 MockRepository mocks = new MockRepository();
 IWebService mockService = mocks.CreateMock<IWebService>();
 using (mocks.Record())
 {
 mockService.LogError("ignored string");
 LastCall.Constraints(new Contains("abc"));
 }

 mockService.LogError(Guid.NewGuid() + " abc");
 mocks.VerifyAll();
 }

Using the LastCall.Constraints() method, we can send in a constraint
object (which has to inherit from AbstractConstraint, defined as part
of Rhino Mocks) for each parameter the method expects. There are
four major “helper” classes for constraints in Rhino Mocks, listed in
Licensed to Jeff Warwick <devon@cloverpoint.com>

Parameter constraints for mocks and stubs 117
table 5.1. For string-related constraints, we have Contains, EndsWith,
Like, and StartsWith. All of these classes take a string at the construc-
tor. To help you use these constraints, Rhino Mocks includes a helper
class called Text that has static methods to return these constraint
objects.

Here’s the same test using the Text class:

LastCall.Constraints(Text.Contains("abc"));

Table 5.1 The four types of constraints in Rhino Mocks

Helper class Description Methods

Text Checks string-related constraints Contains(string)

EndsWith(string)

StartsWith(string)

Like(string)

List Checks collection-related con-
straints

Count(constraint)

Element(int, constraint)

Equal(IEnumerable)

IsIn(object)

OneOf(IEnumerable)

Is Checks the direct value of param-
eters passed in

Anything()

Equal(object)

GreaterThan(IComparable)

LessThan(IComparable)

Matching<T>(Predicate<T>)

NotNull()

Same(object)

TypeOf(Type)

Property Checks the value of a specific
property on an object that’s
passed in as a parameter

IsNull()

Value(Type, PropertyName, object)

ValueConstraint(Type,
PropertyName, constraint)

And, Or Allows combining multiple con-
straints into a single logical con-
straint

Callback Allows triggering a custom dele-
gate whenever the method is
called
Licensed to Jeff Warwick <devon@cloverpoint.com>

118 CHAPTER 5 Isolation (mock object) frameworks
Some of the more interesting constraints are Property constraints, And
and Or constraints, and Callback constraints. Let’s review them one
by one.

5.6.2 Checking parameter object properties with constraints

Assume that the IWebService interface has a method that expects to
take in a TraceMessage object, which contains specific rules about its
properties. We could easily check the values of the passed-in TraceMes-
sage object properties by using the Property-related constraints. This is
shown in listing 5.12.

Listing 5.12 Using the Property constraints by using the Property static class

[Test]
 public void ConstraintsAgainstObjectPropeties()
 {
 MockRepository mocks = new MockRepository();
 IWebService mockservice = mocks.CreateMock<IWebService>();
 using (mocks.Record())
 {
 mockservice.LogError(new TraceMessage("",0,""));
 LastCall.Constraints(
 Property.Value("Message", "expected msg")
 && Property.Value("Severity", 100)
 && Property.Value("Source", "Some Source"));
 }
 mockservice.LogError(new TraceMessage("",1,"Some Source"));
 mocks.VerifyAll();
 }

Notice the use of the && operators here.

Combining constraints with AND and OR

The && operators in listing 5.12 are overloaded to use a special And con-
straint, which requires all of these constraints to be true for the test to
pass. You could also use the || overload to set a special Or constraint,
which only requires one of the constraints to be true.

The And and Or constraints both take two AbstractConstraint objects in
their constructor. The previous example in listing 5.12 combines two
And constraints and could have been written as in listing 5.13.

Checks
property
values
Licensed to Jeff Warwick <devon@cloverpoint.com>

Parameter constraints for mocks and stubs 119
Listing 5.13 Combining constraints with And and Or

And combined1 =
 new And(
 Property.Value("Message", "expected msg"),
 Property.Value("Severity", 100));

And combined2 =
 new And(combined1,
 Property.Value("Source", "Some Source"));

LastCall.Constraints(combined2);

As you can see, this sort of syntax can get messy pretty fast, and I don’t
have much use for it. This is where using a manual stub or a callback
can make things much clearer, instead of using the And/Or syntax.

Comparing full objects against each other

If we’re going to test things in the simplest way, we could compare two
objects. We could send the “expected” object with all the expected
properties set as part of the recording process (no need for con-
straints), and then call verify(), as shown in listing 5.14.

Listing 5.14 Comparing full objects

[Test]
 public void TestingObjectPropertiesWithObjects()
 {
 MockRepository mocks = new MockRepository();
 IWebService mockservice = mocks.CreateMock<IWebService>();
 using (mocks.Record())
 {
 mockservice.LogError(
 new TraceMessage("Some Message",100,"Some Source"));
 }
 mockservice.LogError(new TraceMessage("",1,"Some Source"));
 mocks.VerifyAll(); //this should fail the test
 }

Testing full objects only works for cases where
❂ it’s easy to create the object with the expected properties.
❂ you want to test all the properties of the object in question.
Licensed to Jeff Warwick <devon@cloverpoint.com>

120 CHAPTER 5 Isolation (mock object) frameworks
❂ you know the exact values of each constraint.
❂ the Equals() method is implemented correctly on the two objects

being compared. (It’s usually bad practice to rely on the out-of-the-
box implementation of object.Equals().)

5.6.3 Executing callbacks for parameter verification

The Is.Matching<T>(Predicate<T>) constraint is a powerful feature
that allows the developer to test whatever he wants against the passed-
in parameter, and return true or false based on complex rules.

For example, assume that the IWebService interface has a method that
expects to take in a TraceMessage object, which in turn has a property
that holds an object you’d like to check. If we had a ComplexTraceMes-
sage class with an InnerMessage property and a complex verification on
it, it might look like listing 5.15.

Listing 5.15 Using an anonymous delegate to verify a parameter

 LastCall.Constraints(
Is.Matching<ComplexTraceMessage>(
 delegate(ComplexTraceMessage msg)
 {
 if (msg.InnerMessage.Severity < 50
 && msg.InnerMessage.Message.Contains("a"))
 {
 return false;
 }
 return true;
 }));

In listing 5.15, we’re creating a delegate that holds the logic to verify
the complex parameter structure.

Instead of using a delegate, we could create a method with the same
signature that does the same thing, as shown in listing 5.16.

Listing 5.16 Using a regular method instead of an anonymous delegate

[Test]
 public void ComplexConstraintsWithCallbacks()
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

Testing for event-related activities 121
 ...
 using (mocks.Record())
 {
 mockservice.LogError(new TraceMessage("", 0, ""));
 LastCall.Constraints(

Is.Matching<ComplexTraceMessage>(verifyComplexMessage));
 }
...
 }
 private bool verifyComplexMessage(ComplexTraceMessage msg)
 {
 if (msg.InnerMessage.Severity < 50
 && msg.InnerMessage.Message.Contains("a"))
 {
 return false;
 }
 return true;
 }

Rhino Mocks has a simpler syntax if you’re only testing a method that
accepts a single parameter. Instead of using this syntax,

LastCall.Constraints(
 Is.Matching<ComplexTraceMessage>(verifyComplexMessage));

you can write this:
LastCall.Callback(verifyComplexMessage);

Next, we’ll see how to test whether objects raise events properly, or
whether other objects have registered for an event properly.

Testing event-related actions has always been one of the gaping holes
in isolation frameworks and has required manual workarounds to test
things such as whether an object registered to get an event from
another object, or whether an object triggered an event when it should
have. Rhino Mocks has facilities to help in these areas as well.

The first scenario we’ll tackle is checking whether an object registered
to receive an event from another object.

5.7 Testing for event-related activities
Licensed to Jeff Warwick <devon@cloverpoint.com>

122 CHAPTER 5 Isolation (mock object) frameworks
5.7.1 Testing that an event has been subscribed to

Let’s assume we have a Presenter class that needs to register to the
Load event of a view class it receives. The code for presenter might look
like listing 5.17.

Listing 5.17 Testing that an event was registered properly

public class Presenter
{
 IView view;
 public Presenter(IView view)
 {
 this.view = view;
 this.view.Load += new EventHandler(view_Load);
 }

 void view_Load(object sender, EventArgs e)
 {
 throw new Exception("Not implemented.");
 }
}

 [Test]
 public void VerifyAttachesToViewEvents()
 {
 MockRepository mocks = new MockRepository();
 IView viewMock = (IView)mocks.CreateMock(typeof(IView));
 using (mocks.Record())
 {
 viewMock.Load += null;
 LastCall.IgnoreArguments();
 }
 new Presenter(viewMock);
 mocks.VerifyAll();
 }

During the recording stage, we overload the Load event ?. Then we
make sure we ignore the arguments in the call, and make sure the call
happened w.

Some people find that testing whether an event was subscribed to is
helpful, but knowing that someone has registered to an event doesn’t

Registers for
real event

?

Records expected
event registration

w

Licensed to Jeff Warwick <devon@cloverpoint.com>

Testing for event-related activities 123
mean she did something meaningful with it. It’s not a real functional
requirement that’s tested here. If I were doing a test review, I’d say
that this was not needed. Instead, you should test that something hap-
pened in response to the event being triggered.

To test this scenario as part of a functional requirement, we could say
that, upon getting the Load event, the presenter’s production code will
do something that we can see from our test (write to a log, for exam-
ple). To get that something to happen, we need to find a way to trigger
the event from within the stub object and see if the presenter does that
action in response. That’s what the next section is about.

5.7.2 Triggering events from mocks and stubs

Listing 5.18 shows a test that makes sure Presenter writes to a log
upon getting an event from our stub. It also uses a class called Even-
tRaiser, which triggers the event from the interface.

Listing 5.18 Triggering an event via the EventRaiser class in Rhino Mocks

 [Test]
 public void TriggerAndVerifyRespondingToEvents()
 {
 MockRepository mocks = new MockRepository();
 IView viewStub = mocks.Stub<IView>();
 IWebService serviceMock =
 mocks.CreateMock<IWebService>();
 using (mocks.Record())
 {
 serviceMock.LogInfo("view loaded");
 }
 new Presenter(viewStub,serviceMock);

 IEventRaiser eventer =
 EventRaiser.Create(viewStub, "Load");
 eventer.Raise(null,EventArgs.Empty);

 mocks.Verify(serviceMock);
 }

Uses stub
for event
triggering

?

Uses mock to
check log call

w

Creates
event
raiser

Triggers event
Licensed to Jeff Warwick <devon@cloverpoint.com>

124 CHAPTER 5 Isolation (mock object) frameworks
Another way of getting an EventRaiser object is by using the recording
mechanism:

IEventRaiser eventer;
using (mocks.Record())
 {
 viewStub.Load += null;
 eventer = LastCall.GetEventRaiser();
 }

Notice in listing 5.18 that we’re using a stub ? to trigger the event, and
a mock w to check that the service was written to. The EventRaiser
takes a stub or a mock and the name of the event to raise from that stub
or mock. The Raise() method of EventRaiser takes a params object[]
array that requires you to send the number of parameters that the
event signature requires. The verification of whether the message was
received happened against the mock service.

Now, let’s take a look at the opposite end of the testing scenario.
Instead of testing the subscriber, we’d like to make sure that the event
source triggers the event at the right time. The next section shows how
we can do that.

5.7.3 Testing whether an event was triggered

There are two basic approaches to testing that an event was triggered.
One is simple, but only works in C#, and the other takes a bit more
work, but will work in VB.NET. First, let’s look at the simplest
way—using a handwritten anonymous method.

Testing event firing inline

A simple way to test the event is by manually registering to it inside the
test method using an anonymous delegate. Listing 5.19 shows a simple
example.

Listing 5.19 Using an anonymous delegate to register to an event

 [Test]
 public void EventFiringManual()
 {
 bool loadFired = false;
Licensed to Jeff Warwick <devon@cloverpoint.com>

Testing for event-related activities 125
 SomeView view = new SomeView();
 view.Load+=delegate
 {
 loadFired = true;
 };
 view.TriggerLoad(null, EventArgs.Empty);
 Assert.IsTrue(loadFired);
 }

The delegate simply records whether the event was fired or not. You
could also have it record the values, and they could later be asserted as
well. That code could become quite cumbersome, but most of the time
it’s quite a workable solution, and I recommend it if you use C#. Unfor-
tunately, this won’t work in VB.NET because VB.NET currently
doesn’t support inline anonymous delegates that don’t return a value.
(It does support nonvoid anonymous delegates and will support the
void ones in version 10.)

With VB.NET, the solution requires a bit more work. You need to
send in the address of a full method in the class, and have that method
set a class scope variable flag telling our test whether the event was
fired or not. It’s not as clean as I’d like, but it works.

The next section shows a less cumbersome way to test the event trig-
gering and the values that are passed in if we can’t use anonymous del-
egates.

Using EventsVerifier for event testing

Another approach is to use a class called EventsVerifier (not part of
Rhino Mocks), which will dynamically register against the required
delegate and verify the values that are passed in by the fired event.
EventsVerifier can be downloaded from http://weblogs.asp.net/
rosherove/archive/2005/06/13/EventsVerifier.aspx. Listing 5.20 shows
an example of its use.

Listing 5.20 Using the EventsVerifier class to test for event values

[Test]
 public void EventFiringWithEventsVerifier()
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://weblogs.asp.net/rosherove/archive/2005/06/13/EventsVerifier.aspx
http://weblogs.asp.net/rosherove/archive/2005/06/13/EventsVerifier.aspx

126 CHAPTER 5 Isolation (mock object) frameworks
 EventsVerifier verifier = new EventsVerifier();
 SomeView view = new SomeView();
 verifier.Expect(view, "Load",null,EventArgs.Empty);

 view.TriggerLoad(null, EventArgs.Empty);

 verifier.Verify();
 }

This test assumes we have a class that implements IView, and that the
class has a method that triggers the event. The verifier takes the object
to test against, the name of the event, and any parameter values that
are passed in as part of the event signature. Rhino Mocks currently
doesn’t have a decent enough API to test event verification the way
EventsVerifier does.

We’ve covered the basic techniques with Rhino Mocks, so let’s look at
a different syntax that it supports: arrange-act-assert.

The record-and-replay model for setting expectations on stubs and
mocks has always been a polarizing feature. Some people found it easy
to grasp, and some people found it unnatural and cumbersome to write.
It also makes tests less readable if you have lots of stubs and expecta-
tions in a single test.

The Moq framework changed the landscape in the .NET isolation
arena by offering a simplified and concise syntax for setting expecta-
tions. Rhino Mocks and Typemock Isolator soon followed.

The idea is based on the way we structure our unit tests today: we
arrange objects, act on them, and assert that something is true or false
(arrange-act-assert, or AAA). It would be nice if we could use isolation
frameworks similarly—to arrange mocks and stubs, set their default
behavior, and, only at the end of the test, verify whether a call to the
mock object took place.

Listing 5.21 shows a simple test with the record-and-replay syntax, fol-
lowed by the same test in AAA-style syntax using Typemock Isolator
and Rhino Mocks.

5.8 Arrange-act-assert syntax for isolation
Licensed to Jeff Warwick <devon@cloverpoint.com>

Arrange-act-assert syntax for isolation 127
Listing 5.21 Record-and-replay versus AAA-style isolation

[Test]
 public void CreateMock_WithReplayAll()
 {
 MockRepository mockEngine = new MockRepository();
 IWebService simulatedService =

mockEngine.DynamicMock<IWebService>();
 using (mockEngine.Record())
 {
 simulatedService.LogError("Filename too short:abc.ext");
 }
 LogAnalyzer log = new LogAnalyzer(simulatedService);
 string tooShortFileName = "abc.ext";
 log.Analyze(tooShortFileName);

 mockEngine.Verify(simulatedService);
 }

 //the same test using AAA syntax
[Test]
 public void CreateMock_WithReplayAll_AAA()
 {
 MockRepository mockEngine = new MockRepository();
 IWebService simulatedService =

mockEngine.DynamicMock<IWebService>();
 LogAnalyzer log = new LogAnalyzer(simulatedService);

 mockEngine.ReplayAll();
 log.Analyze("abc.ext");

 simulatedService.AssertWasCalled(
 svc => svc.LogError("name too short:abc.ext"));
 }
 //the same test using Typemock Isolator AAA syntax
[Test]
 public void CreateMock_Isolator()
 {
 IWebService simulatedService =

Isolate.Fake.Instance<IWebService>();
 LogAnalyzer log = new LogAnalyzer(simulatedService);
 log.Analyze("abc.ext");

Moves to
act mode

Asserts using
Rhino Mocks
Licensed to Jeff Warwick <devon@cloverpoint.com>

128 CHAPTER 5 Isolation (mock object) frameworks
 Isolate.Verify.WasCalledWithExactArguments(()=>
 simulatedService
 .LogError("name too short:abs.ext"));
}

The main difference between the record-and-replay model and the
AAA model is that in AAA we don’t need to record what we expect will
happen. We just need to check at the end of the test that something did
happen correctly. This makes the test more readable, but you’ll also
notice the use of .NET 3.5 lambda syntax in the AAA-style tests. This
is an essential part of these new APIs and what makes these syntax
changes technically possible.

If you’re not comfortable using lambdas yet, you might be better off
using the record-and-replay style until you get used to lambdas, and
they’re not an obstacle to understanding the code.

Listing 5.22 shows how you’d use AAA-style stubs with Rhino Mocks
and Typemock Isolator.

Listing 5.22 Stubs in AAA-style isolation

[Test]
 public void StubThatThrowsException_RhinoMocks()
 {

Setting up Typemock Isolator
To use Typemock Isolator, you’ll need to first download it from
Typemock.com and install it. It’s a commercial product with a 21-day
(extendable) evaluation period. Unlike the other frameworks, you can’t
just reference a DLL and start using it. It requires a Visual Studio plugin
to work, and a special runner to run tests in command-line mode.

To add a reference to Typemock, right-click on the test project in Solu-
tion Explorer, and select Add Reference. From there, go to the .NET tab
and select both “Typemock Isolator” and “Typemock Isolator—C#” or
“Typemock Isolator—VB”. (The product has a special VB-friendly API that
solves some VB-specific issues with regard to anonymous delegate usage.)

Asserts using
Typemock Isolator
Licensed to Jeff Warwick <devon@cloverpoint.com>

Arrange-act-assert syntax for isolation 129
 IWebService simulatedService =
MockRepository.GenerateStub<IWebService>();

 simulatedService
 .Expect(t => t.LogError(""))
 .Throw(new Exception("fake exception"))
 .Constraints(Is.Anything());

 LogAnalyzer log = new LogAnalyzer(simulatedService);
 log.Analyze("abc.ext");
}

[Test]
 public void StubThatThrowsException_Isolator()
 {
 IWebService simulatedService =
 Isolate.Fake.Instance<IWebService>();
 Isolate
 .WhenCalled(()=>simulatedService.LogError(""))
 .WillThrow(new Exception("fake exception"));

 LogAnalyzer log = new LogAnalyzer(simulatedService);
 log.Analyze("abc.ext");
 }

These tests will fail because we’re throwing a fake exception w from
the web service stub. The Expect() method that magically appears on
the IWebService interface ? when using Rhino Mocks is due to exten-
sion methods that are used in .NET 3.5. With Typemock Isolator,
there’s a single point of entry to the API e, so no extension methods
are necessary.

Personally, I find that the AAA syntax for Typemock Isolator is more
readable than in Rhino Mocks. There are many other facets to the new
AAA syntax. You can learn more about it at the websites for the vari-
ous frameworks.

It’s now time to compare Rhino Mocks to other isolation frameworks
in the .NET world.

Uses
extension
methods

?

Throws fake
exception

w

Provides
single point
of entry to API

e

Throws fake
exceptionw
Licensed to Jeff Warwick <devon@cloverpoint.com>

130 CHAPTER 5 Isolation (mock object) frameworks

Rhino Mocks is certainly not the only isolation framework around. But
in an informal poll held March 2009, I asked my blog readers, “Which
isolation framework do you use?” Close to 46 percent of the more than
600 people who responded reported using Rhino Mocks, 20 percent
were using Moq, and 7 percent were using Typemock. (See figure 5.2.)

Figure 5.2 Usage

of isolation

frameworks among

my blog readers

What follows is a short review of the current isolation frameworks in
.NET. It’s usually a good idea to pick one and stick with it as much as
possible, for the sake of readability and to lower the learning curve for
team members. The information that follows should help you make a
choice, but note that each of the frameworks mentioned (especially the
top three) can add new features at an alarming pace, so the choice of
what’s best for your team will seem to be in a constant state of flux.

5.9.1 NUnit.Mocks

NUnit.Mocks is an internal side project of the NUnit framework. It
was originally created to provide a simple, lightweight isolation frame-
work that could be used to test NUnit itself, without having to rely on

5.9 Current isolation frameworks for .NET
Licensed to Jeff Warwick <devon@cloverpoint.com>

Current isolation frameworks for .NET 131
external libraries and version dependencies. Part of NUnit is open
source, but it was never regarded as public, so there’s little or no docu-
mentation about using it on the web today. Charlie Poole, the current
maintainer of NUnit, has said that he is considering either removing it
completely from the distribution of NUnit or making it public in ver-
sion 3.0 of NUnit.

Here are a few of the limitations of NUnit.Mocks:

❂ It doesn’t support stub syntax.
❂ It requires strings to expect calls on method names.
❂ It has no support for testing or firing events.
❂ It doesn’t support parameter constraints (expected parameter values

that are hardcoded in the test).

5.9.2 NMock

NMock is a port of the jMock framework from the Java language. As
such, it has been around quite a long time and has many users. It has
been largely unmaintained since early 2008 because the developers
have gone to work on something bigger and better: NMock2. NMock
is open source.

NMock supports the stub syntax but still requires strings for method
name expectations. It has no event-raise or test support, but it does
support parameter constraints.

5.9.3 NMock2

NMock2 is a large leap forward from NMock. The APIs have changed
greatly to accommodate a more fluent calling interface. NMock2,
unfortunately, at the time of this writing, has been largely unmain-
tained since early 2008 and has only come back into some sort of
update cycle in 2009, which has driven many people away from using
it. NMock2 is open source.

NMock2 supports most, if not all, of the features that Rhino Mocks has,
with the main difference being that method expectations are string-
based in NMock2, whereas in Rhino Mocks they’re call-based. (You
Licensed to Jeff Warwick <devon@cloverpoint.com>

132 CHAPTER 5 Isolation (mock object) frameworks
call the method as part of the recording process.) NMock2 also features
parameter constraints, event-related assertions, and callback abilities.

5.9.4 Typemock Isolator

Typemock Isolator is a commercial isolation framework, although
there’s a free edition with the same features for use in open source proj-
ect development. Because it’s commercial, it also has good documenta-
tion that’s always up to date, a support program, and continually
updated versions. Isolator is a perfect fit for testing not only new code
but also legacy code (untested, existing code) where testing can be
impossible in many situations.

Typemock Isolator builds on top of the abilities of the other frame-
works, and it also allows mock (called “fake” in the Isolator API)
classes that have private constructors, static methods, and much more.
It does this by attaching to the .NET profiler APIs—a set of APIs that
allow you to intercept a call to anything, anywhere, including private
members, statics, and events. Anything that goes on in the .NET run-
time can be intercepted. Typemock Isolator has raised quite a stir in
the unit-testing and isolation world of .NET. Some people claim that it
may be too powerful, because it makes it easy to simulate and break the
dependencies of any object in your existing code. In that way, it doesn’t
force you to think about how your design might need to change.

Others feel that it provides a sort of bridge for getting started with test-
ing even if the design is untestable, allowing you to learn better design
as you go, instead of having to refactor and learn better design skills
before testing. If you can’t mock an object in your code, it can mean
that the design could be improved to be more decoupled. That’s why
many people like to use their tests to flush out design problems. Appen-
dix A discusses this issue.

5.9.5 Rhino Mocks

Rhino Mocks was first released in June 2005, and has gained a massive
user base already. It’s open source, is continuously being worked upon,
and has frequent releases. Currently, it’s maintained by a single devel-
oper (who seems to have no life whatsoever). It has powerful APIs,
Licensed to Jeff Warwick <devon@cloverpoint.com>

Current isolation frameworks for .NET 133
and one of the things it’s most noted for is avoiding the use of strings
inside tests. To understand why strings in tests are bad, see the sidebar.

Why method strings are bad inside tests
The best way to explain this is to look at an example of using
NUnit.Mocks and Rhino Mocks to do the same thing. We’ll see the differ-
ences in using strings for method names and using the isolation frame-
work syntax.

We’ll mock the following interface:
interface ILogger
{
void LogError(string msg, int level, string location);
}

First, we’ll look at how we’d mock this interface using NUnit.Mocks:
//Using NUnit.Mocks
DynamicMock mock = new DynamicMock(typeof(ILogger));
mock.Expect("LogError",
"param value 1 is string",
2,
"param value 3 is a string as well");
ILogger myMockInterface = mock.MockInstance as ILogger;
MytestedClass.SetLogger(myMockInterface);

The Rhino Mocks code looks different:
//Using Rhino.Mocks
MockRepository mocks = new MockRepository();
ILogger simulatedLogger = mocks.StrictMock<ILogger>();

simulatedLogger.LogError("param value 1 is a string", 2,
"param value 3 is a string");
mocks.ReplayAll();

 MyTestedClass.SetLogger(simulatedLogger);
MyTestedClass.DoSomething();
mocks.VerifyAll();

Notice how lines ? and w are different in these two versions. If we were
to change the name of the LogError method on the ILogger interface,
any tests using NUnit would still compile and would only break at run-
time, throwing an exception indicating that a method named LogError
could not be found.

? Uses a string

w
Uses
a strongly
typed call
Licensed to Jeff Warwick <devon@cloverpoint.com>

134 CHAPTER 5 Isolation (mock object) frameworks
5.9.6 Moq

Moq is a relatively new framework. It requires using .NET 3.5 because
it uses lambda constructs to work its magic. It’s simple to use if you’re
comfortable with lambda syntax, but it will only work on interface
types and classes that are nonsealed with virtual methods. Unlike
Rhino Mocks, it does allow you to fake protected methods.

Let’s recap the advantages of using isolation frameworks over hand-
written mocks. Then we’ll discuss things to watch out for when using
isolation frameworks.

From what we’ve covered in this chapter, we can see some distinct
advantages to using isolation frameworks:

❂ Easier parameter verification—Using handwritten mocks to test that a
method was given the correct parameter values can be a tedious pro-
cess, requiring time and patience. Most isolation frameworks make
checking the values of parameters passed into methods a trivial pro-
cess even if there are many parameters.

❂ Easier verification of multiple method calls—With manually written mocks,
it can be difficult to check that multiple method calls on the same
method were made correctly with each having appropriate different
parameter values. As we’ll see later, this is a trivial process with iso-
lation frameworks.

With Rhino Mocks, changing the name would not be a problem, because
we’re invoking the method API as part of our recording stage. Any meth-
od changes would keep the test from compiling, and we’d know imme-
diately that there was a problem with the test.

With automated refactoring tools like those in Visual Studio 2005 and
2008, renaming a method is easier, but most refactorings will still ig-
nore strings in the source code. (ReSharper for .NET is an exception. It
also corrects strings, but that’s only a partial solution that may prove
problematic in some scenarios.)

5.10 Advantages of isolation frameworks
Licensed to Jeff Warwick <devon@cloverpoint.com>

Traps to avoid when using isolation frameworks 135
❂ Easier fakes creation—Isolation frameworks can be used for creating
both mocks and stubs more easily.

NOTE When we create mock objects, we establish expectations as to what
calls will be made against our mock object, and we define any return
values necessary. With isolation frameworks, an expectation is an
essential part of the work process, and it’s an integral part of the iso-
lation syntax. This makes it far easier to write multiple expectations
on a mock instance while keeping the test readable.

Although there are many advantages to using isolation frameworks,
there are some possible dangers too. Some examples are overusing an
isolation framework when a manual mock object would suffice, making
tests unreadable because of overusing mocks in a test, or not separating
tests well enough.

Here’s a simple list of things to watch out for:

❂ Unreadable test code
❂ Verifying the wrong things
❂ Having more than one mock per test
❂ Overspecifying the tests

Let’s look at each of these in more depth.

5.11.1 Unreadable test code

Using a mock in a test already makes the test a little less readable, but
still readable enough that an outsider can look at it and understand
what’s going on. Having many mocks, or many expectations, in a single
test can ruin the readability of the test so it’s hard to maintain or even
to understand what’s being tested.

If you find that your test becomes unreadable or hard to follow, con-
sider removing some mocks or some mock expectations, or separating
the test into several smaller tests that are more readable.

5.11 Traps to avoid when using isolation frameworks
Licensed to Jeff Warwick <devon@cloverpoint.com>

136 CHAPTER 5 Isolation (mock object) frameworks
5.11.2 Verifying the wrong things

Mock objects allow us to verify that methods were called on our inter-
faces, but that doesn’t necessarily mean that we’re testing the right thing.
Testing that an object subscribed to an event doesn’t tell us anything
about the functionality of that object. Testing that when the event is
raised something meaningful happens is a better way to test that object.

5.11.3 Having more than one mock per test

It’s considered good practice to only test one thing per test. Testing
more than one thing can lead to confusion and problems maintaining
the test. Having two mocks in a test is the same as testing several
things. If you can’t name your test because it does too many things, it’s
time to separate it into more than one test.

5.11.4 Overspecifying the tests

If your test has too many expectations, you may create a test that
breaks down with even the lightest of code changes, even though the
overall functionality still works. Consider this a more technical way of
not verifying the right things. Testing interactions is a double-edged
sword: test it too much, and you start to lose sight of the big pic-
ture—the overall functionality; test it too little, and you’ll miss the
important interactions between objects.

Here are some ways to balance this effect:

❂ Use nonstrict mocks when you can.

The test will break less often because of unexpected method calls.
This helps when the private methods in the production code keep
changing.

❂ Use stubs instead of mocks when you can.

You only need to test one scenario at a time. The more mocks you
have, the more verifications will take place at the end of the test, but
only one of them will usually be the important one. The rest will be
noise against the current test scenario.

❂ Avoid using stubs as mocks.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Summary 137
Use a stub only for faking return values into the program under test,
or to throw exceptions. Don’t verify that methods were called on
stubs. Use a mock only for verifying that some method was called on
it, but don’t use it to return values into your program under test. If
you can’t avoid this situation, you should probably be using a stub
and testing something other than what the mock object receives.

❂ Don’t repeat logic in your tests.

If you’re asserting that some calculation is correct in your code,
make sure your test doesn’t repeat the calculation in the test code, or
the bug might be duplicated and the test will magically pass.

❂ Don’t use “magic” values.

Try to always use hardcoded, known return values to assert against
production code, and don’t create expected values dynamically. That
would significantly increase the chances for an unreadable test or a
bug in the test.

Overspecification is a common form of test abuse. Make sure you keep
your eyes on this by doing frequent test reviews with your peers.

Dynamic mock objects are pretty cool, and you should learn to use
them at will. But it’s important to lean toward state-based testing (as
opposed to interaction testing) whenever you can, so that your tests
assume as little as possible about internal implementation details.
Mocks should be used only when there’s no other way to test the
implementation, because they eventually lead to tests that are harder to
maintain if you’re not careful.

Learn how to use the advanced features of an isolation framework such
as Rhino Mocks or Typemock Isolator, and you can pretty much make
sure that anything happens or doesn’t happen in your tests. All you
need is for your code to be testable.

You can also shoot yourself in the foot by creating overspecified tests
that aren’t readable or will likely break. The art lies in knowing when

5.12 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

138 CHAPTER 5 Isolation (mock object) frameworks
to use dynamic versus handwritten mocks. My guideline is that, when
the code using the isolation framework starts to look ugly, it’s a sign
that you may want to simplify things. Use a handwritten mock, or
change your test to test a different result that proves your point but is
easier to test.

When all else fails and your code is hard to test, you have three choices:
use a “super” framework like Typemock Isolator, change the design, or
quit your job.

Isolation frameworks can help make your testing life much easier and
your tests more readable and maintainable. But it’s also important to
know when they might hinder your development more than they help.
In legacy situations, for example, you might want to consider using a
different framework based on its abilities. It’s all about picking the
right tool for the job, so be sure to look at the big picture when consid-
ering how to approach a specific problem in testing.

That’s it! We’ve covered the core techniques for writing unit tests. The
next part of the book deals with managing test code, arranging tests,
and patterns for tests that you can rely on, maintain easily, and under-
stand clearly.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Part 3

The test code

his part of the book covers techniques for managing and organizing
unit tests and for ensuring that the quality of unit tests in real-world
projects is high.

Chapter 6 first covers the role of unit testing as part of an automated
build process, and follows with several techniques for organizing the
different kinds of tests according to categories (speed, type) with a goal
of reaching what I call the “safe green zone.” It also explains how to
“grow” a test API or test infrastructure for your application.

In chapter 7, we’ll take a look at the three basic pillars of good unit
tests—readability, maintainability, and trustworthiness—and look at
techniques to support them. If you only read one chapter in the book,
this should be it.

T

Licensed to Jeff Warwick <devon@cloverpoint.com>

Licensed to Jeff Warwick <devon@cloverpoint.com>

6
Test hierarchies and
organization

This chapter covers

• Running unit tests during automated nightly builds

• Using continuous integration for automated builds

• Organizing tests in a solution

• Exploring test class inheritance patterns

nit tests are as important to an application as the production source code.
As with the regular code, you need to give careful thought to where the
tests reside, both physically and logically, in relation to the code under
test. If you put the tests in the wrong place, the tests you’ve written so
carefully may not be run.

Similarly, if you don’t devise ways to reuse parts of your tests, create util-
ity methods for testing, or use test hierarchies, you’ll end up with test
code that’s either unmaintainable or hard to understand.

This chapter addresses these issues with patterns and guidelines that will
help you shape the way your tests look, feel, and run, and will affect how
well they play with the rest of your code and with other tests.

Where the tests are located depends on where they will be used and who
will run them. There are two common scenarios: tests run as part of the
automated build process, and tests run locally by developers on their own

U

141

Licensed to Jeff Warwick <devon@cloverpoint.com>

142 CHAPTER 6 Test hierarchies and organization
machines. The automated build process is very important, and that’s
what we’ll focus on.

The power of the automated build cannot and should not be ignored. If
you plan to make your team more agile and equipped to handle
requirement changes as they come into your shop, you need to be able
to do the following:

1 Make a small change to your code.
2 Run all the tests to make sure you haven’t broken any existing func-

tionality.
3 Make sure your code can still integrate well and not break any other

projects you depend upon.

Running those tests lets you know whether you’ve broken any existing
or new functionality. Integrating your code with the other projects will
indicate whether or not you broke the compilation of the code or things
that are logically dependent on your code.

Integrating your code usually means doing the following:

1 Getting the latest version of everyone’s source code from the source
control repository

2 Trying to compile it all locally
3 Running all tests locally
4 Fixing anything that has been broken
5 Checking in your source code

An automated build process combines all these steps under a special
build script that will make sure all these things are done without
human interaction. If anything breaks in the process, the build server
will notify the relevant parties of a build break.

6.1.1 Anatomy of an automated build

An automated build process should perform at least the bold points in
the following list, but it may include many other things:
❂ Get the latest version of all projects in question.

6.1 Having automated builds run automated tests
Licensed to Jeff Warwick <devon@cloverpoint.com>

Having automated builds run automated tests 143
❂ Compile all the projects in their latest version.
❂ Deploy build output to a test server.
❂ Run tests locally or on the test server.
❂ Create an archive of build outputs based on date and build number.
❂ Deploy outputs to staging or even production server.
❂ Configure and install components on target server.
❂ Notify relevant people (by email) if any of the steps failed.
❂ Merge databases.
❂ Create reports on build quality, history, and test statuses.
❂ Create tasks or work items automatically (such as adding a Team

System work item) if specific tasks have failed.

The easiest way to get an automated build going is by creating a build
process and scripts as soon as the project is started. It’s much easier to
create an automated build for a small project and keep adding to it as
the project grows than it is to start later in the game.

There are many tools that can help you create an automated build sys-
tem. Some are free or open source, and some are commercial. Here are
a few tools you can look at:

❂ CruiseControl.NET (cruisecontrol.sourceforge.net)
❂ TeamCity (JetBrains.com)
❂ NAnt (nant.sourceforge.net)
❂ MSBuild

(http://msdn.microsoft.com/en-us/library/wea2sca5(VS.80).aspx)
❂ FinalBuilder (www.FinalBuilder.com)
❂ Visual Build Pro (www.kinook.com)
❂ Visual Studio Team Foundation Server (http://msdn.microsoft.com/

en-us/teamsystem/default.aspx)

These are all configuration-based programs that allow you to create a
series of steps that will be run in a hierarchy structure. You can create
custom commands to be run, and you can schedule these builds to run
automatically.
Licensed to Jeff Warwick <devon@cloverpoint.com>

cruisecontrol.sourceforge.net
JetBrains.com
(nant.sourceforge.net
http://msdn.microsoft.com/en-us/library/wea2sca5(VS.80).aspx
www.FinalBuilder.com
www.kinook.com
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://msdn.microsoft.com/en-us/teamsystem/default.aspx

144 CHAPTER 6 Test hierarchies and organization
6.1.2 Triggering builds and continuous integration

The term continuous integration is literally about making the automated
build and integration process run continuously. For example, you
could have the build run every time someone checks in source code to
the system, or every 45 minutes.

One popular continuous integration tool is CruiseControl.NET. It’s
fully open source and supports both the idea of tasks, which are individ-
ual commands that are run during a build, and the concept of triggers,
which can start a build automatically when certain events occur, such
as source control updates.

Among the commercial tools, Visual Studio Team System 2008 sup-
ports automated builds and continuous integration out of the box. If
that’s a bit beyond your budget, look at FinalBuilder and Visual Build
Pro. These two commercial and highly successful build tools allow
visual editing and maintenance of automated build projects. That
means easier maintenance of the build file, which can get pretty scary
for larger projects.

6.1.3 Automated build types

You can configure many types of automated builds to produce differ-
ent results or builds that run in specific amounts of time (all of which
compile the code first, though). Here are a few examples:
❂ A nightly build

• runs all the long-running tests.
• runs system tests.

❂ A release build
• runs the nightly build.
• deploys to server and archives.

❂ A CI (continuous integration) build
• runs all the fast-running tests.
• finishes in less than 10 minutes.

When you start writing tests, you should categorize them by their run-
ning times:
❂ Fast-running tests
❂ Slow-running tests
Licensed to Jeff Warwick <devon@cloverpoint.com>

Mapping out tests based on speed and type 145
Integration tests generally run slower than unit tests, which usually
happen in memory, so the fast-running tests are usually unit tests and
the slow-running tests are usually integration tests.

Automated builds usually fall into two categories: those that are too
long to run every 15 minutes, and those that can be run every 15 min-
utes or less. Once you’ve categorized the tests, you can set the short
and quick builds that run continuously to run a subset of the tests—the
quick ones. If you can afford it, it’s much better to run all the tests. But
if your tests really slow down a build, running a subset of quick tests is
the next best thing.

It’s easy to run the tests to check their run times and to determine
which are integration tests and which are unit tests. Once you do, put
them in separate places. They don’t need to be in separate test projects;
a separate folder and namespace should be enough.

Figure 6.1 shows a simple folder structure you can use inside your
Visual Studio projects.

Some companies, based on the build software and unit-testing frame-
work they use, find it easier to use separate test projects for unit and
integration tests. This makes it easier to use command-line tools that

6.2 Mapping out tests based on speed and type

Figure 6.1 Integration tests and unit tests

can reside in different folders and

namespaces but remain under the same

project. Base classes have their own folders.
Licensed to Jeff Warwick <devon@cloverpoint.com>

146 CHAPTER 6 Test hierarchies and organization
accept and run a full test assembly containing only specific kinds of
tests. Figure 6.2 shows how you’d set up two separate kinds of test
projects under a single solution.

Even if you haven’t already implemented an automated build system,
separating unit from integration tests is a good idea. Mixing up the two
tests can lead to severe consequences, such as people not running your
tests, as we’ll see next.

6.2.1 The human factor of separating unit from integration tests

I recommend separating unit from integration tests. If you don’t,
there’s a big risk people won’t run the tests often enough. If the tests
exist, why wouldn’t people run them as often as needed? One reason is
that developers can be lazy.

If a developer gets the latest version of the source code and finds that
some unit tests fail, there are several possible causes:

❂ There’s a bug in the code under test.
❂ The test has a problem in the way it’s written.
❂ The test is no longer relevant.
❂ The test requires some configuration to run.

All but the last point are valid reasons for a developer to stop and
investigate the code. The last one isn’t a development issue; it’s a con-
figuration problem, which is often considered less important because it
gets in the way of running the tests. If such a test fails, the developer
will often ignore the test failure and go on to other things. (He has
“more important” things to do.)

In many ways, having such “hidden” integration tests mixed in with
unit tests and scattered around your test project with unknown or unex-
pected configuration requirements (like a database connection) is bad
form. These tests are less approachable, they waste time and money on

Figure 6.2 The unit-testing and integra-

tion projects are unique for the LogAn

project and have different namespaces.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Mapping out tests based on speed and type 147
finding problems that aren’t there, and they generally discourage the
developer from trusting the set of tests again. Like bad apples in a
bunch, they make all the others look bad. The next time something sim-
ilar happens, the developer may not even look for a cause for the failure,
and may simply say, “Oh, that test sometimes fails; it’s OK.”

To make sure this doesn’t happen, you can create a safe green zone.

6.2.2 The safe green zone

Separate your integration and unit tests into separate places. By doing
that, you give the developers on your team a safe green test area that only
contains unit tests, where they know that they can get the latest code
version, they can run all tests in that namespace or folder, and they
should all be green. If some tests in the safe green zone don’t pass, there’s
a real problem, not a (false positive) configuration problem in the test.

This doesn’t mean that the integration tests shouldn’t all be passing.
But because integration tests inherently take longer to execute, it’s
more likely that developers will run the unit tests more times a day and
run the integration tests fewer, but still hopefully at least during the
nightly build. Developers can focus on being productive and getting at
least a partial sense of confidence when all their unit tests are passing.
The nightly build should have all the configuration needed to make the
integration tests pass.

In addition, creating a separate integration zone (the opposite of a safe
green zone) for the integration tests gives you not only a place to quaran-
tine tests that may run slowly, but also a place to put documents detail-
ing what configuration needs to take place to make all these tests work.

An automated build system will do all that configuration work for you.
However, if you want to run locally, you should have in your solution
or project an integration zone that has all the information you need to
make things run but that you can also skip if you want to just run the
quick tests (in the safe green zone).

But none of this matters if you don’t have your tests inside the source
control tree, as we’ll see next.
Licensed to Jeff Warwick <devon@cloverpoint.com>

148 CHAPTER 6 Test hierarchies and organization
Tests must be part of source control. The test code that you write needs
to reside in a source control repository, just like your real production
code. In fact, you should treat your test code as thoughtfully as you
treat your production code. It should be part of the branch for each
version of the product, and it should be part of the code that developers
get automatically when they get the latest version.

Because unit tests are so connected to the code and API, they should
always stay attached to the version of the code they’re testing. Getting
version 1.0.1 of your product will also get version 1.0.1 of the tests for
your product; version 1.0.2 of your product and its tests will be different.

Also, having your tests as part of the source control tree is what allows
your automated build processes to make sure they run the correct ver-
sion of the tests against your software.

When you create test classes, the way they’re structured and placed
should allow you to easily do the following:
❂ Look at a project and find all the tests that relate to it.
❂ Look at a class and find all the tests that relate to it.
❂ Look at a method and find all the tests that relate to it.

There are several patterns that can help you do this. We’ll go through
these points one by one.

6.4.1 Mapping tests to projects

Create a project to contain the tests, and give it the same name as the
project under test, adding [.Tests] to the end of the name. For exam-
ple, if I had a project named Osherove.MyLibrary, I would also have a
test project named Osherove.MyLibrary.Tests.Unit as well as
Osherove.MyLibrary.Tests.Integration. (See figure 6.2, earlier in this
chapter, for an example.) This may sound crude, but it’s easy, and it
allows a developer to find all the tests for a specific project.

6.3 Ensuring tests are part of source control

6.4 Mapping test classes to code under test
Licensed to Jeff Warwick <devon@cloverpoint.com>

Mapping test classes to code under test 149
You may also want to use Visual Studio’s ability to create folders under
the solution, and group this threesome into its own folder, but that’s a
matter of taste.

6.4.2 Mapping tests to classes

There are several ways to go about mapping the tests for a class you’re
testing. We’ll look at two main scenarios: having one test class for each
class under test and having separate test classes for complex methods
being tested.

TIP These are the two test class patterns I use most, but others exist. I sug-
gest you look at Gerard Meszaros’ xUnit Test Patterns book for more.

One test class per class under test

You want to be able to quickly locate all tests for a specific class, and
the solution is much like the previous pattern for projects: take the
name of the class you want to write tests for and, in the test project,
create a test class with the same name postfixed with “Tests”. For a
class called LogAnalyzer, you’d create a test class in your test project
named LogAnalyzerTests.

Note the plural; this is a class that holds multiple tests for the class
under test, not just one test. It’s important to be accurate. Readability
and language matter a lot when it comes to test code, and once you
start cutting corners in one place, you’ll be doing so in others, which
can lead to problems.

The one-test-class-per-class pattern (also mentioned in Meszaros’ xUnit
Test Patterns book) is the simplest and most common pattern for organiz-
ing tests. You put all the tests for all methods of the class under test in
one big test class. When using this pattern, some methods in the class
under test may have so many tests that the test class becomes much less
readable or browsable. Sometimes the tests for one method drown out
the other tests for other methods. That in itself could indicate that
maybe the method is doing too much.

TIP Test readability is important. You’re writing tests as much for the per-
son who will read them as for the computer that will run them.
Licensed to Jeff Warwick <devon@cloverpoint.com>

150 CHAPTER 6 Test hierarchies and organization
If the person reading the test has to spend more time browsing the test
code than understanding it, the test will cause maintenance headaches
as the code gets bigger and bigger. That’s why you might think about
doing it differently.

One test class per feature

An alternative is creating a separate test class for a particular feature
(which could be as small as a method). The one-test-class-per-feature pat-
tern is also mentioned in Meszaros’ xUnit Test Patterns book. If you seem
to have lots of test methods that make your test class difficult to read,
find the method or group of methods whose tests are drowning out the
other tests for that class, and create a separate test class for it, with the
name relating to the feature.

For example, suppose a class named LoginManager has a ChangePass-
word method you’d like to test, but it has so many test cases that you
want to put it in a separate test class. You might end up with two test
classes: LoginManagerTests, which contains all the other tests; and Log-
inManagerTestsChangePassword, which contains only the tests for the
ChangePassword method.

6.4.3 Mapping tests to specific methods

Beyond making test names readable and understandable, our main
goal is to be able to easily find all test methods for a specific method
under test, so we should give our test methods meaningful names. We
can use the method name as part of the test name.

We could name a test ChangePassword_scenario_expectedbehavior. This
naming convention is discussed in chapter 2 (section 2.3.2).

Sooner or later, as you start writing tests for your applications,
you’re bound to refactor them, and create utility methods, utility
classes, and many other constructs (either in the test projects or in
the code under test) solely for the purpose of testability or test read-
ability and maintenance.

6.5 Building a test API for your application
Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 151
Here are some things you may find you want to do:

❂ Use inheritance in your test classes for code reuse, guidance, and
more.

❂ Create test utility classes and methods.
❂ Make your API known to developers.

Let’s look at these in turn.

6.5.1 Using test class inheritance patterns

One of the most powerful arguments for object-oriented code is that
you can reuse existing functionality instead of recreating it over and
over again in other classes—what Andy Hunt and Dave Thomas called
the DRY (“don’t repeat yourself”) principle in The Pragmatic Programmer.
Because the unit tests you write in .NET and most object-oriented lan-
guages are in an object-oriented paradigm, it’s not a crime to use inher-
itance in the test classes themselves. In fact, I urge you to do this if you
have a good reason to. Implementing a base class can help alleviate
standard problems in test code by

❂ reusing utility and factory methods.
❂ running the same set of tests over different classes. (We’ll look at this

one in more detail.)
❂ using common setup or teardown code (also useful for integration

testing).
❂ creating testing guidance for programmers who will derive from the

base class.

I’ll introduce you to three patterns based on test class inheritance, each
one building on the previous pattern. I’ll also explain when you might
want to use each of them and what the pros and cons are for each of
them.

These are the basic three patterns:

❂ Abstract test infrastructure class
❂ Template test class
❂ Abstract test driver class
Licensed to Jeff Warwick <devon@cloverpoint.com>

152 CHAPTER 6 Test hierarchies and organization
We’ll also take a look at the following refactoring techniques that you
can apply when using the preceding patterns:

❂ Refactoring into a class hierarchy
❂ Using generics

Abstract test infrastructure class pattern

The abstract test infrastructure class pattern creates an abstract test class that
contains essential common infrastructure for test classes deriving from
it. Scenarios where you’d want to create such a base class can range
from having common setup and teardown code to having special cus-
tom asserts that are used throughout multiple test classes.

We’ll look at an example that will allow us to reuse a setup method in
two test classes. Here’s the scenario: all tests need to override the
default logger implementation in the application so that logging is done
in memory instead of in a file (that is, all tests need to break the logger
dependency in order to run correctly).

Listing 6.1 shows these classes:

❂ The LogAnalyzer class and method—The class and method we’d like to test
❂ The LoggingFacility class—The class that holds the logger implemen-

tation we’d like to override in our tests
❂ The ConfigurationManager class—Another user of LoggingFacility,

which we’ll test later
❂ The LogAnalyzerTests class and method—The initial test class and

method we’re going to write
❂ The StubLogger class—An internal class that will replace the real log-

ger implementation
❂ The ConfigurationManagerTests class—A class that holds tests for Con-

figurationManager

Listing 6.1 An example of not following the DRY principle in test classes

//This class uses the LoggingFacility Internally
public class LogAnalyzer
 {
 public void Analyze(string fileName)
 {
 if (fileName.Length < 8)
Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 153
 {
 LoggingFacility.Log("Filename too short:" + fileName);
 }
 //rest of the method here
 }
 }

//another class that uses the LoggingFacility internally
public class ConfigurationManager
 {
 public bool IsConfigured(string configName)
 {
 LoggingFacility.Log("checking " + configName);
 //return result;
 }
 }

public static class LoggingFacility
 {
 public static void Log(string text)
 {
 logger.Log(text);
 }
 private static ILogger logger;

 public static ILogger Logger
 {
 get { return logger; }
 set { logger = value; }
 }
 }

 [TestFixture]
 public class LogAnalyzerTests
 {
 [SetUp]
 public void Setup()
 {
 LoggingFacility.Logger = new StubLogger();
 }

 [Test]
 public void Analyze_EmptyFile_ThrowsException()
 {
 LogAnalyzer la = new LogAnalyzer();

Uses Setup() method?
Licensed to Jeff Warwick <devon@cloverpoint.com>

154 CHAPTER 6 Test hierarchies and organization
 la.Analyze("myemptyfile.txt");
 //rest of test
 }
 }

 internal class StubLogger : ILogger
 {
 public void Log(string text)
 {
 //do nothing
 }
 }

 [TestFixture]
 public class ConfigurationManagerTests
 {
 [SetUp]
 public void Setup()
 {
 LoggingFacility.Logger = new StubLogger();
 }

 [Test]
 public void Analyze_EmptyFile_ThrowsException()
 {
 ConfigurationManager cm = new ConfigurationManager();
 bool configured = cm.IsConfigured("something");
 //rest of test
 }
 }

The LoggingFacility class is probably going to be used by many
classes. It’s designed so that the code using it is testable by allowing the
implementation of the logger to be replaced using the property setter
(which is static).

There are two classes that use the LoggingFacility class internally, and
we’d like to test both of them: the LogAnalyzer and ConfigurationMan-
ager classes.

One possible way to refactor this code into a better state is to find a
way to reuse the setup method ?, which is essentially the same for
both test classes. They both replace the default logger implementation.

Uses Setup() method?
Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 155
We could refactor the test classes and create a base test class that con-
tains the setup method. The full code for the test classes is shown in
listing 6.2.

Listing 6.2 A refactored solution

public class BaseTestClass
 {
 [SetUp]
 public void Setup()
 {
 Console.WriteLine("in setup");
 LoggingFacility.Logger = new StubLogger();
 }
 }

 [TestFixture]
 public class LogAnalyzerTests : BaseTestClass |#2
 {
 [Test]
 public void Analyze_EmptyFile_ThrowsException()
 {
 LogAnalyzer la = new LogAnalyzer();
 la.Analyze("myemptyfile.txt");
 //rest of test
 }
 }

 [TestFixture]
 public class ConfigurationManagerTests :BaseTestClass
 {
 [Test]
 public void Analyze_EmptyFile_ThrowsException()
 {
 ConfigurationManager cm = new ConfigurationManager();
 bool configured = cm.IsConfigured("something");
 //rest of test
 }
 }

Figure 6.3 shows this pattern more clearly.

Refactors into
a common
setup method

Inherits Setup()
method
implementation
Licensed to Jeff Warwick <devon@cloverpoint.com>

156 CHAPTER 6 Test hierarchies and organization
The Setup method from the base class is now automatically run before
each test in either of the derived classes. We’ve definitely reused some
code, but there are pros and cons in every technique. The main prob-
lem we’ve introduced into the derived test classes is that anyone read-
ing the code can no longer easily understand what happens when setup
is called. They will have to look up the setup method in the base class
to see what the derived classes get by default. This leads to less read-
able tests, but it also leads to more code reuse.

What if you wanted to have your own derived setup in one of the
derived classes? Most of the unit-testing frameworks (including
NUnit) will allow you to make the setup method virtual and then over-
ride it in the derived class. Listing 6.3 shows how a derived class can
have its own setup method but still keep the original setup method
(making them work one after the other).

Listing 6.3 A derived test class with its own setup method

public class BaseTestClass
 {
 [SetUp]
 public virtual void Setup()|
 {

Figure 6.3 One base class with a common setup method, and two test classes that

reuse that setup method

Makes Setup()
virtual to allow
overriding
Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 157
 Console.WriteLine("in setup");
 LoggingFacility.Logger = new StubLogger();
 }
 }

[TestFixture]
 public class ConfigurationManagerTests :BaseTestClass
 {
 [SetUp]
 public override void Setup()
 {
 base.Setup();
 Console.WriteLine("in derived");
 LoggingFacility.Logger = new StubLogger();
 }

 //...
 }

This style of inheritance is easier for the reader of the test class,
because it specifically indicates that there’s a base setup method that’s
called each time. You may be helping your team by requiring them to
always override base methods and call their base class’s implementa-
tion in the tests for the sake of readability. This approach is shown in
listing 6.4.

Listing 6.4 Overriding a setup method purely for clarity

[TestFixture]
 public class ConfigurationManagerTests :BaseTestClass
 {
 [SetUp]
 public override void Setup()
 {
 base.Setup();
 }

 //...
 }

This type of coding may feel a bit weird at first, but anyone reading the
tests will thank you for making it clear what’s going on.

Overrides and
calls base

Overrides and
calls base
Licensed to Jeff Warwick <devon@cloverpoint.com>

158 CHAPTER 6 Test hierarchies and organization
Template test class pattern

The template test class pattern creates an abstract class that contains
abstract test methods that derived classes will have to implement. The
driving force behind this pattern is the need to be able to dictate to
deriving classes which tests they should always implement. It’s com-
monly used when there’s a need to create one or more test classes for a
set of classes that implement the same interface.

Think of an interface as a “behavior contract” where the same end
behavior is expected from all who have the contract, but they can
achieve the end result in different ways. An example of such a behavior
contract could be a set of parsers all implementing parse methods that
act the same way but on different input types.

Developers often neglect or forget to write all the required tests for a
specific case. Having a base class for each set of identically interfaced
classes can help create a basic test contract that all developers must
implement in derived test classes.

Figure 6.4 A template test pattern ensures

that developers don’t forget important

tests. The base class contains abstract

tests that derived classes must implement.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 159
Figure 6.4 shows an example base class that helps to test data-layer
CRUD (create, retrieve, update, and delete) classes.

I’ve found this technique useful in many situations, not only as a devel-
oper, but also as an architect. As an architect, I was able to supply a list
of essential test classes for developers to implement, and to provide
guidance on what kinds of tests they’d want to write next. It’s essential
in this situation that the naming of the tests is understandable.

But what if you were to inherit real tests from the base class, and not
abstract ones?

Abstract test driver class pattern

The abstract test driver class pattern creates an abstract test class that con-
tains test method implementations that all derived classes inherit by
default, without needing to reimplement them. Instead of having
abstract test methods, you implement real tests on the abstract class
that your derived classes will inherit. It’s essential that your tests don’t
explicitly test one class type, but instead test against an interface or
base class in your production code under test.

Let’s see a real scenario. Suppose you have the object model shown in
figure 6.5 to test.

The BaseStringParser is an abstract class that other classes derive from
to implement some functionality over different string content types.
From each string type (XML strings, IIS log strings, standard strings),
we can get some sort of versioning info (metadata on the string that
was put there earlier). We can get the version info from a custom
header (the first few lines of the string) and check whether that header
is valid for the purposes of our application. The XMLStringParser, IIS-
LogStringParser, and StandardStringParser classes derive from this
base class and implement the methods with logic for their specific
string types.

The first step in testing such a hierarchy is to write a set of tests for one
of the derived classes (assuming the abstract class has no logic to test in
it). Then you’d have to write the same kinds of tests for the other
classes that have the same functionality.
Licensed to Jeff Warwick <devon@cloverpoint.com>

160 CHAPTER 6 Test hierarchies and organization
Figure 6.5 A typical inheritance hierarchy that we’d like to test includes an abstract

class and classes that derive from it.

Listing 6.5 shows tests for the StandardStringParser that we might
start out with before we refactor our test classes.

Listing 6.5 An outline of a test class for StandardStringParser

[TestFixture]
 public class StandardStringParserTests
 {
 private StandardStringParser GetParser(string input)
 {
 return new StandardStringParser(input);
 }

 [Test]
 public void GetStringVersionFromHeader_SingleDigit_Found()
 {
 string input = "header;version=1;\n";
 StandardStringParser parser = GetParser(input);

 string versionFromHeader = parser.GetTextVersionFromHeader();
 Assert.AreEqual("1",versionFromHeader);
 }

Defines
the parser
factory
method

?

Uses
factory
method

w

Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 161
 [Test]
 public void GetStringVersionFromHeader_WithMinorVersion_Found()
 {
 string input = "header;version=1.1;\n";
 StandardStringParser parser = GetParser(input);

 //rest of the test
 }

 [Test]
 public void GetStringVersionFromHeader_WithRevision_Found()
 {
 string input = "header;version=1.1.1;\n";
 StandardStringParser parser = GetParser(input);
 //rest of the test
 }

 [Test]
 public void HasCorrectHeader_NoSpaces_ReturnsTrue()
 {
 string input = "header;version=1.1.1;\n";
 StandardStringParser parser = GetParser(input);

 bool result = parser.HasCorrectHeader();
 Assert.IsTrue(result);
 }

 [Test]
 public void HasCorrectHeader_WithSpaces_ReturnsTrue()
 {
 string input = "header ; version=1.1.1 ; \n";
 StandardStringParser parser = GetParser(input);

 //rest of the test
 }

 [Test]
 public void HasCorrectHeader_MissingVersion_ReturnsFalse()
 {
 string input = "header; \n";
 StandardStringParser parser = GetParser(input);

 //rest of the test
 }

}

Uses
factory
method

w

Licensed to Jeff Warwick <devon@cloverpoint.com>

162 CHAPTER 6 Test hierarchies and organization
Note how we use the GetParser() helper method ? to refactor away w
the creation of the parser object, which we use in all the tests. We use
the helper method, and not a setup method, because the constructor
takes the input string to parse, so each test needs to be able to create a
version of the parser to test with its own specific inputs.

When you start writing tests for the other classes in the hierarchy,
you’ll want to repeat the same tests that are in this specific parser class.
All the other parsers should have the same outward behavior: getting
the header version and validating that the header is valid. How they do
this differs, but the behavior semantics are the same. This means that,
for each class that derives from BaseStringParser, we’d write the same
basic tests, and only the type of class under test would change.

Instead of repeating all those tests manually, we can create a ParserT-
estsBase class that contains all the basic tests we’d like to perform on
any class that implements the IStringParser interface (or any class that
derives from BaseStringParser). Listing 6.6 shows an example of this
base class.

Listing 6.6 An abstract test base class with test logic for IStringParser interface

public abstract class BaseStringParserTests
{
 protected abstract IStringParser
 GetParser(string input);

 [Test]
 public void GetStringVersionFromHeader_SingleDigit_Found()
 {
 string input = "header;version=1;\n";
 IStringParser parser = GetParser(input);

 string versionFromHeader = parser.GetTextVersionFromHeader();
 Assert.AreEqual("1",versionFromHeader);
 }

 [Test]
 public void GetStringVersionFromHeader_WithMinorVersion_Found()
 {
 string input = "header;version=1.1;\n";
 IStringParser parser = GetParser(input);
 //...

Turns GetParser()
into an abstract method

?

Calls abstract
factory method

w

Calls abstract
factory method

w

Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 163
 }

 [Test]
 public void GetStringVersionFromHeader_WithRevision_Found()
 {
 string input = "header;version=1.1.1;\n";
 IStringParser parser = GetParser(input);
 //...
 }

 [Test]
 public void HasCorrectHeader_NoSpaces_ReturnsTrue()
 {
 string input = "header;version=1.1.1;\n";
 IStringParser parser = GetParser(input);

 bool result = parser.HasCorrectHeader();
 Assert.IsTrue(result);
 }

 [Test]
 public void HasCorrectHeader_WithSpaces_ReturnsTrue()
 {
 string input = "header ; version=1.1.1 ; \n";
 IStringParser parser = GetParser(input);
 //...
 }

 [Test]
 public void HasCorrectHeader_MissingVersion_ReturnsFalse()
 {
 string input = "header; \n";
 IStringParser parser = GetParser(input);
 //...
 }
}

Several things are different from listing 6.5 and are important in the
implementation of the base class:

❂ The GetParser() method is abstract ?, and its return type is now
IStringParser. This means we can override this factory method in
derived test classes and return the type of the parser we’d like to test.
Licensed to Jeff Warwick <devon@cloverpoint.com>

164 CHAPTER 6 Test hierarchies and organization
❂ The test methods only get an IStringParser interface w and don’t
know the actual class they’re running against.

❂ A derived class can choose to add tests against a specific subclass of
IStringParser by adding another test method in its own test class (as
we’ll see next).

Once we have the base class in order, we can easily add tests to the
various subclasses. Listing 6.7 shows how we can write tests for the
StandardStringParser by deriving from BaseStringParserTests.

Listing 6.7 A derived test class that overrides a small number of factory methods

[TestFixture]
 public class StandardStringParserTests : BaseStringParserTests
 {
 protected override IStringParser GetParser(string input)
 {
 return new StandardStringParser(input);
 }

[Test]
 public void
 GetStringVersionFromHeader_DoubleDigit_Found()
 {
 //this test is specific to the StandardStringParser type
 string input = "header;version=11;\n";
 IStringParser parser = GetParser(input);

 string versionFromHeader = parser.GetTextVersionFromHeader();
 Assert.AreEqual("11", versionFromHeader);
 }

}

Note that in listing 6.7 we only have two methods in the derived class:

❂ The factory method ? that tells the base class what instance of the
class to run tests on

❂ A new test w that may not belong in the base class, or that may be
specific to the current type under test

Overrides
abstract factory
method

?

Adds
new test

w

Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 165
Figure 6.6 A standard test class hierarchy implementation. Most of the tests are in

the base class, but derived classes can add their own specific tests.

Figure 6.6 shows the visual inheritance chain that we’ve just created.

How do we modify existing code to use this pattern? That’s our next topic.

Refactoring your test class into a test class hierarchy

Most developers don’t start writing their tests with these inheritance
patterns in mind. Instead, they write the tests normally, as was shown
in listing 6.5. The steps to convert your tests into a base class are fairly
easy, particularly if you have IDE refactoring tools available, like the
ones found in Eclipse, IntelliJ IDEA, or Visual Studio 2008 (Jet-
Brains’ ReSharper or Refactor! from DevExpress).

Here is a list of possible steps for refactoring your test class:

1 Refactor: extract the superclass.
• Create a base class (BaseXXXTests).
• Move the factory methods (like GetParser) into the base class.
• Move all the tests to the base class.

2 Refactor: make factory methods abstract, and return interfaces.

3 Refactor: find all the places in the test methods where explicit class
types are used, and change them to use the interfaces of those types
instead.
Licensed to Jeff Warwick <devon@cloverpoint.com>

166 CHAPTER 6 Test hierarchies and organization
4 In the derived class, implement the abstract factory methods and
return the explicit types.

You can also use .NET generics to create the inheritance patterns.

A variation using .NET generics to implement test hierarchy

You can use generics as part of the base test class. This way, you don’t
even need to override any methods in derived classes; just declare the
type you’re testing against. Listing 6.8 shows both the generic version
of the test base class and a class derived from it.

Listing 6.8 Implementing test case inheritance with .NET generics

public abstract class StringParserTests<T>
 where T:IStringParser
{
 protected T GetParser(string input)
 {
 return (T) Activator.CreateInstance(typeof (T), input);
 }

 [Test]
 public void GetStringVersionFromHeader_SingleDigit_Found()
 {
 string input = "header; \n";
 T parser = GetParser(input);

 bool result = parser.HasCorrectHeader();
 Assert.IsFalse(result);
 }

 //more tests
 //...
 }

 // this is the derived test class:
[TestFixture]
 public class StandardStringParserGenericTests
 :StringParserTests<StandardStringParser>
 {
 }

Defines generic
constraint
on parameter

?

Returns generic typew

Gets generic type
variable instead
of an interface

e

Inherits
from generic
base class
Licensed to Jeff Warwick <devon@cloverpoint.com>

Building a test API for your application 167
There are several things that change in the generic implementation of
the hierarchy:

❂ The GetParser factory method w no longer needs to be overridden.
Create the object using Activator.CreateInstance (which allows
creating objects without knowing their type) and send the input
string arguments to the constructor.

❂ The tests themselves don’t use the IStringParser interface, but
instead use the T generic type e.

❂ The generic class declaration contains the where clause that specifies
that the T type of the class must implement the IStringParser inter-
face ?.

Overall, I don’t find more benefit in using generic base classes. Any
performance gain that would result is insignificant to these tests, but I
leave it to you to see what makes sense for your projects. It’s more a
matter of taste than anything else.

Let’s move on to something completely different: infrastructure API in
your test projects.

6.5.2 Creating test utility classes and methods

As you write your tests, you’ll also create many simple utility methods
that may or may not end up inside your test classes. These utility
classes become a big part of your test API, and they may turn out to be
a simple object model you could use as you develop your tests.

You might end up with the following types of utility methods:

❂ Factory methods for objects that are complex to create or that rou-
tinely get created by your tests.

❂ System initialization methods (such as methods for setting up the
system state before testing, or changing logging facilities to use stub
loggers).

❂ Object configuration methods (for example, methods that set the
internal state of an object, such as setting a customer to be invalid for
a transaction).
Licensed to Jeff Warwick <devon@cloverpoint.com>

168 CHAPTER 6 Test hierarchies and organization
❂ Methods that set up or read from external resources such as data-
bases, configuration files, and test input files (for example, a method
that loads a text file with all the permutations you’d like to use when
sending in inputs for a specific method, and the expected results).
This is more commonly used in integration or system testing.

❂ Special assert utility methods, which may assert something that’s
complex or that’s repeatedly tested inside the system’s state. (If
something was written to the system log, the method might assert
that X, Y, and Z are true, but not G.)

You may end up refactoring your utility methods into these types of
utility classes:

❂ Special assert utility classes that contain all the custom assert methods
❂ Special factory classes that hold the factory methods
❂ Special configuration classes or database configuration classes that

hold integration style actions

Having those utility methods around doesn’t guarantee anyone will use
them. I’ve been to plenty of projects where developers kept reinventing
the wheel, recreating utility methods they didn’t know already existed.
That’s why making your API known is an important next step.

6.5.3 Making your API known to developers

It’s imperative that the people who write tests know about the various
APIs that have been developed while writing the application and its
tests. There are several ways to make sure your APIs are used:

❂ Have teams of two people write tests together (at least once in a
while), where one of the people is familiar with the existing APIs
and can teach the other person, as they write new tests, about the
existing benefits and code that could be used.

❂ Have a short document (no more than a couple of pages) or a cheat
sheet that details the types of APIs out there and where to find them.
You can create short documents for specific parts of your testing
framework (APIs specific to the data layer, for example) or a global
one for the whole application. If it’s not short, no one will maintain it.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Summary 169
One possible way to make sure it’s up to date is by automating the
generation process:

• Have a known set of prefixes or postfixes on the API helpers’
names (helperXX for example).

• Have a special tool that parses out the names and their locations
and generates a document that lists them and where to find them,
or have some simple directives that the special tool can parse from
comments you put on them.

• Automate the generation of this document as part of the auto-
mated build process.

❂ Discuss changes to the APIs during team meetings—one or two sen-
tences outlining the main changes and where to look for the signifi-
cant parts. That way the team knows that this is important and it’s
always on people’s minds.

❂ Go over this document with new employees during their orientation.
❂ Perform test reviews (as opposed to code reviews) that make sure

tests are up to standards of readability, maintainability, and correct-
ness, and ensure that the right APIs are used when needed.

Following one or more of these recommendations can help keep your
team productive and will create a shared language the team can use
when writing their tests.

Let’s look back and see what we can draw out from the chapter we’ve
been through.
❂ Whatever testing you do—however you do it—automate it, and use

an automated build procedure to run it as many times as possible
during day or night.

❂ Separate the integration tests from the unit tests (the slow tests from
the fast ones) so that your team can have a safe green zone where all
the tests must pass.

❂ Map out tests by project and by type (unit versus integration tests,
slow versus fast tests), and separate them into different directories,

6.6 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

170 CHAPTER 6 Test hierarchies and organization
folders, or namespaces (or all of the above). I usually use all three
types of separation.

❂ Use a test class hierarchy to apply the same set of tests to multiple
related types under test in a hierarchy, or to types that share a com-
mon interface or base class.

❂ Use helper classes and utility classes instead of hierarchies if the test
class hierarchy makes tests less readable, especially if there’s a
shared setup method in the base class. Different people have differ-
ent opinions on when to use which, but readability is usually the key
reason for not using hierarchies.

❂ Make your API known to your team. If you don’t, you’ll lose time
and money as team members unknowingly reinvent many of the
APIs over and over again.

The next three chapters will deal with practices you can use to make
your tests more maintainable, readable, and correct (in the sense that
they test the right things).
Licensed to Jeff Warwick <devon@cloverpoint.com>

7
The pillars of good tests

This chapter covers

• Writing trustworthy tests

• Writing maintainable tests

• Writing readable tests

• Exploring naming conventions for unit tests

o matter how you organize your tests, or how many you have, they’re
worth very little if you can’t trust them, maintain them, or read them.
The tests that you write should have three properties that together make
them good:

❂ Trustworthiness—Developers will want to run trustworthy tests, and they’ll
accept the test results with confidence. Trustworthy tests don’t have
bugs, and they test the right things.

❂ Maintainability—Nonmaintainable tests are nightmares because they can
ruin project schedules, or you risk losing the tests when the project is
put on a more aggressive schedule. Developers will simply stop main-
taining and fixing tests that take too long to change.

❂ Readability—This means not just being able to read a test but also figur-
ing out the problem if the test seems to be wrong. Without readability,
the other two pillars fall pretty quickly. Maintaining tests becomes
harder, and you can’t trust them anymore.

N

171

Licensed to Jeff Warwick <devon@cloverpoint.com>

172 CHAPTER 7 The pillars of good tests
This chapter presents a series of practices related to each of these three
pillars that you can use when doing test reviews. Together, the three
pillars ensure your time is well used. Drop one of them, and you run
the risk of wasting everyone’s time.

There are several indications that a test is trustworthy. If it passes, you
don’t say, “I’ll step through the code in the debugger to make sure.”
You trust that it passes and that the code it tests works for that specific
scenario. If the test fails, you don’t tell yourself, “Oh, it’s supposed to
fail,” or “That doesn’t mean the code isn’t working.” You believe that
there’s a problem in your code and not in your test. In short, a trust-
worthy test is one that makes you feel you know what’s going on and
that you can do something about it.

In this chapter, I’ll introduce guidelines and techniques to help you do
the following:

❂ Decide when to remove or change tests
❂ Avoid test logic
❂ Test only one thing
❂ Make tests easy to run
❂ Assure code coverage

I’ve found that tests that follow these guidelines tend to be tests that I
can trust more than others, and that I feel confident will continue to
find errors in my code.

7.1.1 Deciding when to remove or change tests

Once you have tests in place, you should generally not change or
remove them. They are there as your safety net, to let you know if any-
thing breaks when you change your code. That said, there are times
you might feel compelled to change or remove existing tests. To under-
stand when this might cause a problem and when it’s reasonable to do
so, let’s look at the reasons for each.

7.1 Writing trustworthy tests
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing trustworthy tests 173
The main reason for removing a test is when it fails. A test can “sud-
denly” fail for several reasons:
❂ Production bugs—There’s a bug in the production code under test.
❂ Test bugs—There’s a bug in the test.
❂ Semantics or API changes—The semantics of the code under test

changed, but not the functionality.
❂ Conflicting or invalid tests—The production code was changed to reflect

a conflicting requirement.

There are also reasons for changing or removing tests when nothing is
wrong with the tests or code:
❂ To rename or refactor the test
❂ To eliminate duplicate tests

Let’s see how you might deal with each of these cases.

Production bugs

A production bug occurs when you change the production code and an
existing test breaks. If indeed this is a bug in the code under test, your
test is fine, and you shouldn’t need to touch the test. This is the best
and most desired outcome of having tests.

Because the occurrence of production bugs is one of the main reasons
we have unit tests in the first place, the only thing left to do is to fix the
bug in the production code. Don’t touch the test.

Test bugs

If there’s a bug in the test, you need to change the test. Bugs in tests are
notoriously hard to detect in the first place, because the test is assumed
to be correct. I’ve detected several stages developers go through when
a test bug is encountered:

1 Denial—The developer will keep looking for a problem in the code
itself, changing it, causing all the other tests to start failing. The
developer introduces new bugs into production code while hunting
for the bug that’s actually in the test.

2 Amusement—The developer will call another developer, if possible,
and they will hunt for the non-existent bug together.
Licensed to Jeff Warwick <devon@cloverpoint.com>

174 CHAPTER 7 The pillars of good tests
3 Debuggerment—The developer will patiently debug the test and dis-
cover that there’s a problem in the test. This can take anywhere
from an hour to a couple of days.

4 Acceptance and slappage—The developer will eventually realize where
the bug is, and will slap herself on the forehead.

When you finally find and start fixing the bug, it’s important to make
sure that the bug gets fixed, and that the test doesn’t magically pass by
testing the wrong thing. You need to do the following:

1 Fix the bug in your test.

2 Make sure the test fails when it should.

3 Make sure the test passes when it should.

The first step, fixing the test, is quite straightforward. The next two
steps make sure you’re still testing the correct thing, and that your test
can still be trusted.

Once you have fixed your test, go to the production code under test
and change it so that it manifests the bug that the test is supposed to
catch. Then run the test. If the test fails, that means it’s half working.
The other half will be completed in step 3. If the test doesn’t fail, you’re
most likely testing the wrong thing. (I’ve seen developers accidentally
delete the asserts from their tests when fixing bugs in tests. You’d be
surprised how often that happens and how effective step 2 is at catch-
ing these cases.)

Once you see the test fail, change your production code so that the bug
no longer exists. The test should now pass. If it doesn’t, you either still
have a bug in your test, or you’re testing the wrong thing. You want to
see the test fail and then pass again after you fix it so that you can be
sure that it fails and passes when it should.

Semantics or API changes

A test can fail when the production code under test changes so that an
object being tested now needs to be used differently, even though it may
still have the same end functionality.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing trustworthy tests 175
Consider the simple test in listing 7.1.

Listing 7.1 A simple test against the LogAnalyzer class

[Test]
 public void SemanticsChange()
 {
 LogAnalyzer logan = new LogAnalyzer();
 Assert.IsFalse(logan.IsValid("abc"));
 }

Let’s say that a semantics change has been made to the LogAnalyzer
class, in the form of an Initialize method. You now have to call Ini-
tialize on the LogAnalyzer class before calling any of the other meth-
ods on it.

If you introduce this change in the production code, the assert line ? of
the test in listing 7.1 will throw an exception because Initialize was
not called. The test will be broken, but it’s still a valid test. The func-
tionality it tests still works, but the semantics of using the object under
test has changed.

In this case, we need to change the test to match the new semantics, as
shown in listing 7.2.

Listing 7.2 The changed test using the new semantics of LogAnalyzer

[Test]
 public void SemanticsChange()
 {
 LogAnalyzer logan = new LogAnalyzer();
 logan.Initialize();
 Assert.IsFalse(logan.IsValid("abc"));
 }

Changing semantics accounts for most of the bad experiences develop-
ers have with writing and maintaining unit tests, because the burden of
changing tests while the API of the code under test keeps changing
gets bigger and bigger. Listing 7.3 shows a more maintainable version
of the test in listing 7.2.

?

Licensed to Jeff Warwick <devon@cloverpoint.com>

176 CHAPTER 7 The pillars of good tests
Listing 7.3 A refactored test using a factory method

[Test]
 public void SemanticsChange()
 {
 LogAnalyzer logan = MakeDefaultAnalyzer();
 Assert.IsFalse(logan.IsValid("abc"));
 }

 public static LogAnalyzer MakeDefaultAnalyzer()
 {
 LogAnalyzer analyzer = new LogAnalyzer();
 analyzer.Initialize();
 return analyzer;
 }

In this case, the refactored test uses a utility factory method ?. We can
do the same for other tests and have them use the same utility method.
Then, if the semantics of creating and initializing the object should
change again, we don’t need to change all the tests that create this
object; we just need to change one little utility method. We’ll see other
maintainability techniques later in this chapter.

Conflicting or invalid tests

A conflict problem arises when the production code introduces a new
feature that’s in direct conflict with a test. This means that, instead of
the test discovering a bug, it discovers conflicting requirements.

Let’s look at a short example. Suppose the customer requests LogAna-
lyzer to not allow filenames shorter than three letters. The analyzer
should throw an exception in that case. The feature is implemented and
tests are written.

Much later on, the customer realizes that three-letter filenames do have
a use and requests that they be handled in a special way. The feature is
added and the production code changed. Then we write new tests so
that the production code no longer throws an exception. Suddenly, an
old test (the one with a three-letter filename) breaks because it expects
an exception. Fixing the production code to make that test pass would
break the new test that expects three-letter filenames to be handled in a
special way.

Uses
factory
method

?

Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing trustworthy tests 177
This either-or scenario, where only one of two tests can pass, serves as
a warning that these may be conflicting tests. In this case, you first
need to make sure that the tests are in conflict. Once that’s confirmed,
you need to decide which requirement to keep. You should then
remove (not comment out) the invalid requirement and its tests.

Conflicting tests can sometimes point out problems in customer
requirements, and the customer may need to decide on the validity of
each requirement.

Renaming or refactoring tests

An unreadable test is more of a problem than a solution. It can hinder
your code’s readability and your understanding of any problems it finds.

If you encounter a test that has a bad name or that can be made more
maintainable, change the test code (but don’t change the basic func-
tionality of the test). Listing 7.3 showed one such example of refactor-
ing a test for maintainability, which also makes it a lot more readable.

Eliminating duplicate tests

When dealing with a team of developers, it’s common to come across
multiple tests written by different developers for the same functionality.
I’m not crazy about removing duplicate tests for a couple of reasons:

❂ The more (good) tests you have, the more certain you are to catch bugs.
❂ You can read the tests and see different ways or semantics of testing

the same thing.

Here are some of the cons of having duplicate tests:

❂ It may be harder to maintain several different tests that provide the
same functionality.

❂ Some tests may be higher quality than others, and you need to
review them all for correctness.

❂ Multiple tests may break when a single thing doesn’t work. (This
may not really be a con.)

❂ Similar tests must be named differently, or the tests can be spread
across different classes.

❂ Multiple tests may create more maintainability issues.
Licensed to Jeff Warwick <devon@cloverpoint.com>

178 CHAPTER 7 The pillars of good tests
Here are some pros:
❂ Tests may have little differences, and so can be thought of as testing

the same things slightly differently. They may make for a larger and
better picture of the object being tested.

❂ Some tests may be more expressive than others, so more tests may
improve the chances of test readability.

Although, as I said, I am not crazy about removing duplicate tests, I
usually do so; the cons usually outweigh the pros.

7.1.2 Avoiding logic in tests

The chances of having bugs in your tests increase almost exponentially
as you include more and more logic in them. I’ve seen plenty of tests
that should have been simple turned into dynamically changing logic,
random-number generating, thread-creating, file-writing monsters that
are little test engines in their own right. Sadly, because they had a
[Test] attribute on them, the writer didn’t consider that they might
have bugs or didn’t write them in a maintainable manner. Those test
monsters take more time to debug and verify than they save.

But all monsters start out small. Often, a guru in the company will look
at a test and start thinking, “What if we made the method loop and cre-
ate random numbers as input? We’d surely find lots more bugs that
way!” And you will, especially in your tests. Test bugs are one of the
most annoying things for developers, because you’ll almost never
search for the cause of a failing test in the test itself.

If you have any of the following inside a test method, your test contains
logic that should not be there:
❂ switch, if, or else statements
❂ foreach, for, or while loops
A test that contains logic is usually testing more than one thing at a
time, which isn’t recommended, because the test is less readable and
more fragile. But test logic also adds complexity that may contain a
hidden bug.

Tests should, as a general rule, be a series of method calls with no con-
trol flows, not even try-catch, and with assert calls. Anything more
complex causes the following problems:
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing trustworthy tests 179
❂ The test is harder to read and understand.
❂ The test is hard to re-create. (Imagine a multithreaded test, or a test

with random numbers that suddenly fail.)
❂ The test is more likely to have a bug or to test the wrong thing.
❂ Naming the test may be harder because it does multiple things.

Generally, monster tests replace original simpler tests, and that makes
it harder to find bugs in the production code. If you must create a mon-
ster test, it should be added to and not replace existing tests.

7.1.3 Testing only one thing

If your test contains more than a single assert, it may be testing more
than one thing. That doesn’t sound so bad until you go to name your
test or consider what happens if the first assert fails.

Naming a test may seem like a simple task, but if you’re testing more
than one thing, giving the test a good name that indicates what is being
tested becomes almost impossible. When you test just one thing, nam-
ing the test is easy.

A failed assert message in most test frameworks (NUnit included)
throws a special type of exception that’s caught by the test framework
runner. When the test framework catches that exception, it means the
test has failed. Unfortunately, exceptions, by design, don’t let the code
continue. The method exits on the same line the exception is thrown.
Listing 7.4 shows an example. If the first assert (IsFalse()) fails, it will
throw an exception, which means the second assert will never run.

Listing 7.4 A test with multiple asserts

[Test]
 public void TestWithMultipleAsserts()
 {
 LogAnalyzer logan = MakeDefaultAnalyzer();

 Assert.IsFalse(logan.IsValid("abc"));
 Assert.IsTrue(logan.IsValid("abcde.txt"));
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

180 CHAPTER 7 The pillars of good tests
Consider assert failures as symptoms of a disease. The more symptoms
you can find, the easier the disease will be to diagnose. After a failure,
subsequent asserts aren’t executed, and you miss seeing other possible
symptoms that could provide valuable data (symptoms) that would
help you narrow your focus and discover the underlying problem.

Running multiple asserts in a single test adds complexity with little
value. You should run additional asserts in separate, self-contained
unit tests so that you can see what really fails.

7.1.4 Making tests easy to run

In chapter 6, I discussed the safe green zone for tests. If developers
don’t trust your tests to run out of the box easily and consistently, they
won’t run them. Refactoring your tests so they’re easy to run and pro-
vide consistent results will make them feel more trustworthy. Having a
safe green zone in your tests can lead to more confidence in your tests.

7.1.5 Assuring code coverage

To ensure good coverage for your new code, use one of the automated
tools (for example, NCover or Visual Studio Team System Test Edi-
tion). Find a good tool and stick with it, making sure you never have
low coverage; less than 20 percent means you’re missing a whole
bunch of tests. You never know if the next developer will try to play
with your code. He may try to optimize it or wrongly delete some
essential line, and if you don’t have a test that will fail, the mistake
may go unnoticed.

When doing code and test reviews, you can also do a manual check,
which is great for ad hoc testing of a test: try commenting out a line or a
constraint check. If all tests still pass, you might be missing some tests,
or the current tests may not be testing the right thing.

When you add a new test that was missing, check whether you’ve
added the correct test with these steps:

1 Comment out the production code you think isn’t being covered.

2 Run all the tests.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 181
3 If all the tests pass, you’re missing a test or are testing the wrong
thing. Otherwise there would have been a test somewhere that was
expecting that line to be called, or some resulting consequence of
that line of code to be true, and that missing test would now fail.

4 Once you’ve found a missing test, you’ll need to add it. Keep the
code commented out and write a new test that fails, proving that the
code you’ve commented is missing.

5 Uncomment the code you commented before.

6 The test you wrote should now pass. You’ve detected and added a
missing test!

7 If the test still fails, it means the test may have a bug or is testing the
wrong thing. Modify the test until it passes. Now you’ll want to see
that the test is OK, making sure it fails when it should, and doesn’t
just pass when it should. To make sure the test fails when it should,
reintroduce the bug into your code (commenting out the line of pro-
duction code) and see if the test indeed fails.

As an added confidence booster, you might also try replacing various
parameters or internal variables in your method under test with con-
stants (making a bool always true to see what happens, for example).

The trick to all this testing is making sure it doesn’t take up too much
time to make it worth your while. That’s what the next section is about:
maintainability.

Maintainability is one of the core issues most developers face when
writing unit tests. Eventually the tests seem to become harder and
harder to maintain and understand, and every little change to the sys-
tem seems to break one test or another, even if bugs don’t exist. With
all pieces of code, time adds a layer of “indirection” between what you
think the code does and what it really does.

This chapter will cover some techniques I’ve learned the hard way,
writing unit tests in various teams. They include testing only against

7.2 Writing maintainable tests
Licensed to Jeff Warwick <devon@cloverpoint.com>

182 CHAPTER 7 The pillars of good tests
public contracts, removing duplication in tests, and enforcing test isola-
tion, among others.

7.2.1 Testing private or protected methods

Private or protected methods are usually private for a good reason in
the developer’s mind. Sometimes it’s to hide implementation details, so
that the implementation can change later without the end functionality
changing. It could also be for security-related or IP-related reasons
(obfuscation, for example).

When you test a private method, you’re testing against a contract inter-
nal to the system, which may well change. Internal contracts are
dynamic, and they can change when you refactor the system. When
they change, your test could fail because some internal work is being
done differently, even though the overall functionality of the system
remains the same.

For testing purposes, the public contract (the overall functionality) is
all that you need to care about. Testing the functionality of private
methods may lead to breaking tests, even though the overall functional-
ity is correct.

If a method is worth testing, it might be worth making it public, static,
or at least internal, and defining a public contract against any user of it.
In some cases, the design may be cleaner if you put the method in a dif-
ferent class altogether. We’ll look at these approaches in a moment.

Does this mean there should eventually be no private methods in the
code base? No. With test-driven development, we usually write tests
against methods that are public, and those public methods are later
refactored into calling smaller, private methods. All the while, the tests
against the public methods continue to pass.

Making methods public

Making a method public isn’t necessarily a bad thing. It may seem to
go against the object-oriented principles you were raised on, but want-
ing to test a method means that the method has a known behavior or con-
tract against the calling code. By making it public, you’re making this
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 183
official. By keeping the method private, you tell all the developers who
come after you that they can change the implementation of the method
without worrying about unknown code that uses it, because it only
serves as part of a larger group of things that together make up a con-
tract to the calling code.

Extracting methods to new classes

If your method contains a lot of logic that can stand on its own, or it
uses state in the class that’s only relevant to the method in question, it
may be a good idea to extract the method into a new class, with a spe-
cific role in the system. You can then test that class separately. Michael
Feathers’ book, Working Effectively with Legacy Code, has some good exam-
ples of this technique.

Making methods static

If your method doesn’t use any of its class’s variables, you might want
to refactor the method by making it static. That makes it much more
testable, but also states that this method is a sort of utility method that
has a known public contract specified by its name.

Making methods internal

When all else fails, and you can’t afford to expose the method in an
“official” way, you might want to make it internal, and then use the
[InternalsVisibleTo("TestAssembly")] attribute on the production
code assembly so that tests can still call that method. This is my least
favorite approach, but sometimes there’s no choice (perhaps because of
security reasons, lack of control over the code’s design, and so on).

Making the method internal isn’t a great way to make sure your tests
are more maintainable, because a coder can still feel it’s easier to
change the method. But by exposing a method as an explicit public
contract, the coder who may change it knows that the method has a
real usage contract he can’t break.

Removing the method isn’t a good option because the production code
uses the method too. Otherwise, there would be no reason to write the
tests in the first place.
Licensed to Jeff Warwick <devon@cloverpoint.com>

184 CHAPTER 7 The pillars of good tests
Another way to make code more maintainable is to remove duplication
in tests.

7.2.2 Removing duplication

Duplication in our unit tests can hurt us as developers just as much as
(if not more than) duplication in production code. The “don’t repeat
yourself” (DRY) principle should be in effect in test code as in produc-
tion code. Duplicated code means more code to change when one
aspect we test against changes. Changing a constructor or changing the
semantics of using a class can have a large effect on tests that have a lot
of duplicated code.

To understand why, let’s begin with a simple example of a test, seen in
listing 7.5.

Listing 7.5 A class under test, and a test that uses it

public class LogAnalyzer
 {
 public bool IsValid(string fileName)
 {
 if (fileName.Length < 8)
 {
 return true;
 }
 return false;
 }
 }

 [TestFixture]
 public class LogAnalyzerTestsMaintainable
 {
 [Test]
 public void IsValid_LengthBiggerThan8_IsFalse()
 {
 LogAnalyzer logan = new LogAnalyzer();
 bool valid = logan.IsValid("123456789");
 Assert.IsFalse(valid);
 }
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 185
The test at the bottom of listing 7.5 seems reasonable, until you intro-
duce another test for the same class and end up with two tests, as in
listing 7.6.

Listing 7.6 Two tests with duplication

[Test]
 public void IsValid_LengthBiggerThan8_IsFalse()
 {
 LogAnalyzer logan = new LogAnalyzer();
 bool valid = logan.IsValid("123456789");
 Assert.IsFalse(valid);
 }

 [Test]
 public void IsValid_LengthSmallerThan8_IsTrue()
 {
 LogAnalyzer logan = new LogAnalyzer();
 bool valid = logan.IsValid("1234567");
 Assert.IsTrue(valid);
 }

What’s wrong with the tests in listing 7.6? The main problem is that, if
the way you use LogAnalyzer changes (its semantics), the tests will have
to be maintained independently of each other, leading to more mainte-
nance work. Listing 7.7 shows an example of such a change.

Listing 7.7 LogAnalyzer with changed semantics that now requires initialization

public class LogAnalyzer
 {
 private bool initialized=false;

 public bool IsValid(string fileName)
 {
 if(!initialized)
 {
 throw new NotInitializedException(
 "The analyzer.Initialize() method should be" +
 " called before any other operation!");
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

186 CHAPTER 7 The pillars of good tests
 if (fileName.Length < 8)
 {
 return true;
 }
 return false;
 }
 public void Initialize()
 {
 //initialization logic here
 ...
 initialized=true;
 }
 }

Now, the two tests in listing 7.6 will both break because they both
neglect to call Initialize() against the LogAnalyzer class. Because we
have code duplication (both of the tests create the class within the test),
we need to go into each one and change it to call Initialize().

We can refactor the tests to remove the duplication by creating the
LogAnalyzer in a CreateDefaultAnalyzer() method that both tests can
call. We could also push the creation and initialization up into a new
setup method in our test class.

Removing duplication using a helper method

Listing 7.8 shows how you could refactor the tests into a more main-
tainable state by introducing a shared factory method that creates a
default instance of LogAnalyzer. Assuming all the tests were written to
use this factory method, we could then add a call to Initialize()
within that factory method instead of changing all the tests to call Ini-
tialize().

Listing 7.8 Adding the Initialize() call in the factory method

[Test]
 public void IsValid_LengthBiggerThan8_IsFalse()
 {
 LogAnalyzer logan = GetNewAnalyzer();
 bool valid = logan.IsValid("123456789");
 Assert.IsFalse(valid);
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 187
[Test]
 public void IsValid_LengthSmallerThan8_IsTrue()
 {
 LogAnalyzer logan = GetNewAnalyzer();
 bool valid = logan.IsValid("1234567");
 Assert.IsTrue(valid);
 }

 private LogAnalyzer GetNewAnalyzer()
 {
 LogAnalyzer analyzer = new LogAnalyzer();
 analyzer.Initialize();
 return analyzer;
 }

Factory methods aren’t the only way to remove duplication in tests, as
the next section shows.

Removing duplication using [SetUp]

We could also easily initialize LogAnalyzer within the Setup method, as
shown in listing 7.9.

Listing 7.9 Using a setup method to remove duplication

[SetUp]
 public void Setup()
 {
 logan=new LogAnalyzer();
 logan.Initialize();
 }

 private LogAnalyzer logan= null;

[Test]
 public void IsValid_LengthBiggerThan8_IsFalse()
 {
 bool valid = logan.IsValid("123456789");
 Assert.IsFalse(valid);
 }

[Test]
 public void IsValid_LengthSmallerThan8_IsTrue()
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

188 CHAPTER 7 The pillars of good tests
 bool valid = logan.IsValid("1234567");
 Assert.IsTrue(valid);
 }

In this case, we don’t even need a line that creates the analyzer object
in each test: a shared class instance is initialized before each test with a
new instance of LogAnalyzer, and then Initialize() is called on that
instance. But beware: using a setup method to remove duplication isn’t
always a good idea, as I explain in the next section.

7.2.3 Using setup methods in a maintainable manner

The Setup() method is easy to use. In fact, it’s almost too easy to
use—enough so that developers tend to use it for things it was not
meant for, and tests become less readable and maintainable.

Nevertheless, setup methods have several limitations, which you can
get around using simple helper methods:

❂ Setup methods can only help when you need to initialize things.
❂ Setup methods aren’t always the best candidate for duplication

removal. Removing duplication isn’t always about creating and ini-
tializing new instances of objects. Sometimes it’s about removing
duplication in assertion logic, calling out code in a specific way.

❂ Setup methods can’t have parameters or return values.
❂ Setup methods can’t be used as factory methods that return values.

They’re run before the test executes, so they must be more generic in
the way they work. Tests sometimes need to request specific things
or call shared code with a parameter for the specific test (for exam-
ple, retrieve an object and set its property to a specific value).

❂ Setup methods should only contain code that applies to all the tests
in the current test class, or the method will be harder to read and
understand.

Now that we know the basic limitations of setup methods, let’s see how
developers try to get around them in their quest to use setup methods
no matter what, instead of using helper methods. Developers abuse
setup methods in several ways:
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 189
❂ Initializing objects in the setup method that are only used in some of
the tests in the class

❂ Having setup code that’s long and hard to understand
❂ Setting up mocks and fake objects within the setup method

Let’s take a closer look at these.

Initializing objects that are only used by some of the tests

This sin is a deadly one. Once you commit it, it becomes difficult to
maintain the tests or even read them, because the setup method quickly
becomes loaded with objects that are specific only to some of the tests.
Listing 7.10 shows what our test class would look like if we initialized a
FileInfo object setup method but only used it in one test ?.

Listing 7.10 A poorly implemented Setup() method

[SetUp]
 public void Setup()
 {
 logan=new LogAnalyzer();
 logan.Initialize();

 fileInfo=new FileInfo("c:\\someFile.txt");
 }

 private FileInfo fileInfo = null;
 private LogAnalyzer logan= null;

[Test]
 public void IsValid_LengthBiggerThan8_IsFalse()
 {
 bool valid = logan.IsValid("123456789");
 Assert.IsFalse(valid);
 }

[Test]
 public void IsValid_BadFileInfoInput_returnsFalse()
 {
 bool valid = logan.IsValid(fileInfo);
 Assert.IsFalse(valid);
 }

Used only
in one test

?

Licensed to Jeff Warwick <devon@cloverpoint.com>

190 CHAPTER 7 The pillars of good tests
[Test]
 public void IsValid_LengthSmallerThan8_IsTrue()
 {
 bool valid = logan.IsValid("1234567");
 Assert.IsTrue(valid);
 }

 private LogAnalyzer GetNewAnalyzer()
 {
 ...
 }

Why is the setup method in listing 7.10 less maintainable? Because, to
read the tests for the first time and understand why they break, you
need to do the following:

1 Go through the setup method to understand what is being initialized.
2 Assume that objects in the setup method are used in all tests.
3 Find out later you were wrong, and read the tests again more care-

fully to see which test uses the objects that may be causing the prob-
lems.

4 Dive deeper into the test code for no good reason, taking more time
and effort to understand what the code does.

Always consider the readers of your tests when writing the tests. Imag-
ine this is the first time they read them. Make sure they don’t get angry.

Having setup code that’s long and hard to understand

Because the setup method provides only one place in the test to initial-
ize things, developers tend to initialize many things, which inevitably is
cumbersome to read and understand. One solution is to refactor the
calls to initialize specific things into helper methods that are called from
the setup method. This means that refactoring the setup method is usu-
ally a good idea; the more readable it is, the more readable your test
class will be.

But there’s a fine line between over-refactoring and readability. Over-
refactoring can lead to less readable code. This is a matter of personal
preference. You need to watch for when your code is becoming less
readable. I recommend getting feedback from a partner during the
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 191
refactoring. We all can become too enamored with code we’ve written,
and having a second pair of eyes involved in refactoring can lead to good
and objective results. Having a peer do a code review (a test review)
after the fact is also good, but not as productive as doing it as it happens.

Setting up mocks and fakes in the setup method

It’s not always a bad idea to use the setup method to create mocks and
fake objects, but it’s important that only those mocks and fakes that are
used in all the tests in the class are initialized in the setup method, or it
will become hard to read and maintain.

My preference is to have each test create its own mocks and stubs by
calling helper methods within the test, so that the reader of the test
knows exactly what is going on, without needing to jump from test to
setup to understand the full picture.

7.2.4 Enforcing test isolation

The lack of test isolation is the biggest single cause of test blockage I’ve
seen while consulting and working on unit tests. The basic concept is
that a test should always run in its own little world, isolated from even
the knowledge that other tests out there may do similar or different things.

The test that cried “fail”
One project I was involved in had unit tests behaving strangely, and they
got even stranger as time went on. A test would fail and then suddenly
pass for a couple of days straight. A day later, it would fail, seemingly
randomly, and other times it would pass even if code was changed to
remove or change its behavior. It got to the point where developers
would tell each other, “Ah, it’s OK. If it sometimes passes, that means it
passes.”

It turned out that the test was calling out a different test as part of its
code, and when the other test failed, it would break the first test.

It only took us three days to figure this out, after spending a month liv-
ing with the situation. When we finally had the test working correctly, we
discovered that we had a bunch of real bugs in our code that we were
ignoring because we were getting what we thought were false positives
from the failing test. The story of the boy who cried “wolf” holds true
even in development.
Licensed to Jeff Warwick <devon@cloverpoint.com>

192 CHAPTER 7 The pillars of good tests
When tests aren’t isolated well, they can step on each other’s toes
enough to make you miserable, making you regret deciding to try unit
testing on the project, and promising yourself never again. I’ve seen
this happen. We don’t bother looking for problems in the tests, so when
there’s a problem with the tests, it can take a lot of time to find it.

There are several test “smells” that can hint at broken test isolation:

❂ Constrained test order—Tests expecting to be run in a specific order or
expecting information from other test results

❂ Hidden test call—Tests calling other tests
❂ Shared-state corruption—Tests sharing in-memory state without rolling

back
❂ External-shared-state corruption—Integration tests with shared resources

and no rollback

Let’s look at these simple anti-patterns.

Anti-pattern: constrained test order

This problem arises when tests are coded to expect a specific state in
memory, in an external resource, or in the current test class—a state
that was created by running other tests in the same class before the
current test. The problem is that most test platforms (including NUnit,
JUnit, and MbUnit) don’t guarantee that tests will run in a specific
order, so what passes today may fail tomorrow.

For example, listing 7.11 shows a test against LogAnalyzer that expects
that an earlier test had already called Initialize().

Listing 7.11 Constrained test order: the second test will fail if it runs first

[TestFixture]
 public class IsolationsAntiPatterns
 {
 private LogAnalyzer logan;
 [Test]
 public void CreateAnalyzer_BadFileName_ReturnsFalse()
 {
 logan = new LogAnalyzer();
 logan.Initialize();
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 193
 bool valid = logan.IsValid("abc");
 Assert.That(valid, Is.False);
 }

 [Test]
 public void CreateAnalyzer_GoodFileName_ReturnsTrue()
 {
 bool valid = logan.IsValid("abcdefg");
 Assert.That(valid, Is.True);
 }
}

A myriad of problems can occur when tests don’t enforce isolation.
Here’s a short list:

❂ A test may suddenly start breaking when a new version of the test
framework is introduced that runs the tests in a different order.

❂ Running a subset of the tests may produce different results than run-
ning all the tests or a different subset of the tests.

❂ Maintaining the tests is more cumbersome, because you need to
worry about how other tests relate to particular tests and how each
one affects state.

❂ Your tests may fail or pass for the wrong reasons; for example, a dif-
ferent test may have failed or passed before it, leaving the resources
in an unknown state.

❂ Removing or changing some tests may affect the outcomes of other
tests.

❂ It’s difficult to name your tests appropriately because they test more
than a single thing.

There are a couple of common patterns that lead to poor test isolation:

❂ Flow testing—A developer writes tests that must run in a specific order
so that they can test flow execution, a big use case composed of
many actions, or a full integration test where each test is one step in
that full test.

❂ Laziness in cleanup—A developer is lazy and doesn’t return any state
her test may have changed back to its original form, and other devel-
Licensed to Jeff Warwick <devon@cloverpoint.com>

194 CHAPTER 7 The pillars of good tests
opers write tests that depend on this symptom, knowingly or
unknowingly.

These problems can be solved in various manners:

❂ Flow testing—Instead of writing flow-related tests in unit tests (long-
running use cases, for example), consider using some sort of integra-
tion testing framework like FIT or FitNesse, or QA-related products
such as AutomatedQA, WinRunner, and the like.

❂ Laziness in cleanup—If you’re too lazy to clean up your database after
testing, your filesystem after testing, or your memory-based objects,
consider moving to a different profession. This isn’t a job for you.

Anti-pattern: hidden test call

In this anti-pattern, tests contain one or more direct calls to other tests
in the same class or other test classes, which causes tests to depend on
one another. For example, listing 7.12 shows the CreateAnalyzer_Good
NameAndBadNameUsage test calling a different test at the end, creating a
dependency between the tests and breaking both of them as isolated
units.

Listing 7.12 One test calling another breaks isolation and introduces a dependency

 [TestFixture]
public class HiddenTestCall
{
 private LogAnalyzer logan;
 [Test]
 public void CreateAnalyzer_GoodNameAndBadNameUsage()
 {
 logan = new LogAnalyzer();
 logan.Initialize();
 bool valid = logan.IsValid("abc");
 Assert.That(valid, Is.False);

 CreateAnalyzer_GoodFileName_ReturnsTrue();
 }

 [Test]
 public void CreateAnalyzer_GoodFileName_ReturnsTrue()
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 195
 bool valid = logan.IsValid("abcdefg");
 Assert.That(valid, Is.True);
 }
}

This type of dependency can cause several problems:

❂ Running a subset of the tests may produce different results than run-
ning all the tests or a different subset of the tests.

❂ Maintaining the tests is more cumbersome, because you need to
worry about how other tests relate to particular tests and how and
when they call each other.

❂ Tests may fail or pass for the wrong reasons. For example, a differ-
ent test may have failed, thus failing your test or not calling it at all.
Or a different test may have left some shared variables in an
unknown state.

❂ Changing some tests may affect the outcome of other tests.
❂ It’s difficult to clearly name tests that call other tests.

Here are a few causes for this problem:

❂ Flow testing—A developer writes tests that need to run in a specific
order so that they can test flow execution, a big use case composed
of many actions, or a full integration test where each test is one step
in that full test.

❂ Trying to remove duplication—A developer tries to remove duplication in
the tests by calling other tests (which have code they don’t want the
current test to repeat).

❂ Laziness in separating the tests—A developer is lazy and doesn’t take the
time to create a separate test and refactor the code appropriately,
instead taking a shortcut and calling a different test.

Here are some solutions for those problems:

❂ Flow testing—Instead of writing flow-related tests in unit tests (long-
running use cases, for example), consider using some sort of integra-
tion testing framework like FIT or FitNesse, or QA-related products
such as AutomatedQA, WinRunner, and the like.
Licensed to Jeff Warwick <devon@cloverpoint.com>

196 CHAPTER 7 The pillars of good tests
❂ Trying to remove duplication—Don’t ever remove duplication by calling
another test from a test. You’re preventing that test from relying on
the setup and teardown methods in the class and are essentially run-
ning two tests in one (because the calling test has an assertion as
well as the test being called). Instead, refactor the code you don’t
want to write twice into a third method that both your test and the
other test call.

❂ Laziness in separating the tests—If you’re too lazy to separate your tests,
think of all the extra work you’ll have to do if you don’t separate
them. Try to imagine a world where the current test you’re writing is
the only test in the system, so it can’t rely on any other test.

Anti-pattern: shared-state corruption

This anti-pattern manifests in two major ways, independent of each
other:

❂ Tests touch shared resources (either in memory or in external
resources, such as databases, filesystems, and so on) without clean-
ing up or rolling back any changes they make to those resources.

❂ Tests don’t set up the initial state they need before they start run-
ning, relying on the state to be there.

Either of these situations will cause the symptoms we’ll look at shortly.

The problem is that tests rely on specific state to have consistent pass/
fail behavior. If a test doesn’t control the state it expects, or other tests
corrupt that state for whatever reason, the test can’t run properly or
report the correct result consistently.

For example, assume we have a Person class with simple features: it has
a list of phone numbers and the ability to search for a number by spec-
ifying the beginning of the number. Listing 7.13 shows a couple of tests
that don’t clean up or set up a Person object instance correctly.

Listing 7.13 Shared-state corruption by a test

[TestFixture]
 public class SharedStateCorruption
 {
 Person person = new Person();

Defines shared
Person state
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 197
 [Test]
 public void CreateAnalyzer_GoodFileName_ReturnsTrue()
 {
 person.AddNumber("055-4556684(34)");
 string found =
 person.FindPhoneStartingWith("055");
 Assert.AreEqual("055-4556684(34)", found);
 }

 [Test]
 public void FindPhoneStartingWith_NoNumbers_ReturnsNull()
 {
 string found =
 person.FindPhoneStartingWith("0");
 Assert.IsNull(found);
 }
 }

In this example, the second test (expecting a null return value) will fail
because the previous test has already added a number ? to the Person
instance.

This type of problem causes a number of symptoms:

❂ Running a subset of the tests may produce different results than run-
ning all the tests or a different subset of the tests.

❂ Maintaining the test is more cumbersome, because you may break
the state for other tests, breaking those tests without realizing it.

❂ Your test may fail or pass for the wrong reason; for example, a differ-
ent test may have failed or passed before it, leaving the shared state
in a problematic condition, or it may not have cleaned up after it ran.

❂ Changing some tests may affect the outcomes of other tests, seem-
ingly randomly.

Here are a few causes of this problem:

❂ Not setting up state before each test—A developer doesn’t set up the state
required for the test, or assumes the state was already correct.

❂ Using shared state—A developer uses shared memory or external
resources for more than one test without taking precautions.

Changes
shared state

?

Reads
shared state
Licensed to Jeff Warwick <devon@cloverpoint.com>

198 CHAPTER 7 The pillars of good tests
❂ Using static instances in tests—A developer sets static state that’s used in
other tests.

Here are some solutions:
❂ Not setting up state before each test—This is a mandatory practice when

writing unit tests. Use either a setup method or call specific helper
methods at the beginning of the test to ensure the state is what you
expect it to be.

❂ Using shared state—In many cases, you don’t need to share state at all.
Having separate instances of an object for each test is the safest way
to go.

❂ Using static instances in tests—You need to be careful how your tests
manage static state. Be sure to clean up the static state using setup or
teardown methods. Sometimes it’s effective to use direct helper
method calls to clearly reset the static state from within the test. If
you’re testing singletons, it’s worth adding public or internal setters
so your tests can reset them to a clean object instance.

Anti-pattern: external-shared-state corruption

This anti-pattern is similar to the in-memory state corruption pattern,
but it happens in integration-style testing:
❂ Tests touch shared resources (either in memory or in external

resources, such as databases, filesystems, and so on) without clean-
ing up or rolling back any changes they make to those resources.

❂ Tests don’t set up the initial state they need before they start run-
ning, relying on the state to be there.

Now that we’ve looked at isolating tests, let’s manage our asserts to
make sure we get the full story when a test fails.

7.2.5 Avoiding multiple asserts

To understand the problem of multiple asserts, let’s take a look at the
example in listing 7.14.

Listing 7.14 A test that contains multiple asserts

[Test]
 public void CheckVariousSumResults()
 {
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 199
 Assert.AreEqual(3, Sum(1001, 1, 2));
 Assert.AreEqual(3, Sum(1, 1001, 2));
 Assert.AreEqual(3, Sum(1, 2, 1001));
 }

There’s more than one test in this test method. The author of the test
method tried to save some time by including three tests as three simple
asserts. What’s the problem here? When asserts fail, they throw excep-
tions. (In NUnit’s case, they throw a special AssertException that’s
caught by the NUnit test runner, which understands this exception as
a signal that the current test method has failed.) Once an assert clause
throws an exception, no other line executes in the test method. That
means that, if the first assert in listing 7.14 failed, the other two assert
clauses would never execute.

There are several ways to achieve the same goal:

❂ Create a separate test for each assert.
❂ Use parameterized tests.
❂ Wrap the assert call with try-catch.

Why does it matter if some asserts aren’t executed?
If only one assert fails, you never know if the other asserts in that same
test method would have failed or not. You may think you know, but it’s
an assumption until you can prove it with a failing or passing assert.
When people see only part of the picture, they tend to make a judgment
call about the state of the system, which can turn out wrong. The more
information you have about all the asserts that have failed or passed,
the better equipped you are to understand where in the system a bug
may lie, and where it doesn’t.

I’ve gone on wild goose chases hunting for bugs that weren’t there be-
cause only one assert out of several failed. Had I bothered to check
whether the other asserts failed or passed, I might have realized that the
bug was in a different location.

Sometimes people go and find bugs that they think are real, but when
they “fix” them, the assert that previously failed passes and the other
asserts in that test fail (or continue to fail). Sometimes you can’t see the
Licensed to Jeff Warwick <devon@cloverpoint.com>

200 CHAPTER 7 The pillars of good tests
Refactoring into multiple tests

Multiple asserts are really multiple tests without the benefit of test iso-
lation; a failing test causes the other asserts (tests) to not execute.
Instead, we can create separate test methods with meaningful names
that represent each test case. Listing 7.15 shows an example of refac-
toring from the code from listing 7.14.

Listing 7.15 A refactored test class with three different tests

[Test]
 public void Sum_1001AsFirstParam_Returns3()
 {
 Assert.AreEqual(3, Sum(1001, 1, 2));
 }

[Test]
 public void Sum_1001AsMiddleParam_Returns3()
 {
 Assert.AreEqual(3, Sum(1, 1001, 2));
 }

[Test]
 public void Sum_1001AsThirdParam_Returns3()
 {
 Assert.AreEqual(3, Sum(1, 2, 1001));
 }

As you can see, the refactoring in listing 7.15 gives us three separate
tests, each with a slightly different name indicating how we’re testing
the unit. The benefit is that, if one of those tests fails, the others will
still run. Unfortunately, this is too verbose, and most developers would
feel this refactoring is overkill for the benefit. Although I disagree that

full problem, so fixing part of it can introduce new bugs into the system,
which will only be discovered after you’ve uncovered each assert’s re-
sult.

That’s why it’s important that all the asserts have a chance to run, even
if other asserts have failed before. In most cases, that means putting
single asserts in tests.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 201
it’s overkill (it took about 20 seconds of work to get the benefit), I
agree that the verbosity is an issue. It’s an issue because developers
won’t do it, and we end up with our original problem.

That’s why many unit-testing frameworks, including MbUnit and
NUnit, have a custom attribute you can use that achieves the same goal
with much more concise syntax.

Using parameterized tests

Both MbUnit and NUnit support the notion of parameterized tests
using a special attribute called [RowTest]. Listing 7.16 shows how you
can use the [RowTest] and [Row] attributes (found in NUnit.Exten-
sions.dll under the NUnit bin directory) to run the same test with dif-
ferent parameters in a single test method. Notice that, when you use
the [RowTest] attribute, it replaces the [Test] attribute in NUnit.

Listing 7.16 A refactored test class using parameterized tests

[RowTest]
[Row(1001,1,2,3)]
[Row(1,1001,2,3)]
[Row(1,2,1001,3)]
 public void SumTests(int x,int y, int z,int expected)
 {
 Assert.AreEqual(expected, Sum(x, y, z));
 }

NOTE To use [RowTest] in NUnit, you’ll need to add a reference to
NUnit.Extensions.dll, which is found in the bin directory of NUnit’s
installation folder.

Parameterized test methods in NUnit and MbUnit are different from
regular tests in that they can take parameters. They also expect at least
one [RowTest] attribute to be placed on top of the current method
instead of a regular [Test] attribute. The attribute takes any number of
parameters, which are then mapped at runtime to the parameters that
the test method expects in its signature.

The example in listing 7.16 expects four arguments. We call an assert
method with the first three parameters, and use the last one as the
Licensed to Jeff Warwick <devon@cloverpoint.com>

202 CHAPTER 7 The pillars of good tests
expected value. This gives us a declarative way of creating a single test
with different inputs.

The best thing about this is that, if one of the [RowTest] attributes fails,
the other attributes are still executed by the test runner, so we see the
full picture of pass/fail states in all tests.

Wrapping with try-catch

Some people think it’s a good idea to use a try-catch block for each
assert to catch and write its exception to the console, and then continue
to the next statement, bypassing the problematic nature of exceptions
in tests. I think using parameterized tests is a far better way of achiev-
ing the same thing. Use parameterized tests instead of try-catch
around multiple asserts.

Now that we know how to avoid multiple asserts acting as multiple
tests, let’s look at multiple asserts being used to test multiple aspects of
a single object.

7.2.6 Avoiding testing multiple aspects of the same object

Let’s look at another example of a test with multiple asserts, but this
time it’s not trying to act as multiple tests in one test, it’s trying to check
multiple aspects of the same state. If even one aspect fails, we need to
know about it. Listing 7.17 shows such a test.

Listing 7.17 Testing multiple aspects of the same object in one test

[Test]
 public void

Analyze_SimpleStringLine_UsesDefaulTabDelimiterToParseFields()
 {
 LogAnalyzer log = new LogAnalyzer();
 AnalyzedOutput output =
 log.Analyze("10:05\tOpen\tRoy");

 Assert.AreEqual(1,output.LineCount);
 Assert.AreEqual("10:05",output.GetLine(1)[0]);
 Assert.AreEqual("Open",output.GetLine(1)[1]);
 Assert.AreEqual("Roy",output.GetLine(1)[2]);
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 203
This example is testing that the parse output from the LogAnalyzer
worked by testing each field in the result object separately. They
should all work, or the test should fail.

Making tests more maintainable

Listing 7.18 shows a way to refactor the test from listing 7.17 so that
it’s easier to read and maintain.

Listing 7.18 Comparing objects instead of using multiple asserts

[Test]
 public void

Analyze_SimpleStringLine_UsesDefaulTabDelimiterToParseFields2()
 {
 LogAnalyzer log = new LogAnalyzer();
 AnalyzedOutput expected = new AnalyzedOutput();
 expected.AddLine("10:05", "Open", "Roy");

 AnalyzedOutput output =
 log.Analyze("10:05\tOpen\tRoy");

 Assert.AreEqual(expected,output);
 }

Instead of adding multiple asserts, we can create a full object to com-
pare against, set all the properties that should be on that object, and
compare the result and the expected object in one assert. The advan-
tage of this approach is that it’s much easier to understand what we’re
testing and to recognize that this is one logical block that should be
passing, not many separate tests.

Note that, for this kind of testing, the objects being compared must
override the Equals() method, or the comparison between the objects
won’t work. Some people find this an unacceptable compromise. I use
it from time to time, but am happy to go either way. Use your own dis-
cretion.

Overriding ToString()

Another approach you might try is to override the ToString() method
of compared objects so that, if tests fail, you’ll get more meaningful

Sets up
an expected
object

Compares
expected and
actual objects
Licensed to Jeff Warwick <devon@cloverpoint.com>

204 CHAPTER 7 The pillars of good tests
error messages. For example, here’s the output of the test in listing 7.18
when it fails.

TestCase 'AOUT.CH7.LogAn.Tests.MultipleAsserts
.Analyze_SimpleStringLine_UsesDefaulTabDelimiterToParseFields2'
failed:
 Expected: <AOUT.CH789.LogAn.AnalyzedOutput>
 But was: <AOUT.CH789.LogAn.AnalyzedOutput>
 C:\GlobalShare\InSync\Book\Code\ARtOfUniTesting
 \LogAn.Tests\MultipleAsserts.cs(41,0):
at AOUT.CH7.LogAn.Tests.MultipleAsserts
.Analyze_SimpleStringLine_UsesDefaulTabDelimiterToParseFields2()

Not very helpful, is it?

By implementing ToString() in both the AnalyzedOutput class and the
LineInfo class (which are part of the object model being compared), we
can get more readable output from the tests. Listing 7.19 shows the two
implementations of the ToString() methods in the classes under test,
followed by the resulting test output.

Listing 7.19 Implementing ToString() in compared classes for cleaner output

///Overriding ToString inside The AnalyzedOutput Object//////////////
 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 foreach (LineInfo line in lines)
 {
 sb.Append(line.ToString());
 }
 return sb.ToString();
 }

///Overriding ToString inside each LineInfo Object//////////////
 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < this.fields.Length; i++)
 {
 sb.Append(this[i]);
 sb.Append(",");
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 205
 return sb.ToString();
 }

///TEST OUTPUT//////////////
------ Test started: Assembly: er.dll ------

TestCase 'AOUT.CH7.LogAn.Tests.MultipleAsserts
.Analyze_SimpleStringLine_UsesDefaulTabDelimiterToParseFields2'
failed:
 Expected: <10:05,Open,Roy,>
 But was: <>
 C:\GlobalShare\InSync\Book\Code\ARtOfUniTesting
\LogAn.Tests\MultipleAsserts.cs(41,0):
at AOUT.CH7.LogAn.Tests.MultipleAsserts
.Analyze_SimpleStringLine_UsesDefaulTabDelimiterToParseFields2()

Now the test output is much clearer, and we can understand that we
got very different objects. Clearer output makes it easier to understand
why the test fails and makes for easier maintenance.

Another way tests can become hard to maintain is when we make them
too fragile by overspecification.

7.2.7 Avoiding overspecification in tests

An overspecified test is one that contains assumptions about how a spe-
cific unit under test should implement its behavior, instead of only
checking that the end behavior is correct.

Here are some ways unit tests are often overspecified:
❂ A test specifies purely internal behavior for an object under test.
❂ A test uses mocks when using stubs would be enough.
❂ A test assumes specific order or exact string matches when it isn’t

required.

TIP This topic is also discussed in xUnit Test Patterns by Gerard Meszaros.

Let’s look at some examples of overspecified tests.

Specifying purely internal behavior

Listing 7.20 shows a test against LogAnalyzer’s Initialize() method
that tests internal state, and no outside functionality.
Licensed to Jeff Warwick <devon@cloverpoint.com>

206 CHAPTER 7 The pillars of good tests
Listing 7.20 An overspecified test that tests a purely internal behavior

[Test]
 public void Initialize_WhenCalled_SetsDefaultDelimiterIsTabDelimiter()
 {
 LogAnalyzer log = new LogAnalyzer();

 Assert.AreEqual(null,log.GetInternalDefaultDelimiter());
 log.Initialize();
 Assert.AreEqual('\t', log.GetInternalDefaultDelimiter());
 }

This test is overspecified because it only tests the internal state of
the LogAnalyzer object. Because this state is internal, it could change
later on.

Unit tests should be testing the public contract and public functionality
of an object. In this example, the tested code isn’t part of any public
contract or interface.

Using mocks instead of stubs

Using mocks instead of stubs is a common mistake. Let’s look at an
example.

Listing 7.21 shows a test that uses mocks to assert the interaction
between LogAnalyzer and a provider it uses to read a text file. The test
wrongly checks that LogAnalyzer calls the provider correctly to read
the file’s text (an implementation detail that could change later and
break our test). Instead, the test could use a stub to return the fake
results from the text file, and assert against the public output of the
LogAnalyzer’s method, which makes for a more robust, less brittle test.

Listing 7.21 shows the method we want to test, followed by an over-
specified test for that code.

Listing 7.21 An overspecified test that uses mocks when stubs would do fine

public AnalyzeResults AnalyzeFile(string fileName)
 {
 int lineCount = logReader.GetLineCount();
 string text = "";
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing maintainable tests 207
 for (int i = 0; i < lineCount; i++)
 {
 text += logReader.GetText(fileName, i, i);
 }
 return new AnalyzeResults(text);
 }
//////////////////////////the test/////////////////
 [Test]
 public void AnalyzeFile_FileWith3Lines_CallsLogProvider3Times()
 {
 MockRepository mocks = new MockRepository();
 ILogProvider mockLog = mocks.CreateMock<ILogProvider>();
 LogAnalyzer log = new LogAnalyzer(mockLog);
 using(mocks.Record())
 {
 mockLog.GetLineCount();
 LastCall.Return(3);

 mockLog.GetText("someFile.txt", 1, 1);
 LastCall.Return("a");

 mockLog.GetText("someFile.txt", 2, 2);
 LastCall.Return("b");

 mockLog.GetText("someFile.txt", 3, 3);
 LastCall.Return("c");
 }
 AnalyzeResults results = log.AnalyzeFile("someFile.txt");
 mocks.VerifyAll();
 }

The test in listing 7.21 is overspecified because it tests the interaction
between the interface of some LogReader (which reads text files) and
the LogAnalzyer object. This means it’s testing the underlying reading
algorithm inside the method under test, instead of testing for an
expected result from the method under test. The test should let the
method under test run its own internal algorithms, and test the results.
By doing that, we make the test less brittle.

Listing 7.22 shows a modified test that only checks the outcome of the
operation.
Licensed to Jeff Warwick <devon@cloverpoint.com>

208 CHAPTER 7 The pillars of good tests
Listing 7.22 Replacing mocks with stubs and checking outputs instead of interactions

[Test]
 public void
 AnalyzeFile_With3Lines_CallsLog3TimesLessBrittle()
 {
 MockRepository mocks = new MockRepository();
 ILogProvider stubLog = mocks.Stub<ILogProvider>();
 using(mocks.Record())
 {
 SetupResult.For(stubLog.GetText("", 1, 1))
 .IgnoreArguments()
 .Repeat.Any()
 .Return("a");

 SetupResult.For(stubLog.GetLineCount()).Return(3);
 }
 using(mocks.Playback())
 {
 LogAnalyzer log = new LogAnalyzer(stubLog);
 AnalyzeResults results = log.AnalyzeFile("someFile.txt");

 Assert.That(results.Text,Is.EqualTo("aaa"));
 }
 }

The important thing about this test is that the end assert ? is against
the end result, and it doesn’t care how many times the internal Get-
Text() method is called. We also use a stub that doesn’t care how many
times it gets called, and it always returns the same result. This test is
much less fragile, and it tests the right thing.

NOTE When you refactor internal state to be visible to an outside test,
could it be considered a code smell (a sign that something might be
wrong in the code’s design or logic)? It’s not a code smell when
you’re refactoring to expose collaborators. It’s a code smell if you’re
refactoring and there are no collaborators (so you don’t need to stub
or mock anything).

I am using NUnit’s Assert.That syntax instead of Assert.AreEqual
because the fluent nature of the new syntax is much cleaner and nicer
to work with.

Stubs unknown
number of calls

Asserts on
end result

?

Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing readable tests 209
TIP Also notice that this test has no mock objects, only stubs. The assert is
done against a return value, and a stub is used internally to simulate
some scenario. This is often the way I like to write my tests. In fact, less
than 10 percent of the tests I write have any mock objects. Most tests
will have stubs, and nothing more.

One more way developers tend to overspecify their tests is the overuse
of assumptions.

Assuming an order or exact match when it’s not needed

Another common pattern people tend to repeat is to have asserts
against hardcoded strings in the unit’s return value or properties, when
only a specific part of a string is necessary. Ask yourself, “Can I use
string.Contains() rather than string.Equals()?”

The same goes for collections and lists. It’s much better to make sure a
collection contains an expected item than to assert that the item is in a
specific place in a collection (unless that’s specifically what is expected).

By making these kinds of small adjustments, you can guarantee that, as
long as the string or collection contains what is expected, the test will
pass. Even if the implementation or order of the string or collection
changes, you won’t have to go back and change every little character
you add to a string.

Now let’s cover the third and final pillar of good unit tests: readability.

Readability is so important that, without it, the tests we write are
almost meaningless. From giving good names to the tests to having
good assert messages, readability is the connecting thread between the
person who wrote the test and the poor soul who has to read it a few
months later. Tests are stories we tell the next generation of program-
mers on a project. They allow a developer to see exactly what an appli-
cation is made of and where it started.

This section is all about making sure the developers who come after
you will be able to maintain the production code and the tests that you

7.3 Writing readable tests
Licensed to Jeff Warwick <devon@cloverpoint.com>

210 CHAPTER 7 The pillars of good tests
write, while understanding what they’re doing and where they should
be doing it.

There are several facets to readability:

❂ Naming unit tests
❂ Naming variables
❂ Creating good assert messages
❂ Separating asserts from actions

Let’s go through these one by one.

7.3.1 Naming unit tests

Naming standards are important because they give us comfortable
rules and templates that outline what we should explain about the test.
The test name has three parts:

The name of the method being tested—This is essential, so that you can easily
see where the tested logic is. Having this as the first part of the test
name allows easy navigation and as-you-type intellisense (if your IDE
supports it) in the test class.

The scenario under which it’s being tested—This part gives us the “with” part of
the name: “When I call method X with a null value, then it should do Y.”

❂ The expected behavior when the scenario is invoked—This part specifies in
plain English what the method should do or return, or how it should
behave, based on the current scenario: “When I call method X with a
null value, then it should do Y.”

Removing even one of these parts from a test name can cause the reader
of the test to wonder what is going on, and to start reading the test code.
Our main goal is to release the next developer from the burden of read-
ing the test code in order to understand what the test is testing.

A common way to write these three parts of the test name is to separate
them with underscores, like this: MethodUnderTest_Scenario_Behavior().
Listing 7.23 shows a test that uses this naming convention.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing readable tests 211
Listing 7.23 A test with three parts in its name

[Test]
 public void
 AnalyzeFile_FileWith3LinesAndFileProvider_ReadsFileUsingProvider()
 {
 //...
 }

The method in listing 7.23 tests the AnalyzeFile method, giving it a file
with three lines and a file-reading provider, and expects it to use the
provider to read the file.

If developers stick to this naming convention, it will be easy for other
developers to jump in and understand tests.

7.3.2 Naming variables

How you name variables in unit tests is as important as, or even more
important than, variable-naming conventions in production code.
Apart from their chief function of testing, tests also serve as a form of
documentation for an API. By giving variables good names, we can
make sure that people reading our tests understand what we’re trying
to prove as quickly as possible (as opposed to understanding what we’re
trying to accomplish when writing production code).

Listing 7.24 shows an example of a poorly named and poorly written
test. I call this “unreadable” in the sense that I can’t figure out what this
test is about.

Listing 7.24 An unreadable test name

[Test]
 public void BadlyNamedTest()
 {
 LogAnalyzer log = new LogAnalyzer();
 int result= log.GetLineCount("abc.txt");
 Assert.AreEqual(-100,result);
 }
Licensed to Jeff Warwick <devon@cloverpoint.com>

212 CHAPTER 7 The pillars of good tests
In this instance, the assert is using some magic number (-100) (a num-
ber that represents some value the developer needs to know). Because
we don’t have a descriptive name for what the number is expected to
be, we can only assume what it’s supposed to mean. The test name
should have helped us a little bit here, but the test name needs more
work, to put it mildly.

Is -100 some sort of exception? Is it a valid return value? This is where
we have a choice:

❂ We can change the design of the API to throw an exception instead
of returning -100 (assuming -100 is some sort of illegal result value).

❂ We can compare the result to some sort of constant or aptly named
variable, as shown in listing 7.25.

Listing 7.25 A more readable version of the test

[Test]
 public void BadlyNamedTest()
 {
 LogAnalyzer log = new LogAnalyzer();
 int result= log.GetLineCount("abc.txt");
 const int COULD_NOT_READ_FILE = -100;
 Assert.AreEqual(COULD_NOT_READ_FILE,result);
 }

The code in listing 7.25 is much better, because we can easily under-
stand the intent of the return value.

The last part of a test is usually the assert, and we need to make the
most out of the assert message. If the assert fails, the first thing the user
will see is that message.

7.3.3 Asserting yourself with meaning

Writing a good assert message is much like writing a good exception
message. It’s easy to get it wrong without realizing it, and it makes a
world of difference (and time) to the people who have to read it.

There are several key points to remember when writing a message for
an assert clause:
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing readable tests 213
❂ Don’t repeat what the built-in test framework outputs to the console.
❂ Don’t repeat what the test name explains.
❂ If you don’t have anything good to say, don’t say anything.
❂ Write what should have happened or what failed to happen, and

possibly mention when it should have happened.

Listing 7.26 shows a bad example of an assert message and the output
it produces.

Listing 7.26 A bad assert message that repeats what the test framework outputs

[Test]
 public void BadAssertMessage()
 {
 LogAnalyzer log = new LogAnalyzer();
 int result= log.GetLineCount("abc.txt");
 const int COULD_NOT_READ_FILE = -100;
 Assert.AreEqual(COULD_NOT_READ_FILE,result,
 "result was {0} instead of {1}",
 result,COULD_NOT_READ_FILE);
 }

 //Running this would produce:
 TestCase 'AOUT.CH7.LogAn.Tests.Readable.BadAssertMessage'
 failed:
 result was -1 instead of -100
 Expected: -100
 But was: -1
 C:\GlobalShare\InSync\Book\Code
 \ARtOfUniTesting\LogAn.Tests\Readable.cs(23,0)
 : at AOUT.CH7.LogAn.Tests.Readable.BadAssertMessage()

As you can see, there’s a message that repeats. Our assert message
didn’t add anything except more words to read. It would have been
better to not output anything but instead have a better-named test. A
clearer assert message would be something like this:

Calling GetLineCount() for a non-existing file should have returned
a COULD_NOT_READ_FILE.

Now that your assert messages are understandable, it’s time to make
sure that the assert happens on a different line than the method call.
Licensed to Jeff Warwick <devon@cloverpoint.com>

214 CHAPTER 7 The pillars of good tests
7.3.4 Separating asserts from actions

This is a short section, but an important one nonetheless. For the sake
of readability, avoid writing the assert line and the method call in the
same statement.

Listing 7.27 shows a good example, and listing 7.28 shows a bad example.

Listing 7.27 Separating the assert from the thing asserted improves readability

[Test]
 public void BadAssertMessage()
 {
 //some code here
 int result= log.GetLineCount("abc.txt");
 Assert.AreEqual(COULD_NOT_READ_FILE,result);
 }

Listing 7.28 Not separating the assert from the thing asserted makes reading difficult

[Test]
 public void BadAssertMessage()
 {
 //some code here

Assert.AreEqual(COULD_NOT_READ_FILE,log.GetLineCount("abc.txt"));
 }

See the difference between the two examples? Listing 7.28 is much
harder to read and understand in the context of a real test, because the
call to the GetLineCount() method is inside the call to the assert message.

7.3.5 Setting up and tearing down

Setup and teardown methods in unit tests can be abused to the point
where the tests or the setup and teardown methods are unreadable.
Usually the situation is worse in the setup method than the teardown
method.

Let’s look at one possible abuse. If you have mocks and stubs being set
up in a setup method, that means they don’t get set up in the actual test.
That, in turn, means that whoever is reading your test may not even
Licensed to Jeff Warwick <devon@cloverpoint.com>

Summary 215
realize that there are mock objects in use, or what the expectations are
from them in the test.

It’s much more readable to initialize mock objects directly in the test
itself, with all their expectations. If you’re worried about readability,
you can refactor the creation of the mocks into a helper method, which
each test calls. That way, whoever is reading the test will know exactly
what is being set up instead of having to look in multiple places.

TIP I’ve several times written full test classes that didn’t have a setup
method, only helper methods being called from each test, for the sake of
maintainability. The class was still readable and maintainable.

Few developers write tests that they can trust when they first start out
writing unit tests. It takes some discipline and some imagination to
make sure you’re doing things right. A test that you can trust is an elu-
sive beast at first, but when you get it right, you’ll feel the difference
immediately.

Some ways of achieving this kind of trustworthiness involve keeping
good tests alive and removing or refactoring away bad tests, and we
discussed several such methods in this chapter. The rest of the chapter
was about problems that can arise inside tests, such as logic, testing
multiple things, ease of running, and so on. Putting all these things
together can be quite an art form.

If there’s one thing to take away from this chapter, it’s this: tests grow
and change with the system under tests. The topic of writing maintain-
able tests has not been covered much in the unit-testing and TDD liter-
ature, but as I write, it’s starting to appear online in blogs and forums. I
believe that this is the next step in the evolution of unit-testing tech-
niques. The first step of acquiring the initial knowledge (what a unit
test is, and how you write one) has been covered in many places. The
second step involves refining the techniques to improve all aspects of
the code we write, and looking into other factors, such as maintainabil-
ity and readability. It’s this critical step that this chapter (and most of
this book) focuses on.

7.4 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

216 CHAPTER 7 The pillars of good tests
In the end, it’s simple: readability goes hand in hand with maintainabil-
ity and trustworthiness. People who can read your tests can under-
stand them and maintain them, and they will also trust the tests when
they pass. When this point is achieved, you’re ready to handle change,
and to change the code when it needs changing, because you’ll know
when things break.

In the next chapters, we’ll take a broader look at what makes code test-
able, how to design for testability, and how to refactor existing code
into a testable state.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Part 4

Design and process

his part of the book covers the problems and techniques that you’ll
need when introducing unit testing to an existing organization or code.

In chapter 8, we’ll deal with the tough issue of implementing unit test-
ing in an organization, and cover techniques that can make your job
easier. This chapter provides answers to some tough questions that are
common when first implementing unit testing.

In chapter 9, we’ll look common problems associated with legacy code
and examine some tools for working with it.

T

Licensed to Jeff Warwick <devon@cloverpoint.com>

Licensed to Jeff Warwick <devon@cloverpoint.com>

8
Integrating unit testing
into the organization

This chapter covers

• Becoming an agent of change

• Implementing change from the top down or from the bottom up

• Preparing to answer the tough questions about unit testing

s a consultant, I have helped several companies, big and small, integrate
test-driven development and unit testing into their organizational culture.
Sometimes this has failed, but those companies that succeeded had
several things in common. This chapter draws on stories from both camps
as it looks at the following topics:

❂ Becoming the agent of change—The initial steps you should take before
introducing any changes

❂ Ways to succeed—Things that contributed to successful changes in a pro-
cess, based on my experience

❂ Ways to fail—Things that can destroy what you’re trying to do, also
based on my experience

❂ Tough questions and answers—The most frequently asked questions when
introducing unit testing to a team

In any type of organization, changing people’s habits is more psychologi-
cal than technical. People don’t like change, and change is usually accom-

A

219

Licensed to Jeff Warwick <devon@cloverpoint.com>

220 CHAPTER 8 Integrating unit testing into the organization
panied with plenty of FUD (fear, uncertainty, and doubt) to go
around. It won’t be a walk in the park for most people, as you’ll see in
this chapter.

If you’re going to be the agent of change in your organization, you
should first accept that role. People will view you as the person responsi-
ble for what’s happening, whether you want them to or not, and there’s
no use in hiding. In fact, hiding can cause things to go awfully wrong.

As you start to implement changes, people will start asking the tough
questions that they care about. How much time will this “waste”?
What does this mean for me as a QA engineer? How do we know it
works? Be prepared to answer these questions. The answers to the
most common questions are discussed in section 8.4. You’ll find that
convincing other people inside the organization before you start mak-
ing changes will help you immensely when you need to make tough
decisions and answer those questions.

Finally, someone will have to stay at the helm, making sure the changes
don’t die for lack of momentum. That’s you. There are ways to keep
things alive, as you’ll see in the next sections.

8.1.1 Be prepared for the tough questions

Do your research. Read the answers at the end of this chapter, and
look at the related resources. Read forums, mailing lists, and blogs, and
consult with your peers. If you can answer your own tough questions,
there’s a better chance you can answer someone else’s.

8.1.2 Convince insiders: champions and blockers

Loneliness is a terrible thing, and not many things make you feel more
alone in an organization than going against the current. If you’re the
only one who thinks what you’re doing is a good idea, there’s little rea-
son for anyone to make an effort to implement what you’re advocating.
Consider who can help and hurt your efforts: the champions and
blockers.

8.1 Steps to becoming an agent of change
Licensed to Jeff Warwick <devon@cloverpoint.com>

Steps to becoming an agent of change 221
Champions

As you start pushing for change, identify the people you think are most
likely to help in your quest. They will be your champions. They’re usu-
ally early adopters, or people who have open enough minds to try the
things you’re advocating. They may already be half convinced but are
looking for an impetus to start the change. They may have even tried it
and failed on their own.

Approach them before anyone else and ask for their opinions on what
you’re about to do. They may tell you some things that you hadn’t con-
sidered: teams that might be good candidates to start with, or places
where people are more accepting of such changes. They may even tell
you what to watch out for from their own personal experience.

By approaching them, you’re helping to ensure that they’re part of the
process. People who feel part of the process usually try to help make it
work. Make them your champions: ask them if they can help you and be
the ones people can come to with questions. Prepare them for such events.

Blockers

Next, identify the blockers. These are the people in the organization who
are most likely to resist the changes you’re making. For example, a
manager might object to adding unit tests, claiming that they will add
too much time to the development effort and increase the amount of
code that needs to be maintained. Make them part of the process
instead of resistors of it by giving them (at least, those who are willing
and able) an active role in the process.

The reasons why people might resist particular changes vary, and
answers to some of the possible objections are covered in section 8.4.
Some people will be afraid for their jobs, and some will feel comfort-
able with the way things are and object to any changes.

Going to these people and detailing all the things they could have done
better is often nonconstructive, as I’ve found out the hard way. People
don’t like to be told what they don’t do well. Instead, ask those people
to help you in the process by being in charge of defining coding stan-
dards for unit tests, for example, or by doing code and test reviews
with peers every other day. Or make them part of the team that
Licensed to Jeff Warwick <devon@cloverpoint.com>

222 CHAPTER 8 Integrating unit testing into the organization
chooses the course materials or outside consultants. You’ll have given
them a new responsibility that will help them feel relied upon and rele-
vant in the organization. They need to be part of the change or they
will almost certainly take part in a mini-rebellion against it.

8.1.3 Identify possible entry points

Identify where in the organization you can start implementing the
changes. Most successful implementations take a steady route. Start
with a pilot project in a small team, and see what happens. If all goes
well, move on to other teams and other projects.

Here are some tips that will help you along the way:
❂ Choose smaller teams
❂ Create subteams
❂ Consider project feasibility

These tips can get you a long way in a mostly hostile environment.

Choose smaller teams

Identifying possible teams to start with is usually easy. You’ll generally
want a smaller team working on a lower profile project with low risks.
If the risk is minimal, it’s easier to convince people to try your pro-
posed changes.

One caveat is that the team needs to have members who are open to
changing the way they work and to learning new skills. Ironically, the
people with less experience on a team are usually most likely to be open
to change, and people with more experience tend to be more
entrenched in their way of doing things. If you can find a team with an
experienced leader who’s open to change, but that also includes less-
experienced developers, it’s likely that team will offer less resistance.
Go to the team and ask them their opinion on holding a pilot such as
this. They will tell you if this is the right place to start or not.

Create subteams

Another possible candidate for a pilot test is to form a subteam within
an existing team. Almost every team will have a “black hole” component
that needs to be maintained, and while it does many things right, it also
Licensed to Jeff Warwick <devon@cloverpoint.com>

Ways to succeed 223
has many bugs. Adding features for such a component is a tough task,
and this kind of pain can drive people to experiment with a pilot project.

Consider project feasibility

For a pilot project, make sure you’re not biting off more than you can
chew. It takes more experience to run more difficult projects, so you
might want to have at least two options—a complicated project and an
easier project—so that you can choose between them.

Now that you’re mentally prepared for the task at hand, it’s time to
look at some things you can do to make sure it all goes smoothly (or
that it goes at all).

There are two main ways an organization or team can start changing a
process: bottom-up or top-down (and sometimes both). The two ways
are very different, as you’ll see, and either could be the right approach
for your team or company. There’s no one right way.

As you proceed, you’ll need to learn how to convince management that
your efforts should also be their efforts, or when it would be wise to
bring in someone from outside to help. Making progress visible is
important, as is setting clear goals that can be measured. Identifying
and going around obstacles should also be high on your list. There are
many battles that can be fought, and you need to choose the right ones.

8.2.1 Guerrilla implementation (bottom-up)

Guerrilla-style implementation is all about starting out with a team, get-
ting results, and only then convincing other people that the practices are
worthwhile. Usually the drivers for guerrilla implementation are the
team that’s tired of doing things the prescribed way. They set out to do
things differently; they study things on their own and make changes
happen. When the team shows results, other people in the organization
may decide to start implementing similar changes in their own teams.

In some cases, guerrilla-style implementation is a process adopted first
by developers and then by management. At other times, it’s a process

8.2 Ways to succeed
Licensed to Jeff Warwick <devon@cloverpoint.com>

224 CHAPTER 8 Integrating unit testing into the organization
advocated first by developers and then by management. The difference is
that you can accomplish the first covertly, without the higher powers
knowing about it. The latter is done in conjunction with management.

It’s up to you to figure out which approach will work best. Sometimes
the only way to change things is by covert operations. Avoid this if you
can, but if there’s no other way and you’re sure the change is needed,
you can just do it.

Don’t take this as a recommendation to make a career-limiting move.
Developers do things they didn’t ask permission for all the time: debug-
ging code, reading email, writing code comments, creating flow dia-
grams, and so on. These are all tasks developers do as a regular part of
the job. The same goes for unit testing. Most developers already write
tests of some sort (automated or not). The idea is to redirect that time
spent on tests into something that will provide benefits in the long term.

8.2.2 Convincing management (top-down)

The top-down move usually starts in one of two ways. A manager or a
developer will start the process and start the rest of the organization
moving in that direction, piece by piece. Or a midlevel manager may see
a presentation, read a book (such as this one), or talk to a colleague
about the benefits of specific changes to the way they work. Such a man-
ager will usually initiate the process by giving a presentation to people in
other teams, or even using his authority to make the change happen.

8.2.3 Getting an outside champion

I highly recommend getting an outside person to help with the change.
An outside consultant coming in to help with unit testing and related
matters has advantages over someone who works in the company:

❂ Freedom to speak—A consultant can say things that people inside the
company may not be willing to hear from someone who works there:
(“The code integrity is bad,” “Your tests are unreadable,” and so on).

❂ Experience—A consultant will have more experience dealing with
resistance from the inside, coming up with good answers to tough
questions, and knowing which buttons to push to get things going.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Ways to succeed 225
❂ Dedicated time—For a consultant, this is her job. Unlike other employ-
ees in the company who have better things to do than push for
change (like writing software), the consultant does this full time and
is dedicated to this purpose.

I’ve often seen a change break down because an overworked champion
doesn’t have the time to dedicate to the process.

8.2.4 Making progress visible

It’s important to keep the progress and status of the change visible.
Hang whiteboards or posters up on walls in corridors or in the food-
related areas where people congregate. The data displayed should be
related to the goals you’re trying to achieve.

For example, show the number of passing or failing tests in the last
nightly build. Keep a chart showing which teams are already running
an automated build process. Put up a Scrum burndown chart of itera-
tion progress or a test-code-coverage report (as seen in figure 8.1) if
that’s what you have your goals set to. (You can learn more about

Code integrity
Code integrity is a term I use to describe the purpose behind a team’s de-
velopment activities, in terms of code stability, maintainability, and
feedback. Mostly, it means that the code does what it’s meant to do, and
the team knows when it doesn’t.

These practices are all part of code integrity:
• Automated builds
• Continuous integration
• Unit testing and test-driven development
• Code consistency and agreed standards for quality
• Achieving shortest time possible to fix bugs (or make failing tests

pass)

Some consider these to be “values” of development, and you can find
them in methodologies such as Extreme Programming, but I like to say,
“We have good code integrity,” instead of saying that I think we’re doing
all these things well.
Licensed to Jeff Warwick <devon@cloverpoint.com>

226 CHAPTER 8 Integrating unit testing into the organization
Scrum at www.controlchaos.com.) Put up contact details for yourself
and all the champions so you can answer any questions that arise.

You’re aiming to talk to two groups with these charts:

Figure 8.1 An example of a test-code-coverage report
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.controlchaos.com

Ways to succeed 227
❂ The group undergoing the change—People in this group will gain a greater
feeling of accomplishment and pride as the charts (which are open to
everyone) are updated, and they will feel more compelled to com-
plete the process because it’s visible to others. They will also be able
to keep track of how they’re doing compared to other groups. They
may push harder knowing that another group implemented specific
practices more quickly.

❂ Those in the organization who aren’t part of the process—You’re raising inter-
est and curiosity among these people, triggering conversations and
buzz, and creating a current that they can join if they choose.

8.2.5 Aiming for specific goals

Without goals, the change will be hard to measure and to communicate
to others. It will be a vague “something” that can easily be shut down at
the first sight of trouble.

Here are some goals you might want to consider:
❂ Increase the amount of test code coverage.

A study by Boris Beizer showed that developers who write tests and
don’t use code-coverage tools or other techniques to test code cover-
age will be naively optimistic about the coverage they gained from
the tests. Another study, from the book Peer Reviews in Software: A Prac-
tical Guide, suggests that testing without code-coverage tools may only
result in coverage of about 50 to 60 percent of the code. (There’s
much anecdotal evidence that, by using TDD, one can get up to 95
to 100 percent code coverage for logical code.)

A simple goal to measure is the percentage of the code covered by the
tests. The more coverage, the better chance of finding bugs. It’s not a
silver bullet, though. One could easily have close to 100 percent code
coverage with bad tests that don’t mean anything. Low coverage is a
bad sign; high coverage is a possible sign that things are better.

NOTE The study by Boris Beizer is discussed in Mark Johnson’s article,
“Dr. Boris Beizer on software testing: an interview, part 1,” in The
Software QA Quarterly (summer 1994). The other study is discussed in
Karl Wiegers book, Peer Reviews in Software: A Practical Guide (Addi-
son-Wesley, 2002).
Licensed to Jeff Warwick <devon@cloverpoint.com>

228 CHAPTER 8 Integrating unit testing into the organization
❂ Increase the amount of test code coverage relative to the amount of code churn.

Some production systems will allow you to measure the amount of
code churn—how many lines of code were changed between builds.
The fewer lines of code changed, the fewer bugs you’re likely to have
introduced into a system. Calculating this isn’t always practical, par-
ticularly in systems where you do a lot of code generation as part of
the build process, but this can be solved by ignoring generated code.
One system that allows you to measure code churn is Microsoft’s
Team System. (See Microsoft’s “Code Churn Perspective” article at
http://msdn.microsoft.com/en-us/library/ms244698(VS.80).aspx.)

❂ Reduce the amount of bug reopening.
It’s easy to fix one thing and mistakenly break something else. If this
doesn’t happen often, it’s a sign that you’re able to fix things and
maintain the system without breaking previous assumptions.

❂ Reduce the average bug-fixing time (the time from bug opened to bug closed).
A system with good tests and coverage will usually allow you to fix
things more quickly (assuming the tests are written in a maintainable
manner). That, in turn, means better turnaround times, and release
cycles that are less stressful.

In his book Code Complete (Microsoft Press), Steve McConnell outlines
several metrics you can use to test progress. They include the follow-
ing, among others:

❂ The number of defects found per class by priority
❂ The number of defects per routine number of testing hours per bug

found
❂ The average number of defects per test case

I highly recommend reading chapter 22 of that book, which deals with
developer testing.

8.2.6 Realizing that there will be hurdles

There are always hurdles. Most will come from within the organiza-
tional structure, and some will be technical. The technical ones are easier
to fix, because it’s just a matter of finding the right solution. The organi-
zational ones need care and attention and a psychological approach.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://msdn.microsoft.com/en-us/library/ms244698(VS.80).aspx

Ways to fail 229
It’s important not to surrender to a feeling of temporary failure when
an iteration goes bad, tests go slower than expected, and so on. It’s
sometimes hard to get going, and you’ll need to persist for at least a
couple of months to start feeling comfortable with the new process and
to iron out all the kinks. Have management commit to continuing for at
least three months even if things don’t go as planned. It’s important to
get their agreement up front. You don’t want to be running around try-
ing to convince people in the middle of a stressful first month.

Now that we’ve looked at ways of ensuring things go right, let’s look at
some things that can lead to failure.

In the preface to this book, I talked about one project I was involved
with that failed, partly because unit testing was not implemented cor-
rectly. That’s one way you can fail a project. I’ve listed several others
here, along with one that cost me that project, and some things that can
be done about them.

8.3.1 Lack of a driving force

In all the places where I’ve seen change fail, the lack of a driving force
was the most powerful factor in play. Being a consistent driving force of
change has its price. It will take time away from your normal job to teach
others, help them, and wage internal political wars for change. You need
to be willing to surrender the time you have for these tasks, or the
change won’t happen. Bringing in an outside person, as mentioned in
section 8.2.3, will help you in your quest for a consistent driving force.

8.3.2 Lack of political support

If your boss explicitly tells you not to make the change, there isn’t a
whole lot you can do, besides trying to convince management to see
what you see. But sometimes the lack of support is much more subtle
than that, and the trick is to realize that you are facing opposition.

For example, you may be told, “Sure, go ahead and implement those
tests. We’re adding 10 percent to your time to do this.” Anything below

8.3 Ways to fail
Licensed to Jeff Warwick <devon@cloverpoint.com>

230 CHAPTER 8 Integrating unit testing into the organization
30 percent isn’t realistic for beginning a unit-testing effort. This is one
way a manager may try to stop a trend—by choking it out of existence.

First, you need to recognize that you’re facing opposition, but once you
do, it’s easy to identify. When you tell them that their limitations aren’t
realistic, you’ll be told, “So don’t do it.”

8.3.3 Bad implementations and first impressions

If you’re planning to implement unit testing without prior knowledge
of how to write good unit tests, do yourself one big favor: involve
someone who has experience, and follow some best practices (such as
those outlined in this book).

I’ve seen developers jump into the deep water without a proper under-
standing of what to do or where to start, and it’s not a good place to be.
Not only will it take a huge amount of time to learn how to make
changes that are acceptable for your situation, but you’ll also lose a lot
of credibility along the way for starting out with a bad implementation.
This can lead to the pilot project being shut down.

If you read the preface of this book, you’ll know that this is what hap-
pened to me. You only have a couple of months to get things up to
speed and convince the higher-ups that you’re achieving results. Make
that time count, and remove any risks that you can. If you don’t know
how to write good tests, read a book or get a consultant. If you don’t
know how to make your code testable, do the same. Don’t waste time
reinventing testing methods you don’t have to.

8.3.4 Lack of team support

If your team doesn’t support your efforts, it will be nearly impossible to
succeed, because you’ll have a hard time consolidating your extra work
on the new process with your regular work. You should strive to have
your team be part of the new process, or at least not stop it.

Talk to your team members about the changes. Getting their support
one by one is sometimes a good way to start, but talking to them as a
group about your efforts—and answering their hard questions—can
Licensed to Jeff Warwick <devon@cloverpoint.com>

Tough questions and answers 231
also prove valuable. Whatever you do, don’t take the team’s support
for granted. Make sure you know what you’re getting into; these are
the people you have to work with on a daily basis.

Regardless of how you proceed, you’re going to be asked some tough
questions about unit testing. The following questions and answers will
help prepare you for your discussions with people who can make or
break your agenda for change.

This section covers some questions I’ve come across in various places.
They usually arise from the premise that implementing unit testing can
hurt someone personally—a manager looking out for his deadlines or a
QA employee looking out for her relevancy. Once you understand
where a question is coming from, it’s important to address the issue,
directly or indirectly. Otherwise, there will always be subtle resistance.

8.4.1 How much time will this add to the current process?

Team leads, project managers, and clients are the ones who usually ask
how much time unit testing will add to the process. They’re the people
in the front lines in terms of timing.

Let’s begin with some facts. Studies have shown that raising the overall
code quality in a project can increase productivity and shorten sched-
ules. How does this match up with the fact that writing tests makes cod-
ing slower? Through maintainability and the ease of fixing bugs, mostly.

NOTE For studies on code quality and productivity, see Capers Jones, Pro-
gramming Productivity (McGraw-Hill, 1986) and his Software Assess-
ments, Benchmarks, and Best Practices (Addison-Wesley, 2000).

When asking about time, team leads may really be asking, “What
should I tell my project manager when we go way past our due date?”
They may actually think the process is useful but are looking for
ammunition for the upcoming battle. They may also be asking the
question not in terms of the whole product, but in terms of specific fea-
ture sets or functionality.

8.4 Tough questions and answers
Licensed to Jeff Warwick <devon@cloverpoint.com>

232 CHAPTER 8 Integrating unit testing into the organization
A project manager or customer who asks about timing, on the other
hand, will usually be talking in terms of full product releases.

Because different people care about different scopes, the answers you
give them may vary. For example, unit testing can double the time it
takes to implement a specific feature, but the overall release date for
the product may actually be reduced. To understand this, let’s look at a
real example I was involved with.

A tale of two features

A large company I consulted with wanted to implement unit testing
into their process, beginning with a pilot project. The pilot consisted of
a group of developers adding a new feature to a large existing applica-
tion. The company’s main livelihood was in creating this large billing
application and customizing parts of it for various clients. The com-
pany had thousands of developers around the world.

The following measures were taken to test the pilot’s success:
❂ The time the team took for each of the development stages
❂ The overall time for the project to be released to the client
❂ The number of bugs found by the client after the release

The same statistics were collected for a similar feature created by a dif-
ferent team for a different client. The two features were nearly the
same size, and the teams were roughly at the same skill and experience
level. Both tasks were customization efforts—one with unit tests, the
other without. Table 8.1 shows the differences in time.

Table 8.1 Team progress and output measured with and without tests

Stage Team without tests Team with tests

Implementation (coding) 7 days 14 days

Integration 7 days 2 days

Testing and bug fixing Testing, 3 days
Fixing, 3 days
Testing, 3 days
Fixing, 2 days
Testing, 1 day
Total: 12 days

Testing, 3 days
Fixing, 1 day
Testing, 1 day
Fixing, 1 day
Testing, 1 day
Total: 8 days
Licensed to Jeff Warwick <devon@cloverpoint.com>

Tough questions and answers 233
Overall, the time to release with tests was less than without tests. Still,
the managers on the team with the unit tests didn’t initially believe the
pilot would be a success because they only looked at the implementa-
tion (coding) statistic (the first row in table 8.1) as the criteria for suc-
cess, instead of the bottom line. It took twice the amount of time to
code the feature (because unit tests cause you to write more code).
Despite this, the time “wasted” more than made up for itself when the
QA team found fewer bugs to deal with.

That’s why it’s important to emphasize that, although unit testing can
increase the amount of time it takes to implement a feature, the time
balances out over the product’s release cycle because of increased qual-
ity and maintainability.

8.4.2 Will my QA job be at risk because of this?

Unit testing doesn’t eliminate QA-related jobs. QA engineers will
receive the application with full unit-test suites, which means they can
make sure all the unit tests pass before they start their own testing pro-
cess. Having unit tests in place will actually make their job more inter-
esting. Instead of doing UI debugging (where every second button
click results in an exception of some sort), they will be able to focus on
finding more logical (applicative) bugs in real-world scenarios. Unit
tests provide the first layer of defense against bugs, and QA work pro-
vides the second layer—the user’s acceptance layer. As with security,
the application always needs to have more than one layer of protection.
Allowing the QA process to focus on the larger issues can produce bet-
ter applications.

In some places, QA engineers write code, and they can help write unit
tests for the application. That happens in conjunction with the work of
the application developers and not instead of it. Both developers and
QA engineers can write unit tests.

Overall release time 26 days 24 days

Bugs found in production 71 11
Licensed to Jeff Warwick <devon@cloverpoint.com>

234 CHAPTER 8 Integrating unit testing into the organization
8.4.3 How do we know this is actually working?

To determine whether your unit testing is working, create a metric of
some sort, as discussed in section 8.2.5. If you can measure it, you’ll
have a way to know; plus, you’ll feel it.

Figure 8.2 shows a sample test-code-coverage report (coverage per
build). Creating a report like this, by running a tool like NCover for
.NET automatically during the build process, can demonstrate prog-
ress in one aspect of development.

Figure 8.2 An example test-code-coverage trend report

Code coverage is a good starting point if you’re wondering whether
you’re missing unit tests.

8.4.4 Is there proof that unit testing helps?

There aren’t any specific studies I can point to on whether unit testing
helps achieve better code quality. Most related studies talk about
adopting specific agile methods, with unit testing being just one of
Licensed to Jeff Warwick <devon@cloverpoint.com>

Tough questions and answers 235
them. Some empirical evidence can be gleaned from the web, of com-
panies and colleagues having great results and never wanting to go
back to a code base without tests.

A few studies on TDD can be found at http://biblio.gdinwiddie.com/
biblio/StudiesOfTestDrivenDevelopment.

8.4.5 Why is the QA department still finding bugs?

The job of a QA engineer is to find bugs at many different levels,
attacking the application from many different approaches. Usually a
QA engineer will perform integration-style testing, which can find
problems that unit tests can’t. For example, the way different compo-
nents work together in production may point out bugs even though the
individual components pass unit tests (which work well in isolation).
In addition, a QA engineer may test things in terms of use cases or full
scenarios that unit tests usually won’t cover. That approach can dis-
cover logical bugs or acceptance-related bugs and is a great help to
ensuring better project quality.

A study by Glenford Myre showed that developers writing tests were
not really looking for bugs, and so found only half to two-thirds of the
bugs in an application. Broadly, that means there will always be jobs
for QA engineers, no matter what. Although that study is 30 years old,
I think the same mentality holds today, which makes the results still
relevant today, at least for me.

NOTE Glenford Myre’s study is discussed in “A controlled experiment in
program testing and code walkthroughs/inspections,” in Communica-
tions of the ACM 21, no. 9 (September 1978), 760–68.

8.4.6 We have lots of code without tests: where do we start?

Studies conducted in the 1970s and 1980s showed that, typically, 80
percent of the bugs are found in 20 percent of the code. The trick is to
find the code that has the most problems. More often than not, any
team can tell you which components are the most problematic. Start
there. You can always add some metrics, as discussed in section 8.2.5,
relating to the number of bugs per class.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment

236 CHAPTER 8 Integrating unit testing into the organization
NOTE Studies that show 80 percent of the bugs being in 20 percent of the
code include the following: Albert Endres, “An analysis of errors
and their causes in system programs,” IEEE Transactions on Software
Engineering 2 (June 1975), 140–49; Lee L. Gremillion, “Determi-
nants of program repair maintenance requirements,” Communications
of the ACM 27, no. 8 (August 1984), 826–32; Barry W. Boehm,
“Industrial software metrics top 10 list,” IEEE Software 4, no. 9 (Sep-
tember 1987), 84–85; and Shull and others, “What we have learned
about fighting defects,” Proceedings of the 8th International Symposium
on Software Metrics (2002), 249–58.

Testing legacy code requires a different approach than when writing
new code with tests. See chapter 9 for more details.

8.4.7 We work in several languages: is unit testing feasible?

Sometimes tests written in one language can test code written in other
languages, especially if it’s a .NET mix of languages. You can write tests
in C# to test code written in VB.NET, for example. Sometimes each
team writes tests in the language they develop in: C# developers can
write tests in C# using NUnit or MbUnit, and C++ developers can write
tests using one of the C++ oriented frameworks, such as CppUnit. I’ve
also seen solutions where people who wrote C++ code would write man-
aged C++ wrappers around it and write tests in C# against those man-
aged C++ wrappers, which made things easier to write and maintain.

8.4.8 What if we develop a combination of software and hardware?

If your application is made of a combination of software and hardware,
you need to write tests for the software. Chances are, you already have
some sort of hardware simulator, and the tests you write can take
advantage of this. It may take a little more work, but it’s definitely pos-
sible, and companies do this all the time.

8.4.9 How can we know we don’t have bugs in our tests?

You need to make sure your tests fail when they should and pass when
they should. Test-driven development is a great way to make sure you
don’t forget to check those things. See chapter 1 for a short walk-
through of TDD.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Tough questions and answers 237
8.4.10 My debugger shows that my code works: why do I need tests?

You may be sure your code works fine, but what about other people’s
code? How do you know it works? How do they know your code
works and that they haven’t broken anything when they make
changes? Remember that coding is just the first step in the life of the
code. Most of its life, the code will be in maintenance mode. You need
to make sure it will tell people when it breaks, using unit tests.

A study held by Curtis, Krasner, and Iscoe showed that most defects
don’t come from the code itself, but result from miscommunication
between people, requirements that keep changing, and a lack of appli-
cation domain knowledge. Even if you’re the world’s greatest coder,
chances are that, if someone tells you to code the wrong thing, you’ll do
it. And when you need to change it, you’ll be glad you have tests for
everything else to make sure you don’t break it.

NOTE The study by Bill Curtis, H. Krasner, and N. Iscoe is “A field study
of the software design process for large systems,” Communications of
the ACM 31, no. 11 (November 1988), 1268–1287.

8.4.11 Must we do TDD-style coding?

TDD is a style choice. I personally see a lot of value in TDD, and many
people find it productive and beneficial, but others find that writing the
tests after the code is good enough for them. You can make your own
choice.

If this question arises from a fear of too much change happening at
once, the learning can be broken up into several intermediate steps:
❂ Learn unit testing from books such as this, and use tools such as

Typemock Isolator or JMockit so that you don’t have to worry
about design aspects while testing.

❂ Learn good design techniques, such as SOLID (which is discussed
at the end of section 3.6 in chapter 3).

❂ Learn to do test-driven development. (A good book is Test-Driven
Development in Microsoft .NET by James Newkirk.)

This way, the learning is easier and you can get started more quickly
with less loss of time to the project.
Licensed to Jeff Warwick <devon@cloverpoint.com>

238 CHAPTER 8 Integrating unit testing into the organization
Implementing unit testing in the organization is something that many
readers of this book will have to face at one time or another. Be pre-
pared. Make sure you have good answers to the questions you’re likely
to be asked. Make sure that you don’t alienate the people who can help
you. Make sure you’re ready for what could be an uphill battle.

In the next chapter, we’ll take a look at legacy code and examine some
tools for working with it.

8.5 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

9
Working with legacy code

This chapter covers

• Examining common problems with legacy code

• Deciding where to begin writing tests

• Surveying helpful tools for working with legacy code

 once consulted for a large development shop that produced billing
software. They had over 10,000 developers and mixed .NET, Java, and
C++ in products, subproducts, and intertwined projects. The software
had existed in one form or another for over five years, and most of the
developers were tasked with maintaining and building on top of existing
functionality.

My job was to help several divisions (using all languages) learn test-
driven development techniques. For about 90 percent of the developers I
worked with, this never became a reality for several reasons, some of
which were a result of legacy code:

❂ It was difficult to write tests against existing code.
❂ It was next to impossible to refactor the existing code (or there was not

enough time to do it).
❂ Some people didn’t want to change their designs.
❂ Tooling (or lack of tooling) was getting in the way.
❂ It was difficult to determine where to begin.

I

239

Licensed to Jeff Warwick <devon@cloverpoint.com>

240 CHAPTER 9 Working with legacy code
Anyone who’s ever tried to add tests to an existing system knows that
most such systems are almost impossible to write tests for. They were
usually written without proper places in the software (seams) to allow
extensions or replacements to existing components.

There are several problems that need to be addressed when dealing
with legacy code:
❂ There’s so much work, where should I start to add tests? Where

should I focus my efforts?
❂ How can I safely refactor my code if it has no tests to begin with?
❂ What tools can I use with legacy code?

This chapter will tackle these tough questions associated with
approaching legacy code bases, by listing techniques, references, and
tools that can help.

Assuming you have existing code inside components, you’ll need to
create a priority list of components for which testing makes the most
sense. There are several factors to consider that can affect each compo-
nent’s priority:
❂ Logical complexity—This refers to the amount of logic in the component,

such as nested ifs, switch cases, or recursion. Tools for checking cyc-
lomatic complexity can also be used to determine this.

❂ Dependency level—This refers to the number of dependencies in the
component. How many dependencies do you have to break in order
to bring this class under test? Does it communicate with an outside
email component, perhaps, or does it call a static log method some-
where?

❂ Priority—This is the component’s general priority in the project.

You can give each component a rating for these factors, from 1 (low
priority) to 10 (high priority).

Table 9.1 shows a short list of classes with ratings for these factors. I
call this a test-feasibility table.

9.1 Where do you start adding tests?
Licensed to Jeff Warwick <devon@cloverpoint.com>

Where do you start adding tests? 241
Table 9.1 A simple test-feasibility table

From the data in table 9.1, we can create the diagram shown in figure
9.1, which graphs our components by the amount of value to the proj-
ect and number of dependencies.

We can safely ignore items that are below our designated threshold of
logic (which I usually set at 2 or 3), so Person and ConfigManager can be

Component Logical
complexity

Dependency
level Priority Notes

Utils 6 1 5 This utility class has few depen-
dencies but contains a lot of
logic. It will be easy to test, and it
provides lots of value.

Person 2 1 1 This is a data-holder class with
little logic and no dependencies.
There’s some (small) real value
in testing this.

TextParser 8 4 6 This class has lots of logic and
lots of dependencies. To top it
off, it’s part of a high priority task
in the project. Testing this will
provide lots of value but will also
be hard and time-consuming.

ConfigManager 1 6 1 This class holds configuration
data and reads files from disk.
It has little logic but many
dependencies. Testing it will
provide little value to the project
and will also be hard and
time-consuming.

Figure 9.1 Mapping components for

test feasibility
Licensed to Jeff Warwick <devon@cloverpoint.com>

242 CHAPTER 9 Working with legacy code
ignored. We’re left with only the top two components from figure 9.1.
There are two basic ways to look at the graph and decide what you’d
like to test first (see figure 9.2):

❂ Choose the one that’s more complex and easier to test (top left).
❂ Choose the one that’s more complex and harder to test (top right).

The question now is what path you should take. Should you start with
the easy stuff or the hard stuff?

As the previous section explained, you can start with the components
that are easy to test or the ones that are hard to test (because they have
many dependencies). Each strategy presents different challenges.

9.2.1 Pros and cons of the easy-first strategy

Starting out with the components that have fewer dependencies will
make writing the tests initially much quicker and easier. But there’s a
catch, as figure 9.3 demonstrates.

Figure 9.3 shows how long it takes to bring components under test
during the lifetime of the project. Initially it’s easy to write tests, but as
time goes by, we’re left with components that are increasingly harder
and harder to test, with the particularly tough ones waiting for us at the
end of the project cycle, just when everyone is stressed about pushing a
product out the door.

9.2 Choosing a selection strategy

Figure 9.2 Easy, hard, and irrelevant

component mapping based on logic

and dependencies
Licensed to Jeff Warwick <devon@cloverpoint.com>

Choosing a selection strategy 243
If your team is relatively new to unit-testing techniques, it’s worth
starting with the easy components. As time goes by, the team will learn
the techniques needed to deal with the more complex components and
dependencies.

For such a team, it may be wise to initially avoid all components over a
specific number of dependencies (with 4 being a good place to start).

9.2.2 Pros and cons of the hard-first strategy

Starting with the more difficult components may seem like a losing
proposition to begin with, but it has an upside, as long as your team has
experience with unit-testing techniques.

Figure 9.4 shows the average time to write a test for a single compo-
nent over the lifetime of the project, if you start testing the components
with the most dependencies first.

Figure 9.3 When starting with the

easy components, the time to test

gets longer and longer until the

hardest components are done.

Figure 9.4 When you use a hard-

first strategy, the time to test is

long for the first few components,

and then it gets shorter as more

dependencies are refactored away.
Licensed to Jeff Warwick <devon@cloverpoint.com>

244 CHAPTER 9 Working with legacy code
With this strategy, you could be spending a day or more to get even the
simplest tests going on the more complex components. But notice the
quick decline in the time required to write the test relative to the slow
incline in figure 9.3. Every time you bring a component under test and
refactor it to make it more testable, you may also be solving testability
issues for the dependencies it uses, or for other components. Specifi-
cally because that component has lots of dependencies, refactoring it
can improve things for other parts of the system. That’s why the quick
decline appears.

The hard-first strategy is only possible if your team has experience in
unit-testing techniques, because it’s harder to implement. If your team
does have experience, use the priority aspect of components to choose
whether to start with the hard or easy components first. You might
want to choose a mix, but it’s important that you know in advance how
much effort will be involved and what the possible consequences are.

If you do plan to refactor your code for testability (so you can write
unit tests), a practical way to make sure you don’t break anything dur-
ing the refactoring phase is to write integration-style tests against your
production system.

I consulted on a large legacy project, working with a developer who
needed to work on an XML configuration manager. The project had no
tests and was hardly testable. It was also a C++ project, so we couldn’t
use a tool like Typemock Isolator to isolate components without refac-
toring the code.

The developer needed to add another value attribute into the XML file
and be able to read and change it through the existing configuration
component. We ended up writing a couple of integration tests that used
the real system to save and load configuration data, and that asserted
on the values the configuration component was retrieving and writing
to the file. Those tests set the “original” working behavior of the config-
uration manager as our base of work.

9.3 Writing integration tests before refactoring
Licensed to Jeff Warwick <devon@cloverpoint.com>

Writing integration tests before refactoring 245
Next, we wrote an integration test that showed that, once the compo-
nent was reading the file, it contained no attribute in memory with the
name we were trying to add. We proved that the feature was missing,
and we now had a test that would pass once we added the new attri-
bute to the XML file and correctly wrote to it from the component.

Once we wrote the code that saved and loaded the extra attribute, we
ran the three integration tests (two tests for the original base imple-
mentation, and a new one that tried to read the new attribute). All
three passed, so we knew that we hadn’t broken existing functionality
while adding the new functionality.

As you can see, the process is relatively simple:

❂ Add one or more integration tests (no mocks or stubs) to the system
to prove the original system works as needed.

❂ Refactor or add a failing test for the feature you’re trying to add to
the system.

❂ Refactor and change the system in small chunks, and run the inte-
gration tests as often as you can, to see if you break something.

Sometimes, integration tests may seem easier to write than unit tests,
because you don’t need to mess with dependency injection. But making
those tests run on your local system may prove annoying or time-con-
suming because you have to make sure every little thing the system
needs is in place.

The trick is to work on the parts of the system that you need to fix or
add features to. Don’t focus on the other parts. That way, the system
grows in the right places, leaving other bridges to be crossed when you
get to them.

As you continue adding more and more tests, you can refactor the sys-
tem and add more unit tests to it, growing it into a more maintainable
and testable system. This takes time (sometimes months and months),
but it’s worth it.

Did I mention that you need to have good tools? Let’s look at some of
my favorites.
Licensed to Jeff Warwick <devon@cloverpoint.com>

246 CHAPTER 9 Working with legacy code
Here are a few tips on tools that can give you a head start if you’re
doing any testing on existing code in .NET:

❂ Isolate dependencies easily with Typemock Isolator.
❂ Find testability problems with Depender.
❂ Use JMockit for Java legacy code.
❂ Use Vise while refactoring your Java code.
❂ Use FitNesse for acceptance tests before you refactor.
❂ Read Michael Feathers’ book on legacy code.
❂ Use NDepend to investigate your production code.
❂ Use ReSharper to navigate and refactor your production code more

easily.
❂ Detect duplicate code (and bugs) with Simian.
❂ Detect threading issues with Typemock Racer.

Let’s look at each of these in a little more detail.

9.4.1 Isolate dependencies easily with Typemock Isolator

Typemock Isolator was introduced in chapter 5, and it’s the only com-
mercial-grade isolation framework (which means it allows stubs and
mocks) of the frameworks currently on the market. It’s also different
from the other frameworks in that it’s the only one that allows you to
create stubs and mocks of dependencies in production code without
needing to refactor it at all, saving valuable time in bringing a compo-
nent under test.

NOTE Full disclosure: While writing this book, I also worked as a devel-
oper at Typemock on a different product. I also helped to design the
API in Isolator 5.0.

In its latest version (5.2 at the time of writing this book), Isolator uses
the term “fake” and removes completely the words “mock” and “stub”
from the API. Using the new framework, you can “fake” interfaces,
sealed and static types, nonvirtual methods, and static methods. This

9.4 Important tools for legacy code unit testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

Important tools for legacy code unit testing 247
means you don’t need to worry about changing the design (which you
may not have time for, or perhaps can’t for testability reasons). You
can start testing almost immediately. There’s also a free version of
Typemock Isolator for open source projects, so you can feel free to
download this product and try it on your own.

Listing 9.1 shows a couple of examples of using the new Isolator API
to fake instances of classes.

Listing 9.1 Faking static methods and creating fake classes with Isolator

[Test]
 public void FakeAStaticMethod()
 {
 Isolate
 .WhenCalled(()=>MyClass.SomeStaticMethod())
 .WillThrowException(new Exception());

 }

[Test]
 public void FakeAPrivateMethodOnAClassWithAPrivateConstructor()
 {
 ClassWithPrivateConstructor c =
 Isolate.Fake.Instance<ClassWithPrivateConstructor>();
 Isolate.NonPublic
 .WhenCalled(c,"SomePrivateMethod").WillReturn(3);
 }

As you can see, the API is simple and clear, and uses generics and dele-
gates to return fake values. There’s also an API specifically dedicated
for VB.NET that has a more VB-centric syntax. In both APIs, you don’t
need to change anything in the design of your classes under test to make
these tests work, because Isolator uses the specialized extended reflection
(or profiler APIs) of the .NET Common Language Runtime to perform its
actions. This gives it much more power than other frameworks.

Isolator is a great framework if you want to start testing, you have
existing code bases, and you want a bridge that can help make the hard
stuff more agile. There are more examples and downloads at
www.Typemock.com.

Licensed to Jeff Warwick <devon@cloverpoint.com>

www.Typemock.com

248 CHAPTER 9 Working with legacy code
Figure 9.5 Depender is

simple and easy to use.

9.4.2 Find testability problems with Depender

Depender is a free tool I’ve created that can analyze .NET assemblies
for their types and methods, and can help determine possible testability
problems in methods (static methods, for example). It displays a simple
report for an assembly or a method, as shown in figure 9.5.

You can download Depender from my blog: http://weblogs.asp.net/
rosherove/archive/2008/07/05/introducing-depender-testability-prob-
lem-finder.aspx.

9.4.3 Use JMockit for Java legacy code

JMockit is an open source project that uses the Java instrumentation
APIs to do some of the same things that Typemock Isolator does in
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://weblogs.asp.net/rosherove/archive/2008/07/05/introducing-depender-testability-problem-finder.aspx
http://weblogs.asp.net/rosherove/archive/2008/07/05/introducing-depender-testability-problem-finder.aspx
http://weblogs.asp.net/rosherove/archive/2008/07/05/introducing-depender-testability-problem-finder.aspx
http://weblogs.asp.net/rosherove/archive/2008/07/05/introducing-depender-testability-problem-finder.aspx

Important tools for legacy code unit testing 249
.NET. You don’t need to change the design of your existing project to
isolate your components from their dependencies.

JMockit uses a swap approach. First, you create a manually coded
class that will replace the class that acts as a dependency to your com-
ponent under test (say you code a FakeDatabase class to replace a
Database class). Then you use JMockit to swap calls from the original
class to your own fake class. You can also redefine a class’s methods by
defining them again as anonymous methods inside the test.

Listing 9.2 shows a sample of a test that uses JMockit.

Listing 9.2 Using JMockit to swap class implementations

public class ServiceATest extends TestCase {
 private boolean serviceMethodCalled;

 public static class MockDatabase {
 static int findMethodCallCount;
 static int saveMethodCallCount;

 public static void save(Object o) {
 assertNotNull(o);
 saveMethodCallCount++;
 }

 public static List find(String ql, Object arg1) {
 assertNotNull(ql);
 assertNotNull(arg1);
 findMethodCallCount++;
 return Collections.EMPTY_LIST;
 }
 }

 protected void setUp() throws Exception {
 super.setUp();
 MockDatabase.findMethodCallCount = 0;
 MockDatabase.saveMethodCallCount = 0;
 Mockit.redefineMethods(Database.class,
 MockDatabase.class);
 }

 public void testDoBusinessOperationXyz() throws Exception {
 final BigDecimal total = new BigDecimal("125.40");

 The magic
 happens here
Licensed to Jeff Warwick <devon@cloverpoint.com>

250 CHAPTER 9 Working with legacy code
 Mockit.redefineMethods(ServiceB.class,
 new Object()

{
 public BigDecimal computeTotal(List items)
 {
 assertNotNull(items);
 serviceMethodCalled = true;
 return total;
 }
 });

 EntityX data = new EntityX(5, "abc", "5453-1");
 new ServiceA().doBusinessOperationXyz(data);

 assertEquals(total, data.getTotal());
 assertTrue(serviceMethodCalled);
 assertEquals(1, MockDatabase.findMethodCallCount);
 assertEquals(1, MockDatabase.saveMethodCallCount);
 }
}

JMockit is a good place to start when testing Java legacy code.

9.4.4 Use Vise while refactoring your Java code

Michael Feathers wrote an interesting tool for Java that allows you to
verify that you aren’t messing up the values that may change in your
method while refactoring it. For example, if your method changes an
array of values, you want to make sure that as you refactor you don’t
screw up a value in the array.

Listing 9.3 shows an example of using the Vise.grip() method for such
a purpose.

Listing 9.3 Using Vise in Java code to verify values aren’t changed while refactoring

import vise.tool.*;

public class RPRequest {
 ...
 public int process(int level, RPPacket packet) {

 The magic
 happens here
Licensed to Jeff Warwick <devon@cloverpoint.com>

Important tools for legacy code unit testing 251
 if (...) {
 if (...) {
 ...
 } else {
 ...
 bar_args[1] += list.size();
 Vise.grip(bar_args[1]);
 packet.add(new Subpacket(list, arrivalTime));
 if (packet.calcSize() > 2)
 bar_args[1] += 2;
 Vise.grip(bar_args[1]);
 }
 } else {
 int reqLine = -1;
 bar_args[0] = packet.calcSize(reqLine);
 Vise.grip(bar_args[0]);
 ...
 }
 }
}

NOTE The code in listing 9.3 is copied with permission from http://
www.artima.com/weblogs/viewpost.jsp?thread=171323.

Vise forces you to add lines to your production code, and it’s there to
support refactoring of the code. There’s no such tool for .NET, but it
should be pretty easy to write one. Every time you call the Vise.grip()
method, it checks whether the value of the passed-in variable is still
what it’s supposed to be. It’s like adding an internal assert to your code,
with a simple syntax. Vise can also report on all “gripped” items and
their current values.

You can read about and download Vise free from Michael Feathers’
blog: http://www.artima.com/weblogs/viewpost.jsp?thread=171323.

9.4.5 Use FitNesse for acceptance tests before you refactor

It’s a good idea to add integration tests to your code before you start
refactoring it. FitNesse is one tool that helps create a suite of integra-
tion- and acceptance-style tests. FitNesse allows you to write integra-

Grips
an object

Grips
an object
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://www.artima.com/weblogs/viewpost.jsp?thread=171323
http://www.artima.com/weblogs/viewpost.jsp?thread=171323
http://www.artima.com/weblogs/viewpost.jsp?thread=171323

252 CHAPTER 9 Working with legacy code
tion-style tests (in Java or .NET) against your application, and then
change or add to them easily without needing to write code.

Using the FitNesse framework involves three steps:

1 Create code adapter classes (called fixtures) that can wrap your pro-
duction code and represent actions that a user might take against it.
For example, if it were a banking application, you might have a
bankingAdapter class that has withdraw and deposit methods.

2 Create HTML tables using a special syntax that the FitNesse engine
recognizes and parses. These tables will hold the values that will be
run during the tests. You write these tables in pages in a specialized
wiki website that runs the FitNesse engine underneath, so that your
test suite is represented to the outside world by a specialized web-
site. Each page with a table (which you can see in any web browser)
is editable like a regular wiki page, and each has a special “execute
tests” button. These tables are then parsed by the testing runtime
and translated into test runs.

3 Click the Execute Tests button on one of the wiki pages. That but-
ton invokes the FitNesse engine with the parameters in the table.
Eventually, the engine calls your specialized wrapper classes that
invoke the target application and asserts on return values from your
wrapper classes.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Important tools for legacy code unit testing 253
Figure 9.6 shows an example FitNesse table in a browser.

You can learn more about FitNesse at http://fitnesse.org/. For .NET
integration with FitNesse, go to http://fitnesse.org/FitNesse.DotNet.

9.4.6 Read Michael Feathers’ book on legacy code

Working Effectively with Legacy Code, by Michael Feathers, is the only book I
know that deals with the issues you’ll encounter with legacy code
(other than this chapter). It shows many refactoring techniques and
gotchas in depth that this book doesn’t attempt to cover. It’s worth its
weight in gold. Go get it.

9.4.7 Use NDepend to investigate your production code

NDepend is a relatively new commercial analyzer tool for .NET that
can create visual representations of many aspects of your compiled
assemblies, such as dependency trees, code complexity, changes
between the different versions of the same assembly, and more. The pos-
sibilities of this tool are huge, and I recommend you learn how to use it.

NDepend’s most powerful feature is a special query language (called
CQL) you can use against the structure of your code to find out vari-

Figure 9.6 Using

FitNesse for integration
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://fitnesse.org/
http://fitnesse.org/FitNesse.DotNet

254 CHAPTER 9 Working with legacy code
ous component metrics. For example, you could easily create a query
that reports on all components that have a private constructor.

You can get NDepend from http://www.ndepend.com.

9.4.8 Use ReSharper to navigate and refactor production code

ReSharper is one of the best productivity-related plugins for VS.NET.
In addition to powerful automated refactoring abilities (much more
powerful than the ones built into Visual Studio 2008), it’s known for its
navigation features. When jumping into an existing project, ReSharper
can easily navigate the code base with shortcuts that allow you to jump
from any point in the solution to any other point that might be related
to it.

Here are some examples of possible navigations:

❂ When in a class or method declaration, you can jump to any inheri-
tors of that class or method, or jump up to the base implementation
of the current member or class, if one exists.

❂ You can find all uses of a given variable (highlighted in the current
editor).

❂ You can find all uses of a common interface or a class that imple-
ments it.

These and many other shortcuts make it much less painful to navigate
and understand the structure of existing code.

ReSharper works on both VB.NET and C# code. You can download a
trial version at www.jetbrains.com.

9.4.9 Detect duplicate code (and bugs) with Simian

Let’s say you found a bug in your code, and you want to make sure that
bug was not duplicated somewhere else. With Simian, it’s easy to track
down code duplication and figure out how much work you have ahead
of you, as well as refactoring to remove duplication. Simian is a com-
mercial product that works on .NET, Java, C++, and other languages.

You can get Simian here:
http://www.redhillconsulting.com.au/products/simian/.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://www.ndepend.com
www.jetbrains.com
http://www.redhillconsulting.com.au/products/simian/

Summary 255
9.4.10 Detect threading issues with Typemock Racer

If your production code uses multiple threads, Typemock Racer may
help you discover common but hard-to-detect threading problems in
your existing code. It’s a relatively new product that aims to find dead-
locks and race conditions in your existing production code without
needing to change it.

You can find out more about it at www.Typemock.com.

In this chapter, we talked about how to approach legacy code for the
first time. It’s important to map out the various components according
to their number of dependencies, their amount of logic, and the project
priority. Once you have that information, you can choose the compo-
nents to work on based on how easy or how hard it will be to get them
under test.

If your team has little or no experience in unit testing, it’s a good idea
to start with the easy components and let the team’s confidence grow as
they add more and more tests to the system. If your team is experi-
enced, getting the hard ones under test first can help you get through
the rest of the system more quickly.

If your team doesn’t want to start refactoring code for testability, but
only to start with unit testing out of the box, a tool like Typemock Iso-
lator will prove helpful because it allows you to isolate dependencies
without changing the existing code’s design. Consider this tool when
dealing with legacy .NET code. If you work with Java, consider
JMockit for the same reasons.

I also covered a number of tools that can prove helpful in your journey
to better code quality for existing code. Each of these tools can be used
in different stages of the project, but it’s up to your team to choose
when to use which tool (if any at all).

Finally, as a friend once said, a good bottle of vodka never hurts when
dealing with legacy code.

9.5 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.Typemock.com

Appendix A
Design and testability

hanging the design of your code so that it’s more easily testable is a
controversial issue for some developers. This appendix will cover the
basic concepts and techniques for designing for testability. We’ll also look
at the pros and cons of doing so and when it’s appropriate.

First, though, let’s consider why you would need to design for testability
in the first place.

The question is a legitimate one. In designing our software, we’re taught to
think about what the software should accomplish, and what the results will
be for the end user of the system. But tests against our software are yet
another type of user. That user has strict demands for our software, but
they all stem from one mechanical request: testability. That request can
influence the design of our software in various ways, mostly for the better.

In a testable design, each logical piece of code (loops, ifs, switches, and so
on) should be easy and quick to write a unit test against, one that demon-
strates these properties:

❂ Runs fast
❂ Is isolated, meaning it can run independently or as part of a group of

tests, and can run before or after any other test
❂ Requires no external configuration
❂ Provides a consistent pass/fail result

A.1 Why should I care about testability in my design?

C

256

Licensed to Jeff Warwick <devon@cloverpoint.com>

Design goals for testability 257
These are the FICC properties: fast, isolated, configuration-free, and
consistent. If it’s hard to write such a test, or it takes a long time to
write it, the system isn’t testable.

If you think of tests as a user of your system, designing for testability
becomes a way of thinking. If you were doing test-driven development,
you’d have no choice but to write a testable system, because in TDD
the tests come first and largely determine the API design of the system,
forcing it to be something that the tests can work with.

Now that you know what a testable design is, let’s look at what it
entails, go over the pros and cons of such design decisions, and discuss
alternatives to the testable design approach.

There are several design points that make code much more testable.
Robert C. Martin has a nice list of design goals for object-oriented sys-
tems that largely form the basis for the designs shown in this chapter.
See his “Principles of OOD” article at http://butunclebob.com/Arti-
cleS.UncleBob.PrinciplesOfOod.

Most of the advice I include here is about allowing your code to have
seams—places where you can inject other code or replace behavior
without changing the original class. (Seams are often talked about in
connection with the Open Closed Principle, which is mentioned in the
Martin’s “Principles of OOD” article.) For example, in a method that
calls a web service, the web service API can hide behind a web service
interface, allowing us to replace the real web service with a stub that
will return whatever values we want, or with a mock object. Chapters
3–5 discuss fakes, mocks, and stubs in detail.

Table A.1 lists some basic design guidelines and their benefits. The fol-
lowing sections will discuss them in more detail.

A.2 Design goals for testability
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

258 APPENDIX A Design and testability
Table A.1 Test design guidelines and benefits

A.2.1 Make methods virtual by default

Java makes methods virtual by default, but .NET developers aren’t so
lucky. In .NET, to be able to replace a method’s behavior, you need to
explicitly set it as virtual so you can override it in a default class. If you
do this, you can use the Extract and Override method that I discussed
in chapter 3.

An alternative to this method is to have the class invoke a custom dele-
gate. You can replace this delegate from the outside by setting a prop-
erty or sending in a parameter to a constructor or method. This isn’t a
typical approach, but some system designers find this approach suit-
able. Listing A.1 shows an example of a class with a delegate that can
be replaced by a test.

Design guideline Benefit(s)

Make methods virtual by default. This allows you to override the methods in a derived
class for testing. Overriding allows for changing
behavior or breaking a call to an external
dependency.

Use interface-based designs. This allows you to use polymorphism to replace
dependencies in the system with your own stubs or
mocks.

Make classes nonsealed by default. You can’t override anything virtual if the class is
sealed (final in Java).

Avoid instantiating concrete classes inside
methods with logic. Get instances of classes
from helper methods, factories, Inversion of
Control containers such as Unity, or other
places, but don’t directly create them.

This allows you to serve up your own fake instances
of classes to methods that require them, instead of
being tied down to working with an internal production
instance of a class.

Avoid direct calls to static methods. Prefer
calls to instance methods that later call statics.

This allows you to break calls to static methods by
overriding instance methods. (You won’t be able to
override static methods.)

Avoid constructors and static constructors that
do logic.

Overriding constructors is difficult to implement.
Keeping constructors simple will simplify the job of
inheriting from a class in your tests.

Separate singleton logic from singleton holder. If you have a singleton, have a way to replace its
instance so you can inject a stub singleton or reset it.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Design goals for testability 259
Listing A.1 A class that invokes a delegate that can be replaced by a test

public class MyOverridableClass
{
 public Func<int,int> calculateMethod=delegate(int i)
 {
 return i*2;
 };
 public void DoSomeAction(int input)
 {
 int result = calculateMethod(input);
 if (result==-1)
 {
 throw new Exception("input was invalid");
 }
 //do some other work
 }
}

 [Test]
 [ExpectedException(typeof(Exception))]
 public void DoSomething_GivenInvalidInput_ThrowsException()
 {
 MyOverridableClass c = new MyOverridableClass();
 int SOME_NUMBER=1;

 //stub the calculation method to return "invalid"
 c.calculateMethod = delegate(int i) { return -1; };

 c.DoSomeAction(SOME_NUMBER);
 }

Using virtual methods is handy, but interface-based designs are also a
good choice, as the next section explains.

A.2.2 Use interface-based designs

Identifying “roles” in the application and abstracting them under
interfaces is an important part of the design process. An abstract class
shouldn’t call concrete classes, and concrete classes shouldn’t call con-
crete classes either, unless they’re data objects (objects holding data,
with no behavior). This allows you to have multiple seams in the
Licensed to Jeff Warwick <devon@cloverpoint.com>

260 APPENDIX A Design and testability
application where you could intervene and provide your own imple-
mentation.

For examples of interface-based replacements, see chapters 3–5.

A.2.3 Make classes nonsealed by default

Some people have a hard time making classes nonsealed by default
because they like to have full control over who inherits from what in
the application. The problem is that, if you can’t inherit from a class,
you can’t override any virtual methods in it.

Sometimes you can’t follow this rule because of security concerns, but
following it should be the default, not the exception.

A.2.4 Avoid instantiating concrete classes inside methods with logic

It can be tricky to avoid instantiating concrete classes inside methods
that contain logic because we’re so used to doing it. The reason for
doing so is that later our tests might need to control what instance is
used in the class under test. If there’s no seam that returns that
instance, the task would be much more difficult unless you employ
external tools, such as Typemock Isolator. If your method relies on a
logger, for example, don’t instantiate the logger inside the method. Get
it from a simple factory method, and make that factory method virtual
so that you can override it later and control what logger your method
works against. Or use constructor injection instead of a virtual method.
These and more injection methods are discussed in chapter 3.

A.2.5 Avoid direct calls to static methods

Try to abstract any direct dependencies that would be hard to replace at
runtime. In most cases, replacing a static method’s behavior is difficult
or cumbersome in a static language like VB.NET or C#. Abstracting a
static method away using the Extract and Override refactoring (shown
in section 3.4.6 of chapter 3) is one way to deal with these situations.

A more extreme approach is to avoid using any static methods whatso-
ever. That way, every piece of logic is part of an instance of a class that
makes that piece of logic more easily replaceable. Lack of replaceability
Licensed to Jeff Warwick <devon@cloverpoint.com>

Design goals for testability 261
is one of the reasons some people who do unit testing or TDD dislike
singletons; they act as a public shared resource that is static, and it’s
hard to override them.

Avoiding static methods altogether may be too difficult, but trying to
minimize the number of singletons or static methods in your applica-
tion will make things easier for you while testing.

A.2.6 Avoid constructors and static constructors that do logic

Things like configuration-based classes are often made static classes or
singletons because so many parts of the application use them. That
makes them hard to replace during a test. One way to solve this prob-
lem is to use some form of Inversion of Control containers (such as
Microsoft Unity, Autofac, Ninject, StructureMap, Spring.NET, or
Castle Windsor—all open source frameworks for .NET).

These containers can do many things, but they all provide a common
smart factory, of sorts, that allows you to get instances of objects with-
out knowing whether the instance is a singleton, or what the underly-
ing implementation of that instance is. You ask for an interface (usually
in the constructor), and an object that matches that type will be pro-
vided for you automatically, as your class is being created.

When you use an IoC container (also known as a dependency injection
container), you abstract away the lifetime management of an object
type and make it easier to create an object model that’s largely based on
interfaces, because all the dependencies in a class are automatically
filled up for you.

Discussing containers is outside the scope of this book, but you can
find a comprehensive list and some starting points in the “List of .NET
Dependency Injection Containers (IOC)” article on Scott Hanselman’s
blog: http://www.hanselman.com/blog/ListOfNETDependencyInjec-
tionContainersIOC.aspx.

A.2.7 Separate singletons and singleton holders

If you’re planning to use a singleton in your design, separate the logic
of the singleton class and the logic that makes it a singleton (the part
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://www.hanselman.com/blog/ListOfNETDependencyInjectionContainersIOC.aspx
http://www.hanselman.com/blog/ListOfNETDependencyInjectionContainersIOC.aspx

262 APPENDIX A Design and testability
that initializes a static variable, for example) into two separate classes.
That way, you can keep the single responsibility principle (SRP) and
also have a way to override singleton logic.

For example, listing A.2 shows a singleton class, and listing A.3 shows
it refactored into a more testable design.

Listing A.2 An untestable singleton design

public class MySingleton
 {
 private static MySingleton _instance;
 public static MySingleton Instance
 {
 get
 {
 if (_instance == null)
 {
 _instance = new MySingleton();
 }

 return _instance;
 }
 }
 }

Listing A.3 The singleton class refactored into a testable design

 public class RealSingletonLogic
 {
 public void Foo()
 {
 //lots of logic here
 }
 }

public class MySingletonHolder
 {
 private static RealSingletonLogic _instance;
 public static RealSingletonLogic Instance
 {
 get
 {

Newly testable logic

Singleton
container
Licensed to Jeff Warwick <devon@cloverpoint.com>

Pros and cons of designing for testability 263
 if (_instance == null)
 {
 _instance = new RealSingletonLogic();
 }

 return _instance;
 }
 }
 }

Now that we’ve gone over some possible techniques for achieving test-
able designs, let’s get back to the larger picture. Should you do it at all,
and are there any consequences of doing it?

Designing for testability is a loaded subject for many people. Some
believe that testability should be one of the default traits of designs, and
others believe that designs shouldn’t “suffer” just because someone will
need to test them.

The thing to realize is that testability isn’t an end goal in itself, but is
merely a byproduct of a specific school of design that uses the more
testable object-oriented principles laid out by Robert C. Martin (men-
tioned at the beginning of section A.2). In a design that favors class
extensibility and abstractions, it’s easy to find seams for test-related
actions. All the techniques shown in this appendix so far are very much
aligned with Robert Martin’s principles.

The question remains, is this the best way to do things? What are the
cons of such a method? What happens when you have legacy code?
And so on.

A.3.1 Amount of work

In most cases, it takes more work to design for testability than not
because doing so usually means writing more code.

You could argue that the extra design work required for testability
points out design issues you hadn’t considered and that you might have

A.3 Pros and cons of designing for testability
Licensed to Jeff Warwick <devon@cloverpoint.com>

264 APPENDIX A Design and testability
been expected to incorporate in your design anyway (separation of
concerns, single responsibility principle, and so on).

On the other hand, assuming you’re happy with your design as is, it
can be problematic to make changes for testability, which isn’t part of
production. Again, you could argue that test code is as important as
production code, because it exposes the API usage characteristics of
your domain model and forces you to look at how someone will use
your code.

From this point on, discussions of this matter are rarely productive.
Let’s just say that more code, and work, is required when testability is
involved, but that designing for testability makes you think about the
user of your API more, which is a good thing.

A.3.2 Complexity

Designing for testability can sometimes feel a little (or a lot) like it’s
overcomplicating things. You can find yourself adding interfaces
where it doesn’t feel natural to use interfaces, or exposing class behav-
ior semantics that you hadn’t considered before. In particular, when
many things have interfaces and are abstracted away, navigating the
code base to find the real implementation of a method can become
more difficult and annoying.

You could argue that using a tool such as ReSharper makes this argu-
ment obsolete, because navigation with ReSharper is much easier. I
agree that it eases most of the navigational pains. The right tool for the
right job can help a lot.

A.3.3 Exposing sensitive IP

Many projects have sensitive intellectual property that shouldn’t be
exposed, but which designing for testability would force to be exposed:
security or licensing information, or perhaps algorithms under patent.
There are workarounds for this—keeping things internal and using the
[InternalsVisibleTo] attribute—but they essentially defy the whole
notion of testability in the design. You’re changing the design but still
keeping the logic hidden. Big deal.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Alternatives to designing for testability 265
This is where designing for testability starts to melt down a bit. Some-
times you can’t work around security or patent issues. You have to
change what you do or compromise on the way you do it.

A.3.4 Sometimes you can’t

Sometimes there are political or other reasons for the design to be done
a specific way, and you can’t change or refactor it. Sometimes you
don’t have the time to refactor your design, or the design is too fragile
to refactor. This is another case where designing for testability breaks
down—when you can’t or won’t do it.

Now that we’ve gone through some pros and cons, it’s time to consider
some alternatives to designing for testability.

It’s interesting to look outside the box at other languages to see other
ways of working.

In dynamic languages such as Ruby or Smalltalk, the code is inherently
testable because you can replace anything and everything dynamically
at runtime. In such a language, you can design the way you want without
having to worry about testability. You don’t need an interface in order to
replace something, and you don’t need to make something public to
override it. You can even change the behavior of core types dynamically,
and no one will yell at you or tell you that you can’t compile.

In a world where everything is testable, do you still design for testabil-
ity? The answer is, of course, “no.” In that sort of world, you’re free to
choose your own design.

Consider a .NET-related analogy that shows how using tools can
change the way you think about problems, and sometimes make big
problems a non-issue. In a world where memory is managed for you,
do you still design for memory management? Mostly, “no” would be
the answer. People working in languages where memory isn’t managed
for them (C++, for example) need to worry about and design for mem-
ory optimization and collection, or the application will suffer.

A.4 Alternatives to designing for testability
Licensed to Jeff Warwick <devon@cloverpoint.com>

266 APPENDIX A Design and testability
In the same way, by following testable object-oriented design princi-
ples, you might get testable designs as a byproduct, but testability
should not be a goal in your design. It’s just there to solve a specific
problem. If a tool comes along that solves the testability problem for
you, there will be no need to design specifically for testability. There
are other merits to such designs, but using them should be a choice and
not a fact of life.

The main problems with nontestable designs is their inability to
replace dependencies at runtime. That’s why we need to create inter-
faces, make methods virtual, and do many other related things. There
are tools that can help replace dependencies in .NET code without
needing to refactor it for testability. One such tool is Typemock Isola-
tor (www.Typemock.com), a commercial tool with an open source
alternative.

Does the fact that a tool like Isolator exists mean we don’t need to
design for testability? In a way, yes. It rids us of the need to think of
testability as a design goal. There are great things about the OO pat-
terns Bob Martin presents, and they should be used not because of
testability, but because they seem right in a design sense. They can
make code easier to maintain, easier to read, and easier to develop,
even if testability is no longer an issue.

In this appendix, we looked at the idea of designing for testability:
what it involves in terms of design techniques, its pros and cons, and
alternatives to doing it. There are no easy answers, but the questions
are interesting. The future of unit testing will depend on how people
approach such issues, and on what tools are available as alternatives.

Testable designs usually only matter in static languages, such as C# or
VB.NET, where testability depends on proactive design choices that
allow things to be replaced. Designing for testability matters less in
more dynamic languages, where things are much more testable by default.
In such languages, most things are easily replaceable, regardless of the
project design.

A.5 Summary
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.Typemock.com

Summary 267
Testable designs have virtual methods, nonsealed classes, interfaces,
and a clear separation of concerns. They have fewer static classes and
methods, and many more instances of logic classes. In fact, testable
designs are what SOLID design principles have stood for. Perhaps it’s
time that the end goal should not be testability, but good design instead.
Licensed to Jeff Warwick <devon@cloverpoint.com>

Appendix B
Extra tools and frameworks

his book would not be complete without an overview of some tools and
basic techniques you can use while writing code. From database testing to
UI testing and web testing, this appendix lists tools you should consider.
Some of them are used for integration testing, and some allow unit
testing. I’ll also mention some that I think are good for beginners.

The tools and techniques listed below are arranged in the following cate-
gories:
❂ Isolation frameworks
❂ Test frameworks
❂ Dependency injection and IoC containers
❂ Database testing
❂ Web testing
❂ UI testing
❂ Thread-related testing
❂ Acceptance testing

TIP An updated version of the following list can be found on the book’s wiki
site: ArtOfUnitTesting.com.

Let’s begin.

Mock or isolation frameworks are the bread and butter of advanced unit-
testing scenarios. There are many to choose from, and that’s a great thing:

B.1 Isolation frameworks

T

268

Licensed to Jeff Warwick <devon@cloverpoint.com>

Isolation frameworks 269
❂ Moq
❂ Rhino Mocks
❂ Typemock Isolator
❂ NMock
❂ NUnit.Mocks

Here is a short description of each framework.

B.1.1 Moq

Moq is an open source newcomer to the world of mocking and has
adopted an API that tries to be both simple to learn and easy to use.
The API also follows the arrange-act-assert style (as opposed to the
record-and-replay model) and relies heavily on .NET 3.5 features, such
as lambdas and extension methods. If you’re planning on working with
.NET 3.5 exclusively, this is a relatively pain-free learning curve, but
you need to feel comfortable with using lambdas.

In terms of features, it has fewer than most other mock frameworks,
which also means it’s simpler to learn.

You can get Moq at http://code.google.com/p/moq/.

B.1.2 Rhino Mocks

Rhino Mocks is a widely used open source framework for mocks and
stubs. It’s also the framework used throughout this book for examples,
and it’s discussed more in chapter 5.

Rhino Mocks is loaded with features and has recently moved to using
the new arrange-act-assert syntax.

You can get Rhino Mocks at
http://ayende.com/projects/rhino-mocks.aspx.

B.1.3 Typemock Isolator

Typemock Isolator is a powerful commercial isolation framework that
tries to remove the terms “mocks” and “stubs” from its vocabulary in
favor of a more simple and terse API.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://code.google.com/p/moq/
http://ayende.com/projects/rhino-mocks.aspx

270 APPENDIX B Extra tools and frameworks
Isolator differs from the other frameworks by allowing you to isolate
components from their dependencies regardless of how the system is
designed (although it supports all the features the other frameworks
have). This makes it ideal for people who are getting into unit testing
and want an incremental approach to learning. Because it doesn’t force
you to design for testability, you can learn to write tests correctly and
then move on to learning better design, without having to mix the two
together.

NOTE Full disclosure: While writing this book, I’ve also been working at
Typemock.

You can get Typemock Isolator at www.typemock.com.

B.1.4 NMock

NMock is an open source mocking framework that started out as a
direct port of jMock. It used to be the de facto mocking framework
until Rhino Mocks took its place in the open source world. The main
reason it was dethroned is that it did not offer strong typing of method
names. (You had to use strings to define expectations on methods.)
Lately, it has been getting back into development, and the new 2.0
release marks a nice change in the API. It remains to be seen how well
it will do against the current competition.

You can get NMock at www.NMock.org.

B.1.5 NUnit.Mocks

NUnit.Mocks is an ultra-small open source mocking framework that
comes built into NUnit as a separate DLL. It initially started life as an
aid for testing NUnit internally, and NUnit’s authors still discourage
people from using it in their own projects, because it may “disappear”
in the future.

NUnit.Mocks is one of the simplest frameworks to learn with, but I
don’t recommend using it for anything other than a learning tool.

You can get NUnit.Mocks as part of the installation of NUnit at
http://nunit.com.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://
www.Typemock.com
www.NMock.org
http://nunit.com

Test frameworks 271

The test frameworks are the bases from which we start writing our
tests. Like mock frameworks, there are many to choose from, and this
competition has brought lots of innovation with it. Here are some of
the available frameworks:

❂ Microsoft’s Unit Testing Framework
❂ NUnit
❂ MbUnit
❂ Gallio
❂ xUnit
❂ Pex
Let’s look at each in turn.

B.2.1 Microsoft’s Unit Testing Framework

Microsoft’s Unit Testing Framework (also known as MSTest) comes
bundled with any version of Visual Studio .NET 2008 professional or
above. It includes basic features that are similar to NUnit, but it runs a lit-
tle slower. The upcoming versions of Visual Studio (2010) will add a lot
of power to this framework, but you can use it today as easily as NUnit.

One big problem with this framework is that it’s not as easily extensi-
ble as the other testing frameworks. To see how cumbersome it is to
add a simple attribute, see the discussion of YUnit on MSDN at http://
code.msdn.microsoft.com/yunit.

One big plus for this framework is that it’s integrated into the Visual
Studio Team System tool suite and provides good reporting, coverage,
and build automation out of the box. If your company uses Team Sys-
tem, I highly suggest using MSTest as your test framework because of
the good integration possibilities.

You can get MSTest with Visual Studio.

B.2.2 NUnit

NUnit is currently the de facto test framework for unit test developers
in .NET. It’s open source and is in almost ubiquitous use among those

B.2 Test frameworks
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://code.msdn.microsoft.com/yunit
http://code.msdn.microsoft.com/yunit

272 APPENDIX B Extra tools and frameworks
who do unit testing. I cover NUnit deeply in chapter 2. NUnit is easily
extensible and has a large user base and forums. I’d recommend it to
anyone starting out with unit testing in .NET. I still use it today.

You can get NUnit at http://nunit.com.

B.2.3 MbUnit

MbUnit is fully open source, and the “mb” stands for “model-based”
testing. It started out as a competitor to NUnit but soon zoomed past
NUnit in terms of features and abilities.

MbUnit is easily extensible and supports lots of interesting test attri-
butes, such as Repeat and Timeout. MbUnit has its own UI and con-
sole runners that also support running tests written in NUnit. If you’re
looking for something more in your current test framework, MbUnit is
a good step up from NUnit. I almost never have to use such features
myself, but if you’re mixing integration testing and unit testing with the
same framework, MbUnit is a good fit.

You can get MbUnit at www.mbunit.com.

B.2.4 Gallio

Gallio is an open source platform for running tests written in most (if
not all) unit test frameworks in .NET, from NUnit to MSTest. Gallio is
also extensible, and you can create your own custom test runner using
it. It has plugins for Visual Studio .NET, which can highlight coding
errors relating to tests and other things. It’s still not in very popular
use, but it’s built by the same people who maintain MbUnit, and it’s a
fully working, robust product that seems to have been in an endless
beta cycle for the past year or so.

You can get Gallio at www.gallio.org.

B.2.5 xUnit

xUnit is an open source test framework, developed in cooperation with
one of the original authors of NUnit, Jim Newkirk. It’s a minimalist
and elegant test framework that tries to get back to basics by having
fewer features, not more, than the other frameworks, and by support-
ing different names on its attributes.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://nunit.com
www.mbunit.com
www.gallio.org

IoC containers 273
What is so radically different about it? It has no setup or teardown
methods, for one. You have to use the constructor and a dispose method
on the test class. Another big difference is in how easy it is to extend.

Because xUnit reads so differently from the other frameworks, it takes
a while to get used to it if you’re coming from a framework like NUnit
or MbUnit. If you’ve never used any test framework before, xUnit is
easy to grasp and use, and it’s robust enough to be used in a real project.

For more information and download see www.codeplex.com/xunit.

B.2.6 Pex

Pex (short for program exploration) is an intelligent assistant to the
programmer. From a parameterized unit test, it automatically produces
a traditional unit test suite with high code coverage. In addition, it sug-
gests to the programmer how to fix the bugs.

With Pex, you can create special tests that have parameters in them,
and put special attributes on those tests. The Pex engine will generate
new tests that you can later run as part of your test suite. It’s great for
finding corner cases and edge conditions that aren’t handled properly
in your code. You should use Pex in addition to a regular test frame-
work, such as NUnit or MbUnit.

You can get Pex at http://research.microsoft.com/projects/pex/.

IoC (Inversion Of Control) containers can be used to improve the
architectural qualities of an object-oriented system by reducing the
mechanical costs of good design techniques (such as using constructor
parameters, managing object lifetimes, and so on).

Containers can enable looser coupling between classes and their
dependencies, improve the testability of a class structure, and provide
generic flexibility mechanisms. Used judiciously, containers can
greatly enhance the opportunities for code reuse by minimizing direct
coupling between classes and configuration mechanisms (such as by
using interfaces).

B.3 IoC containers
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.codeplex.com/xunit
http://research.microsoft.com/projects/pex/

274 APPENDIX B Extra tools and frameworks
We’ll look at the following tools:

❂ StructureMap
❂ Microsoft Unity
❂ Castle Windsor
❂ Autofac (Auto Factory)
❂ Common Service Locator Library
❂ Spring.NET
❂ Microsoft Managed Extensibility Framework
❂ Ninject

Let’s look briefly at each of these frameworks.

B.3.1 StructureMap

StructureMap is an open source container framework that has one
clear differentiator from the others. Its API is very fluent and tries to
mimic natural language and generic constructs as much as possible.

StuctureMap has a relatively small user base, and the current documen-
tation on it is lacking, but it contains some powerful features, such as a
built-in automocking container (a container that can create stubs auto-
matically when requested to by the test), powerful lifetime management,
XML-free configuration, integration with ASP.NET, and more.

You can get StructureMap at http://structuremap.sourceforge.net.

B.3.2 Microsoft Unity

Unity is a latecomer to the DI container field, but it provides a simple
and minimal approach that can be easily learned and used by begin-
ners. Advanced users may find it lacking, but it certainly answers my
80-20 rule: it provides 80 percent of the features you look for most of
the time.

Unity is open source by Microsoft, and it has good documentation. I’d
recommend it as a starting point for working with containers.

You can get Unity at www.codeplex.com/unity.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://structuremap.sourceforge.net
www.codeplex.com/unity

IoC containers 275
B.3.3 Castle Windsor

Castle is a large open source project that covers a lot of areas. Windsor
is one of those areas, and it provides a mature and powerful implemen-
tation of a DI container.

Castle Windsor contains most of the features you’ll ever want in a con-
tainer and more, but it has a relatively high learning curve due to all the
features.

You can learn about Castle Windsor at www.castleproject.org/con-
tainer/ and download the Castle project at www.castleproject.org.

B.3.4 Autofac

Autofac is a fresh approach to IoC in .NET that fits well with the C# 3.0
syntax. It takes a rather minimalistic approach in terms of APIs. The
API is radically different from the other frameworks, and requires a bit
of getting used to. It also requires .NET 3.5 to work, and you’ll need a
good knowledge of lambda syntax. Autofac is difficult to explain, so
you’ll have to go to the site to see how different it is. I recommend it for
people who already have experience with other DI frameworks.

You can get it at http://code.google.com/p/autofac/.

B.3.5 Common Service Locator Library

The Common Service Locator (CSL) was born out of a need to create
a common infrastructure in applications for getting instances of things.
Using the advice of the leading open source container frameworks,
Microsoft created a shared library that can help abstract away the
actual container your application might use. The CSL sits in front of
the container of your choice, be it Unity, StructureMap, or Castle.

You don’t need to use the CSL, but the concept of abstracting away the
choice of container in your application is a useful one. Most application
authors were doing this anyway, so using CSL is one step in making it
more of a recommended design pattern.

You can get the Common Service Locator library at www.code-
plex.com/CommonServiceLocator.
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.castleproject.org/container/
www.castleproject.org/container/
http://code.google.com/p/autofac/
www.castleproject.org
www.codeplex.com/CommonServiceLocator
www.codeplex.com/CommonServiceLocator

276 APPENDIX B Extra tools and frameworks
B.3.6 Spring.NET

Spring.NET is an open source container framework. It’s one of the
oldest and is a port of the Java Spring Container libraries. It has a lot
of abilities, but many consider it to be a sort of dinosaur among the
other frameworks, with an API that isn’t as easy to use, and configura-
tion that isn’t as friendly as it could be.

You can get Spring.NET at www.springframework.net.

B.3.7 Microsoft Managed Extensibility Framework

The Managed Extensibility Framework (MEF) isn’t actually a con-
tainer, but it does fall in the same general category of providing ser-
vices that instantiate classes in your code. It’s designed to be much
more than a container; it’s a full plugin model for small and large appli-
cations. MEF includes a lightweight IoC container framework so you
can easily inject dependencies into various places in your code by using
special attributes.

MEF does require a bit of a learning curve, and I wouldn’t recommend
using it strictly as an IoC container. If you do use it for extensibility
features in your application, it can also be used as a DI container.

You can get MEF at www.codeplex.com/MEF.

B.3.8 Ninject

Ninject is a latecomer to the DI field, but it has a simple syntax and
good usability. There isn’t much else to say about it except that I highly
recommend taking a look at it.

You can find out more about Ninject at http://ninject.org/.

How to do database testing is a burning question for those who are
starting out. Many questions arise, such as, “Should I stub out the
database in my tests?” This section provides some guidelines.

First, let’s talk about doing integration tests against the database.

B.4 Database testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.springframework.net
www.codeplex.com/MEF
http://ninject.org/

Database testing 277
B.4.1 Use integration tests for your data layer

How should you test your data layer? Should you abstract away the
database interfaces? Should you use the real database?

I usually write integration-style tests for the data layer (the part of the
app structure that talks directly to the database) in my applications
because data logic is almost always divided between the application
logic and the database itself (triggers, security rules, referential integ-
rity, and so on). Unless you can test the database logic in complete iso-
lation (and I’ve found no really good framework for this purpose), the
only way to make sure it works in tests is to couple testing the data-
layer logic to the real database.

Testing the data layer and the database together leaves few surprises
for later in the project. But testing against the database has its prob-
lems, the main one being that you’re testing against state shared by
many tests. If you insert a line into the database in one test, the next
test can see that line as well.

What we need is a way to roll back the changes we make to the data-
base, and thankfully there’s good support for this in the current test
tools and the .NET framework.

B.4.2 Use rollback attributes

The three major frameworks—MbUnit, NUnit, and xUnit—support a
special [Rollback] attribute that you can put on top of your test
method. When used, the attribute creates a special database transac-
tion that the test code runs in. When the test is finished, the database
transaction is rolled back automatically, and the changes to the data-
base vanish.

To learn more about how this works, see an MSDN article I wrote a
while back, called “Simplify Data Layer Unit Testing using Enterprise
Services” at http://msdn.microsoft.com/en-us/magazine/cc163772.aspx.

If you aren’t interested in using the [Rollback] attributes the frame-
works provide, you can use the simple class introduced in .NET 2.0
called TransactionScope.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://msdn.microsoft.com/en-us/magazine/cc163772.aspx

278 APPENDIX B Extra tools and frameworks
B.4.3 Use TransactionScope to roll back

For examples on how to use the TransactionScope class in your setup
and teardown code, see a blog article called “Even Simpler Database
Unit Testing with TransactionScope” at http://www.bbits.co.uk/blog/
archive/2006/07/31/12741.aspx.

Some feel that another good option is to run the tests against an in-
memory database. My feelings on that are mixed. On the one hand, it’s
closer to reality, in that you also test the database logic. On the other
hand, if your application uses a different database engine, with differ-
ent features, there’s a big chance that some things will pass or fail dur-
ing tests with the in-memory database, and will work differently in
production. I choose to work with whatever is as close to the real thing
as possible. Usually that means using the same database engine.

“How do I test my web pages?” is another question that comes up a lot.
Here are some tools that can help you in this quest:
❂ Ivonna
❂ Team System Web Test
❂ NUnitAsp
❂ Watir
❂ WatiN
❂ Selenium
The following is a short description of each tool.

B.5.1 Ivonna

Ivonna is a unit-testing framework that abstracts away the need to run
ASP.NET-related tests using a real HTTP session and pages. It does
some powerful things behind the scenes, such as compiling pages that
you want to test and letting you test controls inside them without need-
ing a browser session, and it fakes the full HTTP runtime model.

You write the code in your unit tests just like you’re testing other in-
memory objects. There’s no need for a web server and such nonsense.

B.5 Web testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://www.bbits.co.uk/blog/archive/2006/07/31/12741.aspx
http://www.bbits.co.uk/blog/archive/2006/07/31/12741.aspx

Web testing 279
Ivonna is being developed in partnership with Typemock and runs as
an add-on to the Typemock Isolator framework. You can get Ivonna at
http://sm-art.biz/Ivonna.aspx.

B.5.2 Team System Web Test

Visual Studio Team Test and Team Suite editions include the powerful
ability to record and replay web requests for pages and verify various
things during these runs. This is strictly integration testing, but it’s
really powerful. The latest versions also support recording Ajax actions
on the page, and make things much easier to test in terms of usability.

You can find more info on Team System at http://msdn.microsoft.com/
en-us/teamsystem/default.aspx.

B.5.3 NUnitAsp

NUnitAsp is an open source framework that’s no longer being sup-
ported but is still used in many places. It allows you to write tests
against live HTTP page objects.

Most people end up using NUnitAsp for acceptance testing. In those
cases, it would be better to use frameworks such as Watir and WatiN,
described next.

You can get NUnitAsp at http://nunitasp.sourceforge.net/.

B.5.4 Watir

Watir (pronounced “water”) stands for “Web application testing in
Ruby”. It’s open source, and it allows scripting of browser actions
using the Ruby programming language. Many Rubyists swear by it,
but it does require that you learn a whole new language.

You can get Watir at http://wtr.rubyforge.org/.

B.5.5 WatiN

WatiN (pronounced “what-in”) is a product inspired by Watir. You
don’t need to know Ruby to use WatiN, but it offers much the same
scripting abilities as Watir.

You can get WatiN at http://watin.sourceforge.net/.
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://sm-art.biz/Ivonna.aspx
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://nunitasp.sourceforge.net/
http://wtr.rubyforge.org/
http://watin.sourceforge.net/

280 APPENDIX B Extra tools and frameworks
B.5.6 Selenium

Selenium is a suite of tools designed to automate web app testing across
many platforms. It has existed longer than all the other frameworks in
this list, and it also has an API wrapper for .NET.

Selenium is an integration testing framework, and it’s in wide use. It’s a
good place to start. But beware: it has many features and the learning
curve is high.

You can get it at http://selenium.openqa.org/.

UI testing is always a difficult task. I’m not a great believer in writing
unit tests or integration tests for UIs because the return on such tests is
low compared to the amount of time you invest in writing them. UIs
change too much to be testable in a consistent manner, as far as I’m
concerned. That’s why I usually try to separate all the logic from the
UI into a lower layer that I can test separately with standard unit-test-
ing techniques.

Nevertheless, there are several tools that try to make the UI-testing job
easier:

❂ NUnitForms
❂ Project White
❂ Team System UI Tests

Here is a short rundown of each tool.

B.6.1 NUnitForms

NUnitForms is an open source framework that allows you to instanti-
ate Windows Forms classes and check values of controls inside them. It
has specific APIs for getting controls in a form and asserting values
against them, but it will only work for simple controls.

More complex controls aren’t supported and the framework doesn’t
seem to be in active development anymore, so I recommend not using

B.6 UI testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://selenium.openqa.org/

Thread-related testing 281
it. Instead, I recommend Project White (discussed next) for WinForm
testing.

You can get it at http://nunitforms.sourceforge.net/.

B.6.2 Project White

Project White is, in a way, a successor to NUnitForms, in that it sup-
ports a richer set of application types (WPF, WinForm, Win32, and
Java JWT), and sports a newer API with better usability. Unlike
NUnitForms, White is more of an integration-test framework, because
it allows spawning separate processes that it tests against.

White uses the UIAutomation API (part of Windows) to do its bid-
ding, which gives it much more power. You can think of it as Selenium
or WatiN for WinForms.

You can get White at http://www.codeplex.com/white.

B.6.3 Team System UI Tests

The upcoming version of Visual Studio Team System will support a
new kind of test—a UI test. You’ll be able to record actions on UI win-
dows and play them back and verify assertions during test runs. As
with all Team System tools, its main advantage will be its integration
with other Team System tools, reports, source control, and servers.

You can learn more about Team System at http://msdn.microsoft.com/
en-us/teamsystem/default.aspx.

Threads have always been the bane of unit testing. They’re simply untest-
able. That’s why new frameworks are emerging that let you test thread-
related logic (deadlocks, race conditions, and so on), such as these:

❂ Typemock Racer
❂ Microsoft CHESS
❂ Osherove.ThreadTester

I’ll give a brief rundown of each tool.

B.7 Thread-related testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

http://nunitforms.sourceforge.net/
http://www.codeplex.com/white
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://msdn.microsoft.com/en-us/teamsystem/default.aspx

282 APPENDIX B Extra tools and frameworks
B.7.1 Typemock Racer

Typemock Racer is a managed framework for multithreaded code test-
ing that helps visualize, detect, and resolve deadlocks and race condi-
tions in managed code. You use it by putting an attribute on top of an
existing test method, and the engine does all the work. It also allows
full thread visualization during debugging of a threaded test.

NOTE Full disclosure: during the writing of this book, I’ve been part of the
developer team at Typemock.

Racer is a commercial product that works with all flavors of Visual
Studio (including Express) and all test frameworks. You can get it at
www.Typemock.com.

B.7.2 Microsoft CHESS

CHESS is an upcoming tool that will be offered by Microsoft with
Visual Studio 2010. (It’s currently offered only as part of MS
Research.) Much like Typemock Racer, CHESS attempts to find
thread-related problems (deadlocks, hangs, livelocks, and more) in
your code by running all relevant permutations of threads on existing
code. These tests are written as simple unit tests.

CHESS currently supports native code, but a managed .NET version
should be coming out soon as part of Visual Studio Team System (a
commercial product).

You can get CHESS at
http://research.microsoft.com/projects/CHESS/.

B.7.3 Osherove.ThreadTester

This is a little open source framework I developed a while back. It
allows you to run multiple threads during one test to see if anything
weird happens to your code (deadlocks, for example). It isn’t feature-
complete, but it’s a good attempt at a multithreaded test (rather than a
test for multithreaded code).

You can get it from my blog, at http://weblogs.asp.net/rosherove/
archive/2007/06/22/multi-threaded-unit-tests-with-osherove-thread-
tester.aspx.
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.Typemock.com
http://research.microsoft.com/projects/CHESS/
http://weblogs.asp.net/rosherove/archive/2007/06/22/multi-threaded-unit-tests-with-osherove-threadtester.aspx
http://weblogs.asp.net/rosherove/archive/2007/06/22/multi-threaded-unit-tests-with-osherove-threadtester.aspx
http://weblogs.asp.net/rosherove/archive/2007/06/22/multi-threaded-unit-tests-with-osherove-threadtester.aspx

Acceptance testing 283
Acceptance tests enhance collaboration between customers and devel-
opers in software development. They enable customers, testers, and
programmers to learn what the software should do, and they automati-
cally compare that to what it actually does. They compare customers'
expectations to actual results. It’s a great way to collaborate on compli-
cated problems (and get them right) early in development.

Unfortunately, there are few frameworks for automated acceptance
testing, and just one that works these days! I’m hoping this will change
soon. Here are the tools we’ll look at:

❂ FitNesse
❂ StoryTeller

Let’s take a closer look.

B.8.1 FitNesse

FitNesse is a lightweight, open source framework that makes it easy
for software teams to define acceptance tests—web pages containing
simple tables of inputs and expected outputs—and to run those tests
and see the results.

FitNesse is quite buggy, but it has been in use in many places with
varying degrees of success.

You can learn more about FitNesse at www.fitnesse.org.

B.8.2 StoryTeller

StoryTeller is a response to FitNesse, which has existed for a long time
but presented many usability and stability problems for users. It’s an
open source framework, still in development, that attempts to create a
more compelling UI and usability story than FitNesse. There aren’t
many details on it yet, but hopefully it will be out soon. It will support
running tests written for FitNesse.

The project page is at http://storyteller.tigris.org/, but most of the real
details are found on the author’s blog: http://codebetter.com/blogs/jer-
emy.miller/archive/tags/StoryTeller/default.aspx.

B.8 Acceptance testing
Licensed to Jeff Warwick <devon@cloverpoint.com>

www.fitnesse.org
http://storyteller.tigris.org/
http://codebetter.com/blogs/jeremy.miller/archive/tags/StoryTeller/default.aspx
http://codebetter.com/blogs/jeremy.miller/archive/tags/StoryTeller/default.aspx

Index
Symbols
.dll 32
.NET 21, 25, 56, 69, 100, 151

extension methods 129, 269
Moq framework 100, 126
NMock 100
Rhino Mocks 100
Typemock 100

.NET mock object frameworks 129

A
AAA See arrange-act-assert model
AAA-style stubs 128
abstract class 259
abstract test class 159
abstract test driver class pattern 159
abstract test infrastructure class pattern 152
abstractions 263
acceptance testing 268, 283
acceptance-style test 251
accidental bugging 9
Act action 30
action attributes 34
action-driven testing 83
actions See test actions
Adapt Parameter 96
Addison-Wesley 227, 231
agent of change 220
agile 142, 234
Ajax 279
analyzer object 188
annotated method 79
anonymous delegate 120, 124–125
anonymous method 124, 249

anti-patterns 192
constrained test order 192
external-shared-state corruption 198
hidden test call 194
shared-state corruption 196

API 168
See also interface

API changes 174
Arrange action 30
arrange-act-assert model 103, 126
arrange-act-assert style 269
arrange-act-assert syntax 269
art of unit testing 52
ArtOfUnitTesting 268
ASP.NET 274, 278
Assert 31, 35–36, 38, 42–43
Assert action 30
Assert class 31
assert failures 180
assert messages 209, 212

best practices 212
repetition 213

assert utility class 168
assert utility method 168
Assert.AreEqual 31
Assert.AreSame 31
Assert.IsTrue 31
Assertion See test assertion
assertion logic 188
assumptions 205, 209
attributes

Category 39
ExpectedException 38
Ignore 38
SetUp 34–35
284

Licensed to Jeff Warwick <devon@cloverpoint.com>

INDEX 285
attributes (continued)
TearDown 34–35
Test 30
TestFixture 30
TestFixtureSetUp 36
TestFixtureTearDown 36
See also NUnit & unit-testing framework

Auto Factory See Autofac
Autofac 62, 261, 274–275
automated build 142–143, 146–147, 169,

225
types 144

automated test 6, 11, 28, 30, 141
automocking container 274

B
base class 75, 159, 163–165
Beck, Kent 4
Beizer, Boris 227
best practices 172, 230
blockers 220
bottom-up change 223
brittle test 94, 97, 107, 206

less brittle test 207
broken test 38, 175, 182
build break 142
build process 142–143, 228, 234
business logic 8

C
C# 124, 236
C++ 25, 100, 236, 239, 244, 265

mockpp 100
call chains 96
callback 120, 132
calling test 196
Castle 275

See also Microsoft Castle
Castle Windsor 62, 261, 274–275
Category 39
champions 220, 226
CHESS 282
class 5, 8, 148

methods 5, 148
class extensibility 263
class library 28
class under test See system under test
classic object-oriented design 81
classic testing 6
code adapter classes 252

code churn 228
“Code Churn Perspective” article 228
Code Complete 228
code consistency 225
code coverage 180, 273
code design 208
code duplication 254

refactoring 254
code integration 142
code integrity 224
code library 24
code quality 18, 231, 234
code reuse 151, 156
code smell 208
code under test See system under test
code with logic 23, 28
collaborator 50, 208
collections 209
Common Language Runtime 247
Common Service Locator 274–275
Communications of the ACM 235–237
Complete Guide to Software Testing, The 7
components 5, 240–241

complex 243
easy 243
mapping 241
priority list 240
rating 240

composite object hierarchy 62
concrete class 259
Conditional attribute 79
conditional compilation 69, 79

#if and #endif 80
when to use 69

configuration class 168
configuration data 241
Configuration property 95
ConfigurationManager 152
ConfigurationManagerTests 152
conflicting test 176–177
console application 5, 13
constructor injection 58–59, 64–65, 260

parameters 63
when to use 63

constructors 258
static constructors 258

containers 62
Autofac 62
Castle Windsor 62
Licensed to Jeff Warwick <devon@cloverpoint.com>

286 INDEX
containers (continued)
container object 62
factory methods 62
Microsoft Unity 62
Ninject 62
Spring.NET 62
StructureMap 62

continuous integration 144, 225
continuous integration build 144
correctness 4
CppUnit 25, 236
CQL 253
CRUD (create, retrieve, update and

delete) 159
CruiseControl.NET 143
CSL See Common Service Locator
Curtis, Bill 237
custom header 159
cyclomatic complexity 240

D
data access 8
data helper 8
data layer 277
data objects 259
database testing 268, 276
data-holder class 241
DBConfiguration 95
debug switch 68
debugging 19, 32, 146, 225

bug-fixing time 228
bugs 10, 18–19
bugs per class 235
reopening bugs 228

decision-making code See logical code
decoupled design 132
defects 228
delegates 247, 258
dependencies 11, 40, 52–53, 62–63, 65, 80,

132, 240–241, 243
breaking 55
direct dependency 51, 54, 260
external dependency 87
fake dependency 58, 69
injecting fake dependencies 97
injection with properties 64
non-optional 61, 63
production dependencies 75
relevant 62
replacing 73

dependency driven 242
dependency injection 64, 245, 261, 268
Dependency Inversion Principle 78
dependency level 240
Depender 246, 248
derived class 71–72, 156, 158–159, 163–164,

166
Design Patterns 68
development stages 232
DI container 275
DI frameworks 275
domain logic 61
dos and don'ts of introducing unit

testing 219
driving force 229
DRY (“don’t repeat yourself”)

principle 151, 184
duplicate code 246
duplicate test 173, 177, 185
duplication 182, 184, 186

factory methods 187
removing 186, 196
setup method 188
See also duplicate test

dynamic fake 102
dynamic fake object

definition 102
dynamic languages 266
dynamic mock object 102, 104, 137
dynamic mocks 99
dynamic stubs 99

combining with mocks 112
dynamically generated object 104

E
easy-first strategy 242

pros and cons 242
EasyMock 100
Eclipse 165
Eclipse for Java 22
empirical evidence 235
encapsulation 77

See also object-oriented
end assert 208
end functionality 174, 182
end result 83, 90, 158, 208
Endres, Albert 236
entry points for test-driven

development 222
Licensed to Jeff Warwick <devon@cloverpoint.com>

INDEX 287
event notification 26
event recognition 26
events 121

event source 124
event-related actions 121
event-related assertions 132
EventsVerifier 125
registering for an event 121
testing event triggering 124
triggering an event 123

exceptions 14, 24, 38, 179, 199
ArgumentException 36
deliberate exceptions 33
expected exceptions 36
stack trace 24
unhandled exception 33

Execute Tests button 252
execution path 36
expectations 104, 109, 135

assertion 105
best practices 136
expectations on mocks 105
expectations on stubs 105
mockEngine.Verify(mockObject) 105
mockEngine.VerifyAll() 105
MockRepository.GenerateStub 105
MockRepository.StrictMock 105
MockRepository.Stub 105
MockRespository.DynamicMock. 105
Moq framework 126
nonstrict mocks 106
order of method calls 109
overspecifying 136
recording stage 109
simulated object 104
strict mocks 106
stub object 111
Verify(mock) 105
verifying 111

expected object 119
ExpectedException 38, 44, 49

expected exception message 38
See also exceptions

extended reflection PIs 247
extensions 240
external dependency 50, 89, 258

definition 50
external resource 44, 168, 196–197
external-shared-state corruption 192

Extract and Override 71, 73, 75, 81
when to use 74, 77

F
factories 68
factory class 168

fake factory 69
faking 70
implementation 68

factory method 72, 151, 163–165, 167–168
virtualizing 76

factory pattern 66
failing test 18, 32–33, 36, 174, 178, 191, 200,

245
fake class 249
fake component 95
fake dependency 70

See also dependencies
fake exception 129
fake methods 134
fake objects 44, 68, 84, 97, 108, 110, 189,

191
return values 108

fake result 75
fake values 247
fakes 50, 90, 135, 191

when a mock object 90
when a stub 90

faking 69–70
fake result 75
fake returning a fake 71
layers 69

fast tests 39
fast-running test 144
Feathers, Michael 10, 55, 73, 96, 183, 246,

250–251, 253
feedback 10
FICC properties 257
filesystem 50, 51, 53

configuration file 52
FileExtensionManager 53–54, 56

final functionality 7
final result See final functionality
FinalBuilder 143
FitNesse 246, 251, 283

download 253
usage 252

FitNesse engine 252
wrapper classes 252
Licensed to Jeff Warwick <devon@cloverpoint.com>

288 INDEX
FitNesse table 252
fixture 36, 252
flow diagrams 224
folder structure 145
FUD (fear, uncertainty, and doubt) 220
full objects 119, 203

G
Gallio 271–272
generic implementation 15
generics 152, 166, 247
GlobalUtil 95
goals 227
good test 171
good unit test 3

See also unit test
Gremillion, Lee L. 236
gripped items 251
groups

test-code coverage report 226
guerrilla-style implementation 223
GUID (globally unique identifier) 116

H
Hanselman, Scott 62, 261
hardcoded strings 209
hard-first strategy 242, 244

pros and cons 243
hardware 236
hardware simulator 236
Haskell programming language 25
helper classes 8, 117, 170

Contains 117
EndsWith 117
Like 117
StartsWith 117
Text 117

helper frameworks 63
See also containers

helper methods 15–16, 162, 186, 188,
190–191, 198, 215, 258

Hetzel, Bill 7
hidden test call 192

duplication 195
flow testing 195
laziness 195
problems 195
solutions 195

HTML tables 252

HUnit 25
Hunt, Andy 151

I
IDE See integrated development

environment
IEEE Software 236
IEEE Transactions on Software Engineering 236
IExtensionManager 58
Ignore 38
ignored test 38–39
independent test 34
indirect testing 40
indirection 52–53, 71, 181

layers 70
infrastructure API 167
inheritance 151, 157

See also test class inheritance
inheritance patterns 165
initial state 196
injecting 58
injection 55, 89

constructor injection 58
factory class 66
getting stub before method call 66
local factory 71
properties 64
See also stub

insiders 220
integrated development environment 22
integrating test-driven development 219
integration process 144
integration test 7–8, 45, 50–51, 169, 244

failure points 8
hidden 146
problems 51
slow-running tests 145

integration testing 3, 7, 151, 168, 268, 272
definition 8
drawbacks 9
See also integration test

integration testing framework 280
integration zone 147

See also safe green zone
integration-style test 244, 251, 277

process 245
intellectual property 264
IntelliJ IDEA 165
intellisense 210
Licensed to Jeff Warwick <devon@cloverpoint.com>

INDEX 289
interaction testing 82–83, 137
action-driven testing 83
comparison with state-based testing 83
definition 83

interactive user dialogs 14
interface 52

custom implementation 58
extraction 55
IExtensionManager 58
interactive 53
original implementation 58
receiving as a property 55, 58
receiving at constructor level 55, 58
underlying implementation 52–53
See also stub

Interface Segregation Principle 78
interface-based design 260
internal method 183
InternalsVisibleTo 78, 80
invalid test 173, 176
inversion of control 62
inversion of control containers See containers
Inversion of Control principle 63
IoC 275

See also inversion of control
IoC containers 63, 261, 268, 273

See also containers
IP See intellectual property
Iscoe, N. 237
isolated test 256
isolation frameworks 268

See also mock object frameworks
Isolator See Typemock
Ivonna 278
IWebService 104

J
Java 25, 100, 131, 239, 248, 258

EasyMock 100
jMock 100
legacy code 250
Vise 250

Java JWT 281
Java Spring Container 276
jMock framework 100, 131, 270
JMockit 237, 246, 248–250

test sample 249
Johnson, Mark 227
Jones, Capers 231
JUnit 25, 192

K
Krasner, H. 237

L
lambda syntax 275
lambdas 128, 134, 269
leftover state 34
legacy code 9, 132, 236, 239, 246, 254

definition 10
problems 240

legacy code tools
when to use which 246

legacy project 244
legacy system 51
license.txt 26
Liskov Substitution Principle 78
lists 209
Load event 122
local factory 71
log files 25
LogAn project 25, 29
LogAnalyzer 35, 41, 50, 67, 87, 105, 152

interaction with web service 89
LogAnalyzerTests 152
logger dependency 152
LoggingFacility 152
logical code 12
logic-driven 242
long-running test 144

M
magic values 137
maintainability 4, 44, 63, 81, 89, 94, 96, 141,

150, 171, 176–177, 181, 185, 195, 216,
231, 233

maintainable test 11, 16, 18, 25, 33, 61, 97,
175, 188, 203, 205, 215

maintenance mode 237
management 224
manual mocks 94, 96, 98, 103, 113

problems 96, 100
manual stubs 94, 96

problems 96
Martin, Robert C. (“Bob”) 78, 257, 263, 266
MbUnit 192, 236, 271–272, 277

parameterized test 201
RowSet attribute 201

McConnell, Steve 228
McGraw-Hill 231
Licensed to Jeff Warwick <devon@cloverpoint.com>

290 INDEX
MEF See Microsoft Managed Extensibility
Framework

Meszaros, Gerard 50, 88, 149, 205
method 28
method behavior 182
method constants 181
method contract 182
method logic 36
method parameters 181
method strings 133
Microsoft 274–275, 282
Microsoft Castle 275
Microsoft CHESS 281

See also CHESS
Microsoft Managed Extensibility

Framework 274, 276
Microsoft Press 228
Microsoft Unity 62, 261, 274
missing test 181
mock classes 132
mock email service 91
mock frameworks 74
mock object 44, 82, 85, 87, 89–90, 99, 105,

108, 135, 189, 257
asserts 85
combining with stubs 89, 97
definition 84
difference with stub 84, 97
dynamic mocks 99
expectations 105
how many per test 94
LastCall 108
mock object frameworks 85
nonstrict mocks 106
optimal mocks per test 136
return values 108
reusing 89
setters 94
strict mocks 106
using mocks too much 97
what to test 136

mock object frameworks 98–99, 121, 126
advantages 100, 134
arrange-act-assert 126
definition 100
parameter constraints 115
Rhino Mocks 99
smart stubs 110
when not to use 135

mock service 124
mockpp 100
MockRepository

StrictMock 103
mocks 50, 269

See also mock object
model-based testing 272
module 24
Moq framework 100, 126, 130, 134, 269
MSBuild 143
MSDN 271, 277
MSTest 271
multiple aspects 202
multiple asserts 94, 179–180, 198, 202–203
multiple method calls 134
multiple tests 15, 177, 200, 202
multiple threads 254
multithreaded test 179, 282
Myre, Glenford 235

N
namespace 32, 39, 145, 147
naming convention 210
NAnt 143
NCover 180, 234
NDepend 246, 253

download 253
query language 253

new test 180
Newkirk, James (“Jim”) 237, 272
nightly build 147, 225
Ninject 62, 261, 274, 276
NMock 100, 131, 269–270
NMock2 131

difference with Rhino Mocks 131
nonsealed classes 258, 260, 267
nonstrict mocks 106–107, 136
nontestable design 262, 266
NUnit 21, 24–27, 29–30, 32, 35, 49, 102,

156, 192, 199, 271–272, 277
actions 34
assembly 29, 32
Assert class 30
attribute scheme 29
attributes 26, 29, 34–36, 44
automated test 30
Categories tab 40
color scheme 33
getting started 26
Licensed to Jeff Warwick <devon@cloverpoint.com>

INDEX 291
NUnit (continued)
GUI 26, 32–33, 39
initial state 34
installing 26
open source license 26
parameterized test 201
Row attribute 201
RowSet attribute 201
Run button 32, 40
Selected Categories 40
SetUp attribute 34
special attributes 34
TearDown attribute 34
test actions 30
Test attribute 30
test class 30
test method 30
Test Not Run tab 39
TestFixture attribute 30
typename 32
unit test runner 26
version 26

NUnit.Extensions.dll 201
NUnit.Framework namespace 31
NUnit.Mocks 130, 133, 269–270

limitations 131
NUnitAsp 279
NUnitForms 280–281

O
object calls 82
object configuration methods 167
object model 167
object-oriented 52, 66, 77–78, 151, 182, 257,

263, 266
encapsulation 77
object-oriented design 78

Open Closed Principle 78, 257
ordered mocks 109
organizational change 223

bottom-up 223
top-down 223–224

organizational culture 219
organizational structure 228
Osherove.ThreadTester 281–282
outside consultant 224

advantages 224
overriding 203
overspecification 205

overspecified test 206–207
features 205

P
parameter constraints 115–116, 132

combining constraints 118
helper classes 116
parameter object properties 118
string constraint 116

parameter injection 58
parameter object refactoring 62
parameter verification 120, 134
parameterized test 199, 202
parser class 162
partial code test 23
patent issues 265
Peer Reviews in Software: A Practical Guide 227
Pex 271, 273
phishing 95
pilot project 223, 232

statistics 232
pilot test 222
political support 229
polymorphism 258
Poole, Charlie 131
posters 225
Pragmatic Programmer, The 151
presenter class 122
“Principles of OOD” article 257
priority 240, 244
private method 182
problem output 14
Proceedings of the 8th International Symposium on

Software Metrics 236
production bug 173

fixing 173
production class 13
production code 18, 29, 33, 66, 70, 72, 75,

79, 123, 136, 141, 148, 173, 180, 264
See also production class

production server 143
productivity 231
profiler APIs 247
program exploration See Pex
Programming Productivity 231
progress metrics 228
project 148

See also testing project
project failure

causes 229
Licensed to Jeff Warwick <devon@cloverpoint.com>

292 INDEX
project feasibility 222–223
Project White 281
properties 12, 64
property injection 65

when to use 65
protected method 182
public functionality 206
public properties 94

Q
QA engineer 220, 233, 235
QA process 233
QA team 233

R
readability 4, 61, 79, 89, 94, 96, 98, 128,

130, 135, 149–150, 170, 177–178, 209,
216

assert messages 209, 212
definition 171
importance 171
mock object initialization 215
separation of asserts and actions 214
setup and teardown method 214
test naming 210
variable naming 211

readable test 11, 18, 25, 33, 67, 156, 188,
190, 203

best practices 209
real object 90
real test 159
real-world scenarios 45
record-and-replay model 102, 104, 126, 269

difference with arrange-act-assert
model 128

recording stage 122
redefine class 249
Red-Green-Refactor 33
Refactor from DevExpress 165
refactored test 176
refactoring 17–18, 55, 87, 95, 132, 150, 152,

154, 165, 168, 173, 177, 180, 186, 190,
200, 208, 239, 244, 250

automated tools 134
definition 19, 55
maintainable state 186
over-refactoring 190
Vise 250–251

refactoring pattern
extracting an interface 55

refactoring phase 244
regression 9
reinvention 230
renaming 173, 177
Repeat 272
repeatable test 6, 22
repetition 137
replaceability 260
ReSharper 165, 246, 253, 264

download 254
navigations 253

ReSharper for .NET 134
result-driven testing 83

end result 83
return values 212
Rhino Mocks 99–100, 107, 110, 114, 116,

126, 132, 137, 269
arrange-act-assert model 103
comparison with other .NET mock object

frameworks 129
introduction 102
Mock Repository 103
ordered mocks 109
parameter constraints types 117
record-and-replay model 102
Rhino.Mocks.Dll 102
single parameter method 121
smart stubs 110
stub object properties 111

roles 259
Rollback attribute 277
Ruby 265, 279
runtime 98–99, 102, 249

S
safe green zone 147, 169, 180
Scrum 226
sealed classes 78
seam 58, 67–68, 70–71, 74, 80

target layer 70
See also seams

seams 55, 68, 74, 240, 257, 260, 263
creating 58
definition 55
hiding 69
multiple 259
seam 67–68, 70
seam statements 69

security 260, 264
Licensed to Jeff Warwick <devon@cloverpoint.com>

INDEX 293
selection strategy 242
Selenium 278, 280–281
semantics 174, 264

changes 175, 185
See also test semantics

SetUp 35, 45, 49, 187
See also NUnit

setup action 34
setup code 151
setup method 152, 154, 156–157, 162, 170,

186, 189, 196, 198, 273
best practices 190
initializing objects 189–190
maintainable 190
wrong use 188
See also setup action

shared class 188
shared factory method 186
shared resources 196, 198
shared-state corruption 192

causes 197
maintainability 197
manifestation 196
problems 197
solutions 198
test subsets 197

Simian 246, 254
download 254

similar tests 177
simple objects 49
simple unit test 12, 27
single asserts 200
single responsibility principle 262, 264
single unit 9
singletons 198, 258, 261
slow tests 39
slow-running test 144
Smalltalk 4, 265
smart factories See inversion of control
smart stubs 110
software 236, 256
Software Assessments, Benchmarks, and Best

Practices 231
software development 4, 23
software module 8
Software QA Quarterly, The 227
SOLID 78, 237, 267
Solution Explorer 128
source control 142, 144, 147

Spring.NET 62, 261, 274, 276
SRP See single responsibility principle
state sharing 36
state verification See state-based testing
state-based testing 40, 82–83, 137

comparison with interaction testing 83
definition 40
result-driven testing 83
when to use 84

static languages 266
static method 183, 258, 260
static state 198
statics 67, 258
StoryTeller 283
strict mocks 106

failure 106
StrictMock method 107

structured test 16, 22, 24
StructureMap 62, 261, 274–275
stub 54, 58, 66

asserts 85
combining with mock object 89
definition 50
difference with mock object 84
getting before method call 55, 66
injecting stub implementation 55, 58
injection 80
receiving before method call 58
setters 94
stub analyzer 60
stub extension manager 57
stub injection 58
stub manager 57
stub method 71
stub object 61

stub chains 95
stub class 57, 61, 72

configurability 57
StubExtensionManager 53
See also stub

stub loggers 167
stub method 71
stub object 71

See also stub
stubbing See faking
StubLogger 152
stubs 49, 82, 87, 102, 108, 124, 136, 269

combining with mocks 97
difference with mocks objects 97
Licensed to Jeff Warwick <devon@cloverpoint.com>

294 INDEX
stubs (continued)
dynamic stubs 99
fake values 110
how many per test 94
preference over mock objects 209

subclass 164
subteam 222
superclass 165
swap approach 249
swap class 249
system initialization methods 167
system state 167
system test 144
system testing 168
system under test See unit testing

T
T generic type 167
target server 143
tasks 144
TDD 17–18, 227, 235, 257

See also test-driven development
team formation 222
team support 230
Team System tools 281
Team System UI Tests 280–281
Team System Web Test 278
TeamCity 143
TearDown 35, 45, 49

See also NUnit
teardown action 34
teardown code 151
teardown method 196, 198, 273

See also teardown action
technical definition 5
techniques 268
template test class pattern 158
test actions 30
test API 150
test assembly 146
test assertion 30, 38, 43

assert class 24
assert message 24, 31
assert method 24

test blockage 191
test bug 173, 178

debugging 174
fixing 174

test categories 39

test class 27–28, 30, 36, 43–44, 103,
148–149, 154, 164

test class hierarchy 170
See also class

test class inheritance 151
abstract test driver class 151
abstract test infrastructure class 151
template test class 151

test class patterns 148–149
one-test-class-per-class pattern 149
one-test-class-per-feature pattern 150

test code 30, 210
semantics 74

test code coverage 227
code coverage tools 227
sample report 234

test code coverage report 225
test complexity 178
test conditions 29
test constructors 36
test design 16, 18, 237

guidelines 257
interface-based design 258
object-oriented 266

test destructors 36
test development

time consumed 242
test feasibility table 240
test fragility 178, 205
test frameworks 268, 271
test hierarchies 141
test isolation 182, 191, 198

flow testing 193
importance 193
laziness 193
multiple asserts 200
test design 193

test layers
advantages 70
disadvantages 70

test loading 29
test logic 41, 178
test mapping 148
test method 13, 27–28, 30, 40, 44, 57, 159,

164–165
expected behavior 29
method name 29
multiple 150

test name 210
Licensed to Jeff Warwick <devon@cloverpoint.com>

INDEX 295
test naming 18, 28, 33, 179
naming conventions 28

test order 192
test output 205
test pass 18
test path 242
test pattern names 50
test project 44, 145, 149
test quality 177
test result 40
test review 172, 191, 221
test run 32, 34, 36, 67, 252
test runner 14, 24, 199

test results 24
test semantics 173, 184
Test Spy 88
test state 36, 196–197
test stubs 44
test subsets 193, 195
test suite 252
testability 45, 53, 55–56, 78, 150, 244, 247,

256–257, 263, 270, 273
alternatives 265
complexity 264
designing code 238
problems 248

testable design 78, 81, 256–257, 262–263
properties 256

testable object-oriented design (TOOD) 78,
81

testable system 257
test-code coverage report 226
test-driven development 3, 16–18, 33, 182,

219, 225, 236, 257
incremental 17
style choice 237
technique 18

Test-Driven Development in Microsoft .NET 237
test-driven development techniques 239
test-first 16
TestFixtureSetUp 36
TestFixtureTearDown 36
testing guidance 151, 159
testing project 29
test-inhibiting design 51
third-party tools 25
Thomas, Dave 151
threading problems 254
thread-related testing 268, 281

threads 50
three pillars 172
threshold of logic 241
Timeout 272
TOOD See testable object-oriented design
tooling 239
tools 268
top-down change 223–224
ToString() 203
traditional coding See traditional develop-

ment
traditional development 18
TransactionScope 277–278
triggers 144
trustworthiness 171, 215
trustworthy test 172, 180

definition 171
guidelines 172

try-catch 199, 202
Typemock 100, 126, 128–129, 137, 237, 244,

246, 248, 260, 266, 279
expectations 132

Typemock code
download 254

Typemock Isolator 97, 269
See also Typemock

Typemock Racer 246, 254, 281–282

U
UI testing 268, 280–281
UIAutomation API 281
UIs 280
unit test 3, 6, 11, 23, 45, 126, 141, 169

actions 30
automation 10, 24
core techniques 138
ease of development 11
ease of running 180
fast tests 39
fast-running tests 145
final definition 11
frameworks 22
good unit test 5–6, 9–11
human factor 146
initial state 34
lifecycle 34
multiple tests 57
properties of a good unit test 6
quickness 10
Licensed to Jeff Warwick <devon@cloverpoint.com>

296 INDEX
unit test (continued)
removing 173
running a test 24
setup methods 34
slow tests 39
status 24
test placement 141
tools 44
unit 4

unit testing 4–5, 83
classic definition 4
coding 233
designing for testability 266
effect on release date 232
GUI 6
implementation 230, 232–233, 238
metrics 234–235
overall time reduction 233
system under test (SUT) 4
time added 231
time consumed 232
tough questions 231

unit-testing framework 11, 22–24, 145, 268
attributes 24
base classes 24
benefits 22
interfaces 24
list 24
xUnit framework 25

unit-testing technique 18, 243–244
Unity 274–275

See also Microsoft Unity
Unix 22
unreadable test 177
user interface (UI) 5
utility class 150, 167, 241
utility method 141, 150, 167, 176, 183

V
valid test 175
validation check 41
value to the project 241
variable naming

importance 211
VB.NET 124, 236, 260
verbosity 201

MbUnit 201

NUnit 201
versioning info 159
view class 122
virtual by default 258
virtual method 71–72, 75, 96, 134, 258–260,

267
virtualizing 76
Vise 246, 250–251
Visual Build Pro 143
Visual Studio 79, 128, 134, 149, 165, 253,

271
Visual Studio .NET 22, 272
Visual Studio 2008 26
Visual Studio Team Foundation Server 143
Visual Studio Team System 271, 281–282
Visual Studio Team System Test

Edition 180
Visual Studio Team Test 279
VS.NET 253

W
WatiN 278–279, 281
Watir 278–279
web service 49, 61, 74, 83, 87, 89–90, 113,

129, 257
MockWebService 87
stub 90

web testing 268, 278
whiteboards 225
Wiegers, Karl 227
wiki page 252
Win32 281
WinForm 281
Working Effectively with Legacy Code 10, 55, 73,

96, 183, 253
WPF 281
wrapper classes 96

X
xUnit 25, 271, 273
xUnit framework 25
xUnit Test Patterns 50, 88, 149, 205

Y
YUnit 271
Licensed to Jeff Warwick <devon@cloverpoint.com>

Test Review Guidelines

A more elaborate and always up-to-date version of these guidelines can be found at
http://www.artofunittesting.com/Test_Review_Guidelines

Reviewing General Tests
· Make sure the test does not contain logic or dynamic values 178

· Make sure the test tests one thing only 179
· Make sure that unit tests are separated from integration tests 180

· Check coverage by playing with values 180
· Make sure that testing private or protected methods is not the norm

(public is always better) 182
· Make sure there is little to no duplication of code in the tests 184
· Make sure setup and teardown methods are not abused 188, 214

· Make sure tests are completely isolated and repeatable 191
· Make sure that most tests only have one assert 198

· Make sure tests are not over-specifi ed 205
· Check for good naming conventions 210-211

· Make sure that only meaningful assert messages are used 212
· Make sure asserts are separated from actions 214

Reviewing Mocks and Stubs
· Make sure that state-based testing is preferred and used over interaction testing 83

· Make sure strict mocks are used as little as possible 106
· Make sure there is only one mock per test 94

· Make sure the test calls “Verify” or assert on one mock and not on all fake objects in the test
 (or it might be testing more than one thing) 123

· Make sure that only in rare cases a stub is also a mock at the same time in the same test 84

Licensed to Jeff Warwick <devon@cloverpoint.com>

ISBN 13: 978-1-933988-27-6
ISBN 10: 1-933988-27-4

9 7 8 1 9 3 3 9 8 8 2 7 6

99935

U
nit testing, done right, can mean the diff erence between a
failed project and a successful one, between a maintainable
code base and a code base that no one dares touch, and

between getting home at 2 AM or getting home in time for
dinner, even before a release deadline.

Th e Art of Unit Testing builds on top of what’s already been
written about this important topic. It guides you step by step
from simple tests to tests that are maintainable, readable, and
trustworthy. It covers advanced subjects like mocks, stubs, and
frameworks such as Typemock Isolator and Rhino Mocks.

And you’ll learn about advanced test patterns and organization,
working with legacy code and even untestable code. Th e book
discusses tools you need when testing databases and other
technologies. It’s written for .NET developers but others will
also benefi t from this book.

What’s Inside
How to create readable, maintainable, trustworthy tests
Stubs, mock objects, and automated frameworks
Working with .NET tools, including
NUnit, Rhino Mocks and Typemock Isolator

Th e chief architect at Typemock, Roy Osherove is
one of the original ALT.NET organizers. He consults
and trains teams worldwide on the gentle art of unit
testing and test-driven development. He frequently
speaks at international conferences such as TechEd
and JAOO. Roy’s blog is at ISerializable.com.

For online access to the author, code samples, and a free ebook for
owners of this book, go to www.manning.com/TheArtofUnitTesting

$39.99 / Can $49.99 [INCLUDING eBOOK]

the art of UNIT TESTING
.NET PROGRAMMING

“An important book that should
 have been written years ago.”
 —From the Foreword by
 Michael Feathers, Object Mentor

“Every book on unit testing ever
 written has been for amateurs.
 Th is is one is for professionals.”
 —Josh Cronemeyer
 Th oughtWorks

“Serious about soft ware
 craft smanship? Th is book is a
 must-have for everyone who is.”
 —Dave Nicolette
 Independent Agile Coach

“State of the art!”
 —Gabor Paller, OnRelay Ltd

“A thorough, incremental
 introduction and... ideas for
 refi ning [your] technique.”
 —Kent Beck
 Th ree Rivers Institute

M A N N I N G

123

SEE INSERTRoy Osherove
Foreword by Michael Feathers

	front cover
	Brief contents
	Contents
	Foreword
	Preface
	Acknowledgments
	About this book
	How to use this book
	Who should read this book
	Roadmap
	Code conventions and downloads
	Software requirements
	Author Online

	About the cover illustration
	Part 1 Getting started
	1 The basics of unit testing
	Unit testing—the classic definition
	1.1.1 The importance of writing “good” unit tests
	1.1.2 We’ve all written unit tests (sort of)

	Properties of a good unit test
	Integration tests
	1.3.1 Drawbacks of integration tests compared to automated unit tests

	Good unit test—a definition
	A simple unit test example
	Test-driven development
	Summary

	2 A first unit test
	Frameworks for unit testing
	2.1.1 What unit-testing frameworks offer
	2.1.2 The xUnit frameworks

	Introducing the LogAn project
	First steps with NUnit
	2.3.1 Installing NUnit
	2.3.2 Loading up the solution
	2.3.3 Using the NUnit attributes in your code

	Writing our first test
	2.4.1 The Assert class
	2.4.2 Running our first test with NUnit
	2.4.3 Fixing our code and passing the test
	2.4.4 From red to green

	More NUnit attributes
	2.5.1 Setup and teardown
	2.5.2 Checking for expected exceptions
	2.5.3 Ignoring tests
	2.5.4 Setting test categories

	Indirect testing of state
	Summary

	Part 2 Core techniques
	3 Using stubs to break dependencies
	Introducing stubs
	Identifying a filesystem dependency in LogAn
	Determining how to easily test LogAnalyzer
	Refactoring our design to be more testable
	3.4.1 Extract an interface to allow replacing underlying implementation
	3.4.2 Inject stub implementation into a class under test
	3.4.3 Receive an interface at the constructor level (constructor injection)
	3.4.4 Receive an interface as a property get or set
	3.4.5 Getting a stub just before a method call

	Variations on refactoring techniques
	3.5.1 Using Extract and Override to create stub results

	Overcoming the encapsulation problem
	3.6.1 Using internal and [InternalsVisibleTo]
	3.6.2 Using the [Conditional] attribute
	3.6.3 Using #if and #endif with conditional compilation

	Summary

	4 Interaction testing using mock objects
	State-based versus interaction testing
	The difference between mocks and stubs
	A simple manual mock example
	Using a mock and a stub together
	One mock per test
	Stub chains: stubs that produce mocks or other stubs
	The problems with handwritten mocks and stubs
	Summary

	5 Isolation (mock object) frameworks
	Why use isolation frameworks?
	Dynamically creating a fake object
	5.2.1 Introducing Rhino Mocks into your tests
	5.2.2 Replacing a handwritten mock object with a dynamic one

	Strict versus nonstrict mock objects
	5.3.1 Strict mocks
	5.3.2 Nonstrict mocks

	Returning values from fake objects
	Creating smart stubs with an isolation framework
	5.5.1 Creating a stub in Rhino Mocks
	5.5.2 Combining dynamic stubs and mocks

	Parameter constraints for mocks and stubs
	5.6.1 Checking parameters with string constraints
	5.6.2 Checking parameter object properties with constraints
	5.6.3 Executing callbacks for parameter verification

	Testing for event-related activities
	5.7.1 Testing that an event has been subscribed to
	5.7.2 Triggering events from mocks and stubs
	5.7.3 Testing whether an event was triggered

	Arrange-act-assert syntax for isolation
	Current isolation frameworks for .NET
	5.9.1 NUnit.Mocks
	5.9.2 NMock
	5.9.3 NMock2
	5.9.4 Typemock Isolator
	5.9.5 Rhino Mocks
	5.9.6 Moq

	Advantages of isolation frameworks
	Traps to avoid when using isolation frameworks
	5.11.1 Unreadable test code
	5.11.2 Verifying the wrong things
	5.11.3 Having more than one mock per test
	5.11.4 Overspecifying the tests

	Summary

	Part 3 The test code
	6 Test hierarchies and organization
	Having automated builds run automated tests
	6.1.1 Anatomy of an automated build
	6.1.2 Triggering builds and continuous integration
	6.1.3 Automated build types

	Mapping out tests based on speed and type
	6.2.1 The human factor of separating unit from integration tests
	6.2.2 The safe green zone

	Ensuring tests are part of source control
	Mapping test classes to code under test
	6.4.1 Mapping tests to projects
	6.4.2 Mapping tests to classes
	6.4.3 Mapping tests to specific methods

	Building a test API for your application
	6.5.1 Using test class inheritance patterns
	6.5.2 Creating test utility classes and methods
	6.5.3 Making your API known to developers

	Summary

	7 Integrating unit testing into the organization
	Writing trustworthy tests
	7.1.1 Deciding when to remove or change tests
	7.1.2 Avoiding logic in tests
	7.1.3 Testing only one thing
	7.1.4 Making tests easy to run
	7.1.5 Assuring code coverage

	Writing maintainable tests
	7.2.1 Testing private or protected methods
	7.2.2 Removing duplication
	7.2.3 Using setup methods in a maintainable manner
	7.2.4 Enforcing test isolation
	7.2.5 Avoiding multiple asserts
	7.2.6 Avoiding testing multiple aspects of the same object
	7.2.7 Avoiding overspecification in tests

	Writing readable tests
	7.3.1 Naming unit tests
	7.3.2 Naming variables
	7.3.3 Asserting yourself with meaning
	7.3.4 Separating asserts from actions
	7.3.5 Setting up and tearing down

	Summary

	Part 4 Design and process
	8 Integrating unit testing into the organization
	Steps to becoming an agent of change
	8.1.1 Be prepared for the tough questions
	8.1.2 Convince insiders: champions and blockers
	8.1.3 Identify possible entry points

	Ways to succeed
	8.2.1 Guerrilla implementation (bottom-up)
	8.2.2 Convincing management (top-down)
	8.2.3 Getting an outside champion
	8.2.4 Making progress visible
	8.2.5 Aiming for specific goals
	8.2.6 Realizing that there will be hurdles

	Ways to fail
	8.3.1 Lack of a driving force
	8.3.2 Lack of political support
	8.3.3 Bad implementations and first impressions
	8.3.4 Lack of team support

	Tough questions and answers
	8.4.1 How much time will this add to the current process?
	8.4.2 Will my QA job be at risk because of this?
	8.4.3 How do we know this is actually working?
	8.4.4 Is there proof that unit testing helps?
	8.4.5 Why is the QA department still finding bugs?
	8.4.6 We have lots of code without tests: where do we start?
	8.4.7 We work in several languages: is unit testing feasible?
	8.4.8 What if we develop a combination of software and hardware?
	8.4.9 How can we know we don’t have bugs in our tests?
	8.4.10 My debugger shows that my code works: why do I need tests?
	8.4.11 Must we do TDD-style coding?

	Summary

	9 Working with legacy code
	Where do you start adding tests?
	Choosing a selection strategy
	9.2.1 Pros and cons of the easy-first strategy
	9.2.2 Pros and cons of the hard-first strategy

	Writing integration tests before refactoring
	Important tools for legacy code unit testing
	9.4.1 Isolate dependencies easily with Typemock Isolator
	9.4.2 Find testability problems with Depender
	9.4.3 Use JMockit for Java legacy code
	9.4.4 Use Vise while refactoring your Java code
	9.4.5 Use FitNesse for acceptance tests before you refactor
	9.4.6 Read Michael Feathers’ book on legacy code
	9.4.7 Use NDepend to investigate your production code
	9.4.8 Use ReSharper to navigate and refactor production code
	9.4.9 Detect duplicate code (and bugs) with Simian
	9.4.10 Detect threading issues with Typemock Racer

	Summary

	Appendix A
	Design and testability
	Why should I care about testability in my design?
	Design goals for testability
	A.2.1 Make methods virtual by default
	A.2.2 Use interface-based designs
	A.2.3 Make classes nonsealed by default
	A.2.4 Avoid instantiating concrete classes inside methods with logic
	A.2.5 Avoid direct calls to static methods
	A.2.6 Avoid constructors and static constructors that do logic
	A.2.7 Separate singletons and singleton holders

	Pros and cons of designing for testability
	A.3.1 Amount of work
	A.3.2 Complexity
	A.3.3 Exposing sensitive IP
	A.3.4 Sometimes you can’t

	Alternatives to designing for testability
	Summary

	Appendix B
	Extra tools and frameworks
	Isolation frameworks
	B.1.1 Moq
	B.1.2 Rhino Mocks
	B.1.3 Typemock Isolator
	B.1.4 NMock
	B.1.5 NUnit.Mocks

	Test frameworks
	B.2.1 Microsoft’s Unit Testing Framework
	B.2.2 NUnit
	B.2.3 MbUnit
	B.2.4 Gallio
	B.2.5 xUnit
	B.2.6 Pex

	IoC containers
	B.3.1 StructureMap
	B.3.2 Microsoft Unity
	B.3.3 Castle Windsor
	B.3.4 Autofac
	B.3.5 Common Service Locator Library
	B.3.6 Spring.NET
	B.3.7 Microsoft Managed Extensibility Framework
	B.3.8 Ninject

	Database testing
	B.4.1 Use integration tests for your data layer
	B.4.2 Use rollback attributes
	B.4.3 Use TransactionScope to roll back

	Web testing
	B.5.1 Ivonna
	B.5.2 Team System Web Test
	B.5.3 NUnitAsp
	B.5.4 Watir
	B.5.5 WatiN
	B.5.6 Selenium

	UI testing
	B.6.1 NUnitForms
	B.6.2 Project White
	B.6.3 Team System UI Tests

	Thread-related testing
	B.7.1 Typemock Racer
	B.7.2 Microsoft CHESS
	B.7.3 Osherove.ThreadTester

	Acceptance testing
	B.8.1 FitNesse
	B.8.2 StoryTeller

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	back cover

