

MVVM Survival Guide for
Enterprise Architectures
in Silverlight and WPF

Eliminate unnecessary code by taking advantage
of the MVVM pattern—less code, fewer bugs

Ryan Vice

Muhammad Shujaat Siddiqi

BIRMINGHAM - MUMBAI

MVVM Survival Guide for Enterprise Architectures in
Silverlight and WPF
Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2012

Production Reference: 1010812

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-342-5

www.packtpub.com

Cover Image by Tony Shi (shihe99@hotmail.com)

Credits

Authors
Ryan Vice

Muhammad Shujaat Siddiqi

Reviewer
Kanishka (Ken) Abeynayake

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Dhwani Devater

Technical Editors
Felix Vijay

Manasi Poonthottam

Lubna Shaikh

Copy Editors
Brandt D'Mello

Laxmi Subramanian

Alfida Paiva

Project Coordinator
Abhishek Kori

Proofreader
Lesley Harrison

Indexer
Rekha Nair

Graphics
Manu Joseph

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Foreword

Rich client development remains one of the most popular forms of application
development, both from a user and a developer point of view. While nobody denies
the importance of thin-client interface technologies such as HTML(5), it is clear
that consumers and enterprises alike enjoy using applications that provide a rich,
powerful, productive, and sometimes fun experience. Evidence ranges from the
current App Craze on mobile devices to the long-running history of rich business
applications deployed by many businesses of all sizes. Many of the most successful
applications and systems, measured in commercial success and/or popularity, are
either entirely based on Rich Client technology or make Rich Clients part of the mix.

If you are a Microsoft developer (and if you are reading this book, the chances
are that you are), you find yourself in the lucky position of getting a chance to
use one of the best, if not the best, sets of Rich Client development technologies
and tools. The paradigm first introduced by WPF (then known under its Avalon
code name) and the XAML declarative approach have turned out to be a
super-productive, highly maintainable, and highly reusable approach. The
technologies are easy to use once the developer gets acquainted with the ideas
behind the setup of XAML-based systems. It is true that there is a learning curve.
As an industry, we have used the same UI development paradigm across many
languages, systems, and even platforms for a very long period of time, reaching
back all the way to MS DOS. The drop a control on a form, set a few properties, and
wire up some event handlers approach can be found almost universally in pre-XAML
scenarios ranging from Visual Basic, to C++, PowerBuilder, Delphi, Visual FoxPro,
.NET Windows Forms, ASP.NET WebForms, even standalone HTML scenarios, and
many more. XAML breaks that mold. Yes, you can still employ the old paradigm,
but you can reap significant benefits by following the new ideas. By reading this
book, you are well on your way down that path, and you will find that while there
is a hump in the learning curve you need to get over, there also is a significant
downward slope on the other side of that hump. While many environments retain
a high level of difficulty even once you achieve a high degree of familiarity, WPF
is different in that things tend to be pretty straightforward once you know how to do
things the right way.

WPF has become the de-facto standard for Windows Desktop Application
development. It is now a well-established technology that has superseded the older
Windows Forms (WinForms) framework. Microsoft uses WPF in many of its own
products and WPF has been continually developed for a number of years and across
a number of versions and major releases. While other development environments
may be flashier, and technologies like HTML5 get the limelight, I can tell based
on personal experience that WPF seems to be a secret hot technology. This may be
anecdotal evidence based on my own experiences only, but my experience draws
on my interactions not just with our consulting and custom software customers, but
also on the interactions with a hundreds of people who attend training classes we
teach, thousands of people I interact with at various developer events, and the tens of
thousands of people I interact with one way or another as readers of CODE Magazine.

In short, WPF is a very popular development environment that is used for a large
number of highly strategic development projects. WPF developers are also highly
sought after. While there may not be a need for as many WPF developers as there
is for HTML developers, the demand for WPF developers is much higher. In other
words, while the world generally needs more HTML developers and designers than
WPF equivalents, there is no shortage of those HTML skills. I do not mean to take
anything away from the many highly skilled HTML experts (and the same goes for
many other platforms and technologies). However, those skills are relatively easily
available. WPF skills, on the other hand, are much harder to come by and thus
represent a more valuable expertise. Skilled WPF developers routinely command
a higher salary or hourly rate. A fact you are probably happy to learn if you are
interested in reading this book. ;-)

While this book focuses on WPF, many of the things you learn here will serve you
well beyond WPF. The XAML Paradigm is of course used in other environments.
Silverlight in its original form as a browser plugin is one such example that has
grown out of WPF. While browser plugin technology may have seen its best days as
far as strategic importance goes, Silverlight still goes down in history as one of the
fastest growing and most rapidly adopted developer technologies ever. Silverlight
will also be here to stay for some time to come. While I would not recommend
starting new projects in Silverlight unless you have a very good and specific reason
to do so, you are probably OK using Silverlight for a bit longer if you have already
travelled down that path. For new projects, however, I would recommend WPF.

It is important to remember that the ideas behind Silverlight are not just useful in
browser plugins. Silverlight for Windows Phone is turning out to be a beautiful and
highly productive development environment embraced by developers. For mobile
development, one first chooses the platform of course. If that platform is iOS, Apple's
development environments and languages are a given. If the platform is Android,

one probably ends up with Java. It is too bad one cannot choose Microsoft's version
of Silverlight for Windows Phone to develop on any of these other mobile platforms,
because I would personally choose it any day over any of the other options based on
pure productivity and development joy.

And the story continues. XAML is used as one of the cornerstones in Windows 8's
new Metro user interface mode. So everything you learn in this book will be of use
to you in the bold new world of Windows 8 development as well. Windows 8 Metro
also supports a proprietary development model based on HTML5 and JavaScript,
which will be on equal footing with XAML. The jury is still out and it is too early
to tell (as I am writing these lines, we are still at least a half a year away from the
Windows 8 ship date) but based on what we see at events and from readership
reactions through CODE Magazine, people seem to be most interested in the
XAML development option. A biased result perhaps (after all, current WPF and
Silverlight developers are probably most likely to be the first ones in as far as Metro
development goes), but it is still interesting to see that XAML development is alive
and well, and expected to enjoy a bright future.

Microsoft is planning to ship Windows 8 with two modes; one known as Metro as
well as the more conventional Desktop mode, which largely resembles Windows
7's desktop. Which brings us right back to WPF, because all WPF applications will
continue to work just fine in Windows 8's Desktop mode. Either way you turn it, the
XAML family of technologies is not a bad family to be part of. We are certainly very
happy to base a lot of our efforts on these technologies and have a high degree of
comfort moving forward with that approach.

But not all WPF development is created equal. There are a lot of different scenarios
and approaches. Some good, some bad. One approach may work well in some
scenarios while it doesn't work well at all in others. As in all engineering disciplines,
knowing the pros and cons of each tool in the toolbox is an important aspect of
engineering know-how. With that said however, it is clear that MVVM is a very
valuable pattern for a lot of WPF-based applications (and XAML-based applications,
in general). If done right, MVVM leads to a range of different advantages ranging
from quality to maintainability, reusability, even developer productivity, and more.
As with most powerful tools, the power can be wielded both for good and evil. Yes,
it is possible to create horrible monstrosities that are hard and slow to develop and
result in inflexible and slow applications. If that is the outcome, the developers and
architects did a bad job in evaluating the tools at their disposal and made ill-advised
choices in how to wield them. Luckily, the book you are currently reading is going to
be a valuable first step in learning how to avoid such mistakes and instead unleash
the incredible power of MVVM and many of the associated techniques.

Explaining those details is a task I will leave in the capable hands of the authors of
this book. It is my hope that reading it is going to be just one of the many steps in
your journey of building XAML-based applications for a long time to come. After
all, as a User Interface development and design enthusiast, I can't imagine a UI
development environment that is more beautiful and elegant than WPF and XAML.

Markus Egger
Publisher, CODE Magazine
President and Chief Software Architect, EPS Software Corp.
Microsoft Regional Director and MVP

About the Authors

Ryan Vice is a Microsoft enterprise developer with over 12 years of experience. He
lives in Austin, TX with his wife and family, and works as an independent consultant
. He has experience creating solutions in numerous industries including network
security, geoseismic, banking, real estate, entertainment, finance, trading, construction,
online retail, medical, and credit counseling. He has done projects for companies of
all sizes including high-volume applications for large fortune 500 companies like Dell
and Charles Schwab. He frequently presents sessions at users groups and conferences
throughout Texas including Houston Tech Fest and Dallas Day of .NET. He was
awarded Microsoft MVP for Connected Systems in 2010, 2011, and 2012. He has
also been an MSDN Moderator. His current areas of focus are around MVVM, WPF,
XAML, IoC, NHibernate, and Windows 8 Metro.

Muhammad Shujaat Siddiqi has been serving the Enterprise Software Industry
for more than seven years in Pakistan and USA. He has a bachelor's degree in
Computer and Information Systems (BE) from NED University, Karachi. He is a
passionate blogger. For his services to WPF development community, Microsoft
awarded him MCC in 2011. He is a student of the Shaolin-Do form of martial arts.

About the Reviewer

Kanishka (Ken) Abeynayake has been dabbling in personal computers
from their infancy starting out as an Apple and Mac developer. He authored the
original Internet suite included with Delphi and CBuilder, and is a Consultant at
Sogeti consulting for Fortune 500 companies, such as Dell and Microsoft. When he
is not playing around with the latest Microsoft technologies, he and his wife are
enjoying their passion for travelling. Kanishka obtained his education from the
University of Sri Lanka Moratuwa and the University of Texas. He can be contacted
at ken@lionknight.com.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

To my wife, Heather, my daughter, Grace and my two sons, Dylan and Noah;
the time away from you was the hardest part of writing this book. Thanks for all

your love and support.

-Ryan Vice

I dedicate this work to my amazing parents.

-Muhammad Shujaat Siddiqi

Table of Contents
Preface 1
Chapter 1: Presentation Patterns 7

The Project Billing sample application 8
Types of state 10

History of presentational patterns 11
Monolithic design 11

The problems with monolithic design 12
Data service stub 14
Monolithic Project Billing sample 17

ProjectsView 19
Running the sample 26
Takeaways 27

Rapid application development 28
RAD Project Billing sample 28
Takeaways 39

MVC 40
View 40
Controller 41
Model 41

Layered design 42
The layers 42

MVC with layered design 43
MVC Project Billing sample 44

Model 46
Controller 48
View 49
How it works 55
Takeaways 57
Memory leaks 57

MVP 60
MVP Project Billing sample 61

Table of Contents

[ii]

Model 62
View 64
Presenter 69
Main window 72
How it works 74
Takeaways 74

Summary 75
Chapter 2: Introduction to MVVM 77

History 77
Structure 80

Pure MVVM 80
View 81
View Model 81

WPF and Silverlight enablers 82
Dependency Properties 82

Dependency property inheritance 83
Rich data binding 86

INotifyCollectionChanged and ObservableCollection<> 87
Automatic dispatching 88

Triggers 88
Styles 89
Control Templates 90
Data templates 90
Commands 91

MVVM project billing sample 93
MVVM design 93

View Models 94
Model 96

Code 96
ProjectsModel 97
ProjectViewModel 100
ProjectsViewModel 102
WPF UI 110
Silverlight UI 115

Benefits of MVVM 125
MVVM and humble views 127

Issues and pain points of MVVM 128
MVVM Light 129
Summary 130

Chapter 3: Northwind—Foundations 131
Northwind requirements 132
Presentation tier foundation 133

Locator pattern 136

Table of Contents

[iii]

Data access tier 137
Listing the customers 142

Unit testing getting customers 145
Using an isolation framework 151

Adding tabs 154
Viewing customer details 159

Viewing details for one customer 160
Testing CustomerDetailsViewModel 165

Wiring up the customer list box 167
Testing ShowCustomerDetails() 172

Summary 174
Chapter 4: Northwind—Services and Persistence Ignorance 175

Adding a Service Layer 176
Integrating the Service Layer 181

Persistence ignorance and custom models 186
Trade-offs of generated models 186
Adding persistence ignorance 187

Adding unit tests 192
Summary 201

Chapter 5: Northwind—Commands and User Inputs 203
Pure MVVM 203
Making it easier with frameworks 208
Updating customer details 210

Testing and updating customer details 214
Gestures, events, and commands 216

InputBindings 217
KeyBinding 218
MouseBinding 219

Using code behind 220
Event to command 221

Attached Behavior 222
Using MVVM Light 226

Summary 228
Chapter 6: Northwind—Hierarchical View Model and IoC 229

Adding orders to customer details 229
Service layer 231
Application layer 236
Presentation layer 241

View Models 242
Views 245

Take aways 247

Table of Contents

[iv]

Viewing order details 247
ToolManager 248
Inversion of Control frameworks 255

IoC designs 255
Adding an IoC container to Northwind 258

Order details 271
Summary 280

Chapter 7: Dialogs and MVVM 281
Should we make a compromise? 282
Dialog service 282

Using DataTemplates with DialogService 286
Convention over configuration 294

Mediators 296
Attached behaviors 306
Summary 310

Chapter 8: Workflow-based MVVM Applications 311
WF for business rules execution 312

Handling delays in rules execution 322
WF for controlling application flow 327
Summary 332

Chapter 9: Validation 333
Validations and dependency properties 333
Error templates 334
Validation in MVVM-based applications 342

Validation rules 342
Using validation rules 342
Specializing validation rules—supporting parameters 344
Validation rules and converters 345
Validation mechanism in WPF and Silverlight 349

IDataErrorInfo 350
Validation states 359
Limitations and gotchas 374

INotifyDataErrorInfo 374
Enterprise library validation application block 389
Complex business rules 398

Error notifications 398
Error message box 398
Highlighting fields 400
Error messages in the tooltip 400
Error messages beside the control 400

Table of Contents

[v]

Validation summary pane 401
Flip controls 402

Summary 402
Chapter 10: Using Non-MVVM Third-party Controls 403

Using attached behaviors 405
Using binding reflector 411
readonly CLR properties (with no change notification support) 416

Using .NET 4.0 dynamic 421
Using MVVM adapters 426
Summary 429

Chapter 11: MVVM and Application Performance 431
Asynchronous binding 431
Asynchronous View Model construction 435
Priority binding 437
Virtualization and paging 440
Using BackgroundWorker 441
Targeting system configuration 442
Event Throttling 442
Lazy Initialization 443
Summary 449

Appendix A: MVVM Frameworks 451
Appendix B: Binding at a Glance 453

Basics 453
Validation 453

ValidationRules 453
IDataErrorInfo 454
INotifyDataErrorInfo [.net 4.5] 454
Enterprise Library 5.0 Validation Application Block 454
Windows WF 454
Validation.ErrorTemplate 454

Static properties/fields 454
Executing code in DataContext 454
Binding to DataContext[DC] 455
Resources 455

Types with default constructor 455
XmlDataProvider 455
ObjectDataProvider 455

Binding to resource 456
Static resource 456
Dynamic resource 456

Table of Contents

[vi]

Updating source 456
Binding.UpdateSourceTrigger 456
Binding.Delay: [.net 4.5] [Binding.Mode:TwoWay / OneWayToSource] 456

Mode [Binding.Mode] [T:Target, S:Source] 457
Binding to other elements in the view 457

ElementName 457
RelativeSource 457

Conversion 457
Binding.StringFormat [SF] 457
Converter [C] 458

Performance 458
Async binding 458
ObjectDataProvider.IsAsynchronous 458
PriorityBinding 458

Index 459

Preface
MVVM (Model View View Model) is a Microsoft best practices pattern for working
in WPF and Silverlight that is highly recommended by both Microsoft and industry
experts alike. This book will look at the reasons for the pattern still being slow to
become an industry standard, addressing the pain points of MVVM. It will help
Silverlight and WPF programmers get up and running quickly with this
useful pattern.

MVVM Survival Guide for Enterprise Architectures in Silverlight and WPF will help
you to choose the best MVVM approach for your project while giving you the tools,
techniques, and confidence that you will need to succeed. Implementing MVVM can
be a challenge, and this book will walk you through the many issues you will come
across when using the pattern in real world enterprise applications.

This book will help you to improve your WPF and Silverlight application design,
allowing you to tackle the many challenges you will face in creating presentation
architectures for enterprise applications. You will be given examples that show the
strengths and weaknesses of each of the major presentation patterns. The book then
dives into a full 3 tier enterprise implementation of MVVM and takes you through
the various options available and the trade-offs for each approach. During your
journey you will see how to satisfy many of the challenges of modern WPF and
Silverlight enterprise applications including scalability, testability, and extensibility.

Complete your transition from ASP.NET and WinForms to Silverlight and WPF
by embracing the new tools in the Silverlight and WPF platforms, and the new
design style that they allow for. This book will get you up to speed and ready
to take advantage of these powerful new presentation platforms.

Preface

[2]

What this book covers
Chapter 1, Presentation Patterns, gives the reader an example-driven overview of
the history of presentation patterns. We will implement a Project Billing sample
application using various approaches including MVC and MVP. Along the way,
we will look at the issues with each pattern that motivated the next pattern in the
evolutionary chain. This chapter also demonstrates how presentation patterns that
require .NET events, such as MVC and MVP, can cause memory leaks if not properly
implemented. This chapter will leave the reader with the knowledge needed to
discuss the tradeoffs of the various presentation patterns and allow the reader to
answer question like why use MVVM over MVP or MVC.

Chapter 2, Introduction to MVVM, covers the various features of WPF and Silverlight
that make MVVM an attractive option on these platforms. We will follow this by
re-implementing the Project Billing sample application from the first chapter using
MVVM. We will then look at some of the benefits and cost of using MVVM. We
will finish off the chapter by taking a quick look at the MVVM Light open source
framework that will be used throughout the book.

Chapter 3, Northwind—Foundations, will walk through how to lay the foundation
of the Northwind application that we will build over the next four chapters. We
will wire up the Northwind database using Entity Framework and see how Entity
Framework integrates with the binding systems in WPF and Silverlight to provide
change notifications. We will also add unit tests that allow us to see how MVVM
allows us to test all of our view logic.

Chapter 4, Northwind—Services and Persistence Ignorance, will have us attempting
to make our application more scalable by adding a WCF service layer between
the Presentation Layer and the Application Layer. We will see how WCF integrates
with the binding system in both WPF and Silverlight to provide change notifications.
We will also look at the benefits and cost of implementing a Persistence Ignorant
Presentation Layer.

Chapter 5, Northwind—Commands and User Inputs, discusses the benefits of taking
advantage of the commanding system in WPF and Silverlight to implement MVVM
using the pure approach.

Chapter 6, Northwind—Hierarchical View Model and IoC, explains the power and
productivity that can be added by using the Hierarchical View Model approach to
MVVM. We will also see how to implement an Inversion of Control framework using
IoC best practices by updating our application to use the Ninject for IoC framework.

Chapter 7, Dialogs and MVVM, discusses the various options for showing modal and
modeless dialogs. It also discusses how data can be shared across the dialogs that we
will create.

Preface

[3]

Chapter 8, Workflow-based MVVM Applications, explains how we can use Windows WF
to control the flow of the user interface. It would also be touching the area of business
rules validation using WF including the discussion about slow executing workflows.

Chapter 9, Validation, discusses the various techniques for data entry and business
rules validation. The chapter will also be shedding some light on how the results
of these validations can be displayed to the user.

Chapter 10, Using Non-MVVM Third-party Controls, will focus on the discussion
regarding the usage of non-MVVM based controls in your MVVM based design
to improve the testability of our code base.

Chapter 11, MVVM and Application Performance, explains some features
of XAML frameworks targeting for better application performance.

Appendix A, MVVM Frameworks, outlines the basic features to look for before
selecting an MVVM framework or toolkit. It also lists the available MVVM
frameworks popular in the industry.

Appendix B, Binding at a Glance, summarizes the Binding System infrastructure,
which makes MVVM possible in WPF and Silverlight.

What you need for this book
•	 Microsoft Visual Studio 2010 Service Pack 1
•	 Rhino Mocks
•	 .NET Framework 4 Platform Update 1 for Chapter 8, Workflow-based

MVVM Applications

Who this book is for
This book will be a valuable resource for Silverlight and WPF developers who
want to fully maximize the tools with recommended best practices for enterprise
development. This is an advanced book and you will need to be familiar with C#,
the .NET framework, and Silverlight or WPF.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "You should now be able to execute
ICustomerService.GetCustomers() from WCF Test Client."

A block of code is set as follows:

public class RepositoryRegistry : Registry
{
 public RepositoryRegistry()
 {
 For<IUIDataProvider>()
 .Singleton();
 For<ICustomerService>()
 .Singleton()
 .Use(() => new CustomerServiceClient());
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class OrderViewModel : ViewModelBase
{
 public const string ModelPropertyName = "Model";
 private Order _model;
 public Customer Customer { get; set; }
 private readonly IToolManager _toolManager;exten =>
 i,1,Voicemail(s0)

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"This will add a Show Details link to our grid".

Warnings or important notes appear in a
box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Presentation Patterns
By Ryan Vice

Separation of Concerns or SoC is a core principle of enterprise software
development which provides many benefits and has been a key driving force behind
many presentation (or UI) design patterns that have emerged over the last 30 years.
In the arena of Silverlight and WPF development, Model View View Model or
MVVM has quickly become the de-facto pattern for achieving SoC in UIs. However,
this pattern often leaves developers and architects frustrated and at the time of this
writing, can be difficult to implement in an effective way that provides more benefits
than some of the older, more familiar presentation patterns (MVC, MVP, and so on).

In this chapter we will cover the evolution of presentational patterns along with
the problems that are solved by each pattern along the evolutionary path. We will
also dive into the shortcomings of each pattern which led to the next pattern in the
evolution and will finish this chapter ready to look at MVVM.

We will begin this chapter by reviewing the functionality of the Project Billing
sample application that we will use throughout this book. We will follow this
by briefly talking about the various types of state that must be managed in UI
applications. Then we dive into the history of presentational patterns and as we
go through the history we will implement Project Billing using each pattern to show
you explicitly the benefits and the shortcomings of each pattern that lead to the
next pattern in the evolution. This will help you understand why you'd want to
use MVVM through examples and make the benefits of MVVM easier to appreciate
when we dive into that topic in the next chapter. This would also help you
evangelize the pattern on your projects if needed and be able to explain what
benefits MVVM would offer over other presentation patterns.

Presentation Patterns

[8]

If you are already familiar with (or not interested in) the history of presentation
patterns, you should still at a minimum review the following sections:

•	 The Project Billing sample application: This section will review the
functionality of the sample application that will be used in the first
two chapters

•	 Types of state: This section defines and discusses the various types of state
that need to be managed in a UI application

•	 Monolithic design: The introduction of this section discusses the coupling
that results from not using some kind of presentational design pattern

	° The problems with Monolithic design: This section discusses
the many problems that result from not using presentational
design patterns

•	 Data service stub: This section covers creating the data service stub that
will be used by the Project Billing application throughout this book

•	 Memory leaks: This section covers how .NET events can cause
memory leaks

However, I'd recommend that unless you are intimately familiar with patterns such
as Model 2 and Passive View that you take the time to go through this chapter as
this knowledge will be very useful in driving home some of the fundamentals of
presentation patterns which will help you adapt these notoriously flexible patterns
to your needs

The Project Billing sample application
Let's start off by walking through the functionality of the Project Billing application.
Project Billing is a contrived application that—as the name suggests—allows for
simple project billing. The application's UI is shown in the following screenshot:

Chapter 1

[9]

The application consists of a simple master/details form for the main window. At
the top of the application is a list of projects that when selected make up the master
of the master/detail relationship. Following the projects come the details which
include the following:

•	 Estimated Cost
•	 Actual Cost

Notice how all the details are disabled along with the Update button. Whenever a
user selects a project from the list, the UI is updated so that all of the details controls
are enabled as shown in the following screenshot:

Now a user can update any of the details they like. If the user sets a value for Actual
Cost that is lower than the Estimated Cost for the selected project and clicks the
Update button, the Estimated Cost will be displayed in green.

The following screenshot shows Project Billing with an Actual Cost
that is lower than the Estimated Cost; however, this book is not in
color and so you will have to run any of the sample implementations
of Project Billing in this book to see the color of estimated cost change.

Presentation Patterns

[10]

This is a contrived example and doesn't have validations or robust
error handling, so entering invalid values for actual cost can cause
problems for the application. However, we will explore validations
later in this book.

Putting in a value that is above the estimated value will cause the Estimated Cost to
be displayed in red. You can also:

•	 Change the Estimated Cost.
•	 Click on the Update button, then change your selection and when you

reselect the updated project you will see that your new values have been
maintained in the view state.

•	 After updating a project, you can also open a second Projects view and
see that the data is synchronized (session state). This is not supported in
all versions of Project Billing but only in those versions whose architecture
supports easily sharing session state.

It's a very simple example but complex enough to demonstrate the various types of
state and logic that need to be managed by a UI application and to show how well
the various patterns handle each type of state and logic.

Types of state
The Project Billing application demonstrates all three types of state that must be
managed in all UI applications.

•	 View state: UI state or view state is the state of the UI which includes the
data being displayed that was provided by the model but could also include
things like what buttons are disabled and the color changes that may have
been applied to text. The disabling of the details controls and changing the
color of Estimated Cost in Project Billing are examples of types of view state.

You may be familiar with the concept of view state from
working in ASP.NET where the view state is stored in a
hidden field in the HTML and accessible server-side via the
ViewState collection.

Chapter 1

[11]

•	 Session state: It is the state of the data that has been retrieved from the
persistence store and is being held in memory. This data could be accessed
by multiple components in the application and remains in memory only until
the user terminates their session or until it is persisted. In Project Billing, any
changes that are made to project details become session state once you click
on the Update button.

•	 Persisted state: It is the state of the applications data that has been retrieved
from or is persisted to some sort of repository such as a database, service or
XML file. In Project Billing, the data that is mocked in the DataService is an
example of persisted state.

Project Billing uses a data service stub that returns fake data and
doesn't demonstrate real persistence. Persistence will be covered
in Chapter 3, Northwind—Foundations.

History of presentational patterns
In this section we will cover the history of presentational (or GUI) patterns.
Presentational patterns have been around for over 30 years and a full coverage
of all the various patterns is outside of the scope of this book. We will instead focus
on two of the major trends that have emerged over the last 30 years and look at how
those two trends eventually evolved to MVVM for Silverlight and WPF.

If you are interested in learning more about the history of presentational
patterns than what is covered here, then see Martin Fowler's article GUI
Architectures (http://martinfowler.com/eaaDev/uiArchs.html).

Monolithic design
Enterprise applications deal with displaying, manipulating, and saving data.
If we build enterprise applications with no design so that each GUI component is
coupled all the way down to the data access code, then there are a lot of problems
that can emerge.

http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html

Presentation Patterns

[12]

This style of design is called monolithic and the following diagram shows the
coupling that exists under monolithic designs:

Application

Data Access

Business Logic

UI Logic and State

UI Widget1

Data Access

Business Logic

UI Logic and State

UI Widgetn

The problems with monolithic design
In this section we will review the problems caused by the tight coupling and low
cohesion found in monolithic designs.

Code maintenance
Looking at the previous screenshot if you assume that UI Widget1 and UI Widgetn
are using the same business logic, then using a monolithic design will cause code
duplication. Every time a change needs to be made to the business logic, it would
need to be made in both places. This is the type of issue that is solved by SoC and
one of the motivators for design paradigms like 3-tier which we will look at in the
Layered design section later in this chapter.

Code structure
Not having the code structured into reusable components and well-organized layers
makes things like sharing session state difficult under monolithic design. As you will
see in the examples that follow, once we move to MVC and MVP, there are many
benefits including:

•	 The session state becomes much easier to manage and share
•	 Code is easier to reuse
•	 Code is well-organized and easier to understand and maintain

Chapter 1

[13]

•	 Code scales easier as you can build components into separate DLLs
for distributed deployment

•	 Code is more extensible as you can replace components to provide
different behaviors

Code testability
Creating code that can be effectively tested with unit tests requires designing
for testability. The monolithic approach poses several problems for code
testability including:

•	 Poor isolation of tests: One of the core principles of unit testing is isolation of
the tests. You want your unit tests to test one scenario of one method of one
class and not to test the dependencies. Following this principle makes your
tests more valuable because when a test fails it's more likely that developers
who didn't write the test but introduced the change that broke the test will fix
the issue. This is because it will be very easy for the developer to determine
what the problem was that broke the test because it's so isolated and clear in
its purpose. A big part of getting return on investment from unit tests comes
from making them easy for developers to use and avoid making your unit tests
high maintenance. With high-maintenance unit tests the developers might just
delete, disable, or comment out the test instead of fixing the problem, which
makes the expense that was put into creating the test a waste.

•	 Testing the UI is difficult: Using automated testing to test the UI is notoriously
difficult. Monolithic design makes this problem worse as there is no separation
between the UI and the rest of the layers of logic. One of the major contributors
to the need of separated UI patterns is the desire to move as much logic as
possible out of the UI and into separate testable components.

•	 Poor code coverage: Code coverage refers to how much of your code is
covered by unit tests. Generally speaking, the more code you have covered
by tests, the more stability you will create in your development process, and
the more benefits you will reap from your tests. High code coverage provides
fewer bugs and quicker refactoring times. When you create a monolithic
application, it affects your ability to achieve high code coverage levels,
because you can't test the UI logic and the coupling between the various
layers as it makes mocking dependencies difficult, prohibiting creation of
unit tests.

Presentation Patterns

[14]

100 percent test coverage is not always the best level of coverage as
too much coverage can make the code brittle to change and make the
code high maintenance. My general rule of thumb is that I want to
test the functionality that is defined by the public interface of the class
under test. Testing internal details that could change can provide more
inconvenience than benefit. However, this rule of thumb assumes that
you have a good separation of concerns and have applied the Single
Responsibility Principle to the design of your application. Single
Responsibility Principle is part of the SOLID design principles and
more details about SOLID are easily found online if needed.

Data service stub
We will be using a data service stub as part of our data layer to take the place of a
real data service in our sample applications so that we can focus on presentation
patterns and not on data access patterns and techniques.

Data layer will be explained in the Layered design
section later in this chapter.

Let's start by creating a new Class Library project called ProjectBilling.DataAccess
in a solution called MVVM Survival Guide as shown in following screenshot:

Chapter 1

[15]

Now delete the Class1.cs file that is created by default by the project template and
add a new class called Project and add the following code to Project.cs:

namespace ProjectBilling.DataAccess
{
 public interface IProject
 {
 int ID { get; set; }
 string Name { get; set; }
 double Estimate { get; set; }
 double Actual { get; set; }
 void Update(IProject project);
 }

 public class Project : IProject
 {
 public int ID { get; set; }
 public string Name { get; set; }
 public double Estimate { get; set; }
 public double Actual { get; set; }

 public void Update(IProject project)
 {
 Name = project.Name;
 Estimate = project.Estimate;
 Actual = project.Actual;
 }
 }
}

There are certainly better options than using an interface with an
update method to allow for updating data objects but this approach
will allow us to keep the code in this chapter and the next concise
and allow keep our focus on the topic at hand.

Project is a simple domain object (or business object) that stores the project name,
estimated cost, and actual cost. It's implemented off an interface to provide more
flexibility and better testability and it provides an update method to make it easy
to update an instance's values.

Now we will create the data service stub that will return fake data for our various
clients to consume so that we don't have to be concerned with data access patterns
and techniques and can instead focus on presentation patterns. Add a class to the
project called DataService and add the code that follows to DataService.cs.

This class exposes one method called GetProjects(), which creates three projects
and then returns them as a IList<Project>. We have implemented our data service
stub based on an interface to support dependency injection.

Presentation Patterns

[16]

Dependency injection is a pattern where a dependency is allowed to be
specified by an external component instead of being created internally.
This pattern will be covered in more detail in Chapter 6, Northwind—
Hierarchical View Model and IoC.

using System.Collections.Generic;

namespace ProjectBilling.DataAccess
{
 public interface IDataService
 {
 IList<Project> GetProjects();
 }

 public class DataServiceStub : IDataService
 {
 public IList<Project> GetProjects()
 {
 List<Project> projects = new List<Project>()
 {
 new Project()
 {
 ID = 0,
 Name = "Halloway",
 Estimate = 500
 },
 new Project()
 {
 ID = 1,
 Name = "Jones",
 Estimate = 1500
 },
 new Project()
 {
 ID = 2,
 Name = "Smith",
 Estimate = 2000
 }
 };

 return projects;
 }
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com . If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[17]

This will allow us the flexibility to provide different implementations depending on
the context. In a unit test we can provide a testing fake (stub or mock), in blend we can
return a stub that returns design-time data and at runtime we can provide a real data
service that returns real data. We will look into all of these techniques and also the use
of inversion of control frameworks that make this process easier later in this book.

Monolithic Project Billing sample
Let's go ahead and walk through a simple implementation in WPF of the Project
Billing application that was introduced at the beginning of this chapter. We will
create the UI using a monolithic style.

This will be a WPF application but we are not using RAD (Rapid
Application Development) support available in Visual Studio, XAML
or WPF project templates as it better demonstrates the monolithic
style. If you are not familiar with writing code only WPF applications
in this style and want to learn more then see Applications = Code +
Markup: A Guide to the Microsoft Windows Presentation Foundation, by
Charles Petzold.

Start by creating a solution and then adding a new Console Application project named
ProjectBilling.Monolithic to your solution, as shown in the following screenshot:

Presentation Patterns

[18]

We will convert this console application to a Windows application
later in this section but it's not necessary to do so as you can run a
WPF application from a console application. Full details are coming
later in this section.

Now add a reference to the PresentationFramework, PresentationCore, System.
Xaml, and WindowsBase assemblies, as shown in the following screenshot:

The previous screenshot only shows adding a reference to
PresentationFramework. Repeat this process for PresentationCore,
System.Xaml, and WindowsBase as well.

Now add a project reference to ProjectBilling.DataAccess, as shown in the
following screenshot:

Chapter 1

[19]

Next, delete Program.cs and add a new class named ProjectsView and add the
following code to that file.

Using data service means that technically we are not implementing
a monolith as we are introducing a data access layer. This is done
to keep the code as short as possible. Keep in mind that a purely
monolithic application would not have a separate data access layer.
The variation of monolithic design that we are implementing here is
commonly referred to as autonomous view.

ProjectsView
The heart of this application is the ProjectsView class. Let's start by making this
class a window and bringing in the namespaces we need.

using System;
using System.Windows;
using System.Windows.Controls;
using ProjectBilling.DataAccess;
using System.Windows.Media;

namespace ProjectBilling.UI.Monolithic
{
 sealed class ProjectsView : Window
 {

 }
}

Presentation Patterns

[20]

This class now derives from System.Windows.Window, which is what allows it to be
displayed as a WPF application. Add a main function to ProjectsView as follows:

[STAThread]
static void Main(string[] args)
{
 ProjectsView mainWindow
 = new ProjectsView();
 new Application().Run(mainWindow);
}

The main function is given the STAThread attribute—which makes it run in
a single threaded apartment—which is a requirement of WPF and for
interoperability with COM (Component Object Model). The main function simply
creates a ProjectsView and then passes it to System.Windows.Application.Run(),
which initializes WPF, starts a message loop, and then displays ProjectsView as the
application's main window.

Initialization
Most of the work of the application will be done by the ProjectsView constructor
and field initializers. Add the following fields to the class:

private static readonly Thickness _margin
 = new Thickness(5);
private readonly ComboBox _projectsComboBox
 = new ComboBox() { Margin = _margin };
private readonly TextBox _estimateTextBox
 = new TextBox()
 { IsEnabled = false, Margin = _margin };
private readonly TextBox _actualTextBox
 = new TextBox()
 { IsEnabled = false, Margin = _margin };
private readonly Button _updateButton = new Button()
 {
 IsEnabled = false,
 Content = "Update",
 Margin = _margin
 };

Here we've created the Project combobox, Estimated Cost and Actual Cost textboxes
in addition to the Update button.

Chapter 1

[21]

Next let's add a constructor with the following code. We'll start by setting the Title
and size of the MonolithicProjectBillingWindow instance. We will then call two
helper methods that will be covered shortly and also add an event handler for the
updateButton.Click event.

This event handler will allow the code to be notified of user
input via .NET's built-in support for the Observer pattern that
is implemented by .NET events.

public ProjectsView()
{
 Title = "Project";
 Width = 250;
 MinWidth = 250;
 Height = 180;
 MinHeight = 180;

 LoadProjects();

 AddControlsToWindow();

 _updateButton.Click += updateButton_Click;
}

See the Helpers section for methods that are called but not yet
defined such as LoadProjects() and AddControlsToWindow().

Event handlers
Most of the rest of the functionality of the application is contained within the
event handlers:

•	 The following code will create projectsComboBox_SelectionChanged(),
which is an event handler for the projectsComboBox.SelectionChanged
event that we will wire up in the LoadProjects()method that was called
from the constructor. This code first determines if an item is selected by
casting the sender to a comboBox, making sure it isn't null and also that an
item is selected.
private void projectsListBox_SelectionChanged(
 object sender, SelectionChangedEventArgs e)
{
 ComboBox comboBox = sender as ComboBox;

Presentation Patterns

[22]

 // If there is a selected item
 if (comboBox != null && comboBox.SelectedIndex > -1)
 {
 UpdateDetails();
 }
 else
 {
 DisableDetails();
 }
}

•	 If there is an item selected in projectsComboBox then the UpdateDetails()
helper method is called; if no item is selected then the DisableDetails()
helper method is called.

•	 updateButton.Click() is shown in the following code:
private void updateButton_Click(object sender,
 RoutedEventArgs e)
{
 Project selectedProject
 = _projectsComboBox.SelectedItem
 as Project;
 if (selectedProject != null)
 {
 selectedProject.Estimate =
 double.Parse(_estimateTextBox.Text);
 if (!string.IsNullOrEmpty(
 _actualTextBox.Text))
 {
 selectedProject.Actual
 = double.Parse(
 _actualTextBox.Text);
 }
 SetEstimateColor(selectedProject);
 }
}

updateButton.Click() will fire when the user clicks on the Update button
and determine if an item is selected. If an item is selected, it will update the
details controls with the details of the selected item. The values to populate
the details controls will be fetched from the properties of the details controls
which we are currently using for view state. Next updateButton.Click()
will call the SetEstimateColor() helper function to update the color of the
estimateTextBox (view state) based on whether the estimated cost is higher
or lower than the actual cost (view logic).

Chapter 1

[23]

_actualTextBox is checked for null or empty as it starts out in an
empty state and could be empty that state if the user updates only the
Estimated Cost but not actual. This validation was provided to keep
the application running down the happy path while all other validation
have been left out to keep the code short.

Helpers
These private helper methods will add the remaining functionality:

•	 Add the LoadProjects() method, as shown in the following code:
private void LoadProjects()
{
 foreach (Project project
 in new DataServiceStub().GetProjects())
 {
 _projectsComboBox.Items.Add(project);
 }
 _projectsComboBox.DisplayMemberPath = "Name";
 _projectsComboBox.SelectionChanged
 += new SelectionChangedEventHandler(
 projectsListBox_SelectionChanged);
}

•	 The LoadProjects() method will do the following:
	° Fetch the projects to populate the projectsComboBox with data

retrieved from persisted state by instantiating a new DataService
and then calling GetProjects()

	° The results of GetProjects() are iterated over and added
to _projectsComboBox for display

	° Set the DisplayMemeberPath to "Name" to use the Project.
Name property for the displayed text for each project in
the _projectsComboBox.Items collection

	° Wire up an event handler for the projectsComboBox.
SelectionChanged event allowing us to update the details view
when the user changes the selected project

•	 Add the AddControlsToWindow() method with the following code:
private void AddControlsToWindow()
{
 UniformGrid grid = new UniformGrid()
 { Columns = 2 };

Presentation Patterns

[24]

 grid.Children.Add(new Label()
 { Content = "Project:" });
 grid.Children.Add(_projectsComboBox);
 Label label = new Label()
 { Content = "Estimated Cost:" };
 grid.Children.Add(label);
 grid.Children.Add(_estimateTextBox);
 label = new Label()
 { Content = "Actual Cost:"};
 grid.Children.Add(label);
 grid.Children.Add(_actualTextBox);
 grid.Children.Add(_updateButton);
 Content = grid;
}

•	 The previous code will do the following:
	° Create a new UniformGrid
	° Configure the controls we will be using and then add the controls

to the grid
	° Set the grid as the content of the window for display

•	 Add the GetGrid() method to ProjectsView as follows:
private Grid GetGrid()

{
 Grid grid = new Grid();
 grid.ColumnDefinitions
 .Add(new ColumnDefinition());
 grid.ColumnDefinitions
 .Add(new ColumnDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 return grid;
}

Chapter 1

[25]

•	 This code creates a 2x3 Grid that is used to create a basic form layout.

We are not trying to make this form pretty but are instead trying
to focus on the presentation patterns. One of the big benefits
of MVVM is that it will allows us to give our view XAML to a
designer and have them make it look nice without having the need
to involve the developer. We will look at this approach in detail
later in this book in Chapter 7, Dialogs and MVVM.

•	 Add the UpdateDetails() method as follows:
private void UpdateDetails()
{
 Project selectedProject
 = _projectsComboBox.SelectedItem
 as Project;

 _estimateTextBox.IsEnabled = true;
 _estimateTextBox.Text
 = selectedProject.Estimate.ToString();
 _actualTextBox.IsEnabled = true;
 _actualTextBox.Text
 = (selectedProject.Actual == 0)
 ? ""
 : selectedProject.Actual.ToString();
 SetEstimateColor(selectedProject);
 _updateButton.IsEnabled = true;
}

•	 The UpdateDetails() method simply transfers data from the
projectsComboBox.SelectedItem (or master) to the details controls and
then updates the estimateTextBox by calling SetEstimateColor().

•	 Add a DisableDetails() method as follows:
private void DisableDetails()
{
 _estimateTextBox.IsEnabled = false;
 _actualTextBox.IsEnabled = false;
 _updateButton.IsEnabled = false;
}

•	 The DisableDetails() method sets the details controls IsEnabled to false
along with the update button.

Presentation Patterns

[26]

•	 Add SetEstimateColor() as follows:
private void SetEstimateColor(Project selectedProject)
{
 if (selectedProject.Actual == 0)
 {
 this.estimateTextBox.Foreground
 = _actualTextBox.Foreground;
 }
 else if (selectedProject.Actual
 <= selectedProject.Estimate)
 {
 this.estimateTextBox.Foreground
 = Brushes.Green;
 }
 else
 {
 this.estimateTextBox.Foreground
 = Brushes.Red;
 }
}

•	 The SetEstimateColor() method will be called by both event handlers to
update the color of Estimated Cost (view state) by examining the Actual Cost
and Estimated Cost.

Running the sample
Right-click on the ProjectBilling.Monolithic project and select Properties. Next,
set the Output type to Windows Application as shown in the following screenshot:

Chapter 1

[27]

If you leave the Project type as Console Application then a Console
Window will be displayed while your WPF application runs. This can
be useful for debugging as you can write debug messages to the console
and easily kill the application using Ctrl + C when debugging.

Finally set ProjectBilling.Monolithic as the startup project by right-clicking on it
and selecting Set as StartUp project. Now run the application by hitting F5.

You should now see an application as shown in The Project Billing sample application
section at the beginning of this chapter.

Takeaways
This code gets the job done, so what's the problem and why is there the need to
restructure it?

Poor testability
This code has poor testability as the entire code is tightly coupled to the view and
requires the view to fire the events that drive the logic of application. You could
change the access modifiers of the methods of ProjectsView to public the help
alleviate the situation but then you weaken the design from the encapsulation and
design by contract perspectives.

Encapsulation and design by contract are basic principles of
Object-oriented design that are covered extensively on the Web.
Please look up for them if you are already not familiar with them.

Poor extensibility and code reuse
If the users wanted a command line or web-interface, all of the code would need to
be rewritten. Also, supporting multiple synchronized ProjectView is not possible
under this design and would require at a minimum refactoring out a model.

We will demonstrate how adding SoC allows for creating multiple
synchronized views of the model when we get to the MVC section.

Presentation Patterns

[28]

Rapid application development
Microsoft puts a lot of development effort into creating Rapid Application
Development (or RAD) tools that allow developers to simply drag-and-drop
controls onto the IDE's design surface and then allow for configuring the controls'
data needs mostly through the IDE's designer. The designer then creates monolithic
code to get the job done. These tools make the problems of monolithic design worse
by encouraging that style of design and by making it easier to do.

RAD Project Billing sample
This section will walk through rewriting the Project Billing application using
RAD tools in Visual Studio.

Start by adding a new WPF Application project to your solution called
ProjectBilling.RAD. This project template creates two files for you, App.xaml
and MainWindow.xaml.

Next add a project reference to ProjectBilling.DataAccess.

Open MainWindow.xaml in Cider (the WPF designer) by double-clicking on
MainWindow.xaml in the Solution Explorer. If they're not already expanded,
expand the Toolbox window and the Data Sources window. You should have
Visual Studio set up as shown in the following screenshot:

Chapter 1

[29]

The first step is to add an Object Data Source to connect to DataService.
GetProjects(). To do this start by clicking on Add New Data Source in the
Data Sources window, as shown in the following screenshot:

You will now be presented with a dialog that will allow you to specify an Object
Data Source, as shown in the following screenshot:

Presentation Patterns

[30]

You will now be given the option to select the object that will be your data source.
Select the Project class as shown in the following screenshot:

Next, select ComboBox from the Name drop-down menu, as shown in the following
screenshot. This will change the type of generated control to be a combobox for the
Name property.

Chapter 1

[31]

Now drag the Name column onto the designer surface so that Visual Studio can
generate some code to create a ComboBox which will be ready to be bound by an
IList<Product>.

Change the width of the window to 250 by clicking on the MainWindow and setting
the width value in the properties. You should now see something similar to what is
shown in the following screenshot:

Looking at the XAML in the previous screenshot you will see that some code was
generated for you. The important parts are highlighted as follows.

It is assumed that you are familiar with the basics of WPF's data
binding as full details fall outside of the scope of this book. However,
see Appendix B, Binding at a glance, and/or see Data Binding (WPF)
on MSDN (http://msdn.microsoft.com/en-us/library/
ms750612.aspx).

Presentation Patterns

[32]

<Window x:Class="RadProjectBilling.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="250"
 mc:Ignorable="d"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:my="clr-namespace: ProjectBilling.DataAccess;assembly=Pr
ojectBilling.DataAccess"
 Loaded="Window_Loaded">
 <Window.Resources>
 <CollectionViewSource x:Key="projectViewSource" d:DesignSource
="{d:DesignInstance my:Project, CreateList=True}" />
 </Window.Resources>
 <Grid>
 <Grid DataContext="{StaticResource projectViewSource}"
 HorizontalAlignment="Left"
 Margin="12,12,0,0" Name="grid1"
 VerticalAlignment="Top">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Label Content="Name:" Grid.Column="0"
 Grid.Row="0" HorizontalAlignment="Left"
 Margin="3" VerticalAlignment="Center" />
 <ComboBox DisplayMemberPath="Name" Grid.Column="1"
 Grid.Row="0" Height="23"
 HorizontalAlignment="Left"
 ItemsSource="{Binding}" Margin="3"
 Name="nameComboBox"
 VerticalAlignment="Center" Width="120">
 <ComboBox.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel />
 </ItemsPanelTemplate>
 </ComboBox.ItemsPanel>
 </ComboBox>
 </Grid>
 </Grid>
</Window>

Chapter 1

[33]

At the top of the file, there is an event handler added for the Window.Loaded event
which is set to Window_Loaded.As you will see soon, Window_Loaded was created in
the code behind. Next, a new CollectionViewSource named projectViewSource
was added and set to reference to the DataLayer.Project class.

A CollectionViewSource class wraps a data source and allows you to
navigate and display the collection based on sort, filter, and group quires.

The grid, grid1, then had its DataContext set to projectViewSource and a
ComboBox called nameComboBox was added with its ItemsSource bound to its
DataContext with the following code.

ItemsSource="{Binding}"

Specifying Binding with no path in a binding expression will cause the binding
target to be bound to the combobox's DataContext property.

We will be covering bindings and DataContext in
more depth later in this book.

DataContext is an inherited DependencyProperty and inherited
DependencyProperties will have their values propagated from parents to children
in the Visual Tree and in this case will result in the DataContext that was set on
grid1 being propagated to all of its children including nameComboBox.

For more information on DependencyProperties see Dependency
Properties Overview on MSDN (http://msdn.microsoft.com/
en-us/library/ms752914.aspx) and for more information on
the Visual Tree see Trees in WPF on MSDN (http://msdn.
microsoft.com/en-us/library/ms753391.aspx).

If we look in the code behind, MainWindow.xaml.cs, we'll see that
projectViewSource has been initialized in Window_Loaded().

private void Window_Loaded(object sender, RoutedEventArgs e)
{

 System.Windows.Data.CollectionViewSource projectViewSource
 = ((System.Windows.Data.CollectionViewSource)
 (this.FindResource("projectViewSource"));
 // Load data by setting the
 // CollectionViewSource.Source property:
 // projectViewSource.Source = [generic data source]
}

http://msdn.microsoft.com/en-us/library/ms752914.aspx
http://msdn.microsoft.com/en-us/library/ms752914.aspx
http://msdn.microsoft.com/en-us/library/ms753391.aspx
http://msdn.microsoft.com/en-us/library/ms753391.aspx

Presentation Patterns

[34]

There is some commented out code created for you.

// projectViewSource.Source = [generic data source]

By uncommenting the previous line of code, you can easily set the data source
to the collection returned by DataServiceStub.GetProjects, as shown in the
following code.

You will need to add a using statement for
ProjectBilling.DataAccess to the top of the file.

private void Window_Loaded(object sender, RoutedEventArgs e)
{

 System.Windows.Data.CollectionViewSource projectViewSource
 = ((System.Windows.Data.CollectionViewSource)
 (this.FindResource("projectViewSource"));
 // Load data by setting the
 // CollectionViewSource.Source property:
 projectViewSource.Source=new DataServiceStub().GetProjects();

}

Now if we run the application, we will see that the Name combobox is populated
with data shown in the following screenshot:

Next we need to add the details controls. The first step is to click on the drop-down
menu next to the Project data source in the DataSources window and change its type
to Details, as shown in the following screenshot:

Chapter 1

[35]

Now we will generate the details controls as shown in the following screenshot:

Presentation Patterns

[36]

Perform the following steps:

1. Drag the Project data source to the MainWindow on the cider design
surface as shown in the previous screenshot. This will create a mini form
with the controls for displaying the details.

2. Drag the form that was created by clicking on the drag handles for the
grid and move it below the name, as shown in the previous screenshot.

3. Next, clean up the form by removing the labels, textboxes, and rows that
are associated with the Id and Name labels.

Now run ProjectBilling.RAD and you should have a working master/details
view, as shown in the following screenshot:

As you can see, it's easy to set up a working master/details form using these tools.
It'd need some tweaking to be exactly the same as the monolithic one but I'm sure
you get the idea of how this works compared to the monolithic style.

To finish off the application, add a button and change its Content to Update, Name
to UpdateButton, IsEnabled to false, and then double-click on the button to create
an event handler called UpdateButton_Click().

Chapter 1

[37]

Add the following code to updateButton_Click():

private void UpdateButton_Click(object sender,
 RoutedEventArgs e)
{
 Project selectedProject
 = this.nameComboBox.SelectedItem
 as Project;
 if (selectedProject != null)
 { selectedProject.Estimate =
 double.Parse(this.estimateTextBox.Text);
 if (!string.IsNullOrEmpty(
 this.actualTextBox.Text))
 {
 selectedProject.Actual
 = double.Parse(
 this.actualTextBox.Text);
 }
 SetEstimateColor(selectedProject);
 }
}

Presentation Patterns

[38]

This is almost exactly the same code we saw in the previous monolithic example
and works exactly the same way.

Next, double-click on the Project combobox to add a SelectionChanged
event handler. This will take you from the designer to the newly created event
handler. Add the following code to this event handler along with the related
SetEstimateColor() method.

You will need to include the System.Windows.Controls and
System.Windows.Media namespaces.

private void nameComboBox_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 ComboBox comboBox = sender as ComboBox;

 // If there is a selected item
 if (comboBox != null && comboBox.SelectedIndex > -1)
 {
 Project selectedProject
 = comboBox.SelectedItem as Project;

 SetEstimateColor(selectedProject);
 this.UpdateButton.IsEnabled = true;
 }
 else
 {
 this.estimateTextBox.IsEnabled = false;
 this.actualTextBox.IsEnabled = false;
 this.UpdateButton.IsEnabled = false;
 }
}

private void SetEstimateColor(Project selectedProject)
{
 if (selectedProject.Actual == 0)
 {
 this.estimateTextBox.Foreground
 = Brushes.Black;
 }
 else if (selectedProject.Actual
 <= selectedProject.Estimate)
 {
 this.estimateTextBox.Foreground
 = Brushes.Green;
 }
 else

Chapter 1

[39]

 {
 this.estimateTextBox.Foreground
 = Brushes.Red;
 }
 }

The previous code is similar to the monolithic code, except shorter. A lot of the code
that was used to update the UI before is now not necessary and has been specified as
a part of the XAML.

<Window.Resources>
 <CollectionViewSource x:Key="projectViewSource"
 d:DesignSource="{d:DesignInstance my:Project,
 CreateList=True}" />
</Window.Resources>

The projectViewSource is now doing the work we were manually doing before to
move data in and out of our details controls, and that is accomplished through the
bindings that have been created for us on the details controls.

<TextBox Grid.Column="1" Grid.Row="0" Height="23"
 HorizontalAlignment="Left" Margin="3"
 Name="actualTextBox"
 Text="{Binding Path=Actual, Mode=TwoWay,

 ValidatesOnExceptions=true,

 NotifyOnValidationError=true}"

 VerticalAlignment="Center" Width="120" />

Each details control will have a binding configured, as shown previously,
to allow for two-way communication with the binding source, which in this
case is the Project.Actual that is exposed from the projectViewSource
CollectionViewSource class.

Takeaways
Looking at the code we just created, we see a situation that is slightly better than with
pure monolithic design. The use of a CollectionViewSource reduced the amount
of code that was created and that would need to be maintained and tested. However,
the ease with which these controls allow for creating monolithic designs makes them
an overall negative for those who care about design. We still have all the problems of
monolithic code here that result from tight coupling and poor separation of concerns.
However, we now have the additional problem of Visual Studio encouraging that type
of design and we still can't easily support multiple dynamic views of our session state.

Presentation Patterns

[40]

MVC
As a result of the problems caused by monolithic design, there has been a movement
that started in the 70s towards presentational patterns or "Model View" patterns that
provide better SoC and better testability. All this began in 1979 when MVC (Model
View Controller) was described by Trygve Reenskaug while he was working on
Smalltalk at Xerox PARC. Presentation patterns are notoriously flexible and this
flexibility is part of what makes them difficult to master. Because of this there have
been numerous versions of the MVC pattern; it's out of the scope of this book to
cover all the various types of MVCs. What is important to understand is what these
MVC patterns generally looked like and what problems they had which led to MVP.
The basic structure of MVC is shown in the following diagram:

Application

Controller1

View1

Model

Viewn

Controllern

Over the years MVC has taken many forms and it has evolved to
where it is now common for the controllers to have a larger scope
than just one widget, and under this newer style you'd more likely
have one controller per form or user control instead of per widget.
The sample used in this book makes use of the more modern style
with one controller per window.

We will now cover the responsibilities of each of the components mentioned earlier
and as part of that discussion you will see where the components introduced in the
Monolithic section of this chapter fit into the MVC paradigm.

View
The view is responsible for displaying data and collecting user input. The view gets
its data from the model including notifications that data has been updated and needs
to be refreshed. These notifications are implemented using an observer pattern.

Chapter 1

[41]

In .NET, events are an implementation of the observer pattern.

When the user interacts with the view through gestures, the view is responsible for
collecting those gestures and forwarding them along to the controller for processing.

Controller
The controller is responsible for taking user input and communicating it to the
model for processing.

The controller doesn't have to pass user input directly to the model
and in many cases will instead communicate input gestures to a service
layer or business logic layer for processing, which will then update the
existing model or return a new model depending on the architecture.
These details will be covered more extensively in the section titled
Layered Design later in this chapter.

The main benefit that the controller provides is the ability to remove as much logic
as possible into an external component that can be tested using automated tests.

There are many variations of MVC that we will not be covering where
the controller is responsible for collecting input from the user including
Model 2, which is the pattern that ASP.NET MVC is based on.

Model
In MVC, the model is the in-memory representation of the data that was retrieved
from the persistence store (session state). The model is also responsible for notifying
the view of changes in state which is generally done with an observer pattern.
Abstracting the model in this way allows for easily sharing session state among
views, as we will discover shortly in the MVC Project Billing sample section.

Presentation Patterns

[42]

Layered design
The design shown in the previous screenshot is an over-simplification of what is
generally done in enterprise applications. Enterprise applications are generally
separated into three logical layers as shown in the following diagram:

Business Layer

Presentation Layer

Data Layer

Application

Layering an application in this way provides many benefits including the ability to
scale more easily by deploying different layers to different servers and the ability
to swap out layers with alternate implementations making the design extensible
to change. A full discussion of layered design is outside of the scope of this book.
If you'd like to learn more about layered enterprise design then see Chapter 5,
Northwind—Commands and User Inputs, and Layered Application Guidelines from
Microsoft Application Architecture Guide, 2nd Edition which is freely available online
as part of MSDN (http://msdn.microsoft.com/en-us/library/ff650706.aspx).

The layers
The common three-layer design shown in the previous screenshot consists of the
following layers:

Presentation layer
The presentation layer is responsible for

•	 Displaying data
•	 Providing feedback to the user
•	 Collecting user input which is passed along to the business logic layer

for processing

Separating the presentation in this way provides the benefits of being able to
change the UI or provide a second UI without having to duplicate the code in
the lower layers if for example you need to provide a thick client, thin client and
a command-line version of your application.

Chapter 1

[43]

Business layer
The business layer or application layer is where the core functionality of the system
lives. This logic is called the business logic or domain logic and is applied to the raw
data that is fetched from the data access layer for processing. Having the business logic
in its own layer allows for scalability as the business logic can be hosted separately
from the other layers and allows for extensibility as it provides the flexibility to
support multiple types of UIs and multiple types of data stores if needed.

Data layer
The data layer is responsible for pulling data from and pushing data to a data
store like a database, service or XML file. Having the data access layer provides
the benefit of allowing for change in the data store without having to change code
in higher layers.

MVC with layered design
Layered design may seem like a similar idea to MVC and it does have some similar
ideas but they are not the same. However, they are generally used together in
enterprise architecture, as shown in the following diagram:

Presentation Layer

Controller

View

Model

View

Controller

Application

Business Layer

Model

Data Layer

As you can see from the previous screenshot, using MVC with layered design results
in having the view and controller as part of the presentation layer and the model as
part of the business logic layer.

Presentation Patterns

[44]

There are various approaches to how the model and business logic can be structured.
Martin Fowler describes the most common approaches on his blog and in his book
Patterns of Enterprise Application Architecture. The patterns Martin describes include
the following:

•	 Transaction script: This approach organizes business logic in procedures
where each procedure handles a single request from the presentation.
Under this design you have one large facade that exposes your business
logic through its methods.

•	 Domain model: This approach organizes domain logic into an object model
of the domain that incorporates both behavior and data. Under this design
you have an object graph that mirrors your domain objects and each of
these domain or business objects could provide methods for fetching or
manipulating data.

•	 Table module: Under this design you'd have a model that mirrors the
database tables instead of the domain objects.

We have barely scratched the surface here because there are so many ways of
organizing business logic and the model. Covering all of the options available for the
business layer and model is outside of the scope of this book. If you are interested in
learning more see Patterns of Enterprise Application Architecture by Martin Fowler.

MVC Project Billing sample
The increased SoC that comes from implementing MVC will allow us to implement
a slightly better version of Project Billing which will support multiple views of the
same data with dynamic updates, as shown in the following screenshot:

Chapter 1

[45]

The classes involved in our MVC design are shown in the following screenshot:

As you can see in the previous screenshot we will have:

•	 ProjectsView that keeps a reference to an IProjectsController interface
via the ProjectsView.controller field and will keep a reference to an
IProjectsModel interface via the ProjectsView.model field

•	 ProjectsController class that implements IProjectsController
•	 ProjectsModel that implements IProjectsModel

ProjectsView will use its reference to IProjectController to communicate
user gestures to the controller by calling ProjectsView.controller.Update().
Internally this will call ProjectsController.model.UpdateProject().

ProjectsView could call ProjectsView.model.UpdateProject()
directly, but then the view logic would not be easily testable.

Presentation Patterns

[46]

ProjectsView uses its reference to IProjectModel so that it can observe the
IProjectsModel.ProjectUpdated event that will be raised after a call to
ProjectModel.UpdateProject() finishes updating the model to provide dynamic
synchronization of view state with session state (or model data) across all the
ProjectsView instances. This design will make it so that when a user clicks on the
Update button, all views that are currently open and viewing the same project will get
the update and display the new data.

Let's start by creating a new WPF Application project called MvcProjectBilling.
Add a project reference to the ProjectBilling.DataAccess.

Model
Add a new class to ProjectBilling.MVC called ProjectsModel and put the
following code in it:

using System;
using System.Collections.Generic;
using System.Linq;
using ProjectBilling.DataAccess;

namespace ProjectBilling.Business.MVC
{
 public interface IProjectsModel
 {
 IEnumerable<Project> Projects { get; set; }
 event EventHandler<ProjectEventArgs> ProjectUpdated;
 void UpdateProject(Project project);
 }

 public class ProjectsModel : IProjectsModel
 {
 public IEnumerable<Project> Projects { get; set; }

 public event EventHandler<ProjectEventArgs>
 ProjectUpdated = delegate { };

 public ProjectsModel()
 {
 Projects = new DataServiceStub().GetProjects();
 }

 private void RaiseProjectUpdated(Project project)
 {

Chapter 1

[47]

 ProjectUpdated(this,
 new ProjectEventArgs(project));
 }

 public void UpdateProject(Project project)
 {
 Project selectedProject
 = Projects.Where(p => p.ID == project.ID)
 .FirstOrDefault() as Project;
 selectedProject.Name = project.Name;
 selectedProject.Estimate = project.Estimate;
 selectedProject.Actual = project.Actual;
 RaiseProjectUpdated(selectedProject);
 }
 }

 public class ProjectEventArgs : EventArgs
 {
 public Project Project { get; set; }

 public ProjectEventArgs(Project project)
 {
 Project = project;
 }
 }
}

This code creates a model for consumption by our view. The view uses the observer
pattern to get its updates from the model and the controller passes along user input
from the view to the model using an IProjectsModel reference.

We have implemented ProjectsModel based on the IProjectModel so that our
design is more extensible and allows using dependency injection. Dependency
Injection will allow for increased testability as a fake object (mock or stub) can now
be provided during unit tests.

The IProjectsModel interface is shown as follows:

 public interface IProjectsModel
 {
 IEnumerable<Project> Projects { get; set; }
 event EventHandler<ProjectEventArgs> ProjectUpdated;
 void UpdateProject(Project project);
 }

Presentation Patterns

[48]

IProjectsModel defines the following contract:

•	 Projects: It is a collection of projects that was loaded from persisted state
•	 ProjectUpdated: It is an event for notifying when a project has its data

updated
•	 UpdateProject(): It is a method for submitting a project to be updated

The ProjectModel class implements the IProjectModelInterface and uses
IDataServices.GetProjects() to fetch the data from our persistence service stub.

The following code is the preferred way of defining events and it allows
you to avoid having to check for a null event before raising the event.
The code is more concise than the more common null checking pattern
and also thread safe.
public event EventHandler<ProjectEventArgs>

ProjectUpdated = delegate { };

Controller
Add a class to the ProjectsBilling.MVC project called ProjectsController and
add the code as follows:

using System;
using ProjectBilling.Business.MVC;
using ProjectBilling.DataAccess;
using System.Windows;

namespace ProjectBilling.UI.MVC
{
 public interface IProjectsController
 {
 void ShowProjectsView(Window owner);
 void Update(Project project);
 }

 public class ProjectsController : IProjectsController
 {
 private readonly IProjectsModel _model;

 public ProjectsController(IProjectsModel projectModel)
 {
 if (projectModel == null)
 throw new ArgumentNullException(

Chapter 1

[49]

 "projectModel");
 _model = projectModel;
 }

 public void ShowProjectsView(Window owner)
 {
 ProjectsView view
 = new ProjectsView(this, _model);
 view.Owner = owner;
 view.Show();
 }

 public void Update(Project project)
 {
 _model.UpdateProject(project);
 }
 }
}

We've implemented the controller based on an interface to again take advantage of
the benefits of dependency injection. The interface defines the following contract:

•	 ShowProjectsView(): It is a method that allows for displaying a
ProjectsView to the user

•	 Update(): It is a method that allows for updating a project that delegates the
updating of the project to the model

It was common in older versions of MVC to have the controller
responsible for determining the next view and then to display
the view. We demonstrated that in the previous code with
ShowProjectsView(). This is not a responsibility that always
is taken on by the controller in MVC.

View
Add a new window to ProjectBilling.MVC called ProjectsView and add the
following code to ProjectView.xaml:

<Window x:Class="ProjectBilling.UI.MVC.ProjectsView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Projects" MinHeight="180" Height="180"
 MinWidth="250" Width="250" Padding="5"

Presentation Patterns

[50]

 FocusManager.FocusedElement
 ="{Binding ElementName=ProjectsComboBox}">
 <UniformGrid Columns="2">
 <Label Content="Project:" />
 <ComboBox Name="ProjectsComboBox" Margin="5"
 SelectionChanged
 ="ProjectsComboBox_SelectionChanged" />
 <Label Content="Estimated Cost:" />
 <TextBox Name="EstimatedTextBox" Margin="5"
 IsEnabled="False" />
 <Label Content="Actual Cost:" />
 <TextBox Name="ActualTextBox" Margin="5"
 IsEnabled="False" />
 <Button Name="UpdateButton" Content="Update"
 Margin="5" IsEnabled="False"
 Click="UpdateButton_Click" />
 </UniformGrid>
</Window>

This XAML creates a simple master/details form, like the one shown in the
screenshot at the beginning of the MVC Project Billing sample section.

Coverage of the basics of XAML is outside the scope
of this book.

Next, add the following code to ProjectsView.xaml.cs. Start by adding the fields
that will hold a reference to the model and controller.

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using ProjectBilling.Business.MVC;
using ProjectBilling.DataAccess;

namespace ProjectBilling.UI.MVC
{
 public partial class ProjectsView : Window
 {
 private readonly IProjectsModel _model;
 private readonly IProjectsController _controller
 = null;
 private const int NONE_SELECTED = -1;
 }
}

Chapter 1

[51]

Initialization
Add the constructor as follows:

public ProjectsView(
 IProjectsController projectsController,
 IProjectsModel projectsModel)
{
 InitializeComponent();
 _controller
 = projectsController;
 _model = projectsModel;
 _model.ProjectUpdated
 += model_ProjectUpdated;
 ProjectsComboBox.ItemsSource
 = _model.Projects;
 ProjectsComboBox.DisplayMemberPath
 = "Name";
 ProjectsComboBox.SelectedValuePath
 = "ID";
}

This constructor allows for dependency injection by taking an interface for
the model and controller as parameters. As previously mentioned, this allows
for more isolated unit tests as fake objects (mocks or stubs) can be passed in for
testing. The constructor:

1. Wires up the model and controller.
2. Subscribes to the _model.ProjectUpdated event.
3. Sets the projectsComboBox.ItemSource to this.Model.Projects and sets

the DisplayMemberPath and SelectedValuePath so that they resolve to
Project.Name and Project.ID respectively.

Event handlers
Now we will add some event handlers:

•	 The following model_ProjectUpdated code will execute when the
ProjectsModel.ProjectUpdated event fires:
void model_ProjectUpdated(object sender,
 ProjectEventArgs e)
{
 int selectedProjectId = GetSelectedProjectId();

 if (selectedProjectId > NONE_SELECTED)

Presentation Patterns

[52]

 {
 if (selectedProjectId == e.Project.ID)
 {
 UpdateDetails(e.Project);
 }
 }
}

•	 If the project that was updated is currently displayed in the details of this
view, then this code will update the details with the project's new data.
This allows for multiple synchronized views of the same data.

•	 The ProjectsComboBox_SelectionChanged event handler fires when the
user changes the selected project in the ProjectsComboBox. This event
gets the selected project and then updates the details controls with the
newly selected project's data and then calls UpdateEstimateColor()
to set estimateTextBox.Foreground to the appropriate color based
on the view logic.
private void ProjectsComboBox_SelectionChanged(
 object sender, SelectionChangedEventArgs e)
{
 Project project = GetSelectedProject();
 if (project != null)
 {
 EstimatedTextBox.Text
 = project.Estimate.ToString();
 EstimatedTextBox.IsEnabled = true;
 ActualTextBox.Text
 = project.Actual.ToString();
 ActualTextBox.IsEnabled = true;
 UpdateButton.IsEnabled = true;
 UpdateEstimatedColor();
 }
}

•	 The UpdateButton_Click event handler fires when a user clicks
on the UpdateButton. This event handler simply creates a new Project
populated with the details data and then passes that project to the controller
for processing.
private void UpdateButton_Click(object sender,
 RoutedEventArgs e)
{
 Project project = new Project()
 {

Chapter 1

[53]

 ID = (int)ProjectsComboBox.SelectedValue,
 Name = ProjectsComboBox.Text,
 Estimate = GetDouble(
 EstimatedTextBox.Text),
 Actual = GetDouble(ActualTextBox.Text)
 };
 _controller.Update(project);
}

Helpers
Add the code that follows as the private helper methods that are called from the
event handlers:

•	 The UpdateEstimateColor function will look at the values of the details
controls and update the EstimateTextBox.Foreground to the appropriate
color based on the view logic.
private void UpdateEstimatedColor()
{
 double actual
 = GetDouble(ActualTextBox.Text);
 double estimated
 = GetDouble(EstimatedTextBox.Text);
 if (actual == 0)
 {
 EstimatedTextBox.Foreground
 = ActualTextBox.Foreground;
 }
 else if (actual > estimated)
 {
 EstimatedTextBox.Foreground
 = Brushes.Red;
 }
 else
 {
 EstimatedTextBox.Foreground
 = Brushes.Green;
 }
}

•	 The UpdateDetails function takes a project and updates the details
controls including calling UpdateEstimateColor() to update the color
of estimateTextBox.Foreground.
private void UpdateDetails(Project project)
{

Presentation Patterns

[54]

 EstimatedTextBox.Text
 = project.Estimate.ToString();
 ActualTextBox.Text
 = project.Actual.ToString();
 UpdateEstimatedColor();
}

•	 Next add the following methods which are self explanatory.
private double GetDouble(string text)
{
 return string.IsNullOrEmpty(text) ?
 0 : double.Parse(text);
}

private Project GetSelectedProject()
{
 return ProjectsComboBox.SelectedItem
 as Project;
}

private int GetSelectedProjectId()
{
 Project project = GetSelectedProject();
 return (project == null)
 ? NONE_SELECTED : project.ID;
}

MainWindow
•	 Update MainWindow.xaml as shown in the following code:

<Window x:Class="ProjectBilling.UI.MVC.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Shell" Height="150" Width="150"
 MinHeight="200" MinWidth="200"
 FocusManager.FocusedElement
 ="{Binding ElementName=ShowProjectsButton}">
 <StackPanel>
 <Button Content="Update Projects"
 Name="ShowProjectsButton" Margin="5"
 Click="ShowProjectsButton_Click" />
 </StackPanel>
</Window>

Chapter 1

[55]

•	 This will create a window with one button that says ShowProjects. Double-
click on ShowProjects in cider to create an event handler and then add the
following code to MainWindow.xaml.cs.
using System.Windows;
using ProjectBilling.Business.MVC;

namespace ProjectBilling.UI.MVC
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private IProjectsController _controller;

 public MainWindow()
 {
 InitializeComponent();
 _controller
 = new ProjectsController(new ProjectsModel());
 }

 private void ShowProjectsButton_Click(object sender,
 RoutedEventArgs e)
 {
 _controller.ShowProjectsView(this);
 }
 }
}

•	 This code will serve as the main window of the application and will show a
new ProjectsView each time the Show Projects button is clicked by calling
IProjectsController.ShowProjectsView().

How it works
Run the application now. You will see a window like the one shown in the
following screenshot:

Presentation Patterns

[56]

Each time the Show Projects button is clicked, a ProjectsView will be displayed as
shown in the following screenshot:

What's interesting about this architecture is that it's now easy to have updates
propagate across views as you can see by following these steps:

1. Select the Jones account in each view.
2. Change the Actual Cost to be 1700 in one of the windows.
3. Click on the Update button in the same window that you changed

the Actual Cost in.

You will now see that both open ProjectsView windows update and this is because
the model has been abstracted away and the views observes the model. When an
update occurs, the windows get their updates in the form of events (the observer
pattern). You can also set each window with a different project and then try updating
a project in one window. Next, verify that the changes display in the second window
when you select the updated project.

Chapter 1

[57]

Takeaways
MVC makes several improvements over the monolithic approach:

•	 The increased SoC created by abstracting out a model allowed for easily
supporting multiple synchronized views of the same data.

•	 The controller abstraction allows for increased testability of view
interactions (gestures).

However, this design also has the following issues:

•	 The view logic and the view state are both still tightly coupled in the view
leaving them difficult to test or share.

•	 If we wanted to do a thin client for the Web in Silverlight, we'd only be able
to reuse the model and not the controller and we'd have to duplicate the view
logic and view state.

•	 The final less obvious issue with this design deals with memory leaks.
Details of the memory leaks follow. You can add code to fix the memory leak
situation but I've found on the projects that I've worked on that this is often
not done and requires higher maintenance than designs that don't rely on
events. Having to go through this extra effort required by .NET events makes
MVC less desirable than a pattern like MVVM that doesn't require the use of
.NET events.

Memory leaks
In the MVC Project Billing Sample the view observes the Model using .NET events,
which are an implementation of the observer pattern. One thing to watch out for
when using .NET events is memory leaks. This is because unfortunately in .NET,
events only support using strong references and not weak references. The issue
here is that when an observer object (view in our example) subscribes to an event
on a subject object (model in our example), the subject keeps a reference in the form
of a delegate (or function pointer) to the observer. In .NET, memory management
is handled by the garbage collector and the garbage collector will not collect any
object as long as another object has a strong reference to it. This means that our view
subscribing to our model's events will cause those models to hold strong references
to the views. These strong references will prevent the garbage collector from
collecting the views causing the views to leak.

Presentation Patterns

[58]

To see this for yourself, update the previous example as follows. Let's start by adding
a button to MainWindow.xaml:

<Button Content="GC Collect"
 Name="GCCollectButton" Margin="5"
 Click="GCCollectButton_Click" />

Next add gcCollectButton_Click to MainWindow.xaml.cs as follows:

private void GCCollectButton_Click(object sender,
 RoutedEventArgs e)
{
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();
}

You will need to add the System namespace to use GC.

This code will call GC.Collect() twice and GC.WaitForPendingFinalizers()
once. The .NET garbage collector is non-deterministic so there are no guarantees
about when it will collect but I find this combination works pretty well at getting
it to collect.

Now let's add a finalizer to ProjectsView.xaml.cs as follows.

Finalizers are called when an object is collected by the garbage collector.
Full coverage of .NET memory management is out of the scope of this
book. See C# Via CLR by Jeffery Richter for more details.

~ProjectsView()
{
 MessageBox.Show("ProjectsView collected");
}

Now when a ProjectsView instance is collected by the garbage collector, a message
box will pop up and we will know that it was collected.

Chapter 1

[59]

Go ahead, run the application and follow these steps:

1. Click on the GC Collect button as shown in the previous screenshot.
2. Open a few ProjectsViews by clicking on the Show Projects button and then

close them.
3. Click on the GC Collect button, in fact click it a few times. Try all you want,

you will not be able to get the finalizers to execute from the views that you
created because the ProjectsModel instance is holding a reference to them.

You will never see the ProjectsView collected message box displayed under this
design. If you used a memory profiler, you'd see that after each window is closed
the memory used by the application doesn't decrease.

To fix this situation add the following code to ProjectsView.xaml.cs and then
re-run the application repeating the steps listed previously.

protected override void OnClosed(EventArgs e)
{
 base.OnClosed(e);
 _model.ProjectUpdated -= model_ProjectUpdated;
}

Now you will see that when you click on GC Collect the finalizers will execute.
This isn't a lot of code to correct this situation but developers do tend to get this
wrong from time to time and it can make the code higher maintenance than a
design that doesn't require .NET events.

Microsoft recommends using the weak event pattern to deal with
this situation (http://msdn.microsoft.com/en-us/library/
aa970850.aspx). However, I prefer the WeakEvent class found in CLR
via C# by Jeffery Richter because it's a much lower maintenance approach
than the weak event pattern and Richter's WeakEvent classes are
used almost exactly like regular CLR events, so they require very little
training. Please check Richter's blog for the latest version of this code
which contains bug fixes to the published version.. These topics will not
be covered in this book but feel free to dig deeper on your own.

http://msdn.microsoft.com/en-us/library/aa970850.aspx
http://msdn.microsoft.com/en-us/library/aa970850.aspx

Presentation Patterns

[60]

MVP
MVP or Model View Presenter is a pattern that first appeared at IBM and then
emerged more prominently at Taligent in the 1990's. MVP was a derivative of MVC
that took a slightly different approach. Under MVP, the view is no longer required to
observe the model.

Martin Fowler officially retired the MVP pattern on his blog and replaced
it with two variations, Passive View and Supervising Controller. Passive
view is what is shown in the following screenshot. Under Supervising
Controller, the view still observes the model via an observer but with a
much more limited scope than under MVC. For full details see Martin's blog
(http://martinfowler.com/eaaDev/ModelViewPresenter.html).

The following diagram shows the basic structure of MVP:

IView1

View1

Model

Viewn

IViewn

Application

Model

Presenter1 Presenter2

It's more common for presenters to have a larger scope than a single UI
widget and to instead have one presenter per form or user control.

As you can see in the previous diagram, the presenter has taken the place of the
controller in the triad and is responsible for moving user input from the view to the
model as well as being responsible for updating the view about changes that occur
in the model. The presenter communicates with the view through an interface which
allows for increased testability as the model can be replaced by a fake object (mock or
stub) for unit tests. The following diagram shows MVP in a layered architecture:

Chapter 1

[61]

Presentation Layer

Model

Application

Business Layer

Model

Data Layer

IView1

View1 Viewn

IViewn

Presenter1 Presenter2

MVP Project Billing sample
We will create an application with the classes shown in the following screenshot:

Presentation Patterns

[62]

As you can see our view now consists of a class, ProjectsView that implements an
interface, IProjectsView. We will be implementing the Passive View version of
MVP and so IProjectsView contains everything needed to update the view and
to communicate user gestures into the presenter. This allows for maximum test
coverage under the MVP paradigm.

The presenter, ProjectsPresenter, takes an IProjectsView and an IProjectsModel
as constructor arguments and keeps references to them in ProjectsPresenter.view
and ProjectsPresenter.model respectively as shown previously.

This design requires that communications go through the presenter. For example,
when the user clicks on the updateButton, this will cause the IProjectView.
ProjectUpdated event to be raised, which will call the ProjectsPresenter.view_
ProjectUpdated() event handler. ProjectsPresenter.view_ProjectUpdated
will in turn call ProjectsPresenter.model.UpdateProject() which will update
the model data and then raise the IProjectsModel.ProjectUpdated event to notify
presenters that the model has been updated. The Presenters will then call IView.
UpdateProject(), which will take care of updating the view state and applying
view logic to set the color of estimateTextBox if necessary. This will allow for
dynamic updates to session data across multiple views just like in MVC. However,
this design allows for better test coverage than under MVC because the view is
passive and we've moved the view logic and view state out of the view and into the
presenter. We've also removed direct communication between the view and model
and all of the communication is handled through the presenter.

Having no interaction between the model and view is a detail that is
specific to the passive view version of MVP. In supervising controller
the model and view can still communicate directly.

Let's start by adding a new WPF Application project called ProjectBilling.MVP to
the solution and then add a project reference to the ProjectBilling.DataAccess project.

Model
Add a class called ProjectsModel and add the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using ProjectBilling.DataAccess;

namespace ProjectBilling.Business
{

Chapter 1

[63]

 public class ProjectEventArgs : EventArgs
 {
 public Project Project { get; set; }
 public ProjectEventArgs(Project project)
 {
 Project = project;
 }
 }

 public interface IProjectsModel
 {
 void UpdateProject(Project project);
 IEnumerable<Project> GetProjects();
 Project GetProject(int Id);
 event EventHandler<ProjectEventArgs> ProjectUpdated;
 }

 public class ProjectsModel : IProjectsModel
 {
 private IEnumerable<Project> projects = null;

 public event EventHandler<ProjectEventArgs>
 ProjectUpdated = delegate { };

 public ProjectsModel()
 {
 projects = new DataServiceStub().GetProjects();
 }

 public void UpdateProject(Project project)
 {
 ProjectUpdated(this,
 new ProjectEventArgs(project));
 }

 public IEnumerable<Project> GetProjects()
 {
 return projects;
 }

 public Project GetProject(int Id)
 {
 return projects.Where(p => p.ID == Id)

Presentation Patterns

[64]

 .First() as Project;
 }
 }
}

Our ProjectsModel implements the IProjectsModel interface for better testability
via dependency injection and implements the following contract.

•	 UpdateProject(): This method allows for updating a project across the
session state. This design could be extended to support updates across
persisted state, but covering that is outside the scope of this book.

•	 GetProjects(): This method will return all projects in the session state.
•	 GetProject(): This method is given a project ID and will return a project

from session state.
•	 ProjectUpdated: This event will fire when a project has been updated in the

session state.

The ProjectEventArgs class is for our events to use to communicate which project
has changed.

View
Add a window called ProjectsView and add the following code to
ProjectsView.xaml:

<Window x:Class="ProjectBilling.UI.MVP.ProjectsView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Projects" MinHeight="180" Height="180"
 MinWidth="250" Width="250" Padding="5"
 FocusManager.FocusedElement
 ="{Binding ElementName=ProjectsComboBox}">
 <UniformGrid Columns="2">
 <Label Content="Project:" />
 <ComboBox Name="ProjectsComboBox" Margin="5"
 SelectionChanged
 ="ProjectsComboBox_SelectionChanged" />
 <Label Content="Estimated Cost:" />
 <TextBox Name="EstimatedTextBox" Margin="5"
 IsEnabled="False" />
 <Label Content="Actual Cost:" />
 <TextBox Name="ActualTextBox" Margin="5"
 IsEnabled="False" />

Chapter 1

[65]

 <Button Name="UpdateButton" Content="Update"
 Margin="5" IsEnabled="False"
 Click="UpdateButton_Click" />
 </UniformGrid>
</Window>

With the exception of the namespace declaration, this XAML file is exactly the same
as that found in the MVC ProjectsView.xaml.

Next, add the following code to the ProjectsView.xaml.cs file.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using ProjectBilling.Business;
using ProjectBilling.DataAccess;

namespace ProjectBilling.UI.MVP
{
 public interface IProjectsView
 {
 int NONE_SELECTED { get; }
 int SelectedProjectId { get; }
 void UpdateProject(Project project);
 void LoadProjects(IEnumerable<Project> projects);
 void UpdateDetails(Project project);
 void EnableControls(bool isEnabled);
 void SetEstimatedColor(Color? color);
 event EventHandler<ProjectEventArgs> ProjectUpdated;
 event EventHandler<ProjectEventArgs> DetailsUpdated;
 event EventHandler SelectionChanged;
 }

 /// <summary>
 /// Interaction logic for ProjectsView.xaml
 /// </summary>
 public partial class ProjectsView : Window, IProjectsView
 {

 public int NONE_SELECTED { get { return -1; } }
 public event EventHandler<ProjectEventArgs>

Presentation Patterns

[66]

 ProjectUpdated = delegate { };
 public int SelectedProjectId { get; private set; }

 public event EventHandler SelectionChanged
 = delegate { };
 public event EventHandler<ProjectEventArgs>
 DetailsUpdated = delegate { };

 public ProjectsView()
 {
 InitializeComponent();
 SelectedProjectId = NONE_SELECTED;
 }

 }
}

This code creates the IProjectsView interface, the fields and the events that are
needed by ProjectsView. ProjectsView will implement the IProjectView and the
contract described as follows:

•	 NONE_SELECTED: This read-only property returns a constant that is used to
determine if SelectedProjectID currently has a selection

•	 SelectedProjectId: This read-only property returns the currently selected
project ID

•	 UpdateProject(): This function allows to update a project in the view state
and will take care of updating the details view if needed

•	 LoadProjects(): This function allows for populating the projectsComboBox
for the first time

•	 UpdateDetails(): This function allows for updating the details view
•	 EnableControls(): This function allows for setting the details controls and

the IsEnabled property of updateButton to enable and disable these controls
•	 SetEstimatedColor(): This function allows for setting the text color of

estimatedTextBox
•	 ProjectUpdated: This event will notify the presenter that the user clicked on

the updateButton
•	 DetailsUpdated: This event will notify the presenter that the details have

changed so that the presenter can update the text color of estimatedColor
•	 SelectionChanged: This event will notify the presenter that the current

selection has changed in the projectsComboBox

Chapter 1

[67]

Event handlers
Now let's add the event handlers that we will need:

•	 The UpdateButton_Click function will fire when a user clicks on
UpdateButton and will create a new project, populate it with the details
control data, and then raise the IProjectsView.ProjectUpdated event
passing the new project to the constructor of the new ProjectEventArgs that
is being passed with the event.
private void UpdateButton_Click(object sender,
 RoutedEventArgs e)
{
 Project project = new Project();
 project.Estimate =
 GetDouble(EstimatedTextBox.Text);
 project.Actual =
 GetDouble(ActualTextBox.Text);
 project.ID =
 int.Parse(
 ProjectsComboBox.SelectedValue.
 ToString());
 ProjectUpdated(this,
 new ProjectEventArgs(project));
}

•	 The ProjectsComboBox_SelectionChanged() function will fire when
the selection changes in the ProjectsComboBox and it simply raises the
IProjectsView.SelectionChanged event to notify the presenter so that it
can update the view as needed.

private void ProjectsComboBox_SelectionChanged(
 object sender, SelectionChangedEventArgs e)
{
 SelectedProjectId
 = (ProjectsComboBox.SelectedValue == null)
 ? NONE_SELECTED
 : int.Parse(
 ProjectsComboBox.SelectedValue.
 ToString());
 SelectionChanged(this,
 new EventArgs());
}

Presentation Patterns

[68]

Public methods
Add the following public methods:

•	 The UpdateProject function allows for updating a project in the view state
by first finding the project in the ProjectsComboBox.ItemsSource using a
little Linq. It then updates the project and if it's the project that is currently
selected, it calls UpdateDetails() to update the details controls.
public void UpdateProject(Project project)
{
 // Null checks excluded
 IEnumerable<Project> projects =
 ProjectsComboBox.ItemsSource as
 IEnumerable<Project>;
 Project projectToUpdate =
 projects.Where(p => p.ID == project.ID)
 .First();
 projectToUpdate.Estimate = project.Estimate;
 projectToUpdate.Actual = project.Actual;
 if (project.ID == SelectedProjectId)
 UpdateDetails(project);
}

•	 The LoadProjects function allows for loading a collection of Projects as
the ItemsSource for projectsComboBox.
public void LoadProjects(IEnumerable<Project> projects)
{
 ProjectsComboBox.ItemsSource = projects;
 ProjectsComboBox.DisplayMemberPath = "Name";
 ProjectsComboBox.SelectedValuePath = "ID";
}

•	 The EnableControls function allows for setting the IsEnabled state of the
details controls and updateButton.
public void EnableControls(bool isEnabled)
{
 EstimatedTextBox.IsEnabled = isEnabled;
 ActualTextBox.IsEnabled = isEnabled;
 UpdateButton.IsEnabled = isEnabled;
}

•	 The SetEstimatedColor function takes a color and will update the
estimateTextBox.Foreground color to be the passed in color.
public void SetEstimatedColor(Color? color)

Chapter 1

[69]

{
 EstimatedTextBox.Foreground
 = (color == null)
 ? ActualTextBox.Foreground
 : new SolidColorBrush((Color)color);
}

Note that this function doesn't contain view logic and that it's the
presenter's responsibility to calculate the correct color.

•	 The UpdateDetails function will update the details controls with the data
contained in the project that is passed in.

public void UpdateDetails(Project project)
{
 EstimatedTextBox.Text
 = project.Estimate.ToString();
 ActualTextBox.Text
 = project.Actual.ToString();
 DetailsUpdated(this,
 new ProjectEventArgs(project));
}

Helpers
The model_ProjectUpdated function will get a double from text passed in taking
care of null/empty checks.

private double GetDouble(string text)
{
 return string.IsNullOrEmpty(text)
 ? 0 : double.Parse(text);
}

Presenter
Add a class called ProjectsPresenter and add the following code to it:

using System;
using System.Windows.Media;
using ProjectBilling.Business;
using ProjectBilling.DataAccess;

namespace ProjectBilling.UI.MVP

Presentation Patterns

[70]

{
 public class ProjectsPresenter
 {
 private readonly IProjectsView _view = null;
 private readonly IProjectsModel _model = null;

 public ProjectsPresenter(IProjectsView projectsView,
 IProjectsModel projectsModel)
 {
 _view = projectsView;
 _view.ProjectUpdated += view_ProjectUpdated;
 _view.SelectionChanged
 += view_SelectionChanged;
 _view.DetailsUpdated += view_DetailsUpdated;
 _model = projectsModel;
 _model.ProjectUpdated += model_ProjectUpdated;
 _view.LoadProjects(
 _model.GetProjects());
 }

 }
}

As you can see the presenter takes IProjectsView and IProjectsModel
as constructor arguments and then subscribes to various events and the loads
projects into the view from the model with the following code:

this.view.LoadProjects(
 this.model.GetProjects());

Event handlers
•	 The view_DetailsUpdated function is called in response to

the IProjectsView.DetailsUpdated event and simply calls
SetEstimateColor() to update the color of the estimateTextBox.
Foreground. This allows the view logic to be easily tested.
private void view_DetailsUpdated(object sender,
 ProjectEventArgs e)
{
 SetEstimatedColor(e.Project);
}

Chapter 1

[71]

•	 view_SelectionChanged will be called in response to the IProjectsView.
SelectionChanged event firing performs the view logic of updating the
details controls after a the user changes the selected project. Again, this
design allows this view logic to be easily tested.
private void view_SelectionChanged(object sender,
 EventArgs e)
{
 int selectedId = _view.SelectedProjectId;
 if (selectedId > _view.NONE_SELECTED)
 {
 Project project =
 _model.GetProject(selectedId);
 _view.EnableControls(true);
 _view.UpdateDetails(project);
 SetEstimatedColor(project);
 }
 else
 {
 _view.EnableControls(false);
 }
}

•	 model_ProjectUpdated will be called in response to the IProjectsModel.
ProjectUpdated event firing and will allow for propagating the changes to
session state made in one view to the other views.
private void model_ProjectUpdated(object sender,
 ProjectEventArgs e)
{
 _view.UpdateProject(e.Project);
}

•	 The view_ProjectUpdated function will fire in response to the
IProjectsView.ProjectsUpdated event and will notify the model
so that it can update the project in the session state and also calls
SetEstimatedColor() to perform the view logic for updating the
color of estimateTextBox.Foreground if needed.
private void view_ProjectUpdated(object sender,
 ProjectEventArgs e)
{
 _model.UpdateProject(e.Project);
 SetEstimatedColor(e.Project);
}

Presentation Patterns

[72]

Helpers
Now add the following helper method:

•	 The SetEstimateColor performs the view logic needed to set
estimateColor.Foreground to the appropriate color and then calls
IProjectsView.SetEstimatedColor() to apply the needed color again
allowing for the view logic to be easily tested.
private void SetEstimatedColor(Project project)
{
 if (project.ID == _view.SelectedProjectId)
 {
 if (project.Actual <= 0)
 {
 _view.SetEstimatedColor(null);
 }
 else if (project.Actual
 > project.Estimate)
 {
 _view.SetEstimatedColor(Colors.Red);
 }
 else
 {
 _view.SetEstimatedColor(Colors.Green);
 }
 }
}

Main window
Add the following code to MainWindow.xaml:

<Window x:Class="ProjectBilling.UI.MVP.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Shell" Height="150" Width="200"
 MinHeight="150" MinWidth="200"
 FocusManager.FocusedElement
 ="{Binding ElementName=ShowProjectsButton}">
 <StackPanel>
 <Button Content="Show Projects"
 Name="ShowProjectsButton" Margin="5"
 Click="ShowProjectsButton_Click" />
 </StackPanel>
</Window>

Chapter 1

[73]

With the exception of the namespace declaration, this XAML code is exactly the same
as the one found in the MVC MainWindow.xaml.

Next, add the following code to MainWindow.xaml.cs:

using System.Windows;
using ProjectBilling.Business;

namespace ProjectBilling.UI.MVP
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private IProjectsModel _model = null;

 public MainWindow()
 {
 InitializeComponent();
 _model = new ProjectsModel();
 }

 private void ShowProjectsButton_Click(object sender,
 RoutedEventArgs e)
 {
 ProjectsView view = new ProjectsView();
 ProjectsPresenter presenter
 = new ProjectsPresenter(view, _model);
 view.Owner = this;
 view.Show();
 }
 }
}

The constructor creates a model that will be shared across all views. The model is
used to initialize and update session state.

ShowProjectsButton_Click() will be called when the ShowProjectsButton is
clicked and it will instantiate a new view and pass the new view instance as an
argument to the constructor for a new ProjectsPresenter instance along with a
reference to MainWindow.model. ShowProjectsButton_Click will then show the
view by calling view.Show().

Presentation Patterns

[74]

How it works
Running the application you will see that it works the same as our previous
MVC application.

Takeaways
MVP represents a big improvement over MVC in a few ways:

•	 It provides testable view state and view logic by moving them into the
presenter allowing the view logic to be easily tested.

•	 It decouples the view from the model by requiring communication to go
through the presenter. Unlike MVC, MVP allows for reuse of the view logic
and this is achieved by moving the logic into a presenter and having the
presenter communicate with the view through an interface. Now if you
wanted to implement a Silverlight version of this application, you would
only need to create a view in Silverlight that implements IProjectsView
and could reuse IProjectsPresenter and IProjectsModel.

However there are still a few issues as follows:

•	 We still use a lot of events, and as shown in the Memory Leaks section
previously, events can cause memory leaks and end up causing code
to be higher maintenance than a design that doesn't require events.

•	 There is still a lot of untested code in the view.

These short comings are all motivators for MVVM or presentation model and
we will look at how MVVM addresses each of these issues in the next chapter.

Chapter 1

[75]

Summary
In this chapter we reviewed the long history of presentation patterns with examples.
We started by looking at the state of affairs before applications started having their
architectures organized into presentation patterns and were instead written as
monoliths. We reviewed the many issues with this approach and looked at how
Microsoft is making the situation worse with its RAD toolkit that encourages this
kind of monolithic design.

We then looked at how things were improved under MVC and how dynamically
sharing the session state across views was made easier by MVC. We also reviewed
the shortcomings of MVC including covering issues with .NET events and memory
leaks before moving on to discussing how MVP addresses some of the MVC short
comings. We finished the chapter by looking at an example of the passive view
version of MVP covering all the improvements that it offers over MVC in the area
of testing and code reuse while pointing out MVP's shortcomings.

In the next chapter will dive into MVVM and demonstrate how it helps address
the shortcomings of all the presentational patterns that came before it by taking
advantage of features in Silverlight and WPF.

Introduction to MVVM
By Ryan Vice

In this chapter, we will introduce the Model View View Model pattern
(MVVM) and help you better understand the current state of affairs of MVVM.
This knowledge will lay a foundation that we will expand on throughout this book,
to give you the tools and knowledge you need to take advantage of the
many benefits of MVVM.

We will start with a brief history of the MVVM pattern, and then we will look at the
structure of MVVM. Next, we will take a look at the features of WPF and Silverlight
that make MVVM such an attractive option and follow this by diving into our first
MVVM sample. Next, we will look at the benefits of using MVVM and discuss how
we capitalized on those benefits in the MVVM sample that we built. We will follow
this by looking at the challenges that can make MVVM difficult; addressing these
challenges with various tools and techniques will be covered in the later chapters
of this book and will make up a large majority of this book's content. We will finish
off this chapter with a brief tour of the MVVM Light toolkit that we will be using
throughout this book.

History
MVVM is a pattern that emerged to address some of the limitations of MVC and
MVP, and to combine some of their strengths. This pattern first hit the scene as a part
of Small Talk's framework, under the name Application Model, in the '80s, and was
later improved and given the updated name of Presentation Model.

Application Model is also used to describe a hierarchical way
of implementing MVVM, which will be covered in Chapter 6,
Northwind—Hierarchical View Model and IoC

Introduction to MVVM

[78]

In the previous chapter, we reviewed a few shortcomings of MVC and how it dealt
with view state and view logic, including the following:

•	 The view logic and view state were in the view and therefore difficult to test
•	 The view state and view logic were tightly coupled to the model and

controller and were not reusable

These issues were addressed in the Passive View version of MVP by making the
view a humble view and moving the view state and view logic into an external class.

A humble view is a type of humble object. A humble object is
an object that has had its state and functionality extracted to an
externalclass, leaving minimal untestable state and logic in the
humble object. This is done because, before refactoring to a humble
object, the object is hard to test and/or hard to reuse. Restructuring
the object in this way allows for automated testing of the extracted
state and logic as well as the ability to easily reuse the functionality
of the humble object.

Making the view humble was done by having the view implement an interface and
only having the view communicate with the presenter through its interface. This
worked really well at solving our first issue but created a coupling with our presenter
and the view's interface. This requires manually updating the view interface and the
presenter for changes, and it'd be nice if there were an easier approach.

Under MVVM, a similar approach is taken, where the view logic and view state are
moved into an external class to make the view humble. The component that the view
logic and state was moved to, got a different name in each variation of the MVVM
pattern. It was known as Application Model, Presentation Model, and View Model,
in the three incarnations of the pattern, and played the role of being the model of the
view. The view model has the responsibility of maintaining the view state and executing
view logic, allowing for the view to be a humble view.

Application model and presentation model were able to achieve a humble view
without the coupling found in MVP, between the view and presenter, and
originally accomplished this separation by introducing the concept of property
objects that allowed for storing values of the view properties in the properties of
external property objects.

These property objects provided property change updates that allowed them to be
observed for changes. These changes allowed for synchronization of the values
held in the view's properties with properties found in external classes such as the
application model, as shown in the following diagram:

Chapter 2

[79]

Application

View1

Property1

ApplicationModel1 ApplicationModeln

Property

Object1

Property

Objectn

Model

Propertyn Property1 Propertyn

Viewn

Property

Object1

Property

Objectn

This idea is essentially rich two-way data binding. Property objects allowed for
presentation patterns that didn't require the overhead of implementing a view
interface for communicating updates, as found in MVP, and additionally didn't
require coupling the view and presenter (controller, view model, and so on). But
this new approach came at the expense of requiring either writing of a lot of code
to create property objects or having a GUI framework that provided rich, two-way
data binding.

Robust support for this type of functionality would come in .NET 3.0, with the
introduction of Silverlight, for thin client development, and Windows Presentation
Foundation or WPF, for thick client development. These new frameworks were
able to eliminate the need to write one's own property objects and ushered in the next
evolution in the presentational pattern's space, as we will see in the next section.

On a recent project, I was lucky enough to get an opportunity to speak with Sam
Bent, who works as the lead for the WPF Data Services team at Microsoft, and he told
me that the MVVM style of separated presentation design was what he and his team
at Microsoft were trying to accommodate by making such a rich data binding system
in WPF. John Gossman made this official when he coined the term MVVM and
published the presentation model pattern under the name MVVM on his blog, in 2005.

It's debatable as to who deserves credit for inventing MVVM, as it was first
implemented in Small Talk, first published as Presentation Model by Martin Fowler,
had its first robust framework support designed by the WPF Data Services team
under Sam Bent, and had its name coined by John Gossman. I won't attempt to end
that debate here and claim a single inventor for this pattern. Instead, I will simply
pay homage to the many important contributors and be thankful for all the hard
work that has been put into making this terrific pattern a reality. Once you start
using this pattern, you will most likely love it in the same way that I do. It's a really
fun and rewarding way to build applications.

Introduction to MVVM

[80]

Structure
With MVVM comes the concept of purity which refers to the amount of code in the
code-behind. Here, we will be focusing on the pure approach—the style where no
code is kept in the code-behind, and no references are kept between the view and
view model.

We will be covering varying degrees of purity, and the tradeoffs
of each, in Chapter 4, Northwind—Services and Persistence Ignorance.
However, if you are not interested in following the pure approach, you
will still benefit from the material from this section, as it introduces the
basic MVVM structure and sets up the design that will be used in our
first example that will come later in this book.

Pure MVVM
Pure MVVM is structured as shown in the following diagram:

Application

View1

Model

Viewn

Data Binding Data Binding

View Model1 View Modeln

This structure is similar to MVP, except that there is no longer the IView interface for
communicating from presenter to view. All communications between view and view
model are now handled using WPF's and Silverlight's binding systems.

In MVVM, the model takes on the same role as found under MVP. The model is
once again the in-memory representation of the data that was retrieved from the
persistence store, which is also called the session state. The model is also responsible
for notifying the view model of changes.

Chapter 2

[81]

It's also common to structure MVVM such that the view gets notified
of model updates by using data binding directly. We will cover
various approaches to this style in Chapter 3, Northwind—Foundations.

View
Under MVVM, the view is still responsible for displaying data, collecting user input,
and passing it along, except that now it's passed to the view model. The view now
uses the binding system in either WPF or Silverlight for its communications with the
view model and no longer contains code in its code behind.

We will cover options that allow more flexibility for the code behind in Chapter 4,
Northwind—Services and Persistence Ignorance, and cover the trade-offs of the various
levels of purity. The sample WPF code in this chapter takes the pure approach. Due
to limitations with Silverlight's binding system, we will go with a slightly less pure
approach when implementing Project Billing in Silverlight later in this chapter.

The view can also be responsible for mapping views to view models and for
instantiating the views under some variations of MVVM. We will cover those
details later in Chapter 4, Northwind—Services and Persistence Ignorance.

View Model
The view model or presentation model is responsible for view state and view logic and
relies on the binding system for communicating with the view. The view model is
the middleman in MVVM and takes care of:

•	 Moving data from the model to the view.
•	 Communicating user gestures to the model from the view.

The view model's role is essentially that of "model of the view" and takes the session
state and transforms it into a form that is easily consumable as view state. The view
model is also responsible for implementing view logic to transform the view state
as needed.

Introduction to MVVM

[82]

WPF and Silverlight enablers
.NET 3.0 introduced new toolkits for thick and thin client development, which
included Silverlight for thin client development and Windows Presentation
Foundation (WPF) for thick client development. At the heart of these new
frameworks were features that allowed for much greater separation of concerns,
including the following:

•	 A rich data binding system
•	 A commanding infrastructure
•	 Support for data templates
•	 A rich styling system

We will cover these features shortly, but for now it's important to know that these
features in WPF and Silverlight made MVVM a practical reality as it provided the
framework support needed for separating the view state and view logic from the view
without requiring the overhead of writing property objects or using view interfaces.

There are many areas in the framework that could be improved to better support
MVVM, and my guess would be that we will be seeing the road map for WPF and
Silverlight incorporate more of the techniques and tools found in this book that
address limitations in MVVM support. For example, we should be seeing support for
linking actions or delegates directly to events, based on data context, which currently
has to be accomplished via frameworks or non-trivial patterns. But, at the time of this
writing, you definitely can benefit quite a bit by either using open source frameworks
or by rolling your own using the techniques we'll review.

Dependency Properties
In WPF, all UI widgets are derived from the type UIElement, which is derived from
DependencyObject, as shown next.

The object hierarchy is different for Silverlight and
WPF.

Silverlight

System.Object
 System.Windows.DependencyObject
 System.Windows.UIElement

Chapter 2

[83]

WPF

System.Object
 System.Windows.Threading.DispatcherObject
 System.Windows.DependencyObject
 System.Windows.Media.Visual

The System.Windows.UIElement classes derive from DependencyObject and can
take advantage of the property systems that provide many benefits, as described in
the following excerpt from Dependency Properties Overview on MSDN:

Windows Presentation Foundation (WPF) provides a set of services that can be
used to extend the functionality of a common language runtime (CLR) property.
Collectively, these services are typically referred to as the WPF property system.
A property that is backed by the WPF property system is known as a dependency
property.

The same type of property system is used in
Silverlight.

Dependency properties make a lot of the new things in WPF and Silverlight possible
and provide a lot more features and functionality than we could cover in this book.
However, we will be covering the dependency property features and functionalities
that enable MVVM.

For full coverage of dependency properties, see Dependency Properties
Overview on MSDN (http://msdn.microsoft.com/en-us/
library/ms752914.aspx).

Dependency property inheritance
Dependency properties are registered with WPF's and Silverlight's property
systems, and when they are registered you can configure their behavior. One of the
attributes of a dependency property's behavior that can be configured is whether
or not the value is inherited by child dependency objects that expose the same
dependency property.

Introduction to MVVM

[84]

Data context
FrameworkElement defines a DataContext dependency property of type object.
FrameworkElement derives from UIElement, as shown next.

Silverlight

System.Object
 System.Windows.DependencyObject
 System.Windows.UIElement
 System.Windows.FrameworkElement

WPF

System.Object
 System.Windows.Threading.DispatcherObject
 System.Windows.DependencyObject
 System.Windows.Media.Visual
 System.Windows.UIElement
 System.Windows.FrameworkElement

MSDN describes FrameworkElement as:

FrameworkElement provides a framework of common APIs for objects that
participate in Silverlight layout. It also defines APIs related to data binding, object
tree, and object lifetime feature areas in Silverlight.

FrameworkElement works the same in WPF.

This means that every UI widget that derives from FrameworkElement can
participate in data binding and has a DataContext dependency property defined on it.
This DataContext property is configured to be inherited. This is important because
if the DataContext for a page, window, or user control, is set to a view model, all of
the controls contained in that page, window, or user control, will inherit that view
model instance as their DataContext. This allows us to easily use data binding to
bind control properties to properties of the view model. The framework will then do
all the work of synchronizing the properties of the UI widgets with the view model
properties. This is the same approach that was taken in application model which
used property objects but without requiring any property object code to be written.
The following diagram shows how this works:

Chapter 2

[85]

View

DataContext Property1

Propertyn

ViewModel

Property1 Propertyn

Microsoft has already heavily tested the binding systems so there is no need to be
concerned with creating tests for its binding functionality. This greatly reduces the
testing burden in the presentation layer. It also greatly reduces the amount of tedious
code that needs to be written to do the following:

•	 Synchronize view properties with view model properties
•	 Communicate user gestures

We will look at how to use the binding system to communicate
user gestures in Chapter 5, Northwind—Commands and User Inputs.

And as everyone knows, less code means fewer bugs, less testing,
and less maintenance.

Attached behavior pattern
The property systems in WPF and Silverlight allow for attaching dependency properties
to classes that the dependency properties aren't defined on. When dependency properties are
attached to a dependency object, you can subscribe to a property changed event that
will get a reference to the class that the dependency property is being attached to.
This allows you to do things such as:

•	 Wiring up event handlers for the events published by DependencyObject
•	 Calling methods on DependencyObject
•	 Executing external code
•	 Passing the DependencyObject instance into external methods for processing

Introduction to MVVM

[86]

The following diagram shows a high-level view of how this works:

DependencyObject DependencyProperty

Behavior

Changed

Attached

In this diagram, the code that is represented by Behavior can execute whenever the
property is attached and every time the value of the attached property changes.

This technique is essential to communicating between the view and view model,
if you want to implement a pure MVVM pattern and you don't want to use
frameworks (possibly because of workplace policies). We will dive into the details
of this pattern in Chapter 4, Northwind—Services and Persistence Ignorance and
Chapter 5, Northwind—Commands and User Inputs.

Rich data binding
WPF and Silverlight brought data binding to a whole new level as is described
on MSDN:

The data binding functionality in WPF has several advantages over traditional
models, including a broad range of properties that inherently support data binding,
flexible UI representation of data, and clean separation of business logic from UI.

In data binding, there are two important concepts to understand for MVVM:

•	 Binding source: It is the data that is being bound to the UI
•	 Binding target: It is the FrameworkElement class in the UI that will be

synchronized in some way with the binding source

Data binding will not be covered in this book, except for Binding at a
Glance contained in Appendix B. For more information on data binding,
see MSDN.
WPF coverage can be found on MSDN in the article Data Binding (WPF)
(http://msdn.microsoft.com/en-us/library/ms750612.aspx).
Silverlight coverage can be found on MSDN in the article Data
Binding (http://msdn.microsoft.com/en-us/library/
cc278072(v=vs.95).aspx).

Chapter 2

[87]

Data binding is important to MVVM, because it allows for having the framework
synchronize the dependency properties of any FrameworkElement with properties
of other objects. The dependency properties of framework elements can be
synchronized with many things, including:

•	 Properties of other framework elements
•	 Properties of the framework elements data context

This allows for easily:

•	 Synchronizing updates from the view model properties to the framework
element properties

•	 Synchronizing properties from one framework element to another in the
same view

INotifyCollectionChanged and
ObservableCollection<>
ObservableCollection implements INotifyCollectionChanged and is defined
on MSDN as:

Represents a dynamic data collection that provides notifications when items get
added, removed, or when the whole list is refreshed.

You can enumerate over any collection that implements the IEnumerable
interface. However, to set up dynamic bindings so that insertions or deletions
in the collection update the UI automatically, the collection must implement
the INotifyCollectionChanged interface. This interface exposes the
CollectionChanged event, an event that should be raised whenever the
underlying collection changes.

WPF provides the ObservableCollection<T> class, which is
a built-in implementation of a data collection that implements the
INotifyCollectionChanged interface.

ObservableCollection allows for binding to a collection and having
the view synchronized with updates to be bound to the collection. This
makes ObservableCollection very useful for MVVM, as you can bind to
ObservableCollection in XAML, and the binding target will get updates when the
collection changes via the INotifyCollectionChanged.CollectionChanged event.

http://msdn.microsoft.com/en-us/library/system.collections.ienumerable.aspx
http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged.aspx
http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged.collectionchanged.aspx
http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged.collectionchanged.aspx
http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged.aspx
http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged.aspx

Introduction to MVVM

[88]

INotifyCollectionChanged.CollectionChanged is handled by
WPF's and Silverlight's binding systems in a way that will cause controls
to be updated on the same thread that INotifyCollectionChanged.
CollectionChanged is raised on. This means that updating
ObservableCollection by adding or removing elements on a
background thread will cause the view to be updated by a background
thread, which will result in a threading exception being thrown. We
will cover options for dealing with this situation when we revisit
ObservableCollection in Chapter 3, Northwind—Foundations.

Another major benefit of this is that as long as each element of your
ObservableCollection class supports change notifications by implementing
INotifyPropertyChanged, your binding target will get updated automatically
when properties of elements in your collection change.

Automatic dispatching
The binding systems in WPF and Silverlight provide other benefits for MVVM
implementations. With the exception of adding and removing elements to and
from ObservableCollection, there is no need to dispatch changes made to binding
sources from background threads. This means that in your view models, you are
free-to-run code on a background thread that updates properties that are bound
to the view. This greatly reduces the amount of code contained in the middle tier
compared to other presentation patterns, which means less testing, less bugs, and
easier maintenance.

Triggers
Triggers allow for conditionally setting the values of properties on UI widgets,
based on events or property changes. There are three kinds of triggers:

•	 Property triggers: A property trigger is defined using the Trigger class
and fires when the value of the configured dependency property changes

•	 Data triggers: A data trigger is defined using the DataTrigger class and fires
when the value of the configured .NET property changes

•	 Event Triggers: An event trigger is defined using the EventTrigger class
and runs when the configured routed event occurs

You can use any property that you can bind to or any routed event allowing you to
map view logic in your markup.

Chapter 2

[89]

In the MVVM project billing sample section that follows in this chapter, we will set
the color of the estimated cost based on the actual cost, as seen in all the previous
examples in this book. However, we will assign the color purely in XAML markup,
by using a style with data triggers.

The view logic in this case is actually in the view model, which
exposes a property that indicates the status of the estimate, and
the style trigger is used to map a color to the current status.

Triggers also can be used in conjunction with attached properties, to allow for
communicating from the view model to the view, which is a technique that will be
covered in Chapter 5, Northwind—Commands and User Inputs.

Triggers can be used from within:

•	 Data templates
•	 Control templates
•	 Styles
•	 FrameworkElement.Triggers (EventTriggers only)

All these topics will not be covered in detail in this book, but that can be freely
researched on MSDN.

Styles
Styles in WPF and Silverlight allow for setting properties on elements in a way that
can be easily shared throughout your application. This allows for separation of look
and feel and allows for centralized changing of appearance in a similar way to what
can be done with CSS on the Web. Styles are important for MVVM because they
support triggers.

Styles will not be covered in detail in this book, and it is assumed that
you know how to use them. If you need more detailed coverage, see
Styling and Templating (http://msdn.microsoft.com/en-us/
library/ms745683.aspx), on MSDN.

http://msdn.microsoft.com/en-us/library/ms745683.aspx
http://msdn.microsoft.com/en-us/library/ms745683.aspx

Introduction to MVVM

[90]

Control Templates
Control templates in WPF and Silverlight represent the ultimate in separation
of look and layout from functionality, as they allow you to specify the look and
layout of a control independently of the functionality. This is referred to as lookless
controls. You can take a standard button and replace its control template to make it
simply a round circle, if you like, or something more exotic, say a spinning 3-D cube.
Control templates also support triggers, making them useful for MVVM.

One interesting thing about control templates from the MVVM point of view is that
they are implemented using the MVVM pattern under the hood. If you think about
it, clearly this has to be the case. The ability to completely change the look and layout
of a control purely in XAML markup and without touching a line of code follows the
MVVM style of using a framework to push data and gestures from the visuals to
the code.

Control templates will not be covered in detail in this book, and it is
assumed that you know how to use them. If you need more detailed
coverage, see Using Templates to Customize WPF Controls (http://msdn.
microsoft.com/en-us/magazine/cc163497.aspx), in the MSDN magazine.

Data templates
Data templates allow for creating an XAML template and mapping that to a type.
Whenever the type is found, it is replaced by the template.

Window

DataTemplate TypeOf=“TypeA”

<XAML>

TypeA1 TypeAn

<XAML> <XAML>

This is very powerful and allows for letting WPF and Silverlight frameworks map
views to view models automatically for us, as shown in the following diagram:

http://msdn.microsoft.com/en-us/magazine/cc163497.aspx
http://msdn.microsoft.com/en-us/magazine/cc163497.aspx

Chapter 2

[91]

Window

DataTemplate

DataType=“MyViewModel”

<src:MyView

DataContext=“MyViewModel /”>1

MyViewModel1

<src:MyView/>

<src:MyView

DataContext=“MyViewModel /”>n

MyViewModeln

Here, when a MyViewModel class is exposed in the window as part of an item source
or as the content of a control, the user control MyView will replace MyViewModel in
the XAML and the new MyView instance gets its data context set to the MyViewModel
instance. This allows you to bind to properties of the view model in the user control
instances. Additionally this allows for:

•	 Complete separation of view from view state and view logic
•	 Designers to work mostly independently of developers on the look and

layout of views
•	 Easily changing the look and layout of views

For more information on data templates, see Data Templating Overview
web page (http://msdn.microsoft.com/en-us/library/
ms742521.aspx), on MSDN website.

Commands
The command support found in WPF and Silverlight is an implementation of the
command pattern in the Gang of Four patterns catalog. Commands are made up of
four key elements, as described in the article Commanding Overview on MSDN.

•	 The command is the action to be executed
•	 The command source is the object that invokes the command
•	 The command target is the object that the command is being executed on
•	 The command binding is the object that maps the command logic to

the command

http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://msdn.microsoft.com/en-us/library/ms742521.aspx

Introduction to MVVM

[92]

Commands will not be covered in detail in this book, except for how
to apply them in MVVM. If you need to learn the basics, refer to
Commanding Overview (http://msdn.microsoft.com/en-us/
library/ms752308.aspx#Four_main_Concepts) on MSDN.

A command from the point of view of MVVM is essentially a way to wrap
a delegate from a view model in a command and expose it as a property of the
view model. Then, you can assign the command property to a command source
(or control) in XAML.

You might be wondering why you'd want to do this, and the answer is simple: it
allows you to communicate user gestures directly from view-to-view model without
requiring event handlers in your code behind or references from your view model to
your view.

View

XAML Code Behind

Button

Command={Binding

Path=MyCommand”}

Click

ViewModel

MyCommand

Implements

Icommand

No event handler

or code required

Execute()

CanExecute()

With MVP, you must have each event that you want to react to, wired up through
the code-behind approach; this design causes you to have to write more boilerplate
code, which is easy to get wrong because it's so mindless and boring to write. It also
is more code to test and it also requires references from view-to-view model, which
can lead to memory leaks if not properly managed.

Using commands allows for greater separation than what can be achieved in MVP
and less code, so then using them should be a no brainer, right? At this point you
might be thinking that the future is here and that now we no longer need to worry
about code behind. Well, not quite. The commanding implementation from the point
of view of MVVM leaves a bit to be desired. The problem is that each command

Chapter 2

[93]

source can have only one command associated with it. So, in our previous diagram,
the button's command is bound to the button's click event. But what if you wanted
to have an action associated with the Button.KeyDown event instead? You can't solve
this problem by only using commands, however we will explore several options for
dealing with this situation in Chapter 5, Northwind—Commands and User Inputs.

MVVM project billing sample
Now we will implement project billing using the MVVM pattern. Let's start by
discussing the overall design.

MVVM design
The model, view, and view model are shown in the following screenshot, along with
their relationships:

Introduction to MVVM

[94]

The view is now empty, and all of the explicit relationships that we've created
between our classes are between the model and view model.

View Models
We will need two view models for this application. Each view model has its own
area of responsibility in the view, as shown in the next screenshot.

Using multiple nested view models in this way is what I call
hierarchical view models, and it is a topic that will be explored in
more detail in Chapter 6, Northwind—Hierarchical View Model and IoC.

ProjectsViewModel
The ProjectViewModel view model will contain the view state and view logic for
ProjectsView. The following screenshot shows the mapping between Projects and
ProjectsViewModel:

The property bindings and their responsibilities are shown as follows:

•	 Projects: An ObservableCollection<Project> object for binding
to the Projects combobox.

•	 SelectedIndex: An int property that is bound with Binding.Mode of
OneWayToSource to Projects ComboBox.SelectedIndex. This allows us
to get notified in ProjectsViewModel, when the selection changes in the
Projects combobox.

Chapter 2

[95]

•	 SelectedProject: A PropertyViewModel object that is bound to the
detail's controls in the view. The details of these bindings are shown in
the ProjectViewModel section that follows. This value gets updated when
ProjectsViewModel.SelectedIndex changes.

•	 DetailsEnabled: A bool value for binding to the IsEnabled properties
of the Estimated Cost textbox and the Actual Cost textbox.

•	 DetailsEstimateStatus: A Status enum that will be used in combination
with style triggers to control the color of the Estimate textbox as needed.

•	 UpdateCommand: An ICommand interface for binding to the Update button that
controls the Update button's enabled state and reacts to the Button.Click
event, using WPF's command support. The UpdateCommand property returns
an instance of UpdateCommand, which is a class that implements ICommand.

Implementing ICommand is one option for taking advantage of
commands in MVVM. We will look at some helpers that make this
task easier in Chapter 5, Northwind—Commands and User Inputs.

ProjectViewModel
This view model will be exposed as the ProjectsViewModel.SelectedProject
property and will contain the view state and view logic for the detail's controls in
our master detail view.

Introduction to MVVM

[96]

ProjectViewModel will be very similar to our Project data object, so we have
implemented the IProject interface for the common properties. ProjectViewModel
also contains view state and view logic in the form of the EstimateStatus property,
which is a Status enum that will be used in combination with style triggers to
control the color of the Estimate textbox.

Model
ProjectsModel implements an interface to support dependency injection for
easier testing and better extensibility. It's also responsible for communicating
changes to the session state to support keeping any number of views synchronized
with session state.

The IProjectsModel interface exposes:

Projects: An ObservableCollection<ProjectViewModel> class that is exposed
by ProjectsViewModel instances via the ProjectsViewModel.Projects proxy
property. ProjectsModel.Projects holds the session state, that is shared across
all views. If this application were updated to support adding and removing projects
through ProjectsModel, then the UI will automatically get these updates without us
having to add any code to make it happen.

Proxy property is a pattern that will be explored in
more detail in Chapter 3, Northwind—Services and
Persistence Ignorance.

Code
Let us now take a look at the following steps:

1. Create a new Class Library project called ProjectBilling.Application.WPF.
2. Add a project reference to:

	° ProjectBillingDataAccess

	° PresentationCore

3. Add a class called Notifier to ProjectBilling.Application.WPF.

We will be creating both a WPF and a Silverlight client in this
chapter, and later we will be reusing this code in a second project for
Silverlight. That is why this project was named ProjectBilling.
Application.WPF.

Chapter 2

[97]

4. We'll start by creating a base class, to be used by our model and view model,
that will encapsulate the INotifyPropertyChanged functionality. Add the
following code to the Notifier.cs file:
using System.ComponentModel;

namespace ProjectBilling.Application
{
 public class Notifier : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler
 PropertyChanged = delegate { };

 protected void NotifyPropertyChanged(
 string propertyName)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(
 propertyName));
 }
 }
}

This class provides an implementation of INotifyPropertyChanged
and adds the NotifyPropertyChanged() method, to raise
INotifyPropertyChanged.PropertyChanged.

ProjectsModel
We will now create the model, so let's start by adding a class called ProjectsModel
to our project. Add the following code to the ProjectsModel.cs file:

using System;
using System.Collections.ObjectModel;
using System.Linq;
using ProjectBilling.DataAccess;

namespace ProjectBilling.Application
{
 public interface IProjectsModel
 {
 ObservableCollection<Project> Projects
 { get; set; }

 event EventHandler<ProjectEventArgs> ProjectUpdated;

Introduction to MVVM

[98]

 void UpdateProject(IProject updatedProject);
 }

 public class ProjectEventArgs : EventArgs
 {
 public IProject Project { get; set; }
 public ProjectEventArgs(IProject project)
 {
 Project = project;
 }
 }

 public class ProjectsModel : IProjectsModel
 {
 }
}

You may prefer to keep each item in its own file, which wasn't
done here, to keep things short.

This code adds the following items to the file:

•	 IProjectsModel: The interfaces that the ProjectsModel class will
implement are as follows:

	° Projects: An ObservableCollection<Project> class, which
will hold our session state that will be shared across all views

	° ProjectUpdated: It indicates that our project was updated in the
session state and allows for our view models to update their details
controls, if the project that was updated is currently being displayed

	° UpdateProject(): It allows for notifying the model that a project
was updated

•	 ProjectsEventArgs: EventArgs derived class that is used by
IProjectsModel.ProjectUpdated

•	 Project: It holds a reference to the project that was updated

Chapter 2

[99]

Next, update the ProjectsModel class, as shown in the following code:

public class ProjectsModel : IProjectsModel
{
 public ObservableCollection<Project> Projects
 { get; set; }
 public event EventHandler<ProjectEventArgs>
 ProjectUpdated = delegate { };

 public ProjectsModel(IDataService dataService)
 {
 Projects = new ObservableCollection<Project>();
 foreach (Project project
 in dataService.GetProjects())
 {
 Projects.Add(project);
 }
 }

 public void UpdateProject(IProject updatedProject)
 {
 GetProject(updatedProject.ID)
 .Update(updatedProject);
 ProjectUpdated(this,
 new ProjectEventArgs(updatedProject));
 }

 private Project GetProject(int projectId)
 {
 return Projects.FirstOrDefault(
 project => project.ID == projectId);
 }
}

This class simply implements the IProjectsModel interface. Here are a few points
of interest.

•	 Constructor: The constructor populates IProjectsModel.Projects by
iterating over the collection returned from DataService.GetProjects()

•	 UpdateProjects(): The implementation of IProjectsModel.
UpdateProjects will first update the IProjectsModel.Projects collection
and then raise the IProjectsModel.ProjectUpdated event to notify other
view models of the change. This is done so that the view models can update
ProjectsViewModel.SelectedProject, if it currently contains the project
that was updated.

Introduction to MVVM

[100]

ProjectViewModel
Now, add a class called ProjectViewModel and add the following code:

using ProjectBilling.DataAccess;

namespace ProjectBilling.Application
{
 public interface IProjectViewModel : IProject
 {
 Status EstimateStatus { get; set; }
 }

 public class ProjectViewModel : Notifier,
 IProjectViewModel
 {
 private int _id;
 private string _name;
 private double _estimate;
 private double _actual;
 private Status _estimateStatus
 = Status.None;

 public int Id
 {
 get { return _id; }
 set
 {
 _id = value;
 NotifyPropertyChanged("Id");
 }
 }

 public string Name
 {
 get { return _name; }
 set
 {
 _name = value;
 NotifyPropertyChanged("Name");
 }
 }

 public double Estimate
 {

Chapter 2

[101]

 get { return _estimate; }
 set
 {
 _estimate = value;
 NotifyPropertyChanged("Estimate");
 }
 }

 public double Actual
 {
 get { return _actual; }
 set
 {
 _actual = value;
 UpdateEstimateStatus();
 NotifyPropertyChanged("Actual");
 }
 }

 public Status EstimateStatus
 {
 get { return _estimateStatus; }
 set
 {
 _estimateStatus = value;
 NotifyPropertyChanged("EstimateStatus");
 }
 }
 }
}

We first add the IProjectViewModel interface, which inherits the IProject
interface and adds the EstimateStatus property that will be used to control the
color of the estimate in the UI by returning the appropriate Status enum. This class
contains the properties that will be bound to the details controls in the view. Next,
update the ProjectViewModel class by adding the following code:

public ProjectViewModel()
{}

public ProjectViewModel(IProject project)
{
 if (project == null)
 return;
 Id = project.Id;

Introduction to MVVM

[102]

 Update(project);
}

public void Update(IProject project)
{
 Id = project.Id;
 Name = project.Name;
 Estimate = project.Estimate;
 Actual = project.Actual;
}

private void UpdateEstimateStatus()
{
 if (Actual == 0)
 EstimateStatus = Status.None;
 else if (Actual <= Estimate)
 EstimateStatus = Status.Good;
 else
 EstimateStatus = Status.Bad;
}

Here, we've added a constructor that takes an IProject interface and updates itself
by using the Update() method. The Update() method is public to allow for easily
updating ProjectViewModel and the details controls that it is bound to. The details'
controls will automatically be updated as the properties of the ProjectViewModel
class implement INotifyPropertyChanged via ProjectViewModel, subclassing the
Notifier class.

We've also added an UpdateEstimateStatus() method that performs the view logic
of determining the estimate status by comparing the actual and estimate properties.

ProjectsViewModel
At this point, we have run out of code that can be shared with a Silverlight client.
This is because we will need to now add a class called ProjectsViewModel to the
project. We'll start by adding the following enum to ProjectsViewModel.cs:

 public enum Status
 {
 None,
 Good,
 Bad
 }

Chapter 2

[103]

The Status enum is used to indicate the status of an estimate and has three values.

•	 None: Indicates that there is no actual data at this time and that we can't
determine if the estimate is good or bad

•	 Good: Indicates that the actual cost was equal to or less than the
estimated cost

•	 Bad: Indicates that the actual cost was greater than the estimated cost

Now we will add an interface to the file.

 public interface IProjectsViewModel
 : INotifyPropertyChanged
 {
 IProjectsViewModel SelectedProject { get; set; }
 void UpdateProject();
 }

This will be used shortly by UpdateCommand, which we will implement and
expose only those methods which are needed by the UpdateCommand property to
keep the sample short. The interface inherits INotifyPropertyChanged to allow
UpdateCommand access to the INotifyPropertyChanged.PropertyChanged event.
The interface also exposes the SelectedProject property, which will be bound to
the details controls and UpdateProject() method for updating the details controls.

Next, add the fields and properties:

using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Linq;
using System.Windows.Input;
using ProjectBilling.DataAccess;

namespace ProjectBilling.Application
{
 public class ProjectsViewModel : Notifier,
 IProjectsViewModel
 {
 public const string SELECTED_PROJECT_PROPERRTY_NAME
 = "SelectedProject";
 private readonly IProjectsModel _model;
 private IProjectViewModel _selectedProject;
 private Status _detailsEstimateStatus
 = Status.None;
 private bool _detailsEnabled;

Introduction to MVVM

[104]

 private readonly ICommand _updateCommand;

 public ObservableCollection<Project>
 Projects { get { return _model.Projects; } }

 public int? SelectedValue
 {
 set
 {
 if (value == null)
 return;
 Project project = GetProject((int)value);
 if (SelectedProject == null)
 {
 SelectedProject
 = new ProjectViewModel(project);
 }
 else
 {
 SelectedProject.Update(project);
 }
 DetailsEstimateStatus =
 SelectedProject.EstimateStatus;
 }
 }

 public IProjectViewModel SelectedProject
 {
 get { return _selectedProject; }
 set
 {
 if (value == null)
 {
 _selectedProject = value;
 DetailsEnabled = false;
 }
 else
 {
 if (_selectedProject == null)
 {
 _selectedProject =
 new ProjectViewModel(value);
 }

Chapter 2

[105]

 _selectedProject.Update(value);
 DetailsEstimateStatus =
 _selectedProject.EstimateStatus;
 DetailsEnabled = true;
 NotifyPropertyChanged(
 SELECTED_PROJECT_PROPERRTY_NAME);
 }
 }
 }

 public Status DetailsEstimateStatus
 {
 get { return _detailsEstimateStatus; }
 set
 {
 _detailsEstimateStatus = value;
 NotifyPropertyChanged("DetailsEstimateStatus");
 }
 }

 public bool DetailsEnabled
 {
 get { return _detailsEnabled; }
 set
 {
 _detailsEnabled = value;
 NotifyPropertyChanged("DetailsEnabled");
 }
 }

 public ICommand UpdateCommand
 {
 get { return _updateCommand; }
 }
 }
}

This code adds the properties and fields that we need. Items of interest include:

•	 Notifier: This class derives from Notifier to provide
INotifyPropertyChanged support.

•	 _model: This holds a reference to a ProjectsModel instance. Only
one ProjectsModel will be created and it will be shared by all
ProjectsViewModel instances.

Introduction to MVVM

[106]

•	 Projects: ObservableCollection<Project> is a proxy to
IProjectsModel.Projects and simply returns a reference to it. This allows
for shared session state, as updates to IProjectsModel.Projects will be
shared by all views.

•	 SelectedValue: This property will be bound to the Projects
ComboBox.SelectedIndex property in the view with Binding.
Mode = OneWayToSource causing this property setter to be called
whenever the selection of the Projects combobox changes.
When that happens this code does two things:

	° It updates SelectedProject with the newly selected project
	° It updates the DetailsEstimateStatus property

•	 SelectedProject: This property is a ProjectsViewModel instance
that gets updated by SelectedValue, to hold the currently selected project
as a ProjectViewModel instance. The SelectedProject object instance will
be bound to the details controls in the view and provide the view state for
those controls.

•	 DetailsEstimateStatus: This property returns the current estimate status.
See the description of the Status enum previously, for details.

•	 DetailsEnabled: It is a Boolean value that specifies whether the details
controls should be enabled or disabled.

•	 UpdateCommand: It is an ICommand interface that will be bound to the Update
button on the view. It handles:

	° Communicating the click event to the view model
	° Enabling and disabling the Update button

Now we will add the constructor.

public ProjectsViewModel(IProjectsModel projectModel)
{
 _model = projectModel;
 _model.ProjectUpdated +=
 model_ProjectUpdated;
 _updateCommand = new UpdateCommand(this);
}

The constructor does the following:

•	 It takes an IProjectModel argument to support dependency injection for
easier testing and better extensibility.

•	 It sets projectsModel to _model.

Chapter 2

[107]

•	 It subscribes to the IProjectsModel.ProjectUpdated event.
•	 It instantiates an UpdateCommand property and assigns it to _updateCommand.

_updateCommand is the field that backs the UpdateCommand property.
UpdateCommand takes this reference as a constructor argument so that it has
access to the view model that it is responsible for communicating the Update
Button.Click event to. Details of UpdateCommand will be explained shortly.

We will finish ProjectsViewModel by adding the event handler and helper
methods, as follows:

public void UpdateProject()
{
 DetailsEstimateStatus =
 SelectedProject.EstimateStatus;
 _model.UpdateProject(SelectedProject);
}

private void model_ProjectUpdated(object sender,
 ProjectEventArgs e)
{
 GetProject(e.Project.Id).Update(e.Project);
 if (SelectedProject != null
 && e.Project.Id == SelectedProject.Id)
 {
 SelectedProject.Update(e.Project);
 DetailsEstimateStatus =
 SelectedProject.EstimateStatus;
 }
}

private Project GetProject(int projectId)
{
 return (from p in Projects
 where p.Id == projectId
 select p).FirstOrDefault();
}

These methods are described as follows:

•	 UpdateProjects(): This method allows for the UpdateCommand property
to pass the Update.Button.Click event to the ProjectsViewModel class
instance that it is responsible for. This is one of many areas in which C# will
benefit from a friend modifier found in C++, but I digress.

Introduction to MVVM

[108]

•	 model_ProjectUpdated(): This is an event handler that will be called
when the IProjectsModel.ProjectUpdated event is raised. It first updates
the updated project in the Projects collection, and then it will update the
SelectedProject view model if its ID is the same as the updated project.
This code demonstrates one reason the IProject interface is useful—it allows
for passing Project or ProjectModel instances to Project.Update() and
ProjectViewModel.Update(), respectively, as they both use IProject to
perform their updates.

•	 GetProject(): This is a helper method that finds a project in Projects,
by ID, and returns it.

Now, we will add the UpdateCommand property to the ProjectsViewModel.cs file,
as follows:

internal class UpdateCommand : ICommand
{
 private const int ARE_EQUAL = 0;
 private const int NONE_SELECTED = -1;
 private IProjectsViewModel _vm;

 public UpdateCommand(IProjectsViewModel viewModel)
 {
 _vm = viewModel;
 _vm.PropertyChanged += vm_PropertyChanged;
 }

 private void vm_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
 {
 if (string.Compare(e.PropertyName,
 ProjectsViewModel.
 SELECTED_PROJECT_PROPERRTY_NAME)
 == ARE_EQUAL)
 {
 CanExecuteChanged(this, new EventArgs());
 }
 }

 public bool CanExecute(object parameter)
 {
 if (_vm.SelectedProject == null)
 return false;
 return ((ProjectViewModel) _vm.SelectedProject).Id
 > NONE_SELECTED;

Chapter 2

[109]

 }

 public event EventHandler CanExecuteChanged
 = delegate { };

 public void Execute(object parameter)
 {
 _vm.UpdateProject();
 }
}

The UpdateCommand property is an ICommand implementation that allows for binding
to a command source. Most controls in WPF and Silverlight are command sources
and will call the ICommand.Execute() method when the event that they associate
with ICommandSource.Command fires. There can be only one event that is associated
with ICommandSource.Command, for any control instance, and the event that is
associated varies from control to control. In some controls, such as buttons, the event
mapping is configurable. For example, Button.ClickMode allows for changing
the input that fires Button.Click, which also changes what input fires Command.
Execute. Things to note about UpdateCommand include:

•	 The constructor takes an IProjectsViewModel enum, which
it saves a reference to in the _vm property. It then subscribes to
INotifyPropertyChanged.PropertyChanged, so that it can raise ICommand.
CanExecuteChanged whenever ProjectsViewModel.SelectedProject
changes. IComand.CanExecuteChanged will indicate to the command source
that it should call ICommand.CanExecute() as it may have changed.

•	 CanExecute(): This is an implementation of ICommand.CanExecute().
ICommand.CanExecute() is called by command sources to determine if
they can currently execute the associated command. Controls will generally
disable themselves when ICommand.CanExecute() returns false, and in our
case this is used to control when the Update button is enabled or disabled by
returning false when there is no ProjectsViewModel.SelectedProject.

•	 CanExecuteChanged: This event is an implementation of ICommand.
CanExecuteChanged.

•	 Execute(): This is an implementation of ICommand.Execute() and will
be called by the command source when the command source's associated
event fires. In this implementation, we simply notify ProjectsViewModel
by calling ProjectsViewModel.UpdateProject.

Introduction to MVVM

[110]

WPF UI
Now we will create a WPF UI to consume our model and view model. Start by:

1. Adding a new project WPF Application project called ProjectBilling.
UI.WPF

2. Opening App.Xaml.cs and changing the class definition from:
public partial class App : Application

To:

public partial class App

3. Removing the explicit sub-classing of application in this way will prevent
the compiler from complaining about the name clash between the
ProjectBilling.Application namespace and the System.Windows.
Application class.

ProjectsView
Now add a new window called ProjectsView. The following is the code that we
need in the code-behind approach:

using System.Windows;

namespace ProjectBilling.UI.WPF
{
 public partial class ProjectsView : Window
 {
 public ProjectsView()
 {
 InitializeComponent();
 }
 }
}

For those of you who are new to MVVM, this may be a surprise as there is no code,
other than that generated by Visual Studio, needed in the code-behind approach, but
when implementing pure MVVM, you will find that the you can have an empty code
behind most of the time. In fact you can delete the code behinds which is a practice
that I follow on my projects.

Chapter 2

[111]

Empty code-behind approaches are the result of implementation
of pure MVVM. Just like anything else in development, there are
tradeoffs to the various approaches to code in the code behind. I
prefer implementing pure MVVM whenever possible, and I'm yet to
find a scenario where pure MVVM isn't possible. I like the benefits of
pure MVVM, and the challenge of keeping MVVM pure keeps things
fun and interesting for me. However, we will cover all the tradeoffs
of the various levels of purity as well as approaches for implementing
each level throughout this book and leave it to you to decide what
level of purity makes the most sense for you and your project.

Now add the following code shown to ProjectsView.xaml.

<Window x:Class="ProjectBilling.UI.WPF.ProjectsView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Projects" MinHeight="180" Height="180"
 MinWidth="250" Width="250" Padding="5"
 FocusManager.FocusedElement
 ="{Binding ElementName=ProjectsComboBox}">
 <UniformGrid Columns="2">
 <Label Content="Project:" />
 <ComboBox Margin="5" Name="ProjectsComboBox"
 SelectedValue="{Binding Path=SelectedValue,
 Mode=OneWayToSource}"
 ItemsSource="{Binding Path=Projects}"
 DisplayMemberPath="Name"
 SelectedValuePath="ID" />
 <Label Content="Estimated Cost:" />
 <TextBox Margin="5" Grid.Row="1" Grid.Column="1"
 IsEnabled="{Binding Path=DetailsEnabled}"
 Text="{Binding Path=SelectedProject.Estimate}"
 Style="{StaticResource EstimateStyle}" />
 <Label Content="Actual Cost:" />
 <TextBox Margin="5"
 IsEnabled="{Binding Path=DetailsEnabled}"
 Text="{Binding
 Path=SelectedProject.Actual}" />
 <Button Content="Update" Margin="5"
 Command="{Binding Path=UpdateCommand}" />
 </UniformGrid>
</Window>

Introduction to MVVM

[112]

The preceding code wires up our view model to the controls of our view. One thing
you might notice is that we no longer need to name our elements, as the binding will
take care of updates and no code is required.

We still added a name to ProjectsComboBox to allow us to set
the focus. The point to take away from this is that it's not necessary
to name controls in order to communicate with depended-upon
components such as the view model.

The interesting parts are how we are binding from view dependency properties to
model INotifyPropertyChanged properties. We will now review the bindings and
what they are for:

•	 Projects ComboBox
	° ItemsSource: This binding connects to the

ProjectsViewModel.Projects collection and will populate
the combobox with items contained in that collection. We've
set ComboBox.DisplayMemberPath="Name" and ComboBox.
SelectedValuePath="ID" so that the combobox will display
Project.Name when expanded and assign Project.Id as the
value of each item.

	° SelectedValue: This binding connects ComboBox.SelectedValue
to ProjectsViewModel.SelectedValue, using Binding.
Mode="OneWayToSource". This will make it so that whenever
the user changes the selection, the binding system will update
ProjectsViewModel.SelectedValue, giving us a chance to update
the window accordingly. We've done a OneWayToSource binding,
because we only need to push data from the combobox to the view
model and not the other way.

•	 Details Controls
	° TextBox: The details textbox controls are bound to the property

ProjectsViewModel.SelectedProject allowing for the data to flow
back and forth between the view model and view. This should all be
straightforward except for the Estimate textbox's Style property. We
will cover that style shortly.

•	 Update Button
	° Command: The Update button has it's command set to

ProjectsViewModel.UpdateCommand, and this binding will use
that command to manage its enabled state (view logic) and will
call UpdateCommand.Execute() when clicked.

Chapter 2

[113]

Now, add the following style to the Windows.Resources collection:

<Window.Resources>
 <!-- Update estimate color -->
 <Style x:Key="EstimateStyle"
 TargetType="{x:Type TextBox}">
 <Style.Triggers>
 <DataTrigger Binding="{Binding
 DetailsEstimateStatus}"
 Value="None">
 <Setter Property="Foreground"
 Value="Black" />
 </DataTrigger>
 <DataTrigger Binding="{Binding
 DetailsEstimateStatus}"
 Value="Good">
 <Setter Property="Foreground"
 Value="Green" />
 </DataTrigger>
 <DataTrigger Binding="{Binding
 DetailsEstimateStatus}"
 Value="Bad">
 <Setter Property="Foreground"
 Value="Red" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
</Window.Resources>

The preceding style is the style that is used by our Estimate textbox. This style uses
data triggers to update the color of text in the Estimate textbox. The data triggers
are all bound to DetailsEstimateStatus and will set the Foreground property to a
color. When the value of DetailsEstimateStatus is Status.None, we set the text to
Brushes.Black; when it is Status.Good, we set it to Brushes.Green; and when it is
Status.Bad, we set it to Brushes.Red.

In previous examples, we set the color to the Estimated Cost textbox's
Foreground color, which we could have done here by using an
ElementName binding in the trigger. I decided not to do that here,
because functionally the application will work the same, and earlier
I wanted to make the point about how naming the controls is not
necessary a lot of the time with MVVM.

Introduction to MVVM

[114]

This allows us to translate our DetailsEstimateStatus value to the correct color
and to easily manage our view logic in a decoupled design.

MainWindow
Update MainWindow.Xaml, as follows:

<Window x:Class="ProjectBilling.UI.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Shell" Height="150" Width="200"
 MinHeight="150" MinWidth="200"
 FocusManager.FocusedElement
 ="{Binding ElementName=ShowProjectsButton}">
 <StackPanel>
 <Button Content="Update Projects"
 Name="ShowProjectsButton" Margin="5"
 Click="ShowProjectsButton_Click" />
 </StackPanel>
</Window>

And update the code behind, as follows:

using System.Windows;
using ProjectBilling.Application;
using ProjectBilling.DataAccess;

namespace ProjectBilling.UI.WPF
{
 public partial class MainWindow : Window
 {
 private IProjectsModel _projectModel;

 public MainWindow()
 {
 InitializeComponent();
 _projectModel = new ProjectsModel(
 new DataServiceStub());
 }

Chapter 2

[115]

 private void ShowProjectsButton_Click(object sender,
 RoutedEventArgs e)
 {
 ProjectsView view = new ProjectsView();
 view.DataContext
 = new ProjectsViewModel(_projectModel);
 view.Owner = this;
 view.Show();
 }
 }
}

MainWindow does not implement MVVM. To implement MVVM,
MainWindow will have to use a command instead of using a button
click handler for the ShowProjectsButton.Click event. We would
also have had to move the showing of ProjectsView to the view model
of MainWindow. Having UI elements in view models breaks the
MVVM pattern. There are MVVM-friendly ways of dealing with this
situation, however we won't be covering those techniques until Chapter
3, Northwind—Foundations. So, to avoid introducing that material at this
point in the book, we have not implemented MVVM for MainWindow.

Now, run the project by setting it as startup project and click on F5; you should see
the same application that we built several times in the last chapter.

Silverlight UI
Now, we will create a Silverlight client and attempt to reuse our non-view code from
our WPF implementation.

If you will be using Silverlight in this book then you will
need to install Microsoft Silverlight 4 Tools for Visual Studio
2010, available for free download at www.Microsoft.
com (http://www.microsoft.com/downloads/en/
details.aspx?FamilyID=b3deb194-ca86-4fb6-a716-
b67c2604a139).

http://www.Microsft.com

Introduction to MVVM

[116]

Porting assemblies to Silverlight
We must start by creating versions of our assemblies that can be consumed by a
Silverlight client. Silverlight is often described as a subset of WPF, which is not
correct, as shown in the following diagram:

WPF
Dynamic

Resources

. . .

Triggers

Media 3D

Logical Tree

Freezables

Routed

Events

Silverlight

Dependency Properties

Style

Visual Tree

XAML
. . .

Visual State Manager

Deep Zoom

Data Grid
. . .

Shared

As you can see, there is an intersection of these functionalities, but there is
functionality from each technology that isn't available in the other. Even with things
that are shared, such as binding markup extensions, you will find that only a subset
of functionality is available across both platforms. For example, Silverlight does not
support binding by element name or relative bindings.

Microsoft has attempted to make porting between WPF and Silverlight easier by
making the following assemblies portable in WPF 4.0 and Silverlight 4.0.

•	 Mscorlib

•	 System

•	 System.Core

•	 System.ComponentModel.Composition

•	 Microsoft.VisualBasic

There are various techniques suggested by Microsoft for sharing
assemblies between Silverlight and WPF; see MSDN for more
details. For now, we will take an approach that I found to be
appropriate for our example.

Chapter 2

[117]

Perform the following steps to create Silverlight versions of the assemblies needed:

1. Add two new Silverlight Class Library projects, called ProjectBilling.
DataAccess.SL and ProjectBilling.Application.SL, to your solution.

2. Right-click on ProjectBilling.DataAccess.SL in Solution Explorer and
select Add | Existing Item.

3. You will be presented with a dialog that allows for adding items. Browse
to the ProjectBilling.DataAccess project directory that we created in
Chapter 1, Presentation Patterns and select DataService.cs and Project.
cs, but don't click on the Add button. Instead, click the arrow on the Add
button and select Add As Link, as shown in the following screenshot. This
will cause the ProjectBilling.DataAccess.SL project to use the files in
the ProjectBilling.DataAccess project. This is very helpful, because the
assemblies that contain things like ObservableCollection are different for
Silverlight and WPF but the namespaces are the same. Now when you build,
each project will build against its framework assemblies, and this will result
in a working version of our code for each technology based on one set of
source files.

4. Add a reference from ProjectBilling.Application.SL to
ProjectBilling.DataAccess.SL.

5. Add all of the files in ProjectBilling.Application to ProjectBilling.
Application.SL as links, in the same way that we did in step 3, from
ProjectBilling.DataAccess.SL.

6. Build and make sure that there are no errors. If you get errors then double
check the previous steps to make sure that you've followed them exactly,
got the project types correct, and only added files as links.

Introduction to MVVM

[118]

ProjectsView
Add a Silverlight Application project, called ProjectBilling.UI.SL, to your
solution. You will be presented with the dialog that follows. In that dialog, perform
the following steps as shown in the following screenshot:

1. Uncheck the Host the Silverlight application in a new Web site checkbox.
2. Select Silverlight 4 from the drop-down menu.
3. Click on the OK button.

We will be running our Silverlight application through Visual Studio, and
because of that, we don't need to create a hosting website; this is why we
unchecked Host the Silverlight application in a new Web site. In real
applications, you would want to create a hosting website for deployment.

Next, add project references to ProjectBilling.DataAccess.SL and
ProjectBilling.Application.SL.

Be sure to reference the Silverlight versions of these
assemblies.

Add a new Silverlight Page to the project called ProjectView.

Chapter 2

[119]

Add the following code shown to ProjectView.xaml.

<UserControl
 x:Class="ProjectBilling.UI.SL.ProjectsView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:ProjectBilling.UI.SL"
 MinHeight="180" Height="180" MinWidth="250" Width="250">

 <UserControl.Resources>
 <local:StatusToBrushConverter x:Key="StatusToBrush" />
 </UserControl.Resources>
 <Border BorderBrush="Blue" BorderThickness="5"
 Margin="10" Padding="5" CornerRadius="5">
 <Grid Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Text="Project:" />
 <ComboBox Margin="5" Grid.Column="1"
 SelectionChanged
 ="ComboBox_SelectionChanged"
 ItemsSource="{Binding Path=Projects}"
 DisplayMemberPath="Name"
 SelectedValuePath="ID" />
 <TextBlock Text="Estimated Cost:" Grid.Row="1"/>
 <TextBox Margin="5" Grid.Row="1" Grid.Column="1"
 IsEnabled="{Binding
 Path=DetailsEnabled}"
 Text="{Binding
 Path=SelectedProject.Estimate,
 Mode=TwoWay}"
 Foreground="{Binding
 Path=DetailsEstimateStatus,
 Converter={StaticResource
 StatusToBrush}}"/>

Introduction to MVVM

[120]

 <TextBlock Text="Actual Cost:" Grid.Row="2" />
 <TextBox Margin="5" Grid.Row="2" Grid.Column="2"
 IsEnabled="{Binding
 Path=DetailsEnabled}"
 Text="{Binding
 Path=SelectedProject.Actual,
 Mode=TwoWay}" />
 <Button Content="Update" Margin="5" Grid.Row="3"
 Command="{Binding Path=UpdateCommand}" />
 </Grid>
 </Border>
</UserControl>

You should notice a lot of similarities between this code and the ProjectsView.xaml
file from our WPF example. The main difference in the approach here boils down to
three features that are not available in Silverlight.

•	 Style triggers
•	 Binding using OneWayToSource mode
•	 UniformGrid

The absence of these features has caused us to take a slightly different approach
when wiring up our ProjectsViewModel.

The first difference is that, instead of using a style in our resources, we are now using
a custom converter that is instantiated in the resources, as follows:

<UserControl.Resources>
 <local:StatusToBrushConverter x:Key="StatusToBrush" />

</UserControl.Resources>

And then, we use this converter in the binding for the Estimated Cost textbox,
as shown in the following code:

<TextBox Margin="5" Grid.Row="1" Grid.Column="1"
 IsEnabled="{Binding
 Path=DetailsEnabled}"
 Text="{Binding

 Path=SelectedProject.Estimate,

 Mode=TwoWay}"

 Foreground="{Binding
 Path=DetailsEstimateStatus,
 Converter={StaticResource

 StatusToBrush}}"/>

Chapter 2

[121]

As you can see, we have associated the StatusToBrush converter with the
Foreground binding, and this takes the place of using a style to control the color of
the Estimated Cost textbox.

We will cover the converter code shortly.

We've also changed the binding mode of our Estimated Cost and Actual Cost
TextBox controls to be explicitly TwoWay, as shown in the code previously. This is
because in Silverlight all controls are OneWay, by default. In WPF, the binding mode
varies by control and TextBox has a default value of TwoWay.

The next difference is one that causes us to break with pure MVVM and add code
to our code behind:

<ComboBox Margin="5" Grid.Column="1"
 SelectionChanged
 ="ComboBox_SelectionChanged"
 ItemsSource="{Binding Path=Projects}"
 DisplayMemberPath="Name"
 SelectedValuePath="ID" />

As you can see, we've added an event handler for SelectionChanged. This was done
because Silverlight doesn't support OneWayToSource bindings. We previously used
a OneWayToSource binding to allow us to take advantage of a bound property setter
to avoid using an event handler. However, the only binding that can be used in this
way is OneWayToSource. Attempting to use a TwoWay binding mode in this scenario
leads to a stack overflow exception. We will look at the code behind shortly, to see
what this event handler does.

There are several options for both Silverlight and WPF that allow
avoiding using event handlers, which we will look at in Chapter 5,
Northwind—Commands and User Inputs.

Add the following code to ProjectsView.xaml.cs.

using System.Windows.Controls;
using ProjectBilling.Application;

namespace ProjectBilling.UI.SL
{
 public partial class ProjectsView : UserControl
 {
 public ProjectsView()

Introduction to MVVM

[122]

 {
 InitializeComponent();
 }

 private void ComboBox_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 ((ProjectsViewModel) DataContext).SelectedValue

 = (int?)((ComboBox) sender).SelectedValue;

 }
 }
}

As you can see, we've now got an event handler and are no longer implementing a
pure no-code-behind approach. In this event handler, we avoid storing an explicit
reference to our view model by taking advantage of DataContext and casting it to
ProjectsViewModel. We then explicitly set SelectedValue. We've effectively done
the same thing that we did previously in our WPF example, allowing us to use our
existing view model as is.

MainPage
To keep things simple, MainPage displays each ProjectsView in the same page by
adding user controls to a StackPanel.

Displaying multiple windows in Silverlight and synchronizing the
content will not be covered here, and it's not the only option one might
use to achieve a dialog feel in Silverlight. There are many in-browser
dialog options out there, and I will leave exploring those techniques
and tools up to you. However, what I did want to illustrate here is
implementing MVVM for the ProjectsView.

<UserControl x:Class="ProjectBilling.UI.SL.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

Chapter 2

[123]

 <Button Content="Update Projects"
 VerticalAlignment="Top" Height="Auto"
 Margin="10" Click="Button_Click" />
 <StackPanel x:Name="MainStackPanel" Grid.Column="1"
 HorizontalAlignment="Left"/>
 </Grid>
</UserControl>

This code simply creates a grid that has two columns and puts a button for showing
ProjectsView in the left column and a StackPanel that the ProjectsView will be
placed in the right column.

We have chosen to not implement MVVM in MainPage in the same
way we didn't implement it in WPF's MainWindow . This was done to
avoid diving into some advanced topics that will be covered later in
this book.

Next, we will look at the code behind.

using System.Windows;
using System.Windows.Controls;
using ProjectBilling.Application;
using ProjectBilling.DataAccess;

namespace ProjectBilling.UI.SL
{
 public partial class MainPage : UserControl
 {
 private IProjectsModel _model;
 public MainPage()
 {
 InitializeComponent();
 _model = new ProjectsModel(new DataServiceStub());
 }

 private void Button_Click(object sender,
 RoutedEventArgs e)
 {
 ProjectsView view = new ProjectsView();
 view.DataContext = new ProjectsViewModel(_model);
 MainStackPanel.Children.Add(view);
 }
 }
}

Introduction to MVVM

[124]

Here we keep a reference to our model in the _model property, which is set to a new
instance in the constructor. We also have an event handler, Button_Click(), that
will be called in response to our Update Projects button being clicked. This event
handler creates new ProjectsView, sets its DataContext property to a new instance
of ProjectsViewModel, and then adds this new view to the MainStackPanel.
Childern collection by calling Add().

Now, set ProjectBilling.UI.Silverlight as the StartUp Project and press
F5 to launch the site; you will see a version of Project Billing, as shown in the
following screenshot:

Chapter 2

[125]

Clicking on Show Projects will display an additional ProjectsView. Functionally,
this version of Project Billing is the same as the other project billing applications
we've built, with some minor exceptions.

Benefits of MVVM
MVP had been the dominant presentational pattern for most UI development, with
MVC still having a strong presence in web UIs before .NET 3.0 introduced some new
technologies that made MVVM or Presentation Model an attractive option for WPF
and Silverlight.

The benefits of MVVM include the following:

•	 Increased testability: Testability is improved as all view logic is now easily
testable from unit tests.

•	 Less code: I've found that the amount of code required to manage the view
has decreased quite a bit, as you no longer have to deal with boilerplate
code behind code. This code involves a lot of casting and error checking in
production quality code. Less code means fewer bugs, less code to maintain,
and fewer unit tests to write.

•	 Increased decoupling: When using the pure approach, you no longer need
to have the view and mediator (view model, presenter, or controller) be
explicitly aware of each other. The view does have a reference to the view
model via its DataContext property. However, under pure MVVM, it's not
necessary for the view to be aware of the type of the view model.

•	 Allows for streamlined development processes: Now developers and
designers can work independently on the same application views. This is
because of the decoupling in this pattern and also because Blend doesn't
execute constructors of the view's code behind but executes the constructor of
your view model. You can create a view model that exposes the needed data
points and have the view model properties return design-time data. This
allows designers to work on the look of the application while the view model
and model are being built. This is much harder in other patterns, as we will
see later, in Chapter 7, Dialogs and MVVM.

Introduction to MVVM

[126]

I generally start my projects by creating a view model stub that returns
fake design-time data. I then use that design-time view model to create a
rough mock UI in Blend. Once I can tell that functionally the view model
supports what is needed in the view, it's very easy to hand off the UI to
a designer. Then, you can also delegate the building of the model and
updating of the view model to support real data to other developers,
if desired. For the current project I'm working on, we use outsourced
labor; this approach allows me as the architect to quickly create the
overall design and then delegate the remaining pieces to others, to be
fleshed out. When I hand off the work, the wiring between the view
and view model has already been created, and once the model and view
model are updated to use real data, the UI will work as expected. The
designer and backend programmers don't need to interact, because they
are both working off the view model and they are not dependent on
each other. This approach allows the view model to essentially define a
contract for both sides to work off of.

•	 Allows for some interesting design approaches: Convention over
configuration can be leveraged and lead to some interesting designs, as
demonstrated by Rob Eisenberg in his Mix10 presentation, Build Your Own
MVVM Framework (http://live.visitmix.com/MIX10/Sessions/EX15).
His approach is similar to what is found in ASP.NET MVC—to establish
naming conventions for elements of the MVVM design triad and then
create a framework that allows for automatically connecting all the pieces at
runtime. In his demonstration, Rob was able to create an impressive demo
application that had no binding code in the XAML and had no code outside
of his framework code to connect views to view models. Rob is the man
behind the Caliburn and Caliburn Micro MVVM frameworks. He has added
built-in support for this style of convention over configuration in those
frameworks. More on this can be found in Appendix A, .

•	 Another interesting approach that we will explore in Chapter 6,
Northwind—Hierarchical View Model and IoC, is the idea of hierarchical view
model design, where you create a large main view model (or application
model) that aggregates all of the other view models used in the application.
Doing this effectively creates an object graph representation of your view
state. One benefit of this approach is that you can serialize your application
model to effectively persist the view state of your application. Then, on
application start up, you can deserialize the view state and restore the UI
to its previous state without having to write a settings framework.

•	 MVVM provides for well-organized, easy-to-understand designs. Your
bindings are clear and easy to understand, as each view has a view model
that it is bound to.

Chapter 2

[127]

•	 Improved developer experience: If you're new to MVVM, then there's a
good chance that you and your team will find this new approach refreshing
and energizing. After you get comfortable with the pattern, working in the
view model feels much more natural than the code-behind approach. This
has been my experience and that of many others. However, results may vary.

MVVM and humble views
Under this design, it's debatable whether the view is always completely humble as
it's common to bind from one control to another or to use the framework binding
system to visually interpret view state and view logic.

Previously, under MVP, the presenter told the view what color to apply to the
Estimated Cost text, but in the example in this chapter, we only defined a status
for Estimated Cost and used WPF's style triggers to map a color to the Estimated
Cost status.

Under both designs, the view logic is contained in the middle component (presenter
or view model) and is therefore testable. However, looking at the MVVM approach,
you might conclude that the view isn't truly humble, as it's still performing
some small degree of view logic by mapping a color to a state. But upon further
examination, you will likely reach the same conclusion that I arrived at, that the
mapping of color to status is essentially styling the look of the application and based
on the view logic and view state. The view logic that determined the view state is
still in the view model and is therefore testable.

There will most certainly be grey areas when it comes to the issue of how much view
logic and view state remains in the view under MVVM and whether the view is in
fact truly humble. As you have seen, you can also use triggers and binding to do
things like disabling controls based on the state of the view model, the state of other
controls, or even the state of other view resources. Many of these techniques will beg
the question Is the view really a humble view?

However, this will mostly be an academic exercise. You will most likely find, as I
did, that these behaviors that are defined in XAML don't need to be verified via unit
tests, because as long as they are properly defined and configured, they will work
as expected, every time. In the same way that we don't write unit tests to verify that
a CSS style in a web page is correct, there is no need to write unit tests to verify that
the estimated cost mapping is correct. We have now removed the responsibility for
visually presenting the view state and view logic from the programmers and moved
it to the designers, with whom it belongs.

Introduction to MVVM

[128]

An additional benefit of having the code organized in this way is the freedom it gives
designers to communicate view logic and view state to the users. Designers can use
tools such as Expression Blend to tweak the visual representation of the estimate
status in any way they like, without the need to involve programmers. Designers can
take the view's logical state and communicate that in whatever visual way
they want.

To add to this, the WPF and Silverlight framework code has been heavily tested
by Microsoft. Therefore, there is no need for us to write unit tests that confirm the
binding system's behavior. It is sufficient to test our view models to verify that the
view logic and view state are correct and to leave the representation of that state in
the hands of the designers and analysts.

The end result of all of this is that we will be able to achieve the same confidence and
stability in our code with our unit tests under MVVM that we could under passive
view, with the added benefit of less coupling and a lower maintenance design.

Issues and pain points of MVVM
There are some issues and pain points to implementing MVVM which include
the following:

•	 Lack of direction from Microsoft: Microsoft hasn't given clear directions on this
pattern yet, and the various non-Microsoft resources available on the topic
can send mixed messages, leaving developers and architects confused.

•	 Need for boilerplate code, complicated techniques and/or frameworks:
There are many areas in WPF and Silverlight where MVVM support can
be improved. Things like property changed notifications and commands
require lots of boilerplate code and potentially brittle designs that require
using "magic strings". There are many frameworks and techniques out there
that help address these issues. However, you may not want to or may not be
allowed to use open source frameworks. Also, implementing the techniques
that allow you to avoid using the frameworks can be complicated and
require a good bit of boilerplate code to implement, as you will see later in
this book.

•	 Paradigm shift requiring retraining: MVVM requires a new way of thinking
about UI programming and a new approach to design that will likely be
unfamiliar to developers coming from a WinForms or ASP.NET background
that are used to the code-behind style of programming. This can impose
training and enforcement burdens when moving to MVVM.

Chapter 2

[129]

•	 Only supported in WPF and Silverlight: This pattern doesn't transfer well
to technologies such as ASP.NET or WinForms easily, which makes it a very
specialized skill.

•	 Long learning curve: To learn everything you will need to be able to
effectively implement the pattern in a real-world enterprise application,
takes a good bit of ramp-up time.

This book will give you the tools you need to overcome a lot of these issues and pain
points, but it is worth noting that there can be some bumps in the road. Hopefully
the situation will improve in the future as Microsoft embraces the pattern
and introduces more support. I was told by Sam Bent from Microsoft that they
are considering adding support for things like linking events directly to actions,
eliminating the need for commands and the techniques and tools that allow for
linking commands to events. I'd expect that with future releases we will see more
and more tools coming with WPF and Silverlight that help alleviate the issues and
pain points that exist at the time of writing this book.

MVVM Light
There are many great MVVM frameworks out there, and we review many of them
in Appendix A, but throughout this book we will be using the MVVM Light toolkit
by Laurent Bugnion and GalaSoft. The toolkit is available for free on Code Plex
(http://mvvmlight.codeplex.com/) and offers many features, including:

•	 A lean framework that offers only what is needed for MVVM
•	 Project templates for both WPF and Silverlight, in both Visual Studio

and Blend
•	 Blendability support is written into the templates
•	 Service locator pattern is written into the templates
•	 Item templates for Visual Studio and Blend

	° Create a new view model
	° Create a new view
	° Create a new view model locator, a class that holds and manages

references to view models

•	 Code snippets to help increase productivity when implementing MVVM
	° mvvminpc adds a new bindable property to a view model
	° mvvmlocatorproperty adds a new view model to a view

mode locator

http://mvvmlight.codeplex.com/
http://mvvmlight.codeplex.com/

Introduction to MVVM

[130]

	° mvvmpropa adds a new attached property to a dependency object
(WPF only)

	° mvvmpropdp adds a new dependency property to a dependency
object (WPF only)

	° mvvmslpropa adds a new attached property to a dependency object
(Silverlight only)

	° mvvmslpropdp adds a new dependency property to a dependency
object (Silverlight only)

•	 EventToCommand: The EventTrigger property allows for connecting events
to commands, purely in XAML

•	 DipatcherHelper: A lightweight class that helps you to create multithreaded
applications

You can find a getting started guide on MVVM Light's Code Plex page
(http://www.galasoft.ch/mvvm/getstarted/). You are not required to use
this framework, and we will cover options that don't require frameworks for each
topic covered in this book. But if you are interested in using MVVM Light, please
take the time to visit the Get Started page on Code Plex and to set up MVVM Light
in your environment.

Summary
In this chapter, we got our feet wet with MVVM. We started things off with a quick
review of the history of the pattern and its basic structure. We then covered the
technologies in WPF and Silverlight that enable MVVM. Next, we built a version of the
Project Billing sample application using MVVM and followed this by looking at the
benefits of the pattern. We talked briefly about some of the issues and pain points with
implementing MVVM and then finished off the chapter by looking at the MVVM Light
toolkit that we will use later in this book.

Northwind – Foundations
By Ryan Vice

Now that we've laid a solid foundation by covering the history of presentation
patterns and by building the Project Billing sample in MVVM, we are ready for a
deeper dive that will take us beyond "Hello World" applications and into the real
world of enterprise MVVM development. One of the key goals of this book is to
provide comprehensive coverage of MVVM that will guide you through the many
architectural decisions that need to be made when designing and building MVVM
applications. If you are a one-man team building an internal intranet application that
serves a small number of users, then you should have a much simpler design than if
you were building the next http://www.amazon.com/.

Our goal is to educate you on not just the "hows" but also the "whys" of each
technique that we introduce. This will allow you to find the right balance in your
design, and help you to avoid over-engineering or under-engineering your solution.
To help us accomplish this goal, we are going to build an N-Tier, LOB enterprise
application on top of the Northwind sample database over the course of the next four
chapters. These chapters will show a natural architectural progression, and as the
application gets more complex, the need for techniques to manage that complexity
will become apparent. In the agile parlance, this is known as evolutionary design.

In this chapter we will:

•	 Review Northwind's requirements
•	 Use Entity Framework to interact with Northwind's database
•	 Add our first unit tests
•	 Use MVVM style design to easily create a tabbed interface
•	 Explore Entity Framework's built-in change notifications

Northwind – Foundations

[132]

Northwind requirements
Northwind is a sample database released by Microsoft that contains the sales data
for a fictitious company called Northwind Traders, which imports and exports
specialty foods from around the world. We will be building an application based
on the Northwind database that will support:

•	 Selecting a customer from a list of current customers, and viewing the
selected customer's details and order history with support for editing the
customer's details

•	 Selecting an order by ID and viewing the order details including
the company's information, sales contact and an invoice summary
(products purchased, quantities, prices, and so on)

•	 Ability to create a new order

This is far from a complete application, but is complex enough to allow us to
demonstrate all the tools and techniques that would be needed to create a full
LOB application using MVVM.

The UI of this application is shown in the following screenshot:

Chapter 3

[133]

Presentation tier foundation
Let's start things off by creating the visual layout of our application by following
these steps:

1. Start a new Visual Studio instance.
2. Create a new WPF application project called Northwind.UI.WPF, and name

the solution Northwind.
3. Add a folder to Northwind.UI.WPF called Skins, and add a new Resource

Dictionary (WPF) file to that folder called MainSkin.xaml.
4. Open MainWindow.xaml for editing and update it as follows:

<Window x:Class="Northwind.UI.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/
 2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow"
 MinHeight="350"
 MinWidth="525"
 xmlns:ViewModel="clr-namespace:Northwind.ViewModel;
 assembly=Northwind.ViewModel"
 DataContext="{Binding
 Source={x:Static
 ViewModel:ViewModelLocator
 .MainWindowViewModelStatic}}">
 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary
 Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>
 <DockPanel>
 <Border DockPanel.Dock="Top"
 Padding="10"
 Margin="4"
 CornerRadius="5"
 Background="{StaticResource mainBlueBrush}">
 <TextBlock Text="Northwind"
 Foreground="White"
 FontWeight="Bold"
 FontSize="16" />
 </Border>

Northwind – Foundations

[134]

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Expander Padding="10"
 Margin="4"
 BorderBrush="DarkGray"
 ExpandDirection="Right"
 Grid.Row="0"
 Grid.Column="0"
 IsExpanded="True">
 <Expander.Header>
 <TextBlock Text="Control Panel"
 FontSize="14"
 FontWeight="Bold">
 <TextBlock.LayoutTransform>
 <RotateTransform Angle="90" />
 </TextBlock.LayoutTransform>
 </TextBlock>
 </Expander.Header>

 </Expander>
 <TabControl Margin="4"
 Grid.Row="0"
 Grid.Column="1"
 IsSynchronizedWithCurrentItem="True">
 </TabControl>
 </Grid>
 </DockPanel>
</Window>

5. Open MainSkin.xaml for editing and update it as follows:
<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/
 2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/
 winfx/2006/xaml">
 <Color x:Key="mainBlue">#FF145E9D</Color>
 <SolidColorBrush x:Key="mainBlueBrush"
 Color="{StaticResource mainBlue}" />
</ResourceDictionary>

Chapter 3

[135]

6. Add a new class library project called Northwind.ViewModel, and rename
the file Class1.cs to MainWindowViewModel.cs.

7. Add a new class called ViewModelLocator.cs.
8. Open MainWindowViewModel.cs for editing and update it as follows:

namespace Northwind.ViewModel
{
 public class MainWindowViewModel
 {
 }
}

9. Open ViewModelLocator.cs for editing and update it as follows:
namespace Northwind.ViewModel
{
 public class ViewModelLocator
 {
 private static MainWindowViewModel
 _mainWindowViewModel;
 public static MainWindowViewModel
 MainWindowViewModelStatic
 {
 get
 {
 if (_mainWindowViewModel == null)
 {
 _mainWindowViewModel
 = new MainWindowViewModel();
 }

 return _mainWindowViewModel;
 }
 }
 }
}

10. Add a project reference from Northwind.UI.WPF to Northwind.ViewModel.

Northwind – Foundations

[136]

11. Build and run the application, and you should see an application similar to
the following:

What we've done here is create a main window that uses:

•	 MainWindowViewModel as its view model, which currently doesn't
do anything.

•	 MainSkin.xaml as its resource dictionary, which is currently providing the
dark blue color, but will be expanded to provide a lot more as we progress.
For more details on creating this kind of application layout see Sams Teach
Yourself WPF in 24 Hours by Rob Eisenberg.

•	 ViewModelLocator to resolve its view model, which exposes the
static MainWindowViewModelStatic property that is then bound to
MainWindow.DataContext using the following code:

DataContext="{Binding
 Source={x:Static
 ViewModel:ViewModelLocator
 .MainWindowViewModelStatic}}">

Locator pattern
ViewModelLocator is a specialization of the Service Locator pattern (Martin),
which has been adopted by the MVVM community, and is commonly called the
View Model Locator or simply Locator. This pattern consists of a class that exposes
properties for accessing your view models, and is responsible for abstracting away
the logic for instantiating the view models. ViewModelLocator can be used to
perform clean up as well. Later in this book, we will see that this pattern also allows
us to easily integrate an IoC framework.

Chapter 3

[137]

MVVM Light framework will create a view model
locator as part of its project templates for you.

Data access tier
Now we need to get our data access sorted out. We will show a few different options
for data access throughout this book. For our first pass, we will keep things simple
and use the entity framework to get up and running quickly. Let's start by following
these steps:

If you are not running Visual Studio as an administrator, then you
need to close it and restart it as the administrator. On Windows 7,
this is done by right-clicking on the program icon in the Start menu,
and then selecting Run as administrator.

1. Download Northwind database.

At the time of writing this book, the database could be downloaded
from http://archive.msdn.microsoft.com/northwind/
Release/ProjectReleases.aspx?ReleaseId=1401. If that URL
is no longer working, then use your favorite search engine to find the
Northwind sample database and download it.

2. Unzip the downloaded file and take note of the location of the Northwind.
mdf file that was a part of the download.

If you are not running Visual Studio as an administrator, then
close Visual Studio, reopen Visual Studio as an administrator,
then reopen the solution.

3. Add a new Class Library project called Northwind.Data.
4. Delete the Class1.cs file that was created by the Project template.
5. Use the context menu to add an existing item to the Northwind.Data project,

and browse to the Northwind.MDF file that you located in step 2. If you can't
see the file in the location from step 2, then make sure that the file filter is set
to All Files (*) in the visual studio Add Existing Item dialog box.

http://archive.msdn.microsoft.com/northwind/Release/ProjectReleases.aspx?ReleaseId=1401
http://archive.msdn.microsoft.com/northwind/Release/ProjectReleases.aspx?ReleaseId=1401
http://archive.msdn.microsoft.com/northwind/Release/ProjectReleases.aspx?ReleaseId=1401

Northwind – Foundations

[138]

6. You will then be shown the following dialog box. Select Entity Data Model
and click on Next.

7. Select Generate from database and click on Next.

Chapter 3

[139]

8. Configure the Choose Your Data Connection dialog box as shown in the
following screenshot:

By default, this dialog box should work. I changed the name of the
connection string, but other than that I just accepted the defaults.
However, if you've added Northwind to SQL Express before, then
you may have more than one NORTHWND.MDF connection listed in
the drop-down list. If that is the case, then you will have to make sure
that there is a connection in the list that has the correct connection
string, and if not, then you will need to create a new one by clicking
on the New Connection… button. Another, possibly easier way, is to
cancel the wizard, delete the .mdf file from the project, open Server
Explorer, delete all the NORTHWND*.MDF type connections, and then
repeat all of the steps listed here starting from step 5.

Northwind – Foundations

[140]

9. In the Choose Your Database Objects dialog box,select the Customers,
Employees, Order Details, Orders, and Products tables as shown in the
following screenshot:

You should now see a data model similar to the following:

Chapter 3

[141]

There are a lot of options and details surrounding both entity framework
and design choices for creating a data access tier. For example, the
Northwind database ships with many built-in stored procedures and
views that we could take advantage of, but for simplicity, we are going
to use Linq to Entities directly against the generated ObjectContext
for our querying. There are also many options for your Object Relational
Mapping (ORM) including Linq to SQL and N-Hibernate. If you are not
an expert on these topics, then do your research before you start your
projects to make sure you use the best approach for your situation. The
point here is to get us a working data layer in as concise a way as possible.
MVVM is a presentation architecture and isn't concerned with where
the data comes from or what technologies are used to fetch the data.
You could be working on top of an SOA architecture and not even be
concerned with database access (which we will cover later in this book).

Northwind – Foundations

[142]

Listing the customers
The next thing we need to do is to get a list of customers to display in the UI. Our
approach will be to create a data provider that will query the entity framework to get
our entities, which we will use as our models. To accomplish this, follow these steps:

1. Add a project reference from Northwind.ViewModel to Northwind.Data.
2. Add a .NET reference to System.Data.Entity.
3. Add using statements for System.Collections.Generic, Northwind.Data,

and System.Data.Objects to MainWindowViewModel.
4. Add the following code to MainWindowViewModel:

private IList<Customer> _customers;

public IList<Customer> Customers
{
 get
 {
 if (_customers == null)
 {
 GetCustomers();
 }
 return _customers;
 }
}

private void GetCustomers()
{
 _customers
 = new NorthwindEntities()
 .Customers.ToList();
}

5. Update Expander in MainWindow as shown in the following code:
<Expander Padding="10"
 Margin="4"
 BorderBrush="DarkGray"
 ExpandDirection="Right"
 Grid.Row="0"
 Grid.Column="0"
 IsExpanded="True">
 <Expander.Header>
 <!-- Omitted Code -->
 </Expander.Header>

Chapter 3

[143]

 <ListBox ItemsSource="{Binding Customers}"
 DisplayMemberPath="CompanyName"
 VerticalAlignment="Top"
 Height="180"
 Width="250" />
</Expander>

6. Add an App.Config file to Northwind.UI.WPF.
7. Find the connection string that was created in step 7 in the Data Access

Tier section. It will be in the App.Config config file of Northwind.Data,
and should be called NorthwindEntities. Copy it to App.Config of
Northwind.UI.WPF, which was created in step 2. You will need to modify
the AttachDBFilename property of the connection string to replace the
|DataDirectory| token with an absolute path to your Northwnd.MDF file,
which was copied to your Northwind.Data project's directory. On my
machine, that meant changing |DataDirectory| to C:\Code\Northwind\
Northwind.Data\.

You could also leave the connection string as it is in step 3 after copying
it over to App.Config of Northwind.UI.WPF, and updating the
DataDirectory value in the code instead. To do this, you could add
the following code to App.xaml.cs:

public partial class App : Application

{

 // Code to update DataDirectory

 protected override void OnStartup(StartupEventArgs
e)

 {

 string dataDirectory

 = @"C:\Code\Northwind\Northwind.Data";

 AppDomain.CurrentDomain.
SetData("DataDirectory",

 dataDirectory);

 base.OnStartup(e);

 }
}

Northwind – Foundations

[144]

8. Build and run the application, and verify that you see a list of customers as
shown in the following screenshot:

Your solution should look similar to the following screenshot:

Chapter 3

[145]

What we've done here is:

•	 Added a Data Access Layer (DAL) using Visual Studio's built-in support
•	 Updated MainWindowViewModel to use the NorthwindEntities object

context to retrieve a list of all customers and expose them to MainWindow as
the Customers collection

In a real application, you wouldn't want to pull back the entire
Customer object just to get a list of Customer.CompanyName to
display in the UI, and would instead want to return an object that
only has the CompanyName and CustomerID properties. There are
numerous ways of doing this (using Service Packs, anonymous types
with Linq, and so on), Later, when we look at the idea of persistence
ignorance, we will take a closer look at some approaches.

•	 Added a list box to MainWindow and bound it to the Customers collection,
setting DisplayMemberPath to CompanyName, and enabling the customers to
be displayed as a list of company names.

Unit testing getting customers
Our code works fine as is, but let's go ahead and get some unit tests in place for what
we have so far, and see how adding unit tests as a client will require us to refactor
our design.

Feel free to test first in your own applications or use whatever
style that is appropriate for your projects. In this book, we will talk
about unit tests after the code is written, to allow us to point out
architectural concerns with MVVM and unit testing.

Looking at our MainWindowViewModel, the only scenario to test is verifying the
Customers population logic.

We will assume that you are familiar with the basics of using MSTest
and with unit testing principles. If you want or need to learn more, see
The Art of Unit Testing by Roy Osherove (Osherove).We will be following
The Art of Unit Testing approach, including the naming convention for
tests that are used. Our tests will be named in this style:

<Method>_<Scenario>_<ExpectedResult>

Northwind – Foundations

[146]

To create the first two tests, follow these steps:

We don't want to test the database, because we want our test to be easily repeatable
from any computer and isolated from dependencies. We will need to rethink
our code to be able to accomplish this. What we are going to do is add a layer of
abstraction between our data source and our view model, which will allow us to use
various techniques to fake out the fetching of customers. We will call this new class
UIDataProvider, and it will also be responsible for defining the interface needed by
the UI to get its data. This will allow us to:

1. Test our view model in isolation without testing the dependencies. We will
be able to use a variety of techniques and tools to inject fake objects (stubs
and mocks), allowing for isolated testing.

2. More easily change our data source. If we wanted to scale, it would now
be easier to add a WCF service layer by updating UIDataProvider to use
the new service layer instead of Entity Framework. To really maximize this
benefit we would need to make our design persistence ignorant which we
will look at in Chapter 6, Northwind—Services and Persistence Ignorance.

3. Aggregate multiple sources of data if needed. For example, if we later
need to integrate with an external product catalog service to retrieve
additional product details, we could consume this catalog service under
UIDataProvider, and easily hide those details from the rest of the
presentation layer. Additionally, if we assume that this catalog service is
still under development, we can use a stub in UIDataProvider and allow
presentation development to continue while the dependent catalog service
is being built. I find this technique invaluable on large SOA projects were
different teams are responsible for different services.

We will explore these many benefits as we progress, but for now follow these steps
to get started:

1. Add a new class library project to your solution called Northwind.
Application.

2. Add a project reference from Northwind.Application to Northwind.Data
and a .Net reference to System.Data.Entity.

3. Rename the file Class1.cs in Northwind.Application to
IUIDataProvider.cs, allow Visual Studio to update references, and update
the IUIDataProvider.cs file as follows:
using System.Collections.Generic;
using Northwind.Data;

namespace Northwind.Application

Chapter 3

[147]

{
 public interface IUIDataProvider
 {
 IList<Customer> GetCustomers();
 }
}

4. Add a new class to Northwind.Application called UIDataProvider.cs,
and update the code in that file as follows:
using System.Collections.Generic;
using System.Linq;
using Northwind.Data;

namespace Northwind.Application
{
 public class UIDataProvider : IUIDataProvider
 {
 public IList<Customer> GetCustomers()
 {
 return new NorthwindEntities()
 .Customers.ToList();
 }
 }
}

5. Add a reference from Northwind.ViewModel to Northwind.Application.
6. Update MainWindowViewModel.cs as follows:

using System.Collections.Generic;
using Northwind.Data;
using Northwind.Application;

namespace Northwind.ViewModel
{
 public class MainWindowViewModel
 {
 private readonly IUIDataProvider _dataProvider;

 public string Name
 { get { return "Northwind"; } }
 public string ControlPanelName
 { get { return "Control Panel"; } }

 private IList<Customer> _customers;

Northwind – Foundations

[148]

 public IList<Customer> Customers
 {
 get
 {
 if (_customers == null)
 {
 GetCustomers();
 }
 return _customers;
 }
 }

 public MainWindowViewModel(

 IUIDataProvider dataProvider)

 {

 _dataProvider = dataProvider;

 }

 private void GetCustomers()

 {

 _customers = _dataProvider.GetCustomers();

 }
 }
}

7. Open ViewModelLocator.cs, add a using statement for
Northwind.Application, and update the code that instantiates
the MainWindoViewModel as follows:
_mainWindowViewModel
 = new MainWindowViewModel(new UIDataProvider());

8. Add a new test project to the solution called Northwind.ViewModel.Tests.
9. Add a project reference from Northwind.ViewModel.Tests to Northwind.

ViewModel, Northwind.Data, and Northwind.Application.
10. Add a .Net reference from Northwind.ViewModel.Tests to System.Data.

Entity.
11. Rename the file UnitTest1.cs to MainWindowViewModelTests.cs,

allow Visual Studio to rename all references in the code, and update
the file as follows:
using System.Collections.Generic;
using Microsoft.VisualStudio.TestTools.UnitTesting;

Chapter 3

[149]

using Northwind.Data;
using Northwind.Application;

namespace Northwind.ViewModel.Tests
{
 [TestClass]
 public class MainWindowViewModelTests
 {

 [TestMethod]
 public void Customers_Always_CallsGetCustomers()
 {
 // Create stub
 IList<Customer> expected = GetCustomers();
 UIDataProviderStub uiDataProviderStub
 = new UIDataProviderStub
 {
 Customers = expected
 };

 // Inject stub
 MainWindowViewModel target
 = new MainWindowViewModel(uiDataProviderStub);

 CollectionAssert.AreEquivalent(
 (List<Customer>)expected,
 (List<Customer>)target.Customers);
 }

 private IList<Customer> GetCustomers()
 {
 const int numberOfCustomers = 10;
 IList<Customer> customers
 = new List<Customer>();
 for (int i = 0; i < numberOfCustomers; i++)
 {
 customers.Add(new Customer
 {
 CustomerID = "CustomerID " + i,
 CompanyName = "CompanyName " + i
 });
 }

 return customers;

Northwind – Foundations

[150]

 }

 private class UIDataProviderStub : IUIDataProvider
 {
 public IList<Customer> Customers
 { private get; set; }

 public IList<Customer> GetCustomers()
 {
 return Customers;
 }
 }
 }
}

12. Run the test and verify that it passes.

To run all the tests, put your cursor on the TestClass attribute, and
do one of the following:

1. Right-click on the TestClass attribute and select Run Tests.
2. Use Ctrl+R, T.
3. Use the Test menu or toolbar.

To avoid false positives, you should always run a negative test that
fails. It's best if you do this before putting the correct expected data in
your unit test and passing it.

Now, we are confirming that MainWindowViewModel.Customers is
populated by calling IUIDataProvider.GetCustomers() while not coupling
MainWindowViewModel to any concrete implementation of IUIDataProvider. Using
this approach we are able to verify that our MainWindowViewModel gets it's data in
the expected way. However, we are not testing the actual fetching of the data in the
way you would in an integration test. We are instead injecting a fake object into our
MainWindowViewModel instance using constructor injection allowing us to test this
behavior in isolation. This design allows us to support both the WPF UI client and
the MSTest client code, and was accomplished using the following techniques:

•	 Adding a layer of abstraction to our data access (UIDataProvider).
•	 Implementing that abstraction on an interface (IUIDataProvider).
•	 Adding a stubbed implementation of IUIDataProvider for testing, which

was added as a private nested class to MainWindowViewModelTests.

Chapter 3

[151]

•	 Updating MainWindowViewModel to use dependency injection, allowing
us to inject UIDataProvider from the ViewModelLocator, and to inject
UIDataProviderStub from our unit tests. We did this by adding a constructor
that takes a IUIDataProvider as an argument, which is called Constructor
Dependency Injection.

The image that follows shows the relationship between UIDataProvider and
MainWindowViewModel:

As you can see, MainWindowViewModel can now take any implementation of
IUIDataProvider.

Using an isolation framework
Currently we are using a manual stub, UIDataProviderStub, which gets the job
done, but we can save ourselves some code by using an isolation framework.

Northwind – Foundations

[152]

Isolation frameworks allow for creating fake objects (stubs and
mocks) for use in testing, and there are many out there to choose
from. See The Art of Unit Testing by Roy Osherove for complete details.

We are going to update our implementation to use Rhino Mocks to dynamically
create an IUIDataProvider stub in our tests by following these steps:

1. Remove the code for UIDataProviderStub class and for the
MainWindowViewModelTests.GetCustomer method as we will
no longer be needing it.

2. Download the latest version of Rhino Mocks to your computer or if
you prefer using Nuget then install the Rhino Mocks Nuget package in
Northwind.ViewModel.Tests and skip to step 7..

At the time of this writing, Rhino Mocks could be downloaded from
http://hibernatingrhinos.com/open-source/rhino-mocks.
We are using Version 3.5.

3. Add a folder called Lib to your solution's directory in Windows Explorer.
4. Add RhinoMocks.dll and RhinoMocks.xml to the Lib folder.
5. Add a solution folder to Northwind called Lib, and then add RhinoMocks.

dll and RhinoMocks.xml to that folder from the location created in step 3.
6. Add a browse reference from RhinoMocks.dll to Northwind.ViewModel.

Tests.
7. Add using Rhino.Mocks to the top of MainWindowViewModelTests.cs.
8. Update MainWindowViewModel as follows:

[TestClass]
public class MainWindowViewModelTests
{
 [TestMethod]
 public void Customers_Always_CallsGetCustomers()
 {
 IUIDataProvider uiDataProviderMock
 = MockRepository
 .GenerateMock<IUIDataProvider>();
 uiDataProviderMock.Expect(c => c.GetCustomers());

 // Inject stub
 MainWindowViewModel target

http://hibernatingrhinos.com/open-source/rhino-mocks
http://hibernatingrhinos.com/open-source/rhino-mocks

Chapter 3

[153]

 = new MainWindowViewModel(uiDataProviderMock);
 IList<Customer> customers = target.Customers;

 uiDataProviderMock.VerifyAllExpectations();
 }
}

9. Run all the tests and verify that they pass.

As you can see, we were able to reduce the amount of code needed by quite a bit here.
In all fairness, we are performing a behavior verification test now, whereas before, we
were performing a state verification test. However, the point being that it doesn't take
long to learn to appreciate the benefits of an isolation frameworks when writing unit
tests. Note that:

•	 State verification is a style of unit testing where you perform some action
on the component under test, and then verify that the state of the application
is as expected. In our first attempt we were verifying the state of our
MainWindowViewModel.Customers property.

•	 Behavior verification is a style of unit testing where you perform some
action on the component under test, and use a mock object to verify that the
component under test behaved as expected. In our example, we verified that
MainWindowViewModel called IUIDataProvider.GetCustomers. There is a
canonical example given as to why you would test in this way. Imagine that
you were tasked with creating tests for a software that controls a sprinkler
system. Each time you ran a test, you wouldn't want to have to run the
sprinkler system, then try and collect all the water that was dispersed and
verify that the correct amount of water was dispersed for the correct amount
of time [Osherove]. Instead, you would want to create tests that verify that
the sprinkler controller called into the hardware with the correct values
(or its behavior), and would leave it to the hardware manufacture to test
the hardware.

Interaction verification is what we did in our second attempt at testing
MainWindowViewModel using Rhino Mocks to create our mock object.
The line

uiDataProviderMock.Expect(c =>
c.GetCustomers());

sets an expectation that GetCustomers will be called on our mocked IUiDataProvider
instance that was then injected into our MainWindowViewModel instance's
constructor. When we call

uiDataProviderMock.VerifyAllExpectations()

Northwind – Foundations

[154]

on our mock object at the end of our test, Rhino Mocks then will verify that the
uiDataProviderMock.GetCustomers method was called during the test run.
However, Rhino Mocks will throw an exception if the uiDataProviderMock.
GetCustomers method was not called and this exception will cause our test
to fail. And that is how we were able to use interaction verification to test our
MainWindowViewModel.GetCustomers functionality.

Adding tabs
As shown in the requirements section earlier, in this chapter, our Northwind
application needs to support a tabbed display. MVVM greatly simplifies the
creating and managing of tabs as you can have the binding system map views
to view models. This makes adding a tabbed interface to our UI a simple matter
of using the Hierarchical View Model approach along with some basic
OOD techniques.

Hierarchical View Model will be discussed in detail
in Chapter 6, Hierarchical View Model and IoC.

To accomplish this, follow the steps listed here:

1. Add a new class called ToolViewModel.cs to the Northwind.ViewModel
project, and update the code as follows:
namespace Northwind.ViewModel
{
 public class ToolViewModel
 {
 public string DisplayName { get; set; }
 }

 public class AToolViewModel : ToolViewModel
 {
 public AToolViewModel()
 {
 DisplayName = "A";
 }
 }

 public class BToolViewModel : ToolViewModel
 {
 public BToolViewModel()
 {
 DisplayName = "B";

Chapter 3

[155]

 }
 }
}

2. Open MainWindowViewModel.cs, add a using for System.Collections.
ObjectModel, and update MainWindowViewModel as follows:
 public ObservableCollection<ToolViewModel>

 Tools { get; set; }

 public MainWindowViewModel(
 IUIDataProvider dataProvider)
 {
 _dataProvider = dataProvider;
 Tools = new ObservableCollection<ToolViewModel>();

 Tools.Add(new AToolViewModel());

 Tools.Add(new BToolViewModel());

 }

3. Update TabControl in MainWindow.xaml as follows:
<TabControl ItemsSource="{Binding Tools}"
 Margin="4"
 Grid.Row="0"
 Grid.Column="1">
 <TabControl.ItemTemplate>
 <DataTemplate>
 <ContentPresenter Content="{Binding DisplayName}" />
 </DataTemplate>
 </TabControl.ItemTemplate>
</TabControl>

4. Add a new UserControl to Northwind.UI.WPF called ATool.xaml, and
add the following code to it:
<UserControl x:Class="Northwind.UI.WPF.ATool"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/
xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <Grid>

Northwind – Foundations

[156]

 <TextBlock Text="{Binding DisplayName}" />
 </Grid>
</UserControl>

5. Add a new UserControl to Northwind.UI.WPF called BTool.xaml, and add
the following code to it:
<UserControl x:Class="Northwind.UI.WPF.BTool"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/
xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <StackPanel>
 <TextBox Text="{Binding DisplayName}" />
 </StackPanel>
</UserControl>

6. Add the following namespaces to MainSkin.xaml:
xmlns:ViewModel="clr-namespace:Northwind.
ViewModel;assembly=Northwind.ViewModel"
xmlns:WPF="clr-namespace:Northwind.UI.WPF"

7. Update MainSkin.xaml as follows:
<DataTemplate
 DataType="{x:Type ViewModel:AToolViewModel}">
 <WPF:ATool/>
</DataTemplate>
<DataTemplate
 DataType="{x:Type ViewModel:BToolViewModel}">
 <WPF:BTool />
</DataTemplate>

8. Update the included namespaces in MainSkin.xaml to include the following:
xmlns:WPF="clr-namespace:Northwind.UI.WPF"
xmlns:ViewModel="clr-namespace:Northwind.ViewModel;
assembly=Northwind.ViewModel"

Chapter 3

[157]

9. Build and run the application.
You should see an application similar to the following screenshot:

Notice how changing the tabs presents a different view in the screenshot
that follows:

Northwind – Foundations

[158]

As you can see, we've now created a tabbed layout that supports showing different
types of views in each tab. We accomplished this in the following manner:

1. In step 1 and step 2, we created a common base view model type –
ToolViewModel, and added an ObservableCollection<ToolViewModel>
Tools to our MainWindowViewModel. We also created two derived types of
ToolViewModel, AToolViewModel and BToolViewModel. We then added
one of each type of view model to our MainViewModel.Tools collection in
the constructor of MainWindowViewModel allowing us to provide the view
models for each tab we want to display in an easily consumable format for
our view.

2. Next, in step 3, we bound the MainWindowViewModel.Tools collection
to TabControl.ItemSource of MainWindow. This will expose our
collection of Tools to our view and allow each ToolViewModel instance
to be mapped to a view using WPFs data template support. We also added
a TabControl.ItemTemplate, which allowed us to format how DisplayName
is displayed in each tab.

In a tab control, you control the look and layout of the tab by styling
TabItem, and you control the look and layout of the tab content by
styling TabControl. The TabControl.ItemTemplate property
allows you to specify a control template for TabItem, which is what
we did above. The same result could be accomplished by applying a
style to TabItem.

3. In step 4, step 5, and step 6 we created ATool and BTool views as WPF
UserControls. Next we mapped the ATool view to the AToolViewModel
and the BTool view to the BToolViewModel by updating MainSkin.xaml to
add data templates like the one shown below.

<DataTemplate
 DataType="{x:Type ViewModel:AToolViewModel}">
 <WPF:ATool/>
</DataTemplate>

This data template maps an ATool instance view to an AToolViewModel instance.
The DataType property is letting WPF know that if it finds an instance of the
specified DataType (AToolViewModel), that it is to replace that DataType instance
(AToolViewModel) with an instance of the DataTemplate.Content (ATool) and set
that instance's DataContext (ATool.DataContext) to the instance of the DataType
(AToolViewModel) that was found. This would result in code equivalent to the
XAML shown below being generated for us.

<WPF:ATool DataContext={Binding aToolViewModelInstance} />

Chapter 3

[159]

This is an extremely powerful technique as you can easily use it to create views that
display collections of different views (tabs, MDIs, and so on) simply by:

1. Having all your view models derive from the same type.
2. Creating derived view model types for each type of view you

want to support.
3. Creating a user control for each view type you are supporting.
4. Mapping the views to the view models using a data template.

Using data templates to instantiate views is a very powerful and useful
technique. When you do this, the view is created for you by the binding
system, and its data context is set to be the newly created instance of the
datatype that it is mapped. See Chapter 2, Introduction to MVVM for more
details.

We will now use this technique to display customer details. Before moving on, first
perform the following actions:

1. Delete ATool.xaml and BTool.xaml.
2. Remove the data templates from MainSkin.xaml that were added in step 6.
3. Remove the classes AToolViewModel and BToolViewModel from

ToolViewModel.cs.
4. Remove the following highlighted code from MainWindowViewModel:

public MainWindowViewModel(
 IUIDataProvider dataProvider)
{
 _dataProvider = dataProvider;
 Tools = new ObservableCollection<ToolViewModel>();
 Tools.Add(new AToolViewModel());

 Tools.Add(new BToolViewModel());

}

Viewing customer details
Next, we will be updating Northwind to allow us to view customer details.

Northwind – Foundations

[160]

Viewing details for one customer
We will view the details for one customer by opening a tab for each customer
detail in the UI using the technique that we just covered. We will start things
off by creating the ToolViewModel derived view model and its associated view
(UserControl). We will then connect the pieces using a data template to map our
view to our view model. To do this, perform the following steps:

1. Update the IUIDataProvider interface to add the following method:
Customer GetCustomer(string customerID);

2. Update UIDataProvider as follows:
public class UIDataProvider : IUIDataProvider
{
 private NorthwindEntities _northwindEntities
 = new NorthwindEntities();

 public IList<Customer> GetCustomers()
 {
 return _northwindEntities.Customers.ToList();
 }

 public Customer GetCustomer(string customerID)
 {
 return
 _northwindEntities.Customers.Single(
 c => c.CustomerID == customerID);
 }
}

3. Add a new class called CustomerDetailsViewModel to Northwind.
ViewModel, and update it as follows:
using Northwind.Application;
using Northwind.Data;

namespace Northwind.ViewModel
{
 public class CustomerDetailsViewModel : ToolViewModel
 {
 private readonly IUIDataProvider _dataProvider;
 public Customer Customer { get; set; }

 public CustomerDetailsViewModel(
 IUIDataProvider dataProvider,

Chapter 3

[161]

 string customerID)
 {
 _dataProvider = dataProvider;
 Customer = _dataProvider.GetCustomer(customerID);
 DisplayName = Customer.CompanyName;
 }
 }
}

4. Add a new UserControl to Northwind.UI.WPF called CustomerDetails,
and update it as follows:
<UserControl x:Class="Northwind.UI.WPF.CustomerDetails"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/
xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml"
/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Border Padding="5"
 Margin="4"
 CornerRadius="5"
 Background="{StaticResource
 mainBlueBrush}">
 <TextBlock Text="Customer Details"
 Foreground="White"
 FontWeight="Bold"
 FontSize="12" />

Northwind – Foundations

[162]

 </Border>
 <GroupBox Header="Details"
 MinHeight="240"
 Grid.Row="1"
 DockPanel.Dock="Bottom">
 <Grid Margin="4">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="6" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>
 <Label Content="Company Name:"
 HorizontalAlignment="Right" />
 <TextBox Text="{Binding Customer.CompanyName,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Column="2" />
 <Label Content="Contact Name:"
 Grid.Row="1"
 HorizontalAlignment="Right" />
 <TextBox Text="{Binding Customer.ContactName,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="1"
 Grid.Column="2" />
 <Label Content="Phone Number:"
 Grid.Row="2"
 HorizontalAlignment="Right" />
 <TextBox Text="{Binding Customer.Phone,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="2"
 Grid.Column="2" />
 <Label Content="Address:"
 Grid.Row="3"
 HorizontalAlignment="Right" />

Chapter 3

[163]

 <TextBox Text="{Binding Customer.Address,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="3"
 Grid.Column="2" />
 <Label Content="City:"
 Grid.Row="4"
 HorizontalAlignment="Right" />
 <TextBox Text="{Binding Customer.City,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="4"
 Grid.Column="2" />
 <Label Content="Region:"
 Grid.Row="5"
 HorizontalAlignment="Right" />
 <TextBox Text="{Binding Customer.Region,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="5"
 Grid.Column="2" />
 <Label Content="Country:"
 Grid.Row="6"
 HorizontalAlignment="Right" />
 <TextBox Text="{Binding Customer.Country,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="6"
 Grid.Column="2" />
 <Label Content="Zip:"
 Grid.Row="7"
 HorizontalAlignment="Right" />
 <TextBox Text="{Binding Customer.PostalCode,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="7"
 Grid.Column="2" />
 </Grid>
 </GroupBox>
 </Grid>
</UserControl>

5. Update MainSkin.xaml as follows:
<DataTemplate
 DataType="{x:Type
 ViewModel:CustomerDetailsViewModel}">
 <WPF:CustomerDetails/>
</DataTemplate>

Northwind – Foundations

[164]

6. Update MainWindowViewModel as follows:
public MainWindowViewModel(
 IUIDataProvider dataProvider)
{
 _dataProvider = dataProvider;
 Tools = new ObservableCollection<ToolViewModel>();
 Tools.Add(new CustomerDetailsViewModel(
 _dataProvider, "ALFKI"));
}

7. Build and run the solution, and you should see something similar to the
following screenshot:

We still have some work to do, but what we've accomplished so far is adding
one CustomerDetails view to our UI. To accomplish this we perform the
following steps:

1. Update our UIDataProvider to allow us to get a customer by customer ID
in steps 1 and 2 above.

2. Create a CustomerDetails view and a ToolViewModel derived view model,
CustomerDetailsViewModel.

3. Map CustomerDetails to CustomerDetailsViewModel in MainSkin.xaml.

Chapter 3

[165]

4. Update MainWindowViewModel to instantiate a new
CustomerDetailsViewModel that was passed a hardcoded
customer ID, and then add it to the Tools collection.

We passed a hard-coded customer ID to get up and running quickly. Soon we will
refactor this code to allow the ID to be passed from the customer listbox selection to
the main window view model.

Testing CustomerDetailsViewModel
Now, let's add some unit tests by doing the following steps:

1. Add a new Basic Unit Test to Northwind.ViewModel.Tests by
right-clicking on the project and selecting Add and then New Test
called CustomerDetailsViewModelTests.

2. Add using statements for Northwind.Application, Rhino.Mocks,
and Northwind.Data.

3. And update CustomerDetailsViewModelTests as follows:
[TestMethod]
public void Ctor_Always_CallsGetCustomer()
{
 // Arrange
 IUIDataProvider uiDataProviderMock
 = MockRepository
 .GenerateMock<IUIDataProvider>();
 const string expectedID = "EXPECTEDID";
 uiDataProviderMock.Expect(
 c => c.GetCustomer(expectedID)).Return(
 new Customer());

 // Act
 CustomerDetailsViewModel target
 = new CustomerDetailsViewModel(
 uiDataProviderMock, expectedID);

 // Assert
 uiDataProviderMock.VerifyAllExpectations();
}

[TestMethod]
public void
 Customer_Always_ReturnsCustomerFromGetCustomer
 ()

Northwind – Foundations

[166]

{
 // Arrange
 IUIDataProvider uiDataProviderStub
 = MockRepository
 .GenerateStub<IUIDataProvider>();
 const string expectedID = "EXPECTEDID";
 Customer expectedCustomer
 = new Customer
 {
 CustomerID =
 expectedID
 };
 uiDataProviderStub.Stub(
 c => c.GetCustomer(expectedID)).Return(
 expectedCustomer);

 // Act
 CustomerDetailsViewModel target
 = new CustomerDetailsViewModel(
 uiDataProviderStub, expectedID);

 // Assert
 Assert.AreSame(expectedCustomer, target.Customer);
}

[TestMethod]
public void DisplayName_Always_ReturnsCompanyName()
{
 // Arrange
 IUIDataProvider uiDataProviderStub
 = MockRepository
 .GenerateStub<IUIDataProvider>();
 const string expectedID = "EXPECTEDID";
 const string expectedCompanyName = "EXPECTEDNAME";
 Customer expectedCustomer
 = new Customer
 {
 CustomerID =
 expectedID,
 CompanyName =
 expectedCompanyName
 };
 uiDataProviderStub.Stub(
 c => c.GetCustomer(expectedID)).Return(

Chapter 3

[167]

 expectedCustomer);

 // Act
 CustomerDetailsViewModel target
 = new CustomerDetailsViewModel(
 uiDataProviderStub, expectedID);

 // Assert
 Assert.AreEqual(expectedCompanyName,
 target.DisplayName);
}

4. Run all the tests and verify that they pass.

What we did here was tested the following three scenarios:

•	 The constructor will always call IUIDataProvider.GetCustomers()
•	 Verify that CustomerDetailsViewModel.Customer returns the value that

was fetched from IUIDataProvider.GetCustomers()
•	 Verify that CustomerDetailsViewModel.DisplayName returns Customer.

CompanyName for the customer that was returned from IUIDataProvider.
GetCustomers()

These tests should be self-explanatory. You might find yourself writing more tests or
using a different testing style, however, the point here is to demonstrate that we can
unit test, not to teach unit testing.

Wiring up the customer list box
Now, we need to make the tabs dynamic and wire them up to the customer list box.
To do this follow these steps:

1. Update MainWindow.xaml as follows:
 </Expander.Header>
 <StackPanel>

 <ListBox ItemsSource="{Binding Customers}"
 DisplayMemberPath="CompanyName"
 SelectedValuePath="CustomerID"

 VerticalAlignment="Top"
 SelectedValue="{Binding

 SelectedCustomerID}"

 Height="180"
 Width="250" />

Northwind – Foundations

[168]

 <ContentControl Margin="0, 3">

 <Hyperlink Click="Hyperlink_Click">

 <TextBlock Text="Show Details" />

 </Hyperlink>

 </ContentControl>

 </StackPanel>

</Expander>

2. Add a using statement for Northwind.ViewModel in MainWindow.xaml.cs.
3. Add the following function to MainWindow in MainWindow.xaml.cs.

private MainWindowViewModel ViewModel
{
 get { return (MainWindowViewModel) DataContext; }
}

private void Hyperlink_Click(object sender,
 RoutedEventArgs e)
{
 ViewModel.ShowCustomerDetails();
}

We are using the code behind style here, and not implementing a
pure "no code behind" style of MVVM. If you are going to use this
approach, then it's good to define what is and what isn't allowed
in the code behind. A rule of thumb that you could use is "No
conditional logic in the code behind" [Smith]. Using this rule you
can be pretty sure that there is no view logic contained in the code
behind. However, later in this book, we will show how to update
this code to use pure MVVM with no code behind.

4. Open MainWindowViewModel.cs, and add a using statement for
System.Linq.

5. Update MainWindowViewModel as follows:
public string SelectedCustomerID { get; set; }

public MainWindowViewModel(
 IUIDataProvider dataProvider)
{
 _dataProvider = dataProvider;
 Tools = new ObservableCollection<ToolViewModel>();
}

Chapter 3

[169]

public void ShowCustomerDetails()
{
 if (string.IsNullOrEmpty(SelectedCustomerID))
 throw new InvalidOperationException(
 "SelectedCustomerID can't be null");

 CustomerDetailsViewModel customerDetailsViewModel
 = GetCustomerDetailsTool(SelectedCustomerID);
 if (customerDetailsViewModel == null)
 {
 customerDetailsViewModel
 = new CustomerDetailsViewModel(
 _dataProvider, SelectedCustomerID);
 Tools.Add(customerDetailsViewModel);
 }
 SetCurrentTool(customerDetailsViewModel);
}

private CustomerDetailsViewModel GetCustomerDetailsTool(
 string customerID)
{
 return Tools
 .OfType<CustomerDetailsViewModel>()
 .FirstOrDefault(c =>
 c.Customer.CustomerID ==
 customerID);
}

private void SetCurrentTool(ToolViewModel currentTool)
{
 ICollectionView collectionView =
 CollectionViewSource.GetDefaultView(Tools);
 if (collectionView != null)
 {
 if (collectionView.MoveCurrentTo(currentTool) !=
 true)
 {
 throw new InvalidOperationException(
 "Could not find the current tool.");
 }
 }
}

Northwind – Foundations

[170]

6. Add a .Net reference from Northwind.ViewModel to
PresentationFramework and WindowsBase.

7. Build and run the application.
8. Select a few different customers, and click on Show Details for each

one selected.
9. Verify that you see something similar to the following screenshot:

What we did here was:

•	 Used the code behind approach to wire up an event handler to the
Hyperlink.Click event

•	 Accessed the view model of MainWindow by adding a property that cast
MainWindow.DataContext to a MainWindowViewModel

•	 Added MainWindowViewModel.SelectedCustomerID
•	 Added MainWindowViewModel.ShowCustomerDetails() that handles

either creating a new CustomerDetailsViewModel or selecting the existing
one if it's already been opened

Chapter 3

[171]

One interesting thing to point out at this time is the entity framework's built-in
support for Change Notifications. Open up the Customer class in Visual Studio's
class view, expand the Base Types, and you will see something similar to the
following screenshot:

As you can see, Customer is dervied from StructuralObject, which implements
INotifyPropertyChanged and provides support for binding updates. We can easily
verify this by performing the following steps:

1. Launch Northwind.
2. Open a Customer Details tab.
3. Change the Company Name by adding the word changed to the end; and as

you type, notice how the Company Name is also updated in the customer list
box, as shown in the following screenshot:

Northwind – Foundations

[172]

We didn't have to add any code to get this change notification support in our model.
This is definitely a huge benefit of using entity framework with Silverlight and WPF.
Later, we will see how WCF also supports built-in change notifications. There is, of
course, a downside to getting change notifications for free in this way. We have now
tightly coupled our UI to Entity Framework and our generated schema. Later, we
will be looking into the idea of persistence ignorance, the extra work that it involves,
and the additional benefits that it provides over solutions that don't provide
persistence ignorance. For now, it is just important to note that the entity framework
allows for getting your change notifications working very easily.

Testing ShowCustomerDetails()
Let's update our code to test MainWindowViewModel.ShowCustomerDetails()
by performing the following steps:

1. Add .Net references to WindowsBase and PresentationFramework.
2. Add a using statement for System and System.Windows.Data.
3. Adding the following code to MainWindowViewModelTests:

[ExpectedException(typeof (InvalidOperationException))]
[TestMethod]
public void
ShowCustomerDetails_SelectedCustomerIDIsNull_
ThrowsInvalidOperationException
 ()
{
 // Arrange
 MainWindowViewModel target
 = new MainWindowViewModel(null);

 // Act
 target.ShowCustomerDetails();
}

[TestMethod]
public void ShowCustomerDetails_ToolNotFound_AddNewTool()
{
 // Arrange
 const string expectedCustomerID = "EXPECTEDID";
 MainWindowViewModel target =
 GetShowCustomerDetailsTarget(
 new Customer
 { CustomerID = expectedCustomerID});

Chapter 3

[173]

 // Act
 target.ShowCustomerDetails();

 // Assert
 CustomerDetailsViewModel actual =
 target.Tools.Cast<CustomerDetailsViewModel>().
 FirstOrDefault(
 viewModel =>
 viewModel.Customer.CustomerID ==
 expectedCustomerID);
 Assert.IsNotNull(actual);
}

[TestMethod]
public void ShowCustomerDetails_Always_ToolIsSetToCurrent
 ()
{
 // Arrange
 Customer expected = new Customer
 {
 CustomerID =
 "EXPECTEDID"
 };
 MainWindowViewModel target =
 GetShowCustomerDetailsTarget(expected);

 // Act
 target.ShowCustomerDetails();

 // Assert
 CustomerDetailsViewModel actual =
 CollectionViewSource.GetDefaultView(target.Tools)
 .CurrentItem as CustomerDetailsViewModel;

 Assert.AreSame(expected, actual.Customer);
}

private static MainWindowViewModel
 GetShowCustomerDetailsTarget(
 Customer customer)
{
 IUIDataProvider uiDataProviderStub
 = MockRepository
 .GenerateStub<IUIDataProvider>();

Northwind – Foundations

[174]

 MainWindowViewModel target
 = new MainWindowViewModel(uiDataProviderStub);
 target.SelectedCustomerID = customer.CustomerID;
 uiDataProviderStub.Stub(
 d => d.GetCustomer(customer.CustomerID)).Return(
 customer);
 return target;
}

4. Now, run all the tests and verify that they pass.

We now added tests for the following scenarios for ShowCustomerDetails:

1. Not setting a MainWindowViewModel.SelectedCustomerID will result in
InvalidOperationException being thrown.

2. If there is no tool for MainWindowViewModel.SelectedCustomerID, then
create one and add it.

3. Verify that MainWindowViewModel.SelectedCustomerID is always set to the
current tool.

We could easily have tested more scenarios here, but again, the point
here is to demonstrate that we have a testable architecture, and not to
tryand teach unit testing.

Summary
In this chapter, we've laid the foundation for our application. We started things
off by introducing the requirements of the Northwind application. Next, we
demonstrated a quick way to get up and running with a database-driven MVVM
application by using Microsoft's entity framework. We followed this up by
refactoring our design to improve testability, and added our first unit tests. We then
looked at how to easily create dynamic workspaces using MVVM by adding a tabbed
interface to Northwind. We finished the chapter by looking at the entity framework's
support for change notifications.

Northwind—Services and
Persistence Ignorance

By Ryan Vice

We are off to a good start, but what about performance and scalability? Our current
design isn't very scalable and places a large processing load on the client that would
make more sense if it was placed on a server. Enterprise applications will generally
need to be crafted differently for scalability, performance, and component-based
development. They need to be service-oriented, enabling different applications to reuse
the same functionalities across the enterprise. The easiest way to improve our design
so that it's more enterprise-ready is by adding a Service Layer by Fowler between our
presentation tier and our application tier. This will allow us to move our business logic
processing to a server which we can easily scale in server farms or on the cloud.

Another consideration for moving to a more enterprise-scale design is around
Persistence ignorance. Persistence ignorance is achieved in a design when the
persistence store can be changed without requiring changes to the consumers of the
data coming out of the persistence store. Having multiple consumers in an enterprise
SOA environment creates a compelling scenario for considering adding persistence
ignorance to your design, as you wouldn't want changes in persistence to affect
downstream dependencies.

In this chapter, we will refactor the Northwind database to add a Service Layer. As
we do our refactoring, we will take note of some difficulties that our current design
has around refactoring our data access code and will take a look at how this situation
can be improved by making our design Persistence ignorant. We will then look at the
testability of our design and will finish off the chapter by refactoring our design to a
more testable approach that will allow us to add some unit tests.

Northwind—Services and Persistence Ignorance

[176]

Adding a Service Layer
In this section, we will add a Service Layer to our design.

Decision Point: Service Layer
You should only introduce a service layer in your project if it's
needed. Each new architectural feature we will cover in this text
will provide benefits for a cost. It's extremely important that you are
familiar with the trade-offs and only add what you need. If you are
writing an internal tool, adding a Service Layer might be overkill and
provide no ROI to your project.

To add a Service Layer to Northwind, perform the following steps:

1. Add a new WCF Service Library project to your solution called
Northwind.Service and delete the files IService1.cs and
Service1.cs ,from the project.

2. Add a project reference from Northwind.Service to Northwind.Data
and a .NET reference from System.Data.Entity to Northwind.Data.

3. Add a file called Customer.cs to Northwind.Service and update it,
as shown in the following code:
using System.Runtime.Serialization;

namespace Northwind.Service
{
 [DataContract]
 public class Customer
 {
 [DataMember]
 public string CustomerID { get; set; }
 [DataMember]
 public string CompanyName { get; set; }
 [DataMember]
 public string ContactName { get; set; }
 [DataMember]
 public string Address { get; set; }
 [DataMember]
 public string City { get; set; }
 [DataMember]
 public string Region { get; set; }
 [DataMember]
 public string PostalCode { get; set; }

Chapter 4

[177]

 [DataMember]
 public string Country { get; set; }
 [DataMember]
 public string Phone { get; set; }
 }
}

This class is a Data Transfer Object by Fowler in WCF. We will soon
see that WCF will generate entities on the client from this class and
that these generated entities will come with built-in support for
change notification.

4. Add a file called ICustomer.cs to your project and update it, as shown in
the following code:
using System.Collections.Generic;
using System.ServiceModel;

namespace Northwind.Service
{
 [ServiceContract]
 public interface ICustomerService
 {
 [OperationContract]
 IList<Customer> GetCustomers();
 [OperationContract]
 Customer GetCustomer(string customerID);
 }
}

This interface is our WCF Service Contract which will be used to
generate a client-side proxy. In our design, this contract is essentially a
Transaction Script by Fowler that will be customer-centric and will be
expanded to allow for getting related customer data such as orders.

Northwind—Services and Persistence Ignorance

[178]

Decision Point: Data Access
In Domain-Driven Design or DDD, a domain model is created by
constructing an object graph from domain objects. The object graph is
a Fowler Domain Model and it mimics the real world domain language
and relationships in code. One of the key goals in DDD is creating a
ubiquitous language between the stake holders and developers to reduce
communication friction and increase code quality. The domain model can
be organized into aggregates where an aggregate is a group ofassociated
objects which are considered as one unit with regard to data changes. So
for example, if you deleted a customer, you'd likely want to delete their
orders too, and when you fetch a customer it would also make sense to
retrieve the associated orders. For this reason, it makes sense for orders
to share a repository with customers where the customer entity is the
central focus or "aggregate". However, this kind of relationship wouldn't
exist between employee and customer in our domain model, so it might
not make sense to have them aggregated together in the same repository
if we were taking a domain driven approach. But this leads us to another
point of debate. You will need to decide, in your project how you want to
organize your data access and services. For a simple project, you might
want to design around a single repository, an approach that Martin Fowler
calls Transaction Script. But if your domain model and logic get complex,
you will find that you get more benefits from segmenting your design
around multiple repositories and taking more of a domain model-driven
approach, such as Domain-Driven Design, using multiple well-organized
repositories with aggregates.

Service Oriented Architecture (SOA) introduces a whole host of
design considerations. We will not be covering SOA concepts in
depth in this book, as we are mainly concerned with the implication
that having a Service Layer can place on an MVVM design. For more
information on SOA patterns, see http://www.soapatterns.org.

5. Add a file called CustomerService.cs to Northwind.Service and update it,
as shown in the following code:
using System.Collections.Generic;
using System.Linq;
using Northwind.Data;

namespace Northwind.Service
{
 public class CustomerService : ICustomerService
 {
 private readonly NorthwindEntities _northwindEntities

http://www.soapatterns.org

Chapter 4

[179]

 = new NorthwindEntities();

 public IList<Northwind.Service.Customer>
 GetCustomers()
 {
 return _northwindEntities.Customers
 .Select(
 c => new Northwind.Service.Customer
 {
 CustomerID = c.CustomerID,
 CompanyName = c.CompanyName
 }).ToList();
 }

 public Northwind.Service.Customer GetCustomer(
 string customerID)
 {
 Northwind.Data.Customer customer
 = _northwindEntities
 .Customers.Single(
 c => c.CustomerID == customerID);
 return new Northwind.Service.Customer
 {
 CustomerID = customer.CustomerID,
 CompanyName = customer.CompanyName,
 ContactName = customer.ContactName,
 Address = customer.Address,
 City = customer.City,
 Country = customer.Country,
 Region = customer.Region,
 PostalCode = customer.PostalCode,
 Phone = customer.Phone
 };
 }
 }
}

This class implements the same logic that was previously
implemented in UIDataProvider but makes that logic
available as a WCF service.

6. Add a folder called App_Data to Northwind.Service, and then copy the
NORTHWND.MDF file in Solution Explorer from Northwind.Data and paste
it into App_Data.

Northwind—Services and Persistence Ignorance

[180]

7. Open App.config in Northwind.Service and update it, as shown in the
following code:

By adding our database to a folder named App_Data, we are
able to use the DataDirectory attribute in our connection
string to resolve our MDF file.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <connectionStrings>
 <add name="NorthwindEntities"
 connectionString="metadata=res://*/Model1.csdl|
 res://*/Model1.ssdl|res://*/Model1.msl;
 provider=System.Data.SqlClient;
 provider connection string="
 data source=.\SQLEXPRESS;
 attachdbfilename=|DataDirectory|\NORTHWND.MDF;
 integrated security=True;user instance=True;
 multipleactiveresultsets=True;App=EntityFramework""
 providerName="System.Data.EntityClient" />
 </connectionStrings>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <system.serviceModel>
 <services>
 <service name="Northwind.Service.CustomerService">
 <host>
 <baseAddresses>
 <add
 baseAddress="http://localhost:8080/CustomerService"
/>
 </baseAddresses>
 </host>
 <endpoint address="" binding="basicHttpBinding"
 contract="Northwind.Service.ICustomerService" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>

Chapter 4

[181]

 <serviceMetadata httpGetEnabled="True" />
 <serviceDebug includeExceptionDetailInFaults="True" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

8. Set Northwind.Service as the StartUp project, build the solution, and then
run it in debug mode.

You should now get the WCF Test Client window and be able to verify that the
services are working correctly by invoking the service operations, as shown in the
following screenshot:

Integrating the Service Layer
Now that we've got our Service Layer working, let's refactor our presentation code
to use it by following these steps:

1. Remove the reference from Northwind.Application to Northwind.Data.
2. Right-click on Northwind.Application in Solution Explorer and select Add

a Service Reference.

Northwind—Services and Persistence Ignorance

[182]

3. In the dialog that pops up, click on the Discover button and set Namespace
to CustomerService, as shown in the following screenshot and then click on
the OK button.

Our next section will be about adding Persistence Ignorance to the
design. Persistence ignorance is the decoupling of the presentation
tier from the lower data tiers. It will minimize the refactoring needed
for the presentation when changing your data providers (services,
database, ORM, and so on). To appreciate the value of persistence
ignorance, take note of how much refactoring we have to do in the
next few steps, in the presentation tier, to change our application to
use services. If our application were persistence ignorant, most of
these steps would not be required.

Chapter 4

[183]

4. Open IUIDataProvider.cs and replace the using statement for Northwind.
Data with one for Northwind.Application.CustomerService. This
will update the interface to use the CustomerService generated entities
instead of using the Northwind.Data generated entities, which would not
be necessary if our design were persistence ignorant and based on POCOs
(Plain Old CLR Objects).

5. Open UIDataProvider.cs and update it, as shown in the following code,
taking care to update the namespaces correctly:
using System.Collections.Generic;
using System.Linq;
using Northwind.Application.CustomerService;

namespace Northwind.Application
{
 public class UIDataProvider : IUIDataProvider
 {

 private IList<Customer> _customers;
 private readonly CustomerServiceClient
 _customerServiceClient
 = new CustomerServiceClient();

 public IList<Customer> GetCustomers()
 {
 return _customers ??
 (_customers =
 _customerServiceClient.GetCustomers());
 }

 public Customer GetCustomer(string customerID)
 {
 Customer customer
 = _customers.First(
 c => c.CustomerID == customerID);
 return customer.Update(
 _customerServiceClient.GetCustomer(
 customer.CustomerID));
 }
 }

 internal static class CustomerExtensions
 {
 public static Customer Update(this Customer customer,

Northwind—Services and Persistence Ignorance

[184]

 Customer existingCustomer)
 {
 customer.ContactName =
 existingCustomer.ContactName;
 customer.Address = existingCustomer.Address;
 customer.City = existingCustomer.City;
 customer.Region = existingCustomer.Region;
 customer.Country = existingCustomer.Country;
 customer.Phone = existingCustomer.Phone;
 return customer;
 }
 }
}

If you build the solution at this point, you will see that Northwind.
ViewModel, Northwind.ViewModel.Tests, and Northwind.
UI.WPF will have build errors and need additional refactoring.
These steps would not be required, if we had already implemented
persistence ignorance and had a design that used POCOs.

6. Remove the reference from Northwind.ViewModel to Northwind.Data.
7. Add a reference to Northwind.Service and System.Runtime.

Serialization.
8. Replace all occurrences of using Northwind.Data; with using Northwind.

Application.CustomerService; in Northwind.ViewModel and in
Northwind.UI.WPF.

9. Add a reference to System.Runtime.Serialization in Northwind.
ViewModel.Tests.

10. Open the App.config file in Northwind.UI.WPF and update it, as shown
in the following code (which can be copied from the App.config file in
Northwind.Application):
<?xml version="1.0" encoding="utf-8"?>

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding
 name="BasicHttpBinding_ICustomerService"
 closeTimeout="00:01:00"
 openTimeout="00:01:00"
 receiveTimeout="00:10:00"

Chapter 4

[185]

 sendTimeout="00:01:00"
 allowCookies="false"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferSize="65536"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536"
 messageEncoding="Text"
 textEncoding="utf-8"
 transferMode="Buffered"
 useDefaultWebProxy="true">
 <readerQuotas maxDepth="32"
 maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096"
 maxNameTableCharCount="16384" />
 <security mode="None">
 <transport clientCredentialType="None"
 proxyCredentialType="None"
 realm="" />
 <message clientCredentialType="UserName"
 algorithmSuite="Default" />
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint
 address="http://localhost:8080/CustomerService"
 binding="basicHttpBinding"
 bindingConfiguration
 ="BasicHttpBinding_ICustomerService"
 contract="CustomerService.ICustomerService"
 name="BasicHttpBinding_ICustomerService" />
 </client>
 </system.serviceModel>
</configuration>

11. Build and run the application.

Northwind—Services and Persistence Ignorance

[186]

If you run the application, you will see that it works as it did before. In step 5, we had
to do some slightly unusual things to accommodate the differences between a WCF
proxy and Entity Framework object context. The object context maintains a collection
for us that we used as our session state. After updating to WCF we needed to maintain
a collection of customers locally to create the same type of session state. Neither of
the two implementations is ideal for the approach being taken and both could be
improved if they were choosen as the path you wanted to go down. However, for the
purposes of this book, they show the options available and allow for us to demonstrate
how you get to change notifications for free when integrating directly with Entity
Framework or WCF. If you decide to take these types of approaches, make sure that
you are comfortable with the technologies you are using and the various best practices
for their use.

Persistence ignorance and custom
models
So far, we have used generated classes as our models. We will now look at creating
a custom model and will add persistence ignorance to our design.

Trade-offs of generated models
The Microsoft technology stack provides plenty of solutions that allow for
getting up and running with models that support change notifications via
INotifyPropertyChanged. As with everything in software development, there are
trade-offs to be considered when determining what type of architecture you need;
the advantages and disadvantages of using generated models are shown as follows:

Advantages Disadvantages
Quick to develop Couples Presentation with data access
Models are generated for you Changing data access requires difficult

refactoring of presentation code.
Generated code for change notification Encourages database centric model

You should be familiar with the advantages listed previously at this point, so let's
talk a bit about the disadvantages. When we needed to change our design to support
services we had to refactor not only the application layer but also the UI layer,
because we were using generated models. While this saved us time up-front, we
ended up having to modify the presentation code when we decided to upgrade our
data access to include a Service Layer. Another minor negative is, with technology
such as the Entity Framework, there is the temptation to simply drag over your

Chapter 4

[187]

tables from the database into the designer and use the database schema as your
model. This type of data access approach where your model mimics the database
structure is called Table Module by Fowler. There are many projects where this
approach will work perfectly fine, however you will find that as your domain model
and logic get complex, an approach like Domain-Driven Design might make more
sense. You can most certainly accomplish this in Entity Framework, but at this point,
the amount of effort saved begins to deteriorate a bit over writing your own model,
as you end up having to create your model in the designer and then configure the
mapping. So even though Entity Framework supports Domain-Driven Design, you
will get the most productivity gains from taking the table module approach.

There is no "best approach" for all situations. If you have a project that is an internal
application that will not be around for 10 years, or that won't be updated too often,
you probably don't want to put the extra effort into decoupling your model from
your data access. However, if you are building a new enterprise application for a
company that stays up on the technology curve and this application will likely be
around for 10 years and will need to scale up easily, it would likely be worth the
extra effort to decouple your presentation and make it persistence ignorant and
therefore easier to update in the future. Also, if you have complex domain logic or
if you are in an environment where you must aggregate data from various sources
(services, DBs, and so on), you might want to make your application persistence
ignorant with a domain model approach like Domain-Driven Design.

There is a POCO T4 template for Entity Framework that will allow
you to create POCO models. This is a tool that we won't be covering
in this book but that is worth knowing and that I'd encourage you to
investigate if you find yourself exploring options for data access and
are favoring generated models. Additionally, there is a T4 template
that supports mocking of the ObjectContext which is also worth
looking at.

Adding persistence ignorance
In order to add persistence ignorance to our UI, we are going to:

1. Add a custom model to our project which will be made up of POCOs
and be ignorant to the persistence technology that we are using.

2. Update IUIDataProvider to use our new persistence ignorant model.
3. Update the UI to consume our new model and to no longer be dependent

on generated models.

Northwind—Services and Persistence Ignorance

[188]

To accomplish this, perform the following steps:

1. Add a new Class Library project to the solution called Northwind.Model
and delete the Class1.cs file that is added by default.

2. Add a class called ModelBase.cs and update it, as shown in the following
code. This class provides change notification support and includes debug
code that will verify that property names exist in debug builds.
using System;
using System.Diagnostics;
using System.ComponentModel;

namespace Northwind.Model
{
 public class ModelBase : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler
 PropertyChanged = delegate { };

 public void RaisePropertyChanged(string propertyName)
 {
 VerifyPropertyName(propertyName);
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }

 [DebuggerStepThrough]
 [Conditional("DEBUG")]
 private void VerifyPropertyName(string propertyName)
 {
 if (TypeDescriptor
 .GetProperties(this)[propertyName] == null)
 throw new InvalidOperationException(
 "Property " + propertyName +
 " wasn't found in "
 + GetType().Name + ".");
 }
 }
}

3. Add a class called Customer.cs and update it, as shown in the
following code:
namespace Northwind.Model
{

Chapter 4

[189]

 public class Customer : ModelBase
 {
 private string _customerID;
 public string CustomerID
 {
 get { return _customerID; }
 set
 {
 if (string.Compare(_customerID, value) == 0)
 return;
 _customerID = value;
 RaisePropertyChanged("CustomerID");
 }
 }
 private string _companyName;
 public string CompanyName
 {
 get { return _companyName; }
 set
 {
 if (string.Compare(_companyName, value) == 0)
 return;
 _companyName = value;
 RaisePropertyChanged("CompanyName");
 }
 }
 // Add all properties needed here
 }
}

We didn't list all the properties needed to save space, but add properties
for ContactName, Address, Region, Country, PostalCode, and
Phone, in your code. Make sure to follow the same pattern that is used
for CustomerID. This class inherits from our ModelBase and is a
simple POCO model with change notifications added.

4. Add a project reference from Northwind.Application to Northwind.Model.
5. In IUIDataProvider.cs, remove the using statement for Northwind.

Application.CustomerService and add a using statement for
Northwind.Model.

Northwind—Services and Persistence Ignorance

[190]

6. Add a class called DataMapper.cs to Northwind.Application and update it
as shown in the following code:
using Service = Northwind.Application.CustomerService;

namespace Northwind.Application
{
 public static class DataMapper
 {
 public static Model.Customer Update(
 this Model.Customer model, Service.Customer dto)
 {
 model.CustomerID = dto.CustomerID;
 model.CompanyName = dto.CompanyName;
 model.ContactName = dto.CompanyName;
 model.Address = dto.Address;
 model.Region = dto.Region;
 model.Country = dto.Region;
 model.PostalCode = dto.PostalCode;
 return model;
 }
 }
}

This is a static class that provides an extension method that allows
for updating a Northwind.Model.Customer instance from a
Northwind.Application.CustomerService.Customer instance.

7. Update UIDataProvider.cs, as shown in the following code:
using System.Collections.Generic;
using System.Linq;
using Northwind.Application.CustomerService;

namespace Northwind.Application
{
 public class UIDataProvider : IUIDataProvider
 {
 private readonly CustomerServiceClient
 _customerServiceClient
 = new CustomerServiceClient();

 public IList<Model.Customer> GetCustomers()

Chapter 4

[191]

 {
 return _customerServiceClient.GetCustomers()
 .Select(c => new Model.Customer().Update(c))
 .ToList();
 }

 public Model.Customer GetCustomer(string customerID)
 {

 return new Model.Customer()
 .Update(_customerServiceClient
 .GetCustomer(customerID));
 }

 }
}

This update changes to using our persistence ignorant model and uses
our DataMapper extensions to allow for concise code, allowing us to
call Update() off our Northwind.Model.Customer instance.

8. Add a reference to Northwind.Model in both Northwind.ViewModel
and Northwind.ViewModel.Tests.

9. Do a Find and Replace for using Northwind.Application.
CustomerService; with using Northwind.Model; in both Northwind.
ViewModel and Northwind.ViewModel.Tests.

10. Build and run the project.

It should work the same as before and you can easily verify that the change
notifications are still working as expected. It should be apparent that this design allows
for easier updates to your data access, as now when you change your data access, you
won't need to change anything above the Northwind.Application layer.

Note that we haven't implemented persistence ignorance in our DAL,
only in our presentation tier. If you are interested in achieving a
persistence-ignorant DAL, search the web for the Repository Pattern
and Unit of Work (UoW) patterns for your data access technology.
It's fairly easy to find detailed examples for Linq to SQL, Entity
Framework, NHibernate, and so on of achieving persistence ignorance
using Repository and UoW.

Northwind—Services and Persistence Ignorance

[192]

Decision Point: Exposing the Model through the View Model
In our current design, we are aggregating our model in our view model
and then binding to the model in the UI. I call this approach Aggregate
Model. Another option you can consider is to create proxy properties
in your view model for each model property. This technique is known
as Proxy Property. The proxy properties simply pass along the model
property and implement INotifyPropertyChanged (and potentially
IDataErrorInfo, which will be covered in the validations chapter).
The advantages of Proxy Property include simplifying the view model,
as you don't need to go through an intermediate object when binding,
and simplifying your models as they no longer need to worry about
change notification. The main disadvantage is that it requires more code.
Another option for the relationship between your model and view model
is the use of dynamic properties. This approach combines the Proxy
Property and Aggregated Model approaches by exposing the model
properties through the view model using the new Dynamic feature in
.NET 4.0 and reflection. The big benefit of this approach is that it doesn't
require the additional work that goes into writing proxy properties but
still provides some of the benefits of Proxy Property. We won't cover this
technique here, but it's well documented in the MSDN Magazine article
Problems and Solutions with Model-View-ViewModel by Robert McCarter,
freely available on the web (http://msdn.microsoft.com/en-us/
magazine/ff798279.aspx, at the time of writing this book).

Adding unit tests
Let's go ahead and add some tests to our Northwind.Application layer,
now that we've settled on a data access approach. We will have to update
our UIDataProvider to support dependency injection for its data provider.
Taking a look at our current implementation of UIDataProvider, we find
that it's not easily testable for a few reasons.

One issue is with our service dependency.

 private readonly CustomerServiceClient
 _customerServiceClient
 = new CustomerServiceClient();

We are not using Dependency Injection(DI) on this dependency and need
to refactor our code so that it properly uses DI for this dependency.

http://msdn.microsoft.com/en-us/magazine/ff798279.aspx
http://msdn.microsoft.com/en-us/magazine/ff798279.aspx

Chapter 4

[193]

Another issue is the Update extension method shown in the following code:

 public IList<Model.Customer> GetCustomers()
 {
 return _customers ??
 (_customers =
 _customerServiceClient.GetCustomers()
 .Select(
 c => new Model.Customer().Update(c))
 .ToList());
 }

 public Model.Customer GetCustomer(string customerID)
 {

 return _customers
 .First(c => c.CustomerID == customerID)
 .Update(_customerServiceClient
 .GetCustomer(customerID));
 }

To properly isolate our tests we should test the Update functionality separately
from UIDataProvider and use interaction verification style testing to verify that the
Update method was called in the UIDataProvider context. However, this is not an
easy way to do this under the current design, so we will need to refactor our code to
improve the testability of this logic.

To add a unit test, follow these steps.

1. Delete DataMapper.cs.
2. Add a new interface called IEntityTranslator.cs to Northwind.

Application, and update it as shown in the following code:
using Northwind.Model;

namespace Northwind.Application
{
 public interface IEntityTranslator<M, D>
 where M : ModelBase
 {
 M CreateModel(D dto);
 M UpdateModel(M model, D dto);
 D CreateDto(M model);
 D UpdateDto(D dto, M model);
 }
}

Northwind—Services and Persistence Ignorance

[194]

Here we are using the EntityTranslator pattern which is a simple data
mapping pattern for mapping entities to models (business objects). We've
started by creating a generic interface that our translators will implement
and that allows for two-way translations between entities and models.
Note that you can also consider using AutoMapper by Jimmy Bogard
which is a great open source tool for doing entity translations (http://
automapper.org/).

3. Add a class called CustomerTranslator.cs to Northwind.Application.
Take care to add code for updating all the properties as some of that code
was omitted for brevity.
using Service = Northwind.Application.CustomerService;

namespace Northwind.Application
{
 public class CustomerTranslator
 : IEntityTranslator<Model.Customer, Service.Customer>
 {
 internal static IEntityTranslator<Model.Customer,
 Service.Customer> _instance;

 public static IEntityTranslator<Model.Customer,
 Service.Customer> Instance
 {
 get
 {
 return _instance ??
 (_instance = new CustomerTranslator());
 }
 }

 public Model.Customer CreateModel(
 CustomerService.Customer dto)
 {
 return UpdateModel(new Model.Customer(), dto);
 }

 public Model.Customer UpdateModel(Model.Customer model,
 CustomerService.
 Customer dto)
 {
 if (model.CustomerID != dto.CustomerID)
 model.CustomerID = dto.CustomerID;

Chapter 4

[195]

 if (model.CompanyName != dto.CompanyName)
 model.CompanyName = dto.CompanyName;
 // Update all properties
 return model;
 }

 public CustomerService.Customer CreateDto(
 Model.Customer model)
 {
 return UpdateDto(new Service.Customer(), model);
 }

 public CustomerService.Customer UpdateDto(
 CustomerService.Customer dto, Model.Customer model)
 {
 if (dto.CustomerID != model.CustomerID)
 dto.CustomerID = model.CustomerID;
 if (dto.CompanyName != model.CompanyName)
 dto.CompanyName = model.CompanyName;
 // Update all properties
 return dto;
 }
 }
}

This class simply moves the data from our entities to our
models, and vice versa.

4. Update UIDataProvider, as shown in the following code:
public class UIDataProvider : IUIDataProvider
{
 private IList<Model.Customer> _customers;

 private readonly ICustomerService
 _customerServiceClient;

 public UIDataProvider(ICustomerService customerService)
 {
 _customerServiceClient = customerService;
 }

 public IList<Model.Customer> GetCustomers()

Northwind—Services and Persistence Ignorance

[196]

 {
 return _customers ??
 (_customers =
 _customerServiceClient.GetCustomers()
 .Select(
 c =>
 CustomerTranslator.Instance.
 CreateModel(c))
 .ToList());
 }

 public Model.Customer GetCustomer(string customerID)
 {
 return
 CustomerTranslator.Instance.UpdateModel(
 _customers
 .First(c => c.CustomerID ==
 customerID),
 _customerServiceClient
 .GetCustomer(customerID));
 }
}

Here, we have introduced constructor dependency injection
for the customer service and have updated to using our new
CustomerTranslator.

5. Add a .NET reference from Northwind.ViewModel to System.ServiceModel
and update ViewModelLocator as shown in the following code:
using Northwind.Application;
using Northwind.Application.CustomerService;

namespace Northwind.ViewModel
{
 public class ViewModelLocator
 {
 private static MainWindowViewModel
 _mainWindowViewModel;

 public static MainWindowViewModel
 MainWindowViewModelStatic
 {

Chapter 4

[197]

 get
 {

 return _mainWindowViewModel ??
 (_mainWindowViewModel =
 new MainWindowViewModel(
 new UIDataProvider(
 new
 CustomerServiceClient())));

 }
 }
 }
}

What we've done here is to update our view model locator to manually
inject CustomerServiceClient. We will see how to improve this
approach using inversion of control frameworks, in the next chapter.

6. Add a new Test Project called Northwind.Application.Tests, delete the
UnitTest1.cs class (which is created by default), add a project reference to
Northwind.Application, add a browse reference to Rhino.Mocks.dll, and
then create a new class called UIDataProviderTests.cs and update it, as
shown in the following code:
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Northwind.Application.CustomerService;
using Rhino.Mocks;
using Service = Northwind.Application.CustomerService;

namespace Northwind.Application.Tests
{
 [TestClass()]
 public class UIDataProviderTest
 {
 /// <summary>
 ///A test for GetCustomer
 ///</summary>
 [TestMethod()]
 public void GetCustomers_Always_CallsGetCustomers()
 {
 // Arrange
 ICustomerService customerServiceMock =
 MockRepository.GenerateMock<ICustomerService>();
 UIDataProvider target =

Northwind—Services and Persistence Ignorance

[198]

 new UIDataProvider(customerServiceMock);
 var customerDtos = new Service.Customer[]
 {new Service.Customer()};
 customerServiceMock.Stub(c => c.GetCustomers()).
 Return(customerDtos);

 // Act
 target.GetCustomers();

 // Assert
 customerServiceMock.AssertWasCalled(
 c => c.GetCustomers());
 }

 /// <summary>
 ///A test for GetCustomer
 ///</summary>
 [TestMethod()]
 public void
 GetCustomers_ServiceReturnsDto_DtoPassedToTranslator()
 {
 // Arrange
 ICustomerService customerServiceStub =
 MockRepository.GenerateStub<ICustomerService>();
 CustomerTranslator._instance
 = MockRepository.GenerateStub<
 IEntityTranslator
 <Model.Customer,
 Service.Customer>>();
 UIDataProvider target =
 new UIDataProvider(customerServiceStub);
 var expected = new Service.Customer();
 var customerDtos = new Service.Customer[] {expected};
 customerServiceStub.Stub(c => c.GetCustomers()).
 Return(customerDtos);

 // Act
 target.GetCustomers();

 // Assert
 CustomerTranslator.Instance.AssertWasCalled(
 c => c.CreateModel(expected));
 }

Chapter 4

[199]

 /// <summary>
 ///A test for GetCustomer
 ///</summary>
 [TestMethod()]
 public void
 GetCustomers_ServiceReturnsDto_
ModelReturnedFromTranslator
 ()
 {
 // Arrange
 ICustomerService customerServiceStub =
 MockRepository.GenerateStub<ICustomerService>();
 CustomerTranslator._instance
 = MockRepository.GenerateStub<
 IEntityTranslator
 <Model.Customer,
 Service.Customer>>();
 UIDataProvider target =
 new UIDataProvider(customerServiceStub);
 var dto = new Service.Customer();
 var expected = new Model.Customer();
 var customerDtos = new Service.Customer[] {dto};
 customerServiceStub.Stub(c => c.GetCustomers()).
 Return(customerDtos);
 CustomerTranslator.Instance.Stub(
 c => c.CreateModel(dto)).Return(expected);

 // Act
 var actual = target.GetCustomers();

 // Assert
 Assert.AreSame(expected, actual[0]);
 }

 /// <summary>
 ///A test for GetCustomers
 ///</summary>
 [TestMethod()]
 public void GetCustomer_Always_CallsGetCustomer()
 {
 // Arrange
 const string expectedID = "expectedID";
 ICustomerService customerServiceMock =
 MockRepository.GenerateMock<ICustomerService>();

Northwind—Services and Persistence Ignorance

[200]

 CustomerTranslator._instance
 = MockRepository.GenerateStub<
 IEntityTranslator
 <Model.Customer,
 Service.Customer>>();
 UIDataProvider target =
 new UIDataProvider(customerServiceMock);
 var dto = new Service.Customer
 {CustomerID = expectedID};
 var model = new Model.Customer
 {CustomerID = expectedID};
 var customerDtos = new Service.Customer[] {dto};
 customerServiceMock.Stub(c => c.GetCustomers()).
 Return(customerDtos);
 CustomerTranslator.Instance.Stub(
 c => c.CreateModel(dto)).Return(model);
 target.GetCustomers(); // Load session data

 // Act
 target.GetCustomer(expectedID);

 // Assert
 customerServiceMock.AssertWasCalled(
 c => c.GetCustomer(expectedID));
 }
 }
}

Here we are testing four scenarios using interaction verification style
tests. We could add more tests and provide full coverage, but we have
shown that all of our dependencies are injectable with fake objects and
that our design has good testability.

7. Run all the tests and verify that they pass.

We are not going to walk through testing the entity translator here, as there isn't
anything complicated about testing it and it should be easy to see that this class
has a testable design.

If you use Entity Translator or other mapping patterns, I would
encourage you to provide testing coverage for your translators. Getting
the translations right is critical and can easily get messed up during bug
fixing or refactorings. Because of this, these tests will provide high ROI.

Chapter 4

[201]

Summary
In this chapter, we refactored our architecture to make it more scalable by introducing
a service layer. We saw how not having a persistence ignorant design causes us to
have to refactor presentation code in order to change our data access approach, and
we discussed the trade-offs of using generated models. We learned how to make
our presentation code persistent ignorant and what benefits that would provide us.
We then looked at the testability of our approach and finished off the chapter by
refactoring our code to be more testable, which allowed us to add some unit tests.

Northwind—Commands and
User Inputs

By Ryan Vice

Getting user input from the view to the view model is one of the many challenges
of implementing MVVM especially when you want to keep it pure and go with
a no code-behind approach. In this chapter, we will look at how the command
infrastructure helps make this task easier and where the command infrastructure
falls short. We will look at several ways of dealing with the shortcomings of the
commanding infrastructure, examining both code-behind and no code-behind
approaches as well as looking at how the MVVM Light framework can make
our life easier.

Pure MVVM
Currently, we are wiring up our event handlers in the code behind instead of taking
advantage of the command infrastructure to pass user input from the view to the
view model. There's a lot of talk in the development community as to how much
code is alright in the code behind and I won't attempt to end that debate here,
instead what I will do is, provide the tools and techniques that allow for taking the
pure approach. This will allow you to decide what the best approach for your project
is and use whatever level of purity makes the most sense.

Northwind—Commands and User Inputs

[204]

That said, in my projects I prefer to keep it as pure as possible and I am yet to find
a situation where I had to put code in the code behind. The following are a few
reasons that I favor the pure approach apart from just being a bit of a purist
at heart:

•	 Enforcement: On a large project, you will have developers with differing
levels of skill and ambition and what happens without fail is that if you allow
for the code-behind approach, it ends up getting abused and before long you
will end up with developers abusing the references from your view to your
view model and/or you will end up with view gunk in your view models
making them difficult to test. Because of this I like to have a best practice on
my projects that states that code-behinds need to be deleted.

•	 Less code, fewer bugs: In my projects, I've found up to 80 percent reduction
in code needed in some cases. This is because when using the code-behind
approach you have to add a lot of unnecessary code to pass input from the
view to the view model. You will do a good bit of casting and null checks
before you can pass along the event to the view model for processing, while
in a pure approach all of this code becomes unnecessary. Less code means
lower maintenance and fewer bugs. Not to mention that this code
is boilerplate code that tends to be boring to write.

On the flip side, if you are going to allow for code in your code behinds, then I'd
strongly encourage you to be explicit about what kind of code is allowed and my
recommendation would be that you use the following rules:

•	 No conditional logic: This will prevent from having any untestable business
or view logic in the code behind

•	 No view controls in the view model: This requires that only value types
and POCOs can be passed from the view to the view model, which will
allow your view models to remain testable

So now let's refactor our code to allow for a pure MVVM implementation by
following these steps:

1. Add a reference to PresentationCore in Northwind.Application.
2. Add a new class called Command to Northwind.Application and update

it as shown in the following code. This code creates a generic command that
can be instantiated with lambdas for specifying ICommand.Execute and
ICommand.CanExecute logic. It also provides RaiseCanExecute for raising
the ICommand.CanExecute event to notify the view that it should call
CanExecute:
using System;
using System.Windows.Input;

Chapter 5

[205]

namespace Northwind.Application
{
 public class Command : ICommand
 {
 private readonly Action<object> _execute;
 private readonly Func<object, bool> _canExecute;

 public Command(Action<object> execute)
 : this(execute, null)
 {}

 public Command(Action<object> execute,
 Func<object, bool> canExecute)
 {
 _execute = execute;
 _canExecute = canExecute;
 }

 public void Execute(object parameter)
 {
 _execute(parameter);
 }

 public bool CanExecute(object parameter)
 {
 return (_canExecute == null)
 || _canExecute(parameter);
 }

 public event EventHandler CanExecuteChanged
 = delegate {};

 public void RaiseCanExecuteChanged()
 {
 CanExecuteChanged(this, new EventArgs());
 }
 }
}

Northwind—Commands and User Inputs

[206]

3. Open the MainWindowViewModel.cs file and update it as shown in the
following code. What we've done here is that we've added a command
property that uses our new Command class, which is instantiated with two
lambdas. The first will be called when the ICommand.Execute event is
executed and the second will be called when the ICommand.CanExecute
event is executed. We've also updated the SelectedCustomerID class so
that it will call Command.RaiseCanExecutedChanged, which will in turn
raise ICommand.CanExecuteChanged to notify the view that it needs to
call ICommand.CanExecute again. This will make it so that our link will
be enabled and disabled for us after we wire it up to use commands in the
next step.
private Command _showDetailsCommand;
public Command ShowDetailsCommand
{
 get
 {
 return _showDetailsCommand ??
 (_showDetailsCommand =
 new Command(
 ShowCustomerDetails,
 IsCustomerSelected));
 }
}

private string _selectedCustomerID;
public string SelectedCustomerID
{
 get { return _selectedCustomerID; }
 set
 {
 _selectedCustomerID = value;
 ShowDetailsCommand.RaiseCanExecuteChanged();
 }
}

public void ShowCustomerDetails()
{
 if (!IsCustomerSelected())

Chapter 5

[207]

 throw new InvalidOperationException(
 "Unable to show customer because no "
 + "customer is selected.");

 CustomerDetailsViewModel customerDetailsViewModel
 = GetCustomerDetailsTool(SelectedCustomerID);
 if (customerDetailsViewModel == null)
 {
 customerDetailsViewModel
 = new CustomerDetailsViewModel(
 _dataProvider, SelectedCustomerID);
 Tools.Add(customerDetailsViewModel);
 }
 SetCurrentTool(customerDetailsViewModel);
}
public bool IsCustomerSelected()
{
 return !string.IsNullOrEmpty(SelectedCustomerID);
}

4. Open the MainWindow.xaml file and update Hyperlink as shown in the
following code. Here we will now use a command instead of the code-behind
approach and we get the added benefit of having our link to be disabled
when no selection is made and then be enabled when a selection is made.
<Hyperlink Command="{Binding ShowDetailsCommand}">

5. Open the MainWindow.xaml.cs file and remove the Hyperlink_Click
method and the ViewModel property as neither is required now that we are
moving to pure MVVM and using commands. It should look like it did right
after it was created as shown in the following code:
public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }
}

6. Build and run the application.

Northwind—Commands and User Inputs

[208]

When running the application, everything should work as before with one difference.
Now when the application starts for the first time and no customer is selected, the
Show Details link will be disabled as shown in the following screenshot:

Making it easier with frameworks
We can save ourselves a little effort by taking advantage of one of the many MVVM
frameworks freely available on the Web.

See Appendix A, MVVM Frameworks for a list of
frameworks.

We are now going to update our code to use the MVVM Light framework by
following the steps mentioned next:

If you haven't downloaded the MVVM Light framework then
download the framework. See Chapter 2, Introduction to MVVM for
details. Also note that there is now an MVVM Light Nuget package
(http://nuget.org/packages/mvvmLight) available, which
would be the preferred way to install the framework..

Chapter 5

[209]

1. Copy GalaSoft.MvvmLight.WPF4.dll to the Lib directory in the solution, as
shown in the following screenshot. This assembly contains the RelayCommand
class that we will be using.

2. Add browse reference from Northwind.ViewModel to GalaSoft.
MvvmLight.WPF4.dll.

3. Delete the Command.cs file from Northwind.Application.
4. Open MainWindowViewModel.cs, add a using statement for GalaSoft.

MvvmLight.Command and then update the class as shown in the following
code:
private RelayCommand _showDetailsCommand;
public RelayCommand ShowDetailsCommand
{
 get
 {
 return _showDetailsCommand ??
 (_showDetailsCommand =
 new RelayCommand(
 ShowCustomerDetails,
 IsCustomerSelected));
 }
}

5. Build and run the application and verify that it still works the same as before.

The relay command has made life a little easier as now we don't have to bother with
creating a command wrapper class.

Northwind—Commands and User Inputs

[210]

Updating customer details
Let's go ahead and add some code to allow for updating customer details
by following these steps:

1. Update ICustomerService to add the operation shown in the
following code:
[OperationContract]
void Update(Customer customer);

2. Update CustomerService to implement the new operation as shown
in the following code:
public void Update(Customer customer)
{
 Data.Customer customerEntity
 = _northwindEntities
 .Customers.Single(
 c => c.CustomerID == customer.CustomerID);
 customerEntity.CompanyName = customer.CompanyName;
 customerEntity.ContactName = customer.ContactName;
 customerEntity.Address = customer.Address;
 customerEntity.City = customer.City;
 customerEntity.Country = customer.Country;
 customerEntity.Region = customer.Region;
 customerEntity.PostalCode = customer.PostalCode;
 customerEntity.Phone = customer.Phone;
 _northwindEntities.SaveChanges();
}

3. Build and then right-click on the CustomerService file in the Service
References folder in Northwind.Application and select Update Service
Reference, as shown in the following screenshot. This will update the WCF
proxy classes to reflect our new update operation.

Chapter 5

[211]

4. Update IUIDataProvider to add the operation shown in the following code:
[OperationContract]
void Update(Customer customer);

5. Update UIDataProvider to implement this new operation as shown in the
following code:
public void Update(Customer customer)
{
 _customerServiceClient.Update(
 CustomerTranslator.Instance.CreateDto(customer));
}

6. Update CustomerDetailsViewModel as shown in the following code. This
will expose an update command and implement the logic needed to perform
updates when the command fires.
using System.ComponentModel;
using GalaSoft.MvvmLight.Command;
using Northwind.Application;
using Northwind.Model;

namespace Northwind.ViewModel

Northwind—Commands and User Inputs

[212]

{
 public class CustomerDetailsViewModel : ToolViewModel
 {
 private readonly IUIDataProvider _dataProvider;
 public Customer Customer { get; set; }
 private bool _isDirty;

 private RelayCommand _updateCommand;
 public RelayCommand UpdateCommand
 {
 get
 {
 return _updateCommand ??
 (_updateCommand =
 new RelayCommand(
 UpdateCustomer,
 CanUpdateCustomer));
 }
 }

 private bool CanUpdateCustomer()
 {
 return _isDirty;
 }

 private void UpdateCustomer()
 {
 _dataProvider.Update(Customer);
 }

 public CustomerDetailsViewModel(
 IUIDataProvider dataProvider,
 string customerID)
 {
 _dataProvider = dataProvider;
 Customer = _dataProvider.GetCustomer(customerID);
 Customer.PropertyChanged
 += Customer_PropertyChanged;

Chapter 5

[213]

 DisplayName = Customer.CompanyName;
 }

 void Customer_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
 {
 _isDirty = true;
 UpdateCommand.RaiseCanExecuteChanged();
 }
 }
}

7. Update CustomerDetails.xaml as shown in the following code to add
a new row to the layout:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>

8. Update CustomerDetails.xaml as shown in the following code to add
an update button.
 <TextBox Text="{Binding Customer.PostalCode,
 UpdateSourceTrigger=PropertyChanged}"
 Grid.Row="7"
 Grid.Column="2" />
 <Button Command="{Binding UpdateCommand}"
 Grid.Row="8"
 Content="Update" />
</Grid>

Northwind—Commands and User Inputs

[214]

9. Build and run the application; now open a customer and verify whether
you can update the customer details, as shown in the following screenshot:

You'll find that the Update button enables as expected and if you update
a customer's details and then restart the application you will find that your
changes were persisted.

Testing and updating customer details
Using commands not only allows us to get rid of the code behind and easily enable/
disable controls, we can also very easily test this logic. Add the following tests to
CustomerDetailsViewModelTest:

[TestMethod]
public void UpdateCustomer_Always_CallsUpdateWithCustomer()
{
 // Arrange
 IUIDataProvider uiDataProviderMock
 = MockRepository
 .GenerateMock<IUIDataProvider>();
 Customer expectedCustomer = new Customer();
 uiDataProviderMock.Stub(
 u => u.GetCustomer(Arg<string>.Is.Anything))
 .Return(expectedCustomer);
 CustomerDetailsViewModel viewModel

Chapter 5

[215]

 = new CustomerDetailsViewModel(
 uiDataProviderMock, string.Empty);
 RelayCommand target = viewModel.UpdateCommand;

 // Act
 target.Execute(null);

 // Assert
 uiDataProviderMock.AssertWasCalled(
 u => u.Update(expectedCustomer));
}

1. This first test shows how easy it is to test user interaction using commands.
Here we are getting UpdateCommand and then calling its Execute method
which is the same as what will happen when the application is run. We
can easily verify that update is called on the UIDataProvider by using
interaction verification against our uiDataProviderMock, which was injected
into a CustomerDetailsViewModel instance using constructor injection.
[TestMethod]
public void CanUpdateCustomer_NotDirty_ReturnsFalse()
{
 // Arrange
 IUIDataProvider uiDataProviderMock
 = MockRepository
 .GenerateMock<IUIDataProvider>();
 Customer expectedCustomer = new Customer();
 uiDataProviderMock.Stub(
 u => u.GetCustomer(Arg<string>.Is.Anything))
 .Return(expectedCustomer);
 CustomerDetailsViewModel viewModel
 = new CustomerDetailsViewModel(
 uiDataProviderMock, string.Empty);
 RelayCommand target = viewModel.UpdateCommand;

 // Act
 bool actual = target.CanExecute(null);

 // Assert
 Assert.IsFalse(actual);
}

Northwind—Commands and User Inputs

[216]

2. Our second test allows us to verify that can execute is false when our view
model is not dirty, meaning that CustomerDetailsViewModel.Customer
hasn't been changed.
Our implementation of "dirty" could easily be improved. Currently we are
simply flipping the CustomerDetailsViewModel._isDirty in response to
CustomerDetailsViewModel.Customer.PropertyChanged. You might want
to use something like the Memento Pattern to improve the approach.

[TestMethod]
public void CanUpdateCustomer_IsDirty_ReturnsTrue()
{
 // Arrange
 IUIDataProvider uiDataProviderMock
 = MockRepository
 .GenerateMock<IUIDataProvider>();
 Customer expectedCustomer = new Customer();
 uiDataProviderMock.Stub(
 u => u.GetCustomer(Arg<string>.Is.Anything))
 .Return(expectedCustomer);
 CustomerDetailsViewModel viewModel
 = new CustomerDetailsViewModel(
 uiDataProviderMock, string.Empty);
 RelayCommand target = viewModel.UpdateCommand;
 expectedCustomer.RaisePropertyChanged("CompanyName");

 // Act
 bool actual = target.CanExecute(null);

 // Assert
 Assert.IsTrue(actual);
}

3. Our final test is just like the previous one except that we raised
PropertyChanged method to cause our dirty flag to be set before
calling CanExecute.

Gestures, events, and commands
Classes that expose a command property in WPF and Silverlight are implementing
the ICommandSource interface that is shown in the following code:

// Defines an object that knows how to invoke a command.
public interface ICommandSource
{

Chapter 5

[217]

 // The command that will be executed when the command
 source is invoked.
 ICommand Command { get; }
 // Represents a user defined data value that can be
 passed to the command when it is executed.
 object CommandParameter { get; }
 // The object that the command is being executed on.
 IInputElement CommandTarget { get; }
}

One major limitation of the commanding infrastructure is that ICommandSource only
allows for one action on a command source to be associated with a command. So, for
example, if you want to have commands executed for both left-click and right-click on
a button, you wouldn't be able to accomplish that using the Button.Command property.
This limitation is one of the areas that you will find MVVM implementers breaking
with pure MVVM by putting code to forward events to the View Model, as we showed
earlier in this book. In this section, we will cover many techniques that can be used to
keep your implementation pure when dealing with MVVM and events.

InputBindings
One option available for using commands to route user input from the View
to the View Model is using InputBindings. UIElement.InputBindings is an
InputBindingCollection, which can be populated with InputBinding elements.

MSDN defines:

"InputBinding as representing a binding between an InputGesture and a
command".

What this allows us to do is to associate an InputGesture like a MouseGesture
or a KeyGesture with a command. We accomplish this by:

1. Creating an instance of an InputBinding derived class
2. Setting InputBinding.Gesture
3. Adding the InputBinding instance to a UIElements.InputBindings

collection

There are two InputBinding derived classes included in WPF and Silverlight
that we can use.

Northwind—Commands and User Inputs

[218]

KeyBinding
KeyBinding allows for associating a KeyGesture with a command. A KeyGesture is
a combination of a Key and Modifiers. For example, updating MainWindow.xaml as
shown in the following code will associate ShowDetailsCommand with the Ctrl + D
keyboard combination.

<Window.InputBindings>
 <KeyBinding Modifiers="Ctrl" Key="d"
 Command="{Binding ShowDetailsCommand}" />
</Window.InputBindings>

The Gesture property uses a convertor allowing for easier syntax in XAML. Gesture
requires a string that is made up of a key and one or more modifiers. Each modifier
and key must be delimited with a + sign. The following code shows how to wire up
Ctrl + D to ShowDetailsCommand using the Gesture property:

<Window.InputBindings>
 <KeyBinding Gesture="Ctrl+d"
 Command="{Binding ShowDetailsCommand}" />
</Window.InputBindings>

Note that there are exceptions to the rule that you must provide one
or more modifiers when defining a KeyGesture.

MSDN states that:

"In most cases, a KeyGesture must be associated with one or more ModifierKeys.
The exceptions to this rule are the function keys and the numeric keypad keys,
which can be a valid KeyGesture by themselves. For example, you can create a
KeyGesture by using only the F12 key, but to use the X key in a KeyGesture it
must be paired with a modifier key".

Modifiers are defined in the ModifierKeys enumeration and are mapped in XAML
via a converter to the modifier strings, as shown in the following table:

Modifier Description
Alt The Alt key.
Ctrl The Control key.
Shift The Shift key.
Windows The Windows logo key.

Chapter 5

[219]

MouseBinding
Another type of InputBinding is a MouseBinding which allows for mapping a
MouseAction to a command. For example, adding the following code to MainWindow.
xaml will associate the ShowCustomerCommand with the right-click button.

<Hyperlink Command="{Binding ShowDetailsCommand}">
 <Hyperlink.InputBindings>
 <MouseBinding MouseAction="RightClick"
 Command="{Binding
 ShowDetailsCommand}" />
 </Hyperlink.InputBindings>
 <TextBlock Text="Show Details" />
</Hyperlink>

Similar to the KeyBinding.Gesture, MouseBinding.Gesture is a MouseGesture that
combines a MouseAction and a modifier. So if we wanted to allow Shift + right-click
on our Show Details hyperlink to execute the ShowDetailsCommand then we'd use the
XAML file that follows:

<Hyperlink Command="{Binding ShowDetailsCommand}">
 <Hyperlink.InputBindings>
 <MouseBinding Gesture="Shift+RightClick"
 Command="{Binding
 ShowDetailsCommand}" />
 </Hyperlink.InputBindings>
 <TextBlock Text="Show Details" />
</Hyperlink>

The MouseAction values are shown in the table that follows:

Action Description
LeftClick A left mouse button click.
RightClick A right mouse button click.
MiddleClick A middle mouse button click.
WheelClick A mouse wheel rotation.
LeftDoubleClick A left mouse button double-click.
RightDoubleClick A right mouse button double-click.
MiddleDoubleClick A middle mouse button double-click.

Northwind—Commands and User Inputs

[220]

However, having two ways of showing a customer's details when clicking the Show
Details link isn't very useful. Let's now update our application to use this technique
in a way that makes more sense. It'd be nice to allow showing a customer's details
when a user double-clicks the customer's name in the listbox on the main window.
The following code looks like it would do the job nicely, but if you add it to your
application and run it you will find that it doesn't work:

<ListBox>
 <ListBox.InputBindings>
 <MouseBinding Gesture="LeftDoubleClick"
 Command="{Binding
 ShowDetailsCommand}" />
 </ListBox.InputBindings>
</ListBox>

The chatter I've seen on the Internet about this seems to indicate that this is a known
bug in WPF. So how can we move forward? One approach is to break with pure
MVVM and use the code-behind approach with a style.

Using code behind
We will now update Northwind to use code behind for ListBox.MouseDoubleClick.
To do this perform the following steps:

1. Update MainWindowViewModel.xaml as shown in the following code. This
is a work around that allows us to attach an event handler to double-click by
applying a style to the ListBoxItem type.
<ListBox ItemsSource="{Binding Customers}"
 DisplayMemberPath="CompanyName"
 SelectedValuePath="CustomerID"
 VerticalAlignment="Top"
 SelectedValue="{Binding
 SelectedCustomerID}"
 Height="180"
 Width="250">
 <ListBox.ItemContainerStyle>
 <Style TargetType="{x:Type ListBoxItem}"
 BasedOn="{StaticResource {x:Type
 ListBoxItem}}">
 <EventSetter Event="MouseDoubleClick"
 Handler="ListBoxItem_MouseDoubleClick" />
 </Style>
 </ListBox.ItemContainerStyle>
</ListBox>

Chapter 5

[221]

2. Add a reference from Northwind.WPF.UI to GalaSoft.MvvmLight.WPF4.dll.
3. Update MainWindow.xaml.cs as shown in the following code:

using System.Windows;
using System.Windows.Input;
using Northwind.ViewModel;

namespace Northwind.UI.WPF
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private void ListBoxItem_MouseDoubleClick(
 object sender,
 MouseButtonEventArgs e)
 {
 ((MainWindowViewModel)DataContext)
 .ShowDetailsCommand.Execute(null);
 }
 }
}

4. Run the application and verify that we can now show a customer's details
by double-clicking on their name in the listbox.

This approach works and is a perfectly fine approach to take when mapping events
to commands if you are comfortable with using the code-behind approach. However,
we will now look at some options that will allow us to keep our MVVM pure and
eliminate the need for the code behind.

Event to command
It doesn't take long in WPF or Silverlight to find yourself in need of a way to connect
an event to a command especially when wanting to keep your MVVM pure. We
are now going to look at two options for accomplishing this. The first option is a
technique using the Attached Behavior pattern where no frameworks are required.
The second approach will show how to use the MVVM Light framework to easily
accomplish the same pattern concisely in XAML.

Northwind—Commands and User Inputs

[222]

Attached Behavior
The Attached Behavior pattern takes advantage of the dependency property
infrastructure in WPF and Silverlight. It makes use of the attached property feature
of this infrastructure to allow for attaching behaviors to UIElements. The way the
pattern works is by taking advantage of the property by changing the callback
functionality of attached properties (see Chapter 2, Introduction to MVVM for more
details). When you register an attached property, you can register a callback to
be called whenever the attached property's value is changed and in the property
changed event handler you get access to DependencyObject that the attached
property was attached to, which in our case will be the ListBox instance. You
can then subscribe to events on DependencyObject. We will be subscribing to the
MouseDoubleClick routed event and then whenever the MouseDoubleClick event is
received our event handler will be called. In our event handler, we will forward the
call along by calling ICommand.Execute on the command that was attached to our
ListBox instance.

Now, let's do this by following these steps:

1. Remove the code that was added in the previous section for handling
double-click events.

2. Add a new class to Northwind.UI.WPF called ListBoxBehaviors and
update it as shown in the following code. The PropertyChanged callback
subscription is highlighted as it's the key to making this pattern work.
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;

namespace Northwind.UI.WPF
{
 static class ListBoxBehaviors
 {
 public static readonly DependencyProperty
 DoubleClickCommandProperty
 = DependencyProperty.RegisterAttached(
 "DoubleClickCommand",
 typeof(ICommand),
 typeof(ListBoxBehaviors),
 new PropertyMetadata(null,
 new PropertyChangedCallback(
 DoubleClickCommand_PropertyChanged)));

 public static void SetDoubleClickCommand(
 UIElement element, ICommand value)

Chapter 5

[223]

 {
 element.SetValue(DoubleClickCommandProperty,
 value);
 }

 public static ICommand GetDoubleClickCommand(
 UIElement element)
 {
 return (ICommand)element.GetValue(
 DoubleClickCommandProperty);
 }

 private static void DoubleClickCommand_PropertyChanged(
 DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 UIElement target = d as UIElement;
 if (e.OldValue != null)
 {
 target.RemoveHandler(
 ListBox.MouseDoubleClickEvent,
 new RoutedEventHandler(ListBox_DoubleClick));
 }
 if (e.NewValue != null)
 {
 target.AddHandler(
 ListBox.MouseDoubleClickEvent,
 new RoutedEventHandler(ListBox_DoubleClick));
 }
 }

 private static void ListBox_DoubleClick(object sender,
 RoutedEventArgs routedEventArgs)
 {
 ListBox listBox = sender as ListBox;
 ICommand doubleClickCommand =
 GetDoubleClickCommand(listBox);
 if (doubleClickCommand.CanExecute(routedEventArgs))
 {
 doubleClickCommand.Execute(routedEventArgs);
 }
 }
 }
}

Northwind—Commands and User Inputs

[224]

3. Add the namespace shown in the following code to MainWindow.xaml.
xmlns:WPF="clr-namespace:Northwind.UI.WPF"

4. Update MainWindow.xaml as shown in the following code:
<ListBox ItemsSource="{Binding Customers}"
 DisplayMemberPath="CompanyName"
 SelectedValuePath="CustomerID"
 VerticalAlignment="Top"
 SelectedValue="{Binding
 SelectedCustomerID}"
 Height="180"
 Width="250"
 WPF:ListBoxBehaviors.DoubleClickCommand
 ="{Binding ShowDetailsCommand}">
</ListBox>

5. Build and run the code and verify that double-click works for selecting
customer details.

6. The key to making this work is highlighted again in the following code:
 public static readonly DependencyProperty
 DoubleClickCommandProperty
 = DependencyProperty.RegisterAttached(
 "DoubleClickCommand",
 typeof(ICommand),
 typeof(ListBoxBehaviors),
 new PropertyMetadata(null,
 new PropertyChangedCallback(

 DoubleClickCommand_PropertyChanged)));

You might be wondering why we didn't put our code in
SetDoubleClickCommand which is our dependency
properties setter function. The reason for this is that when
a dependency property is set in XAML, the binding system
directly calls DependencyObject.SetValue and won't use
SetDoubleClickCommand. SetDoubleClickCommand will only
be used when the dependency property is set from code. This is why
we must use the property changed event instead.

Chapter 5

[225]

7. In the previous code, we are registering the callback method,
DoubleClickCommand_PropertyChanged and it is shown in the following
code. DoubleClickCommand_PropertyChanged will be called whenever our
attached property's value changes.
 private static void DoubleClickCommand_PropertyChanged(
 DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 UIElement target = d as UIElement;
 if (e.OldValue != null)
 {
 target.RemoveHandler(
 ListBox.MouseDoubleClickEvent,
 new RoutedEventHandler(
 ListBox_DoubleClick));
 }
 if (e.NewValue != null)
 {
 target.AddHandler(
 ListBox.MouseDoubleClickEvent,
 new RoutedEventHandler(
 ListBox_DoubleClick));
 }
 }

8. In our callback method, we are updating the routed event subscriptions
for our target DependencyObject which will be our ListBox instance.
Now our target ListBox instances will call ListBox_DoubleClick
(shown in the following code) when ListBox.MouseDoubleClick
is raised.
 private static void ListBox_DoubleClick(object sender,
 RoutedEventArgs routedEventArgs)
 {
 ListBox listBox = sender as ListBox;
 ICommand doubleClickCommand =
 GetDoubleClickCommand(listBox);
 if (doubleClickCommand.CanExecute(routedEventArgs))
 {
 doubleClickCommand.Execute(routedEventArgs);
 }
 }

Northwind—Commands and User Inputs

[226]

9. ListBox_DoubleClick takes advantage of the fact that our attached
property is an ICommand and fetches the attached command using our
GetDoubleClickCommand accessor and then calls ICommand.Execute
on the returned command allowing us to route the event to the command.

The point of the code in this section was to introduce the basics of
using attached behaviors to implement an Event to Command pattern
and not to create the best possible implementation of the Event to
Command pattern. This approach can be improved in a lot of ways
and if you are thinking about using this approach in production code,
I'd recommend taking a look at Samuel Jack's blog post titled Hooking
up Commands to Events in WPF (http://blog.functionalfun.
net/2008/09/hooking-up-commands-to-events-in-wpf.
html), which shows a great generic version of this pattern that he calls
EventBehaviourFactory. The EventBehaviourFactory class is
also available for download from the MSDN code gallery (http://
archive.msdn.microsoft.com/eventbehaviourfactor).

Using MVVM Light
Fortunately, the MVVM Light framework includes an implementation of the Event
to Command pattern that can be easily configured in XAML. The MVVM Light
version of Event to Command takes advantage of the Microsoft Expression Blend
SDK and you will need to download the SDK before you are able to use the Event
to Command support in MVVM Light.

Microsoft recommends redistributing any Microsoft Expression
Blend SDK DLLs that you need in your application as part of your
Application's install package. Following this recommendation will give
you more control over your Application's environment and will make
sure that updates to the SDK don't break your application.

Let's take a look at the following steps to see how we can simplify our approach
by using the MVVM Light framework:

1. Remove any code you have from the previous section.
2. If you don't have the Microsoft Expression Blend SDK, then download

and install it so that you can have a local copy of System.Windows.
Interactivity.resources.dll.

3. Add a reference from Northwind.UI.WPF to GalaSoft.MvvmLight.Extras.
WPF4.dll and to System.Windows.Interactivity.resources.dll (part of
Blend SDK).

http://blog.functionalfun.net/2008/09/hooking-up-commands-to-events-in-wpf.html
http://blog.functionalfun.net/2008/09/hooking-up-commands-to-events-in-wpf.html
http://archive.msdn.microsoft.com/eventbehaviourfactor
http://archive.msdn.microsoft.com/eventbehaviourfactor

Chapter 5

[227]

You will want to add these to your solution's Lib folder first to make
your code portable in a source-controlled environment.

4. Add the namespaces shown in the following code to MainWindow.xaml:
xmlns:ViewModel="clr-namespace:Northwind.ViewModel;
assembly=Northwind.ViewModel"
xmlns:Command="clr-namespace:GalaSoft.MvvmLight.Command;
assembly=GalaSoft.MvvmLight.Extras.WPF4"

5. Update MainWindow.xaml as shown in the following code. The highlighted
code is wiring up the MouseDoubleClick event to ShowDetailsCommand in
the current DataContext and will implement the Event to Command pattern
and forward MouseDoubleClick events to the Execute method of whatever
command is bound at runtime.
<ListBox ItemsSource="{Binding Customers}"
 DisplayMemberPath="CompanyName"
 SelectedValuePath="CustomerID"
 VerticalAlignment="Top"
 SelectedValue="{Binding
 SelectedCustomerID}"
 Height="180"
 Width="250">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="MouseDoubleClick">
 <Command:EventToCommand Command="{Binding
 ShowDetailsCommand}" />
 </i:EventTrigger>
 </i:Interaction.Triggers>
</ListBox>

6. Build and run the solution and verify that double-clicking a customer will
show the customer's details.

I really like this approach for Event to Command and would recommend it for
your projects if you don't have any restrictions on using open source frameworks.
However, we also looked at how to handle routing events to command targets using
the code-behind approach and the attached behavior pattern so it's up to you to
figure out what approach makes the most sense in your projects.

Northwind—Commands and User Inputs

[228]

Summary
We are now well-equipped to handle user interactions. We have reviewed a variety
of approaches for dealing with the shortcomings of the commanding infrastructure.
On your own projects you will need to figure out what is the best approach for your
team and requirements.

Northwind—Hierarchical View
Model and IoC

By Ryan Vice

In this chapter, we will explore the power of using the Hierarchical View Model
approach for building XAML applications. We will use this approach to add the
ability to show order details in our application. As we begin to add this functionality,
we will take some time to reconsider our design, and look at using an IoC (Inversion
of Control) framework to improve our productivity.

Adding orders to customer details
Let's update Northwind to show the orders for each customer in the
CustomerDetails.xaml view as shown in the following screenshot:

Northwind—Hierarchical View Model and IoC

[230]

The approach we are going to use here is one that I call the Hierarchical View Model or
HVM. We've already seen this approach briefly in Chapter 2, Introduction to MVVM, but
in this chapter we are going to take a deeper look at this very useful technique.

The way this technique works is by taking advantage of data templates to map
Views to View Models. By using this approach, we will be able to add the order
details by following these simple steps:

1. Create OrdersViewModel.

2. Create an Orders View.
3. Add DataTemplate to map OrdersViewModel to OrdersView.
4. Add a OrdersViewModel property called Orders to

CustomeDetailsViewModel.
5. Add ContentControl to CustomerDetailsView and bind it to

CustomerDetailsViewModel.Orders.

You might be wondering why we didn't simply add a collection of
OrderViewModel classes directly to CustomerDetailsViewModel
class and keep our design simpler. Instead we added an abstraction
for our Orders collection through OrdersViewModel and added an
Orders View that contains our grid markup in XAML. We could have
achieved the same result with a simpler design, however, the point of
this chapter is to demonstrate organizing our presentation layer using
HVM. By using the HVM approach here, we have created a self-contained
control and are allowing reuse of the Orders grid in other areas of our
application; all we have to do to reuse the Orders grid is to expose an
OrderViewModel property in a content control. Additionally, we've
encapsulated the grid functionality, and if we started expanding our grid
functionality we'd have a nice clean separation in OrdersViewModel
that would allow us to encapsulate that logic and state.

By following these steps all we have to do is populate CustomerDetailsViewModel.
Orders, which will raise an INotifyPropertyChanged.PropertyChanged event.
The binding system will then map OrdersView to our OrdersViewModel and we
will be done.

Following this approach will allow us to segment our presentation logic into small
components that are each made up of a View, View Model, and DataTemplate. We
can then easily add these components to any view by simply adding a property to
the View Model corresponding to the type of view we want to add. We can then bind
the View Model property to the Content property of a ContentControl. Using this

Chapter 6

[231]

approach we can build a class hierarchy that models our UI needs. Then if we want
to change the structure of the application all we need to do is move the associated
ContentControl(s) to where they are needed in our XAML.

There are a lot of controls other than ContentControl that allow for
this approach. WPF supports the idea of Content Model which allows
for placing arbitrary types into views, which can then be mapped to
Views using DataTemplates. For more details see WPF Content Model
or Control Content Model (for Silverlight) on MSDN (http://msdn.
microsoft.com/en-us/library/bb613548.aspx and http://
msdn.microsoft.com/en-us/library/cc838221(v=vs.95).
aspx). Note that Silverlight 4 and below don't support implicit data
templates but that at the time of writing this book support has been
added to Silverlight 5.0 developer preview. In later chapters, we will look
at techniques that allow for improving the lack of implicit data template
support in Silverlight.

We can also use OOD techniques to easily create different views using collections of
base class View Models. For example, in this chapter we will update our tabbed UI to
support having an Order Detail tab by simply subclassing ToolViewModel to create
our OrderDetailViewModel and then adding instances of OrderDetailViewModel
to MainWindow.Tools. This approach also allows us to easily change the view as
we could switch from a tabbed UI to some other style (MDI, and so on) by mostly
updating our data templates and XAML. We will take a look at using this technique
in Chapter 7, Dialogs and MVVM.

Service layer
To get started let's get our service update so that they return the orders when we call
ICustomerService.GetCustomer().

1. The first thing we need is some new DTOs (Data Transfer Objects) [Fowler]
for the order details. Let's create those in Northwind.Service. Add a new
class called Order.cs and update it as shown in the following code:
using System;
using System.Collections.Generic;
using System.Runtime.Serialization;

namespace Northwind.Service
{
 [DataContract]
 public class Order
 {

http://msdn.microsoft.com/en-us/library/bb613548.aspx
http://msdn.microsoft.com/en-us/library/bb613548.aspx
http://msdn.microsoft.com/en-us/library/cc838221(v=vs.95).aspx)
http://msdn.microsoft.com/en-us/library/cc838221(v=vs.95).aspx)

Northwind—Hierarchical View Model and IoC

[232]

 [DataMember]
 public int OrderID { get; set; }
 [DataMember]
 public DateTime? OrderDate { get; set; }
 [DataMember]
 public DateTime? ShippedDate { get; set; }
 [DataMember]
 public decimal? Freight { get; set; }
 [DataMember]
 public IEnumerable<OrderDetail> OrderDetails { get; set; }
 }
}

2. Add a class called OrderDetails.cs and update it as shown in the
following code:
using System.Runtime.Serialization;

namespace Northwind.Service
{
 [DataContract]
 public class OrderDetail
 {
 [DataMember]
 public Product Product { get; set; }
 [DataMember]
 public int Quantity { get; set; }
 [DataMember]
 public decimal UnitPrice { get; set; }
 }
}

3. Add a class called Product.cs and update it as shown here:
using System.Runtime.Serialization;

namespace Northwind.Service
{
 [DataContract]
 public class Product
 {
 [DataMember]
 public int ProductID { get; set; }
 [DataMember]
 public string ProductName { get; set; }
 }
}

Chapter 6

[233]

4. Open Customer.cs and add the following property to it:
[DataMember]
public IEnumerable<Order> Orders { get; set; }

Now that we have the DTOs that we need let's update our service to return
those as part of ICustomerService.GetCustomer() as shown below.

5. Open CustomerService.cs and update it as shown in the following code.
We've added two helper methods that allow for populating the orders when
fetching customers.
public Service.Customer GetCustomer(string customerID)
{
 Data.Customer customer
 = _northwindEntities
 .Customers.Single(
 c => c.CustomerID == customerID);
 return new Service.Customer
 {
 CustomerID = customer.CustomerID,
 CompanyName = customer.CompanyName,
 ContactName = customer.ContactName,
 Address = customer.Address,
 City = customer.City,
 Country = customer.Country,
 Region = customer.Region,
 PostalCode = customer.PostalCode,
 Phone = customer.Phone,
 Orders
 = GetOrders(customer.Orders)
 };
}

private static IEnumerable<Service.Order> GetOrders(
 IEnumerable<Data.Order> order)
{
 return order.Select(o => new Service.Order
 {
 OrderID = o.OrderID,
 OrderDate = o.OrderDate,
 OrderDetails = GetOrderDetails(o),
 Freight = o.Freight,
 ShippedDate = o.ShippedDate
 }).ToList();
}

Northwind—Hierarchical View Model and IoC

[234]

private static IEnumerable<Service.OrderDetail> GetOrderDetails(
 Data.Order order)
{
 return order.Order_Details.Select(
 o => new Service.OrderDetail
 {
 Product
 = new Service.Product
 {
 ProductID
 = o.Product.ProductID,
 ProductName
 = o.Product.ProductName
 },
 Quantity = o.Quantity,
 UnitPrice = o.UnitPrice
 }).ToList();
}

We are calling ToList() on our queries to cause them to execute
immediately causing them to populate our collections before we
send them across the wire.

6. Open App.config in the Northwind.Service project and update it as shown
in the following highlighted code. Note that most of this file has been left out
and we are only looking at the necessary changes. These changes will allow
for us to return a larger amount of data giving us enough room to return all
of the customer orders.
<system.web>
 <httpRuntime maxRequestLength="1000000" />
 <compilation debug="true" />
</system.web>

 <behaviors>
 <endpointBehaviors>
 <behavior>
 <dataContractSerializer maxItemsInObjectGraph="10000000"
/>
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>

Chapter 6

[235]

 <behavior>
 <dataContractSerializer maxItemsInObjectGraph="10000000"
/>
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

More details on WCF configurations can be found on MSDN.

7. Now set Northwind.Services as the startup project and run it in the
debugger. You should now be able to execute ICustomerService.
GetCustomers() from WCF Test Client and get orders as shown in the
following screenshot:

Northwind—Hierarchical View Model and IoC

[236]

You can execute GetCustomers() to get a list of customers with IDs
and then you can use any of the customer IDs to call GetCustomer().

Application layer
Now let's get our application layer updated by opening Northwind.Application
and following these steps:

1. Regenerate the service proxies using the following steps:
	° Expanding the Service References folder
	° Right-clicking on CustomerService
	° Selecting Update Service Reference

2. Add a class called Product to Northwind.Model and update it as shown in
the following code:
public class Product : ModelBase
{
 public const string ProductIDPropertyName = "ProductID";
 private int _productID;
 public int ProductID
 {
 get { return _productID; }
 set
 {
 if (_productID == value)
 return;
 _productID = value;
 RaisePropertyChanged(ProductIDPropertyName);
 }
 }

 public const string ProductNamePropertyName
 = "ProductName";
 private string _productName;
 public string ProductName
 {
 get { return _productName; }
 set
 {
 if (_productName == value)
 return;

Chapter 6

[237]

 _productName = value;
 RaisePropertyChanged(ProductNamePropertyName);
 }
 }
}

3. Add a class called OrderDetails to Northwind.Model and update it as
shown in the following code:
public class OrderDetail : ModelBase
{
 public const string ProductPropertyName = "Product";
 private Product _product;
 public Product Product
 {
 get { return _product; }
 set
 {
 if (_product == value)
 return;
 _product = value;
 RaisePropertyChanged(ProductPropertyName);
 }
 }

 public const string QuanityPropertyName = "Quanity";
 private int _quanity;
 public int Quanity
 {
 get { return _quanity; }
 set
 {
 if (_quanity == value)
 return;
 _quanity = value;
 RaisePropertyChanged(QuanityPropertyName);
 }
 }

 public const string UnitPricePropertyName = "UnitPrice";
 private decimal _unitPrice;
 public decimal UnitPrice
 {
 get { return _unitPrice; }
 set

Northwind—Hierarchical View Model and IoC

[238]

 {
 if (_unitPrice == value)
 return;
 _unitPrice = value;
 RaisePropertyChanged(UnitPricePropertyName);
 }
 }
}

4. Add a class called Order to Northwind.Model and update it as follows:
public class Order : ModelBase
{
 public const string OrderIDPropertyName = "OrderID";
 private int _orderID;
 public int OrderID
 {
 get { return _orderID; }
 set
 {
 if (_orderID == value)
 return;
 _orderID = value;
 RaisePropertyChanged(OrderIDPropertyName);
 }
 }

 public const string OrderDatePropertyName = "OrderDate";
 private DateTime? _orderDate;
 public DateTime? OrderDate
 {
 get { return _orderDate; }
 set
 {
 if (_orderDate == value)
 return;
 _orderDate = value;
 RaisePropertyChanged(OrderDatePropertyName);
 }
 }

 public const string ShippedDatePropertyName = "ShippedDate
 private DateTime? _shippedDate;
 public DateTime? ShippedDate
 {

Chapter 6

[239]

 get { return _shippedDate; }
 set
 {
 if (_shippedDate == value)
 return;
 _shippedDate = value;
 RaisePropertyChanged(ShippedDatePropertyName);
 }
 }

 public const string FreightPropertyName = "Freight";
 private decimal? _freight;
 public decimal? Freight
 {
 get { return _freight; }
 set
 {
 if (_freight == value)
 return;
 _freight = value;
 RaisePropertyChanged(FreightPropertyName);
 }
 }

 public IEnumerable<OrderDetail> OrderDetails { get; set; }
}

5. Open Model.Customer and update it by adding the property shown in the
following code:
 private ObservableCollection<Order> _orders;
 public ObservableCollection<Order> Orders
 {
 get { return _orders; }
 set
 {
 if (_orders == value)
 return;
 _orders = value;
 RaisePropertyChanged("Orders");
 }
 }

Northwind—Hierarchical View Model and IoC

[240]

6. Update CustomerTranslator.cs as shown in the following code.
Here we are simply copying the data across from our DTOs to our Model.

There are tools out there to make implementing the entity translation
pattern easier. On my current project, we are using AutoMapper
which will automatically maps properties with the same names
(https://github.com/AutoMapper/AutoMapper).

public Model.Customer UpdateModel(Model.Customer model,
 CustomerService.
 Customer dto)
{
 if (model.CustomerID != dto.CustomerID)
 model.CustomerID = dto.CustomerID;
 if (model.CompanyName != dto.CompanyName)
 model.CompanyName = dto.CompanyName;
 if (model.ContactName != dto.ContactName)
 model.ContactName = dto.ContactName;
 if (model.Address != dto.Address)
 model.Address = dto.Address;
 if (model.City != dto.City)
 model.City = dto.City;
 if (model.Region != dto.Region)
 model.Region = dto.Region;
 if (model.Country != dto.Country)
 model.Country = dto.Country;
 if (model.PostalCode != dto.PostalCode)
 model.PostalCode = dto.PostalCode;
 if (model.Phone != dto.Phone)
 model.Phone = dto.Phone;
 if (dto.Orders != null)
 {
 model.Orders = GetOrdersFromDto(dto);
 }

 return model;
}

private static ObservableCollection<Order>
 GetOrdersFromDto(Customer dto)
{
 IEnumerable<Order> orders
 = dto.Orders.Select(o => new Model.Order

Chapter 6

[241]

 {
 OrderID = o.OrderID,
 OrderDate = o.OrderDate,
 OrderDetails = GetOrderDetailsFromDto(o),
 Freight = o.Freight,
 ShippedDate = o.ShippedDate
 });
 return new ObservableCollection<Order>(orders);
}

private static IEnumerable<Model.OrderDetail>
 GetOrderDetailsFromDto(
 CustomerService.Order order)
{
 return order.OrderDetails.Select(
 od => new Model.OrderDetail
 {
 Product
 = GetProductFromDto(od),
 Quantity = od.Quantity,
 UnitPrice = od.UnitPrice
 });
}

private static Product GetProductFromDto(
 OrderDetail od)
{
 return new Product
 {
 ProductID = od.Product.ProductID,
 ProductName = od.Product.ProductName
 };
}

Now we are ready to consume our new data in the UI.

Presentation layer
We've got two updates that we need to make now. First we need to get our View
Models updated to support the new functionality using the HVM approach and next
we need to wire up those View Models into our views.

Northwind—Hierarchical View Model and IoC

[242]

View Models
Open Northwind.ViewModel and follow these steps:

1. Add a class called OrderViewModel and update it as shown in the
following code:
using System.ComponentModel;
using System.Linq;
using GalaSoft.MvvmLight;
using Northwind.Model;

namespace Northwind.ViewModel
{
 public class OrderViewModel : ViewModelBase
 {
 public const string ModelPropertyName = "Model";
 private Order _model;
 public Order Model
 {
 get { return _model; }
 set
 {
 if (_model == value)
 return;
 _model = value;
 RaisePropertyChanged(ModelPropertyName);
 RaisePropertyChanged(TotalPropertyName);
 }
 }

 public const string TotalPropertyName = "Total";
 public decimal Total
 {
 get
 {
 return _model.OrderDetails.Sum(
 o => o.Quantity + o.UnitPrice);
 }
 }

 public OrderViewModel(Order model)
 {
 _model = model;
 SubscribeToOrderDetailsChanged(_model);

Chapter 6

[243]

 }

 private void SubscribeToOrderDetailsChanged(
 Order order)
 {
 order.PropertyChanged += Order_PropertyChanged;
 foreach(var orderDetail in order.OrderDetails)
 {
 orderDetail.PropertyChanged
 += Order_PropertyChanged;
 }
 }

 private void UnSubscribeToOrderDetailsChanged(
 Order order)
 {
 order.PropertyChanged -= Order_PropertyChanged;
 foreach (var orderDetail in order.OrderDetails)
 {
 orderDetail.PropertyChanged
 -= Order_PropertyChanged;
 }
 }

 void Order_PropertyChanged(
 object sender, PropertyChangedEventArgs e)
 {
 switch (e.PropertyName)
 {
 case Order.FreightPropertyName:
 case OrderDetail.QuantityPropertyName:
 case OrderDetail.UnitPricePropertyName:
 RaisePropertyChanged(TotalPropertyName);
 break;
 }
 }

 public override void Cleanup()
 {
 UnSubscribeToOrderDetailsChanged(Model);
 base.Cleanup();
 }
 }
}

Northwind—Hierarchical View Model and IoC

[244]

What we've done here is use model aggregation to expose our model via
the OrderViewModel.Model property. However, our model doesn't
contain a property for Total, which we need for display in the UI so
we've added this calculated property as OrderViewModel.Total.
We then take Model.Order as a constructor argument and we wire up
property changed notifications. This is so that we can raise a property
change notification for OrderViewModel.Total when properties on
Model.Order change allowing us to have our UI properly updated.
We also subclassed MVVMLight.ViewModelBase and this allows us
to easily unsubscribe from the notification updates in MVVMLight.
ViewModelBase.Cleanup overridden method preventing us from
leaking. Note that it's debatable whether Total belongs to the entity or
the View Model and we will revisit this approach later in this chapter. For
now, it's providing us a great way of demonstrating using View Models
for managing view state and view logic but later we will look at what
happens if it becomes session state and session logic.

2. Add a class called OrdersViewModel.cs and update it as shown in
the following code. This View Model takes a collection of Model.Order
objects as a constructor argument and then exposes them as a collection
of OrderViewModel instances for consumption by the view.
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using Northwind.Model;

namespace Northwind.ViewModel
{
 public class OrdersViewModel : ViewModelBase
 {
 public ObservableCollection<OrderViewModel>
 Orders { get; set; }

 public OrdersViewModel(
 IEnumerable<Model.Order> orders)
 {
 Orders = new ObservableCollection<OrderViewModel>(
 orders.Select(o => new OrderViewModel(o)));
 }
 }
}

Chapter 6

[245]

3. Open CustomerDetailsViewModel.cs and add the following property
to it. This property is lazy instantiated and when its getter is called it will
create a new OrderViewModel, if one hasn't been created, and pass it to
Customers.Orders.
private OrdersViewModel _orders;
public OrdersViewModel Orders
{
 get
 {
 if (Customer == null)
 return null;
 return _orders ?? (_orders
 = new OrdersViewModel(Customer.Orders));
 }
}

You should now be able to see how the HVM approach works as our
CustomerDetailsViewModel contains OrdersViewModel which in turn contains
a collection of OrderViewModels. Because of the Content Model in WPF and
Silverlight, we can now easily map views to any of these new View Models to
get the results we desire.

Views
Now we will update our Views to consume the new View Models by following these
steps in the Northwind.WPF.UI project:

1. Add a new WPF user control called Orders.xaml and update it as shown
here. Here we have created a simple view that binds a DataGrid to a
collection of orders. Most of the markup is for controlling the look and layout
of the data.
<UserControl.Resources>
 <Style TargetType="{x:Type TextBlock}" x:Key="rightAlign" >
 <Setter Property="TextAlignment" Value="Right" />
 </Style>
 <Style TargetType="{x:Type TextBlock}" x:Key="leftAlign" >
 <Setter Property="TextAlignment" Value="Left" />
 </Style>
</UserControl.Resources>
<Grid>
 <DataGrid ItemsSource="{Binding Orders}"
 AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Header="ID"

Northwind—Hierarchical View Model and IoC

[246]

 Binding="{Binding Model.OrderID}"
 ElementStyle
 ="{StaticResource leftAlign}"
/>
 <DataGridTextColumn Header="Order Date"
 Binding="{Binding Model.OrderDate,
 StringFormat=d}"
 ElementStyle
 ="{StaticResource leftAlign}"
/>
 <DataGridTextColumn Header="Shipped Date"
 Binding="{Binding Model.
ShippedDate,
 StringFormat=d}"
 ElementStyle
 ="{StaticResource leftAlign}"
/>
 <DataGridTextColumn Header="Total"
 Binding="{Binding Total,
 StringFormat=c}"
 ElementStyle
 ="{StaticResource rightAlign}"
/>
 </DataGrid.Columns>
 </DataGrid>
</Grid>

2. Open MainSkin.xaml and add DataTemplate as shown in the
following code. This DataTemplate will map an OrdersViewModel
instance to an Orders view and will set Orders.DataContext to the
OrdersViewModel instance.
<DataTemplate DataType="{x:Type ViewModel:OrdersViewModel}">
 <WPF:Orders/>
</DataTemplate>

3. Open CustomerDetails.xaml and update it by adding the following code
to the bottom of the outermost Grid. Here we have placed ContentControl
on the page and bound it's content to Orders, which will bind to
CustomerDetailsViewModel.Orders resulting in our DataTemplate being
used to map the Orders view to our nested OrdersViewModel.
 <GroupBox Header="Orders"
 Grid.Row="2">
 <ContentControl Content="{Binding Orders}" />
 </GroupBox>

Chapter 6

[247]

4. Build and run Northwind and verify that you get Orders back when opening
any customer's details.

Take aways
Now we've seen how we can add functionality to our WPF and Silverlight
applications using a Hierarchical View Model approach. This is a very powerful
and useful technique to learn. Next, we will look at how we can take advantage of
this technique to easily support tabbed layouts that support loading different views.

Viewing order details
The next thing we are going to do is add the ability to open an order's details
in a new tabbed window and add the ability to close tabs as shown in the
following screenshot:

The Order Details view will display all the order line items along with details about
the order such as the Shipped Date, Freight, and so on. It allows the user to click on
a customer link that will open the that customer's Customer Details view.

We are going to take advantage of HVM to make this easy to accomplish. I have
seen people go to great lengths to accomplish tabs in WPF and Silverlight. However,
using an MVVM design with HVM makes tabbed interfaces very easy to implement.

Northwind—Hierarchical View Model and IoC

[248]

ToolManager
Currently, our MainWindowViewModel owns the responsibility for opening tools but
under our new design we want to be able to open an order's details from the order
details row as shown in the following screenshot:

To accomplish this we are going to refactor out the tool management behind a new
IToolManager interface and use dependency injection to get implementations of
IToolManager to the places it's needed by following these steps:

1. Add a new Interface to Northwind.ViewModel called IToolManager and
update it as shown in the following code. This interface exposes Tools: an
ObservableCollection that contains the current tools, OpenTool: a method
that takes two functions, predicate that will be used as a predicate to find
the desired tool if it exists and toolFactory that will be called if the tool isn't
found and needs to be created, and CloseTool: a method for closing a tool if
it is opened.
public interface IToolManager
{
 ObservableCollection<ToolViewModel>
 Tools { get; set; }
 void OpenTool<T>(Func<T, bool> predicate,

Chapter 6

[249]

 Func<T> toolFactory)
 where T : ToolViewModel;
 void CloseTool(ToolViewModel tool);
}

To keep things really solid, we'd want to extract an interface from
ToolViewModel to use in the IToolManager interface but we
skipped that step here.

2. Add a class to Northwind.ViewModel called ToolManager and update it as
shown in the following code. Here we are implementing IToolManager by
simply manipulating ObservableCollection of ToolViewModel (Tools)
and adding ICollectionView which is initialized to Tool/Tools, default
collection view in the constructor. The most complex part is the OpenTool
method which will first attempt to find the requested tool in the Tools
collection using Predicate. If this fails it will then use toolFactory to create
an instance of the desired tool and then it will call SetCurrentTool with the
tool to make it an active tool.
public class ToolManager : IToolManager
{
 private readonly ICollectionView _toolCollectionView;
 public ObservableCollection<ToolViewModel>
 Tools { get; set; }

 public ToolManager()
 {
 Tools = new ObservableCollection<ToolViewModel>();
 _toolCollectionView =
 CollectionViewSource.GetDefaultView(Tools);
 }

 public void OpenTool<T>(Func<T, bool> predicate,
 Func<T> toolFactory)
 where T : ToolViewModel
 {
 var tool = Tools
 .Where(t => t.GetType() == typeof (T))
 .FirstOrDefault(t => predicate.Invoke((T)t));
 if (tool == null)
 {
 tool = toolFactory.Invoke();
 Tools.Add(tool);
 }

Northwind—Hierarchical View Model and IoC

[250]

 SetCurrentTool(tool);
 }

 public void CloseTool(ToolViewModel tool)
 {
 Tools.Remove(tool);
 }

 private void SetCurrentTool(ToolViewModel currentTool)
 {
 if (_toolCollectionView.MoveCurrentTo(currentTool)
 != true)
 {
 throw new InvalidOperationException(
 "Could not find the current tool.");
 }
 }
}

3. Open MainWindowViewModel, delete the SetCurrentTool and
GetCustomerDetailsTool methods, and then update it as shown in the
following code. Note that only modified and new code is shown here. This
code simply updates MainWindowViewModel so that it takes IToolManager
via constructor injection and then delegates tool management to that interface.
private readonly IToolManager _toolManager;

public ObservableCollection<ToolViewModel> Tools
 { get { return _toolManager.Tools; } }

public MainWindowViewModel(
 IUIDataProvider dataProvider,
 IToolManager toolManager)
{
 _dataProvider = dataProvider;
 _toolManager = toolManager ;
}

public void ShowCustomerDetails()
{
 if (!IsCustomerSelected())
 throw new InvalidOperationException(
 "Unable to show customer because no "
 + "customer is selected.");

Chapter 6

[251]

 _toolManager.OpenTool(
 c => c.Customer.CustomerID
 == SelectedCustomerID,
 () => new CustomerDetailsViewModel(
 _dataProvider, SelectedCustomerID,
 _toolManger));

}

public bool IsCustomerSelected()
{
 return !string.IsNullOrEmpty(SelectedCustomerID);
}

4. Next open ViewModelLocator and update it as shown in the following
code. This will create an instance of ToolManager and inject it into our
MainWindowViewModel via constructor injection.
public static MainWindowViewModel
 MainWindowViewModelStatic
{
 get
 {
 return _mainWindowViewModel ??
 (_mainWindowViewModel =
 new MainWindowViewModel(
 new UIDataProvider(
 new CustomerServiceClient()),
 new ToolManager()));
 }
}

5. Open ToolViewModel and update it as follows. This will add the ability to
close a tool. This code exposes CloseCommand, which is a relay command
that will close a tool when it's executed by calling the Close method which
delegates to the _toolManager.
public class ToolViewModel : ViewModelBase
{
 private readonly IToolManager _toolManager;
 public string DisplayName { get; set; }

 private ICommand _closeCommand = null;

 public ICommand CloseCommand
 {
 get

Northwind—Hierarchical View Model and IoC

[252]

 {
 return _closeCommand ??
 (_closeCommand =
 new RelayCommand(Close));
 }
 }

 public ToolViewModel(IToolManager toolManager)
 {
 _toolManager = toolManager;
 }

 protected void Close()
 {
 _toolManager.CloseTool(this);
 }
}

6. Update CustomerDetailsViewModel as follows. This refactoring allows
CustomerDetailsViewModel to take IToolManager via constructor
injection and passes it to new OrderDetailsViewModel instances again
via constructor injection. Note that only new and changed code is shown.
private readonly IToolManager _toolManager;

private OrdersViewModel _orders;
public OrdersViewModel Orders
{
 get
 {
 if (Customer == null)
 return null;
 return _orders ?? (_orders
 = new OrdersViewModel(
 Customer, _toolManager));
 }
}

public CustomerDetailsViewModel(
 IUIDataProvider dataProvider,
 string customerID,
 IToolManager toolManager = null)
 : base(toolManager)
{
 _dataProvider = dataProvider;

Chapter 6

[253]

 Customer = _dataProvider.GetCustomer(customerID);
 Customer.PropertyChanged
 += Customer_PropertyChanged;
 DisplayName = Customer.CompanyName;
}

7. Next open OrdersViewModel and update it as shown in the following code.
Here again the update is a simple matter of passing IToolManager to new
instances of OrderViewModel.
public ObservableCollection<OrderViewModel>
 Orders { get; set; }

public OrdersViewModel(
 Model.Customer model,
 IToolManager toolManager)
{
 Orders = new ObservableCollection<OrderViewModel>(
 model.Orders.Select(o =>
 new OrderViewModel(o, model, _toolManager)));
}

8. Now open OrderViewModel and update it as shown in the following code.
All we are doing here is holding a reference to IToolManager and Customer
so that we can use it when we add the ability to open an order's details from
an order line item in the grid on a Customer Details tab, which we will
implement shortly.
private readonly Customer _customer;
private readonly IToolManager _toolManager;

public OrderViewModel(Order order,
 Customer customer, IToolManager toolManager)
{
 _customer = customer;
 _order = order;
 _toolManager = toolManager;
 SubscribeToOrderDetailsChanged(_order);
}

9. Open MainWindow and update it as shown in the following code. Here we
have updated the tab's DataTemplate to add a button that can be used to
close the window and bound that button's command to ToolViewModel.
CloseCommand that was created previously.
<TabControl ItemsSource="{Binding Tools}"
 Margin="4"

Northwind—Hierarchical View Model and IoC

[254]

 Grid.Row="0"
 Grid.Column="1"
 IsSynchronizedWithCurrentItem="True">
 <TabControl.ItemTemplate>
 <DataTemplate>

 <DockPanel>
 <Button
 Command="{Binding Path=CloseCommand}"
 Content="X"
 DockPanel.Dock="Right"
 FontSize="8"
 Focusable="False"
 FontWeight="Bold"
 Margin="3, 0, 0, 0"/>

 <ContentPresenter
 Content="{Binding DisplayName}" />
 </DockPanel>
 </DataTemplate>
 </TabControl.ItemTemplate>
</TabControl>

10. At this point, you should be comfortable with unit testing as it relates to this
style of architecture so we will no longer be updating unit tests. If you are
following along, several tests will need updating at this point. Feel free to
update the tests as an exercise or delete them based on your preference.

11. Build and launch the application and verify that it works as it did before with
the additional feature of being able to close tabs by clicking on the x button
located on the tab as shown at the beginning of this section.

We are now ready to add the ability to open order details using the new
IToolManager infrastructure. However, you may have noticed that a lot of code we
added was simply to allow us to pass the IToolManager instance from one place to
the next. Many classes that don't need to use IToolManager still have to deal with
the interface causing the greedy constructor code smell.

Greedy constructor is the term for when a constructor takes more
dependencies than are needed by the class. It can also be taking
dependencies as constructor arguments that aren't cross-cutting
concerns for that class but following the Single Responsibility principle
would limit this type of the smell.

We've made our code more extensible and testable by using this approach but it also
feels more complex than it needs to be in some places. Simplifying this situation is
what we will look at next.

Chapter 6

[255]

Inversion of Control frameworks
To help avoid the greedy constructor smell and to make using dependency
injection easier, many Inversion of Control frameworks (IoC) have emerged. An
IoC framework generally provides an infrastructure tool commonly referred to
as a container that can take the place of the new operator in your code. Unlike the
new operator, an IoC container is configured to know how to create objects using
non-default constructors and the IoC container will take care of instantiating the
dependencies that the constructor needs (and the dependencies of the dependencies
and so on).

There are an awful lot of details and things to learn when using IoC
containers and if you are not well versed in this area, I'd encourage
you to take a look at the book Dependency Injection in .Net by Mark
Seemann.

IoC designs
There are a few principles and best practices to keep in mind when using IoC
containers and they address design choices that must be made when using IoC
containers that include:

1. Where and how do you create the IoC container?
2. How do you make the IoC functionality available to the components that

need it?
3. What components should have direct access to the IoC container?

The way IoC containers usually work is by following this heuristic.

1. Configure IoC container to know about the classes that it will need to
create instances of and to know about the dependencies of those classes.

2. Once configured, the code calls a generic factory method such
as Get<MyType>() on the container to create an instance with its
dependencies populated.

Without any guidance or best practices these frameworks can lead to designs that
don't capture all of the benefits of Dependency Injection and Dependency Inversion.

Northwind—Hierarchical View Model and IoC

[256]

Service Locator anti-pattern
Since the IoC containers work in the way described previously, it's common to take
an approach similar to the following approach:

1. Create your IoC as close to application start up as possible.
2. Create a wrapper interface (or use an existing interface that is a part of

the IoC implementation) for the IoC container and register it with the IoC
container so that any class that needs to create types can have the container
interface injected as a dependency. The container interface being used in this
way is known as Service Locator.

3. Create types using the IoC.Get<MyType>() method and for any class that
needs to create types you simply specify your IoC's interface as a constructor
argument allowing for the container to be injected.

This approach is known as using the Service Locator pattern. Mark Seemann
has called this approach a dependency injection anti-pattern [Seemann], and I
agree. In our application this pattern would change
this code:
public CustomerDetailsViewModel(
 IUIDataProvider dataProvider,
 string customerID,
 IToolManager toolManager,
 IOrdersViewModelFactory ordersViewModelFactory)
 : base(IToolManager)
{
 _dataProvider = dataProvider;
 _ordersViewModelFactory = ordersViewModelFactory;
 Customer = _dataProvider.GetCustomer(customerID);
 Customer.PropertyChanged
 += Customer_PropertyChanged;
 DisplayName = Customer.CompanyName;
}

To be like this code:
public CustomerDetailsViewModel(
 string customerID,
 IContainer container)
 : base(IContainer)
{
 _dataProvider = container.Get<IUIDataProvider>();
 _ordersViewModelFactory
 = container.Get<IOrdersViewModelFactory>();
 Customer = _dataProvider.GetCustomer(customerID);

Chapter 6

[257]

 Customer.PropertyChanged
 += Customer_PropertyChanged;
 DisplayName = Customer.CompanyName;
}

What we have done here is taken an interface to our container as a constructor
argument and been able to eliminate all of our other dependencies. Now as long as
we instantiate this class with a properly configured container, our object instance will
get passed a container reference. This allows for easily creating the needed types.

At this point, you might be wondering why this is an anti-pattern? The code
is still testable and dependencies are replaceable at runtime so it still makes
for extensible code. The reason that this approach is an anti-pattern is because
dependency injection is a tool that enables a more solid design. The D in solid
stands for Dependency Inversion, which states that the responsibility for creating
dependencies should belong to the component that creates the object, not to the
object itself. The reason is that it not only allows your design to be extensible but also
makes it clear what dependencies are needed where. It's considered a good practice
to have a constructor clearly define the dependencies that are needed by that class.
If your class only takes an IContainer interface as a constructor argument, then
consuming classes have no idea what dependencies are needed in the IoC container
when consuming that component and problems can pop up in mysterious ways at
runtime. This problem is magnified when working on larger teams and consuming
component created by others. If you are given a task that involves consuming a
component built by other engineers who may have already left the project, you will
be more productive if those components have constructors letting you know what
they need at compile time, instead of taking IContainer and then blowing up at
runtime when they aren't able to resolve what is needed.

Earlier in this book, we saw Service Locator also being used to describe
View Model Locator that we used to create our Main Window View
Model. The View Model Locator, as we implemented, doesn't exhibit
the same issues as the Service Locator anti-pattern as it only creates one
type and so the dependency that is being used is clearly defined. In that
sense, it's actually more of an abstract factory than a Service Locator.
However, if I had implemented the View Model Locator in the same
way that it is done automatically by MVVM Light, which is why I kept
the name Locator, so that it could create more than one View Model
then we would be introducing the same anti-pattern. We will see shortly
the best practice approach I recommend for avoiding the Service Locator
anti-pattern when implementing MVVM.

Northwind—Hierarchical View Model and IoC

[258]

IoC best practices
Now let's look at the best practices that we should follow which address the needs
introduced previously in the IoC designs introduction. We will start by introducing a
concept called Composite Root [Seemann]. Mark Seemann defines Composite Root as:

A Composition Root is a (preferably) unique location in an application where
modules are composed together.

And Mark recommends the following:

•	 Only the Composite Root and abstract factories can access to the
IoC container

•	 The Composite Root is located as close as possible to the application's
entry point

•	 A class should only take dependencies that represent cross-cutting concerns
for that class as constructor arguments and not take any dependencies that
are going to be passed through to its dependencies

•	 Objects that require runtime values in order to be created should be created
using abstract factories that can be injected where they are needed

Abstract factory is a creational pattern from the Gang of Four patterns
that allows for creating a specific type.

Next we will look at an example of following these best practices in
a WPF application.

Adding an IoC container to Northwind
Let's take a look at updating our code to use StructureMap as our IoC container
while following the previously mentioned best practices. Let's keep in mind that
our motivation here is to get IToolManager to the classes that need it without
introducing the greedy constructor smell and to remove the need for using new for
creating dependencies.

The first thing we need to do is to introduce a Composite Root to our architecture.

Remember that the Composite Root is a location as close as
possible to our application's startup where we can use our IoC
container to instantiate our application's object graph.

Chapter 6

[259]

We are going to introduce a new component called a BootStrapper as our
composite root and have that component own the responsibility of composing our
application graph using StructureMap. To do this follow these steps:

1. The first thing we need to do is introduce StructureMap to our application.
To accomplish this either use nuget or download the StructureMap DLLs and
put them in the application's Lib directory.

2. Delete ViewModelLocator.cs from Northwind.ViewModel.
3. Add a reference to StructureMap.dll in Northwind.WPF.UI.
4. Add BootStrapper.cs to Northwind.WPF.UI and update it as shown in the

following code. You will also need to bring in the StructureMap namespace.
We will look more closely at the following code:
public class BootStrapper
{
 public MainWindowViewModel MainWindowViewModel
 {
 get
 {
 return ObjectFactory
 .GetInstance<MainWindowViewModel>();
 }
 }

 public BootStrapper()
 {
 ObjectFactory.Initialize(
 o => o.Scan(
 a =>
 {
 a.WithDefaultConventions();
 a.AssembliesFromApplicationBaseDirectory(
 d => d.FullName
 .StartsWith("Northwind"));
 a.LookForRegistries();
 }));
 }
}

5. Update App.xaml as follows:
<Application.Resources>
 <ObjectDataProvider x:Key="BootStrapper"
 ObjectType="src:BootStrapper" />
</Application.Resources>

Northwind—Hierarchical View Model and IoC

[260]

6. Update MainWindow.xaml as shown in the following code:

<Window x:Class="Northwind.UI.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" MinHeight="350" MinWidth="525"
 xmlns:Command="clr-
 namespace:GalaSoft.MvvmLight.Command;
 assembly=GalaSoft.MvvmLight.Extras.WPF4"
 xmlns:i="clr-namespace:System.Windows.Interactivity;
 assembly=System.Windows.Interactivity"
 DataContext="{Binding Path=MainWindowViewModel,
 Source={StaticResource BootStrapper}}">

What we have done here is essentially to replace our ViewModelLocator with
our BootStrapper. There are two parts to this code. In our constructor, we are
configuring our IoC container using StructureMap's scan functionality to scan all
assemblies that start with Northwind and to use default conventions when mapping
types to interfaces. This will cause StructureMap to map classes to interfaces that
share the same name. So ICustomType would map to CustomType. And then we've
also configured it to look for registries.

For more information on StructureMap see its online
documentation.

Registries, as we will see shortly, are classes that provide explicit configurations for
our container. In our case, we are doing this so that we can configure some of our
types as Singletons.

Singleton is a Gang of Four design pattern that allows for creating
types that can only have a single instance created [GOF]. By properly
configuring StructureMap, we are able to delegate that responsibility
to our IoC container.

This might seem like pointless academic exercise but upon looking closer we can
see that there is a significant difference in what our BootStrapper is responsible
for. The first obvious difference is that our BootStrapper is using an IoC container
but we could have updated our ViewModelLocator to do the same and saved
some effort. However, in a real application you will most likely need to create
infrastructure components that aren't View Models and aren't used by View
Models. While ViewModelLocator was responsible for creating View Models
only, a BootsStrapper is responsible for initializing all the resources that our

Chapter 6

[261]

application needs. BootStrapper is responsible for application composition while
ViewModelLocator is only responsible for creating View Models. Additionally, if we
want to avoid the Service Locator anti-pattern then our ViewModelLocator is also
extremely limited in what it can do. For these reasons, this refactoring will improve
our architecture and make it better communicate its intended use.

We still haven't addressed getting our IToolManager interface to the components
that need it deep in the object graph or eliminated the use of new. Let's take a
look at how we can accomplish this now by looking at MainWindowViewModel.
ShowCustomerDetails.

public void ShowCustomerDetails()
{
 if (!IsCustomerSelected())
 throw new InvalidOperationException(
 "Unable to show customer because no "
 + "customer is selected.");

 _toolManager.OpenTool(
 c => c.Customer.CustomerID
 == SelectedCustomerID,
 () => new CustomerDetailsViewModel(
 _dataProvider, SelectedCustomerID,
 _toolManger));
}

As you can see, this method is using a lambda expression to provide a factory that
will use new to create a CustomerDetailsViewModel instance. This lambda will pass
its IToolManager instance via a closure.

Next, we will take a look at the following CustomerDetailsViewModel.
Order code and we will find that the IToolManager instance is only used to
construct OrdersViewModel in the Orders property and never directly used by
CustomerDetialsViewModel:

public OrdersViewModel Orders
{
 get
 {
 if (Customer == null)
 return null;
 return _orders ?? (_orders
 = new OrdersViewModel(
 Customer,
 _toolManager));
 }
}

Northwind—Hierarchical View Model and IoC

[262]

This clearly violates our Dependency Injection best practices as it's a greedy
constructor smell, so let's review our available options to see how we can fix
this situation. The best practice listed here is our answer.

Objects that require runtime values in order to be created should
be created using abstract factory that can be injected where they
are needed.

So now let's update our code so that we use an abstract factory to construct
CustomerDetailsViewModel instead of using new by following these steps:

1. Add an interface called ICustomerDetailsViewModelFactory.cs to
Northwind.ViewModel and update it as shown in the following code:
public interface ICustomerDetailsViewModelFactory
{
 CustomerDetailsViewModel CreateInstance(
 string customerID);
}

2. Add a reference to StructureMap.dll in Northwind.ViewModel.
3. Add a class called CustomerDetailsViewModelFactory.cs to Northwind.

ViewModel and update it as shown in the following code. Here we are taking
IContainer as a constructor argument allowing StructureMap to inject
a reference to its container. We then use this container reference to create
an instance of CustomerDetailsViewModel passing it the runtime values
needed using the With and EqualTo methods (see StructureMap online
documentation for full details).

As you may recall, earlier in this chapter we explained that this approach
allows us to avoid the problems of the Service Locator anti-pattern
as we are using abstract factory to ensure that our types have their
dependencies properly inverted. When a class takes a dependency on
ICustomerDetailsViewModelFactory we are clearly defining the
dependencies needed to be available at runtime. If we instead took an
IContainer and created the instances we needed internal to our class
we would no longer be advertising our dependencies to consumers.

public class CustomerDetailsViewModelFactory
 : ICustomerDetailsViewModelFactory
{
 private readonly IContainer _container;

 public CustomerDetailsViewModelFactory(

Chapter 6

[263]

 IContainer container)
 {
 _container = container;
 }

 public CustomerDetailsViewModel CreateInstance(
 string customerID)
 {
 return _container
 .With("customerID")
 .EqualTo(customerID)
 .GetInstance<CustomerDetailsViewModel>();
 }
}

4. Open IToolManager and update it as shown in the following code.
Here we've removed the generic OpenTool method and replaced it with
OpenCustomerDetails. The reasons we've done this is because knowing
how to create CustomerDetailsViewModel shouldn't be the responsibility
of MainWindowViewModel. It makes more sense to have those details hidden
behind IToolManager (as ToolManager becomes more complex it might
make sense to have a separate ToolFactory but that's something that we
won't explore in this book).
public interface IToolManager
{
 ObservableCollection<ToolViewModel>
 Tools { get; set; }
 void OpenCustomerDetails(string customerId);
 void CloseTool(ToolViewModel tool);
}

5. Open ToolManager and update it as follows:
 private readonly ICustomerDetailsViewModelFactory
 _customerDetailsFactory;
 private readonly ICollectionView _toolCollectionView;
 public ObservableCollection<ToolViewModel>
 Tools { get; set; }

 public ToolManager(
 ICustomerDetailsViewModelFactory
 customerDetailsFactory)
 {
 _customerDetailsFactory = customerDetailsFactory;
 Tools = new ObservableCollection<ToolViewModel>();

Northwind—Hierarchical View Model and IoC

[264]

 _toolCollectionView =
 CollectionViewSource.GetDefaultView(Tools);
 }

 public void OpenCustomerDetails(string customerId)
 {
 OpenTool(
 c => c.Customer.CustomerID
 == customerId,
 () => _customerDetailsFactory
 .CreateInstance(customerId));
 }

…

 private void OpenTool<T>(Func<T, bool> predicate,
 Func<T> toolFactory)
 where T : ToolViewModel
 {
 var tool = Tools
 .Where(t => t.GetType() == typeof (T))
 .FirstOrDefault(t => predicate.Invoke((T)t));
 if (tool == null)
 {
 tool = toolFactory.Invoke();
 Tools.Add(tool);
 }
 SetCurrentTool(tool);
 }
…
}

6. Update MainWindowViewModel.ShowCustomerDetails as shown in the
following code:

public void ShowCustomerDetails()
{
 if (!IsCustomerSelected())
 throw new InvalidOperationException(
 "Unable to show customer because no "
 + "customer is selected.");

 _toolManager.OpenCustomerDetails(SelectedCustomerID);
}

Chapter 6

[265]

Now instead of having a call to new that passes all the dependencies needed to create
CustomerDetailsViewModel, we simply call IToolManager.OpenCustomerDetails
and pass the runtime parameter. SelectedCustomerID. ToolManager takes
ICustomerDetailsViewModelFactory as a constructor argument and our IoC
container will resolve this dependency for us. This allows ToolManager to create
CustomerDetailsViewModel using ICustomerDetailsViewModelFactory.

In this context, a runtime parameter is a value that is only available at
runtime. Our abstract factory is only necessary because of this runtime
parameter as without it we could have let the container build our type for
us but because there are values that can't be known until the user makes a
selection at runtime our best option becomes using an abstract factory.

Before we move on, let's look a little closer at why we decided to make
IToolManager responsible for creating the View Models that it is responsible
for opening in the preceding step 3.

Consider the View Model Hierarchy that we are trying to build as shown in the
following diagram and keep in mind that we are going to add a Customer link on
the Order Details view that will allow for opening that customer's details when
viewing an order's detail.

MainWindowViewModel

CustomerDetailsViewModel

OrdersViewModel

OrderDetailViewModel

OrderViewModel

This diagram shows the dependencies we have. Each arrow represents the need for
a factory that will create the next View Model in the hierarchy. If our View Models
owned the responsibility for providing the factories needed by IToolManager to
create View Models then OrderDetailViewModel would need to have access to
ICustomerDetailsViewModelFactory. This would result in us having created a
circular dependency. If we proceeded down this path we would have reached a
point where StructureMap would throw an exception because it can't resolve object
graphs that contain circular dependencies.

Northwind—Hierarchical View Model and IoC

[266]

If you are familiar with IoC containers then you might be aware that there is one
other option we could have considered. We could have OrderDetailViewModel
use property injection for ICustomerDetailsViewModelFactory instead of
constructor injection.

property injection is another form of dependency injection where
dependencies are injected into public properties on classes. Any IoC
container worth its salt will support this form of dependency injection.
However, we should try to use it sparingly as it doesn't allow for
easily making dependencies needed by a class a requirement in the
same way that you can with constructor injection. It could be argued
that for concerns that aren't cross cutting for the class, you shouldn't
use constructor injection to avoid the greedy constructor smell and
should consider property injection in those cases. However, in those
cases method injection should be considered first as you can better
communicate and enforce dependencies with this approach. Method
injection is yet another form of dependency injection where you take
your dependencies as method parameters, which is what we were
doing with IToolManager.Open tool previously. Method injection
allows for easily guarding against missing dependencies and for clearly
defining what dependencies are needed to callers but in our case would
have led to a circular dependency.

Using property injection would successfully break our circular dependency and
would prevent StructureMap from throwing exceptions. However, this approach
just doesn't feel right. Would we really want to alternate between constructor
injection and property injection to avoid circular dependencies in our code? That
would be confusing and difficult to maintain.

Instead, we changed our design to theone using constructor injection in
IToolManager for the factories it needs. This allowed our View Models to be no
longer concerned with how to create the tools that they wanted to open and broke
the circular dependency displayed previously. This approach provides the benefit
of breaking our circular dependency concerns and also improving our design from
an SRP point of view as now our ViewModels no longer need to be concerned with
how to create tools. However, now we are taking dependencies in IToolManager
that aren't cross-cutting concerns as constructor arguments are making our
constructor arguably greedier than they need to be. There are lots of approaches
we have considered here and the most important thing for us to get from this is an
understanding of our options and what the tradeoffs are so that we can make the
choice that best fits our needs.

Chapter 6

[267]

Now that we are creating CustomerDetailsViewModel in an IoC best practices way,
we next need clean up the rest of our application. We need to:

1. Refactor CustomerDetailsViewModel to not have a greedy constructor smell
by removing the IToolManager constructor injection.

2. Refactor CustomerDetailsViewModel to not use the new operator to create
OrdersViewModel.

3. Perform the same refactorings listed previously on OrdersViewModel.

Let's refactor our code now to address these needs by updating our Norhwind.
ViewModel project as follows:

1. Add an interface called IOrdersViewModelFactory and update it as shown
in the following code:
public interface IOrdersViewModelFactory
{
 OrdersViewModel CreateInstance(Customer customer);
}

2. Add a class called OrdersViewModelFactory and update it as shown in the
following code:
public class OrdersViewModelFactory
 : IOrdersViewModelFactory
{
 private readonly IContainer _container;

 public OrdersViewModelFactory(
 IContainer container)
 {
 _container = container;
 }

 public OrdersViewModel CreateInstance(
 Customer customer)
 {
 return _container
 .With("model")
 .EqualTo(customer)
 .GetInstance<OrdersViewModel>();
 }
}

Northwind—Hierarchical View Model and IoC

[268]

3. Open CustomerDetailsViewModel and update it as follows. Note that only
the modified parts have been shown for brevity.
public class CustomerDetailsViewModel : ToolViewModel
{
 private readonly IUIDataProvider _dataProvider;
 private readonly IOrdersViewModelFactory
 _ordersViewModelFactory;
 private bool _isDirty;

…

 private OrdersViewModel _orders;
 public OrdersViewModel Orders
 {
 get
 {
 if (Customer == null)
 return null;
 return _orders
 ?? (_orders
 = _ordersViewModelFactory
 .CreateInstance(Customer));
 }
 }

…

 public CustomerDetailsViewModel(
 IUIDataProvider dataProvider,
 string customerID,
 IToolManager toolManager,
 IOrdersViewModelFactory ordersViewModelFactory)
 : base(toolManager)
 {
 _dataProvider = dataProvider;
 _ordersViewModelFactory = ordersViewModelFactory;
 Customer = _dataProvider.GetCustomer(customerID);
 Customer.PropertyChanged
 += Customer_PropertyChanged;
 DisplayName = Customer.CompanyName;
 }

…

}

Chapter 6

[269]

4. Add an interface called IOrderViewModelFactory and update it as shown in
the following code:
public interface IOrderViewModelFactory
{
 OrderViewModel CreateInstance(Order order,
 Customer customer);
}

5. Add a class called OrderViewModelFactory and update it as follows:
public class OrderViewModelFactory
 : IOrderViewModelFactory
{
 private readonly IContainer _container;

 public OrderViewModelFactory(
 IContainer container)
 {
 _container = container;
 }

 public OrderViewModel CreateInstance(
 Order order, Customer customer)
 {
 return _container
 .With("model")
 .EqualTo(order)
 .With("customer")
 .EqualTo(customer)
 .GetInstance<OrderViewModel>();
 }
}

6. Open OrdersViewModel and update it as follows:
public OrdersViewModel(
 Model.Customer model,
 IOrderViewModelFactory orderViewModelFactory)
{
 Orders = new ObservableCollection<OrderViewModel>(
 model.Orders.Select(o =>
 orderViewModelFactory
 .CreateInstance(o, model)));
}

Northwind—Hierarchical View Model and IoC

[270]

7. Add a class called RepositoryRegistry and update it as shown in the
following code. This registry will be picked up by the StructureMap scan and
will configure IToolManager and our abstract factories to all be singletons.

using StructureMap.Configuration.DSL;

namespace Northwind.ViewModel
{
 public class RepositoryRegistry : Registry
 {
 public RepositoryRegistry()
 {
 For<IToolManager>()
 .Singleton();
 For<ICustomerDetailsViewModelFactory>()
 .Singleton();
 For<IOrderViewModelFactory>()
 .Singleton();
 For<IOrdersViewModelFactory>()
 .Singleton();
 }
 }
}

Now we've created the additional abstract factories we needed to allow
us to compose our application in a best-practices way. We no longer
need to have OrdersViewModel deal with the IToolManager interface as
OrderViewModelFactory is capable of resolving the dependencies needed
by OrderViewModel. By doing this, we've taken the responsibility for creating
the OrderViewModel instances away from OrdersViewModel, improving our
application's adherence to Single Responsibility Principal and avoiding the greedy
constructor smell.

One additional thing we did was add a RepositoryRegistry, which is a class that
contains our IoC container configurations for StructureMap. As we saw earlier, we
had configured StructureMap in BootStrapper to scan the Northwind assemblies
and look for registries. This provides us an opportunity to provide non-default
configurations and in this case, we use this feature to configure IToolManager
and our abstract factories to be singletons.

We could build our application at this point but we still have some refactorings
to do in order to get our entire application integrated with our IoC container.
We are injecting IUIDataProvider using our IoC container and this should be
a singleton. We also need to configure ICustomerService to be a singleton and
we need to explicitly configure the mapping between ICustomerService and

Chapter 6

[271]

CustomerServiceClient as it doesn't follow StructureMap's naming convention
and won't be mapped for us. Let's do these final refactorings by adding a class
to Northwind.Application called RepositoryRegistry.cs and then update
it as follows:

public class RepositoryRegistry : Registry
{
 public RepositoryRegistry()
 {
 For<IUIDataProvider>()
 .Singleton();
 For<ICustomerService>()
 .Singleton()
 .Use(() => new CustomerServiceClient());
 }
}

This code should be fairly self-explanatory. IUIDataProvider and ICustomerService
are both configured as singletons and then ICustomerService is explicitly mapped
using the .Use() overload which takes a lambda for the construction logic.

There is also a generic overload of .Use<CustomerServiceClient>()
that would allow us to configure our type mapping more concisely.
However, this method will use the most greedy constructor by default
and for a WCF proxy this would mean that we'd need to explicitly
configure the proxy by passing in the channel configurations. However,
by using the lambda version of .Use() we were able to configure
StructureMap to use the default constructor which will pull our WCF
configurations out of our App.config file automatically for us.

Now if we build our application and run it, we should see the same behavior as
before except with all the architectural benefits of using an IoC container and
following dependency injection best practices.

Order details
We are now ready to add support for showing order details by following these steps:

1. Open IToolManager and update it as shown in the following code:
public interface IToolManager
{
 ObservableCollection<ToolViewModel>
 Tools { get; set; }
 void OpenCustomerDetails(string customerId);

Northwind—Hierarchical View Model and IoC

[272]

 void OpenOrderDetails(OrderViewModel order);
 void CloseTool(ToolViewModel tool);
}

2. Open ToolManager and update it as follows. This will add a method that
allows for opening Order Details.
public class ToolManager : IToolManager
{
 private readonly ICustomerDetailsViewModelFactory
 _customerDetailsFactory;
 private readonly IOrderDetailsViewModelFactory
 _orderDetailsFactory;
 private readonly ICollectionView _toolCollectionView;
 public ObservableCollection<ToolViewModel>
 Tools { get; set; }

 public ToolManager(
 ICustomerDetailsViewModelFactory
 customerDetailsFactory,
 IOrderDetailsViewModelFactory
 orderDetailsFactory)
 {
 _customerDetailsFactory = customerDetailsFactory;
 _orderDetailsFactory = orderDetailsFactory;
 Tools = new ObservableCollection<ToolViewModel>();
 _toolCollectionView =
 CollectionViewSource.GetDefaultView(Tools);
 }

…

 public void OpenOrderDetails(OrderViewModel order)
 {
 OpenTool(
 p => p.Order.Model.OrderID
 == order.Model.OrderID,
 () => _orderDetailsFactory
 .CreateInstance(order));
 }
…
}

Chapter 6

[273]

3. Add a new interface to Northwind.ViewModel called
IOrderDetailsViewModelFactory and update it as follows:
public interface IOrderDetailsViewModelFactory
{
 OrderDetailsViewModel CreateInstance(
 OrderViewModel order);
}

4. Add a new class to Northwind.ViewModel called
OrderDetailsViewModelFactory and update it as shown in the following
code. This factory is being injected into the preceding ToolManager and will
allow for creating OrderDetailsViewModel.
public class OrderDetailsViewModelFactory
 : IOrderDetailsViewModelFactory
{
 private readonly IContainer _container;

 public OrderDetailsViewModelFactory(
 IContainer container)
 {
 _container = container;
 }

 public OrderDetailsViewModel CreateInstance(
 OrderViewModel order)
 {
 return _container
 .With("order")
 .EqualTo(order)
 .GetInstance<OrderDetailsViewModel>();
 }
}

5. Add a new class to Northwind.ViewModel called OrderDetailsViewModel
and update it as follows:
public class OrderDetailsViewModel : ToolViewModel
{
 private readonly IToolManager _toolManager;
 public ICustomerDetailsViewModelFactory
 CustomerDetailsFactory { get; set; }
 public OrderViewModel Order { get; set; }

 public ICommand ShowCustomerDetailsCommand
 {

Northwind—Hierarchical View Model and IoC

[274]

 get
 {
 return new RelayCommand(() =>
 _toolManager.OpenCustomerDetails(
 Order.Customer.CustomerID));
 }
 }

 public OrderDetailsViewModel(OrderViewModel order,
 IToolManager toolManager)
 : base(toolManager)
 {
 _toolManager = toolManager;
 Order = order;
 DisplayName = Order.Customer.CompanyName
 + ": " + Order.Model.OrderID.ToString();
 }
}

6. Add UserControl to Northwind.UI.WPF called OrderDetails and update
it as shown in the following code. It was a bit difficult to fit this code in
the width of the book but we should be able to get the idea of what's being
presented here. This will add our OrderDetails view that can be displayed.
<UserControl x:Class="Northwind.UI.WPF.OrderDetails"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/
xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
 mc:Ignorable="d">
 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary
 Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />

Chapter 6

[275]

 </Grid.RowDefinitions>
 <Border Padding="5"
 Margin="4" CornerRadius="5"
 Background="{StaticResource mainBlueBrush}">
 <TextBlock Text="{Binding Order.Model.OrderID,
 StringFormat={}{0} Order Details}"
 Foreground="White"
 FontWeight="Bold"
 FontSize="12" />
 </Border>
 <Grid Margin="4" Grid.Row="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <GroupBox Header="Summary">
 <Grid Margin="4" Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="6" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="Customer:" />
 <TextBlock Grid.Column="2">
 <Hyperlink
 Command="{Binding
 ShowCustomerDetailsCommand}">
 <TextBlock
 Text="{Binding
 Order.Customer
 .CompanyName}"/>
 </Hyperlink>
 </TextBlock>
 <TextBlock Text="Order Date:"
 Grid.Row="1" />
 <TextBlock
 Text="{Binding Order.Model.OrderDate,

Northwind—Hierarchical View Model and IoC

[276]

 StringFormat=d}"
 Grid.Row="1"
 Grid.Column="2" />
 <TextBlock Text="Shipped Date:"
 Grid.Row="2"/>
 <TextBlock Text="{Binding
 Order.Model.ShippedDate,
 StringFormat=d}" Grid.Row="2"
 Grid.Column="2" />
 <TextBlock Text="Freight:" Grid.Row="3"/>
 <TextBlock
 Text="{Binding Order.Model.Freight,
 StringFormat=c}" Grid.Row="3"
 Grid.Column="2" />
 <TextBlock Text="Order Total:"
 Grid.Row="4"/>
 <TextBlock Text="{Binding Order.Total,
 StringFormat=c}" Grid.Row="4"
 Grid.Column="2" />
 </Grid>
 </GroupBox>
 <GroupBox Header="Details" Grid.Row="1">
 <ListView ItemsSource="{Binding
 Order.Model.OrderDetails}">
 <ListView.Resources>
 <Style TargetType="ListViewItem">
 <Setter
 Property="HorizontalContentAlignment"
 Value="Stretch" />
 </Style>
 </ListView.Resources>
 <ListView.View>
 <GridView>
 <GridView.Columns>
 <GridViewColumn
 Header="Product">
 <GridViewColumn
 .CellTemplate>
 <DataTemplate>
 <TextBlock
 TextAlignment="Left"
 Text="{Binding
 Product
 .ProductName}"/>

Chapter 6

[277]

 </DataTemplate>
 </GridViewColumn
 .CellTemplate>
 </GridViewColumn>
 <GridViewColumn
 Header="Quantity">
 <GridViewColumn
 .CellTemplate>
 <DataTemplate>
 <TextBlock
 TextAlignment="Center"
 Text="{Binding
 Quantity}"/>
 </DataTemplate>
 </GridViewColumn
 .CellTemplate>
 </GridViewColumn>
 <GridViewColumn
 Header="UnitPrice">
 <GridViewColumn
 .CellTemplate>
 <DataTemplate>
 <TextBlock
 TextAlignment="Center"
 Text="{Binding
 UnitPrice,
 StringFormat='{}{0:C}'}" />
 </DataTemplate>
 </GridViewColumn
 .CellTemplate>
 </GridViewColumn>
 </GridView.Columns>
 </GridView>
 </ListView.View>
 </ListView>
 </GroupBox>
 </Grid>
 </Grid>
</UserControl>

Northwind—Hierarchical View Model and IoC

[278]

7. Open MainSkin.xaml and add the following template to it. This will map
our View to our View Model.
<DataTemplate DataType="{x:Type ViewModel:OrderDetailsViewModel}">
 <WPF:OrderDetails/>
</DataTemplate>

8. Open OrderViewModel and update it as follows:
public class OrderViewModel : ViewModelBase
{
 public const string ModelPropertyName = "Model";
 private Order _model;
 public Customer Customer { get; set; }
 private readonly IToolManager _toolManager;

 public ICommand ShowOrderDetailsCommand
 {
 get
 {
 return new RelayCommand(
 () => _toolManager.OpenOrderDetails(this));
 }
 }

…

 public OrderViewModel(Order model,
 Customer customer, IToolManager toolManager)
 {
 _model = model;
 Customer = customer;
 _toolManager = toolManager;
 SubscribeToOrderDetailsChanged(_model);
 }
…
}

Chapter 6

[279]

9. Open Orders.xaml and update the DataGrid as shown in the following
code. This will add a Show Details link to our grid that will open the related
order details when clicked.

<DataGrid ItemsSource="{Binding Orders}"
 AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Header="ID"
 Binding="{Binding Model.OrderID}"
 ElementStyle
 ="{StaticResource leftAlign}" />
 <DataGridTextColumn Header="Order Date"
 Binding="{Binding Model.OrderDate,
 StringFormat=d}"
 ElementStyle
 ="{StaticResource leftAlign}" />
 <DataGridTextColumn Header="Shipped Date"
 Binding="{Binding Model.ShippedDate,
 StringFormat=d}"
 ElementStyle
 ="{StaticResource leftAlign}" />
 <DataGridTextColumn Header="Total"
 Binding="{Binding Total,
 StringFormat=c}"
 ElementStyle
 ="{StaticResource rightAlign}" />
 <DataGridTemplateColumn Header="Details">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock>
 <Hyperlink
 Command="{Binding
 ShowOrderDetailsCommand}">
 <TextBlock
 Text="Show Details" />
 </Hyperlink>
 </TextBlock>
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>
 </DataGrid.Columns>
</DataGrid>

Now if you build and run the application, you will get the application that was
shown at the beginning of this chapter.

Northwind—Hierarchical View Model and IoC

[280]

Summary
This brings us to the end of our implementation of Northwind. In this chapter, we saw
how, as the complexity of our application grew, we could make things easier by using
the HVM approach and using an IoC container to help with application composition.
We looked at IoC's best practices and looked at a lot of the issues that can pop up when
using IoC containers along with approaches for avoiding these issues.

Dialogs and MVVM
By Muhammad Shujaat Siddiqi

In WPF, dialogs are similar to those in Winform. The only way to show dialogs is by
using either Window.Show() (modeless) or Window.ShowDialog() (modal) methods.

This includes built-in dialogs, such as MessageBox, OpenFileDialog,
SaveFileDialog, and PrintDialog.

Since we need our view model logic to be able to initiate the display of these
dialogs, we might be tempted to call these methods directly from our view models.
The problem with calling Show() or ShowDialog() directly is that it requires the
System.Windows.Window references to be held by view model coupling ViewModel
to System.Windows. This breaks down the desired separation of concerns in MVVM
and makes things like testing our code more difficult than it needs to be.

There is another issue around dialog ownership as you must set a dialog's owner to
be the window that will be its parent. Even if we show our dialogs directly from our
view models, we still will not be able to set the ownership directly from our view
models unless we have a reference from our view to our view model.

Another consideration is multitargeting. Even though there are gaps in achieving
multitargeting without compromising on some features, you might want to take
on those gaps and use the same view model for your Silverlight/WPF and WP7
applications. You will likely be handling dialogs differently in each platform and
so having dialog management abstracted in some way will be very useful. If we
show views directly from view models then we severely limit our code reuse
across platforms.

It should now be obvious that there are a lot of things that we need to consider
before adding dialogs to our applications in an MVVM-friendly way. We will
now take a look at how we can deal with these challenges.

Dialogs and MVVM

[282]

Should we make a compromise?
The preceding discussion might lead you to think that we have no solution to
display dialogs in an MVVM fashion or you might think that it's not worth the
effort. As we will see there are definitely options and we've already looked at the
benefits that will be provided by putting in that extra effort. The MVVM community
has devised many different ways to deal with this problem and just like everything
in development there are tradeoffs to each approach. In this chapter, we are going
to discuss some of these approaches. We will be discussing how we can show
both, modal and modeless dialogs with these technique. We will also discuss how
these dialogs can return data, which can be used by the view model using these
techniques. The options we are going to explore in this chapter are as follows:

•	 Dialog service
•	 Mediators
•	 Attached behavior

Dialog service
Dialog service is an approach where a layer of abstraction is used to show dialog
boxes. View models delegate the responsibility of showing the dialogs to a dialog
service and simply provide the service the data needed for display. The dialog
service owns the responsibility of showing dialogs and we are able to keep our
view models decoupled from System.Windows and avoid the need for references
from our views to our view models. In unit tests, we can inject a fake dialog service
instance instead of showing the actual dialog and use our fake object for stubbing
and mocking.

Let's consider a simple example WPF MVVMLight project to show a dialog box using
dialog service. The following view has a TextBlock and a Button. Clicking on the
button should display a dialog box.

Chapter 7

[283]

The XAML definition of the view can be as follows:

<Window x:Class="MVVMBasedDialogs.MainWindowDialogService"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:vm="clr-namespace:MVVMBasedDialogs.ViewModel"
 mc:Ignorable="d"
 Height="300"
 Width="355"
 Title="MVVM Survival Guide">
 <Window.DataContext>
 <vm:MainViewModelWithDialogService />
 </Window.DataContext>
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="0.25*" />
 </Grid.RowDefinitions>
 <TextBlock FontSize="36" Grid.Row="0"
 FontWeight="Bold"
 Text="{Binding Welcome}"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 TextWrapping="Wrap" />
 <Button Grid.Row="1" Content="Show Dialog"
 Command="{Binding ShowDialogCommand}" />
 </Grid>
</Window>

In the following view model definition, we are using DialogService to show
our message box. Here we are instantiating DialogService as an instance member.
Although this approach is still unit testable, it is generally preferred to use an
IoC-based mechanism for injecting/locating the DialogService instance.
We are not discussing that in order to minimize the noise.

See Chapter 6, Northwind—Hierarchical View Model and IoC, for details on
how to set up IoC in your application.

Dialogs and MVVM

[284]

namespace MVVMBasedDialogs.ViewModel{
 using GalaSoft.MvvmLight;
 using System.Windows.Input;
 using GalaSoft.MvvmLight.Command;
 using System.Windows;

 internal class MainViewModelWithDialogService : ViewModelBase
 {
 IDialogService _applicationDialogService;
 public IDialogService ApplicationDialogService
 {
 get
 {
 if (_applicationDialogService == null)
 {
 _applicationDialogService = new DialogService();
 }
 return _applicationDialogService;
 }
 internal set
 {
 _applicationDialogService = value;
 }
 }
 string _welcome = "Dialogs & MVVM";
 public string Welcome
 {
 get
 {
 return _welcome;
 }
 set
 {
 _welcome = value;
 RaisePropertyChanged("Welcome");
 }
 }
 ICommand _showDialogCommand;
 public ICommand ShowDialogCommand
 {
 get
 {
 if (_showDialogCommand == null)
 {

Chapter 7

[285]

 _showDialogCommand = new RelayCommand(ShowMessage);
 }
 return _showDialogCommand;
 }
 }
 internal void ShowMessage()
 {
 MessageBoxResult result =
 ApplicationDialogService.ShowMessageBox("Message",
 "Message Header", MessageBoxButton.OK);
 Welcome = EvaluateText(result);
 }
 protected virtual string EvaluateText(MessageBoxResult result)
 {
 string msg =
 System.Enum.GetName(typeof(MessageBoxResult), result);
 return msg;
 }
 }
}

Here IDialogService just provides functionality to display MessageBox. It can also
be used to display any specialized window. The definition of the IDialogService
interface and the DialogService class is as follows:

namespace MVVMBasedDialogs
{
 using System.Windows;
 public interface IDialogService
 {
 MessageBoxResult ShowMessageBox(string content,
 string title, MessageBoxButton buttons);
 }

 public class DialogService : IDialogService
 {
 public MessageBoxResult ShowMessageBox(string content,
 string title, MessageBoxButton buttons)
 {
 return MessageBox.Show(content, title, buttons);
 }
 }
}

Dialogs and MVVM

[286]

In the preceding code, we saw how we can show MessageBox using DialogService so
that view model is still unit testable. As we have seen before internal (C#) members
be made visible to unit test assemblies. To unit testing this view model, the unit test
code just needs to create a stub of the IDialogService interface and assign it to the
internal ApplicationDialogService. Similar logic can be used to show similar types
of dialogs including OpenFileDialog, SaveFileDialog, and PrintDialog. We just
need to provide contract definition in the IDialogService interface and provide an
implementation in DialogService class following the same pattern.

We might also want to be able to use a custom view to display messages to the users
and style that is in accordance with application styles. Another thing to consider is
that MessageBox is inherently modal. If we instead use a custom view then we can be
more flexible and call ShowDialog() if we want to make a modal message box. We
might want to set Application.Current.MainWindow as the owner of the custom
dialog. Let's now take a look at an example of this approach.

Using DataTemplates with DialogService
DataTemplates can be used to map a view to a view model allowing our view models
to not have to know about the views. In the section that follows, we are going to see
how a view model can use DialogService to show another view by simply providing
an instance of the desired view's associated view model to our dialog service.
Obviously DialogService would be taking advantage of DataTemplates for this
purpose but we are allowing our view models to be separated from that concern.

Let's consider a simple order entry form. Again we are creating the project as
WPF MVVMLight project. The view just has a ComboBox for Customer selection.
In order to minimize the noise let's just assume that there are some relevant
order details at the bottom.

Let's see the XAML definition of OrderView:

<Window x:Class="MVVMBasedDialogs.OrderView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Chapter 7

[287]

 xmlns:vm="clr-namespace:MVVMBasedDialogs.ViewModel"
 Title="OrderView" Height="300" Width="476">
 <Window.DataContext>
 <vm:OrderViewModel />
 </Window.DataContext>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Label Content="Customer" Height="23"
HorizontalAlignment="Left"
 Margin="7,12,0,0" Name="lblCustomer"
VerticalAlignment="Top"
 Grid.Column="0" Grid.Row="0" Width="100" />
 <StackPanel Orientation="Horizontal" Grid.Column="1" Grid.
Row="0">
 <ComboBox Margin="2,12,0,0" Name="cmbCustomer"
 DisplayMemberPath="LastName" Width="315"
 ItemsSource="{Binding Customers}"
 SelectedItem="{Binding SelectedCustomer}" />
 <Button Content="..."
 Command="{Binding ShowCustomerDetailsCommand}"
 Margin="2,12,0,0" Name="btnEditCustomer"
 HorizontalAlignment="Right" Width="41" />
 </StackPanel>
 <Border BorderBrush="Silver" Grid.ColumnSpan="2"
 Grid.Row="1" Background="LightGray">
 <TextBlock Text="Order Details"
HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>
 </Grid>
</Window>

The preceding view is using an instance of OrderViewModel as DataContext.
It is constructing the instance with inline XAML and using it as DataContext.
The view has some expectations from the view model. It should have a collection,
called Customers, with its members having a LastName property. It should also
have a SelectedCustomer property that should be the same type as the members
of the Customer collection. It should provide an additional ICommand property
ShowCustomerDetailsCommand. The definition of OrderViewModel is as follows:

namespace MVVMBasedDialogs.ViewModel
{

Dialogs and MVVM

[288]

 using GalaSoft.MvvmLight;
 using System.Collections.ObjectModel;
 using System.Windows.Input;
 using GalaSoft.MvvmLight.Command;
 class OrderViewModel : ViewModelBase
 {
 ObservableCollection<CustomerViewModel> _customers =
 new ObservableCollection<CustomerViewModel>()
 {
 new CustomerViewModel() {
 FirstName = "Muhammad", LastName="Siddiqui"},
 new CustomerViewModel() {
 FirstName = "Ryan", LastName = "Vice"}
 };
 public ObservableCollection<CustomerViewModel> Customers
 {
 get
 {
 return _customers;
 }
 }
 CustomerViewModel _selectedCustomer;
 public CustomerViewModel SelectedCustomer
 {
 get
 {
 return _selectedCustomer;
 }
 set
 {
 _selectedCustomer = value;
 RaisePropertyChanged("SelectedCustomer");
 }
 }
 ICommand _showCustomerDetailsCommand;
 public ICommand ShowCustomerDetailsCommand
 {
 get
 {
 if (_showCustomerDetailsCommand == null)
 {
 _showCustomerDetailsCommand =
 new RelayCommand(() =>
 {

Chapter 7

[289]

 DialogService.Instance
 .ShowDialog(SelectedCustomer);
 },
 () => SelectedCustomer != null);
 }
 return _showCustomerDetailsCommand;
 }
 }
 }
}

Here we have used an updated definition of DialogService to show dialogs
by specifying a view model as an argument. It is also implemented as an
injectable singleton implementation to demonstrate another implementation
you might consider.

Having DialogService implemented as an injectable singleton will
allow for our code to be testable and provides good separation of concerns
but is weaker in the area of dependency inversion as its dependencies
are internalized and client code is not responsible for injecting them.
It could be argued that this is OK because DialogService is a cross-
cutting concern for a lot of our view models and that it is exposing an
interface (Instance) that could be configured as needed. Another benefit
of DI is that clients are aware of what dependencies are needed by the
classes they consume because the dependencies are advertised from
the constructor (or methods). Under the Injectable Singleton approach,
the dependencies are obfuscated from the client arguably making our
class harder to consume by clients. However, because DialogService
represents a cross-cutting concern in our view models, it could be argued
that the benefit of advertising dependencies is less as we would have this
component configured and available at runtime in our view models. As
with most things you should spend some time considering the various
tradeoffs when architecting your project and pick the approach that fits
your needs the best.

These dialogs would be modal to the whole application. We need to add a
ShowDialog() method to DialogService. Since all our view models inherit
from MVVM Light's ViewModelBase, we can use it as parameter type.

Here CustomerViewModel can be defined as follows:

namespace MVVMBasedDialogs.ViewModel
{
 using GalaSoft.MvvmLight;

 class CustomerViewModel : ViewModelBase

Dialogs and MVVM

[290]

 {
 string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set
 {
 _firstName = value;
 RaisePropertyChanged("FirstName");
 }
 }

 string _lastName;
 public string LastName
 {
 get { return _lastName; }
 set
 {
 _lastName = value;
 RaisePropertyChanged("LastName");
 }
 }

 public override string ToString()
 {
 return string.Format("{0} {1}", FirstName, LastName);
 }
 }
}

The implementation of IDialogService would also need to be updated as follows:

namespace MVVMBasedDialogs
{
 using System.Windows;
 using GalaSoft.MvvmLight;
 public interface IDialogService
 {
 MessageBoxResult ShowMessageBox(string content,
 string title, MessageBoxButton buttons);
 void ShowDialog(ViewModelBase viewModel);
 }

 public class DialogService : IDialogService
 {
 static IDialogService _instance;

Chapter 7

[291]

 public static IDialogService Instance
 {
 get
 {
 if (_instance == null)
 {
 _instance = new DialogService();
 }
 return _instance;
 }
 internal set
 {
 _instance = value;
 }
 }
 public MessageBoxResult ShowMessageBox(string content,
string title, MessageBoxButton buttons)
 {
 return MessageBox.Show(content, title, buttons);
 }
 public void ShowDialog(ViewModelBase viewModel)
 {
 var dialog = new DialogView() { DataContext = viewModel };
 dialog.Owner = Application.Current.MainWindow;
 dialog.ShowInTaskbar = false;
 dialog.ShowDialog();
 }
 }
}

Now we can simply specify view model, passed as argument, to the DataContext of
DialogView instance and shown the Dialog. It is the responsibility of DialogView to
determine how to actually display this. Again, internal setter of Instance is just for
unit testability of the code and is why we call it an Injectable Singleton. Let's see how
simply we can define DialogView.

<Window x:Class="MVVMBasedDialogs.DialogView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 SizeToContent="WidthAndHeight">
 <StackPanel>
 <ContentControl Content="{Binding}" />
 </StackPanel>
</Window>

Dialogs and MVVM

[292]

The definition of DialogView also seems very simple and so you might wonder
how would the runtime render the dialog using our view and view model? First of
all, if we run this application in the current state, it would just call ToString() on
DataContext and show the result. If we had Siddiqui selected in the view then it
would show Muhammad Siddiqui. This is because we have overriden ToString()
on CustomerViewModel. As we need a more sophisticated display with WPF controls,
we can define DataTemplate for this view model type. Now whenever the WPF
runtime encounters a situation like this, it would use that DataTemplate to display an
instance of this type. Let us define DataTemplate in App.xaml so that it is accessible
throughout the application. Before adding the following code, you would need to add
the namespaces of view model and dialogs with alias vm and local, respectively:

<DataTemplate DataType="{x:Type vm:CustomerViewModel}">
 <local:CustomerView />
</DataTemplate>

Here CustomerView is simply UserControl as follows:

<UserControl x:Class="MVVMBasedDialogs.CustomerView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 Width="446" Height="300"
 d:DesignHeight="300" d:DesignWidth="446">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="111*" />
 <ColumnDefinition Width="331*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Label Content="First Name" Height="25"
HorizontalAlignment="Left"

Chapter 7

[293]

 Grid.Column="0" Grid.Row="0"
 Margin="6,13,0,0" VerticalAlignment="Top" Width="103" />
 <TextBox Height="28" HorizontalAlignment="Left"
Margin="4,12,0,0"
 Grid.Row="0" Grid.Column="1"
 Text="{Binding FirstName, UpdateSourceTrigger=PropertyC
hanged}"
 Name="txtFirstName" VerticalAlignment="Top"
Width="318"/>
 <Label Content="Last Name" Height="25"
HorizontalAlignment="Left"
 Grid.Column="0" Grid.Row="1"
 Margin="6,6,0,0" Width="103" />
 <TextBox Height="28" HorizontalAlignment="Left"
 Grid.Row="1" Grid.Column="1" Margin="3,6,0,0"
 Text="{Binding LastName, UpdateSourceTrigger=Property
Changed}"
 Name="txtLastName" VerticalAlignment="Top" Width="318"
/>
 </Grid>
</UserControl>

Here we have used UpdateSourceTrigger as PropertyChanged just to keep
the view definiton simple. As we make updates to First Name or Last Name,
it would be reflected in the view model and hence if it is a change in LastName,
it would be reflected in the Customer combobox in OrderView as it is the same
view model instance.

Let's run the application and select Siddiqui from the Customer list. This would
enable the button. Clicking on the button would open the customer dialog.

Dialogs and MVVM

[294]

Now let's update Last Name to Siddiqui and close the dialog. You can see that the
same change is reflected in OrderView. This is because we have passed the same
collection member to be shown by DialogService. Updating LastName has resulted
in the notification to the view to update itself via INotifyPropertyChanged.

Convention over configuration
The preceding technique assumes that the framework has support for implicit
DataTemplate. This is not always the case in Silverlight. Support for implicit
data templates has been added to Silverlight 5 Beta but for earlier versions of
Silverlight, we cannot use ContentControl directly. However, we can inherit from
ContentControl and override it in a way that allows us to determine DataTemplate
and apply our view model to it for display. The two possible techniques are to use
convention or to use configuration for resolving data templates.

We can create a convention for naming our data templates, views, and view models,
for example CustomerTemplate, CustomerView, and CustomerViewModel. Here
if DialogService is requested to show a dialog with CustomerViewModel then it
can easily determine that it should be using CustomerTemplate for this purpose,
which can be implemented directly or can also be based on UserControl like
CustomerView. Let's add this to App.xaml:

<DataTemplate x:Key="CustomerTemplate"
 DataType="{x:Type vm:CustomerViewModel}">
 <local:CustomerView />
</DataTemplate>

Here the namespace vm is defined as follows:

xmlns:vm="clr-namespace:MVVMBasedDialogs.ViewModel"

Chapter 7

[295]

Let's specialize the ContentControl for this approach.

namespace MVVMBasedDialogs.Control
{
 using System.Windows.Controls;
 using System.Windows;

 class ConventionContentControl : ContentControl
 {
 protected override void OnContentChanged(object oldContent,
 object newContent)
 {
 base.OnContentChanged(oldContent, newContent);

 string viewModelName = newContent.GetType().Name;
 string templateName =
 string.Format("{0}Template",
 viewModelName.Substring(0,
 viewModelName.IndexOf("ViewModel")));
 ContentTemplate =
 (DataTemplate)Application.Current.
Resources[templateName];
 }
 }
}

Now we can update the definition of DialogView to use
ConventionContentControl instead.

<Window x:Class="MVVMBasedDialogs.DialogView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls="clr-namespace:MVVMBasedDialogs.Control"
 SizeToContent="WidthAndHeight">
 <StackPanel>
 <Controls:ConventionContentControl
Content="{Binding}" />
 </StackPanel>
</Window>

The preceding approach will behave exactly the way as implicit DataTemplate
approach was working. Here we are checking the applied content. Based on
convention, we are determining the template to use to display this content.

Dialogs and MVVM

[296]

DialogService can also be configured to map between views and view models. This
can be code based or XML based. In this case, it would just look at configuration to
determine which view goes with particular view model. It then instantiates the view,
assign view model instance as DataContext, and shows it. All the updates in the
view model should be reflected on the caller ViewModel if it is keeping the instance
of this view model.

It is also possible that the same view model is displayed by using different views
for different contexts. DialogService has no automatic mechanism to determine
the context. In this case, we can update DialogService to use tokens. Here
different token can specify different context which can be used by DialogService
to determine which view to display. Tokens can be used in both techniques, that is
convention and configuration.

Using dialog service has made the view model unit testable but the
code of DialogService, itself, is not unit testable as it contains view
logic. Since this is considered as part of the View/UI layer, this is
generally not a concern.

Mediators
Mediators are the implementation of Gang of Four's Mediator pattern. In MVVM-
based applications, they can be used to connect different disconnected parts of the
application. Mediators aren't available directly in WPF or Silverlight but most of
the MVVM toolkits have provided a mediator implementation. PRISM and MVVM
Light have the EventAggregator and Messenger respectively as mediators. They
are implemented based on Publisher/Subscriber model. One party publishes a
message and if any other part of the application has subscribed to that message then
the mediator hands message over to them. If, however, there are no subscribers then
the message is ignored. Mediators generally have no limitations on the number of
subscriber for a particular message so it could also be used for broadcasting certain
information like Disconnected from Server or Logging off. Messages are generally
received by a subscriber on the same thread that it was published on. Some MVVM
toolkits allow publishing message on UI thread so that the handler could update UI
directly without using Dispatcher. In most toolkits, the mediators are built using
weak references so that they won't cause memory leaks. Some implementations also
support filtered messages. Event aggregator supports them by using Predicates. In
addition to the message handler, the subscriber can also specify a predicate during
subscription. The handler code would only be executed if the predicate condition is
satisfied. This saves us from having various checks before doing the real work in the
handler logic.

Chapter 7

[297]

Let's first consider simple notification dialogs. These dialogs are generally displayed
when user is to be notified about some useful information. They are generally
displayed with just the OK button. Let's consider a simple view as shown in the
screnshot in the Dialog service section.When user clicks on the Show Dialog button,
a notification dialog should display with the message Notification Message. The
dialog should have an OK button. Clicking on the button should close the dialog.

The design of the view may be as follows:

<Window x:Class="MVVMBasedDialogs.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Height="300"
 Width="357"
 Title="MVVM Survival Guide"
 DataContext="{Binding Main, Source={StaticResource Locator}}">
 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="0.25*" />
 </Grid.RowDefinitions>
 <TextBlock FontSize="36" Grid.Row="0"
 FontWeight="Bold"
 Text="{Binding Welcome}"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 TextWrapping="Wrap" />
 <Button Grid.Row="1" Content="Show Dialog"

Dialogs and MVVM

[298]

 Command="{Binding ShowDialogCommand}" />
 </Grid>
</Window>

As expected by the preceding view, MainViewModel should have a property
Welcome. It should also have an ICommand ShowDialogCommand. The definition
of MainViewModel is as follows:

namespace MVVMBasedDialogs.ViewModel
{
 using GalaSoft.MvvmLight;
 using System.Windows.Input;
 using GalaSoft.MvvmLight.Command;
 using GalaSoft.MvvmLight.Messaging;
 using System.Windows;
 public class MainViewModel : ViewModelBase
 {
 public string Welcome
 {
 get
 {
 return "Welcome to MVVM Light";
 }
 }

 ICommand _showDialogCommand;
 public ICommand ShowDialogCommand
 {
 get
 {
 if (_showDialogCommand == null)
 {
 _showDialogCommand = new RelayCommand(
 () =>
 {
 var message =
 new DialogMessage("Notification Message", null)
 {
 Caption = "test",
 Button = MessageBoxButton.OK
 };
 Messenger.Default.Send(message);
 }
);
 }
 return _showDialogCommand;
 }
 }
 }
}

Chapter 7

[299]

The preceding view model uses MVVM Light's Messenger to send a DialogMessage
with relevant information. It specifies that the dialog box should have content
Notification Message, header as test. The dialog should just have an OK button.
This code specifies enough information to display a dialog. This information is of
no use unless used by interested recipient. Any interested recipient can register for
this message and use it to display the dialog. Since all this information is specified
by the view model, it is in complete control. The class hierarchy of MVVM Light's
DialogMessage is as follows:

Dialogs and MVVM

[300]

Now the main question is who should be listening to this message. Generally, the
view itself registers for this message. When view receives this message, it utilizes the
information specified to display the dialog. Let's see the code behind MainWindow:

namespace MVVMBasedDialogs
{
 using System.Windows;
 using MVVMBasedDialogs.ViewModel;
 using GalaSoft.MvvmLight.Messaging;
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 Closing += (s, e) => ViewModelLocator.Cleanup();
 Messenger.Default.Register<DialogMessage>(
 this,
 msg =>
 {
 var result = MessageBox.Show(
 msg.Content,
 msg.Caption,
 msg.Button);
 // callback
 msg.ProcessCallback(result);
 });
 }
 }
}

When we run the application, the view is displayed with a message and button.
When we click on the Show Dialog button, the dialog is displayed with the
Notification Message message. Clicking OK on the dialog closes it. The preceding
code just displays the dialog. There are times when we need to use the user
selections on these dialogs. Let's update the example so that the view model could
use user selection on the dialog. These are Are you sure? kind of dialogs. We update
the view model as follows:

namespace MVVMBasedDialogs.ViewModel
{
 using GalaSoft.MvvmLight;
 using System.Windows.Input;
 using GalaSoft.MvvmLight.Command;
 using GalaSoft.MvvmLight.Messaging;
 using System.Windows;

Chapter 7

[301]

 public class MainViewModelWithCallBack : ViewModelBase
 {
 string _welcome = "Dialogs & MVVM";
 public string Welcome
 {
 get
 {
 return _welcome;
 }
 set
 {
 _welcome = value;
 RaisePropertyChanged("Welcome");
 }
 }
 ICommand _showDialogCommand;
 public ICommand ShowDialogCommand
 {
 get
 {
 if (_showDialogCommand == null)
 {
 _showDialogCommand = new RelayCommand(
 () =>
 {
 var message =
 new DialogMessage("Are you sure?",
DialogMessageCallback)
 {
 Caption = "test",
 Button = MessageBoxButton.YesNo
 };
 Messenger.Default.Send(message);
 }
);
 }
 return _showDialogCommand;
 }
 }
 private void DialogMessageCallback(MessageBoxResult result)
 {
 if (result == MessageBoxResult.Yes)
 {
 Welcome = "Yes";

Dialogs and MVVM

[302]

 }
 else
 {
 Welcome = "No";
 }
 }
 }
}

In the preceding code, we have modified the Welcome property to support the
changed notification by raising the PropertyChanged event. The main update
(from the previous example) is that we have changed the buttons to YesNo and
introduced Callback. In the callback, we are updating the Welcome property
based on user selection. The view already supports calling the callback. If you
look at the view code, it is calling the callback.

Messenger.Default.Register<DialogMessage>(
 this,
 msg =>
 {
 var result = MessageBox.Show(
 msg.Content,
 msg.Caption,
 msg.Button);
 // Send callback
 msg.ProcessCallback(result);
 });

We need to update the code of ViewModelLocator as follows:

public ViewModelLocator()
{
 CreateMain();
 CreateMainWithCallBack();
}
private static MainViewModelWithCallBack _mainWithCallback;
public MainViewModelWithCallBack MainWithCallBack
{
 get
 {
 return MainWithCallBackStatic;
 }
}
public static MainViewModelWithCallBack MainWithCallBackStatic
{

Chapter 7

[303]

 get
 {
 if (_mainWithCallback == null)
 {
 CreateMainWithCallBack();
 }
 return _mainWithCallback;
 }
}
public static void CreateMainWithCallBack()
{
 if (_mainWithCallback == null)
 {
 _mainWithCallback = new MainViewModelWithCallBack();
 }
}
public static void ClearMainWithCallBack()
{
 _mainWithCallback.Cleanup();
 _mainWithCallback = null;
}
public static void Cleanup()
{
 ClearMain();
 ClearMainWithCallBack();
}

We also need to update MainWindow so that it uses MainWithCallback from
ViewModelLocator as its DataContext.

<Window x:Class="MVVMBasedDialogs.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Height="300"
 Width="300"
 Title="MVVM Survival Guide"
 DataContext="{Binding MainWithCallBack, Source={StaticResource
Locator}}">
 <Window.Resources>
 <ResourceDictionary>

Dialogs and MVVM

[304]

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="0.25*" />
 </Grid.RowDefinitions>
 <TextBlock FontSize="36" Grid.Row="0"
 FontWeight="Bold"
 Text="{Binding Welcome}"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 TextWrapping="Wrap" />
 <Button Grid.Row="1" Content="Show Dialog"
 Command="{Binding ShowDialogCommand}" />
 </Grid>
</Window>

Now we run the application. The view appears as shown in the screenshot in the
Dialog service section. When we click on the Show Dialog button, the following
dialog is displayed:

When we click on the Yes button, the view model sets the Welcome property as Yes.
This is updated on the view as follows:

Chapter 7

[305]

If we select No instead, then the view is updated as follows:

Still there are two issues:

•	 There is code-behind approach in MainWindow which is not recommended
by the MVVM community. In order to avoid that we can subscribe to
these simpleton messages by a separate service and use that to display
these dialogs.

•	 Here we are showing simple MessageBox dialogs. Basically, in real world, we
can show any types of dialogs. Both modal and modeless. If DialogMessage
is registered somewhere else in the application then we also need to assign
ownership of the dialog. We can assign MainWindow as the owner of the
dialogs in such cases.

DialogBoxView.Owner = Application.Current.MainWindow

Dialogs and MVVM

[306]

Based on the preceding observation, we can have a centralized manager to subscribe
with DialogMessage. This DialogManager should be able to figure out which
template to use to display the view model. This is a similar technique to the one
explained in the Dialog services section.

Attached behaviors
Attached behaviors are generally used to cause some code to be executed on the
view based on some property changes in the view model. They are phenomenal
for this purpose. They are also used to tackle non-MVVM features of otherwise
MVVM-based controls. For example, when using Window in WPF how can a view
model cause it's associated window to be close? The only way to close a window is
to directly call the Window.Close() method on the instance. Since we don't want our
view models to hold references to our views, our view models cannot call Close()
method directly. Window also does not have any DependencyProperty that could be
bound to a view model property to allow for closing the window. One way to resolve
this problem is using an attached behavior. Using this pattern, our view model sets
a notification-based property and rest is taken care of by using the attached behavior
approach shown next. For this technique, we need to use INotifyPropertyChanged,
Data Triggers, and Attached Properties.

This is the same technique that we have used in the NorthwindMVVM project to
display the OrderWizard dialog box. This technique can be combined with a
mediator to allow for disconnected components. To display Order Wizard Dialog,
we have used the Mediator approach.

Let's define an attached behavior to display our OrderWizard dialog. As with
any attached behavior, this approach would involve defining an attached
property. We will name our attached property ShowOrderWizardProperty.
In the PropertyChangedCallback handler of this property's metadata,
we will display the dialog box as shown in the following code:

namespace Northwind.UI.WPF.AttachedBehaviors
{
 using System.Windows;

 public static class MainWindowAttachedBehaviors
 {
 #region Show Order Wizard
 public static DependencyProperty ShowOrderWizardProperty =
 DependencyProperty.RegisterAttached("ShowOrderWizard",
typeof(bool),
 typeof(MainWindowAttachedBehaviors),
 new UIPropertyMetadata(false, OnShowOrderWizard));

Chapter 7

[307]

 public static bool GetShowOrderWizard(DependencyObject obj)
 {
 return (bool)obj.GetValue(ShowOrderWizardProperty);
 }
 public static void SetShowOrderWizard(DependencyObject obj,
 bool value)
 {
 obj.SetValue(ShowOrderWizardProperty, value);
 }
 public static void OnShowOrderWizard(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 if ((bool)e.NewValue)
 {
 Window wnd = (Window)d;
 OrderWizard orderWizard = new OrderWizard();
 orderWizard.Owner = wnd;
 orderWizard.ShowDialog();
 }
 }

 #endregion
 }
}

This attached property can be used in MainWindow. Like a classic attached behavior,
we can set it in a DataTrigger action based on some property change in the
DataContext.

<Window x:Class="Northwind.UI.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ViewModel="clr-namespace:Northwind.
ViewModel;assembly=Northwind.ViewModel"
 xmlns:AttachedBehaviors="clr-namespace:Northwind.UI.WPF.
AttachedBehaviors"
 Title="{Binding Name}" Height="500" Width="700"
 DataContext="{Binding Source={x:Static
 ViewModel:ViewModelLocator.MainWindowViewModelBaseStatic}}">
 <Window.Style>
 <Style>
 <Style.Triggers>
 <DataTrigger Binding="{Binding IsShowOrderWizard}"
 Value="true">

Dialogs and MVVM

[308]

 <Setter
 Property="AttachedBehaviors:MainWindowAttachedB
ehaviors.ShowOrderWizard"
 Value="true" />
 </DataTrigger>
 <DataTrigger Binding="{Binding IsShowOrderWizard}"
 Value="false">
 <Setter
 Property="AttachedBehaviors:MainWindowAttachedB
ehaviors.ShowOrderWizard"
 Value="false" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </Window.Style>
 <!--Window Def.-->
</Window>

This expects the IsShowOrderWizard property in DataContext. The attached
property in MainWindowAttachedBehavior would be assigned based on the
value of IsShowOrderWizard.

RelayCommand _showOrderWizard;
public RelayCommand ShowOrderWizard
{
 get
 {
 if (_showOrderWizard == null)
 {
 _showOrderWizard = new RelayCommand(
 () => { IsShowOrderWizard = true; });
 }
 return _showOrderWizard;
 }
}
bool _isShowOrderWizard = false;
public bool IsShowOrderWizard
{
 get { return _isShowOrderWizard; }
 set

Chapter 7

[309]

 {
 _isShowOrderWizard = value;
 RaisePropertyChanged("IsShowOrderWizard");
 }
}

Here we are setting the IsShowOrderWizard property in the Execute
method of RelayCommand. In MainWindow we have bound this Command
with a ContextMenu item.

This is enough to display our dialog but would leave the value of
IsShowOrderWizard property set to true. We need to reset IsShowOrderWizard to
false so that we can display the dialog again. In the case of OrderWizard, we will
use a messenger to notify to MainWindowViewModel that the dialog has been closed.
Let's define a new message type.

namespace Northwind.ViewModel.Messeges
{
 class OrderWizardClosed
 {
 }
}

Now OrderWizard should send the following message when it is being closed:

public void FinishWizard()
{
 //Other stuff
 Messenger.Default.Send<OrderWizardClosed>(new OrderWizardClosed());
}

We can subscribe to this message in MainWindowViewModel and reset the boolean
property when this message is received.

private void SubscribeMessages()
{
 //Other stuff
 Messenger.Default.Register<OrderWizardClosed>(this, (a) =>
 {
 IsShowOrderWizard = false;
 });
}

Dialogs and MVVM

[310]

This works because OrderWizard is a modal dialog. If it were a modeless dialog,
then would need to tweak the approach a bit as opening the dialog would need to set
the IsShowOrderWizard property. Using the Context Menu to open another wizard
would do nothing as it would attempt to set the IsShowOrderWizard property. Since
this is already set, DataTrigger in MainWindow would not be triggered resulting
in no new Order Wizard view. We can fix it by keeping Dictionary<string,
Boolean>. Here we can keep the key as a unique identifier for each dialog. The
values would serve the same purpose as the boolean property. We would also need
to add one more message so that the Order Wizard could notify MainWindow about
this identifier. When this message is received, MainWindowViewModel should add
an entry to the dictionary with passed on identifier and boolean value. In that case,
we would also need to update the message type OrderWizardClosed by adding the
order details so that we could reset the appropriate property.

Summary
There are many different approaches for incorporating dialog boxes in
MVVM-based applications. We discussed how to use dialog service, mediator,
and attached behavior based approaches. The dialog service takes advantage of
DataTemplates. For the technologies that don't have DataTemplates automatically,
we looked at using convention or configuration to achieve the same results.

Workflow-based MVVM
Applications

By Muhammad Shujaat Siddiqi

Windows WF was released as one of the three great features of .NET 3.0. The other
two features were Windows Presentation Foundation and Windows Communication
Foundation. Since then it's been used in various ways by different organizations in
their product design but its industry penetration hasn't been that well. With .NET
4.0, it's been completely redesigned, with a lot of new features added along with
support of state machine workflows in .NET 4.0 platform update 1. In this chapter,
we will be discussing two different scenarios in which Windows WF can be a useful
help developing MVVM-based application.WF has a natural application in the
business rules execution, especially for long running processes. It can also be used to
control the flow of execution of an application.

In order to run the examples in this section, you need to install the following:
Visual Studio 2010 Service Pack 1
.NET Framework 4 Platform Update 1
In addition, a basic understanding of Windows WF is assumed for the
examples in this chapter.

Workflow-based MVVM Applications

[312]

WF for business rules execution
Defining business rules in workflow has several advantages. The first and foremost
of which is improved communication between the different teams involved in
a software project. Developers are just one part of a great software project. This
includes people from various backgrounds including individuals involved from
business side. It is generally difficult to communicate the way workflow works
across these teams. Development teams have to present these workflows using
some other tools. So there are two versions of these rules. One which is used for
communication across different teams and another which is actually used by the
software embedded in code. Many a times, they become out of sync. On the other
hand, if WF is used then two versions of the workflows presentation are generally
not required.

Defining business logic in workflows is also good for application performance and
resource management. In a software product, different users might have visibility on
different modules. Now if we have business logic divided intelligently in workflows
for each modules then we can just load the rules for the respective module saving
user extra memory. It is also possible that we create a big application but there are
certain areas of our application which the user might need on a seldom basis but
they are heavy. We can move that logic too with workflow objects loaded and used
by model. When a model is done using them, it can unload them for hibernation
until they are needed again. The application would also be light weight, which
would definitely improve application responsiveness.

If we are using Unit of Work (UoW) [Fowler] for persistence then we can pass the
whole session state to the workflow. The workflow would execute the business rules
on each entity in the session state and return the validation result with some message
that you can show to the user using the notification methods discussed in Chapter
9, Validation. Generally, we pass the model or a Memento [Gang of four] to the
workflow logic. The workflow executes the business logic and returns the status of
execution of business rules. This memento can also be used to save application state
in case of application failures, which can be used for restoring the application state
when application is restarted.

In an MVVM-based application, executing business rules is generally the
responsibility of the model. It can use WF library to execute business rule and
communicate with the layers above about execution results. Yes, WF supports
both way communications. This is especially useful to pass the business objects
to workflow and get the validation results back after WF executes the workflow.

Chapter 8

[313]

Model

Workflow

Let us create a simple order entry form. The system is interested in the customer
name, the product being ordered, and its quantity. When a user submits the order,
the system should validate the order. The system should notify the user about any
validation issues.

The XAML definition of the preceding view is as follows:

<Window x:Class="MVVMApp_WFBasedBusinessRules.OrderView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MVVMApp_WFBasedBusinessRules.ViewModel"
 Title="MVVM Survival Guide" Height="300" Width="531">
 <Window.DataContext>
 <local:OrderViewModel />
 </Window.DataContext>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="38*" />
 <RowDefinition Height="32*" />
 <RowDefinition Height="30*" />
 <RowDefinition Height="161*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="108*" />

Workflow-based MVVM Applications

[314]

 <ColumnDefinition Width="401*" />
 </Grid.ColumnDefinitions>
 <Label Content="Customer" Height="25"
HorizontalAlignment="Left"
 Margin="12,8,0,0" Name="lblCustomer"
VerticalAlignment="Top"
 Width="93" />
 <TextBox Height="26" HorizontalAlignment="Left"
Margin="3,10,0,0"
 Name="txtCustomer" VerticalAlignment="Top"
Width="390"
 Text="{Binding CustomerName}" Grid.Column="1" />
 <Label Content="Product" Height="25"
HorizontalAlignment="Left"
 Margin="12,1,0,0"
 Name="lblProduct" VerticalAlignment="Top" Width="93"
 Grid.Row="1" />
 <TextBox Height="26" HorizontalAlignment="Left"
Margin="3,3,0,0"
 Name="txtProduct"
 VerticalAlignment="Top" Width="390"
 Text="{Binding ProductName}" Grid.Column="1" Grid.
Row="1" />
 <Label Content="Quantity" Height="25"
HorizontalAlignment="Left"
 Margin="12,0,0,0"
 Name="lblQuantity" VerticalAlignment="Top" Width="93"
 Grid.Row="2" />
 <TextBox Height="26" HorizontalAlignment="Left"
Margin="3,2,0,0"
 Name="txtQuantity" VerticalAlignment="Top"
Width="390"
 Text="{Binding ProductQuantity}" Grid.Column="1"
 Grid.Row="2" />
 <GroupBox Header="Validation Errors" Height="111"
 HorizontalAlignment="Left" Margin="3,38,0,0"
 Name="grpBoxValidationSummary"
VerticalAlignment="Top"
 Width="389" Grid.Column="1" Grid.Row="3">
 <GroupBox.Style>
 <Style TargetType="{x:Type GroupBox}">
 <Setter Property="Visibility" Value="Collapsed" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding IsValid}"
 Value="false">

Chapter 8

[315]

 <Setter Property="Visibility"
Value="Visible" />
 </DataTrigger>
 <DataTrigger Binding="{Binding IsValid}"
Value="true">
 <Setter Property="Visibility"
Value="Collapsed" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </GroupBox.Style>
 <TextBlock Height="68" Name="tbValidationSummary"
 Text="{Binding ValidationSummary}" Width="379"
/>
 </GroupBox>
 <Button Content="Submit Order" Height="29"
HorizontalAlignment="Left"
 Margin="2,3,0,0" Name="btnSubmitOrder"
VerticalAlignment="Top"
 Width="130" Grid.Row="3"
 Command="{Binding SubmitOrderCommand}" Grid.Column="1"
/>
 </Grid>
</Window>

The view is assigning an instance of OrderViewModel to its DataContext.
DataContext should have the CustomerName, ProductName, and ProductQuantity
properties. They are bound to the Text property of three TextBox in the preceding
view. The view has GroupBox, grpBoxValidationSummary, to display the validation
errors. It has a DataTrigger to set its visibility based on the IsValid property in
the DataContext. The group box is only available when IsValid is set to false.
The actual errors are displayed using the TextBlock, tbValidationSummary, which
has a data binding with the ValidationSummary property from DataContext. The
Submit Order button is using the SubmitOrderCommand property from DataContext.
It should be an ICommand property in DataContext. Let's look at the definition of
OrderViewModel.

namespace MVVMApp_WFBasedBusinessRules.ViewModel
{
 using GalaSoft.MvvmLight;
 using GalaSoft.MvvmLight.Command;
 using MVVMApp_WFBasedBusinessRules.Model;
 class OrderViewModel : ViewModelBase
 {
 #region Private Fields

Workflow-based MVVM Applications

[316]

 OrderModel _model = new OrderModel();
 #endregion
 #region Public Properties
 string _customerName;
 public string CustomerName
 {
 get { return _customerName; }
 set
 {
 _customerName = value;
 RaisePropertyChanged("CustomerName");
 }
 }
 string _productName;
 public string ProductName
 {
 get { return _productName;}
 set
 {
 _productName = value;
 RaisePropertyChanged("ProductName");
 }
 }
 string _productQuantity;
 public string ProductQuantity
 {
 get { return _productQuantity; }
 set
 {
 _productQuantity = value;
 RaisePropertyChanged("ProductQuantity");
 }
 }
 string _validationSummary = string.Empty;
 public string ValidationSummary
 {
 get { return _validationSummary; }
 set
 {
 _validationSummary = value;
 this.RaisePropertyChanged("ValidationSummary");
 }
 }
 bool _isValid = true;

Chapter 8

[317]

 public bool IsValid
 {
 get { return _isValid; }
 private set
 {
 _isValid = value;
 RaisePropertyChanged("IsValid");
 }
 }
 #endregion
 #region Commands
 RelayCommand _submitOrderCommand;
 public RelayCommand SubmitOrderCommand
 {
 get
 {
 if (_submitOrderCommand == null)
 {
 _submitOrderCommand = new
RelayCommand(submitOrder);
 }
 return _submitOrderCommand;
 }
 }
 #endregion
 #region Private Methods
 private void submitOrder()
 {
 IsValid = true;
 _model.CustomerName = this.CustomerName;
 _model.ProductName = this.ProductName;
 _model.ProductQuantity = this.ProductQuantity;
 this.ValidationSummary = _model.Validate();
 if (this.ValidationSummary.Length > 0)
 {
 IsValid = false;
 }
 }
 #endregion
 }
}

Workflow-based MVVM Applications

[318]

SubmitOrderCommand is using the Validate method of _model for validation.
This method returns validation errors in case of validation failures. It checks if
there is any validation error returned, to set the IsValid property which would
cause DataTrigger on the view to be triggered showing the validation message
on the display. Now let's look how OrderModel uses WF-based workflow to
validate the business rule.

namespace MVVMApp_WFBasedBusinessRules.Model
{
 using System.Collections.Generic;
 using Interfaces;
 using System.Activities;
 using BusinessRulesWF;

 class OrderModel : IOrder
 {
 public string CustomerName { get; set; }
 public string ProductName { get; set; }
 public string ProductQuantity { get; set; }

 public string Validate()
 {
 string validationSummary = string.Empty;

 OrderRuleService orderRuleService =
 new OrderRuleService();

 Dictionary<string, object> arguments =
 new Dictionary<string, object>() { { "Order", this }
};

 validationSummary =
 WorkflowInvoker.Invoke(orderRuleService, arguments)
 ["ValidationSummary"].ToString();

 return validationSummary;
 }
 }
}

This is a simple model with three properties CustomerName, ProductName,
and ProductQuantity. The model is using WorkflowInvoker to execute the
OrderRuleService workflow defined in a separate BusinessRulesWF assembly.
The model implements the IOrder interface. Since we would need the same

Chapter 8

[319]

interface in the actual workflow which is defined in a separate assembly, let's
create this interface in a separate assembly, which is referenced by both assemblies
containing model and the actual workflow. This would avoid the circular reference.
Both of them are added as class library projects.

namespace Interfaces
{
 public interface IOrder
 {
 string CustomerName { get; set; }
 string ProductName { get; set; }
 string ProductQuantity { get; set; }
 }
}

.NET 4.0 allows WF workflows to be executed using WorkflowInvoker
and WorkflowApplication. WorkflowInvoker allows executing
workflow synchronously on the calling thread. For more controlled
execution of workflows WorkflowApplication is used. It executes
workflow on a separate ThreadPool thread. It also provides certain events
which can be used to get notified by calling code of the workflow execution.

Workflow-based MVVM Applications

[320]

As you can see in the definition of the Validate method of the model, the model is
passing itself as an argument to the workflow. The workflow arguments are passed
as Dictionary<string, object>. Each key/value pair would be specified with
the name of argument and the actual value to be assigned to the argument. Based
on this discussion, we can guess that the OrderRuleService workflow is expecting
an Order parameter. After adding a reference of the Interfaces assembly, we can
specify an input argument to the workflow. We also need to import the Interfaces
namespace in the individual workflow.

In order to keep the example simple, let's create a very simple workflow. This just
has one rule ValidateLegitimateCustomer, which is basically an If activity. This
rule is checking if the name of the customer matches Muhammad or Ryan. If this
is the case then it assigns the You are not allowed validation message to the return
argument ValidationSummary. Please don't ask us why they don't want to do any
business with us!

Chapter 8

[321]

Add the reference of the BusinessRulesWF project and the System.Activities
assembly to the MVVMApp_WFBasedBusinessRules project. Let's run this example.
We enter the data by providing Ryan or Muhammad in the Customer field. The
message You are not allowed is displayed in the view.

Workflow-based MVVM Applications

[322]

Handling delays in rules execution
The example discussed previously is very simple. It has the simplest workflow
in the world. In a real enterprise application, this is generally not the case.
The business rules will be complex and they will take a lot of time to execute.
WorkflowInvoke, used previously, executes the workflow in the same thread
as the calling thread. We, somehow, need to keep our application responsive
even when the rules are being executed. We need to find ways that we could
execute these workflows asynchronously so that we could keep the user interface
responsive during this execution.

Using WorkflowInvoker in background thread
The natural solution to this problem is to execute the workflow in a different
thread. However, before discussing that let's create a new activity, named
SlowOrderRuleService, as follows:

Chapter 8

[323]

The preceding workflow is similar to the workflow in the previous example, except
it has a delay activity before checking if this customer should be allowed or not. We
can keep any arbitrary delay for this example (100 seconds for this example). This is
to simulate the slow executing workflows.

The workflow is still using an instance of a type which implements IOrder as an
input argument. It has an output argument ValidationSummary of type string.
Remember that we need to import the namespace of IOrder on the Imports tab
in the workflow designer. The changes in the workflow would also need updates
in the view model and model code, so that model could invoke this workflow
asynchronously. After executing the workflow, model needs to notify the view
model about results of execution of business rules. Let's see how we are updating
the OrderModel code.

namespace MVVMApp_WFBasedBusinessRules.Model
{
 using System.Collections.Generic;
 using Interfaces;
 using System.Activities;
 using BusinessRulesWF;
 using System.Threading;
 using System.ComponentModel;

 class OrderModel : IOrder, INotifyPropertyChanged
 {
 public string CustomerName { get; set; }
 public string ProductName { get; set; }
 public string ProductQuantity { get; set; }
 string _validationSummary;
 public string ValidationSummary
 {
 get { return _validationSummary; }
 set
 {

Workflow-based MVVM Applications

[324]

 _validationSummary = value;
 RaisePropertyChanged("ValidationSummary");

 }
 }

 public void Validate()
 {
 ThreadPool.QueueUserWorkItem(
 new WaitCallback(RunValidationLogic));
 }

 public void RunValidationLogic(object stateInfo)
 {
 Dictionary<string, object> arguments =
 new Dictionary<string, object>()
 {
 { "Order", this }
 };

 ValidationSummary =
 WorkflowInvoker.Invoke(new SlowOrderRuleService(),
 arguments)["ValidationSummary"].ToString();
 }

 #region INotifyPropertyChanged implementation

 public event PropertyChangedEventHandler PropertyChanged
 = delegate { };

 private void RaisePropertyChanged(string propertyName)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }

 #endregion

 }
}

The model now implements the INotifyPropertyChanged interface. It has a
property ValidationSummary whose changes are notified to interested parties using
the PropertyChanged event. Here we are using WorkflowInvoker on a ThreadPool
thread. When the view model calls the Validate method of OrderModel, it pushes
the execution of the RunValidationLogic method to a ThreadPool thread. In this
way, the UI thread does not remain busy during the workflow execution, keeping
the UI responsive.

Chapter 8

[325]

Let's see what changes we need to make in OrderViewModel to use the updated
definition of OrderModel. The first and foremost is using the Validate method
of the model. Since it returns void now, so the validation summary assignment
can be removed.

private void submitOrder()
{
 IsValid = true;

 _model.CustomerName = CustomerName;
 _model.ProductName = ProductName;
 _model.ProductQuantity = ProductQuantity;

 _model.Validate();

}

OrderModel implements INotifyPropertyChanged. We can subscribe to the
PropertyChanged event of the model to handle the notification in its properties.

public OrderViewModel()
{
 _model.PropertyChanged +=
 new System.ComponentModel
 .PropertyChangedEventHandler(
 _model_PropertyChanged);
}

Since we are interested in only ValidationSummary, we can check if this is an update
in the said property and update our values.

void _model_PropertyChanged(object sender,
 System.ComponentModel.PropertyChangedEventArgs e)
{
 if (e.PropertyName == "ValidationSummary")
 {
 ValidationSummary = _model.ValidationSummary;
 if (ValidationSummary.Length > 0)
 {
 IsValid = false;
 }
 }
}

Workflow-based MVVM Applications

[326]

When we run the application now and click on the Submit button, it is not
blocked. The application keeps executing the workflow in the background.
After the execution is finished, it notifies the validation results. If there is a
validation failure (ValidationSummary assigned), then it is shown in the view.

Using WorkflowApplication
WorkflowApplication allows the execution of workflow on a separate background
thread. It also makes certain events available, which can be used to handle the
lifetime of workflow execution. To use WorkflowApplication, we can use all the
code from the previous example except that we need to update the definition of the
Validate method of OrderModel to use WorkflowApplication instead.

public void Validate()
{
 Dictionary<string, object> arguments =
 new Dictionary<string, object>()
 {
 { "Order", this }
 };

 WorkflowApplication workflowApp =
 new WorkflowApplication(new SlowOrderRuleService(), arguments)
 {
 Completed = (e) => {
 ValidationSummary =
 e.Outputs["ValidationSummary"].ToString();
 }
 };

 workflowApp.Run();
}

Chapter 8

[327]

In the Completed event handler, ValidationSummary is updated with the
value of Output variable of SlowOrderRuleService. This assignment would
be notified to the view model and the error message, if invalid, would be
displayed on the interface.

WF for controlling application flow
WF can also be used to control the flow of application execution. In this technique,
the view model uses WF-based workflows to control the flow of application. This
delegation results in better separation of concern by keeping the view model code
more maintainable and testable. The following diagram uses workflow directly. It is
preferable to introduce a service layer here between the view model and workflow.
This would keep us from being over dependent on the Workflow technology. This
also improves unit testability.

View Model

Workflow

The latest platform update of .NET Framework 4.0 has included some features based
on high public demand. State machine based workflow is one of them. In this section,
we would use state machines to manage the flow of our views. It can even extend to
control the flow of the whole application.

When we move to MVVM, we take many things out of view to view model.
This includes the flow of application. The controls on the view just take user input
and pass it to the view model. This has made our view models fat. They should
rather be composite by using helpers for these operations. WF state machine might
be such helper for determining the new state of the view based on user interaction
with the application.

Workflow-based MVVM Applications

[328]

In the Northwind MVVM example project, we have created a simple Order Wizard
using state machine workflows. In this example, an order is created in three steps.
These steps are as follows:

1. Enter customer information.
2. Enter employee (sales rep) information.
3. Enter order details.

The user is allowed to go back and forth between these steps using the Back and
Next buttons. A Finish button is provided at the last step to finish the order wizard.
This flow can be represented in WF4.

Chapter 8

[329]

Let's create a workflow activity in the same project and name it
OrderWizardControlFlow.xaml. We add a state machine workflow
and update it as follows:

We are passing the view model as the argument and calling certain methods of the
view model as Entry and Exit actions for these activities. For calling methods on the
view model, we can use the InvokeMethod activity in WF. We also need to import
relevant namespaces.

Workflow-based MVVM Applications

[330]

We need to assign SyncrhonizationContext to
WorkflowApplication if we need to update UI in these
methods. This makes the correct dispatcher available.

State transitions can be controlled using bookmarks. Here we have used the
following bookmarks for state transitions (T1, T2, T3, T4, and T5):

•	 EnterCustomerInformation

•	 EnterEmployeeInformation

•	 EnterOrderDetailsInformation

•	 FinishOrderWizard

In WF, a bookmark is basically a NativeActivity. A sample bookmark, used in the
NorthwindMVM project (EnterCustomerInformaiton), is as follows:

namespace Northwind.ViewModel.Workflows.Bookmarks
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Activities;

 public class EnterCustomerInformation : NativeActivity<string>
 {
 protected override bool CanInduceIdle
 {
 get
 {
 return true;
 }
 }

 protected override void Execute(NativeActivityContext context)
 {
 context.CreateBookmark("EnterCustomerInformation");
 }
 }
}

Chapter 8

[331]

The other bookmarks are defined similarly with their specified bookmark names.
A bookmark can be used as a trigger for a state transition as follows:

As soon as the workflow reaches the Bookmark activity, it executes its Execute
method which creates a bookmark. Now the workflow just pauses here until there
are instructions to move past this bookmark. These instructions can be provided
using the ResumeBookmark method of WorkflowApplication.

ViewStateController.ResumeBookmark("FinishOrderWizard", null);

Workflow-based MVVM Applications

[332]

Here ViewStateController is a WorkflowApplication instance.

Dictionary<string, object> arguments =
 new Dictionary<string, object>()
 {
 { "orderWizardViewModel", this }
 };

ViewStateController =
 new WorkflowApplication(
 new OrderWizardControlFlow(),
 arguments);

ViewStateController.SynchronizationContext =
 DispatcherSynchronizationContext.Current;

ViewStateController.Run();

Summary
WF provides an extraordinary support for defining business rules. It is advisable to
have a service layer between the workflow and the model. Application flow can also
be defined using WF using the state machine workflows. A view can be considered
as having different states; user actions cause transitioning between these states.

Validation
By Muhammad Shujaat Siddiqi

XAML technologies help us make rich applications for our customers in both web and
desktop environments, allowing for better usability than the traditional applications.
Validation is key to creating a good user experience, and having access to good
validation tools is essential for being able to quickly create robust validations in an
application. These tools should be generic enough to support various requirements
and should not have a significant effect on application responsiveness. Validation tools
should be flexible enough to allow validation issues to be communicated to users in
the most elegant way, saving users the time and effort it would take to understand
the issues with the data entered. WPF and Silverlight provide several tools to help
us define the validation in our applications. There are so many tools available, and
they have so much detail, that it is not possible to cover them all in a single chapter.
However, we will be covering the validation techniques that are best aligned
with MVVM.

Validations and dependency properties
DependencyProperty supports the validation of the value being assigned to it via
a callback method. Whenever the property value is set, the WPF and Silverlight
runtimes can call a callback to check if its value is valid. The callback method simply
needs to return true for valid or false for invalid to take advantage of this feature.
This feature is especially useful for custom controls and element adapters, which are
implemented as DependencyObject. The callback is specified at the time that the
dependency property is registered with the WPF runtime. The callback is passed as
one of the parameters to the Register static method on the DependencyProperty
class, as shown in the following code:

public static DependencyProperty Register(
 string name,

Validation

[334]

 Type propertyType,
 Type ownerType,
 PropertyMetadata typeMetadata,
 ValidateValueCallback validateValueCallback
)

Where ValidateValueCallback is as follows:

public delegate bool ValidateValueCallback(
 Object value
)

When the dependency property is set with an invalid value,
ValidateValueCallback simply returns false. Whenever the WPF runtime gets
the value false returned from a validation callback, ArgumentException will
be raised. If ValidatesOnException is set as true when the control's property
is bound, the control is set with an error template. The default error template
highlights the bound control in red. The same result can be achieved by adding
ExceptionValidationRule to binding validation rules.

Error templates
As we have discussed previously, we can notify the user of the error condition by
highlighting the particular field that failed the validation in the view. By default, the
element is highlighted with a red border. We can update this behavior by overriding
the error template. Let's revisit the example in the previous chapter to demonstrate
error templates. In that example, we had a simple order entry form where the user
could submit an order by specifying a customer, a product, and its quantity. Let's
now update OrderViewModel, as follows:

namespace MVVMApp_WFBasedBusinessRules.ViewModel
{
 using GalaSoft.MvvmLight;
 using GalaSoft.MvvmLight.Command;
 using MVVMApp_WFBasedBusinessRules.Model;

 class OrderViewModel : ViewModelBase
 {
 #region Constructors

 public OrderViewModel()
 {
 _model.PropertyChanged +=
 new System.ComponentModel

Chapter 9

[335]

 .PropertyChangedEventHandler(
 _model_PropertyChanged);
 }

 #endregion Constructors

 #region Private Fields

 OrderModel _model = new OrderModel();

 #endregion

 #region Public Properties

 string _customerName;
 public string CustomerName
 {
 get { return _customerName; }
 set
 {
 _customerName = value;
 RaisePropertyChanged("CustomerName");
 }
 }

 string _productName;
 public string ProductName
 {
 get { return _productName; }
 set
 {
 _productName = value;
 RaisePropertyChanged("ProductName");
 }
 }

 int _productQuantity;
 public int ProductQuantity
 {
 get { return _productQuantity; }
 set
 {
 _productQuantity = value;

Validation

[336]

 RaisePropertyChanged("ProductQuantity");
 }
 }

 string _validationSummary = string.Empty;
 public string ValidationSummary
 {
 get { return _validationSummary; }
 set
 {
 _validationSummary = value;
 this.RaisePropertyChanged("ValidationSummary");
 }
 }

 bool _isValid = true;
 public bool IsValid
 {
 get { return _isValid; }
 private set
 {
 _isValid = value;
 RaisePropertyChanged("IsValid");
 }
 }

 #endregion

 #region Commands

 RelayCommand _submitOrderCommand;
 public RelayCommand SubmitOrderCommand
 {
 get
 {
 if (_submitOrderCommand == null)
 {
 _submitOrderCommand =
 new RelayCommand(submitOrder);
 }

 return _submitOrderCommand;
 }

Chapter 9

[337]

 }

 #endregion

 #region Private Methods

 private void submitOrder()
 {
 IsValid = true;

 _model.CustomerName = CustomerName;
 _model.ProductName = ProductName;
 _model.ProductQuantity =
 string.Format("{0}", ProductQuantity);

 _model.Validate();

 }

 #endregion

 #region Event Handlers

 void _model_PropertyChanged(object sender,
 System.ComponentModel.PropertyChangedEventArgs e)
 {
 if (e.PropertyName == "ValidationSummary")
 {
 ValidationSummary = _model.ValidationSummary;
 if (ValidationSummary.Length > 0)
 {
 IsValid = false;
 }
 }
 }

 #endregion
 }
}

Validation

[338]

As you can see, we have updated Quantity to int. We are binding this to a textbox
in the view. Now, if a user enters something in the textbox that cannot be copied to
the Quantity field, it results in a error and the same is displayed in the view. Now,
we can run the application without any further changes and can enter the following
information. The error is denoted by highlighting the Quantity textbox in red,
as follows:

We can also change the error notification display of individual fields. In order to
do that, we can define a control template to be used as the error template. We can
do this by simply specifying the same error template for an element by using the
Validation.ErrorTemplate attached property. In the control template, we use
AdornedElementPlaceHolder to show the actual element in error. Let's update
OrderView, as follows:

<Window x:Class="MVVMApp_WFBasedBusinessRules.OrderView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MVVMApp_WFBasedBusinessRules.ViewModel"
 Title="MVVM Survival Guide" Height="300" Width="531">
 <Window.Resources>
 <ControlTemplate x:Key="ValidationErrorTemplate">
 <Border BorderBrush="Blue" BorderThickness="2">
 <AdornedElementPlaceholder />
 </Border>
 </ControlTemplate>
 </Window.Resources>
 <Window.DataContext>
 <local:OrderViewModel />
 </Window.DataContext>
 <Grid>
 <Grid.RowDefinitions>

Chapter 9

[339]

 <RowDefinition Height="38*" />
 <RowDefinition Height="32*" />
 <RowDefinition Height="30*" />
 <RowDefinition Height="161*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="108*" />
 <ColumnDefinition Width="401*" />
 </Grid.ColumnDefinitions>
 <Label Content="Customer" Height="25"
 HorizontalAlignment="Left"
 Margin="12,8,0,0" Name="lblCustomer" VerticalAlignment="Top"
 Width="93" />
 <TextBox Height="26" HorizontalAlignment="Left"
 Margin="3,10,0,0"
 Name="txtCustomer" VerticalAlignment="Top" Width="390"
 Text="{Binding CustomerName}" Grid.Column="1" />
 <Label Content="Product" Height="25"
 HorizontalAlignment="Left"
 Margin="12,1,0,0"
 Name="lblProduct" VerticalAlignment="Top" Width="93"
 Grid.Row="1" />
 <TextBox Height="26" HorizontalAlignment="Left"
 Margin="3,3,0,0"
 Name="txtProduct"
 VerticalAlignment="Top" Width="390"
 Text="{Binding ProductName}" Grid.Column="1" Grid.Row="1"
 />
 <Label Content="Quantity" Height="25"
 HorizontalAlignment="Left"
 Margin="12,0,0,0"
 Name="lblQuantity" VerticalAlignment="Top" Width="93"
 Grid.Row="2" />
 <TextBox Height="26" HorizontalAlignment="Left"
 Margin="3,2,0,0"
 Name="txtQuantity" VerticalAlignment="Top" Width="390"
 Validation.ErrorTemplate="{StaticResource
 ValidationErrorTemplate}"
 Text="{Binding ProductQuantity}" Grid.Column="1"
 Grid.Row="2" />
 <GroupBox Header="Validation Errors" Height="111"
 HorizontalAlignment="Left" Margin="3,38,0,0"
 Name="grpBoxValidationSummary" VerticalAlignment="Top"
 Width="389" Grid.Column="1" Grid.Row="3">
 <GroupBox.Style>

Validation

[340]

 <Style TargetType="{x:Type GroupBox}">
 <Setter Property="Visibility" Value="Collapsed" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding IsValid}"
 Value="false">
 <Setter Property="Visibility" Value="Visible" />
 </DataTrigger>
 <DataTrigger Binding="{Binding IsValid}" Value="true">
 <Setter Property="Visibility" Value="Collapsed" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </GroupBox.Style>
 <TextBlock Height="68" Name="tbValidationSummary"
 Text="{Binding ValidationSummary}" Width="379" />
 </GroupBox>
 <Button Content="Submit Order" Height="29"
 HorizontalAlignment="Left"
 Margin="2,3,0,0" Name="btnSubmitOrder"
 VerticalAlignment="Top"
 Width="130" Grid.Row="3"
 ="{Binding SubmitOrderCommand}" Grid.Column="1" />
 </Grid>
</Window>

If we run the application, we can verify that we get a blue border around our control
when validation fails, as shown in the image that follows. Here, we have specified the
error template on an individual text box. This might be a reasonable approach if we
use different error templates for different instances of the same element. If we have to
use the same error template, we can specify ValidationErrorTemplate in a style in
a more centralized scope than the individual elements. If we just remove the changes
in the view from the previous XAML and update App.xaml as follows, we can achieve
the same result. In the style, we have also added a trigger to show the first error
message in the tool tip of the textbox, if there is any issue with the entered data.

<Application x:Class="MVVMApp_WFBasedBusinessRules.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 xmlns:vm="clr-namespace:MVVMApp_WFBasedBusinessRules.ViewModel"
 StartupUri="OrderView.xaml"
 mc:Ignorable="d">
 <Application.Resources>

Chapter 9

[341]

 <!--Global View Model Locator-->
 <vm:ViewModelLocator x:Key="Locator"
 d:IsDataSource="True"
 <ControlTemplate x:Key="ValidationErrorTemplate">
 <Border BorderBrush="Blue" BorderThickness="2">
 <AdornedElementPlaceholder />
 </Border>
 </ControlTemplate>
 <Style TargetType="TextBox">
 <Style.Setters>
 <Setter Property="Validation.ErrorTemplate"
 Value="{StaticResource ValidationErrorTemplate}" />
 </Style.Setters>
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="true">
 <Setter Property="ToolTip">
 <Setter.Value>
 <Binding
 RelativeSource="{x:Static RelativeSource.Self}"
 Path="(Validation.Errors)[0].ErrorContent" />
 </Setter.Value>
 </Setter>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Application.Resources>
</Application>

Validation

[342]

Validation in MVVM-based applications
As mentioned in the introduction to this chapter, we have a lot of validation options
to choose from in XAML-based technologies. Let's now take a look at the options that
are best suited for use in MVVM applications.

Validation rules
This is the simplest and most commonly used validation technique. A WPF binding
can be associated with a number of custom validation rules, each subclassed from
ValidationRule. There are only two validation rules provided as part of the
library: DataErrorValidationRule and ExceptionValidationRule.

Using validation rules
We can define additional custom validation rules by inheriting from
ValidationRule. We can add them to the ValidationRules collection for a binding,
as follows:

<TextBox Height="26" HorizontalAlignment="Left"
 Margin="3,2,0,0" VerticalAlignment="Top" Width="390"
 Grid.Column="1" Grid.Row="2" >
 <TextBox.Text>
 <Binding Path="ProductQuantity" >
 <Binding.ValidationRules>
 <validators:MaxDigitValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

Here, validators is the alias for the namespace where we have defined the
MaxDigitValidationRule class, as follows:

xmlns:validators=
 "clr-namespace:MVVMApp_WFBasedBusinessRules.ValidationRules"

The definition of MaxDigitValidationRule is simple enough, as we just need to
validate that the data entered does not exceed more than a specified length (two
digits), and that it doesn't start with a zero. If validation fails, we need to return
validation errors specifying the validation issue. Since we have already defined the
first error message that appears in the tool tip of the textbox, if the control shows an
error, we can hover over the Quantity text box to get details about the validation issue.

Chapter 9

[343]

namespace MVVMApp_WFBasedBusinessRules.ValidationRules
{
 using System.Windows.Controls;
 using System.Globalization;
 using System.Text.RegularExpressions;

 public class MaxDigitValidationRule : ValidationRule
 {
 public override ValidationResult
 Validate(object value, CultureInfo cultureInfo)
 {
 ValidationResult validationResult =
 ValidationResult.ValidResult;

 string val = string.Format("{0}", value);
 if (!Regex.IsMatch(val, "^[1-9]{1}[0-9]{0,1}$"))
 {
 validationResult =
 new ValidationResult(false,
 string.Format(
 "Invalid Quantity : {0}", val));

 }

 return validationResult;
 }
 }
}

Validation

[344]

Specializing validation rules—supporting
parameters
XAML technologies are quite flexible in passing parameters to converters and
commands. Curious developers, like you, might be interested to know whether we
can pass parameters to validation rules, allowing us to make the validation rules
aware of the other fields. The answer is that we can, and we can even pass the whole
data context as the parameter, if that makes sense for the scenario. This ability can
help us to write more generic validation rules. In the previous example, we could
write a generic rule to validate the number of digits specified by the parameter. Let's
now take a look at how we can pass parameters to the validation rules.

System.Windows.Controls.ValidationRule is not a sealed class; on the contrary,
it is an abstract class that we need to inherit from, to define validation rules. We do
this by providing a definition for the Validate method. In our ValidationRule
derived class, we can define other properties to use during validation processing.
For example, in the following validation rule , we are adding the MaxDigit property
and using it in the Validate method, to make our validation rule more generic:

namespace MVVMApp_WFBasedBusinessRules.ValidationRules
{
 using System.Windows.Controls;
 using System.Globalization;
 using System.Text.RegularExpressions;
 using System.Text;

 public class MaxDigitValidationRule : ValidationRule
 {
 public int MaxDigits { get; set; }

 public override ValidationResult
 Validate(object value, CultureInfo cultureInfo)
 {
 ValidationResult validationResult =
 ValidationResult.ValidResult;

 string val = string.Format("{0}", value);

 StringBuilder patternBuilder =
 new StringBuilder("^[1-9]{1}[0-9]{0,");
 patternBuilder.Append(MaxDigits - 1);
 patternBuilder.Append("}$");

 if (!Regex.IsMatch(val, patternBuilder.ToString()))

Chapter 9

[345]

 {
 validationResult =
 new ValidationResult(false,
 string.Format(
 "Invalid Quantity : {0}", val));

 }

 return validationResult;
 }
 }
}

Now, we can simply assign a value to our MaxDigit property in XAML to configure
the behavior of MaxDigitValidationRule. The following definition would allow
users to add up to three digits before seeing a validation error:

<TextBox Height="26" HorizontalAlignment="Left"
 Margin="3,2,0,0" Name="txtQuantity"
 VerticalAlignment="Top" Width="390"
 Grid.Column="1" Grid.Row="2" >
 <TextBox.Text>
 <Binding Path="ProductQuantity" >
 <Binding.ValidationRules>
 <validators:MaxDigitValidationRule MaxDigits="3" />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

In the previous example, validators is an alias for the namespace of our
validation rules.

xmlns:validators=
 "clr-namespace:MVVMApp_WFBasedBusinessRules.ValidationRules"

Validation rules and converters
For the same field in the view, we can define both converter and validation rules. It
is interesting to know the order in which each is applied, and it would be interesting
to know how to control the order in which they are applied. The ValidationStep
property of ValidationRule is used to exercise control over when the rule is applied.

Validation

[346]

The possible values of ValidationStep are as follows:

•	 ConvertedProposedValue

•	 CommittedValue

•	 RawProposedValue

•	 UpdatedValue

In the following code, we are assigning ConvertedProposedValue as a value to
ValidationStep. This will result in our validation firing after any conversion that
happens before the value is assigned to the binding source property.

<TextBox Height="26" HorizontalAlignment="Left"
 Margin="3,2,0,0" Name="txtQuantity"
 VerticalAlignment="Top" Width="390"
 Grid.Column="1" Grid.Row="2" >
 <TextBox.Text>
 <Binding Path="ProductQuantity"
 Converter="{StaticResource productConverter}" >
 <Binding.ValidationRules>
 <validators:MaxDigitValidationRule
 MaxDigits="3"
 ValidationStep="ConvertedProposedValue" />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

Let's look at the definition of the converter.

namespace MVVMApp_WFBasedBusinessRules.Converters
{
 using System;
 using System.Windows.Data;

 public class ProductQuantityConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter,
 System.Globalization.CultureInfo culture)
 {
 return value;
 }

 [System.Diagnostics.DebuggerStepThrough]
 public object ConvertBack(object value, Type targetType,

Chapter 9

[347]

 object parameter,
 System.Globalization.CultureInfo culture)
 {
 string val = string.Format("{0}", value);

 int numValue = 0;
 if (!Int32.TryParse(val, out numValue))
 {
 val = val.ToUpper();

 switch (val)
 {
 case "ONE":
 numValue = 1;
 break;
 case "TWO":
 numValue = 2;
 break;
 case "THREE":
 numValue = 3;
 break;
 case "FOUR":
 numValue = 4;
 break;
 case "FIVE":
 numValue = 5;
 break;
 case "SIX":
 numValue = 6;
 break;
 case "SEVEN":
 numValue = 7;
 break;
 case "EIGHT":
 numValue = 8;
 break;
 case "NINE":
 numValue = 9;
 break;
 case "TEN":
 numValue = 10;
 break;
 }
 }

Validation

[348]

 return numValue == 0? value : numValue;
 }
 }
}

Since the default value of UpdateSourceTrigger is LostFocus, as we move the focus
away from the Quantity field, the converter and validation rule come into action. Since
we have set ConvertedProposedValue as the value of the ValidationStep property,
the converter is first used by the binding system converting Eight to 8, and then
ValidationRule is used to validated the converted value. In our case, the value passes
the validation criterion and the field is not highlighted, allowing the form to show the
converted value. The value is then copied to the binding source property.

Since the binding source property is updated with the converted value, the same is
updated on the binding target, that is, the Text property of the Quantity text box.
The user should see the following view:

Chapter 9

[349]

If the user enters an unexpected value, they will be notified that the value is invalid,
with a blue border and tooltip, as follows:

Here, we have used a scalar value with a parameter (MaxDigit)
defined for ValidationRule. What if we want to pass a value from
DataContext? Passing a value from DataContent is not an easy
task. Since the target of our binding must be DependencyProperty,
MaxDigits also needs DependencyProperty. However,
MaxDigitValidationRule already inherits from ValidationRule
and cannot inherit from DependencyObject to define
DependencyProperty. We could get around this by using an attached
behavior, but this would also require the instance of ValidationRule
to be declared public, so that the attached behavior could pass on the
updates from the binding source property to it. We could even pass
DataContext to ValidationRule and use any property we desire for
validation. However, the perceived gains from this approach can also be
obtained from easier alternatives, so this should generally be avoided.

Validation mechanism in WPF and Silverlight
Validation logic is executed when the runtime copies values entered in the view to
binding source properties. However, we have the flexibility to control this behavior.
It can be controlled using the UpdateSourceTriggers property on the binding.
The possible values are as follows:

•	 LostFocus: When the control loses focus.
•	 PropertyChanged: Any change in the property value is propagated to the

bound property in the view model. This passes through the converter and
validation rules before this.

•	 Explicit: When UpdateSource is called on binding.

Validation

[350]

Before a bound value is copied to the source property in the view model, the runtime
runs all the validation rules for that binding. If any of the validation rules fails, we
have an opportunity to notify the user.

It should be noted that more than one validation rule can be added to
the ValidationRules collection of the binding and that the rules are
executed based on their ValidationStep property. The validation
rules, which have the same value for ValidationStep, are executed in
the same order that they have been added to the collection. During this
execution, if one of the validation rules fails, the binding sytem executes
no further validation rules. Validation rules can also be added to a group
of fields along with BindingGroup.

IDataErrorInfo
XAML technologies are a relatively a recent introduction to the enterprise toolbox.
Companies have invested a lot of time in developing frameworks and toolkits to be
used in their development environments, for validations, and it would be frustrating
for them to have to throw all that code out. Because of this, Microsoft chose to leverage
IDataErrorInfo in WPF and Silverlight, for validations. When using MVVM, our
view models can implement IDataErrorInfo to validate their view state.

IDataErrorInfo was first introduced in .NET framework 1.x, in the System.
ComponentModel namespace in the system assembly. Since then, many
component writers have used it to provide validation support. By reusing this
existing interface, these types can easily be integrated into XAML applications.
In your scenario, you might find that your domain models already implement
IDataErrorInfo. If this were the case, then both the model and the view model
would implement IDataErrorInfo, and that is perfectly fine. This is similar to
INotifyPropertyChanged, and as we have seen numerous times, it often makes
sense to implement this interface in both the model and view model, especially
when using the aggregated model approach.

The IDataErrorInfo declaration is as follows:

public interface IDataErrorInfo
{
 string this[string columnName] { get; }
 string Error { get; }
}

Chapter 9

[351]

The indexer override takes a string argument, which is the name of the property to
validate, and returns an error message if the validation fails. The Error property also
returns an error message, but this error message is for the whole object's state and
not a single property. Both can return an empty/null string to allow processing to
continue, if there is no error. The indexer code is executed by the runtime for changes
in each data-bound property. It is also accessed when this property is first displayed.
Because of this validation, logic should be implemented in a way that allows the UI
to remain responsive.

Validation rules are a great way to implement validation of the data entered by the
user in simple scenarios. But, since validation rules only have access to the value
entered by the system, they cannot be used beyond the simple data entry rules, such
as checking for invalid characters and range validations. If we need to validate more
complex rules that involve other property values from our data context, or want to
delegate to a validation framework that utilizes other members of the session state,
we will need to take advantage of IDataErrorInfo.

Let's see this in action now, by creating a new WPF MVVM light project—
MVVMAppIDataErrorInfo.

Validation

[352]

We will use the same error template to be used for text boxes in this application. This
style highlights controls with blue borders when the bound property is considered
invalid. It also shows the first error message in the tooltip if the bound data is in
error. Add the following code snippet to App.xaml:

<ControlTemplate x:Key="ValidationErrorTemplate">
 <Border BorderBrush="Blue" BorderThickness="2">
 <AdornedElementPlaceholder />
 </Border>
</ControlTemplate>
<Style TargetType="TextBox">
 <Style.Setters>
 <Setter Property="Validation.ErrorTemplate"
 Value="{StaticResource ValidationErrorTemplate}" />
 </Style.Setters>
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="true">
 <Setter Property="ToolTip">
 <Setter.Value>
 <Binding
 RelativeSource="{x:Static RelativeSource.
Self}"
 Path="(Validation.Errors)[0].ErrorContent" />
 </Setter.Value>
 </Setter>

 </Trigger>
 </Style.Triggers>
</Style>

We are going to look at a sample view that allows entering information about the
running hours of a piece of equipment. This plant maintenance system needs to
record and execute a preventive maintenance schedule on the shop floor equipment.
These schedules are due after a piece of equipment has run for a certain number of
hours. The following view allows us to record the running hours. It's a contrived
example and only tracks information about the equipment and number of hours it
has been run for, but it allows us to explore these validation concepts. It also allows
us to record the equipment operator's and shift supervisor's names.

Chapter 9

[353]

This view can be defined in XAML, as follows:

<Window
 x:Class="MVVMAppIDataErrorInfo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Height="364"
 Width="515"
 Title="MVVM Survival Guide"
 DataContext="{Binding Main, Source={StaticResource Locator}}">

 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>

 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />

Validation

[354]

 </Grid.RowDefinitions>
 <Grid Grid.Row="0" Background="Navy">
 <TextBlock FontSize="24"
 FontWeight="Bold"
 Foreground="White"
 Text="Equipment Running Hours"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 TextWrapping="Wrap" />
 </Grid>
 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 </Grid.RowDefinitions>
 <Label Content="Equipment" Grid.Column="0" Grid.Row="0"
 Margin="5,5,5,5"/>
 <TextBox Text="{Binding Equipment,
ValidatesOnDataErrors=True}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="0" />
 <Label Content="Running Hours" Grid.Column="0" Grid.
Row="1"
 Margin="5,5,5,5"/>
 <TextBox Margin="5,5,5,5" Grid.Column="1" Grid.Row="1">
 <TextBox.Text>
 <Binding Path="RunningHours">
 <Binding.ValidationRules>
 <DataErrorValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
 </TextBox>
 <Label Content="Operator" Grid.Column="0" Grid.Row="2"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding EquipmentOperator,
ValidatesOnDataErrors=True}"

Chapter 9

[355]

 Margin="5,5,5,5" Grid.Column="1" Grid.Row="2" />
 <Label Content="Supervisor" Grid.Column="0" Grid.Row="3"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding ShiftSupervisor,
ValidatesOnDataErrors=True}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="3" />
 <Button Content="Log Running Hours" Grid.Row="4"
 Margin="5,5,5,5" Grid.Column="1"
 HorizontalAlignment="Left" Padding="4,4,4,4"
 Command="{Binding LogRunningHoursCommand}"/>
 </Grid>
 <Grid Grid.Row="2" >
 <TextBlock Text="{Binding Error}"
 Margin="5,5,5,5"
 TextWrapping="Wrap"/>
 </Grid>
 </Grid>
</Window>

Like any MVVM light application, by default, the view model is constructed using
the view model locator. As you can see from the bindings in this view, the view
model needs to expose four properties:

•	 Equipment

•	 RunningHours

•	 EquipmentOperator

•	 ShiftSupervisor

The button's Command property is bound to the LogRunningHoursCommand
property on the data context, which is a property based on ICommand. Also note the
ValidatesOnDataError configuration of the binding. This is a short-cut method for
specifying DataErrorValidationRule. You can also explicitly add ValidationRules
to the bindings, as we did for RunningHours. Specifying DataErrorValidationRule
is a way of asking the binding system to use the IDataErrorInfo implementation in
data context, for validation.

namespace MVVMAppIDataErrorInfo.ViewModel
{
 using GalaSoft.MvvmLight;
 using System.ComponentModel;
 using GalaSoft.MvvmLight.Command;
 using System.Windows.Input;

Validation

[356]

 public class MainViewModel
 : ViewModelBase, IDataErrorInfo
 {
 #region Properties

 string _equipment = string.Empty;
 public string Equipment
 {
 get { return _equipment; }
 set
 {
 if (_equipment != value)
 {
 _equipment = value;
 RaisePropertyChanged("Equipment");
 }
 }
 }

 string _runningHours = string.Empty;
 public string RunningHours
 {
 get { return _runningHours; }
 set
 {
 if (_runningHours != value)
 {
 _runningHours = value;
 RaisePropertyChanged("RunningHours");
 }
 }
 }

 string _equipmentOperator = string.Empty;
 public string EquipmentOperator
 {
 get { return _equipmentOperator; }
 set
 {
 if (_equipmentOperator != value)
 {
 _equipmentOperator = value;
 RaisePropertyChanged("EquipmentOperator");
 }

Chapter 9

[357]

 }
 }

 string _shiftSupervisor = string.Empty;
 public string ShiftSupervisor
 {
 get { return _shiftSupervisor; }
 set
 {
 if (_shiftSupervisor != value)
 {
 _shiftSupervisor = value;
 RaisePropertyChanged("ShiftSupervisor");
 }
 }
 }

 ICommand _logRunningHoursCommand = null;
 public ICommand LogRunningHoursCommand
 {
 get
 {
 if (_logRunningHoursCommand == null)
 {
 _logRunningHoursCommand =
 new RelayCommand(
 () =>
 {
 //Notify user if invalid
 //otherwise submit the data
 //entered by user
 });
 }

 return _logRunningHoursCommand;
 }
 }
 #endregion

 #region IDataErrorInfo implementation

 public string Error
 {
 get { return null; }
 }

 public string this[string columnName]

Validation

[358]

 {
 get
 {
 string errorMessage = null;
 object propertyValue =
 this.GetType()
 .GetProperty(columnName)
 .GetValue(this, null);

 if (propertyValue == null ||
 propertyValue.ToString()
 .Trim()
 .Equals(string.Empty))
 {
 errorMessage =
 string.Format("{0} is required. ",
 columnName);
 }

 return errorMessage;
 }
 }

 #endregion

 }
}

MainViewModel implements IDataErrorInfo, exposing the Error property and a
string-based indexer. As we mentioned previously, the indexer will be called by the
runtime, which will pass a property name as an argument to fire the validation logic
and get any validation errors. The logic of the indexer will validate the property in
the code block of the indexer's getter, allowing us to delegate to external validation
libraries, if desired. After validation, a validation error message will be returned if
the value fails our validation rules. In the previous view model, we take advantage
of reflection to get the property of the view model with the property name being
passed. As a validation rule for all the properties of the view model, we then check
whether the value is either a null or an empty string. This allows us to invalidate our
view, if any field is not populated with data. When we run our application and enter
data in the fields, the indexer is called by the runtime, each time we change focus in
our view. This is because, just as a regular validation rule, IDataErrorInfo depends
on the UpdateSourceTrigger property of the binding. If you run the application,
you will see that invalid entries in any of the fields will result in a blue border and a
tooltip being displayed, as follows:

Chapter 9

[359]

Validation states
If you have tried running this example, you might have noticed that the application is
loaded with all the fields highlighted, showing all the fields in error when the view is
first displayed. This would likely be irritating for our application users, and we'd want
to be able to control this behavior. As we previously discussed, the indexer is accessed
whenever a data-bound property is updated. Validation rules also fire when the view
is first loaded, and that is why we see this behavior. Since the default view model
property values are empty strings for all of our properties, they are considered invalid
by our validation rules, and we get blue borders and tooltips as follows:

Validation

[360]

This issue can be mitigated by defining the different states of the view and applying
different validation rules, depending on the current state. In this case, the empty
values are definitely valid for the initial state when the form is loaded, but are
invalid when the data is being committed. We can update our state when a user
clicks on the Log Running Hours button, and since we need to re-evaluate the
validation logic for each property value, we can raise the PropertyChanged event for
each property. This will cause the indexer to be accessed for each property, resulting
in re-evaluation of validation logic. Let's introduce an enumeration StateOfView, for
this purpose, with two possible values: Initial and Updated.

This concept can also used to define validation states based on the
scenarios or user profiles. An enterprise application might need the same
view under different scenarios, and the validation requirements can be
different for these scenarios. Having alternatives to define validation
based on the scenario or user profile can make life as an enterprise
application architect a lot easier.

namespace MVVMAppIDataErrorInfo
{
 public enum StateOfView
 {
 Initial,
 Updated
 }
}

Let's add a field in the view model _state of the StateOfView enumeration type.
We will also add a private method to update the value of _state. As the value is
updated, the view needs to be notified to rerun the validation for all data-bound
controls and this is why we will raise PropertyChange for all our properties, when
_state changes. Add the following code to the view model.

Another approach we could take would be to define a notification-based
public property for state. We could then multi-bind each text box to its
data property and also to the State property. For example, instead of
binding the Equipment property to the Text property of the text box,
we would multi-bind to both the Equipment and the State property.
This would require us to also implement a converter. We are not going
to cover the details here, but you can explore this option on your own, if
the need arises.

Chapter 9

[361]

#region Private Methods

private void RaisePropertyChanges()
{
 RaisePropertyChanged("Equipment");
 RaisePropertyChanged("RunningHours");
 RaisePropertyChanged("EquipmentOperator");
 RaisePropertyChanged("ShiftSupervisor");
}

private void UpdateState(StateOfView state)
{
 _state = state;
 RaisePropertyChanges();
}
#endregion

#region Private Fields

private StateOfView _state;

#endregion

Finally, let's update the code for the Execute method, to call the UpdateState()
method. This would change the value of _state to Updated and call
PropertyChanged for all data-bound properties. When the runtime receives a
PropertyChanged event for a property, it uses the IDataErrorInfo indexer to
validate the value, resulting in invalid controls being highlighted.

ICommand _logRunningHoursCommand = null;
public ICommand LogRunningHoursCommand
{
 get
 {
 if (_logRunningHoursCommand == null)
 {
 _logRunningHoursCommand = new RelayCommand(
 () =>
 {
 UpdateState(StateOfView.Updated);
 });
 }

 return _logRunningHoursCommand;
 }
}

Validation

[362]

We also need to update the indexer code, so that the empty values are just checked
for the Updated state of the view.

public string this[string columnName]
{
 get
 {
 string errorMessage = null;

 if (_state == StateOfView.Updated)
 {
 object propertyValue =
 this.GetType()
 .GetProperty(columnName)
 .GetValue(this, null);

 if (propertyValue == null ||
 propertyValue.ToString()
 .Trim()
 .Equals(string.Empty))
 {
 errorMessage =
 string.Format("{0} is required. ",
 columnName);
 }
 }

 return errorMessage;
 }
}

Now when we run the application, the view is loaded without highlighting any
controls, as follows:

Chapter 9

[363]

However, clicking on the Log Running Hours button will change the state in our
view model, causing validation rules to fire and resulting in highlighted controls,
as follows:

It would be better to disable the button until the form
is valid, in a real-world application.

Providing a summary validation error
In the previous example, we have shown the error messages in the tooltip of the
individual controls. Now, let's look at showing a consolidated error message to the
user when they click on the Log Running Hours button. We can show the validation
errors in a dialog box, have them inline in the view itself, or however else we want
to. In the definition of the previous view, you may have noticed the declaration of
a text block at the bottom. This text block is data-bound to the Error property of
the data context. The implementation of getter for the Error property is a part of
the contract of IDataErrorInfo, and if we don't need to show a consolidated error
message, we can just return null in the getter, as we have been doing. However, let's
now look at providing a consolidated error message.

Let's first add a new type to the project, to hold the information about error
messages for each property in the view model. Let's name this type
ValidationError. It has two properties—PropertyName and ErrorMessage.
Both are strings and are defined to hold the property name and related error
message, for each property in the view model.

 namespace MVVMAppIDataErrorInfo
{
 public class ValidationError

Validation

[364]

 {
 public string PropertyName { get; set; }
 public string ErrorMessage { get; set; }
 }
}

Next, add a collection in the view model to hold the error messages for each
individual property. Let's name this property ValidationMessages and make it an
observable collection. Each member of the collection is of the type ValidationError,
as defined previously. Next, we will add members to the collection to hold the error
messages for each property that is not valid. The last item added to the collection will
hold generic error messages that apply to the whole object.

ObservableCollection<ValidationError> _validationMessages;
ObservableCollection<ValidationError> ValidationMessages
{
 get
 {
 if (_validationMessages == null)
 {
 _validationMessages =
new ObservableCollection<ValidationError>()
 {
 new ValidationError()
 {PropertyName = "Equipment"},
 new ValidationError()
 {PropertyName = "RunningHours"},
 new ValidationError()
 {PropertyName = "EquipmentOperator"},
 new ValidationError()
 {PropertyName = "ShiftSupervisor"},
 new ValidationError()
 {PropertyName = "Generic"},
 };
 }

 return _validationMessages ;
 }
}

Chapter 9

[365]

Now, we need to update the IDataErrorInfo indexer to update the corresponding
member of our collection when the validation state of a property changes (also add
the System.Linq namespace).

public string this[string columnName]
{
 get
 {
 string errorMessage = null;

 if (_state == StateOfView.Updated)
 {
 object propertyValue =
 this.GetType()
 .GetProperty(columnName)
 .GetValue(this, null);

 if (propertyValue == null ||
 propertyValue.ToString()
 .Trim()
 .Equals(string.Empty))
 {
 errorMessage =
 string.Format("{0} is required. ",
 columnName);
 }
 }

 ValidationMessages
 .Where<ValidationError>(e => e.PropertyName == columnName)
 .First<ValidationError>().ErrorMessage = errorMessage;

 return errorMessage;
 }
}

As discussed previously, the IDataErrorInfo definition only requires implementers
to implement a getter for the Error property. However, if we are binding Error
to the view, we need to notify the view about the updates in the Error properties
values, and we must also define a setter. In the setter we will raise PropertyChanged
notifications, so that our controls are updated to show the error message.

string _error = string.Empty;
public string Error
{
 get
 {

Validation

[366]

 return _error;
 }
 set
 {
 _error = value;
 RaisePropertyChanged("Error");
 }
}

Next, we need to update Error when the user clicks on the Log Running Hours
button. In order to do that, we will update the Execute method of the related
ICommand property. If there are no error messages, we will go ahead and register the
running hours of the equipment, otherwise the user will be shown a detailed error
message with all the validation errors.

public ICommand LogRunningHoursCommand
{
 get
 {
 if (_logRunningHoursCommand == null)
 {
 _logRunningHoursCommand = new RelayCommand(
 () =>
 {
 UpdateState(StateOfView.Updated);

 Error = string.Join("",
 ValidationMessages
 .Select<ValidationError, string>
 (e => e.ErrorMessage)
 .ToArray<string>());

 if (!string.IsNullOrEmpty(Error))
 {
 //log running hours
 }
 });
 }

 return _logRunningHoursCommand;
 }
}

Chapter 9

[367]

Now, let's run the application. Since the view is in the initial state, there are no
validation issues, and it is loaded as follows:

Clicking on the Log Running Hours button changes our state to Updated. This
will generate change notifications for all the properties in the view model, causing
validation logic to fire the indexer for each of the properties. Since all fields are empty,
they are all considered invalid, and the control is marked as being in an invalid state.
Next, the corresponding error message is set in the ValidationMessages collection.
Now, in the Execute method, we are just consolidating the error messages for all the
properties in the Error property. Since Error supports change notifications through
the PropertyChanged event of INotifyPropertyChanged, the related text block is
updated with the error message, as follows:

Validation

[368]

Unlike ValidationRule, since all the validations are defined in the scope of the
view model body, we can make use of other properties in the view model to perform
complex validations.

Let's examine this in more detail, by defining a new complex validation rule that
requires further checking of the property in our view model. We will require that the
operator and supervisor be different persons. In order to validate the value of either
field, we must look at the value of both.

public string this[string columnName]
{
 get
 {
 string errorMessage = null;
 string propertyName = columnName;

 if (_state == StateOfView.Updated)
 {
 object propertyValue =
 this.GetType()
 .GetProperty(propertyName)
 .GetValue(this, null);

 if (propertyValue == null ||
 propertyValue.ToString()
 .Trim()
 .Equals(string.Empty))
 {
 errorMessage =
 string.Format("{0} is required. ",
 propertyName);
 }
 }

 switch (columnName)
 {
 case "EquipmentOperator":
 case "ShiftSupervisor":
 if (!EquipmentOperator.Equals(string.Empty) &&
 EquipmentOperator.Equals(ShiftSupervisor))
 {
 errorMessage =
 "Equipment operator and Shift Supervisor must be
different. ";
 }

Chapter 9

[369]

 propertyName = "Generic";

 break;
 }

 ValidationMessages
 .Where<ValidationError>(e => e.PropertyName ==
propertyName)
 .First<ValidationError>().ErrorMessage = errorMessage;

 return errorMessage;
 }
}

As you can see, this validation is not limited to the Updated state of the system. This
would be executed for all the states. Since we are explicitly checking for the null value
of the EquipmentOperator property, no related controls are considered invalid in the
initial state of the system.

Let's run our application again and enter some invalid information to test our
code. In the following screenshot, we have first entered Muhammad for the Operator
followed by the same entry in the Supervisor field. Both are highlighted if we
click on the button. Since the error message is copied to the ValidationMessages
collection with propertyName = "Generic", the error message is shown only once.

Validation

[370]

When we click on the Log Running Hours button, both fields are considered invalid
and are highlighted.

The validation logic determines that this is the same entry as in the Operator field,
so it should consider the value entered in the Supervisor field as invalid. If we
had entered the data first in the Supervisor field followed by the same entry in the
Operator field, the latter would have been highlighted as follows:

There is still one issue with this implementation. If the user enters the information
and enters Ryan in both the Operator and in the Supervisor fields, as soon as the
control leaves the Supervisor field, it is highlighted to indicate that it is in an invalid
state. Now, if the user realizes that he/she actually wanted the employee to be
Muhammad and then updates the Operator field correcting the mistake, the Supervisor
field will still be shown invalid, as follows:

Chapter 9

[371]

If the user clicks on the Log Running Hours button, the validation errors will be
cleared, but this is awkward at best and is not desired.

Invalidating multiple fields
Another thing that we might need to do is to highlight multiple, related fields when
our form has invalid data. In the current example, we might need to highlight both
the Supervisor and the Operator fields when their values match. This seems difficult
as the runtime just calls the indexer for the field being updated, but it's actually an
easy scenario to handle. Updating the data entered in the Operator field will execute
the validation logic for the operator and add operator error messages to the Error
property. But, the view won't get the notification to update the error state of the
Supervisor field and will keep it highlighted.

Validation

[372]

In order to update the error state of the Supervisor field, we need to cause the indexer
logic to be executed for the Supervisor field when this happens. We can easily do
this by raising the PropertyChanged event for both the EquipmentOperator and the
ShiftSupervisor properties when either is updated.

string _equipmentOperator = string.Empty;
public string EquipmentOperator
{
 get { return _equipmentOperator; }
 set
 {
 if (_equipmentOperator != value)
 {
 _equipmentOperator = value;
 RaisePropertyChanged("EquipmentOperator");
 RaisePropertyChanged("ShiftSupervisor");
 }
 }
}

string _shiftSupervisor = string.Empty;
public string ShiftSupervisor
{
 get { return _shiftSupervisor; }
 set
 {
 if (_shiftSupervisor != value)
 {
 _shiftSupervisor = value;
 RaisePropertyChanged("ShiftSupervisor");
 RaisePropertyChanged("EquipmentOperator");
 }
 }
}

Now, when we run the application and enter the same data for these two fields, both
the fields will be highlighted and have their tooltip set to show an error message.
Clicking on the Log Running Hours button will show the related error message in
the view.

Chapter 9

[373]

As soon as we update any of our fields and change the focus, both the fields will
change their error state. Additionally, clicking on the Log Running Hours button
will clear the error message in the view.

Validation

[374]

Limitations and gotchas
However, IDataErrorInfo has its own limitations and things that we need to
consider when using it; the following list is worth keeping in mind:

•	 IDataErrorInfo provides an indexer for validation that is executed
whenever the value of any property is changed. This happens on the UI
thread, and so if the validation logic is slow, the UI will be unresponsive
during validation processing. There is no way to fire IDataErrorInfo
asynchronously, which makes IDataErrorInfo a difficult choice when we
have long-running validation logic for various business rules.

•	 As we saw, for complex validation rules that involve more than one field,
we must raise PropertyChanged to be able to notify the view that validation
needs to be fired. This is less than ideal as our validation logic will be
executed twice.

•	 The Error property of IDataErrorInfo and indexer allow for returning
only a single error. If there is more than one validation issue, our best option
is to build up a consolidated validation error and return it.

•	 As we discussed previously, in order to use the IDataErrorInfo support
for executing the validation logic, we must use DataErrorValidationRule
directly or set the ValidationOnDataError property to true. Since
DataErrorValidationRule is a specialized validation rule, it seems
tempting to use ValidationStep in order to get more control over the
validation timing. However, this won't work. This is because the only way to
access a field is through a property on our view model, and we can't access
these values before they are passed through the converters. For this reason,
we can't set RawProposedValue or ConvertedProposedValue; the default
is UpdatedValue. We still can set it as CommittedValue, if we want all
validation rules with UpdatedValue to finish execution before this.

INotifyDataErrorInfo
Silverlight introduced a new interface as an alternative to IDataErrorInfo. This
interface is INotifyDataErrorInfo. It is available in the System.ComponentModel
namespace in the System.Windows assembly. Backed by popular developer demand,
this has also been included in .NET framework 4.5 Developers Preview.

public interface INotifyDataErrorInfo
{
 bool HasErrors { get; }
 event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;
 IEnumerable GetErrors(string propertyName);
}

Chapter 9

[375]

Compared to IDataErrorInfo, this interface allows us to return more than one error
message for a property. The framework calls GetErrors to get the validation errors
associated with a property with the name passed as an argument. This is called by
the framework when it handles the ErrorChanged event for the specified property.
This makes it independent of the property change notifications. This also allows
for asynchronous validation. When the property value is updated, we can start
the validation in a background thread. Now, if the validation fails, we can raise the
ErrorsChanged event for the property. Now, GetErrors should have access to those
validation errors, so that they can be returned as IEnumerable. This asynchronous
support improves the responsiveness of the application. This also keeps us
from raising unnecessary PropertyChanged events when we just want to notify
FrameworkElement about updates in the validation status of a property.

Let's create a new MVM Silverlight project named MVVMAppNotifyDataErrorInfo.
Make sure that Silverlight version 4 is selected for the project. This can be updated
on the property page of a Silverlight project. Add a reference System.Windows.
Controls.Data.Input.dll to the assembly. This is for the Label used in this example.

<UserControl
 x:Class="MVVMAppINotifyDataErrorInfo.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/
presentation/sdk"
 mc:Ignorable="d"
 Height="364" Width="515"
 DataContext="{Binding Main, Source={StaticResource Locator}}">

 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

Validation

[376]

 <Grid Grid.Row="0" Background="Navy">
 <TextBlock FontSize="24"
 FontWeight="Bold"
 Foreground="White"
 Text="Equipment Running Hours"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 TextWrapping="Wrap" />
 </Grid>

 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 </Grid.RowDefinitions>
 <sdk:Label Content="Equipment" Grid.Column="0" Grid.
Row="0"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding Equipment,
 ValidatesOnNotifyDataErrors=True,
 Mode=TwoWay}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="0" />
 <sdk:Label Content="Running Hours" Grid.Column="0" Grid.
Row="1"
 Margin="5,5,5,5"/>
 <TextBox Margin="5,5,5,5" Grid.Column="1" Grid.Row="1">
 <TextBox.Text>
 <Binding Path="RunningHours"
 ValidatesOnNotifyDataErrors="True"
 Mode="TwoWay">
 </Binding>
 </TextBox.Text>
 </TextBox>
 <sdk:Label Content="Operator" Grid.Column="0" Grid.Row="2"
 Margin="5,5,5,5"/>
 <TextBox

Chapter 9

[377]

 Text="{Binding EquipmentOperator,
 ValidatesOnNotifyDataErrors=True,
 Mode=TwoWay}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="2" />
 <sdk:Label Content="Supervisor" Grid.Column="0" Grid.
Row="3"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding ShiftSupervisor,
 ValidatesOnNotifyDataErrors=True,
 Mode=TwoWay}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="3" />
 <Button Content="Log Running Hours" Grid.Row="4"
 Margin="5,5,5,5" Grid.Column="1"
 HorizontalAlignment="Left" Padding="4,4,4,4"
 Command="{Binding LogRunningHoursCommand}"/>
 </Grid>
 <Grid Grid.Row="2" >
 <ListBox ItemsSource="{Binding Errors}"
 DisplayMemberPath="ErrorMessage"
 Margin="5,5,5,5" />
 </Grid>
 </Grid>
</UserControl>

Here, the default mode of binding is OneWay, so we need to explicitly specify TwoWay
for the textbox binding mode. Please note the ValidatesOnNotifyDataError
attribute of binding. This is to tell the binding system to use the features provided
by the implementation of the interface. Let us define a base class for all view models,
which would be based on this. Let's name it ViewModelNotifyDataError. Here,
ValidationError is the same type as in the MVVMAppIDataErrorInfo namespace.
You can add this to the MVVMAppINotifyDataErrorInfo.ViewModel namespace.

namespace MVVMAppINotifyDataErrorInfo.ViewModel
{
 using System;
 using GalaSoft.MvvmLight;
 using System.ComponentModel;
 using System.Collections;
 using System.Collections.Generic;
 using System.Threading;
 using System.Linq;
 using System.Collections.ObjectModel;

 public abstract class ViewModelNotifyDataError

Validation

[378]

 : ViewModelBase, INotifyDataErrorInfo
 {
 ObservableCollection<ValidationError> _errors;
 public ObservableCollection<ValidationError> Errors
 {
 get
 {
 if (_errors == null)
 {
 _errors = new ObservableCollection<ValidationErr
or>();
 }
 return _errors;
 }
 }

 protected Dictionary<string, List<string>>
PropertyDependencies =
 new Dictionary<string, List<string>>();

 #region INotifyDataErrorInfo implementation

 public event EventHandler<DataErrorsChangedEventArgs>
 ErrorsChanged = delegate { };

 public virtual IEnumerable GetErrors(string propertyName)
 {
 IEnumerable<string> ret = null;

 ret = Errors
 .Where<ValidationError>(e => e.PropertyName ==
propertyName)
 .Select<ValidationError, string>(e =>
e.ErrorMessage);

 return ret;
 }

 public bool HasErrors
 {
 get { return false; }
 }

 #endregion

Chapter 9

[379]

 #region Protected Methods

 protected void ValidateProperty(string propertyName)
 {
 this.VerifyPropertyName(propertyName);

 var worker = new BackgroundWorker();

 worker.DoWork +=
 (o, e) =>
 {
 Thread.Sleep(4000); //simulated validation
delay
 e.Result = ValidatePropertySpecialized(proper
tyName);
 };

 worker.RunWorkerCompleted +=
 (o, e) =>
 {
 IEnumerable<string> messages =
 e.Error == null ?
 (IEnumerable<string>)e.Result :
 Enumerable.Repeat<string>(e.Error.Message,
1);

 UpdateErrors(propertyName, messages);

 };

 worker.RunWorkerAsync();
 }

 private void RaiseErrorsChanged(string propertyName)
 {
 ErrorsChanged(this, new DataErrorsChangedEventArgs(proper
tyName));

 if (PropertyDependencies.ContainsKey(propertyName))
 {
 foreach (string item in PropertyDependencies[property
Name])
 {
 ValidateProperty(item);

Validation

[380]

 }
 }
 }

 protected abstract IEnumerable<string>
ValidatePropertySpecialized(string propertyName);

 protected virtual void UpdateErrors(string propertyName,
IEnumerable<string> errors)
 {
 Errors
 .Where<ValidationError>(e => e.PropertyName ==
propertyName)
 .ToList<ValidationError>()
 .ForEach((element) =>
 {
 Errors.Remove(element);
 });

 if (errors != null)
 {
 foreach (string item in errors)
 {
 Errors.Add(new ValidationError()
{ PropertyName = propertyName, ErrorMessage = item });
 }
 }

 RaiseErrorsChanged(propertyName);
 }

 #endregion
 }
}

Since this view model implements INotifyDataErrorInfo, it needs to have a
property HasError with a getter, an event ErrorsChanged, and a method that
takes the property name as an argument and returns the errors in the form of
IEnumerable. Since it is based on INotifyDataErrorInfo, we have the luxury of
executing the validation workload in a separate thread. The same behavior is defined
in the ValidateProperty method. We use Backgroundworker for this purpose.
As we know that the RunWorkerCompleted event is raised on the same thread the
worker thread was created on, it will be raised in the UI thread, so that we can
just raise the ErrorsChanged event for any property. Before doing any validation,

Chapter 9

[381]

we verify the name of property using the VerifyPropertyName method from the
ViewModelBase base class method available through MVVM Light framework. In
the RaiseErrorsChanged method, we run the validations for all the dependent
properties as maintained in the PropertyDependencies collection.

This class is an abstract class, so the child view model would need to provide the
definition for the ValidatePropertySpecialized method. This method will not
be executed in the UI thread, as it is being called by Backgroundworker. It should
return the errors as IEnumerable. The same errors are passed to the UpdateErrors
method by the RunWorkerCompleted handler. We have a default implementation
of the HasErrors property. It always returns false. We can update that to use the
Errors collection. We also have a primitive way to maintain property dependencies.
This is a generic dictionary with its key as the dependee property. The value is a list
of strings and should contain the names of all the properties that the key property is
dependent on.

Now, let's look at the definition of MainViewModel. Since it inherits from
ViewModelNotifyDataError, we are defining the ValidatePropertySpecialized
method. The property name is passed in as argument. Here, we are performing the
required field validation for all the fields. We can also perform other validations for
individual properties in a switch/case block. In the constructor, we have defined
the dependencies of the EquipmentOperator and ShifSupervisor fields. For
bidirectional dependencies, we need to define dependencies for both properties.
In real-world applications, we might need to implement a graph for all these
dependencies, as efficient data structures. For more complex rules, we might need to
include an inference-engine-based rule execution. Policy activity in Windows WF is
inference-based.

using GalaSoft.MvvmLight;
using System.Windows.Input;
using GalaSoft.MvvmLight.Command;
using System.Collections;
using System.Linq;
using System.Collections.Generic;
using System.Collections.ObjectModel;

namespace MVVMAppINotifyDataErrorInfo.ViewModel
{
 public class MainViewModel : ViewModelNotifyDataError
 {
 #region Constructor

 public MainViewModel()
 {

Validation

[382]

 List<string> operatorDependencies = new List<string>();
 operatorDependencies.Add("ShiftSupervisor");

 PropertyDependencies.Add("EquipmentOperator",
operatorDependencies);

 List<string> supervisorDependencies = new List<string>();
 supervisorDependencies.Add("EquipmentOperator");
 PropertyDependencies.Add("ShiftSupervisor",
supervisorDependencies);
 }

 #endregion
 #region Properties

 string _equipment = string.Empty;
 public string Equipment
 {
 get { return _equipment; }
 set
 {
 if (_equipment != value)
 {
 _equipment = value;
 RaisePropertyChanged("Equipment");
 ValidateProperty("Equipment");
 }
 }
 }

 string _runningHours = string.Empty;
 public string RunningHours
 {
 get { return _runningHours; }
 set
 {
 if (_runningHours != value)
 {
 _runningHours = value;
 RaisePropertyChanged("RunningHours");
 ValidateProperty("RunningHours");
 }
 }
 }

Chapter 9

[383]

 string _equipmentOperator = string.Empty;
 public string EquipmentOperator
 {
 get { return _equipmentOperator; }
 set
 {
 if (_equipmentOperator != value)
 {
 _equipmentOperator = value;
 RaisePropertyChanged("EquipmentOperator");
 ValidateProperty("EquipmentOperator");
 }
 }
 }

 string _shiftSupervisor = string.Empty;
 public string ShiftSupervisor
 {
 get { return _shiftSupervisor; }
 set
 {
 if (_shiftSupervisor != value)
 {
 _shiftSupervisor = value;
 RaisePropertyChanged("ShiftSupervisor");
 ValidateProperty("ShiftSupervisor");
 }
 }
 }

 ICommand _logRunningHoursCommand = null;
 public ICommand LogRunningHoursCommand
 {
 get
 {
 if (_logRunningHoursCommand == null)
 {
 _logRunningHoursCommand = new RelayCommand(
 () =>
 {
 ValidateAll();
 });
 }

Validation

[384]

 return _logRunningHoursCommand;
 }
 }

 #endregion

 #region Overriden methods

 protected override IEnumerable<string>
ValidatePropertySpecialized(string propertyName)
 {
 List<string> errorMessages = new List<string>();
 //IEnumerable<string> ret = null;

 if (!string.IsNullOrEmpty(propertyName))
 {
 object propertyValue =
 this.GetType()
 .GetProperty(propertyName)
 .GetValue(this, null);

 if (propertyValue == null ||
 propertyValue.ToString()
 .Trim()
 .Equals(string.Empty))
 {
 errorMessages.Add(string.Format("{0} is required.
",
propertyName));

 }
 }

 switch(propertyName)
 {
 case "RunningHours":
 double runningHours;
 double.TryParse(_runningHours, out runningHours);
 if (runningHours == 0 && _runningHours.Length > 0)
 {
 string msg =
(_runningHours != null && _

Chapter 9

[385]

runningHours.Equals("0")) ?
 "Zero not allowed for running
hours." :
 "Only numeric running hours are
allowed!";

 errorMessages.Add(msg);
 }
 break;

 case "EquipmentOperator":
 case "ShiftSupervisor":
 if (!string.IsNullOrEmpty(_equipmentOperator) &&
_equipmentOperator.Equals(_shiftSupervisor))
 {
 errorMessages.Add(
"EquipmentOperator and ShiftSupervisor must be different");
 }
 break;
 case "Equipment":
 //some other validations
 break;
 default:
 //other validations if required
 break;
 }

 return errorMessages.Count > 0 ?
errorMessages.AsEnumerable<string>() : null;
 }

 private void ValidateAll()
 {
 ValidateProperty("Equipment");
 ValidateProperty("RunningHours");
 ValidateProperty("EquipmentOperator");
 ValidateProperty("ShiftSupervisor");
 }

 #endregion
 }
}

Validation

[386]

Here, we have used ListBox to display all the error messages in a Silverlight page.
This discussion would be incomplete without discussing the ValidationSummary
control in Silverlight. It is used to get all the error messages from the controls. By
default, it displays error messages from errors in the controls contained by the same
parent. We can also specify a different target if needed. It can show not only both
the property- and object-level error messages, but can also filter using the Filter
property. We need to set NotifyOnValidationErrors for all the bindings whose
errors are desired to be displayed by ValidationSummary.

<UserControl
 x:Class="MVVMAppINotifyDataErrorInfo.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/
presentation/sdk"
 mc:Ignorable="d"
 Height="364" Width="515"
 DataContext="{Binding Main, Source={StaticResource Locator}}">

 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0" Background="Navy">
 <TextBlock FontSize="24"
 FontWeight="Bold"
 Foreground="White"
 Text="Equipment Running Hours"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 TextWrapping="Wrap" />
 </Grid>

Chapter 9

[387]

 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 </Grid.RowDefinitions>
 <sdk:Label Content="Equipment" Grid.Column="0" Grid.
Row="0"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding Equipment,
 ValidatesOnNotifyDataErrors=True,
 NotifyOnValidationError=True,
 Mode=TwoWay}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="0" />
 <sdk:Label Content="Running Hours" Grid.Column="0" Grid.
Row="1"
 Margin="5,5,5,5"/>
 <TextBox Margin="5,5,5,5" Grid.Column="1" Grid.Row="1">
 <TextBox.Text>
 <Binding Path="RunningHours"
 ValidatesOnNotifyDataErrors="True"
 NotifyOnValidationError="True"
 Mode="TwoWay">
 </Binding>
 </TextBox.Text>
 </TextBox>
 <sdk:Label Content="Operator" Grid.Column="0" Grid.Row="2"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding EquipmentOperator,
 ValidatesOnNotifyDataErrors=True,
 NotifyOnValidationError=True,
 Mode=TwoWay}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="2" />
 <sdk:Label Content="Supervisor" Grid.Column="0" Grid.

Validation

[388]

Row="3"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding ShiftSupervisor,
 ValidatesOnNotifyDataErrors=True,
 NotifyOnValidationError=True,
 Mode=TwoWay}"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="3" />
 <Button Content="Log Running Hours" Grid.Row="4"
 Margin="5,5,5,5" Grid.Column="1"
 HorizontalAlignment="Left" Padding="4,4,4,4"
 Command="{Binding LogRunningHoursCommand}"/>
 <sdk:ValidationSummary Margin="5,5,5,5" Grid.Row="5"
 Grid.Column="0" Grid.
ColumnSpan="2"/>
 </Grid>
 <Grid Grid.Row="2" />
 </Grid>
</UserControl>

The following screenshot shows the default style in which ValidationSummary is
displayed. We can update both the header and the content style. Here, property
names are displayed as in the view model, which are obviously not the same
as the labels shown for each field in the view. We can update that by using
DisplayAttribute with properties in the view model.

Chapter 9

[389]

Enterprise library validation application block
Microsoft Enterprise library has a bunch of features, which makes development
simpler. They call these features Application Blocks. They are generally used
for developing cross-cutting concerns. They let the development teams focus on
more important business features, relieving them from these base components.
One of such application block is called Validation Application Block. In Enterprise
Library 5.0, it added support for WPF. The Microsoft Patterns and Practices team
has also released the Silverlight Integration pack for Enterprise library lately. In
this section, we will briefly see how we can use the validation application block in
MVVM-based applications.

The validation application block allows the defining of validation logic in different
ways. It has the following options:

•	 Attributes
•	 Configuration
•	 Self validation

Now, let's see how we can use the validation application block to the simple order
entry application we created in the discussion about validation rules. It just has three
fields—Customer name, Product, and Quantity. We will see how the application
block saves our lives.

This example requires Enterprise Library 5.0, which can be downloaded
from Microsoft Download Center (http://www.microsoft.com/
download/en/details.aspx?displaylang=en&id=15104).

Let's first see how we can define the rules in the attributes, and how the validation
application block helps us in using those attributes in the view definition. These
rules can be defined directly for the properties in the view model. Let's use the
equipment running hours example. Let's create a WPF MVVM Light project named
MVVMAppEntLibraryValidationAppBlock. We updated the view model as the
view model in the previous example. Here, we have decorated the properties
with some attributes. This includes the TypeConversionValidatorAttribute
and StringLengthValidator attributes from the Enterprise library and
RequiredAttribute from the System.ComponentModel.DataAnnotations library.

namespace MVVMAppEntLibraryValidationAppBlock.ViewModel
{
 using GalaSoft.MvvmLight;
 using System.Windows.Input;
 using GalaSoft.MvvmLight.Command;

Validation

[390]

 using Microsoft.Practices.EnterpriseLibrary.Validation.Validators;
 using System.ComponentModel.DataAnnotations;
 using System.Collections.ObjectModel;

 public class MainViewModel : ViewModelBase
 {
 #region Properties

 string _equipment = string.Empty;

 [Required(ErrorMessage="Equipment is required")]
 public string Equipment
 {
 get { return _equipment; }
 set
 {
 if (_equipment != value)
 {
 _equipment = value;
 RaisePropertyChanged("Equipment");
 }
 }
 }

 string _runningHours = string.Empty;

 [TypeConversionValidator(typeof(double),
 MessageTemplate="Only numeric data allowed.",
 Ruleset="MainViewModelRuleSet")]
 public string RunningHours
 {
 get { return _runningHours; }
 set
 {
 if (_runningHours != value)
 {
 _runningHours = value;
 RaisePropertyChanged("RunningHours");
 }
 }
 }

 string _equipmentOperator = string.Empty;

Chapter 9

[391]

 [StringLengthValidator(2, RangeBoundaryType.Inclusive, 10,
 RangeBoundaryType.Inclusive,
 MessageTemplate =
 "[EquipmentOperator] must be between {3} and {5}
characters.")]
 public string EquipmentOperator
 {
 get { return _equipmentOperator; }
 set
 {
 if (_equipmentOperator != value)
 {
 _equipmentOperator = value;
 RaisePropertyChanged("EquipmentOperator");
}
 }
 }

 string _shiftSupervisor = string.Empty;

 [StringLengthValidator(2, RangeBoundaryType.Inclusive, 10,
 RangeBoundaryType.Inclusive,
 MessageTemplate =
 "[ShiftSupervisor] must be between {3} and {5}
characters.")]
 public string ShiftSupervisor
 {
 get { return _shiftSupervisor; }
 set
 {
 if (_shiftSupervisor != value)
 {
 _shiftSupervisor = value;
 RaisePropertyChanged("ShiftSupervisor");
 }
 }
 }

 ICommand _logRunningHoursCommand = null;
 public ICommand LogRunningHoursCommand
 {
 get
 {
 if (_logRunningHoursCommand == null)

Validation

[392]

 {
 _logRunningHoursCommand = new RelayCommand(
 () =>
 {
 Errors.Clear();

 //Get the Validation Block Error messages
 //from Validation.ValidateFromAttributes<MainViewModel>(this)
 //Get the DataAnnotations error message from TypeDescriptor
 //Add messages to Errors collection

 });
 }

 return _logRunningHoursCommand;
 }
 }

 ObservableCollection<string> _errors;
 public ObservableCollection<string> Errors
 {
 get
 {
 if (_errors == null)
 {
 _errors = new ObservableCollection<string>();
 }

 return _errors;
 }
 }

 #endregion

 }
}

The Enterprise library also supports the validation information, as a configuration.
We can use the Configuration utility to provide the same feature. It is available as
a start menu item and is also integrated with Visual Studio. It is available through a
context menu item for app.config, as follows:

Chapter 9

[393]

We need to specify the type for which the validations rules are supposed to
be defined. For this purpose, we need to add the assembly to the tool. Then
we can easily browse through the types within. Here, we have referenced
the MVVMAppEntLibraryValidationAppBlock assembly and browsed the
MainViewModel type.

Validation

[394]

In order to keep the example simple, we are just defining one validation rule here.
This is for the RunningHours property. The rule would pass only when the running
hours neither start with a zero nor with a decimal. This can be done as follows:

If we have started the tool through Visual Studio, it automatically adds the following
configuration to app.config, when we save it in the preceding tool.

<validation>
 <type name="MVVMAppEntLibraryValidationAppBlock.ViewModel.
MainViewModel"
 assemblyName="MVVMAppEntLibraryValidationAppBlock,
Version=0.0.0.1,
 Culture=neutral, PublicKeyToken=null">
 <ruleset name="MainViewModelRuleSet">
 <properties>
 <property name="RunningHours">
 <validator
 type="Microsoft.Practices.EnterpriseLibrary.
Validation.Validators.RegexValidator,
 Microsoft.Practices.EnterpriseLibrary.
Validation,
 Version=5.0.414.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"

Chapter 9

[395]

 pattern="^[^0|.]"
patternResourceType=""
 messageTemplate="Running hours can not start
with 0."
 name="Regular Expression Validator" />
 </property>
 </properties>
 </ruleset>
 </type>
</validation>

Now, we update the view. There are a number of options to integrate the
Validation block validations with the view. We can use ValidatorRule, as
defined in the library, as we did for equipment. Here, we need to specify the
source type and the actual property, which should be used to extract the validation
information from its attribute. WPF integration of the library also supports the
same shortcut that we have used for other properties. We just need to use the
Validate.BindingForProperty attached property. It would automatically use
the validation attributes from the source property of the binding for the particular
property specified. We have used the same for running hours-, operator-, and
supervisor-related fields. There is one more amazing thing. We can consolidate the
validation rules from different sources. As you can see, we have a business rule
for running hours in the view model. It should be convertible to a double type. In
the configuration, we have stated that it should not start with a zero or a decimal.
We want to consolidate these rules for validation purposes of the property. That is
exactly what we have done here.

<Window
 x:Class="MVVMAppEntLibraryValidationAppBlock.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:vab=
 "clr-namespace:Microsoft.Practices.EnterpriseLibrary.Validation.
Integration.WPF;assembly=Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.WPF"
 xmlns:vm="clr-namespace:MVVMAppEntLibraryValidationAppBlock.
ViewModel"
 mc:Ignorable="d"
 Title="MVVM Survival Guide"
 Height="364" Width="515"
 DataContext="{Binding Main, Source={StaticResource Locator}}">

Validation

[396]

 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Skins/MainSkin.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0" Background="Navy">
 <TextBlock FontSize="24"
 FontWeight="Bold"
 Foreground="White"
 Text="Equipment Running Hours"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 TextWrapping="Wrap" />
 </Grid>
 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 </Grid.RowDefinitions>
 <Label Content="Equipment" Grid.Column="0" Grid.Row="0"
 Margin="5,5,5,5"/>
 <TextBox Margin="5,5,5,5" Grid.Column="1" Grid.Row="0" >
 <TextBox.Text>
 <Binding Path="Equipment"
 UpdateSourceTrigger="PropertyChanged" >
 <Binding.ValidationRules>
 <vab:ValidatorRule
 SourceType="{x:Type vm:MainViewModel}"
 SourcePropertyName="Equipment" />

Chapter 9

[397]

 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
 </TextBox>
 <Label Content="Running Hours" Grid.Column="0"
 Grid.Row="1" Margin="5,5,5,5"/>
 <TextBox Text="{Binding RunningHours,
 UpdateSourceTrigger=PropertyChang
ed}"
 vab:Validate.UsingRulesetName="MainViewModelRuleSet"
 vab:Validate.UsingSource="All"
 vab:Validate.BindingForProperty="Text"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="1" />
 <Label Content="Operator" Grid.Column="0" Grid.Row="2"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding EquipmentOperator,
 UpdateSourceTrigger=PropertyChanged}"
 vab:Validate.BindingForProperty="Text"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="2" />
 <Label Content="Supervisor" Grid.Column="0" Grid.Row="3"
 Margin="5,5,5,5"/>
 <TextBox
 Text="{Binding ShiftSupervisor,
 UpdateSourceTrigger=PropertyChanged}"
 vab:Validate.BindingForProperty="Text"
 Margin="5,5,5,5" Grid.Column="1" Grid.Row="3" />
 <Button Content="Log Running Hours" Grid.Row="4"
 Margin="5,5,5,5" Grid.Column="1"
 HorizontalAlignment="Left" Padding="4,4,4,4"
 Command="{Binding LogRunningHoursCommand}"/>
 </Grid>
 <Grid Grid.Row="2">
 <ListBox ItemsSource="{Binding Errors}"
 DisplayMemberPath="ErrorMessage"
 Margin="5,5,5,5" />
 </Grid>
 </Grid>
</Window>

Validation

[398]

There are a lot of limitations in the validation application block
integration provided by Microsoft. For example, if we wanted to
validate the value of one property, based on the current value of
any other property, the validation application block supports this by
providing PropertyComparisonValidator. This is currently not
supported for direct use by WPF. Yet, whatever it already supports
definitely deserves a lot of appreciation. Hopefully, these limitations
will be addressed in a later version of the toolkit.
Silverlight developers can use the Silverlight Integration pack for
Enterprise Library. The validation application block is a part of the
installation.

Complex business rules
We have already discussed how we can use Windows WF to define complex
business rules. Please see the first section of the previous chapter for details
on how to do this.

Error notifications
Error notifications inform users that a particular action will not be performed
and inform the user if they need to take any action in order to make it work.

Error message box
Message boxes are the oldest way to present error messages to the user. Whenever
there are any issues in the data entered by users, we can notify them by just popping
the dialog box. This can be modal or modeless, depending on the area of the
application the message is about. This can also have different icons, such as X for
error message and ! for information messages. We have seen them and used them,
and if they appear we are not surprised.

UX designers tell us that we need to reduce the number of clicks to accomplish a use
case by the user. These dialog messages require us to try to submit by clicking on
the Submit button first. Then, we need to close these dialogs by clicking on another
button. These clicks affect the usability of our applications causing irritations to the
end user.

Error message texts in the message box might be very big. They might not be clear
enough to guide the user to fix the data in the actual fields. I think most of you
have seen these error messages and scratched your head saying, "OK! Something is
wrong, but what is it?". That is not acceptable!

Chapter 9

[399]

There might be more than one issue with the data entry. Generally, these error
messages are consolidated to be shown in a single message box. Now, the user hits
the Submit button, and we show the error message to fix a number of fields. The
messages are clear enough to understand. The user does understand it and closes the
dialog. Now, he fixes one issue and the next, but he has to remember all these issues.
When was the last time that you took a screenshot of the error message dialog, so
that you could fix everything in a single attempt and avoid another message box?
It was not very long ago for me.

We are living in the age of dashboard applications. When the user logs in,
he sees everything on a single screen. There are different areas of the screen
showing different "things of interest" to the user. There are specialized toolkits
and frameworks, such as PRISM, in order to provide ease in developing these
applications. They let us develop these areas as separate modules. These modules
use different data sources. While loading the application, the framework discovers
them and loads them in the special area of the screen as requested by the module.
These modules are generally developed by different teams. Showing a dialog
for some issue with data entry in a part of window is basically going outside the
boundary of your team. No team should be allowed to hijack the whole application
by showing a dialog that has nothing to do with data in any other module.

You can still find some instances in which you still need to show some urgent
information to the end user. For example, if you may want to show that he is
disconnected from the server or that there is a newer version of the application
available, just hit the button to download. These messages are not module-specific
and deserve the immediate attention of the user. Generally, decisions about showing
the dialog should be taken by the architecture team, and the individual should be
given clear advice to avoid these decisions. This is what we think. Now, if we were to
show an error message from our view models directly, we would be sacrificing unit
testability of the code. Please see Chapter 7, Dialogs and MVVM, to understand how
we can show dialog in MVVM, so that the code is still testable.

Validation

[400]

Highlighting fields
XAML technologies highlight fields, if there is failure in validation. This might be an
exception during copying the value to the source field. This can also be caused by an
error result from the validation rule.

The good thing about WPF/Silverlight is that every feature is lookless—you can use
it as it is provided. If you do not like the look and feel, change it. The framework
would still support the same functionality. This has never been achieved before, and
can be repeated with this feature. The fields are highlighted with a red border, by
default. In this chapter, we have already discussed how we can override it. If you
don't like it, we can even override the template with null and there would be no
highlight.

<TextBox Height="37" HorizontalAlignment="Left"
 Margin="399,380,0,0" Name="textBoxAge"
 VerticalAlignment="Top" Width="217"
 Validation.ErrorTemplate="{x:Null}"
 >
 <TextBox.Text>
 <Binding Path="Age"
 UpdateSourceTrigger="PropertyChanged" />
 </TextBox.Text>
</TextBox>

Error messages in the tooltip
Highlighting the control informs the user about the fields that need to be updated in
order to fix the problem. But, what is the actual issue with the data in those fields?
Just highlighting the control wouldn't guide the user about the actual issue. He
needs to see the error message. By default, the error message is not displayed by
WPF. Earlier in this chapter, we have discussed how we can update the validation
error template, so that the element contributing to the error would show the error
message in a tool tip, if the control is erroneous. Generally, we need the same error
to be displayed for each type of control, so that we can define them in a resource
dictionary and merge that in App.xaml. All the controls would automatically apply
their error behavior.

Error messages beside the control
Winform developers must remember the property extenders to show the error
messages. Having error messages beside the control is based on the same idea. We
can update the error template so that an error message can be shown beside the
actual control in the error. Obviously, there is limited space available to show this

Chapter 9

[401]

text, so we cannot provide enough information to the user. This brevity could be
dangerous as it does not communicate the expectation of the system to the end users.

<ControlTemplate x:Key="ValidationErrorTemplate">
 <DockPanel>
 <Border BorderBrush="Blue" BorderThickness="2">
 <AdornedElementPlaceholder x:Name="controlInError" />
 </Border>
 <TextBlock DockPanel.Dock="Right" Foreground="Red">
 <TextBlock.Text>
 <Binding
 Path="AdornedElement.(Validation.Errors)[0].
ErrorContent"> <Binding.RelativeSource>
 <RelativeSource Mode="FindAncestor"
 AncestorType="{x:Type
Adorner}" />
 </Binding.RelativeSource>
 </Binding>
 </TextBlock.Text>
 </TextBlock>
 </DockPanel>
</ControlTemplate>

Validation summary pane
We have used this technique in a few examples in this chapter. In this technique, we
set aside some space assigned to display error messages. This technique is especially
suitable when real estate is not a problem on the view.

Validation

[402]

The validation summary pane can also be added to an expander. It can be expanded
to show the error message. Now, a user can expand it, if he wants to peek at the
message again. The visibility can be set in such a way that the control becomes
invisible to the user when there are no error messages.

Flip controls
This is the latest technique to display such error messages. WPF 3D hasn't
been adopted a lot in business applications, except in charting applications and
controls. The idea is to develop a control that has two faces: front and back. All the
content is laid out in the same way as in the regular view on the front side of the
control. When the user submits, we run the validation logic in the same way as in the
regular view. In case there is an error, the control is flipped and user is shown with
the validation error messages. After reading the messages, the user can flip it back to
the front view and update the fields accordingly. Ideally, this will highlight the fields
in error, and the user will be allowed to go back and forth between the front and
back sides of the control.

Although no commercial flip controls are available yet, some open source controls
can be found on the internet. They seem to have a lot of issues with the available
control libraries, so test them before you decide to use them in a commercial
application. This area is interesting for further study, and hopefully many amazing
controls will be seen in the future.

Summary
In this chapter, we have discussed the different validation options in WPF and
Silverlight. We have outlined how these validation techniques can work together
with MVVM. These techniques include the Enterprise library validation
application block and the IDataErorInfo and INoityfyDataErrorInfo validation
rules. In the end, we tried to understand the different options for displaying
validation results.

Using Non-MVVM Third-party
Controls

By Muhammad Shujaat Siddiqi

The development community has been slow in adopting MVVM and as a result
there are many third-party libraries and controls on the market that don't follow the
pattern. One of the most common challenges faced when adopting MVVM is how to
use non-MVVM libraries and controls in MVVM architecture. The good news is that
we will review several techniques which will allow you to minimize the impact of
the non-MVVM code in your design and maximize the testability of your codebase.

As an example, we are going to use the WPF WebBrowser control. This is complex
enough example to explain all the different available techniques and yet simple
enough to be covered in a single chapter. The WebBrowser control is just a WPF
wrapper around same old WebBrowser ActiveX control from the Win32/MFC days.
Like many Silverlight and WPF controls on the market, the WebBroswer control
wasn't built using the MVVM approach and instead has forms, controllers, and code
behind design.

Let's start by looking at a simple example by following these steps:

1. Create a new WPF MVVMLight project called UsingNonMVVMElements.
2. Update MainWindow.xaml as shown in the following code. Here we have set

the Source statically to http://www.google.com.

<Window x:Class="UsingNonMVVMElements.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-

Using Non-MVVM Third-party Controls

[404]

compatibility/2006"
 mc:Ignorable="d"
 Height="481" Width="688"
 Title="MVVM Survival Guide">
 <Grid x:Name="LayoutRoot">
 <WebBrowser Source="http://www.google.com" />
 </Grid>
</Window>

3. When we run the preceding code, it loads a window with Google's home
page displayed. Now let's introduce a ViewModel class used as DataContext
of preceding Window as shown in the following code:
namespace UsingNonMVVMElements.ViewModel
{
 using GalaSoft.MvvmLight;

 public class MainWindowViewModel : ViewModelBase
 {
 string _sourcePage = "http://www.google.com";
 public string SourcePage
 {
 get { return _sourcePage; }
 set
 {
 _sourcePage = value;
 RaisePropertyChanged("SourcePage");
 }
 }
 }
}

4. Next we need to wire up the MainWindowViewModel.SourcePage property
to the WebBrowser.Source property of MainWindow. To do this, let's update
the definition of MainWindow as follows:

<Window x:Class="UsingNonMVVMElements.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Height="481" Width="688"

Chapter 10

[405]

 xmlns:local="clr-namespace:UsingNonMVVMElements.ViewModel"
 Title="MVVM Light Application">
 <Window.DataContext>
 <local:MainWindowViewModel />
 </Window.DataContext>
 <Grid x:Name="LayoutRoot">
 <WebBrowser Source="{Binding SourcePage}" />
 </Grid>
</Window>

It seems like this would work as we are binding the Source property
of a WebBrowser instance to SourcePage of DataContext. However,
when we run the application we get the exception as shown in the
following screenshot:

One of the requirements of data binding is that the binding target
must be a DependencyProperty. Here we are using Source
property of the WebBrowser control as the Binding target,
which is not DependencyProperty and hence the exception.

We will now look at several techniques that will allow us to use the WebBrowser
control in an MVVM-friendly way.

Using attached behaviors
We can resolve the Binding issue of controls exposing non-dependency properties
by using attached behaviors. This technique is a simple matter of registering an
attached property, which is implemented as dependency properties in WPF. We
can use the attached property as a binding target and whenever the source value
changes, we can pass the updated value to the non-bindable property.

Using Non-MVVM Third-party Controls

[406]

To do this, add a new class called WebBrowserAttachedBehavior and define
it as follows:

namespace UsingNonMVVMElements.AttachedBehaviors
{
 using System.Windows;
 using System.Windows.Controls;

 public class WebBrowserAttachedBehavior
 {
 public static DependencyProperty SourcePageProperty =
 DependencyProperty.RegisterAttached("SourcePage",
 typeof(string), typeof(WebBrowserAttachedBehavior),
 new PropertyMetadata("",
OnSourcePagePropertyChanged));

 public static string GetSourcePage(DependencyObject obj)
 {
 return (string)obj.GetValue(SourcePageProperty);
 }

 public static void SetSourcePage(DependencyObject obj, string
value)
 {
 obj.SetValue(SourcePageProperty, value);
 }

 public static void OnSourcePagePropertyChanged(DependencyObje
ct browser,
 DependencyPropertyChangedEventArgs args)
 {
 if (args.NewValue != null && browser is WebBrowser)
 {
 WebBrowser webBrowser = (WebBrowser)browser;
 webBrowser.Source = new System.Uri(args.NewValue.
ToString());
 }
 }
 }
}

Chapter 10

[407]

As discussed previously, we are just using the PropertyChanged event of the
Dependency property, and using it to pass on the updates to the underlying non-
bindable property. Attached properties are implemented by following a pattern,
which creates a set of static methods, as shown in the preceding code. Once
defined, an instance of an attached property can be attached to an instance of a
different class. When we created the attached property previously, we associated
the OnSourcePagePropertyChanged() method with the property's Changed event,
which will be called each time the property value changes. When this method is
called, it will be passed as a reference to the instance that the attached property
is attached to. This allows us to easily update values on the instance. This is how
we will be able to pass through updates from our view model to our non-bindable
property using the the attach behavior pattern as we will see next.

Next, let's update the definition of MainWindow as follows:

<Window x:Class="UsingNonMVVMElements.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Height="481" Width="688"
 xmlns:local="clr-namespace:UsingNonMVVMElements.ViewModel"
 xmlns:AttachedBehaviors =
 "clr-namespace:UsingNonMVVMElements.AttachedBehaviors"
 Title="MVVM Survival Guide">
 <Window.DataContext>
 <local:MainWindowViewModel />
 </Window.DataContext>
 <Grid x:Name="LayoutRoot">
 <WebBrowser
 AttachedBehaviors:WebBrowserAttachedBehavior.SourcePage=
 "{Binding SourcePage}" />
 </Grid>
</Window>

Using Non-MVVM Third-party Controls

[408]

Now run the preceding code and you will see that a window is shown with
the WebBrowser control displaying the Google home page as shown in the
following screenshot:

We can use the attached behavior approach to bind all non-dependency properties
to the properties in view models and let the binding system take care of updates.

Let's update the code to allow users to have control over which page they want to
browse to. We just need TextBox and a button to fulfill this requirement. TextBox
is bound to the SuggestedSourcePage string property in the view model while
button's Command property is bound to the NavigateUriCommand property in
DataContext as shown in the following code:

<Window x:Class="UsingNonMVVMElements.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Height="481" Width="688"
 xmlns:local="clr-namespace:UsingNonMVVMElements.ViewModel"
 xmlns:AttachedBehaviors ="clr-namespace:UsingNonMVVMElements.

Chapter 10

[409]

AttachedBehaviors"
 Title="MVVM Survival Guide">
 <Window.DataContext>
 <local:MainWindowViewModel />
 </Window.DataContext>
 <Grid x:Name="LayoutRoot">
 <TextBox Height="27" HorizontalAlignment="Left"
Margin="2,1,0,0"
 Name="textBoxUrl" VerticalAlignment="Top" Width="611"
 Text="{Binding UserSuggestedSourcePage}" />
 <Button Content="Go" Height="27" HorizontalAlignment="Left"
 Margin="615,1,0,0" Name="btnGo"
VerticalAlignment="Top"
 Width="39" IsDefault="True"
 Command="{Binding NavigateUrlCommand}" />
 <WebBrowser
 AttachedBehaviors:WebBrowserAttachedBehavior.
SourcePage="{Binding SourcePage}"
 Margin="0,34,0,0" />
 </Grid>
</Window>

We need to update the view model for the preceding changes in the view. The
following view model provides the SuggestedSourcePage property and also provides
an ICommand property called NavigateUriCommand. We are using MVVMLight's
RelayCommand here. In the Execute method of this command, we are just copying the
value of this property to the SourcePage property. Remember that this is the same
property that the previously defined attached behavior is using to copy to the Source
property of the WebBrowser control.

namespace UsingNonMVVMElements.ViewModel
{
 using GalaSoft.MvvmLight;
 using GalaSoft.MvvmLight.Command;
 using System;

 public class MainWindowViewModel : ViewModelBase
 {
 #region Public Properties

 string _sourcePage = "http://www.google.com";
 public string SourcePage
 {
 get { return _sourcePage; }
 set

Using Non-MVVM Third-party Controls

[410]

 {
 _sourcePage = value;
 RaisePropertyChanged("SourcePage");
 }
 }

 string _userSuggestedSourcePage = "http://www.google.com";
 public string UserSuggestedSourcePage
 {
 get { return _userSuggestedSourcePage; }
 set
 {
 _userSuggestedSourcePage = value;
 RaisePropertyChanged("UserSuggestedSourcePage");
 }
 }

 #endregion

 #region Commands

 RelayCommand _navigateUrlCommand;
 public RelayCommand NavigateUrlCommand
 {
 get
 {
 if (_navigateUrlCommand == null)
 {
 _navigateUrlCommand = new RelayCommand(
 () =>
 {
 if (Uri.IsWellFormedUriString(
 _userSuggestedSourcePage,
 UriKind.Absolute))
 {
 this.SourcePage =
 this.UserSuggestedSourcePage;
 }
 });
 }

 return _navigateUrlCommand;
 }
 }

Chapter 10

[411]

 #endregion

 }
}

Now when the form is shown, the Browser control is loaded with the Google page.
As the user types some other Url and clicks on the Go button, the browser navigates
to the specified Url as shown in the following screenshot:

Using binding reflector
Although attached behaviors seem to solve the limitation of binding to a binding
target that isn't a dependency property, the approach can be less appealing if there
are a large number of properties that we need to bind to. If we are using attached
behaviors then we need to define an attached behavior for each property for each
type of control we are using in our application. This can end up being a lot of work if
we are using a lot of third-party controls and it would be nice if there was a simpler
approach that required less coding and hence less maintenance. Fortunately, the
binding reflector technique can come to our rescue.

Using Non-MVVM Third-party Controls

[412]

We know the requirement that a binding target has to be DependencyProperty
but the requirements for binding source are not so strict. A binding source can
simply be a Plain Old CLR property. In the binding reflector technique, we capitalize
on this flexibility. Using this approach, binding reflector is FrameworkElement that is
not available for the display of the user. It is similar to a hidden field in HTML that is
added to a web page for data reasons and not display. It works just like a reflecting
surface and that is why the name was chosen. As the binding reflector is notified
about changes in the Source property, it simply reflects those changes to the Target
property. Since the Target property cannot listen to the changes in the Source
property, the binding reflector does the listening for changes in the Source
property and then passes those changes on to the Target property as shown
in the following diagram:

Binding Reflector

Source Property Target Property

We can define a binding reflector as follows:

namespace UsingNonMVVMElements.Core
{
 using System.Windows;
 using System.Windows.Data;
 using System;

 class BindingReflector : FrameworkElement
 {
 public static DependencyProperty SourceProperty =
 DependencyProperty.Register("Source", typeof(object),
 typeof(BindingReflector),
 new FrameworkPropertyMetadata()
 {
 DefaultUpdateSourceTrigger =
 UpdateSourceTrigger.PropertyChanged,
 BindsTwoWayByDefault = false,
 PropertyChangedCallback = OnSourceChanged
 });

 public object Source

Chapter 10

[413]

 {
 get { return GetValue(SourceProperty); }
 set { SetValue(SourceProperty, value); }
 }

 public static DependencyProperty TargetProperty =
 DependencyProperty.Register("Target",
 typeof(object), typeof(BindingReflector),
 new FrameworkPropertyMetadata() {
 BindsTwoWayByDefault = false,
 DefaultUpdateSourceTrigger =
 UpdateSourceTrigger.PropertyChanged
 });

 public object Target
 {
 get { return GetValue(TargetProperty); }
 set { SetValue(TargetProperty, value); }
 }

 private static void OnSourceChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 var reflector = (BindingReflector)d;
 if (reflector.Source != reflector.Target)
 {
 reflector.Target = reflector.Source;
 }
 }
 }
}

Now let's look at how we can use BindingReflector. Let's start by creating a new
window and keep the view model the same as introduced in the previous example.

<Window x:Class="UsingNonMVVMElements.MainWindowBindingReflectorView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="481" Width="688"
 xmlns:vm="clr-namespace:UsingNonMVVMElements.ViewModel"
 xmlns:converter="clr-namespace:UsingNonMVVMElements.Converter"
 xmlns:core="clr-namespace:UsingNonMVVMElements.Core"
 Title="MVVM Survival Guide - Binding Reflector">
 <Window.DataContext>

Using Non-MVVM Third-party Controls

[414]

 <vm:MainWindowViewModel />
 </Window.DataContext>
 <Window.Resources>
 <converter:UriConverter x:Key="uriConverter" />
 </Window.Resources>
 <Grid x:Name="LayoutRoot">
 <TextBox Height="27" HorizontalAlignment="Left"
Margin="2,1,0,0"
 Name="textBoxUrl" VerticalAlignment="Top" Width="611"
 Text="{Binding UserSuggestedSourcePage}" />
 <Button Content="Go" Height="27" HorizontalAlignment="Left"
 Margin="615,1,0,0" Name="btnGo"
VerticalAlignment="Top"
 Width="39" IsDefault="True"
 Command="{Binding NavigateUrlCommand}" />
 <WebBrowser x:Name="webBrowser" Margin="0,34,0,0" />
 <core:BindingReflector

 x:Name="sourceReflector">

 <core:BindingReflector.Target>

 <Binding ElementName="webBrowser"

 Path="Source" Mode="OneWayToSource" />

 </core:BindingReflector.Target>

 <core:BindingReflector.Source>

 <Binding Path="SourcePage" Mode="OneWay"

 Converter="{StaticResource

 uriConverter}"/>

 </core:BindingReflector.Source>

 </core:BindingReflector>

 </Grid>
</Window>

We have to create an instance of BindngReflector
for each non-bindable property.

As you can see in the preceding code, we simply bound the Source property
directly to the view model's SourcePage property and then we bound Target to the
WebBrowser.Source property. Now we can let the WPF binding system take care of
the updates.

Chapter 10

[415]

Binding reflector can also be used on any
StaticResource or DynamicResource property.

The following is the definition for UriConverter:

namespace UsingNonMVVMElements.Converter
{
 using System;
 using System.Windows.Data;

 public class UriConverter : IValueConverter
 {
 public object Convert(object value,
 System.Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 return value;
 }

 public object ConvertBack(object value,
 System.Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 string uri;
 if (value == null ||
 value.ToString().Trim() == string.Empty)
 {
 uri = "http://www.microsoft.com";
 }
 else
 {
 uri = value.ToString();
 }

 return new Uri(uri);
 }
 }
}

Using Non-MVVM Third-party Controls

[416]

When we run the application, Google's web page is loaded in the browser. Now if we
enter a different URL, for example Microsoft's URL and click on the Go button, then
Microsoft's home page is loaded. This shows that binding reflector is successfully
reflecting the updates of its Source property to the WebBrowser.Source property.

readonly CLR properties (with no change
notification support)
The WebBrowser control also has readonly CLR properties like CanGoBack. When we
get the value of this property, the control looks at its navigation list and determines
if there are any pages in the list and returns true if there are some navigable pages
or false otherwise. Like any other web browser, our web browser needs to support
backward navigation, if possible. For this purpose, we want to include a Back button
on the interface. It seems like this would be easy to implement using the CanGoBack
property. We could use this property in CanExecute of ICommand and use an instance
of the command for this button. The only issue is that CanGoBack is readonly and
does not support change notifications.

namespace UsingNonMVVMElements.Command
{
 using System;
 using System.Windows.Input;
 using System.Windows.Controls;

 class GoBackCommand : ICommand
 {
 public bool CanExecute(object parameter)
 {
 bool ret = true;

 if (parameter != null && parameter is bool)
 {
 ret = (bool)parameter;
 }

 return ret;
 }

 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }

Chapter 10

[417]

 public void Execute(object parameter)
 {
 //execution logic
 }
 }
}

The command is expecting a boolean parameter. If there is one then CanExecute
returns the value of the parameter. If there is no parameter then CanExecute always
returns true. Now let's discuss how we can use this ICommand in the view.

<Window x:Class="UsingNonMVVMElements.
MainWindowBindingReadOnlyProperties"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="481" Width="688"
 xmlns:vm="clr-namespace:UsingNonMVVMElements.ViewModel"
 xmlns:converter="clr-namespace:UsingNonMVVMElements.Converter"
 xmlns:core="clr-namespace:UsingNonMVVMElements.Core"
 xmlns:command="clr-namespace:UsingNonMVVMElements.Command"
 Title="MVVM Light Application">
 <Window.DataContext>
 <vm:MainWindowViewModel />
 </Window.DataContext>
 <Window.Resources>
 <converter:UriConverter x:Key="uriConverter" />
 <command:GoBackCommand x:Key="goBackCommand" />
 </Window.Resources>
 <Grid x:Name="LayoutRoot">
 <TextBox Height="27" HorizontalAlignment="Left"
Margin="2,1,0,0"
 Name="textBoxUrl" VerticalAlignment="Top" Width="611"
 Text="{Binding UserSuggestedSourcePage}" />
 <Button Content="Go" Height="27" HorizontalAlignment="Left"
 Margin="615,1,0,0" Name="btnGo"
VerticalAlignment="Top"
 Width="39" IsDefault="True"
 Command="{Binding NavigateUrlCommand}" />
 <WebBrowser x:Name="webBrowser" Margin="0,59,0,0" />
 <core:BindingReflector
 x:Name="sourceReflector">
 <core:BindingReflector.Target>

Using Non-MVVM Third-party Controls

[418]

 <Binding ElementName="webBrowser"
 Path="Source" Mode="OneWayToSource" />
 </core:BindingReflector.Target>
 <core:BindingReflector.Source>
 <Binding Path="SourcePage" Mode="OneWay"
 Converter="{StaticResource uriConverter}"/>
 </core:BindingReflector.Source>
 </core:BindingReflector>
 <Button Content="Back" Height="26"

 HorizontalAlignment="Left"

 Command="{Binding

 Source={StaticResource goBackCommand}}"
CommandParameter="{Binding

 ElementName=webBrowser, Path=CanGoBack}"

 Margin="2,30,0,0" Name="btnBack"

 VerticalAlignment="Top"

 Width="67" />

 </Grid>
</Window>

This seems like a perfectly reasonable approach but it doesn't work. When you run
the application, the Back button is always disabled no matter how many pages you
browse. So what's the problem? When we request the value of CanGoBack directly, it
goes through the navigation list and returns accordingly. However, it doesn't notify
all observers through any mechanism of change notification when CanGoBack has
changed. Because of this, the view always holds on to the initial value of CanGoBack,
which is false and therefore our button is always disabled.

So what are our options for resolving this issue? One thing we could try is polling
but fortunately we have better options available. The best choice might be to update
the property to somehow support change notification but since the control is from a
third-party vendor that is not even an option.

Let's define a new implementation of ICommand as follows:

namespace UsingNonMVVMElements.Command
{
 using System;
 using System.Windows.Input;
 using System.Windows.Controls;

 class GoBackWithWebBrowserParameterCommand : ICommand
 {
 public bool CanExecute(object parameter)

Chapter 10

[419]

 {
 bool ret = true;

 if (parameter is WebBrowser)
 {
 WebBrowser browser = (WebBrowser)parameter;
 ret = browser.CanGoBack;
 }

 return ret;
 }

 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }

 public void Execute(object parameter)
 {
 if (parameter is WebBrowser)
 {
 WebBrowser browser = (WebBrowser)parameter;
 browser.GoBack();
 }
 }
 }
}

In the preceding code, whenever a command re-evaluation is required, CanGoBack
property of WebBrowser will be checked to see if this is possible. If true, then it
would return true, which enables the button. We have also included the code
to navigate backwards if user actually clicks on the button. The WebBrowser's
GoBack() causes the browser to navigate back.

The preceding code gets the job done but I'd suspect a few eyebrows might be
raised when looking at the code. We are using the WebBrowser control directly
for the parameter of Command. One of the main goals of MVVM is to avoid having
presentation controls in our code and so we have clearly failed with this approach.
This should be alright as this is not in the view model but this is definitely not easily
unit testable and definitely seems to be an MVVM code smell. Well, we will see later
how we can improve this situation and avoid the need for controls in our code.

Using Non-MVVM Third-party Controls

[420]

Let's now look at how we can use Converter in the updated view as shown in the
following code:

<Window
 x:Class="UsingNonMVVMElements.
MainWindowBindingReadOnlyPropertiesWithWebBrowserCommandParameter"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="481" Width="688"
 xmlns:vm="clr-namespace:UsingNonMVVMElements.ViewModel"
 xmlns:converter="clr-namespace:UsingNonMVVMElements.Converter"
 xmlns:core="clr-namespace:UsingNonMVVMElements.Core"
 xmlns:command="clr-namespace:UsingNonMVVMElements.Command"
 Title="MVVM Survival Guide">
 <Window.DataContext>
 <vm:MainWindowViewModel />
 </Window.DataContext>
 <Window.Resources>
 <command:GoBackWithWebBrowserParameterCommand

 x:Key="goBackCommand" />

 <converter:UriConverter x:Key="uriConverter" />
 </Window.Resources>
 <Grid x:Name="LayoutRoot">
 <TextBox Height="27" HorizontalAlignment="Left"
Margin="2,1,0,0"
 Name="textBoxUrl" VerticalAlignment="Top" Width="611"
 Text="{Binding UserSuggestedSourcePage}" />
 <Button Content="Go" Height="27" HorizontalAlignment="Left"
 Margin="615,1,0,0" Name="btnGo"
VerticalAlignment="Top"
 Width="39" IsDefault="True"
 Command="{Binding NavigateUrlCommand}" />
 <WebBrowser x:Name="webBrowser" Margin="0,59,0,0" />
 <core:BindingReflector
 x:Name="sourceReflector">
 <core:BindingReflector.Target>
 <Binding ElementName="webBrowser"
 Path="Source" Mode="OneWayToSource" />
 </core:BindingReflector.Target>
 <core:BindingReflector.Source>
 <Binding Path="SourcePage" Mode="OneWay"
 Converter="{StaticResource uriConverter}"/>
 </core:BindingReflector.Source>
 </core:BindingReflector>

Chapter 10

[421]

 <Button Content="Back" Height="26" HorizontalAlignment="Left"
 Command="{Binding

 Source={StaticResource goBackCommand}}"

 CommandParameter="{Binding

 ElementName=webBrowser}"

 Margin="2,30,0,0" Name="btnBack"
VerticalAlignment="Top"
 Width="67" />
 </Grid>
</Window>

Change App.xaml so that this view is set as startup page and then run the
application. The browser is again shown with Google's main page. Navigate to
any other page by typing the URL in the address bar. Now you will see that the
Back button is enabled. This is what we wanted. If you click on the Back button,
it will successfully browse back. Although we have directly used the WebBrowser
type in Converter, we have avoided the code behind it by keeping it in a separate
ICommand. Keeping it in separate ICommand instead of using RelayCommand in view
model has also kept the view model clean.

Using .NET 4.0 dynamic
Using WebBrowser or any other GUI controls in code is not the ideal approach
when implementing MVVM because it has poor testability and poor separation of
concerns. We will now look at how we can improve this situation by making our
design testable using the new dynamic feature from .NET 4.0. Let's update Command
as follows:

namespace UsingNonMVVMElements.Command
{
 using System;
 using System.Windows.Input;

 internal class GoBackWithWebBrowserDynamicParameterCommand
 : ICommand
 {
 public bool CanExecute(object parameter)
 {
 bool ret = true;

 if (parameter != null)
 {
 dynamic browser = parameter;
 ret = browser.CanGoBack;

Using Non-MVVM Third-party Controls

[422]

 }

 return ret;
 }

 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }

 public void Execute(object parameter)
 {
 if (parameter != null)
 {
 dynamic browser = parameter;
 browser.GoBack();
 }
 }
 }

}

As you can see that in the preceding ICommand code, we have used the dynamic
keyword instead of directly using the WebBrowser reference. This would help us
in testing this. Let's use this in the view as follows:

<Window
 x:Class="UsingNonMVVMElements
 .MainWindowBindingReadOnlyPropertiesWithDynamicParameter"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="481" Width="688"
 xmlns:vm="clr-namespace:UsingNonMVVMElements.ViewModel"
 xmlns:converter="clr-namespace:UsingNonMVVMElements.Converter"
 xmlns:core="clr-namespace:UsingNonMVVMElements.Core"
 xmlns:command="clr-namespace:UsingNonMVVMElements.Command"
 Title="MVVM Light Application">
 <Window.DataContext>
 <vm:MainWindowViewModel />
 </Window.DataContext>
 <Window.Resources>

Chapter 10

[423]

 <command:GoBackWithWebBrowserDynamicParameterCommand
 x:Key="goBackCommand" />
 <converter:UriConverter x:Key="uriConverter" />
 </Window.Resources>
 <Grid x:Name="LayoutRoot">
 <TextBox Height="27" HorizontalAlignment="Left"
Margin="2,1,0,0"
 Name="textBoxUrl" VerticalAlignment="Top" Width="611"
 Text="{Binding UserSuggestedSourcePage}" />
 <Button Content="Go" Height="27" HorizontalAlignment="Left"
 Margin="615,1,0,0" Name="btnGo"
VerticalAlignment="Top"
 Width="39" IsDefault="True"
 Command="{Binding NavigateUrlCommand}" />
 <WebBrowser x:Name="webBrowser" Margin="0,59,0,0" />
 <core:BindingReflector
 x:Name="sourceReflector">
 <core:BindingReflector.Target>
 <Binding ElementName="webBrowser"
 Path="Source" Mode="OneWayToSource" />
 </core:BindingReflector.Target>
 <core:BindingReflector.Source>
 <Binding Path="SourcePage" Mode="OneWay"
 Converter="{StaticResource uriConverter}"/>
 </core:BindingReflector.Source>
 </core:BindingReflector>
 <Button Content="Back" Height="26" HorizontalAlignment="Left"
 Command="{Binding Source={StaticResource
goBackCommand}}"
 CommandParameter="{Binding ElementName=webBrowser}"
 Margin="2,30,0,0" Name="btnBack"
VerticalAlignment="Top"
 Width="67" />
 </Grid>
</Window>

Now let's look at testability of this design. The first thing we need to do is create
a stub that will work with our dynamic solution. Let's start by creating a new test
project UsingNonMVVMElements.Test. Now update the access modifier of the
Command class to be internal and introduce this attribute in AssemblyInfo.cs from
the System.Runtime.CompilerServices namespace:

[assembly: InternalsVisibleTo("UsingNonMVVMElements.Test")]

Using Non-MVVM Third-party Controls

[424]

Let's add a new interface IWebBrowser as follows:

namespace UsingNonMVVMElements
{
 public interface IWebBrowser
 {
 bool CanGoBack { get; set; }
 void GoBack();
 }
}

We will be using Rhino Mocks 3.5 here to create stubs based on the IWebBrowser
interface. Now add Rhino Mocks and the PresentationCore assemblies to test
project and add the following test:

namespace UsingNonMVVMElements.Test
{
 using Microsoft.VisualStudio.TestTools.UnitTesting;
 using UsingNonMVVMElements.Command;
 using Rhino.Mocks;

 [TestClass]
 public class GoBackWithWebBrowserDynamicParameterCommandTest
 {

 [TestMethod]
 public void CanExecuteTestWhenNavigationPossible()
 {
 GoBackWithWebBrowserDynamicParameterCommand target =
 new GoBackWithWebBrowserDynamicParameterCommand();

 IWebBrowser browser = MockRepository.
GenerateStub<IWebBrowser>();
 browser.CanGoBack = true;

 Assert.IsTrue(target.CanExecute(browser));
 }

Chapter 10

[425]

 [TestMethod]
 public void CanExecuteTestWhenNavigationNotPossible()
 {
 GoBackWithWebBrowserDynamicParameterCommand target =
 new GoBackWithWebBrowserDynamicParameterCommand();

 IWebBrowser browser = MockRepository.
GenerateStub<IWebBrowser>();
 browser.CanGoBack = false;

 Assert.IsFalse(target.CanExecute(browser));
 }

 [TestMethod]
 public void CanExecuteTestWhenNullParameter()
 {
 GoBackWithWebBrowserDynamicParameterCommand target =
 new GoBackWithWebBrowserDynamicParameterCommand();

 Assert.IsTrue(target.CanExecute(null));
 }
 }
}

Now let's run all tests and verify that they all pass. The dynamic feature of .NET 4.0
allows us to inject a stub from an entirely different class without the two having to
share an interface! This is a powerful technique as you can declare an interface that
implements only the contract that is needed and nothing more and then at runtime
the dynamic will work with the real object as long as it finds the methods and
properties that are needed.

Using Non-MVVM Third-party Controls

[426]

Using MVVM adapters
Using this approach, we will create an MVVM adapter around the
non-MVVM control.

The adapter pattern is a Gang of Four [GOF] pattern that involves
adding a layer of abstraction over a class to change its interface. There
are two approaches that can be taken when implementing the adapter
pattern—inheritance based or aggregation based. In the inheritance
version, you simply create a subclass of the class that needs to be
adapted and then expose a new interface while the aggregation version
involves aggregating the class and then making pass through calls
from the adapter to the adaptee as needed.

We have to make a decision about whether we should implement an aggregation
adapter or an inheritance adapter. Here, we can implement an aggregation-based
adapter. This obviously needs more work than their inheritance counterparts for
pass-through calls to the aggregated object. However, it's common to find that
third-party libraries' types are sealed for inheritance (like WebBrowser in our
case). On the contrary, inheritance-based adapter just requires adding the extra
functionality to the sub-type with no pass-through calls, generally used when
there is no restriction of target type and more focus on the required functionality.

Let us assume that we need simple WebBrowser and we just need to bind the
Source property to a property in DataContext. The contract for the adapter
will be as follows:

namespace UsingNonMVVMElements
{
 public interface IWebBrowserAdapter
 {
 string Source { get; set; }
 }
}

Let's simply use UserControl as adapter of the WebBrowser control:

<UserControl x:Class="UsingNonMVVMElements.WebBrowserAdapter"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"

Chapter 10

[427]

 d:DesignHeight="300" d:DesignWidth="300">
 <WebBrowser x:Name="webBrowser" />
</UserControl>

The code behind the user control is as follows:

namespace UsingNonMVVMElements
{
 using System;
 using System.Windows;
 using System.Windows.Controls;

 /// <summary>
 /// Interaction logic for WebBrowserAdapter.xaml
 /// </summary>
 public partial class WebBrowserAdapter
 : UserControl, IWebBrowserAdapter
 {
 public WebBrowserAdapter()
 {
 InitializeComponent();
 }

 #region Dependency Properties

 public static DependencyProperty SourceProperty =
 DependencyProperty.Register(
 "Source", typeof(string), typeof(WebBrowserAdapter),
 new PropertyMetadata(string.Empty));

 public string Source
 {
 get { return (string)GetValue(SourceProperty); }
 set { SetValue(SourceProperty, value); }
 }

 #endregion

 #region Overriden methods

 protected override void OnPropertyChanged(
 DependencyPropertyChangedEventArgs e)
 {
 base.OnPropertyChanged(e);

Using Non-MVVM Third-party Controls

[428]

 if (e.Property == SourceProperty &&
 e.NewValue != null &&
 !string.Equals(webBrowser.Source, e.NewValue))
 {
 webBrowser.Source =
 new Uri(e.NewValue.ToString());
 }
 }

 #endregion

 }
}

The user control implements the IWebBrowserAdapter interface. We are adding the
Source dependency property to the user control. We will be using the same property
for Binding. Also, take notice of the overridden method OnPropertyChanged. When
SourceProperty is updated, we are propagating the same change to the adaptee
(WebBrowser). Now let's consume this adapter in a window similar to that in the first
example discussed in this chapter:

<Window x:Class="UsingNonMVVMElements.MainWindowWebBrowserAdapter"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="481" Width="688"
 xmlns:vm="clr-namespace:UsingNonMVVMElements.ViewModel"
 xmlns:local="clr-namespace:UsingNonMVVMElements"
 Title="MVVM Survival Guide">
 <Window.DataContext>
 <vm:MainWindowViewModel />
 </Window.DataContext>
 <Grid x:Name="LayoutRoot">
 <TextBox Height="27" HorizontalAlignment="Left"
Margin="2,1,0,0"
 Name="textBoxUrl" VerticalAlignment="Top" Width="611"
 Text="{Binding UserSuggestedSourcePage}" />
 <Button Content="Go" Height="27" HorizontalAlignment="Left"
 Margin="615,1,0,0" Name="btnGo"
VerticalAlignment="Top"
 Width="39" IsDefault="True"
 Command="{Binding NavigateUrlCommand}" />
 <local:WebBrowserAdapter Source="{Binding SourcePage}"
 Margin="0,34,0,0" />
 </Grid>
</Window>

Chapter 10

[429]

Let's update App.xaml so that Window in the preceding code is the startup window.
Run the application. It should load up as shown in the screenshot in the Using
attached behaviors section.

Now enter some other URL, say http://www.microsoft.com, in the address bar
and click on the Go button. The user control passes this update through overridden
OnPropertyChanged to the WebBrowser control. WebBrowser then successfully
updates the page to Microsoft's main page.

Aggregation-based adapters hide the actual adaptee and provide an interface to
execute only certain operations on them. However there are scenarios, like this
one, when we just need to provide extra implementation and, otherwise, the
adapter should behave exactly as the adaptee would have. This adapter is more
like a decorator. We can achieve that using DynamicObject from .NET 4.0. We
need to inherit the adapter from DynamicObject and override the TryGetMember,
TrySetMember, and TryInvoke methods. In the implementation of these
methods, we can simply pass the request to the adaptee. However, UserControl
is not DynamicObject, and we need the features of both UserControl and
DynamicObject. Here the limitation is unavailability of multiple inheritance for
the adapter. We should keep in mind that we have not run out of options yet as
we can have the adapter implement IDynamicMetaObjectProvider and provide a
similar implementation to that of a DynamicObject. In this way, we can achieve the
same effect but since it would be diving unnecessarily into the .NET Framework 4.0
features, we will leave it up to the reader to look into this further.

Summary
In this chapter, we discussed how we can use non-MVVM based controls in a
MVVM based application. We discussed various techniques including attached
properties, binding reflector, .NET 4.0 Dynamic, and MVVM adapters.

http://www.microsoft.com

MVVM and Application
Performance

By Muhammad Shujaat Siddiqi

In this chapter, we will look at some advanced techniques that can be used
to help with application performance. Application performance is a vast subject,
and we cannot discuss everything in a single chapter. The main focus of this chapter
will be to utilize the framework features for improving application performance,
with a focus on MVVM.

Asynchronous binding
Binding.IsAsync allows loading the binding source asynchronously, without
blocking the application UI. When using Binding.IsAsync, WPF will use a
ThreadPool thread to resolve the binding asynchronously. When the data is
available from the binding source, it is copied to the Target property.

1. Let us create a small WPF application with just a TextBlock that displays
the message of the day.

MVVM and Application Performance

[432]

The previous view can be defined in XAML, as follows:
<Window x:Class="MVVMAppPerformanceimprovement.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MVVMAppPerformanceimprovement"
 Title="MVVM Survival Guide" Height="250" Width="400">
 <Window.DataContext>
 <local:MainWindowViewModel />
 </Window.DataContext>
 <Grid>
 <TextBlock Width="300" Height="56" Foreground="White"
 HorizontalAlignment="Center" FontSize="15"
 VerticalAlignment="Center" FontWeight="Bold"
 TextAlignment="Center" Background="Navy" >
 <TextBlock.Text>
 <Binding Path="Message"
 StringFormat="Message: {0}" />
 </TextBlock.Text>
 </TextBlock>
 </Grid>
</Window>

2. Here, we are using MainWindowViewModel as the DataContext property of
the view. We are binding the Message property from the View Model to the
Text property of the TextBlock property.

3. The definition of the View Model might be as follows:
namespace MVVMAppPerformanceimprovement
{
 using System.ComponentModel;

 class MainWindowViewModel : INotifyPropertyChanged
 {
 MessageOfTheDay _messageOfTheDay =
 new MessageOfTheDay();

 public string Message
 {
 get
 {
 return _messageOfTheDay.Message;
 }
 set

Chapter 11

[433]

 {
 _messageOfTheDay.Message = value;
 OnPropertyChanged(“Message");
 }
 }

 #region INotifyPropertyChanged

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

 #endregion

 }
}

As you can see, Message is defined as a proxy property over a property with
the same name from the MessageOfTheDay class. Here, the MessageOfTheDay
class is used as the model. Additionally, the View Model implements the
INotifyPropertyChanged interface. Now let's look at the definition of the
MessageOfTheDay class. The Message property has a delay in the getter, since
the view accesses the property in the UI thread. This would cause the whole
application to become idle during this time. The delay is achieved by simply
calling Thread.Sleep with a duration of 10 seconds.

namespace MVVMAppPerformanceimprovement
{
 using System.Threading;

 class MessageOfTheDay
 {
 string _message;
 public string Message
 {
 get
 {
 //imaginary delay

MVVM and Application Performance

[434]

 Thread.Sleep(10000);
 return _message ;
 }
 set
 { _message = value; }
 }

 public MessageOfTheDay()
 {
 _message = “Drive safe!";
 }
 }
}

4. Now, let's run the application. After we hit F5, at the least there is a
10-second delay before the application is successfully shown on the screen.
The delay is caused because one of the properties in some model is slow at
giving responses. Now, imagine an enterprise application with a number of
such properties. It would be a nightmare just to launch the application, as the
application responsiveness would be extremely choppy and sluggish.
One obvious solution is to make the WPF property system get the binding
source value in a separate thread. Once the binding system is able to obtain a
value from the binding source, the value is dispatched back to the UI thread,
automatically. As we mentioned earlier, the binding system supports this
kind of asynchronous behaviour through the Binding.IsAsync property.

5. Let's take a look at this by updating our view, as follows:
<Window x:Class="MVVMAppPerformanceimprovement.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MVVMAppPerformanceimprovement"
 Title="MVVM Survival Guide" Height="250" Width="400">
 <Window.DataContext>
 <local:MainWindowViewModel />
 </Window.DataContext>
 <Grid>
 <TextBlock Width="300" Height="56" Foreground="White"
 HorizontalAlignment="Center" FontSize="15"
 VerticalAlignment="Center" FontWeight="Bold"
 TextAlignment="Center" Background="Navy" >
 <TextBlock.Text>
 <Binding Path="Message"
 StringFormat="Message: {0}"

Chapter 11

[435]

 IsAsync="true"
 FallbackValue="Loading..." />
 </TextBlock.Text>
 </TextBlock>
 </Grid>
</Window>

6. Now, the property system will access the source property asynchronously,
without blocking the current UI thread. The view will show the
FallbackValue property defined for binding until the actual property is
available that is Loading…, as shown in the following screenshot:

After the property value becomes available, the view is updated with the actual
value, Drive Safe, as shown previously.

Asynchronous View Model construction
We can improve the productivity of our designers using MVVM, by making
design-time data available either directly in our View Models or by using an IoC
(Inversion of Control) to swap in stubbed View Models in the designer. Doing
this allows designers to have working sample data at design-time to help them
create sophisticated views for our users. This is a productive working style, as
designers don't have to access anything (such as the database or web services) and it
provides a separation between designers and developers that allows them to work
in parallel without blocking each other. However, when the real application is run
outside of the designer, all of the dependencies will be live, and loading this data
can slow things down when it comes to loading our views. We need to improve the
application responsiveness as much as we can, so that the application doesn't become
idle when data is being read.

MVVM and Application Performance

[436]

We can illustrate the previous scenario by introducing a delay in a View Model's
construction. Since we are creating the View Model inline, the view becomes idle
until the View Model is constructed. Let's introduce a delay in the constructor of
MessageofTheDay. Since this is happening in the constructor of our View Model,
the view will be unresponsive while it waits for the constructor call to complete.

public MessageOfTheDay()
{
 Thread.Sleep(10000);
 _message = “Drive safe!";
}

You might wonder whether Binding.IsAsync has any effect in preventing this
delay, and the answer is NO, it does not have any effect whatsoever.The Binding.
IsAsync property provides asynchronous behavior in bindings. If there is any delay
before the binding code is actually executed, as is the case here, having asynchronous
bindings won't help with the initial loading delay. When we run our application, the
application first has a delay of at least 10 seconds to load the View to account for our
constructor. After that, there will be a Loading… message on the screen for at least
10 seconds for the binding delay, and then the message of the day will be shown on
the screen.

Now, how can we make sure that our application is loaded on the screen in a
responsive way, preventing the user from dealing with a frustrating experience
when launching our application? We can do this by constructing our View Model
asynchronously. Using the asynchronous approach, the View can be loaded with
default values for its Binding Targets, and then once the View Model is loaded,
the Binding Targets will be updated via the binding system's change notification
mechanism. We can accomplish this by using the ObjectDataProvider property
for our View Model construction, which has built-in support for loading its
object asynchronously.

Let's update the DataContext section of the view, as follows:

<Window.DataContext>
 <ObjectDataProvider
 ObjectType="{x:Type local:MainWindowViewModel}"
 IsAsynchronous="True" />
</Window.DataContext>

Now, when we run the application, the window is immediately launched on the
screen. Since the object assigned to the DataContext property is not available yet,
the TextBlock shows Loading…, during this time. After the View Model becomes
available, there is another delay of 10 seconds to access the Message property. So,
the view would continuously show the Loading… message, and then finally, the
message of the day.

Chapter 11

[437]

Priority binding
Binding supports the FallbackValue property, if the desired source property is
not available. This is good, but we might want to show the user some other useful
information until the actual binding source is available. We might even want a list of
bindings, applied in the order of their configured priority. We'd want the property
system to attempt to pick up the available binding source with the highest priority
for us. If a lower priority binding source is bound and a higher priority binding
source becomes available, we'd want the property system to use the newly available
binding source. And finally, we would want to be able to use a static fall-back value,
if no binding source is available.

Basically, WPF Priority Binding is here to support just this scenario. We can define
a list of bindings in the order of their priorities. The property system picks up the
available property with the highest priority, and if a binding source is available with
a higher priority, it updates itself. It also supports FallbackValue.

Let's update MainWindowViewModel so that it has two properties—Message1 and
Message2. The getter of Message1 has a delay of seven seconds, while that of
Message2 has three seconds.

namespace MVVMAppPerformanceimprovement
{
 using System.ComponentModel;
 using System.Threading;

 class MainWindowViewModel : INotifyPropertyChanged
 {
 string _message1 = “Message1";
 public string Message1
 {
 get
 {
 Thread.Sleep(7000);
 return _message1;
 }
 set
 {
 _message1 = value;
 OnPropertyChanged(“Message1");
 }
 }

 string _message2 = “Message2";
 public string Message2

MVVM and Application Performance

[438]

 {
 get
 {
 Thread.Sleep(3000);
 return _message2;
 }
 set
 {
 _message2 = value;
 OnPropertyChanged(“Message2");
 }
 }

 #region INotifyPropertyChanged

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

 #endregion

 }
}

It is important that we use IsAsync for each binding to make sure that the access
to the property takes place on a separate thread. Otherwise, it will just block the UI
thread, causing the application to become idle. Now, let's discuss how we can use
these two properties with PriorityBinding. We update the view as follows:

<Window x:Class="MVVMAppPerformanceimprovement.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MVVMAppPerformanceimprovement"
 Title="MVVM Survival Guide" Height="250" Width="400">
 <Window.DataContext>
 <ObjectDataProvider
 ObjectType="{x:Type local:MainWindowViewModel}"

Chapter 11

[439]

 IsAsynchronous="True" />
 </Window.DataContext>
 <Grid>
 <TextBlock Width="300" Height="56" Foreground="White"
 HorizontalAlignment="Center" FontSize="15"
 VerticalAlignment="Center" FontWeight="Bold"
 TextAlignment="Center" Background="Navy" >
 <TextBlock.Text>
 <PriorityBinding FallbackValue="Loading...">
 <Binding Path="Message1" IsAsync="True" />
 <Binding Path="Message2" IsAsync="True" />
</PriorityBinding>
 </TextBlock.Text>
 </TextBlock>
 </Grid>
</Window>

Let's run it now. The application is now initially loaded with the Loading… message
in the TextBlock. This is because none of the binding sources are available initially,
and the binding is using the configured FallbackValue property.

After three seconds, Message2 becomes available as the binding source from the
priority binding list. Since it is the highest priority binding available at the current
time, it is used by the target property.

Finally, after a few seconds, Message1 becomes available and the view is updated
as follows:

MVVM and Application Performance

[440]

Virtualization and paging
In enterprise applications, we have to deal with data in different formats and sizes.
We need to find ways to display and collect this data in the most user-friendly
and performance-efficient way. Nobody likes an application that has all the
beautiful controls and features but that takes a lot of time to run basic operations.
So, performance and responsiveness are an implicit requirement for enterprise
applications. I'd argue that it makes more sense to make it an explicit requirement,
so that it can be properly planned for and managed.

Virtualization and paging are common techniques that are used when we need to
deal with more data than it makes sense to load into memory at one time. With data
virtualization and data paging techniques, we load just the data from the repository
that is currently displayed on the screen, and we dynamically load more data as
needed. Based on the idea of spatial locality of reference, we could also load some
extra data to create a fast buffer to help improve responsiveness and performance.
The special data for a page can be specified in LINQ, using Take and Skip operators,
making it the responsibility of a LINQ provider to translate it into the actual
query code.

This data selected using data virtualization techniques can be specified as the data
source of an ItemsControl and is displayed to the user with a scrollbar to scroll
through the list. With WPF/Silverlight, we can further improve this by using UI
virtualization. Basically, ItemsControl are based on ItemsPanel. Most of the
ItemsControl are based on the VirtualizingStackPanel, which supports UI
virtualization. VirtualizingStackPanel creates the needed controls for the data
and for the controls that are currently displayed in the view. As we scroll through
data, it creates new controls to display the currently visible data. We can even
enable recycling, so that instead of creating new controls, VirtualizingStackPanel
recycles the controls created to previously display data. We always want to keep
this functionality in mind when we are building UIs that use controls derived from
ItemSource.

In the following example, we are simply overriding the ItemsPanel property of a
ComboBox to use the VirtualizingStackPanel. The ItemsSource of the ComboBox
has been specified as the DSource property from the current DataContext. This
property would ideally be an ObservableCollection.

<ComboBox Height="22" HorizontalAlignment="Left"
 Margin="40,61,0,0" Name="comboBox1"
 VerticalAlignment="Top" Width="378"
 ItemsSource="{Binding DSource}" >
 <ComboBox.ItemsPanel>
 <ItemsPanelTemplate>

Chapter 11

[441]

 <VirtualizingStackPanel />
 </ItemsPanelTemplate>
 </ComboBox.ItemsPanel>
</ComboBox>

When profiling the memory footprint of an application using this technique,
you will generally see a significant decrease in the memory footprint after
applying this technique.

Using BackgroundWorker
As we have seen, desktop applications have to be multi-threaded to be responsive.
When multi-threading our applications, we spawn a new thread (or use the
ThreadPool) and then when the background thread finishes executing, the
background thread might need to notify the other threads (especially the UI thread).
There are signalling constructs available in .NET, such as EventWaitHandle for
thread synchronization, that we can use. We also frequently need to show the
progress of execution of certain tasks to the user, using something like a progress bar
or status bar. The .NET framework makes all of this possible, but it requires a lot of
understanding of multithreading and code that is difficult to develop and maintain.

BackgroundWorker is an easier alternative to accomplishing the goals listed
previously. It executes the operations on a background thread using the ThreadPool.
BackgroundWorker also makes progress reporting to the UI thread easier, by
providing a ProgressChanged event. Additionally, BackgroundWorker provides a
WorkCompleted event that is raised when the background operation is completed.
These events are dispatched to the thread which initiated the work on the
BackgroundWorker using the SynchronizationContext. Both WinForms and WPF
store the UI thread in the default SynchronizationContext, and this is why we can
use BackgroundWorker in both technologies.

The other benefit of BackgroundWorker is that it simplifies error handling. When an
unhandled exception occurs on a background thread, the .NET runtime will close
the application, and it takes a decent amount of effort to marshal exceptions back to
the UI thread for more graceful processing. When an unhandled exception occurs on
a background thread, the BackgroundWorker simplifies things for us a great deal. It
provides error details in the WorkCompleted event. The application will not crash,
and the client code can subscribe to the WorkCompleted event to get the exception
details. Using BackgroundWorker just requires handling a few events.

MVVM and Application Performance

[442]

To see an example of this technique, see www.RyanVice.net.

Targeting system configuration
Although we want to develop the best application that will run fast on all machines
in all circumstances, we know that, practically speaking, this isn't possible. It is best
to develop a minimum system requirement standard early in our development cycle,
to allow us to manage application performance appropriately during development.

One other option is to enable/disable features based on machine capabilities. This
way, if a user has less than minimum configuration, we can disable features such as
those that require higher CPU/memory consumption, as needed. We can notify the
user about the disabled features list at application startup, so that they are aware that
they are not getting the full-blown application performance.

Alternatively, we can define different modes of our system. We can determine the
machine configuration and use the appropriate mode suitable for the configuration
of that machine. For less powerful machines, there could be modes with lesser
graphics-processing requirements.

We can easily determine the details about the machine's configuration using
Windows Management Instrumentation (WMI). It allows us to write WQL-based
queries. The queries are a lot like SQL queries.

Select * from win32_ComputerSystem

Event Throttling
No enterprise application works in isolation, as they all have dependencies of some
kind. They have to work with other applications in the enterprise ecosystem to add
value to organizational processes. These applications can be built using completely
different technology stacks and they might have been developed in different
programming languages and they might support data in different formats. If we need
to communicate with these systems, we might need to define some sort of enterprise
messaging framework. A common approach for this is messaging through a database
or messaging system (MSMQ, NServiceBus, and so on). In a client-server application
developed using Microsoft's APIs, we might use sockets for messaging, or other

Chapter 11

[443]

techniques such as named pipes. The most modern of all in our times is message
queuing. It is based on the publisher/subscriber model. There are different message
queuing systems available in the market. Microsoft also has its own product, called
MSMQ. The idea is that the messaging system runs as a separate process maintaining
several queues. Any two applications that want to communicate can use one of its
queues. The publisher keeps pushing data to the queue. The queuing system keeps
data until it is de-queued or the message expires. The message can be peaked or
de-queued by another application that it uses for carrying out its operations.

As these messages are consumed by the subscribers, the user is also notified about
them or the subscriber can do certain computations and update its state. Now the
user interface needs to be updated based on the current session state. Let's assume
we receive a number of these messages per second. First of all, these messages
should be handled in some threads other than the UI thread, so that the interface is
not idle when we are processing these messages. But after computation, we need to
update the UI, which has to be done on the UI thread. Since we are receiving many
of these messages per second, the UI will continuously be updated, tying up the UI
thread and affecting the responsiveness of the application.

One way to avoid this situation is to use event throttling. When using the event
throttling technique, we throttle these messages, so that only a few events are
read over a certain interval of time in the UI, no matter how many source events
are published. Reactive Extensions (Rx) is a research project at Microsoft that has
in-built support for event throttling. You can find it on Microsoft's download centre
and download it.

See www.shujaat.net for useful tutorials about Rx.

Lazy Initialization
During development, we will frequently use types that are resource-intensive for
construction in terms of memory or computation time. So we might want to delay
the construction of these types until we actually need them. This can be achieved
by a new feature introduced in .NET framework 4.0, called Lazy Initialization. We
can use this feature to improve the performance of our applications by delaying the
instance construction of types.

http://www.shujaat.net
http://www.shujaat.net

MVVM and Application Performance

[444]

Let's look at a sample window which is part of a contrived medical application.
Let's create a WPF MVVM Light project, called MVVMAppLazyInitialization, in
.NET Framework 4. In this sample, patients are selected and loaded, as shown in the
following screenshot, so that their information can be viewed. As shown, some of
their information can be viewed and edited. If we start loading everything in a single
pass, it would take a lot of time for the window to show up, as data is fetched from
persistence stores.

A patient's data might come from different sources. We can load this data into the
Patient class, as shown in the following code . Here, we will simulate the delay
using Thread.Sleep().

namespace MVVMAppLazyInitialization.Model
{
 using System.Threading;

 class Patient
 {
 public string PatientFirstName { get; set; }
 public string PatientLastName { get; set; }

 public Patient()
 {
 //Loading other useful information
 Thread.Sleep(3000);
 }
 }
}

Chapter 11

[445]

If we select 10 customers, this would cause a delay of 30 seconds at least. We can
improve the performance and responsiveness of the application by using lazy
initialization. We can delay the instantiation of our patient instances until the user
tries to modify a field.

namespace MVVMAppLazyInitialization.ViewModel
{
 using GalaSoft.MvvmLight;
 using System;
 using MVVMAppLazyInitialization.Model;

 public class PatientViewModel : ViewModelBase
 {
 #region Fields

 Lazy<Patient> _model = new Lazy<Patient>();

 #endregion

 #region Constructor

 public PatientViewModel()
 {
 _patientFirstName = “Default";
 }

 #endregion

 #region Properties

 string _patientFirstName;
 public string PatientFirstName
 {
 get { return _patientFirstName; }
 set
 {
 if (_patientFirstName != value)
 {
 _patientFirstName = value;
 _model.Value.PatientFirstName = value;
 RaisePropertyChanged(“PatientFirstName");
 }
 }
 }

MVVM and Application Performance

[446]

 string _patientLastName;
 public string PatientLastName
 {

 get { return _patientLastName; }
 set
 {
 if (_patientLastName != value)
 {
 _patientLastName = value;
 _model.Value.PatientLastName = value;
 RaisePropertyChanged(“PatientLastName");
 }
 }
 }

 #endregion
 }
}

In the preceding code, _model.Value will instantiate a patient instance, if one hasn't
been created. Now, we need another View Model to hold the collection of instances
of PatientViewModel for all patients selected for editing. The same View Model can
be used as the DataContext for the Window. Let's name this MainWindowViewModel.

namespace MVVMAppLazyInitialization.ViewModel
{
 using GalaSoft.MvvmLight;
 using System.Collections.ObjectModel;
 using System.ComponentModel;

 public class MainViewModel : ViewModelBase
 {
 ObservableCollection<PatientViewModel> _patientViewModels;

 public ObservableCollection<PatientViewModel>
PatientViewModels
 {
 get
 {
 if (_patientViewModels == null)
 {
 _patientViewModels =
 new ObservableCollection<PatientViewModel>();

Chapter 11

[447]

 _patientViewModels.Add(new PatientViewModel());
 _patientViewModels.Add(new PatientViewModel());
 }
 return _patientViewModels;
 }
 }

 }
}

We would need to update the XAML definition of MainWindow, as shown in the
following code:

<Window x:Class="MVVMAppLazyInitialization.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MVVMAppLazyInitialization"
 Title="MVVM Survival Guide" Height="350" Width="525">

 <Window.DataContext>
 <local:MainWindowViewModel />
 </Window.DataContext>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Border Background="Navy" Grid.Row="0">
 <TextBlock Foreground="White" FontWeight="Bold"
 FontSize="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Text="Patient Details" />
 </Border>
 <TabControl Margin="4,4,4,4" Grid.Row="1"
 ItemsSource="{Binding PatientViewModels}" >
 <TabControl.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding PatientFirstName}" />
 </DataTemplate>
 </TabControl.ItemTemplate>
 <TabControl.ContentTemplate>
 <DataTemplate>
 <Grid Margin="8,8,0,0">
 <Grid.RowDefinitions>

MVVM and Application Performance

[448]

 <RowDefinition Height="auto" />
 <RowDefinition Height="8" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Content="First Name" Grid.Row="0"
 Grid.Column="0"/>
 <TextBox Text="{Binding
Path=PatientFirstName}"
 Grid.Row="0" Grid.Column="1" />
 <Label Content="Last Name"
 Grid.Row="2" Grid.Column="0"/>
 <TextBox Text ="{Binding PatientLastName}"
 Grid.Row="2" Grid.Column="1"/>
 <Border Grid.Row="3" Grid.Column="0"
 Margin="4,8,2,4"
Background="lightGray"
 Grid.ColumnSpan="2" >
 <TextBlock Text="Other Important Details"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 FontSize="24"/>
 </Border>
 </Grid>
 </DataTemplate>
 </TabControl.ContentTemplate>
 </TabControl>
 </Grid>
</Window>

Now, our view will only create patients on an on-demand basis.

Chapter 11

[449]

Summary
In this chapter, we looked at several techniques that you can use to improve
application performance and responsiveness. We saw how asynchronous bindings will
allow us to create asynchronous behaviour directly in XAML. We saw how to construct
our View Models asynchronously, using the ObjectDataProvider. We looked at how
we can use priority binding to allow for best-case binding, where you display the best
available binding source dynamically. We looked at built-in support for virtualization
and paging when using an ItemSource control and VirtualizingStackPanel. We
saw how we could take advantage of the BackgroundWorker to greatly simplify
asynchronous programming. And we finished off by talking about the idea of system
requirements followed by looking at the new Lazy keyword in .NET 4.0.

We went through great efforts when writing this book. We tried very hard to make it
a comprehensive guide that would allow developers to build enterprise solutions that
take advantage of MVVM's benefits without experiencing all the difficulties that are
so common when taking on MVVM. We are hopeful to see the support for MVVM
improve in the future releases of WPF and Silverlight, so that there will be fewer
frameworks and special techniques needed, and most importantly, shorter books!

Good luck on your MVVM adventures!

MVVM Frameworks
By Muhammad Shujaat Siddiqi

The XAML community has been blessed with extraordinary developers who are
always willing to volunteer their time. There are a myriad of MVVM frameworks
available and it is a tough decision which one to choose from. This is because
it is such a core architectural decision that it is nearly impossible to change the
underlying framework in later stages of development without extreme risks. Here,
MVVM Light Toolkit is our personal favorite.

Name Author License
MVVM Light Toolkit Laurent Bugnion MIT
Prism Microsoft Patterns and

Practices Team
Microsoft Patterns and
Practices License (Custom)

Calcium Daniel Vaughan BSD
Caliburn Rob Eisenberg MIT
Cinch Sacha Barber MS-PL
Catel Geert Van Horrik MS-PL

As a guideline, we should be looking at how any particular framework will help
us in incorporating MVVM in our design without sacrificing other enterprise
architecture design requirements. We should also look at how loosely coupled it is
with its own features. If a framework supports all these features but it forces you to
use a particular Dependency Injection mechanism then you would definitely have
to think about it. This would also help us in picking and choosing different features
from different frameworks. It would be easier if they allow such choices. The base
feature set to look for is as follows:

•	 INotifyPropertyChanged Implmementation (for base view model)
•	 ICommand Implementation

MVVM Frameworks

[452]

•	 Messenger (Mediator)
•	 Dialog support
•	 Validation (for base view model)
•	 Supported platforms (WPF, SL, WP, WinRT)
•	 Project templates and quick starts
•	 Documentation and active online community

In addition to the preceding features , these frameworks have also been
incorporating other features (for example, logging) in order to be a complete
enterprise application framework. You can also use those features when comparing
these frameworks but since they are not particularly related to MVVM, we haven't
discussed them here.

Binding at a Glance
By Muhammad Shujaat Siddiqi

Basics
•	 Binding is a markup extension.
•	 Binding target must be a dependency property.
•	 Binding source must be public property.
•	 Binding Target: Where Binding is defined [Petzold].
•	 Use MultiBinding for multiple Binding sources for the same target.

Changes in any of them cause target to be updated
•	 If an entire object is used as a binding source then binding can use the

implicit/explicit DataTemplate defined for the type, otherwise, it uses
the ToString() method for the type.

•	 In a partial trust environment, we cannot bind to dynamic object property
or CLR property of a non-public class.

Validation

ValidationRules
•	 Inherit ValidationRule and override Validate().
•	 Instantiate and add to the Binding.ValidationRules collection.
•	 Use the ValidationStep property to control when it should be applied.

The possible values are ConvertedProposedValue, CommittedValue,
RawProposedValue, and UpdatedValue.

Binding at a Glance

[454]

IDataErrorInfo
•	 Used for sync validation where only single validation result suffices.

Implemented by View Model. Apply ValidatesOnDataErrors or
DataErrorValidationRule for binding.

INotifyDataErrorInfo [.net 4.5]
•	 Used for sync/async validation when more than one validation

result is available. Implemented by View Model. Apply
ValidatesOnNotifyDataErrors or NotifyDataErrorValidationRule
for binding.

Enterprise Library 5.0 Validation Application
Block

•	 Supports defining validation rules by using attributes, configuration,
and self-validation which can also be consolidated

Windows WF
•	 Used for more complex sync/async business rules validations

Validation.ErrorTemplate
•	 Used to specify the template when control value fails validation

Static properties/fields
•	 A markup extension, to bind to the static field/properties of a class.

{x:Static Member=prefix:typeName.staticMemberName}

Executing code in DataContext
•	 Introduce an ICommand-based property in the DataContext and bind it to

the Command property of button-based controls. Third-party frameworks also
support binding them to element's events.

•	 Support parameters which support data binding.
•	 Commands can be bound to key and mouse gestures.

Appendix B

[455]

Binding to DataContext[DC]
•	 A DependencyProperty defined in FrameworkElement which supports

containment inheritance in the visual hierarchy
•	 For ItemsControl bound to a collection source, individual element's DC

is automatically set as single item of collection
{Binding}: binds directly to DC.
{Binding Path="P1"}: binds to property P1 in the DC.
{Binding Path="P2.P1"}: binds to P1 property of P2 in DC

Resources
•	 Identified by unique key, implicit or explicit [x:Key directive].
•	 Can be created/overwritten in the Resources section for a

FrameworkElement/FrameworkContentElement or Application. Can also be
defined in Resource Dictionaries and merged with Application resources.

•	 Recommended creation at the minimum level possible.
•	 Binding.Source uses them with StaticResource or DynamicResource.

Types with default constructor
•	 Can be instantiated directly in the Resources section. Their public properties

can be set in XAML which can also be a source for binding

XmlDataProvider
•	 Enables declarative access to XML node tree from the inline XML data, XML

data file, or XmlDocument. It is the slower among the two data providers

ObjectDataProvider
•	 Allows instantiation using specific constructor. Can also use any method of

the type for data with specific parameters. The parameters can also be used
as a binding source.

•	 Binding.BindsDirectlyToSource: When true, specifies that the binding
path is relative to the Data property.

Binding at a Glance

[456]

Binding to resource
•	 Use Binding's Source property to bind resources.

Static resource
{Binding Source="{StaticResource resourceKey}"}

•	 A markup extension, uses load-time resource for the key
•	 Not suggested for forward reference of resources
•	 Doesn't update when target resource changes for the key
•	 Suggested when target resource can't change at runtime

Dynamic resource
{Binding Source="{DynamicResource resourceKey}"}

•	 A markup extension, uses runtime resource for the key
•	 Suggested for forward reference of resources
•	 Updates when target resource changes for the key
•	 Suggested when target resource can change at runtime

Updating source

Binding.UpdateSourceTrigger
•	 PropertyChanged: Updates immediately
•	 LostFocus: Updates when focus target element loses focus
•	 Explicit: Update when UpdateSource() is called
•	 Default: Uses the default value for binding target

Binding.Delay: [.net 4.5] [Binding.
Mode:TwoWay / OneWayToSource]

•	 Milliseconds to wait before source is updated

Appendix B

[457]

Mode [Binding.Mode] [T:Target,
S:Source]

•	 TwoWay: Updates other when either changes
•	 OneWay: Updates [T] when source changes
•	 OneTime: Updates [T] when source changes/view is loaded.
•	 OneWayToSource: Updates [S] when [T] changes
•	 Default: Uses default from the [T] dependency property

Binding to other elements in the view

ElementName
{Binding ElementName = "elementName" }

•	 ElementName is the source of binding another element in the view (defined
with the x:Name directive or the Name property)

RelativeSource
{Binding RelativeSource=…}

•	 Binds to an element in the containment hierarchy of the target element.
The source can be an ancestor of the element or its templated parent.
Can also be used to bind to Self.

Conversion

Binding.StringFormat [SF]
•	 Use Binding.StringFormat for formatting source data for display when the

target dependency property is of type string

Binding at a Glance

[458]

Converter [C]
•	 Use IValueConverter for single binding source.
•	 Use IMultiValueConverter for multiple binding sources.
•	 Instantiate in the Resources section. Use with StaticResource.
•	 Convert() from source to target and ConvertBack() for otherwise.
•	 Use Binding.ConverterParameter for parameter to methods.
•	 If both [SF] and [C] are used, [SF] is applied after [C] for target update.

Performance

Async binding
{Binding IsAsync="true"}

•	 Causes async value to be updated for slow source property get accessor
•	 Binding can use FallbackValue for the default value of the target

DependencyProperty until the value becomes available

ObjectDataProvider.IsAsynchronous
•	 Allows instantiation in worker thread

PriorityBinding
•	 Allows multiple binding sources for a single target applied in the order

of their priority and availability

Index
Symbols
_actualTextBox 23
.NET 4.0 319

A
Abstract factory 258
AddControlsToWindow() method 23
Aggregate Model 192
application blocks 389
application layer

updating 236-241
Application Model 77
async binding 458
asynchronous binding 431-435
asynchronous View Model

constructing 435, 436
Attached Behavior pattern 221-226
attached behaviors

about 306-310
using 405-411

autonomous view 19

B
Back button 416, 418
BackgroundWorker

about 441
benefits 441
using 441

Behavior 86
binding

basics 453
binding reflector

using 411-416

Binding.StringFormat [SF] 457
Binding.UpdateSourceTrigger 456
boolean parameter 417
built-in dialogs

MessageBox 281
OpenFileDialog 281
PrintDialog 281
SaveFileDialog 281

business object 15
Button.Command property 217

C
CanGoBack property 416
Changed event 407
Code

about 96, 97
ProjectsModel 97-99
ProjectsViewModel 102-109
ProjectViewModel 100-102
Silverlight UI 115
WPF UI 110

code behind for ListBox.MouseDoubleClick
steps 220, 221

command
about 91, 92
using 92, 93

Completed event handler 327
complex business rules 398
Composite Root 258
Constructor Dependency Inject 151
Content Model 231
Context Menu 310
Controller, MVC Project Billing sample

48, 49
control templates 90

[460]

Converter [C] 458
customer-centric 177
customer details

CustomerDetailsViewModel, testing
165-167

orders, adding 229-231
testing 214-216
updating 210-214
viewing 160-164

customer list box
ShowCustomerDetails(), testing 172, 173
wiring 167-172

customers
isolation framework, benefits 153
isolation framework, using 151, 153
listing 142-145
unit testing 145-151

D
DAL 145
Data Access Layer. See DAL
data access tier 137-141
data binding

about 86, 87
automatic dispatching 88
binding source 86
binding target 86
INotifyCollectionChanged 87
ObservableCollection<> 87

DataContext[DC]
binding to 455
code, executing 454

DataContext property 436
DataDirectory attribute 180
data templates 90, 91
delays, handling

WorkflowApplication, using 326
WorkflowInvoker, using 322-326

dependency injection 15
Dependency Injection(DI) 192
Dependency Inversion 257
dependency properties

about 83
attached behavior pattern 85, 86
data context 84
registering 83

Silverlight 82
WPF 83

DependencyProperty 33, 333, 334, 412
design by contract 27
DetailsUpdated event 66
dialogs 281
Dialog service

about 282-286
convention, creating 294-296
datatemplates, using 286-294

DisableDetails() method 25
Domain model 44
domain object 15
dynamic keyword 422
dynamic resource 456

E
ElementName 457
EnableControls() function 66
EqualTo methods 262
EquipmentOperator property 369
Error notifications

about 398, 399
Error message box 398
fields, highlighting 400

Error templates 334-341
EventBehaviourFactory class 226
event handlers, MVP Project Billing sample

about 67
ProjectsComboBox_SelectionChanged() 67

event handlers, presenter 70
event handlers, ProjectsView 21, 23
event throttling 442, 443
EventTrigger property 130

F
finalizer 58
Finish button 328
frameworks 208, 209

G
Gang of Four [GOF] pattern 426
garbage collector 57
generated models

advantages 186

[461]

disadvantages 186
trade-offs 186, 187

Google home page 408

H
helpers, MVC Project Billing sample

MainWindow 69
helpers, presenter

SetEstimateColor() 72
Hierarchical View Model 154
Hyperlink_Click method 207

I
ICommand property 366, 409
ICommandSource interface 216
IDataErrorInfo

about 350-359, 454
limitation 374
validation states 359-363

Imports tab 323
INotifyCollectionChanged 87, 88
INotifyDataErrorInfo 374-388, 454
InputBindings

about 217
KeyBinding 218
MouseBinding 219, 220

Inversion of Control. See IoC
InvokeMethod activity 329
IoC

about 229, 435
framework 255

IoC container
adding, to Northwind 258-271
order details, showing 271-279

IoC framework
about 255
best practices 258
designs 255
service Locator anti-pattern 256, 257

IProjectsModel.ProjectUpdated event 71, 99
IsShowOrderWizard property 310
issues, monolithic design

about 12
code maintenance 12
code structure 12

code testability 13, 14
IToolManager.Open tool 266
IWebBrowserAdapter interface 428

K
KeyBinding 218

L
layered design

business layer 43
data layer 43
presentation layer 42

Lazy Initialization 443-448
Linq 68
Linq to Entities 141
LoadProjects() function 66
LoadProjects() method 23
Locator 136
Log Running Hours button 372
LogRunningHoursCommand property 355
lookless controls 90

M
MainPage 122
MaxDigit property 345
mediators

about 296-304
issues 305

Memento 312
Memento Pattern 216
method injection 266
Microsoft Expression Blend SDK 226
Model

about 48, 96
IProjectsModel interface 96

Model 2 8, 41
Model, MVC Project Billing sample 46, 47
Model, MVP Project Billing sample 62-64
model_ProjectUpdated() function 71, 108
Model View View Model. See MVVM
modifier

Alt 218
Ctrl 218
Shift 218
Windows 218

[462]

monolithic design
about 12
issues 12

Monolithic Project Billing sample
cons, code reuse 27
cons, poor extensibility 27
cons, poor testability 27
encapsulation 27
ProjectsView 19
running 26, 27

MouseAction values
LeftClick 219
LeftDoubleClick 219
MiddleClick 219
MiddleDoubleClick 219
RightClick 219
RightDoubleClick 219
WheelClick 219

MouseBinding 219
MouseDoubleClick event 222
MSMQ 443
MVC

about 40
controller 41
Model 41
view 40

MVC Project Billing sample
about 44-46
Controller 48, 49
Initialization 51
issues 57
memory leaks 57-59
Model 46-48
View 49, 50
working 55, 56

MVP
about 60
basic structure 60

MVP Project Billing sample
about 61, 62
issues 74
model 62-64
presenter 69
View 64-66

MVVM
about 77, 203
benefits 125, 126

Code Plex 129
code, reducing 204
enforcement 204
history 77-79
humble views 127, 128
implementing 204-208
issues 128, 129
rules 204
structure 80

MVVM adapters
using 426-429

MVVMAppLazyInitialization 444
MVVM-based applications

validation 342
MVVM Framework

about 451
base feature 451, 452

MVVM Light
about 77, 129, 130
using 226, 227

MVVM Light Toolkit 451
MVVM project billing sample

MVVM design 93, 94
View Models 94

MVVM structure
about 80
Pure MVVM 80, 81
View 81
View Model 81

N
NavigateUriCommand 409
NavigateUriCommand property 408
NONE_SELECTED property 66
Northwind 132
Northwind Traders 132
NServiceBus 442

O
ObjectDataProvider 455
ObjectDataProvider.IsAsynchronous 458
Object Relational Mapping. See ORM
ObservableCollection<> 87, 88
Observer pattern 21
OnSourcePagePropertyChanged() method

407

[463]

order details
IToolManager 248-254
viewing 247

OrderRuleService workflow 320
OrderViewModel.Model property 244
ORM 141

P
paging 440
Passive View 8
Passive View and Supervising Controller

60
Passive View version 62
persisted state 11
Persistence ignorance

about 175
adding 187-192
unit test, adding 192-200

Plain Old CLR Objects. See POCOs
POCOs 183
POCO T4 template 187
pre-requisites 311
presentational patterns

about 11
layered design 42
layered design, with MVC 43
monolithic design 11
Monolithic Project Billing sample 17, 18
MVC 40
MVC Project Billing sample 44, 45
MVP 60
MVP Project Billing sample 61, 62
RAD 28

presentation layer
updating 241
View Models 242-245
Views 245, 246

Presentation Model 77
presentation patterns

about 7
data service stub 14-19
main window 72

presentation tier
creating 133-136
Locator pattern 136

presenter, MVC Project Billing sample
about 69, 70
helpers 72

priority binding 437-439, 458
Project Billing sample application

about 8-11
state type 10

ProjectsView
about 19, 20
event handlers 21, 22
helpers 23, 25
initialization 20, 21

ProjectUpdated event 66
PropertyChanged event 324
PropertyChanged method 216
Proxy Property 192
public methods, MVC Project Billing

sample
MainWindow 68

public methods, MVP Project Billing
sample

about 68
LoadProjects() 68

public methods, View
EnableControls() 68

Pure MVVM
structuring 80, 81

R
RAD

about 28
Project Billing sample 28-39

Rapid Application Development. See RAD
Reactive Extensions (Rx) 443
readonly CLR properties

about 416-421
.NET 4.0 dynamic, using 421-425

RelativeSource 457
RelayCommand 421
Repository Pattern 191
resource binding

dynamic resource 456
static resource 456

resource dictionary
about 400
error messages, besides control 400

[464]

error messages, in tooltip 400
flip controls 402
validation summary pane 401, 402

resources
about 455
default constructor 455
ObjectDataProvider 455
XmlDataProvider 455

Rhino Mocks 3.5 424
RunningHours property 394
RunValidationLogic method 324

S
SelectedProjectId property 66
SelectedProject property 103
SelectionChanged event 66
Service Contract 177
service layer

about 175
adding 176-181
integrating 181-185
updating 231-236

Service Locator 256
Service Locator pattern 136
Service Oriented Architecture. See SOA
session state 80
Session state 11
SetEstimateColor() method 26, 72
SetEstimatedColor() function 66, 68
SetEstimatedColor() helper function 22
Show Dialog button 300
ShowDialog() method 289
Silverlight 7
Silverlight UI

about 115
assemblies, porting to Silverlight 116, 117
MainPage 122-125
ProjectsView 118-122

Singleton 260
SOA 178
SOLID design principles 14
SourcePage property 409
Source property 405

source updating
Binding.Delay [.net 4.5] [Binding.

Mode:TwoWay / OneWayToSource
456

Binding.UpdateSourceTrigger 456
Mode [Binding.Mode] [T:Target, S:Source]

457
state types, Project Billing sample applica-

tion
Persisted state 11
session state 11
View state: UI state 10

STAThread attribute 20
static properties/fields 454
static resource 456
styles 89
Submit button 326
SubmitOrderCommand 318
system configuration

targeting 442

T
Table module 44
Table Module 187
tabs

adding 154-158
Target property 412
TextBlock property 432
ToString() method 453
transaction script 44, 178
triggers

about 88
data triggers 88
event triggers 88
property triggers 88
uses 89
view logic 89

U
Unit of Work (UoW) 191, 312
UpdateDetails() function 66
UpdateDetails() method 25
UpdateProject() function 66, 68
UpdateProjects() method 107

[465]

UpdateSourceTrigger property 358
UpdateSourceTriggers property 349
UpdateState() method 361
UriConverter

defining 415

V
Validate method 325, 326
ValidateProperty method 380
ValidatePropertySpecialized method 381
Validation

about 333
Enterprise Library 5.0 Validation

Application Block 454
IDataErrorInfo 454
INotifyDataErrorInfo 454
Validation.ErrorTemplate 454
ValidationRules 453
Windows WF 454

validation application block
about 389-398
options 389

validation, MVVM-based applications 342
validation rules, MVVM-based applications

about 342
converters 345-349
mechanism 349, 350
specializing 344, 345
using 342, 343

validation states
multiple fields, invalidating 371-373
summary validation error, providing

363-371
ValidationStep property 345, 350
view 203
ViewModel class 404
View Model Locator 136
View Models

about 94, 203
ProjectsViewModel 94, 95
ProjectViewModel 95, 96

View, MVC Project Billing sample
about 49
event handlers 51-53
helpers 53

initialization 51
MainWindow 54, 55

View, MVP Project Billing sample
about 50, 64-66
event handlers 67

View state: UI state 10
virtualization 440
Visual Tree 33

W
weak event pattern 59
WebBrowser control 403, 416, 419
WebBrowser.Source property 404
Welcome property 302
WF

for application flow control 327
for business rules execution 312

WF, for application flow control
about 327
bookmarks, using 330-332
order, creating 328
state machine workflow, adding 329, 330

WF, for business rules execution
about 312-321
delays, handling 322

Window.Close() method 306
Windows Communication Foundation 311
Windows Management Instrumentation. See

WMI
Windows Presentation Foundation. See

WPF 311
Windows WF 311, 333, 403, 454
WMI 442
WPF 77, 82
WPF development 7
WPF UI

about 110
MainWindow 114, 115
ProjectsView 110-113

WPF WebBrowser control
about 403
example 403-405

X
XmlDataProvider 455

Thank you for buying
MVVM Survival Guide for Enterprise
Architectures in Silverlight and WPF

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Silverlight 5 Data and
Services Cookbook
ISBN: 9781849683500 Paperback: 662 pages

Over 100 practical recipes for creating rich, data-
driven, business applications in Silverlight 5

1. Design and develop rich data-driven business
applications in Silverlight and Windows Phone
7 following best practices using this book and
eBook

2. Rapidly interact with services and handle
multiple sources of data within Silverlight and
Windows Phone 7 business applications

Microsoft Silverlight 5: Building
Rich Enterprise Dashboards
ISBN: 978-1-849682-34-3 Paperback: 288 pages

Create, customize, and design rich enterprise
dashboards with Microsoft Silverlight 5

1. With this book and e-book, learn how to
create, customize and design rich enterprise
dashboards with Silverlight

2. Move from scenarios to requirements by
applying user-centered design best practices

3. Discover the tips, tricks and hands on
experience to create, customize and design rich
enterprise dashboards with Silverlight from
a distinguished team of User Experience and
Development authors

Please check www.PacktPub.com for information on our titles

Mastering LOB Development for
Silverlight 5: A Case Study in
Action
ISBN: 978-1-849683-54-8 Paperback: 430 pages

Develop a full LOB Silverlight 5 application from
scratch with the help of expert advice and an
accompanying case study

1. Dive straight into Silverlight 5 with the
advanced techniques in this expert guide

2. Fully up-to-date content for Silverlight 5 and
RIA Services SP2

3. Complete your knowledge with a gradually
built upon case study with this book and e-book.

Windows Presentation
Foundation 4.5 Cookbook
ISBN: 9781849686228 Paperback: 500 pages

Over 100 advanced recipes to effectively and
effeciently develop rich Windows client applications
on the Windows platform

1. Full of illustrations, diagrams, and tips with
clear step-by-step instructions and real world
examples

2. Gain a strong foundation of WPF features and
patterns

3. Leverage the MVVM pattern to build
decoupled, maintainable apps

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Presentation Patterns
	The Project Billing sample application
	Types of state

	History of presentational patterns
	Monolithic design
	The problems with monolithic design

	Data service stub
	Monolithic Project Billing sample
	ProjectsView
	Running the sample
	Takeaways

	Rapid application development
	RAD Project Billing sample
	Takeaways

	MVC
	View
	Controller
	Model

	Layered design
	The layers

	MVC with layered design
	MVC Project Billing sample
	Model
	Controller
	View
	How it works
	Takeaways
	Memory leaks

	MVP
	MVP Project Billing sample
	Model
	View
	Presenter
	Main window
	How it works
	Takeaways

	Summary

	Chapter 2: Introduction to MVVM
	History
	Structure
	Pure MVVM
	View
	View Model

	WPF and Silverlight enablers
	Dependency Properties
	Dependency property inheritance

	Rich data binding
	INotifyCollectionChanged and ObservableCollection<>
	Automatic dispatching

	Triggers
	Styles
	Control Templates
	Data templates
	Commands

	MVVM project billing sample
	MVVM design
	View Models
	Model

	Code
	ProjectsModel
	ProjectViewModel
	ProjectsViewModel
	WPF UI
	Silverlight UI

	Benefits of MVVM
	MVVM and humble views

	Issues and pain points of MVVM
	MVVM Light
	Summary

	Chapter 3: Northwind – Foundations
	Northwind requirements
	Presentation tier foundation
	Locator pattern

	Data access tier
	Listing the customers
	Unit testing getting customers
	Using an isolation framework

	Adding tabs
	Viewing customer details
	Viewing details for one customer
	Testing CustomerDetailsViewModel

	Wiring up the customer list box
	Testing ShowCustomerDetails()

	Summary

	Chapter 4: Northwind—Services and Persistence Ignorance
	Adding a Service Layer
	Integrating the Service Layer

	Persistence ignorance and custom models
	Trade-offs of generated models
	Adding persistence ignorance
	Adding unit tests

	Summary

	Chapter 5: Northwind—Commands and User Inputs
	Pure MVVM
	Making it easier with frameworks
	Updating customer details
	Testing and updating customer details

	Gestures, events, and commands
	InputBindings
	KeyBinding
	MouseBinding

	Using code behind
	Event to command
	Attached Behavior
	Using MVVM Light

	Summary

	Chapter 6: Northwind—Hierarchical View Model and IoC
	Adding orders to customer details
	Service layer
	Application layer
	Presentation layer
	View Models
	Views

	Take aways

	Viewing order details
	ToolManager
	Inversion of Control frameworks
	IoC designs
	Adding an IoC container to Northwind

	Order details

	Summary

	Chapter 7: Dialogs and MVVM
	Should we make a compromise?
	Dialog service
	Using DataTemplates with DialogService
	Convention over configuration

	Mediators
	Attached behaviors
	Summary

	Chapter 8: Workflow-based MVVM Applications
	WF for business rules execution
	Handling delays in rules execution
	WF for controlling application flow
	Summary

	Chapter 9: Validation
	Validations and dependency properties
	Error templates
	Validation in MVVM-based applications
	Validation rules
	Using validation rules
	Specializing validation rules—supporting parameters
	Validation rules and converters
	Validation mechanism in WPF and Silverlight

	IDataErrorInfo
	Validation states
	Limitations and gotchas

	INotifyDataErrorInfo
	Enterprise library validation application block
	Complex business rules

	Error notifications
	Error message box
	Highlighting fields
	Error messages in the tooltip
	Error messages beside the control
	Validation summary pane
	Flip controls

	Summary

	Chapter 10: Using Non-MVVM Third-party Controls
	Using attached behaviors
	Using binding reflector
	readonly CLR properties (with no change notification support)
	Using .NET 4.0 dynamic

	Using MVVM adapters
	Summary

	Chapter 11: MVVM and Application Performance
	Asynchronous binding
	Asynchronous View Model construction
	Priority binding
	Virtualization and paging
	Using BackgroundWorker
	Targeting system configuration
	Event Throttling
	Lazy Initialization
	Summary

	Appendix A: MVVM Frameworks
	Appendix B: Binding at a Glance
	Basics
	Validation
	ValidationRules
	IDataErrorInfo
	INotifyDataErrorInfo [.net 4.5]
	Enterprise Library 5.0 Validation Application Block
	Windows WF
	Validation.ErrorTemplate

	Static properties/fields
	Executing code in DataContext
	Binding to DataContext[DC]
	Resources
	Types with default constructor
	XmlDataProvider
	ObjectDataProvider

	Binding to resource
	Static resource
	Dynamic resource

	Updating source
	Binding.UpdateSourceTrigger
	Binding.Delay: [.net 4.5] [Binding.Mode:TwoWay / OneWayToSource]

	Mode [Binding.Mode] [T:Target, S:Source]
	Binding to other elements in the view
	ElementName
	RelativeSource

	Conversion
	Binding.StringFormat [SF]
	Converter [C]

	Performance
	Async binding
	ObjectDataProvider.IsAsynchronous
	PriorityBinding

	Index

