
		 i

Praise for

Inside the Microsoft Build Engine: Using MSBuild
and Team Foundation Build, Second Edition

“Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build is a practical book
covering all the essentials of MSBuild and the Team Foundation Server build system. But what
makes the book extra valuable is its focus on real-life scenarios that often are hard to find a good,
working solution for. In fact there is information in the book you’re unlikely to find anywhere else.
With the second edition of the book, the authors fill the gaps again, this time by covering the
new TFS build workflow technology as well as MSBuild 4.0. It is an invaluable book that saves lots
of time whenever you work with any aspect of automated builds in Visual Studio and TFS. This is
a book I’ll make sure to have with me all the time!”
-Mathias Olausson, ALM Consultant, QWise/Callista, Sweden

“As an ALM Consultant I come across many teams that are struggling with their build tools and
processes. The second edition of Sayed and William’s book is the perfect answer for these teams.
Not only will it show you how to get your builds back on track, I challenge anyone not to be able
to use the information in this book to improve their existing builds. It includes updated content
focusing on the new Visual Studio 2010 release and is packed with practical examples you could start
using straight away. You simply must include it in your technical library.”
-Anthony Borton, Microsoft Visual Studio ALM MVP, Senior ALM trainer/consultant,
Enhance ALM Pty Ltd, Australia

“The first edition of Inside the Microsoft Build Engine was a brilliant look at the internals of MSBuild,
so it’s fantastic to see Sayed and William updating it with all the new features in MSBuild 4.0 and also
delving into the Team Foundation Server 2010 workflow based build process. It’s also a real pleasure
to see deployment with MSDeploy covered so that you can learn not only how to automate your
builds, but also how to automate your deployments. A great book. Go out and get a copy now.”
-Richard Banks, Visual Studio ALM MVP and Principal Consultant with Readify, Australia

“Did you know about the TaskFactory in MSBuild? If not, you’re not alone - but you will know
after reading this book. This book provides insights into the current technologies of the Microsoft
Build Engine. Starting with background information about MSBuild, it covers also the necessary
basics of Workflow Foundation which are applied during the description of advanced topics
of Team Foundation Build. The level of detail is targeted to experienced build masters having
a development background - even the overview is stuffed with new information, references, hints
and best practices about MSBuild. Samples are provided as step-by-step guidance easy to follow
inside Visual Studio. What I found astonishing is the practical focus of the samples such as web
project deployment. I could have used at least half of them in my development projects! Simply
put: A must read for all build experts that have to deal with MSBuild and the Team Foundation
Server build engine who are not only interested in solutions but also background information!”
-Sven Hubert, AIT TeamSystemPro Team, Consultant, MVP Visual Studio ALM – www.tfsblog.de

ii	 Praise for

“The reason that I only own one MSBuild/Team Build book is because there is no need for another.
This book covers both topics from soup to nuts and is written in a way that allows new users to ramp
up quickly. The real-world code examples used to illustrate the topics are useful in their own right.
The Second Edition covers all of the changes in MSBuild 4.0 and all of the newness that is Team Build
2010. This is my ‘go to’ guide, and the only book on these topics that I recommend to my clients.”
-Steve St Jean, Visual Studio ALM MVP, DevProcess (ALM) Consultant with Notion
Solutions, an Imaginet Company

“Whether you consider yourself experienced or you are taking your first steps in the build and
automation arena, this 2nd edition will prove a valuable read. Skilled MSBuild users will do well
to remind themselves of the intricacies of MSBuild and learn of the new 4.0 features whilst
novices are taken on a steady paced journey to quickly acquire the knowledge and confidence
in developing successful solutions. This edition brings additional value to our ever changing
profession in discussing MSDeploy and the new Windows Workflow 4.0 based Team Foundation
Build. Regardless of your experience, I wholeheartedly recommend this book.”
-Mike Fourie, Visual Studio ALM MVP and ALM Ranger, United Kingdom

“The first edition of this book had a perfect balance between a tutorial and a reference book.
I say this as I used the book first to kick start my MS Build knowledge and then as reference
whenever I needed information on some advanced topic. My main interest is Team Foundation
Server and I learned MS Build more from necessity than an urge, hence I was very curious to
see the 2nd edition. Sayed and William did not disappoint me - the four chapters on Team Build
cover all points needed to customize builds. As a bonus there are three whole chapters on web
deployment which is a recurrent request I hear during my consulting and presentations on TFS.
If I had to summarize my opinion in a single sentence, I would just say `Buy the book, you won’t
regret it’.”
-Tiago Pascoal, Visual Studio ALM MVP and Visual Studio ALM Ranger, Portugal

“Reliable and repeatable build processes are often the Achilles’ heel of development teams. Often
this is down to a lack of understanding of the underlying technologies and how they fit together.
No matter which Continuous Integration (CI) tool you may be using, this book provides the
fundamental information you need to establish solid build and deployment engineering practices
and demystifies the various Microsoft technologies used along the way. This book is the essential
reference for any team building software on the Microsoft.NET platform.”
-Stuart Preston, Visual Studio ALM Ranger and Chief Technology Officer at RippleRock

“Successfully deploying application is one of the big challenges in today’s modern software
development. As applications become more complex to develop, they also become more complex
to deploy. This well-written book provides us a deep-dive on how developers can improve
their productivity and accomplish the business needs using Microsoft deployment technology:
MSBuild, Web Deploy and Team Build. Microsoft provides us the right tools, and this book
provides us the information we need to extract real value from these tools.”
-Daniel Oliveira, MVP, Visual Studio ALM Ranger and ALM Consultant at TechResult

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Sayed Hashimi and William Bartholomew

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2010940848
ISBN: 978-0-7356-4524-0

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property
of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Iram Nawaz
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Marc H. Young
Cover: Tom Draper Design

Body Part No. X17-29997

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

I would like to dedicate this book to my parents, Sayed A. Hashimi and Sohayla Hashimi, as well as my

college advisor, Dr. Ben Lok. My parents have, over the course of the years, sacrificed a lot to give us the

opportunity for us to be able to achieve our dreams. I can only hope that they are proud of the person

that I have become. When I first met Ben, I wanted to get into a research program that he had going.

Thankfully, he was willing to accept me. Ben helped show me how rewarding hard work can be, and he

has enabled me to succeed in my career. When I look back on influences in my life, who are not relatives,

he ranks at the top of my list. I am sure that I wouldn’t be where I am had it not been for him.

—Sayed Ibrahim Hashimi

To my mother, Rosanna O’Sullivan, and my father, Roy Bartholomew, for their unfaltering support in all

my endeavors.

—William Bartholomew

I would like to dedicate this book to my parents, Syama Mohana Rao Adharapurapu and Nalini

Adharapurapu, my brother, Raghavendra Adharapurapu, my sister, Raga Sudha Vijjapurapu, and my

wife, Deepti Ramakrishna.

—Pavan Adharapurapu

I dedicate this book to my wife, Samantha, and my daughters, Amelie and Madeline, as well as my

parents, Leonea and Craig. Their love has no boundaries and their support has made me believe that

I can accomplish anything.

—Jason Ward

		 vii

Contents at a Glance

Part I	 Overview
	 1	 MSBuild Quick Start . 3
	 2	 MSBuild Deep Dive, Part 1 . 23
	 3	 MSBuild Deep Dive, Part 2 . 53

Part II	 Customizing MSBuild
	 4	 Custom Tasks . 87
	 5	 Custom Loggers . 129

Part III	 Advanced MSBuild Topics
	 6	 Batching and Incremental Builds . . 163
	 7	 External Tools . 193

Part IV	MSBuild Cookbook
	 8	 Practical Applications, Part 1 . 223
	 9	 Practical Applications, Part 2 . 245

Part V	 MSBuild in Visual C++ 2010
	 10	 MSBuild in Visual C++ 2010, Part 1 . . 267
	 11	 MSBuild in Visual C++ 2010, Part 2 . . 289
	 12	 Extending Visual C++ 2010 . 317

Part VI	Team Foundation Build
	 13	 Team Build Quick Start . 347
	 14	 Team Build Deep Dive . . 395
	 15	 Workflow Foundation Quick Start . 423
	 16	 Process Template Customization . . 455

viii	 Contents at a Glance

Part VII	Web Development Tool
	 17	 Web Deployment Tool, Part 1 . 489
	 18	 Web Deployment Tool, Part 2 . 521
	 19	 Web Deployment Tool Practical Applications 545
	Appendix A  New Features in MSBuild 4.0

(available online) . 569
	Appendix B  Building Large Source Trees

(available online) . 579
	Appendix C  Upgrading from Team Foundation

Build 2008 (available online) . 585

		 ix

Table of Contents
Foreword . xix

Introduction . xxi

Part I	 Overview
	 1	 MSBuild Quick Start . 3

Project File Details . 3
Properties and Targets . 4
Items . 9
Item Metadata . . 11
Simple Conditions . 15
Default/Initial Targets . 17
MSBuild.exe Command-Line Usage . . 18
Extending the Build Process . 21

	 2	 MSBuild Deep Dive, Part 1 . 23
Properties . 24
Environment Variables . 26

Reserved Properties . 27
Command-Line Properties . 30
Dynamic Properties . 32

Items . 34
Copy Task . 36

Well-Known Item Metadata . 41
Custom Metadata . 44
Item Transformations . 47

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

x	 Table of Contents

	 3	 MSBuild Deep Dive, Part 2 . 53
Dynamic Properties and Items . 53

Dynamic Properties and Items: MSBuild 3.5 . 53
Property and Item Evaluation . . 60
Importing Files . 64
Extending the Build Process . 69
Property Functions and Item Functions . 77

Property Functions . 77
String Property Functions . 78
Static Property Functions . 79
MSBuild Property Functions . 80
Item Functions . 82

Part II	 Customizing MSBuild
	 4	 Custom Tasks . 87

Custom Task Requirements . 87
Creating Your First Task . 88
Task Input/Output . 91
Supported Task Input and Output Types . 95
Using Arrays with Task Inputs and Outputs . 97
Inline Tasks . 101
TaskFactory . 111
Extending ToolTask . . 116

ToolTask Methods . 118
ToolTask Properties . . 119

Debugging Tasks . . 124

	 5	 Custom Loggers . 129
Overview . 129
Console Logger . 130
File Logger . 132
ILogger Interface . 134
Creating Custom Loggers . 135
Extending the Logger Abstract Class . 140
Extending Existing Loggers . . 146
FileLoggerBase and XmlLogger . 151
Debugging Loggers . 157

	 Table of Contents	 xi

Part III	 Advanced MSBuild Topics
	 6	 Batching and Incremental Builds . . 163

Batching Overview . 163
Task Batching . . 166
Target Batching . 170
Combining Task and Target Batching . 172
Multi-batching . 175
Using Batching to Build Multiple Configurations . 177
Batching Using Multiple Expressions . 181
Batching Using Shared Metadata . 183
Incremental Building . 188

Partially Building Targets . . 190

	 7	 External Tools . 193
Exec Task . . 193
MSBuild Task . . 197
MSBuild and Visual Studio Known Error
Message Formats . 203

Creating Reusable Build Elements . 204
NUnit . . 206
FxCop . 215

Part IV	MSBuild Cookbook
	 8	 Practical Applications, Part 1 . 223

Setting the Assembly Version . 223
Building Multiple Projects . 225
Attaching Multiple File Loggers . 231

Creating a Logger Macro . . 232
Custom Before/After Build Steps in the Build Lab . 233
Handling Errors . 235
Replacing Values in Config Files . 237
Extending the Clean . 239

	 9	 Practical Applications, Part 2 . 245
Starting and Stopping Services . 245
Web Deployment Project Overview . 246
Zipping Output Files, Then Uploading to an FTP Site 252

xii	 Table of Contents

Compressing JavaScript Files . 254
Encrypting web.config . 256
Building Dependent Projects . 258
Deployment Using Web Deployment Projects . 260

Part V	 MSBuild in Visual C++ 2010
	 10	 MSBuild in Visual C++ 2010, Part 1 . . 267

The New .vcxproj Project File . 267
Anatomy of the Visual C++ Build Process . 269
Diagnostic Output . 271
Build Parallelism . 272

Configuring Project- and File-Level Build
Parallelism . 273

File Tracker–Based Incremental Build . 279
Incremental Build . 279
File Tracker . 279
Trust Visual C++ Incremental Build . 281
Troubleshooting . 281

Property Sheets . . 281
System Property Sheets and User Property

Sheets . . 284
Visual C++ Directories . 285

	 11	 MSBuild in Visual C++ 2010, Part 2 . . 289
Property Pages . 289

Reading and Writing Property Values . 289
Build Customizations . . 294
Platforms and Platform Toolsets . 297
Native and Managed Multi-targeting . 300

Native Multi-targeting . 300
How Does Native Multi-targeting Work? . 301
Managed Multi-targeting . 301

Default Visual C++ Tasks and Targets . 302
Default Visual C++ Tasks . 303
Default Visual C++ Targets . . 303
ImportBefore, ImportAfter, ForceImportBeforeCppTargets,
and ForceImportAfterCppTargets . 306

Default Visual C++ Property Sheets . 307

	 Table of Contents	 xiii

Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010 311
IDE Conversion . 311
Command-Line Conversion . . 314

Summary . 315

	 12	 Extending Visual C++ 2010 . 317
Build Events, Custom Build Steps, and the Custom

Build Tool . 317
Build Events . . 317
Custom Build Step . . 319
Custom Build Tool . . 322

Adding a Custom Target to the Build . . 324
Creating a New Property Page . 326

Troubleshooting . 331
Creating a Build Customization . . 332
Adding a New Platform and Platform Toolset . . 338
Deploying Your Extensions . 342

Part VI	Team Foundation Build
	 13	 Team Build Quick Start . 347

Introduction to Team Build . 347
Team Build Features . 347
High-Level Architecture . . 348

Preparing for Team Build . . 350
Team Build Deployment Topologies . . 350
What Makes a Good Build Machine? . . 351
Installing Team Build on the Team Foundation

Server . 352
Setting Up a Build Controller . 352
Setting Up a Build Agent . 355
Drop Folders . 359

Creating a Build Definition . 360
General . 360
Trigger . . 361
Workspace . 365
Build Defaults . 367
Process . 368
Retention Policy . 369

xiv	 Table of Contents

Working with Build Queues and History . 371
Visual Studio . 372
Working with Builds from the Command Line . 383

Team Build Security . 388
Service Accounts . 388
Permissions . 391

	 14	 Team Build Deep Dive . . 395
Process Templates . . 395
Default Template . . 396

Logging . . 396
Build Number . 397
Agent Reservation . 398
Clean . 399
Sync . 400
Label . 400
Compile and Test . . 401
Source Indexing and Symbol Publishing . 404
Associate Changesets and Work Items . 407
Copy Files to the Drop Location . 407
Revert Files and Check in Gated Changes . . 409
Create Work Items for Build Failure . . 409

Configuring the Team Build Service . 409
Changing Communications Ports . . 409
Requiring SSL . 410
Running Interactively . 411
Running Multiple Build Agents . 412
Build Controller Concurrency . 413

Team Build API . 414
Creating a Project . 414
Connecting to Team Project Collection . 415
Connecting to Team Build . 416
Working with Build Service Hosts . 416
Working with Build Definitions . 417
Working with Builds . 419

	 15	 Workflow Foundation Quick Start . 423
Introduction to Workflow Foundation . 423

Types of Workflows . 423

	 Table of Contents	 xv

Building a Simple Workflow Application . 424
Workflow Design . 426

Built-in Activities . 426
Working with Data . . 428
Exception Handling . 430
Custom Activities . 433

Workflow Extensions . . 437
Persistence . 437
Tracking . 437

Putting It All Together—Workflow Foundation Image Resizer Sample
Application . . 438
Overview . . 438
Building the Application . 438
Running the Application . 452
Debugging the Application . 452
Summary . 453

	 16	 Process Template Customization . . 455
Getting Started . 455

Creating a Process Template Library . 455
Creating a Custom Activity Library . 460

Process Parameters . . 461
Defining . 461
Metadata . 463
User Interface . 466
Supported Reasons . 468
Backward and Forward Compatibility . . 469

Team Build Activities . 469
AgentScope . 469
CheckInGatedChanges . 470
ConvertWorkspaceItem/ConvertWorkspaceItems 470
ExpandEnvironmentVariables . 470
FindMatchingFiles . 470
GetBuildAgent . 471
GetBuildDetail . 471
GetBuildDirectory . 471
GetBuildEnvironment . 471
GetTeamProjectCollection . . 471
InvokeForReason . 471

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xvi	 Table of Contents

InvokeProcess . 471
MSBuild . . 472
SetBuildProperties . 472
SharedResourceScope . 473
UpdateBuildNumber . 473

Custom Activities . 473
BuildActivity Attribute . 473
Extensions . 474

Logging . . 475
Logging Verbosity . 475
Logging Activities . 476
Logging Programmatically . 477
Adding Hyperlinks . 478
Exceptions . 482

Deploying . . 482
Process Templates . . 482
Custom Assemblies . . 483
Downloading and Loading Dependent

Assemblies . . 485

Part VII	Web Development Tool
	 17	 Web Deployment Tool, Part 1 . 489

Web Deployment Tool Overview . 490
Working with Web Packages . 490

Package Creation . 492
Installing Packages . 494

msdeploy.exe Usage Options . 498
MSDeploy Providers . 500
MSDeploy Rules . 504
MSDeploy Parameters . 510

–declareParam . 513
–setParam . 515

MSDeploy Manifest Provider . 517

	 18	 Web Deployment Tool, Part 2 . 521
Web Publishing Pipeline Overview . 521
XML Document Transformations . 521

	 Table of Contents	 xvii

Web Publishing Pipeline Phases . . 530
Excluding Files . 533
Including Additional Files . 536
Database . 539

	 19	 Web Deployment Tool Practical Applications 545
Publishing Using MSBuild . 545
Parameterizing Packages . . 550
Using –setParamFile . 554
Using the MSDeploy Temp Agent . 556
Deploying Your Site from Team Build . 557
Deploying to Multiple Destinations Using Team Build 560
Excluding ACLs from the Package . 565
Synchronizing an Application to Another Server . 566

Index . 589

Appendix A  New Features in MSBuild 4.0
(available online) . 569

Appendix B  Building Large Source Trees
(available online) . 579

Appendix C  Upgrading from Team Foundation
Build 2008 (available online) . 585

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

		 xix

Foreword
Often when people think about build, they think just about the act of compiling some source
code – when I hit F5 in the IDE, it builds, right? Well yes, kind of. In a real production build
system, there is so much more to it than that. There are many kinds of builds – F5, desktop,
nightly, continuous, rolling, gated, buddy etc. The variety of build types is reflective of the
important role build plays in the software development process and the varied ways it
does so. Build is a key integration point in the process. It is where developers’ work comes
together; it is where developers hand off to test and where release hands off to operations.
No wonder there are so many requirements on it.

As I mentioned, build is about a lot more than compiling the code. It can include making sure
the right code is assembled, compiling, testing, version stamping, packaging, deployment
and more. Of course, because software systems are all different and organizations are
different, many of the activities need to be completely different. As a result, extensibility
plays a major role. In TFS 2010, we increased the extensibility options by including a build
workflow engine (based on the .NET Workflow Foundation) on top of the existing msbuild
capabilities. Unfortunately, as flexibility increases, so does the amount you need to know to
make sound decisions and fully automate your build workflow.

This book is a great resource to help you understand the variety of roles build plays in
software development and how you can leverage msbuild and TFS. It will show you how
to use “out of the box” solutions, provide guidance on when to customize, what the best
customization approaches are and details on and examples of how to actually do it. I think
it will be an invaluable resource to keep on your reference shelf.

Brian Harry

Technical Fellow

Team Foundation Server, Microsoft

		 xxi

Introduction
Build has historically been kind of like a black art, in the sense that there are just a few
people who know and understand build, and are passionate about it. But in today’s evolving
environment that is changing. Now more and more people are becoming interested in
build, and making it a part of their routine development activities. Today’s applications are
different from those that we were building five to ten years ago. Along with that the process
by which we write software is different as well. Nowadays it is not uncommon for a project
to have sophisticated build processes which include such things as code generation, code
analysis, unit testing, automated deployment, etc. To deal with these changes developers are
no longer shielded from the build process. Developers have to understand the build process
so that they can leverage it to meet their needs.

Back in 2005 Microsoft released MSBuild, which is the build engine used to build most Visual
Studio projects. That release was MSBuild 2.0. Since that release Microsoft has released two
major versions of MSBuild—MSBuild 3.5 and MSBuild 4.0. In MSBuild 3.5 Microsoft released
such goodness as multi-processor support, multi-targeting, items and properties being
defined inside of targets and a few other things which brought MSBuild to where it needed
to be. In MSBuild 4.0 there were a lot of really great features delivered. The feature which
stands out the most is the support for building Visual C++ projects. Starting with Visual
Studio 2010 your Visual C++ project files are in MSBuild format. Modifying MSBuild to be
able to support building Visual C++ projects was a big effort on Microsoft’s part, but they
understood that the value they were delivering to customers would be worth it. Along with
support for Visual C++ there were a number of significant feature add ons, such as support
for BeforeTargets/AfterTargets, inline tasks, property functions, item functions and a new
object model to name a few. During that same period Team Build has undergone a number
of big changes.

Team Foundation Build (or Team Build as it is more commonly known) is now in its third
version. Team Build 2005 and 2008 were entirely based on MSBuild using it for both build
orchestration as well as the build process itself. While this had the advantage of just needing
to learn one technology MSBuild wasn’t suited for tasks such as distributing builds across
multiple machines and performing complex branching logic. Team Build 2010 leverages the
formidable combination of Workflow Foundation (for build orchestration) and MSBuild (for
build processes) to provide a powerful, enterprise-capable, build automation tool. Team Build
2010 provides a custom Workflow Foundation service host that runs on the build servers
that allows the build process to be distributed across multiple machines. The Workflow
Foundation based process template can perform any complex branching and custom logic
that is supported by Workflow Foundation, including the ability to call MSBuild based
project files.

Table of Contents
Introduction

Who This Book Is For
Assumptions

Organization of This Book
System Requirements
Code Samples
Acknowledgements

Sayed Ibrahim Hashimi
William Bartholomew
Pavan Adharapurapu
Jason Ward

Errata and Book Support
We Want to Hear from You
Stay in Touch

xxii	 Introduction

A common companion to build is deployment. In many cases the same script which builds your
application is used to deploy it. This is why in this updated book we have a section, Part VII Web
Deployment Tool, in which we dedicate three chapters to the topic. MSDeploy is a tool which
was first released in 2009. It can be used to deploy websites, and other applications, to local
and remote servers. In this section we will show you how to leverage MSDeploy and the Web
Publishing Pipeline (WPP) in order to deploy your web applications. Two chapters are devoted
to the theory of both MSDeploy and the WPP. There is also a cookbook chapter which shows
real world examples of how to use these new technologies. Once you’ve automated your build
and deployment process for the first time you will wonder why you didn’t do that for all of your
projects.

Who This Book Is For
This book is written for anyone who uses, or is interested in using, MSBuild or Team Build.
If you are using Visual Studio to your applications then you are already using MSBuild.
Inside the Microsoft Build Engine is for all developers and build masters using Microsoft
technologies. If you are interested in learning more about how your applications are being
built and how you can customize this process then you need this book. If you are using
Team Build, or thinking of using it tomorrow, then this book is a must read. It will save you
countless hours.

This book will help the needs of enterprise teams as well as individuals. You should be
familiar with creating applications using Visual Studio. You are not required to be familiar
with the build process, as this book will start from the basics and build on that. Because one
of the most effective methods for learning is through examples, this book contains many
examples.

Assumptions
To get the most from this book, you should meet the following profile:

n	 You should be an familiar with Visual Studio
n	 You should have experience with the technologies you are interested in building
n	 You should have a solid grasp of XML.

Organization of This Book
Inside the Microsoft Build Engine is divided into seven parts:

Part I, “Overview,” describes all the fundamentals of creating and extending MSBuild project
files. Chapter 1, “MSBuild Quick Start,” is a brief chapter to get you started quickly with
MSBuild. If you are already familiar with MSBuild then you can skip this chapter; its content

	 Introduction	 xxiii

will be covered in more detail within chapters 2 and 3. Chapter 2, “MSBuild Deep Dive,
Part 1,” discusses such things as static properties, static items, targets, tasks, and msbuild
.exe usage. Chapter 3, “MSBuild Deep Dive, Part 2,” extends on Chapter 2 with dynamic
properties, dynamic items, how properties and items are evaluated, importing external files,
extending the build process, property functions, and item functions.

Part II, “Customizing MSBuild,” covers the two ways that MSBuild can be extended: custom
tasks and custom loggers. Chapter 4, “Custom Tasks,” covers all that you need to know to
create your own custom MSBuild tasks. Chapter 5, “Custom Loggers,” details how to create
custom loggers and how to attach them to your build process.

Part III, “Advanced MSBuild Topics,” discusses advanced MSBuild concepts. Chapter 6,
“Batching and Incremental Builds,” covers two very important topics, MSBuild batching
and supporting incremental building. Batching is the process of categorizing items and
processing them in batches. Incremental building enables MSBuild to detect when a target
is up-to-date and can be skipped. Incremental building can drastically reduce build times for
most developer builds. Chapter 7, “External Tools,” provides some guidelines for integrating
external tools into the build process. It also shows how NUnit and FXCop can be integrated in
the build process in a reusable fashion.

Part IV, “MSBuild Cookbook,” consists of two chapters that are devoted to real-world
examples. Chapter 8, “Practical Applications, Part 1,” contains several examples, including:
setting the assembly version, customizing the build process in build labs, handling errors, and
replacing values in configuration files. Chapter 9, “Practical Applications, Part 2,” covers more
examples, most of which are targeted toward developers who are building Web applications
using .NET. It includes Web Deployment Projects, starting and stopping services, zipping
output files, compressing Javascript file, and encrypting the web.config file.

Part V, “MSBuild in Visual C++ 2010” discusses how MSBuild powers various features
of Visual C++ in light of Visual C++ 2010’s switch to MSBuild for its build engine. Chapter 10,
“MSBuild in Visual C++ 2010, Part 1” introduces the reader to the new .vcxproj file format
for Visual C++ projects and illustrates the Visual C++ build process with a block diagram.
Then it continues describing its features such as Build Parallelism, Property Sheets, etc. and
how MSBuild enables these features. Of particular interest are the new File Tracker based
Incremental Build and movement of Visual C++ Directories settings to a property sheet from
the earlier Tools > Option page. Chapter 11, “MSBuild in Visual C++ 2010, Part 1” continues
the theme of Chapter 10 by describing more Visual C++ features and the underlying
MSBuild implementation. This includes Property Pages, Build Customizations, Platform and
Platform Toolsets, project upgrade, etc. It also includes a discussion of all the default tasks,
targets and property sheets that are shipped with Visual C++ 2010. Of particular interest
is the section on multi-targeting which explains the exciting new feature in Visual C++
2010 which allows building projects using older toolsets such as Visual C++ 2008 toolset.
We describe both how to use this feature as well as how this feature is implemented using

xxiv	 Introduction

MSBuild. Chapter 12, “Extending Visual C++ 2010” describes how you can extend the build
system in various ways by leveraging the underlying MSBuild engine. Discussed in this chapter
are authoring Build Events, Custom Build Steps, Custom Build Tool to customize Visual C++
build system in a simple way when the full power of MSBuild extensibility is not needed. This is
followed by a discussion of adding a custom target and creating a Build Customization which
allows you to use the full set of extensibility features offered by MSBuild. One of the important
topics in this chapter deals with adding support for a new Platform or a Platform Toolset. The
example of using the popular GCC toolset to build Visual C++ projects is used to drive home
the point that extending platforms and platform toolsets is easy and natural in Visual C++ 2010.

Part VI, “Team Foundation Build,” introduces Team Foundation Build (Team Build) in
Chapter 13, “Team Build Quick Start”. In this chapter we discuss the architectural components
of Team Foundation Build and walkthrough the installation process and the basics
of configuring it. In Chapter 14, “Team Build Deep Dive”, we examine the process templates
that ship with Team Build as well the Team Build API. Chapter 15, “Workflow Foundation
Quick Start”, introduces the basics of Workflow Foundation to enable customizing the build
process. Chapter 16, “Process Template Customization”, then leverages this knowledge and
explains how to create customized build processes.

Part VII, “Web Deployment Tool” first introduces the Web Deployment Tool (MSDeploy) in
Chapter 17 “Web Deployment Tool, Part 1”. In that chapter we discuss what MSDeploy is,
and how it can be used. We describe how MSDeploy can be used for “online deployment”
in which you deploy your application to the target in real time and we discuss “offline
deployments” in which you create a package which gets handed off to someone else for the
actual deployment. In Chapter 18 “Web Deployment Tool, Part 2” we introduce the Web
Publishing Pipeline (WPP). The WPP is the process which your web application follows to go
from build output to being deployed on your remote server. It’s all captured in a few MSBuild
scripts, so it is very customizable and extensible. In that chapter we cover how you can
customize and extend the WPP to suit your needs. Then in Chapter 19 “Web Deploy Practical
Applications” we show many different examples of how you can use MSDeploy and WPP to
deploy your packages. We cover such things as Publishing using MSBuild, parameterizing
packages, deploying with Team Build, and a few others.

For Appendices A, B, and C please go to http://oreilly.com/catalog/0790145301949/.

System Requirements
The following list contains the minimum hardware and software requirements to run the
code samples provided with the book.

n	 .NET 4.0 Framework

n	 Visual Studio 2010 Express Edition or greater

n	 50 MB of available space on the installation drive

	 Introduction	 xxv

For Team Build chapters:

n	 Visual Studio 2010 Professional

n	 Some functionality (such as Code Analysis) requires Visual Studio 2010 Premium or
Visual Studio 2010 Ultimate

n	 Access to a server running Team Foundation Server 2010

n	 Access to a build machine running Team Foundation Build 2010 (Chapter 13 walks you
through installing this)

n	 A trial Virtual PC with Microsoft Visual Studio 2010 and Team Foundation Server 2010
RTM is available from http://www.microsoft.com/downloads/en/details
.aspx?FamilyID=509c3ba1-4efc-42b5-b6d8-0232b2cbb26e

Code Samples
Follow these steps to install the code samples on your computer:

	 1.	 Navigate to http://oreilly.com/catalog/0790145301949/.

	 2.	 Click the Companion Content link.

	 3.	 You’ll see instructions for downloading the files.

	 4.	 Copy the files to the following location on your computer.

Acknowledgements
The authors are happy to share the following acknowledgments.

Sayed Ibrahim Hashimi
Before I wrote my first book I thought that writing a book involved just a few people, but
now having written my third book I realize how many different people it takes to successfully
launch a book. Unfortunately with books most of the credit goes to the authors, but the
others involved deserve much more credit than they are naturally given. As an author, the
most we can do is thank them and mention their names here in the acknowledgements
section. When I reflect on the writing of this book there are a lot of names, but there is one
that stands out in particular, Dan Moseley. Dan is a part of the MSBuild team. He has gone
way above and beyond what I could have ever imagined. I’ve never seen someone peer
review a chapter as good, or as fast, as Dan has. Without Dan’s invaluable insight the book
would simply not be what it is today. In my whole career I’ve only encountered a few people
who are as passionate about what they do as Dan. I hope that I can be as passionate about
building products as he is.

xxvi	 Introduction

Besides Dan I would like to first thank my co-authors and technical editor. William
Bartholomew, who wrote the Team Build chapters, is a wonderful guy to work with. He is
recognized as a Team Build expert, and I think his depth of knowledge shows in his work.
Pavan Adharapurapu wrote the chapters covering Visual C++. When we first started talking
about updating the book to cover MSBuild 4.0 to be honest I was a bit nervous. I was
nervous because I had not written any un-managed code in more than 5 years, and because
of that I knew that I could not write the content on Visual C++ and do it justice. Then we
found Pavan. Pavan helped build the Visual C++ project system, and he pours his heart into
everything that he does. Looking back I am confident that he was the best person to write
those chapters and I am thankful that he was willing. Also I’d like to thank Jason Ward, who
wrote a chapter on Workflow Foundation. Jason who has a great background in Workflow
Foundation as well as Team Build was an excellent candidate to write that chapter. I started
with the authors, but the technical editor, Marc Young deserves the same level of recognition.
This having been my third book I was familiar with what a technical editor is responsible for
doing. Their primary job is essentially to point out the fact that I don’t know what I’m talking
about, which Marc did very well. But Marc went beyond his responsibilities. Marc was the one
who suggested that we organize all the sample code based on the chapters. At first I didn’t
really think it was a good idea, but he volunteered to reorganize the content and even redo
a bunch of screen shots. I really don’t think he knew what he was volunteering for! Now that
it is over I wonder if he would volunteer again. I can honestly say that Marc was the best
technical editor that I’ve ever worked with. His attention to detail is incredible, to the point
that he was reverse engineering the code to validate some statements that I was making (and
some were wrong). Before this book I knew what a technical editor was supposed to be, and
now I know what a technical editor can be. Thanks to all of you guys!

As I mentioned at the beginning of this acknowledgement there are many others who
came together to help complete this book besides those of us writing it. I’d like to thank
Microsoft Press and everyone there who worked on it. I know there were some that were
involved that I didn’t even know of. I’d like to thank those that I do know of by name. Devon
Musgrave, who also worked with us on the first edition, is a great guy to work with. This book
really started with him. We were having dinner one night a while back and he said to me
something along the lines of “what do you think of updating the book?” I knew that it would
be a wonderful project and it was. Iram Nawaz who was the Project Editor of the book was
just fantastic. She made sure that we stayed on schedule (sorry for the times I was late J)
and was a great person to work with. The book wouldn’t have made it on time if it was not
for her. Along with these guys from Microsoft Press I would like to than the editors; Susan
McClung and Nicole Schlutt for their perseverance to correct my bad writing.

There are several people who work on either the MSBuild/MSDeploy/Visual Studio product
groups that I would like to thank as well. When the guys who built the technologies you
are writing about help you, it brings the book to a whole new level. I would like to thank
the following people for giving their valued assistance (in no particular order, and sorry if

	 Introduction	 xxvii

I missed anyone); Jay Shrestha, Chris Mann, Andrew Arnott, Vishal Joshi, Bilal Aslam, Faith
Allington, Ming Chen, Joe Davis and Owais Shaikh.

William Bartholomew
Firstly I’d like to thank my co-authors, Sayed, Pavan, and Jason, because without their
contributions this book would not be as broad as it is. From Microsoft Press I’d like to thank
Devon Musgrave, Ben Ryan, Iram Nawaz, Susan McClung, and the art team, for their efforts
in converting our ideas into a publishable book. Thanks must go to Marc Young for his
technical review efforts in ensuring that the procedures are easily followed, the samples
work, and the book makes sense. Finally, I’d like to thank the Team Build Team, in particular
Aaron Hallberg and Buck Hodges, for the tireless support.

Pavan Adharapurapu
A large number of people helped make this book happen. I would like to start off by
thanking Dan Moseley, my manager at Microsoft who encouraged me to write the book
and for providing thorough and detailed feedback for the chapters that I wrote. Brian Tyler,
the architect of my team provided encouragement and great feedback. Many people from
the Visual C and the project system teams here at Microsoft helped make the book a better
one by providing feedback on their areas of expertise. In alphabetical order they are: Olga
Arkhipova, Andrew Arnott, Ilya Biryukov, Felix Huang, Cliff Hudson, Renin John, Sara Joiner,
Marian Luparu, Chris Mann, Bogdan Mihalcea, Kieran Mockford, Amit Mohindra, Li Shao.
Any mistakes that remain are mine.

I would like to thank Devon Musgrave, Iram Nawaz, Susan McClung and Marc Young from
Microsoft Press for their guidance and patience.

Finally, I would like to thank my wonderful wife Deepti who provided great support and
understanding throughout the many weekends I spent locked up writing and revising the
book. Deepti, I promise to make it up to you.

Jason Ward
First of all, I’d like to thank William Bartholomew for giving me the opportunity to contribute
to this book. William displays an amazing amount of talent, passion and integrity in all his
work. I’m honored to have his friendship as well as the opportunity to work with him on
a daily basis.

I’d also like to thank Avi Pilosof and Rich Lowry for giving me the wonderful opportunity
to work at Microsoft. From the moment I met them it was clear that moving my family
half way around the world was the right thing to do. Their mentorship, passion, friendship

xxviii	 Introduction

and overarching goal of ‘doing the right thing’ has only further reinforced that working at
Microsoft was everything I had hoped it would be. They are the embodiment of all things
good at Microsoft.

Finally I’d like to thank the thousands of people working at Microsoft for producing the
wonderful applications and experiences that millions of people around the world use and
enjoy on a daily basis. It is truly an honor to work with you as we change the world.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
If you do find an error, please report it on our Microsoft Press site at oreilly.com:

	 1.	 Go to http://microsoftpress.oreilly.com.

	 2.	 In the Search box, enter the book’s ISBN or title.

	 3.	 Select your book from the search results.

	 4.	 On your book’s catalog page, under the cover image, you’ll see a list of links.
Click View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

		 1

Part I

Overview
In this part:
Chapter 1: MSBuild Quick Start . 3
Chapter 2: MSBuild Deep Dive, Part 1 . 23
Chapter 3: MSBuild Deep Dive, Part 2 . 53

Part I

Overview

Chapter 1

MSBuild Quick Start
Project File Details
Properties and Targets
Items
Item Metadata
Simple Conditions
Default/Initial Targets
MSBuild.exe Command-Line Usage
Extending the Build Process

Chapter 2

MSBuild Deep Dive, Part 1
Properties
Environment Variables

Reserved Properties
Command-Line Properties
Dynamic Properties

Items
Copy Task

Well-Known Item Metadata
Custom Metadata
Item Transformations

Chapter 3

MSBuild Deep Dive, Part 2
Dynamic Properties and Items

Dynamic Properties and Items: MSBuild 3.5
Property and Item Evaluation
Importing Files
Extending the Build Process
Property Functions and Item Functions

Property Functions
String Property Functions
Static Property Functions
MSBuild Property Functions
Item Functions

Part II

Customizing MSBuild

Chapter 4

Custom Tasks
Custom Task Requirements
Creating Your First Task
Task Input/Output
Supported Task Input and Output Types
Using Arrays with Task Inputs and Outputs
Inline Tasks
TaskFactory
Extending ToolTask

ToolTask Methods
ToolTask Properties

Debugging Tasks

Chapter 5

Custom Loggers
Overview
Console Logger
File Logger
ILogger Interface
Creating Custom Loggers
Extending the Logger Abstract Class
Extending Existing Loggers
FileLoggerBase and XmlLogger
Debugging Loggers

Part III

Advanced MSBuild Topics

Chapter 6

Batching and Incremental Builds
Batching Overview
Task Batching
Target Batching
Combining Task and Target Batching
Multi-batching
Using Batching to Build Multiple Configurations
Batching Using Multiple Expressions
Batching Using Shared Metadata
Incremental Building

Partially Building Targets

		 3

Chapter 1

MSBuild Quick Start
When you are learning a new subject, it’s exciting to just dive right in and get your hands
dirty. The purpose of this chapter is to enable you to do just that. I’ll describe all the key
elements you need to know to get started using MSBuild. If you’re already familiar with
MSBuild, feel free to skip this chapter—all of the material presented here will be covered
in later areas in the book as well, with the exception of the msbuild.exe usage details.

The topics covered in this chapter include the structure of an MSBuild file, properties, targets,
items, and invoking MSBuild. Let’s get started.

Project File Details
An MSBuild file—typically called an “MSBuild project file”—is just an XML file. These XML
files are described by two XML Schema Definition (XSD) documents that are created by
Microsoft: Microsoft.Build.Commontypes.xsd and Microsoft.Build.Core.xsd. These files
are located in the %WINDIR%\Microsoft.NET\Framework\vNNNN\MSBuild folder, where
vNNNN is the version folder for the Microsoft .NET Framework 2.0, 3.5, or 4.0. If you have
a 64-bit machine, then you will find those files in the Framework64 folder as well. (In this
book, I’ll assume you are using .NET Framework 4.0 unless otherwise specified. As a side
note, a new version of MSBuild was not shipped with .NET Framework 3.0.) Microsoft
.Build.Commontypes.xsd describes the elements commonly found in Microsoft Visual
Studio-generated project files, and Microsoft.Build.Core.xsd describes all the fixed elements
in an MSBuild project file. The simplest MSBuild file would contain the following:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
</Project>

This XML fragment will identify that this is an MSBuild file. All your content will be placed
inside the Project element. Specifically, we will be declaring properties, items, targets, and a
few other things directly under the Project element. When building software applications,
you will always need to know two pieces of information: what is being built and what build
parameters are being used. Typically, files are being built, and these would be contained in
MSBuild items. Build parameters, like Configuration or OutputPath, are contained in MSBuild
properties. We’ll now discuss how to declare properties as well as targets, and following that
we’ll discuss items.

4	 Part I  Overview

Properties and Targets
MSBuild properties are simply key-value pairs. The key for the property is the name that you
will use to refer to the property. The value is its value. When you declare static properties,
they are always contained in a PropertyGroup element, which occurs directly within
the Project element. We will discuss dynamic properties (those declared and generated
dynamically inside targets) in the next chapter. The following snippet is a simple example
of declaring static properties:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <AppServer>\\sayedApp</AppServer>
 <WebServer>\\sayedWeb</WebServer>
 </PropertyGroup>
</Project>

As previously stated, the PropertyGroup element, inside the Project element, will contain
all of our properties. The name of a property is the XML tag name of the element, and the
value of the property is the value inside the element. In this example, we have declared
two properties, AppServer and WebServer, with the values \\sayedApp and \\sayedWeb,
respectively. You can create as many PropertyGroup elements under the Project tag as you
want. The previous fragment could have been defined like this:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <AppServer>\\sayedApp</AppServer>
 </PropertyGroup>
 <PropertyGroup>
 <WebServer>\\sayedWeb</WebServer>
 </PropertyGroup>
</Project>

The MSBuild engine will process all elements sequentially within each PropertyGroup in the
same manner. If you take a look at a project created by Visual Studio, you’ll notice that many
properties are declared. These properties have values that will be used throughout the build
process for that project. Here is a region from a sample project that I created:

<Project DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>8.0.50727</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{A71540FD-9949-4AC4-9927-A66B84F97769}</ProjectGuid>
 <OutputType>WinExe</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>WindowsApplication1</RootNamespace>
 <AssemblyName>WindowsApplication1</AssemblyName>
 </PropertyGroup>

Chapter 7

External Tools
Exec Task
MSBuild Task
MSBuild and Visual Studio Known Error Message Formats
Creating Reusable Build Elements
NUnit
FxCop

Part IV

MSBuild Cookbook

Chapter 8

Practical Applications, Part 1
Setting the Assembly Version
Building Multiple Projects
Attaching Multiple File Loggers

Creating a Logger Macro
Custom Before/After Build Steps in the Build Lab
Handling Errors
Replacing Values in Config Files
Extending the Clean

Chapter 9

Practical Applications, Part 2
Starting and Stopping Services
Web Deployment Project Overview
Zipping Output Files, Then Uploading to an FTP Site
Compressing JavaScript Files
Encrypting web.config
Building Dependent Projects
Deployment Using Web Deployment Projects

Part V

MSBuild in Visual C++ 2010

Chapter 10

MSBuild in Visual C++ 2010, Part 1
The New .vcxproj Project File

	 Chapter 1  MSBuild Quick Start	 5

 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>

</Project>

You can see that values for the output type, the name of the assembly, and many others
are defined in properties. Defining properties is great, but we also need to be able to utilize
them, which is performed inside targets. We will move on to discuss Target declarations.

MSBuild fundamentally has two execution elements: tasks and targets. A task is the smallest
unit of work in an MSBuild file, and a target is a sequential set of tasks. A task must always
be contained within a target. Here’s a sample that shows you the simplest MSBuild file that
contains a target:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 </Target>
</Project>

In this sample, we have created a new target named HelloWorld, but it doesn’t perform
any work at this point because it is empty. When MSBuild is installed, you are given many
tasks out of the box, such as Copy, Move, Exec, ResGen, and Csc. You can find a list of these
tasks at the MSBuild Task Reference (http://msdn2.microsoft.com/en-us/library/7z253716.
aspx). We will now use the Message task. This task is used to send a message to the logger(s)
that are listening to the build process. In many cases this means a message is sent to the
console executing the build. When you invoke a task in an MSBuild file, you can pass its input
parameters by inserting XML attributes with values. These attributes will vary from task to
task depending on what inputs the task is able to accept. From the documentation of the
Message task (http://msdn2.microsoft.com/en-us/library/6yy0yx8d.aspx) you can see that
it accepts a string parameter named Text. The following snippet shows you how to use the
Message task to send the classic message “Hello world!”

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 <Message Text="Hello world!" />
 </Target>
</Project>

Now we will verify that this works as expected. To do this, place the previous snippet into
a file named HelloWorld.proj. Now open a Visual Studio command prompt, found in the
Visual Studio Tools folder in the Start menu for Visual Studio. When you open this prompt,

6	 Part I  Overview

the path to msbuild.exe is already on the path. The command you will be invoking to start
MSBuild is msbuild.exe. The basic usage for the command is as follows:

msbuild [INPUT_FILE] /t:[TARGETS_TO_EXECUTE]

So the command in our case would be

msbuild HelloWorld.proj /t:HelloWorld

This command says to execute the HelloWorld target, which is contained in the HelloWorld
.proj file. The result of this invocation is shown in Figure 1-1.

FIGURE 1-1  Result of HelloWorld target

Note  In this example, as well as all others in the book, we specify the /nologo switch. This
simply avoids printing the MSBuild version information to the console and saves space in the
book. Feel free to use it or not as you see fit.

We can see that the HelloWorld target is executed and that the message “Hello world!” is
displayed on the console. The Message task also accepts another parameter, Importance. The
possible values for this parameter are high, normal, or low. The Importance value may affect
how the loggers interpret the purpose of the message. If you want the message logged no
matter the verbosity, use the high importance level. We’re discussing properties, so let’s take
a look at how we can specify the text using a property. I’ve extended the HelloWorld.proj file
to include a few new items. The contents are shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 <Message Text="Hello world!" />
 </Target>

 <PropertyGroup>
 <HelloMessage>Hello from property</HelloMessage>
 </PropertyGroup>
 <Target Name="HelloProperty">
 <Message Text="$(HelloMessage)" />
 </Target>
</Project>

I have added a new property, HelloMessage, with the value “Hello from property”, as well as
a new target, HelloProperty. The HelloProperty target passes the value of the property using

Anatomy of the Visual C++ Build Process
Diagnostic Output
Build Parallelism

Configuring Project- and File-Level Build Parallelism
File Tracker–Based Incremental Build

Incremental Build
File Tracker
Trust Visual C++ Incremental Build
Troubleshooting

Property Sheets
System Property Sheets and User Property Sheets

Visual C++ Directories

Chapter 11

MSBuild in Visual C++ 2010, Part 2
Property Pages

Reading and Writing Property Values
Build Customizations
Platforms and Platform Toolsets
Native and Managed Multi-targeting

Native Multi-targeting
How Does Native Multi-targeting Work?
Managed Multi-targeting

Default Visual C++ Tasks and Targets
Default Visual C++ Tasks
Default Visual C++ Targets
ImportBefore, ImportAfter, ForceImportBeforeCppTargets, and
ForceImportAfterCppTargets

Default Visual C++ Property Sheets
Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010

IDE Conversion
Command-Line Conversion

Summary

Chapter 12

Extending Visual C++ 2010
Build Events, Custom Build Steps, and the Custom
Build Tool

Build Events
Custom Build Step
Custom Build Tool

Adding a Custom Target to the Build
Creating a New Property Page

Troubleshooting
Creating a Build Customization
Adding a New Platform and Platform Toolset
Deploying Your Extensions

	 Chapter 1  MSBuild Quick Start	 7

the $(PropertyName) syntax. This is the syntax you use to evaluate a property. We can see
this in action by executing the command msbuild HelloWorld.proj /t:HelloProperty.
The result is shown in Figure 1-2.

FIGURE 1-2  Result of HelloProperty target

As you can see, the value of the property was successfully passed to the Message
task. Now that we have discussed targets and basic property usage, let’s move on to
discuss how we can declare properties whose values are derived from other
properties.

To see how to declare a property by using the value of an existing property, take a look at
the project file, NestedProperties.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <DropLocation>
 \\sayedData\MSBuildExamples\Drops\$(Configuration)\$(Platform)\
 </DropLocation>
 </PropertyGroup>
 <Target Name="PrepareFilesForDrop">
 <Message Text="DropLocation : $(DropLocation)" />
 </Target>
</Project>

We can see here that three properties have been declared. On both the Configuration
and Platform properties, a Condition attribute appears. We’ll discuss this attribute later in
this chapter. The remaining property, DropLocation, is defined using the values of the two
previously declared items. The DropLocation property has three components: a constant
value and two values that are derived from the Configuration and Platform properties.
When the MSBuild engine sees the $(PropertyName) notation, it will replace that with the
value of the specified property. So the evaluated value for DropLocation would be
\\sayedData\MSBuildExamples\Drops\Debug\AnyCPU\. You can verify that by executing the
PrepareFilesForDrop target with msbuild.exe. The reference for properties can be found at
http://msdn.microsoft.com/en-us/library/ms171458.aspx.

When you use MSBuild, a handful of properties are available to you out of the box that
cannot be modified. These are known as reserved properties. Table 1-1 contains all the
reserved properties.

8	 Part I  Overview

TABLE 1-1  Reserved Properties
Name Description
MSBuildExtensionsPath The full path where MSBuild extensions are located. By

default, this is stored under %programfiles%\msbuild.

MSBuildExtensionsPath32 The full path where MSBuild 32-bit extensions are located. This
typically is located under the Program Files folder. For 32-bit
machines, this value will be the same as MSBuildExtensionsPath.

MSBuildExtensionsPath64* The full path where MSBuild 64-bit extensions are located. This
typically is under the Program Files folder. For 32-bit machines,
this value will be empty.

MSBuildLastTaskResult* This value holds the return value from the previous task. It will
be true if the task completed successfully, and false otherwise.

MSBuildNodeCount The number of nodes (processes) that are being used to build the
projects. If the /m switch is not used, then this value will be 1.

MSBuildProgramFiles32* This points to the 32-bit Program Files folder.

MSBuildProjectDefaultTargets Contains the list of the default targets.

MSBuildProjectDirectory The full path to the directory where the project file is located.

MSBuildProjectDirectoryNoRoot The full path to the directory where the project file is located,
excluding the root directory.

MSBuildProjectExtension The extension of the project file, including the period.

MSBuildProjectFile The name of the project file, including the extension.

MSBuildProjectFullPath The full path to the project file.

MSBuildProjectName The name of the project file, without the extension.

MSBuildStartupDirectory The full path to the folder where the MSBuild process is invoked.

MSBuildThisFile* The name of the file, including the extension but excluding the
path, which contains the target that is currently executing.

MSBuildThisFileDirectory* This is the full path to the directory that contains the file that is
currently being executed.

MSBuildThisFileDirectoryNoRoot* The same as MSBuildThisFileDirectory, except with the root
removed.

MSBuildThisFileExtension* The extension of the file that is currently executing.

MSBuildThisFileFullPath* The full path to the file that is currently executing.

MSBuildThisFileName* The name of the file, excluding the extension and path, of the
currently executing file.

MSBuildToolsPath
(MSBuildBinPath)

The full path to the location where the MSBuild binaries are
located.
For MSBuild 2.0, this property is named MSBuildBinPath; in
MSBuild 3.5, it is deprecated.

MSBuildToolsVersion The version of the tools being used to build the project.
Possible values include 2.0, 3.5, and 4.0. The default value for
this is 2.0.

*  Denotes parameters new with MSBuild 4.0.

Part VI

Team Foundation Build

Chapter 13

Team Build Quick Start
Introduction to Team Build

Team Build Features
High-Level Architecture

Preparing for Team Build
Team Build Deployment Topologies
What Makes a Good Build Machine?
Installing Team Build on the Team Foundation Server
Setting Up a Build Controller
Setting Up a Build Agent
Drop Folders

Creating a Build Definition
General
Trigger
Workspace
Build Defaults
Process
Retention Policy

Working with Build Queues and History
Visual Studio
Working with Builds from the Command Line

Team Build Security
Service Accounts
Permissions

Chapter 14

Team Build Deep Dive
Process Templates
Default Template

Logging
Build Number
Agent Reservation
Clean
Sync
Label
Compile and Test
Source Indexing and Symbol Publishing

	 Chapter 1  MSBuild Quick Start	 9

You would use these properties just as you would properties that you have declared in
your own project file. To see an example of this, look at any Visual Studio–generated
project file. When you create a new C# project, you will find the import statement <Import
Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> located near the
bottom. This import statement uses the MSBuildToolsPath reserved property to resolve the
full path to the Microsoft.CSharp.targets file and insert its content at this location. This is
the file that drives the build process for C# projects. We will discuss its content throughout
the remainder of this book. In Chapter 3, “MSBuild Deep Dive, Part 2,” we discuss specifically
how the Import statement is processed.

Items
Building applications usually means dealing with many files. Because of this, you use
a specific construct when referencing files in MSBuild: items. Items are usually file-based
references, but they can be used for other purposes as well. If you create a project
using Visual Studio, you may notice that you see many ItemGroup elements as well as
PropertyGroup elements. The ItemGroup element contains all the statically defined items.
Static item definitions are those declared as a direct child of the Project element. Dynamic
items, which we discuss in the next chapter, are those defined inside a target. When you
define a property, you are declaring a key-value pair, which is a one-to-one relationship.
When you declare items, one item can contain a list of many values. In terms of code,
a property is analogous to a variable and an item to an array. Take a look at how an item
is declared in the following snippet taken from the ItemsSimple.proj file:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup>
 <SolutionFile Include="..\InsideMSBuild.sln" />
 </ItemGroup>
 <Target Name="PrintSolutionInfo">
 <Message Text="SolutionFile: @(SolutionFile)" />
 </Target>
</Project>

In this file, there is an ItemGroup that has a subelement, SolutionFile. ItemGroup is the
element type that all statically declared items must be placed within. The name of the
subelement, SolutionFile in this case, is actually the item type of the item that is
created. The SolutionFile element has an attribute, Include. This determines what values
the item contains. Relating it back to an array, SolutionFile is the name of the variable that
references the array, and the Include attribute is used to populate the array’s values. The
Include attribute can contain the following types of values (or any combination thereof): one
distinct value, a list of values delimited with semicolons, or a value using wildcards. In this
sample, the Include attribute contains one value. When you need to evaluate the contents of
an item, you would use the @(ItemType) syntax. This is similar to the $(PropertyName) syntax
for properties. To see this in action, take a look at the PrintSolutionInfo target. This target

10	 Part I  Overview

passes the value of the item into the Message task to be printed to the console. You can see
the result of executing this target in Figure 1-3.

FIGURE 1-3  PrintSolutionInfo result

In this case, the item SolutionFile contains a single value, so it doesn’t seem very different
from a property because the single value was simply passed to the Message task. Let’s take
a look at an item with more than one value. This is an extended version of the ItemsSimple
.proj file shown earlier:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup>
 <SolutionFile Include="..\InsideMSBuild.sln" />
 </ItemGroup>
 <Target Name="PrintSolutionInfo">
 <Message Text="SolutionFile: @(SolutionFile)" />
 </Target>

 <ItemGroup>
 <Compile
 Include="Form1.cs;Form1.Designer.cs;Program.cs;Properties\AssemblyInfo.cs" />
 </ItemGroup>
 <Target Name="PrintCompileInfo">
 <Message Text="Compile: @(Compile)" />
 </Target>
</Project>

In the modified version, I have created a new item, Compile, which includes four values that
are separated by semicolons. The PrintCompileInfo target passes these values to the Message
task. When you invoke the PrintCompileInfo target on the MSBuild file just shown, the result
will be Compile: Form1.cs;Form1.Designer.cs;Program.cs;Properties
\AssemblyInfo.cs. It may look like the Message task simply took the value in the Include
attribute and passed it to the Message task, but this is not the case. The Message task has
a single input parameter, Text, as discussed earlier. This parameter is a string property.
Because an item is a multivalued object, it cannot be passed directly into the Text property.
It first has to be converted into a string. MSBuild does this for you by separating each value
with a semicolon. In Chapter 2, I will discuss how you can customize this conversion process.

An item definition doesn’t have to be defined entirely by a single element. It can span multiple
elements. For example, the Compile item shown earlier could have been declared like this:

<ItemGroup>
 <Compile Include="Form1.cs" />

Associate Changesets and Work Items
Copy Files to the Drop Location
Revert Files and Check in Gated Changes
Create Work Items for Build Failure

Configuring the Team Build Service
Changing Communications Ports
Requiring SSL
Running Interactively
Running Multiple Build Agents
Build Controller Concurrency

Team Build API
Creating a Project
Connecting to Team Project Collection
Connecting to Team Build
Working with Build Service Hosts
Working with Build Definitions
Working with Builds

Chapter 15

Workflow Foundation Quick Start
Introduction to Workflow Foundation

Types of Workflows
Building a Simple Workflow Application

Workflow Design
Built-in Activities
Working with Data
Exception Handling
Custom Activities

Workflow Extensions
Persistence
Tracking

Putting It All Together—Workflow Foundation Image Resizer Sample Application
Overview
Building the Application
Running the Application
Debugging the Application
Summary

Chapter 16

Process Template Customization
Getting Started

Creating a Process Template Library
Creating a Custom Activity Library

	 Chapter 1  MSBuild Quick Start	 11

 <Compile Include="Form1.Designer.cs" />
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 </ItemGroup>

In this version, each file is placed into the Compile item individually. These Compile elements
could also have been contained in their own ItemGroup as well, as shown in the next snippet.

<ItemGroup>
 <Compile Include="Form1.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Form1.Designer.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Program.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Properties\AssemblyInfo.cs" />
</ItemGroup>

The end result of these declarations would all be the same. You should note that an item is
an ordered list, so the order in which values are added to the item is preserved and may in
some context affect behavior based on usage. When a property declaration appears after
a previous one, the previous value is overwritten. Items act differently from this in that the
value of the item is simply appended to instead of being overwritten. We’ve now discussed
two of the three ways to create items. Let’s look at using wildcards to create items.

Many times, items refer to existing files. If this is the case, you can use wildcards to
automatically include files that meet the constraints of the wildcards. You can use three
wildcard elements with MSBuild: ?, *, and **. The ? descriptor is used to denote that exactly
one character can take its place. For example, the include declaration of b?t.cs could
include values such as bat.cs, bot.cs, bet.cs, b1t.cs, and so on. The * descriptor can be
replaced with zero or more characters (not including slashes), so the declaration b*t.cs
could include values such as bat.cs, bot.cs, best.cs, bt.cs, etc. The ** descriptor tells MSBuild
to search directories recursively for the pattern. In effect, “*” matches any characters except
for “/” while “**” matches any characters, including “/”. For example, Include=“src***.cs”
would include all files under the src folder (including subfolders) with the .cs extension.

Item Metadata
Another difference between properties and items is that items can have metadata associated
with them. When you create an item, each of its elements is a full-fledged .NET object, which
can have a set of values (metadata) associated with it. The metadata that is available on every
item, which is called well-known metadata, is summarized in Table 1-2.

12	 Part I  Overview

TABLE 1-2  Well-Known Metadata
Name Description
Identity The value that was specified in the Include attribute of the item after it was

evaluated.

FullPath Full path of the file.

RootDir The root directory to which the file belongs, such as C:\.

Filename The name of the file, not including the extension.

Extension The extension of the file, including the period.

RelativeDir Contains the path specified in the Include attribute, up to the final backslash (\).

Directory Directory of the item, without the root directory.

RecursiveDir This is the expanded directory path starting from the first ** of the include
declaration. If no ** is present, then this value is empty. If multiple ** are present,
then RecursiveDir will be the expanded value starting from the first **. This may
sound peculiar, but it is what makes recursive copying possible.

ModifiedTime The last time the file was modified.

CreatedTime The time the file was created.

AccessedTime The last time the file was accessed.

To access metadata values, you have to use this syntax:

@(ItemType->'%(MetadataName)')

ItemType is the name of the item, and MetadataName is the name of the metadata that you
are accessing. This is the most basic syntax. To examine what types of values the well-known
metadata returns, take a look at the file, WellKnownMetadata.proj, shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <src Include="src\one.txt" />
 </ItemGroup>
 <Target Name="PrintWellKnownMetadata">

 <Message Text="===== Well known metadata ====="/>
 <!-- %40 = @ -->
 <!-- %25 = % -->
 <Message Text="%40(src->'%25(FullPath)'): @(src->'%(FullPath)')"/>
 <Message Text="%40(src->'%25(RootDir)'): @(src->'%(RootDir)')"/>
 <Message Text="%40(src->'%25(Filename)'): @(src->'%(Filename)')"/>
 <Message Text="%40(src->'%25(Extension)'): @(src->'%(Extension)')"/>
 <Message Text="%40(src->'%25(RelativeDir)'): @(src->'%(RelativeDir)')"/>
 <Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')"/>
 <Message Text="%40(src->'%25(RecursiveDir)'): @(src->'%(RecursiveDir)')"/>
 <Message Text="%40(src->'%25(Identity)'): @(src->'%(Identity)')"/>
 <Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')"/>
 <Message Text="%40(src->'%25(CreatedTime)'): @(src->'%(CreatedTime)')"/>
 <Message Text="%40(src->'%25(AccessedTime)'): @(src->'%(AccessedTime)')"/>

 </Target>
</Project>

Process Parameters
Defining
Metadata
User Interface
Supported Reasons
Backward and Forward Compatibility

Team Build Activities
AgentScope
CheckInGatedChanges
ConvertWorkspaceItem/ConvertWorkspaceItems
ExpandEnvironmentVariables
FindMatchingFiles
GetBuildAgent
GetBuildDetail
GetBuildDirectory
GetBuildEnvironment
GetTeamProjectCollection
InvokeForReason
InvokeProcess
MSBuild
SetBuildProperties
SharedResourceScope
UpdateBuildNumber

Custom Activities
BuildActivity Attribute
Extensions

Logging
Logging Verbosity
Logging Activities
Logging Programmatically
Adding Hyperlinks
Exceptions

Deploying
Process Templates
Custom Assemblies
Downloading and Loading Dependent Assemblies

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 1  MSBuild Quick Start	 13

Note  In order to use reserved characters, such as the % and @, you have to escape them.
This is accomplished by the syntax %HV, where HV is the hex value of the character. This is
demonstrated here with %25 and %40.

Note  In this example, we have specified the ToolsVersion value to be 4.0. This determines
which version of the MSBuild tools will be used. Although not needed for this sample, we will be
specifying this version number from this point forward. The default value is 2.0.

This MSBuild file prints the values for the well-known metadata for the src item. The result of
executing the PrintWellKnownMetadata target is shown in Figure 1-4.

FIGURE 1-4  PrintWellKnownMetadata result

The figure gives you a better understanding of the well-known metadata’s usage. Keep in
mind that this demonstrates the usage of metadata in the case where the item contains only
a single value.

To see how things change when an item contains more than one value, let’s examine
MetadataExample01.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <Compile Include="*.cs" />
 </ItemGroup>

 <Target Name="PrintCompileInfo">
 <Message Text="Compile fullpath: @(Compile->'%(FullPath)')" />
 </Target>
</Project>

In this project file we simply evaluate the FullPath metadata on the Compile item. From the
examples with this text, the directory containing this example contains four files: Class1.cs,
Class2.cs, Class3.c, and Class4.cs. These are the files that will be contained in the Compile
item. Take a look at the result of the PrintCompileInfo target in Figure 1-5.

14	 Part I  Overview

FIGURE 1-5  PrintCompileInfo result

You have to look carefully at this output to decipher the result. What is happening here
is that a single string is created by combining the full path of each file, separated by
a semicolon. The @(ItemType->'. . .%(). . .') syntax is an “Item Transformation.” We
will cover transformations in greater detail in Chapter 2. In the next section, we’ll discuss
conditions. Before we do that, take a minute to look at the project file for a simple Windows
application that was generated by Visual Studio. You should recognize many things.

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>8.0.50727</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{0F34CE5D-2AB0-49A9-8254-B21D1D2EFFA1}</ProjectGuid>
 <OutputType>WinExe</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>WindowsApplication1</RootNamespace>
 <AssemblyName>WindowsApplication1</AssemblyName>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />
 <Reference Include="System.Data" />
 <Reference Include="System.Deployment" />
 <Reference Include="System.Drawing" />
 <Reference Include="System.Windows.Forms" />
 <Reference Include="System.Xml" />
 </ItemGroup>

Part VII

Web Development Tool

Chapter 17

Web Deployment Tool, Part 1
Web Deployment Tool Overview
Working with Web Packages

Package Creation
Installing Packages

msdeploy.exe Usage Options
MSDeploy Providers
MSDeploy Rules
MSDeploy Parameters

–declareParam
–setParam

MSDeploy Manifest Provider

Chapter 18

Web Deployment Tool, Part 2
Web Publishing Pipeline Overview
XML Document Transformations
Web Publishing Pipeline Phases

Excluding Files
Including Additional Files
Database

Chapter 19

Web Deployment Tool Practical Applications
Publishing Using MSBuild
Parameterizing Packages
Using –setParamFile
Using the MSDeploy Temp Agent
Deploying Your Site from Team Build
Deploying to Multiple Destinations Using Team Build
Excluding ACLs from the Package
Synchronizing an Application to Another Server

Appendix A

New Features in MSBuild 4.0
Support for Visual C++

	 Chapter 1  MSBuild Quick Start	 15

 <ItemGroup>
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>
 <Compile Include="Form1.Designer.cs">
 <DependentUpon>Form1.cs</DependentUpon>
 </Compile>
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 <EmbeddedResource Include="Properties\Resources.resx">
 <Generator>ResXFileCodeGenerator</Generator>
 <LastGenOutput>Resources.Designer.cs</LastGenOutput>
 <SubType>Designer</SubType>
 </EmbeddedResource>
 <Compile Include="Properties\Resources.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Resources.resx</DependentUpon>
 </Compile>
 <None Include="Properties\Settings.settings">
 <Generator>SettingsSingleFileGenerator</Generator>
 <LastGenOutput>Settings.Designer.cs</LastGenOutput>
 </None>
 <Compile Include="Properties\Settings.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Settings.settings</DependentUpon>
 <DesignTimeSharedInput>True</DesignTimeSharedInput>
 </Compile>
 </ItemGroup>
 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
 <!-- To modify your build process, add your task
inside one of the targets below and uncomment it.
 Other similar extension points exist,
see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->
</Project>

Simple Conditions
When you are building, you often have to make decisions based on conditions. MSBuild
allows almost every XML element to contain a conditional statement within it. The statement
would be declared in the Condition attribute. If this attribute evaluates to false, then the
element and all its child elements are ignored. In the sample Visual Studio project that was
shown at the end of the previous section, you will find the statement <Configuration
Condition=“ '$(Configuration)' == '' ”>Debug</Configuration>. In this declaration,
the condition is checking to see if the property is empty. If so, then it will be defined;
otherwise, the statement will be skipped. This is a method to provide a default overridable
value for a property. Table 1-3 describes a few common types of conditional operators.

16	 Part I  Overview

TABLE 1-3  Simple Conditional Operators
Symbol Description
== Checks for equality; returns true if both have the same value.

!= Checks for inequality; returns true if both do not have the same value.

Exists Checks for the existence of a file. Returns true if the provided file exists.

!Exists Checks for the nonexistence of a file. Returns true if the file provided is not found.

Because you can add a conditional attribute to any MSBuild element (excluding the Otherwise
element), this means that we can decide to include entries in items as necessary. For example,
when building ASP.NET applications, in some scenarios, you might want to include files that
will assist debugging. Take a look at the MSBuild file, ConditionExample01.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>
 <ItemGroup>
 <Content Include="script.js"/>
 <Content Include="script.debug.js" Condition="$(Configuration)=='Debug'" />
 </ItemGroup>

 <Target Name="PrintContent">
 <Message Text="Configuration: $(Configuration)" />
 <Message Text="Content: @(Content)" />
 </Target>
</Project>

If we execute the command msbuild ConditionExample01.proj /t:PrintContent, the
result would be what is shown in Figure 1-6.

FIGURE 1-6  PrintContent target result

As you can see, because the Configuration value was not set to Debug, the script.debug.js file
was not included in the Content item. Now we will examine the usage of the Exists function.
To do this, take a look at the target _CheckForCompileOutputs, taken from the Microsoft
.Common.targets file, a file included with MSBuild that contains most of the rules for building
VB and C# projects:

<Target
 Name="_CheckForCompileOutputs">

New Command-Line Switches
New Reserved Properties
BeforeTargets and AfterTargets
ImportGroup
Import Wildcard
Solution Import Files
Property Functions
Item Functions
Inline Tasks
Cancellable Builds
YieldDuringToolExecution
New Object Model
Debugger

Appendix B

Building Large Source Trees

Appendix C

Upgrading from Team Foundation Build 2008
Upgrade Process
Upgrade Template

About the Author

	 Chapter 1  MSBuild Quick Start	 17

 <!--Record the main compile outputs.-->
 <ItemGroup>
 <FileWrites
 Include="@(IntermediateAssembly)"
 Condition="Exists('@(IntermediateAssembly)')" />
 </ItemGroup>

 <!-- Record the .xml if one was produced. -->
 <PropertyGroup>
 <_DocumentationFileProduced
 Condition="!Exists('@(DocFileItem)')">false</_DocumentationFileProduced>
 </PropertyGroup>

 <ItemGroup>
 <FileWrites
 Include="@(DocFileItem)"
 Condition="'$(_DocumentationFileProduced)'=='true'" />
 </ItemGroup>

 <!-- Record the .pdb if one was produced. -->
 <PropertyGroup>
 <_DebugSymbolsProduced
 Condition="!Exists('@(_DebugSymbolsIntermediatePath)')">false
 </_DebugSymbolsProduced>
 </PropertyGroup>

 <ItemGroup>
 <FileWrites
 Include="@(_DebugSymbolsIntermediatePath)"
 Condition="'$(_DebugSymbolsProduced)'=='true'" />
 </ItemGroup>
</Target>

From the first FileWrites item definition, the condition is defined as Exists
(@(IntermediateAssembly)). This will determine whether the file referenced by the
IntermediateAssembly item exists on disk. If it doesn’t, then the declaration task is
skipped. This was a brief overview of conditional statements, but it should be enough to
get you started. Let’s move on to learn a bit more about targets.

Default/Initial Targets
When you create an MSBuild file, you will typically create it such that a target, or a set of
targets, will be executed most of the time. In this scenario, these targets can be specified
as default targets. These targets will be executed if a target is not specifically chosen to be
executed. Without the declaration of a default target, the first defined target in the logical
project file, after all imports have been resolved, is treated as the default target. A logical
project file is one with all Import statements processed. Using default target(s) is how Visual

18	 Part I  Overview

Studio builds your managed project. If you take a look at Visual Studio–generated project
files, you will notice that the Build target is specified as the default target:

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
...
</Project>

As mentioned previously, you can have either one target or many targets be your default
target(s). If the declaration contains more than one, the target names need to be separated
by a semicolon. When you use a command such as msbuild ProjectFile.proj, because
you have not specified a target to execute, the default target(s) will be executed. It’s
important to note that the list of DefaultTargets will be preserved, not modified, through
an Import, provided that a project previously processed hasn’t had a DefaultTargets list.
This is one difference between DefaultTargets and InitialTargets. Values for InitialTargets are
aggregated for all imports because each file may have its own initialization checks.

These targets listed in InitialTargets will always be executed even if the project file is
imported by other project files. Similar to default targets, the initial targets list
is declared as an attribute on the Project element with the name InitialTargets. If
you take a look at the Microsoft.Common.targets file, you will notice that the
target _CheckForInvalidConfigurationAndPlatform is declared as the initial target. This target
will perform a couple sanity checks before allowing the build to continue. I would strongly
encourage the use of default targets. InitialTargets should be used to verify initial conditions
before the build starts and raises an error or warning if applicable. Next, we will discuss the
command-line usage of the msbuild.exe command.

MSBuild.exe Command-Line Usage
In this section, we’ll discuss the most important options when invoking msbuild.exe. When
you invoke the msbuild.exe executable, you can pass many parameters to customize the
process. We’ll first take a look at the options that are available with MSBuild 2.0, and then
we’ll discuss what differences exist for MSBuild 3.5 and MSBuild 4.0. Table 1-4 summarizes
the parameters you can pass to msbuild.exe. Many commands include a short version that
can be used; these versions are listed in the table within parentheses.

TABLE 1-4  MSBuild.exe Command-Line Switches
Switch Description
/help (/?) Displays the usage information for msbuild.exe.

/nologo Suppresses the copyright and startup banner.

/version (/ver) Displays version information.

@file Used to pick up response file(s) for parameters.

	 Chapter 1  MSBuild Quick Start	 19

Switch Description
/noautoresponse (/noautoresp) Used to suppress automatically, including msbuild.rsp as a

response file.

/target (/t) Used to specify which target(s) should be built. If specifying more
than one target, they should each be separated by a semicolon.
Commas are valid separators, but semicolons are the ones most
commonly used.

/property:<n>=<v> (/p) Used to specify properties. If providing more than one property,
they should each be separated by a semicolon. Property values
should be specified in the format: name=value. These values
would supersede any static property definitions. Commas are
valid separators, but semicolons are the ones most
commonly used.

/verbosity (/v) Sets the verbosity of the build. The options are quiet (q), minimal
(m), normal (n), detailed (d), and diagnostic (diag). This is passed
to each logger, and the logger is able to make its own decision
about how to interpret it.

/validate (/val) Used to ensure that the project file is in the correct format
before the build is started.

/logger (/l) Attaches the specified logger to the build. This switch can be
provided multiple times to attach any number of loggers. Also,
you can pass parameters to the loggers with this switch.

/consoleloggerparameters (/clp) Used to pass parameters to the console logger.

/noconsolelogger (/noconlog) Used to suppress the usage of the console logger, which is
otherwise always attached.

/filelogger (/fl) Attaches a file logger to the build.

/fileloggerparameters (/flp) Passes parameters to the file logger. If you want to attach
multiple file loggers, you do so by specifying additional
parameters in the switches /flp1, /flp2, /flp3, and so on.

/distributedFileLogger (/dl) Used to attach a distributed logger. This is an advanced switch
that you will most likely not use and that could have been
excluded altogether.

/maxcpucount (/m) Sets the maximum number of processes that should be used by
msbuild.exe to build the project.

/ignoreprojectextensions
(/ignore)

Instructs MSBuild to ignore the extensions passed.

/toolsversion (/tv) Specifies the version of the .NET Framework tools that should be
used to build the project.

/nodeReuse (/nr) Used to specify whether nodes should be reused or not.
Typically, there should be no need to specify this; the default value
is optimal.

20	 Part I  Overview

Switch Description
/preprocess (/pp)* This will output the complete logical file to either the console or

to a specified file. To have the result written out to the file, use the
syntax /pp:file.
Usually, this file will build just as if you were building the original
project (there are exceptions though, such as $(MSBuildThisFile)).
The real purpose of this is to help diagnose a problem with the
build by avoiding the need to jump between many different
files. For example, if a particular property is getting overwritten
somewhere, it is much easier to search for it in the single
“preprocessed” file than it is to search for it in the many
imported files.

/detailedSummary (/ds)* It displays information about how the projects were scheduled to
different CPUs. You can use this to help figure out how to make
the build faster. For example, you can use this to determine which
project was stalling other projects.

*  Denotes parameters new with MSBuild 4.0.

From Table 1-4, the most commonly used parameters are target, property, and logger.
You might also be interested in using the FileLogger switch. To give you an example, I will
use an MSBuild file that we discussed earlier, the ConditionExample01.proj file. Take a look
at the following command that will attach the file logger to the build process: msbuild
ConditionExample01.proj /fl. Because we didn’t specify the name of the log file to be
written to, the default, msbuild.log, will be used. Using this same project file, let’s see how
to override the Configuration value. From that file, the Configuration value would be set to
Release, but we can override it from the command line with the following statement:
msbuild ConditionExample01.proj /p:Configuration=Debug /t:PrintContent. In
this command, we are using the /p (property) switch to provide a property value to the build
engine, and we are specifying to execute the PrintContent target. The result is shown in
Figure 1-7.

FIGURE 1-7  Specifying a property from the command line

The messages on the console show that the value for Configuration was indeed Debug,
and as expected, the debug JavaScript file was included in the Content item. Now that
you know the basic usage of the msbuild.exe command, we’ll move on to the last topic:
extending the build process.

	 Chapter 1  MSBuild Quick Start	 21

Extending the Build Process
With versions of Visual Studio prior to 2005, the build was mostly a black box. The process by
which Visual Studio built your applications was internal to the Visual Studio product itself. The
only way you could customize the process was to use execute commands for pre- and post-build
events. With this, you were able to embed a series of commands to be executed. You were not
able to change how Visual Studio built your applications. With the advent of MSBuild, Visual
Studio has externalized the build process and you now have complete control over it. Since
MSBuild is delivered with the .NET Framework, Visual Studio is not required to build applications.
Because of this, we can create build servers that do not need to have Visual Studio installed. We’ll
examine this by showing how to augment the build process. Throughout the rest of this book, we
will describe how to extend the build process in more detail.

The pre- and post-build events mentioned earlier are still available, but you now have other
options. The three main ways to add a pre- or post-build action are:

n	 Pre- and post-build events
n	 Override BeforeBuild/AfterBuild target
n	 Extend the BuildDependsOn list

The pre- and post-build events are the same as described previously. This is a good approach
for backward compatibility and ease of use. Configuring this using Visual Studio doesn’t require
knowledge of MSBuild. Figure 1-8 shows the Build Events tab on the ProjectProperties page.

Here, you can see the two locations for the pre- and post-build events toward the center of
the image. The dialog that is displayed is the post-build event command editor. This helps you
construct the command. You define the command here, and MSBuild executes it for you at the
appropriate time using the Exec task (http://msdn2.microsoft.com/en-us/library/x8zx72cd.aspx).
Typically, these events are used to copy or move files around before or after the build.

Using the pre- and post-build event works fairly well if you want to execute a set of
commands. If you need more control over what is occurring, you will want to manually
modify the project file itself. When you create a new project using Visual Studio, the project
file generated is an MSBuild file, which is an XML file. You can use any editor you choose, but
if you use Visual Studio, you will have IntelliSense when you are editing it! With your solution
loaded in Visual Studio, you can right-click the project, select Unload Project, right-click
the project again, and select Edit. If you take a look at the project file, you will notice this
statement toward the bottom of the file.

<!-- To modify your build process, add your task inside one
 of the targets below and uncomment it.
 Other similar extension points exist, see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->

22	 Part I  Overview

FIGURE 1-8  Build Events tab

From the previous snippet, we can see that there are predefined targets designed to handle
these types of customizations. We can simply follow the directions from the project file, by
defining the BeforeBuild or AfterBuild target. You will want to make sure that these definitions
are after the Import element for the Microsoft.*.targets file, where * represents the language
of the project you are editing. For example, you could insert the following AfterBuild target:

<Target Name="AfterBuild">
 <Message Text="Build has completed!" />
</Target>

When the build has finished, this target will be executed and the message ‘Build has
completed!’ will be passed to the loggers. We will cover the third option, extending the
BuildDependsOn list, in Chapter 3.

In this chapter, we have covered many features of MSBuild, including properties, items,
targets, and tasks. Now you should have all that you need to get started customizing your
build process. From this point on, the remainder of the book will work on filling in the details
that were left out here so that you can become an MSBuild expert!

		 23

Chapter 2

MSBuild Deep Dive, Part 1
In the previous chapter, we gave a brief overview of all the key elements in MSBuild. In this
chapter and the next, we’ll examine most of those ideas in more detail. We’ll discuss properties,
items, targets, tasks, transformations, and much more. After you have completed this chapter,
you will have a solid grasp of how to create and modify MSBuild files to suit your needs. After
the next chapter, we’ll explore ways to extend MSBuild as well as some advanced topics.

What is MSBuild? MSBuild is a general-purpose build system created by Microsoft and is
used to build most Microsoft Visual Studio projects. MSBuild is shipped with the Microsoft
.NET Framework. What this means is that you do not need to have Visual Studio installed in
order to build your applications. This is very beneficial because you don’t need to purchase
licenses of Visual Studio for dedicated build machines, and it makes configuring build
machines easier. Another benefit is that MSBuild will be installed on many machines. If .NET
Framework 2.0 or later is available on a machine, so is a version of MSBuild. The following
terms have been used to identify an MSBuild file: MSBuild file, MSBuild project file, MSBuild
targets file, MSBuild script, etc. When you create an MSBuild file, you should follow these
conventions for specifying the extension of the file:

n	 .proj  A project file

n	 .targets  A file that contains shared targets, which are imported into other files

n	 .props  Default settings for a build process

n	 .tasks  A file that contains UsingTask declarations

An MSBuild file is just an XML file. You can use any editor you choose to create and edit
MSBuild files. The preferred editor is Visual Studio, because it provides IntelliSense on the
MSBuild files as you are editing them. This IntelliSense will greatly decrease the amount
of time required to write an MSBuild file. The IntelliSense is driven by a few XML Schema
Definition (XSD) files. These XSD files, which are all in Visual Studio’s XML directory, are
Microsoft.Build.xsd, Microsoft.Build.Core.xsd, and Microsoft.Build.Commontypes.xsd. The
Microsoft.Build.xsd file imports the other two files, and provides an extension point for
task developers to include their own files. The Microsoft.Build.Core.xsd file describes all the
fundamental elements that an MSBuild file can contain.

Microsoft.Build.Commonttypes.xsd defines all known elements; this is mainly used to
describe the elements that Visual Studio–generated project files can contain. The XSD that
is used is not 100 percent complete, but in most cases you will not notice that. Now that
we have discussed what it takes to edit an MSBuild file, let’s discuss properties in detail. If
you are not familiar with invoking msbuild.exe from the command line, take a look back at
Chapter 1, “MSBuild Quick Start”; this is not covered again here.

Table of Contents

24	 Part I  Overview

Properties
MSBuild has two main constructs for representing data: properties and items. A property is a
key-value pair. Each property can have exactly one value. An item list differs from a property
in that it can have many values. In programming terms, a property is similar to a scalar
variable, and an item list is similar to an array variable, whose order is preserved. Properties
are declared inside the Project element in a PropertyGroup element. We’ll now take a look at
how properties are declared. The following file, Properties01.proj, demonstrates declaration
and usage of a property.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)" />
 </Target>

</Project>

As stated previously, we needed a PropertyGroup element, and the Configuration
property was defined inside of that. By doing this we have created a new property named
Configuration and given it the value Debug. When you create properties, you are not limited
to defining only one property per PropertyGroup element. You can define any number of
properties inside a single PropertyGroup element. In the target PrintConfig, the Message task
is invoked in order to print the value of the Configuration property. If you are not familiar
with what a target is, refer back to Chapter 1, “MSBuild Quick Start.” You can execute that
target with the command msbuild.exe Properties01.proj /t:PrintConfig. The results
of this command are shown in Figure 2-1.

FIGURE 2-1  PrintConfig target results

From the result in Figure 2-1, we can see that the correct value for the Configuration
property was printed as expected. As properties are declared, their values are recorded in
a top-to-bottom order. What this means is that if a property is defined, and then defined
again, the last value will be the one that is applied. Take a look at a modified version of the
previous example; this one is contained in the Properties02.proj file.

	 Chapter 2  MSBuild Deep Dive, Part 1	 25

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)" />
 </Target>

</Project>

In this example, we have declared the Configuration property once again, after the existing
declaration, and specified that it have the value Release. Because the new value is declared
after the previous one, we would expect the new value to hold. If you execute the PrintConfig
target on this file, you will see that this is indeed the case. Properties in MSBuild can be
declared any number of times. This is not an erroneous condition, and there is no way to
detect this. Now we will look at another version of the previous file, a slightly modified one.
Take a look at the contents of the following Properties03.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)"/>
 </Target>

 <PropertyGroup>
 <Configuration>CustomRelease</Configuration>
 </PropertyGroup>

</Project>

This example is a little different in the sense that there is a value for Configuration declared
after the PrintConfig target. That value is CustomRelease. So if we execute the PrintConfig
target, what should be the result, Release or CustomRelease? We can execute msbuild.exe
Properties03.proj /t:PrintConfig to find out. The results of this command are shown in
Figure 2-2.

26	 Part I  Overview

FIGURE 2-2  PrintConfig result for Properties03.proj

As can be seen from the results in Figure 2-2, the value for Configuration that was printed
was CustomRelease! How is this possible? It was defined after the PrintConfig target! This is
because MSBuild processes the entire file for properties and items before any targets are
executed. You can imagine all the properties being in a dictionary, and as the project file is
processed, its values are placed in the dictionary. Property names are not case sensitive, so
Configuration and CoNfiguratION would refer to the same property. After the entire file,
including imported files, is processed, all the final values for statically declared properties and
items have been resolved. Once all the properties and items have been resolved, targets are
allowed to execute. We’ll take a closer look at this process in the section entitled “Property
and Item Evaluation,” in Chapter 3, “MSBuild Deep Dive, Part 2.”

Note  We will discuss importing files in Chapter 3.

Environment Variables
We have described the basic usage of properties. Now we’ll discuss a few other related
topics. When you are building your applications, sometimes you might need to extract values
from environment variables. This is a lot simpler than you might imagine if you use MSBuild.
You can access values, just as you would properties, for environment variables. For example,
take a look at the following project file, Properties04.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <Target Name="PrintEnvVar">
 <Message Text="Temp: $(Temp)" />
 <Message Text="Windir: $(windir)" />
 <Message Text="VS100COMNTOOLS: $(VS100COMNTOOLS)" />
 </Target>

</Project>

In this example, we can see that no properties have been declared and no other files are
imported. Inside the target, PrintEnvVar, we can see that we have made a few messages to print
the values of some properties. These values are being pulled from the environment variables.
When you use the $(PropertyName) syntax to retrieve a value, MSBuild will first look to see if

	 Chapter 2  MSBuild Deep Dive, Part 1	 27

there is a corresponding property. If there is, its value is returned. If there isn’t, then it will look at
the environment variables for a variable with the provided name. If such a variable exists, its value
is returned. If you execute the command msbuild.exe Properties04.proj /t:PrintEnvVar
you should see a result similar to that shown in Figure 2-3.

FIGURE 2-3  Environment variable usage

As demonstrated in Figure 2-3, the values for the appropriate environment variables were
printed as expected.

Note  When MSBuild starts (that is, when msbuild.exe starts or when Visual Studio starts), all the
environment variables and their values are captured at that time. So if a value for an environment
variable changes after that, it will not be reflected in the build. Also, you should be aware that
each project is isolated from environment variable changes and changes to the current directory
that are made by other projects.

If you don’t have Visual Studio 2010 installed on the machine running this file, then the value
may be empty for the VS100COMNTOOLS property. As we just saw, you can get the value for
an environment variable by using the property notation. Assigning a value to a property that
has the same name as an environment variable has no effect on the environment variable
itself. The $(PropertyName) notation can get a value from an environment variable, but it will
never assign values to environment variables. Let’s move on to discuss reserved properties.

Reserved Properties
There are a fixed number of reserved properties. These are properties that are globally
available to every MSBuild script and that can never be overwritten. These properties are
provided to users by the MSBuild engine itself, and many of them are very useful. These are
summarized in Table 2-1.

TABLE 2-1  Reserved Properties
Name Description
MSBuildProjectDirectory The full path to the directory where the project file is located.

MSBuildProjectDirectoryNoRoot The full path to the directory where the project file is located,
excluding the root (for example, c:\).

28	 Part I  Overview

Name Description
MSBuildProjectFile The name of the project file, including the extension.

MSBuildProjectExtension The extension of the project file, including the period.

MSBuildProjectFullPath The full path to the project file.

MSBuildProjectName The name of the project file, without the extension.

MSBuildProjectDefaultTargets Contains a list of the default targets.

MSBuildExtensionsPath The full path to where MSBuild extensions are located. This is
typically under the Program Files folder. Note that now this
always points to the 32-bit location.

MSBuildExtensionsPath32 The full path to where MSBuild 32 bit extensions are located.
This is typically under the Program Files folder. For 32-bit
machines, this value will be the same as MSBuildExtensionsPath.

MSBuildExtensionsPath64 * The full path to where MSBuild 64-bit extensions are located.
This is typically under the Program Files folder. For 32-bit
machines, this value will be empty.

MSBuildNodeCount The maximum number of nodes (processes) that are being used
to build the project. If the /m switch is not used, then this value
will be 1. If you use the /m switch without specifying a number
of nodes, then the default is the number of CPUs available.

MSBuildStartupDirectory The full path to the folder where the MSBuild process was
invoked.

MSBuildToolsPath
(MSBuildBinPath)

The full path to the location where the MSBuild binaries are
located.
In MSBuild 2.0, this property is named MSBuildBinPath and
is deprecated in MSBuild 3.5 and later. MSBuildBinPath and
MSBuildToolsPath have the same value, but you should use only
MSBuildToolsPath.

MSBuildToolsVersion The version of the tools being used to build the project. Possible
values include 2.0, 3.5, and 4.0. The default value is 2.0.

MSBuildLastTaskResult * This contains true if the last executed task was a success
(task returned true) and false if it ended in a failure. If a
task fails, typically the build stops unless you specified
ContinueOnError="true".

MSBuildProgramFiles32 * This contains the path to the 32-bit Program Files folder.
To get the value for the default Program Files folder, use
$(ProgramFiles).

MSBuildThisFile * Contains the file name, including the extension, of the
file that contains the property usage. This differs from
MSBuildProjectFile in that MSBuildProjectFile always refers to
the file that was invoked, not any imported file name.

MSBuildThisFileDirectory * The path of the folder of the file that uses the property. This is
useful if you need to define any items whose location you know
relative to the targets file.

	 Chapter 2  MSBuild Deep Dive, Part 1	 29

Name Description
MSBuildThisFileDirectoryNoRoot * Same as MSBuildThisFileDirectory without the root (for

example, InsideMSBuild\Ch02 instead of C:\InsideMSBuild\
Ch02).

MSBuildThisFileExtension * The extension of the file referenced by MSBuildThisFile.

MSBuildThisFileFullPath * The full path to the file that contains the usage of the property.

MSBuildThisFileName * The name of the file, excluding the extension, to the file that
contains usage of the property.

MSBuildOverrideTasksPath * MSBuild 4.0 introduces override tasks, which are tasks that force
themselves to be used instead of any other defined task with
the same name, and this property points to a file that contains
the overrides. The override tasks feature is used internally to
help MSBuild 4.0 work well with other versions of MSBuild.

*  denotes parameters new with MSBuild 4.0.

Note  You are allowed to override the values for MSBuildExtensionsPath, as well as the 32- and
64-bit variants. This is useful in case you check shared tasks into source control and want to use
those files.

You would use these properties in the same way as you would any other properties. In order
to understand what types of values these properties are set to, I have created the following
sample file, ReservedProperties01.proj, to print out all these values.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">
 <Target Name="PrintReservedProperties">
 <Message Text="MSBuildProjectDirectory: $(MSBuildProjectDirectory)" />
 <Message Text="MSBuildProjectDirectoryNoRoot: $(MSBuildProjectDirectoryNoRoot)" />
 <Message Text="MSBuildProjectFile: $(MSBuildProjectFile)" />
 <Message Text="MSBuildProjectExtension: $(MSBuildProjectExtension)" />
 <Message Text="MSBuildProjectFullPath: $(MSBuildProjectFullPath)" />
 <Message Text="MSBuildProjectName: $(MSBuildProjectName)" />
 <Message Text="MSBuildToolsPath: $(MSBuildToolsPath)" />
 <Message Text="MSBuildProjectDefaultTargets: $(MSBuildProjectDefaultTargets)" />
 <Message Text="MSBuildExtensionsPath: $(MSBuildExtensionsPath)" />
 <Message Text="MSBuildExtensionsPath32: $(MSBuildExtensionsPath32)" />
 <Message Text="MSBuildExtensionsPath64: $(MSBuildExtensionsPath64)" />
 <Message Text="MSBuildNodeCount: $(MSBuildNodeCount)" />
 <Message Text="MSBuildStartupDirectory: $(MSBuildStartupDirectory)" />
 <Message Text="MSBuildToolsPath: $(MSBuildToolsPath)" />
 <Message Text="MSBuildToolsVersion: $(MSBuildToolsVersion)" />
 <Message Text="MSBuildLastTaskResult: $(MSBuildLastTaskResult)" />
 <Message Text="MSBuildProgramFiles32: $(MSBuildProgramFiles32)" />
 <Message Text="MSBuildThisFile: $(MSBuildThisFile)" />
 <Message Text="MSBuildThisFileDirectory: $(MSBuildThisFileDirectory)" />
 <Message Text="MSBuildThisFileDirectoryNoRoot: $(MSBuildThisFileDirectoryNoRoot)" />
 <Message Text="MSBuildThisFileExtension: $(MSBuildThisFileExtension)" />
 <Message Text="MSBuildThisFileFullPath: $(MSBuildThisFileFullPath)" />

30	 Part I  Overview

 <Message Text="MSBuildThisFileName: $(MSBuildThisFileName)" />
 <Message Text="MSBuildOverrideTasksPath: $(MSBuildOverrideTasksPath)" />
 </Target>
</Project>

If you execute this build file using the command msbuild.exe ReservedProperties01
.proj /t:PrintReservedProperties, you would see the results shown in Figure 2-4.

FIGURE 2-4  Reserved properties

Most of these values are straightforward. You should note that the values relating to the
MSBuild file, with the exception of those starting with MSBuildThis, are always qualified
relative to the MSBuild file that is invoking the entire process. This becomes clear when you
use the Import element to import additional MSBuild files. For the MSBuildThis properties,
those values always refer to the file that contains the element. We will take a look at
importing external files in the next chapter.

Command-Line Properties
You can also provide properties through the command line. As stated in Chapter 1, we can
use the /property switch (short version /p) to achieve this. We will see how this works now.
When you use the /p switch, you must specify the values in the format /p:<n>=<v>, where
<n> is the name of the property and <v> is its value. You can provide multiple values by
separating the pairs by a semicolon or a comma. We will demonstrate a simple case with the
following project file, Properties05.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

	 Chapter 2  MSBuild Deep Dive, Part 1	 31

 <Target Name="PrintInfo">
 <Message Text="AssemblyName: $(AssemblyName)" />
 <Message Text ="OutputPath: $(OutputPath)" />
 </Target>

</Project>

Because there are no values for AssemblyName or OutputPath, it would be pointless to
execute this MSBuild file. If we pass them in through the command line, you can see their
values. If you specify values for AssemblyName and OutputPath with the command
msbuild.exe Properties05.proj /t:PrintInfo /p:AssemblyName=Sedo.Namhu

.Common;OutputPath="deploy\Release\\", then the result would be what is shown in
Figure 2-5.

FIGURE 2-5  PrintInfo result for Properties05.proj

From Figure 2-5, we can see that the values for the properties that were provided at the
command line were successfully passed through. Note in this example that we passed
the OutputPath contained in quotes and the end is marked with \\ because \” is an
escaped quote mark (“). In this case, the quotes are optional, but if you are passing values
containing spaces, then they are required. When you provide a value for a property through
the command line, it takes precedence over all other static property declarations. To
demonstrate this, take a look at a different version of this file, Properties06.proj, with the
values defined.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <AssemblyName>assemblyName</AssemblyName>
 </PropertyGroup>

 <Target Name="PrintInfo">
 <Message Text="AssemblyName: $(AssemblyName)" />
 <Message Text ="OutputPath: $(OutputPath)" />
 </Target>

 <PropertyGroup>
 <OutputPath>outputPath</OutputPath>
 </PropertyGroup>

</Project>

32	 Part I  Overview

In this file, we have specified a value for both AssemblyName and OutputPath. To show that
the location of the property with respect to targets doesn’t affect the result, I have placed
one value at the beginning of the file and the other at the end. If you execute the command
msbuild.exe Properties06.proj /t:PrintInfo /p:AssemblyName=Sedo.Namhu

.Common;OutputPath="deploy\Release\\", the result would be the same as that shown in
Figure 2-5. Command-line properties are special properties and have some special behavior
that you should be aware of:

n	 Command-line properties cannot have their values changed (except through dynamic
properties, which is covered in the next section).

n	 The values get passed to all projects through the MSBuild task.

n	 Their values take precedence over all other property type values, including
environment variables and toolset properties. The MSBuild toolset defines what version
of the MSBuild tools will be used. For example, you can use v2.0, v3.5, or v4.0.

Thus far, we have covered pretty much everything you need to know about static properties.
Now we’ll move on to discuss dynamic properties.

Dynamic Properties
When you create properties in your build scripts, static properties will be good enough most
of the time. But there are many times when you need to either create new properties or
to modify the values of existing properties during the build within targets. These types of
properties can be called dynamic properties. Let’s take a look at how we can create and use
these properties.

In MSBuild 2.0, there was only one way to create dynamic properties, and that was using
the CreateProperty task. In MSBuild 3.5 and 4.0, there is a much cleaner approach that you
should use, which we cover right after our discussion on the CreateProperty task. Before we
discuss how we can use CreateProperty, we have to discuss how to get a value from a task
out to the MSBuild file calling it. When a task exposes a value to MSBuild, this is known as
an Output property. MSBuild files can extract output values from tasks using the Output
element. The Output element must be placed inside the tags of the task to extract the value.
A task can see only those items and properties passed into it explicitly. This is by design and
makes it easier to maintain and reuse tasks. To demonstrate this, take a look at the following
project file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <Target Name="PrintProperty">
 <Message Text="AssemblyName: $(AssemblyName)" />

 <CreateProperty Value="Sedodream.Build.Tasks">

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 2  MSBuild Deep Dive, Part 1	 33

 <Output TaskParameter="Value" PropertyName="AssemblyName" />
 </CreateProperty>

 <Message Text="AssemblyName: $(AssemblyName)" />
 </Target>

</Project>

In this file, the PrintProperty target first prints the value for AssemblyName, which hasn’t
been defined so it should be empty. Then the CreateProperty task is used to define the
AssemblyName property. Let’s take a close look at this so we can fully understand the
invocations. The statement <CreateProperty Value="Sedodream.Build.Tasks"> invokes
CreateProperty and initializes the property named Value to Sedodream.Build.Tasks. The
inner statement, <Output TaskParameter=”Value” PropertyName=”AssemblyName” />,
populates the MSBuild property AssemblyName with the value for the .NET property
Value. The Output element must declare a TaskParameter, which is the name of the task’s
.NET property to output, and can either contain a value of PropertyName or ItemName,
depending on whether it is supposed to output a property or item, respectively. In this case,
we are emitting a property so we use the value PropertyName. Looking back at the example
shown previously, we would expect that after the CreateProperty task executes, the property
AssemblyName will be set to Sedodream.Build.Tasks. The result of the PrintProperty target
is shown in Figure 2-6.

FIGURE 2-6  PrintProperty results

From the results shown in Figure 2-6, we can see that the value for AssemblyName was set,
as expected, by the CreateProperty task. In this example, we are creating a property that
did not exist previously, but the CreateProperty task also can modify the value for existing
properties. If you use the task to output a value to a property that already exists, then it will
be overwritten. This is true unless a property is reserved. Command-line parameters cannot
be overwritten by statically declared properties, only by properties within targets.

If you are using MSBuild 3.5 or 4.0, you can use the CreateProperty task, but there is a
cleaner method. You can place PropertyGroup declarations directly inside of targets. With
this new approach, you can create static and dynamic properties in the same manner.
The cleaner version of the previous example is shown as follows. This is contained in the
Properties08.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

34	 Part I  Overview

 <Target Name="PrintProperty">
 <Message Text="AssemblyName: $(AssemblyName)" />

 <PropertyGroup>
 <AssemblyName>Sedodream.Build.Tasks</AssemblyName>
 </PropertyGroup>

 <Message Text="AssemblyName: $(AssemblyName)" />
 </Target>

</Project>

The results of the preceding project file are identical to the example shown in Properties07
.proj, but the syntax is much clearer. This is the preferred approach to creating dynamic
properties. This syntax is not supported by MSBuild 2.0, so be sure not to use it in such files.
Now that we have thoroughly covered properties, we’ll move on to discuss items in detail.

Items
When software is being built, files and directories are used heavily. Because of the usage and
importance of files and directories, MSBuild has a specific construct to support these. This
construct is items. In the previous section, we covered properties. As stated previously, in
programming terms, properties can be considered a regular scalar variable. This is because
a property has a unique name and a single value. An item can be thought of as an array.
This is because an item has a single name but can have multiple values. Properties use
PropertyGroup to declare properties; similarly, items use an ItemGroup element. Take a look
at the following very simple example from Items01.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src\one.txt" />
 </ItemGroup>

 <Target Name="Print">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

As stated previously, statically declared items will be inside an ItemGroup element. The value
for the Include attribute determines what values get assigned to the item. Of the few types of
values that can be assigned to the Include attribute, we’ll start with the simplest. The simplest
value for Include is a text value. In the previous sample, one item, SourceFiles, is declared. The
SourceFiles item is set to include one file, which is located at src\one.txt. To get the value of

	 Chapter 2  MSBuild Deep Dive, Part 1	 35

an item, you use the @(ItemType) syntax. In the Print target this is used on the SourceFiles
item. The result of the Print target is shown in Figure 2-7.

FIGURE 2-7  Print target result for Items01.proj

From the result shown in Figure 2-7, you can see that the file was assigned to the SourceFiles
item as expected. From this example, an item seems to behave exactly as a property; this
is because we assigned only a single value to the item. The behavior changes when there
are more values assigned to the item. The following example is a modified version of the
previous example. This modified version is contained in the Items02.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src\one.txt" />
 <SourceFiles Include="src\two.txt" />
 </ItemGroup>

 <Target Name="Print">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

In this version, the SourceFiles item type is declared twice. When more than one item
declaration is encountered, the values are appended to each other instead of overwritten
like properties. Alternatively, you could have declared the SourceFiles item on a single line by
placing both values inside the Include attribute, separated by a semicolon. So the previous
sample would be equivalent to the following one. With respect to item declarations, ordering
is significant and preserved.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src\one.txt;src\two.txt" />
 </ItemGroup>

 <Target Name="Print">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

36	 Part I  Overview

If you execute the Print target on this file, the result will be what is shown in Figure 2-8.

FIGURE 2-8  Print target results for Items02.proj

In this version, we have supplied two values into the SourceFiles item. If you look at the
documentation for the Message task, you will notice that the Text property is a string.
Fundamentally, there are two types of values in MSBuild: single-valued values and
multi-valued values. These are known as scalar values and vector values, respectively.
Properties are scalar values, and items are vector values. What happens when we have a
vector value that we need to pass to a task that is accepting only scalar values? MSBuild
will first flatten the item before sending it to the task. The value that is passed to the Text
property on the Message can be only a single-valued parameter, not a multi-valued one.
The @(ItemType) operator flattens the SourceFiles item for us, before it is sent into the task.
When using @(ItemType), if there is only one value inside the item, that value is used. If there
is more than one value contained by the item, then all values are combined, separated by a
semicolon by default. Flattening an item is the most basic example of an item transformation.
We’ll discuss this topic, and using custom separators, in more detail in the section entitled
“Item Transformations,” later in this chapter. For now, let’s move on to see how items are
more commonly used.

Note  MSBuild doesn’t recognize file types by extension as some other build tools do. Also, be
aware that item lists do not have to point to files; they can be any type of list-based value. We
will see examples of this throughout this book.

Copy Task
A very common scenario for builds is copying a set of files from one place to another.
How can we achieve this with MSBuild? There are several ways to do this, which we will
demonstrate in this chapter. Before we discuss how to copy the files, we’ll first take a close
look at the Include statement of an item. I have created some sample files shown in the
following tree, which we will use for the remainder of the chapter.

C:\InsideMSBuild\Ch02
¦
¦ . . .
¦
+---src

	 Chapter 2  MSBuild Deep Dive, Part 1	 37

 ¦ one.txt
 ¦ two.txt
 ¦ three.txt
 ¦ four
 ¦
 +---sub
 sub_one.txt
 sub_two.txt
 sub_three.txt
 sub_four.txt

Previously, I said that three types of values can be contained in the Include declaration of
an item:

	 1.	 A single value

	 2.	 Multiple values separated by a “;“

	 3.	 Declared using wildcards

We have shown how 1 and 2 work, so now we’ll discuss 3—using wildcards to declare items.
These wildcards always resolve values to items on disk. There are three wildcard declarations:
*, **, and ?. You may already be familiar with these from usage in other tools, but we will
quickly review them once again here. The * descriptor is used to declare that either zero
or more characters can be used in its place. The ** descriptor is used to search directories
recursively, and the ? is a placeholder for only one character. Effectively, the “*” descriptor
matches any characters except for “/” while “**” descriptor matches any characters, including
“/”. For example, if file.*proj used this declaration, the following values would meet the
criteria: file.csproj, file.vbproj, file.vdproj, file.vcproj, file.proj, file.mproj, file.1proj, etc. In contrast,
file.?proj will allow only one character to replace the ? character. Therefore, from the previous
list of matching names, only file.mproj and file.1proj meet those criteria. We will examine the
** descriptor shortly in an example. Take a look at the snippet from the following Copy01
.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src*" />
 </ItemGroup>

 <Target Name="PrintFiles">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

In this example, we have used the * syntax to populate the SourceFiles item. Using this
syntax, we would expect all the files in the src\ folder to be placed into the item. In order to
verify this, you can execute the PrintFiles target. If you were to do this, the result would be

38	 Part I  Overview

the statement ‘SourceFiles: src\four.txt;src\one.txt;src\three.txt;src\two
.txt’—so we were able to successfully populate the item. Back to the ** wildcard: take a look
at the following portion of the Copy02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src***.txt" />
 </ItemGroup>

 <Target Name="PrintFiles">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>
</Project>

In this version of the SourceFiles declaration, we used the ** descriptor to denote that the
src\ folder should be searched recursively for files matching the pattern *.txt. We could
have stayed with the * pattern here as well, but I changed it for demonstration. We would
expect all the files in the src\ and src\sub\ folder to be placed into the SourceFiles item. If you
execute the PrintFiles target on this file, you would get the result shown in Figure 2-9.

FIGURE 2-9  PrintFiles result for Copy02.proj

As expected, the SourceFiles item does contain all the files in both of those folders. Now that
we have discussed items declared using wildcards, we’ll revert to the topic of copying files.

In order to copy files from one location to another, we can use the built-in Copy task. This
task has a few different input parameters, which are summarized in Table 2-2.

TABLE 2-2  Copy Task Parameters
Name Description
SourceFiles Contains the files that should be copied.

DestinationFolder The path to the folder where the files should be copied. If this
parameter is specified, then the DestinationFiles parameter cannot be
used.

DestinationFiles Contains the locations where the files should be copied to. If this is used,
there must be a one-to-one correspondence between this list and the
SourceFiles list. Also, if this is used, the DestinationFolder parameter
cannot be used.

CopiedFiles Output parameter that contains the files that were successfully copied.

	 Chapter 2  MSBuild Deep Dive, Part 1	 39

Name Description
SkipUnchangedFiles If true, then only changed files, based on their timestamp and size, will

be copied. Otherwise, all files will be copied.

OverwriteReadOnlyFiles If true, then read-only files will be overwritten. Otherwise, read-only
files will not be overwritten.

Retries * The number of times that the copy should be retried if previous
attempts fail. The default value is 0. This can be used to make builds
more robust if multiple projects tend to copy a file to the same place.

RetryDelayMilliseconds * The delay, in milliseconds, between any retries.

UseHardlinksIfPossible * If true, then hard links are created instead of actually copying the files.
This is useful for speeding up the file copying process as well as saving
disk space. One downside to hard links is the increased likelihood for file
locks.

*  denotes new parameters with MSBuild 4.0

When you use the Copy task, you will always use the SourceFiles property to define what
files should be copied. As for the location where the files will be copied to, you have a
choice of using either DestinationFolder or DestinationFiles. The only time you should use
DestinationFolder instead of DestinationFiles is when you are copying files into the same
destination directory. Take a look at the following complete version of the Copy01.proj; the
bold delineates the added parts.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src*" />
 </ItemGroup>

 <PropertyGroup>
 <Dest>dest\</Dest>
 </PropertyGroup>

 <Target Name="PrintFiles">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>
 <Target Name="CopyFiles">
 <Copy SourceFiles="@(SourceFiles)"
 DestinationFolder="$(Dest)" />
 </Target>
</Project>

This file now contains a CopyFiles target, which invokes the Copy task in order to copy the
files in the src folder to the dest folder. Notice that the Dest property ends with a slash; when
creating properties that point to directories, it is a best practice to declare them ending
in a trailing slash. A forward or backward slash will work equally well. In this example, the
DestinationFolder property is used to specify the folder into which the files should be copied.
If you execute the CopyFiles target, the result will be what is shown in Figure 2-10.

40	 Part I  Overview

FIGURE 2-10  CopyFiles result for Copy01.proj

From the result shown in Figure 2-10, we can see that the files were copied successfully.
We can now take a look at how we can copy files from more than one folder to another
location. In order to achieve this, we will use DestinationFiles instead of the DestinationFolder
property. We could use DestinationFolder along with batching, an advanced technique
discussed in Chapter 6, “Batching and Incremental Builds.” For now, we will use the
DestinationFiles approach. The completed version of the Copy02.proj file is shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src***.txt" />
 </ItemGroup>

 <PropertyGroup>
 <Dest>$(MSBuildProjectDirectory)\dest\</Dest>
 </PropertyGroup>

 <Target Name="PrintFiles">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>
 <Target Name="CopyFiles">
 <Copy SourceFiles="@(SourceFiles)"
 DestinationFiles=
 "@(SourceFiles->'$(Dest)%(RecursiveDir)%(Filename)%(Extension)')" />
 </Target>
</Project>

In this sample, the portions in bold are the regions that have been added. This MSBuild file
declares the SourceFiles item to include all the files in the src\ folder as well as all folders
underneath it. In the CopyFiles target, the DestinationFiles parameter is used to specify
the location where the files are to be copied to. The value for the DestinationFiles is called
an item transformation on the SourceFiles item. We’ll take a closer look at these later in
this chapter. Item transformations also depend on item metadata, which we will discuss
in the next section. Until we cover those subjects, we cannot fully examine this example,
so we will revisit it later in this chapter. With that being said, we can at least execute the
CopyFiles target to see if it does work as expected. The result of this invocation is captured in
Figure 2-11.

	 Chapter 2  MSBuild Deep Dive, Part 1	 41

FIGURE 2-11  Result of the CopyFiles task for Copy02.proj

From the result shown in Figure 2-11, we can see that the files from src\ and src\sub\ were
successfully copied into the dest folder. Now we’ll move on to discuss item metadata, which
is another distinction between items and properties.

Well-Known Item Metadata
When you create items, each value in an item also has a set of metadata associated with it.
This is another difference between items and properties. A property is a key-value pair, but
each element in an item is much richer than a property. Each of these can have zero or more
metadata values associated with them. These metadata are also key-value pairs. For files and
directories, you are given a set of metadata automatically. These are well-known metadata.
They are read-only and are summarized in Table 2-3.

TABLE 2-3  Well-Known Metadata
Name Description
FullPath Full path of the file.

RootDir The root directory to which the file belongs, such as c:\.

Filename The name of the file, not including the extension.

Extension The extension of the file, including the period.

RelativeDir Contains the path specified in the Include attribute, up to the final backslash (\).

Directory Directory of the item, without the root directory.

RecursiveDir This is the expanded directory path starting from the first ** of the include
declaration. If no ** is present, then this value is empty. If multiple ** are
present, then RecursiveDir will be the expanded value starting from the first **.
This may sound peculiar, but it is what makes recursive copying possible.

Identity The value that was specified in the Include attribute of the item.

ModifiedTime The last time the file was modified.

CreatedTime The time the file was created.

AccessedTime The last time the file was accessed.

42	 Part I  Overview

Note  For well-known metadata, the Include value of the item needs to be a path for the values
to be populated.

We will now see how we can use these, and later in the chapter we’ll discuss custom
metadata. In order to demonstrate using well-known metadata, take a look at the following
simple project. This is taken from the file WellKnownMetadata.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <src Include="src\one.txt" />
 </ItemGroup>
 <Target Name="PrintWellKnownMetadata">

 <Message Text="===== Well known metadata =====" />
 <!-- %40 = @ -->
 <!-- %25 = % -->
 <Message Text="%40(src->'%25(FullPath)'): @(src->'%(FullPath)')" />
 <Message Text="%40(src->'%25(Rootdir)'): @(src->'%(Rootdir)')" />
 <Message Text="%40(src->'%25(Filename)'): @(src->'%(Filename)')" />
 <Message Text="%40(src->'%25(Extension)'): @(src->'%(Extension)')" />
 <Message Text="%40(src->'%25(RelativeDir)'): @(src->'%(RelativeDir)')" />
 <Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')" />
 <Message Text="%40(src->'%25(RecursiveDir)'): @(src->'%(RecursiveDir)')" />
 <Message Text="%40(src->'%25(Identity)'): @(src->'%(Identity)')" />
 <Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')" />
 <Message Text="%40(src->'%25(CreatedTime)'): @(src->'%(CreatedTime)')" />
 <Message Text="%40(src->'%25(AccessedTime)'): @(src->'%(AccessedTime)')" />

 </Target>
</Project>

Note  In order to use reserved characters such as % and @, you have to escape. This
is accomplished by the syntax %HV, where HV is the hex value of the character. This is
demonstrated in this code sample with %25 and %40.

From the preceding project, one item is created: the src item. This item purposefully contains
only a single file, one.txt. In order to extract a single metadata value from an item, you can
use the @(ItemType->'%(MetadataName)') syntax, where ItemType is the name of the
item and MetadataName is the name of the metadata to extract. We can see that in the
PrintWellKnownMetadata target, all the well-known values from Table 2-3 are printed. The
@(ItemType->'%(MetadataName)') syntax is a simplified version of an item transformation,
which we will discuss in the next section. If you execute the PrintWellKnownMetadata target
on this file, the result will be what is shown in Figure 2-12.

	 Chapter 2  MSBuild Deep Dive, Part 1	 43

FIGURE 2-12  Well-known metadata

The result in Figure 2-12 demonstrates most of the well-known metadata that are available
to be used for files and directories. One metadata value that needs further explanation is
RecursiveDir. In order to see this value being populated, you need to create an item with
the ** wildcard declaration. To see this, we can examine a slightly modified version of the
previous file, the following WellKnownMetadata02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <src Include="src**\sub_one.txt" />
 </ItemGroup>
 <Target Name="PrintWellKnownMetadata">

 <Message Text="===== Well known metadata =====" />
 <!-- %40 = @ -->
 <!-- %25 = % -->
 <Message Text="%40(src->'%25(FullPath)'): @(src->'%(FullPath)')" />
 <Message Text="%40(src->'%25(Rootdir)'): @(src->'%(Rootdir)')" />
 <Message Text="%40(src->'%25(Filename)'): @(src->'%(Filename)')" />
 <Message Text="%40(src->'%25(Extension)'): @(src->'%(Extension)')" />
 <Message Text="%40(src->'%25(RelativeDir)'): @(src->'%(RelativeDir)')" />
 <Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')" />
 <Message Text="%40(src->'%25(RecursiveDir)'): @(src->'%(RecursiveDir)')" />
 <Message Text="%40(src->'%25(Identity)'): @(src->'%(Identity)')" />
 <Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')" />
 <Message Text="%40(src->'%25(CreatedTime)'): @(src->'%(CreatedTime)')" />
 <Message Text="%40(src->'%25(AccessedTime)'): @(src->'%(AccessedTime)')" />

 </Target>
</Project>

The section that has changed from the previous version has been put in bold. I have modified
this to use the ** qualifier, but at the same time to allow only a single file to be in the item. If
you were to execute this MSBuild file, you would see results very similar to the previous one,
but the main difference in the output is the line @(src->'%(RecursiveDir)'): sub\. As
Table 2-3 states, RecursiveDir will take the value that matches the ** declaration. In this case,
the value used was sub\, which is exactly what we would expect. The summary in Table 2-3

44	 Part I  Overview

is not entirely correct for RecursiveDir, but it is more concise than the correct definition. To
understand the behavior of RecursiveDir, take a look at the following code block, and its
explanation, which is contained in WellKnownMetadata03.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <src Include="src**\sub\sub_one.txt" />
 </ItemGroup>
 <Target Name="PrintWellKnownMetadata">

 <Message Text="===== Well known metadata =====" />
 <!-- %40 = @ -->
 <!-- %25 = % -->
 <Message Text="%40(src->'%25(FullPath)'): @(src->'%(FullPath)')" />
 <Message Text="%40(src->'%25(Rootdir)'): @(src->'%(Rootdir)')" />
 <Message Text="%40(src->'%25(Filename)'): @(src->'%(Filename)')" />
 <Message Text="%40(src->'%25(Extension)'): @(src->'%(Extension)')" />
 <Message Text="%40(src->'%25(RelativeDir)'): @(src->'%(RelativeDir)')" />
 <Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')" />
 <Message Text="%40(src->'%25(RecursiveDir)'): @(src->'%(RecursiveDir)')" />
 <Message Text="%40(src->'%25(Identity)'): @(src->'%(Identity)')" />
 <Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')" />
 <Message Text="%40(src->'%25(CreatedTime)'): @(src->'%(CreatedTime)')" />
 <Message Text="%40(src->'%25(AccessedTime)'): @(src->'%(AccessedTime)')" />

 </Target>
</Project>

The line that has been changed is bold, and the part to make note of is that part of the path
is specified after the ** declaration on the src item. If you print the RecursiveDir value for this
new item, you will get the same result of ‘@(src->'%(RecursiveDir)'): sub\’, so the result
was the same even though we specified the subdirectory name after the **. This is because
the RecursiveDir metadata doesn’t examine what the item specification declared after the
initial **. It looks at the item specification, finds the first occurrence of **, and returns the
remaining section of the path from that specification. If you have multiple **s in a single
item specification, it wouldn’t affect the result of the RecursiveDir; it would still behave as
I described by finding the first occurrence of the ** and return the path that follows. Now
that we have discussed well-known metadata in depth, we will move on to discuss custom
metadata followed by item transformations.

Custom Metadata
When you declare items that point to files or directories, you get a set of metadata for
free—this is the well-known metadata that we discussed in the previous section. What if
you have the need to associate some additional data with an item? You can do this; they are
called custom metadata and they behave exactly the same as well-known metadata, with
the exception that well-known metadata are read-only. When you declare an item, you will

	 Chapter 2  MSBuild Deep Dive, Part 1	 45

associate the metadata with its declaration. In this section, we will describe how to create and
use custom metadata in your build scripts.

Metadata behaves similarly to properties in the sense that they are key-value pairs. So each
piece of metadata, custom or not, has a name, which is the key, and a value, which is untyped
as for property values but “cast” as needed to pass into tasks. For statically created items,
you will declare the metadata as a child of the item element itself. The metadata key is the
element name, and the value of the metadata is the value of the XML element. For example,
take a look at the following project file, Metadata01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <Server Include="Server1">
 <Type>2008</Type>
 <Name>SVR01</Name>
 <AdminContact>Sayed Ibrahim Hashimi</AdminContact>
 </Server>
 <Server Include="Server2">
 <Type>2003</Type>
 <Name>SVR02</Name>
 <AdminContact>Sayed Y. Hashimi</AdminContact>
 </Server>
 <Server Include="Server3">
 <Type>2008</Type>
 <Name>SVR03</Name>
 <AdminContact>Nicole Woodsmall</AdminContact>
 </Server>
 <Server Include="Server4">
 <Type>2003</Type>
 <Name>SVR04</Name>
 <AdminContact>Keith Tingle</AdminContact>
 </Server>
 </ItemGroup>

 <Target Name="PrintInfo" Outputs="%(Server.Identity)">
 <Message Text="Server: @(Server)" />
 <Message Text="Admin: @(Server->'%(AdminContact)')" />
 </Target>

</Project>

In this project file, we have declared an item, Server, which will have three metadata values
associated with it. If you take a look at each item’s declaration, you will see that each
has three XML child elements: Type, Name, and AdminContact. Each of these is custom
metadata, and after the item is created, you can access those values using the same syntax
as you would with well-known metadata. You can have any number of metadata elements
declared. Also, you should note that if your item’s declaration uses wildcards, then each
item value created from the Include will have the attached metadata. You are not limited

46	 Part I  Overview

to text in declaring these values; you can use any MSBuild statements as a metadata value
declaration. In the previous project file, there is one target, PrintInfo, which, as it is named,
prints the information for the Server item. This target uses another technique called batching,
which in this case will cause the target to be executed once per each value in Server. We will
thoroughly examine batching in Chapter 6. If you execute this target, the result will be what
is shown in Figure 2-13.

FIGURE 2-13  PrintInfo target results on Metadata01.proj

The PrintInfo target extracts custom metadata values in the same way as well-known
metadata values are extracted. Figure 2-13 demonstrates that this does work exactly as
expected. Well-known metadata are always read-only, whereas custom metadata are not.
Therefore, if you provide a value for already-existing metadata, that value will be overwritten.
For instance, consider the following taken from Metadata02.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <Server Include="Server1">
 <Type>2008</Type>
 <Name>SVR01</Name>
 <AdminContact>Adam Barr</AdminContact>
 <AdminContact>Kim Abercrombie</AdminContact>
 </Server>
 </ItemGroup>

 <Target Name="PrintInfo" Outputs="%(Server.Identity)">
 <Message Text="Server: @(Server)" />
 <Message Text="Admin: @(Server->'%(AdminContact)')" />
 </Target>
</Project>

Notice that the Server item defines AdminContact twice, with the second value equal
to “Kim Abercrombie”. If you execute the PrintInfo target, the result for @(Server-
>'%(AdminContact)') would be “Kim Abercrombie” instead of “Adam Barr”.

	 Chapter 2  MSBuild Deep Dive, Part 1	 47

Item Transformations
When you are using MSBuild, there are many times that you would like to take an existing
item, modify it a bit, and then pass it to a task. For example, if you are copying a set of files
from one place to another, you would like to take an item that points to an existing set of
files, change its location to point to the destination, and then give it to the Copy task for the
DestinationFiles property. MSBuild has a mechanism for this behavior built in: this process is
called item transformations, and we will discuss it in detail in this section. A transformation
can be expressed as A => A', where A is the original item and A’ is the transformed item.
Transformations always create new item lists and never modify the original item list. The
most important thing to remember is that A and A’ will always have the same number of
elements. This is because the transformation is processed on each element to generate the
new item. A transformation can be visualized as that shown in Figure 2-14.

FIGURE 2-14  Item transformation visualization

As stated previously, the visualization in Figure 2-14 reemphasizes that an item
transformation is a one-to-one translation.

Now that we have defined what an item transformation is, we will take a look at the
transformation syntax and explain how it can be effectively used. Here is the syntax:

@(ItemType->'TransformExpression[TransformExpression. . .]'[,Separator])

where ItemType is the name of the item being transformed, TransformExpression is a
transform expression, and Separator is an optional parameter that will be used as the
separator between values.

Note  Elements contained in [] are optional.

The default value for the separator is “;”. You can use the syntax @(ItemType,[Separator])
where you do not declare any expressions but only override the separator. The three
acceptable types of transform expression are summarized in Table 2-4.

48	 Part I  Overview

TABLE 2-4  Transform Expressions
Type Description Example
Text Any plain text c:\test

Property Property value extraction expression $(Configuration)

Item Metadata Item metadata extraction expression %(FullPath)

As stated, there are only three possible types of transform expressions, and we will
demonstrate all of them in this section. You should note that there is no restriction on what
type/order transform expressions are declared in the transformation. To start our discussion
on transformations, we will examine the following file, Transformation01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="All">
 <ItemGroup>
 <SourceFiles Include="src***" ></SourceFiles>
 </ItemGroup>

 <PropertyGroup>
 <DestFolder>copy\</DestFolder>
 </PropertyGroup>

 <!-- %40 = @ -->
 <!-- %25 = % -->
 <Target Name="PrintSourceFiles">
 <Message Text="%40(SourceFiles):"
 Importance="high" />
 <Message Text="@(SourceFiles)" />
 </Target>
 <Target Name="Demo01">
 <Message Text="%40(SourceFiles->'%25(Filename)'):"
 Importance="high" />
 <Message Text="@(SourceFiles->'%(Filename)')" />
 </Target>
 <Target Name="Demo02">
 <Message Text="%40(SourceFiles->'%25(Filename)%25(Extension)'):"
 Importance="high"/>
 <Message Text="@(SourceFiles->'%(Filename)%(Extension)')" />
 </Target>
 <Target Name="Demo03">
 <Message Text="%40(SourceFiles->'%25(Filename)%25(Extension).bak'):"
 Importance="high" />
 <Message Text="@(SourceFiles->'%(Filename)%(Extension).bak')" />
 </Target>

 <ItemGroup>
 <Transform01
 Include="@(SourceFiles->'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')" />
 </ItemGroup>

	 Chapter 2  MSBuild Deep Dive, Part 1	 49

 <Target Name="Demo04">
 <Message Text="%40(Transform01):"
 Importance="high" />
 <Message Text="@(Transform01)" />
 <Message Text="===== Copying files ====="
 Importance="high" />
 <Copy SourceFiles="@(SourceFiles)" DestinationFiles="@(Transform01)" />
 </Target>

 <Target Name="All"
 DependsOnTargets="PrintSourceFiles;Demo01;Demo02;Demo03;Demo04" />

</Project>

At the top of the project file, there is one item as well as one property declared. The item,
SourceFiles, points to some files that will be used throughout the example. The property,
DestFolder, contains a path to where some files should be copied. There is another item
defined toward the bottom of the file, which we will discuss later. This file contains five
relevant targets, one of which, PrintSourceFiles, prints out the list of files in the SourceFiles
item for reference when executing the other targets. Each of these targets essentially
contains one transformation that you should understand. The All target is declared simply to
execute the other targets for demonstration here. In the following list, we will describe these
targets and the transformations’ purpose.

Demo01
The transformation on the SourceFiles target is defined as @(SourceFiles-
>'%(Filename)'). This will transform the SourceFiles item list into a list containing the
Filename metadata value. If you recall from Table 2-2, this is the file name, with no path
information and no extension.

Demo02
The transformation in this target, @(SourceFiles->'%(Filename)%(Extension)'), extends
the previous transformation to add the extension, using the Extension well-known metadata.

Demo03
The transformation in this target, @(SourceFiles->'%(Filename)%(Extension).bak'),
demonstrates how we can use a combination of metadata values along with free text. This
transformation adds .bak to the end of the name of the file.

Demo04
This target is a little different in the sense that it doesn’t actually contain the transformation
itself. This target uses the Transform01 item, which is a transformed version of the
SourceFiles item. The transformation to create this item is defined as

50	 Part I  Overview

@(SourceFiles->'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)'). In
this transformation, we create a new item that uses the DestFolder path to create a list of
file paths where the SourceFiles files should be copied to. Because the SourceFiles item
can contain items in subfolders, it uses the RecursiveDir metadata value to re-create the
appropriate directory structure in the DestFolder.

This file starts with a very simple example and then builds on it. These four transformations
describe the three types of transform expressions that are available. Now let’s take a look at
the result of executing all these targets, which is shown in Figure 2-15.

In the result shown in Figure 2-15, you can take a look at each transformation and make sure
that it performs the transformation that you would expect. Also, for the Demo04 target, we
can see that the files were successfully copied into the appropriate location.

FIGURE 2-15  Transformation01.proj result

We will now revisit a previous example, the one contained in the following Copy02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src***.txt" />
 </ItemGroup>

 <PropertyGroup>
 <Dest>$(MSBuildProjectDirectory)\dest\</Dest>
 </PropertyGroup>

 <Target Name="PrintFiles">
 <Message Text="SourceFiles: @(SourceFiles)" />

	 Chapter 2  MSBuild Deep Dive, Part 1	 51

 </Target>
 <Target Name="CopyFiles">
 <Copy SourceFiles="@(SourceFiles)"
 DestinationFiles=
 "@(SourceFiles->'$(Dest)%(RecursiveDir)%(Filename)%(Extension)')" />
 </Target>
</Project>

We’ll now fully describe the Copy statement in this build file. Let’s dissect the DestinationFiles
value. This value, @(SourceFiles->'$(Dest)%(RecursiveDir)%(Filename)%(Extension)'),
is a transform. The components of the value are:

n	 $(Dest)

n	 %(RecursiveDir)

n	 %(Filename)

n	 %(Extension)

where $(Dest) is an evaluation of the Dest property, and the others are evaluations for
metadata values on the SourceFiles item. From this transformation, there is only one static
value, which is the value for $(Dest). Aside from that, all the values will be taken from the
metadata for each item element. These metadata values were previously discussed in this
chapter. The output of the CopyFiles target is shown in Figure 2-16.

FIGURE 2-16  CopyFiles target result on Copy02.proj

From the output, we can see that eight files were successfully copied to the destination
as expected. Now we will examine the first copy message in more detail to describe the
transformation. In this example, the original item was specified as src\four.txt and it was
transformed into the file on the right side. In the transformed specification, the $(Dest) value
was assigned c:\InsideMSBuild\Ch02\dest\; the %(RecursiveDir) did not return a value, so it
was an empty string; the %(Filename) evaluated to the value “four”; and %(Extension) became
.txt. If you take a look at the output for the files in the subdirectory, you can see that the
%(RecursiveDir) metadata returned the path correctly. Now we have covered what you need
to know about item transformations, which are used extensively throughout MSBuild files.

52	 Part I  Overview

In this chapter, we have introduced a lot of material, including properties, items, metadata,
and transformations. Now we will move on to the next chapter, in which we will continue this
discussion and add the topics of dynamic properties and dynamic items. In the next chapter,
you will learn how properties and items are evaluated, and how to import other MSBuild files
and extend the build process.

		 53

Chapter 3

MSBuild Deep Dive, Part 2
In the previous chapter, we discussed a variety of topics, including static properties, static
items, and transformations. In this chapter, we will extend that discussion and conclude with
a foundation that is required to successfully use MSBuild. We will start by discussing dynamic
properties and items. We will also see how properties and items are evaluated as well as how
you can extend your own build process. Following this chapter, we will discuss custom tasks,
custom loggers, and other advanced topics.

Dynamic Properties and Items
Many times when building software, static items and properties, those defined outside of
targets, will do the job fine. For example, most of the time you know what files you are
building and the possible values for Configuration. From that you can determine what
files need to be built. Despite this, there are many instances where you will need to create
properties and items as your build is occurring. For example, if you want to build your
product and then copy the binaries from the output path to another location you will need
to be able to discover those created files. Properties and items that are created as your build
process is executing are called dynamic properties and dynamic items. In this section, we will
examine how to use these dynamic values.

Note  In MSBuild 2.0, you were limited to creating dynamic properties and items with the tasks
CreateProperty and CreateItem, respectively. They are now obsolete.

Dynamic Properties and Items: MSBuild 3.5
MSBuild 3.5 introduced the ability to use the PropertyGroup and ItemGroup elements
inside targets. With this enhancement, we can declare dynamic properties and items just as
we would normally declare them. You can see how dynamic properties are created in the
following example taken from Dynamic01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="All">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

54	 Part I  Overview

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)" />
 </Target>

 <Target Name="PrintConfig2">
 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>

 <Message Text="Config: $(Configuration)" />
 </Target>

 <Target Name="All" DependsOnTargets="PrintConfig;PrintConfig2" />
</Project>

If you execute the All target, which simply executes the other targets, the result is that shown
in Figure 3-1.

FIGURE 3-1  Dynamic property result

As you can see from the result shown in Figure 3-1, the value for the Configuration property
was overridden dynamically inside the PrintConfig2 target. The usage of PropertyGroup is
not limited to modifying values for existing properties; you can create new properties as well.

To demonstrate that new properties can be created, the previous example has been
modified. Take a look at the new file, Dynamic02.proj, which is shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="All">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)" />
 </Target>

 <Target Name="PrintConfig2">
 <PropertyGroup>
 <Configuration>Release</Configuration>
 <OutputPath>$(Configuration)\dest\</OutputPath>
 </PropertyGroup>

 <Message Text="Config: $(Configuration)" />

	 Chapter 3  MSBuild Deep Dive, Part 2	 55

 <Message Text="OutputPath: $(OutputPath)" />
 </Target>

 <Target Name="All" DependsOnTargets="PrintConfig;PrintConfig2" />
</Project>

In this example, the changed areas have been highlighted. Inside the PrintConfig2 target
a new property, OutputPath, is created using the PropertyGroup element. This new property
will contain the value of the Configuration property followed by dest\. After that, the newly
created property and the value of the Configuration property are printed out. Figure 3-2
shows the result of running this script.

FIGURE 3-2  Results for Dynamic02.proj

From the results shown in Figure 3-2, you can see that the OutputPath property was indeed
created and initialized successfully. Now that we have discussed dynamic properties, we can
take a look at how dynamic items are created.

The problem with static items is that the value for static items is always evaluated before any
target executes. Thus, if you need an item to contain any generated files, you must create
the item dynamically. To create dynamic items, you can use the ItemGroup element inside
a target. Inside a target, the ItemGroup element even has some new features. You are able to
remove values from an item and you can modify the metadata value for an item. Doing so
was not possible using MSBuild 2.0. Consider the following sample, which is contained in the
Metadata01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <Server Include="Server1">
 <Type>2008</Type>
 <Name>SVR01</Name>
 <AdminContact>Sayed Ibrahim Hashimi</AdminContact>
 </Server>
 <Server Include="Server2">
 <Type>2003</Type>
 <Name>SVR02</Name>
 <AdminContact>Sayed Y. Hashimi</AdminContact>
 </Server>
 <Server Include="Server3">
 <Type>2008</Type>
 <Name>SVR03</Name>

56	 Part I  Overview

 <AdminContact>Nicole Woodsmall</AdminContact>
 </Server>
 <Server Include="Server4">
 <Type>2003</Type>
 <Name>SVR04</Name>
 <AdminContact>Keith Tingle</AdminContact>
 </Server>
 </ItemGroup>

 <Target Name="PrintInfo">
 <Message Text="%(Server.Identity) : %(Server.AdminContact)" />

 <!-- just for new line -->
 <Message Text=" " />
 <Message Text="Overriding AdminContact" Importance="high" />
 <!-- Override the AdminContact if it is set to Keith Tingle -->
 <ItemGroup>
 <Server Condition="'%(Server.AdminContact)' == 'Keith Tingle'">
 <AdminContact>Sayed Ibrahim Hashimi</AdminContact>
 </Server>
 </ItemGroup>
 <Message Text="%(Server.Identity) : %(Server.AdminContact)" />

 <Message Text=" "/>
 <Message Text="Removing item" Importance="high" />
 <!-- Remove an item -->
 <ItemGroup>
 <Server Remove="Server2" />
 </ItemGroup>
 <Message Text="%(Server.Identity) : %(Server.AdminContact)" />

 <!--<Message Text="Server: @(Server)" />
 <Message Text="Admin: @(Server->'%(AdminContact)')" />-->
 </Target>
</Project>

In this MSBuild file, we have created an item type, Server, which contains a list of values
relating to servers. Each item value contains some custom metadata that describes it,
including AdminContact. Inside the PrintInfo target, the ItemGroup declaration of the Server
item is redefining the AdminContact metadata value, but only for items whose AdminContact
is set to the value ‘Kim Abercrombie’. If the condition was not placed on the Server item type,
then it would affect all the Server item values. Following that, you can see how an item value
is removed. Now we can see if all this works by executing the PrintInfo target of this MSBuild
file. The results are shown in Figure 3-3.

As you can see from the output, first the value for the AdminContact metadata was modified
for one of the values and then an item value was removed from the Server item type. Now
that we have seen how dynamic items are created, we will move on to a more realistic
example.

Consider this typical scenario: After you build a project, you would like to copy all the
files in the output directory to another location. I will show you how this can be achieved

	 Chapter 3  MSBuild Deep Dive, Part 2	 57

FIGURE 3-3  Metadata01.proj result

using dynamic items. In the sample files, I have created a simple Windows application,
WindowsApplication2. In the .csproj file for the project, I have added this functionality. The
following sample shows an abbreviated version of the WindowsApplication2.csproj file, which
contains all the added portions.

<Project ToolsVersion="4.0"
 DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
	 ...

 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

 <!-- Extend build to copy the files in output dir -->
 <PropertyGroup>
 <BuildDependsOn>
 $(BuildDependsOn);
 CopyOutputFiles
 </BuildDependsOn>
 <OutputCopyFolder>$(MSBuildProjectDirectory)\CustomOutput\</OutputCopyFolder>
 </PropertyGroup>
 <Target Name="CopyOutputFiles">
 <!-- Dynamically create the item because these files
 are created during build -->
 <ItemGroup>
 <OutputFiles Include="$(OutputPath)***" />
 </ItemGroup>
 <MakeDir Directories="$(OutputCopyFolder)" />
 <Copy SourceFiles="@(OutputFiles)"
 DestinationFiles=
 "@(OutputFiles->'$(OutputCopyFolder)%(RecursiveDir)%(FileName)%(Extension)')" />
 </Target>
</Project>

In this snippet, I first re-declare the BuildDependsOn property; this is the property that
contains the list of targets that will be executed when the build target runs. I extend this
value by using a reference to itself using the $(BuildDependsOn) declaration. So I take the

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

58	 Part I  Overview

current list of targets and add the CopyOutputFiles target to the end of the list. We will talk
more about this later in this chapter; the important part to understand now is that this target
will be executed after the project has been built. Take a look at the usage of the ItemGroup
inside the CopyOutputFiles target. The Include value on this picks up all the files in the
OutputPath as well as subfolders. These files are placed into a new item named OutputFiles.
Following this, the additional output directory is created if it doesn’t exist, and then the files
are copied to this new location. The Copy task is passed a value of @(OutputFiles->'$
(OutputCopyFolder)%(RecursiveDir)%(FileName)%(Extension)') for the
DestinationFiles parameter. If you recall from the previous chapter, this is an Item
Transformation. In this transformation, we place all the files under the OutputCopyFolder
directory in the same relative location to where they are in the OutputPath folder. We
achieve this by using the RecursiveDir well-known metadata. We can see if this works by
building the project. I will execute the Rebuild target to ensure that all artifacts from previous
builds are removed. The result of this is shown in Figure 3-4.

FIGURE 3-4  Build of WindowsApplication2.csproj

In the log shown in Figure 3-4, you can see that the CopyOutputFiles target was called
after the build target executed and you can see that the files were copied into the folder

	 Chapter 3  MSBuild Deep Dive, Part 2	 59

specified. One other thing to note about this project file is that I extend the clean process to
remove these files. The relevant elements added to the project file are shown in the following
snippet.

<!-- Extend clean process to delete created files -->
<PropertyGroup>
 <CleanDependsOn>
 $(CleanDependsOn);
 CustomAfterClean
 </CleanDependsOn>
</PropertyGroup>
<Target Name="CustomAfterClean">
 <ItemGroup>
 <CopiedFilesToDelete Include="$(OutputCopyFolder)***" />
 </ItemGroup>
 <Delete Files="@(CopiedFilesToDelete)" />
 <RemoveDir Directories="$(OutputCopyFolder)" />
</Target>

If you extend the build process to create additional files, you should always extend the clean
process to remove these files. MSBuild will clean up all the files it generates, but you are
responsible for cleaning yours. If you are implementing incremental building, you should pay
particular attention to this advice. This is because projects that are not properly cleaned may
result in incorrect builds when building incrementally. We will talk more about incremental
building in Chapter 6, “Batching and Incremental Builds.” In this example, I have manually
created files as a separate step, but sometimes there is a better way.

For C# or Visual Basic .NET (VB.NET) projects, there is a simple way to have your files
automatically deleted for you. If you are creating files early in the build process, you can add
files that should be deleted on clean by appending them to the FileWrites item. This is an
item that the C# and VB.NET MSBuild files use to determine which files need to be deleted
the next time the project is cleaned. The contents of this item are written into a file named
$(MSBuildProjectFile).FileListAbsolute.txt in the intermediate output path folder. You can
use this method only if you are appending the value to the FileWrites list before the Clean/
IncrementalClean target is executed and the file resides under the output path folder. This is
a great way to make sure that generated code files are deleted at the appropriate time. This
is discussed in more detail in Chapter 8, “Practical Applications, Part 1.”

Removing Items
Previously, it was mentioned that you can remove values from items using the ItemGroup
element. In MSBuild 2.0, once a value was placed inside an item, there was no way to
remove it, so items were append-only. The remove function was added in MSBuild 3.5. This
is facilitated by a new attribute, Remove, on the ItemGroup element. This is supported for
dynamic items only. I will demonstrate this with dynamic items. The usage of this is shown in
the following Dynamic03.proj file.

60	 Part I  Overview

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <SourceRoot>src\</SourceRoot>
 </PropertyGroup>
 <ItemGroup>
 <SrcFiles Include="$(SourceRoot)***" />
 </ItemGroup>

 <Target Name="Build">
 <Message Text="SrcFiles: @(SrcFiles)" />
 <Message Text="Removing from item" Importance="high" />
 <ItemGroup>
 <SrcFiles Remove="$(SourceRoot)sub*" />
 </ItemGroup>
 <Message Text="SrcFiles: @(SrcFiles)" />
 </Target>

</Project>

In this sample, SrcFiles is initially created to include all files in and under the src folder. Then
in the Build target, all the files in the src\sub\ folder are removed from the SrcFiles item. You
can see that this works as described by examining the results shown in Figure 3-5.

FIGURE 3-5  Demonstration of removing values from items

The results here are pretty straightforward; several files were removed from SrcFiles after
the ItemGroup element was processed by the MSBuild engine. We will now move on to cover
the order that properties and items are evaluated in MSBuild.

Property and Item Evaluation
When the MSBuild engine begins to process a build file, it is evaluated in a top-down fashion
in a multi-pass manner. These passes are described in order in the following list:

	 0.	 Load all environment and global properties, and toolset properties. In Microsoft Visual
Studio 2010, for example, C++ defines several properties in the MSBuild 4.0 toolset.

	 1.	 Evaluate properties and process imports as encountered

	 2.	 Evaluate item definitions

	 3.	 Evaluate items

	 Chapter 3  MSBuild Deep Dive, Part 2	 61

	 4.	 Evaluate using tasks

	 5.	 Start build and reading targets

The first step is numbered 0 (no, it’s not a typo) because it doesn’t pertain to
processing the file but is important in its evaluation. The first pass (numbered 1) is to
populate all static properties and to process all import statements. As an import statement
is encountered, the contents of the import file are duplicated inline into the current project
file. When an import is encountered, the current directory is temporarily set to the directory
where the imported file resides, for use when processing imports found within the imported
file. This occurs only during the processing of the import statement. This is performed to
ensure that import elements are processed correctly. For relative paths in items, the directory
of the invoked MSBuild file is always used. This current directory is not maintained while any
targets in the imported files are executed. We will discuss the directory issue later in this
chapter, but first we will take a look at properties and items.

In this section, we will focus on the process in which properties and items are populated.
Then in the next section, we will take a look at importing external files. As stated previously,
MSBuild will process your file in multiple passes. The first pass is to process all imports and
properties. These items are evaluated as they are encountered. Following this, items are
evaluated. You should note that if you create a property that references an item, the value of
the property is evaluated when it is used. What this means is that at the time you reference
the property, the item reference is evaluated and expanded. Therefore, if the item changes,
so can the property. To start our discussion of property and item evaluation, we will work our
way through a very simple case. Take a look at the following Eval01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="PrintInfo">

 <PropertyGroup>
 <PropOne>one</PropOne>
 <PropTwo>$(PropThree)</PropTwo>
 <PropThree>three</PropThree>
 <PropFour>$(PropThree)</PropFour>
 </PropertyGroup>

 <Target Name="PrintInfo">
 <Message Text="PropOne: $(PropOne)" />
 <Message Text="PropTwo: $(PropTwo)" />
 <Message Text="PropThree: $(PropThree)" />
 <Message Text="PropFour: $(PropFour)" />
 </Target>
</Project>

Since all these properties do not depend on items, we would expect all of them to be
evaluated at the same time from top to bottom. Two properties in this file, which are in
bold in the code, depend on the value of PropThree. One of the properties, PropTwo, occurs

62	 Part I  Overview

before PropThree, and the other, PropFour, occurs after PropThree. In the only target,
PrintInfo, we simply print the values for each of these four properties. This printout is shown
in Figure 3-6.

FIGURE 3-6  PrintInfo target on Eval01.proj

In the result shown here, take note of two things. The first is that PropTwo doesn’t have
a value; this is because PropThree did not have a value when it was populated. The other
significant observation here is that PropFour was successfully populated with the value
from PropThree. This is because the declaration of PropFour occurs after the definition for
PropThree. Now let’s take a look at the same example, using items instead of properties.
The following contents are taken from the Eval02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 DefaultTargets="PrintInfo" ToolsVersion="4.0">

 <ItemGroup>
 <ItemOne Include="One" />
 <ItemTwo Include="@(ItemThree)" />
 <ItemThree Include="Three" />
 <ItemFour Include="@(ItemThree)" />
 </ItemGroup>

 <Target Name="PrintInfo">
 <Message Text="ItemOne: @(ItemOne)" />
 <Message Text="ItemTwo: @(ItemTwo)" />
 <Message Text="ItemThree: @(ItemThree)" />
 <Message Text="ItemFour: @(ItemFour)" />
 </Target>
</Project>

This example simply replaced all the properties in the previous file with items. Since they are
all items, they will be evaluated in a similar manner as the properties were in the previous
example. The output, as you might expect, is the same as the previous one as well, so it is not
listed a second time. Instead, we will look at properties and items together.

For a slightly more interesting example, we will take a look at what happens when we
introduce properties and items together. You will find the contents of a new example in the
following Eval03.proj file. As you look at this, try to guess what the output of the PrintInfo
target will be for this file.

	 Chapter 3  MSBuild Deep Dive, Part 2	 63

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="PrintInfo">

 <PropertyGroup>
 <OutputPathCopy>$(OutputPath)</OutputPathCopy>
 </PropertyGroup>

 <ItemGroup>
 <OutputPathItem Include="$(OutputPath)" />
 </ItemGroup>

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 <OutputPath>bin\$(Configuration)\</OutputPath>
 </PropertyGroup>

 <Target Name="PrintInfo">
 <Message Text="Configuration: $(Configuration)" />
 <Message Text="OutputPath: $(OutputPath)"/>
 <Message Text="OutputPathCopy: $(OutputPathCopy)" />
 <Message Text="OutputPathItem: @(OutputPathItem)" />
 </Target>

</Project>

The two important elements in this project file are the first property and item declared,
OutputPathCopy and OutputPathItem, respectively. Both of these are declared before the
property on which both depend. That property is the OutputPath property. In the PrintInfo
target, all the properties and the single item are printed out. You will find the results of that
target in Figure 3-7.

FIGURE 3-7  PrintInfo result on Eval03.proj

As mentioned previously, the interesting pieces of this are the OutputPathCopy property
and the OutputPathItem item. If you take a look at the preceding figure, you can see that
the value was placed into OutputPathItem but not into OutputPathCopy. This is because the
item’s final value was evaluated after the OutputPath property was declared. This is because
the OutputPath property doesn’t depend on an item. This section should have given you
a good idea of how properties and items are evaluated by MSBuild. We’ll now discuss how
you can import other files.

64	 Part I  Overview

Importing Files
MSBuild natively supports importing project files or targets. In fact, this is how Visual
Studio builds your projects. In this section, we will see how this works and how you can take
advantage of it in your build process. To reuse the contents of other files, you must use the
Import element. This element must be placed directly inside the Project element, at the same
level as a Target element. You specify the file that is to be imported by using the Project
attribute. The only other attribute that can be placed on the Import element is the Condition
attribute, as with most other MSBuild elements. These are the only two attributes that can
be specified for the Import element. If you take a look at any C# project created by Visual
Studio, you will find the following declaration:

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

Note  With MSBuild 4.0, you can now wrap up one or more Import elements inside
an ImportGroup element. This is the only occasion that the import doesn’t have to be
an immediate child of the Project element.

This imports the Microsoft.CSharp.targets file; the reserved property MSBuildToolsPath is
used to resolve the full path to this file. This file is created by Microsoft to fully describe the
build process for C# projects. Other managed projects have their own build scripts that are
imported into their own project files. The Microsoft.CSharp.targets file, like Microsoft
.VisualBasic.targets (used for VB.NET projects), describes all the steps to build the project
while the actual project file describes what is being built. These files then import the shared
file Microsoft.Common.targets, which contains the common steps to build managed projects.
This explains why there is not a single target in project files generated by Visual Studio. All
the targets required to build managed projects are imported from another file. We will now
move on to discuss how to import external files.

When MSBuild processes an import statement, the current working directory is set to the
directory of the imported project file. This is necessary to correctly resolve the location of
paths declared in import elements or inside the UsingTask element. In addition, the imported
file is then expanded inline at the location where the Import element occurs. This can be
visualized by the image shown in Figure 3-8.

Note  With MSBuild 4.0, you can use the new /preprocess (/pp) switch to examine the
contents of the project that MSBuild uses. This will contain all imports. In order to write the
contents to a file, you can use the notation /pp:filename.txt, where filename.txt is the file
to write to.

	 Chapter 3  MSBuild Deep Dive, Part 2	 65

FIGURE 3-8  Project file import visualization

When the MSBuild engine processes a build file, it builds a representation of it in memory.
When files are imported, the in-memory representation is made to include the contents of
the imported file. We will now take a look at how Visual Studio behaves in building your
managed projects by reviewing the contents of the following two MSBuild files: Import01
.proj and Import01.targets.

<!-- Import01.proj -->
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="All">

 <PropertyGroup>
 <SourceRoot>$(MSBuildProjectDirectory)\src\</SourceRoot>
 <Configuration>Debug</Configuration>
 </PropertyGroup>
 <ItemGroup>
 <SourceFiles Include="$(SourceRoot)*" />
 </ItemGroup>

 <Import Project="$(MSBuildProjectDirectory)\Import01.targets" />

 <Target Name="PrintOutputPath">
 <Message Text="OutputPath: $(OutputPath)" />
 <Message Text="MSBuildProjectFile: $(MSBuildProjectFile)" />
 </Target>
 <Target Name="All"
 DependsOnTargets="PrintInfo;PrintOutputPath" />
</Project>

66	 Part I  Overview

<!-- Import01.targets -->
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <Target Name="PrintInfo">
 <Message Text="SourceRoot: $(SourceRoot)" />
 <Message Text="Configuration: $(Configuration)" />
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

 <PropertyGroup>
 <OutputPath>bin\$(Configuration)\</OutputPath>
 </PropertyGroup>

</Project>

In this example, the Import01.proj imports the Import01.targets file; the import statement
has been highlighted here. This is a simplified view of how managed projects are built.
With managed projects, the project file that is generated by Visual Studio defines all the
properties and items to be built, and an imported file defines how to build those values.
So in this example, Imports01.proj (project file) represents the project file created by Visual
Studio, and the Import01.targets (targets file) represents the build file that is imported by
those generated projects, based on the language that this file changes. Back to the example,
the project file defines a few properties as well as an item. Along with these, the target
PrintOutputPath is defined, which prints out the value for the OutputPath, which is defined
in the targets file. The targets file defines the aforementioned property and defines a target,
PrintInfo, which prints out the values for those items defined in the project file. I will execute
both targets, PrintInfo and PrintOutputPath, by executing the All target. The results of this
are shown in Figure 3-9.

FIGURE 3-9  Import01.proj results

Here are some things to note:

	 1.	 All items and properties defined in Import01.proj before the Import element are
available to Import01.targets.

	 2.	 All items and properties defined in Import01.targets are available to Import01.proj
after the Import element.

	 Chapter 3  MSBuild Deep Dive, Part 2	 67

	 3.	 All properties and targets are defined from top to bottom, and the last definition that
occurs is the value that persists.

	 4.	 Targets are executed after all items, properties, and imports are evaluated.

Because of the first item in the previous list, the target PrintInfo was able to print out the
values for the properties and items in Import01.proj successfully. Because of the second item
in the previous list, the target PrintOutputPath was able to get the value for the OutputPath
that was defined in Import01.targets. The third point was not demonstrated here, but it is
important to understand it. Any file can define any property except reserved properties,
and any target it desires. Because a property or a target can have only one in-memory
representation, the last definition encountered is the value that will be used to build the
project. The last point listed, that targets begin execution after all static items and properties
are processed, is very important as well. By the time any target is executed, the MSBuild
engine has already completed creating its in-memory representation of the build script. This
means that when a target executes, it has no connection back to the file that contains it. It
could have been defined in any file that was imported.

We will now examine another set of files that will help us further understand how build
files behave when importing other files. This example will be demonstrated by two new
files, Import02.proj and Import02.targets. In this example, the Import02.targets file is stored
in a subfolder named Import. The following sample shows the complete definition of both
these files.

<!-- Import02.proj -->
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="All">

 <Target Name="PrintPath">
 <Message Text="MSBuildProjectFullPath: $(MSBuildProjectFullPath)" />
 </Target>

 <Import Project="Import\Import02.targets" />

 <Target Name="All"
 DependsOnTargets="PrintPath;PrintPathImport;PrintCompile" />
</Project>

<!-- Import02.targets -->
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <Compile Include="Class1.cs" />
 </ItemGroup>

 <Target Name="PrintPathImport">
 <Message Text="MSBuildProjectFullPath: $(MSBuildProjectFullPath)" />
 </Target>

68	 Part I  Overview

 <Target Name="PrintCompile">
 <Message Text="Compile: @(Compile)" />
 <Message Text="Compile.Fullpath: @(Compile->'%(Fullpath)','%0a%0d')" />
 </Target>

</Project>

Both of these files contain a target that prints the value of the MSBuildProjectFullPath
reserved property. This is to demonstrate the fact that all the properties and items, including
built-in properties, have defined values before those targets execute. Also, in the imported
file, an item named Compile is defined, which includes a single file named Class1.cs. This file
resides in the same folder as the Import02.targets. Can you guess what the results of the
PrintCompile target would be? If you execute all these targets, the results would be as shown
in Figure 3-10.

FIGURE 3-10  Import02.proj result

If you take a look at the results shown in Figure 3-10, you can see that the value for the
MSBuildProjectFullPath property evaluates to the same value regardless of the file that
contains the target that prints it. This exemplifies the fact that the file that contains a target
has no effect on the values for properties and items. If you need to get the name/path of the
current file, then you can use the reserved properties MSBuildThisFile and related reserved
properties. For the full list, see the section entitled “Reserved Properties,” in Chapter 2,
“MSBuild Deep Dive, Part 1.”

The imported file also contains another target, PrintCompile, which prints out the value
for the Compile item defined in that file. The file that is included in the Compile item is the
Class1.cs file. This file resides in the Import folder. If you look at the Import02.targets file,
it is obvious that the Compile item is attempting to include that Class1.cs file. The printed
value for that path to that file does not place it in the Import folder. Instead, it references the
folder of the outermost file, the Import02.proj file. If an imported file declares items to files,
it will always be defined relative to the file that the MSBuild process starts with. If you need
to declare items in files that will be imported, they should be defined using properties that
are defined in the importing file, or you can explicitly define them using MSBuildThisFile and
related properties. We have covered how to import external files in some detail. Throughout
the remainder of this text, we will be using this technique. We’ll now move on to discuss how
you can extend the build process for managed projects.

	 Chapter 3  MSBuild Deep Dive, Part 2	 69

Extending the Build Process
MSBuild aims to expose the build process and to allow users to completely customize the
process. MSBuild does indeed achieve both of these goals, and it does a good job of it! We
will now take a close look at that build process and see how it can be extended.

When you create a managed project using Visual Studio, toward the bottom of the project
file, you will find an import statement such as the following one, which was taken from a C#
project.

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

This statement imports another known file that defines how C# projects are built. This
project file is shipped along with MSBuild, which is delivered as a part of the Microsoft .NET
Framework. The contents of the project files created by Visual Studio define only properties
and items; there are no targets included in that file. All the targets for building managed
projects are contained in those shared files provided with MSBuild. If you need to extend the
build process, you can do so by modifying the project file itself. The four most common ways
to extend the build process for managed projects are (listed in order of ease of use):

	 1.	 PreBuildEvent and PostBuildEvent

	 2.	 Override BeforeBuild, AfterBuild, and similar targets

	 3.	 Target Hooks (i.e. BeforeTargets and AfterTarget)

	 4.	 Target injection

In versions of Visual Studio prior to 2005, the only way to extend the build process was
to define a command, such as a batch file or external program, which would be executed
before or after the build was completed. These are the pre-build event and post-build event
respectively. These “events” are implemented using plain MSBuild properties and targets;
there is no event construct in MSBuild files. These build events are still supported in current
versions of Visual Studio, for backward compatibility and because the Visual Studio user
interface already supports this concept. You can enter these commands in Visual Studio on
each project’s Properties page, on the build tab, as shown in Figure 3-11.

From the user interface shown in Figure 3-11, you can insert a set of commands that
will be executed before or after the build executes. This is captured in MSBuild simply as
a property; the two properties that are used to capture these values are PreBuildEvent and
PostBuildEvent. These properties will be defined in the project file itself. This method is
the simplest one to extend the build process, but also the least powerful. I would suggest
avoiding this technique. A better approach would be one of the other techniques. We will
now discuss the second option.

70	 Part I  Overview

FIGURE 3-11  Build events in Visual Studio

After the PreBuildEvent and PostBuildEvent properties, the next option is to override existing
targets that were created as extension points. Previously, I showed that the C# projects
import a project file named Microsoft.CSharp.targets; other managed languages define their
own shared file. All these files will then import another file, Microsoft.Common.targets. This
file, which contains all the common elements in building managed projects, defines many
targets that were created simply to be overridden. For example, if you take a look at a project
file created by Visual Studio, you will see a comment like the following.

<!-- To modify your build process, add your task inside one of
 the targets below and uncomment it.
 Other similar extension points exist,
 see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>
-->

	 Chapter 3  MSBuild Deep Dive, Part 2	 71

These and other targets are defined as empty targets in the Microsoft.Common.targets file.
The following list shows 14 such targets:

n	 BeforeBuild

n	 AfterBuild

n	 BeforeRebuild

n	 AfterRebuild

n	 BeforeResolveReferences

n	 AfterResolveReferences

n	 BeforeResGen

n	 AfterResGen

n	 BeforeCompile

n	 AfterCompile

n	 BeforeClean

n	 AfterClean

n	 BeforePublish

n	 AfterPublish

All these targets are simply extension points and will be executed at the appropriate time.
If you define a target with the same name after the import element, then your target will
override the default empty target. For example, consider the following project file.

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
 ...

 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
<!-- To modify your build process, add your task inside one of
 the targets below and uncomment it.
 Other similar extension points exist,
 see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>
-->
 <Target Name="AfterBuild">
 <Message Text="Build has completed!" Importance="high" />
 </Target>

 ...

</Project>

72	 Part I  Overview

In the preceding snippet, the AfterBuild target was defined to invoke the Message task with
the statement “Build has completed!” If you build this, you will see the message printed to
the console after the project has been built. If you do not see the message when you are
building in Visual Studio, you may need to increase the verbosity used by Visual Studio. This
is defined in the Options dialog under the Project and Solutions, Build and Run node.

The option just described is a great way to extend the build process, and I highly recommend
using it. The only problem with this technique is that only one AfterBuild, or any of those
targets listed previously, can be defined at once. Because of this, if two or more imports are
processed that define the same target, then the previous definition will be overridden. So
if you are creating reusable build scripts, this technique is not suitable. Instead, you can use
target hooks or target injection. Now we will discuss the target hooks.

MSBuild 4.0 added a new concept called target hooks. With this came two new attributes
on the Target element: BeforeTargets and AfterTargets. Many times when you are creating
a target, you don’t care about the exact time that it executes, but you just want it to execute
before or after one or more targets. BeforeTargets and AfterTargets easily facilitate this. When
you author a target and you know one or more targets it should execute after, you can
specify them in a semicolon-separated list in the AfterTargets attribute. And the idea applies
for targets that should be executed before the target; just put them inside the BeforeTargets
value. For example, consider the simple project file, BeforeAfter01.proj, shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Build">

 <Target Name="Build">
 <Message Text="Build target"/>
 </Target>

 <Target Name="GenerateCode" BeforeTargets="Build">
 <Message Text="GenerateCode target"/>
 </Target>

 <Target Name="CustomCopyOutput" AfterTargets="Build">
 <Message Text="CustomCopyOutput target"/>
 </Target>

</Project>

In this file, there are three targets defined, in no particular order, and each just prints
a message stating that the target has executed. The default target is the Build target. The
GenerateCode target uses the BeforeTargets attribute to ensure that it is executed before
the Build target, and the CustomCopyOutput target uses AfterTargets, specifying Build so
that it executes after the Build target. Figure 3-12 shows the result of executing msbuild.exe
BeforeAfter01.proj /t:Build.

	 Chapter 3  MSBuild Deep Dive, Part 2	 73

FIGURE 3-12  BeforeAfter01.proj

As you can see, we were able to extend the behavior of the Build target without modifying
it. This approach works even if you are extending targets that are defined outside the current
file. For example, you can use this approach when you edit your C# or VB.NET project files
even though most targets are defined inside the Microsoft.Common.targets file.

Let’s define how BeforeTargets and AfterTargets behave a bit more precisely. In this
discussion, the target listed in BeforeTargets and AfterTargets is X. BeforeTargets means that
when target X is about to run the first time, even if its condition evaluates to false, then run
BeforeTargets before it if it hasn’t run already. AfterTargets is very similar to this, and it can be
defined as follows: After target X runs for the first time, or if it was invoked and its condition
was false, then run AfterTargets if it hasn’t run already.

If you specified more than one target inside the BeforeTargets or AfterTargets attribute, then
you are not guaranteed that they will be executed in that order. For example, take a look at
the BeforeAfter02.proj file shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <Target Name="CustomBuild" BeforeTargets="Prebuild1;Prebuild2">
 <Message Text="CustomBuild target"/>
 </Target>

 <Target Name="Prebuild1">
 <Message Text="Prebuild1 target"/>
 </Target>

 <Target Name="Prebuild2">
 <Message Text="Prebuild2 target"/>
 </Target>

</Project>

The Prebuild1 and Prebuild2 targets are free to execute in any order. The fact that they
are defined as Prebuild1,Prebuild2 has no effect on the order of execution. To clarify,
Prebuild2 may execute before Prebuild1; the BeforeTargets declaration has no effect on that.
If you want a dependency there, then you must handle that accordingly.

74	 Part I  Overview

This is a great approach, but it does have some drawbacks. Since these concepts were
introduced with MSBuild 4.0, you cannot use this method with any previous version, and
the target you define has to know to inject itself into the build process. Many times, you are
dealing with the other case: That is, you have a target that has already been defined and
you want to inject that target into your existing build process. Target injection solves both of
these concerns, and we will discuss that now.

Target injection is the most flexible option when extending the build process. It is also the
least intuitive and most difficult method. With that being said, it is pretty easy once you see
how it works. If you take a look at the Microsoft.Common.targets, the file that is at the core
of building managed projects, you will see targets defined like the one that follows.

<Target
 Name="Build"
 Condition=" '$(_InvalidConfigurationWarning)' != 'true' "
 DependsOnTargets="$(BuildDependsOn)"
 Outputs="$(TargetPath)" />

If you take a look at this target, you will quickly notice that it doesn’t actually do anything—it’s
an empty target. You might wonder, what is the purpose of creating a target that doesn’t do
anything? What this empty target does do, however, is specify a set of targets that must be executed
before it is. These targets are placed in the DependsOnTargets attribute as $(BuildDependsOn).
Immediately above the declaration for the Build target is the following property declaration.

<PropertyGroup>
 <BuildDependsOn>
 BeforeBuild;
 CoreBuild;
 AfterBuild
 </BuildDependsOn>
</PropertyGroup>

This specifies the value for the BuildDependsOn property, which is a list of targets that must
be executed before the Build target is allowed to execute. It is no coincidence that these
target names are placed into a property instead of declared inline in the Target element. The
reason that they were placed inside a property was as an extension point. Because they are
placed in a property, you can override the value, thereby extending the build process. We
will now take a look at how we can inject a target inside the build process, using the Build
target as an example. When you utilize these properties, odds are that you don’t want to
simply override the value for BuildDependsOn but add to it. From the samples, I have created
a Windows Forms project named WindowsApplication1.csproj. Inside that project file, you
will find the following statement:

<Project DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
...

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 3  MSBuild Deep Dive, Part 2	 75

 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

 <PropertyGroup>
 <BuildDependsOn>
 $(BuildDependsOn);
 CustomAfterBuild
 </BuildDependsOn>
 </PropertyGroup>

 <Target Name="CustomAfterBuild">
 <Message Text="Inside CustomAfterBuild target"
 Importance="high" />
 </Target>
...
</Project>

In the preceding snippet, you see that the Microsoft.CSharp.targets file is imported, which
then imports Microsoft.Common.targets. The Microsoft.Common.targets file defines the
BuildDependsOn property, so it is available after that import statement. After the Import element,
you can see that the BuildDependsOn property was re-declared. It is very important that this
declaration comes after the Import element. If you declared a value for BuildDependsOn before
the Import element, then it would simply be overwritten in the imported file. As stated previously
in this chapter, that last definition for a property is the one that is used.

Looking back at the declaration for BuildDependsOn just shown, you can see that the new
value for the property is declared using the value for the property itself. If you append to
a dependency property by referencing the current value, you do not have to worry if the current
value is empty. In this case, the resulting dependency property will have extra semicolons,
which is not a problem. What this notation does is allow you to take an existing property and
append, or prepend, to it. In this case, we have appended the target CustomAfterBuild to
the BuildDependsOn property. When MSBuild begins to process the Build target, it will first
execute all targets on the TargetDependsOn list, and therefore execute the list of targets that we
specified. We can see if this works by simply building the WindowsApplication1.csproj file. The
definition for the CustomAfterBuild target follows. The results of the command msbuild.exe
WindowsApplication1.csproj are shown in Figure 3-13.

FIGURE 3-13  Target injection on Build

76	 Part I  Overview

From the results, you can see that we were able to successfully inject our target into this
process. After looking through the Microsoft.Common.targets file, I was able to find several
dependency properties available for your use. Those are listed in Table 3-1.

TABLE 3-1  Predefined Target Dependency Properties
BuildDependsOn CreateSatelliteAssembliesDependsOn

CoreBuildDependsOn PrepareForRunDependsOn

RebuildDependsOn UnmanagedRegistrationDependsOn

RunDependsOn CleanDependsOn

PrepareForBuildDependsOn CoreCleanDependsOn

GetFrameworkPathsDependsOn PostBuildEventDependsOn

PreBuildEventDependsOn PublishDependsOn

UnmanagedUnregistrationDependsOn PublishOnlyDependsOn

ResolveReferencesDependsOn PublishBuildDependsOn

GetRedistListsDependsOn BuiltProjectOutputGroupDependsOn

ResolveAssemblyReferencesDependsOn DebugSymbolsProjectOutputGroupDependsOn

PrepareResourcesDependsOn DocumentationProjectOutputGroupDependsOn

PrepareResourceNamesDependsOn SatelliteDllsProjectOutputGroupDependsOn

ResGenDependsOn SourceFilesProjectOutputGroupDependsOn

CoreResGenDependsOn ContentFilesProjectOutputGroupDependsOn

CompileLicxFilesDependsOn SGenFilesOutputGroupDependsOn

CompileDependsOn DesignTimeResolveAssemblyReferencesDependsOn

GetTargetPathDependsOn AssignTargetPathsDependsOn

CreateCustomManifestResourceNamesDependsOn ComputeIntermediateSatelliteAssembliesDependsOn

GenerateManifestsDependsOn GetCopyToOutputDirectoryItemsDependsOn

Note  These properties do not apply to C++ projects because they do not import the Microsoft.
Common.targets file. For C++ projects, you will have to use target hooks.

As you can see, there are many places where you can place customizations to the build process
in an unobtrusive, safe, and supported manner. The names of these properties are for the most
part self-explanatory. I will not expand on these here, but if you need more information, you
should go directly to the source: the Microsoft.Common.targets file. You should also know that
the Microsoft.CSharp.targets file and other files for managed languages do define a few other
dependency properties that can be used. They will not be listed here. Throughout this text, we
will be using this procedure, so you will become familiar with it.

There is an important difference between how target hooks (BeforeTargets and AfterTargets)
work, compared to target injection (DependsOnTargets), and that relate to the behavior
exhibited when the condition on the target evaluates to false. When using target hooks,
if the condition on the target that is being hooked onto is false, the targets declaring

	 Chapter 3  MSBuild Deep Dive, Part 2	 77

BeforeTargets and AfterTargets will still be executed (if they haven’t already, of course). This
is not the case when you use DependsOnTargets. If the target that is being extended has
a condition that evaluates to false, the DependsOnTargets property is ignored.

Note  A target will be executed only once during a build. For example, if the Compile target has
already executed, then if the build encounters a CallTarget task for Compile after that, it will be
skipped. This is by design.

Now that we have discussed how to extend the build process, let’s discuss a couple of new
features with MSBuild 4.0: property functions and item functions.

Property Functions and Item Functions
With previous versions of MSBuild, if you needed to perform simple, common operations on
properties and items, you always needed to invoke a custom task. In MSBuild 4.0, however, there
is support for many common tasks. For instance, if you want to compute the length of a string
or extract a substring for a property, you shouldn’t need to use a task. Well, now you don’t have
to because you can use property functions to do things like this. Also, with MSBuild 4.0, item
functions have been introduced. You can use item functions to alleviate some of the need for
batching, which many MSBuild users have found to be difficult to understand. We will cover both
of these features in this section, starting with property functions.

Property Functions
As we just mentioned, property functions can be used to perform a set of simple operations
that previously would have required a custom task. There are three types of property
functions, which are outlined in Table 3-2. Each of these types has its own unique syntax,
which we will cover in this section.

TABLE 3-2  Types of Property Functions
Type Description
String property functions Since all properties are represented as strings, you can call any

instance method from the String class on your properties.

Static property functions During a build, there is a set of common classes on which you can
call static methods, or properties. For example, you can call any static
method or property on System.String, System.Int16, and so on. For
a full list of these classes, along with a few specific other items, see
http://msdn.microsoft.com/en-us/library/dd633440.aspx.

MSBuild property
functions

This is a set of functions that have been created specifically for use
during builds. They perform a variety of operations such as basic
arithmetic, logical operations, etc.

78	 Part I  Overview

String Property Functions
Because you can access either the instance properties of the property or instance methods
with string property functions, two syntaxes will be used. To access an instance property,
then you will use the following syntax:

$({PropertyName}.{InstanceProperty})

where {PropertyName} is the MSBuild property name and {InstanceProperty} is the name of
the string instance property that you want to access. For example, if you wanted to find the
length of the Configuration property, you would use $(Configuration.Length).

In order to access an instance method of the String class, you would use the following syntax:

$({PropertyName}.{MethodName}([parameters]))

where {PropertyName} is the name of the property, and {MethodName} is the name of the
string method that you want to call. If you need to pass in any parameters, you would do
so using the optional [parameters]. For example, either $(Configuration.ToLower()) or
$(Configuration.Substring(0,2)) would be valid.

One of the really useful features of property functions is that you can chain the commands
together. For example, if you wanted to perform a substring on the OutputPath property and
then see if the results ends with a '\', you would use the statement $(OutputPath
.Substring(0,10).EndsWith('\')). Here, you can see that we first invoke the Substring
method on the OutputPath property and then the EndsWith method. In order to give you
a better idea of this in action, take a look at the contents of the following code snippet, from
the PropertyFunctions01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <OutputPath>bin\Debug\</OutputPath>
 </PropertyGroup>

 <Target Name="Demo">
 <Message Text="Configuration: $(Configuration)" Importance="high"/>
 <Message Text="OutputPath: $(OutputPath)" Importance="high"/>
 <Message Text="=="
 Importance="high" />
 <Message Text="OutputPath length: $(OutputPath.Length)"/>
 <Message Text="OutputPath ends with '\': $(OutputPath.EndsWith('\'))"/>
 <Message Text="OutputPath no trailing slash: $(OutputPath.TrimEnd('\'))"/>
 <Message Text="OutputPath no trailing slash ends with Configuration:
 $(OutputPath.TrimEnd('\').EndsWith('$(Configuration)'))"/>
 <Message Text="OutputPath root:

	 Chapter 3  MSBuild Deep Dive, Part 2	 79

 $(OutputPath.TrimEnd('\').Replace($(Configuration),''))"/>
 <Message Text="OutputPath root no trailing slash:
 $(OutputPath.TrimEnd('\').Replace($(Configuration),'').TrimEnd('\'))"/>
 </Target>

</Project>

In this project file, we have created one target, Demo, which uses property functions in
a variety of ways. Take a look at the result shown in Figure 3-14.

FIGURE 3-14  Result of Demo Target in PropertyFunctions01.proj

From Figure 3-14 and its corresponding sample, you can see how powerful property
functions become when you chain them together.

Static Property Functions
Along with the string property functions, you can access static members of many system classes.
Some of those classes include System.DateTime, System.Math, System.String, and System
.StringComparer, among many others. For a full list of these classes, you can visit http://msdn
.microsoft.com/en-us/library/dd633440.aspx. Along with these functions, there are also a number
of specific static methods and properties in other classes which you can access. For example, you
can call many methods on the System.IO.File and System.IO.Directory classes.

Just like string functions, you can access either methods or properties. The syntax when
accessing a static property would be as follows:

$({ClassName}::{PropertyName})

where {ClassName} is the full class name (such as System.DateTime) and {PropertyName} is
the name of the static property that you want to access.

To access a method, you would use similar syntax:

$({ClassName}::{MethodName}([parameters])

where {ClassName} is the class name and {MethodName} is the name of the method. If you
have any parameters to pass in, you would place those inside the parenthesis. Take a look at
the following code, from the PropertyFunctions02.proj file.

80	 Part I  Overview

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <Target Name="Demo">
 <Message Text="DateTime.Now: $([System.DateTime]::Now)"/>
 <Message Text="Days in month: $([System.DateTime]::DaysInMonth(2011,2))"/>
 <Message Text="New Guid: $([System.Guid]::NewGuid())"/>
 <Message Text="IsMatch:
 $([System.Text.RegularExpressions.Regex]::IsMatch('someInputHere','.*In.*'))"/>
 <Message Text="Framework path: $([Microsoft.Build.Utilities.ToolLocationHelper]::
 GetPathToDotNetFramework(
 Microsoft.Build.Utilities.TargetDotNetFrameworkVersion.Version40))"/>
 <Message Text="MSBuild.exe path:
 $([Microsoft.Build.Utilities.ToolLocationHelper]::GetPathToSystemFile(
 'msbuild.exe'))"/>
 </Target>
</Project>

In this example, you can see a few different ways to use static property functions. Figure 3-15
shows the result if you execute the Demo target.

FIGURE 3-15  Result of the Demo target in the PropertyFunctions02.proj file.

MSBuild Property Functions
The last kind of property functions are MSBuild property functions; these are a set of special
methods that can be called using the following syntax:

$([MSBuild]::{MethodName}([parameters]))

where {MethodName} is the name of the method and [parameters] are the parameters that
you are sending in.

Table 3-3 lists the MSBuild property functions.

TABLE 3-3  MSBuild Property Functions
Function Signature Description
double Add(double a, double b) Adds two doubles

long Add(long a, long b) Adds two longs

double Subtract(double a, double b) Subtracts two doubles

	 Chapter 3  MSBuild Deep Dive, Part 2	 81

Function Signature Description
long Subtract(long a, long b) Subtracts two longs

double Multiply(double a, double b) Multiplies two doubles

long Multiply(long a, long b) Multiplies two longs

double Divide(double a, double b) Divides two doubles

long Divide(long a, long b) Divides two longs

double Modulo(double a, double b) Returns the result of a % b

long Modulo(long a, long b) Returns the result of a % b

string Escape(string unescaped) Escapes the string using the MSBuild escaping rules

string Unescape(string escaped) Unescapes the string using the MSBuild escaping
rules

int BitwiseOr(int first, int second) Returns the result of first | second

int BitwiseAnd(int first, int second) Returns the result of first & second

int BitwiseXor(int first, int second) Returns the result of first ^ second

int BitwiseNot(int first) Returns the result of ~first

Along with these methods, there are a handful of other methods that you can call. For more
information on these, take a look at http://msdn.microsoft.com/en-us/library/dd633440.aspx.
To see how to use MSBuild property functions, see the following code snippet, which was
taken from the PropertyFunctions03.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <Target Name="Demo">
 <Message Text="Add: $([MSBuild]::Add(5,9))"/>
 <Message Text="Subtract01: $([MSBuild]::Subtract(90,768))"/>
 <Message Text="Mult01: $([MSBuild]::Multiply(4,9))"/>
 <Message Text="Div01: $([MSBuild]::Divide(100,5.2))"/>
 </Target>
</Project>

After executing the Demo target, the result is shown in Figure 3-16.

FIGURE 3-16  Result of the Demo target in PropertyFunctions03.proj

Now that we have discussed property functions, let’s take a look at item functions.

82	 Part I  Overview

Item Functions
Item functions are exactly what they sound like: functions on an item list that you can call
directly from your MSBuild script. For example, you can filter an item list for its distinct
value, or filter an item list based on a metadata value, and a few other operations. Table 3-4
summarizes the item functions that you can call.

TABLE 3-4  Item Functions
Function Description
DirectoryName Returns a list of the directory names of each value in the item list

Metadata Returns the values for the metadata name specified

DistinctWithCase Returns the distinct (case-sensitive) values from the item list

Distinct Returns the distinct (case-insensitive) values from the item list

ClearMetadata Returns an item list whose values do not contain any metadata

WithMetadataValue Returns the values from the item list that have a value defined for
the given metadata value

AnyHaveMetadataValue Returns true if any value in the item list has a value for the given
metadata name, otherwise false

The syntax when using item functions is as follows:

@({ItemListName}->{ItemFunctionName}([parameters]))

where {ItemListName} is the name of the item list, and {ItemFunctionName} is the name
of the item function to invoke. If you need any parameters, then you can pass them inside
the parentheses. When you are using item functions, you should keep in mind that you are
executing a function over a set of values. Therefore, in many cases, the result will be a list of
results. Take a look at the following code snippet, from the ItemFunctions01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <ItemGroup>
 <None Include="one.txt;two.txt;three.txt;One.txt"/>

 <Reference Include="System;">
 <Private>True</Private>
 </Reference>
 <Reference Include="System.Data">
 <Private>False</Private>
 </Reference>
 <Reference Include="System.Deployment">
 <Private>True</Private>
 </Reference>
 </ItemGroup>

 <Target Name="Demo">

	 Chapter 3  MSBuild Deep Dive, Part 2	 83

 <Message Text="None: @(None)" Importance="high"/>
 <Message Text="Reference: @(Reference)" Importance="high"/>
 <Message Text="=="/>
 <Message Text="Distinct: @(None->Distinct())"/>
 <Message Text="DistinctWithCase: @(None->DistinctWithCase())"/>
 <Message Text="Metadata: @(Reference->Metadata('Private'))"/>
 </Target>
</Project>

Figure 3-17 shows the results of executing the Demo target from ItemFunctions01.proj. From
this sample, you can see how to execute item functions.

FIGURE 3-17  Result of the Demo target in Itemfunctions01.proj

In this and the previous chapter, a lot of material was covered, and I don’t expect you to
master it by simply reading these chapters. Mastery can be achieved only by using these
ideas in your own MSBuild scripts. The remainder of the book will use these chapters as a
basis on which to craft your knowledge of MSBuild. In these two chapters, we have covered
90 percent of what you need to know to make MSBuild do what you need 90 percent of the
time. The rest of the material in the book will make up for the gaps that were left out here
and define how you customize your build process.

		 85

Part II

Customizing MSBuild
In this part:
Chapter 4: Custom Tasks . 87
Chapter 5: Custom Loggers . 129

		 87

Chapter 4

Custom Tasks
MSBuild is shipped with many built-in tasks, and there are many tasks that are available by
third parties. Even with these, there may be times where you need to write your own task.
In this chapter, we will take a look at how custom tasks are created and used. In the next
chapter, we will cover custom loggers. Before you create a new task, you should make sure
that you cannot reuse an already existing task to fulfill your needs. Here is a list of a few
open-source task repositories where you can find MSBuild tasks:

n	 MSBuild Extension Pack (http://msbuildextensionpack.codeplex.com/)

n	 Microsoft SDC Tasks (http://sdctasks.codeplex.com/)

n	 MSBuild Community Tasks (http://msbuildtasks.tigris.org)

Note  The MSBuild Extension Pack is the preferred task repository. First, check there for a task
that you might need.

Custom tasks allow you to write Microsoft .NET Framework code that can be used in your
build process. Custom tasks have all the same abilities that built-in tasks have. We will
also discuss inline tasks, which enable you to create tasks without compiling an assembly
and then use them like any other task. There are many advantages to using inline tasks: You
don’t have to compile them, they are easy to maintain, and easy to share, just to name a few.
Until this chapter, we have created only MSBuild project files; in this chapter, we will focus
primarily on how your tasks can be written to be used effectively with MSBuild.

Custom Task Requirements
Essentially the only requirement of a custom task is to implement the
Microsoft.Build.Framework.ITask interface. This interface contains two properties and
one method. The class diagram for that interface is shown in Figure 4-1.

FIGURE 4-1  ITask interface

88	 Part II  Customizing MSBuild

The two properties, BuildEngine and HostObject, will be set by the MSBuild engine itself.
These will be set when the task is constructed by the MSBuild engine. The contract for the
Execute method is that if it returns true, then the task was a success; otherwise, it is treated
as a failure. Except in disastrous cases, such as running out of memory, the task should not
throw an exception. If a problem occurs, it should log an error and then return false.

Creating Your First Task
As many other texts do, we will create a Hello World example. This simple example, which
follows, was taken from the HelloWorld.cs file.

public class HelloWorld : ITask
{
 public IBuildEngine BuildEngine
 { get; set; }
 public ITaskHost HostObject
 { get; set; }

 public bool Execute()
 {
 // set up support for logging
 TaskLoggingHelper loggingHelper = new TaskLoggingHelper(this);
 loggingHelper.LogMessageFromText(
 "Hello MSBuild", MessageImportance.High);

 return true;
 }
}

In this first example, we have created a HelloWorld task that outputs the message Hello
MSBuild to the loggers attached to MSBuild. This is achieved by using an instance of the
TaskLoggingHelper class. In this case, we have directly implemented the ITask interface.
The only piece that we are really interested in is the implementation of the Execute method.
Despite this being pretty simple, I will show you an even simpler way to create this task,
but we will first take a look at how we can integrate this task into an MSBuild project file,
HelloWorld01.proj, which follows.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="HelloWorld" />

 <Target Name="Demo">
 <HelloWorld />
 </Target>
</Project>

	 Chapter 4  Custom Tasks	 89

When you create a new task, you have to declare that you are going to use it. This is achieved
by the UsingTask element. The UsingTask element has only a few possible attributes, which
are summarized in Table 4-1.

Note  If you have more than one task with the same TaskName value declared, the first one
encountered is the one that will be used.

TABLE 4-1  UsingTask Attributes
Name Description
TaskName The class name of the task that is to be used. If there is a naming conflict, this

value should be specified using the full namespace. If there is a conflict, then
unexpected results might occur.
This is a required property.

AssemblyFile Specifies the location of the assembly that contains the task to be loaded. This
must be a full path. This will result in the assembly being loaded by the System.
Reflection.Assembly.LoadFrom method.
Either this attribute or AssemblyName must be used, but not both. Of the two,
AssemblyFile is the most used attribute.

AssemblyName Name of the assembly that contains the task to be loaded. Using this property
will result in the assembly being loaded by the System.Reflection.Assembly.Load
method. You would use this if your task’s assembly is in the global assembly
cache (GAC). If you are deploying a task assembly publicly, you generally
should put it in the GAC.
Either this attribute or AssemblyFile must be used, but not both. Of the two
options, AssemblyFile is used most commonly.

TaskFactory* This specifies the class in the assembly that is responsible for creating new
instances of the task. This is primarily used for inline tasks, which we will cover
in the section entitled “Inline Tasks,” later in this chapter.

* Denotes an attribute that was introduced with MSBuild 4.0.

In this example, UsingTask references the Example.Tasks.dll in the parent directory. This is
because the project file is placed in a folder in the output directory. This will be explained
in more detail later in this chapter. After you have declared that you are going to reference
the task, with a UsingTask element, you are free to invoke the task inside any targets. The
preceding sample file shows a single target, Demo. This target executes the task with the
statement <HelloWorld />. Since this task doesn’t have any inputs or outputs, we do not
need to specify any attributes or children in the XML. This is all that is required to invoke this
task. The result of executing the Demo target from this build file is shown in Figure 4-2.

FIGURE 4-2  HelloWorld01.proj execution

90	 Part II  Customizing MSBuild

As you can see from Figure 4-2, the Hello World message was successfully printed on the console.

Even though this example was pretty simple, it can be even simpler by using the classes
Microsoft.Build.Utilities.Task, Microsoft.Build.Utilities.ToolTask, and Microsoft.Build.Utilities
.AppDomainIsolatedTask. Typically, when you create a new task, you should extend one of
these classes instead of implementing the ITask interface yourself, unless you must extend
another class. Table 4-2 shows a brief description that can help you decide which of these
classes to extend.

TABLE 4-2  Common Task Abstract Classes
Class Name When to Extend
Task Most MSBuild tasks will extend this class. This class should be

extended whenever your task does not wrap an executable.

ToolTask Extend this class when you are creating a task that will wrap a call to
an .exe file. It includes all the functionally of the Task class, because it
derives from it, but adds support for running external programs.

AppDomainIsolatedTask When you need your task to be loaded in its own app domain, then
you should use this as your base class. A typical reason to derive from
this class is if you need to use a task that is contained in an assembly
that was created during the executing build process. Deriving from
this class will mean that the task will be loaded in a new app domain,
which will be unloaded after you’re done. It is uncommon to derive from
this class. If MSBuild is loaded in Microsoft Visual Studio, then tasks can
be locked. The lock will remain until Visual Studio is closed. If the build
was run on the command line, then it will be locked between builds
unless you set /nonodereuse to false.

When you extend one of these classes, all you have to do is implement the Execute method.
The abstract class will create the required properties in the ITask interface. In the case of
the Hello World example, we would pick the Task class to extend. We can create a new task,
HelloWorld02. This new, simpler implementation is shown as follows.

public class HelloWorld02 : Task
{
 public override bool Execute()
 {
 Log.LogMessageFromText("Hello MSBuild from Task!", MessageImportance.High);
 return true;
 }
}

In this new implementation, the only requirement is to implement the Execute method. By using one
of these abstract classes, we can focus on what the task is supposed to accomplish. Also, you may have
noticed that logging the Hello World statement is different from the previous implementation. This is
because those helper classes also define a property, Log, which is of the type Microsoft.Build.Utilities.
TaskLoggingHelper, which makes logging much easier. Now that we have briefly described how to
create simple MSBuild tasks, we will discuss how values can be passed into and out of MSBuild tasks.
Later in this chapter, we’ll discuss how to extend the ToolTask class.

	 Chapter 4  Custom Tasks	 91

Task Input/Output
When you create custom MSBuild tasks, they will most likely need to accept some input
and/or provide some output values. Inside your task, these are implemented with normal
.NET properties that may be decorated with attributes. Don’t confuse these with MSBuild
properties. We will first examine a very simple example and then move on to discuss more
realistic tasks. Building on the HelloWorld02 task, I’ve created a new task, HelloWorld03,
which accepts two input parameters. Those input parameters are FirstName and LastName.
The definition of the HelloWorld03 task is shown as follows.

public class HelloWorld03 : Task
{
 [Required]
 public string FirstName
 { get; set; }

 public string LastName
 { get; set; }

 public override bool Execute()
 {
 Log.LogMessage(string.Format("Hello {0} {1}", FirstName, LastName));

 return true;
 }
}

As you can see, both of the properties here were defined as any other .NET property would
be. You may have noticed that the FirstName property has a Required (Microsoft.Build
.Framework.Required) attribute attached to it. As the name states, this is a property that is
required to be set before the task is allowed to be executed. This is checked by MSBuild itself.
If a user attempts to invoke a task without providing values for all required parameters, then
the task will fail.

Any property that has a writeable property is available as an MSBuild input parameter. There
are some limitations on the type, but we will discuss that later in this chapter. Now we can
see how we can provide values to these custom input parameters from an MSBuild project
file; see the following example, which is taken from HelloWorld03.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="HelloWorld03" />

 <Target Name="Demo">
 <HelloWorld03 FirstName="Mike" LastName="Murphy" />
 </Target>
</Project>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

92	 Part II  Customizing MSBuild

When you provide values as input into an MSBuild task, you will always provide those values
using XML attributes, where the attribute name is the name of the .NET property and the
attribute value is the value that the .NET property should be set to. From this example, we
can see that the FirstName and LastName attributes correspond to the names of the .NET
properties that we created in the task previously. If you execute the Demo target in this
MSBuild file, you would see the result shown in Figure 4-3.

FIGURE 4-3  HelloWorld03 example

As we expected, the values were successfully passed into that task and were then passed to the
console logger. Now we can see how to pass a value from a task back to the calling MSBuild
project file. Once again I’ve modified the previous task and created a new one, HelloWorld04,
which exposes an output property named Message. The class is shown as follows:

public class HelloWorld04 : Task
{
 [Required]
 public string FirstName
 { get; set; }

 public string LastName
 { get; set; }

 [Output]
 public string Message
 { get; set; }

 public override bool Execute()
 {
 Message = string.Format("Fullname: {0} {1}", FirstName, LastName);
 Log.LogMessage(string.Format("Hello {0} {1}", FirstName, LastName));

 return true;
 }
}

Just like inputs, outputs are simply .NET properties. Output properties must be decorated
with the Microsoft.Build.Framework.Output attribute. When you extract a value from a task
you will always use an Output element as a child of the task node itself. An example of this
is demonstrated in the following sample, HelloWorld04.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0"
 DefaultTargets="Demo">

	 Chapter 4  Custom Tasks	 93

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="HelloWorld4" />

 <Target Name="Demo">

 <HelloWorld4 FirstName="Mike" LastName="Murphy">
 <Output PropertyName="PropFromTask" TaskParameter="Message" />
 </HelloWorld4>

 <Message Text ="From task: $(PropFromTask)" />

 </Target>
</Project>

If the task you are using has multiple outputs, then you can declare multiple Output
elements. The Output element has three attributes, in addition to the Condition attribute,
which are briefly outlined in Table 4-3.

TABLE 4-3  Output Element Attributes
Attribute Description
TaskParameter This is the name of the .NET property that you are accessing the value of.

This is a required attribute.

PropertyName The name of the MSBuild property in which the value should be placed.
Either this or ItemName must be used, but not both.

ItemName The name of the MSBuild item list in which the values should be placed.
Either this or PropertyName must be used, but not both.

In the HelloWorld04 example, we are outputting the value of the Message property on the
task into an MSBuild property named PropFromTask. This is why we use the PropertyName
attribute instead of ItemName. This syntax takes getting used to, but is easy to use after that.
Now let’s take a look at a more realistic task.

All the custom tasks that we have discussed thus far were variations of the HelloWorld task.
We will now take a look at a few tasks that are actually useful in your own build scripts. We
will start with the GetDate task. This is a task that returns the current date in a specified
format. This task is shown in the following code block.

public class GetDate : Task
{
 public string Format
 { get; set; }

 [Output]
 public string Date
 { get; private set; }

 public override bool Execute()
 {
 DateTime now = DateTime.Now;

94	 Part II  Customizing MSBuild

 Date = now.ToString(Format, null);
 return true;
 }
}

This task defines an optional input parameter, Format. (This is an optional parameter because
it is not decorated with the Required attribute.) A single output property is declared, named
Date, which is a string representation of the time in which the task was invoked. We can see
this used in the following GetDate01.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="GetDate" />

 <Target Name="Demo">
 <GetDate>
 <Output PropertyName="DateUnformatted" TaskParameter="Date" />
 </GetDate>

 <GetDate Format="yyyyMMdd.hh.ss">
 <Output PropertyName="DateValue" TaskParameter="Date" />
 </GetDate>

 <PropertyGroup>
 <FolderName>$(MSBuildProjectName)_$(DateValue)</FolderName>
 </PropertyGroup>

 <Message Text="DateUnformatted value: $(DateUnformatted)" />
 <Message Text="DateValue value: $(DateValue)" />
 <Message Text="FolderName value: $(FolderName)" />
 </Target>

</Project>

In this example, we are invoking the GetDate task twice, once without specifying a format
and the other with a format passed in. The values are stored in MSBuild properties named
DateUnformatted and DateValue, and then these values are passed to the Message task.
The result of this build file is shown in Figure 4-4.

FIGURE 4-4  GetDate01 example

	 Chapter 4  Custom Tasks	 95

In this demonstration, we have shown how we can pass values into and out of the task.

To recap, when you pass a value into a task, it is always passed in as an attribute on the task’s
element. Output values will be exposed to the build script by using an Output element as a
child of the Task element. We will now move on to discuss what types are supported.

Supported Task Input and Output Types
Task inputs and outputs are the only means by which a project file can communicate with
a task. A task will not have access to any properties or items that are not passed into it. This
is by design, so that it is easy to see what information is passed into and out of the task by
reading the project file. When you create values that can be passed into and out of tasks,
there are a variety of types that are supported. Since XML is the representation that all
MSBuild scripts are stored in, all values must be able to be converted to and from a string.
As mentioned in Chapter 2, “MSBuild Deep Dive, Part 1,” there are fundamentally two
types of values that are supported by MSBuild: scalar values and vector values. For vector
values, an array of acceptable scalar types is allowed. Table 4-4 summarizes what types are
supported to be passed through MSBuild tasks.

TABLE 4-4  Types Supported for MSBuild Inputs and Outputs
Type Description
String String values are simply passed back and forth directly, no conversion necessary.

ITaskItem This interface (Microsoft.Build.Framework.ITaskItem) is a part of MSBuild itself. It
is typically used when referencing files and for item value members. If an MSBuild
task needs to deal with items as input or output, then they should be exposed by
ITaskItem properties. It will allow you to pass items with metadata on them to the
task; it also allows the task to set or modify metadata on the item and then return
those items back into the build process.

Value MSBuild will allow you to pass value types back and forth from task to script. The
conversion support is limited to subclasses of ITaskItem and those types that the
System.Convert.ChangeType method is able to convert from and to strings. Those
types are: bool, byte, char, DateTime, Decimal, Double, int, long, sbyte, short,
Single, uint, ulong, and ushort.
Arrays of these types are acceptable as well.
When using the bool type, acceptable values include true, false, on, off, yes,
and no, and when used with the ! operator, such as !true.

In the tasks that we have created thus far, we have shown only task inputs and outputs using
string values. From the value types listed in Table 4-4, you can see that there are many other
types of values that we can pass into and out of tasks. When you create task properties of
any supported type, you don’t have to worry about the conversion between string and the
actual type. The MSBuild engine will take care of this automatically. The most interesting
type listed in Table 4-4 is the ITaskItem type. This is shipped with MSBuild, in the Microsoft
.Build.Framework assembly, and is heavily used in tasks. In the next task, we will demonstrate
using objects of this type.

96	 Part II  Customizing MSBuild

The next sample we will discuss is the TempFile task. This task creates a temp file and returns
its locations to the calling build script. The location value is passed as the property
TempFilePath, which is declared as an ITaskItem. The class definition is shown as follows.

public class TempFile : Task
{
 [Output]
 public ITaskItem TempFilePath
 { get; private set; }

 public override bool Execute()
 {
 string path = System.IO.Path.GetTempFileName();

 TempFilePath = new TaskItem(path);
 return true;
 }
}

Inside the Execute method, we get the full path to a new temporary file, and create a new
TaskItem object that refers to it and assign it to the TempFilePath property. The TaskItem
class is the class that you should use when you have to create new objects that implement
ITaskItem. The constructor being called is TaskItem(string itemSpec). The itemSpec
(item specification) parameter is the representation of the value passed in the Include
attribute in an MSBuild file. After the value for TempFilePath is set, the task returns true
to indicate that the task completed without errors. You can see this task being used in the
corresponding sample file, TempFile01.proj, as follows:

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="TempFile" />

 <Target Name="Demo">
 <TempFile>
 <Output ItemName="TestFile" TaskParameter="TempFilePath" />
 </TempFile>

 <Message Text="TestFile: @(TestFile)" />
 <Message Text="TestFile.Filename: @(TestFile->'%(Filename)')" />
 <Message Text="TestFile.Extension: @(TestFile->'%(Extension)')" />

 </Target>

</Project>

As with every custom task, we first declare that we are going to be using the task with
a UsingTask statement. This makes the TempFile task available for use. In the example, the
value from the task is placed into an item named TestFile, and then a few messages are sent
to the logger. The output of the Demo target is shown in Figure 4-5.

	 Chapter 4  Custom Tasks	 97

As can be seen from this sample, the task successfully created a temp file and returned its
path back to the calling MSBuild file. Since we place the value from the task into an item, we
could retrieve values for metadata of that item as well. In the TempFile task, the TempFilePath
was declared as an ITaskItem, which is the preferred method. If a consuming MSBuild
script places a value into an item, it is automatically converted into a representation using
ITaskItem. So in this example the difference is trivial, but you should generally use ITaskItem
when you expect to expose properties to be items in consuming scripts.

FIGURE 4-5  TempFile task demonstration

Using objects that are ITaskItems is preferred because you are able to pass a richer object to
and from a task. Objects of this type can have metadata associated with it, which the task can
interact with. We will discuss this concept in more detail in the next section.

Using Arrays with Task Inputs and Outputs
We have now discussed various topics about passing values into and out of tasks; one of the
only issues that we have not discussed is passing vector values into and out of tasks. We will
discuss that now, by examining a real MSBuild task. This task was taken from my open-source
task repository, Sedodream Tasks, which is available at Codeplex at http://sedodream
.codeplex.com/. The task that we will demonstrate is a custom Move task. If you are using
MSBuild 4.0, there is a built-in Move task that you can use, but for previous versions, there
wasn’t one. This task was designed to work similar to the Copy task in the sense that it has
a similar set of inputs, outputs, and behavior. The properties that are declared by the task are
shown in the following code snippet.

[Required]
public ITaskItem[] SourceFiles
{ get; set; }

public ITaskItem[] DestinationFiles
{ get; set; }

public ITaskItem DestinationFolder
{ get; set; }

[Output]
public ITaskItem[] MovedFiles
{ get; private set; }

98	 Part II  Customizing MSBuild

[Output]
public long[] FileLengths
{ get; private set; }

From these properties, there are three that are declared as arrays of ITaskItem objects and
the remaining as a scalar ITaskItem. These could have been created using string[], but this
would limit the information that we could gather from the values. Specifically, a string object
cannot have any metadata associated with it, whereas ITaskItem objects can. You will find
an example of the usage of this task in the following file, MoveExample01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="Move" />

 <PropertyGroup>
 <SampleFilesPath>$(MSBuildProjectDirectory)\sampleFiles\</SampleFilesPath>
 <DestPath>$(MSBuildProjectDirectory)\dest\</DestPath>
 </PropertyGroup>

 <ItemGroup>
 <SampleFiles Include="$(SampleFilesPath)***.txt"
 Exclude="$(SourceFolder)**\.svn***" />
 </ItemGroup>

 <Target Name="Demo">
 <Move SourceFiles="@(SampleFiles)"
 DestinationFiles=
 "@(SampleFiles->'$(DestPath)%(RecursiveDir)%(Filename)%(Extension)')">
 </Move>
 </Target>

</Project>

In this example, we create a new item, SampleFiles, and pass that into the SourceFiles
property for the Move task. The value for DestinationFiles is a transformation of the
SourceFiles item. When you use tasks that have inputs that should have a one-to-one
correspondence, it is common for one of them to be a transformation of the other. This
is what is shown here. Previously, we mentioned that the ITaskItem type of objects can
have metadata; we will now discuss that in more detail. In the code for a custom task,
you can get and set the values for an item’s metadata by using the GetMetadata and
SetMetadata methods, respectively. We will see this at work in the sample task I created,
MetadataExample.

In order to demonstrate clearly how you can use metadata on items passed into and out of
custom tasks, I have created a sample task, MetadataExample, that demonstrates this. This
task is very simple and is shown in its entirety as follows.

	 Chapter 4  Custom Tasks	 99

public class MetadataExample : Task
{
 [Required]
 public ITaskItem[] ServerList
 { get; set; }

 [Output]
 public ITaskItem[] Result
 { get; set; }

 public override bool Execute()
 {
 if (ServerList.Length > 0)
 {
 Result = new TaskItem[ServerList.Length];

 for(int i=0; i<Result.Length; i++)
 {
 ITaskItem item = ServerList[i];
 ITaskItem newItem = new TaskItem(item.ItemSpec);
 string fullpath = item.GetMetadata("Fullpath");

 newItem.SetMetadata("ServerName", item.GetMetadata("Name"));
 newItem.SetMetadata("DropLoc", item.GetMetadata("DropLocation"));

 newItem.SetMetadata("IpAddress", string.Format("127.0.0.{0}", i+10));
 Result[i] = newItem;
 }
 }
 return true;
 }
}

In this task, we have two properties, both of which are declared as ITaskItem[]. ServerList is
a required input parameter and Result is the output parameter. In the Execute method, we
get some values from the metadata and use it to populate values into the Result item. We
can see this in action in the following MetadataExample01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="MetadataExample" />

 <PropertyGroup>
 <ConfigFileRoot>$(MSBuildProjectDirectory)\sampleConfigFiles\</ConfigFileRoot>
 </PropertyGroup>
 <ItemGroup>
 <Server Include="$(ConfigFileRoot)server1.app.config">
 <Name>server1</Name>
 <DropLocation>D:\Drops\</DropLocation>
 </Server>
 <Server Include="$(ConfigFileRoot)server2.app.config">

100	 Part II  Customizing MSBuild

 <Name>server2</Name>
 <DropLocation>E:\Builds\Drops\</DropLocation>
 </Server>
 <Server Include="$(ConfigFileRoot)server3.app.config">
 <Name>server3</Name>
 <DropLocation>D:\Data\DropDir\</DropLocation>
 </Server>
 <Server Include="$(ConfigFileRoot)server4.app.config">
 <Name>server4</Name>
 <DropLocation>D:\Projects\DropLocation\</DropLocation>
 </Server>
 </ItemGroup>

 <Target Name="Demo">

 <MetadataExample ServerList="@(Server)">
 <Output ItemName="ServerIpList" TaskParameter="Result" />
 </MetadataExample>

 <Message Text="ServerIpList: @(ServerIpList)" />

 <Message
 Text="Server: %(ServerIpList.ServerName)
 %(ServerIpList.DropLoc)
 %(ServerIpList.IpAddress)" />
 </Target>

</Project>

In this project file, we have created an item named Server and attached a value for Name
and DropLocation metadata for each item. Inside the Demo target of this project file, we
invoke the MetadataExample task and pass in the Server item. Then we place the output of
the task into an item named ServerIpList with the Output element. Finally, we print a message
to display the custom metadata values that the task set. If you execute this project file, you
would see the results shown in Figure 4-6.

FIGURE 4-6  Using metadata

	 Chapter 4  Custom Tasks	 101

If you look at the results shown here, you can see that we were able to successfully pass
metadata into and out of a task. Note that once an item value has been passed to a task, any
modifications to it are not reflected back into the MSBuild file. So if you use the SetMetadata
method on an item that was passed into the task by an input, it will not be reflected back in
the calling MSBuild file. Now that we have discussed all that you need to know to pass values
in and out of tasks, we will discuss inline tasks and then move on to extending the ToolTask
class, which we briefly touched on earlier.

Inline Tasks
As you can see, writing a task is pretty easy, but sometimes it is inconvenient to write the
task, store the source of that task, compile it into an assembly, and then deploy that assembly
into your build process. It would be a lot simpler if you could just write the task inside
an MSBuild file and let MSBuild take care of the rest. With MSBuild 4.0, you can do just that.
This new feature is known as inline tasks, and we will cover those now, and then move on to
look at an easy way to create tasks that wrap command-line tools.

First, I will show you what a very simple inline task looks like and how to use it. After that,
we will go over the details. Similar to the previous sections, the first inline task that we create
will be a Hello World task. Take a look at the following snippet, which is contained in the
Hello-IT-01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask
 TaskName="HelloWorldIt01"
 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >
 <Task>
 <Code Type="Fragment" Language="cs">
 <![CDATA[
 Log.LogMessage("Hello MSBuild");
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <HelloWorldIt01 />
 </Target>
</Project>

Here, I have used a UsingTask element, which you are already familiar with, but added some
new things to it. We’ve already discussed all its attributes in Table 4-1, but we didn’t tell you
about the Code element that you can declare under it. This is where you would place your

102	 Part II  Customizing MSBuild

code. This task is written in C#, which is why we have a cs value for the Language attribute.
We will go over this soon, along with the TaskFactory attribute of the UsingTask element.
The value for the TaskName attribute in the UsingTask element is set to HelloWorldIt01,
which is the name of the class that gets generated for you. If you were writing this as a
typical compiled task, then it would be the name of the class, just like HelloWorld was the
name of the first take we created in this chapter. In order to call this task, you would do
the same thing if it was a compiled task. The results of the msbuild Hello-IT-01.proj
/t:Demo command are shown in Figure 4-7.

FIGURE 4-7  HelloWorld inline task

As you can see from this figure, the result of the HelloWorldIt01 task is the same as the
compiled task HelloWorld01 that we created earlier.

Now that you have seen how to create and use an inline task, we will take a close look at
the different ways of creating inline tasks. First, let’s discuss creating inline tasks in different
languages. So far, we have only covered C#, but you can create inline tasks in different
languages. You can create them in any language you want, but the ones supported by
default are C# and VB.NET. In order to create inline tasks in any other language, you will have
to create a new task factory or find it online. If you are using C# for the Language attribute,
the following case-insensitive values are valid: c#, cs, and csharp. For VB.NET, the following
case-insensitive values are allowed: vb, vbs, visualbasic, and vbscript.

Note  The allowed values for the Language attribute are derived from the System.CodeDom
.Compiler.CompilerInfo class.

As an example, here is the VB.NET version of the previous inline task, in a bit more verbose
fashion so that it is obvious that it is not C#.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask
 TaskName="HelloWorldIt02"
 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >
 <Task>
 <Code Type="Fragment" Language="vb">
 <![CDATA[

	 Chapter 4  Custom Tasks	 103

 Dim message As String
 message = String.Format("{0} {1}{2}", "Hello", "World",", from VB.NET")
 Log.LogMessage(message)
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <HelloWorldIt02 />
 </Target>
</Project>

If you execute the Demo target, the result is just "Hello World, from VB.NET". We will
not show any more samples in VB.NET for the remainder of the book, but converting C#
examples should be pretty straightforward. We will now move on to discuss how parameters,
both input and output, are handled for inline tasks.

Just like compiled tasks, inline tasks can have both input and output parameters. In fact, your
parameters can be as rich as they are with normal compiled tasks. If you want your tasks
to contain parameters, then you will have to use the ParameterGroup element to define
them. Take a look at the new inline task that is created in the next snippet from the file
PrintMessage01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask
 TaskName="PrintMessage"
 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >
 <ParameterGroup>
 <Message Required="true"/>
 </ParameterGroup>
 <Task>
 <Code Type="Fragment" Language="c#">
 <![CDATA[
 Log.LogMessageFromText(Message,MessageImportance.High);
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <PrintMessage Message="Print this message" />
 </Target>

 <Target Name="DemoNoMessage">
 <PrintMessage />
 </Target>
</Project>

104	 Part II  Customizing MSBuild

In this snippet, a new task, PrintMessage, was defined inline, which just logs the string
provided in the Message property. It does this by using the Log helper object from the
Microsoft.Build.Utilities.Task class, which is the base class for all inline tasks. We will discuss
this more soon. In this project file, I have created the PrintMessage task, and it uses the
ParameterGroup element to define the lone Message parameter, which is marked as required
by setting the Required attribute to true. The default value for this is false. Figure 4-8 shows
the result of executing the command msbuild PrintMessage01.proj /t:Demo /nologo.

FIGURE 4-8  PrintMessage Demo target result

The Demo target calls the PrintMessage task and passes it the value “Print this message” for
the Message attribute. In that project file, the other target, DemoNoMessage, just calls the
PrintMessage task as we were invoking the HelloWorld tasks previously, without passing
in any parameters. In this case, the build should fail in the same way that it would for
a compiled task because the required parameter is not specified. If you execute that target,
you will see the failure message shown in Figure 4-9.

FIGURE 4-9  PrintMessage DemoNoMessage target result

From the result shown in this figure, you can see that you get the exact same error message
that you would have if you were using a normal task. We have discussed input parameters;
let’s now take a look at how we can create a task that also creates an output parameter.

The sample file, CreateGuid01.proj, contains the contents shown in the following code
section.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask
 TaskName="CreateGuid01"

	 Chapter 4  Custom Tasks	 105

 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >
 <ParameterGroup>
 <Id Output="true"/>
 </ParameterGroup>
 <Task>
 <Code Type="Fragment" Language="cs">
 <![CDATA[
 Id = Guid.NewGuid().ToString();
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <CreateGuid01>
 <Output PropertyName="MyId" TaskParameter="Id"/>
 </CreateGuid01>
 <Message Text="MyId: $(MyId)"/>
 </Target>
</Project>

In this file, we have created a new inline task, CreateGuid01, and that task has declared
an output parameter, Id. The fact that the Id parameter has the value Output=”true” makes
it an output parameter. Then, inside the Demo target, we invoke that task and extract the
value for Id and place it into the MyId property, just as we would have done if we were using
a normal task. Figure 4-10 shows the results of executing that target.

FIGURE 4-10  CreateGuid01 demo

You can see that we were able to use the result of the output parameter inside the project
file, as we expected. Thus far, we have not discussed what type of properties (.NET properties,
that is) we are creating. If you do not specify a type for a property (input or output), then
it will default to being a string. But you can specify the type by using the ParameterType
attribute on the parameter declaration. In this attribute, you should specify the full name
of the type that you want to use, and it can be any valid type. We discussed the supported
types in the section entitled “Supported Task Input and Output Types,” earlier in this chapter.

Take a look at the new inline task, Add01, that we created from the Add01.proj file. This task
just takes two numbers, adds them, and places the result into an output parameter.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

106	 Part II  Customizing MSBuild

 <UsingTask
 TaskName="Add01"
 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >
 <ParameterGroup>
 <Value1 ParameterType="System.Double" Required="true"/>
 <Value2 ParameterType="System.Double" Required="true"/>
 <Sum ParameterType="System.Double" Output="true"/>
 </ParameterGroup>
 <Task>
 <Code Type="Fragment" Language="cs">
 <![CDATA[
 Sum = Value1 + Value2;
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <PropertyGroup>
 <x>1.2</x>
 <y>3.4</y>
 </PropertyGroup>
 <Add01 Value1="$(x)" Value2="$(y)">
 <Output PropertyName="Result" TaskParameter="Sum"/>
 </Add01>
 <Message Text="$(x) + $(y) = $(Result)"/>
 </Target>
</Project>

This task declares three properties—Value1, Value2, and Sum—all of which are declared as
being of type System.Double (double). Then, inside the Demo target, we showed the task
at work. It was able to add the two values provided and placed the result into the output
parameter. We will not show the result here, but if you want to see it in action, you can
execute the command msbuild Add01.proj /t:Demo.

Thus far, all the inline tasks that we have created used only scalar values (those with only one
value), but we will now take a look at a task that uses a vector value. Previously, you saw the
CreateGuid01 task that created one globally unique identifier (GUID), but what if you need
more than one? Then you create a new inline task for just that purpose. The CreateGuid02
task handles this. It is capable of creating many IDs and placing them into an output
parameter, which is defined as an array of strings. The task and a sample target are shown
in the next snippet from the CreateGuid02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask
 TaskName="CreateGuid02"
 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >

	 Chapter 4  Custom Tasks	 107

 <ParameterGroup>
 <NumToCreate ParameterType="System.Int32" Required="true" />
 <Guids ParameterType="System.String[]" Output="true" />
 </ParameterGroup>
 <Task>
 <Code Type="Fragment" Language="cs">
 <![CDATA[
 List<string> guids = new List<string>();
 for (int i = 0; i < NumToCreate; i++)
 {
 guids.Add(Guid.NewGuid().ToString());
 }
 Guids = guids.ToArray();
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <CreateGuid02 NumToCreate="1">
 <Output ItemName="Id01" TaskParameter="Guids" />
 </CreateGuid02>
 <Message Text="Id01: @(Id01)" />

 <CreateGuid02 NumToCreate="4">
 <Output ItemName="Id02" TaskParameter="Guids" />
 </CreateGuid02>
 <Message Text=" "/>
 <Message Text="Id02: @(Id02)" />
 </Target>
</Project>

The CreateGuid02 task has two parameters defined: one input and one output. The input parameter,
NumToCreate, is a required parameter, and it is used to determine how many new IDs to create. The
other parameter, Guids, is the resulting list of IDs, and it’s marked with the Output=”true” value. Take
a look at the ParameterType=”System.String[]” attribute declaration, which is saying that the Guids
property (a .NET property) will be defined as an array of strings. Then, inside the body of the task,
a List<string> object is used to contain the values, and at the end of the task, the Guids property
is assigned the value of guids.ToArray(), as shown in Figure 4-11.

FIGURE 4-11  CreateGuid02 inline task result

In the Demo target, we invoke the CreateGuid02 task twice. The first time, we use it to create
just one value and placed that into the Id01 item. You could have placed this into a property

108	 Part II  Customizing MSBuild

if you wanted, but we placed it into an item here for consistency. The second invocation
specified that four values should be created. You can verify that this was the case by looking
at the result in Figure 4-11. By now, you should be pretty comfortable with task parameters.
Let’s look at some other aspects of inline tasks.

There are a couple other issues that we have not yet discussed, which are very important
because the tasks that we have created have been very basic. To give a better idea, let’s
discuss what is happening internally. At runtime, MSBuild uses the CodeDOM to generate
a class from your inline task, which it then compiles and loads just like any other task.

Note  For more info on CodeDOM, you can visit the reference at http://msdn.microsoft.com/
en-us/library/y2k85ax6.aspx.

Let’s take a look at what that class looks like. In the next snippet, you will find the class that
was automatically created for us to implement the CreateGuid02 task. It has been formatted
a bit to preserve space for printing.

namespace InlineCode {
 using System;
 using System.Collections;
 using System.Collections.Generic;
 using System.Text;
 using System.Linq;
 using System.IO;
 using Microsoft.Build.Framework;
 using Microsoft.Build.Utilities;

 public class CreateGuid02 : Microsoft.Build.Utilities.Task {
 private bool _Success = true;
 public virtual bool Success {
 get { return _Success; }
 set { _Success = value; }
 }

 private int _NumToCreate;
 public virtual int NumToCreate
		 {
 get { return _NumToCreate; }
 set { _NumToCreate = value; }
 }

 private string[] _Guids;
 public virtual string[] Guids
		 {
 get { return _Guids; }
 set { _Guids = value; }
 }

 public override bool Execute()
		 {
 List<string> guids = new List<string>();

	 Chapter 4  Custom Tasks	 109

 for (int i = 0; i < NumToCreate; i++)
 {
 guids.Add(Guid.NewGuid().ToString());
 }
 Guids = guids.ToArray();

 return _Success;
 }
 }
}

From this, you can see how your tasks are created. The parameters are declared as you would
have declared them, and then the body of the task is placed inside the Execute method. One
thing to take note of here is that you don’t see the [Required] and [Output] attributes; these
are handled separately, but they do behave as expected. The other thing that you should
notice are the namespaces that have been declared as being used via using statements at the
top of the class. You will always have these namespaces at your disposal. If you need more,
you can insert more with the Using element under the task element. For example, if you
wanted to use the Regex class from the System.Text.RegularExpressions namespace without
qualifying its name, then you can add the using System.Text.RegularExpressions;
statement to the generated class. The Replace01 inline task from Replace01.proj, shown next,
shows how you would accomplish this.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask
 TaskName="Replace01"
 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >
 <ParameterGroup>
 <Input Required="true"/>
 <Pattern Required="true"/>
 <Replacement Required="true"/>
 <Result Output="true"/>
 </ParameterGroup>
 <Task>
 <Using Namespace="System.Text.RegularExpressions" />
 <Code Type="Fragment" Language="cs">
 <![CDATA[
 Result = Regex.Replace(Input, Pattern, Replacement);
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <Replace01 Input="This is a ssn 123-45-7894 value"
 Pattern="\d{3}\-\d{2}\-\d{4}"
 Replacement="***-**-****">
 <Output PropertyName="MaskedSsnString" TaskParameter="Result"/>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

110	 Part II  Customizing MSBuild

 </Replace01>
 <Message Text="MaskedSsnString: $(MaskedSsnString)"/>
 </Target>
</Project>

In this example, I use the Replace01 task to mask a Social Security value that is contained in
a string. Now that we have covered using statements, you might be wondering how you can
add references to other assemblies. You do this with the Reference element under Task.

It is very similar to Using, but instead of a Namespace attribute, it has an Include attribute.
To clarify this, we will take a look at a sample. In the Example.Tasks project file, I have created
a simple static class, ExampleValues, shown here.

namespace Examples.Tasks
{
 public static class ExampleValues
 {
 public const string Name = "Example-values";
 }
}

In this class, I just create a const property, Name, that I access from the inline task that I
create. This task, Ref01, is defined in the IT-Ref01.proj file in the Samples directory of the
Example.Tasks project. The contents of that file are shown here.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask
 TaskName="Ref01"
 TaskFactory="CodeTaskFactory"
 AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" >
 <ParameterGroup>
 <Value Output="true"/>
 </ParameterGroup>
 <Task>
 <Reference Include="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll" />
 <Using Namespace="Examples.Tasks"/>
 <Code Type="Fragment" Language="cs">
 <![CDATA[
 Value = ExampleValues.Name;
]]>
 </Code>
 </Task>
 </UsingTask>

 <Target Name="Demo">
 <Ref01>
 <Output PropertyName="Result" TaskParameter="Value"/>
 </Ref01>
 <Message Text="Result: $(Result)"/>
 </Target>
</Project>

	 Chapter 4  Custom Tasks	 111

In this sample, the Ref01 task is defined, and it uses the Reference element to let MSBuild
know where the assembly is that should be referenced when building the Ref01 task. Along
with that, I also insert a using statement for the namespace Examples.Tasks. That way, I do
not have to qualify the ExampleValues class when I use it. Then, inside the Demo target, I
simply use the task as I normally would have. You can see the result of executing that target
in Figure 4-12.

FIGURE 4-12  Ref01 InlineTasks result

From this figure, you can see that we were able to successfully reference another assembly
when the inline task was built. We’ve covered default inline tasks pretty well. We will now
move on to cover what a TaskFactory is.

TaskFactory
In the previous examples for inline tasks that we have shown, you might have been
wondering about the attribute TaskFactory=”CodeTaskFactory”, which we assigned to
each UsingTask element. The task factory, which this attribute refers to, is the object that is
responsible for creating instances of those tasks dynamically. As was mentioned previously,
you can create inline tasks with managed languages by default, and these use the CodeDOM
to compile those at run time. You are not limited to using inline tasks in this way. You can
create your own task factory to allow you to author your own inline tasks in whatever
language you choose. For example, if you download the MSBuild Extension Pack (available
from http://msbuildextensionpack.codeplex.com/), then you can author inline tasks using
IronRuby or IronPython. To author tasks with those languages, you need to use a task factory
called DlrTaskFactory, which is contained in the extension pack.

If you want to be able to author inline tasks in a language that is not supported, you can
do that by creating your own task factory, which is straightforward. In this section, we will
discuss a very basic task factory that can be used to execute batch files. This task factory is
not very useful because the Exec task already exists, but it will introduce you to the concepts
of creating your own task factory. To create a new task factory, all that you need to do is
implement the Microsoft.Build.Framework.ITaskFactory interface. This interface has two
properties and a handful of methods that you will need to implement. That interface is
shown in Figure 4-13.

112	 Part II  Customizing MSBuild

FIGURE 4-13  ITaskFactory interface

We will now go over all these properties and methods. In Table 4-5, you will see the
descriptions of the two properties of the ITaskFactory interface.

TABLE 4-5  ITaskFactory Properties
Property Description
FactoryName This is the name of the factory, such as DlrTaskFactory, CodeTaskFactory,

or BatchFileTaskFactory. This is the name that you will need to use inside
the MSBuild files to specify which task factory should be used. Most
implementations will return just the name of the task factory class.

TaskType This returns the type for the task that this factory will create.

These properties are pretty straightforward, so we will not go over them in detail. We will
now discuss the four methods that are defined in that interface. Let’s start with the Initialize
method:

bool Initialize(string taskName, IDictionary<string, TaskPropertyInfo> parameterGroup,
string taskBody, IBuildEngine taskFactoryLoggingHost);

When your task factory is created by the MSBuild engine, it will be constructed using the
default constructor, so make sure that you have one defined, and then the Initialize method
will be called to prepare it. TaskName is the name of the task which is being created; this
is the value of the TaskName attribute from the UsingTask element. Depending on the
implementation, you may be able to ignore this. The container for all the parameters that
are being passed into the task is called parameterGroup. If your UsingTask element declares
a parameter, then the parameters will all be contained in the parameterGroup property.
Typically, you will want to take those values and store them because you will return those
same values in the GetTaskParameters method. Since the MSBuild script will pass in the
parameters into the Initialize method, many times you will just return those parameters
as is, but you are given a chance to modify them if your task factory requires it. The only
remaining method is the CleanupTask method, which is called when the task is no longer
needed and can be disposed of. Now that we have discussed all the methods that you will

	 Chapter 4  Custom Tasks	 113

need to implement, let’s take a look at an example and then we will go a bit deeper. In the
following code block, you’ll find the contents of the BatchFileTaskFactory.cs file.

public class BatchFileTaskFactory : ITaskFactory
{
 protected string TaskXmlBody
 { get; set; }

 protected IDictionary<string, TaskPropertyInfo> ParameterGroup
 { get; private set; }

 public virtual void CleanupTask(ITask task)
 {
 Contract.Requires(task != null);
 // If the task is disposable then dispose it
 IDisposable disposableTask = task as IDisposable;
 if (disposableTask != null)
 {
 disposableTask.Dispose();
 }
 }

 public virtual ITask CreateTask(IBuildEngine taskFactoryLoggingHost)
 { return new BatchFileTask(this.TaskXmlBody); }

 public string FactoryName
 {
 get { return this.GetType().Name; }
 }

 public virtual TaskPropertyInfo[] GetTaskParameters()
 { return this.ParameterGroup.Values.ToArray(); }

 public virtual bool Initialize(
 string taskName,
 IDictionary<string, TaskPropertyInfo> parameterGroup,
 string taskBody,
 IBuildEngine taskFactoryLoggingHost)
 {
 Contract.Requires(!string.IsNullOrEmpty(taskName));
 Contract.Requires(parameterGroup != null);
 Contract.Requires(taskBody != null);
 Contract.Requires(taskFactoryLoggingHost != null);

 this.TaskXmlBody = taskBody;
 this.ParameterGroup = parameterGroup;

 return true;
 }

 public Type TaskType
 {
 get { return typeof(BatchFileTask); }
 }
}

114	 Part II  Customizing MSBuild

By looking at this sample task factory and the descriptions for the properties and methods
that we just discussed, what is happening is pretty straightforward. There is no magic
happening here. When an inline task element is being encountered for the first time, MSBuild
will call the task factory to create an instance of that inline task and then call the Initialize
method. Initialize will essentially be “passed” everything contained in the UsingTask element.
After that, MSBuild will call the CreateTask method to create a specific instance of the task for
that usage of the task. After the instance is created, all the parameters passed into the task
element in the target will be assigned as they would a normal task. Then the task is executed,
and finally, if any Output elements are present, they will be processed.

If you take a look at the CreateTask method, you will see that we are creating a new instance
of BatchFileTask and passing it the task body contents. This class is simply an implementation
of the ITask interface that we create. You can create and return any object that implements
the ITask interface, including those tasks that already exist. Even though you could return
tasks that already exist, the odds are that you will create a new task specifically to execute
the behavior contained in the task body. For instance, if you created a Perl task factory, you
could create a task that could execute the Perl scripts contained in the body of the task. In
this case, we will just execute the batch file. The definition of BatchFileTask is shown in its
entirety in the next code section.

public class BatchFileTask : Task
{
 public BatchFileTask(string xmlBody)
 {
 this.InitalizeFromXml(xmlBody);
 }

 private string Filepath
 { get; set; }

 public string Message
 { get; set; }

 public int ExitCode
 { get; set; }

 private void InitalizeFromXml(string xmlBody)
 {
 if (!string.IsNullOrWhiteSpace(xmlBody))
 {
 // parse the doc, should look like this <Script Filepath="..."/>
 XDocument doc = XDocument.Parse(xmlBody);
 XNamespace xnamespace =
 @"http://schemas.microsoft.com/developer/msbuild/2003";
 var node = (from n in doc.Elements(xnamespace + "Script")
 select n).SingleOrDefault();
 if (node != null)
 {
 this.Filepath = node.Attribute("Filepath").Value;
 }
 }
 }

	 Chapter 4  Custom Tasks	 115

 public override bool Execute()
 {
 if (!string.IsNullOrWhiteSpace(Filepath))
 {
 // make sure the file exists
 if (!File.Exists(this.Filepath))
 {
 Log.LogError("Batch file not found at [{0}]", this.Filepath);
 }
 else
 {
 Log.LogMessage(
 MessageImportance.High,
 "Executing batch file from [{0}]",
 this.Filepath);
 string cmdFilepath = ToolLocationHelper.GetPathToSystemFile("cmd.exe");
 Process process = new Process();
 process.StartInfo = new ProcessStartInfo(this.Filepath);
 process.StartInfo.UseShellExecute = true;
 process.StartInfo.CreateNoWindow = true;
 process.Start();
 process.WaitForExit();
 int exitCode = process.ExitCode;
 if (exitCode != 0)
 {
 Log.LogError(
 "Non-zero exit code [{0}] from batch file [{1}]",
 exitCode,
 this.Filepath);
 }
 // you could set this via a parameter
 // process.StartInfo.WorkingDirectory
 }
 }

 return !this.Log.HasLoggedErrors;
 }
}

The only thing that makes this task different from a normal task is the way that it’s created. In
this case, there is no default constructor, so it can’t be used outside a task factory. The XML
fragment that is contained inside the body of the task from an inline task declaration must
be passed to it.

Note  If you want to create a dynamic task, you might be interested in learning about the
Microsoft.Build.Framework.IGeneratedTask interface. By implementing this interface, you do
not have to specify that your task can be passed in any parameters. When you use this interface,
properties can be retrieved or set on the task using the GetPropertyValue and SetPropertyValue
methods instead of declaring the parameters at the time the task is defined.

IGeneratedTask is a bad choice of name because the tasks are not really generated; regular
tasks are implemented internally with a task factory. A better name, perhaps, would have been
IDynamicTask.

116	 Part II  Customizing MSBuild

We’ve covered inline tasks and task factories pretty well up to this point. There is more
to know about task factories, but we will not cover all the details here. If you need more
information, a good place to look is the MSDN reference for MSBuild. We will now switch
back to standard tasks and discuss the ToolTask class.

Extending ToolTask
There are many instances in which you need to invoke an .exe file in your build process.
There is a task, the Exec task, which allows you to execute any command. This works great
and is used throughout the MSBuild community. If you find yourself executing the same
.exe file on several occasions, then it may be worth writing a custom task to execute the
command. Custom tasks that wrap up executables have many advantages to simply using
the Exec task. Some of those benefits are outlined in the following list:

n	 Ease of use  Since custom tasks have specific properties for inputs and outputs, they
are very easy to use.

n	 Better input validation  You can write .NET code to validate the parameters that the
script is requesting be sent to the executable.

n	 Easier path resolution  Sometimes you may not know where the .exe file resides. You
may have to search the registry or examine a set of folders. This is typically performed
more easily in code than in an MSBuild script.

n	 Pre- and post-processing  Because you are creating a custom task, you can perform
actions before and/or after the execution of the executable.

n	 Parsing stdout and stderr  The ToolTask class can detect errors and warnings from
messages that are sent into the stdout and stderr streams.

n	 Enables task execution skipping  By overriding the SkipTaskExecution method, you can
programmatically determine if the task should be skipped.

When you have decided to write a custom task to wrap an executable file, you should
consider extending the ToolTask class. This class, which is in the Microsoft.Build.Utilities
assembly, was designed specifically for this. The class diagram for the ToolTask abstract class
is shown in Figure 4-14, which was generated with the MSBuild 3.5 assemblies.

As shown in the previous diagram, the ToolTask class extends the task class. This class
implements the Execute method from the task class, but it does define one abstract
method and one abstract property that need to be implemented. Those are the
GenerateFullPathToTool method and the ToolName property. There are many other methods
and properties that are relevant in this class, and we will discuss some of those now. We will
discuss only the methods and properties with which you are likely to interact.

	 Chapter 4  Custom Tasks	 117

FIGURE 4-14  ToolTask class diagram

118	 Part II  Customizing MSBuild

ToolTask Methods
n	 Cancel  This method is called to cancel the task execution. Once this method is called

by MSBuild, if the task does not complete, it will be forcefully terminated.

n	 DeleteTempFile  This is simply a helper method that can be used to delete files.
The advantage of using this method is that it doesn’t fail the build if the file can’t be
deleted; it only warns and continues.

n	 ExecuteTool  This is the method called that will execute the tool based on the values
from the input parameters.

n	 GenerateFullPathToTool  You will have to implement this method. The return value, as
the name suggests, is the full path to the tool that you are executing.

n	 GenerateCommandLineCommands  This is used to generate any parameters that are
passed to the command. The return value will be appended to the full tool path for the
command that will be executed. This value, along with the response file, if provided, is
passed to the System.Diagnostics.ProcessStartInfo(string,string) constructor
as the command-line arguments.

n	 GenerateResponseFileCommands  If your tool accepts a response file for initialization,
then you can return a string that contains the values that should be contained in
a response file sent to the tool. These commands will be written to a temporary file
and then passed to the tool. When you use this method, you may also need to override
the GetResponseFileSwitch method. A typical reason for preferring a response file is that
you can pass many parameters. If you pass parameters on the command line, you are
typically limited to 8 Kb, imposed by cmd.exe.

n	 GetProcessStartInfo  This method is used to initialize the information that will be used
to create the process when the tool is executed.

n	 GetResponseFileSwitch  If the tool that you are invoking accepts a response file, then
you need to override this method if you want to supply a response file to it. If the tool
simply accepts the file path as the response file, then you do not need to override
this method; that is the default behavior. If the tool requires a switch to process the
response file, then override this method to create the switch to be passed to the tool.

n	 GetWorkingDirectory  If you need to specify the working directory of the tool, then
override this method to override the working directory to use. If null is returned from
this method, then the current directory will be used as the working directory. This is the
default behavior.

n	 HandleTaskExecutionErrors  This method will be called after the command completes with
a nonzero exit code. The return value of this method is used as the return value of the task
itself. If you have a scenario where you would like to conditionally ignore certain exit codes,

	 Chapter 4  Custom Tasks	 119

then you can override this method and examine the exit code and decide to return true or
false. There exist tools that return nonzero exit codes even when the tool succeeds. If you
return true, then the build will proceed as if there were no error.

n	 SkipTaskExecution  The return value of this method will determine if the command
should actually be executed. If this method returns false, then the task will be executed;
otherwise it will not. If the task execution is skipped due to the return value of this
method, it will not be treated as an error but as an intended response. The default
implementation of this method simply returns false. You can use this opportunity to
do custom dependency checking, and skip the task if everything is up to date.

n	 ValidateParameters  This is an empty method that can be used to validate any input
parameters that have been passed to the task. If this method returns false, then the task
will automatically fail. By default, this method simply returns true. If your task accepts
inputs, then you can place your input validation in this method and it will be called by
the default implementation of the Execute method. If the Execute method is overridden,
then this validation method should be called near the beginning of the process.

ToolTask Properties
n	 EchoOff  If this property is set to true, then command-line echoing will be turned off.

n	 EnvironmentVariables  This property is an array of key/value pairs, where the key is the
name of the environment variable and the value is the value of the environment variable.
These values are passed to the spawned process. If a value exists in both the regular
environment block and in this set of values, then the value defined in this array will be used.

n	 ExitCode  Contains the exit code of the tool. This is an MSBuild Output property, so its
value will be available to build files using the task.

n	 LogStandardErrorAsError  If the value for this property is true, then any message
received in the standard error stream will be logged as an error.

n	 ResponseFileEncoding  Contains the encoding that should be used to write out the
response file. The default value for this is System.Text.Encoding.UTF8.

n	 StandardErrorEncoding  Contains the encoding value that should used for error output.
The default value for this is the default encoding of the system running the task.

n	 StandardErrorImportance  Contains the MessageImportance level that tool errors will
be logged at. The default value for this is MessageImportance.High.

n	 StandardErrorImportanceToUse  Gets the effective importance that standard error
messages will be logged at.

n	 StandardErrorLoggingImportance  Contains the MessageImportance level for messages
sent to the standard error stream. The default value for this is MessageImportance.Normal.

120	 Part II  Customizing MSBuild

n	 StandardOutputEncoding  Contains the encoding of the standard output stream.
The default value for this is the default value of the machine running the task.

n	 StandardOutputImportance  Contains the encoding of the standard output stream.
The default value for this is MessageImportance.Normal.

n	 StandardOutputImportanceToUse  Gets the effective importance that the standard
output messages will be logged at.

n	 StandardOutputLoggingImportance  Contains the MessageImportance level that
messages sent to the standard output will be logged at. The default value for this is
MessageImportance.Low.

n	 TaskProcessTerminationTimeout  This property is the timeout period, in milliseconds,
that the task will be given after the Cancel method is called and before the process is
forcefully terminated.

n	 ToolCanceled  This property is used to signal when a tool is canceled.

n	 Timeout  Contains the amount of the time that the task will be allowed to run. If the
task exceeds the initial value, set prior to execution, then it will be stopped, and the
task will fail. This value is given in milliseconds.

n	 ToolExe  This property serves as an alternative to the ToolName property. The
problem with the ToolName property is that it is read-only, so there is no option to
change the name of the .exe file; this property introduces that option. If this is specified,
it will take precedence over ToolName.

n	 ToolName  Contains the name of the executable file to run. This should not include
the path, just the name of the actual executable file. If ToolExe is specified, then that
value is used in place of this.

n	 ToolPath  Contains the full path to the folder where the tool is located. If this property
returns a value, then the result from the GenerateFullPathToTool method is ignored.

n	 UseCommandProcessor  When this property is set to true, the tool task will be
executed using the command processor; otherwise, the tool task will be placed in
a batch file and executed.

n	 YieldDuringToolExecution  If this property is set to true, then while the tool is executing, it
will yield so that other projects can continue to build. If you have long-running tasks, then
you should set this value to true so that you can have build times.

The MSBuild team has created this helper class to ensure that wrapping an existing .exe file is
very simple. This is because there are many preexisting tools that can be very useful during
the build process. If you are writing a task that will invoke an executable, you should extend
this base class so you can focus on what is important and not on the plumbing of calling it.

In order to demonstrate how we can effectively use this class, I will create a new task that
wraps up an .exe file that is delivered with Visual Studio, which is the MakeZipExe.exe

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 4  Custom Tasks	 121

executable. Before we take a look at the task that will be created for this executable, let’s take
a look at the usage for this tool, as shown in Figure 4-15.

FIGURE 4-15  MakeZipExe.exe usage

This tool has only a few parameters that can be provided but is certainly a useful tool, so it
should pose as a good demonstration task. From the usage of the tool, we can see that we
should create three properties that will be sent to the tool: Zipfile, OutputFile, and Overwrite.
The only required property will be Zipfile, because this is the only required parameter by the
tool itself. Now we can take a look at the following task definition.

public class MakeZipExe : ToolTask
{
 private const string ExeName = "makezipexe.exe";

 public MakeZipExe()
 {
 Overwrite = false;
 }

 [Required]
 public ITaskItem Zipfile { get; set; }
 public ITaskItem OutputFile { get; set; }
 public bool Overwrite { get; set; }

 protected override bool ValidateParameters()
 {
 base.Log.LogMessageFromText("Validating arguments", MessageImportance.Low);

 if (!File.Exists(Zipfile.GetMetadata("FullPath")))
 {
 string message = string.Format("Missing ZipFile: {0}", Zipfile);
 base.Log.LogError(message, null);
 return false;
 }
 if (File.Exists(OutputFile.GetMetadata("FullPath")) && !Overwrite)
 {
 string message = string.Format("Output file {0}, Overwrite false.",
 OutputFile);
 base.Log.LogError(message, null);
 return false;
 }

 return base.ValidateParameters();
 }

122	 Part II  Customizing MSBuild

 protected override string GenerateFullPathToTool()
 {
 string path = ToolPath;
 // If ToolPath was not provided by the MSBuild script try to find it.
 if (string.IsNullOrEmpty(path))
 {
 using (RegistryKey key = Registry.LocalMachine.OpenSubKey(
 @"SOFTWARE\Microsoft\VisualStudio\10.0\Setup\VS"))
 {
 if (key != null)
 {
 string keyValue =
 key.GetValue("EnvironmentDirectory", null).ToString();
 path = keyValue;
 }
 }
 }
 if (string.IsNullOrEmpty(path))
 {
 using (RegistryKey key = Registry.LocalMachine.OpenSubKey(
 @"SOFTWARE\Microsoft\VisualStudio\9.0\Setup\VS"))
 {
 if (key != null)
 {
 string keyValue =
 key.GetValue("EnvironmentDirectory", null).ToString();
 path = keyValue;
 }
 }
 }
 if (string.IsNullOrEmpty(path))
 {

 using (RegistryKey key = Registry.LocalMachine.OpenSubKey
 (@"SOFTWARE\Microsoft\VisualStudio\8.0\Setup\VS"))
 {
 if (key != null)
 {
 string keyValue =
 key.GetValue("EnvironmentDirectory", null).ToString();
 path = keyValue;
 }
 }

 }
 if (string.IsNullOrEmpty(path))
 {
 Log.LogError("VisualStudio install directory not found",
 null);

 return string.Empty;
 }
 string fullpath = Path.Combine(path, ToolName);
 return fullpath;
 }

	 Chapter 4  Custom Tasks	 123

 protected override string GenerateCommandLineCommands()
 {
 StringBuilder sb = new StringBuilder();
 if (Zipfile != null)
 {
 sb.Append(
 string.Format("-zipfile:{0} ",
 Zipfile.GetMetadata("FullPath")));
 }
 if (OutputFile != null)
 {
 sb.Append(
 string.Format("-output:{0} ",
 OutputFile.GetMetadata("FullPath")));
 }
 if (Overwrite)
 sb.Append("-overwrite:true ");

 return sb.ToString();
 }
 protected override string ToolName
 {
 get { return ExeName; }
 }
}

One of the things to take note of here is the usage of ITaskItem. Earlier in this chapter, we
mentioned that you should try to employ objects of this type for properties that refer to
files and directories. This task overrides the abstract ToolName property to return the name
of the file to be executed. Along with this property, three methods—ValidateParameters,
GenerateFullPathToTool, and GenerateCommandLineCommands—are overridden. In most
implementations extending ToolTask, these methods will be found. ValidateParameters is used
to validate the input provided from the calling script and to throw meaningful errors for invalid
input. GenerateFullPathToTool is an abstract method and must be implemented by the concrete
class. GenerateCommandLineCommands is the method that will be called to determine what
values will be passed into the command as parameters. If you have a tool that doesn’t accept any
parameters, then you do not need to implement this method. If you noticed, we did not have to
define the Execute or ExecuteTool methods; this is because ToolTask implements these methods
by calling the other methods declared in this class. Now we can see how this task can be used.

Using this task is no different from using a task that extends Task or directly implements ITask.
You have to declare that you are interested in using the task with the UsingTask statement
and then invoke it in a target. I have created the following example file, MakeZipExe01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

124	 Part II  Customizing MSBuild

 <UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="MakeZipExe"/>

 <Target Name="Demo">
 <MakeZipExe ZipFile="Sample.zip"
 OutputFile="Sample.exe"
 Overwrite="true"
 ToolPath="$(DevEnvDir)">

 </MakeZipExe>
 </Target>
</Project>

In this simple execution of the task, we invoke the MakeZipExe task inside the Demo target.
We specify the zipfile that should be the source for the self-extracting zipfile and where the
output needs to be written to. If you execute the Demo target, you will see that the Sample
.exe file is successfully created. In the results captured in Figure 4-16, I increased the verbosity
of the console logger to “detailed” in order to display the relevant messages.

FIGURE 4-16  MakeZipExe task demonstration

From the image in Figure 4-16, we can see that the MakeZipExe tool was successfully
discovered and invoked with the expected parameters. Also, the result file, Sample.exe,
was correctly created. Now that we have introduced how you can quickly and effectively
create custom MSBuild tasks that wrap command-line tools, we’ll move on to discuss the
little-known topic of debugging MSBuild tasks.

Debugging Tasks
When you write custom MSBuild tasks, you are writing managed code, and hooking into
an existing process, the MSBuild engine. Even though MSBuild tasks are very easy to write,
you will inevitably run into times when they do not behave as you expect. This will be the
case especially when you are writing complex tasks. When this time arrives, you will need to
debug your tasks, which we discuss in this section.

	 Chapter 4  Custom Tasks	 125

When you need to debug your custom MSBuild tasks, you will find that there are primarily
three ways to debug these tasks. Ultimately, the goal when debugging tasks is to have all the
tools available when one is debugging .NET applications. We should be able to use Visual
Studio to debug custom tasks. The following are three ways that you can debug tasks:

	 1.	 Examine the content of the log.

	 2.	 Use Debugger.Launch() to prompt for debugger attachment.

	 3.	 Start MSBuild as an external program, and debug normally.

The first technique, examining the log, is obviously the simplest, but it will also provide the
least amount of information. Also, it is not an interactive process; you simply examine the
log file that was generated. You can increase the number of messages that your task logs to
discover more about its behavior, and you can increase the verbosity of the loggers. If you
set the verbosity to be “diagnostic,” then all properties and items are dumped by the logger.

We will now discuss the second option, the Debugger.Launch() method. When you are trying
to debug an MSBuild task, one technique that I have seen employed is to add the statement
System.Diagnostics.Debugger.Launch(). Typically, you will place this statement inside
the Execute method. When this statement is encountered, you will be prompted about
attaching a debugger to the process. After this, you can start executing the build script
that you would like to debug that invokes the task you are trying to debug. You should be
prompted with a dialog similar to the one shown in Figure 4-17.

FIGURE 4-17  Debugger selection dialog

From this dialog, you can choose Visual Studio as the debugger. Following this, you can set
breakpoints, step into methods, and all the other benefits that you are accustomed to except

126	 Part II  Customizing MSBuild

for Edit and Continue. This is a great technique to employ, but it has at least the following
drawbacks:

n	 You have to change the task (adding a Debugger.Launch() statement).
n	 There is no support for Edit and Continue.

The way to get around these issues is to employ the last method, which is starting MSBuild as
an external program. Once you create a task and a build script that exercises the task, you can
use Visual Studio to start the MSBuild.exe executable on the specified build script and to use the
debugger to debug it. This is similar to but not exactly the same as the previous approach. In the
Debug pane of the Project properties, you will see an option called Start External Program; this is
the option that we will use. I will show you how to achieve this by debugging a task contained in
the samples, the MetadataExample task that we discussed earlier.

Normally when I am writing tasks, I create a set of sample MSBuild scripts that can be used to
exercise and demonstrate the task usage of the task. If it is possible, I place these samples in the
project that contains the task itself. The reason for this is that it allows me to be able to maintain
the task and the samples in one place. Another reason is that it makes it a little simpler to debug
the tasks. For sample scripts I set the files to be copied to the output directory. Another reason
that you will want to do so is so that you can execute the MSBuild scripts in their output folders
and know that you are using the latest version of the task. In the samples, this folder is named
Samples. This is why you have seen UsingTask statements such as:

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.dll"
 TaskName="AspnetRegsql"/>

In this example, we know that we will be executing this script from the output directory
and it is contained in a directory named Samples. So the Example.Tasks.dll assembly is
located in the directory above the current project; this is why I use the ‘..’ in the AssemblyFile
attribute. Another advantage of taking this approach is that if your sample scripts need
dummy files to go along with them, you can place them all inside that folder and set the
Copy To Output Directory option appropriately. You can set the attribute directly inside
Visual Studio in the Properties grid. You can see this in Figure 4-18.

FIGURE 4-18  Copy To Output Directory

	 Chapter 4  Custom Tasks	 127

In this figure, I have set the value of Copy To Output Directory to be Copy If Newer, but you could
also set it to Copy Always; either should work. Now we can debug the MetadataExample task.
I will use the following MetadataExample01.proj file to demonstrate this.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <UsingTask AssemblyFile="..\Examples.Tasks.dll"
 TaskName="MetadataExample"/>

 <PropertyGroup>
 <ConfigFileRoot>$(MSBuildProjectDirectory)\sampleConfigFiles\</ConfigFileRoot>
 </PropertyGroup>
 <ItemGroup>
 <Server Include="$(ConfigFileRoot)server1.app.config">
 <Name>server1</Name>
 <DropLocation>D:\Drops\</DropLocation>
 </Server>
 <Server Include="$(ConfigFileRoot)server2.app.config">
 <Name>server2</Name>
 <DropLocation>E:\Builds\Drops\</DropLocation>
 </Server>
 <Server Include="$(ConfigFileRoot)server3.app.config">
 <Name>server3</Name>
 <DropLocation>D:\Data\DropDir\</DropLocation>
 </Server>
 <Server Include="$(ConfigFileRoot)server4.app.config">
 <Name>server4</Name>
 <DropLocation>D:\Projects\DropLocation\</DropLocation>
 </Server>
 </ItemGroup>

 <Target Name="Demo">
 <MetadataExample ServerList="@(Server)">
 <Output ItemName="ServerIpList" TaskParameter="Result" />
 </MetadataExample>

 <Message Text="ServerIpList: @(ServerIpList)"/>

 <Message
 Text="Server: %(ServerIpList.ServerName)
 %(ServerIpList.DropLoc)
 %(ServerIpList.IpAddress)"/>
 </Target>
</Project>

For the project that contains this task (in this case, Examples.Tasks), go to the Properties page for
the project by selecting Properties from the Project menu. On the Debug tab, we have to specify
that we want to invoke MSBuild, which will load our assembly when it detects the UsingTask
statement referencing it. The following list describes three settings that you should be aware of:

n	 Start external program  You should select this value and provide the full path to
the msbuild.exe file. Make sure to pick the correct version of MSBuild that you are
intending to use. These files are located in the directory %Windows%\Microsoft.

128	 Part II  Customizing MSBuild

NET\Framework\v3.5\ and %Windows%\Microsoft.NET\Framework\v4.0.30319\ for
MSBuild 3.5 and MSBuild 4.0, respectively.

n	 Command line arguments  Here, you should place the path to the MSBuild sample file
that invokes the task that you are trying to debug. Also, you can provide any properties
or other switches to the msbuild.exe executable. I typically also attach a FileLogger
item in case I might need to examine it to determine what was happening before or
after the task was invoked. For instance, you may need to examine the log to determine
what other targets were executed.

n	 Working directory  You should set this to the full path where the sample script lies,
which should be under the output directory of the tasks’ project itself.

You should note that these values are not stored in the project file but in the user file, so if
you are working in a team, it should not affect any of the others working with you. You can
see the value that I set this to for the MetadataExample task in Figure 4-19.

FIGURE 4-19  Project properties

Here, I’ve highlighted the areas listed previously. In this example, I am using MSBuild 4.0 on
the MetadataExample01.proj file. After you have set these values correctly, all you have to do
is set breakpoints where you want to stop and then hit F5! From there, you can step through
the task and use all the tools that Visual Studio makes available to you.

Now we have covered everything you need to know to efficiently and effectively write
custom MSBuild tasks. In this chapter, we have discussed getting started writing tasks,
handling task input and output, what task base classes are available, debugging tasks,
and more. Writing custom MSBuild tasks is one way to extend MSBuild itself; the other way is
to write custom loggers. In the next chapter, we will cover custom loggers in detail. Following
that chapter, we will start the MSBuild cookbook section.

		 129

Chapter 5

Custom Loggers
We have identified that there are two ways to extend MSBuild: by custom tasks and custom
loggers. In the previous chapter, we covered custom tasks; in this chapter, we will discuss
custom loggers. We’ll start by discussing what loggers are available by default and how
they can be used. After that, we’ll take a look at what it takes to write and use a new custom
logger. Now let’s get started.

Overview
One of the most important aspects of a build tool is its logging support. You can create the
best build tool ever, but if the logging mechanism doesn’t meet the needs of consumers,
then it will never be used. MSBuild has a great deal of flexibility with respect to loggers.
There are two loggers that are shipped with MSBuild: the console logger and the file
logger. We will cover these two loggers in the next two sections. A logger is an object that
can accept and respond to build events. For example, throughout this book we have been
sending messages to the loggers using the Message task.

The Message task has two properties: Text and Importance. The Text property contains
the message that is to be logged, and the Importance a value indicating the priority of the
message. When this task is executed, the MSBuild engine will raise an event on each attached
logger sending both pieces of information. Individual loggers are allowed to interpret how
messages with high importance versus those with low importance are to be handled. This
importance level, along with the verbosity setting for the logger, typically determines how
the message is logged. Each logger can have its own verbosity setting, which plays a role in
what messages are logged and how. In the case of the console logger, messages with high
importance are highlighted, whereas those with low importance are suppressed when the
verbosity setting is set to normal, the default value.

We can now take a look at how different messages are passed through to the console logger
using the Message task. The next block contains the content of the Logging01.proj project file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <Target Name="Demo">
 <Message Text="high importance message" Importance="high" />
 <Message Text="normal importance message" Importance="normal" />
 <Message Text="low importance message" Importance="low" />
 </Target>

</Project>

130	 Part II  Customizing MSBuild

In this project file, the single target, Demo, contains three calls to the Message task. Each task
has a different setting for the Importance attribute. If you execute the command msbuild
Logging01.proj /t:Demo, the result will be what is shown in Figure 5-1.

FIGURE 5-1  Message importance demonstration 1

In Figure 5-1, you will see that only the messages with high importance and normal
importance are shown. The message with a low-importance level is suppressed. This is
a decision made by the console logger, based on the importance of the message as well as the
verbosity setting of the logger. Also, notice that the message with high importance is printed
in a more noticeable color. In the next section, we will cover the console logger in detail. For
now let’s just say that the extra command line switch /clp:v=d increases the verbosity
setting of the console logger. If you execute the command msbuild Logging01.proj
/t:Demo /clp:v=d, then the result would be what is shown in Figure 5-2.

FIGURE 5-2  Message importance demonstration 2

From the results shown in Figure 5-2, you can see that there is much more information
logged to the console compared to Figure 5-1. Not only is the low importance message
logged but much more information as well. We will now discuss the two loggers that are
shipped with MSBuild.

Console Logger
When you invoke msbuild.exe, the console logger will be attached by default; you can
disable this by using the /noconsolelogger (/noconlog) switch. You can set the verbosity
of the console logger using the /verbosity (/v) switch when using msbuild.exe. The
defined values for the verbosity are shown in Table 5-1.

	 Chapter 5  Custom Loggers	 131

TABLE 5-1  Logger Verbosity
Long Name Short Name
Quiet q

Minimal m

Normal n

Detailed d

Diagnostic diag

When you are specifying the verbosity for either of these loggers, you can use the long
name or the short name. A common practice is to set the verbosity of the console logger
to Minimal and attach file loggers with higher verbosities. That way the console shows the
progress and errors/warnings, and a log file is available for diagnosis. The console logger
accepts only a few parameters and they are outlined in Table 5-2. The parameters are passed
by the /consoleloggerparameters (/clp) switch.

TABLE 5-2  Console Logger Parameters
Name Description
PerformanceSummary When passed as a parameter, the console logger will output messages

that show the amount of time spent building tasks, targets, and projects.
If you are trying to profile long running builds, this may be very useful.

NoSummary When passed, this suppresses the errors and warnings summary that is
typically displayed at the end of the log.

NoItemAndPropertyList Indicates to not display the values for properties and items that are
typically shown at the start of the build log when using the diagnostic
verbosity setting.

Verbosity Overrides the verbosity for the console logger.

Summary Shows errors and warnings summary at the end of the log.

ErrorsOnly Shows only errors.

WarningsOnly Shows only warnings.

ShowCommandLine Shows TaskCommandLineEvent messages. This is raised when the
TaskLoggingHelper.LogCommandLine method is invoked.

ShowTimestamp Displays a timestamp to every message.

ShowEventId Displays the event ID for started, finished, and message events.

ForceNoAlign Does not align the text to the size of the console buffer.

DiableMPLogging Disables the multiprocessor logging style of output when running in
non-multiprocessor mode.

EnableMPLogging Enables the multiprocessor logging style even when running in
non-multiprocessor mode. This logging style is on by default.

DisableConsoleColor* When you provide this switch, all text written to the console will use the
default color.

*  denotes parameters new with MSBuild 4.0.

132	 Part II  Customizing MSBuild

When you are using the console logger, you will typically not need to pass any of these
parameters with the exception of the verbosity parameter. In the previous section, the
command msbuild Logging01.proj /t:Demo /clp:v=d was demonstrated to increase the
verbosity of the console logger. Now we know that the /clp:v=d switch sets the verbosity of
the console logger to detailed. You can pass additional parameters by separating them with
a semicolon. For example, you can extend the previous command to include event IDs and
a performance summary by using msbuild Logging01.proj /t:Demo /nologo /clp:v=d;
ShowEventId;Summary;PerformanceSummary. Now let’s take a look at the file logger.

File Logger
The other logger that is shipped with MSBuild is the file logger, which logs messages to
a file. With MSBuild 4.0, a set of command-line switches are provided to attach a file logger.
In order to attach a file logger, you can use the /fl switch and the /flp switch to specify its
parameters, similar to the /clp switch. For example, you can use the command msbuild
Logging01.proj /fl to attach a file logger without specifying any parameters. You can also
use /fl[n] and /flp[n], where n ranges from 1 to 9 in order to attach additional file loggers.
When you use these switches, /flp1 corresponds to /fl1 and /flp4 to /fl4. If you specify
parameters using /flp[n], then the /fl[n] is implied, so it is optional; so if you pass /flp4, then
you do not have to pass /fl4 as well. In case you were wondering what the difference is
between using a file logger and piping the content of the console to a file, it’s mainly that
you can attach multiple file loggers.

The command msbuild Logging01.proj /fl /fl1 /fl2 /fl3 will attach four file
loggers. These will produce four different logs: msbuild.log, msbuild1.log, msbuild2.log, and
msbuild3.log. When you don’t specify a file name, then the default is msbuild[n].log, where
[n] corresponds to /fl[n]. Since we didn’t specify any parameters, they would all log the same
content. We will cover the available parameters after we discuss the MSBuild 2.0 syntax.

If you are using .NET 2.0, you have to use the /logger (/l) switch to attach the file
logger. The syntax for that is switch is /l:<LoggerClassName>,
<LoggerAssembly>[;LoggerParameters].

The values in that syntax are described as:

n	 LoggerClassName  The name of the logger class. A partial or full namespace is
acceptable but not required.

n	 LoggerAssembly  The assembly that contains the logger. This can be either the path
to the assembly or the assembly name.

n	 LoggerParameters  The string that should be passed to the logger as the value for
the Parameters property. This is passed to the logger exactly as declared. These must
be interpreted by the logger itself.

	 Chapter 5  Custom Loggers	 133

In order to attach the file logger in MSBuild 2.0, you will use the syntax
/l:FileLogger,Microsoft.Build.Engine[,LoggerParameters]. The LoggerParameters
value is an optional string that will be passed to the file logger. Here is an example of
building the Logging01.proj with a file logger attached to the build process: msbuild
Logging01.proj /l:FileLogger,Microsoft.Build.Engine.

When you are using MSBuild 2.0, the default verbosity of the file logger is Normal; in
MSBuild 3.5 and later, it is Detailed. In order to change the verbosity level, you can pass
it as a value in the parameters. We will discuss this after we take a look at the available
parameters. Now that we have described how to attach the file logger to a build process,
take a look at all the parameters that can be sent to the file logger, as described in Table 5-3.

TABLE 5-3  FileLogger Parameters
Parameter Name Description
Append If a log file already exists, it will be appended to instead of overwritten. You

do not need to specify a value for this parameter; its existence will set it. In
fact, if you specify a value, even false, it will be ignored!

Encoding Used to specify the encoding that will be used to write the log file. This is
interpreted by the System.Text.Encoding.GetEncoding(string) method.
The default value is the default encoding for the system.

Logfile Specifies the path to where the log file will be written.
The default value is msbuild.log.

Verbosity Used to specify the value for the verbosity of the logger. This uses the same
values as mentioned previously.
The default value is Normal for MSBuild 2.0 and Detailed for MSBuild 3.5.

Note  Along with these values, all parameters for ConsoleLogger can be provided as well, but
there are some differences in default values. For example, text coloring is off as well as word
wrapping.

You can specify the parameters using the /flp switch. You can set the verbosity to diagnostic
by the command msbuild Overview01.proj /fl /flp:v=diag. The same for 2.0 syntax is
msbuild Overview01.proj /l:FileLogger,Microsoft.Build.Engine;v=diag.

Building on the previous example, the command to attach a file logger that logs in
diagnostic mode to a file named overview.log would be msbuild Overview01.proj /fl
/flp:Verbosity=diag;logfile=overview.log in MSBuild 3.5 syntax. In MSBuild 2.0
syntax, that would be msbuild Overview01.proj /l:FileLogger,Microsoft.Build
.Engine; V=diag;logfile=overview.log. You should note that when you are using
MSBuild, you are free to attach any number of loggers as you desire; you can even attach
more than one instance of the same logger. For example, a common scenario is to attach
a file logger reading only errors and warnings, minimal verbosity, and another at a higher
verbosity. This is a good idea because the log on minimal verbosity can be used to quickly

134	 Part II  Customizing MSBuild

determine where build errors occur, and the other(s) can be used to determine how to
resolve them. The syntax to use for that would be msbuild Overview01.proj
/flp:v=m;logfile=overview.minimal.log /flp1:v=d;logfile=overview.detailed

.log. Now that we have discussed the preexisting loggers, let’s move on to discuss creating
custom loggers.

ILogger Interface
Before we can discuss how to create new loggers, we must first take a look at what loggers
are. A logger is any object that implements the ILogger (Microsoft.Build.Framework.ILogger)
interface. This is a simple interface; it contains only two properties and two methods. The
class diagram for this interface is shown in Figure 5-3.

FIGURE 5-3  ILogger interface

The Verbosity property determines the level of detail that should be included in the log.
If the verbosity is set by using the /verbosity (/v) switch on msbuild.exe, then this value is
passed to each attached logger, but it can be overridden by parameters passed to individual
loggers as well. The values for this are (in the order of least detail to most): Minimal, Quiet,
Normal, Detailed, and Diagnostic. It is up to the writer of the logger to interpret what these
values mean and how they change what events are being logged. MSBuild doesn’t use
verbosity at all itself. It just passes it on to loggers. (Some loggers also accept verbosity just
for them, like the console and file loggers.) The loggers can ignore it completely. Also, you
should know that the build (that is, the MSBuild files) cannot tell what the verbosity is and
modify what is logged based on that.

The Parameters property is a string property that contains all the parameters that are sent
to the logger. It is also the responsibility of the logger to parse the string for individual
values. Typically, the string that is passed is parsed by loggers as key-value pairs separated by
a semicolon. Loggers do not currently have the strongly typed properties interface that tasks
do. Instead, they are passed the properties string directly and have to parse it themselves.
We will now discuss creating custom loggers.

	 Chapter 5  Custom Loggers	 135

Creating Custom Loggers
There are three ways to create a new custom logger:

	 1.	 Implement the ILogger interface

	 2.	 Extend the abstract Microsoft.Build.Utilities.Logger class

	 3.	 Extend an existing logger

In Figure 5-3, we showed the ILogger interface, which all loggers must implement. The
abstract Logger class has been provided to serve as a base class for new loggers. This class
implements all the requirements of the ILogger interface except overriding the Initialize
method, which is left to subclasses. The third option is most likely the simplest; all you have
to do is extend an existing logger and override a specific behavior. We will see how to utilize
all three methods in this chapter.

We will first take a look at implementing the ILogger interface. We previously discussed
the Parameters and Verbosity properties, so we will now look at the Initialize method.
The signature for this method is void Initialize(Microsoft.Build.Framework.
IEventSource eventSource). This method is called by the MSBuild engine before the build
process begins. The passed-in object, EventSource, can be used to register build events that
the logger is interested in. The event source is a class that contains a number of events, one
per logging message type. By registering an event handler for these events, we get access to
the event when it is raised by the MSBuild engine. Those events are summarized in Table 5-4.

TABLE 5-4  IEventSource Build Events
Name Description
MessageRaised Raised when a build registers a message.

WarningRaised Raised when a warning occurs.

ErrorRaised Raised when a build error occurs.

BuildStarted Raised when the build starts.

BuildFinished Raised when the build is completed.

ProjectStarted Raised when a project is starting to build.

ProjectFinished Raised when a project is finished building.

TargetStarted Raised when a target is started.

TargetFinished Raised when a target is finished building.

TaskStarted Raised when a task is starting to execute.

TaskFinished Raised when a task is finished executing.

AnyEventRaised Raised when any build event occurs. In other words, all events raise
their specific handler, and then raise an AnyEvent. If you have a simple
logger, you can just subscribe to AnyEventRaised only.

136	 Part II  Customizing MSBuild

Name Description
CustomEventRaised Raised when a custom build event occurs. This is used when

an event doesn’t fall into any other category; for instance, the
ExternalProjectStarted event. This is used in the following way:
	 1.	 The user derives from CustomBuildEventArgs to define a new

event args
	 2.	 Their tasks can fire it as desired.
	 3.	 MSBuild will route it.
This exists so that you can pass arbitrary information to your logger.
For this to work, you must follow the following rules:

■	 The class must be serializable.

■	 Implementation should be loadable by any node; that is, be
careful if you put it in the same assembly as a task because
one node could use AssemblyFile during the build, so the
event args are found, but the other node uses AssemblyName
and the type may not be found.

StatusEventRaised Raised when a status event occurs. Status events include build
started, build finished, target started, target finished, and so on.

Custom loggers can attach handlers to any number of these events. Each of these event
handlers passes a specific subclass of BuildEventArgs. For example, a TargetStarted event will
be passed a BuildTargetStarted event argument. The class diagram for this class is shown in
Figure 5-4.

FIGURE 5-4  BuildEventArgs class diagram

All the event arguments that are passed to each individual event handler will contain at least
this information; some will contain even more data. For example the BuildWarningEventArgs
object contains additional information that helps identify where in the build script the
warning was raised.

	 Chapter 5  Custom Loggers	 137

The samples contain the complete source to the IndentFileLogger. This is a very simple
logger that logs messages with indentation depending on when the message was received.
This is implemented using an int that keeps track of the current indentation. When
a started event (for example, ProjectStarted or TargetStarted) is encountered, the indent
level is increased. Conversely, when a finished event is encountered, then the indent level
is decreased. The reason for discussing this logger is not the implementation, but how the
results are logged to demonstrate the order in which these events are raised. When building
the sample solution with this logger attached, the first section of the log is shown as follows.
Note that some lines were truncated to fit this page.

BuildStarted:Build started.
 ProjectStarted:Project "InsideMSBuild.sln" (default targets):
 BuildMessage:Building with tools version "2.0".
 TargetStarted:Target "ValidateSolutionConfiguration" . . .
 BuildMessage:Task "Error" skipped, due to false condition; . . .
 BuildMessage:Task "Warning" skipped, due to false condition; . . .
 BuildMessage:Using "Message" task from assembly . . .
 TaskStarted:Task "Message"
 BuildMessage:Building solution configuration . . .
 TaskFinished:Done executing task "Message".
 TargetFinished:Done building target . . .
 TargetStarted:Target "ValidateToolsVersions" . . .
 BuildMessage:Task "Error" skipped, due to false condition; . . .
 TargetFinished:Done building target "ValidateToolsVersions" . . .
 TargetStarted:Target "ValidateProjects" . . .
 BuildMessage:Task "Message" skipped, due to false condition; . . .
 .
 .
 .
 TargetFinished:Done building target "ValidateProjects" . . .
 TargetStarted:Target "Build" . . .
 BuildMessage:Using "MSBuild" task from assembly . . .
 TaskStarted:Task "MSBuild"
 BuildMessage:Global Properties:
 BuildMessage: BuildingSolutionFile=true

IndentFileLogger starts each log message with the event type that raised it. From the
preceding output, you can see the order in which these events are raised. BuildStarted will
be followed by ProjectStarted, then TargetStarted and any task-related events inside of that.
Messages, errors, warnings, and status events can be raised at any point during the build
process. We will move on to discuss creating custom loggers by taking a look at a very simple
logger, HelloLogger.

HelloLogger will not accept any parameters, and it will ignore the Verbosity setting. We will
leave that for other examples later in this chapter. The Initialize method for this logger is
shown as follows.

 public void Initialize(IEventSource eventSource)
 {
 // always writes to a log with this name

138	 Part II  Customizing MSBuild

 string logFile = "hello.log";
 if (File.Exists(logFile))
 { File.Delete(logFile); }

 // initialize the writer
 writer = new StreamWriter(logFile);
 writer.AutoFlush = true;
 //this writer must be closed in the Shutdown() method

 // register to the events you are interested in here
 eventSource.AnyEventRaised += AnyEventRaised;
 eventSource.BuildStarted += BuildStarted;
 eventSource.BuildFinished += BuildFinished;
 eventSource.CustomEventRaised += CustomEvent;
 eventSource.ErrorRaised += ErrorRaised;
 eventSource.MessageRaised += MessageRaised;
 eventSource.ProjectStarted += ProjectStarted;
 eventSource.ProjectStarted += ProjectFinished;
 eventSource.StatusEventRaised += StatusEvent;
 eventSource.TargetStarted += TargetStarted;
 eventSource.TargetFinished += TargetFinished;
 eventSource.TaskStarted += TaskStarted;
 eventSource.TaskFinished += TaskFinished;
 eventSource.WarningRaised += WarningRaised;
 }

In this method, we first initialize the writer to the file that will contain the contents of the log.
Following that, we attach an event handler to all the available build events. Even though each
event is assigned a distinct handler in this logger, each delegate performs the same operation:
writer.WriteLine(GetLogMessage(e));. In the next code snippet, you can see the definition
for the ILogger parameters, the Shutdown method, and a couple of helper methods. From the
event handlers, only the BuildStarted event handler is shown; the other event handlers are
implemented similarly. The full source is available with the code samples for this text.

void BuildStarted(object sender, BuildStartedEventArgs e)
{ writer.WriteLine(GetLogMessage("BuildStarted",e)); }

/// <summary>
/// This is set by the MSBuild engine
/// </summary>
public string Parameters
{ get; set; }

/// <summary>
/// Called by MSBuild engine to give you a chance to
/// perform any cleanup
/// </summary>
public void Shutdown()
{
 // close the writer
 if (writer != null)
 {
 writer.Flush();

	 Chapter 5  Custom Loggers	 139

 writer.Close();
 writer = null;
 }
}

public LoggerVerbosity Verbosity
{ get; set; }

protected string GetLogMessage(string eventName, BuildEventArgs e)
{
 if (string.IsNullOrEmpty(eventName)){ throw new ArgumentNullException("eventName"); }

 string eMessage = string.Format("{0}\t{1}\t{2}",
 eventName,
 FormatString(e.Message),
 FormatString(e.HelpKeyword)
);
 return eMessage;
}

protected string FormatString(string str)
{
 string result = string.Empty;
 if (!string.IsNullOrEmpty(str))
 {
 result = str.Replace("\t", " ")
 .Replace("\r\n", "\r\n\t\t\t\t");
 }
 return result;
}

From the previous snippet, we can see that the Verbosity and Parameters properties are
implemented even though they are not used. Inside the Shutdown method is where the
writer to the log file is closed out. The only other elements in this class are a couple of helper
methods to get the log message from a build event argument, as well as a method to format
the message for the logger. From the folder InsideMSBuild\Ch05\bin\Debug\Samples\, the
command to build the Unittest.Proj1.csproj with HelloLogger attached would be

msbuild.exe . .\. .\. .\unittest\Unittest.Proj1\Unittest.Proj1.csproj
/l:HelloLogger,. .\Examples.Loggers.dll.

If you execute this command, you will see a file, hello.log, written to the working directory.
This is the log created by this logger. A portion of this log is shown next with some of the
lines truncated.

BuildStarted	 Build started.	
StatusEvent	 Build started.	
AnyEventRaised	 Build started.	
MessageRaised	 Overriding target "GetFrameworkPaths" in project . . .
AnyEventRaised	 Overriding target "GetFrameworkPaths" in project . . .
MessageRaised	 Overriding target "SatelliteDllsProjectOutputGroup" . . .
AnyEventRaised	 Overriding target "SatelliteDllsProjectOutputGroup" . . .
ProjectStarted	 Project "Unittest.Proj1.csproj" (default targets):	

140	 Part II  Customizing MSBuild

ProjectFinished	 Project "Unittest.Proj1.csproj" (default targets):	
StatusEvent	 Project "Unittest.Proj1.csproj" (default targets):	
AnyEventRaised	 Project "Unittest.Proj1.csproj" (default targets):	
MessageRaised	 Building with tools version "4.0".	
AnyEventRaised	 Building with tools version "4.0".	
TargetStarted	 Target "_CheckForInvalidConfigurationAndPlatform" in file . . .
StatusEvent	 Target "_CheckForInvalidConfigurationAndPlatform" in file . . .
AnyEventRaised	 Target "_CheckForInvalidConfigurationAndPlatform" in file . . .
MessageRaised	 Task "Error" skipped, due to false condition; . . .
AnyEventRaised	 Task "Error" skipped, due to false condition; . . .
MessageRaised	 Task "Warning" skipped, due to false condition; . . .
AnyEventRaised	 Task "Warning" skipped, due to false condition; . . .
MessageRaised	 Using "Message" task from assembly . . .
AnyEventRaised	 Using "Message" task from assembly . . .
TaskStarted	 Task "Message"	
StatusEvent	 Task "Message"	
AnyEventRaised	 Task "Message"	
MessageRaised	 Configuration=Debug	
AnyEventRaised	 Configuration=Debug	
TaskFinished	 Done executing task "Message".	

From the log file, we can see that HelloLogger successfully logged the build process as
expected. Now that we’ve shown an example of creating a completely new MSBuild logger,
we’ll move on to discuss employing one of the other methods of creating custom loggers
mentioned previously.

Extending the Logger Abstract Class
The definition for an MSBuild logger is that it implements the ILogger interface. You don’t
need to implement this interface directly; you can extend the Logger abstract class instead.
When you extend this class, you need to provide the definition only for the Initialize method.
The class diagram for the Logger class is shown in Figure 5-5.

FIGURE 5-5  Logger class diagram

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 5  Custom Loggers	 141

From Figure 5-5, you can see that there are three helper methods that can be used to help
the logging process. Those methods are summarized in Table 5-5.

TABLE 5-5  Logger Methods
Name Description
FormatErrorEvent This can be used to format a BuildErrorEventArgs object into a

readable string.

FormatWarningEvent This can be used to format a BuildWarningEventArgs object into a
readable string.

IsVerbosityAtLeast Can be used to determine if the current verbosity setting of the
logger is greater than the value passed in.

We will now create a simple logger that extends the Logger class and that makes use of
both Verbosity and Parameters. This logger builds on the previous example and is called
HelloLogger2.

The HelloLogger2 logger will parse the parameters as well as use the verbosity setting to
determine what messages should be placed in the log file. In this logger, the Initialize method
has changed a little bit; the most significant change is that the method InitializeParameters is
called. The next snippet contains this method and a few supporting methods. In the snippet,
I have bolded a few key elements that we will discuss.

public override void Initialize(IEventSource eventSource)
{
 // parse the values passed in as parameters
 InitializeParameters();

 if (string.IsNullOrEmpty(LogFile))
 {
 //apply default log name here
 LogFile = "hello2.log";
 }

 if (File.Exists(LogFile))
 { File.Delete(LogFile); }

 // initialize the writer
 writer = new StreamWriter(LogFile);

 // register to the events you are interested in here
 eventSource.BuildStarted += BuildStarted;
 eventSource.BuildFinished += BuildFinished;
 eventSource.CustomEventRaised += CustomEvent;
 eventSource.ErrorRaised += ErrorRaised;
 eventSource.MessageRaised += MessageRaised;
 eventSource.ProjectStarted += ProjectStarted;
 eventSource.ProjectStarted += ProjectFinished;
 eventSource.TargetStarted += TargetStarted;
 eventSource.TargetFinished += TargetFinished;

142	 Part II  Customizing MSBuild

 eventSource.TaskStarted += TaskStarted;
 eventSource.TaskFinished += TaskFinished;
 eventSource.WarningRaised += WarningRaised;
}
/// <summary>
/// Read values form <c>Parameters</c> string and populate
/// other properties.
/// </summary>
protected virtual void InitializeParameters()
{
 try
 {
 if (!string.IsNullOrEmpty(Parameters))
 {
 // Parameters string should be in the format:
 // Prop1=value1;Prop2=value2;Prop3=value;. . .
 foreach (string paramString in
 this.Parameters.Split(new char[] {';'}))
 {
 // now we have Prop1=value1
 string[] keyValue =
 paramString.Split(new char[] {'='});
 if (keyValue == null || keyValue.Length < 2)
 {
 continue;
 }
 // keyValue[0] = Prop1
 // keyValue[1] = value1
 this.ProcessParam(keyValue[0].ToLower(), keyValue[1]);
 }
 }
 }
 catch (Exception e)
 {
 throw new LoggerException(
 string.Format(
 "Unable to initialize parameters; message={0}",
 e.Message),
 e);
 }
}

/// <summary>
/// Method that will process the parameter value.
/// If either <code>name</code> or
/// <code>value</code> is empty then this parameter
/// will not be processed.
/// </summary>
/// <param name="name">name of the paramater</param>
/// <param name="value">value of the parameter</param>
protected virtual void ProcessParam(string name, string value)
{
 try
 {
 if (!string.IsNullOrEmpty(name) &&

	 Chapter 5  Custom Loggers	 143

 !string.IsNullOrEmpty(value))
 {
 switch (name.Trim().ToUpper())
 {
 case ("LOGFILE"):
 case ("L"):
 this.LogFile = value;
 break;

 case ("VERBOSITY"):
 case ("V"):
 ProcessVerbosity(value);
 break;
 }
 }
 }
 catch (Exception e)
 {
 string message = string.Format(
 "Unable to process parameters;[name={0}, value={1}] message={2}",
 name, value, e.Message);
 throw new LoggerException(message, e);
 }
}

/// <summary>
/// This will set the verbosity level from the parameter
/// </summary>
/// <param name="level"></param>
protected virtual void ProcessVerbosity(string level)
{
 if (!string.IsNullOrEmpty(level))
 {
 switch (level.Trim().ToUpper())
 {
 case ("QUIET"):
 case ("Q"):
 this.Verbosity = LoggerVerbosity.Quiet;
 break;

 case ("MINIMAL"):
 case ("M"):
 this.Verbosity = LoggerVerbosity.Minimal;
 break;

 case ("NORMAL"):
 case ("N"):
 this.Verbosity = LoggerVerbosity.Normal;
 break;

 case ("DETAILED"):
 case ("D"):
 this.Verbosity = LoggerVerbosity.Detailed;
 break;

144	 Part II  Customizing MSBuild

 case ("DIAGNOSTIC"):
 case ("DIAG"):
 this.Verbosity = LoggerVerbosity.Diagnostic;
 break;
 }
 }
}

The first highlighted line is found inside the InitializeParameters method, which calls the
ProcessParam method for each parameter passed in. Once the Parameters string has been
parsed, we have to interpret what it contains. The InitializeParameters method splits the
string into an array of strings containing key-value pairs. As mentioned previously, the format
of the Parameters string is entirely up to the logger. By convention, I have chosen to separate
elements by a semicolon and to specify name-values in the format <name>=<value>. Unless
you have a specific requirement that would not allow this, you should do the same.

The next highlight is on the usage of the LoggerException. This is a special type of exception
that the MSBuild engine specifically handles. MSBuild loggers should throw this type of
exception instead of any other exceptions. When this exception is thrown, it gives the
MSBuild engine a chance to gracefully shut down the process. Once this exception is caught,
the Shutdown method on all attached loggers will be called before the msbuild.exe process
exits. If any other type of exception is thrown, MSBuild considers this a bug in the logger
and logs the call stack to the console to help you to fix the bug.

The final item highlighted is the ProcessVerbosity method. This method is called inside the
ProcessParam method to initialize the value for the verbosity. If a logger supports its own
verbosity setting, one other than the current verbosity for the entire build, then it must
do so through the parameters string. If you remember from the previous discussion, the
default verbosity setting is determined from the /verbosity (/v) switch for msbuild.exe.
This logger is able to have a different verbosity if a Verbosity (V) value is passed through the
parameters string. If you create your own logger, you should be able to reuse the definition
of this method to take care of this parameter for you.

We have now discussed how the parameters are parsed, so we can take a look at how the
verbosity influences what log messages are sent to the log file. I based the types of messages
that were being logged on messages that the console logger logs. There are two types of
messages that you always want to log: Errors and Warnings. The next code snippet contains
the handlers for these two events, as well as the BuildStarted and BuildFinished handlers.

void ErrorRaised(object sender, BuildErrorEventArgs e)
{
 // always write out errors
 writer.WriteLine(GetLogMessage("ErrorRaised", e));
}
void WarningRaised(object sender, BuildWarningEventArgs e)
{
 // always log warnings

	 Chapter 5  Custom Loggers	 145

 writer.WriteLine(GetLogMessage("WarningRaised", e));
}
void BuildStarted(object sender, BuildStartedEventArgs e)
{
 if (IsVerbosityAtLeast(LoggerVerbosity.Normal))
 {
 writer.WriteLine(GetLogMessage("BuildStarted", e));
 }
}
void BuildFinished(object sender, BuildFinishedEventArgs e)
{
 if (IsVerbosityAtLeast(LoggerVerbosity.Normal))
 {
 writer.WriteLine(GetLogMessage("BuildFinished", e));
 }
}

In the previous snippet, you can see that the errors and warnings are always written to the log,
as previously mentioned. The BuildStarted and BuildFinished events are not always written to
the log. These messages should be passed only if the verbosity is set to Normal or higher. This
is accomplished by the bold “if” statements. If the events are paired, for instance BuildStarted
and BuildFinished, you should make sure that the required verbosity for both messages is the
same. In the previous snippet, both handlers check to see that the verbosity is set to Normal
or higher. Of all the event handlers in this logger, the only handler that is a bit different is the
MessageRaised event. The definition for that handler is shown in the next snippet.

void MessageRaised(object sender, BuildMessageEventArgs e)
{
 bool logMessage = false;

 switch (e.Importance)
 {
 case MessageImportance.High:
 logMessage = IsVerbosityAtLeast(LoggerVerbosity.Minimal);
 break;
 case MessageImportance.Normal:
 logMessage = IsVerbosityAtLeast(LoggerVerbosity.Normal);
 break;
 case MessageImportance.Low:
 logMessage = IsVerbosityAtLeast(LoggerVerbosity.Detailed);
 break;
 default:
 throw new LoggerException(
 string.Format(
 "Unrecognized value for MessageImportance: [{0}]",
 e.Importance));
 }

 if (logMessage)
 {
 writer.WriteLine(GetLogMessage("MessageRaised", e));
 }
}

146	 Part II  Customizing MSBuild

The reason why this event handler is different from the others is that the
BuildMessageEventArgs has an importance associated with it. Because of this, we have to
examine the verbosity as well as the importance set for the message. This event is raised by
the Message task, through an instance of the Microsoft.Build.Utilities.TaskLoggingHelper class.
The value for the importance on the event argument comes from the Importance parameter
passed to the Message task. Using this logger is similar to using the previous logger. In the
next image, you can see how we attach HelloLogger2 with a log file named unittest.diag.log
and a Verbosity setting of Diagnostic.

FIGURE 5-6  HelloLogger2 usage

We can see that the logger was successfully attached to the build process and the expected
log file was indeed created. Now that we have covered many details of creating custom
loggers, we’ll see how we can extend ConsoleLogger to create new loggers.

Extending Existing Loggers
In the previous section, we saw how we could create new loggers by implementing the
ILogger interface and extending the Logger abstract class. The only other method to create
a new logger is to extend an existing logger. We’ll now see how to accomplish this by
extending the console logger. The console logger can be used as a basis for various loggers,
not just those that log to the console. You may be surprised to find out that the FileLogger
class extends the ConsoleLogger class! In some cases, you could consider encapsulation
(composition) instead of derivation. If you have too many levels of derived classes, it can be

	 Chapter 5  Custom Loggers	 147

problematic to maintain. Some reasons that you should consider extending this class are
outlined here.

n	 Ease of Creation  From the three methods listed previously for creating new loggers,
extending an existing logger is the easiest method.

n	 Automatic Indentation  The console logger already has a sophisticated means for
indenting the log messages to logically group log messages, as well as implementing
rules to know when to show certain events. It’s quite a lot of work to make a logger
produce output that looks good. When you extend the console logger, you can get this
functionality for free.

n	 Consistent Verbosity Interpretation  Because you are extending the console logger,
you can let it determine what log messages need to be logged based on the verbosity
setting instead of doing it manually.

Because of the advantages of extending the console logger, you should give it strong
consideration before you implement the same logic. The console logger has five properties,
which are summarized in Table 5-6.

TABLE 5-6  ConsoleLogger Properties
Name Type Description
Parameters string The property that contains the parameter string

that was passed to the logger.

ShowSummary bool If true, then a summary of errors and warnings will
be written by the logger.

SkipProjectStartedText bool If true, then the log message stating that a project
that is beginning to build is not written by the
logger.

Verbosity Microsoft.Build.
Framework,
LoggerVerbosity

Determines the amount of detail that should
be contained in the log. Possible values: Quiet,
Minimal, Normal, Detailed, and Diagnostic.

WriteHandler delegate The delegate that will be called to physically write
log statements. In custom implementations that
are not logging to the console, you will need to
override this property.

The values for the properties listed in this table will affect what statements will be
logged and how they will be logged. For example, if your logger should never show the
summary text, then you should set the value for ShowSummary to false and not allow it
to be overridden. The most interesting property is the WriteHandler property. This is the
delegate that will be called to place the messages into the log. The declaration for this
delegate is public delegate void WriteHandler(string message). If the console
logger determines that a message should be logged based on event and verbosity, then
this delegate is invoked to perform the write into the log. If you are creating a new logger

148	 Part II  Customizing MSBuild

to write to a destination other than the console, you will have to override this value. This is
performed in the CustomFileLogger, which we’ll now take a look at.

The CustomFileLogger is a new custom logger that, as its name suggests, writes its log to
a file. It extends ConsoleLogger and overrides WriteHandler to achieve this. Earlier we stated
the indentation is taken care of by the base class. When you override the WriteHandler
method, the indentation has already been placed in the output. All WriteHandler can do is
write the text of the log message. You cannot access the current indent level. The properties
of this logger, as well as the Initialize and Shutdown methods, are shown in the next snippet.

protected string LogFile { get; set; }
protected bool Append { get; set; }
protected StreamWriter FileWriter {get;set;}

public override void Initialize(Microsoft.Build.Framework.IEventSource eventSource, int
nodeCount)
{
 // default value
 Append = false;

 ParseCustomParameters();
 base.Initialize(eventSource, nodeCount);

 if (string.IsNullOrEmpty(LogFile))
 {
 // default value
 LogFile = "custom.build.log";
 }

 FileWriter = new StreamWriter(LogFile, Append);
 FileWriter.AutoFlush = true;

 base.WriteHandler = new WriteHandler(HandleWrite);
}

public override void Shutdown()
{
 base.Shutdown();
 if (FileWriter != null)
 {
 FileWriter.Close();
 FileWriter = null;
 }
}

In the Initialize method, you can see that it calls ParseCustomParameters, which will extract
the values that have been passed through the logger’s parameters. We will see this method
shortly. In addition to this, the important items in that method are: base.Initialize is called,
the file writer is initialized, and WriteHandler is overridden to point to the HandleWrite
method. In the Shutdown method, the file writer is closed out to ensure that the stream is

	 Chapter 5  Custom Loggers	 149

closed gracefully. Now we can take a look at how the parameters are parsed out; the related
methods are shown here.

public virtual void ParseCustomParameters()
{
 if (!string.IsNullOrEmpty(Parameters))
 {
 string[] paramPairs = Parameters.Split(';');
 for (int i = 0; i < paramPairs.Length; i++)
 {
 if (paramPairs[i].Length > 0)
 {
 string[] paramPair = paramPairs[i].Split('=');
 if (!string.IsNullOrEmpty(paramPair[0]))
 {
 if (paramPair.Length > 1)
 {
 ApplyParam(paramPair[0], paramPair[1]);
 }
 else
 {
 ApplyParam(paramPair[0], null);
 }
 }
 }
 }
 }
}

public virtual void ApplyParam(string paramName, string paramValue)
{
 if (!string.IsNullOrEmpty(paramName))
 {
 string paramNameUpper = paramName.ToUpperInvariant();
 switch (paramNameUpper)
 {
 case "LOGFILE":
 case "L":
 LogFile = paramValue;
 break;

 case "APPEND":
 if (string.Compare(paramValue, "true", true) == 0)
 {
 Append = true;
 }
 else
 {
 Append = false;
 }
 break;
 }
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

150	 Part II  Customizing MSBuild

Inside the ParseCustomParameters method, I have bolded two lines of code. The first bold
line, string[] paramPairs = Parameters.Split(';'), splits up the string based on
“;” characters. This creates an array of strings that contain key-value pairs in the format
<name>=<value>. The other bold line is string[] paramPair = paramPairs[i].
Split('='). This separates the key-value string into a key and value; then these values are
interpreted by the ApplyParam method. I point these statements out to reinforce the fact
that the logger itself is completely responsible for parsing and interpreting what the values
in the string mean. Even the value for the verbosity is not automatically processed by the
Logger class, but it is by the ConsoleLogger class.

Now that we have seen how CustomFileLogger was created, we can see how to use it. In
order to attach this logger, as with any custom logger, we will use the /l (/logger) switch
on msbuild.exe. We can see an example of attaching this logger in Figure 5-7, which shows
the beginning of a build with this logger. The command for this from the \InsideMSBuild\
Ch05\bin\Debug\Samples\ folder is

msbuild . .\. .\. .\. .\Ch04\Examples.Tasks.csproj /t:Rebuild /l:CustomFileLogger,. .\Examples.
Loggers.dll,

FIGURE 5-7  CustomFileLogger usage example

In Figure 5-7, we can see that the build for the Example.Tasks project is invoked with the new
custom logger attached to the process. Since the build successfully started, we know that
MSBuild was able to create a new instance of the logger and attach it to the process. If you
repeat this command, you will see that a new log file, custom.build.log, has been created.
We didn’t specify a value for LogFile, so the default value is used, which is custom.build
.log. As shown with the file logger, it is useful to attach multiple loggers to the build process.
In order to do so, you simply use multiple /l switches. You can see this in action in Figure 5-8.
The command here is

msbuild . .\. .\. .\. .\Ch04\Examples.Tasks.csproj /t:Rebuild /l:CustomFileLogger,. .\Examples.
Loggers.dll;v=m;logfile=custom.minimal.log /l:CustomFileLogger,. .\Examples.Loggers.
dll;v=diag;logfile=custom.diag.log

	 Chapter 5  Custom Loggers	 151

FIGURE 5-8  Attaching multiple CustomFileLoggers

The MSBuild command demonstrated in Figure 5-8 shows how we can attach two instances
of the CustomFileLogger to the build process. One is set to a Minimal verbosity setting and
the other to Diagnostic mode. The file custom.minimal.log will be used to quickly identify
errors and warnings, and the custom.diag.log file can be used to diagnose the build process.
With this content, we have now covered extending existing loggers, which was the third
option for creating new custom loggers. Extending the console logger in this fashion is
a good idea, but it does have some limitations. The most difficult limitation to deal with
for some loggers is the fact that you are simply logging lines of text; you don’t really have
an idea of the state of the process. This is because the console logger is handling this and
then simply calling into WriteHandler to handle writing text to the log file. One example
where you would need to know which event caused messages to be logged would be if you
were using XmlLogger. In order to create the correct XML element, you need to know what
build event occurred. We will see how to do this now.

FileLoggerBase and XmlLogger
In order to demonstrate a realistic logger that doesn’t extend ConsoleLogger, I will show you
XmlLogger. The full source for this logger is available at my open-source MSBuild project,
http://codeplex.com/sedodream, as well as in the samples provided with this text. By default,
MSBuild will create a text-based log, but if you are going to feed this log to other applications
for processing or presentation, it might be easier if you had an XML-based log. Since one
doesn’t ship with MSBuild, you can write your own. In this section, we will do just that.

Before we get into the implementation of the XmlLogger, take a look at the output from
the logger shown next. The command, executed from the \InsideMSBuild\Ch05\bin\Debug\
Samples directory, is:

msbuild Properties04.proj /l:XmlLogger,. .\Examples.Loggers.dll

The resulting XML file (with formatting changes to fit this layout) is shown in the next snippet.

<MSBuild>
 <Build Started="8/15/2010 1:39:09 PM"
 Verbosity="Normal"
 Finished="8/15/2010 1:39:09 PM"
 Succeeded="True">

152	 Part II  Customizing MSBuild

 <Message>Build started.</Message>
 <Project Name="C:\InsideMSBuild\Ch05\bin\Debug\Samples\Properties04.proj"
 Message="Project "Properties04.proj" (default targets):"
 Started="8/15/2010 1:39:09 PM"
 Finished="8/15/2010 1:39:09 PM">
 <Target Started="8/15/2010 1:39:09 PM"
 Name="PrintEnvVar"
 Message="Target "PrintEnvVar" in project "
 C:\InsideMSBuild\Ch05\bin\Debug\Samples\Properties04.proj
 " (entry point):"
 Finished="8/15/2010 1:39:09 PM" Succeeded="True">
 <Task Started="8/15/2010 1:39:09 PM" Name="Message"
 Finished="8/15/2010 1:39:09 PM">
 <Message Importance="Normal">
 Temp: C:\Users\Ibrahim\AppData\Local\Temp</Message>
 </Task>
 <Task Started="8/15/2010 1:39:09 PM" Name="Message"
 Finished="8/15/2010 1:39:09 PM">
 <Message Importance="Normal">Windir: C:\Windows</Message>
 </Task>
 <Task Started="8/15/2010 1:39:09 PM" Name="Message"
 Finished="8/15/2010 1:39:09 PM">
 <Message Importance="Normal">
 VS100COMNTOOLS: C:\Program Files (x86)\Microsoft Visual Studio
 10.0\Common7\Tools\</Message>
 </Task>
 </Target>
 </Project>
 <Message>Build succeeded.</Message>
 </Build>
</MSBuild>

We will start our discussion by taking a look at the XmlLogger’s base class FileLoggerBase.
This is an abstract class that I have written to assist in the creation of file-based loggers. In
Figure 5-9, you will find a class diagram for the XmlLogger.

From the class diagram, we can see that the FileLoggerBase class extends from the Microsoft
.Build.Utilities.Logger class. The FileLoggerBase class adds some common functionality that
will make creating loggers easier; most notably, it will read the values for the parameters
shown in Table 5-7.

TABLE 5-7  FileLoggerBase Known Properties
Parameter Description
LogFile The name of the file to which the log should be written.

Verbosity The verbosity setting for the logger. These can be specified by full name or
short name.

Append Value that determines if the file should be appended to, if it exists, or
overwritten. If false, then the file will be overwritten if it exists.

ShowSummary Value that determines if a summary should be displayed in the log. It is up
to each concrete logger to determine how this affects the behavior of the
application.

	 Chapter 5  Custom Loggers	 153

FIGURE 5-9  XmlLogger class diagram

When parameters are passed to the logger on the command line, they are made available
in the Parameters property in the ILogger interface. This property is a string and needs to be
parsed by each logger. FileLoggerBase will parse parameters that are passed in the format
paramName=value;paramName2=value2;. . . . This is performed when the Initialize method
is called. Now that we have discussed what FileLoggerBase basically takes care of, let’s take
a look at the XmlLogger implementation.

The XmlLogger uses a set of stacks to keep track of what needs to be written out to the XML
document at the end of the build. The following example shows the definition of the Initialize
method in the XmlLogger.

public override void Initialize(IEventSource eventSource)
{
 errorList = new List<string>();
 warningList = new List<string>();

 buildElements = new Stack<XmlElement>();
 projectElements = new Stack<XmlElement>();
 targetElements = new Stack<XmlElement>();
 taskElements = new Stack<XmlElement>();
 buildTypeList = new Stack<BuildType>();

154	 Part II  Customizing MSBuild

 // apply default values
 LogFile = "build.log.xml";
 Append = false;
 ShowSummary = false;

 // have base init the parameters
 base.Initialize(eventSource);

 this.InitializeEvents(eventSource);

 this.InitializeXmlDoc();
}

In this method, we let the FileLoggerBase class take care of parsing the logger parameters,
after which the class fields are initialized. In the InitializeEvents method, the build event
handlers are registered with IEventSource. The following example shows the definition of the
InitializeEvents method.

protected void InitializeEvents(IEventSource eventSource)
{
 try
 {
 eventSource.BuildStarted += this.BuildStarted;
 eventSource.BuildFinished += this.BuildFinished;
 eventSource.ProjectStarted += this.ProjectStarted;
 eventSource.ProjectFinished += this.ProjectFinished;
 eventSource.TargetStarted += this.TargetStarted;
 eventSource.TargetFinished += this.TargetFinished;
 eventSource.TaskStarted += this.TaskStarted;
 eventSource.TaskFinished += this.TaskFinished;
 eventSource.ErrorRaised += this.BuildError;
 eventSource.WarningRaised += this.BuildWarning;
 eventSource.MessageRaised += this.BuildMessage;
 }
 catch (Exception e)
 {
 string message = string.Format(
 "Unable to initialize events; message={0}",
 e.Message);
 throw new LoggerException(message, e);
 }
}

In the preceding snippet, you will notice in the catch block that it converts the Exception
to one of type LoggerException. This is important because if your logger raises another
exception, then it will be difficult to identify the logger as the reason for the build failure.
Of the 14 events defined in the Microsoft.Build.Framework.IEventSource interface, XmlLogger
registers to receive notification of 11 events. Figure 5-10 shows a class diagram for the
IEventSource interface, which lists all the available build events. Table 5-4 includes specific
information regarding these events.

	 Chapter 5  Custom Loggers	 155

FIGURE 5-10  IEventSource interface

After the events are registered with the event source, the logger will move on to initialize
the XML document itself in the InitializeXmlDoc method. Since we have discussed how this
logger is initialized, we can move on to take a look at a few of the handlers themselves. In the
following example, you will see the definition for the BuildStarted and ProjectStarted events.
In production code, exceptions would be properly handled.

void BuildStarted(object sender, BuildStartedEventArgs e)
{
 buildTypeList.Push(BuildType.Build);

 XmlElement buildElement = xmlDoc.CreateElement("Build");

 rootElement.AppendChild(buildElement);
 buildElement.Attributes.Append(
 CreateStartedAttribute(e.Timestamp));
 buildElement.Attributes.Append(
 CreateAttribute("Verbosity", this.Verbosity.ToString()));

 if (this.Parameters != null &&
 base.IsVerbosityAtLeast(LoggerVerbosity.Detailed))
 {
 // log all the parameters that were passed to the logger
 XmlElement paramElement =
 xmlDoc.CreateElement("LoggerParameters");
 buildElement.AppendChild(paramElement);
 foreach (string current in DefiniedParameters)
 {
 XmlElement currentElement =
 xmlDoc.CreateElement("Parameter");
 currentElement.InnerText =

156	 Part II  Customizing MSBuild

 current + "=" + GetParameterValue(current);
 paramElement.AppendChild(currentElement);
 }
 }

 buildElement.AppendChild(CreateMessageElement(e.Message));

 buildElements.Push(buildElement);
}

void ProjectStarted(object sender, ProjectStartedEventArgs e)
{
 buildTypeList.Push(BuildType.Project);

 XmlElement projectElement = xmlDoc.CreateElement("Project");
 projectElements.Push(projectElement);

 buildElements.Peek().AppendChild(projectElement);

 projectElement.Attributes.Append(
 CreateAttribute("Name", e.ProjectFile));

 projectElement.Attributes.Append(
 CreateAttribute("Message", e.Message));
 projectElement.Attributes.Append(
 CreateStartedAttribute(e.Timestamp));

 if (base.IsVerbosityAtLeast(LoggerVerbosity.Detailed))
 {
 projectElement.Attributes.Append(
 CreateAttribute("SenderName", e.SenderName));
 }

 if (base.IsVerbosityAtLeast(LoggerVerbosity.Diagnostic))
 {
 XmlElement propertiesElement =
 xmlDoc.CreateElement("Properties");
 projectElement.AppendChild(propertiesElement);

 foreach (DictionaryEntry current in e.Properties)
 {
 if (current.Equals(null) ||
 current.Key == null ||
 string.IsNullOrEmpty(current.Key.ToString()) ||
 current.Value == null ||
 string.IsNullOrEmpty(current.Value.ToString()))
 {
 continue;
 }
 XmlElement newElement =
 xmlDoc.CreateElement(current.Key.ToString());
 newElement.InnerText = current.Value.ToString();
 propertiesElement.AppendChild(newElement);
 }
 }
}

	 Chapter 5  Custom Loggers	 157

As was stated previously, each logger must interpret what the logger verbosity means. In
the two preceding methods, you can see that in a few locations, the verbosity is checked
before actions are performed. An example of attaching XmlLogger to a build is shown in
Figure 5-11.

FIGURE 5-11  XmlLogger

In the build command shown in the Figure 5-11, XmlLogger was attached to the build
process. The parameters for that instance specified that the verbosity be set to Detailed
and that the log file be placed at build.detailed.xml. This was indeed the behavior and can be
confirmed by executing this same statement. Now that we have examined XmlLogger, we can
move on to briefly discuss debugging custom loggers.

Debugging Loggers
Custom loggers are very easy to write, and for the most part, they are easy to implement as
well. Still, if you are creating new loggers, you may need to debug the behavior. Debugging
custom loggers is very similar to debugging custom tasks. Just like debugging custom tasks,
there are three methods that can be used to debug loggers:

	 1.	 Examine the contents of the log.

	 2.	 Use Debugger.Launch().

	 3.	 Start MSBuild as an external program.

The simplest and least informative approach is the first one, which entails simply examining
the contents of the log to determine the behavior of the logger. If you decide to use this
technique, you may want to set the verbosity of the logger to either Detailed or Diagnostic,
if possible. This method can be used only for very simple issues and for those that allow the
logger to be properly initialized. If there is an initialization error when creating a logger,
the build process is aborted and no log is written. Unlike the other approaches, this is
non-interactive and there is no debugger. For the other two techniques, the Microsoft Visual
Studio debugger will be used.

158	 Part II  Customizing MSBuild

In the second option, the Debugger.Launch() technique, is that when the statement is
executed, a dialog will be shown to attach a debugger once you attach Visual Studio to the
build process. This dialog is shown in Figure 5-12.

FIGURE 5-12  Debugger selection dialog

After you have completed this, Visual Studio will be attached to the process and it will stop
at any breakpoints you set. Normal debugging will continue from here. The pros and cons
of this approach were covered in the previous chapter, so they will not be repeated here.

The last approach, starting MSBuild as an external program, is the same as covered in the
previous chapter, but we will quickly review this here as well. For the project that contains the
logger, you can change the Debug Start Action. All the settings can be set on the Properties
page for the Project under the Debug tab. On this tab, there are three values that you will
need to fill in: Start External Program, Command Line Arguments, and Working Directory.
The value for Start External Program should contain the full path to the executable that
you want to run; in this case the full path to msbuild.exe. The Command Line Arguments
value should contain the project file to build, the statement to attach the logger, and any
other properties that you want to pass. The working directory should be set to any known
directory, but ideally to a directory under the output folder for the project. This may simplify
the project file used for debugging. For a more detailed description of these, you can refer
back to Chapter 4, “Custom Tasks.” A sample set of properties to debug CustomFileLogger is
shown in Figure 5-13.

The values that were discussed previously are highlighted in Figure 5-13. Now we have
discussed the three main ways that you can debug custom MSBuild loggers.

	 Chapter 5  Custom Loggers	 159

FIGURE 5-13  Debug settings for CustomFileLogger

As you’ve seen in this chapter, creating MSBuild loggers is very easy and very powerful.
We have covered a lot of material in this chapter, including creating loggers, passing values
to loggers, extending existing loggers, and debugging loggers. If you need to create new
MSBuild loggers, you should now have a great arsenal with which to do so. The best way to
learn how to create good loggers is by creating loggers. I strongly suggest simply diving in
and getting started. You should note that there is another kind of logger that you can create,
distributed loggers, which was intended for multiprocessor builds. In addition, there are two
other advanced interfaces, INodeLogger and IForwardingLogger, which you can implement,
but these are for very specific cases and will not be covered here. These types of loggers are
more complex and suitable for only a limited set of applications, so we will not cover them
in this book. In the next chapter, we will cover two very important but very elusive subjects:
batching and incremental building. Knowing about these topics will turn good build scripts
into great ones.

		 161

Part III

Advanced MSBuild Topics
In this part:
Chapter 6: Batching and Incremental Builds . 163
Chapter 7: External Tools . 193

		 163

Chapter 6

Batching and Incremental Builds
Batching and incremental building are two very important yet potentially confusing topics.
In this chapter, we will describe these two topics in great detail. Batching, at a high level,
allows you to repeatedly perform an action over a set of inputs. Incremental building is
a process that enables MSBuild to determine when target outputs are already up to date and
can be skipped. These two topics are advanced and closely related to each other. After you
read this chapter, you will be able to take your build scripts to the next level.

Batching Overview
During a build process, you typically deal with many files, and very often you need to
handle files that are categorized. For instance, you have files that are sent to the compiler,
files that are resources, files that are references, and so on. Because of how common this is,
MSBuild has a construct that is designed for it. Since MSBuild is a declarative language, as
opposed to an imperative one, there must be a way to describe the operation you desire
and let MSBuild take care of the looping for you. This concept is referred to as batching.
Batching is an advanced topic that can be confusing, but it is also very powerful. Batching is
a mechanism for placing items into groups, also referred to as batches, based on matching
metadata. Batching always occurs on metadata; items with the same value for batched
metadata will reside in the same batch. You can think of these batches as buckets; each
bucket represents a set of files with the same values for the batched metadata. There are two
kinds of batching: task batching and target batching. Task batching is where you execute a
given task once per batch, and target batching is where a target is executed once per batch.
Task batching is far more useful than target batching. Note that batches are not required to
contain more than one item; many times, they include only one.

Here is an example, taken from the file Batching01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion=-"4.0">
 <PropertyGroup>
 <SourceFolder>src\</SourceFolder>
 </PropertyGroup>

 <ItemGroup>
 <SourceFiles Include="$(SourceFolder)*.txt" />
 </ItemGroup>

164	 Part III  Advanced MSBuild Topics

 <Target Name="TaskBatching">
 <!-- Transforms items into single string -->
 <Message Text="---" />
 <Message Text="Not batched @(SourceFiles->'%(FullPath)')" />
 <!-- Invokes message task per each batch -->
 <Message Text="---" />
 <Message Text="Batched %(SourceFiles.FullPath)" />
 </Target>
</Project>

In this project, we declare the SourceFiles item to include all files ending in .txt located in the
src folder. Figure 6-1 depicts the file/folder structure in which the project file is located.

FIGURE 6-1  Directory structure

From this image, we can expect that the SourceFiles item will contain the four files in the
src folder. Inside the TaskBatching target, you can see that we simply invoke the message
task a few times. We can examine the output closely and describe where the batching is
occurring. The result is shown in Figure 6-2.

FIGURE 6-2  TaskBatching target result

From the previous output, the most important thing to notice is that the statement <Message
Text="Not batched @(SourceFiles->'%(FullPath)')" /> resulted in a single invocation
of the Message task. This is obvious because the prefix Not batched is presented only once.
On the other hand, the other statement, <Message Text="Batched %(SourceFiles
.FullPath)" />, resulted in the Message task being executed four times, once for each file.
Strictly speaking, it is once per batch, where the batch is defined by the metadata FullPath

	 Chapter 6  Batching and Incremental Builds	 165

for SourceFiles. Because the FullPath value will be unique for each file (in this case), it creates
batches that contain only one item. To describe this in a diagram, you can think of a target
(without batching), as shown in Figure 6-3.

FIGURE 6-3  Visualization diagram of target (without batching)

In unbatched targets, each task is executed one after another until all the tasks have been
executed. In contrast to this, when a batched task is encountered, the batches are created,
and then each batch is passed to the task and executed. Note that the execution of these
batches is not performed in parallel; each batch is processed one after the other. However,
conceptually they are run in parallel, in the sense that no batch can see changes to items or
properties made by another batch that ran before it. After each batch has been processed,
execution continues. This is shown in Figure 6-4.

As shown in Figure 6-4, the MSBuild engine will automatically create the batches and pass
the items into the task that is being batched. In the previous example, we created batches
with only one item. Now, let’s take a little closer look at how batches work. We will first
examine task batching and then move on to target batching.

166	 Part III  Advanced MSBuild Topics

FIGURE 6-4  Visualization diagram of target (with batching)

Task Batching
As stated previously, task batching is the process of invoking the same individual task
multiple times, each time with a subset of the original input items, where the input is defined
by the batches created for the task. See the following example, which is contained in the
Batching02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <SourceFolder>src\</SourceFolder>
 </PropertyGroup>

	 Chapter 6  Batching and Incremental Builds	 167

 <ItemGroup>
 <SourceFiles Include="$(SourceFolder)01.txt">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </SourceFiles>
 <SourceFiles Include="$(SourceFolder)02.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </SourceFiles>
 <SourceFiles Include="$(SourceFolder)03.txt">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </SourceFiles>
 <SourceFiles Include="$(SourceFolder)04.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </SourceFiles>
 </ItemGroup>

 <Target Name="TaskBatching">
 <!-- Transforms items into single string -->
 <Message Text="---" />
 <Message Text="Not batched @(SourceFiles->'%(CopyToOutputDirectory)')" />
 <!-- Invokes message task once per each batch -->
 <Message Text="---" />
 <Message Text="Batched %(SourceFiles.CopyToOutputDirectory)" />
 </Target>

 <Target Name="TargetBatching" Outputs="%(SourceFiles.CopyToOutputDirectory)">
 <Message Text="CopyToOutputDirectory: %(SourceFiles.CopyToOutputDirectory)" />
 <Message Text="@(SourceFiles)" />
 </Target>

</Project>

In this example, we first declare one item, SourceFiles, with four elements. Each element has
the metadata CopyToOutputDirectory specified. Two elements have CopyToOutputDirectory
set to Always, and the other two have it set to PreserveNewest. We’ll examine the result of
the TaskBatching target. This target, which is a copy of the previous example, invokes the
Message task for the SourceFiles item once without batching, and then once with batching
using the CopyToOutputDirectory item metadata. In Figure 6-5, you will find the result of
executing this target.

FIGURE 6-5  TaskBatching target result

The output is interesting. In the first invocation, we can see that the values for the
CopyToOutputDirectory metadata were simply appended to each other and passed to
the Message task, as expected. In the last invocation, we can see that the expression

168	 Part III  Advanced MSBuild Topics

%(SourceFiles.CopyToOutputDirectory) was evaluated into two distinct values, Always
and PreserveNewest, and the Message task was invoked only once for each of those values.

Now that we have described batching and looked at some trivial examples, we will
take a look at some more realistic applications of batching. The following example,
TaskBatching01.proj, will take a set of files and then copy those files to a set of directories.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <SourceFolder>src\</SourceFolder>
 <DestFolder>dest\</DestFolder>
 </PropertyGroup>

 <ItemGroup>
 <SourceFiles Include="$(SourceFolder)*.txt" />
 <Dest Include="$(DestFolder)One" />
 <Dest Include="$(DestFolder)Two" />
 <Dest Include="$(DestFolder)Three" />
 <Dest Include="$(DestFolder)Four" />
 <Dest Include="$(DestFolder)Five" />
 </ItemGroup>

 <Target Name="CopyAll">
 <!-- Task batching to copy files -->
 <Copy SourceFiles ="@(SourceFiles)"
 DestinationFolder="%(Dest.FullPath)" SkipUnchangedFiles="false" />
 <!-- Task batching to print message -->
 <Message Text="Fullpath: %(Dest.FullPath)" />
 </Target>

</Project>

In this example, we have defined two properties, SourceFolder and DestFolder. The
SourceFolder contains the path to the folder that contains all the files that we would
like to copy. The directory structure is the same as that shown in Figure 6-1. The
DestFolder property contains the top-level path to the folder where the files will be copied
into—actually, into folders under the DestFolder. From that file, take a look at the following
item declaration.

<ItemGroup>
 <SourceFiles Include="$(SourceFolder)*.txt" />
 <Dest Include="$(DestFolder)One" />
 <Dest Include="$(DestFolder)Two" />
 <Dest Include="$(DestFolder)Three" />
 <Dest Include="$(DestFolder)Four" />
 <Dest Include="$(DestFolder)Five" />
</ItemGroup>

This creates the SourceFiles item, which contains all the files that are to be copied. Then it
declares the Dest item, which contains a list of folders, under DestFolder. This is an example
of using an item that doesn’t point to a list of files. In this case, it points to a list of directories.

	 Chapter 6  Batching and Incremental Builds	 169

You can use an item for any list-based value, not only files and directories. Now let’s zero in
on the statement:

<Copy SourceFiles ="@(SourceFiles)"
 DestinationFolder="%(Dest.FullPath)" SkipUnchangedFiles="false" />

Note  SkipUnchangedFiles is set to false only for demonstrative purposes, to ensure that every
file is copied each time.

In this task declaration, the expression %(Dest.FullPath) will cause the Copy task to be
invoked once per batch, where the batches are created by an expansion of the FullPath
metadata of the Dest item. Since the FullPath is unique, it will be executed once per element
in Dest, so this expression is equivalent to the following set of statements.

<Copy SourceFiles="@(SourceFiles)"
 DestinationFiles="$(DestFolder)One" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"
 DestinationFiles="$(DestFolder)Two" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"
 DestinationFiles="$(DestFolder)Three" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"
 DestinationFiles="$(DestFolder)Four" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"
 DestinationFiles="$(DestFolder)Five" SkipUnchangedFiles="false" />

So we would expect all the files in SourceFiles to be copied into each of the four folders in
DestFolder. The output of executing the CopyAll target is shown in Figure 6-6.

FIGURE 6-6  CopyAll target result

170	 Part III  Advanced MSBuild Topics

From Figure 6-6, we can see that each file in the SourceFiles item was indeed copied to the
individual directories defined in DestFolder. If you set the verbosity of the logger to Detailed,
you will see that the Copy task was executed five times. Now that we have discussed task
batching, we will move on to discuss target batching.

Target Batching
Target batching is similar to task batching in that an operation is invoked once per batch.
Task batching is the process of invoking an individual task once per batch; target batching is
executing a target once per batch. Target batching is driven entirely by the Outputs attribute
of the target. Based on the batches created, the target is executed once per batch. Target
batching is not used very much in practice, but task batching is. Take a look at the following
file, TargetBatching01.proj, for a simple example.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <SourceFolder>src\</SourceFolder>
 </PropertyGroup>

 <ItemGroup>
 <SourceFiles Include="$(SourceFolder)*.txt" />
 </ItemGroup>

 <Target Name="PrintMessage"
 Outputs="%(SourceFiles.Fullpath)">
 <Message Text="PrintMessage started" />
 <Message Text="@(SourceFiles)" />
 </Target>
</Project>

In the target PrintMessage, the value %(SourceFiles.FullPath) in the Output attribute means
that the batches will be created using the FullPath metadata of the SourceFiles item. Then
these batches will be used to represent the SourceFiles item. During each of the resulting
target executions, as the batches are referred to using the SourceFiles item, it no longer
contains all items, but instead a subset of the original item list being used with each batch.
Take a look at the result of executing the PrintMessage target, as shown in Figure 6-7.

From the result shown in Figure 6-7, we can see that PrintMessage target was indeed invoked
once per batch—that is, four times—for SourceFiles. Also, note that when target batching
occurs, only the items in each batch are available when the item itself is referenced. For
example, in the PrintMessage target, @(SourceFiles) is actually passed to the Message task,
but only the files in the batch are printed.

Now that we have a better idea of target batching, we will examine an example that is
a little easier to relate to. The following TargetBatching02.proj file demonstrates how to build
a solution file for each of the defined configurations.

	 Chapter 6  Batching and Incremental Builds	 171

FIGURE 6-7  PrintMessage target result

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <SourceRoot>$(MSBuildProjectDirectory)\TestProjects\</SourceRoot>
 </PropertyGroup>

 <ItemGroup>
 <BuildFile Include="$(SourceRoot)TestProj1.sln" />
 <Config Include="Debug configuration">
 <Configuration>Debug</Configuration>
 </Config>
 <Config Include="Release configuration">
 <Configuration>Release</Configuration>
 </Config>
 </ItemGroup>

 <Target Name="BuildAll"
 Outputs="%(Config.Configuration)">

 <Message Text="Start building for configuration: %(Config.Configuration)" />
 <MSBuild Projects="@(BuildFile)"
 Properties="Configuration=%(Config.Configuration)"
 Targets="Rebuild" />
 </Target>
</Project>

The solution file is referenced in the BuildFile item. The other item, Config, defines the values
for the configuration that should be used. These values are defined in the Configuration
metadata. The BuildAll target is the one that builds the solution for each defined configuration.
The batching is achieved by the attribute Outputs=”%(Config.Configuration)”. The Outputs
attribute is also related to incremental building, which is discussed later in this chapter. Target
batching is a different use of this attribute. So the BuildAll target will be executed once per
unique value of the Configuration metadata for the Config item, which is Debug and Release.
If you execute the command msbuild TargetBatching02.proj /t:BuildAll, you will
notice that the target BuildAll is indeed invoked once for Debug and once for Release. This
configuration value is passed through to the build file using the Properties parameter on the
MSBuild task. We have now provided an overview of task and target batching; the next section
will describe the behavior of build scripts when combining task and target batching.

172	 Part III  Advanced MSBuild Topics

Combining Task and Target Batching
In this section, we will demonstrate ways to use task and target batching together. In this
discussion, we will examine the following sample project file, Batching03.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <Server Include="Server1">
 <Type>2008</Type>
 <Name>SVR01</Name>
 <AdminContact>Sayed Ibrahim Hashimi</AdminContact>
 </Server>
 <Server Include="Server2">
 <Type>2003</Type>
 <Name>SVR02</Name>
 <AdminContact>Sayed Y. Hashimi</AdminContact>
 </Server>
 <Server Include="Server3">
 <Type>2008</Type>
 <Name>SVR03</Name>
 <AdminContact>Nicole Woodsmall</AdminContact>
 </Server>
 <Server Include="Server4">
 <Type>2003</Type>
 <Name>SVR04</Name>
 <AdminContact>Keith Tingle</AdminContact>
 </Server>
 </ItemGroup>

 <Target Name="TaskBatching">
 <Message Text="%40(Server->'%25(Name)'): @(Server->'%(Name)')" />
 <Message Text="===" />
 <!--
 Task Batching here using the Name metadata.
 Notice that Message task is invoked once per unique batch
 The same applies for %(Server.Type) below.
 -->
 <Message Text="%25(Server.Name): %(Server.Name)" />
 <Message Text="===" />
 <Message Text="%25(Server.Type): %(Server.Type)" />
 <Message Text="===" />
 </Target>

 <!--
 NOTE: Others targets defined here.
 -->
</Project>

This listing does not contain the full source for the project file; a few targets have not been
shown yet. Instead, they will be covered separately later in this section. In this target, we have
declared an item, Server, which contains references to four servers, each with three values

	 Chapter 6  Batching and Incremental Builds	 173

for custom metadata. The custom metadata defined are Type, Name, and AdminContact.
Following that there are four targets, which we will examine in detail now. The TaskBatching
target demonstrates task batching once again. The first message statement, <Message
Text="%40(Server->'%25(Name)'): @(Server->'%(Name)')" />, is a statement that
does not start batching because that syntax results in the Server item being transformed
into a single string and then passed to the Message task. This was inserted to print out the
values to the logger. Following that, we first batch using the Name metadata with <Message
Text="%25(Server.Name): %(Server.Name)" /> and then similarly with the Type
metadata. You can see the results of the TaskBatching target with the command msbuild
Batching03.proj /t:TaskBatching in Figure 6-8.

FIGURE 6-8  Result of TaskBatching target

From the result shown in Figure 6-8, we can see that, as expected, there were four batches
created for the Server.Name property and two distinct groups created from the Server.Type
value. To reiterate: When the batching is performed, MSBuild will identify the unique values
in the batching expression and create the required groups. Now, we will move on to the
targets that involve target batching.

In the next snippet, the TargetBatching01 target is declared, which is also defined inside the
Batching03.proj file. Other sections of this file were shown previously.

<Target Name="TargetBatching01" Outputs="%(Server.Name)">
 <Message Text="===== TargetBatching01 ============" />
 <Message Text="%25(Server.Name): %(Server.Name)" />
 <Message Text="%25(Server.Type): %(Server.Type)" />
 <Message Text="Server: @(Server)" />
 <Message Text="===================================" />
</Target>

The TargetBatching01 target creates batches with the Server.Name property. This is due to
the attribute Outputs=”%(Server.Name)” being present. When we execute this target, we
would expect that it is executed once for each unique value for Server.Name. Since each
name value is defined as being unique, we should see this target executed four times. The
result is shown in Figure 6-9.

174	 Part III  Advanced MSBuild Topics

FIGURE 6-9  TargetBatching01 result

We can see that the target was indeed executed four times, once for each Server item,
because the Server.Name value is unique. The TargetBatching02 target is a carbon
copy of the TargetBatching01 target, with the exception of the Output attribute. The
TargetBatching02 target node contains the attribute Outputs=”%(Server.Type)”, which means
that we will execute that target once for each unique set of value for the Type metadata on
the Server item. The result of this target invocation is shown in Figure 6-10.

FIGURE 6-10  TargetBatching02 target

In the TargetBatching01 target, each target was executing with a context of a single value
for the Server item. This is because the batching produced batches with only one item. In
this sample, we are batching over the Type metadata, which has two unique values, among
four different item values. If you look at the previous result, you can see that the statement
<Message Text="%25(Server.Name): %(Server.Name)" /> produces two values to be
printed. This is because there are two items in both of the batches. This is an example of
target batching on Server.Type and task batching on Server.Name. In the next section, we will
discuss multi-value batches in more detail.

	 Chapter 6  Batching and Incremental Builds	 175

Multi-batching
When you get started with batching, it takes time to understand its behavior, and even more
effort to utilize it effectively. Batching over multiple values requires a deep understanding
of how batching works. In this section, we will take a closer look at batching, mostly through
a series of examples.

We will first examine what the behavior is when we perform task batching with two different
items. When a batched statement is encountered, MSBuild will create unique batches based
on the item itself and the value for the metadata. What this means is that when you are using
qualified batching statements, no batch will contain references to more than one item. A
qualified batching statement is one that declares the item type as well as the metadata name.
It is possible to batch without specifying the item type inside the %(EXPRESSION); we cover
this in the section entitled “Batching Using Shared Metadata,” later in this chapter. In the next
snippet, you will find the contents of the Batching04.proj file. The complete source is not
shown here; a few targets are shown later in this section.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <!-- Test1 items -->
 <Test1 Include="One">
 <a>A1
 B
 <c>C</c>
 </Test1>
 <Test1 Include="Two">
 <a>A
 B1
 <c>C</c>
 </Test1>
 <Test1 Include="Three">
 <a>A1
 B1
 <c>C1</c>
 </Test1>
 <!-- Test2 items -->
 <Test2 Include="Four">
 <a>A
 B1
 <c>C1</c>
 </Test2>
 <Test2 Include="Five">
 <a>A1
 B
 <c>C2</c>
 </Test2>
 <Test2 Include="Six">
 <a>A
 B
 <c>C2</c>

176	 Part III  Advanced MSBuild Topics

 </Test2>
 </ItemGroup>

 <Target Name="Task01">
 <Message Text="%25(Test1.a): %(Test1.a)" />
 <Message Text="---------------------------------------" />
 <Message Text="%25(Test2.a): %(Test2.a)" />
 <Message Text="---------------------------------------" />
 <Message Text=
 "%25(Test1.a): %(Test1.a) || %25(Test2.a): %(Test2.a)" />
 </Target>

 <!--
 NOTE: Others targets defined here.
 -->
</Project>

In this project file, there are two items declared, Test1 and Test2, both of which have
metadata values for a, b, and c. In the Task01 target, the values for the a metadata are
batched first separately, then together. The result from executing this target, shown in
Figure 6-11, might be different from what you expect.

FIGURE 6-11  Batching04.proj Task01 result

As you can see from the result in Figure 6-11, both items have the values A and A1
for the a metadata. When they are batched together with the statement <Message
Text="%25(Test1.a): %(Test1.a) || %25(Test2.a): %(Test2.a)"/>, the result is
that the Message task is invoked four times, twice for the values on Test1 and twice for the
values on Test2. When there are values for Test1, the values for Test2 are empty, and vice
versa. This is why the message task outputs values for only Test1 or Test2, but never for both
at once. We can get a better perspective of target batching by examining the result from the
Target01 target. Target01 is shown in the next snippet, and it is defined in the Batching04
.proj as well.

<Target Name="Target01"
 Outputs="%(Test1.a)%(Test2.a)">
 <Message Text="%25(Test1.a): %(Test1.a) "/>
 <Message Text="%25(Test1.Identity) %(Test1.Identity)" />
 <Message Text="---------------------------------------" />

	 Chapter 6  Batching and Incremental Builds	 177

 <Message Text="%25(Test2.a): %(Test2.a)" />
 <Message Text="%25(Test2.Identity) %(Test2.Identity)" />
</Target>

The result of executing this target is shown in Figure 6-12. In this example, I also print the
value for the Identity metadata, which shows which items are included in the batch.

From the result shown in Figure 6-12, you can see that the Target01 target was executed four
times, just like the Message task of the previous example. Just as in the previous invocation,
when a value existed for Test1, there was none for Test2. We can now take a look at batching
to build multiple configurations.

FIGURE 6-12  Batching04.proj Target01 result

Using Batching to Build Multiple Configurations
Many situations exist when you might need to build a set of projects for a set of defined
configuration values. We’ll examine how to do this now. The basic idea here is that you’ll use
the MSBuild task in order to build each project while passing in the Configuration property
value. All the values for the configuration should be placed in an item so that they can be
expanded using batching. The contents of the Batching05.proj file are shown in the next
snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <SourceRoot>TestProjects\</SourceRoot>
 <OutputRoot>..\BUILD\BuildTemp\</OutputRoot>
 </PropertyGroup>

178	 Part III  Advanced MSBuild Topics

 <ItemGroup>
 <AllConfigurations Include="Debug configuration">
 <Configuration>Debug</Configuration>
 </AllConfigurations>
 <AllConfigurations Include="Release configuration">
 <Configuration>Release</Configuration>
 </AllConfigurations>

 <OutputPath Include="$(OutputRoot)One\">
 <Path>$(OutputRoot)One\</Path>
 </OutputPath>
 <OutputPath Include="$(OutputRoot)Two\">
 <Path>$(OutputRoot)Two\</Path>
 </OutputPath>
 </ItemGroup>

 <ItemGroup>
 <Projects Include="$(SourceRoot)TestProj1\TestProj1.csproj" />
 <Projects Include="$(SourceRoot)TestProj2\TestProj2.csproj" />
 <Projects Include="$(SourceRoot)TestProj3\TestProj3.csproj" />
 </ItemGroup>

 <!-- Show an example of the Configuration batching deal -->
 <Target Name="Task01">
 <!-- Build each project for each defined configuration -->
 <MSBuild Projects="@(Projects)"
 Properties="Configuration=%(AllConfigurations.Configuration)"
 Targets="Build"
 ToolsVersion="4.0"
 />
 </Target>

 <!--
 NOTE: Others targets defined here.
 -->

</Project>

In this file, there are two noteworthy items: Projects and AllConfigurations, described as
follows:

n	 Projects  Contains a list of projects that should be built

n	 AllConfigurations  Contains the values for all the configurations that should be used
during the build process

The Task01 target shown in the previous snippet demonstrates task batching. This target
builds all the projects for the defined configuration values. This is achieved by calling
the MSBuild task and passing in all the projects to be built, along with the value for the
configuration. If you take a look at MSBuild task invocation, it uses the notation

	 Chapter 6  Batching and Incremental Builds	 179

@(Projects), which will send a list of projects to a single MSBuild task. The beginning of
the build process for the Task01 target is shown in Figure 6-13.

From the result shown in Figure 6-13, you can see that the TestProj1 started building and
then the TestProj2 started to build after that. If the full log were shown here, you would see
that the TestProj3 project then started building. Figure 6-13 shows that the configuration
used for the build was Debug. The remainder of the build not shown in Figure 6-13 is
building using Release as the Configuration value. This works because the only value used for
batching was %(AllConfigurations.Configuration).

FIGURE 6-13  Batching05.proj Task01 result

For a more complicated variation of the previous example, we will use an example where
you need to build a set of projects for all the defined configurations, and you need to set the
output path for each configuration to a different location. We can achieve this by a careful
application of target batching. The next snippet, taken from Batching05.proj, contains the
Target02 target, which demonstrates this.

<Target Name="Target01"
 Outputs="%(AllConfigurations.Configuration)">
 <!-- Build each project for each defined configuration -->
 <MSBuild Projects="@(Projects)"
 Properties="Configuration=%(AllConfigurations.Configuration)"
 Targets="Rebuild"
 ToolsVersion="4.0"
 />

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

180	 Part III  Advanced MSBuild Topics

</Target>
<Target Name="Target02" Outputs="%(Projects.Identity)">
 <PropertyGroup>
 <_CurrentProjectFilename>%(Projects.Filename)</_CurrentProjectFilename>
 <_CurrentProjectFullpath>%(Projects.Fullpath)</_CurrentProjectFullpath>
 <_CurrentOutputPath>$(OutputRoot)$(_CurrentProjectFilename)\</_CurrentOutputPath>
 </PropertyGroup>

 <MSBuild Projects="$(_CurrentProjectFullpath)"
 Properties="Configuration=%(AllConfigurations.Configuration);
 OutputPath=$(_CurrentOutputPath)%(AllConfigurations.Configuration)\"
 Targets="Rebuild"
 ToolsVersion="4.0"
 />
</Target>

The previous snippet contains two targets, which both build for all configurations. The
Target02 target also specifies the output path. We will focus on Target02. In this target,
I have chosen to batch with the Projects item instead of the AllConfigurations item. This is
because I will need to use some other metadata values from the Projects, such as the file
name. To accommodate for the change, I then batch the MSBuild task over all values for
AllConfigurations. In that target, you will notice properties defined in the following way.

<PropertyGroup>
 <_CurrentProjectFilename>%(Projects.Filename)</_CurrentProjectFilename>
</PropertyGroup>

This takes the current value for the Filename for Projects item and places it into the property
named _CurrentProjectFilename. Since we are batching the target on Projects.Identity, we
know that the evaluation of that statement will be processed over only a single item value.
This is needed because the statement %(Projects.Identity) cannot be used directly in the
MSBuild task invocation. If this had been done, the task invocation would have been batched
using two items, Projects and AllConfigurations. As stated previously, each batch will contain
only one value. Because we need the value of Projects and AllConfigurations, we create
properties to refer to needed Projects values and use those instead. In the MSBuild task used
in that target, we are passing the Configuration property as well as the OutputPath property.
So we will build for all configurations, and we override the output path while doing so. If we
build that target, the result would be similar to that shown in Figure 6-14.

From the result shown in Figure 6-14, you can see that TestProj1 started building first for
Debug, and then for Release. Following that, the TestProj2 project began building. We’ll now
move on to discuss another form of batching that was briefly mentioned before: batching
using multiple expressions.

	 Chapter 6  Batching and Incremental Builds	 181

FIGURE 6-14  Batching05.proj Target02 result

Batching Using Multiple Expressions
Thus far, we have covered different ways of batching, but none of them have shown the
behavior if there are multiple batching expressions for the same item. When you have
multiple batching statements for the same item, such as <Message Text="Type: %(Server
.Type) Env: %(Server.Env)"/>, then the MSBuild engine will create unique batches
based on all metadata being batched. Here, you will find the Batching09.proj file; some
targets were removed because we will be discussing them later in this section.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <Server Include="Server1">
 <Type>2008</Type>

182	 Part III  Advanced MSBuild Topics

 <Name>SVR01</Name>
 <AdminContact>Sayed Ibrahim Hashimi</AdminContact>
 <Env>PROD</Env>
 </Server>
 <Server Include="Server2">
 <Type>2003</Type>
 <Name>SVR02</Name>
 <AdminContact>Sayed Y. Hashimi</AdminContact>
 <Env>UAT</Env>
 </Server>
 <Server Include="Server3">
 <Type>2008</Type>
 <Name>SVR03</Name>
 <AdminContact>Nicole Woodsmall</AdminContact>
 <Env>PROD</Env>
 </Server>
 <Server Include="Server4">
 <Type>2003</Type>
 <Name>SVR04</Name>
 <AdminContact>Keith Tingle</AdminContact>
 <Env>DEV</Env>
 </Server>
 </ItemGroup>

 <Target Name="PrintTypeEnv">
 <!-- Batches over Type and Env -->
 <Message Text="Type: %(Server.Type) Env: %(Server.Env)"/>
 </Target>

 <!--
 NOTE: Others targets defined here.
 -->
</Project>

The PrintTypeEnv target uses batching for the Type and Env metadata from the Server
item list. In this case, the batches will be formed by unique combinations of Type and Env
metadata. If you execute the command msbuild Batching09.proj /t:PrintTypeEnv,
the result would be what is shown in Figure 6-15.

FIGURE 6-15  PrintTypeEnv target results

In this case, there are three unique combinations of the Type and Env metadata, and there
are two item values with Type=2008 and Env=PROD. Because of this, the Message task
was invoked three times. This behavior is a little different from the examples in the section
entitled “Multi-batching,” earlier in this chapter. In that section, there were multiple batches

	 Chapter 6  Batching and Incremental Builds	 183

created because different metadata was used from different item lists. In this case, we are
using multiple metadata values from the same item list.

Here, you will find the other targets from the Batching09.proj file, which were omitted from
the previously shown snippet.

<Target Name="PrintTypeName">
 <!-- Batches over Type and Name -->
 <Message Text="Type: %(Server.Type) Name: %(Server.Name)"/>
</Target>
<Target Name="PrintTypeNameEnv">
 <!-- Batches over Type, Name and Env -->
 <Message Text="Type: %(Server.Type) Name: %(Server.Name) Env: %(Server.Env)"/>
</Target>

These two targets also demonstrate batching with multiple values from the same item. Take a
look at the results of the command msbuild Batching09.proj /t:PrintTypeName;PrintT
ypeNameEnv, shown in Figure 6-16.

FIGURE 6-16  PrintTypeName and PrintTypeNameEnv target results

In the first target, PrintTypeName, the batching is using the Type and Name metadata values.
Since the Name metadata is unique, we would expect that the Message task be executed
once for each value in the Server item list. From the results shown in Figure 6-16, you can
see that this is indeed the case. This also holds true for the PrintTypeNameEnv target, which
extends the first target by also batching on the Env metadata value. There is no limit on
the number of metadata values that can be used for a task. Now we will take a look at why
MSBuild allows batching expressions to be expressed without an item list name.

Batching Using Shared Metadata
The concept of shared metadata is not well known; it is a set of metadata that is common
across more than one item type. For example, in VB.NET and C# project files, many different
items can have a value for the DependentUpon metadata. There are scenarios in which you
would like to batch using different item types that have identical metadata—that is, batching
using shared metadata.

184	 Part III  Advanced MSBuild Topics

In all the examples we have discussed thus far, we have always qualified the item type in the
batching expression. For example, we recently used the expression %(Projects.Identity).
In this expression, the item type was Projects and we were batching on the Identity
metadata. Consider this example: As you create projects in Microsoft Visual Studio, several
item types allow a value for the CopyToOutputDirectory value. Some item types that support
this include EmbeddedResource, Compile, Content, and so on. Instead of handling each set
of files individually, it would be ideal if we could act on them all at once. You can do this by
declaring a metadata expression without the item type. You will see this in the following
Batching06.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="PrintInfo">
 <ItemGroup>
 <None Include="None01.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <None Include="None02.txt">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
 <None Include="None03.txt;None4.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <Compile Include="src01.cs;src02.cs;src03.cs">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </Compile>
 <Compile Include="src04.cs;src05.cs">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </Compile>
 </ItemGroup>

 <Target Name="PrintInfo">
 <Message Text="%(CopyToOutputDirectory): @(None) @(Compile)" />
 <Message Text="====" />
 <Message Text="PreserveNewest: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='PreserveNewest'" />
 <Message Text="Always: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='Always'" />
 </Target>
</Project>

Inside the PrintInfo target, the Message task is invoked with the expression
%(CopyToOutputDirectory). The CopyToOutputDirectory metadata is being referenced
without an item type specified. When this is the case, at least one item type must be
passed to the task so that the MSBuild engine knows what item type(s) to use for batching.
In this case, the Message task is referencing the None and Compile items, so it will create
unique batches for CopyToOutputDirectory consisting of items from both the None
and Compile item types. This works because both item types have the shared metadata
CopyToOutputDirectory. You can see the result of executing this target in Figure 6-17.

	 Chapter 6  Batching and Incremental Builds	 185

FIGURE 6-17  Common metadata batching, example 1

From the result shown in Figure 6-17, we can see that the statement <Message
Text="%(CopyToOutputDirectory): @(None) @(Compile)"/> was executed once for
the value PreserveNewest and once for Always. Also during the batching, values from both
None and Compile item types were placed in the same batch. Because of this, we can create
steps in our build process that don’t discriminate based on an item type, only on one of its
metadata values. If you do use this, you must ensure that every value in each referenced
item type has declared the used metadata value. For example, if the result in Figure 6-17 had
an additional ItemGroup declaration before the PrintInfo target, such as

<ItemGroup>
 <Compile Include="src06.cs" />
</ItemGroup>

then the target would fail, showing the error message in Figure 6-18.

FIGURE 6-18  Common metadata batching error

This is one difference in behavior from the batching methods that we already discussed. In all
previous cases, if an item value did not have the specified metadata value defined, it would
be treated as empty. In this case, it causes the build to fail. If you need to use this type of
batching but you are not sure if all the item values have defined the metadata, then you may
have to provide a default value. You can use the new ItemDefinitionGroup element to provide
this for you. The following Batching07.proj file demonstrates this behavior.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="PrintInfo">
 <ItemGroup>

186	 Part III  Advanced MSBuild Topics

 <None Include="None01.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <None Include="None02.txt">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
 <None Include="None03.txt;None4.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <Compile Include="src01.cs;src02.cs;src03.cs">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </Compile>
 <Compile Include="src04.cs;src05.cs">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </Compile>
 </ItemGroup>

 <ItemGroup>
 <Compile Include="src06.cs" />
 </ItemGroup>

 <ItemDefinitionGroup>
 <Compile>
 <CopyToOutputDirectory>Never</CopyToOutputDirectory>
 </Compile>
 </ItemDefinitionGroup>

 <Target Name="PrintInfo">
 <ItemGroup>
 <Compile Include="src07.cs" />
 <Compile Include="src08.cs">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </Compile>
 </ItemGroup>

 <Message Text="%(CopyToOutputDirectory): @(None) @(Compile)" />
 <Message Text="====" />
 <Message Text="PreserveNewest: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='PreserveNewest'" />
 <Message Text="Always: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='Always'" />
 <Message Text="Never: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='Never'" />
 </Target>
</Project>

This file declares a few values for the Compile item type that have not defined
the CopyToOutputDirectory metadata value. A default value is provided via the
ItemDefinitionGroup declaration. I’ve highlighted the changed regions. The result of
executing the PrintInfo target in this file is shown in Figure 6-19.

From this result, we can see that the default value was successfully applied and we were able
to use batching with unique values of the common metadata value.

	 Chapter 6  Batching and Incremental Builds	 187

FIGURE 6-19  Common metadata batching, example 2

Another method of achieving the same result would be to use the ability to dynamically update
an item’s metadata value using ItemGroup inside a target. The following Batching08.proj file
removes the ItemDefinitionGroup element and replaces its functionality with this other technique.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="PrintInfo">
 <ItemGroup>
 <None Include="None01.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <None Include="None02.txt">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
 <None Include="None03.txt;None4.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <Compile Include="src01.cs;src02.cs;src03.cs">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </Compile>
 <Compile Include="src04.cs;src05.cs">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </Compile>
 </ItemGroup>

 <ItemGroup>
 <Compile Include="src06.cs" />
 </ItemGroup>

 <Target Name="PrintInfo">
 <ItemGroup>
 <Compile Include="src07.cs" />
 <Compile Include="src08.cs">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </Compile>
 </ItemGroup>

 <ItemGroup>
 <Compile Condition="'%(Compile.CopyToOutputDirectory)'==''">
 <CopyToOutputDirectory>Never</CopyToOutputDirectory>
 </Compile>
 </ItemGroup>

188	 Part III  Advanced MSBuild Topics

 <Message Text="%(CopyToOutputDirectory): @(None) @(Compile)" />
 <Message Text="====" />
 <Message Text="PreserveNewest: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='PreserveNewest'" />
 <Message Text="Always: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='Always'" />
 <Message Text="Never: @(Compile) @(None)"
 Condition="'%(CopyToOutputDirectory)'=='Never'" />
 </Target>
</Project>

In this demonstration, I have highlighted in bold the text that has changed. You can see
that the ItemGroup element is used inside the PrintInfo target. In this case, we are providing
a value for the CopyToOutputDirectory metadata if its value is empty. This is implemented
with task batching and as a condition. The difference between this approach and the
ItemDefinitionGroup approach is this: ItemDefinitionGroup will provide a true default value,
in the sense that it applies even for item values defined later in the build process, whereas
the replacement approach modifies only currently defined item values. We will now move on
to discuss incremental building, another great feature of MSBuild, which is little known.

Incremental Building
As products grow into giants, so do their build times. For a large code base, a build time
of a few hours is not uncommon. Knowing this, there must be a way to ensure that only
components that have changed, or depend on changed components, be built. This is
accomplished through incremental building. Incremental building allows the MSBuild engine
to determine which targets can be skipped, or even partially skipped. This then enables faster
build times in most cases. In this section, we will discuss how you can take advantage of this
in your own build scripts.

We have seen in target batching that the Output parameter of the Target element contains
the batching statement. On the Target element, there is also an Input attribute; when both of
these values are present, incremental building is enabled. In this case, the MSBuild engine will
examine the timestamps of the input files and compare them to the timestamps of the files
provided in the outputs value. If the outputs were created after the inputs, then the target is
skipped. We can now take a look at this in action.

The Incremental01.proj file demonstrates incremental building. It copies a set of files from
one location to another. If the files are up to date, then the target that performs the copy is
skipped. This file is shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <SourceFolder>$(MSBuildProjectDirectory)\src\</SourceFolder>

	 Chapter 6  Batching and Incremental Builds	 189

 <DestFolder>$(MSBuildProjectDirectory)\dest\</DestFolder>
 </PropertyGroup>

 <ItemGroup>
 <SourceFiles Include="$(SourceFolder)*.txt" />
 </ItemGroup>

 <Target Name="CopyFilesToDest"
 Inputs="@(SourceFiles)"
 Outputs="@(SourceFiles->'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')">
 <Copy SourceFiles="@(SourceFiles)"
 DestinationFiles=
 "@(SourceFiles->'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')" />
 </Target>

 <Target Name="CleanDestFolder">
 <ItemGroup>
 <_FilesToDelete Include="$(DestFolder)***"/>
 </ItemGroup>
 <Delete Files="@(_FilesToDelete)" />
 </Target>
</Project>

In this build script, we have declared two targets, CopyFilesToDest and CleanDestFolder.
The important target here is CopyFilesToDest. The inputs for that target are specified as
@(SourceFiles), and outputs as @(SourceFiles->'$(DestFolder)%(RecursiveDir)
%(Filename)%(Extension)'), which is a transformation of the SourceFiles item. If the files
in the output location are newer than the source files, then we would expect this target to be
skipped. The CleanDestFolder target can be used to delete the output files. Take a look at the
result of the command msbuild Incremental01.proj /t:CleanDestFolder;CopyFilesTo
Dest, shown in Figure 6-20.

FIGURE 6-20  CopyFilesToDest result 1

In this example, I purposefully deleted all the output files by calling the CleanDestFolder
target before the CopyFilesToDest target. I do this to ensure that the target is called, which
can be seen in the result in Figure 6-20. From that output, we can see that the files were
successfully copied from the source location to the destination. Now what would happen if
we ran that target again, without first calling the CleanDestFolder target? The result is shown
in Figure 6-21.

190	 Part III  Advanced MSBuild Topics

FIGURE 6-21  CopyFilesToDest result 2

As the result shows, the target was successfully skipped because all the outputs were up to
date with respect to the inputs. This basic implementation serves as the basis for incremental
building and is the key to efficient build scripts. The targets shipped by Microsoft to build
managed projects use incremental building extensively. If you make modifications to the
build, your targets should also support this when possible. If you extend the build process for
a managed project to use custom targets that create files, you should also make sure those
files are deleted when the project is cleaned. We will take a look at this specific example in
Chapter 8, “Practical Applications, Part 1.” It’s very important that your incremental build
works properly—that is, that it does not touch any files. This is not only because it makes
your life easier as a developer, but also because it’s highly antisocial in the context of a larger
build: Subsequent (correctly authored) build steps will be triggered to run because you
touched those files. Sometimes inputs and outputs alone will not enable you to properly
implement incremental builds. For example, if a task operates on files that have transitive
dependencies, such as C++ header files, then you may not be able to (or may not want to) list
all of them in inputs and outputs. In this scenario, you must bypass the inputs and outputs list
and let the task do the timestamp checking for itself before it is run. The GenerateResource
task behaves in this manner because .resx files can refer to other files.

Partially Building Targets
When incremental building is utilized, you may run into times when a target is up to date
for some files, but not all. You shouldn’t have to completely rebuild the target simply to
take care of a few files, and indeed, you do not—MSBuild will take care of this for you
automatically. This is called partially building targets.

The best way to describe how partial building works is to demonstrate it. We’ll start by
examining the build script shown in the next snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0" DefaultTargets="CopyFilesToDest">
 <PropertyGroup>
 <SourceFolder>src\</SourceFolder>
 <DestFolder>dest\</DestFolder>
 </PropertyGroup>

	 Chapter 6  Batching and Incremental Builds	 191

 <ItemGroup>
 <SourceFiles Include="$(SourceFolder)*.txt" />
 </ItemGroup>

 <Target Name="CopyFilesToDest"
 Inputs="@(SourceFiles)"
 Outputs="@(SourceFiles->'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')">
 <Copy SourceFiles="@(SourceFiles)"
 DestinationFiles=
 "@(SourceFiles->'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')" />
 </Target>

 <Target Name="CleanDestFolder">
 <ItemGroup>
 <_FilesToDelete Include="$(DestFolder)***"/>
 </ItemGroup>
 <Delete Files="@(_FilesToDelete)" />
 </Target>

 <Target Name="DeleteSomeRandomFiles">
 <ItemGroup>
 <_PartialFilesToDelete Include="$(DestFolder)01.txt;$(DestFolder)03.txt"/>
 </ItemGroup>
 <Delete Files="@(_PartialFilesToDelete)" />
 </Target>
</Project>

This script, Incremental02.proj, is a modification of the previous example from Incremental01
.proj. The change is the addition of a new target, DeleteSomeRandomFiles. This target
will clean out some of the files in the dest folder, but not all of them. Assuming that the
CopyFilesToDest target has been run previously without being cleaned, the result of the
command msbuild Incremental02.proj /t: DeleteSomeRandomFiles;CopyFilesToDest
is shown in Figure 6-22.

FIGURE 6-22  Partially building targets

If you take a look at the result shown in Figure 6-22, you will see the message Building
target "CopyFilesToDest" partially, because some output files are out of

date with respect to their input files. Since the DeleteSomeRandomFiles target
deleted only a couple of the generated files, the ones that were not deleted were still up to

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

192	 Part III  Advanced MSBuild Topics

date. Therefore, those files do not need to be rebuilt. MSBuild automatically recognized this
and executed CopyFilesToDest only for the outdated inputs. Following that statement, you
can see that two files were copied to the destination location. Since some of the files were up
to date, the batch that was sent to the CopyFilesToDest target contained only the out-of-date
files. When the inputs and outputs contain the same number of values, MSBuild will match
input to output in a 1:1 fashion. For example, it will assume that the first value in the input
corresponds to the first value of the output, and the second input value to the second output
value, and so on. Using this process, MSBuild is able to determine specifically what set of
inputs are out of date with respect to outputs, and process only those item values. Typically,
you will not have to be concerned with partial building because MSBuild will take care of it,
but you should be aware of it.

In this chapter, we have covered an advanced technique—batching. Batching will allow
you to create build scripts that take full advantage of the MSBuild engine. When you
create build scripts, you should remember that batching is available and use it when it
can serve a purpose. Along with batching, we have discussed incremental building, which
allows for drastically reduced build times for most builds. For any complex build scripts,
incremental building must be implemented. Now that we have covered batching and
incremental building, in the next chapter we will take a look at how external tools can be
used in the build process. We will discuss some guidelines for using external tools, as well as
show how to correctly integrate a few tools.

		 193

Chapter 7

External Tools
When you are using MSBuild, sometimes there is no specific task that provides the
functionality that you need. At those times, you will have to use one of the many existing
tools that can and should be used to assist in builds and deployments. Some of the most
commonly used tools include FxCop, StyleCop, NUnit, and so on. In this chapter, I will
describe how external tools can be effectively consumed by MSBuild. We’ll examine a few
commonly used tools and discuss how to integrate them into your build process. We’ll first
describe how these can simply be invoked in build scripts and then describe a way to create
reusable targets files for tools. Also, we will discuss some guidelines for reusable build scripts.

Exec Task
The simplest method to invoke an existing tool is by using the Exec task. This task is shipped
with MSBuild, and it can be used to execute any program or command. This is the task that is
used to execute the PreBuild and PostBuild events as well. There are several properties in this
task, which are summarized in Table 7-1.

TABLE 7-1  Exec Task Properties
Name Description
Command The command that is to be executed. This is the only required parameter.

WorkingDirectory Specifies the working directory.

Timeout Specifies the timeout, in milliseconds. After the amount of time specified has
passed, the command will be terminated. There is no timeout by default, so
a command will be allowed to execute indefinitely.

ExitCode Output property containing the exit code returned by the execute command.

IgnoreExitCode If true, then the Exec task will not fail the build based on the exit code.
Otherwise, the build is failed for any nonzero exit code.
Currently, there is a bug related to this such that, if this value is set to true
and an error message has been logged, the build should fail, but it doesn’t.

Outputs An input/output parameter that contains the output items from the task. This
is not set by the Exec task itself but made available to be set by the consumer.
This parameter is needed only for output inferral. When a target is skipped,
MSBuild tries to create all the properties and items that the target would have
created if it had run. For custom tasks, this is possible only if the output is
also an input. So this should be set to whatever the outputs for the executed
command would be if the task were run, so that MSBuild can properly
determine dependencies. This is output inferral. By exposing the outputs as
an input as well, output inferral is supported. Generally, you will not have to
worry about this.

194	 Part III  Advanced MSBuild Topics

Name Description
StdErrEncoding An input/output parameter that specifies the encoding that

is used for the standard error stream. The default value is
almost always sufficient; it is the current OEM encoding or
else ANSI. These possible values are code page names for the
desired encoding, for example UTF-8 and UTF-32.

StdOutEncoding An input/output parameter that specifies the encoding that
is used for the standard output stream. These possible values
are code page names for the desired encoding, for example
UTF-8 and UTF-32.

IgnoreStandardErrorWarningFormat If true, the output is not examined for standard errors and
warnings.

CustomErrorRegularExpression If provided, this will be the regular expression pattern used
to determine if an error occurred. MSBuild will attempt to
examine the output of the executing tool for errors and
warnings. For standard compliant tools, this is automatic.
For tools that do not log using the standard conventions
(e.g., GCC compiler), then you can provide an expression
to detect the errors. Also, you may need to provide an
expression for the CustomWarningRegularExpression
parameter.
Typically, you should use this in conjunction with the
IgnoreStandardErrorWarningFormat parameter.

CustomWarningRegularExpression If provided, this will be the regular expression pattern used
to determine that a warning occurred. See the note in the
CustomErrorRegularExpression description about how
MSBuild processes the executables output.
Typically, you should use this in conjunction with the
IgnoreStandardErrorWarningFormat parameter.

The most commonly used Exec properties are Command, IgnoreExitCode, and
WorkingDirectory. In the next code fragment, you will see a very simple usage of this task.
This is from the Exec01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <Target Name="Demo">
 <Exec Command="echo Hello MSBuild" />
 </Target>
</Project>

In this demonstration, we are simply invoking the echo command to pass a message to the
console. When you use the Exec task, the contents of the command are placed in a .cmd file
and passed to cmd.exe for execution. We can verify that this was successfully executed by
examining the result shown in Figure 7-1.

	 Chapter 7  External Tools	 195

FIGURE 7-1  Exec result

From this result, we can see that the Exec task executed the provided command and the
message was sent to the console. You should use the Exec task to invoke an executable when
a task doesn’t exist to invoke it for you. For example, you should use the Exec task to invoke
svcutil.exe, from the Windows SDK, but not csc.exe because the Csc task wraps the csc.exe
executable. A few of the reasons why custom tasks are easier to use is that they can expose
a specific set of properties that the tool can use, the output may be cleaner, and the task may
be able to discover where the .exe is located. Many existing build processes are captured in
non-MSBuild scripts, and the Exec task can be used to invoke those scripts. By doing this, you
can slowly migrate your build process to MSBuild instead of employing an “all or nothing”
approach.

Note  In case you are interested in how the Exec task works, here are some details. The Exec
task takes the content of the Command parameter, places it into a temporary file, and then runs
cmd.exe on that file. What this means is that you can use things like multiple lines, environment
variables, and so on. Another implication of this is that because this is running in a child process
(cmd.exe), any changes to environment variables will last only until the task is done.

One common usage of the Exec task, especially when using MSBuild 2.0, is to invoke the
attrib command. This command can be used to change a file’s attributes. When applications
are under development, many files are marked as read-only due to the source control
provider. This is great for development, but sometimes it causes problems for a build process
that might copy and replace files with other ones. If you are using MSBuild 3.5, or later,
the Copy task now has a property called OverwriteReadOnlyFiles, which can be used to
bypass the copy read-only file problem. With MSBuild 2.0, you would have to change the
file’s attribute to be writeable. An example of this would be replacing resource files at build
time, or replacing JavaScript files for Web projects. The following Exec02.proj file contains
an example demonstrating using the attrib command.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <SrcFiles Include="src*" />
 </ItemGroup>
 <Target Name="Demo">
 <Message Text="SrcFiles: @(SrcFiles)" />
 <Message Text="%0a%0dMaking files Readonly" Importance="high" />
 <!-- Make SrcFiles Readonly -->

196	 Part III  Advanced MSBuild Topics

 <Exec Command="attrib %(SrcFiles.Identity) +R" />

 <!-- Display the attributes -->
 <Exec Command="attrib %(SrcFiles.Identity)" />

 <Message Text="%0a%0dMaking files writeable" Importance="high" />
 <!-- Make SrcFiles Writeable -->
 <Exec Command="attrib %(SrcFiles.Identity) -R" />

 <!-- Display the attributes -->
 <Exec Command="attrib %(SrcFiles.Identity)" />
 </Target>
</Project>

This file declares a single item, SrcFiles, and a single target, Demo. Inside the Demo target,
the attrib command is used to apply the read-only flag, display file attributes, remove
read-only attributes, and finally display the attributes one last time. The result of invoking
this build script is captured in Figure 7-2.

FIGURE 7-2  Exec02.proj result

As you can see, the attrib command was successfully invoked to set and clear the read-only
flag. Now that the read-only attribute has been cleared, we are free to copy any file on top of
this one. Another common usage of the Exec task is to interact with source control providers.
With more common source control providers, you may be able to find custom tasks, but
tasks for all providers are not available. You may have to use the Exec task to perform the
operation for you. We will now conclude our discussion of the Exec task and move on to
cover the MSBuild task.

	 Chapter 7  External Tools	 197

MSBuild Task
When you are building products, there will be many instances where you simply want to
build an existing MSBuild file. This could be an MSBuild file that you authored or one that
was created by a third-party tool for you. Of course, you could use the Exec task to perform
this, but a better option is to use the MSBuild task. This is another task that is delivered along
with MSBuild itself. As the name suggests, it will invoke MSBuild on the specified file(s). Some
of the advantages of using this task instead of the Exec task include increased performance,
better integration, and ease of use. One of the main advantages of using the MSBuild task
is that you can make sure that the same project is not built multiple times concurrently. For
example, if you have projects A and B, which both reference project C, if both A and B run
the Exec task on C, then there would be two copies of C building at once unless you used the
MSBuild task. This would cause file access issues and build breaks, which is why you shouldn’t
start msbuild.exe inside a build. The properties for this task are outlined in Table 7-2.

TABLE 7-2  MSBuild Task Properties
Name Description
BuildInParallel If true, then the projects will be built in parallel if possible. The default

value for this is false. The Microsoft.Common.targets file passes
a default value of true for this property when using the MSBuild task. To
make your projects build in parallel, you need to use the /m command-
line switch to ensure that more than one processor can be used.

Projects Project file(s) to be built. If you specify more than one, either pass it in
as an item list or as a semicolon-delimited list.

Properties Optional semicolon-delimited list of properties in the format <n>=<v>,
where <n> is the name of the property and <v> is the value. These
are global properties and treated the same as properties passed to the
msbuild.exe command using the /property (/p) switch. You can
also add properties using the Properties or AdditionalProperties project
item metadata.

RemoveProperties A semicolon-delimited list of properties to remove. This is a new
property of MSBuild 4.0.

RebaseOutputs If this is true, then any relative paths from the built projects’ Target
outputs will be adjusted to that of the calling project. The default value
for this is false.

RunEachTargetSeparately If true, then each target will be executed independent of the other
targets in the Target property. If not building in parallel, then each
project will be built once for each target. If building in parallel, then
all projects will be built together for each target. If an error occurs
during a target and this is set to false, subsequent targets are allowed
to execute instead of the entire task execution terminated. The default
value for this is false. It is more efficient to leave this value as false;
otherwise, the engine will be called to build each target in turn, rather
than giving it a list.

198	 Part III  Advanced MSBuild Topics

Name Description
SkipNonexistentProjects If this is set to true, then if a project doesn’t exist, it is skipped

instead of raising an error. The default value for this is false.

StopOnFirstFailure The default value for this is false. If set to false and you are
building projects A and B, if A fails, then project B will begin
building. If you are building targets t1 and t2, if t1 fails, then t2
will start.
If this is set to true and an error occurs, the task invocation
will be stopped. This works only if you are building single proc
(as under the covers, it is implemented in the task; that is, the
task has to give each project to the engine one at a time if it is
going to have a chance to stop before the end).

TargetAndPropertyListSeparators Can be used to change the default semicolon separator for
properties and targets.

TargetOutputs Output parameter that contains the outputs from the specified
targets that were built.

Targets Specifies the target(s) to be built. If providing more than one
value, then it should be a semicolon-delimited list just as when
using the /target (/t) switch with msbuild.exe.

ToolsVersion Determines which version of tools will be used to build the
project. Valid values are 2.0, 3.5, and 4.0. The default value is
2.0. This determines the version of the tasks and targets that
are used to build your project. Note that Microsoft.Common.
targets also has a property named TargetFrameworkVersion
that can be used to target other framework versions. These are
not the same. TargetFrameworkVersion is a regular property
used by the common Microsoft targets files. If your ToolsVersion
is 2.0, then the TargetFrameworkVersion must be 2.0 as well.

UnloadProjectsOnCompletion Obsolete. Do not use.

UseResultsCache Obsolete. Do not use.

From the properties listed in Table 7-2, the most commonly used are Projects, Targets,
Properties, and TargetOutputs. We will demonstrate the usage of all these properties in this
section. The following snippet shows the contents of two project files: MSBuildTask01.proj
and MSBuildTask01_external.proj.

MSBuildTask01.proj
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

 <Target Name="Demo">
 <Message Text="Inside Demo target" />
 <MSBuild Projects="MSBuildTask01_external.proj"
 Targets="PrintMessage" />
 </Target>

</Project>

	 Chapter 7  External Tools	 199

MSBuildTask01_external.proj

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <Target Name="PrintMessage">
 <Message Text="Hello MSBuild" />
 </Target>
</Project>

The MSBuildTask01.proj file contains a single target, Demo. This is the one that we will be
invoking from the MSBuild command line. This target uses the MSBuild task to call the
PrintMessage target contained in the MSBuildTask01_external.proj file. If you executed the
command msbuild MSBuildTask01.proj /t:Demo, the result would be what is shown in
Figure 7-3.

FIGURE 7-3  MSBuildTask01.proj result

From these results, you can see that the PrintMessage target was called using the MSBuild
task from the Demo target. Now that we have seen how to use the MSBuild task, we’ll take
a look at how we can send properties into a project.

When you invoke the MSBuild task, the properties and items of the calling MSBuild file
are not passed through to the projects by the MSBuild task. This is by design. You can pass
property values using the Properties parameter of the MSBuild task. You cannot pass items
through, but you can use Properties to initialize items inside the project being built. These
properties are global properties. They are treated in the same manner as properties that
are passed into msbuild.exe using the /p switch; that is, they cannot be overwritten by
static values declared in the project file that will be processed by the MSBuild task. Building
a project with a different set of properties causes it to build again; it has a different identity.
Building a project with the same set of properties causes the build to be skipped. In the
following code section, you will find the contents of the MSBuildTask02.proj file, which is
a modified version of the previous example.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Demo">

200	 Part III  Advanced MSBuild Topics

 <Target Name="Demo">
 <Message Text="Inside Demo target" />
 <MSBuild Projects="$(MSBuildProjectFullPath)"
 Targets="PrintMessage"
 Properties="SourceName=PrintMessage Target"
 />
 </Target>

 <Target Name="PrintMessage">
 <Message Text="Hello MSBuild from: $(SourceName)" />
 </Target>
</Project>

The difference between this example and the previous one is that in this example, a value
for SourceName is passed by the Properties parameter, which is indicated in bold in this
code snippet. As stated in Table 7-2, properties should be passed in the format <n>=<v>.
In this case, the name of the property that we are passing is SourceName and the value is
“PrintMessage target”. If we were to pass more than one value, we would have to delimit the
name-value pairs with a semicolon. You can see the result of building the Demo target of this
file in Figure 7-4.

FIGURE 7-4  MSBuildTask02.proj result

You can see from this result that the SourceName property was successfully passed from the
calling file into the project being built. As you might have noticed, in this case the project
file is performing a build on itself, using the MSBuild task. But the behavior would have been
the same even if it had been building a different file. We can now move on to take a look at
a more realistic example.

A very common scenario is creating an MSBuild file that will be used as the “master” build
file. What this means is that you will have one MSBuild file that is responsible for building
a set of project files, as well as any other steps before, after, or between project builds. You
can achieve this by using the MSBuild task. The next example, taken from MSBuildTask03
.proj, uses the MSBuild task to build two sample unit test projects. The full source for this file
is shown in the following example.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="BuildAll">
 <PropertyGroup>

	 Chapter 7  External Tools	 201

 <UnitTestSrcRoot>unittest\</UnitTestSrcRoot>
 </PropertyGroup>
 <ItemGroup>
 <UnitTestProjects
 Include="$(UnitTestSrcRoot)Unittest.Proj1\Unittest.Proj1.csproj" />
 <UnitTestProjects
 Include="$(UnitTestSrcRoot)Unittest.Proj2\Unittest.Proj2.csproj" />
 </ItemGroup>

 <PropertyGroup>
 <!-- BuildAll convention used here but these could be named anything. -->
 <BuildAllDependsOn>
 BeforeBuildAll;
 CoreBuildAll;
 AfterBuildAll
 </BuildAllDependsOn>
 </PropertyGroup>
 <Target Name="BuildAll" DependsOnTargets="$(BuildAllDependsOn)" />

 <Target Name="CoreBuildAll">
 <MSBuild Projects="@(UnitTestProjects)"
 Targets="Rebuild"
 Properties="Configuration=Release">
 <Output ItemName="unitTestBuildOutputs" TaskParameter="TargetOutputs" />
 </MSBuild>

 <Message Text="unitTestBuildOutputs:%0a%0d@(unitTestBuildOutputs,'%0a%0d')" />
 </Target>

 <Target Name="BeforeBuildAll">
 <Message Text="Before BuildAll" Importance="high" />
 </Target>

 <Target Name="AfterBuildAll">
 <Message Text="After BuildAll" Importance="high" />
 </Target>
</Project>

In this project, I have defined an item, UnitTestProjects, which contains the two projects that
are to be built. These projects are built inside the CoreBuildAll target using the MSBuild
task. If you take a look at that task invocation, you will see that we are building the Release
configurations of the specified projects. Also, you can see that we’re placing the output value
from the TargetOutputs parameter into the unitTestBuildOutputs item. The TargetOutputs
value will expose any values defined as Outputs on explicitly called targets. In this case,
we are explicitly calling only the Rebuild target. If you take a look at the definition for that
target, from the Microsoft.Common.targets file, you will see what is contained in the next
snippet.

<Target
 Name="Rebuild"
 Condition=" '$(_InvalidConfigurationWarning)' != 'true' "
 DependsOnTargets="$(RebuildDependsOn)"
 Outputs="$(TargetPath)" />

202	 Part III  Advanced MSBuild Topics

This target has defined the Outputs value to be $(TargetPath), which is a property
pointing to the location of the output file. This will be the value that is transferred into the
unitTestBuildOutputs item. You will see that I have defined a target to be executed before
and after the project is built, using BeforeBuildAll and AfterBuildAll. You can see this in action
by executing the command msbuild MSBuildTask03.proj /t:BuildAll. The last bit of the
result of this is shown in Figure 7-5.

FIGURE 7-5  MSBuildTask03.proj result

From the result captured in Figure 7-5, you can see that both unit tests were successfully built
using the MSBuild task. Furthermore, you can see that the result assemblies were placed into
the unitTestBuildOutputs item as expected. Now we have demonstrated how we can utilize
the MSBuild task in order to build child projects. You should note that if you want to take
advantage of the multiprocessor support that MSBuild has, you must invoke msbuild.exe
using the /maxcpucount (/m) switch, and when using the MSBuild task, you should set the
BuildInParallel value to true. The MSBuild task also supports a set of known metadata that
can be used during the build process: Properties, AdditionalProperties, and ToolsVersion.

Thus far, we have discussed the Exec task and the MSBuild task. Now, we’ll move on to
discuss error message formats. If you have many projects that will utilize the same tools, then
you should create reusable scripts to make integration of the tools simpler.

	 Chapter 7  External Tools	 203

MSBuild and Visual Studio Known Error Message
Formats

When a tool is executed that outputs some text, MSBuild will examine the text for
errors and warnings. Many tools use a known format to report these messages. By
default, MSBuild will examine the text and report errors and/or warnings based on the
output. This behavior can be changed or disabled by using these parameters on the
Exec task: IgnoreStandardErrorWarningFormat, CustomErrorRegularExpression, and
CustomWarningRegularExpression.

Note  If you do decide to use your own regular expression to detect error and warnings, then
you should know that MSBuild will look at the result one line at a time. Even if your custom
regex would match something across multiple lines, it will not behave that way because of how
MSBuild processes that text.

Take a look at the following four messages, which are all properly formatted and will be
recognized by MSBuild and Microsoft Visual Studio.

Main.cs(17,20): warning CS0168: The variable 'foo' is declared but never used

C:\dir1\foo.resx(2) : error BC30188: Declaration expected.

cl : Command line warning D4024 : unrecognized source file type 'foo.cs', object .  .  .

error CS0006: Metadata file 'System.dll' could not be found.

These messages conform to the special five-part format shown in Figure 7-6. The order
of these parts is important and should not change.

FIGURE 7-6  Known message format

Now we will describe each of the components of this format:

n	 Origin (Required)  Origin can be blank. If present, the origin is usually a tool name,
such as “cl” in one of the examples. But it could also be a file name, such as “Main.cs,”
shown in another example. If it is a file name, then it must be an absolute or a relative
file name, followed by an optional parenthesized line/column information in one of the
following forms:

(line) or (line-line) or (line-col) or (line,col-col) or (line,col,line,col)

204	 Part III  Advanced MSBuild Topics

Lines and columns start at 1 in a file; that is, the beginning of a file is 1, and the
leftmost column is 1. If the Origin is a tool name, then it must not change based on
locale; that is, it needs to be locale-neutral.

n	 Subcategory (Optional)  Subcategory is used to classify the category itself further; it
should not be localized.

n	 Category (Required)  Category must be either “error” or “warning”. Case does not
matter. As with origin, category must not be localized.

n	 Code (Required)  Code identifies an application-specific error code/warning code.
Code must not be localized and it must not contain spaces.

n	 Text  User-friendly text that explains the error, and it must be localized if you cater to
multiple locales.

When MSBuild calls command-line tools (for instance, csc.exe or vbc.exe), it looks at the
output emitted by the tool to the standard out and standard error streams. Any lines that
match the error format that I just described will be treated specially; that is, lines that are
recognized as errors or warnings will be turned into build errors and warnings, respectively.

To see the real benefit of this, you have to be building from within Visual Studio. Because
MSBuild treats these messages specially, they get logged as first-class warnings and
errors in the Visual Studio task list. If the Origin specifies line/column information, then
double-clicking the message will take you to the source of the error in the offending file.

Creating Reusable Build Elements
When you are integrating tools into your build process that serve as key elements in a build,
then you should consider creating reusable elements that can be consumed by various
products. Creating reusable build elements is different, and more difficult, than the content
that we have covered thus far. When you are creating these scripts, there are a few rules that
you should follow. We will point out how the scripts that we create in this chapter adhere to
the guidelines outlined in the following list:

	 1.	 Needs to be self-contained

	 2.	 Process needs to be transparent and extensible to the consumer

	 3.	 Overridable behavior

	 4.	 A contract should be defined and validated

The first rule, “Needs to be self-contained,” means that all the necessary steps to perform the
desired actions are captured in the defined script. This does not mean that the script cannot
make assumptions (these are covered by rule #4), but it does mean that the tool’s build script
cannot modify values of the calling build script. For example, if you have a build script for
public use that defines how to invoke FxCop, then the FxCop script file should not change the

	 Chapter 7  External Tools	 205

value for the BuildDependsOn property, even though this is tempting. Instead, the importing
build script should place the FxCop target(s) into that property.

The second consideration, “Process needs to be transparent and extensible to the consumer,”
means that the entire process needs to be able to be modified to suit the needs of the
caller. For example, similar to the Microsoft.Common.targets, target dependency lists should
be exposed as properties so that consumers can extend them to inject their own targets.
For example, the Microsoft.Common.targets contains properties such as BuildDependsOn,
CompileDependsOn, ResolveReferencesDependsOn, PrepareResourceNamesDependsOn,
and many others. By exposing such properties, callers can easily change the process of the
script itself. With MSBuild 4.0, you get this by default with BeforeTargets and AfterTargets.
However, DependsOn properties are still good to use because there is a slight difference.
With DependsOn properties, you can redefine all dependencies, but with BeforeTargets and
AfterTargets, you cannot. There are a few disadvantages to using DependsOn properties,
though, which are outlined as follows:

	 1.	 The target must explicitly define its DependsOnTargets value in a property.

	 2.	 If the property is carelessly overwritten, unexpected results will occur.

	 3.	 You can only prepend or append; you cannot inject a step in the middle.

Because of these limitations, this solution is not ideal, either, but it is better than any other
option currently available.

The third rule, “Overridable behavior,” is for the most part built into MSBuild. This is because
every target that is imported into a file can be overridden by simply re-declaring that
target at some point after the Import statement that initially defines it. Because of this, you
should be wary of creating MSBuild scripts that have targets with an excessive number of
task invocations. Just as when you write code, when your targets grow too large, then they
should be re-factored. If your targets are more fine-grained, then others can easily override a
target to customize the behavior. If a target performs many different actions, it is difficult for
others to override because they don’t want to have to rewrite the entire target just to change
a small section.

Note  You can use the command-line switch /preprocess (/pp) to write out the entire
MSBuild file to a file. This would include all the imported targets, properties, and items.
Sometimes this is very helpful to do because it shows what targets are being used.

Now we can move on to the final guideline, “A contract should be defined and validated.”
Of all the rules, this is the one that is most interesting. Most frameworks, such as the
Microsoft .NET Framework and Microsoft Windows Communication Foundation (WCF),
have a clear mechanism for defining a contract between a consumer and a provider.
Unfortunately, MSBuild doesn’t have such a mechanism. Despite this limitation, we need

206	 Part III  Advanced MSBuild Topics

a way to declare an agreement between these two parties, and that agreement should
be validated. In reusable .targets files, the data are always provided by the caller and the
essential behavior is always described by the callee. Because the callee needs to know what
data to act upon, the correct properties and items need to be made available to it. Also, the
validation logic can be placed inside a target, which is called before the essential actions
are performed. If you are validating static items, then you can place these validation targets
inside the InitialTargets declaration. We will see this implemented in all the target files in this
chapter. When you are creating target files, there is a convention that you should be aware
of and make sure to follow: You should prefix with an underscore all properties, items, and
target names that should be considered internal implementation details. By doing so, you
are letting the caller know that its behavior is subject to change or might even be removed in
newer versions. A future version of MSBuild might support some type of scoping mechanism
that can be used to work around this issue. This convention is followed by all target files
provided by Microsoft. Now that we have outlined some guidelines, we can take a look at
what it takes to integrate some specific tools into our build process.

NUnit
If you are not familiar with NUnit, it is an open-source unit testing framework. It is very
similar to the unit testing tools that are available in the team versions of Visual Studio, which
have specific tasks and targets. You can learn more about NUnit at its homepage, nunit.org.
NUnit is not the only alternative to Visual Studio tests; another tool is xUnit.net, and there
are many others. If you are using NUnit to test your applications, then you should automate
running NUnit as a part of your build process. You can achieve this in a few different ways.
One of the best options is to use the NUnit task that is available from the MSBuild Extension
Pack. We will first take a look at this task and then describe how to effectively utilize it.
Table 7-3 describes the properties that are available on the NUnit task.

TABLE 7-3  NUnit Task Properties
Name Description
Assemblies Contains the assemblies that the NUnit task will examine. You can also

pass in the full path to a Visual Studio project, if it ends in one of these
extensions: .csproj, .vbproj, .vjsproj, or .vcproj. Another option here is to
pass an NUnit project file.
This is the only required input.

IncludeCategory Specifies the NUnit test case category or categories that should be
executed. If you decorate your test cases with an NUnit.Framework.Category
attribute, then this feature may be useful. If you are providing multiple
values, then they should be separated by a comma. This corresponds to the
/include command-line parameter of nunit-console.exe.

	 Chapter 7  External Tools	 207

Name Description
ExcludeCategory Specifies the NUnit test case category or categories that should be

excluded from test execution. If you are passing more than one value
for this, they should be comma-separated. This corresponds to the
/exclude command-line parameter.

OutputXmlFile This is where the test results XML file will be stored. This is not
a required input, but you should always set this. If this is not set, then
the file will be placed in a file named TestResult.xml in the working
directory. This corresponds to the /xml parameter.

ErrorOutputFile If provided, this file will be populated with any messages that are sent
to the standard error stream. This corresponds to the /err parameter.

NoShadow By default, NUnit will execute all of your test cases on shadow copies
of your assemblies. These are typically contained in the “%temp%\
nunit20\ShadowCopyCache\” folder. This behavior can be disabled by
providing a value of true for this property. This corresponds to the
/noshadow command-line parameter.

Configuration Using this, you can specify the value for configuration that the
test cases should be run against. This corresponds to the /config
command-line parameter.

NoThread If a value of true is provided for this property, then the test cases will
be executed in the same thread. The default value for this is false. This
corresponds to the /thread parameter.

Note  Other properties exist for this task as well. For the full list, see the documentation for the
MSBuild Extension Pack.

To demonstrate using this task, I have created a simple class containing some test cases, as
shown in the following class definition.

namespace Unittest.Proj1
{
 using NUnit.Framework;

 [TestFixture]
 public class TestOperators
 {
 [Test]
 public void TestAddition()
 {
 int result = 1 + 1;
 Assert.AreEqual(2, result);

 result = 100 + 1;
 Assert.AreEqual(101, result);

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

208	 Part III  Advanced MSBuild Topics

 result = 1005 + (-1);
 Assert.AreEqual(1004, result);
 }
 [Test]
 public void TestSubtraction()
 {
 int result = 1 - 1;
 Assert.AreEqual(0, result);

 result = 100 - 1;
 Assert.AreEqual(99, result);

 result = 1005 - (-1);
 Assert.AreEqual(1006, result);
 }
 }
}

This class is located in the Unittest.Proj1 project. Now we need to create an MSBuild file that
can be used to execute the unit tests in that project for us using the NUnit task, shown in the
following nunitExample.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="UnitTest">

 <PropertyGroup>
 <ExtensionTasksPath>
 $(MSBuildThisFileDirectory)\..\Contrib\ExtensionPack\4.0\
 </ExtensionTasksPath>
 </PropertyGroup>
 <Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>

 <ItemGroup>
 <UnitTestProjects
 Include="$(MSBuildProjectDirectory)\unittest\Unittest.Proj1\Unittest.Proj1.csproj">
 </UnitTestProjects>
 </ItemGroup>

 <PropertyGroup>
 <NUnitResultFile>$(MSBuildProjectDirectory)\nunit-result.xml</NUnitResultFile>
 </PropertyGroup>

 <Target Name="UnitTest">
 <!-- Build all the projects in UnitTestProjects -->
 <MSBuild Projects="@(UnitTestProjects)" />
 <!-- Execute the test cases, if any fail so will the build -->
 <NUnit Assemblies="@(UnitTestProjects)"
 ToolPath="..\Contrib\NUnit 2.5.7\bin\net-2.0" />

 </Target>
</Project>

In this MSBuild file, I have declared the UnitTestProjects item and included the Unittest.Proj1
.csproj file.

	 Chapter 7  External Tools	 209

Note  In the previous example, the MSBuild Extension Pack was referenced from a relative
folder, but if you have installed the extension pack on your machine, then you could have
used the MSBuildExtensionsPath property. This property points to the suggested location for
third-party targets and tasks. They should be located in a directory under that path which
typically points to the folder C:\Program Files\MSBuild. Also, there is a related property,
MSBuildExtensionsPath32, which is for tasks and targets that have 32- and 64-bit versions.

In the UnitTest target, the default target for this file, I first build the project, and then I invoke
the NUnit task against it. In this example, I have chosen, for simplicity, to pass the project
file as the NUnit input file. Also, notice that I provide the path to nunit-console.exe via the
ToolPath property, which is available on any task extending the Microsoft.Build.Utilities
.ToolTask class. The listing shown in Figure 7-7 captures the last portion of the results you get
when you execute the command msbuild nunitExample.proj /t:UnitTest /clp:v=d.
In this case, we are setting the verbosity of the console logger to detailed (/clp:v=d) in
order to output the NUnit messages.

FIGURE 7-7  NUnitExample.proj passing result

From the output shown, we can see that the Unittest.Proj1.csproj file was built, and then
the test cases executed via the NUnit task. If any test cases failed, then the build itself would
have failed. To demonstrate this behavior, uncomment the following failing test case in the
TestOperators class.

[Test]
public void TestDivide()
{
 int numerator = 100;
 int divisor = 20;
 int result = numerator / divisor;
 Assert.AreEqual(6, result);
}

210	 Part III  Advanced MSBuild Topics

To see how a failing test would affect the build, execute the nunitExample.proj more times.
The result is shown in Figure 7-8.

As stated, since there was at least one failing test case, the entire build failed. The failures
are also summarized at the end of the build. Now that we’ve described how we can use the
NUnit task, we can take a look at how we can create a reusable targets file to simplify the
process of invoking it.

FIGURE 7-8  NUnitExample.proj failing result

I have created a reusable targets file, nunit.targets, which can be used across products.
I will show portions of the file in this chapter, but you can see it in its entirety in the sample
sources. The following snippet contains some key elements of this file.

<Target Name="ValidateNUnitSettings">
 <!-- Validate assumptions that are contracted -->

 <Error Condition="'$(NUnitOutputDir)'==''"
 Text="NUnitOutputDir property not defined" />

 <Error Condition="'@(NUnitAssemblies)'==''"
 Text="NUnitAssemblies not defined" />
 <Error Condition="'%(NUnitAssemblies.ProjectName)'==''"
 Text="Atleast 1 item in NuitAssemblies doesn't have metadata 'ProjectName' defined." />
 <Error Condition="!Exists('%(NUnitAssemblies.FullPath)')"
 Text="Couldn't locate assembly at: %(NUnitAssemblies.FullPath)" />

	 Chapter 7  External Tools	 211

 <Error Condition="
!Exists('$(GenericBuildRoot)Contrib\NUnit 2.5.7\bin\net-2.0\nunit-console.exe')"
Text="Couldn't locate nunit-console.exe at:
$(GenericBuildRoot)Contrib\NUnit 2.5.7\bin\net-2.0\nunit-console.exe"/>
</Target>

<PropertyGroup>
 <!-- Declare target dependencies here -->
 <UnitTestDependsOn>
 $(UnitTestDependsOn);
 BeforeUnitTest;
 ValidateNUnitSettings;
 UnitTestCore;
 DetectNUnitFailures;
 ReportNUnitFailures;
 AfterUnitTest;
 </UnitTestDependsOn>
 <UnitTestCleanDependsOn>
 $(UnitTestCleanDependsOn);
 BeforeUnitTestClean;
 CoreUnitTestClean;
 AfterUnitTestClean;
 </UnitTestCleanDependsOn>
</PropertyGroup>

<Target Name="UnitTest"
 Inputs="%(NUnitAssemblies.Identity)"
 Outputs="@(NUnitAssemblies->'$(NUnitOutputDir)%(ProjectName).UNITTEST.xml')"
 DependsOnTargets="$(UnitTestDependsOn)" />

<Target Name="UnitTestCore" Outputs="%(NUnitAssemblies.Identity)">
 <Message Text="Start UnitTest for @(NUnitAssemblies->'%(Fullpath)')" />

 <MakeDir Condition="!Exists('$(NUnitOutputDir)')"
 Directories="$(NUnitOutputDir)" />

 <Message
 Condition="'$(GenBuildDebugMode)'=='true'"
 Text="Calling NUnit on:%0a%0d@(NunitAssemblies,'%0a%0d')" />

 <PropertyGroup>
 <NUnitContinueOnError
 Condition="'$(NUnitContinueOnError)'==''">true</NUnitContinueOnError>
 </PropertyGroup>
 <!--
 Don't rely on NUnit stopping build on failed unit test, we have more work afterwards
 -->

 <ItemGroup>
 <_NUnitReportFiles
 Include="@(NUnitAssemblies->'$(NUnitOutputDir)%(ProjectName).unittest.xml')" />
 </ItemGroup>
</Target>

212	 Part III  Advanced MSBuild Topics

<Target Name="CleanUnitTest"
 DependsOnTargets="$(UnitTestCleanDependsOn)" />
<Target Name="CoreUnitTestClean">
 <MakeDir Directories="$(NUnitOutputDir)"
 Condition="!Exists('$(NUnitOutputDir)')" />
 <ItemGroup>
 <_OldNUnitResultFiles Include="$(NUnitOutputDir)***.unittest.xml" />
 <_OldNUnitResultFiles Include="$(NUnitOutputDir)***.FAILED.xml" />
 </ItemGroup>

 <Delete Files="@(_OldNUnitResultFiles)" />
</Target>

You can see the contract defined, in MSBuild terms, inside the ValidateNUnitSettings target.
This target will be executed before the UnitTest target gets executed; this is because it is
contained in the value of the UnitTestDependsOn property. Inside this target, there are five
error statements, each with conditional statements. These conditions define the contract that
this file defines. If any of these erroneous conditions is detected, then the execution will fail.
The following list describes the details of the contract that are asserted in that target.

	 1.	 A property named NUnitOutputDir is defined and not empty.

	 2.	 An item called NUnitAssemblies is defined.

	 3.	 Each item value in NUnitAssemblies contains a value for ProjectName metadata.

	 4.	 Each file in NUnitAssemblies exists on disk.

	 5.	 The nunit-console.exe file exists in the expected folder.

By using this contract, we have defined how a calling project file will feed data into this file.
In return, this file will provide the core behavior required to execute the NUnit test cases
contained in the provided assemblies. You should note that when declaring a condition such
as Condition= "'$(NUnitContinueOnError)'==''", you should always wrap each term
in quotes. If you do not, you may run into situations where the condition may not evaluate as
expected. Now we can see how the other requirements for reusable targets files are achieved
in this sample.

All the requirements for using the nunit.targets file are contained in the validation target
shown previously. One of the requirements is that a list of assemblies be provided for
which NUnit will be executed with. If you were authoring this file, you might be tempted to
inject the UnitTest target directly into the BuildDependsOn property. This would make the
assumption that the file was being consumed by a typical managed project file and would be
a violation of the first rule outlined. The calling MSBuild file is entirely responsible for injecting
the UnitTest target into its build, not the other way around. Also, your targets files, which
are made publically available, should not override or even assume the existence of targets
provided in Microsoft.Common.targets such as BeforeBuild, BeforeCompile, and so on.

	 Chapter 7  External Tools	 213

How does this targets file meet the requirements for transparency and extensibility? That
is achieved through the use of dependency properties, namely UnitTestDependsOn and
UnitTestCleanDependsOn. These properties are used to define the set of steps to be executed
in order for their corresponding targets to be executed. For example, the UnitTest target
declares its dependency list as DependsOnTargets=$(UnitTestDependsOn). By using these,
we externalize the steps required to execute the UnitTest and CleanUnitTest targets. Now that
we’ve discussed how this targets file meets the requirements laid out previously, we can now
examine how to use it.

Now that we’ve created a reusable targets file for invoking NUnit, we’ll see how this can be
utilized by calling MSBuild scripts. The following file, UnittestBuild.proj, demonstrates the
usage of this file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Build">
 <PropertyGroup>
 <SourceRoot>$(MSBuildProjectDirectory)\</SourceRoot>
 <UnitTestRoot>$(SourceRoot)unittest\</UnitTestRoot>
 <OutDirName>bin\</OutDirName>
 <Configuration>Debug</Configuration>
 <NUnitOutputDir>$(SourceRoot)BuildTemp\</NUnitOutputDir>
 <GenericBuildRoot>$(SourceRoot)\..\</GenericBuildRoot>
 </PropertyGroup>

 <ItemGroup>
 <UnitTestProjects
 Include="$(UnitTestRoot)Unittest.Proj1\Unittest.Proj1.csproj">
 <ProjectName>Unittest.Proj1</ProjectName>
 </UnitTestProjects>
 <UnitTestProjects
 Include="$(UnitTestRoot)Unittest.Proj2\Unittest.Proj2.csproj">
 <ProjectName>Unittest.Proj2</ProjectName>
 </UnitTestProjects>
 </ItemGroup>

 <PropertyGroup>
 <BuildDependsOn>
 $(BuildDependsOn);
 Clean;
 CoreBuild;
 UnitTest
 </BuildDependsOn>
 </PropertyGroup>
 <Target Name="Build" DependsOnTargets="$(BuildDependsOn)" />
 <Target Name="Clean">
 <MSBuild Projects="@(UnitTestProjects)" Targets="Clean" />
 </Target>
 <Target Name="CoreBuild">

214	 Part III  Advanced MSBuild Topics

 <!--
 Build the NUnit assemblies & put the
 assemblies in the NUnitAssemblies Item -->
 <MSBuild Projects="@(UnitTestProjects)">
 <Output ItemName="NUnitAssemblies"
 TaskParameter="TargetOutputs" />
 </MSBuild>
 </Target>

 <PropertyGroup>
 <RebuildDependsOn>
 $(RebuildDependsOn);
 Clean;
 Build
 </RebuildDependsOn>
 </PropertyGroup>
 <Target Name="Rebuild"
 DependsOnTargets="$(RebuildDependsOn)" />
 <Import
 Project="nunit.targets" />

 <PropertyGroup>
 <UnitTestDependsOn>
 CustomBeforeUnitTest;
 $(UnitTestDependsOn);
 </UnitTestDependsOn>
 </PropertyGroup>

 <Target Name="CustomBeforeUnitTest">
 <Message Text="NUnitAssemblies:%0a%0d@(NUnitAssemblies,'%0a%0d')"
 Importance="high" />
 </Target>
</Project>

In this example, we have created a sample build file that builds a couple of projects and then
sends the resulting assemblies to the NUnit task. I’ve made bold the text where I declare the
UnitTestProjects item, which contains the projects that we are testing. Following that, you
can see that the UnitTest target is placed into the BuildDependsOn list after the projects
are to be built. Inside the CoreBuild target, the NUnitAssemblies item is created using the
TargetOutputs of the MSBuild task, which is used to build the projects. Also, you can see that
we inject the CustomBeforeUnitTest target into the list of targets required to execute before
the UnitTest target. You should note that this must be defined after the Import statement
for the nunit.targets file. If you build this project file, the result will be what is shown in
Figure 7-9; only a portion of the result is shown here to conserve space.

The test cases in both projects were executed successfully. Since all the test cases
passed, the build was allowed to continue. Also, you can see that CustomBeforeUnitTest
was successfully injected into the build process at the appropriate time. Now we have
demonstrated how we can integrate NUnit into the build process in a reusable means, we’ll
move on to discuss FxCop.

	 Chapter 7  External Tools	 215

FIGURE 7-9  UnittestBuild.proj result

FxCop
FxCop is a code analysis tool created by Microsoft, which can help identify potential
problem areas and can help enforce best practices. We will discuss how we can integrate
FxCop into the build process here. There also is an FxCop task, provided by the MSBuild
Extension Pack, which is similar to the NUnit task. We will use this task to execute the FxCop
tool against the binaries of our projects. In the following example, we will execute FxCop
against the Examples.Tasks and Example.Loggers project. Another related tool, which we will
not demonstrate here, is StyleCop. StyleCop is a source code analysis tool; it examines the
actual source files to ensure that styling guidelines are followed and to spot potential rule
violations.

Similar to integrating NUnit, a targets file, fxcop.targets, has been created to take care of
the heavy lifting for us. This file also has a validation target, ValidateFxCopSettings, which is
shown in the following snippet.

<Target Name="ValidateFxCopSettings" DependsOnTargets="SetupFxCopProperties">
 <Error Condition="'@(FxCopAssemblies)'==''"
 Text="%40(FxCopAssemblies) not defined"/>
 <Error Condition="!Exists('%(FxCopAssemblies.Fullpath)')"
 Text="Path not found (FxCopAssemblies): [%(FxCopAssemblies.Fullpath)]"/>

216	 Part III  Advanced MSBuild Topics

 <Error Condition="'$(FxCopContribRoot)'==''"
 Text="%24(FxCopContribRoot) is not defined"/>
 <Error Condition="!Exists($(FxCopContribRoot))"
 Text="Path not found(FxCopContribRoot): [$(FxCopContribRoot)]"/>

 <Error Condition="'$(FxCopOutputRoot)'==''"
 Text="%24(FxCopOutputRoot) is not defined"/>
 <Error Condition="!Exists($(FxCopOutputRoot))"
 Text="Path not found(FxCopOutputRoot): [$(FxCopOutputRoot)]"/>
</Target>

Based on this target, we can see what this file requires for successful integration. The file that
consumes the fxcop.targets file, FxCop_Examples.proj, is very similar to the one for the NUnit
example; it is shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 DefaultTargets="Build">
 <PropertyGroup>
 <SourceRoot>$(MSBuildProjectDirectory)\</SourceRoot>
 <ContribRoot>..\Contrib\</ContribRoot>
 <FxCopOutputRoot>$(SourceRoot)BuildTemp\FxCopTemp\</FxCopOutputRoot>
 <Configuration>debug</Configuration>
 </PropertyGroup>

 <PropertyGroup>
 <_TaskOutputRoot>$(SourceRoot)Examples.Tasks\</_TaskOutputRoot>
 <_LoggerOutputRoot>$(SourceRoot)Examples.Loggers\</_LoggerOutputRoot>
 </PropertyGroup>

 <ItemGroup>
 <FxCopProjects
 Include="$(_TaskOutputRoot)Examples.Tasks.csproj">
 <Outputs>$(_TaskOutputRoot)bin\$(Configuration)\Examples.Tasks.dll</Outputs>
 </FxCopProjects>
 <FxCopProjects
 Include="$(_LoggerOutputRoot)Examples.Loggers.csproj">
 <Outputs>$(_LoggerOutputRoot)bin\$(Configuration)\Examples.Loggers.dll</Outputs>
 </FxCopProjects>

 <FxCopAssemblies Include="@(FxCopProjects->'%(Outputs)')" />
 </ItemGroup>

 <PropertyGroup>
 <BuildDependsOn>
 $(BuildDependsOn);
 CoreBuild;
 RunFxcop;
 </BuildDependsOn>
 <RebuildDependsOn>
 Clean;
 $(BuildDependsOn)
 </RebuildDependsOn>
 </PropertyGroup>
 <Target Name="Rebuild" DependsOnTargets="$(RebuildDependsOn)"/>
 <Target Name="Build" DependsOnTargets="$(BuildDependsOn)" />

	 Chapter 7  External Tools	 217

 <Target Name="Clean">
 <MSBuild Projects="@(FxCopProjects)" Targets="Clean" />
 </Target>
 <Target Name="CoreBuild"
 Inputs="@(FxCopProjects)"
 Outputs="@(FxCopAssemblies)">
 <MSBuild Projects="@(FxCopProjects)" />
 </Target>

 <PropertyGroup>
 <CleanDependsOn>
 $(CleanDependsOn);
 CleanFxCop;
 </CleanDependsOn>
 </PropertyGroup>
 <Target Name="Clean" DependsOnTargets="$(CleanDependsOn)">
 <MSBuild Projects="@(FxCopProjects)" Targets="Clean" />
 </Target>
 <!-- Extension Pack required for fxcop.targets file -->
 <PropertyGroup>
 <ExtensionTasksPath>$(MSBuildThisFileDirectory)\..\Contrib\ExtensionPack\4.0\
 </ExtensionTasksPath>
 </PropertyGroup>
 <Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>
 <Import
 Project="fxcop.targets"/>

 <PropertyGroup>
 <RunFxCopDependsOn>
 $(RunFxCopDependsOn);
 CoreBuild;
 CustomAfterFxCop
 </RunFxCopDependsOn>
 </PropertyGroup>

 <Target Name="CustomAfterFxCop">
 <Message Text="FxCop executed."
 Importance="high" />
 </Target>
</Project>

From the sample build script, you can see how easy it is to consume this targets file. In the
previous snippet, I have highlighted a few key areas, some of which we will discuss here.
Inside the CoreBuild target, the MSBuild task is used to build the projects. It is important to
note that the CoreBuild target declares values for both Inputs and Outputs. Because of this,
the target will support incremental building and will be executed only if it is out of date.
This is critical in large builds. Sometimes you may have to make changes to your build to
support this, but it is well worth it and is a best practice. The RunFxCop target is injected into
the build process by placing it into the list of targets to execute during a build by extending
the BuildDependsOn property. Along with this, the CustomAfterFxCop target is injected
into the list of targets that will be executed after the RunFxCop target executes. We can see
the results of building this script with the command msbuild.exe FxCop_Example.proj
/t:Build in Figure 7-10.

218	 Part III  Advanced MSBuild Topics

FIGURE 7-10  RunFxCop result

There were a few FxCop errors detected during the build process; because of this,
the build itself was stopped, as expected. We never have an opportunity to see if the
CustomAfterFxCop target executes; therefore, it is not displayed in Figure 7-10. From the
results shown, you can also see that the full path to the FxCop HTML report is passed for
developers to use in order to help fix all the FxCop-related errors.

Now that we have seen how to use the fxcop.targets file, we can take a closer look at the file
itself. The full source is delivered along with the other examples for this book. For this book,
we will discuss some of the contents of that file here. In the next snippet, you will find the list
of targets that make up the dependencies for the RunFxCop target.

<PropertyGroup>
 <RunFxCopDependsOn>
 SetupFxCopProperties;
 CopySourceFiles;
 ValidateFxCopSettings;
 BeforeFxCop;
 CoreFxCop;
 DetectFxCopError;
 AfterFxcop
 </RunFxCopDependsOn>
</PropertyGroup>

	 Chapter 7  External Tools	 219

The two most important targets from the previous list are ValidateFxCopSettings and
CoreFxCop, which are shown in bold in the code. The validate target declares the contract for
consumers and ensures that it is adhered to, and the CoreFxCop target executes FxCop on
the input specified. We have already seen the definition for the ValidateFxCopSettings target;
in the following snippet, we will see the CoreFxCop target.

<Target Name="CoreFxcop"
 Inputs="@(FxCopAssemblies)"
 Outputs="$(FxCopReportFile)">
 <Message Text="FxCop begin analysis on: @(FxCopAssemblies)"
 Importance="high"/>
 <Message Text="FxCopReportFile: $(FxCopReportFile)"
 Importance="low"/>

 <MSBuild.ExtensionPack.CodeQuality.FxCop
 TaskAction="Analyse"
 Files="@(FxCopAssemblies)"

 ShowSummary="true"
 FxCopPath="$(MSBuildThisFileDirectory)\..\Contrib\Microsoft FxCop 1.36\FxCopCmd.exe"
 OutputFile="$(FxCopReportFile)" />

 <ItemGroup>
 <_FxCopReportFileItem Include="$(FxCopReportFile)"/>
 </ItemGroup>
 <PropertyGroup>
 <_FxCopHtmlReportFile>@(_FxCopReportFileItem->'%(Fullpath).html')</_FxCopHtmlReportFile>
 </PropertyGroup>

 <!-- Create human friendly version -->
 <XslTransformation
 XmlInputPaths="$(FxCopReportFile)"
 XslInputPath="$(FxCopTransformFile)"
 OutputPaths="$(_FxCopHtmlReportFile)" />

</Target>

This target invokes the FxCop task with the provided values. This invocation results in an XML
file being written that contains the results of the analysis. This file is used later in the build
process to detect FxCop failures. After the FxCop target completes executing, that same
XML file is fed into the XslTransformation task, which is provided with MSBuild, to create
a human-readable version of the FxCop report. Similar to the CoreBuild target shown earlier,
the CoreFxCop target defines values for Inputs and Outputs; this will allow the target to be
skipped if all FxCopAssemblies are older than the FxCopReportFile file. The remaining aspects
of this file are specific implementation details and will not be discussed here.

In this chapter, we have discussed a few different ways that you can invoke tools external
to your build process. We have also discussed how you can create reusable build elements
for build processes that will be repeated from project to project. This chapter concludes
our coverage of MSBuild in this fashion. The next two chapters will take a cookbook-style
approach to delivering material.

		 221

Part IV

MSBuild Cookbook
In this part:
Chapter 8: Practical Applications, Part 1 . 223
Chapter 9: Practical Applications, Part 2 . 245

		 223

Chapter 8

Practical Applications, Part 1
In the previous chapters, we have presented the material that you will need to extend
and customize your build process. Stating how to do something and giving an example
of doing it are two entirely different things. In order to provide the most benefit, this chapter
and the next one are dedicated to providing practical examples that can be used in your
build process. In this chapter, we will discuss examples such as setting an assembly version,
handling errors, extending the clean process, and a few more.

Setting the Assembly Version
A common scenario when building projects is the need to set the version information for
an assembly. You can easily accomplish this with the MSBuild Extension Pack (http://
msbuildextensionpack.codeplex.com/). When you download and install the extension pack,
it installs all the files into the $(MSBuildExtensionsPath)\ExtensionPack folder. Those files
include MSBuild.ExtensionPack.VersionNumber.targets, which you will need to import into
your project to help you set the version information. If you are using version control, then
I suggest that you place the files under version control so that all of your developers do
not have to install the extension pack. In my sample, you will see how to set the version
information as if the files were under version control.

After you’ve downloaded and installed the extension pack, you can copy the files under the
ExtensionPack to a folder with a known location relative to the project for which you want
to set the version. In my example, I created a sample WPF application, WpfApplication1, and
placed the files inside a Contrib folder at the same level as the projects folder. Then I edited
the project file, WpfApplication1.csproj, to include the following snippet after the Import for
Microsoft.CSharp.targets.

<PropertyGroup>
 <ExtensionTasksPath>..\Contrib\ExtensionPack\4.0\</ExtensionTasksPath>
</PropertyGroup>

<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.VersionNumber.targets"
 Condition=" '$(BuildingInsideVisualStudio)'!='true' " />

<PropertyGroup Condition=" '$(BuildingInsideVisualStudio)'!='true' ">
 <AssemblyMajorVersion>2</AssemblyMajorVersion>
 <AssemblyMinorVersion>5</AssemblyMinorVersion>
 <AssemblyFileMajorVersion>2</AssemblyFileMajorVersion>
 <AssemblyFileMinorVersion>5</AssemblyFileMinorVersion>
 <AssemblyInfoSpec>Properties\AssemblyInfo.cs</AssemblyInfoSpec>
</PropertyGroup>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

224	 Part IV  MSBuild Cookbook

First, I declare the ExtensionTasksPath property, which is required if you want to use the
MSBuild Extension Pack from a location other than the MSBuildExtensionsPath. After that,
I import the MSBuild.ExtensionPack.VersionNumber.targets file. This is the targets file that
knows how to edit the AssemblyInfo.cs file to inject the correct version information. All we
have to do is to declare some properties and it will take care of the rest for us. You can read
that file for a full list of properties that it supports, but I have shown a few of them in the
previous snippet. The properties that I set include the following: AssemblyMajorVersion,
AssemblyMinorVersion, AssemblyFileMajorVersion, AssemblyFileMinorVersion, and
AssemblyInfoSpec. The first two properties correspond to the first two numbers
of AssemblyVersion, and the next two relate to the first two values for AssemblyFileVersion.
The last property identifies where the AssemblyInfo.cs file can be found.

Also, you may notice that I have placed a condition on the import for the version
number targets file as well as the property group containing those properties, Condition="
'$(BuildingInsideVisualStudio)'!='true' ". By including this property, we will not run
this task while the developers are building inside Microsoft Visual Studio. So when we run our
builds from a command line, through Team Build, or any other Continuous Integration (CI)
tool, the versioning task will be executed. Now all we have to do is build the project, and the
version information will be taken care of for us. When I built the WpfApplication1 project and
attached a FileLogger, the following statement was contained in the log.

Target "UpdateAssemblyInfoFiles" in file "C:\InsideMSBuild\Ch08\SetAssemblyVersion\Contrib\
ExtensionPack\4.0\
MSBuild.ExtensionPack.VersionNumber.targets" from project "C:\InsideMSBuild\Ch08\
SetAssemblyVersion\WpfApplication1
\WpfApplication1.csproj" (target "CoreCompile" depends on it):
Building target "UpdateAssemblyInfoFiles" completely.
Output file "obj\x86\Debug\WpfApplication1.exe" does not exist.
Using "AssemblyInfo" task from assembly "C:\InsideMSBuild\Ch08\SetAssemblyVersion\Contrib\
ExtensionPack\
4.0\MSBuild.ExtensionPack.dll".
Task "AssemblyInfo"
 Updating assembly info for Properties\AssemblyInfo.cs
 	 Updating major version to 2
 	 Updating minor version to 5
 	 Update method is DateString
 	 Updating build number to 0912
 	 Update method is AutoIncrement
 	 Updating revision number to 01
 	 Final assembly version is 2.5.0912.01
 	 Updating major version to 2
 	 Updating minor version to 5
 	 Update method is DateString
 	 Updating build number to 0912
 	 Update method is AutoIncrement
 	 Updating revision number to 01
 	 Final assembly version is 2.5.0912.01
Done executing task "AssemblyInfo".

	 Chapter 8  Practical Applications, Part 1	 225

From the log statement, you can see that the version properties were set twice, once for the
assembly version and again for the file version. If you examined the assembly, you would
see that these properties were indeed set as reported. In this example, I did not override any
other properties that could be set by the task, but there are many others. Take a look at the
documentation provided along with the download for more information regarding its usage.

We will revisit this in another example that shows how to set the version properties for more
than one project file to the same value. The drawback of using this task is that it modifies
a source file, which is a bad practice. One reason is because the source file must be checked
out in order to build. A better solution would be to remove the assembly attributes from
the AssemblyInfo.cs file and instead have a task that would be executed before the Compile
target. This task would then create a new file, in the intermediate folder, that contains the
attributes for the assembly and is appended to the Compile item list. Then the file should
be appended to the FileWrites list so it can be removed on a clean. For more specific
information regarding cleaning, see the example in the section entitled “Extending the
Clean,” later in this chapter.

Building Multiple Projects
When you are working in a team environment, you will typically want a little more control
when building your applications than just building the solution. For example, many
applications are now using generated code, running code analysis tools, executing test cases,
and so on. When you need to create a build process, there are typically two approaches that
you can take:

n	 Write a build file that builds the solution

n	 Create a build file that builds the projects individually

The main difference between the two is that when you build a solution file, you don’t have
control over what happens as the solution builds each individual project. You can supplement
the solution’s build process by adding steps before and after the solution is built. If you don’t
need this fine-grained control over the actual building, then I would suggest that you take
this approach. The obvious advantage of using the Solution file is that this is the file used by
Visual Studio. So when you use msbuild.exe on a solution file, you should get the exact same
build that you would within Visual Studio. The major drawback is that solution files are very
limited; for example, you cannot change the build process, and solution files can’t be nested.
In this section, we will demonstrate both techniques.

We have discussed the MSBuild task (the one that builds MSBuild projects) in the previous
chapter. We will need to utilize this task in order to build the solution and projects. There
have been some enhancements to the MSBuild task in version 3.5. The MSBuild task is able
to process properties contained in an item’s metadata instead of just accepting values as the

226	 Part IV  MSBuild Cookbook

Properties input parameter. The following list presents three ways to pass properties into the
MSBuild task.

	 1.	 As values in the Properties parameter of the MSBuild task

	 2.	 Item metadata named Properties

	 3.	 Item metadata named AdditionalProperties

The second option will always take precedence over the first, if both are supplied, so use only
one or the other. The third option, however, can be used in conjunction with either the first
or the second. Effectively, if a Properties metadata value is found on a project file passed to
the MSBuild task, then any properties contained in the Properties input parameter on the
MSBuild task itself will be ignored. The third option is always appended to either value from
the first two options. Take a look at the contents of the following MSBuildTaskProperties.proj
file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Build">

 <PropertyGroup>
 <ExternalProjectFile>External.proj</ExternalProjectFile>
 </PropertyGroup>

 <ItemGroup>
 <!-- No values for Properties or AdditionalProperties -->
 <Projects Include="$(ExternalProjectFile)" />

 <!-- Only values for Properties -->
 <Projects Include="$(ExternalProjectFile)">
 <Properties>
 Name=One;
 Source=PropertiesMD;
 </Properties>
 </Projects>

 <!-- Only values for AdditionalProperties -->
 <Projects Include="$(ExternalProjectFile)">
 <AdditionalProperties>
 Name=Two;
 Source=AdditionalPropertiesMD;
 </AdditionalProperties>
 </Projects>

 <!-- Values for both Properties and AdditionalProperties -->
 <Projects Include="$(ExternalProjectFile)">
 <Properties>
 Name=Three;
 Source=PropertiesMD;
 </Properties>
 <AdditionalProperties>
 Name=Three;

	 Chapter 8  Practical Applications, Part 1	 227

 Source=AdditionalPropertiesMD;
 </AdditionalProperties>
 </Projects>
 </ItemGroup>

 <Target Name="Build">
 <!-- Execute the PrintInfo target for all projects in Projects -->
 <MSBuild Properties="Name=propertiesMSBuildTask"
 Projects="@(Projects)"
 Targets="PrintInfo"
 />
 </Target>

</Project>

This project will call the PrintInfo target of the External.proj file. This file is shown in the next
snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Build">

 <PropertyGroup>
 <!-- Defaults here -->
 <Name>none</Name>
 <Source>none</Source>
 </PropertyGroup>

 <Target Name="PrintInfo">
 <!-- Prints the values of the Name & Source properties -->
 <Message Text="Name: $(Name)"/>
 <Message Text="Source: $(Source)"/>
 </Target>
</Project>

Toward the top of the External.proj project file, two properties are declared, Name and
Source. We will be overriding these values, but default values were provided in the case that
they were not overridden. The MSBuildTaskProperties.proj project file declares an item type,
Projects, which contains a list of projects to be built. All the item values point to the External
.proj file using the property ExternalProjectFile. If you look at how the Projects items are
declared, you will see that the four item declarations demonstrate four different ways that
values can be passed using the Properties and AdditionalProperties metadata. One item
contains no values for either, the second only values for Properties, the third only values for
AdditionalProperties, and the last has values for both. Inside the Build target, we use the
MSBuild task to execute the PrintInfo target, which prints the value for the Name and Source
properties.

The output shown in Figure 8-1 demonstrates the difference between these three methods
of providing properties. From the results, you can see that values from both the Properties
and AdditionalProperties metadata values were used while building the projects.

228	 Part IV  MSBuild Cookbook

FIGURE 8-1  Build target results

I would suggest using the Properties metadata very carefully because when it is used, the
values for the Properties parameter on the MSBuild task are completely ignored. If you
mistakenly use this and you continue to pass properties directly into the MSBuild task, it
may be difficult to track down the cause of errors. Using AdditionalProperties is very safe.
When these values are present, they take precedence, but values passed directly into the
MSBuild task are allowed as well. After we discuss how we can build the projects using the
solution file, we will exercise these new behaviors when we build the projects individually.
The advantage of using the Properties metadata, or AdditionalProperties, is that you can
pass different sets of properties to different projects, whereas using the Properties attribute
always passes the same global properties to all projects specified in the MSBuild task.

We will start by looking at building a solution file from an MSBuild project using the
MSBuild task. One idea when creating a master build file is that you want to perform
steps before and after the build. In the next code block, you will find the contents of the
ExampleBuild_Sln.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="FullBuild">

 <ItemGroup>
 <!-- define all the configurations that we should build -->
 <AllConfigurations Include="Debug" />
 <AllConfigurations Include="Release" />
 </ItemGroup>

 <ItemGroup>
 <SolutionToBuild Include="SampleSolution\SampleSolution.sln" />
 </ItemGroup>

	 Chapter 8  Practical Applications, Part 1	 229

 <PropertyGroup>
 <FullBuildDependsOn>
 $(FullBuildDependsOn);
 BeforeBuild;
 CoreBuild;
 AfterBuild
 </FullBuildDependsOn>
 <FullRebuildDependsOn>
 $(FullRebuildDependsOn);
 Clean;
 FullBuild
 </FullRebuildDependsOn>
 </PropertyGroup>

 <Target Name="FullBuild"
 DependsOnTargets="$(FullBuildDependsOn)" />
 <Target Name="BeforeBuild">
 <!-- TODO: Get latest source from version control -->
 <!-- TODO: Generate code -->
 </Target>
 <Target Name="AfterBuild">
 <!-- TODO: Unit tests -->
 <!-- TODO: Code Analysis -->
 </Target>

 <Target Name="CoreBuild">
 <MSBuild
 Projects="@(SolutionToBuild)"
 BuildInParallel="true"
 Properties="Configuration=%(AllConfigurations.Identity)" />
 </Target>

 <Target Name="FullRebuild"
 DependsOnTargets="$(FullRebuildDependsOn)" />
 <Target Name="Clean">
 <!-- Clean for each configuration -->
 <MSBuild
 Projects="@(SolutionToBuild)"
 BuildInParallel="true"
 Properties="Configuration=%(AllConfigurations.Identity)"
 Targets="Clean"
 />
 </Target>

</Project>

This is the project that is used to build the solution file. In this file, the main target, FullBuild,
similar to the Microsoft.Common.targets Build target, performs no actions itself. It simply
sets up a set of dependent targets to be executed. This list of targets is contained in the
FullBuildDependsOn property. I have chosen to do this to make it easier to perform steps
before or after the build process. The actual build takes place in the CoreBuild target. In this
target, the MSBuild task is invoked on the SolutionToBuild item type. Also, you should note that
we are specifying the Properties="Configuration=%(AllConfigurations.Identity)" so
that the correct configuration value is passed to the project. By doing so, the MSBuild task will

230	 Part IV  MSBuild Cookbook

be invoked using task batching for all the values defined in the AllConfigurations item type. In
this case, we will build the solution in Debug and Release mode. If you execute the command
msbuild.exe ExampleBuild_Sln.proj, you will see that the solution was indeed built for
Debug and Release configuration values.

When you build the solution file, you don’t have much control over the build process.
For example, if you need to set the assembly version by providing values for the
AssemblyFileMajorVersion, AssemblyMajorVersion, and other related properties, this cannot
be easily achieved because you cannot pass properties to individual projects to be used
during the build. In contrast, when building each project, this is easily achieved by using
the MSBuild task. In the next example, I will build the projects themselves while setting the
assembly file version for all projects. The next snippet shows the relevant changes to the
previous example. The full source can be found in the ExampleBuild_Projects.proj file.

<ItemGroup>
 <!--
 Properties and AdditionalProperties metadata are automatically
 passed when using the MSBuild task.
 If Properties metadata exists it takes precedence over and REPLACES
 any value for Properties provided to the MSBuild task itself.
 -->
 <ProjectsToBuild Include="SampleSolution\ClassLibrary1\ClassLibrary1.csproj">
 <AdditionalProperties>
 AssemblyFileMajorVersion=2;AssemblyMajorVersion=2;
 AssemblyFileMinorVersion=6;AssemblyMinorVersion=6
 </AdditionalProperties>
 </ProjectsToBuild>
 <ProjectsToBuild Include="SampleSolution\ClassLibrary2\ClassLibrary2.csproj">
 <AdditionalProperties>
 AssemblyFileMajorVersion=2;AssemblyMajorVersion=2;
 AssemblyFileMinorVersion=6;AssemblyMinorVersion=6
 </AdditionalProperties>
 </ProjectsToBuild>
 <ProjectsToBuild Include="SampleSolution\WpfApplication1\WpfApplication1.csproj">
 <AdditionalProperties>
 AssemblyFileMajorVersion=3;AssemblyMajorVersion=3;
 AssemblyFileMinorVersion=91;AssemblyMinorVersion=91
 </AdditionalProperties>
 </ProjectsToBuild>
 <ProjectsToBuild Include="SampleSolution\WindowsFormsApplication1\
WindowsFormsApplication1.csproj">
 <AdditionalProperties>
 AssemblyFileMajorVersion=3;AssemblyMajorVersion=3;
 AssemblyFileMinorVersion=91;AssemblyMinorVersion=91
 </AdditionalProperties>
 </ProjectsToBuild>
 <ProjectsToBuild Include="SampleSolution\unittest\Unittest.Proj1\Unittest.Proj1.csproj">
 </ProjectsToBuild>
 <ProjectsToBuild Include="SampleSolution\unittest\Unittest.Proj2\Unittest.Proj2.csproj">
 </ProjectsToBuild>
</ItemGroup>
<Target Name="CoreBuild">

	 Chapter 8  Practical Applications, Part 1	 231

 <MSBuild
 Projects="@(ProjectsToBuild)"
 BuildInParallel="true"
 Properties="Configuration=%(AllConfigurations.Identity)"
 />
</Target>

<Target Name="Clean">
 <!-- Clean for each configuration -->
 <MSBuild
 Projects="@(ProjectsToBuild)"
 BuildInParallel="true"
 Properties="Configuration=%(AllConfigurations.Identity)"
 Targets="Clean" />
</Target>

In this example, instead of using the SolutionToBuild item, a new item, ProjectsToBuild, is
declared. (Note that these names are arbitrary—you could have named them whatever you
wanted.) This item contains the list of projects that should be built. If you take a look at the
declaration, you will notice that an AdditionalProperties metadata value is defined for some
of the item values. As previously mentioned, if an item that you are passing to the MSBuild
task contains metadata values for either Properties or AdditionalProperties, then these will be
used as properties while building the project. This is a feature that has been available since
MSBuild 3.5. To achieve the same with MSBuild 2.0, you would have to build each project
individually and pass the properties in the Properties attribute. When using MSBuild 3.5 or
later, one major drawback (besides usability) of this approach is that you would not be able
to take advantage of building in parallel. In order for the MSBuild to build projects in parallel,
all the projects must be passed into a single instance of the MSBuild task. MSBuild is not able
to parallelize multiple declarations of the MSBuild task. Also, to take advantage of parallel
build, you would need to specify that the property BuildInParallel be set to true, as well as
invoking msbuild.exe with the /m switch.

The properties defined here for a few of the ProjectsToBuild item values determine what the
major and minor version values should be. If you recall from the sample shown in the section
entitled “Setting the Assembly Version,” earlier in this chapter, these are properties that will be
used by the AssemblyInfo task to set the assembly and file version of the created assembly.
The command msbuild ExampleBuild_Projects.proj /t:FullBuild can be used to build
all of the projects. The assemblies with version information also would be correctly stamped
with the expected version numbers. I will not display the log here because of its size.

Attaching Multiple File Loggers
We have discussed creating and using loggers in detail in Chapter 5, “Custom Loggers.” We
mentioned that you could attach several instances of the file logger to the build process by
using the notation /fl[n], where [n] is an optional value in the range 1–9. If you use the
switch /flp[n] without a corresponding /fl[n], then the corresponding /fl[n] is implied

232	 Part IV  MSBuild Cookbook

and can be omitted. In that chapter, we didn’t expand on why you would want to do this, but
we will here. When a developer is kicking off a build process, a good set of loggers to have
attached is outlined in Table 8-1.

TABLE 8-1  Loggers to Attach to a Typical Build
Type Setting
ConsoleLogger Verbosity = minimal and display summary

FileLogger Verbosity = detailed

FileLogger errorsonly

FileLogger warningsonly

We purposefully turn down the verbosity of the console logger to show only the most
important log messages. This is because it is typically difficult to gain any insight on
a decent-sized build from the console logger, as well as for performance reasons. It is
much faster to write to a file and then to the console. Builds that write a lot of information
to the console take longer than those that do not. This reduced amount of information is
fine because we attach a file logger to capture the remaining information into a file, so if
needed, the results are always available there. Two other instances of the file logger are
suggested, one to capture errors and the other for warnings. This allows the developers
to be able to pinpoint specific information about errors and warnings, in order to clear
them out. To summarize, there are really two reasons to have logs: to see progress and to
diagnose problems. In order to see the progress, the build should log to the console as well
as have a low verbosity. In order to diagnose problems, the logs need to be written to a file
and have detailed information. Take a look at the command shown next, which builds the
WpfApplication1 project, under the SetAssemblyVersion folder, with the loggers described in
Table 8-1.

 msbuild.exe /clp:verbosity=minimal /clp:summary
 /flp:verbosity=detailed;logfile=build.detailed.log
 /flp1:errorsonly;logfile=build.errors.log
 /flp2:warningsonly;logfile=build.warnings.log
 /m /p:BuildInParallel=true
 WpfApplication1.csproj /t:rebuild

In the command shown previously, we passed the appropriate parameters to the msbuild.exe
to attach the desired loggers. Along with this, we specified the /m switch as well as defined
the BuildInParallel value as true. Because of this, the projects will be built in parallel instead
of serially.

Creating a Logger Macro
Because you generally want to attach the same set of loggers to a build process, we need
a way to make it easier to attach all the loggers. One way that you might have guessed is
to create a batch file; another is to create a DOS macro to perform the same action. A DOS

	 Chapter 8  Practical Applications, Part 1	 233

macro is one of the lesser-known features of the command prompt. You can create and
manage macros using the DOSKEY command.

We can create a parameterized macro that can automatically attach these loggers for us.
In this case, we would need to create a macro with the following command.

doskey build=msbuild.exe /clp:verbosity=minimal /clp:summary
/flp:verbosity=detailed;logfile=build.detailed.log
/flp1:errorsonly;logfile=build.errors.log
/flp2:warningsonly;logfile=build.warnings.log
/m /p:BuildInParallel=true
$*

The previous command will create a new macro named build that executes msbuild.exe,
which is assumed to be on the path, while attaching the loggers declared. You should take
note of the usage of the $* symbol. When you invoke a macro, the $* symbol will be replaced
with any text following the macro name on the command line. In our previous example, the
command would have been simplified to build WpfApplication1.csproj /t:Rebuild.
In this case, the $* would have been replaced with the value ‘WpfApplication1.csproj
/t:Rebuild.’ Once you create this macro, it is very easy to attach the same set of loggers
to each build that you perform. One drawback to using a macro, however, is that the macro
declaration lasts only for the duration of the command prompt. When the command prompt
closes, the macros created in it will no longer be available. You are able to save the macros to
a file using a command such as doskey /macros > FileName, where FileName is the name
of the file to store the macros in. When you start a new command prompt, you can load
the macros using the command doskey /macrofile = FileName. You could place this file
under source control and have developers load it when the command prompt is opened.

Custom Before/After Build Steps in the Build Lab
There are scenarios when you would like to execute a set of steps before or after a build
executes, but only on certain machines. On build machines, for example, you may want
to encrypt config files, or obfuscate your code every time a Visual Studio project is built.
The Microsoft.Common.targets file exposes this functionality. Inside that file, there are two
import statements, one at the very top and the other at the very end:

<Import Project="$(CustomBeforeMicrosoftCommonTargets)"
 Condition="Exists('$(CustomBeforeMicrosoftCommonTargets)')"/>

<Import Project="$(CustomAfterMicrosoftCommonTargets)"
 Condition="Exists('$(CustomAfterMicrosoftCommonTargets)')"/>

These statements will import a file, if it exists, at the locations contained in the
CustomBeforeMicrosoftCommonTargets and CustomAfterMicrosoftCommonTargets
properties. The default values for these locations are %ProgramFiles32%\MSBuild\vNNNN\
Custom.Before.Microsoft.Common.targets and %ProgramFiles32%\MSBuild\vNNNN\Custom

234	 Part IV  MSBuild Cookbook

.After.Microsoft.Common.targets, where NNNN is the version of MSBuild being used, which
depends on your tools version. If you place an MSBuild file at either of those locations, it
will be picked up at the appropriate time. If you do create such files, keep in mind that they
will be processed by every build of a managed Visual Studio project that is executed on that
machine. Also, it is worth noting that because you can have only one of each of these files, it
is not typically useful to share various customizations.

Note  With MSBuild 4.0, you can also place import files in %Program Files%\msbuild\4.0\
Microsoft.Common.targets\ImportBefore\ and %Program Files%\msbuild\4.0\Microsoft
.Common.targets\ImportAfter\, and the files will be automatically imported at the top
of the Microsoft.Common.targets file for those in ImportBefore, and at the bottom
of that file for ImportAfter. Unlike CustomBeforeMicrosoftCommonTargets and
CustomAfterMicrosoftCommonTargets, you cannot change the path, but you can include more
than one file. You will have to decide which method to use depending on your needs.

You can also override the CustomBeforeMicrosoftCommonTargets and
CustomAfterMicrosoftCommonTargets properties to point to other locations. When you
override these values, you should always provide the full path to the files. If you want the
override to be machine-wide, then you could create these as environment variables. For
a demonstration, I have created the following file, CustomAfter.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <!--
 Insert custom steps into the build process
 -->
 <PropertyGroup>
 <BuildDependsOn>
 CustomBefore;
 $(BuildDependsOn);
 CustomAfter;
 </BuildDependsOn>
 </PropertyGroup>

 <Target Name="CustomBefore">
 <Message Text="Inside CustomBefore" Importance="high" />
 </Target>
 <Target Name="CustomAfter">
 <Message Text="Inside CustomAfter" Importance="high" />
 </Target>
</Project>

In this file, I extend the build process by injecting the CustomBefore and targets into
the build dependency list. From the C:\InsideMSBuild\Ch08\SetAssemblyVersion\
WpfApplication1 directory, the following command was executed:

msbuild WpfApplication1.csproj /p:CustomAfterMicrosoftCommonTargets=C:\
InsideMSBuild\Ch08\CustomAfter.proj.

	 Chapter 8  Practical Applications, Part 1	 235

The end of the build is shown in Figure 8-2.

FIGURE 8-2  External build customization demonstration

From Figure 8-2, you can see that the targets were successfully injected into
the build process and executed at the appropriate time. I chose to override the
CustomAfterMicrosoftCommonTargets property from the command line for this example
(because I don’t want this to execute with every Visual Studio project build), but you could
have placed this file in the previously mentioned location to have it automatically executed.
If you do use this procedure, keep in mind that if you need to inject steps into the build
process using the technique shown here, you must do this in the After targets file, not
the Before targets file. If you override a property such as BuildDependsOn in a file that
is imported in the Before targets file, then it will be overridden by the value contained in
Microsoft.Common.targets itself.

Handling Errors
As you create project files, you may need to perform some custom steps in case an error
occurs. MSBuild has a specific element that can be used for this exact task: the OnError
element. If you use the OnError element, it must be the last element found inside the Target
element that contains it. If this is not the case, then the build will be stopped before any
target is executed. Some good examples of when you may want to use this are when you
want to free resources that may have been taken by a previous target, send an email alert
that the build has failed, create a work item to track the failed build, or undo checkout. The
VB.NET/C# build process uses this to run build events that are supposed to be executed
on compilation error. Team Build 2008 uses the OnError element in two places: in the
CallCompile and CoreTest targets. If an error occurs, then either the SetBuildBreakProperties
or SetTestBreakProperties target is called. Following this, the OnBuildBreak target is executed

236	 Part IV  MSBuild Cookbook

to create a failure work item that will be assigned to a team member. The OnError element
has a parameter called ExecuteTargets, which contains one or more targets that should be
executed if the target fails. If you specify more than one target, then the value should be
a semicolon-delimited list. Targets will be executed in the sequence that they are declared in
the ExecuteTargets list. In the file HandleErrors01.proj, we demonstrate using this element.
The contents of this file are shown in the following snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Build">
 <Target Name="Build">
 <!--
 This target simulates a target which fails.
 -->
 <Error Text="An error occurred" />

 <OnError ExecuteTargets="HandleErrors" />
 </Target>

 <Target Name="HandleErrors">

 <Message Text="An error has occurred and the build will fail"
 Importance="high" />

 <!-- TODO: Email error details -->

 <!-- TODO: Create a Work Item for fixing the build -->
 </Target>
</Project>

This sample uses the OnError element in order to execute the HandleErrors target if an error
occurs during the Build target. The Build target uses the Error task to purposefully raise an
error during the target. Figure 8-3 contains the results of executing the Build target.

FIGURE 8-3  OnError demonstration

Figure 8-3 shows that the build failed, as expected, when the Error task was called, and the
HandleErrors target was called after this error occurred. In this case, I simply sent some text
to the log using the Message task, but your error handlers can be much more sophisticated.
If there are many instances of the OnError element, then they are handled in sequence,
one after the other. If an error occurs inside a target that is handling an error, then another

	 Chapter 8  Practical Applications, Part 1	 237

error is logged and the build is stopped, unless that target has an OnError element. In that
case, the specified target or targets will be called. If any other targets were pending to be
executed by the OnError element, they are abandoned, and the build is simply stopped.

Replacing Values in Config Files
There will be many times that you will need to update an application’s configuration file at build
time. For example, you may need to update a connection string or the logging level. In order
to update the configuration, we can use a set of XML-related tasks that is available from the
MSBuild Extension Pack. You can find these at http://msbuildextensionpack.codeplex.com/. In this
example, I am going to update the config file for the sample WpfApplication1 project, under
the UpdateConfig folder. The contents of the app.config file for that project are shown next.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="helpUrl" value="http://www.sedodream.com" />
 </appSettings>
</configuration>

In this configuration file, I would like to do two things: update the configuration appSettings
value and add a new setting that will contain an email address that can be used for help. We
will have to create a new target, UpdateConfig, to perform these modifications for us. We will
also need to inject this target into the build process by placing the following declaration after
the Import statement for Microsoft.CSharp.targets.

<PropertyGroup>
 <ExtensionTasksPath>..\..\..\Contrib\ExtensionPack\4.0\</ExtensionTasksPath>
</PropertyGroup>

<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>

<PropertyGroup>
 <BuildDependsOn Condition="'$(BuildingInsideVisualStudio)'!='true'">
 $(BuildDependsOn);
 UpdateConfig
 </BuildDependsOn>
</PropertyGroup>

In this example, you can see that I import the MSBuild Extension Pack so that I can use
the XmlFile task that it contains to update the config file. After that, the Build target is
extended by appending the UpdateConfig target to its dependency list. Once again, the
condition '$(BuildingInsideVisualStudio)'!='true' is used to make sure that the
UpdateConfig target is not run while building inside Visual Studio. When we build the project
from the command line, the UpdateConfig target will be called after the project is built. We
introduced this technique in Chapter 3, “MSBuild Deep Dive, Part 2.” This target is shown in
the following snippet.

238	 Part IV  MSBuild Cookbook

<Target Name="UpdateConfig" DependsOnTargets="CoreBuild">
 <!-- Create an item that points to the dest config file -->
 <ItemGroup>
 <_DestConfigFile
 Include="@(AppConfigWithTargetPath->'$(OutDir)%(TargetPath)')"/>
 </ItemGroup>
 <PropertyGroup>
 <_UpdateXPath>/configuration/appSettings/add[@key='helpUrl']</_UpdateXPath>
 <_HelpEmailXPath>/configuration/appSettings/add[@key='helpEmail']</_HelpEmailXPath>
 <_HelpEmail>sayed.hashimi@gmail.com</_HelpEmail>
 </PropertyGroup>
 <Message Text="Updating config file %(_DestConfigFile.FullPath)"
 Importance="low"/>

 <!-- Update existing element -->
 <MSBuild.ExtensionPack.Xml.XmlFile
 TaskAction="UpdateAttribute"
 File="%(_DestConfigFile.FullPath)"
 XPath="$(_UpdateXPath)"
 Key="value"
 Value="http://sedotech.com/help"/>

 <!-- Insert a new 'add' element that has a 'key' attribute. -->
 <MSBuild.ExtensionPack.Xml.XmlFile
 TaskAction="AddElement"
 File="%(_DestConfigFile.FullPath)"
 XPath="/configuration/appSettings"
 Element="add"
 Key="key"
 Value="helpEmail" />

 <!-- Add a 'value' attribute to the new 'add' element. -->
 <MSBuild.ExtensionPack.Xml.XmlFile
 TaskAction="AddAttribute"
 File="%(_DestConfigFile.FullPath)"
 XPath="$(_HelpEmailXPath)"
 Key="value"
 Value="$(_HelpEmail)"/>
</Target>

In this target, I used the AppConfigWithTargetPath item to resolve the full path to the
location where the configuration file was being placed after a build has been executed.
Specifically, the item’s TargetPath metadata value is being used to pinpoint this location.
This item is declared in the Microsoft.Common.targets file. The location where the config file
is finally placed is captured in the _DestConfigFile item. This item, and a few properties that
are declared in this target, all start with an underscore. This is a convention that is used to
denote that the element being declared is internal and should not be referenced by others.
This convention is followed by all the targets files shipped by Microsoft.

The first notable action in the target is the usage of the XmlFile task. This task can be used to
perform modifications to an XML file, including AddAttribute, AddElement, RemoveAttribute,
RemoveElement, UpdateAttribute, and UpdateElement. The action will be decided with the

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 8  Practical Applications, Part 1	 239

value for TaskAction. You can use this task to update existing XML elements by setting the
value for an element or setting the value for an attribute. In this case, we want to modify the
helpUrl element <add key="helpUrl" value="http://internal.sedotech.com/help"/>
and place the correct URL into the value attribute. The XPath to locate this element, which is
contained in the _UpdateXPath property, is /configuration/appSettings/add
[@key='helpUrl']. This is passed to the XmlFile task into the XPath input parameter. For
more information about this task, see the MSBuild Extension Pack site.

Following this update, we need to insert a new element that contains an email address that
can be used for support. This setting should be placed in the helpEmail app setting. In order
to achieve this with the extension pack tasks, we first need to create a new XML element,
using the XmlFile task with the TaskAction set to AddElement, to contain the value, and then
update its value using the AddAttribute TaskAction value. After these steps are performed,
the process has been completed. The following config file results show the Debug
configuration.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="helpUrl" value="http://www.sedodream.com" />
 <add key="helpEmail" value="sayed.hashimi@gmail.com" />
 </appSettings>
</configuration>

From the resulting configuration file shown, we can see that we were able to successfully
make the needed modifications at build time. You can use a similar technique to assist
in automating your own modifications. Another technique for creating or modifying
configuration files is to perform an XSL transformation to generate them. You can use the
XslTransform task, which is shipped with MSBuild 4.0. This was briefly demonstrated in
Chapter 7, “External Tools,” when discussing FxCop.

Extending the Clean
Whenever you extend the build process to generate files, you must make sure that those files
get cleaned up when the clean process is executed. Two primary ways of performing this are:

n	 Appending to the FileWrites item list

n	 Injecting custom targets into the clean process

The Microsoft.Common.targets file maintains a list of files that needs to be removed when
the Clean target is executed; this list is the FileWrites list. It is written to disk in the base
intermediate output path (i.e., obj\Debug) as the ProjectFileName.FileListAbsolute
.txt file, where ProjectFileName is the name of the project file, including the extension. You
can add values to the FileWrites item list if you need files deleted that were generated by

240	 Part IV  MSBuild Cookbook

custom steps in your build process. You should never manually edit the ProjectFileName
.FileListAbsolute.txt file. Take a look at the segment from the ExtendClean\WpfExtendClean
.csproj file shown next.

<PropertyGroup>
 <BuildDependsOn>
 CustomBeforeBuild;
 $(BuildDependsOn);
 </BuildDependsOn>
</PropertyGroup>

<Target Name="CustomBeforeBuild">
 <ItemGroup>
 <_UserConfigFile Include="user.config" />
 </ItemGroup>
 <!-- Since this is before build, OutputPath directory may not yet exist -->
 <MakeDir Directories="$(OutputPath)"/>
 <!-- Copy user.config to OutputPath, if the user.config file exists -->
 <Copy Condition="Exists('@(_UserConfigFile)')"
 SourceFiles="@(_UserConfigFile)"
 DestinationFiles="@(_UserConfigFile->'$(OutputPath)user.config')">
 <Output ItemName="_CopiedUserFiles" TaskParameter="CopiedFiles"/>
 </Copy>
 <ItemGroup>
 <FileWrites Include="@(_CopiedUserFiles)"/>
 </ItemGroup>
</Target>

Here, we are extending the build process by injecting the CustomBeforeBuild target to be
executed before the Build target. The CustomBeforeBuild target is very straightforward: It
copies the user.config file, if it exists, to OutputPath. Following this, the file is appended to
the FileWrites item. Because of this, when a clean is executed, we would expect that this
file would be automatically deleted for us. The results of executing the command msbuild
WpfExtendClean.csproj /t:Build;Clean are shown in Figure 8-4.

FIGURE 8-4  Clean target results

	 Chapter 8  Practical Applications, Part 1	 241

From the results shown in Figure 8-4, you can see that the user.config file was deleted when
we executed the Clean target. This is exactly what we needed. One thing that you should
note when using this technique: If your build step adds to the FileWrites item list, it must do
so every time it would have written the file, even if it didn’t because the file was up to date.
For example, the output assembly goes into the FileWrites item list even if the project is up to
date, in which case the compiler would not have been run. Because the ProjectFileName
.FileListAbsolute.txt file is written for every build, you need to include the up-to-date files so
that the next time the Clean target runs, it will delete the files.

Since this works so well, you may be wondering why we would discuss any other method.
The reason is that this technique has some limitations:

n	 Files to be deleted must be under the output path.
n	 You must append to the FileWrites item early in the build process.

The first limitation is straightforward: If the file is not under the output path, it will not be
deleted. This is for safety reasons; that way you cannot delete files by mistake. The second
limitation states that you must append to the FileWrites item early in the build process.
More specifically, you must append your values to the FileWrites item before the Clean or
IncrementalClean target executes. When either of these targets gets executed, the clean file,
the file that persists the FileWrites item, is written to disk. Despite these limitations, there are
many cases in which you will be able to effectively use this technique. If you are not able to
use this technique, however, then you can extend the clean process itself manually. Another
advantage to cleaning manually is that you don’t have to predict the files that were written.
You can just blow away a whole directory, or use a wildcard expression.

There are some cases when you will be creating or copying files either later in the build
process or to locations that are outside the output path that will need to be cleaned up as
well. For instance, you may need to copy some of the outputs to different locations. In these
cases, you will have to inject targets into the clean process to manage this manually.

Extending the clean process manually is similar to how the build process is extended. You
have the following options: override an existing blank target such as BeforeClean, inject
a target into the clean process, or use BeforeTargets or AfterTargets against the Clean target.
If you choose the first option, you can override either the BeforeClean or the AfterClean
target. This is similar to how the BeforeBuild or AfterBuild target can be overridden, as
discussed in Chapter 3.

In Visual Studio Project files, you will find an import statement similar to the following, which
is for C# project files.

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

Any customizations to the build or clean process should be declared after this statement to
ensure that they are not overwritten. The following snippet shows how we can override the
BeforeClean and AfterClean targets.

242	 Part IV  MSBuild Cookbook

<Target Name="BeforeClean">
 <Message Text="This target is called before the clean begins"/>
 <!-- Place clean customizations here -->
</Target>
<Target Name="AfterClean">
 <Message Text="This target is called after the clean completes"/>
 <!-- Place clean customizations here -->
</Target>

When you override either of these two targets, they will be called at the appropriate time.
If you are creating customizations to a specific project file, this is a great way to go. If you
are creating reusable MSBuild scripts, then you must choose one of the other two options
instead of taking this approach. This is because if the same target gets declared more
than once, then the last target declared will be the definition that is used. All other target
declarations will be ignored.

In order to inject a target into the clean process, the CleanDependsOn property is
extended. This is demonstrated by the following snippet, taken from the ExtendClean\
ClassLibraryExtendClean.csproj file.

<PropertyGroup>
 <BuildDependsOn>
 $(BuildDependsOn);
 CustomAfterBuild
 </BuildDependsOn>

 <CleanDependsOn>
 $(CleanDependsOn);
 CustomClean
 </CleanDependsOn>

 <_OutputCopyLocation>$(OutputPath)..\..\CustomOutput\</_OutputCopyLocation>
</PropertyGroup>

<Target Name="CustomAfterBuild">
 <ItemGroup>
 <_FilesToCopy Include="$(OutputPath)***"/>
 </ItemGroup>
 <Message Text="_FilesToCopy: @(_FilesToCopy)" Importance="high"/>

 <Message Text="DestFiles:
 @(_FilesToCopy->'$(_OutputCopyLocation)%(RecursiveDir)%(Filename)%(Extension)')"/>

 <Copy SourceFiles="@(_FilesToCopy)"
 DestinationFiles=
 "@(_FilesToCopy->'$(_OutputCopyLocation)%(RecursiveDir)%(Filename)%(Extension)')"/>
</Target>

<Target Name="CustomClean">
 <Message Text="Inside CustomClean" Importance="high"/>
 <ItemGroup>
 <_CustomFilesToDelete Include="$(_OutputCopyLocation)***"/>
 </ItemGroup>

	 Chapter 8  Practical Applications, Part 1	 243

 <Delete Files="@(_CustomFilesToDelete)"/>
</Target>

In this snippet, we are re-declaring the CleanDependsOn property and appending the
CustomClean target to its value. Also, BuildDependsOn is similarly extended to copy some
files to another location. By extending the CleanDependsOn property when the Clean
target is executed, the CustomClean target will be called at the end of the process. Inside
the CustomClean target, I create an item, _CustomFilesToDelete, which will contain all the
files that need to be deleted. These files are then deleted using the Delete task. Figure 8-5
contains the results of executing the Build target followed by the Clean target.

FIGURE 8-5  Extending the clean process

Figure 8-5 shows that the CustomClean target was called when expected and deleted the
files that were copied in the CustomAfterBuild target. It is easy to forget about cleaning up
files that your custom process creates or copies, but this is very important. If you do not
clean up these files correctly, then you may encounter unexpected results during your build
process. For instance, targets may continue to be skipped because of incremental building,
even after the clean target has been executed.

In this chapter, we discussed a few very common build customizations, such as setting the
version for an assembly and extending the clean process. We will continue these types
of examples in the next chapter as well. Following that chapter, we will start examining
materials related to Microsoft Visual C++.

		 245

Chapter 9

Practical Applications, Part 2
In the previous chapter, we started presenting some possible applications of MSBuild
that you can use in your own build process. In this chapter, we’ll examine some examples
geared towards Web applications. Some of the examples in this chapter include starting and
stopping services, encrypting the web.config file, and compressing JavaScript files.

Starting and Stopping Services
There are several instances where either your build or deployment process relies on services
to be running. In these cases, you should ensure that the services are installed and started
before they are needed. It’s very easy to start and stop services from MSBuild.

You can use the Exec command to execute the command net start or net stop to
start and stop services. A better alternative for this is to use the WindowsService task
from the MSBuild Extension Pack. The MSBuild Extension Pack can be found at http://
msbuildextensionpack.codeplex.com/. Using this task, you can perform many actions relating
to services in a unified manner. This task supports these actions: start, stop, install, uninstall,
disable, set manual start, set automatic start, check if a service exists, and update service
identity. For complete information regarding this task, see the documentation provided with
the tasks. When you install the MSBuild Extension Pack, the documentation file is placed
in the same directory as the task assembly, which is typically %Program Files%\MSBuild\
ExtensionPack. The following project file, Services01.proj, demonstrates this task.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="StartService">

 <!-- Extension Pack required for fxcop.targets file -->
 <PropertyGroup>
 <ExtensionTasksPath>$(MSBuildThisFileDirectory)\..\Contrib\ExtensionPack\4.0\</
ExtensionTasksPath>
 </PropertyGroup>
 <Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>

 <Target Name="StartService">
 <!--
 The convention when using the MSBuild Extension Pack is to
 fully qualify the task name to avoid any possible collision with
 other tasks.
 -->
 <MSBuild.ExtensionPack.Computer.WindowsService
 TaskAction="Start"
 ServiceName="aspnet_state" />

246	 Part IV  MSBuild Cookbook

 <!-- Similar to the command -->
 <!-- <Exec Command="net start aspnet_state" IgnoreExitCode="true" /> -->
 </Target>
 <Target Name="StopService">
 <MSBuild.ExtensionPack.Computer.WindowsService
 TaskAction="Stop"
 ServiceName="aspnet_state"/>

 <!-- Similar to the command -->
 <!-- <Exec Command="net stop aspnet_state" IgnoreExitCode="true" /> -->
 </Target>
</Project>

This task accepts a TaskAction parameter that describes what action the task is to perform.
In order to start a service, TaskAction should be set to Start, and the name of the service,
which is required, is provided in the ServiceName parameter. Similarly, to stop a service, Stop
should be the TaskAction parameter.

If you execute the command msbuild Services01.proj /t:StartService;StopService,
the result will be what is shown in Figure 9-1. You will need to execute this in a command line
that has administrator privileges.

FIGURE 9-1  Starting and stopping services

In Figure 9-1, the WindowsService task is used to start and then stop the aspnet_state
service. You might use this when you deploy a Web application that depends on the ASP.NET
state service. When you deploy an application that has dependencies such as services, you
must make sure that the dependencies, along with the application, are in a usable state when
the deployment completes.

Web Deployment Project Overview
When you create Web sites and Web applications (both referred to as Web applications from
this point) using Microsoft Visual Studio, it is a good idea to also use Web Deployment Projects
(WDP) to assist in preparing the application for deployment. WDP is not installed by default
with Visual Studio, but it is an add-in that you can download for free. You can download it by
going to http://www.microsoft.com/downloads and searching for “Web Deployment Projects”.
The page name should be listed as “Visual Studio 2010 Web Deployment Projects.” This add-in
is supported by Microsoft, and you are encouraged to use it.

	 Chapter 9  Practical Applications, Part 2	 247

The following is a list of features that are provided with WDP:

n	 Automatic pre-compilation with the build process.

n	 WDP files are MSBuild files, so they are extensible.

n	 Various options exist regarding assembly generation, including:

❑	 Single assembly for all outputs

❑	 One assembly per folder

❑	 All pages and control outputs to a single assembly

❑	 Separate assembly for each page and control output

n	 Ability to sign assemblies.

n	 Ability to set assembly version.

When you are building and debugging your Web applications using Visual Studio, you place
your markup in one file and the code behind the markup in a separate file. You could take
the contents of the directory as is and allow Microsoft Internet Information Services (IIS) to
compile the pages in place. The obvious problem to the approach is that you expose the
code for your Web application on the Web server that is running it. A much better option is
to pre-compile the application into one or many assemblies and deploy those along with the
page files. A WDP can be used for this as well as the other tasks listed previously.

After you have installed the WDP add-in, you can create a new WDP in Visual Studio by
right-clicking the desired Web application and selecting Add Web Deployment Project.
This will show a dialog that prompts you for the name and location of the Web deployment
project. Once you add the project, you will see it in Solution Explorer, similar to the one
shown in Figure 9-2.

FIGURE 9-2  Web Deployment Projects in Solution Explorer

248	 Part IV  MSBuild Cookbook

The WDP shows up in Visual Studio as any other project would. When you create WDP
projects, the name typically ends in “_deploy” and the extension on the file is .wdproj. Unlike
most other project types, there will never be any project items, such as files or folders, placed
under this node in Visual Studio. This is just an MSBuild project file with some Visual Studio
GUI support. When you build or rebuild the solution, the WDP will also be built. As a best
practice, you should disable building WDP projects for Debug configurations because WDP
builds may be lengthy. You can do this from the Configuration Manager in Visual Studio. You
can always right-click the WDP to explicitly build it even if the current configuration is set to
Debug. If you double-click the WDP, you will be presented with a dialog that consists of four
pages: Compilation, Output Assemblies, Signing, and Deployment. From each of these pages,
you can assign properties to customize that portion of the deployment process. For instance,
take a look at the Output Assemblies page shown in Figure 9-3.

FIGURE 9-3  WDP Output Assemblies page

From the dialog in Figure 9-3, the option specified is to create one assembly named
WebApplication1.csproj_deploy, and the assembly will be stamped with the value 1.2.3.4
for both assembly and file version. All the customizations on these pages are stored in the
MSBuild project file for the WDP. Note that all the options specified for all four pages are
specific to the Configuration and Platform selected in the drop-down lists toward the top of
the dialog. You can even define new configurations, or platforms, to meet your needs. For
instance, you may want to sign your assemblies that are going into production environments
but not elsewhere. In this case, you could create a new configuration, Production, that has
this setting enabled and configured.

We have discussed what WDPs are and the fact that they are MSBuild files. We will now
take a closer look at a WDP file. In order to view the content of a WDP, you can right-click

	 Chapter 9  Practical Applications, Part 2	 249

the WDP node and select Open Project File. The following sample WDP file is taken from
WebApplication1.csproj_deploy.wdproj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0"
 DefaultTargets="Build">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>10.0.30319</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{C4AC8379-E059-4C19-894D-AA6A849D3CA2}</ProjectGuid>
 <SourceWebPhysicalPath>..\WebApplication1</SourceWebPhysicalPath>
 <SourceWebProject>
 {3161B34E-AE96-4095-B397-3259E5A9EC9E}|Ch09\WebApplication1\WebApplication1.csproj
 </SourceWebProject>
 <SourceWebVirtualPath>/WebApplication1.csproj</SourceWebVirtualPath>
 <TargetFrameworkVersion>v4.0</TargetFrameworkVersion>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <OutputPath>.\Debug</OutputPath>
 <EnableUpdateable>true</EnableUpdateable>
 <UseMerge>true</UseMerge>
 <SingleAssemblyName>WebApplication1.csproj_deploy</SingleAssemblyName>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
 <DebugSymbols>false</DebugSymbols>
 <OutputPath>.\Release</OutputPath>
 <EnableUpdateable>true</EnableUpdateable>
 <UseMerge>true</UseMerge>
 <SingleAssemblyName>WebApplication1.csproj_deploy</SingleAssemblyName>
 </PropertyGroup>
 <ItemGroup>
 <ProjectReference Include="..\WebApplication1\WebApplication1.csproj">
 <Project>{3161B34E-AE96-4095-B397-3259E5A9EC9E}</Project>
 <Name>WebApplication1</Name>
 </ProjectReference>
 </ItemGroup>
 <ItemGroup Condition="'$(Configuration)|$(Platform)' == 'Debug|AnyCPU'">
 <AssemblyAttributes Include="AssemblyFileVersion">
 <Value>1.2.3.4</Value>
 </AssemblyAttributes>
 <AssemblyAttributes Include="AssemblyVersion">
 <Value>1.2.3.4</Value>
 </AssemblyAttributes>
 </ItemGroup>
 <Import
 Project=
 "$(MSBuildExtensionsPath)\Microsoft\WebDeployment\v10.0\Microsoft.WebDeployment.targets"
 />

 <PropertyGroup>
 <OutputPath>Out_01\$(Configuration)\</OutputPath>
 </PropertyGroup>
</Project>

250	 Part IV  MSBuild Cookbook

From the WDP shown here, you can see that all the values entered through the Visual
Studio user interface are indeed captured in MSBuild format. Because of this, you can easily
customize and/or extend the process. In fact, in this example, the output path has been
customized using the OutputPath property to be Out_01\$(Configuration)\. This file is similar
to a C# or VB.NET project in the sense that another file, Microsoft.WebDeployment.targets,
which defines the build process, is imported. If you want to get a deeper understanding of
the WDPs, you should take a look at that file.

I’ve already mentioned that when you build a solution that contains a WDP, the WDP will
also be built automatically, if it is enabled for that configuration. You can also use msbuild
.exe to manually build the WDP as you would any other MSBuild project file. When you build
the WDP, you will notice that all the files that are contained in or under the source root for
your Web application will be included in the deployment. The source root is captured in the
SourceWebPhysicalPath property. This is because WDPs can support either Web sites or Web
applications. If you would like to exclude files from being included in the deployment, you
can use the ExcludeFromBuild item. For instance, in the WebApplication1_02.csproj_deploy
.wdproj file, which extends the previous example, the following customizations have been
inserted.

<ItemGroup>
 <!-- Use the ExcludeFromBuild item to exclude files from being deployed -->
 <ExcludeFromBuild
 Include="$(SourceWebPhysicalPath)\WebApplication1.csproj" />
 <ExcludeFromBuild
 Include="$(SourceWebPhysicalPath)\WebApplication1.csproj.user" />
 <ExcludeFromBuild
 Include="$(SourceWebPhysicalPath)\CustomOut***" />
 <ExcludeFromBuild
 Include="$(SourceWebPhysicalPath)**\.svn***" />
</ItemGroup>

<PropertyGroup>
 <!-- Customize output location using the OutputPath property -->
 <OutputPath>Out_02\$(Configuration)\</OutputPath>
</PropertyGroup>

In these customizations, the following files will be excluded: the Web applications project
file, the Web applications user file, the contents of the CustomOut folder, which is a copy
of the bin folder, and any files related to version control. Because the WDP will pick up
all files under the SourceWebPhysicalPath directory, this will include any artifacts that are
placed there by your source control provider. In the case of Subversion, you should exclude
those files contained within a .svn folder using the declaration shown previously. Typically,
a snapshot of the Web directory is made and the build is then processed from that directory.
This takes place in the following _CopyBeforeBuild target.

<Target Name="_CopyBeforeBuild"
 Condition=" '$(EnableCopyBeforeBuild)' == 'true' or '@(ExcludeFromBuild)' != '' "
 DependsOnTargets="$(_CopyBeforeBuildDependsOn)">

	 Chapter 9  Practical Applications, Part 2	 251

 <ItemGroup>
 <_WDPAllExtraFilesUnderTempFolder
 Condition="'$(CopyBeforeBuildTargetPath)' != ''"
 Include="$(CopyBeforeBuildTargetPath)**" />
 <_WDPAllExtraFilesUnderTempFolder
 Remove="@(_WebFiles->'$(CopyBeforeBuildTargetPath)\%(DestinationRelativePath)')" />
 </ItemGroup>
 <!--Remove all extra files in the temp folder that's not in the @
(FilesForPackagingFromProject-->
 <Delete Files="@(_WDPAllExtraFilesUnderTempFolder)" />

 <!--This method support incremental copy instead of wipe out everytime-->
 <!--We already expand the path as relative path to the project, there is no need for
sourceDirectory-->
 <CopyPipelineFiles
 PipelineItems="@(_WebFiles)"
 SourceDirectory="$(MSBuildProjectDirectory)"
 TargetDirectory="$(CopyBeforeBuildTargetPath)"
 SkipMetadataExcludeTrueItems="True"
 UpdateItemSpec="False"
 DeleteItemsMarkAsExcludeTrue ="True">
 <Output
 TaskParameter="UpdatedPipelineItems"
 ItemName="_WebFilesCopied"/>
 </CopyPipelineFiles>

 <CreateProperty Value="$(CopyBeforeBuildTargetPath)">
 <Output TaskParameter="Value"
 PropertyName="_AspNetCompilerSourceWebPath" />
 </CreateProperty>

 <CallTarget Targets="$(OnAfter_CopyBeforeBuild)"
 RunEachTargetSeparately="false" />
</Target>

From this target, we can see that the CopyPipelineFiles task is called to copy the files. The
_WebFiles item contains the files which will be copied. This item is populated in a dependent
target, _CollectFilesForCopyBeforeBuild, taking into account files that should be excluded.
Also note that at the end of the target, the _AspNetCompilerSourceWebPath property is
declared to point to the new directory that was just created. Initially, it points to the full path
of the SourceWebPhysicalPath. This path is passed to the AspNetCompiler task, which is
a custom task that calls aspnet_compiler.exe. There are also some scenarios in which you may
want to remove files from the output Web after the build. In this case, you can define an item
type to contain these files, and then you can override the AfterBuild target to delete these
files. For example, take a look at the following snippet.

<ItemGroup>
 <RemoveAfterBuild Include="$(OutputPath)\obj\" />
 <RemoveAfterBuild Include="$(OutputPath)\My Project\" />
</ItemGroup>

252	 Part IV  MSBuild Cookbook

<Target Name="AfterBuild">
 <RemoveDir Directories="@(RemoveAfterBuild)" />
</Target>

The difference between this approach and the ExcludeFromBuild approach is that these
files will be removed after the build process instead of being excluded from it. So if you
needed files to be available during your build process but those files are not required by the
application to run, then you should use the RemoveAfterBuild approach.

Zipping Output Files, Then Uploading to an FTP Site
In this sample, the files in the output folder are first compressed into a zip file and then
uploaded to an FTP site. This sample uses these tasks from third parties: DNZip and Ftp. Both
of these tasks are shipped with the MSBuild Extension Pack. The parameters for those tasks
are outlined in Tables 9-1 and 9-2.

TABLE 9-1  DNZip Task Parameters
Name Description
TaskAction Valid values include AddFiles, Create, and Extract.

CompressFiles A parameter that contains files to zip. Either this or CompressPath should be
used, but not both. If both are specified, then CompressPath will be ignored.

CompressPath The path that contains the files to be compressed. Either this or CompressFiles
should be used, but not both. If both are specified, CompressPath will be
ignored.

CompressionLevel Sets the compression level to be used. There are three typical values; Default,
BestSpeed, and BestCompression. Unsurprisingly, the default is Default. A
number of uncommonly used values include Level0, Level1, Level2, Level3,
Level4, Level5, Level6, Level7, Level8, and Level9. The None value means no
compression at all, Level1 is the least amount of compression, and Level9 is the
most.

ExtractPath The path where the zip file is extracted.

Password Sets the password used to create the zip file.

RemoveRoot The root to remove from the zip path. This path should be a part of the files
that are being compressed, not the target path. Note that this is case-sensitive.

ZipFileName A required parameter that is the name of the zip file to be created.

TABLE 9-2  Ftp Task Parameters
Name Description
TaskAction Valid values include UploadFiles, DownloadFiles, DeleteFiles,

DeleteDirectory, and CreateDirectory.

FileNames The list of files that need to be transferred.

Host The host to connect to. This should not include the ftp:// prefix.

Port The port used to connect to the FTP server.

	 Chapter 9  Practical Applications, Part 2	 253

Name Description
RemoteDirectoryName The remote path that will be opened on the FTP server.

UserName The user name used to connect to the FTP server.

Password The password to be used when connecting to the FTP site.

In the following snippet, you will find the contents of the ZipOutputFiles target taken from
the WebApplication1_ftp01.csproj_deploy.wdproj file.

<Target Name="ZipOutputFiles" DependsOnTargets="Build">
 <ItemGroup>
 <_FilesToZip
 Include="$(OutputPath)***"
 Exclude="$(OutputPath)obj***;$(OutputPath)bin\Samples***"/>
 <!-- Create an item so we can get full path -->
 <_ZipOutputPathItem Include="$(OutputPath)" />
 </ItemGroup>
 <!--
Zip task requires that we have the full path
to the working directory, so create an item
from OutputPath to get that value.
-->
 <PropertyGroup>
 <_ZipOutputPathFull>%(_ZipOutputPathItem.Fullpath)</_ZipOutputPathFull>
 <!-- Get Date/Time to create unique .zip file name -->
 <_DateTime>$([System.DateTime]::Now.ToString('ddMMyyyy_hh_ss'))</_DateTime>
</PropertyGroup>

 <ItemGroup>
 <_ZipFile Include="$(OutputPath)..\$(_DateTime)_outputs.zip" />
 </ItemGroup>

 <MSBuild.ExtensionPack.Compression.DNZip
 TaskAction="Create"
 CompressFiles="@(_FilesToZip->'%(FullPath)')"
 ZipFileName="@(_ZipFile)"
 RemoveRoot="$(_ZipOutputPathFull)" />
</Target>

Notice that this target has declared that it depends on the Build target, so the Build target
will be executed before this target is allowed to begin. The item _FilesToZip is created to
contain all the files that should be placed in the zip file. In order to create a unique zip
file name, the current date and time will be a part of the zip file name. To get this value,
a property function is used. Then the Zip task is used to create the zip file. Note that the
RemoveRoot is set to the full path of the OutputPath folder. This is necessary to create the zip
file with the correct hierarchy. The resulting zip file is written to disk in the location contained
in the _ZipFile item. Now that the file has been zipped, all that is left is to transfer the file
using FTP. The related elements are shown next.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

254	 Part IV  MSBuild Cookbook

<PropertyGroup>
 <FtpFilesDependsOn>
 Build;
 ValidateFtpFilesSettings;
 ZipOutputFiles;
 </FtpFilesDependsOn>
</PropertyGroup>
<Target Name="FtpFiles" DependsOnTargets="$(FtpFilesDependsOn)">
 <!-- Ensure _ZipFile is not empty -->
 <Error Condition="'@(_ZipFile)'==''"
 Text="_ZipFile is required" />

 <MSBuild.ExtensionPack.Communication.Ftp
 TaskAction="UploadFiles"
 Host="$(FtpRoot)"
 FileNames="%(_ZipFile.FullPath)"
 UserName="$(FtpUsername)"
 UserPassword="$(FtpPassword)"
 RemoteDirectoryName="$(FtpDirectory)" />
</Target>

<Target Name="ValidateFtpFilesSettings">
 <Error Condition="'$(FtpRoot)'==''"
 Text="FtpRoot property is required" />
 <Error Condition="'$(FtpUsername)'==''"
 Text="FtpUsername property is required" />
 <Error Condition="'$(FtpPassword)'==''"
 Text="FtpPassword property is required" />
</Target>

The target being executed is the FtpFiles target, which depends on the targets contained
in the FtpFilesDependsOn property. The main targets contained in that list are Build,
ValidateFtpFilesSettings, and ZipOutputFiles. The ValidateFtpFilesSettings target ensures
that the properties FtpRoot, FtpUsername, and FtpPassword are not empty. In this example,
they are passed in to MSBuild from the command line using the /p switch. In the FtpFiles
target, the FtpUpload task is used to perform the actual upload. You could execute this
target using the command msbuild WebApplication1_ftp01.csproj_deploy.wdproj
/t:FtpFiles /fl /p:FtpRoot=FTP_HOST;FtpUsernameFTP_USERNAME;ftpPassword=FTP_

PASSWORD,FtpDirectory=FTP_DIRECTORY. The UPPER_CASE values are values provided by you.

Compressing JavaScript Files
If your Web applications are deploying JavaScript files, then you should process those files
through a JavaScript compressor before they are placed on the IIS server. A freely available
one, JSMin, can be found at http://www.crockford.com/javascript/jsmin.html. JSMin offers
significant compression results without modifying the actual source that is executed. Instead,
it performs noninvasive operations such as remove comments and remove unnecessary white
space. The JSCompress task available as a part of the MSBuildCommunityTasks compresses
JavaScript files by relying on Jazmin, which is a C# port of JSMin.

	 Chapter 9  Practical Applications, Part 2	 255

The WebApplication1 project from the samples includes a Scripts folder that contains some
JavaScript source files. These files were taken from the open-source Dojo project, which is
available at http://dojotoolkit.org. To demonstrate compressing JavaScript, take a look at the
WDP named WebApplication1_javascript.csproj_deploy.wdproj, which will automatically
compress JavaScript files if Configuration is set to Release. The additions that were made to
the file are shown next.

<PropertyGroup>
 <!-- aspnet_regiis.exe requires a path without the trailing slash -->
 <_OutputPathNoTrailingSlash>Out_JS01\$(Configuration)</_OutputPathNoTrailingSlash>
 <!-- Customize output location using the OutputPath property -->
 <OutputPath>$(_OutputPathNoTrailingSlash)\</OutputPath>
 <_WebProject>$(SourceWebPhysicalPath)\WebApplication1.csproj</_WebProject>
</PropertyGroup>
<!--
JSCompress task is contained in MSBuildCommunityTasks
This is a required to use the community tasks from a custom location.
-->
<PropertyGroup> <MSBuildCommunityTasksPath>$(MSBuildThisFileDirectory)\..\Contrib\
MSBuildCommunityTasks\</MSBuildCommunityTasksPath>
</PropertyGroup>
<Import Project="$(MSBuildThisFileDirectory)\..\Contrib\MSBuildCommunityTasks\MSBuild.
Community.Tasks.targets" />
<PropertyGroup>
 <BuildDependsOn Condition=" '$(Configuration)'=='Release' ">
 BuildWebProject;
 $(BuildDependsOn);
 CompressJavascript
 </BuildDependsOn>
</PropertyGroup>
<Target Name="CompressJavascript">
 <ItemGroup>
 <_JSFilesToCompress Include="$(OutputPath)Scripts***.js" />
 </ItemGroup>
 <JSCompress Files="@(_JSFilesToCompress)" />
</Target>
<Target Name="BuildWebProject">
 <MSBuild
 Projects="$(_WebProject)"
 Properties="Configuration=$(Configuration);Platform=$(Platform)" />
</Target>

In this sample, the target will be executed only if the Configuration property is set to Release. The
CompressJavaScript target uses the JSCompress task to compress the JavaScript files contained in
the Scripts folder. The available parameters for that task are summarized in Table 9-4.

TABLE 9-4  JSCompress Task Parameters
Name Description
Files Input parameter that will contain the list of files to be compressed

CompressedFiles Output container containing the list of files that were compressed

Encoding The encoding of the files

256	 Part IV  MSBuild Cookbook

In this example, we pass the JavaScript files into the Files parameter using the
_JSFilesToCompress item. If you execute the command msbuild
WebApplication1_javascript01.csproj_deploy.wdproj /p:Configuration=Release,
then at the end of the build, you will notice what is shown in Figure 9-4.

Because of the usage of the JSCompress task, the size of the JavaScript files was reduced
from 74.4 Kb to 30.5 Kb. Since websites are using more and more JavaScript, compressing the
source files is becoming more important. It is recommended that you allow developers to
edit human-friendly files while at the same time automating your deployments to compress
the JavaScript files, as shown here.

FIGURE 9-4  CompressJavaScript example

Encrypting web.config
A built-in tool is available that you can use to encrypt sections of your web.config file.
This tool is aspnet_regiis.exe and it ships with the Microsoft .NET Framework. It was
introduced in version 2.0. This tool can be used for many different purposes; in this section,
we will limit the discussion to using it to encrypt the web.config file.

When a section of the web.config file (or machine.config for that matter) is encrypted using
the aspnet_regiis.exe tool, it is done such that the section will be decrypted on the fly during
the lifetime of the Web application. The encryption is transparent to the application code.
When you use aspnet_regiis.exe to encrypt the configuration file, you will use the -pef switch
to indicate what section needs to be encrypted. In this example, we will also use a WDP,
an extension of those previously discussed. The WDP file for this example can be found in
the WebApplication1_encWebConfig.csproj_deploy.wdproj file. The customizations that were
made to the file are shown in the following snippet.

<PropertyGroup>
 <!-- aspnet_regiis.exe requires a path without the trailing slash -->

	 Chapter 9  Practical Applications, Part 2	 257

 <_OutputPathNoTrailingSlash>Out_Enc01\$(Configuration)</_OutputPathNoTrailingSlash>
 <!-- Customize output location using the OutputPath property -->
 <OutputPath>$(_OutputPathNoTrailingSlash)\</OutputPath>
 <_WebProject>$(SourceWebPhysicalPath)\WebApplication1.csproj</_WebProject>
</PropertyGroup>

<PropertyGroup>
 <BuildDependsOn>
 BuildWebProject;
 $(BuildDependsOn);
 EncryptWebConfig
 </BuildDependsOn>
</PropertyGroup>
<Target Name="EncryptWebConfig">
 <!-- Get the .NET 4.0 path -->
 <GetFrameworkPath>
 <Output PropertyName="_Net40Path" TaskParameter="FrameworkVersion40Path" />
 </GetFrameworkPath>

 <PropertyGroup>
 <_AspNetRegIisExe>"$(_Net40Path)\aspnet_regiis.exe"</_AspNetRegIisExe>
 <_pef>-pef "connectionStrings"</_pef>
 <_out>"$(_OutputPathNoTrailingSlash)"</_out>
 </PropertyGroup>
 <Exec Command="$(_AspNetRegIisExe) $(_pef) $(_out)"/>
</Target>
<Target Name="BuildWebProject">
 <MSBuild
 Projects="$(_WebProject)"
 Properties="Configuration=$(Configuration);Platform=$(Platform)" />
</Target>

As you can see, the build process was extended by injecting the EncryptWebConfig target to
the end of the BuildDependsOn target. Inside that target, the GetFrameworkPath task is used
to determine where the .NET Framework 4.0 is installed. The properties for that task, which
are all outputs, are summarized in Table 9-5.

TABLE 9-5  GetFrameworkPath Parameters
Name Description
FrameworkVersion11Path Returns the path for the .NET 1.1 assemblies

FrameworkVersion20Path Returns the path for the .NET 2.0 assemblies

FrameworkVersion30Path Returns the path for the .NET 3.0 assemblies

FrameworkVersion35Path Returns the path for the .NET 3.5 assemblies

FrameworkVersion40Path Returns the path for the .NET 4.0 assemblies

Path Returns the path for the .NET assemblies being used for the build
process

This example uses the GetFrameworkPath task to determine where .NET 4.0 is installed because
the aspnet_regiss.exe is located in that directory. After that, the following command is executed.

"%Framework4.0%\aspnet_regiis.exe" -pef "connectionStrings"
"Out_Enc01\Debug".

258	 Part IV  MSBuild Cookbook

After that, the original connectionStrings node from the web.config is transformed into

<connectionStrings configProtectionProvider="RsaProtectedConfigurationProvider">
 <EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
 xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>Rsa Key</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>jHA75XUfC9PK7dyN4nSZZV1jNsTYfOS2BUudEmo8Fl3+vAYxRDkowZJ/g4wU
 hJanj2HCa1nhwHKfBZvaHmlQej9nYnsssYg3v0r89LvAkHoXz4fUclg6ywjWYkyvadqyBog
 S1GRsdwLhtGRgdkeF6I76w40o9wCOkxolFYYara4=</CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>YyzhkAEVtYsWIykmXZJqzXeDvVJNGKX/Xk6hcWA+dcITBM/4qYKsBoxx2nn69iEa
 /5hvSoOX1UQFe6fF5YuiziHYOI+n7TNKUJbAt4SIHOwGZYIy72Mbkjw7lmEEPXR01YymocZtnlPbi
 aagNscvuLOoSvfR1zFrb4JNHuUwgIQFjeq3lEMGNzThuqoPjl+Csgmgrbc6EVx9C5jubfUSLiW8UZ
 /raVTu2cHVk+Hslj0twkIUkP6CkcPRiGA3wvfjI1+KMfUaBB5IRIXljjQV2cObgQbgcyZTzA3jyR3
 fS0XpKZzHJ3IYvnOFXTpY/TfB7fHPEg8x0yHZ43cMlf2hCcdlO4RteWT9jSX3rNbvZCS8Y2/81qJH
 AYbZUft1KRgQwLSB/KDep6g=</CipherValue>
 </CipherData>
 </EncryptedData>
</connectionStrings>

Note  If you want to invoke the aspnet_regiis tool to perform encryption, then the build must
be executed with administrator rights; that is, you must use an elevated command prompt.
Otherwise, you will receive an error.

Now the connection strings have been encrypted. You can encrypt several other sections
of the web.config as well. You should encrypt only the sections that contain sensitive
information because encrypted sections do carry a performance penalty when being used
by the application. If you are encrypting the web.config on a build server, then you have to
make sure that the machine key is the same for the build server as the IIS server, or else the
section(s) will not be successfully unencrypted.

Building Dependent Projects
If you are using a Web Application Project (WAP) as opposed to a website, then there is
one major flaw in the process followed by the Microsoft.WebDeployment.targets file. The
WAP is never built; it is assumed to have already been built. In the case of this example,
if the WebApplication1 project was not built and you executed the command msbuild
WebApplication1.csproj_deploy.wdproj, the result would be what is shown in Figure 9-5.

	 Chapter 9  Practical Applications, Part 2	 259

FIGURE 9-5  WDP failure

Since the WAP is not being built, the AspNetCompiler task fails because it was unable to load
a type that was contained inside the WAP. In order to work around this problem, we will have
to build the WAP. Additionally, we must build the WAP before the _CopyBeforeBuild target
is executed; otherwise, a copy of the Web files will be created that doesn’t contain the built
assemblies. Take a look at the following definition of the BuildDependsOn property from
Microsoft.WebDeployment.targets.

<PropertyGroup>
 <BuildDependsOn>
 _PrepareForBuild;
 ResolveProjectReferences;
 _ResolveReferences;
 ResolveReferences;
 _CheckExcludeWAPObjFolderFromBuild;
 _CopyBeforeBuild;
 BeforeBuild;
 AspNetCompiler;
 BeforeMerge;
 AspNetMerge;
 AfterMerge;
 CopyToOutputDir;
 ReplaceWebConfigSections;
 CreateVirtualDirectory;
 AfterBuild
 </BuildDependsOn>
</PropertyGroup>

The important thing to notice here is that the BeforeBuild target is positioned after the
_CopyBeforeBuild target in the dependency list. We cannot use the BeforeBuild target
to build the WAP because it needs to be built prior to the copying step. Instead, we have
to extend the BuildDependsOn property and inject that step at the very beginning. The
WebApplication1_03.csproj_deploy.wdproj demonstrates this, and the snippet
is shown on the following page.

260	 Part IV  MSBuild Cookbook

<PropertyGroup>
 <!-- Customize output location using the OutputPath property -->
 <OutputPath>Out_JS01\$(Configuration)\</OutputPath>
 <_WebProject>$(SourceWebPhysicalPath)\WebApplication1.csproj</_WebProject>
</PropertyGroup>

<PropertyGroup>
 <BuildDependsOn>
 BuildWebProject;
 $(BuildDependsOn)
 </BuildDependsOn>
</PropertyGroup>

<Target Name="BuildWebProject">
 <MSBuild
 Projects="$(_WebProject)"
 Properties="Configuration=$(Configuration);Platform=$(Platform)" />
</Target>

In this file, the BuildDependsOn property has been prepended to contain the
BuildWebProject target, which builds the WAP. Now that these customizations have been
created, the WAP is not assumed to have been built, and each time the WDP project is built,
the WAP will be built, ensuring that it is up to date with respect to the source files. When you
are building the solution file, you do not have to worry about this because Visual Studio will
build the projects in the correct order.

Deployment Using Web Deployment Projects
There are many approaches to deploying your applications to various environments. In this
sample, I’ll demonstrate how you can extend the WDP to assist your deployment process.
The approach that I demonstrate is fairly simplistic and has some limitations, which we will
discuss. Later in the book, we will discuss the Web Deployment Tool, aka MSDeploy. This
tool can be used for more robust deployments, but it may not be necessary for simple,
copy-based deployments. The following target is taken from the WebApplication1_deploy01
.csproj_deploy.wdproj file.

<Target Name="DeployToServer" DependsOnTargets="BuildWebProject;Build">
 <PropertyGroup>
 <_ServerName>Ibrahim-P55</_ServerName>
 <_VDirName>Sample01</_VDirName>
 <_ServerDeployPath>\\$(_ServerName)\D$\Stage\$(_VDirName)\</_ServerDeployPath>
 <_ServerLocalPath>D:\Stage\$(_VDirName)\</_ServerLocalPath>
 <_ReplaceExisting>true</_ReplaceExisting>
 </PropertyGroup>

	 Chapter 9  Practical Applications, Part 2	 261

 <!-- Create dir if it doesn't exist -->
 <MakeDir Directories="$(_ServerDeployPath)" />

 <!-- Copy files -->
 <ItemGroup>
 <_FilesToDeploy
 Include="$(OutputPath)***"
 Exclude="$(OutputPath)obj***;$(OutputPath)bin\Samples***" />
 </ItemGroup>

 <Message Text="Copying files to remote server [$(_ServerName)]" />
 <Copy SourceFiles="@(_FilesToDeploy)"
 DestinationFiles=
 "@(_FilesToDeploy->'$(_ServerDeployPath)%(RecursiveDir)%(Filename)%(Extension)')" />

 <CreateVirtualDirectory
 Alias = "$(_VDirName)"
 ServerName ="$(_ServerName)"
 Path = "$(_ServerLocalPath)"
 ReplaceExisting = "$(_ReplaceExisting)" />

</Target>
<PropertyGroup>
 <_WebProject>$(SourceWebPhysicalPath)\WebApplication1.csproj</_WebProject>
</PropertyGroup>
<Target Name="BuildWebProject">
 <MSBuild
 Projects="$(_WebProject)"
 Properties="Configuration=$(Configuration);Platform=$(Platform)" />
</Target>

The first thing to notice about the DeployToServer target is that it depends on the Build
target. In this target, a few properties are first declared that will be used throughout the
target. The _ServerName property contains the name of the server to which the application
is to be deployed. After the properties are declared, the destination folder is created (if it
doesn’t already exist) by using the MakeDir task. Then a set of files is copied to the server.
Finally, the CreateVirtualDirectory task is used to create a virtual directory on the remote
machine. The parameters of this task are summarized in Table 9-6.

TABLE 9-6  CreateVirtualDirectory Task Parameters
Name Description
Alias Required parameter that contains the name of the virtual directory to

create.

Path Required parameter that contains the location where the virtual directory
will point. This should be a path used on the remote machine, not a path
relative to the build machine. For instance, D:\Stage\Sample01, rather
than \\sayed-762\D$\Stage\Sample01.

262	 Part IV  MSBuild Cookbook

Name Description
MetabaseProperties Any additional metabase properties that should be set can be passed here.

The name of the property should be placed in the Include attribute and
the value of the property is a metadata named Value. For example, the
following item type, VirtualDirectoryMetabaseProperties, could be passed
to MetabaseProperties to set EnabledirBrowsing and AccessWrite to true on
the virtual directory:

<ItemGroup>
 <VirtualDirectoryMetabaseProperties
 Include="EnableDirBrowsing">
 <value>true</value>
 </VirtualDirectoryMetabaseProperties>
 <VirtualDirectoryMetabaseProperties
 Include="AccessWrite">
 <value>true</value>
 </VirtualDirectoryMetabaseProperties>
</ItemGroup>

ReplaceExisting If set to true, then this will allow any existing virtual directory to be
replaced. The default value for this is false.

ServerName Name of the server on which the virtual directory is being created. This
defaults to localhost.

SiteId The ID for the website on which the virtual directory will be installed. The
default value for this is 1. Typically, you have to worry about this only if
your IIS server is hosting multiple websites.

In the example shown previously, the CreateVirtualDirectory task is used to create a
virtual directory named Sample01 on the server sayed_762. The contents of this virtual
directory are placed at D:\stage\Sample01 on the IIS server. When the command msbuild
WebApplication1_deploy01.csproj_deploy.wdproj /t:DeployToServer was executed,
the files were copied to the remote server and the virtual directory was created.

This sample shows how you can deploy a Web application to a remote server. Every
deployment process is different, and each has its own pros and cons. This should get you
started with your own deployment process. This approach has the following limitations:

n	 The process running the build must have Administrator rights to the IIS server.

n	 IIS must have read/write access to the folder where the files are being placed.

n	 Copying files one by one can be very slow.

n	 If you encrypt the web.config file on the build machine, you must make sure that the
machine key is the same on the build server as the IIS server.

	 Chapter 9  Practical Applications, Part 2	 263

Because of these limitations, this exact approach may not suit your needs, but this should not
prevent you from creating your own deployment process using the WDPs.

In this chapter, we have introduced the WDPs. Some limitations and workarounds of the
WDPs were discussed. Following that, we covered a few examples that you may be able
to use in your current build and deployment process for Web applications. This chapter
concludes the MSBuild material. Starting in the next chapter, we’ll begin our discussion of
Team Foundation Build.

		 265

Part V

MSBuild in Visual C++ 2010
In this part:
Chapter 10: MSBuild in Visual C++ 2010, Part 1 . 267
Chapter 11: MSBuild in Visual C++ 2010, Part 2 . 289
Chapter 12: Extending Visual C++ 2010 . . 317

		 267

Chapter 10

MSBuild in Visual C++ 2010, Part 1
With Microsoft Visual Studio 2010, Visual C++ has joined the long list of project types that
use MSBuild as their build engine. This should be exciting news to all those who maintain
large and complex Visual C++ build setups—in fact, to anyone who builds Visual C++
projects using more than just the Build, Rebuild, and Clean menu items from the IDE. This
is because MSBuild brings with it extensive customizability, extensibility, transparency, and
logging capabilities. Further, MSBuild is highly scalable and has superior performance even
with large solutions. What’s more, a large and growing user base means that you can expect
MSBuild to gain significant capabilities and fine-tuning going forward. And any changes to
MSBuild will be made free to Visual C++ as well, automatically.

MSBuild replaces VCBuild, which has been the build system for Visual C++ since Visual
Studio 2002. VCBuild is specific to only Visual C++ projects. VCBuild was the right tool for its
time because it simplified the old makefile-based build system. But VCBuild allowed only a
limited amount of customizability. Also, VCBuild was a black box in that it provided limited
insight to the developer into the build process. With the move to MSBuild, VCBuild has been
retired permanently.

In Part V written by Pavan Adharapurapu, Chapters 10 and 11 discuss various Visual C++
build features—old and new—powered by MSBuild. Chapter 12 discusses advanced topics
on extending the Visual C++ build system in various ways. Think of this chapter and the next
as a tour of the new Visual C++ build system and Chapter 12 as a cookbook for Visual C++
build extensibility. These three chapters are written for build lab engineers who spend their
time creating and managing Visual C++ build setups. However, they are also useful to anyone
who is curious about how Visual C++ projects get built.

It is assumed that you have basic knowledge of MSBuild. That said, pointers to the relevant
MSBuild topics are provided where necessary.

The New .vcxproj Project File
Visual C++ projects are now in MSBuild format. To distinguish them from older formats, the
Visual C++ projects have been given the new .vcxproj extension (as comparison, the older
VCBuild-based project files used the .vcproj1 extension). Let us open a .vcxproj file to see
what it contains. First, create a simple Visual C++ Win32 Console Application using the New
Project Wizard in the Integrated Development Environment (IDE) by clicking File, New, and

1	 See the section entitled “Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010,” in Chapter 11 for details
on how to convert a .vcproj file to .vcxproj.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

268	 Part V  MSBuild in Visual C++ 2010

then Project. Then, open the .vcxproj in an editor like Notepad or in Visual Studio Editor itself
by unloading the project in Solution Explorer and choosing Edit YourProjectName.vcxproj
from the context menu. The code snippet here shows the first few lines of a newly created
Visual C++ console project called MyVcProject.vcxproj.

<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup Label="ProjectConfigurations">
 <ProjectConfiguration Include="Debug|Win32">
 <Configuration>Debug</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Release|Win32">
 <Configuration>Release</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 </ItemGroup>
 <PropertyGroup Label="Globals">
 <ProjectGuid>{1AAC3B55-6C1B-4D5D-9EC1-215FC580EFF8}</ProjectGuid>
 <Keyword>Win32Proj</Keyword>
 <RootNamespace>MyVCProject</RootNamespace>
 </PropertyGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'"
 Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>true</UseDebugLibraries>
 <CharacterSet>Unicode</CharacterSet>
 </PropertyGroup>
. . .

You can clearly see various MSBuild elements, such as Properties, ItemGroups, and Imports,
in the file. Over and above the MSBuild format, the .vcxproj file follows a particular structure
in the ordering of the top-level elements. This ordering is motivated by the sequential
evaluation behavior of MSBuild and the need to allow user-defined elements to override
system defaults. If you are interested in the details of the .vcxproj format, see the blog post
by the author titled “A Guide to .vcxproj and .props File Structure,” on the Visual Studio team
blog (http://blogs.msdn.com/b/visualstudio).

Building the project through the IDE is done exactly as before: Simply right-click the project
node in Solution Explorer, and then choose the Build option or use the Build menu on the
IDE toolbar. Under the covers, the IDE invokes MSBuild to build the project.

Building on the command line is done using the following command; this is similar to building
any other MSBuild project.

msbuild.exe MyVcProject.vcxproj

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 269

Since we did not specify any target, MSBuild executes the default target which, as defined by
the DefaultTargets element in the previous code block above, is the Build target. You can also
pass many switches to msbuild.exe to control its execution. See the section entitled “MSBuild
.exe Command-Line Usage,” in Chapter 1, “MSBuild Quick Start,” for the list of all the
available switches.

As expected, the IDE build and the command-line build are exactly the same. One obvious
implication is that you don’t need Visual Studio 2010 installed on the build lab machines. You
can build all your Visual C++ 2010 projects with just the Microsoft .NET Framework 4.0 and
the Windows SDK v7.1 installed (the former gives you the MSBuild framework, whereas the
latter gets you the Visual C++ targets, tasks, and tools).

Anatomy of the Visual C++ Build Process
Figure 10-1 is a block diagram showing the Visual C++ and MSBuild components inside
and outside the Visual Studio IDE and how they function together. It also orders the control
and data flow in a typical edit-build IDE session.

FIGURE 10-1  The Visual C++ and MSBuild components inside and outside the Visual Studio IDE process

270	 Part V  MSBuild in Visual C++ 2010

Now we will describe what is going on, in the numerical order defined in the figure:

	 1.	 The user edits the build-related files during design time, chiefly using the Property
Pages user interface. The Property Pages user interface is described in the section
entitled “Property Pages,” in Chapter 11. We call the project file (.vcxproj), the property
sheets (.props), and the targets files (.targets) as build-related files since they exist
primarily to support the build process. We will cover property sheets in the section
entitled “Property Sheets,” later in this chapter; but for now, consider these as MSBuild
files used to share settings (a term we will use to collectively refer to properties, item
definition metadata and sometime to also include item metadata) among multiple
projects, such as how header files (.h) files are used to share class declarations among
multiple class files (.cpp). Apart from the build-related files, the user also edits—directly
or indirectly—other files such as source code files and the purely design-time files like
filters file (.vcxproj.filters), Intellisense database files, Rule files, and so on. These files are
not shown in the figure. Note that while the source files are read by the tools such as
the compiler, the purely design-time files are never touched during build.

	 2.	 The user invokes a build operation such as Build, Clean, or Rebuild via the IDE. This
command goes to the Visual C++ project system. The Visual C++ project system is
an in-memory object model of the project artifacts (such as items, properties, and
property sheets). It also acts as an intermediary between the user interface and the
underlying MSBuild-based build system. The project system instance exists only when
at least one Visual C++ project is loaded in the solution.

	 3.	 The Visual C++ project system relays the build operation requested by the user to the
MSBuild Build Manager. The MSBuild Build Manager is a singleton that manages builds
for various project systems such as Visual C++, C#, and Microsoft Visual Basic in the
IDE. The Build Manager doesn’t do the build itself but acts as a coordinating station
for other MSBuild components, which perform the actual work of building. When a
single project is built, the Build Manager dynamically spawns a single MSBuild Node (or
reuses2 an existing one) during build time.

	 4.	 The MSBuild Node is a process that appears in the Task Manager as msbuild.exe. This
component performs the actual build by scheduling and executing the targets and
tasks defined in the project.

	 5.	 To perform the build operation, the MSBuild Node reads the build-related files of the project.

	 6.	 Some of the tasks executed in the build may invoke external tools such as the
compiler (cl.exe), linker (link.exe), etc. More accurately, these tasks actually wrap the
tool processes inside Tracker.exe, which is an MSBuild-infrastructure component used
to support accurate incremental build. See the section entitled “File Tracker–Based
Incremental Build,” later in this chapter, for more details.

2	 See the section entitled “Build Parallelism,” later in this chapter, for more details on MSBuild Node reuse.

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 271

	 7.	 The MSBuild Node captures the output and error messages from the tool processes by
redirecting the stdout and stderr streams of the Tracker.exe process.

	 8.	 The MSBuild Node reports the messages from step 7, control messages, and build
metrics to the Build Manager.

	 9.	 The Build Manager writes the log messages to the build log files.

As is apparent from this description, the Visual C++ build is done out-of-proc3. This is
required for providing different build environments for different projects and for realizing
parallel builds.

For a command-line build, you simply invoke MSBuild.exe supplying the project file and
specifying MSBuild switches. MSBuild.exe then reads the build-related files and spawns off
(or reuses) the Nodes as in the IDE case. No project system components are created in the
command-line build case. The build process uses only the build files to perform the build.
Thus, whether you perform an IDE build or a command-line build, the results are identical.

Diagnostic Output
Diagnostic output is probably the most common way of diagnosing problems in a build that
has already happened. MSBuild provides an adjustable and easily accessible way of capturing
the build output. Adjustability here refers to the configurability of the amount of output that
is emitted; this is referred to as verbosity by MSBuild. See the section entitled “MSBuild.exe
Command-Line Usage,” in Chapter 1, for details. As the referenced section mentions, MSBuild
supports five verbosity levels: quiet, minimal, normal, detailed, and diagnostic, listed in
increasing order of the amount of output generated.

In the IDE, you can change the verbosity level of the output logged to both the Output
window as well as the log file via Tools, Options, Projects and Solutions, and Build and Run (see
Figure 10-2). Although the first property (MSBuild Project Build Output Verbosity) is applicable
to all project types, the second one (MSBuild Project Build Log File Verbosity) is valid only for
Visual C++ projects (because the other project types do not create build log files).

The build log file’s location is specified by the Build Log File property in the Property Pages
user interface located under Configuration Properties/General/Build Log File (see Figure 10-3).

For the command-line case, you can use verbosity and logfile parameters with the
/fileLoggerParameters switch (short form /flp) to specify the verbosity and log file path for the
file logger. For example, msbuild.exe /flp:logfile=MyLog.log;verbosity=diagnostic
MyVcProject.vcxproj builds the MyVcProject project and generates the MyLog.log build
log file containing information at the diagnostic verbosity level.

3	 Design time builds, such as Design Time Assembly Resolution (DTAR) and Intellisense compiler builds, are done
in process but are still coordinated by the Build Manager.

272	 Part V  MSBuild in Visual C++ 2010

FIGURE 10-2  Configuring the build output and build log verbosity in the IDE

FIGURE 10-3  The Build Log File property

Build Parallelism
Generally speaking, there are two types of build parallelisms that can be exploited in Visual
C++—the project level and the file level4.

4	 There is a kind of parallelism that is achieved at the task level by using the YieldDuringToolExecution keyword.
It helps the build go faster by “overdriving” MSBuild Nodes when they’ve started long-running tools like CL.
However, it is an implementation artifact and should not be construed as being at the same level as the other two
types of parallelism described here.

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 273

	 1.	 Project-level parallelism allows multiple projects to be built in parallel, while adhering
to project dependency restrictions.

	 2.	 File-level parallelism allows groups of source files to be compiled in parallel in a project.

MSBuild supports and controls project-level parallelism. Enabling file-level parallelism, on
the other hand, is up to the individual task authors. The CL task (the Visual C++ task that
compiles C++ source files) is the only Visual C++ task that supports file-level parallelism.
If enabled, it invokes the compiler tool with the /MP switch, which instructs the compiler
to compile source files with multiple instances of itself (the number of instances can be
configured). Thus, in the case of the compiler, file-level parallelism is achieved by using
an enabling feature in the compiler tool. Most often, file-level parallelism in a tool task
(a term we will use in this chapter to refer to Visual C++ tasks that invoke an external
command-line tool, in a separate process, to perform their job) depends on concurrency
features in the underlying tool.

In Visual C++, the user can enable project- and file-level parallelism (for the compiler) as well as
configure the degree of parallelism for each of them. This is described in the following section.

Configuring Project- and File-Level Build Parallelism
In the IDE, project-level build parallelism can be configured by setting the Maximum Number Of
Parallel Project Builds setting under Tools/Options/Project and Solutions/Build and Run (the same
as in Visual Studio 2008), as shown in Figure 10-4. This text field accepts an integer between
1 and 32 (inclusive) and denotes the number of projects that MSBuild will attempt to build in
parallel. This number can be more than the number of physical processor cores. Visual Studio
defaults this value to the available number of cores on your machine. Note that this setting is
stored per-user and per-computer and not in the project file, so it applies to all solutions that
the user can access on the computer. Sometimes you may want to have different settings for
different solutions, but unfortunately, the user interface does not allow you to do that.

FIGURE 10-4  Configuring parallel project builds in the IDE

274	 Part V  MSBuild in Visual C++ 2010

As explained in the section entitled “Anatomy of the Visual C++ Build Process,” earlier in
this chapter, MSBuild Nodes do the actual execution of targets during a build. Each MSBuild
Node is a separate process (msbuild.exe). MSBuild dynamically creates a number of MSBuild
Nodes up to the value of the user interface (UI) setting described previously. These nodes
would build different projects in parallel. Note that MSBuild Nodes can be reused for building
different projects. The MSBuild Node process generally lingers for 15 minutes after finishing a
build assigned to it. If some other build is started before it exits, then the Build Manager can
enlist the node for this new build job rather than create a new node. The Build Manager uses
a handshaking protocol with the MSBuild Node to query its availability and to sign it on.

On the command line, project-level build parallelism is enabled by using the /m switch (full
form /maxcpucount). Since the IDE setting is not stored in the project file, you need to pass
the /m switch for a command-line build; otherwise, a parallel project build is not performed.
In other words, only one CPU is used for the build. So, when building a solution, keep in mind
to always use the /m switch to reap the benefits of project-level build parallelism. Hopefully, this
switch will be enabled by default in future versions of MSBuild. The /m switch takes a number
that denotes the maximum number of projects that MSBuild should attempt to build in parallel.
If no number is specified with the /m switch, MSBuild defaults to the total number of cores on
the machine. Note that this is different from not specifying the /m switch at all, in which case
MSBuild uses just one core. The following command invokes MSBuild to build a solution with
up to four projects simultaneously built at any given time. If at least one project dependency
exists among the five projects, then the degree of concurrency will be less than four.

msbuild /m:4 Foo.sln

When trying to build projects in parallel, MSBuild will ensure that project dependencies are
respected. Therefore, if a Visual C++ project called A has a project dependency to another
Visual C++ project called B, then A will not be built until B has finished building. Project
dependencies are explicitly specified using items of the ProjectReference type, as shown in
the code snippet from A.vcxproj.

<ItemGroup>
 <ProjectReference Include="B.vcxproj" />
</ItemGroup>

Implicit reference to another project by referencing its output assembly will not be
recognized as a dependency by MSBuild. In other words, if project A references project B
only via a dependency on B.dll, then MSBuild will not infer that A cannot be built before B.
Wherever possible, it is recommended that you use project references to capture project
dependency relationships.

The previous discussion was about project-level parallelism. Now, let us talk about file-level
parallelism. For Visual C++ and Visual C++/CLI projects, only the CL task supports file-level
parallelism. As mentioned previously, the CL task depends on the /MP switch of the
compiler tool (cl.exe) to enable file-level parallelism. File-level parallelism was supported in

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 275

Visual C++ 2008 as well, using the same /MP feature in the compiler. Note that the /MP option
applies to compilations but not to linking or link-time code generation. The /MP option is
incompatible with some compiler options and language features such as the /Gm (incremental
compilation) option, files that use #import, and so on. See the MSDN documentation for more
details about this at http://msdn.microsoft.com/en-us/library/bb385193.aspx.

Unlike the project-level parallelism case, the settings in the IDE for enabling and configuring
the degree of file-level parallelism are distinct. The Multi-processor Compilation property,
located under Configuration Properties/C/C++/General, controls whether file-level parallel
compilation is on or off (see Figure 10-5). When switching it on, make sure you choose All
Configurations and All Platforms, so that it is enabled for all project configurations (unless
you want to enable it only for a specific project configuration).

FIGURE 10-5  Enabling file-level parallel compilation in the IDE

Setting the value of this property in the Project Properties user interface writes the
MultiProcessorCompilation item definition metadata for the ClCompile item definition in the
project file. Item definition metadata are described in the section entitled “Batching Using
Shared Metadata,” in Chapter 6, “Batching and Incremental Builds.” Item definition groups
and item definition metadata are used frequently in Visual C++ to provide default values
for item properties. Continuing with the UI setting, if you enabled this setting for all project
configurations, then the metadata is written individually for each project configuration, as
shown in the following snippet. Since this metadata is written to the project file, we can infer
that this setting is project-specific.

<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <ClCompile>

276	 Part V  MSBuild in Visual C++ 2010

 <MultiProcessorCompilation>true</MultiProcessorCompilation>
 </ClCompile>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <ClCompile>
 <MultiProcessorCompilation>true</MultiProcessorCompilation>
 </ClCompile>
 </ItemDefinitionGroup>

Once multi-processor compilation is enabled, we can set exactly how many simultaneous
compilations should happen. This can be set using the Maximum Concurrent C++
Compilations property under Tools/Options/Projects and Solutions/ Visual C++ Project
Settings (see Figure 10-6). Note that setting this property has no effect without enabling the
Multi-processor Compilation property described previously. This property takes any nonnegative
value. A value of 0 is equivalent to setting it to the number of cores on the machine.

FIGURE 10-6  Enabling concurrent compilations for Visual C++ and Visual C++/CLI projects

This setting is again a per-user and per-computer property and is not stored in the project
file. However, you can manually define the ProcessorNumber item definition metadata under
the ClCompile item definition in the project file to achieve the same effect, as shown in
the following code snippet. If you don’t have MultiProcessorCompilation defined, then this
property has no effect.

<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <ClCompile>
 <MultiProcessorCompilation>true</MultiProcessorCompilation>
 <ProcessorNumber>3</ProcessorNumber>
 </ClCompile>
 </ItemDefinitionGroup>

For a command-line build, you don’t have to do anything special to switch on
file-level parallel compilation if the two ClCompile item definition metadata

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 277

MultiProcessorCompilation and ProcessorNumber are defined in any of the project files.
These values will be used during the build. If, however, these metadata are not defined, or if
they are defined in the project files but you want to override them, then we need to supply
them on the command line. However, MSBuild allows you to define only properties on the
command line (using the /p switch), not item definition metadata. Fortunately, these two
item definition metadata are bound to two properties, respectively. This binding ensures
that setting these two item definition metadata is equivalent to setting these two properties,
respectively (and to the same value). This binding is set in the Visual C++ system target
files and property sheets. These equivalent properties are MultiprocessorCompilation
(yes, the same name) for the MultiprocessorCompilation metadata and CL_MPCount for the
ProcessorNumber metadata. Thus, you can use the following command line to switch on
file-level parallelism and instruct the CL compiler to perform up to three parallel compiles.

msbuild /p:MultiProcessorCompilation=true;CL_MPCount=3 MyVcProject.vcxproj

Optimally configuring project- and file-level parallelism requires analysis of the bottlenecks
in the solution build. The /detailedsummary switch to msbuild.exe produces information that
helps in just this analysis. See the blog post entitled “MSBuild 4 Detailed Build Summary,”
on the MSBuild team blog (http://blogs.msdn.com/b/msbuild/) for more information on this.
Other strategies for optimally configuring build parallelism can be found in the blog post
entitled “Tuning C++ Build Parallelism in VS2010,” on the same blog site.

A lot was described in this section. We summarize all this information in Tables 10-1
and 10-2. We use the notation ClCompile\MultiProcessorCompilation to refer to the
MultiProcessorCompilation metadata of the ClCompile item definition.

TABLE 10-1  Summary of Enabling and Configuring Project- and File-Level Build
Parallelism in the IDE

Type of
Parallelism Configure

IDE

User Interface Path Scope Default

Persisted
in Project
File?

Property/
Item
Definition
Metadata

Project-level

Enable

Tools/Options/
Projects and
Solutions/Build
and Run/Maximum
Number Of Parallel
Project Builds.

Set the value of this
property as > 1 to
enable, 1 to disable

Per-user,

per-machine
Enabled No

None
available

of nodes,

when
enabled

Same property as
above

Same as above # of cores No
None
available

278	 Part V  MSBuild in Visual C++ 2010

IDE

Type of
Parallelism Configure

User
Interface
Path Scope Default

Persisted
in
Project
File?

Property/
Item
Definition
Metadata

File-level

Enable

Project
Properties/
Configuration
Properties/C/
C++/General,
Multi-
processor
Compilation

Per-project

[configuration]
Disabled Yes

ClCompile\
MultiProcessorCompilation

of
concurrent
compiles,

when
enabled

Tools/
Options/
Projects and
Solutions/
Visual C++
Project
Settings,
Maximum
Concurrent
C++
Compilations

Setting to 0
is equivalent
to setting to
available # of
cores

Per-user
per-machine

0 (# of
cores)

No
ClCompile\
ProcessorNumber

TABLE 10-2  Summary of Enabling and Configuring Project- and File-Level Build
Parallelism on the Command Line

Type of
Parallelism Configure

Command Line
Switch Default

Project-level

Enable /m Disabled

of nodes,
when
enabled

/m:2 creates up to 2 MSBuild
Nodes, e.g. # of cores

File-level

Enable /p:
MultiProcessorCompilation=true

Value of ClCompile\
MultiProcessorCompilation
from project files

of concurrent
compiles, when
enabled

/p: CL_MPCount=2 performs
up to 2 parallel compilations
per project.

Value of ClCompile\
ProcessorNumber from
project files

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 279

File Tracker–Based Incremental Build

Incremental Build
Incremental build of a project means reusing the results of the preceding build while
processing only the changes made to the project since the preceding build. An important
corollary to this is that if nothing changed since the last build, then no processing occurs
(other than some checks). This saves time over a complete build since we don’t have to
process items that haven’t changed. MSBuild supports an accurate incremental build.

Recast in MSBuild terms, incremental build reduces to running only those tasks whose inputs
have changed since the last build. Such a scheme can be implemented only when (1) we
know the complete set of input files a task consumes; and (2) we know whether an input file
has been modified since the last build. The second problem is easy to solve by comparing the
current timestamp values of the input files with the values for the preceding build. The first
problem, on the other hand, is more difficult. To understand why, consider the CL task that
compiles .cpp files in a project to .obj binaries. The CL task needs to run whenever any of the
.cpp files is changed directly or if any of the .h files included (or even the .h files that these
in turn include, and so on) is touched. The .h files referred by the .cpp files may not be part
of the project, but they are still consumed by the CL task, so there is no one place where the
list of all such files is statically stored. So how does MSBuild solve the problem of finding the
complete set of input files to a task? The answer is File Tracker.

File Tracker
File Tracker, a new feature in MSBuild 4.0, is a “file up-to-date check” infrastructure that
powers MSBuild’s incremental build feature. File Tracker, as the name implies, tracks read
and write accesses to files made by a process. Most of the Visual C++ tools, such as cl.exe
and link.exe, are run in their own separate processes by the corresponding tasks. The tool
tasks don’t create the tool process directly. They create the File Tracker executable—the
Tracker.exe process—and hand over the responsibility of executing the tool to it. File Tracker
wraps these tool processes and keeps track of all the files read by and written to by the
process (and any other process it spawns) in a lightweight manner. File Tracker achieves
this by detouring several Win32 file access application programming interface (API) calls
such as CreateFile and CopyFile, recording the access, and then passing on the call to the
operating system normally. This eavesdropping means that MSBuild doesn’t have to depend
on the user supplying the list of inputs and outputs that a task consumes (as was the case in
MSBuild 3.5). File Tracker then writes the list of these file paths in tracking log files (with the
extension .tlog) in the project’s intermediate directory. Tlog files are in a human-readable
format although in the normal course of events, the only reason that you should ever need
to look at the log files themselves is to satisfy your curiosity.

280	 Part V  MSBuild in Visual C++ 2010

When a task is scheduled to run during an incremental build, MSBuild compares the
timestamp-on-disk for the input files to the timestamp-on-disk for the output files. A set
of input and output files is judged to be up to date if the oldest output is newer than the
newest input. If the set of files is not up to date, the task is run; otherwise, it is not. Notice
that we only used timestamps on disk for checking the up-to-date status. Because of this,
no timing information is ever written to the tlog files.

One way to get a task to participate in an incremental build is to make it File Tracker–
enabled. Architecturally, this means that the class that implements the task behavior needs to
use the File Tracker API to submit its tool for tracking. Note that the File Tracker API has been
published by Microsoft for use by anyone. See the class Microsoft.Build.Utilities.FileTracker in
the Microsoft.Build.Utilities.v4.0.dll assembly. Instead of interacting with the File Tracker API,
you can simply derive from the Microsoft.Build.CPPTasks.TrackedVCToolTask class (available
in the Microsoft.Build.CPPTasks.Common.dll assembly). By abstracting out most of the File
Tracker interaction, this class makes it easier to create your own File Tracker–enabled task
that invokes an external tool. Be aware of the fact that although this class is public, the details
of inheriting from this class are not straightforward. Most likely, it will become easier in later
editions of MSBuild. In Visual C++ 2010, all tool tasks, like CL and Link (the Visual C++ task
that links object libraries), are File Tracker–enabled. Hence, they are capable of participating
in an incremental build. Other tasks are not. In fact, if all tasks were File Tracker–enabled by
default, then we could never write simple logging tasks such as one that would log some
message during a build. Such tasks have no inputs and hence will always be up to date and
never run a second time.

When building using MSBuild.exe from the command line, an up-to-date check is done on
the level of the individual tools—CL will look only at its tracking logs, RC will look only at its
tracking logs, and so on. If CL skips building, that has no impact on whether or not RC skips
(except in the case of tools that depend on each other’s outputs—for example, if CL does not
skip, Link will also be forced to rebuild because the obj files will now be out of date).

In the IDE, there is also a “fast up-to-date check,” which does a project-level check of the
up-to-date status of the solution, and only spawns a project build if the up-to-date check
fails. This up-to-date check also (among other checks) uses the File Tracker API to do a very
simple all reads vs. all writes comparison; if the project is determined to be at all out of date,
it triggers a build and the decision of whether to skip falls back to the more fine-grained
dependency checking provided by the individual tasks.

We also need to mention that it is up to the individual tool tasks to determine how they use
the File Tracker API to implement an incremental build. It is possible to do a very fine-grained
incremental build, as is demonstrated by CL. The cl.exe tool (invoked by the CL task)
produces one .obj file for each .cpp file and its imports. The linker combines the .obj files
into the final dll/exe binary. Now, if a build is invoked on a project and only one .cpp file was
changed, the CL task passes only this changed .cpp file to the cl.exe compiler to produce the

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 281

corresponding .obj file. Thus, CL task runs optimized even in the case when some of its inputs
have changed. The Link task on the other hand always processes all its inputs.

Trust Visual C++ Incremental Build
Visual C++ supported incremental builds even in earlier editions. It used the dependency
checker infrastructure that stored relationships between the source files—for example, the
cpp files, class definitions, and header files—in a database file (.idb) on the first compile and
used it to make decisions on future incremental builds. However, it has never been very
reliable. This was further aggravated by the fact that VCBuild did not have good logging
capabilities and it was very hard to tell what caused a rebuild when the user didn’t expect it
to happen. And if the user did figure it out somehow, it was not clear at all how to fix it as
the user had very little influence on how VCbuild worked. However, because of the way that
File Tracker captures input and output file information by automatically working behind the
scenes, incremental builds in Visual C++ 2010 are extremely reliable. Incremental builds in
Visual C++ 2010 are also way faster than the incremental builds in Visual C++ 2008, in part
because MSBuild checks timestamps in parallel.

We cannot overemphasize the fact that in Visual C++ 2010, incremental builds can be trusted.
That means that you can use them for real builds, not just ad-hoc builds, which can improve
your productivity considerably in some cases. If you’re doing clean builds (a “rebuild”),
question why. There’s rarely a good reason to do so.

Troubleshooting
Say that an incremental build (in the IDE or command line) is taking longer than expected.
From the build log file, you see that a tool task that you did not expect to run has actually
run. This means that one of the build input files for the tool had changed since the last build.
How do you go about knowing the exact files that changed? The answer is by looking in
the same build log file. When the verbosity level is cranked up to “detailed” or “diagnostic,”
detailed information about the task (and target) execution will be written to the log files. You
will find that not only can you get to know about the files that were found to be modified
since the last build, you can also know about the .tlog files that were read by the tool task to
determine the up-to-date status.

Property Sheets
Property sheets are a powerful way of sharing settings among multiple projects, which
relieves you from defining those settings in each individual project. This is analogous to
how header files are used to share type declarations among multiple class files. A Visual C++
property sheet is an MSBuild file that has a .props extension by convention (the extension

282	 Part V  MSBuild in Visual C++ 2010

used to be .vsprops for non-MSBuild property sheets in earlier versions of Visual Studio).
A property sheet can contain any valid MSBuild elements, although it generally only contains
settings (in the form of properties and item definition metadata) and references to other
property sheets. A property sheet can be included in a project file or another property sheet;
the inclusion is done via MSBuild’s Import statement.

A project file (or property sheet) that imports a property sheet is said to “inherit” the
imported settings. The term inherit alludes to class inheritance, where the subclass inherits
the behavior of the superclass. In the case of property sheets, you inherit project settings.

In the IDE, the property sheets hierarchy is displayed by the Property Manager tool window
(accessed by browsing to View/Property Manager or View/Other Windows/Property
Manager if your IDE is not set up with Visual C++ development settings). This tool window
also allows you to add, remove, or reorder user-added property sheets. Figure 10-7 shows
the Property Manager containing a hierarchy of property sheets. Property sheets can be
added for individual project configurations. In Figure 10-7, we see that the user has added
two property sheets—ps1 and ps2—to the debug configuration. Further, he or she has
added the same property sheet (named “Common”) to both ps1 and ps2. The tool window
buttons and context menu on each node expose functionality for adding a new or existing
property sheet.

FIGURE 10-7  The Property Manager window showing a property sheet hierarchy

Some of the property sheets in Figure 10-7 have a different icon than the rest. The icons
are used to distinguish between the System and User property sheets (as explained in
Chapter 11). Application, Unicode Support, and Core Windows Libraries are system property
sheets added by default to every Visual C++ project. Microsoft.Cpp.Win32.user is not a
system property sheet. However, it is also added by default to every Visual C++ project.

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 283

Double-clicking a property sheet in the Property Manager brings up a Property Pages user
interface that allows you to view and edit values of settings defined in the property sheet.
More details are found in the section entitled “Property Pages,” in Chapter 11.

If we look inside the project file, we will see imports for the property sheets, as shown in
the following code snippet. The system property sheets from the Property Manager are not
found in this snippet since they are imported at the top of the project file via some other
property sheet (see the next section, “System Property Sheets and User Property Sheets,”
for more on this).

<ImportGroup Label="PropertySheets"
 Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
 Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')"
 Label="LocalAppDataPlatform" />
 <Import Project="ps1.props" />
 <Import Project="ps2.props" />
 </ImportGroup>
 <ImportGroup Label="PropertySheets"
 Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
 Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')"
 Label="LocalAppDataPlatform" />
 </ImportGroup>

Note that the path used in the Import statement is relative to the importing element and not
necessarily to the project directory. Notice that the display ordering in the Property Manager
is the reverse of the textual ordering in the project file. This is for backward compatibility.

The property sheets ps1 and ps2 import common.props unconditionally. The snippet here
shows how common.props is imported in ps1.props.

<ImportGroup Label="PropertySheets">
 <Import Project="common.props" />
</ImportGroup>

This is generally the pattern followed in Visual C++. Only the top-level property sheets are
conditionally imported into the project file using a project configuration–based condition.
The property sheets, on the other hand, do not use project configuration–based conditions
while importing their own property sheets. This ensures that the property sheets can be used
across multiple projects with varying project configurations.

A project could import multiple property sheets and many of these property sheets could
define a particular property. Of course, the final value of this property would be determined
by MSBuild’s evaluation algorithm. However, many times you would need to know exactly
which property sheets define a particular property and where they occur in the import
hierarchy. The hard way to do this is to manually traverse the import chain while searching for
the property definitions. An easier way is to use the /preprocess switch with msbuild.exe. This

284	 Part V  MSBuild in Visual C++ 2010

switch causes msbuild.exe to print out a unified file that contains the contents of all imports
(and not just property sheet imports) inline and with their boundaries marked. Keep in mind
to use this feature when you find yourself navigating a large import hierarchy.

System Property Sheets and User Property Sheets
Consider a newly created Visual C++ console project. Various settings have to be defined
before this project can be built. For example, we need to set the output directory where the
final binaries will reside, the name of the output file(s), and so on. Further, we may also want
to set the values for tool switches (for example, the compiler warning level, optimization
preference, the linker output name, and so on). Furthermore, these common settings need
to be defined for every single project. This is a textbook scenario that calls for the use of
property sheets, and that is exactly what Visual C++ does. Visual C++ defines multiple
property sheets containing settings for common properties and tool options. When you
create a new project, these property sheets are imported into the new project by default.
Such property sheets are called System Property Sheets. These show up in the Property
Manager with an icon that looks like a computer with a sheet in front of it (see Figure 10-7).

The System Property Sheets are pulled into a Visual C++ project via the following two
imports, which you can find at the beginning of your project file (note that these are not
successive lines in the project file; they are separated by other lines).

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />

The section entitled “Default Visual C++ Property Sheets,” in Chapter 11 explains many of
the System Property Sheets and also tells how they are imported by default into every Visual
C++ project.

Unlike System Property Sheets, which are shipped by Microsoft and are imported by default
into every wizard-generated project, User Property Sheets are generally those that have
been added by the user to a single project or a limited set of projects. The User Property
Sheets contain settings that the user would explicitly like the project to inherit. As Figure 10-7
shows, the Property Manager imports User Property Sheets after the System Property Sheets
(again, the display order is the reverse of the textual order). This ensures that user-specified
values for settings override default system values, which is generally what is intended.

Note that it is not possible to edit property values using the Property Pages user interface for
System Property Sheets; you can do so only for User Property Sheets. Keep in mind, however,
that the values displayed in System Property Sheets can change based on other setting
changes, such as a change in the active platform, etc.

In Figure 10-7, we see the User Property Sheet Microsoft.CppWin32.user.props. This is the only
User Property Sheet added by default to every newly created Visual C++ project. The next
section covers the function of this property sheet.

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 285

Visual C++ Directories
Visual C++ Directories is the settings pane where you can set the IDE equivalents of
command-line environment variables of PATH, INCLUDE, LIBPATH, and other variables. These
denote the directories where one can find executables, include files, libraries, and other
elements referenced by the source code. The typical usage is to point them to SDK elements
that are installed on the box—thus, they define the computer-specific roots that are then
used by the rest of the system to keep the project files independent of things like C:\Program
Files.

These are very important variables that can dramatically affect the results of a build. In Visual
C++ 2008, these settings would be set via Tools/Options, as shown in Figure 10-8. The values
set via this pane were stored in the VCComponents.dat file located at %LOCALAPPDATA%\
Microsoft\VisualStudio\9.0. Since it is in the LocalAppData directory, it meant that the
settings were per-user and per-machine. The VCComponents.dat file was in INI format, not
the Extensible Markup Language (XML) of a .vcproj file; and the importing of this file was
done by some custom code inside vcbuild.exe and the IDE.

FIGURE 10-8  Visual C++ Directories in Visual C++ 2008

In Visual C++ 2010, the same pane would display a message saying that the pane is now
deprecated. So, what happened to the Visual C++ Directories settings?

In Visual Studio 2010, the Visual C++ Directories have been moved to—you guessed it—a
property sheet. If you open up the Property Manager view to see the property sheets
associated with any Visual C++ 2010 project (see Figure 10-7, earlier in this chapter), you’ll see
that one of the property sheets is named Microsoft.Cpp.Win32.User. In the project file itself,
you can clearly see this property sheet imported for all project configurations (see the code
snippet following Figure 10-7).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

286	 Part V  MSBuild in Visual C++ 2010

You can set values for the variables by bringing the Property Pages user interface (as shown
in Figure 10-9) on this property sheet in the Property Manager (to access this, right-click the
property sheet and choose Properties). Click on the Visual C++ Directories node in the left
pane of the Property Pages window. This will reveal the current values for the Visual C++
Directories properties. You will notice that the default values are the same as in Visual Studio
2008. You can edit these properties in the same way as any other project property (including
using the macro editor as shown—something that is not possible in Visual C++ 2008).

FIGURE 10-9  The Visual C++ Directory settings are now set using property pages.

The Microsoft.Cpp.Win32.User property sheet is located in the same LocalAppData directory
(%LocalAppData%\Microsoft\MSBuild\v4.0) as the VCComponents.dat file. All new projects
import this by default. When you convert older projects using the Visual Studio 2010
Conversion Wizard, this property sheet is once again added by default. Thus, when you
define settings in this property sheet (by using the Property Pages user interface spawned
from any Visual C++ 2010 project’s Property Manager), they get written to this common
property sheet. This means that you are in effect changing these settings for all Visual C++
2010 projects on your machine. Thus, you are effectively editing the Visual C++ Directories
in the same global way that you could before using Tools/Options. However, the new part of
this is that if you don’t want these global settings for one or more of your projects, you can
delete this property sheet import (via the Property Manager) and simply add a new property
sheet in which you can then define the custom Visual C++ Directory settings. Since this new
property sheet is imported only into one particular project, the new settings will not affect
the other projects, which will continue to use the values in the Microsoft.Cpp.Win32.User

	 Chapter 10  MSBuild in Visual C++ 2010, Part 1	 287

property sheet. Alternatively, you can keep the Microsoft.Cpp.Win32.User property sheet, but
add your custom property sheet while making sure that it is imported later in the evaluation
model (this should happen by default when you add it through the Property Manager). This
will ensure that your custom settings will override the ones defined in the Microsoft.Cpp.
Win32.User property sheet.

There are multiple reasons that Microsoft changed the mechanism of defining and storing
Visual C++ Directories:

n	 Ability to define different Visual C++ Directories settings per project  In Visual
Studio 2008, all projects had to share the same Visual C++ Directories settings. There
was no way to prevent it. With the new property sheet approach, you can not only
have global settings but can also selectively override it in individual projects.

n	 Enlistment-friendly  Moving Visual C++ Directories to a property sheet makes it easy
to check in your entire project system—not just the source files, but the build system as
well. This makes it possible to go to a new machine with only the source control system
installed and to check out the project system and build. Such a scenario would have
been difficult if your build system depended on per-machine settings, as was the case
with VCComponents.dat.

n	 Consistency in storing settings  This is a minor but satisfying reason.
VCComponents.dat was an INI-based file that was different from the .vcproj file format,
whereas the Microsoft.Cpp.Win32.User property sheet is an MSBuild file. Not just that,
it is consistent with the way other settings are stored in the project system (namely
inside property sheets).

Finally, a note about the Import/Export Settings feature of the IDE. With the move from
Tools/Options to property sheets, Visual C++ Directories are no longer considered part of
the Visual C++ Settings in Visual Studio 2010 that can be imported or exported via Tools/
Import and Export Settings. These settings are meant for IDE-specific configuration settings,
and Visual C++ Directories are now integrated directly into the build process via the property
sheet mechanism. When you import settings from Visual Studio 2008 (where Visual C++
Directories is part of the settings), these settings are migrated into the Microsoft.Cpp.Win32.
User property sheet.

		 289

Chapter 11

MSBuild in Visual C++ 2010, Part 2
In this chapter, we continue the discussion of Visual C++ features powered by MSBuild that
we started in the last chapter.

Property Pages
Property pages are the primary way that you change the properties of the project (such
as the project name) or set switches for the various build tools such as CL.exe (warning
level, optimization, and so on). Property pages have been a standard feature of the Visual
C++ project system for a long time, but in Visual C++ 2010, the underlying architecture
has been completely redone to allow for extensibility. It is now possible to add a property
page for your own tool and have it be treated like a first-class citizen by the project system.
(By “first-class citizen,” I mean the project system will treat your custom tool like it would any
of the shipped tools like the compiler, linker, and so on.) Also, with the move to MSBuild, the
semantic meaning of the property values and the way they are computed has changed. This
section will describe these changes.

Reading and Writing Property Values
Figure 11-1 shows a snapshot of the property pages focused on properties for the Linker tool.

FIGURE 11-1  Property pages for the project node showing the Linker options under the General category

290	 Part V  MSBuild in Visual C++ 2010

This window was obtained by right-clicking the project node in Solution Explorer and
choosing Properties from the context menu. In addition to viewing properties for a project,
you can view the properties for a property sheet in the Property Manager tool window
or for a file in Solution Explorer. In fact, you can select multiple nodes and request the
property pages. In such a case, the value shown for a property is the common part (which
possibly could be empty) of the values of this property for the entities selected. For this
multi-selection property page, you can even edit the value, which results in each of the
entities in the multi-selection getting this property value.

In the preceding paragraph, we talked about property values without actually defining what
this term refers to. What value is shown for a particular property, say the Enable Incremental
Linking property shown in Figure 11-1, for a project, as opposed to a property sheet? Would
it be the same or different? Where is the value sourced from? Let us explain. First, let us call
the file-on-disk underlying the node from which the Property Pages window was spawned as
the context. Therefore, for the project node, the context would be the .vcxproj file, whereas
for a particular property sheet, it would be the underlying .props file. Also, to keep the
discussion concrete, consider a project that imports three property sheets, as shown on
the left side of Figure 11-2. The figure shows all definitions of a property named q, whose
definitions are spread across multiple files. On the right side is the “logical project,” which is
obtained by substituting the contents of the property sheet at the point where it is imported
in the project file. It is this logical project that MSBuild uses when it evaluates a project.
By the way, the /preprocess option to msbuild.exe that was mentioned in the section entitled
“Property Sheets,” in Chapter 10, “MSBuild in Visual C++ 2010, Part 1,” outputs this very same
logical project. It also marks the boundaries of the inline content so that it is easy to see the
contributions of each import.

There are three ways of storing settings in an MSBuild file: properties, item definition metadata,
and item metadata. We will refer to all three simply as properties unless we say otherwise.

FIGURE 11-2  A project-property sheets hierarchy and the corresponding logical project

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 291

You can think of project evaluation as a process wherein MSBuild travels line by line in the
logical project and when it comes across a property definition, it overwrites any previous
definitions of that property in a big table that it maintains. Of course, this is a simplification
of the evaluation process, but you get the idea. This linear evaluation model is in contrast
with the late evaluation model followed by VCBuild. Since this is an important change likely
to cause confusion to users transitioning from VCBuild to MSBuild, let us take an example
to illustrate it. Consider the following property declarations. They are in MSBuild syntax, but
assume that you have equivalent definitions in VCBuild syntax also.

<PropertyGroup>

 <A>1

 $(A)

 <A>2

</PropertyGroup>

When MSBuild is finished evaluating the project containing this snippet, the value of the
property B ends up as 1; all expressions are expanded and values substituted as and when
they are encountered. Under VCBuild evaluation, however, B would end up with a value of 2.
This is because VCBuild does not expand non-literal expressions until the very end of the
evaluation, by which time it would have overwritten the value of A to 2.

With the background set, let us tell you how the value that you see in the property pages
is computed. The value shown for a property in the property page is the value obtained by
evaluating the logical project up to the last definition of the property in the context file. It is
the value that MSBuild would see when it reaches that point during the project evaluation.
Since the project is not evaluated to the end, we call this partial evaluation. Thus, property
pages show a value that is obtained by a context-specific, partial evaluation of the project.

In the above description, we conveniently left out the case when a property may not be
defined in the context at all. In such a case, where will the partial evaluation stop? The answer
is that Visual C++ will evaluate up to the standard location for the property; that is, the
location in the context where the property would normally be defined. The standard location
is defined by the Rule file for that property, which is explained later in this section. For now,
assume that for every property, there is a location in the context where it will normally
be written by the Integrated Development Environment (IDE) when it is set for the first
time. The value shown in the property pages is bold if there is at least one definition of the
property in the context; otherwise, it is not bold. Most of the properties for the project and
property sheets are unbolded because those values are coming from the system property
sheets included at the beginning of the project.

Table 11-1 shows the value shown for the property q for every context in the setup shown in
Figure 11-2. Bold font is used to indicate that the property value would appear bolded in the
property pages. The value of q for all contexts except p2.props is bold since it is defined in all
contexts except p2.

292	 Part V  MSBuild in Visual C++ 2010

TABLE 11-1  Values of the Property q as Computed by the Property Pages for Different
Contexts
Context Value of q Reason
MyProj.vcxproj 2 The property q is defined in context.

p1.props 1 The property q is defined in context.

p2.props 2 The property q is not defined in context. Context-specific
partial evaluation up to the standard location would result
in the value 2, since this is the value stated in the definition
immediately preceding the standard location.

p3.props 4 The property q is defined in context.

One final thing to mention is that the values shown in the property pages are the
unevaluated values and not the evaluated values. So if the definition of q mentioned in the
project file listed $(foo) as its value, then the property pages for the project context would
show $(foo) (even if foo was declared to be, say 10, somewhere earlier). This is because
property pages allow editing a property value and you cannot edit evaluated values. Hence,
it makes more sense to display the unevaluated values. It would probably be helpful if the
evaluated value was also shown, but in a read-only mode. However, that would make the
property pages more complex.

The preceding paragraphs explained how reads are handled. As far as writing is concerned,
it is simpler. When you edit a property value in the property pages, the last definition of the
property in the context is overwritten with the new value. If there is no definition at all of the
property, then we create a new definition with the entered value at the standard location.

While defining a property value, we can use the help of the Property Editor (by selecting
Edit. . . from the drop-down list in the value column; this is not available for enumeration
properties). See Figure 11-3. In the property editor, there is a Macros button, which expands
the editor to show a list of macros. These macros are essentially properties defined in the
logical project before the point of definition of the current property (or its standard location,
if it is not yet defined). The values shown for the macros are the values obtained by partial
evaluation to this point. Macros are useful because you can use the appropriate macro to
define your property. For example, I can define my property q as $(foo) after checking that
the value of the macro foo is appropriate.

Coming back to the value displayed in the property pages, why do we obtain this value from
partial evaluation? Why not show the value from full evaluation (let’s call them final values)?
After all, the build uses the final values when it passes these to the various tasks and targets.
The reasoning is as follows:

We edit property values because we would like to change the contribution of the context to
the whole project. For this, we need to know what the current contribution of the context is.

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 293

If we were to show the final values in the property pages, it would not be of much use. You
would see the same value regardless of the context. Further, modifying a value on the property
page for a particular context and hitting apply may not change anything on the property page
if the property is overridden in some other property sheet down the line. In such a case, the
value shown in the property page would be the same even after you modify it.

FIGURE 11-3  Property value editor along with Macros

Note that you can get the final values of properties by building the project from the
command line (not the IDE) with the /verbosity switch set to diagnostic and then looking
in the generated build log file. It will have all the properties and their final evaluated values
(although it will not include the property values defined inside targets). If none of your
targets files define properties, then you can also see the final value, albeit unevaluated, in the
Property Pages user interface when the context is the project file.

Before we end this section, we would like to mention the property page architecture.
The property pages in Visual C++ 2010 are data-driven and extensible. Each node under the
Configuration Properties node in the left pane in Figure 11-1 is called a Rule and is driven
by an Extensible Application Markup Language (XAML) file called the Rule file. The Rule file
defines the categories and properties in the Rule. The Rule file also defines the location in the
project file (or property sheet) where the value of the properties should be written (called the
“standard location” in the previous discussion). You can see the Rule files for C/C++, Linker,
and so on, at %ProgramFiles%\MSBuild\Microsoft.Cpp\v4.0\10331. Details on the format of a
Rule file can found in a blog post by the author titled “Platform extensibility - Part 2” on the
VS Project Team Blog (http://blogs.msdn.com/b/vsproject). In the next chapter, we will show
how to author a Rule file for a custom tool.

1	 Replace 1033 with the appropriate locale ID for non-English-language editions of Microsoft Visual Studio.

294	 Part V  MSBuild in Visual C++ 2010

Build Customizations
We all know about the compiler tool, which is one of the most important tools run during
the build of a Visual C++ project. Let us see how the compiler tool is surfaced to the user
in the IDE:

n	 We can use the project’s Property Pages user interface to set compiler options (that
apply to all C++ source files in the project).

n	 When you add a new .cpp file to a project, the IDE immediately understands it to be
of type ClCompile and knows that this item is consumed by the compiler. The Item Type
property under Configuration Properties/General shows the value C/C++ Compiler.

n	 You can bring up the property pages on a .cpp file and it will show you all Compiler
properties that can be set on it. The property pages show only the compiler properties
because the IDE knows that this file is consumed only by the compiler tool.

Setting aside for a while what we have discussed previously, consider how we could integrate
a custom tool into the build process. Perhaps you plan to add files with a custom extension,
such as .foo, and you need to process them using your custom tool during build. Is that
possible, and if so, what would you need to do?

It is easy to make your tool run at build time. Just write a task that will invoke your tool
passing along the files which end in the extension .foo. Compile your task to an assembly.
Then write a targets file that refers to your task. Use the BeforeTargets or AfterTargets
attribute for your target to hook it up to the build-time target execution sequence. If you set
BeforeTargets="Build", for example, your target will be run before the Build target. But
what about setting properties for this tool? What if different projects, or even different .foo
files, need different tool settings? Clearly, we don’t want to manually type them in the project
file. It would be nice to have property pages for the custom tool so that users can set tool
properties just as they do for the compiler tool. In fact, it would be great if the custom tool
was treated exactly like the compiler tool, both at design time and build time. Is this possible?

It is, with the Build Customization feature. It was called Custom Build Rule in earlier editions;
it has been renamed to reflect its changed file format and the underlying architecture. Build
customization provides the following benefits:

n	 Full design time integration; that is, property pages and item recognition

n	 Build time integration

n	 Ability to declaratively express your target using XAML syntax

The project system treats Build Customizations as first-class citizens. That is, it treats them
just as it would the compiler tool or the linker tool. So how do you go about creating a Build
Customization?

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 295

A Build Customization is described by the following three files. It might be useful to look at
one of the two Build Customizations that are shipped with Visual C++ 2010 while reading
what follows next. These are the License Compiler (LC) and Microsoft Macro Assembler
(MASM) Build Customizations, which deal with .licx and .masm files, respectively. You can find
the files for these in the $(VCTargetsPath)\BuildCustomizations directory (where the default
for $(VCTargetsPath) is %programfiles%\MSBuild\Microsoft.Cpp\v4.0).

n	 An XAML file ending in the .xml extension that describes the property page schema for
your tool. This is the Rule file explained in the section entitled “Property Pages,” earlier
in this chapter. This describes what properties your tool has and under what categories
they are organized. This file also defines the file extensions that your tool would like
to claim as its own. This file is optional if you don’t want design-time integration. This
Rule file causes a new node to be created in the Property Pages user interface similar
to the C/C++ nodes or the Link node. This new node will expose the properties of your
custom tool.

n	 A .props file that contains the default values for the properties listed in the above
.xml file. This file is optional if you don’t need to set default values.

n	 A .targets file that defines your target. This target, like any MSBuild target, contains
one or more tasks. Presumably, one of the tasks is the main one, which processes all
files with the custom extension. Most often, this task invokes an external command-line
tool.

The target also includes a reference to the above .xml file. This means that if this targets
file is imported into a project, the property page xml file is automatically pulled in.

This targets file is the only mandatory file required for the definition of a Build
Customization. Indeed, if there is no target to be run, then it can’t be called a
customization of the build.

If your target’s main job is to invoke an external tool, whose properties are described in
the .xml Rule file, then MSBuild has a feature that makes it easy for you to define such a
task without writing any code whatsoever. MSBuild provides the XamlTaskFactory which
dynamically generates a task class whose switches, inputs, and outputs are inferred from
a Rule file. This task is automatically wired to execute your tool, whose command line you
specify in the .props file. Finally, this task is compiled on the fly, so it looks to MSBuild like any
regular task. So you have a task without writing any code! This is helpful since you don’t have
to check into your source control repository a precompiled .dll with your custom task. The
shipped LC and MASM Build Customizations use this approach. Note that if you don’t have
a Rule file, then you can’t use XamlTaskFactory. Your targets file needs to refer to a compiled
task or an inline task (see the section entitled “Inline Tasks,” in Chapter 4, “Custom Tasks”) or
a task that uses some other task factory, such as the C#/VB task factory.

In the next chapter, we will actually walk you through the creation of these three files, but for
now, we will limit ourselves to explaining how these enable the functionality that they do.

296	 Part V  MSBuild in Visual C++ 2010

Once you have authored these three files, you need to add your Build Customization to
the project so that it can take effect. The way to do this is use the Build Customization user
interface available via the Build Customizations. . . context menu on the project node in
Solution Explorer (see Figure 11-4). Use the Find Existing. . . button to browse to the directory
location where your Build Customization is located and select it. Notice that the Build
Customization window shows the two Build Customizations that are shipped with Microsoft
Visual Studio 2010.

FIGURE 11-4  Using the Build Customization user interface to add the MyBC Build Customization

When you add a Build Customization using this user interface, the targets file and
the property sheet are imported into the project file under the ExtensionTargets and
ExtensionSettings ImportGroups, respectively. The xml file is pulled in via the targets file,
so it is not added directly to the project. This is shown in Figure 11-5.

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 297

FIGURE 11-5  Result of adding a Build Customization using the IDE

Platforms and Platform Toolsets
Visual C++ 2010 allows you to target multiple platforms and platform toolsets. We will first
define the terms platform and toolset before explaining how Visual C++ supports them:

n	 Platform:  Hardware configuration that requires special design-time, build, debug,
and deploy consideration. Win32 (x86), x64, Xbox, and ARM are examples of platforms.
The tasks, targets, and tools required to build for a particular platform could be
completely different from those required to build for a different platform.

n	 Toolset:  Software configuration that requires special design-time and build
consideration. More concretely, a toolset represents a complete set of build tools such
as compiler, linker, and so on, along with the software libraries used to build your
application. A toolset is normally labeled by its version, so the set of C++ tools and
libraries that are shipped with Visual C++ 2010 (henceforth called “v100”) is a different
toolset compared to the set of C++ tools and libraries that were shipped with Visual
C++2008 (henceforth referred to as “v90”). There could be multiple toolsets for a given
platform. Under the Win32 platform, v100 and v90 could be two toolsets. The tasks
and targets to execute for a particular platform toolset may be different from those of
a different platform toolset.

You can view the active platform and the platform toolset for a project from the property
pages (see Figure 11-6). However, you can only change the active Platform Toolset from
this user interface. Changing the Platform selection in this user interface simply changes the
values of the displayed properties to correspond to the new platform. It does not actually
change the active platform for the project. To actually change the active platform for the
project, you need to use the Configuration Manager. To do this, click the Configuration

298	 Part V  MSBuild in Visual C++ 2010

Manager. . . button on the upper-right corner of the Property Pages user interface and then
use the Platform drop-down list for the project.

FIGURE 11-6  Viewing the platform and platform toolset in the property pages

Configuration Manager is also the place to add another of the installed platforms on the
machine to a project. To do so, choose the <New. . .> option from the Platform drop-down
list. This opens a small window (shown in Figure 11-7) containing a New Platform drop-down
list. This drop-down list shows you the list of all installed platforms on your machine, from
which you can choose one that has not already been added to your project.

The active platform for a project is saved in the .sln file, whereas the platform toolset is
stored as the PlatformToolset property in the individual project file.

FIGURE 11-7  Adding a new installed platform to a project

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 299

Now we discuss what is involved in supporting multiple platforms/platform toolsets.
To support multiple platforms and platform toolsets, Visual C++ needs to do the following:

n	 Build time  Invoke the right targets for the right platform/platform toolset.

n	 Design time  The properties and their values shown in the property pages must be
platform/platform toolset–specific.

Visual C++ uses a simple architecture to support this. In fact, the same architecture can be
used to add support for new platforms and platform toolsets. Visual C++ considers every
folder in the $(VCTargetsPath)\Platforms directory to represent a platform (see Figure 11-8).
In fact, these are the entries shown in the drop-down list in Figure 11-7. Inside each platform
directory, there is a PlatformToolsets directory. Visual C++ considers all directories under this
folder to represent the platform toolsets available for that particular platform. Once again,
these are the entries that are shown in the Platform Toolset drop-down list in the property
pages (see Figure 11-6).

FIGURE 11-8  The installed platforms and platform toolsets are located in the $(VCTargetsPath)\Platforms
directory root.

The platform and platform toolset folder can contain any number of .targets, .props, and
.xml files. When present, they represent the targets, property defaults, and Rules that
are applicable to the particular platform/platform toolset. At any given time, Visual C++
is using the files from the directories corresponding to the active platform and platform
toolset. When you change either of them, Visual C++ automatically switches to the directory
corresponding to the new platform/platform toolset. This importing will change the property
page structure (via the Rule files), default property page values (via the .props files), and the
build (via the .targets files) to correspond to the new selection. A change in the platform/
platform toolset also causes a re-evaluation, which in turn causes the property values to be
updated in the Property Pages user interface.

The same mechanism can be used to add support for a completely new platform or platform
toolset. All you need to do is author the appropriate .targets/.props/.xml files and place them

300	 Part V  MSBuild in Visual C++ 2010

in newly created directories under the Platforms (or PlatformToolsets, as appropriate) folder.
In the section entitled “Adding a New Platform/Platform Toolset,” in Chapter 12, “Extending
Visual C++,” we will show you how to author these files.

Native and Managed Multi-targeting
Multi-targeting is the ability to use the current version of Visual Studio to build your
application using multiple installed platform toolsets or frameworks (see the previous
section for the definition of a toolset). For native C++ applications, it means the ability to
build using the Visual C++ 2010 toolset (v100), the Visual C++2008 toolset (v90), or even
others. We will call this feature Native multi-targeting. For Visual C++ CLR applications, the
term multi-targeting refers to the ability to use tools from any version of the Microsoft .NET
Framework, v1.0 through v4.0. We shall call this Managed multi-targeting. Visual C++ had the
ability to do managed multi-targeting in earlier editions of Visual Studio as well. However,
Visual C++ 2010 is the first edition to support native multi-targeting.

Native Multi-targeting
Large ISV vendors often build their products using multiple versions of toolsets because
not all of their customers use the latest toolset version. Until now, this required the ISVs to
maintain multiple versions of their project files and use corresponding editions of Visual
Studio to build their application so as to produce binaries that targeted different toolsets.
However, with Visual C++ 2010, you can use the same IDE to build using the v100 toolset as
well as the v90 toolset. Note that you need to have Visual Studio 2008 installed on the same
machine to target the v90 toolset2. Visual Studio 2010 supports only v90 and v100 toolsets
by default, although it is possible to author support for any platform toolset as explained in
the section entitled “Platforms and Platform Toolsets,” earlier in this chapter.

Native multi-targeting can be enabled both from the IDE and the command line. In the IDE,
native multi-targeting is obtained by changing the Platform Toolset property, as described
in the previous section. To build using the v90 toolset, simply set the “Platform Toolset”
property under Configuration Properties/General to v90 as shown in Figure 11-6. To make
all configurations use the same toolset, select All Configurations and All Platforms from the
drop-down lists at the top of the property page window. To target multiple projects, multi-select
them in Solution Explorer while bringing up the property pages and set the same property.

When you save the project, the PlatformToolset property gets written to the project file
holding the version of the toolset that was selected.

<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'"
 Label="Configuration">
 <PlatformToolset>v90</PlatformToolset>
</PropertyGroup>

2	 Note that targeting v90 does not use VCBuild.

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 301

When you build the project now, you can confirm that the v90 toolset is used by looking
at the paths of the invoked tools. This information is emitted to the Output window, as the
snippet here shows (you need to set the Output window verbosity to detailed or diagnostics).
The snippet shows that the compiler used is from the v90 toolset as the presence of
“Microsoft Visual Studio 9.0” in the cl.exe path indicates.

C:\Program Files\Microsoft Visual Studio 9.0\VC\bin\CL.exe /c /ZI /nologo /W3 /WX- /Od
/Oy- /D WIN32 /D _DEBUG /D _CONSOLE /D _UNICODE /D UNICODE /Gm /EHsc /RTC1 /MDd /GS /
fp:precise /Zc:wchar_t /Zc:forScope /Yc"StdAfx.h" /Fp"Debug\ConsoleProj.pch" /Fo"Debug\\" /
Fd"Debug\vc110.pdb" /Gd /TP /analyze- /errorReport:prompt stdafx.cpp

Since the PlatformToolset property is stored in the project file, building the project from the
command line uses the same toolset. If you want to build from the command line using a
different toolset than the one specified in the project file, you can always pass in the toolset
using /p: PlatformToolset=value as a switch to msbuild.exe (recall that properties passed
using the /p switch override the values defined in the project files).

How Does Native Multi-targeting Work?
How does Visual C++ 2010 achieve native multi-targeting? The mechanism is simple and
follows directly from the way information about platforms and platform toolsets are stored,
as described in the section entitled “Platform and Platform Toolsets,” earlier in this chapter.
To target a particular toolset, such as v90, Visual C++ needs to use the tools and libraries of
that toolset. All this requires is that Visual Studio set the ExecutablePath (PATH), IncludePath
(INCLUDE), ReferencePath (LIBPATH), LibraryPath (LIB), SourcePath, ExcludedPath to point to
the Visual Studio 2008 installation and Windows software development kit (SDK) installation,
respectively. Visual C++ achieves this by defining values of these properties in a property
sheet and having multiple property sheets for each of the platform toolsets. These property
sheets are stored in the platform toolset directories mentioned in the section entitled
“Platforms and Platform Toolsets,” earlier in this chapter. When you change the value of the
PlatformToolset property, the build system simply picks the property sheets and targets from
the appropriate toolset directory. This mechanism allows you to add multi-targeting support
for your own toolset. For example, you can create a directory called v80 and author property
sheet and targets files for targeting the VS2005 platform. In the section entitled “Adding a
New Platform/Platform Toolset,” in Chapter 12, we will show how to add support for a new
toolset.

Managed Multi-targeting
Note that you need to have Visual Studio 2008 SP1 or later installed to make managed
multi-targeting work. For a Visual C++ CLR project, you can know the .NET Framework
that it targets by going to the project properties user interface and looking under Common
Properties/Framework And References for the Targeted Framework property
(see Figure 11-9).

302	 Part V  MSBuild in Visual C++ 2010

FIGURE 11-9  Property pages showing the Target Framework version for a Visual C++ CLR project

This property was a drop-down list in Visual Studio 2008 that allows you to change the
framework version and thus target a different framework directly from the property page.
Unfortunately, this is read-only in Visual C++ 2010. However, it is still possible to change the
target framework version with a little bit of work.

Open the .vcxproj file for editing in Notepad (or Visual Studio itself) and in the Globals
property group, change the value of the TargetFrameworkVersion property to the version
that you want. For example, make it v3.5 if you want to target .NET Framework version 3.5.
If this property is not there, simply define one in the Globals property group before setting
its value. The following code snippet shows this property set with a value of v3.5.

<PropertyGroup Label="Globals">
 <TargetFrameworkVersion>v3.5</TargetFrameworkVersion>
</PropertyGroup>

You can confirm that it takes effect by reloading the project and looking at the framework
version displayed in the property pages (see Figure 11-9).

Default Visual C++ Tasks and Targets
Visual C++ 2010 ships with a set of tasks and targets that make it possible to build Visual
C++ projects created from the IDE. We discuss these topics in the next two sections.

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 303

Default Visual C++ Tasks
We will use the term Default Visual C++ Tasks to refer to those tasks that are referred to by
default by a newly created Visual C++ project. You already know that tasks and targets are
the currency for builds in MSBuild. So, when you build a Visual C++ project from the IDE
or the command line, you are in effect invoking some targets and tasks. Where are these
targets and tasks located, and how are they connected to the Visual C++ projects that you
create from the IDE?

We will talk about the targets in the next section, but the tasks referred to by these targets are
defined in the following three assemblies (not counting the various incarnations of the last one):

n	 Microsoft.Build.Tasks.v4.0.dll  This is located at $(MSBuildToolsPath), which has a
default value of %windir%\Microsoft.NET\Framework\v4.0.30319 and contains generic
tasks, such as CopyFile and Exec, that would useful for any language-type project.

n	 Microsoft.Build.CPPTasks.Common.dll  This is located at $(VCTargetsPath) and
contains Visual C++–specific tasks whose set of options/switches and behavior is
common across the various platforms. Examples include BSCMake and CPPClean.

n	 Microsoft.Build.CPPTasks.$(Platform).dll (for example, Microsoft.Build
.CPPTasks.Win32.dll)  This assembly is present in the appropriate platform directory
(for example, $(VCTargetsPath)\Platforms\Win32) and contains tasks whose tools/
options or behavior is platform-dependent. For example, Microsoft.Build.CPPTasks.
Win32.dll contains CL and Link tasks that call the compiler and linker, respectively, to
produce binaries for the Win32 platform. If you are a platform extender, then you may
need to provide your own task implementations for these two and other relevant tasks.

Default Visual C++ Targets
We use the term Default Visual C++ Targets to refer to those targets that are imported by
default into a newly created Visual C++ project. The Default Visual C++ targets are defined in
multiple targets files in the $(VCTargetsPath) directory and its subdirectories. All these targets
are brought into your project via the following single import in your project file:

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

Let us dig further into the import hierarchy behind this import. Figure 11-10 shows an
abbreviated hierarchy showing the most important targets files. What purpose does such
a hierarchy have? Why not put all the Targets into one targets file and import it into every
project? There are two reasons:

n	 Visual C++ projects can target different platforms (Win32, x64, and so on) and within
them different platform toolsets (v90, v100, and so on). Each platform/platform toolset
may require a different set of targets to be invoked. In addition, Visual C++ supports
platform extensibility allowing users to add their own platforms. Therefore, it is not

304	 Part V  MSBuild in Visual C++ 2010

only inflexible but also impossible to add all the targets required for all possible
platforms in one targets file.

n	 By factoring out the targets into logical groupings, we leave the possibility open for
extensibility points at each one of these groupings. For example, it is possible to include
your custom targets files for only a particular platform toolset or a particular platform.
We explain this more next.

FIGURE 11-10  A simplified ordered hierarchy of the targets file imports that is brought into a Visual C++
project via Microsoft.Cpp.targets

We will explain the targets brought in by each of the targets files listed here. Note that
Figure 11-10 shows only the most important targets files in the actual hierarchy. There are
other targets files that handle edge cases and/or error scenarios, but these are not shown.

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 305

n	 $(VCTargetsPath)\Microsoft.Cpp.targets  Connects the Visual C++ target
hierarchy to a Visual C++ project. Contentwise, it defines targets that set the Visual
C++ Directories and certain user macros as environment variables. Its major import is
Microsoft.Cpp.$(Platform).targets, located in the Platforms directory. Finally, this targets
file also provides an extensibility point in the form of ForceImportBeforeCppTargets
and ForceImportAfterCppTargets (described in the next section).

n	 $(VCTargetsPath)\Platforms\$(Platform)\Microsoft.Cpp.$(Platform).targets  The
entry point into the world of platform-specific targets. Notice that the location of this
property sheet is in a particular platform directory. This file defines targets specific
to the particular platform. For example, the Win32 version of this defines targets for
compiling and linking for the Win32 platform. It uses the tasks from Microsoft
.Build.CppTasks.Win32.dll and Microsoft.Build.CppTasks.Common.dll. It contains two
extensibility points in the ImportBefore and ImportAfter directories. See the next
section for more details on this. This targets file imports the $(VCTargetsPath)\Platforms\
Win32\PlatformToolsets\$(PlatformToolset)\Microsoft.Cpp.Win32.$(PlatformToolset)
.targets file. This is where an individual platform toolset is given the opportunity to
define or override any targets specific to that toolset.

n	 $(VCTargetsPath)\Platforms\\$(Platform)\ImportBefore*.targets  Represents
all targets files in the ImportBefore directory under the platform directory. These
targets files are imported at the beginning of the platform targets file (Microsoft
.Cpp.$(Platform).targets). This is an extensibility point. See the next section for more
details.

n	 $(VCTargetsPath)\Microsoft.CppCommon.targets  Defines targets for a number
of tools such as Lib, Midl, RC, MT, and so on, whose options/switches and behavior
do not vary across platforms. It also contains targets that implement the extensibility
points available in earlier (and current) editions of Visual C++, such as PreBuildEvent,
PreLinkEvent, PostBuildEvent, and CustomBuildStep.

n	 $(VCTargetsPath)\Microsoft.CppBuild.targets:  Is the director of the build, it
controls the flow of the build in both execution order and the flow of information
between tools. For example, it maps .cpp files to .obj files, and it handles native
project-to-project references. It defines targets for selective file build (compiling a
single file). It also defines the execution order among the various targets. Finally, this is
the file that includes most of the Rule files that results in the pages that you see in the
Property Pages user interface. Examples include cl.xml and link.xml.

n	 $(VCTargetsPath)\Microsoft.BuildSteps.targets  Defines entry point targets
for Build, Rebuild, and so on. These map to the Build, Rebuild menus in the IDE. This
targets file also defines wrapper targets that conceptually divides the build process into
multiple passes such as generate source, compile, link, and so on. These targets can be
utilized to set up a multiple pass build system when the code base is complicated and
the dependencies among projects not easy to determine.

306	 Part V  MSBuild in Visual C++ 2010

n	 $(MSBuildToolsPath)\Microsoft.Common.targets  This file defines the steps in
the standard build process for .NET projects. It contains all the steps that are common
among the different .NET languages, such as Microsoft Visual Basic and Microsoft
Visual C#. It also provides general tools and functionality for managed components.
Targets in here may be invoked for C++/CLI projects types.

n	 $(MSBuildToolsPath)\Microsoft.NETFramework.targets  This file contains
.NET Framework–specific targets. This file encapsulates the multi-targeting and
framework-specific build process.

n	 $(VCTargetsPath)\Platforms\ \$(Platform)\PlatformToolsets\$(PlatformTools
et)\Microsoft.Cpp.\$(Platform).$(PlatformToolset).targets  This is the entry into
the world of platform toolset–specific targets. For Win32 platforms and v100 platform
toolsets, this file is currently empty except for the imports to the targets files in the
ImportBefore and ImportAfter directories. See the next section for more details on the
ImportBefore and ImportAfter directories.

n	 $(VCTargetsPath)\Platforms\ \$(Platform)\PlatformToolsets\
\$(PlatformToolset)\ImportBefore*.targets  Represents all targets files in the
ImportBefore directory under the platform toolset directory. These targets files are
imported at the beginning of the platform toolset targets file. This is an extensibility
point. See the next subsection for more details.

n	 $(VCTargetsPath)\Platforms\Win32\PlatformToolsets\ \$(PlatformToolset)\
ImportAfter*.targets  Represents all targets files in the ImportAfter directory
under the platform toolset directory. These targets files are imported at the end of the
platform toolset targets file. This is an extensibility point. See the next subsection for
more details.

n	 $(VCTargetsPath)\Platforms\ \$(Platform)\ImportAfter*.targets  Represents all
targets files in the ImportAfter directory under the platform directory. These targets
files are imported at the end of the platform targets file. This is an extensibility point.
See the next subsection for more details.

n	 $(VCTargetsPath)\Microsoft.CppClean.targets  Defines the Clean target for a
Visual C++ project.

ImportBefore, ImportAfter, ForceImportBeforeCppTargets,
and ForceImportAfterCppTargets
In the previous description of the default Visual C++ targets, we mentioned at various places
extensibility points where users can hook in their own targets. We describe these here:

n	 ImportBefore and ImportAfter  These are two folders that can be created (if they
are not already present) under every individual platform directory, as well as every
individual platform toolset directory. For the Win32 platform, the path for the
ImportBefore directory would be $(VCTargetsPath)\Platforms\Win32\ImportBefore,

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 307

whereas for the v100 toolset under Win32, its path would be $(VCTargetsPath)\
Platforms\Win32\PlatformToolsets\v100\ImportBefore. We will use the platform
scenario for explaining their function; their role for the platform toolset scenario is
similar. Targets files in the ImportBefore directory are imported in the Microsoft
.Cpp.$(Platform).targets file before any other targets files. As you can see in
Figure 11-10, Microsoft.Cpp.$(Platform).targets is the root targets file, and it is
platform-specific. This means that targets defined in ImportBefore directory will
be imported before any other platform-specific targets. You would want to do
something like this if you want to affect the definitions of platform-specific targets
that will be imported down the line. Similarly, targets files in the ImportAfter directory
are imported in Microsoft.Cpp.$(Platform).targets after any other targets files. You
would want to do something like this if you want to override the definitions of
platform-specific targets that were imported earlier. Thus, these two folders provide
the user a place to incorporate his or her targets at deterministic points, for a particular
platform. For example, if the user creates ImportBefore and ImportAfter directories in
the Win32 platform directory ($(VCTargetsPath)\Platforms\Win32), and drops targets
files in these directories, then these will be picked up for every Visual C++ project that
is created after this and that targets the Win32 platform.

n	 ForceImportBeforeCppTargets and ForceImportAfterCppTargets  These two
extensibility points provide similar hook points as ImportBefore and ImportAfter, but
at a higher level in the import hierarchy. These two are MSBuild properties, and the
user can set their values to a semicolon-separated list of valid target names. The target
names included in ForceImportBeforeCppTargets (ForceImportAfterCppTargets) are
imported in $(VCTargetsPath)\Microsoft.Cpp.targets before (after) any other targets.
If you see inside the Microsoft.Cpp.targets file, you will see at the very beginning, the
following line:

<Import Condition=" '$(ForceImportBeforeCppTargets)' != '' and exists('$(ForceImportBe
foreCppTargets)')" Project="$(ForceImportBeforeCppTargets)"/>

n	 As you can see in Figure 11-10, Microsoft.Cpp.targets is the upper-level default targets
file. Thus, these two properties allow you to include your targets before and after any
other default Visual C++ targets, respectively.

Default Visual C++ Property Sheets
We use the term Default Visual C++ property sheets to refer to those property sheets that
are imported by default in a newly created Visual C++ project. Like the default Visual C++
targets files described in the preceding section, the default Visual C++ property sheets are
organized into logical groupings corresponding to platform, platform toolset, and common
properties. Once again, this factoring is helpful from an organization perspective and also
because it opens up extensibility points. In addition, the default Visual C++ property sheets
are strategically placed to allow proper evaluation among interdependent properties.

308	 Part V  MSBuild in Visual C++ 2010

The default Visual C++ property sheets are brought into a wizard-generated project via two
imports—Microsoft.Cpp.Default.props and Microsoft.Cpp.props. If you look inside a project
file, you will notice that these two imports occur almost at the top and are separated by
some properties defined in the Configuration PropertyGroup. Here is a snippet from a newly
created Visual C++ console project file showing this.

. . .

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'"
 Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>true</UseDebugLibraries>
 <CharacterSet>Unicode</CharacterSet>
 </PropertyGroup>

 <!--Configuration properties for Release|Win32 go here-->

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
. . .

Let us describe each of these three items:

n	 Microsoft.Cpp.Default.props  This property sheet contains the default settings for
a Visual C++ project. It contains definitions of all the project settings such as Platform,
PlatformToolset, ProjectDir, SolutionDir, OutputPath, TargetName, UseOfATL, and so
on. In general, properties in this file are not tool-specific and do not assume anything
about the Visual C++ project. This property sheet also imports $(VCTargetsPath)\
Platforms\$(Platform)\Microsoft.Cpp.$(Platform).default.props, which is the entry into
the platform-specific property settings.

n	 Configuration properties  This property group hosts configuration-wide properties.
These properties control the inclusion of system property sheets in Microsoft.
Cpp.props. For example, if we define the property as <CharacterSet>Unicode</
CharacterSet>, then the system property sheet Microsoft.Cpp.unicodesupport.props
will be included (as can be seen in the Property Manager). Indeed, in one of the files in
the import heirarchy of Microsoft.Cpp.props, we can see the following code:

<Import Condition="'$(CharacterSet)' == 'Unicode'" Project="$(VCTargetsPath)\
microsoft.Cpp.unicodesupport.props"/>

n	 Microsoft.Cpp.props  This property sheet (directly or via imports) defines the default
values for many tool-specific properties. Examples include the compiler’s Optimization
and WarningLevel properties, the MIDL tool’s TypeLibraryName property, and so
on. In addition, it imports various system property sheets based on configuration
properties defined in the Configuration property group described previously.

The two property sheets bring in a hierarchy of other property sheets, as shown in
Figure 11-11. We will now explain the purpose of each one of them (except for

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 309

FI
G

U
RE

 1
1-

11
 T

he
 V

isu
al

 C
++

 p
ro

pe
rt

y
sh

ee
t h

ie
ra

rc
hy

 fo
r a

 n
ew

ly
 c

re
at

ed
 V

isu
al

 C
++

 c
on

so
le

 p
ro

je
ct

 ta
rg

et
in

g
th

e
W

in
32

pl

at
fo

rm
 a

nd
 u

sin
g

th
e

v1
00

 p
la

tf
or

m
 to

ol
se

t

310	 Part V  MSBuild in Visual C++ 2010

Microsoft.Cpp.Default.props and Microsoft.Cpp.props, which are described previously).
Before that, let us remind you once again of the /preprocess switch discussed in the section
entitled “Property Sheets,” in Chapter 10, that generates the logical file with all content inline
and delineated. The logical file might be useful to see the contributions of all the property
sheets in a single file.

n	 $(VCTargetsPath)\Platforms\$(Platform)\Microsoft.Cpp.$(Platform)
.default.props  Entry into the world of platform-specific default settings. Notice
that the location of this property sheet is in a particular platform directory. Like its
importing property sheet, the properties whose values are set in this property sheet
are non-tool-specific.

n	 $(VCTargetsPath)\Microsoft.Cl.Common.props  Defines default values for compiler
switches.

n	 $(VCTargetsPath)\Microsoft.Link.Common.props  Defines default values for linker
switches.

n	 $(VCTargetsPath)\Microsoft.CodeAnalysis.props  Includes the property page xml
file for code analysis tool. (This is available only in the Premium and Ultimate editions
of Visual Studio 2010.)

n	 $(VCTargetsPath)\Platforms\$(Platform)\Microsoft.Cpp.$(Platform).props  This
is the exact property sheet where the system property sheets are imported based on
the configuration properties. See the previous description of Microsoft.Cpp.props for
more information.

n	 $(VCTargetsPath)\Platforms\ $(Platform)\ImportBefore*.props  The extensibility
point for the users to include their own platform-specific property sheets. These
property sheets are included at the beginning of the importing property sheet. Similar
to the ImportBefore folder for default Visual C++ targets (see the section entitled
“Default Visual C++ Tasks and Targets,” earlier in this chapter).

n	 $(VCTargetsPath)\Platforms\ $(Platform)\PlatformToolsets\$(PlatformToolset)\
Microsoft.Cpp.$(Platform).$(PlatformToolset).props  Provides entry into the world
of platform toolset–specific property sheets. The primary purpose is to point the build
system to the right toolset directory. The v100 property sheet, for example, sets the
EXE, LIB, and WindowsSDK paths to those directories that contain v100 tools.

n	 $(VCTargetsPath)\Platforms\ $(Platform)\PlatformToolsets\ $(PlatformToolset)\
ImportBefore*.props  The extensibility point that allows the user to include the
platform toolset–specific property sheets. These property sheets are included at the
beginning of the importing property sheet. Similar to the ImportBefore folder for
default Visual C++ targets (see the section entitled “Default Visual C++ Tasks and
Targets,” earlier in this chapter).

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 311

n	 $(VCTargetsPath)\Platforms\ $(Platform)\PlatformToolsets\ $(PlatformToolset)\
ImportAfter*.props  The extensibility point that allows the user to include the
platform toolset–specific property sheets. These property sheets are included at the
end of the importing property sheet. Similar to the ImportAfter folder for default Visual
C++ targets (see the section entitled “Default Visual C++ Tasks and Targets,” earlier in
this chapter).

n	 $(VCTargetsPath)\Microsoft.Cpp.CoreWin.props  Sets core Windows libraries such
as kernel32.lib, user32.lib, and so on, as linker additional dependencies.

n	 $(VCTargetsPath)\Microsoft.Cpp.unicodesupport.props  A system property sheet
included because of the following property setting in the project file:

<CharacterSet>Unicode</CharacterSet>

n	 $(VCTargetsPath)\Microsoft.Cpp.Application.props  A system property sheet
included because of the following property setting in the project file:

<ConfigurationType>Application</ConfigurationType>

n	 $(VCTargetsPath)\Platforms\ $(Platform)\ImportAfter*.props  The extensibility
point for users to include their own platform-specific property sheets. These property
sheets are included at the end of the importing property sheet. Similar to the
ImportAfter folder for default Visual C++ targets (see the section entitled “Default
Visual C++ Tasks and Targets,” earlier in this chapter).

n	 $(UserRootDir)\Microsoft.Cpp.$(Platform).user.props  This is a user property
sheet and is discussed in the section entitled “Visual C++ Directories,” in Chapter 10.

Migrating from Visual C++ 2008 and Earlier to Visual
C++ 2010

In this section, we describe how you can convert project and solution files in earlier Visual
C++ editions to Visual C++ 2010.

IDE Conversion
Visual Studio 2010 comes with a built-in project upgrader—a wizard that springs into action
when you try to open a Visual C++ project file created using earlier editions of Visual Studio.
The wizard allows you to convert projects in the older .dsp (VC6 project files) and .vcproj
(VS2002 – VS2008) formats to .vcxproj format. You can also convert .sln files (solution files in
VS2002 – VS2008) and .dsw files (workspace files in VC6) to .sln files in the latest format. The
conversion wizard gives you an option to back up your old project files in case you want to
go back to your original state for any reason. The mapping between the old and new project
files is illustrated in Figure 11-12 and is explained here.

312	 Part V  MSBuild in Visual C++ 2010

FIGURE 11-12  The Visual C++ 2010 conversion process

n	 Project file (.dsp/.vcproj à .vcxproj + .vcxproj.filters)  The project file in the older
formats is converted to a project file that is in the new MSBuild format. This file has
the new .vcxproj extension. In addition, another MSBuild file containing the (Solution
Explorer) filters information is also created. This has the name <project name>.vcxproj
.filters and is created in the same directory as the new project file. In Visual C++ 2010,
the filters information has been separated into its own file (in the previous format,
filters information was included in the project file). This was done to separate the purely
user-interface information—the list of filters and their containing files—from other

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 313

project information. This will ensure that changing the filters in Solution Explorer will
not require or result in a build. Note that the filters file must be checked into source
control when the project file is. The filters file is not optional. Without the filters file,
Solution Explorer will show no filters and simply display all files directly under the
project node.

n	 Solution file (.dsw/.sln à .sln)  Although the format for the solution file remains the
same—in Visual Studio 2010, it’s still not in MSBuild format—some of the content in
the previous solution files is moved to the individual project files. When a Visual C++
application from a previous version of Visual Studio is converted to Visual Studio 2010,
project dependencies defined at the solution level are converted to project-to-project
references. This change ensures that C++ project dependencies are captured in the
project file. Here is how a project-to-project reference looks in the .vcxproj project file:

<ItemGroup>

 <ProjectReference Include="..\Cpp\Cpp.vcxproj">

 <Project>{c58574bf-9dd8-4cf8-b5b6-6551f2f3eece}</Project>

 <ReferenceOutputAssembly>false</ReferenceOutputAssembly>

 </ProjectReference>

</ItemGroup>

There are several advantages of having dependency information in the project file.
First, users can build a project without the solution, and the dependent projects will be
built automatically. Second, it sets up users for large trees, where they might not use
solution files. In addition, many users have several solution files, each with different
subsets of the projects. This can save the customers from setting project dependencies
for each of the solutions. Another important factor is that build dependencies are
more reliable when the dependencies are set through project-to-project references,
especially when building with multiple cores.

n	 Property sheets (.vsprops à .props)  Property sheets in the older formats are
converted to the MSBuild format. The file extension changes from .vsprops to .props.

n	 Build Customizations (.rules à .xml + .props + .targets)  In older editions, Build
Customizations (when they were called Custom Build Rules) were described by a single
Extensible Markup Language (XML) file with the .rules extension. As explained in the
section entitled “Build Customizations,” earlier in this chapter, they are now represented
by three files: a Rule file (.xml), a property sheet (.props), and a targets file (.targets). The
converter takes the .rules file and generates the three files in the new format.

n	 Microsoft.Cpp.$(platform).user.props  In the section entitled “Visual C++
Directories,” in Chapter 10, we explained how the Visual C++ Directories information is
now moved to property sheets. During conversion, the converter creates the Microsoft
.Cpp.$(platform).user.props for every platform installed on the system. This is created in
the %LocalAppData%\Microsoft\MSBuild\v4.0 directory.

314	 Part V  MSBuild in Visual C++ 2010

n	 Upgrade log file  This is created in the project directory and has the name
UpgradeLog.xml. If such a file is already present, then the file is created with the name
UpgradeLog2.xml, if two such files exist, the file is given the name UpgradeLog3.
xml, and so on. The upgrade log file is an XML file containing status information on
the conversion that was just finished. It contains any warning or error messages. The
upgrade process will also generate a directory, _UpgradeReport_Files, containing .css
files and images used to display the log file in an attractive format in the IDE at the end
of the IDE conversion process.

Command-Line Conversion
You can perform project conversion from the command line, too. One reason that you
might want to do command-line conversion is if you have a lot of projects to convert,
especially if they’re not all in the same solution. Two tools are available for you for
performing command-line conversion—devenv.exe and vcupgrade.exe. We explain the
exact commands to run to perform the conversion described here. You need to run these
commands in a Visual Studio 2010 command prompt (and not the regular Windows
command prompt), so the path to the tools is already set and available.

Devenv.exe
The devenv.exe file is the executable for the Visual Studio IDE. As was the case with previous
editions, you can use this tool to perform a conversion by passing in the /upgrade switch.
To upgrade a solution file, type the following:

devenv.exe /upgrade YourSolution.sln

This will upgrade the solution file along with all the projects in it.

To upgrade a single project file, type the following:

devenv.exe /upgrade YourProject.vcproj

A few notes about command-line conversion using devenv.exe:

n	 Unlike IDE conversion, you cannot covert VC6 project (.dsp) and workspace (.dsw) files.

n	 Since the devenv.exe command is not available for the VC Express SKU edition, this
procedure is not applicable for this SKU. Use the IDE to upgrade your old projects.

n	 Command-line conversion using devenv.exe is preferred to command-line conversion
using vcupgrade.exe because of limitations of the latter tool in capturing project
dependency information (see the next section for details).

	 Chapter 11  MSBuild in Visual C++ 2010, Part 2	 315

Vcupgrade.exe
The vcupgrade.exe file is a new tool introduced in Visual Studio 2010 and is located in the
directory specified by the VS100COMNTOOLS environment variable. It is a tool whose sole
purpose is to upgrade VC project files. It performs a role analogous to vcbuild.exe
/upgrade in older editions of Visual C++. This, too, is included in the Windows SDK, so users
can convert their SDK-based samples even if they do not have Visual Studio installed.

To convert a project file, type the following:

vcupgrade.exe YourProject(.dsp/.vcproj)

If you wish to convert the same project file again, invoke vcupgrade.exe using the /overwrite
switch.

This tool has some limitations, though, as already mentioned. It cannot be used to convert
solution files. It can only convert project files, and even here, you want to make sure that
a solution referencing this project does not define project dependencies involving this
project. As mentioned previously, project dependencies are converted to project-to-project
references and converting a single project means that such information cannot be captured.
You need to use devenv.exe /upgrade in such cases.

Summary
We started this chapter with the announcement that in Visual Studio 2010, Visual C++ has
shifted to using MSBuild as its build system. By moving to MSBuild, Visual C++ has become
part of the large migration currently underway by multiple Microsoft and non-Microsoft
products to using MSBuild as their build system3. Visual C++ customers now not only have
an easier way to manage their Visual C++ build setups, but they are also set up to gain from
the inevitable improvements to MSBuild going forward.

In this chapter, we described various benefits accrued to Visual C++ by moving to MSBuild.
In the next chapter, we delve into advance concepts that mainly deal with extending the
Visual C++ build system in various ways.

3	 You will be interested to know that MSBuild is used to build the entire Visual Studio product.

		 317

Chapter 12

Extending Visual C++ 2010
With the move to MSBuild, all forms of build extensibility offered by MSBuild are now also
offered by Visual C++. However, the organization structure of the Visual C++ build system
(explained in Chapter 11, “MSBuild in Visual C++, Part 2,” in the section entitled “Default
Visual C++ Tasks and Targets”) also offers alternative extensibility opportunities. This chapter
explains the many ways that you can customize and extend the Visual C++ build system.

Build Events, Custom Build Steps, and the Custom
Build Tool

Visual C++ 2010, by way of MSBuild, is highly customizable and extensible. However, many
times we just need to customize a build in a small way without tapping into the full power
of MSBuild extensibility. Build events, custom build steps, and the custom build tool are
three ways you can customize your Visual C++ build system in a simple fashion. These three
customizations were offered by Visual C++ 2008 as well. In Visual C++ 2010, however, they
are powered by MSBuild.

Build Events
Consider a common scenario where we may want to execute a simple operation after the
build is done, such as copying the output to a particular directory or registering the output
with regsvr32.exe. Build events enable you to specify operations that can be performed
at any or all of the following three specific points in the build: before the build starts (the
Pre-build Event), before the link process (the Pre-link Event), and after the build finishes
(the Post-build Event). Build events are project-level; they execute once per project and not
per file. Build events are specified through the property pages.

Figure 12-1 shows the Property Pages user interface with the Post-build Event selected in the
left pane. Just above it, you can see Pre-build Event and the Pre-link Event. The user interface
allows us to enter a command line that will be executed for any of these events. It also has a
Description field that is printed when the command executes. The results of the command
line are written to the Output window and the build log files. The description is written to
these two places for normal or higher verbosity.

We will illustrate Build Events using the Post-build Event. The other two (Pre-build Event
and Pre-link Event) are similar. The command line is a multi-line text field and comes with a
multi-line editor. In this editor, you can specify a single command or multiple commands, one
per line. You can even call out to external batch files (using the call command).

318	 Part V  MSBuild in Visual C++ 2010

The commands that you enter for the command-line field are emitted to a batch file and
executed using cmd.exe. So you can do anything that you can do in a batch file, including
using the goto statement. A :VCEnd label is automatically appended to the batch file,
which can be used to jump from any point in your command line to the end by using goto
VCEnd. A build event can feel free to change the current directory without fear of negatively
affecting other parts of the build since the batch file is executed in a subprocess. Figure 12-1
shows that the Post-build Event is set to execute three commands. As we will see later in
this chapter, the command line is stored in the project file as item definition metadata.
So you can refer to any existing MSBuild properties and metadata. When the command
line runs, the Visual C++ environment variables and paths are set. So you can refer to any
existing environment variables, too. However, in Visual C++ 2010, to refer to environment
variables, you cannot use the % sign because it has special meaning to MSBuild. Instead, use
its hexadecimal escape sequence, which is %25. In Figure 12-1, we print the full path of the
project using the MSBuild reserved property for the same (MSBuildProjectFullPath). Then
we print the computer name using an environment variable. Finally, we execute an external
batch file with the name cmds.bat, located in the project directory.

FIGURE 12-1  Specifying Post-build Event using property pages

If you save the project and peek inside the project file, you will see that the information
we entered for the Post-build Event is stored as an item definition metadata for the
PostBuildEvent item definition.

	 Chapter 12  Extending Visual C++ 2010	 319

<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 . . .
 <PostBuildEvent>
 <Message>My post build operation</Message>
 <Command>echo $(MSBuildProjectFullPath)
echo %25COMPUTERNAME%25
call cmds.bat</Command>
 </PostBuildEvent>
</ItemDefinitionGroup>

Note that if any of your commands fail, then the build itself fails. Finally, note that the build
event operations will not be executed if they are not reached during a build. Therefore, if the
build fails, then the Post-build Event will not be executed.

The PreBuildEvent, PreLinkEvent, and PostBuildEvent targets in the $(VCTargetsPath)\
Microsoft.CppCommon.targets file implement the functionality of these three events. We will
copy and paste the definition of the PostBuildEvent target to illustrate how this is done.

<Target Name="PostBuildEvent" Condition="'$(PostBuildEventUseInBuild)'!='false'">
 <Message Text="Description: %(PostBuildEvent.Message)"
 Condition="'%(PostBuildEvent.Message)' != '' and '%(PostBuildEvent.Command)' != ''"/>
 <Exec Command="%(PostBuildEvent.Command)$(BuildSuffix)"
 Condition="'%(PostBuildEvent.Command)' != ''"/>
</Target>

As you can see, the target simply prints the description using the Message task and invokes
cmd.exe to execute your commands using the Exec task (the Exec task is implemented to
invoke cmd.exe). The value of the BuildSuffix property is <newline> :VCEnd. This is the same
suffix that was described previously while discussing the command-line format.

Building the project on the author’s machine printed the following to the Output window
(with verbosity = minimal). Assume that the cmds.bat file contains the single line echo
Inside cmds.bat and that MY-PC is the name of the computer on which this is run.

C:\InsideMSBuild\Ch12\BuildEventsDemo\BuildEventsDemo.vcxproj

MY-PC

Inside cmds.bat

Custom Build Step
Custom Build Step, like build events, allows you to execute arbitrary commands at specific
points during the build. Unlike build events, however, you are not limited to a fixed number
of points during a build to execute your commands. You have complete freedom to choose
when your commands will be executed. Like Build Events, Custom Build Step is a project-level
step. Custom Build Step can be specified using property pages, as shown in Figure 12-2.

320	 Part V  MSBuild in Visual C++ 2010

FIGURE 12-2  Specifying Custom Build Step using the property pages

The command-line field has the same qualities as the one for Build Events (described
previously). The new fields in here are Execute After, Execute Before, Outputs, and Additional
Dependencies.

The Execute After field enables you specify a set of targets, the completion of any one of
which will trigger the execution of the Custom Build Step. The Execute Before field enables
you to specify that the Custom Build Step should be executed before any of a set of targets
is executed. In neither case do the Execute Before or Execute After targets values that you
choose cause any of the specified targets to execute. They merely hook the Custom Build
Step to build if these other targets happen to execute during the normal course of a build.
Note that these two fields do not constitute a strict dependency order, so you don’t have to
worry about entering incompatible values. The Custom Build Step runs only once during the
build, at the first qualifying opportunity—not before and after every target you listed.

Each of these two fields can be set to any target or a semicolon-separated list of targets.
To help you, each drop-down list includes all the targets in the evaluated project, excluding
any that have names starting with an underscore—this tells Visual C++ that they’re private
implementation details. These two fields directly map to the AfterTargets and BeforeTargets
features of MSBuild during run time. See the section entitled “Extending the Build
Process,” in Chapter 3, “MSBuild Deep Dive, Part 2,” for more details on how these work.
In fact, if you look at the definition of the CustomBuildStep target in $(VCTargetsPath)\
Microsoft.CppCommon.targets (which implements the functionality of Custom Build Step),
you will see the mapping between these two concepts. In a moment, we will see that

	 Chapter 12  Extending Visual C++ 2010	 321

$(CustomBuildBeforeTargets) and $(CustomBuildAfterTargets) are used to represent the
Execute Before and Execute After settings in Figure 12-2.

<Target Name="CustomBuildStep"
 Condition="'@(CustomBuildStep)' != '' and '$(SelectedFiles)'==''"
 Inputs="%(CustomBuildStep.Inputs);$(ProjectFileName)"
 Outputs="%(CustomBuildStep.Outputs)"
 DependsOnTargets="ComputeCustomBuildOutput"
 BeforeTargets="$(CustomBuildBeforeTargets)"
 AfterTargets="$(CustomBuildAfterTargets)" >

 <Message Text="Description: %(CustomBuildStep.Message)"
 Condition="%(CustomBuildStep.Message) != ''"/>

 . . .

 <Exec Command="%(CustomBuildStep.Command)$(BuildSuffix)" />
</Target>

You need to specify the output files generated by the Custom Build Step in the Outputs field.
Without this, the Custom Build Step will not run. The reasoning is explained in detail next.
Similarly, you need to specify files that you want considered as inputs during the up-to-date
check in the Additional Dependencies field.

In Figure 12-2, we entered a simple command line that uses the compress.exe command-line
tool1 to compress the output executable (we assume that the location of the compress tool
has been added to the PATH environment variable). The compress tool, as we used it, takes
the input file name and the output file name. We entered the same output file name in the
Outputs field. These values are written to the project file as follows. Note that the Execute
After and Execute Before targets are stored as properties, whereas the rest are stored as item
definition metadata. This is because the former values also are used for the Custom Build
Tool (explained in the next section).

<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <CustomBuildStep>
 <Command>compress $(TargetPath) $(TargetDir)$(TargetName).compressed</Command>
 <Outputs>$(TargetDir)$(TargetName).compressed</Outputs>
 <Inputs>$(TargetPath)</Inputs>
 </CustomBuildStep>
 </ItemDefinitionGroup>

. . .
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <CustomBuildAfterTargets>Link</CustomBuildAfterTargets>
 <CustomBuildBeforeTargets>CopyFilesToOutputDirectory</CustomBuildBeforeTargets>
</PropertyGroup>

1	 This tool is freely available from Microsoft as part of the Windows Server 2003 Resource Kit Tools.

322	 Part V  MSBuild in Visual C++ 2010

The CustomBuildStep target participates in incremental builds. However, it does not use
the newer File Tracker mechanism [described in the section entitled “File Tracker–Based
Incremental Build,” in Chapter 10, “MSBuild in Visual C++ (Part 1)”] for this. It uses an older
style that requires us to explicitly specify the inputs and outputs of the target so that MSBuild
knows the files it needs to check time stamps for during an incremental build. During an
incremental build, if the output file is found to be older than the input file, or if the output
file is not found, then the Custom Build Step is run; otherwise, it is not. That is the reason why
it is mandatory to specify the Outputs field. If your Custom Build Step doesn’t generate any
output files but you still want it to execute with every build, make up a fake file name.

Custom Build Tool
A Custom Build Tool allows you to execute a set of commands for a particular file during the
build. The Custom Build Tool consumes the file and produces one or more output files. Unlike
Build Events and Custom Build Step, which are project-level operations, Custom Build Tool is
a file-level operation. It runs a maximum of one time for each associated file during a project
build. You can also run only the Custom Build Tool for an individual file by right-clicking the
file and choosing Compile.

Custom Build Tool should not be confused with Custom Build Rule (which was renamed Build
Customization in Visual C++ 2010). Whereas Custom Build Tool acts on a specific file, Build
Customizations act on a category of files. Build Customizations are explained in the sections
entitled “Creating a Build Customization,” later in this chapter, and “Build Customizations,”
in Chapter 11.

To specify a Custom Build Tool for a particular source file, you need to first set the Item Type
property of the source file to Custom Build Tool in the file Property Pages user interface.
Clicking Apply makes the Custom Build Tool category appear as in Figure 12-3. This figure
shows the property page for a file named File1.xyz that we added to a new Visual C++
console project (although we could have associated any existing file, such as stdafx.cpp, to
Custom Build Tool if we wanted). Note that associating a Custom Build Tool for a project
changes its MSBuild item type to CustomBuild in the project file.

The Custom Build Tool settings page looks very similar to the Custom Build Step settings of
Figure 12-2, but that is mostly coincidental. The Command Line field holds the commands
to execute. Its format is exactly the same as for the Build Events settings described earlier.
For this example, the command is set to simply make a copy of the file on which it acts
(specified using the %(Identity) metadata). The Description field is used to print a message
on the Output window when the Custom Build Tool is executed. The Outputs field indicates
the output files produced. Like the Custom Build Step, this field is used to decide whether
to execute the Custom Build Tool or not during an incremental build. Without specifying
the output, the Custom Build Tool will never run, as explained earlier. The Execute After and
Execute Before fields represent the exact same values as the corresponding properties for

	 Chapter 12  Extending Visual C++ 2010	 323

Custom Build Step (see Figure 12-2). When they are specified for the Custom Build Step, both
the Custom Build Step and the Custom Build Tool execute at the same point, as specified
by these two settings. When they are not specified with Custom Build Step, however, these
two execute at different points during the build. This behavior is to maintain backward
compatibility with older Visual C++ editions.

FIGURE 12-3  Custom Build Tool properties for the File1.xyz file

These settings are saved as item metadata for the particular file as shown here. If we had
set the Custom Build Tool properties in the project Property Pages user interface, then they
would have been saved as item definition metadata; and these would apply to every single
file whose item type is set to Custom Build Tool.

<ItemGroup>
 <CustomBuild Include="File1.xyz">
 <Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">copy %(Identity)
%(Identity).dupe</Command>
 <Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Identity).dupe</
Outputs>
 </CustomBuild>
</ItemGroup>

Building the project prints the following to the Output window (with verbosity = Minimal).

1>------ Build started: Project: CustomBuildToolDemo, Configuration: Debug Win32 ------

1> Performing Custom Build Tools

1> 1 file(s) copied.

. . .

324	 Part V  MSBuild in Visual C++ 2010

Immediately building the same project again will not print this because the Custom Build
Tool will not have executed. That is because MSBuild would notice that the output file is not
out of date and hence will not execute the Custom Build Tool during this incremental build.

The functionality of Custom Build Tool is implemented by the CustomBuild target in the
$(VCTargetsPath)\Microsoft.CppCommon.targets file. This target invokes a task by the same
name of CustomBuild; this task is implemented in the assembly Microsoft.Build.CppTasks.
Common.dll.

Finally, we want to discuss briefly the typical usage pattern for the Custom Build Tool. It is
used for processing very few files, or even only one specific file. For each of these specific
files, we need to manually associate the Custom Build Tool. This means that a Custom Build
Tool does not automatically work on a category of files, such as those of a given item type.
For example, if you add another file to the project with the same .xyz extension, it will not
have its item type defined as CustomBuild in the project file, nor will it have the Custom
Build Tool command of the earlier file executed for it. To have the same command executed
on this new file, you need to do the same steps as above; that is, changing the item type to
Custom Build Tool, setting up the command line, and so on (unless you defined the Custom
Build Tool properties at the project level, in which case the latter steps need not be done).
If you want to perform custom processing on all items of a specific item type—both existing
and future items—use a Build Customization (as described in the section entitled “Creating
a Build Customization,” later in this chapter). A Build Customization also optionally gives you
design-time integration.

Adding a Custom Target to the Build
In this section, we will talk about an extensibility mechanism that directly uses the MSBuild
foundation of the Visual C++ build system. The mechanism that we are talking about is
to have a custom target execute at an arbitrary point during the build. The Build Events,
Custom Build Step, and Custom Build Tool extensibility mechanisms discussed previously are
ultimately implemented by targets, but there is a layer of abstraction to make it specific to
Visual C++. Further, the command line that can be specified cannot match the power of an
MSBuild target that can execute any number of arbitrary tasks.

Suppose that you want to perform some custom processing at a certain point during a build
and none of the extensibility mechanisms described previously suffice. Then you can write a
custom target that does the desired processing and integrate it into the build. This involves
the following steps:

	 1.	 Writing a target and the appropriate tasks

	 2.	 Specifying the point during a build where you want your target to be executed

	 3.	 Including your target in your project(s)

	 Chapter 12  Extending Visual C++ 2010	 325

Writing a target and its tasks uses only MSBuild knowledge. See Chapter 4, “Custom Tasks,”
for information on how to write custom tasks. You can use any of the numerous generic tasks
from the MSBuild task library, Visual C++–specific tasks, or even the extensive collection in
MSBuild Extension Pack (available online at http://msbuildextensionpack.codeplex.com) for
this. You can find the Visual C++ tasks in the assemblies mentioned in the section entitled
“Default Visual C++ Tasks,” in Chapter 11.

You can specify where you want your target to run in numerous ways, including the
following:

n	 You can use the AfterTargets and BeforeTargets features (described in the section
entitled “Extending the Build Process,” in Chapter 3. This is the most general way of
specifying the position in the build. The list of Visual C++ targets that you can use to
set these two properties can be obtained from the Execute After and Execute Before
drop-down lists of the Custom Build Step property page (see the section entitled
“Custom Build Step,” earlier in this chapter, for more information).

n	 You can use Visual C++–specific hooks, such as ForceImportBeforeCppTargets and
ForceImportAfterCppTargets, as described in the section entitled “Default Visual
C++ Targets,” in Chapter 11.

n	 You can use target injection, as described in the section entitled “Extending the
Build Process,” in Chapter 3, by putting your target on the list of targets on which
a default Visual C++ target depends (the default Visual C++ targets are defined
in $(VCTargetsPath)). For example, the CppClean target is defined this way in
$(VCTargetsPath)\Microsoft.CppClean.targets:

<Target Name="CppClean" DependsOnTargets="$(CppCleanDependsOn)">
</Target>

MSBuild will execute all of the targets on which a target depends that have not already run
before it executes that target itself. Some targets, like CppClean, use a property to capture
the list of targets on which they depend. By adding your target to the value list of this
property, you can ensure that your target is run before a specific Visual C++ target. You can
do this for the CppClean target by defining the following property in your target (named
“MyTarget,” for instance) or in any of the project files:

<PropertyGroup>
 <CppCleanDependsOn>$(CppCleanDependsOn);MyTarget</CppCleanDependsOn>
</PropertyGroup>

One other way to get your target to run is to override another one that would otherwise run!
For example, you can name your target BeforeClean, AfterCompile, or even CoreCompile
itself to override that target (this assumes that your targets file is imported after the default
Visual C++ targets files).

326	 Part V  MSBuild in Visual C++ 2010

How you include your target depends on the scope of its usage.

n	 If it is meant to be used for only one project, simply import your targets in the project
file. A recommended place is the ImportGroup with the label ExtensionTargets. This
ImportGroup is located at the bottom of the project file and enables custom targets to
override any default targets.

<ImportGroup Label="ExtensionTargets">
 <Import Project="MyTarget.targets"/>
</ImportGroup>

This is where targets files that are part of Build Customizations are imported (see the section
entitled “Build Customizations,” in Chapter 11). In fact, since a targets file can be treated
as a Build Customization (it is the only mandatory part of a Build Customization), you can
simply use the Build Customization user interface to pull in your targets file. As mentioned
previously, the user interface places your targets file import at the exact same place.

n	 If your target is meant to be used for every project targeting a particular platform, then
you need to place your targets file in either the ImportBefore or ImportAfter folder of
the appropriate platform directory. Your targets file will be automatically imported into
projects targeting that platform. For example, to have all projects targeting the Win32
platform to import your target, you can choose to place them in the $(VCTargetsPath)\
Platforms\Win32\ImportAfter folder. See the section entitled “Platforms and Platform
Toolsets,” in Chapter 11, for more information on these directories.

n	 If your target is meant to be used for every project targeting a particular platform
toolset, you can use the same ImportBefore/ImportAfter mechanism but applied to
platform toolsets.

If you plan to deploy your custom targets file with your team, see the section entitled
“Deploying Your Extensions,” later in this chapter, for details.

Creating a New Property Page
The new data-driven property page architecture has been briefly described in the section
entitled “Property Pages,” in Chapter 11. The architecture allows you to describe a Rule
(a node in the Property Pages user interface under the Configuration Properties node) in
a declarative fashion, specifically in the Extensible Application Markup Language (XAML)
format. Now, we will describe how to create a property page for your custom tool. This will
allow you to provide a design time experience for your tool that is identical to other shipped
tools such as the compiler, linker, and so on.

We will take the example of a custom tool that would need both design time and build time
integration. This will allow us carry over this example to the section entitled “Creating a Build
Customization,” later in this chapter. Let us assume that the tool is simple—it converts files in

	 Chapter 12  Extending Visual C++ 2010	 327

.docx format (Microsoft Open Office XML Format) to Hypertext Markup Language (HTML).
Supposedly, the developers in your team are required to create project documentation
such as design documentation, Unified Modeling Language (UML) diagrams, and so on in
Microsoft Word files and add it to the project to which the documentation refers to. These
Word documents need to be converted to HTML so that they can be hosted on an internal
website for easy browsing by other dependent teams. To accomplish this, let us say you
already have a command-line tool called Docx2Html.exe that converts .docx files to .html.
The tool has options to allow for (1) validating the output in HTML, (2) creating the output
file as a single-file web page (.mht) as opposed to an .html page and a folder containing
resources such as images, and (3) specifying the output directory where the generated .html
file will be placed.

To cleanly integrate this tool into your Visual C++ projects, you would need to do two things:

n	 Provide a design-time experience akin to the experience for the shipped tools like the
compiler and linker. The design-time experience currently includes the Property Pages
user interface and the Solution Explorer.

n	 Build time integration. This means invoking the Docx2Html tool on the docx files
during build.

In this section, we will describe how to achieve the design time experience—the first bullet
in the previous list. The section entitled “Creating a Build Customization,” later in this chapter,
will cover the build time integration.

The Property Pages user interface is divided into Rules. Each Rule has categories, and each
category has properties. The Rules and the Categories appear in the left pane of the Property
Pages user interface, whereas the properties and their values appear in the right pane. To
create a Rule node for your custom tool, you simply need to create an XAML file describing
these things; for the latest edition of Visual Studio, XAML is just a convenient Extensible
Markup Language (XML) format to express information and is not related to Windows
Presentation Foundation (WPF) or Silverlight.

For illustration, you can look at the cl.xml Rule file for the compiler tool located on your
computer at %ProgramFiles%\MSBuild\Microsoft.Cpp\v4.0\1033 (for non-English-language
locales, replace 1033 with the corresponding Locale ID).

If you stripped cl.xml of all data, you will end up with the following skeleton:

<?xml version="1.0" encoding="utf-8"?>
<Rule>

 <Rule.DataSource />

 <Rule.Categories>
 <Category />
 . . .

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

328	 Part V  MSBuild in Visual C++ 2010

 </Rule.Categories>

 <BoolProperty />
 <EnumProperty />
 <IntProperty />
 <StringProperty />
 <StringListProperty />
 . . .

</Rule>

In other words, a Rule file generally contains a Rule declaration, which in turn includes the
declarations for a bunch of categories, a data source, and, most importantly, a collection
of properties of various types. The previous snippet shows the five possible types that a
property can have.

We will not endeavor to explain every single element type that can occur in a Rule file.
You can get that information by going through MSDN documentation for the types defined
in the Microsoft.Build.Framework.XamlTypes namespace. These types correspond to the
deserialization class for the Rule file XAML. More explanation can be found in a blog post by
the author entitled “Platform Extensibility - Part 2,” on the VS Project Team Blog (http://blogs
.msdn.com/b/vsproject).

When you include such a file as an item (with item type PropertyPageSchema) in your project
file, then you will have a node for your Rule in the property pages. Properties set in the
Property Pages user interface will be stored in the project file (or any other place, as mentioned
in the Rule file). The following Rule file (saved as, say, Docx2Html.xml) makes this happen.

<?xml version=”1.0” encoding=”utf-8”?>

<ProjectSchemaDefinitions
 xmlns=http://schemas.microsoft.com/build/2009/properties
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sys="clr-namespace:System;assembly=mscorlib">

 <Rule Name="Docx2Html" PageTemplate="tool" DisplayName="Docx2Html" >

 <Rule.DataSource>
 <DataSource Persistence="ProjectFile" ItemType="ProjDoc" />
 </Rule.DataSource>

 <Rule.Categories>
 <Category Name="Conversion" DisplayName="Conversion" />
 </Rule.Categories>

 <StringProperty Name="OutputDirectory" DisplayName="Output Directory"
 Category="Conversion" Subtype="folder"
 Description="Specifies the directory in which to place the output html files" />

 <BoolProperty Name="ValidateHtml" DisplayName="Validate html" Category="Conversion"
 Description="Causes the output html to be validated for standards compliance" />

http://schemas.microsoft.com/build/2009/properties

	 Chapter 12  Extending Visual C++ 2010	 329

 <EnumProperty Name="WhichHtmlFileType" DisplayName="Html file type"
 Description="Select the html file type to save in" Category="Conversion" >
 <EnumValue Name="html" DisplayName="Web page (.html)"
 Description="Html page with resources saved in a separate folder" />
 <EnumValue Name="mht" DisplayName="Single file web page (.mht)"
 Description="A single file containing the html code and all resources" />
 </EnumProperty>

 </Rule>

 <ItemType Name="ProjDoc" DisplayName="Project documentation" />
 <ContentType Name="ProjDoc" DisplayName="Project documentation" ItemType="ProjDoc" />
 <FileExtension Name="*.docx" ContentType="ProjDoc" />

</ProjectSchemaDefinitions>

The Rule file, for the most part, is self-explanatory. It defines a Rule with the name
Docx2Html with one category named Conversion. This category includes three properties for
specifying the output directory, output HTML validation, and output file format. The output
directory is a string property of subtype folder; this automatically provides for a file browser
to appear as the editor for this property in the Property Pages user interface. The validation
property is a Boolean value, whereas the output file format is an enumeration-type property
with two possible values. Note that every source file in the project automatically gets
associated with a Rule called General. This contains two properties—Excluded From Build
and Item Type. The former property can be used to exclude a particular document from the
conversion process, if needed.

The DataSource element for the Rule specifies that the property values set in the property
pages must be written to the ProjectFile, which refers to the project file or the property sheet
that spawned the property page2. Further, the property values must be set for items of type
ProjDoc, which is the item type that we gave to the docx files added to our projects (we just
made up that name—you could use any syntactically valid MSBuild item name you want).

You can notice a difference between cl.xml and the previous Rule file—we have three
additional sibling elements to the Rule element in the latter file, all wrapped up in the
ProjectSchemaDefinitions root element. These additional ones are the ContentType, ItemType,
and FileExtension elements (collectively referred to as the “content type elements”). Notice
how these three elements refer to each other. What is their purpose, and why don’t we have
them in the cl.xml file? These elements identify files ending with .docx files as valid source
files to Visual C++ project system. The project file, property sheets, and targets files contain
many MSBuild items, yet not all of these items refer to source files. A good example is how
we represent project configurations. These are expressed as MSBuild items (of item type
ProjectConfiguration; look at the top of a .vcxproj file), yet clearly they don’t refer to source

2	 So, if you set the properties in the Property Pages user interface created by right-clicking a property sheet and
choosing Properties, then the values will be written to the property sheet. If, instead, the user interface was
created from the project node, it would be written to the project file (.vcxproj). Perhaps a better name for this
value could have been UnderlyingFile.

330	 Part V  MSBuild in Visual C++ 2010

files. Unless an item type is explicitly indicated as a source file type, the Visual C++ project
system will not display items of that item type in the Solution Explorer. The content type
elements in our Rule file indicate exactly that. They also tell that when a .docx file is added to
the project, it should be stored as an item of item type ProjDoc. The content type elements
for cl.xml are found in the ProjectItemsSchema.xml file in the same directory as cl.xml. This
file contains the content type elements, not just for C++ files but also for all the well-known
extensions such as .h, .resx, .ico, .html, and so on3. You can see the content type names and
descriptions displayed in the property pages for an individual file (see the Item Type property
in the General category).

To include the Docx2Html.xml Rule file in your project, open the project file in Notepad and
add an item of type PropertyPageSchema whose Include path points to the path of the file.
Assuming that the Rule file is in the project directory, the inclusion will look like this.

<ItemGroup>
 <PropertyPageSchema Include="$(MSBuildProjectDirectory)\Docx2Html.xml" />
</ItemGroup>

(See the section entitled “Deploying Your Extensions,” later in this chapter, for how to deploy
your Rule file for your whole team.)

Now, close and reopen the IDE. If you opened the property pages for the project, you will
not see the Docx2Html rule. That is because the project system does not show a Rule when
there are no items of the corresponding type. So, add a .docx file to the project. The Solution
Explorer should look like Figure 12-4.

FIGURE 12-4  Adding a .docx file to the project to which we are trying to add the Docx2Html property page

If you opened the project file in Notepad (after first saving the solution), you will note that the
document file is added as an item of item type ProjDoc—exactly as we specified in the

3	 For design consistency, they should perhaps have been defined in the individual Rule files rather than centralized
this way. For example, the content type for C++ files should have been defined in cl.xml.

	 Chapter 12  Extending Visual C++ 2010	 331

Docx2Html.xml Rule file. Without the Rule file, it would have been added as an item of item type
None—the item type used by the project system for a file type that it does not understand.

Coming back to the main topic, we can now open the Project Properties dialog and see the
Docx2Html rule added to the property pages (see Figure 12-5). As expected, the Rule has
exactly one category and three properties.

FIGURE 12-5  The Property Pages user interface showing that the Docx2Html Rule has indeed been added

The properties are not set to any value initially. You can specify default values using property
sheets. This is explained in the section entitled “Creating a Build Customization,” later in this
chapter.

When the value of any of these properties is set, the value gets written to the project file. For
example, when the Output Directory property is set to $(IntDir), it gets written to the project
file as ItemDefinition metadata as shown here4.

<ProjDoc>
 <OutputDirectory>$(IntDir)</OutputDirectory>
</ProjDoc>

Troubleshooting
The most common mistake made while developing a new property page is simply inserting
XAML syntax errors in the Rule file. Such errors result in failure to load the Rule file, although
not the project itself. To debug such failures, you can view the trace messages emitted by

4	 If the value were set in the property page obtained from a docx project item, then the value would be written to
the project file as an item metadata.

332	 Part V  MSBuild in Visual C++ 2010

the Visual C++ project system as it loads a project. Viewing the Rule file in an XML editor can
reveal basic syntax errors, but errors at a higher abstraction level will need the project system
trace messages before they can be debugged. These trace messages mention the exact line
number where an error is present. Unfortunately, these messages are not printed to the
Output window. We need to use a special tool to view them. We describe how to enable as
well as view these messages. It needs to be emphasized that what we describe in this text is a
feature of the Visual C++ project system and does not involve MSBuild.

The project system tracing is not switched on by default, so we need to explicitly enable it.
After switching it on, we need to use a special tool to view the emitted messages. To enable
tracing, add the following xml block to the devenv.exe.config file (found in %ProgramFiles%\
Microsoft Visual Studio 10.0\Common7\IDE) just below the <configSections /> block
(make sure to make a backup of the file first, so you can revert to the previous version in case
something goes wrong).

<system.diagnostics>
 <switches>
 <add name="CPS" value="4" />
 </switches>
</system.diagnostics>

After adding the previous XML block, close and reopen the Visual Studio IDE, but don’t load
your project yet. Before that you need to install and open the DebugView for Windows tool,
which will capture and show you the trace messages emitted by the project system. This tool
is available as a free download from technet.microsoft.com.

After you open the DebugView tool, load a Visual C++ project that includes your custom
property page. A lot of messages will be shown in the DebugView tool window, but you can
search for your Rule file name to zero in on any messages specific to that file. For example,
missing a closing > tag for an XML node will result in a trace message similar to the following:

Failure loading XAML file C:\InsideMSBuild\Ch12\PropertyPageExtensibilityDemo \Docx2Html.
xml': System.Xml.XmlException: ' ' is an unexpected token. The expected token is '>'. Line
15, position 100.

To test changes to your Rule file, you need to close and reopen the IDE. The Rule files are
loaded only when the solution is opened, and thus reloading the project will not result in
your new changes being picked up.

Make sure that the .docx file is added to your project after you add the Rule file. Otherwise,
the .docx files will not be added with the ProjDoc item type, which means that the project
system will not display the Docx2Html Rule in the Property Pages user interface.

Creating a Build Customization
It is possible to add a custom tool to your build process and have it be treated as a first-class
citizen by the Visual C++ project system. By “first-class citizen,” I mean the project system
will treat your custom tool like it would any of the shipped tools like the compiler, linker, and

	 Chapter 12  Extending Visual C++ 2010	 333

so on. The section entitled “Creating a New Property Page,” earlier in this chapter, listed two
things that need to be done to achieve such a clean integration. It also described how to
achieve the first of those, namely design-time integration. In this section, we will concentrate
on the second item, which is to provide build-time integration. Build-time integration that
is possible through a Build Customization includes getting invoked during Build/Rebuild/
Clean, incremental build, and selected file build. It however excludes integration with the
File Tracker.

The Build Customization architecture was described in the section entitled “Build
Customizations,” in Chapter 11. To recap, creating a Build Customization involves authoring
three files: (1) a Rule file that describes the property page schema for the Rule, as well as acts
as a template for a task to be created by the XamlTaskFactory; (2) a property sheet file that
contains default values for the properties defined in the Rule file; and (3) a targets file that
is at the heart of the Build Customization—it describes the target(s) to be run during the
build process. The target almost always refers to the task generated by the XamlTaskFactory.
These three files will be presented for the Docx2Html tool introduced in the section entitled
“Creating a New Property Page.”

Unfortunately, Visual C++ 2010 does not come with an editor that will let you create a Build
Customization. You may recall that Visual C++2008 came with one that lets you create a
Custom Build Rule. You can however use the editor in Visual C++2008 to create a Custom
Build Rule and add it to a dummy Visual C++2008 project, and then use the project upgrader
to convert the Custom Build Rule (along with the project) to a Build Customization. With that
said, we will proceed to describe the manual creation of these files.

Let’s assume that the Docx2Html tool can be run on the command line as follows:

Docx2Html.exe [/v] [/m | /h] /outdir:"<output dir>" <list of .docx files to convert>

 Example: Docx2Html.exe /v /m /outdir:"C:\Foo" Document1.docx Document2.docx

where the options mean the following:

n	 /v: Perform validation on the output HTML

n	 /m: Output should be in .mht format

n	 /h: Output should be in .html format

n	 /outdir: Specified the output directory for the files

Let us start with the targets file, which is the only mandatory file of the three files. The file
(Docx2Html.targets) looks like what is listed here. Note that to keep it simple, selected build
and chaining (that is, consuming outputs of other tasks) are not presented.

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>

334	 Part V  MSBuild in Visual C++ 2010

 <PropertyPageSchema Include="$(MSBuildThisFileDirectory)$(MSBuildThisFileName).xml" />
 </ItemGroup>

 <UsingTask TaskName="Docx2Html" TaskFactory="XamlTaskFactory"
 AssemblyName="Microsoft.Build.Tasks.v4.0">
 <Task>$(MSBuildThisFileDirectory)$(MSBuildThisFileName).xml</Task>
 </UsingTask>

 <Target Name="Docx2Html" AfterTargets="Build" Condition="'@(ProjDoc)' != ''">
 <Message Importance="High" Text="Converting docx files to html . . ." />
 <Docx2Html Condition="'@(ProjDoc)' != '' and '%(ProjDoc.ExcludedFromBuild)' != 'true'"
 CommandLineTemplate="%(ProjDoc.CommandLineTemplate)"
 OutputDirectory="%(ProjDoc.OutputDirectory)"
 ValidateHtml="%(ProjDoc.ValidateHtml)"
 WhichHtmlFileType="%(ProjDoc.WhichHtmlFileType)"
 Inputs="@(ProjDoc)" />
 </Target>

</Project>

The targets file includes the Rule file as an item of type PropertyPageSchema. It is a
requirement that all three Build Customization files have the same name (ignoring the
extension, of course) and be in the same directory. Hence, the path $(MSBuildThisFile
Directory)$(MSBuildThisFileName).xml can be used to refer to the Rule file. Recall that
MSBuildThisFileDirectory and MSBuildThisFileName are reserved MSBuild properties that
refer to the directory and name, respectively, of the file in which they are declared.

Next is the UsingTask statement. Remember that a <UsingTask> element defines a task
type. You could use this <Docx2Html> task anywhere else in your targets files, with just
this one <UsingTask> element. This particular statement refers to the XamlTaskFactory and
includes the Rule file as a child element. During run time, the net effect of this is that the
XamlTaskFactory creates an instance of the Docx2Html task using the Rule file as a template.
This saves you from authoring the task (in code) and deploying the task assembly yourself.
Most tasks based on tools like Docx2Html simply consist of invoking the tool executable with
the appropriate switches and inputs. This simple behavior makes such tasks amenable to
being autogenerated, which is exactly what the XamlTaskFactory does. However, we need to
write the Rule file in a way that the XamlTaskFactory can consume it. This requires us to add
a few more things to the Rule file that we created in the section entitled “Creating a Property
Page,” earlier in this chapter.

Finally, we have the target that is run during the build to perform the conversion. It consists
of a Message task that prints an informational message followed by the Docx2Html task
that will be generated by the XamlTaskFactory. Since we refer to the ProjDoc item definition
metadata in the task usage, we automatically get batching. So .docx files with different
property values will be run through the tool in separate batches.

The Rule file (Docx2Html.xml) is presented here. It is the same as the one in the section
entitled “Creating a Property Page” with the following additions:

	 Chapter 12  Extending Visual C++ 2010	 335

	 1.	 The properties have switches defined for them. These switches correspond to the
Docx2Html.exe tool options. This allows the XamlTaskFactory to fashion an appropriate
command line for the Docx2Html.exe tool.

	 2.	 There is a new category called Command Line, which makes available a command-line
page in the Property Pages user interface that displays the command line (minus the
inputs) that would be used during the build.

	 3.	 We define a new property with the name “CommandLineTemplate.” The
XamlTaskFactory uses this as a template to create the actual command line and stuff it
inside the ITask.Execute() method of the generated Docx2Html task.

	 4.	 Then we define a property called Inputs that captures the input files that need to be
passed to the tool.

<?xml version="1.0" encoding="utf-8"?>
<ProjectSchemaDefinitions
xmlns="http://schemas.microsoft.com/build/2009/properties"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:sys="clr-namespace:System;assembly=mscorlib">
<Rule Name="Docx2Html" PageTemplate="tool" DisplayName="Docx2Html" >

 <Rule.DataSource>
 <DataSource Persistence="ProjectFile" ItemType="ProjDoc" />
 </Rule.DataSource>

 <Rule.Categories>
 <Category Name="Conversion" DisplayName="Conversion" />
 <Category Name="Command Line" Subtype="CommandLine" DisplayName="Command Line"/>
 </Rule.Categories>

 <StringProperty Name="OutputDirectory" DisplayName="Output Directory"
 Category="Conversion" Subtype="folder" Switch="/outdir:"[value]""
 Description="Specifies the directory in which to place the output html files" />

 <BoolProperty Name="ValidateHtml" DisplayName="Validate html"
 Category="Conversion" Switch="/v"
 Description="Causes the output html to be validated for standards compliance" />

 <EnumProperty Name="WhichHtmlFileType" DisplayName="Html file type"
 Description="Select the html file type to save in" Category="Conversion" >
 <EnumValue Name="html" DisplayName="Web page (.html)" Switch="/m"
 Description="Html page with resources saved in a separate folder" />
 <EnumValue Name="mht" DisplayName="Single file web page (.mht)" Switch="/h"
 Description="A single file containing the html code and all resources" />
 </EnumProperty>

 <StringProperty Name="CommandLineTemplate" DisplayName="Command Line"
 Category="Command Line" Visible="False" IncludeInCommandLine="False" />

 <StringListProperty Name="Inputs" Category="Command Line" IsRequired="true">
 <StringListProperty.DataSource>
 <DataSource
 Persistence="ProjectFile"

336	 Part V  MSBuild in Visual C++ 2010

 ItemType="ProjDoc"
 SourceType="Item" />
 </StringListProperty.DataSource>
 </StringListProperty>

</Rule>

<ItemType Name="ProjDoc" DisplayName="Project documentation" />
<ContentType Name="ProjDoc" DisplayName="Project documentation" ItemType="ProjDoc" />
<FileExtension Name="*.docx" ContentType="ProjDoc" />

</ProjectSchemaDefinitions>

Figure 12-6 shows the command-line page of the Docx2Html Rule.

FIGURE 12-6  The Docx2Html Rule showing the command-line page

Finally, we need to define default values for the properties defined in the Rule file. Without
this, the user will have to set values for every project and .docx file even if they are the
same every time. The default values are defined in the property sheet Docx2Html.props,
whose contents are listed here. Notice how we define the CommandLineTemplate
property value. The XamlTaskFactory creates the actual command line from this template.
Note the reference to the Docx2Html.exe executable, which is based on the assumption
that the path to this executable is in the PATH. Otherwise, you need to list the full path.
[AllOptions] is a placeholder for all the properties defined for the ProjDoc items. Similarly,
[Inputs] is a placeholder for all the input files, as captured by the Inputs property.

	 Chapter 12  Extending Visual C++ 2010	 337

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ImportGroup Label="PropertySheets" />

 <PropertyGroup Label="UserMacros" />

 <PropertyGroup />

 <ItemDefinitionGroup>
 <ProjDoc>
 <WhichHtmlFileType>mht</WhichHtmlFileType>
 <ValidateHtml>true</ValidateHtml>
 <OutputDirectory>$(IntDir)</OutputDirectory>
 <CommandLineTemplate>Docx2Html.exe [AllOptions] [Inputs]</CommandLineTemplate>
 </ProjDoc>
 </ItemDefinitionGroup>
 <ItemGroup />

</Project>

Having defined the Docx2Html Build Customization, we need to add it to the project. Simply
use the Build Customizations. . . context menu of the project in the Solution Explorer to
get to the user interface that will allow you to do this. Refer to the section entitled “Build
Customizations,” in Chapter 11, for more information. Once the Build Customization is
loaded, you can add files of type .docx. With at least one .docx file in the project, you can see
the Docx2Html Rule in the property pages.

To confirm that the Build Customization works, we created a dummy Docx2Html.exe
executable. It simply prints "Entered Docx2Html.exe", "Exiting Docx2Html.exe"
messages inside its Main method. We added the path to this executable to Visual C++
Directories/Executable Directories, and then we rebuilt the project while setting the log file
verbosity to diagnostic so we can get as much detail about what happens during the build.
The following segment in the log file indicates that the Build Customization indeed took effect
(note that we had two .docx files—Document1.docx and Document2.docx—in my project).

Target "Docx2Html: (TargetId:109)" in file "C:\InsideMSBuild\Ch12\BuildCustomizationDemo\
Docx2Html\Docx2Html.targets" from project "C:\InsideMSBuild\Ch12\BuildCustomizationDemo\
BuildCustomizationDemo.vcxproj" (target "Rebuild" depends on it):
Task "Message" (TaskId:54)
 Converting docx files to html . . . (TaskId:54)
Done executing task "Message". (TaskId:54)
Initializing task factory "XamlTaskFactory" from assembly "Microsoft.Build.Tasks.v4.0".
Using "Docx2Html" task from the task factory "XamlTaskFactory".
Task "Docx2Html" (TaskId:55)
 cmd.exe /C "C:\Users\pavana\AppData\Local\Temp\1559c899bb6b48e286c306e9e020a711.cmd"
(TaskId:55)
 Docx2Html.exe /outdir:"Debug\\" /v /h Document1.docx Document2.docx (TaskId:55)
 (TaskId:55)
 C:\InsideMSBuild\Ch12\BuildCustomizationDemo>Docx2Html.exe /outdir:"Debug\\" /v /h
Document1.docx Document2.docx (TaskId:55)
 Entered Docx2Html.exe (TaskId:55)

338	 Part V  MSBuild in Visual C++ 2010

 Exiting Docx2Html.exe (TaskId:55)
Done executing task "Docx2Html". (TaskId:55)
Done building target "Docx2Html" in project "BuildCustomizationDemo.vcxproj".:
(TargetId:109)

To see the effect of batching, change the value of the ValidateHtml property (to use one
example) for the Document2.docx file to No, from the default Yes. Building the project
indeed shows two invocations of the Docx2Html task, once for each file and with a different
command line in each case. This is shown here.

Docx2Html.exe /outdir:"Debug\\" /v /h Document1.docx
 . . .
Docx2Html.exe /outdir:"Debug\\" /h Document2.docx

Adding a New Platform and Platform Toolset
In this section, we will use the first-class support provided by Visual C++ for adding new
platform toolsets and platforms to add a new platform toolset support. We will not discuss
adding a new platform in detail because it involves similar concepts. See the section entitled
“Platforms and Platform Toolsets,” in Chapter 11, for details on how Visual C++ supports
multiple platforms and platform toolsets.

As described in the section entitled “Platforms and Platform Toolsets,” a Toolset represents
a complete set of build tools such as compilers and linkers. Visual C++ comes with default
support for v100 and v90 toolsets, representing Visual Studio 2010 and Visual Studio 2008
toolsets, respectively. You can choose between these two toolsets by setting the Platform
Toolset property in the Property Pages user interface. In this section, we discuss how to add
support for the GCC toolset for the Win32 platform. The GNU Compiler Collection (GCC) is a
popular toolset and includes a full set of tools including a compiler, assembler, and linker to
build a C++ project. The g++.exe file, which is a part of GCC, provides a front end for these
various tools for building C++ source code.

To add support for GCC, we first need to download the tool collection. One option is to
download MinGW, which is a port of these tools to Windows. It can be downloaded from
www.mingw.org (make sure you select the C++ Compiler check box in the MinGW GUI
installer). Another option is to download Cygwin, which runs GCC over a Linux emulator.
In this section, we use MinGW. We assume that the path to the bin directory of MinGW is
added to the PATH environment variable.

As explained in the section entitled “Platforms and Platform Toolsets,” Visual C++ considers
folders under the PlatformToolsets directory of a platform folder as representing a distinct
platform toolset. By default, there are two platform toolset folders under $(VCTargetsPath)\
Platforms\Win32\PlatformToolsets, representing the v90 and v100 toolsets. We add a new
folder named gcc to this directory. Recall that this is the same name that will appear in the
property pages for the Platform Toolset property drop-down list. In this directory, we need

	 Chapter 12  Extending Visual C++ 2010	 339

to put a targets file with the name “Microsoft.Cpp.Win32.gcc.targets” and a similarly named
property sheet that relates to the GCC platform toolset. However, in the interest of keeping
the demonstration simple, we will just have the targets file.

This target has exactly one target that overrides the Build target. This Build target simply
invokes g++ to build all the .cpp files into the specified executable. This targets file is
sufficient to build a new Visual C++ Win32 console project. It is also possible to selectively
override lesser targets, like ClCompile or Link, where the compiler or linker tool is used to
perform the compiling or linking action, while leaving the rest of the operations in the overall
build to the default tools.

Note that the Build target defined in the toolset directory gets the final say over the similarly
named target defined in the platform because it is imported below it. Thus, when a user
chooses to build a project in Visual Studio using the gcc toolset for the Win32 platform, the
Build target in this targets file gets executed. Figure 12-7 shows the location of the targets
file in Windows Explorer.

FIGURE 12-7  Location of Microsoft.Cpp.Win32.gcc.targets

The following is the contents of the targets file.

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <!-- Override the build target -->
 <Target Name="Build">
 <!-- Create output directory -->
 <MakeDir Directories="$(TargetDir)"/>
 <!--Invoke g++ to build all cpp files. Ask g++ to look into the Windows SDK include
directory.
 Convert semi colon separated ClCompile items into space separated list.
 Add double quotes around all file paths. -->
 <Exec Command="g++ -v @(ClCompile -> '"%(FullPath)"', ' ')
-I "$(ProgramFiles)\Microsoft SDKs\Windows\v7.0A\include" -o
"$(TargetPath)"" />
 </Target>
</Project>

340	 Part V  MSBuild in Visual C++ 2010

The Build target contains two tasks from the MSBuild task library. The first one—the MakeDir
task—is used to create the output directory. The second one—the Exec task—invokes
the g++ front end. It passes the list of all .cpp files. Because g++ requires items in a
space-separated list format, we use an MSBuild item transform (for more information about
this, see the section entitled “Item Transformations,” in Chapter 2, “MSBuild Deep Dive, Part
1”) to convert the default semicolon-separated list to a space-separated list. We also use the
" escape sequence to put double quotes around all the file paths. We use the –I switch
of g++ to pass in the include directory of Windows SDK because even a simple console
project references header files from it. We use the –o switch to specify the output binary
name and location. Notice that we simply use the $(TargetPath) path for the output name.
Finally, we pass in the –v switch for verbose information from g++. This also gives us a visual
indication that g++ has actually run.

To test this, we created a simple Win32 Console project called GccToolsetDemo in the
C:\InsideBuild\Cpp directory on our machine. We then changed the Platform Toolset of this
project to gcc, as shown in Figure 12-8.

FIGURE 12-8  Choosing the gcc platfrom toolset in the property pages

We build the project by using the Build menu in the IDE. The Output window contains a
lot of output from g++, which indicated that g++ was indeed run. More importantly, Visual
C++ indicated that the build succeeded5. Looking in the output directory also shows the
executable as expected, and if we look in the build log file (whose verbosity was set to

5	 The Error List window will show errors related to Intellisense. You can ignore them, though, because they do not
affect the final output generation. It is beyond the scope of this text to discuss how to enable Intellisense.

	 Chapter 12  Extending Visual C++ 2010	 341

diagnostic for testing), we reconfirm that our targets file was used. We also see the exact
command line that was used to invoke g++.

Target "Build: (TargetId:3)" in file "C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\
Platforms\Win32\PlatformToolsets\gcc\Microsoft.Cpp.Win32.gcc.targets" from project "C:\
InsideMSBuild\Cpp\GccToolsetDemo\GccToolsetDemo\GccToolsetDemo.vcxproj" (entry point):
Using "MakeDir" task from assembly "Microsoft.Build.Tasks.v4.0, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a".
Task "MakeDir" (TaskId:4)
 Creating directory "C:\InsideMSBuild\Cpp\GccToolsetDemo\Debug\". (TaskId:4)
Done executing task "MakeDir". (TaskId:4)
Using "Exec" task from assembly "Microsoft.Build.Tasks.v4.0, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a".
Task "Exec" (TaskId:5)
 g++ -v "C:\InsideMSBuild\Cpp\GccToolsetDemo\GccToolsetDemo\GccToolsetDemo.cpp" "C:\
InsideMSBuild\Cpp\GccToolsetDemo\GccToolsetDemo\stdafx.cpp" -I "C:\Program Files (x86)\
Microsoft SDKs\Windows\v7.0A\include" -o "C:\InsideMSBuild\Cpp\GccToolsetDemo\Debug\
GccToolsetDemo.exe" (TaskId:5)

As you can see, it is quite easy to integrate a new toolset support into Visual C++. However,
to make it bulletproof, many more things need to be done. Although some of them are
cleanly supported by Visual C++, the others are not quite at that level yet. We now list what
needs to be done to make the previous toolset support production quality:

n	 Support more GCC switches. In the previous discussion, we used only the –I and
–o switches, but there are a lot more switches that can be used to configure GCC.
This is similar to cl.exe. In supporting these switches, you have two options: You
can repurpose cl.exe switches set by the user through the property pages for g++,
and ignore those that do not apply; or you can author a Rule file for GCC, which is
explained in the next item.

n	 You can create Rule files for the tools in GCC (you may want to refer to the section
entitled “Creating a New Property Page,” earlier in this chapter, for how to author
a Rule file) and include it in your target. The Rule file for the compiler can contain
exactly those switches that are supported by the GCC compiler tool. Similarly, you can
have Rule files for the GCC linker. It would also have been nice if we could remove
the existing Rule file for the cl.exe compiler. Unfortunately, this edition of Visual C++
does not provide a way to remove existing Rule files (deleting the cl.xml file will mean
that you can set compiler switches for the other toolsets). So you will have to live with
property pages for both the CL compiler and GCC compiler, although you can clearly
ignore CL properties during run time.

n	 Provide the Microsoft.Cpp.Win32.gcc.props property sheet in the gcc toolset directory
with default values for various GCC switches.

n	 Add support for Rebuild and Clean targets. Build, Rebuild, and Clean are the trifecta of
targets required by any build system.

342	 Part V  MSBuild in Visual C++ 2010

n	 Instead of using Exec task to invoke g++, use the XAML task factory along with the
corresponding Rule file. Then you can invoke g++ using an elegant syntax: <GCC
Sources=". . ." Include=". . ." . . ./>. As well as being prettier, it will be more
readable, and it will do some type-checking of its inputs for you.

n	 Make the task that invokes g++ be File Tracker–enabled. See the section entitled
“File Tracker–Based Incremental Build,” in Chapter 10, for how this is done. Note that
enabling a task to be tracked is relatively difficult to do in this release of Visual C++.

n	 Provide extension points for your toolset in the form of ImportBefore and ImportAfter.
This simply involves adding import statements for all targets files (using the * wildcard)
in these folders at the top and bottom of the Microsoft.Cpp.Win32.gcc.targets file.

Deploying Your Extensions
This chapter discussed the various ways that you can extend the Visual C++ build system.
However, build systems that are complex enough to need extensions are usually used in a
team setting. Suppose that you have a team of 10 developers working on a product, and
you want all of them to install and use a certain build extension, such as a new target. How
do you deploy it so that all the developers can easily access and use it—automatically if
possible? Manually requiring them to install the build extension on their machines is not
an elegant or a scalable solution. We will describe an approach to solve this problem.

This approach requires that you check in the whole build system (explained in this section)
to your source control system and redirecting all project imports to this folder on the local
enlistment. With this kind of setup, sharing extensions becomes easy. Simply check your
extension into this build system folder, and it will be picked up when a team member brings
in changes from the source control. For example, drop your targets file into the ImportAfter/
ImportBefore folders of a checked-in platform folder, and it will automatically be pulled
into every team member’s projects once the changes are synched. The main steps involved
in implementing this approach are listed here. (This is not an exhaustive set of instructions;
depending on your build setup, other steps may be required.)

n	 Checking in the build system: This requires you to check in the folder represented by
the property MSBuildExtensionsPath after Visual Studio has been installed. This usually
has the value %ProgramFiles%\MSBuild. Note that this does not include the common
language runtime (CLR) and the framework (which you should not check in).

n	 Redirection: As you may have noticed, all the default Visual C++ targets are present at
the location specified by $(VCTargetsPath) or its subdirectories. The default value for
this resolves to %ProgramFiles%\MSBuild\Microsoft.Cpp\v4.0. If you look inside any
project file, you will see that the default Visual C++ property sheets and targets files
are imported using a path that starts with $(VCTargetsPath). So if we can change the
value of this symbol, then redirection is achieved. But, how do we override it?

	 Chapter 12  Extending Visual C++ 2010	 343

VCTargetsPath is stored in the registry and is picked up by MSBuild as a toolset
property when it starts. Unfortunately, toolset properties can’t be overridden using
environment variables. So you need to override it as a property in the project file or
any of the other imports. There is another way, however. VCTargetsPath is actually
defined in the registry as $(MSBuildExtensionsPath32)\Microsoft.Cpp\v4.0\ and
MSBuildExtensionsPath32 is overridable by redefining it as an environment variable.
Notice that overriding MSBuildExtensionsPath32, unlike with VCTargetsPath, will
also cause redirection for C# and VB projects, which may not be unwanted because
you may want all project types to build in the checked-in environment. Finally, when
you override MSBuildExtensionsPath32, also make sure to override the variants
MSBuildExtensionsPath and MSBuildExtensionsPath64 as well.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

		 345

Part VI

Team Foundation Build
In this part:
Chapter 13: Team Build Quick Start . 347
Chapter 14: Team Build Deep Dive . 395
Chapter 15: Workflow Foundation Quick Start . 423
Chapter 16: Process Template Customization . 455

		 347

Chapter 13

Team Build Quick Start
MSBuild is a build engine rather than a build automation tool, which is where Team
Foundation Build (which we will refer to as Team Build for short) comes into the picture.
Team Build is a component of Microsoft Visual Studio Application Lifecycle Management.
Team Build provides build automation that integrates tightly with the other Visual Studio
Application Lifecycle Management components, such as version control, work-item tracking,
testing, and reporting.

Why discuss Team Build in a book about MSBuild? Apart from the fact that both are build
tools, the good news is that Team Build uses MSBuild to build solutions and projects, so the
MSBuild knowledge that you’ve gained in the previous chapters will be put to good use.

Team Build changed significantly between Visual Studio Team System 2008 and Visual Studio
2010 by moving the build process orchestration from being MSBuild-based to Workflow
Foundation–based. This change enables scenarios that were difficult to implement using
MSBuild (such as distributing builds across multiple machines), provides a graphical build
process designer, and provides a customizable user interface for queuing builds and editing
build definitions.

Introduction to Team Build
This section discusses the features and architecture of Team Build to familiarize you with
its key components and how they relate to each other. These features and components are
covered in more depth in later sections.

Team Build Features
Team Build 2010 has a comprehensive set of features that should meet the needs of almost
all build automation requirements, and even if it doesn’t, it is highly configurable and
extensible.

Some of the key features in Team Build 2010 are as follows:

n	 Provides a default build process suitable for building most Microsoft .NET Framework
applications

n	 Build process is based on Workflow Foundation and is highly configurable and
extensible

348	 Part VI  Team Foundation Build

n	 Supports the queuing of builds and multiple build machines

n	 Supports manual, scheduled, continuous integration, and gated check-in builds

n	 Private builds (also known as buddy builds)

n	 Retention policies for removing old builds

n	 Integrates with reporting, testing, version control, and work item–tracking components
of Visual Studio Application Lifecycle Management

n	 Includes an API for automating, extending, and integrating with Team Build

High-Level Architecture
A high-level diagram of Team Build’s architecture is shown in Figure 13-1.

FIGURE 13-1  High-level architecture

The Team Build architecture includes:

n	 Team Build client  Visual Studio provides a number of built-in clients for Team Build,
including Team Explorer, which is an add-in for Visual Studio; TfsBuild.exe, which is a
command-line client for Team Build (and is described in detail in the section entitled
“Working with Build Queues and History,” later in this chapter); and Team Foundation

	 Chapter 13  Team Build Quick Start	 349

Server Web Access, which is a Web interface for Team Build (and other components of
the Visual Studio Application Lifecycle Management). Team Build also has an API that
can be used to develop your own clients for Team Build, and that will be discussed in
Chapter 14, “Team Build Deep Dive.”

n	 Build controllers  This Windows Service orchestrates the overall build process and
is responsible for initializing the build, reserving build agents, delegating parts of the
build process to one or more build agents, and finalizing the build. A Team Project
Collection can have one or more build controllers associated with it, but each build
controller can be associated with only a single Team Project Collection and a machine
can have only a single build controller installed on it.

n	 Build agents  This Windows Service is responsible for executing the bulk of the
build process. A build controller can have multiple build agents associated with it, but
each build agent can be associated with only a single build controller. Unlike build
controllers, a machine can have multiple build agents installed on it. Because builds are
CPU- and I/O-intensive, this is generally not recommended, but if you have sufficiently
powerful hardware or your build process isn’t resource-intensive, you may be able to
increase build throughput by running multiple build agents on each physical build
machine.

n	 Team Project Collection  Team Project Collections are a new concept in Team
Foundation Server 2010, and as you might expect, they are collections of Team
Projects. The Team Projects in a Team Project Collection share a database on the
database tier and can be backed up, restored, and managed as a single entity. Each
Team Project Collection is completely independent, and this is the reason that a build
controller can be associated with only a single Team Project Collection.

n	 Team Foundation Server application tier  Any Team Build client that wants to
communicate with a build controller does so through the Team Foundation Server’s
application tier. The application tier is implemented as a number of web services hosted
using IIS. Communication from the application tier to build agents is always done via
the controller.

n	 Team Foundation Server data tier  The data tier for Team Foundation Server
is hosted as a configuration database (TFS_Configuration), a warehouse database
(TFS_Warehouse), and a database for each Team Project Collection (for
example, TFS_DefaultCollection) in Microsoft SQL Server.

n	 Team Project Collection database  This database stores operational build data such
as the list of build controllers and agents, build definitions, build queues, build history,
and so on.

n	 TFS_Warehouse database  This database stores historical build data for reporting
even after it has been purged from the Team Project Collection database.

350	 Part VI  Team Foundation Build

n	 Cube  This multidimensional online analytic processing (OLAP) cube is implemented
in SQL Server Analysis Services and is populated regularly from the TFS_Warehouse
database for high-performance reporting.

n	 Drop folder  When a build completes the build logs, build outputs (if the build is
successful or partially successful) and test results are copied to a shared network folder.
Public and private builds for the same build definition can be dropped to separate root
drop folders.

Preparing for Team Build
In this section, we’re going to look at the preparations that you’ll need to make to set up the
necessary infrastructure before you start automating your build processes using Team Build.
Assuming that you’ve already set up your Team Foundation Server, the first step is to set up
at least one build controller and agent to execute your builds. A build controller or build
agent is simply a machine that has the Team Build service installed on it and is configured as
a build controller, one or more build agents, or both.

Team Build Deployment Topologies
The ability to have multiple build controllers per Team Project Collection and multiple build
agents per build controller provides a lot of flexibility, but it also raises questions about when
and why you’d want to do this.

Reasons for wanting to have multiple build controllers include:

n	 Build agent pooling  Build controllers are a grouping of build agents so that you
can use multiple build controllers to segregate your build agents into pools. You may
want to do this to dedicate certain agents for certain types of builds [for example,
release builds or continuous integration (CI) builds] or to group build agents by physical
location for performance.

n	 Using different custom workflow activities or extensions  Build controllers
specify a version control path from where custom workflow activities and extensions
are downloaded. Having multiple controllers allows you to have a controller use a
different set of custom workflow activities or extensions. For example, you might
have a controller dedicated to testing new versions of custom workflow activities or
extensions before you roll them out for production builds.

Reasons for wanting to have multiple build agents include:

n	 Redundancy  Having more than one build agent will allow developers to continue to
process builds in the event of a build agent failure.

n	 Ability to scale out  Multiple build agents will allow builds to be processed
concurrently.

	 Chapter 13  Team Build Quick Start	 351

n	 Distributed builds  By customizing the build process template (which is discussed in
Chapters 15 and 16), you could enable a single build to be distributed across multiple
build agents to reduce build time.

n	 Mutually exclusive dependencies  Different versions of the software that you’re
building may have dependencies on different versions of third-party software that
can’t be installed side by side on your build agents. Having multiple build agents
enables you to have different versions installed on different build agents. Later in this
chapter, we discuss agent tags, which can be used to identify which agents have which
dependencies installed.

The other topological consideration is whether you should install build controllers and build
agents on the same machine. This is a very valid topology and is especially useful in smaller
environments (for example, the build controller has only a single agent) because it requires
only one machine. If your build controller is going to manage multiple build agents, then it is
recommended to be on its own machine.

What Makes a Good Build Machine?
You should take the following factors into account when selecting and configuring hardware
to run Team Build (these factors apply to both build controllers and agents):

n	 Build machines should be kept as simple as possible. Even minor changes on a build
machine can affect the outcome of a build, and if the configuration of a build machine
is complex, then it increases the chance of discrepancies if a build agent needs to be
rebuilt, when adding additional build machines, or when reproducing an old build.

n	 Builds usually have to read a large amount of data (the source files) from the Team
Foundation Server and write a large amount of data (the build outputs) to the drop
folder. Because of this, the build agent should have fast network access to both of
these locations. In Chapter 14, we look at how to configure Team Build to use the Team
Foundation Proxy to improve performance when the build agent has limited bandwidth
to the Team Foundation Server.

n	 Builds are typically I/O-bound rather than CPU-bound (although there can be
exceptions to this), so investing in fast disk and network infrastructure will have a large
impact on the performance of your builds.

n	 Build machines should only be build machines—nothing else. Running other services
on the build machine results in Team Build having to compete with them for resources.
In particular, avoid disk-intensive services such as the Indexing Service and antivirus
software. Many corporate environments require antivirus software; in this case, you
should disable scanning for the build agent’s working folders to improve performance
and reduce the chance that locking issues will cause spurious build failures.

352	 Part VI  Team Foundation Build

n	 The build agent needs sufficient disk space to store a copy of the source code and build
outputs for each build definition. You should also allow additional disk space for any
temporary files produced during the build process.

n	 The TEMP directory should be located on the same logical drive as the Team Build
working directory. The get process is more efficient in this configuration because it can
perform move rather than copy operations.

n	 Team Build 2008 and later have the ability to take advantage of the parallel build
functionality introduced in MSBuild 3.5 so multiple processors can improve the
performance of your builds.

There might be circumstances where Team Build needs to be installed on developers’
workstations. This can be particularly useful when developing, testing, and debugging build
customizations or to allow developers to run full end-to-end builds on their local machines.

Installing Team Build on the Team Foundation Server
Although it’s technically possible to install a build controller, a build agent, or both on the
same machine as the Team Foundation Server, this is not recommended for a number of
reasons:

n	 Compiling software is particularly resource-intensive, and this could be detrimental to
the performance of the Team Foundation Server.

n	 Build scripts and unit tests might be written by people who aren’t Team Foundation
Server administrators, and having these running on the Team Foundation Server could
compromise its security, integrity, and stability.

n	 Build scripts and the projects being compiled often require third-party software or
libraries to be installed on the build agent, and installing these on the Team Foundation
Server could also compromise its security, integrity, and stability.

Tip  The only time you should consider installing a build controller, a build agent, or both on the
same machine as Team Foundation Server is when building a virtual machine for demonstration
or testing purposes where it is not practical to have a separate virtual machine acting as the build
controller and agent.

Setting Up a Build Controller
The Team Build installation process is quite simple, but it is recommended that you
document the process that you use to set up your first build controller and agent so that
the process can be repeated if you add additional build controllers or agents to your
environment in the future.

	 Chapter 13  Team Build Quick Start	 353

Note  When installing any Team Foundation Server component, you should download and
refer to the latest version of the Team Foundation Installation Guide for Visual Studio 2010 from
http://go.microsoft.com/fwlink/?LinkId=127730.

Installing Prerequisites
Before installing a build controller, you will need a domain account for the Team Build service
to run if you choose not to use the NT AUTHORITY\NETWORK SERVICE account. This account
doesn’t need to be, and shouldn’t be, that of an administrator on either the build server or
the Team Foundation Server, but it does need to be added to the Project Collection Build
Service Accounts group of the Team Project Collection for which it will execute builds. See
the section entitled “Team Build Security,” later in this chapter, for more information about
securing Team Build.

Installing a Build Controller
The installation process for build controllers is as follows:

	 1.	 Insert the installation media.

	 2.	 Run setup.exe from either the TFS-x86 or TFS-x64 directory (for 32-bit or 64-bit
machines, respectively).

	 3.	 Click Next on the Welcome To The Microsoft Team Foundation Server 2010 Installation
Wizard page.

	 4.	 Accept the license terms and click Next.

	 5.	 Select Team Foundation Build Service on the Select Features To Install page and
click Install.

	 6.	 Make sure that the Launch Team Foundation Server Configuration Tool check box is
selected on the last page of the wizard, and then click Configure.

	 7.	 Select the Configure Team Foundation Build Service wizard and click Start Wizard.

	 8.	 Click Next on the Welcome To The Build Service Configuration Wizard page.

	 9.	 Select the Team Project Collection to which you want to connect the build controller
and click Next.

	 10.	 On the Build Services page, choose how many build agents that you want to run on
the build controller machine (this can be none if it’s a dedicated controller machine),
choose the Create New Build Controller option, and click Next.

	 11.	 On the Settings page, enter the account details for your Team Build service account
and click Next.

	 12.	 On the Review page, review the settings that you’ve entered, and then click Next.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

354	 Part VI  Team Foundation Build

	 13.	 On the Readiness Checks page, resolve any errors and then click Configure.

	 14.	 On the Complete page, click Finish.

Configuring a Build Controller After Installation.
Once a build controller has been installed, you can configure it either from Visual Studio
on any computer (as described here) or from the Team Foundation Server Administration
Console on the build controller itself.

	 1.	 Open Visual Studio 2010.

	 2.	 Open Team Explorer.

	 3.	 Expand a Team Project.

	 4.	 Right-click Builds, and click Manage Build Controllers. This will open the Manage Build
Controllers dialog shown in Figure 13-2.

FIGURE 13-2  Manage Build Controllers dialog

	 5.	 Select the build controller that you want to configure and click Properties to open the
Build Controller Properties dialog shown in Figure 13-3.

The Display Name and Description fields are used to describe the build controller.

The Computer Name field is the host name of the build controller. This will be used by Team
Build to communicate with the build controller so the Computer Name should be resolvable
from the Team Foundation Server.

The Version Control Path To Custom Assemblies is a server path to a folder containing any
custom workflow activities or extensions. The build controller and its agents will download
any custom assemblies from the location as required. Creating custom activities is discussed
in detail in Chapters 15 and 16.

	 Chapter 13  Team Build Quick Start	 355

FIGURE 13-3  Build Controller Properties dialog

Tip  To make it easier to test changes to your custom workflow activities and extensions,
consider having two separate version control folders for custom workflow activities and
extensions (one for production and one for testing), and then set up a dedicated controller for
testing that uses the testing version control folder.

Setting Up a Build Agent
The build agent installation process is quite similar to the build controller installation process,
but because the majority of the build process is run on the build agent, the prerequisites are
more complex.

Installing Prerequisites
Before installing a build agent, the following prerequisites need to be met:

n	 You will need a domain account for the Team Build service to run if you choose not to
use the NT AUTHORITY\NETWORK SERVICE account. This account can, and usually is,
the same account used to run the build controller.

n	 You will need any other software or libraries required by your build process or the
software you’re building. This would include any utilities or MSBuild tasks called by
your build process (such as the MSBuild Extension Pack), as well as any global assembly
cache (GAC) references required by the projects you’re building (such as the Microsoft
Office primary interop assemblies).

356	 Part VI  Team Foundation Build

n	 You will need the appropriate version of Visual Studio to use any of the features listed
in Table 13-1 as part of your build process.

TABLE 13-1  Team Build Prerequisites
Feature Required Software
Code Analysis Visual Studio Premium

Code Coverage Visual Studio Premium

Coded UI Tests Visual Studio Premium

Database Projects Visual Studio Premium

Lab Management Visual Studio Lab Management

Layer Diagram and Dependency
Validation

Visual Studio Ultimate

Load Testing Visual Studio Ultimate

MSBuild Project Types .NET Framework SDK

Non-MSBuild Project Types (for
example, Deployment Projects)

Any edition of Visual Studio able to build the specific
project type

Test Impact Analysis Visual Studio Premium

Third-Party Build Dependencies The corresponding third-party software

Third-Party GAC References The corresponding third-party software

Unit Testing Visual Studio Professional

Visual C++ Projects Visual Studio Professional

Web Testing Visual Studio Ultimate

Installing a Build Agent
The installation process for a build agent is as follows:

	 1.	 Insert the installation media.

	 2.	 Run setup.exe from either the TFS-x86 or TFS-x64 directory (for 32-bit or 64-bit
machines, respectively).

	 3.	 Click Next on the Welcome To The Microsoft Team Foundation Server 2010 Installation
Wizard page.

	 4.	 Accept the license terms and click Next.

	 5.	 Select Team Foundation Build Service on the Select Features To Install page and click
Install.

	 6.	 Make sure that the Launch Team Foundation Server Configuration Tool check box is
selected on the last page of the wizard, and then click Configure.

	 7.	 Select the Configure Team Foundation Build Service wizard and click Start Wizard.

	 8.	 Click Next on the Welcome To The Build Service Configuration Wizard page.

	 Chapter 13  Team Build Quick Start	 357

	 9.	 Select the Team Project Collection to which you want to connect the build controller
and click Next.

	 10.	 On the Build Services page, choose how many build agents you want to run on the build
agent machine, choose the build controller to which you want to attach them, and click Next.

	 11.	 On the Settings page, enter the account details for your Team Build service account
and click Next.

	 12.	 On the Review page, review the settings that you’ve entered and then click Next.

	 13.	 On the Readiness Checks page, resolve any errors and then click Configure.

	 14.	 On the Complete page, click Finish.

Configuring a Build Agent After Installation
A build agent can also be configured either from Visual Studio on any computer (as
described here) or from the Team Foundation Server Administration Console on the build
agent itself, as follows:

	 1.	 Open Visual Studio 2010.

	 2.	 Open Team Explorer.

	 3.	 Expand a Team Project.

	 4.	 Right-click Builds, and then click Manage Build Controllers.

	 5.	 Select the build agent that you want to configure and click Properties to open the Build
Agent Properties dialog box shown in Figure 13-4.

FIGURE 13-4  Build Agent Properties dialog

358	 Part VI  Team Foundation Build

The Display Name and Description fields are used to describe the build agent.

The Tags allow you to apply arbitrary strings to the agent that can be used to select agents
meeting certain criteria. Build definitions can define the tags that they require their agents
to have, and then Team Build will automatically select the appropriate agent. Common uses
for tags include specifying what operating system and other software the build agent has
installed on it, as well as the bit-ness of the build agent. Chapter 14 discusses how you can
configure build definitions to require agents with certain tags.

The Controller field allows you to select the build controller that the build agent is associated
with.

The Computer Name field is the host name of the build agent. This will be used by Team
Build to communicate with the build agent, so the Computer Name should be resolvable
from the build controller.

The Working Directory field allows you to specify which directory on the build agent
will be used as the working directory during the build. This default working directory
is $(SystemDrive)\Builds\$(BuildAgentId)\$(BuildDefinitionPath). For example, if you
have a Team Project called Contoso with a build definition called HelloWorldManual
running on build agent 12, then the working directory would be C:\Builds\12\Contoso\
HelloWorldManual.

You might want to modify the working directory in these scenarios:

n	 If your build agent has multiple disk partitions, you might want to change the working
directory to use one of the additional disk partitions—for example, E:\$(BuildAgentId)\
$(BuildDefinitionPath).

n	 If the source code or build outputs have a particularly deep directory structure or
particularly long file names, you may want to use a shorter path—for example,
E:\$(BuildAgentId)\$(BuildDefinitionId). This is particularly important when building
database projects whose naming conventions result in very long file names.

You should usually include $(BuildAgentId) or $(BuildAgentName) and $(BuildDefinitionPath)
or $(BuildDefinitionId) in your working directory so that multiple build agents and definitions
can exist side by side in the build agent’s working directory. The variables available in the
Working Directory field are listed in Table 13-2.

TABLE 13-2  Working Directory Variables
Variable Name Description
BuildAgentId Contains the integer identifier for the Build Agent in the Team

Build database.

BuildAgentName Contains the Build Agent name.

BuildDefinitionId Contains the integer identifier for the Build Definition in the
Team Build database.

	 Chapter 13  Team Build Quick Start	 359

Variable Name Description
BuildDefinitionPath Contains the Team Project Name and the Build Definition

Name; for example, Contoso\HelloWorldManual.

Environment Variables Each environment variable on the build agent is available as
a property. For example, $(Temp) expands to C:\Documents
and Settings\TFSBUILD\Local Settings\Temp\ if the Team Build
service account is TFSBUILD.

You can toggle whether or not the build agent is enabled using the Build Agent Service Is
Enabled check box. When the agent is disabled, builds can still be queued on it, but they
won’t be processed until it’s enabled.

Clicking Test Connection will verify connectivity from the Team Foundation Server to the
build controller and from the build controller to the build agent. If the build controller
detects that the build agent is offline, then it will automatically disable the build agent. Team
Build will automatically enable the agent when it comes back online, but you can force this to
occur earlier by clicking Test Connection.

Note  Chapter 14 discusses the advanced configuration options that are available for build
controllers and build agents.

Drop Folders
The final piece of infrastructure that needs to be in place before you create a build definition
is a drop folder, where the build agent puts the build logs and outputs.

Because a Team Build environment may have multiple build agents, drop folders are
typically located on a separate network share that all the build agents use. This means that
developers, testers, and other users can access drop folders from a single central location.

The drop folder is typically a share on a file server of some description, but it could just as
easily be a Network Attached Storage device or some other shared storage device. There are
only a few requirements for the drop folder:

n	 It must be accessible via a UNC path from all of the build agents.

n	 The Team Build service account must have Full Control permission to it. This is required
for the build agent to be able to drop the build logs and outputs.

n	 It must have sufficient space available to store the number of builds retained by the
retention policies that you define.

360	 Part VI  Team Foundation Build

Tip  There is nothing worse than builds failing simply because there is not enough space
available in the drop location, especially because you don’t find this out until the very end of the
build process. It is recommended that you set up monitoring of the available space in the drop
location so that you are alerted if it falls below a threshold.

Creating a Build Definition
Now that the necessary infrastructure is in place, you can create your first build definition.
Build definitions define the information required to execute a build, such as what should be
built, what triggers a build, and how long these builds should be retained.

To create a new build definition, perform the following steps:

	 1.	 Open Visual Studio 2010.

	 2.	 Open Team Explorer.

	 3.	 Expand a Team Project.

	 4.	 Right-click Builds, and click New Build Definition.

	 5.	 Enter the desired information on each of the tabs, as described in the remainder of this
section.

	 6.	 Click Save.

General
The General tab shown in Figure 13-5 allows you to name the build definition and optionally
describe it. The description is displayed when a developer queues the build, so this can be
useful to communicate additional information about what the build definition is for.

You can also temporarily disable the build definition from here as well, which can be used to
prevent developers from queuing builds for obsolete or archived build definitions without
having to delete the build definition. If using gated check-ins (as discussed in the section
entitled “Gated Check-in,” later in this chapter) and if the build definition is disabled, then
developers will be able to check in without running a validation build.

Tip  Be aware that the build definition name is often used from the command line and as a part
of the build agent’s working directory path, so you should minimize the length of the name (to
avoid exceeding maximum path lengths) and avoid unnecessary special characters, including
spaces.

	 Chapter 13  Team Build Quick Start	 361

FIGURE 13-5  Build Definition: General

Trigger
Team Build 2005 only provided the ability for builds to be triggered manually, either from
within Team Explorer, using the TfsBuild.exe start command, from Team Foundation Server
Web Access, or using the Team Build API. These methods of starting builds provided build
administrators and developers with a large amount of flexibility in how they started builds,
but common requirements, such as scheduled builds and continuous integration, required
additional programming, scripting, or third-party solutions to implement.

These are now implemented in Team Build 2010 by allowing build administrators to specify
what triggers a build in the build definition. The triggers implemented are:

n	 Manual

n	 Continuous integration

n	 Rolling builds

n	 Gated check-in

n	 Scheduled

362	 Part VI  Team Foundation Build

These triggers are configured on the Trigger tab of the Build Definition window, shown in
Figure 13-6.

FIGURE 13-6  Build Definition: Trigger

Manual
The simplest (and default) trigger is that builds need to be started manually. This trigger
provides exactly the same experience that was available in Team Build 2005, with the
exception that in Team Build 2008 and later, builds can be queued rather than failing if a
build is already in progress.

Continuous Integration
Continuous integration (CI) is a set of practices from the agile community that provides early
warning of bugs and broken code. By building and testing each changeset that has been
checked in, any issues can be identified and resolved quickly, minimizing the disruption
caused to other developers.

When Team Build 2005 was released, many saw the lack of a CI capability as a huge
oversight, especially given its popularity at the time. Microsoft rectified this oversight in Team
Build 2008 by adding a CI trigger that removes the need to rely on third-party CI solutions.

The CI trigger causes each check-in to the build definition‘s workspace to queue a new build,
as shown in Figure 13-7.

	 Chapter 13  Team Build Quick Start	 363

FIGURE 13-7  Changeset to queued build mapping for CI rolling builds

For long-running builds or workspaces that have a large number of check-ins, the CI trigger
may result in unacceptably long build queues. The Rolling Builds trigger minimizes this issue by
accumulating any check-ins to the build definition’s workspace until the currently running build
completes; once the build completes, a single build will be queued to build the changesets.

FIGURE 13-8  Changeset to queued build mapping for rolling builds

Even this trigger may result in build queues being dominated by a few build definitions. To
add a lag between the builds to allow builds from other build definitions to be executed,
you can enable the Build No More Than Every X Minutes option of this trigger, shown in
Figure 13-9, to ensure that the builds are not executed back to back.

FIGURE 13-9  Build Definition: Trigger (with lag)

364	 Part VI  Team Foundation Build

Gated Check-in
Team Build 2010 introduces a new trigger called Gated Check-in. This trigger behaves
similarly to the CI trigger, except that it intercepts the developer’s changes before they’re
checked into version control, builds them, and then, if they build successfully, checks them in
on the developer’s behalf.

Tip  If you think of CI as something that detects bad changes that have made it into version control,
then think of Gated Check-in as a mechanism to stop them getting in there in the first place.

Whenever a developer checks changes into a file or folder that is part of the workspace of a
build definition that uses the gated check-in trigger, they will be presented with the dialog
shown in Figure 13-10.

FIGURE 13-10  Gated Check-in dialog

This dialog informs the developer that their changes need to pass a validation build before
they’re checked in. At this point, the developer’s changes have been automatically shelved,
and they can choose whether they want to preserve their changes locally or not.

If they’ve been granted the Override Check-in Validation By Build permission, they also have
the option of bypassing the validation build and checking their changes in directly. See the
section entitled “Team Build Security,” later in this chapter, for more information about this
and other Team Build permissions.

Once a gated check-in build completes, the developer will be alerted via the Build Notifications
tray to either reconcile their workspace (if the build succeeds) or unshelve their changes (if the
build fails). You can also explicitly perform these actions when the build completes by right-
clicking the build in the Build Explorer or from the build’s Build Details window.

If you did not keep pending changes, then reconciling your workspace is unnecessary,
although you should perform a get to bring your workspace up to date. If you did keep your

	 Chapter 13  Team Build Quick Start	 365

pending changes, then the Reconcile Workspace dialog (shown in Figure 13-11) can be used
to undo any redundant pending changes and bring these files up to date with the changeset
that was checked in.

FIGURE 13-11  Reconcile Workspace dialog

Schedule
The Schedule trigger allows builds to be scheduled to run on specific days at a certain time
rather than having to use third-party scheduling applications. By default, scheduled builds
will be skipped if no changes have been checked in since the previous build. However, this
behavior can be overridden by selecting the Build Even If Nothing Has Changed Since The
Previous Build check box.

Note  One limitation of the scheduling functionality is that you can’t schedule a build to be
run multiple times a day. If you need this capability, you can either create a new build definition
for each time you’d like the build to be run or use a scheduler (such as the built-in Windows
Scheduler) to call the TfsBuild.exe command-line client to queue builds.

Workspace
The Workspace tab shown in Figure 13-12 allows you to define which version control folders
Team Build will get to execute the build. You can specify multiple folders to get by adding
additional working folder mappings with a status of Active, or you can prevent Team Build
from getting a folder by changing the status of the mapping from Active to Cloak, as
demonstrated in Figure 13-13, which shows that the HelloWorld folder will download but not
the HelloWorld/HelloWorld.Tests folder.

366	 Part VI  Team Foundation Build

Tip  If you create a build definition while you have a solution open, then the build definition’s
workspace mappings will default to the workspace mappings for the workspace containing the
solution.

FIGURE 13-12  Build Definition: Workspace tab

FIGURE 13-13  Build Definition: Workspace tab (multiple working folders)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 13  Team Build Quick Start	 367

By default, any other mapping that you add will be mapped to a local folder with the same
name as the source control folder. You can override the default by changing the value in the
Build Agent Folder column.

If one of the developers already has a workspace that contains the necessary working folder
mappings, you can click Copy Existing Workspace to copy the mappings from that workspace
into the build definition.

Tip  The default working folder mapping on the Workspace tab will download all of the files
in the Team Project (or, if you have a solution open when you create the build definition, the
workspace containing that solution). If these contain a large number of files and folders that
aren’t needed by a build definition, you can significantly improve its performance by mapping
only the required folders or by cloaking folders that aren’t required.

Build Defaults
The Build Defaults tab, shown in Figure 13-14, allows you to specify the default build
controller that the build will be queued on and, optionally, where the build outputs will
be dropped when the build completes. These are defaults and can be overridden by the
developer when they queue the build.

FIGURE 13-14  Build Definition: Build Defaults tab

368	 Part VI  Team Foundation Build

Process
Build definitions are linked to a Build Process Template that defines the build workflow
that will be used. In fact these Build Process Templates are implemented using Workflow
Foundation workflows. Chapters 15 and 16 discuss in detail how to customize existing Build
Process Templates, as well as how to create your own.

A default Build Process Template will be selected when you create your build definition,
but by clicking Show Details, you can select a different Build Process Template, as shown in
Figure 13-15.

FIGURE 13-15  Build Definition: Process tab

In addition to selecting the Build Process Template, this tab is where you specify the Build
Process Parameters. Each Build Process Template defines its own Build Process Parameters,
so if you select a different Build Process Template, then you will see different Build Process
Parameters selected.

In this section, we’ll cover the minimum Build Process Parameters for the Default Template
that are needed to get your new build definition working. Chapter 14 will cover all of
the Build Process Parameters for the Default Template and the Upgrade Template; and
Chapter 16, “Process Template Customization,” will cover how to customize Build Process
Templates and define your own Build Process Parameters.

	 Chapter 13  Team Build Quick Start	 369

The only Build Process Parameter that we need to provide to get our first build definition
working is Projects To Build. To provide this parameter, select Items To Build and click the
ellipsis to open the Items To Build dialog. Now click Add, browse to the solution or project
that you want to build, and then repeat this for each additional solution or project that you
want to build. If the solutions or projects have a build order dependency, then you can use
the Move Up and Move Down buttons to arrange them in the order they need to be built.

Tip  When you create a new build definition, if you have a solution open that’s in a
version-controlled folder, then the path to that solution will be automatically placed into the
Projects To Build build process parameter.

If you don’t specify any configurations, then each solution’s default configuration will be
built, the Configurations tab shown in Figure 13-16 allows you to specify configurations
and platforms to be built for the selected solutions. If you specify multiple entries, then the
solutions will be built multiple times (once per entry) and the build outputs placed in separate
subfolders of the drop folder. In this example, the solution will be built four times, and the
build outputs will be placed in the subfolders Release, Debug, Release\x86, and Debug\x86.

FIGURE 13-16  Configurations tab

Tip  If the configuration or platform that you would like to build isn’t listed, you can type the
name of it into the appropriate combo box.

Retention Policy
In Team Build 2005, build administrators often ran out of disk space in their drop folder.
The reason for this is that Team Build 2005 did not provide a solution to automatically
remove builds that were no longer required.

370	 Part VI  Team Foundation Build

Enterprising build administrators worked around this by either scripting the TfsBuild.exe
delete command or by using third-party solutions (such as the Build Clean-up service, written
by Mitch Denny).

Team Build 2008 and later solve this problem by introducing retention policies that allow
you to specify which builds should be retained based on criteria in the build definition. The
current version of this functionality is limited to retaining builds based on the type of build
(Manual And Triggered or Private), the outcome of the build (that is, successful, partially
succeeded, stopped, and failed) and the number of builds (for example, retain the last two
successful builds). If your requirements are more complex, such as wanting to retain builds
based on number of days or on build quality, then you will still need to implement your own
solution.

The Retention Policy tab, shown in Figure 13-17, allows you to configure how many builds will
be retained for each build outcome.

FIGURE 13-17  Build Definition: Retention Policy tab

Tip  It’s easy to think that you wouldn’t want to retain any failed builds, but when builds are
removed by the retention policy, everything associated with them, including the build log, is
removed. If you don’t retain at least one failed build, it might be very difficult to determine the
cause of a build failure so that it can be resolved.

	 Chapter 13  Team Build Quick Start	 371

When a build is removed by the retention policy, the following items are also removed by
default:

n	 Build details

n	 Drop folder, including the build logs and binaries

n	 Test results

n	 Version control label

n	 Symbols

Note  Although the build details are removed, they are still available for reporting in the
TFSWarehouse database and OLAP cube if the warehouse was updated between when the build
completed and when it was deleted.

In the What To Delete column, you can override this default for a particular build type and
outcome using the Build Delete Options dialog shown in Figure 13-18.

FIGURE 13-18  Build Delete Options dialog

Even if retention policies are enabled for a build definition, individual builds can still be
explicitly retained or deleted as discussed in the next section.

Working with Build Queues and History
Congratulations—you’ve now created your first build definition. Once you have a build
definition, you can use Team Build clients such as Visual Studio or the TfsBuild.exe command
line to queue builds and work with the build queues and history.

372	 Part VI  Team Foundation Build

Visual Studio
Developers spend the majority of their time in Visual Studio, so it is logical to be able to
work with builds from there. Team Explorer is the entry point to Team Foundation Server
functionality within Visual Studio, and Team Build is no exception to this. The Builds node
within a Team Project allows build administrators and developers to queue builds and view
and manage build queues and individual builds.

Queuing a Build
To queue a build, you right-click the Builds node in Team Explorer and choose Queue New
Build to open the Queue Build dialog shown in Figure 13-19. Alternatively, you can right-click
a specific build definition and choose Queue New Build, which opens the same dialog but
will automatically select that build definition.

FIGURE 13-19  Queue Build dialog: General tab

The What Do You Want To Build? drop-down list will default to Latest Sources, but
developers can change this to Latest Sources With Shelveset to queue a private build against
a shelveset containing the changes they’d like to validate. This is discussed in more detail in
the section entitled “Queuing a Private Build,” later in this chapter.

	 Chapter 13  Team Build Quick Start	 373

The Build Controller and Drop Folder For This Build will default to the values selected when
you created the new build definition, but developers can override these if desired.

The Position setting indicates where this build will be in the queue if queued on the selected
build controller. This is refreshed whenever a different build controller is selected, but there
can be a small delay while the position is calculated. You can also change the priority that the
build is queued with. As you might expect, the higher the priority, the higher in the queue it
will be placed.

On the Parameters tab, shown in Figure 13-20, the developer can override the parameters
specified in the build definition for this build process template. Chapter 14 discusses the
parameters available for the templates that ship with Team Build, and Chapter 16 discusses
how you can define parameters and custom parameter user interfaces for your custom build
process templates.

FIGURE 13-20  Queue Build dialog: Parameters tab

If developers always have to override certain parameters, they could create specific build
definitions specifying these parameters so they can just queue these build definitions instead.

Clicking Queue will then queue the build on the selected build controller and open the Build
Explorer window so you can monitor the progress of your build.

374	 Part VI  Team Foundation Build

Queuing a Private Build
Private builds (also known as buddy builds) allow developers to run a build based on the
contents of a shelveset and, optionally, check in the shelveset after a successful build. This
can be used to detect compilation errors and test failures before changes are checked in and
can affect other developers.

In Team Build 2008, private builds were done by running MSBuild on the TFSBuild.proj in
the developer’s local workspace. This approach was simple, but it suffered from a number of
drawbacks:

n	 Private builds could be done only from the command prompt.

n	 The developer’s workspace could be out of date, and as such, the build and test results
would be inconsistent with the results of building and testing against the latest source code.

n	 Developers’ workstations needed all the prerequisites of the end-to-end build process
installed on them.

n	 Configuration differences between the developer’s workstation and the build machines
would reduce confidence in the changes actually building successfully when checked in.

n	 The desktop build process and the end-to-end build process had significant differences
that would further reduce confidence in the changes building successfully.

n	 The build outputs weren’t dropped in the same way as the end-to-end build process
and couldn’t be easily shared with others.

Team Build 2010 takes a different approach and allows developers to shelve their changes
and queue an end-to-end build against this shelveset and optionally check the changes in
automatically if the build completes successfully.

Note  The only shipping template that supports private builds is the Default Template.

Private builds are queued against a build controller, just like triggered and manual builds
are, and as such, they use the same hardware, software, configuration, and build process as a
triggered or manual build. This increases a developer’s confidence that the changes will build
and test successfully when checked in.

In some circumstances, it can be seen as a negative that private builds no longer support
building on the developer’s workstation, but this can be enabled by installing a Team Build
controller and agent and choosing that controller when queuing the build. You should be
aware of the drawbacks discussed previously of using a developer’s workstation for validating
changes before check-in.

To enable a build definition to drop the build outputs for private builds, you must configure a
Private Drop Location. If you do not do this, then the build will still validate that the shelveset
compiles and passes tests, but the build outputs will not be dropped.

	 Chapter 13  Team Build Quick Start	 375

Tip  You should drop private builds to a separate location from your triggered and manual builds
so they aren’t accidentally shipped or used as production builds. Private builds contain changes
that aren’t checked into version control, are based on non-versioned and auditable shelvesets,
and as such, they are not reproducible.

To set the Private Drop Location, edit the build definition, and in the Advanced category
of the Process tab, enter a UNC path in the Private Drop Location parameter, as shown in
Figure 13-21.

FIGURE 13-21  Private Drop Location parameter

The developer can queue a private build by performing the following steps:

	 1.	 Right-click the build definition in Team Explorer and choose Queue New Build.

	 2.	 In the What Do You Want To Build? drop-down list, select Latest Sources With
Shelveset.

	 3.	 Click the ellipsis button and choose the shelveset containing the changes they want to
validate. Alternatively, you can create a shelveset based on the pending changes in the
workspace by clicking Create.

376	 Part VI  Team Foundation Build

	 4.	 Choose the Check In Changes After Successful Build check box if you want your
changes checked into version control if the build completes successfully.

	 5.	 Click Queue.

Figure 13-22 shows the Queue Build dialog when queuing a private build of Hello World
Main for the shelveset Increase Exclamation.

FIGURE 13-22  Queue Private Build dialog

Note  In the Team Build 2010 RTM, there is a bug such that the What Do You Want To Build
drop-down list sometimes becomes disabled and you won’t be able to select Latest Sources With
Shelveset. Restarting Visual Studio will usually resolve this.

Private builds need to strike the right balance between speed and completeness to ensure
that developers can validate their changes in a reasonable amount of time and still have
a high level of confidence that a successful private build will typically mean a successful
triggered or manual build.

If private builds take too long or have too much friction, then developers will bypass them
and check in without validating their changes (although this can be prevented with the

	 Chapter 13  Team Build Quick Start	 377

gated check-in trigger discussed in the section entitled “Trigger,” earlier in this chapter). For
this reason, it can be beneficial to have a dedicated build definition for private builds that
is configured to reduce build times (such as doing incremental gets and builds, running a
smaller set of tests, and so on). Chapter 14 discusses the different properties that can be set
to modify the default build process provided by Team Build.

Build Explorer
The Build Explorer window, shown in Figure 13-23, is the main way to manage build queues
and view the build history. The Build Explorer can be opened by right-clicking the Builds
node in Team Explorer and choosing View Builds. You can also double-click a build definition,
which will open the Build Explorer and automatically filter it to builds of that build definition.

FIGURE 13-23  Build Explorer window

When first opened, the Build Explorer window will show only queued builds, which can be
confusing if you expect to see the completed builds as well (as was the case in Team Build
2005). To see completed builds, you need to click the Completed tab at the top of the
window.

Note  Queued builds will remain on the Queued tab for up to five minutes after they complete.

378	 Part VI  Team Foundation Build

The Queued build list can be filtered by selecting the filter criteria from the Build Definition,
Status Filter, and Controller Filter lists at the top of the window. The Completed build list can
be filtered as well, but by Build Definition, Quality, Date, and to builds requested by you.

Cancelling, Stopping, Postponing, and Reprioritizing Builds
If a build is queued but isn’t running yet, you can right-click it and choose Cancel to remove
it from the queue. Similarly, if a build is currently running, you can stop it by right-clicking
the build in the Queued tab of the Build Explorer and choosing Stop.

More Info  The actions described in this section are significantly easier to do than they were
in Team Build 2005, which required builds to be stopped using the TfsBuild.exe command-line
client (which is still possible, as described in the section entitled “Working with Builds from the
Command Line,” later in this chapter).

Rather than cancelling a queued build, you can postpone it by right-clicking it and choosing
Postpone. This places the build on hold, and it won’t be built until you right-click the build
again and clear the Postpone option.

Builds can be reprioritized to change their position in the queue by right-clicking the build,
choosing Set Priority, and then choosing the new priority; the queue will then be refreshed to
display the new queue order.

Important  The ability to manage the build queue can be restricted via permissions. See the
section entitled “Team Build Security,” later in this chapter, for details.

Viewing Build Details
Double-clicking a running or completed build in the Build Explorer will open the Build Details
window. Note that you can’t open the Build Details window for a queued build.

This window has two main views: the Activity Log view, which shows an activity hierarchy
for the build; and the Summary view, which summarizes the build results. As shown in
Figure 13-24, both views show the build number, latest result, build quality, build history
graph, information about how the build was triggered and by whom, how long the build
ran, on which controller it ran, and when it completed. You can also change the build quality,
open the build’s drop folder, toggle retain indefinitely, and delete the build.

FIGURE 13-24  Build Details header

	 Chapter 13  Team Build Quick Start	 379

The build history graph provides an “at a glance” view of the build definition’s history. The
current build is indicated with a small triangle, the relative height of the bars indicates how
long the build ran, and the color indicates the build’s outcome (green for successful, orange
for partially succeeded, and red for failed). Clicking a bar will take you to the build details for
that particular build.

While the build is running, you can only see the Activity Log view (and it will automatically
refresh until the build completed) but once the build has completed, you will be shown the
Summary view by default. You can toggle between the views using the View Summary and
View Log hyperlinks at the top of the window.

The Activity Log view (shown in Figure 13-25) shows a tree of the activities being executed
and how long the activity took, which provides an easy way of monitoring the progress of
the build and allows you to quickly see what step caused the build to fail.

FIGURE 13-25  Build Details window: Activity Log

In Figure 13-26, you can see that the activities preceding compilation succeeded but the
compilation itself failed, and you can see exactly what project or configuration caused the
build failure. In addition, you can click that project’s MSBuild log file to open it.

380	 Part VI  Team Foundation Build

FIGURE 13-26  Build details for a failed build

The Summary view, shown in Figure 13-27, shows the latest activity on the build, a summary
of the build results for each configuration and platform (including compilation warnings
and errors, test results, and code coverage data), associated changesets and work items, and
impacted tests. If the build fails, the Latest Activity section will link to the build failure work
item that is created automatically and show its current status, as well as to whom it’s assigned.

FIGURE 13-27  Build Details window: Summary

	 Chapter 13  Team Build Quick Start	 381

The Associated Changesets and Associated Work Items sections list the changesets and work
items that are associated with this build, but not earlier builds of the same build definition.
This information is extremely useful for providing traceability and in identifying what change
caused a build failure or to guide the testing of specific builds. Clicking the changeset
number opens the changeset in the standard Changeset dialog, and clicking the work item
number opens the work item in the standard Work Item window.

Changing Build Qualities
Once a build has completed, it often goes through a number of other processes before it is
released. For example, a build might be installed in a testing environment, pass testing, and
then be released.

To provide the ability to track the status of a build, Team Build allows you to flag builds with
a build quality. The first step is to define the list of build qualities with which you’d like to
be able to flag builds. You can open the Edit Build Qualities dialog, shown in Figure 13-28,
by right-clicking the Builds node of Team Explorer and choosing Manage Build Qualities.
Figure 13-28 shows the default list of build qualities provided with Team Build, but these can
be customized to meet your requirements.

FIGURE 13-28  Edit Build Qualities dialog box

Once the list of build qualities has been defined, you can assign a build quality to a build
by opening the build’s Build Detail window and changing the drop-down list at the top, as
shown in Figure 13-29. You can also change the build quality from the Build Explorer by
right-clicking the build and choosing Edit Build Quality. Assigning or changing a build’s build
quality requires the user to be assigned the Edit Build Quality permission.

382	 Part VI  Team Foundation Build

FIGURE 13-29  Changing a build’s quality

Retaining Builds
There are situations where you may want to retain builds that otherwise would be removed
by the build definition’s retention policy, such as builds that you are in the process of testing
or that you have released to customers.

You can flag a build to be retained indefinitely by opening the build’s Build Details
window and clicking Retain Indefinitely at the top. In addition, you can turn this flag on by
right-clicking the build in the Completed tab of the Build Explorer window and choosing
Retain Indefinitely. If in the future you decide that you no longer want to retain the build, you
can repeat this process to turn off the Retain Indefinitely flag.

Deleting Builds
Sometimes you might want to explicitly remove a build even though retention policies
haven’t been enabled for the build definition or before the retention policy would have
removed the build automatically. One reason you might want to do this could be to recover
disk space or to remove extraneous builds from the build history.

You can explicitly remove a build by opening the build’s Build Details window and clicking
Delete Build at the top. You can also delete the build by right-clicking the build on the

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 13  Team Build Quick Start	 383

Completed tab of the Build Explorer window and choosing Delete. You will be prompted to
choose which build artifacts you want to delete, as shown in Figure 13-30.

FIGURE 13-30  Delete build options

Working with Builds from the Command Line
Build administrators (and most developers) are command-line fans at heart, and Team Build
provides a command-line client for queuing, stopping, and deleting builds. Even if you’re
not overly fond of using the command line, it also provides a simple way to script Team Build
commands as part of a larger process.

The command-line client is called TfsBuild.exe and is installed in the %ProgramFiles%\
Microsoft Visual Studio 10.0\Common7\IDE directory as part of the Team Foundation Client.
The easiest way to run it is from the Visual Studio 2010 command prompt, which includes this
directory in its default path.

The first parameter to TfsBuild.exe is the command to execute. The available commands are
listed in Table 13-3.

TABLE 13-3  TfsBuild.exe Commands
Command Description
Help Prints general help for the TfsBuild.exe command-line client as well as

command-specific help

Start Starts a new build either synchronously or asynchronously

Stop Stops one or more running builds

Delete Deletes one or more completed builds and their artifacts

Destroy Destroys (purges) previously deleted builds permanently

384	 Part VI  Team Foundation Build

To print general help and a list of available commands, run TfsBuild.exe help.

To print help for a specific command, run the following code:

TfsBuild.exe help <command>

where <command> is the command in question (for example, TfsBuild.exe help start).

Note  Any arguments containing a space should be enclosed in double-quotation marks.

Queuing a Build
The TfsBuild.exe command line provides two variations of the start command. The first has
the following syntax, and its parameters are described in Table 13-4:

TfsBuild start /collection:<teamProjectCollectionUrl> /buildDefinition:<definitionSpec>
 [/dropLocation:dl] [/getOption:go] [/priority:p]
 [/customGetVersion:versionSpec] [/requestedFor:userName]
 [/msBuildArguments:args] [/queue] [/shelveset:name [/checkin]] [/silent]

TABLE 13-4  TfsBuild.exe Start Parameters
Parameter Description
/collection:<teamProjectCollection
Url>

The full URL of the Team Project Collection (for example,
http://TFSRTM10:8080/tfs/defaultcollection).

/buildDefinition:<definitionSpec> The full path of the build definition in the format \<Team
Project>\<BuildDefinitionName> (for example, \Contoso\
HelloWorldManual).

/dropLocation:<dl> If specified, overrides the drop location in the build definition.

/getOption:<go> If specified, states what version of the source code Team Build
will get. Table 13-5 lists the available get options.

/priority:<p> Set to either Low, BelowNormal, Normal, AboveNormal, or
High. This parameter will default to Normal if not provided.

/customGetVersion:<versionSpec> If /getOption:Custom is specified, this parameter must be
supplied and specifies the version of the source code that
Team Build should get. The available versionspec options are
listed in Table 13-6.

/requestedFor:<userName> By default, the build will be requested for the user that runs
the TfsBuild.exe command line, or if you wish, you can pass
this parameter to request a build on behalf of another user if
you have sufficient permissions.

/msBuildArguments:<args> Quoted arguments to be passed to MSBuild when executing
TFSBuild.proj. For example, to enable optimizations and
increase the logging verbosity to diagnostic, you would
specify /msBuildArguments:"/p:Optimize=true
/v:diag".

	 Chapter 13  Team Build Quick Start	 385

Parameter Description
/queue By default, the TfsBuild.exe command line will return an error

immediately if the build won’t be processed immediately by a
build controller (that is, if it needs to be queued). If the build
is processed immediately by a build controller, TfsBuild.exe
won’t return until the build has completed. If this parameter
is used, TfsBuild.exe will return as soon as the build has been
queued on the build controller.

/shelveset:name Includes a shelveset in the build by unshelving it after the get
has completed.

/checkin Specifies that the shelveset should be checked in if the build
completes successfully.

/silent If specified, suppresses any output from the TfsBuild.exe
command line other than the logo information.

TABLE 13-5  Get Options
Option Description
LatestOnQueue Builds the latest version of the source code at the time the build is

queued.

LatestOnBuild Builds the latest version of the source code at the time the build starts
(this is the default).

Custom Builds the version specified by the /customGetVersion parameter.

TABLE 13-6  Versionspec Options
Name Prefix Example Description
Date/Time D D07/22/2010 or

D07/22/2010T18:00
Builds the source code at a specific date
and time. Any string that can be parsed
into a System.DateTime structure by the
.NET Framework is supported.

Changeset Version C C1133 Builds the source code at a specific
changeset number.

Label L Lcheckpoint2label Builds the source code at the version
specified by the label.

Latest Version T T Builds the latest version of the source code.

Workspace Version W Wmyworkspace; my-
username

Builds the version of the source code
currently in the specified workspace.

The second variation of the start command provides the same functionality as the first but
mimics the syntax of the start command in Team Build 2005:

TfsBuild start <teamProjectCollectionUrl> <teamProject> <definitionName>
 [/dropLocation:dl] [/getOption:go] [/priority:p]
 [/customGetVersion:versionSpec] [/requestedFor:userName]
 [/msBuildArguments:args] [/queue]
 [/shelveset:name [/checkin]] [/silent]

386	 Part VI  Team Foundation Build

Stopping a Build
You can also stop a running build from the TfsBuild.exe command line by using the stop
command.

There are three variations of the stop command, and their parameters are described in
Table 13-7:

TfsBuild stop [/noPrompt] [/silent] /collection:<teamProjectCollectionUrl>
 /buildDefinition:<definitionSpec> <buildNumbers> ...

TfsBuild stop [/noPrompt] [/silent] /collection:<teamProjectCollectionUrl>
 <buildUris> ...

TfsBuild stop [/noPrompt] [/silent] <teamProjectCollectionUrl> <teamProject>
 <buildNumbers> ...

TABLE 13-7  TfsBuild.exe Stop Parameters
Parameter Description
/noPrompt If specified, suppresses TfsBuild.exe confirming you want

to stop the build

/silent If specified, suppresses any output from the TfsBuild.exe
command line other than the logo information

/collection:<teamProjectCollectionUrl> The full URL of the Team Project Collection (for example,
http://TFSRTM10:8080/tfs/defaultcollection)

/buildDefinition:<definitionSpec> The full path of the build definition in the format \<Team
Project>\<BuildDefinitionName> (for example, \Contoso\
HelloWorldManual)

buildNumbers Space-separated list of build numbers to be stopped

buildUris Space-separated list of build Uniform Resource Identifiers
(URIs) to be stopped

Deleting a Build
You can also delete a build from the TfsBuild.exe command line by using the delete
command.

There are five variations of the delete command, and their parameters are described in
Table 13-8:

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl> /buildDefinition:<definitionSpec>
 <buildNumbers> ...

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl> <buildUris> ...

	 Chapter 13  Team Build Quick Start	 387

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 <teamProjectCollectionUrl> <teamProject> <buildNumbers> ...

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl>
 /buildDefinition:<definitionSpec>
 /dateRange:<fromDate>~<toDate>

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl>
 /dateRange:<fromDate>~<toDate> <teamProject>

TABLE 13-8  TfsBuild.exe Delete Parameters
Parameter Description
/noPrompt If specified, suppresses TfsBuild.exe confirming that you want to

delete the build.

/silent If specified, suppresses any output from the TfsBuild.exe
command line other than the logo information.

/preview Outputs a list of the artifacts that would be deleted without
actually deleting them.

/collection:<teamProjectCollecti
onUrl>

The full URL of the Team Foundation Server (for example,
http://TFSRTM10:8080/tfs/defaultcollection).

/buildDefinition:<definitionSpec> The full path of the build definition in the format \<Team
Project>\<BuildDefinitionName> (for example, \Contoso\
HelloWorldManual).

/deleteOptions:<do> If specified, specifies which build artifacts should be deleted.
Table 13-9 lists the available delete options. Multiple delete
options can be comma-separated (for example, /deleteOptions:
Details,DropLocation). The delete command can be run multiple
times on the same builds if different delete options are specified.

/dateRange:<fromDate>~<toDate> The date range of builds that should be deleted. Dates can be
specified in any .NET-parsable date format.

buildNumbers Space-separated list of build numbers to be deleted.

buildUris Space-separated list of build URIs to be deleted.

TABLE 13-9  Delete Options
Option Description
All Deletes all the build artifacts listed in this table.

Details Marks the build as deleted so that it is hidden in the Team Foundation
Client. The build will be permanently deleted only if purged.

DropLocation Deletes the build outputs from the build’s drop location.

Label Deletes the build’s version control label.

TestResults Deletes the build’s test results.

Symbols Deletes the build’s symbols from the symbol store.

388	 Part VI  Team Foundation Build

Team Build Security
Securing Team Build is a critical part of configuring Team Foundation Server and installing
new build agents. Even if your Team Foundation Server environment is safely contained
within your corporate firewall, this is still important to prevent inadvertent changes to your
build agents and the builds that they produce.

Service Accounts
The first consideration when installing Team Build is to decide under what account to run the
Team Build service. There are two options:

n	 NT AUTHORITY\NETWORK SERVICE  This built-in Windows account is a
limited-privilege account that can access network resources using the computer
account’s credentials. The account does not have a password and cannot be used to
log on to the computer interactively or remotely. For more information about the
NETWORK SERVICE account, refer to http://www.microsoft.com/technet/security/
guidance/serversecurity/serviceaccount/sspgch02.mspx#EBH.

n	 Domain Account  Team Build can also run as an arbitrary domain account. Using
a domain account allows you to log on to the build machine using this account to
install or configure applications that use per-user settings (which you can’t do with the
NETWORK SERVICE account because you can’t log on interactively with it). This can
also be useful to debug build problems related to permissions on the build machine or
other network resources.

To change the service account used by a build agent or build controller, you should use the
Team Foundation Server Administration Console rather than the Services MMC snap-in because
it will correctly configure the permissions required by Team Build. The steps are as follows:

	 1.	 Log on to the build agent or controller for which you want to change the service
account.

	 2.	 Open the Team Foundation Server Administration Console (shown in Figure 13-31).

	 3.	 Click Stop at the top of the console to stop the build service.

	 4.	 Click Properties (shown in Figure 13-32).

	 5.	 Enter new credentials for the build service.

	 6.	 Click Start.

Note  The Team Build service account should not need to be a member of the build machine’s
Administrators security group. The account should be granted the specific permissions needed
by your build processes rather than granting it administrator access to the build machine. This is
to minimize the damage of malicious or badly written build scripts.

	 Chapter 13  Team Build Quick Start	 389

FIGURE 13-31  Team Foundation Server Administration Console

FIGURE 13-32  Configure Team Build service account

390	 Part VI  Team Foundation Build

The account also needs to be added to the Project Collection Build Service Accounts group
for the Team Project Collection for which it will execute builds, as shown in Figure 13-33.
This group grants Team Build access to the source, as well as the Team Project Collection
permissions required to execute builds. To do this, perform the following steps:

	 1.	 Open Visual Studio 2010.

	 2.	 Open Team Explorer.

	 3.	 Right-click the Team Project Collection.

	 4.	 Click Team Project Collection Settings.

	 5.	 Click Group Membership.

	 6.	 Select the Project Collection Build Service Accounts security group.

	 7.	 Click Properties.

	 8.	 Click Windows User Or Group.

	 9.	 Click Add.

	 10.	 Select the domain account that the Team Build service is running as, or the build
machine’s computer account if it is running as NT AUTHORITY\NETWORK SERVICE.

	 11.	 Click OK.

	 12.	 Click OK.

	 13.	 Click Close.

FIGURE 13-33  Build Services Security Group Properties dialog

	 Chapter 13  Team Build Quick Start	 391

Note  The Team Build service account should not be the Team Foundation Server service
account or a member of the Project Collection Administrators, Project Collection Service
Accounts, or [Team Project]\Project Administrators security groups. If the Team Build service
account is a member of any of these groups, then malicious or badly written build scripts could
cause irreparable damage to the Team Foundation Server.

The Team Build service account also requires Full Control file system permission to the drop
location.

Permissions
Permissions to both Team Foundation Server or Windows users and groups can be allowed
or denied (or left unset). When there is a conflict between allow and deny permissions for a
user, deny will take precedence. For more information about how permissions are granted
and evaluated in Team Foundation Server, refer to http://msdn.microsoft.com/en-us/library/
ms252587.aspx.

Team Build provides a number of Team Project Collection–level permissions for controlling
access to Team Build functionality. These permissions are detailed in Table 13-10.

TABLE 13-10  Team Project Collection–Level Permissions
Permission Description Granted by Default To
Manage Build
Resources

Permits the user to manage the build controllers
and build agents associated with the Team Project
Collection, as well as managing the Use Build
Resources and View Build Resources permissions.

Project Collection
Administrators; Project
Collection Build
Administrators; Project
Collection Build Service
Accounts

Use Build
Resources

Permits the user to reserve and allocate build
agents. This permission should be granted only to
build service accounts.

Project Collection
Administrators; Project
Collection Build Service
Accounts

View Build
Resources

Permits the user to see the build controllers and
build agents associated with the Team Project
Collection.

Project Collection
Administrators; Project
Collection Build
Administrators; Project
Collection Build Service
Accounts; Project
Collection Valid Users

The permissions in Table 13-11 can be managed at either the Team Project level (by
right-clicking Builds in Team Explorer and clicking Security) or at the build definition level
(by right-clicking the build definition in Team Explorer and clicking Security). Permissions
that haven’t been overridden at the build definition level will inherit the Team Project level
permissions.

392	 Part VI  Team Foundation Build

Certain Team Build operations (such as creating build definitions and modifying permissions)
are limited to users that have the Destroy Builds, Manage Build Queue, and Delete Build
Definition permissions.

TABLE 13-11  Team Project– and Build Definition–Level Permissions
Permission Description Granted by Default To
Delete Build
Definition

Permits the user to delete build definitions. Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Delete Builds Permits the user to delete completed builds. Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Destroy Builds Permits the user to permanently
delete completed builds.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Edit Build
Definition

Permits the user to create new build definitions
(only if applied at the Team Project level) or to
edit existing build definitions.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Edit Build Quality Permits the user to set or change the build
quality for an individual build.

Project Collection
Administrators; Project
Collection Build Service
Accounts; [Team Project]\
Builders; [Team Project]\
Contributors;
[Team Project]\Project
Administrators

Manage Build
Qualities

Permits the user to maintain the list of build
qualities.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Manage Build
Queue

Permits the user to cancel, postpone, or change
the priority of queued builds. Users without this
permission can still cancel their own builds, but
they won’t be able to postpone or change the
priority of any builds, including their own.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

	 Chapter 13  Team Build Quick Start	 393

Permission Description Granted by Default To
Override Check-In
Validation By Build

Permits the user to bypass gated check-in by
checking changes in directly without running a
gated check-in build.

Project Collection
Administrators; Project
Collection Build Service
Accounts

Queue Builds Permits the user to queue a new build. Project Collection
Administrators; Project
Collection Build Service
Accounts; [Team Project]\
Builders; [Team Project]\
Contributors;
[Team Project]\Project
Administrators

Retain Indefinitely Permits the user to exclude builds from the reten-
tion policy.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Stop Builds Permits the user to stop a build that’s in progress.
Users without this permission can still stop their
own builds.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Update Build
Information

Permits the user to add arbitrary information to
the build. This permission should be granted only
to build service accounts.

Project Collection Build
Service Accounts

View Build
Definition

Permits the user to view the details of a build
definition.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers

View Builds Permits the user to view queued and completed
builds.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers

394	 Part VI  Team Foundation Build

The Team Project–level permissions in Table 13-12 are not specific to Team Build but are
granted to build service accounts by default.

TABLE 13-12  Other Build-Related Permissions

Permission Description Granted By Default To
Create Test Runs Permits the user to publish test results against any

build. Also permits the user to modify test runs or
remove test results from any build. Note that this
permission can be set only at the Team Project
level.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators

View Project-Level
Information

Permits the user to view Team Project–level group
membership and permissions.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers;

View Test Runs Permits the user to view test runs for the Team
Project.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers

		 395

Chapter 14

Team Build Deep Dive
Team Build ships with a default build process that is suitable for building most applications
based on Microsoft .NET Framework 2.0 and later, but to get the most value out of
Team Build, you can customize this default process to your needs. You can even build
non-.NET-based applications if you like.

Process Templates
Build processes in Team Build 2010 are based on build process templates that are
implemented as Workflow Foundation workflows based on Extensible Application Markup
Language (XAML). Each build definition is associated with a build process template stored in
version control. In Chapters 15 and 16, we’ll discuss how to customize existing build process
templates, as well as how to create your own from scratch.

Team Build ships with three build process templates:

n	 Default Template  As the name suggests, this is the default build process template
and is feature-rich and geared towards building applications based on .NET Framework
2.0 and later. This build process template is discussed in detail in this chapter and
is a good basis for creating customized build process templates, as we’ll discuss in
Chapters 15 and 16.

n	 Upgrade Template  Provides backward compatibility with Team Build 2008 by
enabling Team Build 2010 to execute TFSBuild.proj. This template isn’t as feature-rich
as the Default Template, but it provides an easy transition to Team Build 2010 without
having to migrate existing build process customizations from TFSBuild.proj (and
MSBuild) to workflow-based build process templates. In Appendix C (available online),
“Upgrading from Team Foundation Build 2008,” we’ll walk through how to configure
and use the Upgrade Template.

n	 Lab Default Template  Provides integration between Team Build and Lab
Management to allow building an application, deploying it to a test environment, and
executing tests in it. Lab Management is a large-enough topic to devote an entire book
to it, so we won’t be covering it in this one.

These templates will be automatically checked into $/TeamProject/BuildProcessTemplates
whenever you create a Team Project.

396	 Part VI  Team Foundation Build

Default Template
The Default Template is the “bread and butter” of Team Build build process templates; it has
a large number of features, including build number allocating, cleaning, syncing, building,
testing, and indexing source and publishing symbols. This section will explain in depth how
these features work, as well as how to tweak them for your needs.

Logging
Team Build logs the execution of each activity to the Build Detail window, as well as logging
the output from MSBuild to files so that you can view the progress of a build, examine its
results, and diagnose build failures or other issues.

The MSBuild log outputs (with the exception of warnings and errors, which also appear in the
Build Details window) will be written to disk and copied to the Logs subdirectory of the drop
folder. The section entitled “Copy Files to the Drop Location,” later in this chapter, discusses
the dropping of logs in more detail.

The logging verbosity can be set using the Logging Verbosity process parameter in the Basic
category to one of the values listed in Table 14-1. Viewing and setting process parameters
is discussed in the Process subsection of the section entitled “Creating a Build Definition,”
in Chapter 13, “Team Build Quick Start.”

TABLE 14-1  Logging Verbosity Settings
Setting Logging Effects
Minimal Workflow will log errors, warnings, and messages with an importance of High.

MSBuild’s logging verbosity will be set to Minimal.

Normal Workflow will log errors, warnings, and messages with an importance of Normal
or High.
Sets MSBuild’s logging verbosity to Normal.

Detailed Workflow will log errors, warnings, and messages with an importance of Low,
Normal, or High.
Sets MSBuild’s logging verbosity to Detailed.

Diagnostic Workflow will log errors, warnings, and messages with an importance of Low,
Normal, or High.
Workflow will log the inputs to and outputs from each activity. Figure 14-1 shows
the Build Detail window when the Logging Verbosity is set to Diagnostic.
Sets MSBuild’s logging verbosity to Diagnostic.

	 Chapter 14  Team Build Deep Dive	 397

FIGURE 14-1  Build Details window with Diagnostic logging verbosity

Build Number
The Default Template’s build numbering scheme is $(BuildDefinitionName)_$(Date:yyy
yMMdd)$(Rev:.r), where $(Rev:.r) increments starting at 1 and resets whenever the first
part of the build number format changes. For example, the first build of the HelloWorld
definition on 8/21/2010 will be HelloWorld_20100821.1, the second on that date will be
HelloWorld_20100821.2, and the first build on 8/22/2010 will be HelloWorld_20100822.1.

This default build numbering scheme can be customized using the Build Number Format
process parameter in the Basic category. The tokens that can be used in the Build Number
Format are described in Table 14-2 and any non-tokens will be included in the generated
build number as specified.

TABLE 14-2  Build Number Tokens
Token Description
Environment Variable
Name

Any environment variable can be used as a token by surrounding the
environment variable name with $(. . .). For example, $(USERNAME).

$(BuildID) A unique number allocated to the build by Team Build. This is the
number that appears in a build’s Uniform Resource Indicator (URI); for
example, the 12 in vstfs:///Build/Build/12. The BuildID is unique to the
Team Project Collection.

$(BuildDefinitionName) The name of the build definition (for example, HelloWorld).

398	 Part VI  Team Foundation Build

Token Description
$(Date:format) The date that the build was created. The format is a standard

.NET Framework Date and Time format string. For example,
$(Date:yyyyMMdd).

$(DayOfMonth) The day of month that the build was created (for example, 13). This will
always be two digits, with a leading zero if necessary.

$(DayOfYear) The day of the year that the build was created (for example, 233). This
will always be three digits, with leading zeros if necessary.

$(Hours) The hour of day, expressed in 12-hour format, that the build was created
(for example, 11). This will always be two digits, with a leading zero if
necessary.

$(Minutes) The minutes part of the time that the build was created (for example, 30).
This will always be two digits, with a leading zero if necessary.

$(Month) The month of year that the build was created (for example, 08). This will
always be two digits, with a leading zero if necessary.

$(Rev:format) Returns a unique revision number for the build (based on the rest of the
build number format). If used, this token must be at the end of the build
number format. The format must begin with a period and be followed
with one or more r’s indicating how many digits it should be. Leading
zeros will be added if necessary. For example, $(Rev:.r) will have one
digit, and $(Rev:.rr) will have two digits.

$(Seconds) The seconds part of the time that the build was created (for example,
30). This will always be two digits, with a leading zero if necessary.

$(TeamProject) The name of the Team Project containing the Build Definition that the
build was created from (for example, MSBuildBook).

$(Year:yy) The two-digit year that the build was created (for example, 10). This will
always be two digits, with a leading zero if necessary.

$(Year:yyyy) The year that the build was created, expressed in four digits
(for example, 2010).

The build number format you use should ensure that each build for a build definition receives
a unique build number. Otherwise you’ll receive a BuildNumberAlreadyExistsException when
the build number is allocated. Build numbers must be 64 characters or less in length, can’t
end in either a space or a period, and can’t contain the characters @“:<>\|*?.

Agent Reservation
The majority of the work done by the Default Template is executed on the build agent
rather than the controller. By default, the Default Template will select any idle build agent
associated with the controller to run the build, but you can change this using the Agent
Settings process parameter in the Advanced category.

The first two properties configure the agent reservation timeouts listed in Table 14-3.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 14  Team Build Deep Dive	 399

TABLE 14-3  Agent Reservation Timeout Properties
Property Description
Maximum Agent Reservation
Wait Time

The maximum amount of time that Team Build can wait
for an available build agent to run this build before
timing out and failing the build.

Maximum Agent Execution Time The maximum amount of time that the build process
is allowed to execute on the build agent before it is
cancelled and the build stopped.

The remaining three properties, which are listed in Table 14-4, configure which agents can be
used for the build.

TABLE 14-4  Agent Reservation Properties
Property Description
Name Filter Filters build agents by display name (not computer name). This

property supports wildcards (* for zero or more characters and
? for one character).

Tags Filter Filters build agents having the selected tags based on the
operator specified in the Tag Comparison Operator.

Tag Comparison Operator Either MatchExactly, to select agents that have the exact tags
listed in the Tags Filter and no others, or MatchAtLeast, to
select agents that have at least the tags listed in the Tags Filter.
The Tag Comparison Operator is used even if no Tags Filter
is specified, so if you leave Tags Filter blank and don’t want
to exclude agents that have tags, you should change the Tag
Comparison Operator from the default of MatchExactly to
MatchAtLeast.

Clean
To provide the ability to do full builds, incremental gets with full builds, and incremental gets
with incremental builds, the Default Template provides three levels of cleaning. The type of
clean is configured by setting the Clean Workspace process parameter in the Basic category
to one of the values in Table 14-5.

TABLE 14-5  Clean Workspace Type Values
Value What Will Happen Get Type Build Type
None Nothing. Incremental Incremental

Outputs The Clean target will be executed for each
project, platform, and configuration.
The Binaries directory will be deleted.

Incremental Full

All (Default) Binaries and Sources directories will be
deleted, as well as the workspace.

Full Full

400	 Part VI  Team Foundation Build

Sync
Although they have some similarities, there are significant differences between the sync
process for triggered builds and that for private (aka buddy) builds, so we’ll discuss them
separately. Before performing either sync, the Default Template will undo any pending
changes in the workspace that may have been left over from previous builds.

Triggered Builds
The sync process for triggered builds is relatively simple, and the Default Template just
performs a get operation on the workspace. The version of this get defaults to the latest
changeset at the time of queuing, but this can be overridden by specifying any valid version
spec for the Get Version process parameter in the Advanced category. A list of valid version
specs is described in Table 13-6 in the previous chapter.

Private (aka Buddy) Builds
Private builds are more complex because they need to merge the contents of a shelveset
with the source being synced.

First, the shelveset will be unshelved into the workspace. If the shelveset contains any items
outside the build definition’s workspace (unmapped items), then the folders containing these
items will be temporarily mapped and the unshelve operation repeated.

Next, the get operation will be performed against the workspace. One restriction is that the
Get Version process parameter cannot be specified if the Check In Changes After Successful
Build check box on the Queue Build dialog is checked when queuing a private build.

Next, any conflicts will attempt to be resolved by performing an auto-merge resolve on the
workspace, and if any conflicts remain, the build will fail.

Finally, the resulting pending changes will be reshelved. The shelveset will be created under
the build’s service account and have a name of _Build_BuildId, where BuildId is a unique
identifier given to the build. This reshelved shelveset can be used to resolve any errors
resulting from the auto-merge if the build fails (by unshelving this shelveset, resolving any
issues, and resubmitting the shelveset), if the build succeeds, the reshelved shelveset will be
automatically deleted.

Label
Version control labels are an integral piece of build reproducibility because they allow you
to sync exactly the same sources that the build originally synced. The Default Template will
create version control labels for all non-shelveset builds by default, but you can disable it
completely by setting the Label Sources process parameter in the Advanced category to False.

	 Chapter 14  Team Build Deep Dive	 401

The version control label is based on the contents of the workspace and will be linked to the
build. This linkage is usually used for determining the version control changes between two
builds, as shown in the build summary in Figure 14-2.

FIGURE 14-2  New Changesets in build summary

The version control label will be named after the build number, will be scoped to the Team
Project, and replaces any labels with the same name. Figure 14-3 shows a number of labels
created by the Default Template.

FIGURE 14-3  Labels created by Team Build

Compile and Test
Once the workspace has been prepared, the Default Process Template will begin compiling
and testing the sources. It will loop through each platform and configuration specified (in the
Items To Build\Configurations To Build process parameter in the Basic category), compile all

402	 Part VI  Team Foundation Build

the projects specified (in the Items To Build\Projects To Build process parameter in the Basic
category), and then test them. If Configurations To Build are not specified, then the default
platform and configuration (the one selected by default when you open the solution in
Microsoft Visual Studio) will be used.

Compile
The major tasks of compilation are left to MSBuild, so this part of the Default Process consists
only of looping through each Project To Build, converting the server path to the project to a
local path, and executing MSBuild against the project.

Team Build will default to running the x86 version of MSBuild on an x86 operating system
and the x64 version on an x64 operating system. You can force Team Build to use the x86
version on an x64 operating system by setting the MSBuild Platform process parameter in
the Advanced category to x86. This is often needed when the build process depends on
MSBuild tasks that are 32-bit only.

As you’ve seen in previous chapters, MSBuild itself has a number of arguments, and MSBuild
projects can be controlled via properties. Table 14-6 lists the arguments that will be passed
by the Default Process.

TABLE 14-6  MSBuild Arguments Passed by the Default Process
MSBuild Argument Value
/fl Always passed.

/flp "logfile={0};encoding=Unicode;verbosity={1}", where
{0} is the path to log file and {1} is the value of the Logging Verbosity
process parameter discussed in the section entitled “Logging,”
earlier in this chapter.

/maxcpucount Always “1”.

/noconsolelogger Always passed.

/nologo Always passed.

/p:Configuration Name of the configuration being built.

/p:FxCopDir Path to the Visual Studio 2005 test tools (particularly FxCop) if
they’re installed and Perform Code Analysis is not set to Never.

/p:OutDir The output directory for the platform and configuration being built.
If only a single platform and configuration is being built, this will be
the root of the Binaries subdirectory of the build agent’s working
directory.
If the platform is AnyCPU, this will be a subdirectory of the Binaries
subdirectory named after the configuration (for example, . . .\Debug).
Otherwise, this will be the subdirectory of the Binaries subdirectory
named after the platform and the configuration (for example,
. . .\x86\Debug).

/p:Platform Name of the platform being built.

	 Chapter 14  Team Build Deep Dive	 403

MSBuild Argument Value
/p:RunCodeAnalysis This argument is set to true if the Perform Code Analysis process

parameter in Basic category is Always, false if Perform Code Analysis
process parameter is Never, and isn’t specified if Perform Code
Analysis is AsConfigured.

/p:SkipInvalidConfigurations This argument is always set to true.

/p:TeamBuildConstants This argument is set to TEAM_BUILD_ if Perform Code Analysis is not
Never; and the Visual Studio 2005 test tools (particularly FxCop) are
installed on the build server.

/p:VCBuildOverride The path to the .vsprops file generated by the Default Process.

Additional arguments The value specified for the MSBuild Arguments process parameter
in the Advanced category is passed as is to MSBuild.

Test
Once a platform and configuration has been compiled, it can then be tested using the test
specifications in the Automated Tests process parameter in the Basic category. Each test specification
can either be a test assembly file specification and an optional test settings file (recommended) or a
test metadata (.vsmdi) file and either all of the tests in that file or selected test lists.

Figure 14-4 shows the default test specification, which searches recursively under the Binaries
subdirectory (which contains the build outputs) for dynamic link libraries (DLLs) whose name
contains the letters test.

FIGURE 14-4  Add/Edit Test dialog

For each test specification, you can choose whether a test failure should fail the build,
and you can filter the tests to be run using the Criteria/Arguments tab shown in

404	 Part VI  Team Foundation Build

Figure 14-5. In this example, we’re limiting tests to those in the BVT category and (&&)
not (!) in the Integration category that have a priority greater than 100. You can also use
the or (|) operator to include tests from multiple categories, and you can specify arbitrary
command-line arguments to be passed to MSTest.

FIGURE 14-5  Criteria/Arguments tab

From time to time, you may want to temporarily disable the running of tests, and,
because test specifications can be quite complex, removing and re-adding them would be
cumbersome and time-consuming. You can temporarily disable tests by setting the Disable
Tests process parameter in the Advanced category to True.

Another new feature in Team Build 2010 is the ability to produce test impact analysis data
as part of the build. This information associates code paths with the tests that execute
them, and this data can be used to identify subsets of tests that should be run when you’re
modifying code or are comparing builds. This collection of analysis data can be disabled by
setting the Analyze Test Impact process parameter in the Advanced category to False.

Source Indexing and Symbol Publishing
Source indexing and symbol publishing are features designed to make it easier to debug
your application and to allow you not to ship symbols with your application without
hampering your ability to debug it. Source indexing and symbol publishing were commonly
requested features in Team Build 2008 (so much so that there was a procedure in the last
edition of this book to implement this), but they are now built-in features of Team Build 2010.

	 Chapter 14  Team Build Deep Dive	 405

Source Indexing
Source indexing is a process where the symbols produced by the compiler (*.PDB) have
additional information about the source embedded in them. This information includes the
Team Foundation Server URL they came from, the location of the source files in version
control, and the particular version of each file.

This information allows Visual Studio to automatically download and show the correct version
of each source file while you’re debugging. For security reasons [because it allows Visual
Studio to connect to whatever Team Foundation Server Uniform Resource Locator (URL) is in
the .PDB] you need to enable source server support before debugging. You can do this from
Tools\Options\Debugging\General\Enable Source Server Support, as shown in Figure 14-6.

FIGURE 14-6  Enabling source server support

The Default Process enables the indexing of sources by default, but this feature can be
disabled by setting the Source And Symbol Server Settings\Index Sources process parameter
in the Basic category to False.

Symbol Publishing
Symbol stores allow you to store your application’s PDBs in a central location so that you can debug
instances of your application that didn’t ship symbols. Once symbols have been published to the
symbol store, you can still debug your application without having to ship the PDBs.

You configure the Default Process to publish symbols by providing the path to the symbol
store in the Source And Symbol Server Settings\Path To Publish Symbols process parameter
in the Basic category, as shown in Figure 14-7. Initially, this path should be an empty folder
on a Universal Naming Convention (UNC) share that is accessible by anyone needing to
debug your application.

406	 Part VI  Team Foundation Build

FIGURE 14-7  Enabling publishing of symbols

Because each developer needs to configure the symbol store path in Visual Studio, it’s
recommended that you have as few symbol stores as possible (ideally just one). To prevent
concurrency issues, the Default Process allows only one build to publish symbols to a symbol
store at a time, so if you are suffering performance issues for this reason and there is a logical
split, you may want to consider multiple symbol stores.

To use the symbol store, the developer needs to add its path to Tools\Options\Debugging\
Symbols\Symbol File (.pdb) Locations, as shown in Figure 14-8.

FIGURE 14-8  Configuring Visual Studio symbol file locations

	 Chapter 14  Team Build Deep Dive	 407

Associate Changesets and Work Items
One important aspect of traceability is being able to trace builds to the changes that were
included in it. The Default Process provides this capability by analyzing the changesets
between the last good build and the current build and associating them and their work items
with the build. The result of this analysis appears in the Build Summary of a completed build,
as shown earlier in this chapter in Figure 14-2.

This functionality was also included in Team Build 2008, but due to its performance, it was
often disabled. Two things have changed in Team Build 2010 to reduce its performance
impact. First, the overall performance of the algorithm was tuned; second, it is performed in
parallel with compiling and testing, so the overall build time is not affected.

That being said, the feature can still be disabled by setting the Associate Changesets and
Work Items process parameter in the Advanced category to False. This analysis will not occur
for private builds regardless of this setting.

Copy Files to the Drop Location
Regardless of the outcome of the build, the Default Process will copy the logs and whatever
build outputs are available to the drop location. The root drop location is specified on
the Build Defaults tab of the build definition, as shown in Figure 14-9, or you can disable
dropping entirely by clearing the This Build Copies Output Files To A Drop Folder check box,
but if you do this, you won’t even get the log files.

FIGURE 14-9  Specifying the drop location root

408	 Part VI  Team Foundation Build

The location specified here isn’t the final destination of the build outputs. Otherwise, each
build would overwrite the previous build. The Default Process will append both the build
definition’s name and the build’s build number to the drop location root to form the drop
location; for example, if the drop location root is \\dropserver\drops and you’re building
the HelloWorld definition, your drop location will be \\dropserver\drops\HelloWorld\
HelloWorld_20100824.1.

To avoid confusion, private builds don’t drop to the same drop location root as triggered
builds. The private drop location root is specified using the Private Drop Location process
parameter in the Advanced category, as shown in Figure 14-10. If this is not specified, private
builds will still run, but their outputs won’t be dropped and a warning will be logged.

FIGURE 14-10  Specifying the private drop location

The drop location will be created from the controller under the context of the build service
account, so this account will require read/write permissions to the drop location root. Refer
to Chapter 13 for more information about Team Build security.

The Default Process recursively copies contents of the Binaries directory to the drop location
regardless of outcome (even unhandled exceptions), the resulting structure is as described for
the /p:OutDir MSBuild argument in the section entitled “Compile,” earlier in this chapter. Logs
are also dropped in the same structure but under the logs subdirectory of the drop location.

	 Chapter 14  Team Build Deep Dive	 409

Revert Files and Check in Gated Changes
Whenever a private build completes (whether it’s successful or not), any pending changes
in the workspace will be undone. If the build (and its tests) are successful and the build is a
gated check-in, or the Check In Changes After Successful Build check box on the Queue Build
dialog is selected, then the Default Process will check in the shelveset.

The shelveset is checked in server-side (the equivalent of executing tf checkin
/shelveset), bypassing gated check-in (to avoid the gated check-in trigger) on behalf of the
person that queued (or caused to be queued) the build. Finally, it is deleted.

Create Work Items for Build Failure
If compilation fails for a project, then the Default Process will open a Bug work item against
the build’s requestor with the values in Table 14-7.

TABLE 14-7  Build Failure Work Item Field Values
Work Item Field Value
Comment “This work item was created by TFS Build on a build failure.”

Priority “1”

Reason “Build Failure”

Repro Steps “Start the build using TFS Build”

Severity “1 – Critical”

Title “Build Failure in Build: {0}”, where {0} is the build number.

Configuring the Team Build Service
Although most settings are configured at the build definition, service-level settings are
configured by running the Team Foundation Server Administration Console on the build
server (either the build controller or build agent) itself.

Changing Communications Ports
By default, Team Build listens on port 9191, but this can be changed using the Team
Foundation Server Administration Console with the following procedure:

	 1.	 Open the Team Foundation Server Administration Console.

	 2.	 Click Build Configuration.

	 3.	 Stop the build service by clicking Stop.

	 4.	 Click Properties to open the Build Service Properties dialog, shown in Figure 14-11.

410	 Part VI  Team Foundation Build

FIGURE 14-11  Build Service Properties dialog

	 5.	 Click Change to open the Build Service Endpoint dialog, shown in Figure 14-12.

FIGURE 14-12  Build Service Endpoint dialog

	 6.	 Enter a new port number in the Port Number text box.

	 7.	 Click OK.

	 8.	 Click Start.

Requiring SSL
Team Build can also require clients to use Secure Sockets Layer (SSL) to encrypt the requests
to and responses from the build service’s endpoint. This is recommended when the network
between the Team Foundation Server application tier and the build agent is untrusted.

	 Chapter 14  Team Build Deep Dive	 411

The first step is to issue and install an X.509 certificate in the build service account’s
certificate store. To be used for securing Team Build, the issued certificate must have an
intended purpose of client authentication and be issued by a certificate authority trusted by
the Team Foundation Server application tier.

Once the certificate has been issued, you need to configure Team Build to use it by doing the
following:

	 1.	 Open the Team Foundation Server Administration Console.

	 2.	 Click Build Configuration.

	 3.	 Stop the build service by clicking Stop.

	 4.	 Click Properties to open the Build Service Properties dialog.

	 5.	 Click Change to open the Build Service Endpoint dialog.

	 6.	 Select the HTTPS protocol.

	 7.	 Select the SSL certificate to use, as shown in Figure 14-13.

FIGURE 14-13  Build Service Endpoint dialog—selecting the SSL certificate

	 8.	 Click OK.

	 9.	 Click Start.

From this dialog, you can also require the application tier or build controller to authenticate
to the build service endpoint by selecting the Require check box in the Client Certificates
group.

Running Interactively
By default, Team Build runs as a service, which is typically desirable because it doesn’t require
the build agent to be logged in. However, because services can’t access the desktop, if your
build process runs unit tests that display a user interface, then they will fail.

412	 Part VI  Team Foundation Build

To work around this, Team Build can be run as an interactive process by doing the following:

	 1.	 Open the Team Foundation Server Administration Console.

	 2.	 Click Build Configuration.

	 3.	 Stop the build service by clicking Stop.

	 4.	 Click Properties to open the Build Service Properties dialog.

	 5.	 Select Interactive Process, as shown in Figure 14-14.

FIGURE 14-14  Build Service Properties dialog—selecting Interactive Process

	 6.	 Enter the account details under which you’ll run Team Build.

	 7.	 Click Start.

The Team Foundation Server Administration Console will start the interactive process for you
automatically. To stop it, you can press Esc. To run the interactive process without opening
the Team Foundation Server Administration Console, you can run this command:

%ProgramFiles%\Microsoft Team Foundation Server 2010\Tools\TFSBuildServiceHost.exe

Running Multiple Build Agents
When you first install Team Build on a build server, you’ll be asked how many build agents
you want to run on the build server. If you want to run a different number of build agents
on the build server at a later stage, you can delete agents or add new agents from the Team
Foundation Server Administration Console, as shown in Figure 14-15.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 14  Team Build Deep Dive	 413

FIGURE 14-15  Adding or deleting build agents

Build Controller Concurrency
Build controllers default to concurrently running as many builds as it has agents; you can
configure this in the Build Controller Properties dialog, shown in Figure 14-16.

FIGURE 14-16  Build Controller Properties dialog

414	 Part VI  Team Foundation Build

Team Build API
Team Build provides a rich application programming interface (API) that allows you to query
and manage the build server, process templates, build definitions, and individual builds.
There are a number of scenarios where the Team Build API is useful:

n	 Automating administration tasks
n	 Integrating Team Build into other processes
n	 Extending the build process

Creating a Project
The first step is to create a project that references the required assemblies. In this example,
we’ll create a new console application called TeamBuildAPI, as shown in Figure 14-17.

FIGURE 14-17  New Project dialog box

Using the Team Build API requires at least three references:

n	 Microsoft.TeamFoundation.Client.dll  Provides the necessary classes to connect to
Team Foundation Server

	 Chapter 14  Team Build Deep Dive	 415

n	 Microsoft.TeamFoundation.Common.dll  Contains common classes such as
exception classes

n	 Microsoft.TeamFoundation.Build.Client.dll  Contains the classes and interfaces
relating to Team Build

These references can be added from the .NET tab of the Add References dialog, but make
sure that you select the 10.0.0.0 assemblies, which are for Team Build 2010.

Connecting to Team Project Collection
Once you’ve referenced these assemblies, you need to obtain a TfsTeamProjectCollection
object, which represents a connection to a Team Project Collection. This object provides
access to all of the services offered by the Team Project Collection, such as build, version
control, and work-item tracking.

The recommended way to create a TfsTeamProjectCollection object is to pass the
URL or Registered Server Name to the GetTeamProjectCollection method of the
TfsTeamProjectCollectionFactory class.

TfsTeamProjectCollection tpc = TfsTeamProjectCollectionFactory
 .GetTeamProjectCollection(new Uri("http://TFSRTM10:8080"));

The advantage of using the factory over creating an instance of the TfsTeamProjectCollection
class directly is that the factory will cache connections based on the URL and will return these
cached connections, which can increase the performance of the application.

The API will attempt to authenticate the user automatically using integrated authentication,
but if this fails, the API will throw a TeamFoundationServerUnauthorizedException exception.
This behavior is inconsistent with Visual Studio, which instead prompts users for their
credentials if they can’t be authenticated automatically. You can achieve this same behavior
by passing an instance of UICredentialsProvider to the GetTeamProjectCollection method.

TfsTeamProjectCollection tpc = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(
 new Uri("http://TFSRTM10:8080"),
 new UICredentialsProvider()
);

When this overload is used, then the API will try to authenticate the user automatically; and
if that fails, it will display the credentials prompt shown in Figure 14-18 and then use those
credentials to authenticate the user to the Team Foundation Server.

416	 Part VI  Team Foundation Build

FIGURE 14-18  Credentials prompt

Connecting to Team Build
In Team Foundation Server 2010, the Team Build functionality is exposed via the IBuildServer
interface. You can’t directly create an instance of IBuildServer (because it is an interface),
but the TfsTeamProjectCollection class has a GetService<T> method that returns a concrete
implementation that you can use:

IBuildServer buildServer = tpc.GetService<IBuildServer>();

Working with Build Service Hosts
The build service host is a feature internal to Team Build that represents a build server
running a build controller, one or more build agents, or both.

Querying Build Service Hosts
To list the build service hosts (either controllers or agents) that have been defined for a
specific Team Project Collection, you call IBuildServer.QueryBuildServiceHosts, as shown here:

IBuildServiceHost[] buildServiceHosts = buildServer.QueryBuildServiceHosts("*");

The QueryBuildServiceHosts method returns an array of objects that implement the
IBuildServiceHost interface shown here:

namespace Microsoft.TeamFoundation.Build.Client
{
 public interface IBuildServiceHost
 {
 ReadOnlyCollection<IBuildAgent> Agents { get; }
 Uri BaseUrl { get; set; }
 IBuildServer BuildServer { get; }
 IBuildController Controller { get; }

	 Chapter 14  Team Build Deep Dive	 417

 string Name { get; set; }
 bool RequireClientCertificates { get; set; }
 Uri Uri { get; }

 void AddBuildAgent(IBuildAgent agent);
 IBuildAgent CreateBuildAgent(string name, string buildDirectory);
 IBuildAgent CreateBuildAgent(string name, string buildDirectory,
 IBuildController buildController);
 IBuildController CreateBuildController(string name);
 void Delete();
 bool DeleteBuildAgent(IBuildAgent agent);
 void DeleteBuildController();
 IBuildAgent FindBuildAgent(string controller, string name);
 void Save();
 void SetBuildAgentStatus(IBuildAgent agent, AgentStatus status, string message);
 void SetBuildController(IBuildController controller);
 void SetBuildControllerStatus(ControllerStatus status, string message);
 }
}

We can determine if a build service host has a build controller by checking if the Controller
property is non-null, and you can determine if it has one or more build agents by checking if
the Agents property contains any objects.

Working with Build Definitions
Being able to work with build definitions programmatically allows you to update build
definitions in bulk, create them automatically, and query them.

Querying Build Definitions
The list of build definitions can be retrieved in a similar manner using the
QueryBuildDefinitions method of the IBuildServer interface, as shown here:

IBuildDefinition[] buildDefinitions = buildServer.QueryBuildDefinitions("Contoso");

This method returns an array of objects that implement IBuildDefinition, as shown here:

namespace Microsoft.TeamFoundation.Build.Client
{
 public interface IBuildDefinition : IBuildGroupItem
 {
 IBuildController BuildController { get; set; }
 Uri BuildControllerUri { get; }
 IBuildServer BuildServer { get; }
 [Obsolete("This property has been deprecated. Please remove all references.")]
 string ConfigurationFolderPath { get; set; }
 int ContinuousIntegrationQuietPeriod { get; set; }
 ContinuousIntegrationType ContinuousIntegrationType { get; set; }
 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 IBuildAgent DefaultBuildAgent { get; set; }

418	 Part VI  Team Foundation Build

 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 Uri DefaultBuildAgentUri { get; }
 string DefaultDropLocation { get; set; }
 string Description { get; set; }
 bool Enabled { get; set; }
 string Id { get; }
 Uri LastBuildUri { get; }
 string LastGoodBuildLabel { get; }
 Uri LastGoodBuildUri { get; }
 IProcessTemplate Process { get; set; }
 string ProcessParameters { get; set; }
 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 Dictionary<BuildStatus, IRetentionPolicy> RetentionPolicies { get; }
 List<IRetentionPolicy> RetentionPolicyList { get; }
 List<ISchedule> Schedules { get; }
 IWorkspaceTemplate Workspace { get; }

 IRetentionPolicy AddRetentionPolicy(BuildReason reason, BuildStatus status,
 int numberToKeep, DeleteOptions deleteOptions);
 ISchedule AddSchedule();
 IBuildRequest CreateBuildRequest();
 IBuildDetail CreateManualBuild(string buildNumber);
 IBuildDetail CreateManualBuild(string buildNumber, string dropLocation);
 IBuildDetail CreateManualBuild(string buildNumber, string dropLocation,
 BuildStatus buildStatus, IBuildController controller, string requestedFor);
 [Obsolete("This method has been deprecated. Please remove all references.", true)]
 IProjectFile CreateProjectFile();
 IBuildDefinitionSpec CreateSpec();
 void Delete();
 IBuildDetail[] QueryBuilds();
 void Save();
 }
}

In this example, we use the array of build definitions to change each of their default build
controllers to the first build controller.

IBuildController defaultBuildController = buildServer.QueryBuildServiceHosts("*")
 .Where(bsh => bsh.Controller != null).Select(bsh => bsh.Controller).First();

foreach (IBuildDefinition buildDefinition in buildDefinitions) {
 buildDefinition.BuildController = defaultBuildController;
 buildDefinition.Save();
}

Creating a Build Definition
Build definitions can be created using the CreateBuildDefinition method on the IBuildServer
interface. This method returns IBuildDefinition, which can be populated with the required
values before calling Save to persist the build definition to the TfsBuild database.

This example creates a new build definition, which is configured to build on each check-in,
defaults to the first build controller, and retains only two successful builds.

	 Chapter 14  Team Build Deep Dive	 419

IBuildDefinition buildDefinition = buildServer.CreateBuildDefinition("Contoso");
buildDefinition.Name = "HelloWorld";
buildDefinition.ContinuousIntegrationType = ContinuousIntegrationType.Individual;
buildDefinition.BuildController = defaultBuildController;
buildDefinition.DefaultDropLocation = @"\\CONTOSO\Projects\HelloWorld\drops";

IRetentionPolicy retentionPolicy = buildDefinition.RetentionPolicyList.Where(
 rp => rp.BuildReason == BuildReason.Triggered
 || rp.BuildStatus == BuildStatus.Succeeded)
 .First();
retentionPolicy.NumberToKeep = 2;
retentionPolicy.DeleteOptions = DeleteOptions.All;

buildDefinition.Save();

Working with Builds
Working with builds programmatically allows you to automate launching builds from other
systems, develop a build status dashboard, and develop alerting systems.

Queuing a Build
Queuing builds using the API can be useful for integrating builds into other processes and
can give more control than what is available via the command-line interface or Visual Studio.

The most flexible way to queue a build is by creating IBuildRequest by calling the
CreateBuildRequest method on the IBuildDefinition interface and then passing this to
the QueueBuild method on the IBuildServer interface.

As you can see here, the IBuildRequest interface allows you to specify all of the options
available in the Queue Build dialog in Visual Studio.

namespace Microsoft.TeamFoundation.Build.Client
{
 public interface IBuildRequest
 {
 [Obsolete("This property has been deprecated. Please remove all references.
 Use the BuildController property instead.", true)]
 IBuildAgent BuildAgent { get; set; }
 [Obsolete("This property has been deprecated. Please remove all references.
 Use the BuildControllerUri property instead.", true)]
 Uri BuildAgentUri { get; }
 IBuildController BuildController { get; set; }
 Uri BuildControllerUri { get; }
 IBuildDefinition BuildDefinition { get; }
 Uri BuildDefinitionUri { get; }
 IBuildServer BuildServer { get; }
 [Obsolete("This property has been deprecated. Please remove all references. To pass
command
 line arguments to MSBuild.exe, set the ProcessParameters property.", true)]

420	 Part VI  Team Foundation Build

 string CommandLineArguments { get; set; }
 string CustomGetVersion { get; set; }
 string DropLocation { get; set; }
 string GatedCheckInTicket { get; set; }
 GetOption GetOption { get; set; }
 int MaxQueuePosition { get; set; }
 bool Postponed { get; set; }
 QueuePriority Priority { get; set; }
 string ProcessParameters { get; set; }
 BuildReason Reason { get; set; }
 string RequestedFor { get; set; }
 string ShelvesetName { get; set; }
 }
}

In this example, we queue a build for each build definition that has been defined in the
Contoso Team Project.

foreach (IBuildDefinition buildDefinition in buildServer.QueryBuildDefinitions("Contoso")) {
 IBuildRequest request;
 request = buildDefinition.CreateBuildRequest();

 buildServer.QueueBuild(request);
}

Querying Build Queues
Accessing the queued builds is slightly more complicated than querying build agents
and build definitions. First, you need to create an IQueuedBuildsView object using the
CreateQueuedBuildsView method on the IBuildServer interface.

IQueuedBuildsView queuedBuildsView = buildServer.CreateQueuedBuildsView("Contoso");

You then need to define the filters for the view. You can filter based on the build agent,
build definition, or build status using the ControllerFilter, DefinitionFilter, and StatusFilter
properties, respectively. You can also determine for how long a completed build should
remain in the build queue using the CompletedWindow property. We’ll include just builds
that have a status of Queued.

queuedBuildsView.StatusFilter = QueueStatus.Queued;

We then define how much information about each build should be returned using the
QueryOptions property. This enumeration allows you to specify whether the build agent,
build definition, or workspace details should be returned; in addition, you can request
multiple objects to be returned by OR-ing the values. We’ll return the details about the build
definitions and the build controllers.

queuedBuildsView.QueryOptions = QueryOptions.Definitions | QueryOptions.Controllers;

	 Chapter 14  Team Build Deep Dive	 421

Finally, we call the Refresh method to retrieve the list of queued builds. The Boolean
parameter indicates whether recently completed builds should also be returned, in this
case because we want only queued builds. The list of queued builds can then be accessed
from the QueuedBuilds property, which returns an array of objects implementing the
IQueuedBuild interface. Finally, we cancel all of the queued builds returned by the view.

queuedBuildsView.Refresh(false);
foreach (IQueuedBuild queuedBuild in queuedBuildsView.QueuedBuilds) {
 queuedBuild.Cancel();
}

Querying Build History
Completed builds can be queried using the QueryBuilds method on the IBuildServer or
IBuildDefinition interface. If you call the QueryBuilds method on an object implementing
IBuildDefinition, it will return all builds for that build definition, whereas calling it on an
object implementing IBuildServer allows you to filter the builds based on different criteria.
All of these variants of QueryBuilds return an array of objects implementing the IBuildDetail
interface, as shown here:

namespace Microsoft.TeamFoundation.Build.Client
{
 public interface IBuildDetail
 {
 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 IBuildAgent BuildAgent { get; }
 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 Uri BuildAgentUri { get; }
 IBuildController BuildController { get; }
 Uri BuildControllerUri { get; }
 IBuildDefinition BuildDefinition { get; }
 Uri BuildDefinitionUri { get; }
 bool BuildFinished { get; }
 string BuildNumber { get; set; }
 IBuildServer BuildServer { get; }
 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 string CommandLineArguments { get; }
 BuildPhaseStatus CompilationStatus { get; set; }
 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 string ConfigurationFolderPath { get; }
 [Obsolete("This property has been deprecated. Please remove all references.", true)]
 Uri ConfigurationFolderUri { get; }
 string DropLocation { get; set; }
 string DropLocationRoot { get; }
 DateTime FinishTime { get; }
 IBuildInformation Information { get; }
 bool IsDeleted { get; }
 bool KeepForever { get; set; }
 string LabelName { get; set; }
 string LastChangedBy { get; }
 DateTime LastChangedOn { get; }

422	 Part VI  Team Foundation Build

 string LogLocation { get; set; }
 string ProcessParameters { get; }
 string Quality { get; set; }
 BuildReason Reason { get; }
 string RequestedBy { get; }
 string RequestedFor { get; }
 string ShelvesetName { get; }
 string SourceGetVersion { get; set; }
 DateTime StartTime { get; }
 BuildStatus Status { get; set; }
 string TeamProject { get; }
 BuildPhaseStatus TestStatus { get; set; }
 Uri Uri { get; }

 event PollingCompletedEventHandler PollingCompleted;
 event StatusChangedEventHandler StatusChanged;
 event StatusChangedEventHandler StatusChanging;

 void Connect();
 void Connect(int pollingInterval, ISynchronizeInvoke synchronizingObject);
 IBuildDeletionResult Delete();
 IBuildDeletionResult Delete(DeleteOptions options);
 void Disconnect();
 void FinalizeStatus();
 void FinalizeStatus(BuildStatus status);
 void Refresh(string[] informationTypes, QueryOptions queryOptions);
 void RefreshAllDetails();
 void RefreshMinimalDetails();
 void Save();
 void Stop();
 void Wait();
 }
}

In this example, we use a build detail specification to filter the list of all builds in the Contoso
Team Project to those finished in the last five days.

IBuildDetailSpec spec = buildServer.CreateBuildDetailSpec("Contoso");
spec.MinFinishTime = DateTime.Now.AddDays(-5);
IBuildDetail[] builds = buildServer.QueryBuilds(spec).Builds;

foreach (IBuildDetail build in builds) {
 Console.WriteLine(build.BuildNumber);
}

		 423

Chapter 15

Workflow Foundation Quick Start
Workflow Foundation (WF), included in Microsoft .NET Framework 4.0, has been completely
re-engineered to increase performance and make developers more productive. The
changes made were necessary in many respects in order to provide the best experience for
developers adopting Workflow Foundation and to enable Workflow Foundation to continue
being a strong platform for use in your applications.

This chapter, written by Jason Ward, is about Workflow Foundation and how it is a set of
tools for declaring your workflow (also known as business logic), activities to define the logic
and control flow, and a run time for executing the resulting application definition. Workflow
Foundation is about using a higher-level language for writing applications, with the goal
of making applications easier to manage while simultaneously increasing productivity and
facilitating quicker implementation of changes.

Introduction to Workflow Foundation
This section discusses the types of workflows available and demonstrates a basic “Hello
World” workflow.

Types of Workflows
Workflow Foundation provides three types of workflows:

n	 Sequential  Executes activities in sequence, one after another. Execution must always
move forward.

n	 Flowchart  Executes activities one after another, like a Sequence activity, but also
allows control to return to an earlier step. This is new in the .NET Framework 4.0 release
of Workflow Foundation and more in alignment with how we think, and indeed how
real processes actually work.

n	 State Machine  Provides a modeling style with which you can model your workflow
in an event-driven manner. Each state can have a set of transitions that specify the
execution logic between the states.

Note  The State Machine workflow type is shipped as an Activity Pack, available at
http://wf.codeplex.com.

424	 Part VI  Team Foundation Build

Building a Simple Workflow Application
No introduction is complete without the stereotypical “Hello World” example, and this one
is no different! Let’s go ahead and build a simple “Hello World” application to walk you
through how to get started.

	 1.	 Open Microsoft Visual Studio 2010.

	 2.	 Click the New Project link.

	 3. 	Under Installed Templates, navigate to Microsoft Visual C#, Workflow and select
the Workflow Console Application, as shown in Figure 15-1. Enter the name as
HelloWorldExample, and select a suitable location of your choice.

FIGURE 15-1  Creating a new Workflow project

	 4. 	Click OK. The project will be created, and you should see an empty Workflow Designer,
as shown in Figure 15-2.

	 5.	 In the Toolbox, click the Control Flow tab and drag a Sequence activity onto the
Workflow Designer.

	 6.	 In the Toolbox, click the Primitives tab and drag a WriteLine activity onto the sequence
that you created in step 5.

	 Chapter 15  Workflow Foundation Quick Start	 425

FIGURE 15-2  The Visual Studio IDE showing an empty Workflow Designer window

	 7.	 Double-click inside the Text text box and type “Hello World!”. The Workflow should
now look like Figure 15-3.

FIGURE 15-3  The completed Workflow

	 8.	 In Solution Explorer, locate and open the Program.cs file. You should see the following
code:

using System;
using System.Linq;
using System.Activities;

426	 Part VI  Team Foundation Build

using System.Activities.Statements;

namespace HelloWorldExample
{
 class Program
 {
 static void Main(string[] args)
 {
 WorkflowInvoker.Invoke(new Workflow1());

 Console.WriteLine(“Press the ENTER key to exit”);
 Console.ReadLine();
 }
 }
}

The static Workflow Invoker class is used to start the Workflow. The additional two
lines shown in bold are not part of the default implementation. I added these lines to
prevent the console application from exiting before you see the output. You should
also add these two lines to your Program.cs file in the same location.

Running the Application
Press F5 to run the application. You should see the following output:

Hello World!
Press the ENTER key to exit

Workflow Design
In order to get started designing your Workflows, it’s important that you understand some
of the basic concepts and functionality available. This includes the built-in activities, as well as
passing arguments between activities and how to handle exceptions.

Built-in Activities
Workflow Foundation ships with a number of activities. In the next sections, you’ll find
a summary of the commonly used activities.

Sequence
A container activity that allows you to categorize activities into logical groups, each of which
are executed in sequential order. It’s important to point out that all activities must be placed
inside a Sequence.

	 Chapter 15  Workflow Foundation Quick Start	 427

DoWhile
Executes the Body activities while its Condition equals True. The Body will be executed at
least once.

ForEach<T>
Contains a list of Values and a Body. At run time, the list is iterated and the Body is executed
for each value in the list.

If
Chooses a child activity to be executed based on a Boolean expression value. If the condition
equals True, the Then activity is executed. If False, the Else activity is executed.

Parallel
Allows parallel execution of its child activities. It completes when all child activities have
completed, or when its CompletionCondition evaluates to True.

ParallelForEach<T>
Enumerates the values of its collection, executing an activity for each element in the
collection. Similar to the ForEach activity, although each activity is executed in parallel. Also
similar to the Parallel activity, ParallelForEach<T> has a CompletionCondition, which can
allow early termination should it evaluate to True. The CompletionCondition is evaluated
after each iteration is completed.

Pick
Provides event-based control flow modeling. A Pick activity can contain only PickBranches
activities. The Pick activity is similar in concept to the C# switch statement, although unlike
the switch statement, which executes a branch based on a value, the Pick activity executes
based on how an activity completes.

PickBranch
Represents a branch in a Pick. A PickBranch activity can be added only to a Pick activity.

Switch<T>
The Switch<T> activity is similar in concept to the C# switch statement, although rather than
executing a branch based on a value, Switch<T> schedules an activity to be executed based
on the result of an expression.

428	 Part VI  Team Foundation Build

While
Executes the Body activites while its Condition equals True.

Working with Data

Arguments
Data is passed in and out of Workflows using arguments. You can define the arguments for
each activity in the Workflow Designer by selecting the activity and clicking the Arguments
tab at the bottom of the Workflow Designer to display the Arguments Designer, shown in
Figure 15-4.

FIGURE 15-4  The Arguments Designer

To create a new argument, simply click in the Create Argument line and define the following
properties for your argument:

n	 Name  The name of your argument. This will essentially be the property you will set in
your workflow from your host application.

n	 Direction  Defines whether this argument is passed into the workflow, passed out
of the workflow, or both.

n	 Argument Type  The type of object you are using. This can be a simple type, such as
String, or a complex type you define, such as a custom Person class.

n	 Default Value  Allows you to set a value in case the argument isn’t passed into the
Workflow.

To demonstrate how we can use an argument, let’s expand on the simple application we built
at the beginning of this chapter to use the FirstName argument shown in Figure 15-4.

	 1.	 Double-click inside the Text text box and change the value to “Hello “ & FirstName & “!”.
The Workflow should now look like Figure 15-5.

	 2.	 In Solution Explorer, locate and open the Program.cs file. Modify your code so it looks
like this:

using System;
using System.Linq;
using System.Activities;
using System.Activities.Statements;

	 Chapter 15  Workflow Foundation Quick Start	 429

using System.Collections.Generic;

namespace HelloWorldExample
{
 class Program
 {
 static void Main(string[] args)
 {
 var inArguments = new Dictionary<string, object>();
 inArguments.Add(“FirstName”, “Jason”);

 Workflow1 workflow = new Workflow1();
 WorkflowInvoker.Invoke(workflow, inArguments);

 Console.WriteLine(“Press the ENTER key to exit”);
 Console.ReadLine();
 }
 }
}

FIGURE 15-5  The updated Workflow showing the use of the FirstName argument

Tip  Even though I could have simply set the FirstName property of my workflow object, it is
best practice to use a Dictionary object because not all types will be exposed with properties.

Running the Application
Press F5 to run the application. You should see the following output:

Hello Jason!
Press the ENTER key to exit

Variables
Variables are storage locations for data and are declared as part of the workflow definition.
A variable definition is made using the Variables Designer, shown in Figure 15-6, to specify
the name of the variable, the type of the variable, the scope, and (if you want) the default

430	 Part VI  Team Foundation Build

value. Variables can also have modifiers (available in the Properties window), which allow you
to set a variable as Read-Only, for example. The lifetime of a variable is equal to the lifetime
of the associated activity that contains the variable declaration.

FIGURE 15-6  Declaring a variable in the Variables Designer

Imports
The Imports Designer, a new feature added in WF 4.0, allows you to pick out the namespaces
that you want to import, making it easier to resolve types. This saves you from having to
fully qualify types when using expressions. An example of importing a namespace using the
built-in search functionality is shown in Figure 15-7.

FIGURE 15-7  Importing a new namespace using the Imports Designer

Exception Handling
Like other exception handling that you may be familiar with, workflow exceptions will
propogate up the hierarchy until they are caught. If you like, you can choose to rethrow them,
which will cause them to continue propogating up the stack until they are caught again.

It’s very important to choose where to place exception handling in your application. For
example, surrounding your entire workflow in a TryCatch activity might seem like a good
idea, but it doesn’t allow you to handle exceptions in the proper way and may not provide
you with the behavior you expect.

There are two ways of dealing with exceptions in Workflow Foundation. In this section, I will
provide a brief overview of each, as well as examples on how to use them.

	 Chapter 15  Workflow Foundation Quick Start	 431

TryCatch
The TryCatch activity is useful when you want fine control over which activities should react
to errors, and indeed how they should react to errors. By using the TryCatch activity, you’re
assuming the activity may run into problems, and you’d like to handle the issue without
terminating the workflow. This is very similar to the role of the Try/Catch statement in
languages such as C# and VB.NET.

To demonstrate the use of the TryCatch activity, let’s modify the application that we’ve
created so far in this chapter.

	 1.	 Drag a TryCatch activity from the Toolbox and place it inside the Sequence activity,
directly above the WriteLine activity, as shown in Figure 15-8.

FIGURE 15-8  The empty TryCatch activity inside our Workflow

	 2.	 Drag a Throw activity from the Toolbox into the Try area of the TryCatch activity.

	 3.	 Right-click the Throw activity and choose Properties.

	 4.	 Click the ellipses next to the Exception text box to display the Expression Editor,
and enter the value, as displayed in Figure 15-9.

	 5.	 Click OK.

	 6.	 Inside the TryCatch activity, click the Add New Catch line under the Catches category
header displayed in bold. This will display a drop-down list, asking which exception
type you’d like to catch.

432	 Part VI  Team Foundation Build

FIGURE 15-9  The Expression Editor for the Throw activity’s Exception property

	 7.	 Choose System.Exception from the list of options and press Enter.

	 8.	 Drag a WriteLine activity into the Exception catch area.

	 9.	 Set the Text for the WriteLine activity to match the value shown in Figure 15-10.

FIGURE 15-10  The value for the WriteLine activity inside our TryCatch activity

	 10.	 Press F5 to run the application, and you should see the following output:

Hi, I’m an Exception!
Hello Jason!
Press the ENTER key to exit

Global Exception Notification
There is often a requirement to be notified of any unhandled exceptions in the workflow. For
example, perhaps you want to send an email every time an unhandled exception error occurs
in the workflow. You can do this using the OnUnhandledException callback available in the
WorkflowApplication class. The code here shows an example of how to use the callback in

	 Chapter 15  Workflow Foundation Quick Start	 433

a modified version of the Program.cs file that we have been using in our sample application
throughout this chapter.

using System;
using System.Linq;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;

namespace HelloWorldExample
{
 class Program
 {
 static void Main(string[] args)
 {
 var inArguments = new Dictionary<string, object>();
 inArguments.Add(“FirstName”, “Jason”);

 Workflow1 workflow = new Workflow1();

 var workflowApp = new WorkflowApplication(workflow, inArguments);

 workflowApp.OnUnhandledException = e =>
 {
 Console.WriteLine(e.UnhandledException.Message);
 return UnhandledExceptionAction.Terminate;
 };

 workflowApp.Run();

 Console.WriteLine(“Press the ENTER key to exit”);
 Console.ReadLine();
 }
 }
}

Note  Because the workflowApp.Run method executes asynchronously, you may now see the
“Press the ENTER key to exit” line before the exception message in the console output.

Custom Activities
As with almost everything in the .NET Framework, you can also extend the provided activities
or create the following custom activities to cater to your needs:

n	 Composite activities  A composite activity is essentially the same as a workflow.
It allows you to embed other activities inside of it.

n	 XAML activities  These are activities where the logic is encapusulated in the XAML
file—hence, the .xaml file extension.

n	 Native activities  Also referred to as code activities, these are activities where the
logic is encapusulated in a code file.

434	 Part VI  Team Foundation Build

Creating a Custom Activity
It’s always a best practice to create custom activities in a separate library. Let’s go ahead and
create a custom WriteLine activity that we can use to replace the default WriteLine activity
we’ve been using in our sample application.

	 1.	 In Solution Explorer, right-click the HelloWorldExample solution and select Add\New
Project from the context menu.

	 2.	 Under Installed Templates, navigate to Visual C#, Workflow and select Activity Library,
as shown in Figure 15-11. Enter the name as HelloWorldExample.CustomActivities
and select a suitable location of your choice.

FIGURE 15-11  Adding an Activity Library project to the current solution

	 3.	 Click OK. The project will be created, and you should see that the new project has been
added to the solution, as shown in Figure 15-12.

	 4.	 In Solution Explorer, right-click the Activity1.xaml file and select Delete from the
context menu.

	 5.	 In Solution Explorer, right-click the HelloWorldExample.CustomActivities project and
select Add\New Item . . . from the context menu.

	 6.	 Navigate to Workflow in the list of Installed Templates, and then choose Code Activity,
as shown in Figure 15-13. Enter the name as CustomWriteLine.cs.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 15  Workflow Foundation Quick Start	 435

FIGURE 15-12  Solution Explorer showing the newly added project

FIGURE 15-13  Adding the custom code activity to the HelloWorldExample.CustomActivities project

	 7.	 Click Add. The file will be created, and the code will show in the editor.

436	 Part VI  Team Foundation Build

	 8.	 Modify the generated code in the CustomWriteLine.cs file so the Execute method looks
identical to the following code.

protected override void Execute(CodeActivityContext context)
 {
 // Obtain the runtime value of the Text input argument
 string text = context.GetValue(this.Text);

 Console.WriteLine(“Hello from the Custom WriteLineActivity, {0}!”, text);
 }

Build the solution by pressing Ctrl + Shift + B.

	 9.	 Navigate back to the Workflow and delete all activities. Drag a new Sequence activity
onto the Workflow Designer.

	 10.	 Scroll to the top of the Toolbox and drag the CustomWriteLine activity from the
Toolbox onto the Workflow, inside the Sequence activity, as shown in Figure 15-14.

FIGURE 15-14  Adding the CustomWriteLine activity to the Workflow Designer

	 11.	 Right-click the CustomWriteLine activity and select Properties. Double-click inside the
Text property text box and type FirstName, as shown in Figure 15-15.

FIGURE 15-15  Setting the Text property on the CustomWriteLine activity

	 12.	 Press F5 to run the application. You should see the following output in the Console
window:

Hello from the CustomWriteLine activity, Jason!
Press the ENTER key to exit

	 Chapter 15  Workflow Foundation Quick Start	 437

Note  Because the workflowApp.Run method executes asynchronously, you may see the
“Press the ENTER key to exit” message in the first line of the console output.

Workflow Extensions
One of the core features of Workflow Foundation is its ability to be hosted in any .NET
application domain. Although, since it can operate in different domains, chances are that it’s
going to need customized execution semantics, which means various aspects of the run-time
behaviors need to be externalized from the run time. This is where Workflow Extensions
provide a benefit—they enable you, as the developer, to add behavior to the run time with
custom code.

The two extensions that the run time is aware of are the tracking and persistence extensions.

Persistence
The persistence extension provides the core functionality for saving workflow state to
permanent store (such as a database) and retrieving that state when needed. As part of
the standard functionality, the persistence extension supports Microsoft SQL Server, but
extensions can be written to support other databases or storage formats.

Persistence is useful for long-running workflows, load balancing, and fault tolerance.

Tracking
Once a workflow is complete, the state of a workflow is often deleted from the data store
because it is no longer required. Having information about what a workflow is currently
doing can be useful in managing a workflow and gaining insight into a process. This is where
tracking comes into play. The ability to track what is happening in your application is, after
all, one of the compelling features of Workflow Foundation.

Tracking consists of two primary components—participants and profiles. A profile defines
the events and data that you want to track. A participant is an extension that can be added
to the run time, whose job it is to process tracking records as they are emitted. This can be
accomplished by deriving from the TrackingParticipant base class, which defines a property
to provide a tracking profile as well as a Track method to handle the tracking.

438	 Part VI  Team Foundation Build

Putting It All Together—Workflow Foundation Image
Resizer Sample Application

This sample project has been designed to utilize some of the concepts you’re learned so far
in this chapter. This project is fairly extensive, with a large amount of code, so in order to save
you some time, you can also download a copy of the completed sample from

Overview
This application, exposed as a console application, allows you to resize, and optionally
automatically attempt to correct the orientation, of photographs in a folder that you specify.

Some of the key workflow concepts that will be demonstrated are custom activities, error
handling, parallelization, arguments, and variables.

Let’s go ahead and get started!

Building the Application
	 1.	 Open Visual Studio 2010.

	 2.	 Click the New Project link.

	 3. 	Under Installed Templates, navigate to Visual C#, Workflow and select the Workflow
Console Application, as shown in Figure 15-16. Enter the name as WFImageResizer
and select a suitable location of your choice.

FIGURE 15-16  Creating a new Workflow project

	 Chapter 15  Workflow Foundation Quick Start	 439

	 4. 	Click OK. The project will be created, and you should see an empty Workflow Designer,
as shown in Figure 15-17.

FIGURE 15-17  The Visual Studio IDE showing an empty Workflow Designer window

	 5.	 In Solution Explorer, right-click the solution, select Add, and then select New Project.

	 6.	 Under Installed Templates, navigate to Visual C#, Workflow and select the Activity
Library, as shown in Figure 15-18. Enter the name as WFImageResizer.Components
and select a suitable location of your choice.

	 7.	 Click OK. The project will now be added to the solution.

	 8.	 In the WFImageResizer.Components project, locate the Activity1.xaml file. Right-click
and select Delete from the context menu. Click OK to confirm the deletion.

	 9.	 Right-click the WFImageResizer.Components project and select Add New Item.

	 10.	 Under Installed Templates, navigate to Visual C# Items, Workflow and select the
Activity item. Enter the name as ResizeImageActivity.xaml and then click Add.

	 11.	 Right-click the WFImageResizer.Components project and select AddNew Item.

	 12.	 Under Installed Templates, navigate to Visual C# Items, Workflow and select the Code
Activity item. Enter the name as ResizeImage.cs and then click Add.

	 13.	 Right-click the WFImageResizer.Components project and select Add New Item.

	 14.	 Under Installed Templates, navigate to Visual C# Items, Code and select the Class item.
Enter the name as Options.cs and click Add.

440	 Part VI  Team Foundation Build

FIGURE 15-18  Adding the Activity Library project to the solution

	 15.	 Your solution should now look identical to Figure 15-19.

FIGURE 15-19  The solution with all projects and files added

	 16.	 Right-click the WFImageResizer.Components project and select Add Reference.

	 17.	 Add a reference to the System.Drawing (version 4.0.0.0) assembly.

	 Chapter 15  Workflow Foundation Quick Start	 441

	 18.	 In Solution Explorer, locate and open the Options.cs file. Modify the code to match the
following code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace ImageResizer.Components
{
 public class Options
 {
 private List<FileInfo> files;

 public string SourceDirectory { get; set; }
 public string TargetDirectory { get; set; }
 public bool AutoRotate { get; set; }
 public bool Parallelize { get; set; }
 public int Height { get; set; }
 public int Width { get; set; }

 public List<FileInfo> Files
 {
 get
 {
 if (files == null || files.Count == 0)
 {
 files = new List<FileInfo>();
 var imagepaths = Directory.GetFiles(SourceDirectory, “*.jpg”);

 foreach (string path in imagepaths)
 {
 FileInfo fileInfo = new FileInfo(path);
 files.Add(fileInfo);
 }
 }

 return files;
 }
 }
 }
}

	 19.	 In Solution Explorer, locate and open the ResizeImage.cs file. Modify the code to match
the following code:

using System;
using System.Activities;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;

442	 Part VI  Team Foundation Build

namespace ImageResizer.Components
{
 public sealed class ResizeImage : AsyncCodeActivity
 {
 public InArgument<FileInfo> InputFile { get; set; }
 public InArgument<Options> Options { get; set; }
 public OutArgument<FileInfo> OutputFile { get; set; }

 protected override IAsyncResult BeginExecute(AsyncCodeActivityContext context,
AsyncCallback callback, object state)
 {
 // Obtain the runtime value of the Text input argument
 FileInfo image = context.GetValue(this.InputFile);
 Options options = context.GetValue(this.Options);

 Func<FileInfo, Options, AsyncCodeActivityContext, FileInfo> resizeDelegate =
new Func<FileInfo, Options, AsyncCodeActivityContext, FileInfo>(ResizeImageFile);
 context.UserState = resizeDelegate;
 IAsyncResult result = resizeDelegate.BeginInvoke(image, options, context,
callback, state);

 return result;
 }

 protected override void EndExecute(AsyncCodeActivityContext context,
IAsyncResult result)
 {
 Func<FileInfo, Options, AsyncCodeActivityContext, FileInfo> resizeDelegate =
context.UserState as Func<FileInfo, Options, AsyncCodeActivityContext, FileInfo>;
 FileInfo resizedFile = resizeDelegate.EndInvoke(result);

 OutputFile.Set(context, resizedFile);
 }

 public FileInfo ResizeImageFile(FileInfo image, Options options,
AsyncCodeActivityContext context)
 {
 // Get the image codec info
 ImageCodecInfo CodecInfo = GetEncoderInfo(“image/jpeg”);

 //Save the bitmap as a JPEG file with quality level 75.
 System.Drawing.Imaging.Encoder encoder = System.Drawing.Imaging.Encoder
.Quality;
 EncoderParameter encoderParameter = new System.Drawing.Imaging
.EncoderParameter(encoder, 100L);
 EncoderParameters encoderParameters = new EncoderParameters();
 encoderParameters.Param[0] = encoderParameter;

 System.Drawing.Image img = null;
 System.Drawing.Bitmap bitmap = null;
 string savePath = string.Empty;

 try
 {
 img = System.Drawing.Image.FromFile(image.FullName);

	 Chapter 15  Workflow Foundation Quick Start	 443

 if (options.AutoRotate == true)
 {
 var pi = img.PropertyItems.FirstOrDefault(p => p.Id == 0x0112);
 if (pi != null)
 {
 switch (pi.Value[0])
 {
 case 6:
 img.RotateFlip(System.Drawing.RotateFlipType
.Rotate90FlipNone);
 break;
 case 8:
 img.RotateFlip(System.Drawing.RotateFlipType
.Rotate270FlipNone);
 break;
 default:
 break;
 }
 }
 }

 //set the width and height, using the original values if not specified
 int width = options.Width == 0 ? img.Width : options.Width;
 int height = options.Height == 0 ? img.Height : options.Height;

 if (img.Width < img.Height)
 {
 int tempWidth = width;
 width = height;
 height = tempWidth;
 }

 bitmap = new System.Drawing.Bitmap(img, new System.Drawing.Size(width,
height));

 //make sure the target directory exists. If not, create it!
 if (!Directory.Exists(options.TargetDirectory))
 Directory.CreateDirectory(options.TargetDirectory);

 savePath = Path.Combine(options.TargetDirectory, image.Name);
 bitmap.Save(savePath, CodecInfo, encoderParameters);

 if (!string.IsNullOrWhiteSpace(savePath))
 return new FileInfo(savePath);

 return null;
 }
 catch
 {
 throw new Exception
 (
 string.Format(“Cannot resize ‘{0} as it is not a valid image
file!”, image.Name)
);
 }

444	 Part VI  Team Foundation Build

 finally
 {
 if (bitmap != null)
 bitmap.Dispose();

 if (img != null)
 img.Dispose();
 }
 }

 private static ImageCodecInfo GetEncoderInfo(String mimeType)
 {
 var encoders = ImageCodecInfo.GetImageEncoders();

 var codec = Array.Find<ImageCodecInfo>(
 encoders,
 e => e.MimeType.Equals(mimeType, StringComparison.
CurrentCultureIgnoreCase)
);

 if (codec != null)
 return codec;

 return null;
 }

 }
}

	 20.	 Build the solution. This is to verify the changes so far and to add the activity to the
Toolbox.	

	 21.	 In Solution Explorer, locate and open the ResizeImageActivity.xaml file.

	 22.	 Open the Arguments Designer and add the following arguments:

TABLE 12-1  The Required Arguments for the ResizeImageActivity Activity
Name Direction Argument Type Default Value
Options In ImageResizer.Components.Options

InputFile In System.IO.FileInfo

Note  When adding these arguments, you will need to select custom Argument Types.
This can be accomplished by selecting the Browse For Types . . . option in the combo box
that appears after selecting the Argument Type cell in the Arguments Designer.

	 23.	 In the Toolbox, select the Error Handling tab and drag a TryCatch activity onto the
Workflow Designer.

	 24.	 With the TryCatch activity selected in the Workflow Designer, add the following
variable using the Variable Designer.

	 Chapter 15  Workflow Foundation Quick Start	 445

TABLE 12-2  The Required Variable for the TryCatch Activity
Name Variable Type Scope Default
outputFile System.IO.FileInfo TryCatch

	 25.	 In the Toolbox, click the Control Flow tab and drag a Sequence activity onto the
Workflow Designer, inside the Try section of the TryCatch activity. Your workflow
should now look the same as Figure 15-20.

FIGURE 15-20  The Sequence activity added to the TryCatch activity

	 26.	 In the Toolbox, click the ImageResizer.Components tab and drag the ResizeImage
activity on the Workflow Designer, inside the Sequence activity that you just added.

	 27.	 Right-click the ResizeImage activity and choose Properties.

	 28.	 Enter the necessary property values for the ResizeImage activity as shown in
Figure 15-21.

FIGURE 15-21  Setting the required values of the ResizeImage activity

	 29.	 In the Toolbox, click the Primitives tab and drag the WriteLine activity on the Workflow
Designer, still inside the Sequence activity and just below the ResizeImage activity that
you just added.

446	 Part VI  Team Foundation Build

	 30.	 Right-click the WriteLine activity and choose Properties.

	 31.	 Click the ellipses next to the Text text box to display the Expression Editor, and enter
the value, as displayed in Figure 15-22.

FIGURE 15-22  Setting the value of the WriteLine activity

	 32.	 Click OK. This completes the changes in the Try section of the TryCatch activity.

	 33.	 Click the Add New Catch link in the Catches section of the TryCatch activity.

	 34.	 Choose System.Exception from the drop-down list that appears and press Enter.

	 35.	 In the Toolbox, click the Primitives tab and drag the WriteLine activity on the Workflow
Designer, inside the Catch block you just created.

	 36.	 Double-click the Text area in the WriteLine activity and type exception.Message as
the value. Your workflow should now look the same as Figure 15-23.

FIGURE 15-23  Completing the Catch block by setting the value of the WriteLine activity

	 37.	 Right-click the WFImageResizer project and select Add Reference.

	 38.	 Add a reference to the WFImageResizer.Components project.

	 39.	 Build the solution.	

	 Chapter 15  Workflow Foundation Quick Start	 447

	 40.	 In Solution Explorer, locate and open the Workflow1.xaml file in the WFImageResizer
project.

	 41. 	Open the Arguments Designer and add the following argument:

TABLE 15-3  The Required Argument for the Workflow1.xaml File
Name Direction Argument Type Default Value
Options In ImageResizer.Components

.Options

	 42.	 In the Toolbox, click the Control Flow tab and drag a Sequence activity onto the
Workflow Designer.

	 43.	 In the Toolbox, click the Control Flow tab and drag an If activity onto the Workflow
Designer, inside the Sequence activity that you just added.

	 44.	 In the If Condition, enter Options.Parallelize = True.

	 45.	 In the Toolbox, click the Control Flow tab and drag a Sequence activity onto the
Workflow Designer, inside both the Then and Else statements of the If activity.

	 46.	 In the Toolbox, click the Primitives tab and drag the WriteLine activity on the Workflow
Designer, inside the sequence you just added for the Then statement.

	 47.	 Double-click the Text area in the WriteLine activity and type “Resizing Images in
parallel!” as the value.

	 48.	 In the Toolbox, click the Primitives tab and drag the WriteLine activity on the Workflow
Designer, inside the sequence that you just added for the Else statement.

	 49.	 Double-click the Text area in the WriteLine activity and type “Resizing Images
sequentially!” as the value.

	 50.	 Your workflow should now look the same as Figure 15-24.

FIGURE 15-24  The If activity showing the Condition as well as the start of each sequence.

448	 Part VI  Team Foundation Build

	 51.	 In the Toolbox, select the Control Flow tab and drag a ParallelForEach<T> activity onto
the Workflow Designer, inside the Then statement of the If activity, just below the
WriteLine activity.

	 51.	 Right-click the ParallelForEach<T> activity and change the TypeArgument property to
have a value of System.IO.FileInfo.

	 53.	 Double-click the first text box in the ParallelForEach<T> activity and enter file as the
value.

	 54.	 Double-click the second text box in the ParallelForEach<T> activity and enter Options
.Files as the value.

	 55.	 In the Toolbox, click the WFImageResizer.Components tab and drag the
ResizeImageActivity activity onto the Workflow Designer, inside the Body of the
ParallelForEach<T> activity that you just added.

	 56.	 Right-click the ResizeImageActivity activity and select Properties.

	 57.	 Enter file as the value for the InputFile property.

	 58.	 Enter Options as the value for the Options property.

	 59.	 The completed Then sequence should now look identical to Figure 15-25.

FIGURE 15-25  The completed Then sequence in the Then statement of the If activity

	 60.	 In the Toolbox, click the Control Flow tab and drag a ForEach<T> activity onto the
Workflow Designer, inside the Else statement of the If activity, just below the WriteLine
activity.

	 61.	 Right-click the ForEach<T> activity and change the TypeArgument property to have
a value of System.IO.FileInfo.

	 Chapter 15  Workflow Foundation Quick Start	 449

	 62.	 Double-click the first text box in the ForEach<T> activity and enter file as the value.

	 63.	 Double-click the second text box in the ForEach<T> activity and enter Options.Files as
the value.

	 64.	 In the Toolbox, select the WFImageResizer.Components tab and drag the
ResizeImageActivity activity onto the Workflow Designer, inside the Body of the
ForEach<T> activity that you just added.

	 65.	 Right-click the ResizeImageActivity activity and select Properties.

	 66.	 Enter file as the value for the InputFile property.

	 67.	 Enter Options as the value for the Options property.

	 68.	 The completed Else sequence should now look identical to Figure 15-26.

FIGURE 15-26  The completed Else sequence in the Else statement of the If activity

	 69.	 In Solution Explorer, locate and open the Program.cs file. Modify the code to match the
following code.

using System;
using System.Activities;
using System.Collections.Generic;
using System.IO;
using ImageResizer.Components;

namespace WFImageResizer
{
 class Program
 {
 private static Options options;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

450	 Part VI  Team Foundation Build

 static void Main(string[] args)
 {
 options = new Options();

 if (ParseArgs(args))
 {
 var inArguments = new Dictionary<string, object>();
 inArguments.Add(“Options”, options);

 Workflow1 workflow = new Workflow1();
 WorkflowInvoker.Invoke(workflow, inArguments);
 }
 Console.WriteLine(“Press ENTER to exit”);
 Console.ReadLine();
 }

 private static bool ParseArgs(string[] args)
 {
 int intResult;
 bool boolResult;

 foreach (var arg in args)
 {
 string[] argParts = arg.Split(‘=’);
 if (argParts.Length != 2)
 return false;

 switch (argParts[0].ToLower())
 {
 case “/source”:
 options.SourceDirectory = argParts[1];
 break;
 case “/target”:
 options.TargetDirectory = argParts[1];
 break;
 case “/width”:
 if (!int.TryParse(argParts[1], out intResult))
 {
 Console.WriteLine(“Width must be numeric!”);
 return false;
 }
 options.Width = int.Parse(argParts[1]);
 break;
 case “/height”:
 if (!int.TryParse(argParts[1], out intResult))
 {
 Console.WriteLine(“Height must be numeric!”);
 return false;
 }
 options.Height = int.Parse(argParts[1]);
 break;
 case “/autorotate”:
 if (!bool.TryParse(argParts[1], out boolResult))
 {
 Console.WriteLine(“AutoRotate must be either ‘True’ or

	 Chapter 15  Workflow Foundation Quick Start	 451

‘False’!”);
 return false;
 }
 options.AutoRotate = bool.Parse(argParts[1]);
 break;
 case “/parallelize”:
 if (!bool.TryParse(argParts[1], out boolResult))
 {
 Console.WriteLine(“Parallelize must be either
‘True’ or ‘False’!”);
 return false;
 }
 options.Parallelize = bool.Parse(argParts[1]);
 break;
 }
 }

 if (string.IsNullOrWhiteSpace(options.SourceDirectory) || string.
IsNullOrWhiteSpace(options.TargetDirectory))
 {
 Console.WriteLine(“USAGE: WFImageResizer /Source:DIR /Target:DIR [/
AutoRotate:TRUE|FALSE] [/Width:SIZE] [/Height:SIZE] [/Parallelize:TRUE|FALSE]”);
 Console.WriteLine();
 Console.WriteLine(“Options:”);
 Console.WriteLine();
 Console.WriteLine(“/AutoRotate:[TRUE|FALSE]\tAutomatically attempts to
rotate images to the correct orientation.”);
 Console.WriteLine(“/Width:[SIZE]\t\t\tSets the width (in pixels) of
the target image.”);
 Console.WriteLine(“/Height:[SIZE]\t\t\tSets the height (in pixels) of
the target image.”);
 Console.WriteLine(“/Parallelize:[TRUE|FALSE]\tParallelizes the
resizing operation to increase performance.”);
 Console.WriteLine();
 return false;
 }

 if (!Directory.Exists(options.SourceDirectory))
 {
 Console.WriteLine(“The source Directory ‘{0}’ does not exist!”,
options.SourceDirectory);
 return false;
 }

 if (!Directory.Exists(options.SourceDirectory))
 {
 Console.WriteLine(“The Target Directory ‘{0}’ does not exist!”,
options.TargetDirectory);
 return false;
 }

 return true;
 }
 }
}

452	 Part VI  Team Foundation Build

Running the Application
Press F5 to run the application. You should see the following output:

USAGE: WFImageResizer /Source:DIR /Target:DIR [/AutoRotate:TRUE|FALSE]
[/Width:SIZE] [/Height:SIZE] [/Parallelize:TRUE|FALSE]

Options:

/AutoRotate:[TRUE|FALSE] Automatically attempts to rotate images
to the correct orientation.

/Width:[SIZE] Sets the width (in pixels) of the
target image.

/Height:[SIZE] Sets the height (in pixels) of the
target image.

/Parallelize:[TRUE|FALSE] Parallelizes the resizing operation to
increase performance.

Press any key to exit

Tip  If you have trouble running the application, one important setting to check is the Target
Framework setting. To do this, perform the following steps:

	 1.	 In Solution Explorer, right-click the WFImageResizer project and select Properties.

	 2.	 Click the Application tab.

	 3.	 Verify that the Target Framework is set to .NET Framework 4.0. Often, this is set to .NET
Framework 4 Client Profile, which is insufficient for our requirements.

To run the application manually, simply open a command prompt and navigate to the output
folder of the WFImageResizer project and manually run the WFImageResizer.exe executable.
This will show the output above if run without any arguments, so you’ll need to make sure to
pass at least the source and target directories as options.

Debugging the Application
In order to assist with debugging the application, you will need to set some default settings.
Without these settings, the application will continue to show the Help screen (showing
example usage) and won’t progress any further. Luckily, Visual Studio provides a way to pass
parameters to the application when debugging by providing an option called Command line
arguments.

	 Chapter 15  Workflow Foundation Quick Start	 453

	 1.	 In Solution Explorer, right-click the WFImageResizer project and select Properties.

	 2.	 Click the Debug tab.

	 3.	 Enter the following text in the Command line arguments text box, making sure to
modify the Source and Target directories as applicable for your system:

/source=c:\images /target=c:\images\resized /autorotate=true /width=320 /height=240

Note  In the arguments above, I have chosen c:\images as the path for my photos. You
should change this to reflect the path of the photos stored on your file system.

	 4.	 Press F5 to run the application. You should now see output showing the images being
resized.

Summary
The goal of this chapter was to provide you with an introduction to Workflow Foundation
and demonstrate how it can be used in conjunction with, or indeed independently of, Team
Build. Hopefully, you now have a basic understanding of the technology and the tools
required to begin exploring and using the capabilities of Workflow Foundation. Good luck!

		 455

Chapter 16

Process Template Customization
This chapter will give you the basics needed to take an existing build process template and
customize it or to create a build process template from scratch. This customization process
is critical to making the most of Team Build and to automate your end-to-end build process.
Example build process templates and additional guidance are available in the ALM Rangers
Build Customization Guide which will be available in early 2011 at http://msdn.microsoft.com/
en-us/vstudio/ee358786.aspx.

Getting Started
While it is possible to open and edit process template Extensible Application Markup
Language (XAML) files directly (often referred to as “naked XAML”), you’re limited to using
the activities that ship with Team Build and Workflow Foundation. In this section, we’ll
describe how to set up your development environment to enable a full fidelity experience for
creating, testing, debugging, and deploying custom process templates and activities.

Creating a Process Template Library
The first step is to create a Workflow Activity library that will contain our custom process
templates. Even if you only ever plan to customize the process templates that ship with Team Build,
you should still add them to a Workflow Activity Library so that you can use custom activities.

	 1.	 In Microsoft Visual Studio 2010, click File, New Project. . . .
	 2.	 Ensure that .NET Framework 4 is selected, as shown in Figure 16-1.
	 3.	 Expand your preferred language and click Workflow.

	 4.	 Select Activity Library.

	 5.	 Enter a Name (for example, Processes), verify the Location, and click OK.

At this point, you should have a solution containing a workflow Activity Library called
Processes.

By default, workflow Activity Libraries are created that target the .NET Framework 4 Client
Profile. You will need to change that profile to the .NET Framework 4 Full Profile by doing the
following:

	 1.	 Right-click the Processes project, and click Properties.

	 2.	 Click the Application tab.

	 3.	 Change the Target Framework from .NET Framework 4 Client Profile, as shown in
Figure 16-2, to .NET Framework 4.

456	 Part VI  Team Foundation Build

FIGURE 16-1  Selecting .NET Framework 4

FIGURE 16-2  Changing the Target Framework

	 4.	 Click Yes in the Target Framework Change message box that appears.

	 Chapter 16  Process Template Customization	 457

To build your process template library, you will need to add references to the following
assemblies:

n	 Microsoft.TeamFoundation.Build.Client (%ProgramFiles(x86)%\Microsoft Visual
Studio 10.0\Common7\IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.Build
.Client.dll)

n	 Microsoft.TeamFoundation.Build.Workflow (%ProgramFiles(x86)%\Microsoft Visual
Studio 10.0\Common7\IDE\PrivateAssemblies)

n	 Microsoft.TeamFoundation.TestImpact.BuildIntegration (%ProgramFiles(x86)%\
Microsoft Visual Studio 10.0\Common7\IDE\PrivateAssemblies)

n	 Microsoft.TeamFoundation.TestImpact.Client (%windir%\assembly\GAC_MSIL\Microsoft
.TeamFoundation.TestImpact.Client\10.0.0.0__b03f5f7f11d50a3a\Microsoft
.TeamFoundation.TestImpact.Client.dll)

n	 Microsoft.TeamFoundation.VersionControl.Client (%ProgramFiles(x86)%\Microsoft
Visual Studio 10.0\Common7\IDE\ReferenceAssemblies\v2.0\Microsoft
.TeamFoundation.VersionControl.Client.dll)

n	 Microsoft.TeamFoundation.WorkItemTracking.Client (%ProgramFiles(x86)%\Microsoft
Visual Studio 10.0\Common7\IDE\ReferenceAssemblies\v2.0\Microsoft
.TeamFoundation.WorkItemTracking.Client.dll)

n	 System.Drawing (%ProgramFiles(x86)%\Reference Assemblies\Microsoft\Framework\
.NETFramework\v4.0\System.Drawing.dll)

n	 System.Activities.Presentation (%ProgramFiles(x86)%\Reference Assemblies\Microsoft\
Framework\.NETFramework\v4.0\System.Actvities.Presentation.dll)

n	 PresentationFramework (%ProgramFiles(x86)%\Reference Assemblies\Microsoft\
Framework\.NETFramework\v4.0\PresentationFramework.dll)

n	 WindowsBase (%ProgramFiles(x86)%\Reference Assemblies\Microsoft\Framework\
.NETFramework\v4.0\WindowsBase.dll)

n	 Microsoft.TeamFoundation (%ProgramFiles(x86)%\Microsoft Visual Studio 10.0\
Common7\IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.dll)

n	 Microsoft.TeamFoundation.VersionControl.Common (%ProgramFiles(x86)%\Microsoft
Visual Studio 10.0\Common7\IDE\ReferenceAssemblies\v2.0\Microsoft
.TeamFoundation.VersionControl.Common.dll)

Once you add these references, you should check each of their properties to ensure that
they’re not copied to the project’s output directory, by doing the following:

	 1.	 In Solution Explorer, expand the Process Template Library, and then References.
If you’re using Microsoft Visual Basic, you’ll need to click the Show All Files button at
the top of the Solution Explorer to see the References node.

458	 Part VI  Team Foundation Build

	 2.	 Select the first reference you added and open the Properties window (by pressing F4 or
clicking View, Properties Window).

	 3.	 Set the Copy Local property to False, if it isn’t already, as shown in Figure 16-3.

	 4.	 Repeat steps 1–3 for each of the references that you added.

FIGURE 16-3  Setting the Copy Local property

If you want to customize a process template that ships with Team Build, such as
DefaultTemplate.xaml, you need to add it to your process template library as follows:

	 1.	 Download DefaultTemplate.xaml from the BuildProcessTemplates folder in the root
of your Team Project’s version control folder.

	 2.	 Add it to the project by right-clicking the process template library, clicking Add,
Existing Item, browsing to DefaultTemplate.xaml, and clicking Add.

	 Chapter 16  Process Template Customization	 459

If you want to create a process template from scratch, you need to add an empty Activity to
the process template library, as follows:

	 1.	 Right-click the process template library and click Add, New Item.

	 2.	 Select Workflow, and then select Activity.

	 3.	 Enter a Name for the process template, and click Add.

If you open DefaultTemplate.xaml (or any other process template that ships with Team Build),
you’ll find two new tabs in the Toolbox:

n	 Team Foundation Build Activities
n	 Team Foundation LabManagement Activities

However, if you open your new process template, you’ll find that these tabs don’t exist.
The problem is a chicken-and-egg one: These tabs are shown only if the process template
contains a Team Foundation Build workflow activity, but you can’t add a Team Foundation
Build workflow activity unless they’re in the Toolbox.

To work around this issue, we need to add any Team Foundation Build workflow activity
manually to the process template. We’ll use the GetBuildDetail activity because it has no
required inputs. We do this as follows:

	 1.	 Open the process template in the Workflow Designer.

	 2.	 Click Imports at the bottom of the Workflow Designer surface, enter Microsoft
.TeamFoundation.Build.Workflow.Activities, and press Enter to add the namespace
to the list of Imported Namespaces.

	 3.	 Save the process template.

	 4.	 Click View, Code to open the process template in the XML editor.

	 5.	 Within the Activity element, add the XAML:

<Sequence>
 <mtbwa:GetBuildDetail />
</Sequence>

Now, when you switch back to the Workflow Designer, the Team Foundation Build workflow
activities will be shown in the Toolbox and you can drag the activities you need and remove
the temporary GetBuildDetail activity from your process template.

If you build the process template library and then open the project’s output directory, you’ll
find (as you’d expect) a compiled binary. However, as we’ll discuss later in this chapter when
we deploy process templates, it’s the naked XAML files themselves that we need to deploy.
Although we could manually copy the XAML files from the project directory, it would be
ideal if they were automatically copied to the output directory so that when we build our
process template library using Team Build, the XAML files are dropped to the drop folder.

460	 Part VI  Team Foundation Build

At first you might think you can achieve this by setting the Copy To Output Directory
property for the XAML file to Copy Always or Copy If Newer. Unfortunately, this works only
if we change the Build Action from XamlAppDef to Content, and by doing this, we’ll lose
compile time validation of our process templates. So we can work around this by creating
a Post-Build Event that will copy the process templates to the output directory:

	 1.	 Right-click the Process Template Library in the Solution Explorer and click Properties.

	 2.	 Click the Build Events tab.

	 3.	 In the Post-Build Event Command Line box, add this code:

del "$(TargetDir)$(TargetName).*"
copy /Y "$(ProjectDir)*.xaml" "$(TargetDir)"

	 4.	 Save and close the project properties.

Because we’ll never deploy the compiled assembly for the process template library but still
need to produce it to get compile time validation, the first command will delete the compiled
assembly so that it doesn’t get dropped, cause confusion, or accidentally get deployed. The
second command will copy any XAML files in the root of the project to the project’s output
directory. If you create subdirectories in your process template library, then you will need to
replace this with XCopy.

Once this is done, if you compile your process template library and open your output
directory, you shouldn’t find anything except the XAML files that you added to it.

Creating a Custom Activity Library
Once you’ve created a Process Template Library, you’re in a place where you can create
customized process templates using existing workflow activities. If you want to create custom
activities, then you’ll also need to create a Custom Activity Library.

You might be tempted to just add your custom activities to the Process Template Library, but
this won’t work. If you add a custom activity to the same project as the process template,
the Workflow Designer will add an unqualified reference (that is, one that doesn’t specify the
assembly name) when you use it (because it is in the same project). However, process
templates are deployed as naked XAML files and the custom activities as compiled binaries,
so when Team Build tries to resolve the custom activities in the process template, it will be
unable to find them because of these unqualified references.

The good news is that because both process template libraries and custom activity libraries
are simply workflow activity libraries, you can create custom activity libraries exactly the
same way as you created the process template library in the previous procedure:

	 1.	 Create a workflow activity library.

	 2.	 Switch the project from the Client Profile to the Full Profile.

	 3.	 Add references to the required assemblies.

	 Chapter 16  Process Template Customization	 461

Note  You shouldn’t add the Post-Build Event that was added to the process template because
custom activity libraries are deployed compiled rather than as naked XAML.

Once you’ve created the custom activity library, you can add a reference to it from the
process template library so that you can use your custom activities:

	 1.	 Right-click the Process Template Library in Solution Explorer and click Add Reference.

	 2.	 Click the Projects tab in the Add Reference dialog.

	 3.	 Select your Custom Activity Library and click OK.

You can now use any custom activities that you create in your custom process templates.

Process Parameters
Process parameters provide a way to configure a process template on a per-definition or
even per-build basis. This allows you to make process templates somewhat generic so they
can be reused across multiple definitions. For example, in the Default Template described
in Chapter 14, “Team Build Deep Dive,” the projects to be built are specified using a process
parameter, allowing this one process template to be used for building different projects.

Process parameters appear in the user interface on the Process tab when editing a build
definition, and they appear on the Parameters tab when queuing a build. It is also possible
to create custom editors to provide a richer user experience when editing process parameter
values; this is discussed in more detail in the section entitled “User Interface,” later in
this chapter. When authoring a process template, you can choose whether each process
parameter will appear when editing a build definition, queuing a build, or both. This is
discussed in more detail in the section entitled “Metadata,” later in this chapter.

Defining
Process parameters are defined by the In arguments to the process template. To add a new
process parameter, do the following:

	 1.	 Open the process template in the Workflow Designer.

	 2.	 Click the Arguments tab at the bottom of the Designer.

	 3.	 Scroll to the bottom of the arguments list and click Create Argument. A new row will be
added to the list of arguments.

	 4.	 Enter a Name, leave the Direction as its default setting of In, select an Argument Type,
and, if you want, provide a Default Value.

462	 Part VI  Team Foundation Build

Note  When specifying defaults for enumerations, you should specify the fully qualified
value (namespace, type, and value) rather than the unqualified value (just type and value). For
example, specify Microsoft.TeamFoundation.Build.Workflow.BuildVerbosity.Normal instead
of BuildVerbosity.Normal.

In Figure 16-4, we’ve defined a new process parameter called FirstVersion of type String with
a default value of “1.0.0.0”.

FIGURE 16-4  Adding a process parameter

Once we deploy this customized process template, when we edit the build definition, we’ll
see our new process parameter as shown in Figure 16-5.

Process parameters aren’t restricted to simple types (such as Boolean, string, and integer);
they also can be complex types (such as enumerations, arrays, and custom classes) that can
be further comprised of simple types and other complex types. Process parameters are
stored against the build definition or the build itself by serializing them as XAML, so the only
requirement is that your complex type supports this.

Any custom types that you create need to be accessible to Visual Studio and the build
controller and build agents, by either registering them in the global assembly cache (GAC)
or, preferably, by checking the assembly containing them into version control and
configuring the controller with the appropriate version control path. This is discussed in
more detail in the section entitled “Deployment,” later in this chapter.

	 Chapter 16  Process Template Customization	 463

FIGURE 16-5  Process parameter in edit build definition

Metadata
By default, any process parameters you define will be shown in the Misc category, use the
argument’s name as the process parameter name, have no description, and be shown when
both editing a build definition and queuing a build.

Team Build provides a way to attach additional metadata to arguments that allows you to
customize the category it’s displayed in; the name and description that’s displayed; whether
the process parameter is available when editing a build definition, queuing a build, or both;
whether or not it’s required; and the editor to use to edit its value.

The first step is to add an argument called Metadata in which to store the metadata (if
you’re editing an existing process template, it may already have this argument; if so, skip this
procedure).

	 1.	 Open the process template in the Workflow Designer.

	 2.	 Click the Arguments tab at the bottom of the Designer.

	 3.	 Scroll to the bottom of the arguments list and click Create Argument. A new row will
be added to the list of arguments.

	 4.	 Enter the Name Metadata, select the Direction as Property, and browse
for the Argument Type Microsoft.TeamFoundation.Build.Workflow.
ProcessParameterMetadataCollection.

The argument should look like Figure 16-6 when you’re finished.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

464	 Part VI  Team Foundation Build

Once the process template has a Metadata property, you can add, edit, and delete metadata
by clicking the ellipsis in the Default Value column, which will produce the Process Parameter
Metadata Editor dialog shown in Figure 16-7.

The Parameter Name field is used to link the metadata entry to the argument it relates to
and should match the argument’s name.

FIGURE 16-6  Metadata argument

FIGURE 16-7  Process Parameter Metadata Editor

	 Chapter 16  Process Template Customization	 465

The Display Name field provides a friendly name for the argument to be displayed in the user
interface.

The Category field specifies the category that the argument should be grouped under in
the user interface. If left blank, the argument will be shown in the Misc category. If you have
arguments in a category called Advanced, the category will be collapsed by default, and all
other categories will be expanded by default.

Categories are shown in the user interface in alphabetical order by default. You can specify
to order category names by prefix with #ddd, where d is any digit. For example, the category
#020Required will display in the user interface as “Required” and positioned before the
category #030Optional, which will display as “Optional” even though “Optional” comes before
“Required” alphabetically. Categories that don’t have a numeric prefix will be listed after those
that do. This numeric prefix is independent of the number that is shown before the category
name in the user interface, which is based entirely on the order they’re displayed.

The Description field provides additional information about the argument, which will be
displayed at the bottom of the user interface, as shown in Figure 16-8.

FIGURE 16-8  Process parameter description

The Editor field specifies the editor class that will be used to specify the value for custom
types in the user interface. The editor class is specified in the standard .NET TypeName,

466	 Part VI  Team Foundation Build

AssemblyName form, such as MyEditors.VersionNumberEditor, MyEditors. Custom editors are
discussed in more detail in the section entitled “User Interface,” later in this chapter.

The Required field specifies whether the argument is required. If the argument has a default
value, then making it required means that the value specified needs to differ from the default
value. If a required field isn’t provided, the Process tab and the field in question will be
marked with a warning icon, as shown in Figure 16-9. If required fields aren’t specified, the
build definition can still be saved, and you can even queue a build, but the build will fail with
an error that the required argument hasn’t been provided.

FIGURE 16-9  Required process parameters

The View This Parameter When field specifies when the argument is visible. It can be set to
Never, Only When Editing A Definition (which will show on the Process tab of the definition),
Only When Queuing A Build (which will show on the Parameters tab of the Queue Build
dialog), or Always (which will show on both).

User Interface
Team Build provides default editors for a number of built-in types, including Booleans,
strings, integers, enumerations, and arrays of these types. For custom types, you can provide
your own editor to display a custom user interface.

	 Chapter 16  Process Template Customization	 467

The first step is to add the required references to the project containing your editors (which
will either be your custom activity library project or a dedicated editors project). These
references are:

n	 System.Design

n	 System.Drawing

n	 System.Windows.Forms

Then, create a public class that inherits from System.Drawing.Design.UITypeEditor (in the
System.Drawing assembly) and override the EditValue and GetEditStyle methods. This simple
editor opens a dialog to edit a System.Version object:

using System;
using System.ComponentModel;
using System.Drawing.Design;
using System.Windows.Forms;
using System.Windows.Forms.Design;

public class VersionEditor : UITypeEditor {
 public override object EditValue(ITypeDescriptorContext context,
 IServiceProvider provider,
 object value) {

 var editorService = (IWindowsFormsEditorService)provider.GetService(
 typeof(IWindowsFormsEditorService)
);

 if (editorService != null) {
 var versionDialog = new VersionDialog(value);
 if (editorService.ShowDialog(versionDialog) == DialogResult.OK) {
 value = versionDialog.Version;
 }
 }

 return value;
 }

 public override UITypeEditorEditStyle GetEditStyle(ITypeDescriptorContext context) {
 return UITypeEditorEditStyle.Modal;
 }
}

Tip  If your editor needs to access information about the build definition being edited, you
can access its associated IBuildDefinition by calling provider.GetService(typeof
(IBuildDefinition)).

Next, create a Windows Form to edit your custom type (in this case, VersionDialog), whose
constructor takes the value to be edited and then returns the edited value via a property (in
this case, Version). We won’t walk through creating the dialog.

468	 Part VI  Team Foundation Build

Finally, associate your custom editor with the process parameter using the Editor metadata
described in the section entitled “Metadata,” earlier in this chapter.

Supported Reasons
The SupportedReasons argument allows you to define what triggers are supported by the
process template, and this will be automatically reflected in the user interface by disabling
options that aren’t available. For example, if your process template doesn’t support being
queued with a shelveset, you can select all reasons other than ValidateShelveset and
CheckinShelveset.

To add the SupportedReasons argument to your process template, do the following:

	 1.	 Open the process template in the Workflow Designer.

	 2.	 Click the Arguments tab at the bottom of the Designer.

	 3.	 Scroll to the bottom of the arguments list and click Create Argument. A new row will be
added to the list of arguments.

	 4.	 Enter the Name SupportedReasons, select the Direction as Property, and browse for
the Argument Type Microsoft.TeamFoundation.Build.Client.BuildReason.

The argument should look like Figure 16-10 when you’re done.

FIGURE 16-10  SupportReasons process parameter

	 Chapter 16  Process Template Customization	 469

You can now specify the supported reasons by clicking the drop-down list in the Default
Value column and selecting the supported reasons.

Backward and Forward Compatibility
There are two behaviors you need to be aware of to maintain backward and forward
compatibility of your build definitions with respect to process parameters:

n	 How default values are handled.

n	 Compatibility of the serialized XAML.

As mentioned earlier, Team Build serializes the process parameter values specified when
editing a build definition and queuing a build as XAML. More precisely, Team Build serializes
the delta between the default values and the current values (that is, if a process parameter
has the default value, it isn’t serialized). This means that if you change the default value in the
process template and deploy it, any build definition that is currently using the default value
for that process parameter will automatically appear to upgrade to the new default value. (It
doesn’t actually change, however, because of the way that data is stored.)

Breaking changes to the process parameter’s interface (such as changing the parameter’s
name or type) will cause it to fail to deserialize, and builds using the process template will fail.
You can work around this by editing each build definition that uses that process template.
When you edit the build definition, any process parameters that can’t be deserialized will
revert to their default values, and you can simply save the build definition to update the
serialized XAML.

Note  In rare circumstances, we have seen all of the process parameters revert to default. If this
occurs, we recommend that you don’t save the build definition, and review the changes you
made to your process template.

Team Build Activities
This section describes a subset of the activities shipped by Team Build. These activities
are those that are pivotal to creating customized build processes and have nontrivial or
nonobvious arguments.

AgentScope
This is one of the most important activities provided by Team Build because it allows the
build controller to delegate work to a build agent. This is a composite activity, and any logic
that it contains will automatically be executed on the appropriate build agent.

470	 Part VI  Team Foundation Build

The decision of which build agent to execute on is governed by the ReservationSpec
argument. The ReservationSpec argument is of type AgentReservationSpec and allows you
to specify agents to consider by name (with wildcards supported) and tags (tag comparison
can either be MatchExact or MatchAtLeast, as discussed in the section entitled “Agent
Reservation,” in Chapter 14). For example, the following ReservationSpec will find an agent
whose name starts with NEW and has at least the tag x86.

New AgentReservationSpec() With {
 .Name = "NEW*",
 .Tags = { "x86" },
 .TagComparison = TagComparison.MatchAtLeast }

The AgentScope activity has two arguments for controlling timeouts. The first, MaxWaitTime,
defines the maximum amount of time to wait for an agent matching the ReservationSpec
to become available before failing. The second, MaxExecutionTime, defines the maximum
amount of time that the AgentScope can execute on the agent before failing.

Any workflow arguments and variables that are in scope will automatically be serialized
and will be available within AgentScope. This can cause issues if any of the variables that
are in scope can’t be serialized. You can avoid this by adding the variable’s name to the
DataToIgnore property of AgentScope or by ensuring that the variable isn’t in scope when
AgentScope is reached.

CheckInGatedChanges
This activity will check in the shelveset associated with the current build and return the
resulting Changeset object in the Result argument. The check-in will be performed only if
both the compilation and test phases passed or the IgnoreErrors argument is set to True.

ConvertWorkspaceItem/ConvertWorkspaceItems
This activity converts server paths to local paths and vice versa (depending on the Direction
argument) using the workspace specified in the Workspace argument.

ExpandEnvironmentVariables
This activity takes a string containing environment variable references (for example,
%TEMP%) and returns a string with the environment variable references expanded.

FindMatchingFiles
This activity takes a path containing wildcards (either the standard wildcards * and ? or a
recursive wildcard **) and returns the list of files matching that wildcard.

	 Chapter 16  Process Template Customization	 471

GetBuildAgent
This activity returns the IBuildAgent object associated with the current build agent. This
activity can be used only within AgentScope.

GetBuildDetail
This activity returns the IBuildDetail object associated with the current build.

GetBuildDirectory
This activity returns the path to the working directory for the current build agent. This
activity can be used only within an AgentScope.

GetBuildEnvironment
This activity returns a BuildEnvironment object that allows you to determine whether you’re
running on a controller or agent, as well as to determine the path to custom build activities
and extensions.

GetTeamProjectCollection
This activity returns a TfsTeamProjectCollection object for the Team Project Collection that
the build is running against.

InvokeForReason
This composite activity allows you to execute the contained activities only if the build was
started for one or more specified reasons. For example, you could execute certain activities
only if the build were a scheduled one.

InvokeProcess
This activity is very useful when customizing build processes because it allows you to execute
any existing tools on which your build process depends. Most arguments on the activity
are self-explanatory, but you’ll see that the activity has a different appearance to the other
activities and composite activities you’ve used so far. The InvokeProcess activity has two
Drop Activity Here areas, where you can drop an activity (or multiple activities wrapped in
a composite activity) that will be executed whenever the process writes a line to standard
output or standard error.

472	 Part VI  Team Foundation Build

In Figure 16-11, we use the InvokeProcess activity with the WriteBuildMessage and
WriteBuildError activities to log the outputs from the process as messages (for standard
output) or errors (for standard errors).

FIGURE 16-11  InvokeProcess output handling

MSBuild
This activity is the core of most build processes because it is used to execute MSBuild. Rather
than using the InvokeProcess activity, this activity provides a rich set of arguments for
specifying inputs to MSBuild as well as processing its outputs.

SetBuildProperties
This activity provides a convenient way to update commonly set properties on the
IBuildDetail object. To use this activity, set the appropriate arguments on the activity to the
values you want to set and set the PropertiesToSet property to the properties to be updated.

To set properties not supported by SetBuildProperties in a process template or composite
activity, you’d have to combine GetBuildDetail (to get the IBuildDetail object), Assign (to set
the appropriate properties), and InvokeMethod (to call the Save method).

	 Chapter 16  Process Template Customization	 473

SharedResourceScope
This composite activity provides a cross-controller and cross-agent critical section. Team Build
guarantees that activities with SharedResourceScope activities with the same ResourceName
(which is any arbitrary string) won’t execute at the same time and will be processed in a first-
in-first-out (FIFO) manner. The SharedResourceScope activity also provides the same timeout
arguments (MaxWaitTime and MaxExecutionTime) as the AgentScope activity.

UpdateBuildNumber
This activity provides a convenient way to update the running build’s build number. The
UpdateBuildNumber activity will create a build number based on the specified build number
format that supports the tokens discussed in the section entitled “Build Number,” in Chapter 14.

Custom Activities
Although Workflow Foundation and Team Build ship with a large number of activities for
everything from creating directories to running code in parallel, a time will come when you
need to perform some action that’s not available in the shipped activities. Building custom
activities allows you to bridge the gap between what the product provides and what you
require.

Team Build supports any of the activity base classes supported by Workflow Foundation,
including:

n	 Activity (declarative XAML activities)

n	 CodeActivity

n	 AsyncCodeActivity

n	 NativeActivity

Creating custom workflow activities was discussed in Chapter 15, “Workflow Foundation
Quick Start,” so in this section, we’ll just discuss things specific to creating custom activities
for Team Build.

BuildActivity Attribute
Team Build–specific custom activities are identified by their being decorated with a Microsoft
.TeamFoundation.Build.Client.BuildActivity attribute. This attribute also allows you to restrict
whether the activity can run on controllers, agents, or both, which can be used to ensure that
activities aren’t used in inappropriate places (such as using activities that require a workspace
on a controller).

474	 Part VI  Team Foundation Build

Here, we can see the BuildActivity attribute being used to identify the ScorchWorkspace
activity as one that can be run only within an AgentScope activity:

using Microsoft.TeamFoundation.Build.Client;

[BuildActivity(HostEnvironmentOption.Agent)]
public class ScorchWorkspace : CodeActivity {
 ...
}

Note  Team Build uses the BuildActivity attribute to decide which assemblies to load. By
default, only assemblies containing at least one type marked with the BuildActivity attribute
(or the BuildExtension attribute) will be loaded. This behavior can be overridden using the
CustomActivitiesAndExtensions.xml file, as discussed later in this chapter.

Extensions
Team Build uses workflow extensions to make certain objects always available to custom
activities without their having to be passed as arguments throughout the workflow. These
extensions are accessible using the GetExtension method on the context object passed to the
custom activity’s Execute method.

In this example, we retrieve the IBuildDetail instance associated with the running build from
a custom activity:

using Microsoft.TeamFoundation.Build.Client;

[BuildActivity(HostEnvironmentOption.Agent)]
public class ScorchWorkspace : CodeActivity {
 protected override void Execute(CodeActivityContext context) {
 var buildDetail = context.GetExtension<IBuildDetail>();
 ...
 }
}

Table 16-1 lists some of the types that are accessible as extensions.

TABLE 16-1  Extension Types

Type
Available on
Controller?

Available on
Agent?

Microsoft.TeamFoundation.Build.Client.IBuildAgent No Yes

Microsoft.TeamFoundation.Build.Client.IBuildDetail Yes Yes

Microsoft.TeamFoundation.Build.Workflow.BuildEnvironment Yes Yes

Microsoft.TeamFoundation.Build.Workflow.Tracking
.BuildTrackingParticipant

Yes Yes

Microsoft.TeamFoundation.Client.TfsTeamProjectCollection Yes Yes

	 Chapter 16  Process Template Customization	 475

You can create your own extensions by creating a class with the Microsoft.TeamFoundation
.Build.Client.BuildExtension attribute. These extension classes (which are stateful) can then be
accessed using GetExtension in the same way. For example:

using Microsoft.TeamFoundation.Build.Client;

[BuildExtension(HostEnvironmentOption.Agent)]
public class ScorchWorkspaceStatistics {
 public int ExecutionCount { get; set; }
}

[BuildActivity(HostEnvironmentOption.Agent)]
public class ScorchWorkspace : CodeActivity {
 protected override void Execute(CodeActivityContext context) {
 var statistics = context.GetExtension<ScorchWorkspaceStatistics>();
 statistics.ExecutionCount += 1;
 ...
 }
}

Logging
Effective investigation of failed builds and debugging of process templates and custom
activities depend heavily on the logging performed by Team Build. As with most things,
excessive logging is just as dangerous as insufficient logging because it makes it easy to
overlook important information.

Logging in Team Build is controlled through a combination of the specified logging
verbosity, attached properties on custom activities, and explicit calls to Team Build’s logging
API (either in code or using the logging activities provided by Team Build).

Logging Verbosity
The verbosity of Team Build’s logging is controlled by the Verbosity argument to the process
template. If this argument doesn’t exist, the logging verbosity value will default to Normal.
The available verbosity levels are defined by the enumeration Microsoft.TeamFoundation
.Build.Workflow.BuildVerbosity and are described in Table 14-1.

To add the Verbosity argument to your process template, do the following:

	 1.	 Open the process template in the Workflow Designer.

	 2.	 Click the Arguments tab at the bottom of the Designer.

	 3.	 Scroll to the bottom of the arguments list and click Create Argument. A new row will
be added to the list of arguments.

	 4.	 Enter the Name as Verbosity, leave the Direction setting as its default of In,
and browse for the Argument Type “Microsoft.TeamFoundation.Build.Workflow
.BuildVerbosity”.

476	 Part VI  Team Foundation Build

The argument should look like Figure 16-12 when you’re done.

FIGURE 16-12  Verbosity process parameter

Typically, this logging verbosity is honored by activities within AgentScope regardless
of how deeply it is nested in the workflow; however, if AgentScope is used inside a composite
activity, you will notice that the logging verbosity reverts to Normal rather than the specified
logging verbosity. You can avoid this by adding a Verbosity argument to the composite
activity and binding the Verbosity argument of the process template to that of the composite
activity.

Logging Activities
Team Build ships three activities for logging from within the process template. They can be
found in the Team Foundation Build Activities tab in the Toolbox and are as follows:

n	 WriteBuildMessage

n	 WriteBuildWarning

n	 WriteBuildError

All three activities take a Message parameter (of type String) that specifies the message to
be added to the log. The WriteBuildMessage activity also takes an Importance parameter

	 Chapter 16  Process Template Customization	 477

(of type Microsoft.TeamFoundation.Build.Workflow.BuildVerbosity) that defines in which
verbosity levels the message should appear. Messages from the WriteBuildWarning and
WriteBuildError activities are always logged because of their implicit importance. If any errors
are logged (either using the WriteBuildError activity or using the Team Build API), the build’s
outcome will become Partially Succeeded instead of Succeeded.

Because Team Build automatically logs messages for each activity that executes, any
messages, warnings, and errors that are logged from within composite or container activities
will automatically be nested appropriately, as shown in Figure 16-13.

FIGURE 16-13  Nested log messages

Logging Programmatically
Although the logging activities are useful for logging from composite activities, you can’t
use them to log from custom activities. To log from a custom activity that inherits from
CodeActivity or CodeActivity<T>, you can use the extension methods in the Microsoft
.TeamFoundation.Build.Workflow.Activities namespace. For example:

using Microsoft.TeamFoundation.Build.Client;
using Microsoft.TeamFoundation.Build.Workflow.Activities;

[BuildActivity(HostEnvironmentOption.Agent)]

478	 Part VI  Team Foundation Build

public class ScorchWorkspace : CodeActivity {
 protected override void Execute(CodeActivityContext context) {
 context.TrackBuildWarning("The ScorchWorkspace activity is obsolete and should no
longer be
 used.");
 ...
 }
}

Logging from custom activities that don’t inherit from CodeActivity can’t use the extension
methods and need to use the more verbose syntax:

using Microsoft.TeamFoundation.Build.Client;
using Microsoft.TeamFoundation.Build.Workflow.Activities;
using Microsoft.TeamFoundation.Build.Workflow.Tracking;

[BuildActivity(HostEnvironmentOption.Agent)]
public class ScorchWorkspace : NativeActivity {
 protected override void Execute(NativeActivityContext context) {
 context.Track(new BuildWarning() { Message = "The ScorchWorkspace activity is
obsolete and
 should no longer be used." });
 ...
 }
}

Adding Hyperlinks
In addition to just static text, you can add hyperlinks to the build log:

using Microsoft.TeamFoundation.Build.Client;

[BuildActivity(HostEnvironmentOption.Agent)]
public class ScorchWorkspace : CodeActivity {
 protected override void Execute(CodeActivityContext context) {
 var buildDetail = context.GetExtension<IBuildDetail>();
 var externalLink = InformationNodeConverters.AddExternalLink(buildDetail.
Information,
 "ScorchWorkspace has been obsoleted. Click for more information.",
 new Uri("http://buildweb/help/scorchworkspace.html"));
 externalLink.Save();
 }
}

The resulting hyperlink is shown in Figure 16-14.

You can also add the hyperlink under the log message for the particular activity being
executed by adding it to the activity’s information node rather than the build’s information
node, as shown here:

using Microsoft.TeamFoundation.Build.Client;

[BuildActivity(HostEnvironmentOption.Agent)]

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 16  Process Template Customization	 479

public class ScorchWorkspace : CodeActivity {
 protected override void Execute(CodeActivityContext context) {
 var buildLoggingExtension = context.GetExtension<IBuildLoggingExtension>();
 var activityTracking = buildLoggingExtension.GetActivityTracking(context);
 activityTracking.Node.Children.AddExternalLink("ScorchWorkspace has been
obsoleted.",
 new Uri("http://buildweb/help/scorchworkspace.html"));
 activityTracking.Save();
 }
}

FIGURE 16-14  Hyperlink in build detail

Tracking Attributes
By default, Team Build will log every activity’s name to the build log when it executes.
Although this makes the build log complete, it does reduce the signal-to-noise ratio and
makes important information harder to find. Team Build provides an attached property that
we can apply to activities in XAML to choose what logging verbosity they appear at (if they
appear at all). The downside is that this attached property can be set only by editing XAML
(that is, it can’t be set in the Workflow Designer).

480	 Part VI  Team Foundation Build

The first step (and this is best done in the Designer) is to import the Microsoft
.TeamFoundation.Build.Workflow.Tracking namespace. To do this, complete the following
steps:

	 1.	 Open the process template (or composite activity) in the Workflow Designer.

	 2.	 Click the Imports tab at the bottom of the Designer.

	 3.	 Type Microsoft.TeamFoundation.Build.Workflow.Tracking and press Enter.

	 4.	 Save the workflow.

To make this same change in XAML (if you prefer), perform the following steps:

	 1.	 Open the process template (or composite activity) in the XML editor by right-clicking
the file in Solution Explorer and clicking View Code.

	 2.	 Add xmlns:mtbwt="clr-namespace:Microsoft.TeamFoundation.Build.Workflow
.Tracking;assembly=Microsoft.TeamFoundation.Build.Workflow" to the root
Activity element.

	 3.	 Save the workflow.

Once you’ve imported this namespace (using either technique), you can now set the attached
property on any activities called by that workflow (or custom activity), as follows:

	 1.	 Open the process template (or composite activity) in the XML editor by right-clicking
the file in Solution Explorer and clicking View Code.

	 2.	 Locate the call to the activity for which you want to change the logging settings.

	 3.	 Add the attribute mtbwt:BuildTrackingParticipant.Importance="<Importance>",
where <Importance> is None, Low, Normal, or High.

The rules that we typically apply when setting importance are:

n	 Assigns  Set to Low. These activities rarely add value to the build log.

n	 Ifs  Set to Low. These activities usually add confusion in the build log because the log
messages for either the Then branch or the Else branch will be nested directly beneath
the If’s log message with no clear indication which branch executed.

n	 Sequences  Set to None unless the sequence represents a logical grouping for the
viewer of the build log.

Before applying these attributes, a build log would look like Figure 16-15.

Afterward, the build log would look like Figure 16-16.

	 Chapter 16  Process Template Customization	 481

FIGURE 16-15  Build log before tracing participant attached properties are added

FIGURE 16-16  Build log after tracing participant attached properties are added

482	 Part VI  Team Foundation Build

Exceptions
If an unhandled exception occurs during the execution of a process template, the exception
message will automatically be logged as an error, the workflow terminated, and the build
status changed to Failed. If you want to fail the build as part of your workflow, then you can
use the Throw activity (which ships as part of Workflow Foundation) on the Error Handling
tab of the Toolbox.

Deploying
Once you’ve created your customized process templates and custom assemblies, you need to
deploy them to version control so they can be consumed by Team Build.

Process Templates
Two steps are involved in deploying process templates:

	 1.	 Check the process template into version control.

	 2.	 Configure Team Build so that it is aware of the process template.

Process templates are typically checked into $/<TeamProject>/BuildProcessTemplates
directly. This is not a requirement, however, and you can check in process templates
wherever makes most sense in your branching structure. I normally create folders under
BuildProcessTemplates for each process template and a folder within that for each
environment.

For example:

$/BuildBook/
 BuildProcessTemplates/
 MyBuildProcess/
 Development/
 MyBuildProcess.xaml
 ...
 Production/
 MyBuildProcess.xaml
 ...

Once the process template has been checked in, you need to tell Team Build about it. To do
this, perform the following steps:

	 1.	 Create or edit a build definition.

	 2.	 Click the Process tab.

	 3.	 Click Show Details in the Build Process Template group.

	 Chapter 16  Process Template Customization	 483

	 4.	 Click New.

	 5.	 Click Select An Existing XAML File.

	 6.	 Click Browse, browse to the process template you checked in, and then click OK. The
process template that you selected will appear under Version Control Path, as shown in
Figure 16-17.

FIGURE 16-17  Selecting an existing process template

	 7.	 Click OK.

Custom Assemblies
Custom assemblies also need to be checked into version control, and two steps to having
Team Build recognize them:

	 1.	 Check the custom assemblies and any dependencies into version control.

	 2.	 Configure the build controllers to download the custom assemblies.

A tightly coupled relationship usually exists between process templates and custom
assemblies, so we normally deploy them in a subfolder of the process templates. The reason
we deploy them in a subfolder is that whenever you check in custom assemblies, the build
controllers and agents transition to offline until they’re idle and can pick up the new custom
assemblies. By having them in a separate folder from the process template, it is possible
to deploy process template updates without triggering the build controllers and agents to
restart.

484	 Part VI  Team Foundation Build

For example:

$/BuildBook/
 BuildProcessTemplates/
 MyBuildProcess/
 Development/
 MyBuildProcess.xaml
 CustomAssemblies/
 MyCustomAssembly.dll
 MyDependency.dll
 Production/
 MyBuildProcess.xaml
 CustomAssemblies/
 MyCustomAssembly.dll
 MyNewDependency.dll

Once the custom assemblies have been checked in, you need to configure the build
controllers to download them. To do this, do the following:

	 1.	 Right-click the Builds node in Team Explorer.

	 2.	 Click Manage Build Controllers.

	 3.	 Select the build controller that you want to configure and click Properties.

	 4.	 Click the ellipsis next to Version Control Path To Custom Assemblies, browse to the
folder you checked the custom assemblies into, and click OK. The resulting version
control path appears in the dialog, as shown in Figure 16-18.

FIGURE 16-18  Setting the version control path to custom assemblies

	 5.	 Click OK.

	 Chapter 16  Process Template Customization	 485

Downloading and Loading Dependent Assemblies
By default, Team Build will download all files in the custom assemblies directory. However,
only assemblies containing types marked with either the BuildActivity or BuildExtension
attribute will be loaded into the Team Build process. If your activities depend on assemblies
that don’t contain any types meeting these criteria, you will run into assembly loading
exceptions.

To work around this, you can check a file into the custom assemblies path called
CustomActivitiesAndExtensions.xml with the following contents:

<?xml version="1.0" encoding="utf-8"?>
<Assemblies>
 <Assembly FileName="MyDependency.dll">
 <Extensions>
 <Extension FullName="MyDependency.CustomException" />
 </Extensions>
 </Assembly>
 <Assembly FileName="MyNewDependency.dll">
 <Extensions>
 <Extension FullName="MyNewDependency.CustomEventArgs" />
 </Extensions>
 </Assembly>
</Assemblies>

The class name listed in the FullName attribute of the Extension element can be any class
within the assembly that is public and has a parameterless public constructor. This class will
be constructed and loaded into memory, so choose a type whose constructor does as little
as possible and has as few dependencies as possible (look for exception classes, data transfer
objects, and the like).

This will force the assemblies listed to be downloaded and loaded into the Team Build
process so that they’re available to your workflow and custom assemblies.

		 487

Part VII

Web Development Tool
In this part:
Chapter 17: Web Deployment Tool, Part 1 . 489
Chapter 18: Web Deployment Tool, Part 2 . 521
Chapter 19: Web Deployment Tool Practical Applications 545

		 489

Chapter 17

Web Deployment Tool, Part 1
Deployment of ASP.NET web applications has historically been very challenging and widely
varied across different teams. In fact, if you put 10 different ASP.NET developers in a room
and ask them how they deploy their applications today, you may hear a slew of different
answers, some of which are outlined in the list that follows.

n	 Manual FTP transfer

n	 RoboCopy

n	 psexec.exe

n	 MSBuild

n	 Microsoft System Center

n	 .msi files that are manually installed

And the list goes on—you probably have a few others as well. Different groups use different
tools for several reasons, including the fact that there is no single recommended practice
today, and that many tools that exist today don’t cover the broad spectrum of scenarios
that exist. For instance, web deployments can be categorized into three different high-level
scenarios, which include the following:

n	 Deployment to web servers hosted with third parties

n	 Deployment to web servers hosted in an organization’s network

n	 Deployment to the local web server on the same machine

Most tools are optimized to perform a deployment to one of the scenarios listed, but not
all three. That is where the Web Deployment Tool, also known as MSDeploy, comes in.
MSDeploy handles deployment for all three scenarios, and in a consistent manner. In this
chapter, we will introduce the Web Deployment Tool, show you how it integrates into
Microsoft Visual Studio 2010, show its integration into IIS 7 and later, and show how to
perform deployments.

Note  Since we are dealing with deploying to the local IIS server in this chapter, you will need
administrator rights for many of the examples in this chapter. For example, you will have to open
Visual Studio as an administrator as well as opening the command prompt as an administrator.

490	 Part VII  Web Development Tool

Web Deployment Tool Overview
The Web Deployment Tool (MSDeploy) is a tool that is provided by Microsoft to assist in the
following areas:

n	 Deployment of web applications and sites

n	 Migration of web applications and sites

n	 Synchronization of web applications and sites from one location to another

MSDeploy consists of two major components; the tool itself and the Remote Agent Service.
There are a few different ways that you can interact with MSDeploy; one is through the IIS
7 extension and the other is through the msdeploy.exe command-line utility. The Remote
Agent Service is a Windows service that you can install on machines that you would like to
deploy applications to. We will discuss the Remote Agent Service later in this chapter.

Synchronization is the heart of MSDeploy. With MSDeploy, we can synchronize a “source”
with a “destination.” The concepts of source and destination are intentionally abstract
and extensible. Source and destination targets are accessed via providers. Many different
providers are built into MSDeploy, but you can create your own as well. We cover more
providers later in this chapter in detail, but to give you an idea now, the providers include
web applications, websites, web packages, and folders. You may be wondering what web
packages are. Web packages are a new concept introduced with MSDeploy and Visual Studio
2010. We will now move on to discuss web packages in detail.

Working with Web Packages
When you are developing web applications using Visual Studio, there comes a time to deploy
that application to different environments. Previous versions of Visual Studio did not have
any built-in support for creating a self-contained artifact for the entire web application. Many
times, people would take the contents of the website, throw them into a .zip file, and use that
file to deploy from one environment to another. We are happy to say that with Visual Studio
2010, there now exists a way to create that much-needed artifact, which is known as a web
package or deployment package. A web package is a self-contained .zip file that can be used
to set up the application, along with its required files and related resources.

Inside Visual Studio 2010, you can right-click a web application and select Build Deployment
Package to create this package. That menu option is shown in Figure 17-1.

If you click the Build Deployment Package option shown in this figure, then you should find
a .zip file under the obj\CONFIGURATION\Package folder, where CONFIGURATION is the
name of the current configuration that Visual Studio is using. In this case, the configuration

	 Chapter 17  Web Deployment Tool, Part 1	 491

was set to Debug, and the name of the project is HelloWorldMvc, so the package is located
at obj\Debug\Package\HelloWorldMvc.zip. A web package can include the following:

FIGURE 17-1  Web Project context menu showing package option

n	 Files

n	 Access control lists (ACLs)

n	 Certificates

n	 Registry settings

n	 Database scripts to be executed

n	 Parameters (the user will be prompted for values upon sync)

n	 Assemblies to be installed in the GAC

Now that we have discussed what packages are, and we’ve even shown how to create a
package using all the default options, we will cover the different options when creating
packages, and after that, we will show how you can take the created package and directly
import it into an IIS 7 web server.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

492	 Part VII  Web Development Tool

Note  There are some limitations to the number of files and the total size of the packages that
you should be familiar with. Those include the fact that the maximum file size that can be placed
in a package is 2,147,483,647 bytes (Int.MaxValue) and the maximum number of files is 65,536.
If you need to support more files, then you will have to use archiveDir instead of a package.

Package Creation
In the previous section, we showed how you can create a package using the Build
Deployment Package context menu option in Visual Studio. We will now take a look at some
of the different ways that you can customize the package that gets created. There are a few
options inside Visual Studio that you can use to customize package creation. You can get to
these options from the project’s Properties page. To get there, you can right-click the project,
select Properties, and then click the Package/Publish Web tab. Figure 17-2 shows this tab.

FIGURE 17-2  Web Deployment Package options page

From this tab, we can set a few options, including which files to include in the package,
whether a database should be included, where the package should be written to, and a few
IIS settings that will be used when the package is imported. We will go over these options
here, but you should keep in mind that you can have much more control over the package

	 Chapter 17  Web Deployment Tool, Part 1	 493

creation process by editing the project file. We will thoroughly cover this in the next chapter,
“Web Deployment Tool, Part 2”.

You can specify what file should be included in the package by selecting one of the options
in the Items To Deploy drop-down list. These options are covered in Table 17-1.

TABLE 17-1  Items to Deploy Options
Option Description
Only Files Needed To Run This
Application

MSDeploy will attempt to determine all the files that are
required by your web application. It will include only those
files.

All Files In This Project Selecting this option will include all the files needed to run
the application, plus all the other files that are a part of the
project.

All Files In This Project Folder This will include all the files needed to run the web
application, as well as other files located in, or under, the
projects directory. Some files are excluded, when it’s known
that they are not needed. For instance, all files under obj\, as
well as any file with an extension including .scc, .vssscc, and
vspscc, which are common extensions for files containing
version control information.

Underneath the Items To Deploy option, there are two check boxes that you can select:

n	 Exclude Generated Debug Symbols

n	 Exclude Files From The App_Data Folder

By default, your debug symbols will be included in the created package. This is true even
for builds using Release configuration. It is a good idea to keep your .pdb (program debug
database) files in case you need to debug that particular build at some time in the future.
Also, you may want to exclude the files from App_Data if your deployed applications will not
be using a data source contained in that folder.

When you are creating a package, you can include database deployment with it. In order to
do that, you will have to click the Include All Databases Configured In Package/Publish SQL
Tab and set the database options on that tab. We will not cover database deployment in
this chapter but we do discuss it in the next chapter “Web Deployment Tool, Part 2” in the
“Database” section.

Only a couple other options allow you to specify inside Visual Studio. By default, the Create
Deployment Package As A Zip File option is selected. When this is selected and the Build
Deployment Package operation is executed, then your files are placed into a .zip file package.
If this option is cleared, then the package is created to an archive directory. The archive
directory contains all the files that the .zip file would.

494	 Part VII  Web Development Tool

Earlier, we stated that the package would be located in the obj folder. This is the default, but
you can specify another location using the Location Where Package Will Be Created option.
Note that if you have specified that the package be created as a .zip file, then you should
specify a file name ending in .zip. Otherwise, you will receive an error when building the
package.

The other three options are IIS settings that can be included in the deployment package.
The first is the default value for the website name and application name that should be
used. The default value for that will follow this pattern: Default Web Site/WEB-PROJ-
NAME_deploy, where WEB-PROJ-NAME is the name of the web project being packaged.
If the package is imported using IIS 7, the user will be given the option to change those
values. We will discuss that later in this chapter. If you are developing your web application
or website using IIS instead of the ASP.NET Development Server (“Cassini”), then you will
be allowed to specify the physical path. Otherwise, you will not be able to do that, and the
default path (under inetpub) will be used when the application is imported. In the case of the
sample application, IIS was not used, so the option is dimmed. If you have any deployment
settings marked as secure, then you can enter the encryption password in the text box
shown. You should know that those values are stored in plain text and not safely guarded, so
use them with caution. Now that we have discussed how to create packages, we will move on
to the topic of how packages can be installed.

Installing Packages
There are primarily two different ways to install packages: using the IIS 7 extension or using
msdeploy.exe. We will first go over using IIS to install packages, and then we will show how to
install them using msdeploy.exe. Although only IIS 7 and later support MSDeploy packages
through its user interface, you can still install MSDeploy packages to IIS 6 using msdeploy.exe.

Installing Packages Using IIS 7
When you install MSDeploy (it is installed automatically with Visual Studio) on a machine
that is running IIS 7, it will automatically install the IIS manager user interface (UI) module
by default (you can disable this via a custom install). After installing MSDeploy, you should
see a new Deploy section (when a website is selected in the Connections pane), as shown
in Figure 17-3.

From Figure 17-3, you can see three actions: Install Application From Gallery, Export
Application, and Import Application. Install Application From Gallery uses the Web Platform
Installer to allow you to easily install some popular web applications. We will not cover
the Web Platform Installer in this book, because it is outside the scope of typical web
deployments, but you can get more info on it at http://www.iis.net/webpi. The action that we
will look at now is Import Application, and later in this chapter we’ll cover Export Application.

	 Chapter 17  Web Deployment Tool, Part 1	 495

FIGURE 17-3  Deploy actions for a website

When you click the Import Application link, you will see a dialog prompting you to select
a package to import. Then select the package that was just created using the HelloWorldMvc
project and click Next to get the dialog shown in Figure 17-4.

FIGURE 17-4  IIS Manager Import Application Package dialog

496	 Part VII  Web Development Tool

This dialog shows the preview of the changes that the package will make to the local IIS
server. When the package is being imported, certain operations can be skipped if necessary.

For instance, if you choose not to deploy the HelloWorldMvc.pdb file or if you do not want
to include the web.config file, then you can simply clear it. You can also choose to skip other
operations.

At this point, you can click Next to continue with the import, or you can choose to tweak
the advanced settings through the Advanced Settings dialog. Once you click Next on this
page, you will be shown a dialog to input all the values for the parameters that the package
contains. In this case, you should see the dialog shown in Figure 17-5.

FIGURE 17-5  Input Application Package Information dialog

Since we created the default package from Visual Studio, the only parameter that is defined
is the IIS application that will be created. You can customize the package creation process to
include other parameters, and when the package is imported, the user will be given a chance
to update those values. For instance, you can create a package that will prompt the importer
for a connection string that will be placed in the web.config file. We will discuss parameters in
more detail in the section entitled “MSDeploy Parameters,” later in this chapter.

In the dialog shown in Figure 17-5, when you click Next, the import will start. Following that,
you will be shown a report of all the actions that were performed during the import process.
Figure 17-6 shows the Details view of those results.

	 Chapter 17  Web Deployment Tool, Part 1	 497

FIGURE 17-6  Details report after a package import

The messages that are shown in Figure 17-6 are the same ones that you would have seen
from the console if you had performed the import using msdeploy.exe. We will now move on
to show that process.

Installing Packages Using MSDeploy.exe
As stated previously, you can also use the command-line utility, msdeploy.exe, to import
packages. This utility is located in the %ProgramFiles(x86)%\IIS\Microsoft Web Deploy
folder. It is a good idea to add this value to your PATH environment variable if you regularly
use msdeploy.exe. First we will show you the command to perform the same sync as in the
previous section, and then we will discuss the different options when invoking the command.

In the previous section we created a new IIS application by importing the package
that was created by Visual Studio. We can achieve the same thing using the msdeploy
.exe command-line utility. The command to do that is msdeploy -verb:sync
-source:package=HelloWorldMvc.zip -dest:auto. Don’t worry about the syntax
now; we will discuss that shorty. The result of executing this command is shown in
Figure 17-7.

If you are thinking that those messages look familiar, they are. They are the same messages
that you saw in Figure 17-6, when we were importing the package using the IIS Manager user
interface. Now that we have deployed this to the local IIS server, let’s see what happens if we
execute the exact same command again. Take a look at the new results in Figure 17-8.

498	 Part VII  Web Development Tool

FIGURE 17-7  Using msdeploy.exe to deploy the HelloWorldMvc project

FIGURE 17-8  Using msdeploy.exe to update the HelloWorldMvc application

That’s kind of interesting; the output is much shorter than it was last time. That’s because
MSDeploy will examine the source and destination and push through only the relevant
changes. In this case, we do not see any messages about adding files; we just see the setAcl
command executing, which specifically does not skip by design. In this scenario, the project
doesn’t have many files, and the deployment is on the same machine, so it wouldn’t have
mattered if a full deployment was executed. But suppose you have a website that has
thousands of files, and you change only a few of them. If you then had to deploy your full
application again, this would be far from ideal. MSDeploy is designed to solve this problem.
Since MSDeploy will send only the changed content in most cases, you will save not only time
but also bandwidth. Now let’s take a closer look at the msdeploy.exe options.

msdeploy.exe Usage Options
The msdeploy.exe file, simply referred to as msdeploy in command examples, has a very rich
command-line syntax. We will not fully cover it here, but we will go over the most important
options. For full coverage of this subject, you should visit http://technet.microsoft.com/en-us/

	 Chapter 17  Web Deployment Tool, Part 1	 499

library/dd569106.aspx. The basic syntax for invoking MSDeploy takes the form msdeploy
–verb:VerbHere –source:SourceHere –dest:DestHere, where VerbHere, SourceHere,
and DestHere are values that you provide. The –verb option, which is required, allows you to
indicate to MSDeploy what action to perform. The six different possible values are outlined in
Table 17-2.

TABLE 17-2  MSDeploy Verb Options
Value Description
dump Returns the details of the source object

sync Synchronizes the source object with the destination object

delete Deletes the destination object

getDependencies Can be used to get information about any dependencies that the
destination object may have

getParameters Will return all parameters that are defined on the source object

getSystemInfo Will return system information for the source object

Note  A really good way to learn about the msdeploy.exe command-line usage is to invoke the
partial or full command in which you are interested and appending the /? switch. For example,
if you wanted to learn more about the sync verb, you can invoke the command msdeploy.exe
–verb:sync /?.

The most useful option is the sync verb followed by dump, so let’s just focus on those two
for now. From Table 17-2, we know that we can use the dump verb to get information about
the source object, so let’s show an example of that. If you were following along with the
examples in this chapter, then you recall from the previous section that we have created a
new application, HelloWorldMvc_deploy, in the Default Web Site. In order to get information
about that application, you can execute the following command:

msdeploy -verb:dump
 -source:appHostConfig="Default Web Site/HelloWorldMvc_deploy"

When you do this, you should see a result similar to Figure 17-9.

From the results shown in Figure 17-9, we can see the different files that the application
contains, as well as some information about the application itself, such as the path to the
application. Now is a good time to call out the –xml option. From the previous command, we
saw a raw text representation of an IIS application. If you want to see the XML representation
that MSDeploy uses internally, then you can attach the –xml option to the command. So in
our case, the new command would be

msdeploy -verb:dump

 -source:appHostConfig="Default Web Site/HelloWorldMvc_deploy" -xml

500	 Part VII  Web Development Tool

FIGURE 17-9  MSDeploy dump for Default Web Site/HelloWorldMvc_deploy

When using MSDeploy in many cases, you have to provide XPath values to locate elements.
This view can help you construct that XPath. Now that we’ve discussed the dump verb, let’s
move on to the more useful sync verb.

Note  MSDeploy uses object as a generic term to refer to different things, including but not
limited to IIS applications, IIS websites, web packages, web archives, folders, and other objects.

The sync verb is the one that you are most likely to use the most. This is the verb that you will
use when you want to deploy an application somewhere, but it can be used for other things
as well, such as backing up an object. When you perform a sync, you always have to specify
a source and a destination. The source and destination have to be compatible, but they don’t
have to be the same type. For example, you can sync an IIS application to a web package,
to a folder, and so on. You might be wondering what it means for two object types to be
compatible. It just means that the source and destination providers are designed to interact
with each other. So the appHostConfig provider is compatabile with the package provider,
and vice versa. Now let’s look at some of the providers that are included with MSDeploy.

MSDeploy Providers
We have touched on the concept of providers already in this chapter, but we have not
yet discussed them in depth. We now will continue our discussion from the last section and
put an emphasis on MSDeploy providers. According to the MSDeploy documentation at

	 Chapter 17  Web Deployment Tool, Part 1	 501

http://technet.microsoft.com/en-us/library/dd569040.aspx, “Providers process specific source
or destination data for Web Deploy.” If it sounds like this description is a bit vague, it is—for
a reason. A provider is an abstract concept by design. MSDeploy will accept a source and
destination represented by a provider and some settings for each. The providers are to
figure out the exact actions that are to be performed. This abstraction is one that enables
MSDeploy to handle a source and destination object in an independent manner. Many
providers are shipped with MSDeploy. The most commonly used providers are listed in
Table 17-3; for the full list, you can execute msdeploy.exe /?.

TABLE 17-3  MSDeploy Providers
Provider Name Description
appHostConfig A provider used for IIS 7 applications.

archiveDir Used to create, or synchronize to and from, an archive directory (.zip file).

auto When this provider is used, the destination uses the same provider as the
source.

contentPath Allows you to use a folder as a source or destination object.

createApp Used to create an IIS application. Note: This provider is not intended for direct
use; instead, it should be used inside a manifest.

dbFullSql This can be used to synchronize either a Microsoft SQL Server database
or a script to another SQL Server database or script.

dbMySql This can be used to synchronize either a MySQL database or script to another
MySQL Server database or script.

dirPath This allows you to perform operations to a directory.

filePath This provider is used to sync individual files.

gacAssembly This provider allows you to add a file to the GAC.

iisApp A provider that can be used for IIS 7 or IIS 6 applications.

manifest This provider will enable you to call many different providers in sequence by
using a manifest XML file.

metaKey This can be used to perform operations against IIS 6 metabase keys.

package This can be used to perform operations against a web package (.zip file).

runCommand This can be used to execute arbitrary commands.

setAcl This can be used to set permissions on a given folder.	

The best way to learn how to use different providers is to demonstrate some of them in
action. We’ve already seen how we can use a package to create an IIS application. Now
let’s reverse that and see how to back up an IIS application to a package. For example, if we
wanted to do this with the HelloWorldMvc_deploy application, the command would be
msdeploy -verb:sync -source:appHostConfig="Default Web Site/HelloWorldMvc_

deploy" -dest:package=HelloWorldMvc01.zip.

Once you execute this command, you will see that the file HelloWorldMvc01.zip is created
in the current working directory. If the package already existed at the destination, then only

502	 Part VII  Web Development Tool

the changes would be made to the package. You can test this by removing a file from the
package and running the command again. Now let’s take a look at another commonly used
provider, dbFullSql.

Note  While you are experimenting with msdeploy.exe, you should know that you can use the
–whatif switch to determine what actions would be performed if you executed the command.
Using –whatif will not make any changes; it only simulates them.

In many cases, your application relies on a database. With MSDeploy, you can deploy a SQL
Server database using the dbFullSql provider. This provider was designed for first-time
publishing. It is not designed to do incremental publishing, although you can do it if there
are no conflicts between the source and destination. Also, you should note that this provider
is not capable of creating server-level objects such as logons. On this local machine, the
AdventureWorks sample database is installed, which you can download at http://
msftdbprodsamples.codeplex.com/. In order to sync that database with another one on my
machine, the following command can be used:

msdeploy -verb:sync
 -source:dbFullSql="Data Source=localhost;
 Integrated Security=SSPI;Initial Catalog=AdventureWorks"
 -dest:dbFullSql=C:\InsideMSBuild\Ch17\advWorksFull.sql.

As you can see, the dbFullSql provider is used as the source and is provided the connection
string to the AdventureWorks database. For the destination, the full path to where the script
should be stored is provided. When scripting to a file, you are required to provide a full path,
but you can use an environment variable such as %temp% to help you construct the path.
When you perform this operation, this will sync both schema and data by default. So if you
open the generated script, you will see operations, such as create table, as well as inserts. You
can change that behavior by specifying options to the provider.

Many providers accept options to enable you to customize their behavior. The dbFullSql
provider can accept 122 different options. You can see all the options with the
msdeploy -verb:sync -source:dbFullSql /? command. In order to pass an option to
a provider, you just insert a comma followed by the option in the form <option>=<value>.
For example, if you want to script only the schema of the AdventureWorks database, then
you would modify the command to msdeploy -verb:sync -source:dbFullSql="Data
Source=localhost;Integrated Security=SSPI;Initial Catlog=AdventureWorks",

includeData=false -dest:dbFullSql=C:\InsideMSBuild\Ch17\advWorksFull

-NoData.sql.

Every provider is free to define what options it can accept, but some common options are
outlined in Table 17-4. We will show how to use some of these settings in the subsequent
discussion.

	 Chapter 17  Web Deployment Tool, Part 1	 503

TABLE 17-4  Common MSDeploy Provider Options
Option Description
computerName The name of the remote server, or URL. If the Remote Agent service is

running on a nondefault port, then you should specify the full URL instead
of just the name of the computer as you normally would.

userName The user name that will be used to authenticate to the remote server.

password The password that will be used to authenticate to the remote server.

includeAcls This option can be used to determine if ACLs should be included in the sync
operation.

tempAgent If you want to use the temp agent, then you can specify this value to be true.

To demonstrate how to use some of these settings, we have installed the MSDeploy Remote
Agent service on a virtual machine with the name WIN-MCX6WTF4J4R. In order to sync
the HelloWorldMvc_deploy application from my local IIS server to that machine, we would
invoke the command msdeploy -verb:sync -source:iisApp="Default Web Site/
HelloWorldMvc_deploy" -dest:auto,computerName=WIN-MCX6WTF4J4R,username=

deploy,password=p@ssw0rd.

In this command, we are using the iisApp provider to sync the application to the target remote
server. As you can see, we are specifying the following options: computerName, username, and
password. If the two machines were in the same domain, then the credentials could have been
omitted if the user invoking msdeploy.exe had the necessary rights on the target machine. As you
can see, we are using the auto provider here so that we do not have to repeat the iisApp provider
and settings for the target. Those are implied when using the auto provider. After executing that
command you will see the results shown in Figure 17-10.

FIGURE 17-10  msdeploy.exe used to sync HelloWorldMvc_deploy to a remote server

504	 Part VII  Web Development Tool

From the results in Figure 17-10, we can see that the application was successfully deployed to
the WIN-MCX6WTF4J4R machine. Now that we have discussed providers, we will move on to
discuss MSDeploy rules.

MSDeploy Rules
Along with providers, MSDeploy includes the concept of rules that govern behavior during
syncs. When a sync operation is executed, MSDeploy will check to see whether there is
a defined and enabled rule that applies to the current add, update, or delete operation.
If there is, then the rule is given a chance to modify the behavior of the action. This will
become more concrete as we take a closer look at rules. There are many rules shipped with
MSDeploy, and some of them are disabled by default. We will not discuss all of the rules here,
but you can get a list of them, along with descriptions, by executing the command msdeploy
-enableRule /?. To give you an idea of the types of rules that are available, take a look at
a Table 17-5, which lists just a few rules.

TABLE 17-5  MSDeploy Rules
Name Description
DoNotDeleteRule This is the rule that can be used to block deletions from

occurring on the destination. This rule is disabled by default.

EnvironmentVariableNormalize This rule is responsible for expanding environment variables
such as %temp% and %windir%. It is enabled by default.

Parameterization This rule enables support for parameterization via –declareParam
and –setParam. This rule is not intended to be used directly, and
it is enabled by default.

SkipNewerFilesRule This rule can be used to ensure that only out-of-date files are
written to the destination. It is disabled by default.

SyncGeneral This rule facilitates general sync operations. This rule is not
intended to be used directly, and it is enabled by default.

In order to enable a rule when you invoke msdeploy.exe, you can use the –enableRule
switch, and to disable a rule, use –disableRule. As an example, let’s take another look at the
HelloWorldMvc_deploy application that we deployed earlier. This time, before we perform
a sync, we will copy another file where the application is running with the command copy
ExtraFile.txt C:\inetpub\wwwroot\HelloWorldMvc_deploy. The lt rules enabled are
shown in Figure 17-11.

FIGURE 17-11  Sync showing removal of target object

	 Chapter 17  Web Deployment Tool, Part 1	 505

From Figure 17-11, we can see that the file that we just copied, ExtraFile.txt, was deleted from
the destination because it didn’t exist in the source package. This is by design. When you
tell MSDeploy to perform a sync, it will make sure that the destination object looks just like
the source object. In many cases, this can be undesirable. For example, if you have a blog
that writes entries as a file on disk, you do not want to destroy all of your entries. In order to
perform a sync without destroying those files, we can just enable DoNotDeleteRule. Now,
let’s do the same copy and sync operation, but this time, we will enable that rule. The result is
captured in Figure 17-12.

FIGURE 17-12  Sync with DoNotDelete rule enabled

The command for that would be

msdeploy -verb:sync
 -source:package=HelloWorldMvc\obj\Debug\Package\HelloWorldMvc.zip
 -dest:auto -enableRule:DoNotDeleteRule

From the results shown in Figure 17-12, we can see that no files were deleted, which is
exactly what we wanted to accomplish. Now let’s briefly discuss the –replace and –skip
command-line switches.

When you invoke msdeploy.exe, you can also include –replace and –skip directives. Let’s see
how they work. From the HelloWorldMvc example, you might have noticed the presence of
a Web.QA.config file in the root of the project, along with a Web.config file. Let’s say that
we wanted to deploy the package and replace Web.config with Web.QA.config. We could
achieve that by using the –replace rule. First, we will see the example in action; then, we will
dissect the syntax in more detail. The command to perform the sync and replace is here.

msdeploy -verb:sync
 -source:package=HelloWorldMvc\obj\Debug\Package\HelloWorldMvc.zip
 -dest:auto
 -replace:objectName=filePath,match=Web.QA.config,replace=Web.config

The results of running this code are shown in Figure 17-13.

FIGURE 17-13  MSDeploy Replace example

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

506	 Part VII  Web Development Tool

Here, we can see that the application was synced and the Web.config file was updated.
If you open that file, you will see that it is the Web.QA.config file. Now let’s take a closer look
at this command. The new part of this command is -replace:objectName=filePath,
match=Web.QA.config,replace=Web.config. In this syntax, we always use the –replace
switch and then pass it some parameters for the replacement. In order to help to create
the values for the options, you can use the –xml option against the source to see the
XML representation that MSDeploy uses internally. In this example, since our source is
the HelloWorldMvc.zip file, we would execute the command msdeploy -verb:dump
-source:package=obj\Debug\Package\HelloWorldMvc.zip -xml > result.xml to place
the XML content into result.xml file. Here, we are using the > directive to pipe the result
of the command to a file, result.xml. In the next code snippet, you will see a version of that
file (which has been abbreviated to save space).

<output>
 <sitemanifest>
 <iisApp path="C:\InsideMSBuild\...\PackageTmp">
 <createApp path="C:\InsideMSBuild\...\PackageTmp" isDest="False" ... />
 <contentPath path="C:\InsideMSBuild\...\PackageTmp">
 <dirPath path="C:\InsideMSBuild\...\PackageTmp" ...>
 <dirPath path="bin" ...>
 ...
 </dirPath>
 <dirPath path="Content" ...>
 ...
 </dirPath>
 <filePath path="Global.asax" .../>
 <dirPath path="Scripts" ...>
 ...
 </dirPath>
 <dirPath path="Views" ...>
 <dirPath path="Account" ...>
 ...
 </dirPath>
 <dirPath path="Home" ...>
 ...
 </dirPath>
 <dirPath path="Shared" ...>
 ...
 </dirPath>
 <filePath path="Web.config" ...>
 </dirPath>
 <filePath path="Web.config" ...>
 <filePath path="Web.QA.config" ...>
 </dirPath>
 </contentPath>
 </iisApp>
 <setAcl path="C:\InsideMSBuild\...\PackageTmp"...>
 <setAcl path="C:\InsideMSBuild\...\PackageTmp" ...>
 </sitemanifest>
</output>

	 Chapter 17  Web Deployment Tool, Part 1	 507

From this snippet, you can see the presence of the Web.config and Web.QA.config files inside
a filePath element. In basic terms, when each element is encountered, an MSDeploy provider
is started to process it. For files, this would be the filePath provider. The provider is invoked
with all the attribute values to perform its operation. What we need to do is locate the
element that we want to replace and use them in the –replace expression, the expression we
used again was -replace:objectName=filePath,match=Web.QA.config,replace=Web
.config.

For objectName, you will specify a regular expression that can be used to identify the
element. In this case, it is just filePath. Then the match option is passed to identify the specific
filePath entry that we want to replace. Following that, the replacement value is specified.
So the name “Web.QA.config” is replaced with “Web.config” during the sync operation.
Note when performing a replace like this it is important to follow the naming convention
{Filename}.{Identifier}.{Extension} where {Filename} and {Extension} are taken from the file you
are replacing and {Identifier} is any string. This is because you must ensure that the operation
which writes the original file occurs before the replacement, otherwise the replaced file may
be overwritten by the original file.

Now, we will look at another replace example so that we can provide a bit more clarity.
From the same package, we just sync the package up to the initial state with the command
msdeploy -verb:sync -source:package=obj\Debug\Package\HelloWorldMvc.zip

-dest:auto="Default Web Site/HelloWorldMvc_deploy" from the C:\InsideMSBuild\
Ch17\HelloWorldMvc directory. For the sake of giving an example, let’s say that when we
performed the sync, we want the Scripts folder to be renamed ScriptsProd. In order to
achieve that, we could use the command shown here.

msdeploy -verb:sync
	 -source:package=obj\Debug\Package\HelloWorldMvc.zip
	 -dest:auto
	 -replace:objectName=dirPath,match=Scripts,replace=ScriptsProd

This is very similar to the file replacement that we performed last time. After you execute that
command, you should see the result shown in Figure 17-14.

In the result shown in Figure 17-14, you can see that all of the files under Scripts were
removed and then files added under ScriptsProd. If it were a fresh sync, then the Scripts
folder would have never been created. You can include multiple –replace values for a single
sync. For example, if you wanted to perform both of the previous replacements, you could
use the combined command shown next.

msdeploy -verb:sync
 -source:package=obj\Debug\Package\HelloWorldMvc.zip
 -dest:auto
 -replace:objectName=filePath,match=Web.QA.config,replace=Web.config
 -replace:objectName=dirPath,match=Scripts,replace=ScriptsProd

508	 Part VII  Web Development Tool

FIGURE 17-14  MSDeploy replacing a directory name

The –replace directive is able to digest a few other options, but we will not discuss them
here. You can see those options by executing the command msdeploy.exe –replace /?.
Now that we have discussed the replace command, we can now move on to discuss the skip
command.

You can use the –skip directive to ensure that the specified operation(s) are not performed
on the target object. For example, you could use –skip to keep files or directories
from being synced or to keep ACLs from being updated, and any other operation that
MSDeploy performs. In our HelloWorldMvc example, there are two config files in the root,
Web.config and Web.QA.config, inside the package. In our development environment, when
we sync we do not want to drop the Web.QA.config file on the target server. In order to skip
the Web.QA.config file, you need to add the following to the sync command
-skip:objectName=filePath,keyAttribute=Web.QA.config. Here, we have used the
–skip switch in a similar fashion as –replace. The only difference here is that for skip, we
have used keyAttribute instead of match. Since we are dealing with a filePath element, the
key attribute is path, so when we specify keyAttribute. MSDeploy will try and match the
value provided for the path value. For other providers, keyAttribute may be different. When
you perform a sync and specify an object to be skipped, the object will not be removed
if it already exists on the target. This is because the comparison of source and target
does not take skip directives into account. To show you the skip, let’s first get rid of the
HelloWorldMvc_deploy application from the local IIS server with the command msdeploy
-verb:delete -dest:iisApp="Default Web Site/HelloWorldMvc_deploy". This will
create a clean slate. The full command, including the skip, is shown in the next snippet.

	 Chapter 17  Web Deployment Tool, Part 1	 509

msdeploy -verb:sync
 -source:package=obj\Debug\Package\HelloWorldMvc.zip
 -dest:auto
 -skip:objectName=filePath,keyAttribute=Web.QA.config

The result of this is shown in Figure 17-15.

FIGURE 17-15  MSDeploy skip example

From these results, you can see that the Web.QA.config file was indeed not synced with the
destination, which is exactly what we wanted. In that screen, toward the bottom, you can see
that two setAcl actions were executed. If you wanted to skip these actions as well, you could
add the switch -skip:objectName=setAcl. To demonstrate this once again, we will delete
the IIS application using the command msdeploy -verb:delete -dest:iisApp="Default
Web Site/HelloWorldMvc_deploy". Then we will execute the command shown here, which
contains both skip operations.

msdeploy -verb:sync
 -source:package=obj\Debug\Package\HelloWorldMvc.zip
 -dest:auto
 -skip:objectName=filePath,keyAttribute=Web.QA.config
 -skip:objectName=setAcl

The result of executing this command is shown in Figure 17-16.

510	 Part VII  Web Development Tool

FIGURE 17-16  MSDeploy skip command

In Figure 17-16, you can see that the Web.QA.config file was skipped, as well as the setAcl
actions. As with the replace operation, sync has more options than what has been shown
here. To see the full set of options, execute the command msdeploy.exe –skip /?. We will
now move on to discuss MSDeploy parameters.

MSDeploy Parameters
With MSDeploy, you can parameterize a package or an archive, which is a package that is
unzipped. For this discussion, we will only cover packages, but much of the same information
applies to archives. When a package is imported via the IIS 7 Import Application interface,
as discussed previously in this chapter, the user will be given a chance to specify the value
for that parameter. In order to create a package with a parameter, from the command line, you
have to use the –declareParam option. When you perform the sync, you use the
–setParam switch. We will see how to use both of these in this section. Before we start defining
parameters on packages, let’s first see how to create a package from an IIS application. You can
create a package from the HelloWorldMvc_deploy application with the following command.

msdeploy -verb:sync
 -source:iisApp="Default Web Site/HelloWorldMvc_deploy"
 -dest:package=C:\InsideMSBuild\Ch17\HelloFromIIS.zip

	 Chapter 17  Web Deployment Tool, Part 1	 511

Once you execute this command, you will see that the HelloFromIIS.zip file will be created.
This is the most basic way of creating a package from an IIS application. Now, let’s see if we
can decorate the created package with some parameters. First, let’s go through the process
of creating a package with a parameter; and then, using that package to sync, after that, we
will take a closer look at the syntax to create and set parameter values.

For this example, we will use the HelloWorldMvc_deploy IIS application. In the Web.config
file for that application, two connection strings are defined. The connectionStrings element is
shown here.

<connectionStrings>
 <add name="customersDb"
 connectionString="Data Source=.;Integrated Security=SSPI;Initial Catalog=Customers"/>
 <add name="recordsDb"
 connectionString="Data Source=.;Integrated Security=SSPI;Initial Catalog=Records"/>
</connectionStrings>

It would be great if we could create a package and define a parameter to update these
connection string values. First, let’s start with one connection string; then we will show you
how to create a package with multiple parameters. We have already seen the syntax to create
the package from the application. Now, take a look at the syntax to create the package with
a parameter.

msdeploy -verb:sync
 -source:iisApp="Default Web Site/HelloWorldMvc_deploy"
 -dest:package=HelloFromIIS.zip
 -declareParam:
 name=recordsDbConnString,
 kind=XmlFile,
 scope=Web.config,
 match=/configuration/connectionStrings/add[@name='recordsDb']/@connectionString,
 defaultValue="Data Source=default;Integrated Security=SSPI;Initial Catalog=Records"

We will go over this syntax in more detail later in this section, but let’s go over the basics
now. In this statement, you can see that we have added the –declareParam option, along
with a few arguments passed to it. The parameter that we are creating here is named
recordsDbConnString. We have indicated that the file that it needs to update is an XmlFile
and that the file path is Web.config. After that, we have specified the XPath expression to
locate the attribute that needs to be updated. Once again, we will go over all of this syntax
in more detail soon. After this command executes, the package HelloFromIIS.zip is created.
Now, we will remove the HelloWorldMvc_deploy application using the delete command.
That command is msdeploy -verb:delete -dest:iisApp="Default Web Site/
HelloWorldMvc_deploy". If you imported this package using the IIS Manager’s Import
Application feature, then the Parameters page would look like Figure 17-17.

512	 Part VII  Web Development Tool

FIGURE 17-17  Import Application Package dialog

In Figure 17-17, you can see that the new parameter is displayed with the default value.
For this example, we will cancel the import because we want to specify the value for that
parameter on the command line. In order to specify the value for a parameter during
a command-line sync, you will use the –setParam option. You will have to pass that option
the name and value of the parameter that you want to specify. In this case, the name of the
parameter is ‘recordsDbConnString’ and the value is Data Source=qa01.records
.sedotech;Integrated Security=SSPI;Initial Catalog=Records. The full command in
this case is shown in the next code snippet.

msdeploy -verb:sync
 -source:package=HelloFromIIS.zip
 -dest:auto
 -setParam:
 name=recordsDbConnString,
 value="Data Source=qa01.records.sedotech;Integrated Security=SSPI;Initial
Catalog=Records"

From this command, you can see how the –setParam option is used. It is much simpler to
specify the value for a parameter than it is to create the parameter. We can use the
–setParam option to actually create a new parameter and set its value at the time the sync
operation is occurring. This is a really useful feature because many times, it is difficult to
know ahead of time what values you want to parameterize. We will cover this technique in
this chapter, but for now, let’s talk about the –declareParam syntax in more detail.

	 Chapter 17  Web Deployment Tool, Part 1	 513

–declareParam
Earlier in this chapter, we discussed the –declareParam option at a high level. Now we will
delve into it a little bit deeper. This option is capable of parameterizing many different things.
Because of this, unfortunately, it has a complicated syntax. The full syntax for this option is
shown here.

-declareParam:name=<ParameterName>
 ,kind=<ParameterKind>
 ,scope=<ParameterScope>
 ,match=<RegularExpression>
 ,defaultValue=<string>
 ,description=<ParameterDescription>
 ,tags=<tag>[,<tag>,...]

In the previous example, we have used many of the arguments. But now let’s inspect each
one individually.

–declareParam kind Argument
This argument defines the behavior that will be executed for the parameter when the sync is
performed. This will be defined by where the value exists that you want to parameterize. The
values of the –declareParam kind are listed in Table 17-6.

TABLE 17-6  –declareParam Kind Values
Kind Setting Description
XmlFile This kind is used when you need to create a parameter that can be

used in any XML file. In many cases, you will use this with Web
.config, but you can use this against any XML file.

TextFile This kind is used to specify a replacement in a text file by using
a regular expression.

TextFilePosition This kind is used to specify a replacement in a text file by using the
line and column position of the string, along with its length.

ProviderPath You can use this kind when you want to change the site name
during the sync process.

DestinationVirtualDirectory This kind can be used to change the physical path where the
application will be placed on the target machine.

DestinationBinding You can use this kind to define a different binding on the target
object than what is defined in the source.

DeploymentObjectAttribute You can use this kind to change other attribute values. For
example, you can use it to create a parameter for the user name
under which the application pool should execute.

514	 Part VII  Web Development Tool

–declareParam scope Argument
The general definition of the scope argument, according to the MSDeploy documentation
at http://technet.microsoft.com/en-us/library/dd569084.aspx, is that it is “a required regular
expression which specifies the scope of the parameter kind.” The scope argument is tightly
coupled to the kind argument, so let’s see how this argument behaves for each kind
argument, as shown in Table 17-7.

TABLE 17-7  –declareParam Scope Values
Kind Setting Description
XmlFile This scope is a regular expression that can be used to identify the

path to the XML file on which the replacement will occur.

TextFile This scope is a regular expression that can be used to identify the
path to the text file on which the replacement will occur.

TextFilePosition This scope is a regular expression that can be used to identify the
path to the text file on which the replacement will occur.

ProviderPath This scope is a regular expression that will be used to identify on
which MSDeploy provider the replacement will occur. If you are
not using a manifest, then this value will default to the current
provider. If you are using a manifest, then this value will be used
to determine which provider(s) it affects.

DestinationVirtualDirectory This scope is a regular expression that will identify which
directory, or directories, will be affected by the parameterization.

DestinationBinding This scope is a regular expression that is used to determine
the website that the binding will target. For IIS 7, this would be
Default Web Site. For IIS 6, this should be the ID of the site.

DeploymentObjectAttribute This scope is a regular expression that specifies the absolute
path of the affected object.

–declareParam match Argument
The match argument is much the same as the scope argument. Its definition will vary
depending on the parameter kind being used. Table 17-8 lists the definition of this argument
for each provider.

TABLE 17-8  –declareParam Match Values
Kind Setting Description
XmlFile This match is the XPath expression that will be used to identify the

attribute which will be updated.

TextFile This match is a regular expression. It could just be the actual text,
which is used to identify what text will be replaced.

TextFilePosition For this provider, the match expression should be defined using the
following syntax: match=<Line>;<Column>;<CharCount>. The
values Line, Column, and CharCount identify where in the file the
replacement should occur. Note that all of these values are based on
1 instead of 0.

	 Chapter 17  Web Deployment Tool, Part 1	 515

Kind Setting Description
ProviderPath For this parameter kind, the match argument is used only when a

manifest is being synced. In this case, the match argument is used to
determine which providers will be affected.

DestinationVirtualDirectory The match argument is not applicable with this parameter kind.

DestinationBinding This is a regular expression, which is optional, that is used to
determine the binding that will be modified.

DeploymentObjectAttribute This is a regular expression that identifies which attribute will be
updated.

–declareParam defaultValue Argument
The –declareParam defaultValue argument is the value that will be applied for the parameter
if no other value is given. If your properties have meaningful defaults then it is a good idea
to supply their values here.

–declareParam tags Argument
The –declareParam tags argument is a location where you can place metadata about the
parameter that is being declared. For example, if you have a parameter that relates to a
database connection, you could indicate this via a DatabaseConnectionString tag, or if you
have a parameter that is a user name, then you could indicate this with the a Username tag.
You are free to use this as you see fit.

–setParam
Now that we have discussed some of these parameters, let’s see how we can put them to use.
First, let’s create a package from the HelloWorldMvc_deploy site, defining a parameter for
the IIS application name and a parameter that will define the physical path where we want
the application stored. To do that, we use the simple command shown here.

msdeploy -verb:sync
 -source:appHostConfig="Default Web Site/HelloWorldMvc_deploy"
 -dest:package=C:\InsideMSBuild\Ch17\HelloWorld.zip

Once you execute this command, the zip file is dropped to C:\InsideMSBuild\Ch17\
HelloWorld.zip. After that, we can delete that site from the IIS server using the command
msdeploy -verb:delete -dest:appHostConfig="Default Web Site/HelloWorldMvc_
deploy". Up until this point, we have been discussing the –declareParam switch. Now,
let’s discuss the –setParam switch. We can use this switch to set the value for any defined
parameter, and even to define and set the value for a new parameter during a sync. For
example, if you take the package that you just created, there are no defined parameters, but

516	 Part VII  Web Development Tool

you can use the –setParam switch to change the physical path where the application will be
stored. In order to do that, you could execute the command shown here.

msdeploy -verb:sync
 -source:package=C:\InsideMSBuild\Ch17\HelloWorld.zip
 -dest:appHostConfig="Default Web Site/HelloWorldMvc_deploy"
 -setParam:kind=DeploymentObjectAttribute,
 scope=virtualDirectory,
 match=virtualDirectory/@physicalPath,
 value="C:\inetpub\wwwroot\Mvc01"

When you look at this command, you might be wondering how to construct this yourself.
First, the source and dest parts are easy to determine, and we also know that we need to use
–setParam to change any values during a sync operation. Now, we need to determine what
the parameter kind should be. This is basically a matter of elimination: if there is no specific
parameter kind for your situation and you want to change an IIS setting, then you must use
the DeploymentObjectAttribute. Following this, we need to figure out what the required
values should be for scope and match. In order to determine this, we have to look at the
created package to see how MSDeploy represents it. In order to do this, you can use the
–verb:dump operation with the –xml option. In this case, you can execute the command.

msdeploy -verb:dump
 -source:package=C:\InsideMSBuild\Ch17\HelloWorld.zip -xml
 > C:\InsideMSBuild\Ch17\HelloWorldDump.xml

This will write the XML representation of the package to the file C:\InsideMSBuild\Ch17\
HelloWorldDump.xml. We have included the file here (but with several substitutions to
conserve space), so that you can get a feel for what it looks like.

<output>
 <MSDeploy.appHostConfig>
 <appHostConfig path="Default Web Site/HelloWorldMvc_deploy">
 <application path="/HelloWorldMvc_deploy" ...>
 <virtualDirectoryDefaults path="" physicalPath="" userName="" ... />
 <virtualDirectory
 path="/"
 physicalPath="%SystemDrive%\inetpub\wwwroot\HelloWorldMvc_deploy" ...>
 <dirPath path="C:\inetpub\wwwroot\HelloWorldMvc_deploy" ...>
 <dirPath path="bin" securityDescriptor="D:" ...>
 <filePath path="HelloWorldMvc.dll" size="17920" .../>
 <filePath path="HelloWorldMvc.pdb" size="32256" .../>
 </dirPath>
 <dirPath path="Content" securityDescriptor="D:" ...>
 <filePath path="Site.css" size="5379" attributes="Archive" .../>
 </dirPath>
 <filePath path="Global.asax" size="105" attributes="Archive" ... />
 <dirPath path="Scripts" securityDescriptor="D:" ...>
 <filePath path="jquery-1.4.1-vsdoc.js" size="242990"... />
 ...
 </dirPath>
 <dirPath path="Views" ...>

	 Chapter 17  Web Deployment Tool, Part 1	 517

 <dirPath path="Account" ...>
 <filePath path="ChangePassword.aspx" size="2141" ...>
 </dirPath>
 <dirPath path="Home" securityDescriptor="D:" ...>
 <filePath path="About.aspx" size="390" .../>
 <filePath path="Index.aspx" size="507" .../>
 </dirPath>
 <dirPath path="Shared" securityDescriptor="D:" ...>
 <filePath path="Error.aspx" size="439" attributes="Archive" .../>
 <filePath path="LogOnUserControl.ascx" size="352" .../>
 <filePath path="Site.Master" size="1253" .../>
 </dirPath>
 <filePath path="Web.config" size="1570" .../>
 </dirPath>
 <filePath path="Web.config" size="11932" .../>
 <filePath path="Web.QA.config" size="2945" .../>
 </dirPath>
 </virtualDirectory>
 </application>
 </appHostConfig>
 </MSDeploy.appHostConfig>
</output>

In this contents shown here, we have boldfaced the text that represents the attribute that
we want to change. In this case, we need to use scope=virtualDirectory to locate the
element that we want to update, and then we use the match value to narrow it down to
the specific attribute using the XPath expression virtualDirectory/@physicalPath. This
is basically the method that you will use to create other parameters. Now that we have
discussed parameters a bit, let’s move on to the manifest provider.

MSDeploy Manifest Provider
Once you start using MSDeploy, you will notice pretty quickly that it would be really
beneficial if you could invoke many providers with the same command—it would be like
having a “super” provider that can invoke all other providers. This is pretty much what the
manifest provider will do. It allows you to declare, in an XML file, what providers need to
be invoked and the values for the options for each provider. This is an advanced concept,
and we do not have much space to cover it, but in this section, you should get a good
introduction to using manifests. As always, though, the best way to learn something is by
doing it. The best way to describe how to use a manifest is to see it in action. Since the
package and publish features work only with Web Application Projects (WAPs), we will now
see how we can do something similar manually for a website project. To do this, we have
created an IIS website project named Website01. You can find the solution file at
C:\InsideMSBuild\Ch17\Website01\Website01.sln. You’ll need to open Visual Studio in
administrator mode because when you open that site, it will create the IIS virtual directory
for you. We will use a manifest provider to craft a package that we can use to deploy to
another server. Inside the Website01 folder, you will find a file named SourceManifest.xml.
The contents of that file are shown on the following page.

518	 Part VII  Web Development Tool

<sitemanifest>
 <appHostConfig path="Default Web Site/Website01" />
 <dirPath path="C:\InsideMSBuild\Ch17\Website01\"/>
 <setAcl
 path="Default Web Site/Website01\App_Data" setAclAccess="ReadAndExecute,Write,Delete" />
 <setAcl
 path="Default Web Site/Website01\logs" setAclAccess="Write" />
 <runCommand path="echo after finished"/>
</sitemanifest>

Let’s take this apart a bit before we use it. The first element is the appHostConfig element
with the path to the virtual directory that IIS is using. This indicates to MSDeploy to take all
of the IIS settings from that application. After that, we have a dirPath provider listed with the
file path. This indicates to MSDeploy that you want to pull the content from the specified
location. The next two providers listed are both setAcl. By using this provider, you can set
the access rights that are needed for the application to run. In this case, we are granting
read and write (along with execute and delete) access to the App_Data folder, which is the
location of my SQL Express database. After that, write access is given to the logs folder. The
application will write to a file in this folder. Then, you will see that we use the runCommand
provider to send a message to the console. In this case, the action is not useful; but a good
way to use this could be to start or stop Windows services or to make a call to an .exe file to
initialize your application.

The manifest provider, along with many other providers, does not have to be synced with the
same provider. A common scenario when using a manifest provider is to sync it to a package
and then use that package to deploy the application to different locations. This is exactly
what we are going to do. First, we need to create a package from this manifest; you can do
so with the following command.

msdeploy -verb:sync
 -source:manifest="C:\InsideMSBuild\Ch17\Website01\SourceManifest.xml"
 -dest:package=C:\InsideMSBuild\Ch17\Website01.zip

Once you execute this command, the package is written out to C:\InsideMSBuild\Ch17\
Website01.zip. Now, what we need to do is to deploy this to another server. When we do
this, we want to set the location where the virtual directory should reside because we do not
want the files to be dropped to C:\InsideMSBuild\Ch17\Website01 on my web server. The
server that we are deploying to is named WIN-MCX6WTF4J4R, as discussed previously, which
has the MSDeploy Remote Agent Service installed and running. The command to deploy this
application is shown next.

msdeploy -verb:sync
 -source:package=C:\InsideMSBuild\Ch17\Website01.zip
 -dest:auto,computerName=WIN-MCX6WTF4J4R,username=deploy,password=p@ssw0rd
 -setParam:type=DestinationVirtualDirectory,
 scope="Default Website/Website01",
 value="%systemdrive%\inetpub\wwwroot\Website01"

	 Chapter 17  Web Deployment Tool, Part 1	 519

In this command, we are using the package as my source and then deploying it to my remote
server, which doesn’t have the application installed. The results of executing this command
are shown in Figure 17-18.

FIGURE 17-18  MSDeploy Publish result

From this result, we can see that the application was successfully deployed to the remote
server, as we expected. Also, look at the last few messages in the figure. You can see that
the ACLs were set for App_Data folder and the logs folder. After this, you can see that the
runCommand executed as we expected.

There is a lot more that you can do with the Manifest provider; this is really just a good
starting point. In the next chapter we will move on to discuss how the Web Deployment Tool
is integrated into Visual Studio and how you can customize packages that are created.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

		 521

Chapter 18

Web Deployment Tool, Part 2
In the last chapter, we discussed how the Web Deployment Tool (MSDeploy) can be used
from the command line via the msdeploy.exe command. We also touched a bit on the
integration that exists inside Microsoft Visual Studio. Along with Visual Studio, there is some
integration by way of MSBuild tasks and targets. Together, the entire package is referred to
as the Web Publishing Pipeline (WPP). In this chapter, we will discuss the WPP in more detail
and how you can extend it to suit your needs.

Web Publishing Pipeline Overview
As we just described briefly, the Web Publishing Pipeline (WPP) is the “workflow” that your
project undergoes in order to take your project from its source to the destination server.
Most of this is captured in MSBuild scripts that get imported into your Web Application
Project (WAP) projects. Unfortunately, website projects are left behind in this scenario,
but after you understand the WPP, you can reuse many of the tasks and targets for use
with website projects. Before we discuss the details behind the WPP, let’s discuss a related
technology that is used to transform Extensible Markup Language (XML) configuration files.

Note  In many of the examples here, you will have to start Visual Studio, or the command
prompt, in administrator mode. In order to do so, you can right-click and select Run As
Administrator.

XML Document Transformations
In Visual Studio 2010, when you create a new WAP, there are two files nested under the
Web.config by default: Web.Debug.config and Web.Release.config. Take a look at
Figure 18-1, which shows them in the Solution Explorer.

The files under the Web.config file are not config files—they are transform files. You can use
these files to transform your Web.config easily when you publish or package your web. If you
crack open the Web.Debug.config file, you should see the following content:

<?xml version="1.0"?>
<!-- For more information on using web.config transformation visit
http://go.microsoft.com/fwlink/?LinkId=125889 -->
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

522	 Part VII  Web Deployment Tool

<!--
 In the example below, the "SetAttributes" transform will change the value of
 "connectionString" to use "ReleaseSQLServer" only when the "Match" locator
 finds an atrribute "name" that has a value of "MyDB".

<connectionStrings>
<add name="MyDB"
connectionString="Data Source=ReleaseSQLServer;Initial Catalog=MyReleaseDB;
 Integrated Security=True"
xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>
</connectionStrings>
 -->
<system.web>
<!--
 In the example below, the "Replace" transform will replace the entire
<customErrors> section of your web.config file.
 Note that because there is only one customErrors section under the
<system.web> node, there is no need to use the "xdt:Locator" attribute.

<customErrorsdefaultRedirect="GenericError.htm"
 mode="RemoteOnly" xdt:Transform="Replace">
<error statusCode="500" redirect="InternalError.htm"/>
</customErrors>
 -->
</system.web>
</configuration>

FIGURE 18-1  Web.config transform files in the Solution Explorer

The first thing that you should notice is that this looks a lot like a Web.config file. In fact, the
only difference is the presence of the xmlns declaration in the root element. The comments
in the config file will get you started when you want to create transformations without
a reference at hand. Before we get into the details, let’s first see all this in action. In the next
code snippet, you will find the contents of the Web.config file (with some changes formatting
changes to fit the page) from the Transform01 project.

	 Chapter 18  Web Deployment Tool, Part 2	 523

<configuration>
<appSettings>
<add key="pageSize" value="2" />
<add key="IncludesConfigPath" value="~/Config/includes.xml.config"/>
<add key="IncludesApplicationName" value="inlinetasks.com"/>
</appSettings>

<connectionStrings>
<add name="recordsDb"
connectionString="Data Source=localhost;Initial Catalog=RecordsDb;
 Integrated Security=True"/>
<add name="accountsDb"
connectionString="Data Source=localhost;Initial Catalog=RecordsDb;
 Integrated Security=True"/>
<add name="partnersDb"
connectionString="Data Source=localhost;Initial Catalog=RecordsDb;
 Integrated Security=True"/>
</connectionStrings>

<system.web>|
<customErrors mode="Off" defaultRedirect="/error.html" />
<compilation debug="true" targetFramework="4.0" />
</system.web>
</configuration>

This config file is pretty basic; it just contains a few app settings and connection strings, as
well as the compilation element that enables debugging. Let’s start by changing the value of
one of the app settings, pageSize. Currently, the value is set to a low number, 2, but when we
deploy it, we want to increase the value. Let’s say that we want to replace the value 2 with 25.
Inside the Web.Debug.config file, I place the following:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

<appSettings>
<add key="pageSize" value="25"
xdt:Transform="Replace" xdt:Locator="Match(key)"/>
</appSettings>

</configuration>

To create this, I simply copied the appSettings section, pasted it in the Web.Debug.configfile,
and then removed the other elements. After that, I just added the attributes xdt:Transform=
"Replace" xdt:Locator="Match(key)". We will discuss the details of all this pretty soon,
but first let’s see how to use it. When you are using transform files, you need to be aware
of the fact that when you are running or debugging your application locally, you will be
using the Web.config file itself. A transformation will not occur; they execute only when you
publish or package your application. Because of this, you will need to package the application
to see the result of the transformation. You can do this by right-clicking the project and
selecting Build Deployment Package. After you do this, there will be a PackageTmp folder
under the obj\Debug\Package folder. This assumes that you have Debug set as your active

524	 Part VII  Web Deployment Tool

configuration. The Web.config transform files are tied to the configuration that you are
building. So if you are building Debug configuration, then Web.Debug.config will be used,
and the same goes for Release or any other configuration that you define. Inside the
PackageTmp folder, the transformed Web.config file can be found. The value for pageSize
is set to 25. I won’t show the contents here, but you should take a look for yourself to
check them.

Now that you have seen how easy it is to create and transform your Web.config file, let’s go
over the syntax a bit. The XML Document Transform (XDT) syntax is pretty simple; there are
only three attributes and they are described in Table 18-1.

TABLE 18-1  XDT Attributes
Attribute Description
xdt:Transform This attribute identifies what type of transformation will be occurring.

There are eight possible values available by default: Replace, Insert,
InsertBefore, InsertAfter, Remove, RemoveAll, RemoveAttributes, and
SetAttributes.
You can create your own transforms so that this value could contain
other values.

xdt:Locator This attribute will be used to help identify the source element that is
being transformed. In many cases, you can use the Match() function with
the name of the unique attribute.

xdt:SupressWarnings When this attribute is set to true, warnings will not be logged.

Even though the syntax is very simple, it is very powerful. Let’s take a look at the different
transforms that are available by default. They are listed in Table 18-2.

TABLE 18-2  XDT Transforms
Transform Name Description
Replace This transform can be used to replace an entire element.

Insert This transform can be used to insert an element as a sibling to the selected
element(s). The new element will be added at the end, if any others exist.

InsertBefore Similar to the Insert transform, but it will insert the element before the
selected element.

InsertAfter Similar to the Insert transform, but it will insert the element after the
selected element.

Remove Removes all selected elements.

RemoveAll Removes all elements that match the selection criteria.

RemoveAttributes Removes the indicated attributes from the selected element.

SetAttributes Sets the value of one or more attributes on the selected element.

To show you how to use these different transforms, I’ve created many different transform
files in the Transform01 project. By default, how transformations work is that you need to
create a transform with the name Web.{Configuration}.config, where {Configuration} is the

	 Chapter 18  Web Deployment Tool, Part 2	 525

value of the configuration that you are currently building. That is why there is Web.Debug
.config and Web.Release.config: they correspond to the two default configurations for new
projects. Following this pattern, we would have to create many different configurations
for this project. In order to avoid that, I am going to show you how to manually perform
transformations from any MSBuild script. When you publish your web application or package
it, the Web.config file is transformed using the TransformXml task, which is contained in the
Microsoft.Web.Publishing.Tasks.dll assembly. We will be using this same task to transform
the files ourselves. In the Transforms folder of the Transform01 project, I have created the
transform.proj file whose contents are shown in the next snippet:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="TransformAll">

<UsingTaskTaskName="TransformXml"
 AssemblyFile="$(MSBuildExtensionsPath)\Microsoft\VisualStudio\v10.0\
 Web\Microsoft.Web.Publishing.Tasks.dll"/>

<PropertyGroup>
<DestDirectory>. .\obj\TransformedFiles\</DestDirectory>
</PropertyGroup>

<ItemGroup>
<TransformFiles Include="$(FilesToTransform)"/>
</ItemGroup>

<Target Name="TransformAll" DependsOnTargets="ValidateSettings">
<MakeDir Directories="$(DestDirectory)"/>
<TransformXml Source=". .\web.config"
Transform="%(TransformFiles.Identity)"
 Destination="@(TransformFiles->'$(DestDirectory)%(Filename).transformed.config')" />
</Target>

<Target Name="ValidateSettings">

<Error Text="FilesToTransform cannot be empty"
 Condition=" '$(FilesToTransform)'=='' "/>
<Error Text="Couldn't find transform file at [%(TransformFiles.Fullpath)]"
 Condition =" !Exists('%(TransformFiles.Fullpath)') "/>
</Target>

</Project>

This MSBuild file is pretty simple; in order to use it, you just need to specify the
file(s) that will be transformed at the command line in the FilesToTransform property.
One example of this is the command msbuildtransform.proj /t:TransformAll
/p:FilesToTransform=trans01.config. Inside the TransformAll target, you can see
that the TransformXml task is being used to transform the Web.config file, and the results
are dropped into the \obj\TransformedFiles\ directory. With that out of the way, let’s start
creating some other transformations.

526	 Part VII  Web Deployment Tool

In order to insert a new element, you can use the Insert transform. This will insert a new
element as a sibling of the selected element. It will be appended to any existing elements.
For example, take a look at the trans01.config file shown here:

<configuration
xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

<appSettings>
<add key="helpUrl" value="http://inlinetasks.com/help"
xdt:Transform="Insert" />
</appSettings>

</configuration>

In this transformation, I am adding a new application setting, helpUrl, using the Insert
transformation. As we indicated earlier, you do not have to specify where the node will be
inserted because it is inferred based on its location in the transform file. Also, you should
note that with the Insert transform, you do not have to use xdt:Locator because you are
not modifying an existing element. When I run the command msbuildtransform.proj
/t:TransformAll /p:FilesToTransform=trans01.config, the result will be dropped into
the trans01.transformed.config file. The appSettings node of that file is shown here:

<appSettings>
<add key="pageSize" value="2" />
<add key="IncludesConfigPath" value="~/Config/includes.xml.config"/>
<add key="IncludesApplicationName" value="inlinetasks.com"/>
<add key="helpUrl" value="http://inlinetasks.com/help"/>
</appSettings>

As you can see from the previous snippet, the helpUrl value was successfully added to the
list of settings in the Web.config file. As we mentioned earlier, and as shown here, the new
element is just appended to the end of any preexisting elements. What if you needed to
insert an element at a specific location? You can use the InsertBefore and InsertAfter elements
for this.

In order to demonstrate InsertBefore and InsertAfter, I created trans02.config, which is shown
next:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
<configSections
xdt:Transform="InsertBefore(/configuration/*[1])">
<section
 name="pageAppearance"
 type="Samples.AspNet.PageAppearanceSection"
allowLocation="true"
allowDefinition="Everywhere"
 />
</configSections>

	 Chapter 18  Web Deployment Tool, Part 2	 527

<connectionStrings>
<add name="employeeDb"
connectionString="Data Source=prod.sedotech01;
Initial Catalog=EmployeeDb;Integrated Security=True"
 xdt:Transform="InsertAfter(/configuration/connectionStrings/add[2])"/>
</connectionStrings>

</configuration>

In this example, two transformations are taking place. First, take a look at the
configSections element. You can see the InsertBefore usage here. It takes an argument that
an XPath expression is used to locate the selected element. The new element will be inserted
before that. From the XPath expression shown here, we will be inserting the configSections
element before the first element under the configuration element. In effect, this will
make configSections the first element in the transformed Web.config file. After that, take
a look at the employeeDb connection string element. This element is using the InsertAfter
transformation and it is passing in the XPath expression /configuration/connectionStrings/
add[2]. This will cause the employeeDb element to be inserted after the second connection
string. Now let’s take a look at the result. The transformed Web.config file is shown here:

<configuration>
<configSections>
<section name="pageAppearance"
 type="Samples.AspNet.PageAppearanceSection"
allowLocation="true"allowDefinition="Everywhere"/>
</configSections>
<appSettings>
<add key="pageSize" value="2" />
<add key="IncludesConfigPath" value="~/Config/includes.xml.config"/>
<add key="IncludesApplicationName" value="inlinetasks.com"/>
</appSettings>

<connectionStrings>
<add name="recordsDb"
connectionString="Data Source=localhost;
 Initial Catalog=RecordsDb;Integrated Security=True"/>
<add name="accountsDb"
connectionString="Data Source=localhost;
 Initial Catalog=RecordsDb;Integrated Security=True"/>
<add name="employeeDb" connectionString="Data Source=prod.sedotech01;
 Initial Catalog=EmployeeDb;Integrated Security=True"/>
<add name="partnersDb"
connectionString="Data Source=localhost;Initial Catalog=RecordsDb;Integrated
Security=True"/>
</connectionStrings>

<system.web>
<customErrors mode="Off" defaultRedirect="/error.html"/>
<compilation debug="true" targetFramework="4.0" batch="true" />
</system.web>
</configuration>

528	 Part VII  Web Deployment Tool

I’ve boldfaced the inserted elements in this code. As you can see, they have been inserted
in the locations where we expected. Now we will look at the Remove and RemoveAll
transformations.

As you might have guessed from their names, the Remove and RemoveAll transformations
are used to remove elements from the XML file. When you are using either of these
transformations, you can choose to specify a value for xdt:Locator. If you do so, this will be
used to narrow down the selected elements. If this locator value is missing, then the selected
element will be determined strictly by the element placement in the transform file. Take
a look at the trans03.config file shown in the following code:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

<appSettings>
<add xdt:Transform="Remove"/>
</appSettings>

<connectionStrings>
<add name="accountsDb"
xdt:Transform="Remove" xdt:Locator="Match(name)"/>
</connectionStrings>

</configuration>

In this transform file, the Remove transform is used on the add element in appSettings. Since
we did not specify a value for xdt:Locator here, this will remove the first add element inside
appSettings. Even if we had specified other attributes there, like key=”IncludesConfigPath”,
that would be ignored without the xdt:Locator attribute. Next, in the connectionStrings
section, you will see that I again use the Remove transform, but this time with the
locator value asMatch(name). What this will do is remove the first add element under
connectionStrings that has an attribute name set to accountsDb. Take a look at the result
shown here:

<configuration>
<appSettings>
<add key="IncludesConfigPath" value="~/Config/includes.xml.config"/>
<add key="IncludesApplicationName" value="inlinetasks.com"/>
</appSettings>

<connectionStrings>
<add name="recordsDb"
connectionString="Data Source=localhost;
 Initial Catalog=RecordsDb;Integrated Security=True"/>
<add name="partnersDb"
connectionString="Data Source=localhost;
 Initial Catalog=RecordsDb;Integrated Security=True"/>
</connectionStrings>

<system.web>
<customErrors mode="Off" defaultRedirect="/error.html"/>

	 Chapter 18  Web Deployment Tool, Part 2	 529

<compilation debug="true" targetFramework="4.0" batch="true" />
</system.web>
</configuration>

As you can see the first app settings value, pageSize, has been removed. In addition, the
connection string pointing to accountsDb is removed. The RemoveAll transform works very
similarly to the Remove transform. The only difference is that Remove will remove only the
first matched element, but RemoveAll will remove all matched elements. Now let’s move on
to see how we can modify attributes.

Thus far, we have just shown how to add and remove elements. However, if you want
to modify attributes, then you can use the SetAttributes and RemoveAttributes transforms to
do this. When you use these transforms, you can choose to specify an xdt:Locator element to
narrow down the element that is being modified. If there is only one such element, then you
can leave that out. In the example here, we will omit that attribute. Both of these transforms
require that an argument be passed into it, indicating which attributes should be set or
removed. If you are modifying a single attribute, then just pass in the name of that attribute.
For more than one, then just pass in a comma-separated list. Take a look at the content of
the trans04.config file shown here:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

<system.web>
<customErrorsxdt:Transform ="RemoveAttributes(defaultRedirect)" />
<customErrors mode="RemoteOnly" redirectMode="ResponseRedirect"
xdt:Transform ="SetAttributes(mode,redirectMode)"/>
<compilation xdt:Transform="RemoveAttributes(debug,batch)" />
</system.web>

</configuration>

In this case, I am going to change some of the elements under the system.web element.
One of the first things that you should notice here is that I have declared two customErrors
elements here. In a normal Web.config file, this is not allowed; but in a transform, it just means
that you are transforming the same element multiple times. Here, you see the original system
.web element:

<system.web>
<customErrors mode="Off" defaultRedirect="/error.html" />
<compilation debug="true" targetFramework="4.0" batch="true" />
</system.web>

Now let’s discuss what the transformations are doing. The first transformation is removing
the defaultRedirect attribute from the customErrors element. After that, you can see that
I am using the SetAttributes transform to update the mode attribute and to insert the
redirectMode attribute. Following that, I remove the debug and batch attributes from the
compilation element. The resulting system.web section is shown on the following page.

530	 Part VII  Web Deployment Tool

<system.web>
<customErrors mode="RemoteOnly"
redirectMode="ResponseRedirect"/>
<compilation targetFramework="4.0" />
</system.web>

From this result, we can see that the modifications were executed as expected. Web.config
transformations are not limited to what you see here. The XDT transforms are built with a
plug-in architecture, so you can create your own transformations and apply them. We will not
discuss that here, though. Now that we have discussed Web.config transformations, we will
continue our discussion of the WPP.

Web Publishing Pipeline Phases
If you take a look at the project file for your WAP, you will see the following import statement
towards the bottom:

<Import Project="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v10.0\
WebApplications\Microsoft.WebApplication.targets" />

This will import the Microsoft.WebApplicaiton.targets file into your project; this file will in
turn import the Microsoft.Web.Publishing.targets file. Between these two files, the WPP
is fully described. There are many targets, properties, items, and tasks that are used to
orchestrate the process of taking your source and preparing it for your web servers. In this
chapter, we will attempt to demystify that process a bit so that you can fully customize and
extend the process. The targets in these files are used to both publish and package your
web. As you read this chapter, it may seem as though we are focusing on packaging your
application instead of publishing it, but everything that applies for packaging also applies to
publishing. The reason that we discuss packaging here is because it is easier to debug locally.

There are three big phases to the WPP: collect, transform, and output. The collect phase is
used to determine what files are needed for your web to run. The transform phase is when
files are transformed based on the current build configuration. The output phase is when
your web is published or packaged to its destination. You can tweak some of the options for
the publish and package operation on the Package/Publish Web tab. This tab is shown in
Figure 18-2.

Along with this tab, there is the Package/Publish SQL tab. We will discuss how databases are
deployed shortly, so we will not cover that tab just yet. On the Package/Publish Web tab,
you can tweak a few of the more common properties. For instance, you can specify what
items are gathered during the collect phase. The Items To Deploy drop-down list, shown
in Figure 18-2, has three possible values: Only Files Needed To Run This Application, All
Files In This Project, and All Files In This Project Folder. The default is to simply gather the
files needed to run the application. If you are curious how this works, this drop-down list
corresponds to three targets files in the same directory as the Microsoft.Web.Publishing

	 Chapter 18  Web Deployment Tool, Part 2	 531

.targets. Depending on the value of the drop-downlist, one of the three files is imported.
The names of these files are Microsoft.Web.Publishing.OnlyFilesToRunTheApp.targets,
Microsoft.Web.Publishing.AllFilesInTheProject.targets, and Microsoft.Web.Publishing.
AllFilesInProjectFolder.targets. Each of these targets extends the PipelineCollectFilesPhase
to include the correct set of files. We will cover this more in Chapter 19. The next two check
boxes correspond to the following property values: ExcludeGeneratedDebugSymbol and
ExcludeApp_Data.

FIGURE 18-2  Package/Publish Web tab settings

Now, let’s discuss how you can customize the collect phase. The main target for the collect
phase is PipelineCollectFilesPhase. It chains together, via a depends on property, all the other
targets that need to be executed, gathering all of the files to be packaged. For example, from
the Microsoft.Web.Publishing.OnlyFilesToRunTheApp.targets file, you can see in the following
snippet how the collect phase is extended:

<PropertyGroup>
<PublishPipelineCollectFilesCore>
 $(PublishPipelineCollectFilesCore);
CollectFilesFromIntermediateAssembly;
CollectFilesFromContent;
CollectFilesFromAddModules;
CollectFilesFrom_SGenDllCreated;
CollectFilesFromIntermediateSatelliteAssembliesWithTargetPath;

532	 Part VII  Web Deployment Tool

CollectFilesFromReference;
CollectFilesFromAllExtraReferenceFiles;
CollectFilesFrom_SourceItemsToCopyToOutputDirectory;
CollectFilesFromDocFileItem;
CollectFilesFrom_WebApplicationSilverlightXapFiles;
</PublishPipelineCollectFilesCore>
<ExcludeTransformAssistFilesFromPublish
 Condition="'$(ExcludeTransformAssistFilesFromPublish)'==''">True
</ExcludeTransformAssistFilesFromPublish>
</PropertyGroup>

By adding more targets to this property, these targets are injected into the file collection
phase. Let’s take a look at one of these targets to better understand what it is doing:

<Target Name="CollectFilesFromContent"
DependsOnTargets="$(CollectFilesFromContentDependsOn)"
 Condition="'@(Content)'!=''">
<!--Get Localized string before display message-->
<GetPublishingLocalizedString
 ID="PublishLocalizedString_GatherSpecificItemsFromProject"
ArgumentCount="1"
 Arguments="Content"
LogType="Message" />
<Message Text="@(Content)" />

<ItemGroup>
<FilesForPackagingFromProject Include="@(Content)"
 Condition="'%(Content.Link)'==''">
<DestinationRelativePath>%(Content.Identity)</DestinationRelativePath>
<FromTarget>CollectFilesFromContent</FromTarget>
<Category>Run</Category>
</FilesForPackagingFromProject>
<FilesForPackagingFromProject Include="@(Content)"
 Condition="'%(Content.Link)'!='' And $(EnableCollectLinkFilesInProject)">
<DestinationRelativePath>%(Content.Link)</DestinationRelativePath>
<FromTarget>CollectFilesFromContent</FromTarget>
<Category>Run</Category>
<Exclude>$(ExcludeLinkFilesInProject)</Exclude>
<ProjectFileType>Link</ProjectFileType>
</FilesForPackagingFromProject>
</ItemGroup>
<CallTarget Targets="$(OnAfterCollectFilesFromContent)" RunEachTargetSeparately="false" />
</Target>

From this target, you can see that the Content item is enumerated and added to the
FilesForPackagingFromProject item list if one of two conditions are met. From that
declaration, we can see that some metadata is also set on the items. This metadata will be
used when the package is being constructed. As you are investigating these targets files,
you will find that items and their metadata are being used frequently. Now, you might be
wondering how we can customize the collection process to include or exclude other files.
That’s what we’re going to discuss next.

	 Chapter 18  Web Deployment Tool, Part 2	 533

Excluding Files
Let’s take a look at what it would take to exclude files from the package being created.
In order to get a sense of how to properly do this, let’s look at how the WPP scripts
themselves exclude files. In Figure 18-2, we saw options to exclude the App_Data contents
as well as excluding the debug symbols. When you select these, you are setting a couple
of properties, which are used to determine if two targets will execute or not. Those targets
are ExcludeApp_Data and ExcludeGeneratedDebugSymbol. I have copied those two targets
and placed them in the next code fragment, minus some comments to save space here:

<Target Name="ExcludeApp_Data"
DependsOnTargets="$(ExcludeApp_DataDependsOn)"
 Condition="$(ExcludeApp_Data)">

<GetPublishingLocalizedString
 ID="PublishLocalizedString_ExcludeAllFilesUnderFolder"
ArgumentCount="1"
 Arguments="App_Data"
LogType="Message" />

<ItemGroup>
<ExcludeFromPackageFolders Include="App_Data">
<FromTarget>ExcludeApp_Data</FromTarget>
</ExcludeFromPackageFolders>
</ItemGroup>
</Target>

<Target Name="ExcludeGeneratedDebugSymbol"
DependsOnTargets="$(ExcludeGeneratedDebugSymbolDependsOn)"
 Condition="$(ExcludeGeneratedDebugSymbol)">

<GetPublishingLocalizedString
 ID="PublishLocalizedString_ExcludeAllDebugSymbols"
LogType="Message" />

<ItemGroup>
<ExcludeFromPackageFiles Include="@(FilesForPackagingFromProject)"
Condition="'%(FilesForPackagingFromProject.Extension)'=='.pdb'">
<FromTarget>ExcludeGeneratedDebugSymbol</FromTarget>
</ExcludeFromPackageFiles>
</ItemGroup>
</Target>

From the first target shown, ExcludeApp_Data, we can see that the exclusion is
folder-based. In order to get the App_Data contents excluded, the folder is appended
to the ExcludeFromPackageFolders item list. Any file underneath any folder contained
in that item list will be automatically excluded by the ExcludeFilesFromPackage target.
Now looking at the ExcludeGeneratedDebugSymbol target, it employs another item list,
ExcludeFromPackageFiles, which lists individual files that will be excluded from the generated
package. In the implementation of ExcludeFilesFromPackage, the files contained in any of the

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

534	 Part VII  Web Deployment Tool

folders contained in ExcludeFromPackageFolders are placed in the ExcludeFromPackageFiles
item list. Also, you might have noticed that in the declaration of these two targets, each item
list contained a bit of metadata, FromTarget. This metadata value is captured to help discover
why the item(s) were excluded. You can set this value to anything you want; the default value
is Unknown.

If you want to extend this process, you have two choices as to where you can put the
customizations. You can place them in your project file directly, as you could any other
MSBuild customization. With the WPP, however, you are given another option. You can create
another MSBuild file named {ProjectName}.wpp.targets, where {ProjectName} is the name
of the project file. For example, I have created a new WAP named ExcludeFiles01. To extend
the build process for this file, I just need to create ExcludeFiles01.wpp.targets in the same
directory as the project file. You can actually change the name of this file if you want, but we
will keep it simple. Take a look at Figure 18-3; the circled items are the ones that I want to
exclude from the packages generated for the ExcludeFiles project.

FIGURE 18-3  Items to be excluded from the generated package

In this figure, you can see that I have a folder called Internal, which I want to exclude, and
two specific .js files that should be excluded as well. In order to exclude these files, I have
placed the following content into the ExcludeFiles01.wpp.targets file:

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<ItemGroup>
<ExcludeFromPackageFolders Include="Internal">
<FromTarget>ExcludeFiles01.wpp.targets</FromTarget>
</ExcludeFromPackageFolders>

	 Chapter 18  Web Deployment Tool, Part 2	 535

<ExcludeFromPackageFiles Include="Scripts\jquery-1.4.1-vsdoc.js;
 Scripts\jquery-1.4.1.js">
<FromTarget>ExcludeFiles01.wpp.targets</FromTarget>
</ExcludeFromPackageFiles>
</ItemGroup>

</Project>

In this file, you can see that I used ExcludeFromPackageFolders to exclude the contents of the
Internal folder. As for the two .js files, they are excluded using the ExcludeFromPackageFiles
item list. Also, note that I gave the value of FromTarget as ExcludeFiles01.wpp.targets. You
could have given it any value you wanted, or you could have left it off altogether. Now, let’s
see if the files are successfully excluded. To do this, I am going to build the project from
the command line, specifying that target to be Package. The command would be msbuild
ExcludeFiles01.csproj /t:Package. The end of the log messages is shown in Figure 18-4.

FIGURE 18-4  Package target results

I have included Figure 18-4 to point out a few things. If you take a look at the first line under
PackageUsingManifest, it states that the package will be created at the obj\Debug\Package\
ExcludeFiles01.zip location. This is the same value that you saw previously in the Package/
Publish Web tab. When your application is preparing for packaging (or publishing), the files
that will be included are placed into the obj\{Configuration}\Package\PackageTmp, where
{Configuration} is the current build configuration. In order to verify that the items were
successfully excluded from the package, you can check that location.

536	 Part VII  Web Deployment Tool

Previously, when we discussed the FromTarget metadata value, we said that it is used to
help debug files that were excluded from the package. You might have been wondering
how that happens. A “magic” property, EnablePackageProcessLoggingAndAssert, can be
set to true to enable this. Once you set this value to true, several log files will be written
to the obj\{Configuration}\Package\Log folder. So, in my case, I can convert the previous
command to msbuild ExcludeFiles01.csproj /t:Package /p:EnablePackageProcess
LoggingAndAssert=true. Once I execute this command, one of the many files written out is
ExcludeFromPackageFiles.txt. This file enumerates the files that were excluded and why. Take
a look at its contents, shown in the following snippet. I modified the format of the file a bit so
it would fit the page better.

Files:Scripts\jquery-1.4.1-vsdoc.js
FromTarget:ExcludeFiles01.wpp.targets
DestinationRelativePath:

Files:Scripts\jquery-1.4.1.js
FromTarget:ExcludeFiles01.wpp.targets
DestinationRelativePath:

Files:Internal\model01.xml
FromTarget:ExcludeFiles01.wpp.targets
DestinationRelativePath:

Files:Internal\model02.xml
FromTarget:ExcludeFiles01.wpp.targets
DestinationRelativePath:

Files:Internal\model03.xml
FromTarget:ExcludeFiles01.wpp.targets
DestinationRelativePath:

Files:Internal\sub\sub01.xml
FromTarget:ExcludeFiles01.wpp.targets
DestinationRelativePath:

Files:Internal\sub\sub02.xml
FromTarget:ExcludeFiles01.wpp.targets
DestinationRelativePath:

From this snippet, you can see that all of the files that we were expecting to be excluded
were. Also, you can see in that file how FromTarget might come in handy if you are trying to
figure out why a certain file was excluded. Now, let’s discuss how to include extra files.

Including Additional Files
Many times you will need to include files that are not a part of the project, but need to be
published. I have created a new project in the Ch18 folder namedIncludeFiles01. In addition,
to demonstrate including additional files, I have included a bunch of image files in the

	 Chapter 18  Web Deployment Tool, Part 2	 537

C:\InsideMSBuild\Ch18\OtherFiles folder, which is outside the IncludeFiles01 project folder.
Following in the spirit of the previous example, in order to determine how to add extra files,
let’s look at one of the built-in targets, which includes files. To do this, I have included the
definition of the CollectFilesFromIntermediateAssembly in this next code block:

<Target Name="CollectFilesFromIntermediateAssembly"
 DependsOnTargets="$(CollectFilesFromIntermediateAssemblyDependsOn)"
 Condition="'@(IntermediateAssembly)'!=''">

<GetPublishingLocalizedString
 ID="PublishLocalizedString_GatherSpecificItemsFromProject"
ArgumentCount="1"
 Arguments="IntermediateAssembly"
LogType="Message" />
<Message Text="@(IntermediateAssembly->'
 $(OutDir)%(FileName)%(Extension) to bin\%(FileName)%(Extension)')" />

<ItemGroup>
<FilesForPackagingFromProject
 Include="@(IntermediateAssembly->'$(OutDir)%(FileName)%(Extension)')">
<DestinationRelativePath>bin\%(FileName)%(Extension)</DestinationRelativePath>
<FromTarget>CollectFilesFromIntermediateAssembly</FromTarget>
<Category>Run</Category>
</FilesForPackagingFromProject>
</ItemGroup>
<Message Text="@(IntermediateAssembly->'$(OutDir)%(FileName).pdb to bin\%(FileName).pdb')"
 Condition="$(_DebugSymbolsProduced) AND !$(ExcludeGeneratedDebugSymbol)
 AND Exists(@(IntermediateAssembly->'$(OutDir)%(FileName).pdb')) "/>
<ItemGroup Condition="$(_DebugSymbolsProduced) AND !$(ExcludeGeneratedDebugSymbol)
 AND Exists(@(IntermediateAssembly->'$(OutDir)%(FileName).pdb'))">
<FilesForPackagingFromProject
 Include="@(IntermediateAssembly->'$(OutDir)%(FileName).pdb')"
 Condition="Exists(@(IntermediateAssembly->'$(OutDir)%(FileName).pdb'))">
<DestinationRelativePath>bin\%(FileName).pdb</DestinationRelativePath>
<FromTarget>CollectFilesFromIntermediateAssembly</FromTarget>
<Category>Debug</Category>
</FilesForPackagingFromProject>
</ItemGroup>

<CallTarget Targets="$(OnAfterCollectFilesFromIntermediateAssembly)"
RunEachTargetSeparately="false" />
</Target>

In this snippet, I have boldfaced the item declaration that is important. This target uses
the FilesForPackagingFromProject task to include additional files. Make note of the
DestinationRelativePath metadata. This value defines the relative location in the package
where they will be placed. The reason for this is that many times the physical location of
a file in a project is not always where you want it to be in your deployed application. What
we need to do is to create something similar to include the image files that were previously
mentioned. To do this, I have created the file IncludeFiles01.wpp.targets and placed it inside
the code on the following page.

538	 Part VII  Web Deployment Tool

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<FilesForPackagingFromProject
 Include=". .\OtherFiles***">
<DestinationRelativePath>
images\%(RecursiveDir)%(FileName)%(Extension)</DestinationRelativePath>
<FromTarget>IncludeFiles01.wpp.targets</FromTarget>
</FilesForPackagingFromProject>
</ItemGroup>

</Project>

In this snippet, I am including files into the FilesForPackagingFromProject item list. I have
boldfaced the important parts of this file. You can see that all the files under . .\OtherFiles
will be picked up in the item list, and for the destination, they will be placed in the images\
folder. This folder doesn’t exist in the source, but it will be created when the project is
packaged or published. In order to see this at work, just execute the following command:

msbuild IncludeFiles01.csproj /t:Package /p:EnablePackageProcessLoggingAndAssert=true

Once you do this, the project will be packaged, and because I set the
EnablePackageProcessLoggingAndAssert property to true, the log files will be written again.
This time, we are not interested in the log files themselves, but rather the files that make
up the final package. In order to see this list, you can take a look at the contents of the
AfterExcludeFilesFilesList.txt file. I have just a few of the results here so that you can see what
the code looks like:

From:. .\OtherFiles\05.png
DestinationRelativePath:images\05.png
Exclude:False
FromTarget:IncludeFiles01.wpp.targets
Category:Run
ProjectFileType:Default

From:. .\OtherFiles\sub01\01.png
DestinationRelativePath:images\sub01\01.png
Exclude:False
FromTarget:IncludeFiles01.wpp.targets
Category:Run
ProjectFileType:Default

From:. .\OtherFiles\sub01\02.png
DestinationRelativePath:images\sub01\02.png
Exclude:False
FromTarget:IncludeFiles01.wpp.targets
Category:Run
ProjectFileType:Default

From the results shown here, you can see that the files were indeed included in the package,
and in the correct location, under images\. In this section, as well as the last one, the

	 Chapter 18  Web Deployment Tool, Part 2	 539

approach has been to identify a behavior in the existing WPP and then use that same process
to extend the WPP. This is the best way to learn the WPP—look for a similar functionality and
then try to customize it to make it work for you. Don’t be afraid to dive into those shared
targets file—just make sure not to modify any of them. I suggest you copy them to another
location and then view the copies. Now that we have covered the collect phase, we can
discuss how to extend the transform phase a bit.

Database
Up to this point, we have been discussing how to deploy your web application itself. In many
cases, a database is commonly used with web applications. In this section, we will discuss
some of the built-in features for deploying your database and with your site itself. In the
previous chapter, we showed how you could use the dbFullSql MSDeploy provider to deploy
a database to a target server. Visual Studio uses those features for database deployment.
Before we dive into the details of database deployment, let’s first take a look at the user
interface (UI) elements that you can use to tweak this.

In order to show some of the capabilities of database deployment, I have created a sample,
Data01, which contains a very basic Microsoft SQL Express database inside the App_Data
folder called RecordsDb. This database consists of two tables: Person and Account. In the
Properties pages for that project, which is a WAP, we can configure database deployment on
the Package/Publish SQL tab. This is where we will indicate what database items should be
deployed and to what database servers. You can see this tab in Figure 18-5.

FIGURE 18-5  Package/Publish SQL tab

540	 Part VII  Web Deployment Tool

Note  If you intend to deploy databases with your web application, then you need to configure
that on the Package/Publish SQL tab. You also need to make sure that the Include All Databases
Configured In Package/Publish SQL Tab check box on the Package/Publish Web tab is selected.

Figure 18-5 can be a bit daunting if you are not accustomed to using it. The grid named
Database Entries contains a list of database identifiers. I use the term identifiers because
the values that it contains has no impact on what is deployed or to where—it is just a
means of identifying that particular row in the grid. Beneath this grid are some fields that
are currently dimmed, which specify the behavior of what to deploy and where to deploy
it. An important note here is that the contents beneath the Database Entries grid depend
on the selected entry in the grid. This explains why the bottom portion is dimmed: I have
not yet defined any database entries. Typically, you are deploying a database with a web
application because you are using it, and in most cases, the connection string is located
in the Web.config file. Because of this, Visual Studio 2010 has enabled easy importing of
database source information from the Web.config file. For example, take a look at the
connectionStrings section of the web.config file for the Data01 project:

<connectionStrings>
	 <add name="RecordsDb"
connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;
AttachDBFilename=|DataDirectory|\RecordsDb.mdf;User Instance=true"
providerName="System.Data.SqlClient"/>
</connectionStrings>

This Web.confg file contains a single connection string to RecordsDb, which is a SQL Express
database as mentioned earlier. You can use the Import From Web.config file to import
the databases, which are contained in the Web.config file. When you do this, a new row is
added to the Database Entries grid for every connection string, and the connection string to
the database is inserted into the Connection String For The Source Database text box. You
must enter the value for the destination database in the Connection String For Destination
Database text box. In this case, the destination connection string that I provided is “Data
Source=Ibrahim-P55;Initial Catalog=RecordsDb;Integrated Security=True”. You
can see the results in Figure 18-6.

From Figure 18-6, you can see how the source and destination connection strings are
captured on the page. The only other important element on this page is the Database
Scripting Options drop-down list. This drop-down list has three options, which are used to
determine what content will be deployed to the target server. Those options are Schema
Only, Schema And Data, and Data Only. These values are self-explanatory, so I won’t expand
on them. The default value here is Schema Only. If you were interested in executing other
SQL scripts on the same destination server, then you could add more scripts using the Add
Script button. We will not cover that here.

	 Chapter 18  Web Deployment Tool, Part 2	 541

FIGURE 18-6  Database entry details

Now that we have set up our database for deployment, let’s perform a publish and see what
happens. In my example, I have created an empty database on the Ibrahim-P55 server, which
is the value found in the destination database connection string. Now, I will publish this
project. To do so, right-click on the Data01 project and then select Publish. This will bring up
the Publish Web dialog box, in which I configured the settings to point to my web server. In
this case, that is the same as my database server, Ibrahim-P55. You can see the value that I
have populated in Figure 18-7.

In Figure 18-7, you can see that I have chosen Web Deploy as my publish method and then
specified a few other values here. Database deployment is supported only when you use the
Web Deploy publish method. Once I click Publish, I will see several messages in the Output
window. I won’t include the entire log here, but take a look at the very end of it in the next
snippet:

Adding child dirPath (Default Web Site/Data01\Styles).
Adding child filePath (Default Web Site/Data01\Styles\Site.css).
Adding child filePath (Default Web Site/Data01\Web.config).
Adding setAcl (Default Web Site/Data01).
Adding setAcl (Default Web Site/Data01).
Adding setAcl (Default Web Site/Data01/App_Data).
Updating dbFullSql (data source=Ibrahim-P55;initial catalog=RecordsDb;integratedsecurity=
True;pooling=False).
Adding child sqlScript (sitemanifest/dbFullSql[@path='data source=Ibrahim-P55;initial

542	 Part VII  Web Deployment Tool

catalog=RecordsDb;integrated security=True;pooling=False']/sqlScript).
Successfully executed Web deployment task.
Publish is successfully deployed.
Task "MSdeploy" skipped, due to false condition; ($(UseMsdeployExe)) was evaluated as
(False).
Done building target "MSDeployPublish" in project "Data01.csproj".
Done building project "Data01.csproj".
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

FIGURE 18-7  Publish Web dialog

From the results shown here, I have highlighted the portion that relates to the database
deployment. You can see that the database is being deployed, along with the actual files and
settings of the web application itself. Now that we have seen this at work, we will talk a little
bit about how this is accomplished.

Note  You can increase the number of messages written to the Output window by going to
Tools/Options/Projects and Solutions/Build and Run, and then specifying a value in the MSBuild
Project Build Output Verbosity setting. When you are publishing from Visual Studio, the publish
status is being written to the Output window, so it is a good idea to have this value set to Normal
or Detailed.

	 Chapter 18  Web Deployment Tool, Part 2	 543

As we saw in the previous chapter, MSDeploy has a dbFullSql provider, which can be used to
execute a database script against a given database. Also in the last chapter, we discussed the
Manifest provider and how it can be employed to invoke several different providers during
the same sync operation. When you publish your application from Visual Studio or from the
command line, a manifest is created behind the scenes, and then this is used to deploy your
application. If you had a WAP and no database, then by default, the manifest generated
would contain an element to create the application and two elements to set up the ACLs for
the site. Now that we are deploying a database from the App_Data folder, let’s take a look at
the generated manifest file. After you perform a publish or create a package, you can take a
look at the manifest used at obj\{Configuration}\Package\{ProjectName}.SourceManifest
.xml, where {Configuration} is the build configuration and {ProjectName} is the name of the
project. Here is the Data01.SourceManifest.xml file:

<sitemanifest>
<IisApp path="C:\InsideMSBuild\Ch18\Data01\obj\Debug\Package\PackageTmp" />
<setAcl path="C:\InsideMSBuild\Ch18\Data01\obj\Debug\Package\PackageTmp"
setAclResourceType="Directory" />
<setAcl path="C:\InsideMSBuild\Ch18\Data01\obj\Debug\Package\PackageTmp"
setAclUser="anonymousAuthenticationUser" setAclResourceType="Directory" />
<setAcl path="C:\InsideMSBuild\Ch18\Data01\obj\Debug\Package\PackageTmp\App_Data"
setAclResourceType="Directory" setAclAccess="Write" />
<dbFullSql path="C:\InsideMSBuild\Ch18\Data01\obj\Debug\AutoScripts\RecordsDb-
Deployment_SchemaOnly.sql" Transacted="True" />
</sitemanifest>

From the contents of this file, you can see that the last element uses the dbFullSql
provider to execute a script. The script was generated from the source database, which
is defined on the Package/Publish SQL tab. It is generated using the dbFullSql provider.
For example, to generate a script for the schema of a database to a file, you can use
the command msdeploy -verb:sync -source:dbFullSql="{ConnectionString}"
-dest:dbFullSql="{FilePath}", where {ConnectionString} is the connection string to the
database, including Initial Catalog, and {FilePath} is the path to the file where you want to
write the script. The following command would script out the schema for the RecordsDb
database from the server Ibrahim-P55 and place it into a file at C:\InsideMSBuild\Ch18\
recordsDb.sql.

msdeploy -verb:sync
-source:dbFullSql="Data Source=Ibrahim-P55;Integrated Security=true;Initial
Catalog=RecordsDb"
-dest:dbFullSql="C:\InsideMSBuild\Ch18\recordsDb.sql".

The results of executing this command are shown in Figure 18-8.

From Figure 18-8, we can see that the dbFullSql provider was used to create the recordsDb.
sql file. In this case, the command used will only script out the schema of the database
with the default settings. The dbFullSql provider has more than 100 different settings, one

544	 Part VII  Web Deployment Tool

of which is scriptData. If you want to script the data of your database along with its schema,
just set the scriptData setting to true. For example, the previous command would change to
something like the following:

msdeploy -verb:sync
-source:dbFullSql=”Data Source=Ibrahim-P55;Integrated Security=true;Initial
Catalog=RecordsDb”,scriptData=true

-dest:dbFullSql=C:\InsideMSBuild\Ch18\recordsDb-withData.sql

FIGURE 18-8  Using the dbFullSqlprovider to script out a database schema

In this command, I have bolded the setting that was passed in. To pass in more than one
setting, just separate the settings with a comma. I won’t list all the settings here, but if you
are interested in seeing the full list, then execute msdeploy –verb:sync
–source:dbFullSql /?. You might want to redirect the output to a file by appending
>{Filename}, where {Filename} is the name of the file where the usage information should
be placed. This is helpful because the usage information typically will not fit into the console
buffer. With that, we will conclude this chapter. In this chapter and the previous one, we have
laid the foundation for using MSDeploy to publish your application. In Chapter 19, we will
take a look at MSDeploy and show some examples of how you can use it to solve common
problems.

		 545

Chapter 19

Web Deployment Tool Practical
Applications

In Chapter 17, “Web Deployment Tool, Part 1,” we introduced msdeploy.exe and how you
could use it to deploy your Web (where Web can be either a Web application or website,
we will use this throughout this chapter) to a local or remote server. In Chapter 18, “Web
Deployment Tool, Part 2,” we introduced the Web Publishing Pipeline and discussed how
you could create packages which could be used to deploy your Web to IIS servers, either
with msdeploy.exe or through the IIS Manager interface. In this chapter, we will take the
knowledge that we have learned in those two chapters and apply it to real-life programming.
We will show a number of simple applications, such as excluding ACL providers from
packages built from Microsoft Visual Studio, as well as a few things that are a bit more
complex, such as deploying to multiple environments from Team Build. We will first take
a look at how to deploy your application using MSBuild.

Publishing Using MSBuild
In Chapter 17, we saw how to use msdeploy.exe to publish your application from the command
line. In Chapter 18, we showed how you could use Visual Studio 2010 to perform the publish for
you. From the last chapter, you might have been wondering how you could automate the publish
process from the command line using MSBuild. In this example, we will look at exactly that.

In order to start the publish process on your Web Application Project (WAP) using MSBuild, you
have to invoke the MSDeployPublish target on the project. This is the target that will perform
the deployment for you. There are two ways to invoke this target: by invoking it directly when
building the project with the /t switch, or indirectly using the DeployOnBuild and DeployTarget
properties. You might be wondering why we are giving you the option of invoking it indirectly.
The answer is that if you are building a solution file, you cannot invoke the MSDeployPublish
target directly, but you can set properties that get propagated down to each project. This is
especially useful for Team Build builds, which many times will be building a solution instead
of a lone project file. Because of this, we will cover the indirect method, which will also work for
Team Build 2010. Note that neither of these approaches will work with Team Build 2008.

When you are deploying from the command line, you unfortunately do not have the luxury
of being able to tap into the values that were entered into the Publish dialog in Visual Studio.
Because of this, you will have to pass in some details about the destination for the Web
application. Because we are going to be talking about these options here, we have shown the
Publish Profile dialog here in Figure 19-1 for your reference.

546	 Part VII  Web Deployment Tool

FIGURE 19-1  Publish Profile dialog

From Figure 19-1, we can see that when publishing from Visual Studio using Web Deploy, the
inputs that you could specify include the following:

n	 Service URL

n	 Site/application

n	 Mark as IIS application on destination

n	 Leave extra files on destination

n	 Allow untrusted certificate

n	 User name

n	 Password

For each of these values, there is a corresponding MSBuild property that you can set. In fact,
when you are publishing from the command line, there are many useful properties. We have
described some of them in Table 19-1. Table 19-1 starts with the properties that correspond
with the Publish Profile dialog and then introduces others.

	 Chapter 19  Web Deployment Tool Practical Applications	 547

TABLE 19-1  MSBuild Properties or Publish Profile
Property Name Description
MSDeployServiceUrl This is the endpoint that will be contacted to perform

the publish. This is the same as the Service URL option
in the Publish Profile dialog.

DeployIisAppPath This is the application path for the Web, and it is the
same as the Site/Application option.

DeployAsIisApp This will determine if your content will be marked as
an IIS application. This is the same as the Mark As IIS
application On Destination option. The default value
for this is true.

SkipExtraFilesOnServer This will determine if any files that exist on the server
but not in the deploy package should be left on the
server or deleted. If false, then extra files on the server
will be deleted. If true, then they will not be deleted.
This is the same as the Leave Extra Files On Destination
(Do Not Delete) check box.

AllowUntrustedCertificate If true, then untrusted certificates will be allowed for
use with deployments; otherwise, they will not be.
The default value (empty string) will block untrusted
certificates.

UserName The user name to use in order to contact the Web
Deploy remote agent service.

Password The password to use in order to contact the Web
Deploy remote agent service.

DeployOnBuild If true, then the targets declared in the DeployTarget
property will be executed. The default value is false.

DeployTarget This is the target that will be called when a
deployment should occur. The default value for this
is PipelineDeployPhase. If you want to use MSDeploy
for publishing, then you should pass in the value
MSDeployPublish.

FilesToIncludeForPublish Determines what files get deployed when a
publish occurs. The possible values include
OnlyFilesToRunTheApp, AllFilesInProjectFolder,
and AllFilesInTheProject. The default is
OnlyFilesToRunTheApp. This corresponds to the Items
To Deploy drop-down list on the WAP Properties page.

TransformWebConfigEnabled If true, then the Web.config file will be transformed if
a transform file exists for that build configuration. The
default value is true.

IncludeIisSettings If your WAP is using IIS as the Web server and you set
this property to true, then MSDeploy can grab the IIS
settings and include them for publishing. The default is
false.

548	 Part VII  Web Deployment Tool

Property Name Description
IncludeSetAclProviderOnDestination If this is set to true, then ACL information will be

included in the publish; otherwise, it will not. The
default is true.

MarkApp_DataWritableOnDestination If this is set to true, then ASP.NET will be given
permission to write to the App_Data folder; otherwise,
it will not. The default is true.

IncludeAppPool If this is true, then the application pool will be included
in the published settings.

PackageEnableLinks This can be used to enable MSDeploy links. By default,
this is an empty string. In order to enable more than
one, just pass in a semicolon-separated list. MSDeploy
links are not covered in this book.

PackageDisableLinks This can be used to disable MSDeploy links. By default, the
value for this is AppPoolExtension;ContentExtension;
CertificateExtension, so those three links will be
disabled by default. If you have passed in the property
IncludeAppPool=true, then the value of this will be
“ContentExtension;CertificateExtension”.

ExcludeApp_Data Set this to true to exclude the contents of the App_Data
folder from being deployed. The default is false.

ExcludeGeneratedDebugSymbol If you want to exclude debug symbols from being
deployed, then set this value to true. By default, if debug
symbols are produced, then they will be deployed.

ProjectParametersXMLFile If you want to specify a file other than parameters.xml
for parameters, then pass the path and name of the file
for this property.

EnablePackageProcessLoggingAndAssert You can set this property to true in order to write out
log information to the obj\{Configuration}\Package\
Log\ folder.

PackageTraceLevel This defines the amount of detail written to the logs.

The list of useful properties in Table 19-1 is not exhaustive. If you need more information,
take a look at the Microsoft.Web.Publishing.targets file. It’s a good idea to familiarize
yourself with that file anyway if you are doing a lot of work deploying WAPs. Now that we’ve
discussed some of these properties, let’s move on to the example.

In the samples for this chapter, we have created a new WAP named Deploy01. This is a simple
Web application that also contains a SQL Express database inside the App_Data folder. On
the Package/Publish SQL properties page, we have given the destination values for the
database. With Visual Studio 2010, it is not straightforward to deploy a database using the
Web Publishing Pipeline if the destination values are not entered on the Properties page. In
order to deploy this application, we are going to use the following code.

	 Chapter 19  Web Deployment Tool Practical Applications	 549

msbuild Deploy01.csproj
	 /p:DeployOnBuild=true;
	 DeployTarget=MSDeployPublish;
	 MSDeployServiceUrl=WIN-MCX6WTF4J4R;
	 DeployIisAppPath="Default Web Site/Data01";
	 MSDeployPublishMethod=RemoteAgent;
	 Username=deploy;
	 password=p@ssw0rd

After executing this code, the last part of the console log showing the MSDeploy target
appears as shown in Figure 19-2.

FIGURE 19-2  Publishing Using MSBuild and MSDeploy

In Figure 19-2, we can see that the package was deployed to the target machine. Now
let’s explain a few of the properties that are being passed in to the code that we executed.
You need to set DeployOnBuild to true so that the deploy will be kicked off after the build
completes. DeployTarget is the name of the target that will execute after the build. This
target will always be MSDeployPublish unless you have your own target that you want to
use. MSDeployPublishMethod is set to RemoteAgent in this case because we want the
MSDeploy Remote Agent Service to perform the deployment. The other options for this
property are InProc, which you use only when you want to publish to the same machine
running the build, and WMSVC, which you use if you want the Web Management Service to
perform the deployment for you.

550	 Part VII  Web Deployment Tool

One thing that you should take note of is that the SQL deployment will be performed from
the target machine. In this case, we started the deployment from my machine, Ibrahim-P55,
and the target machine was WIN-MCX6WTF4J4R, which is a virtual machine. So in my case,
the SQL script was executed from the WIN-MCX6WTF4J4R machine, and the target SQL
database is on the Ibrahim-P55 machine. Since both machines are not on a domain, we had
to specify the SQL credentials in the connection string because Windows Authentication
would not have worked.

Parameterizing Packages
In Chapter 17, we saw how to use the –declareParam and –setParam switches when using
msdeploy.exe to create and set parameters. You might have been wondering if we could
parameterize packages created from Web Application Projects. The answer is yes: You can
customize the parameters two different ways for packages created from WAPs. You can
either create the parameters using MSBuild, or you can create a parameters.xml file, which
will be used to create them for you. We will look at the first approach, and then the second.

Using MSBuild to Parameterize the Created Package
When you create a package from Visual Studio, or msbuild.exe, the Web Publishing
Pipeline (WPP) is very extensible so you can hook into it to customize the package that
is generated. It uses an item list, MsDeployDeclareParameters, to gather the parameters
that will be created for the package. When you execute the Package target, it will then call
the PackageUsingManifest target to actually create the package. The task that creates the
package is shown in the next snippet.

<VSMSDeploy Condition="!$(UseMsdeployExe)"
 Source="@(MsDeploySourceProviderSetting)"
 Destination="@(MsDeployDestinationProviderSetting)"
 DeploymentTraceLevel="$(PackageTraceLevel)"
 DisableLink="$(PackageDisableLinks)"
 EnableLink="$(PackageEnableLinks)"
 DeclareParameterItems="@(_Package_MsDeployDeclareParameters)"
 OptimisticParameterDefaultValue="$(EnableOptimisticParameterDefaultValue)"
 ImportDeclareParametersItems="$(_VsPackageParametersFile)"
 ReplaceRuleItems="@(MsDeployReplaceRules)"
 RetryAttempts="$(RetryAttemptsForDeployment)">
 <Output TaskParameter="Result" PropertyName="PackageResult" />
</VSMSDeploy>

From this code, we can see that the item list, _Package_MsDeployDeclareParameters, is
passed in for the DeclareParameterItems value. _Package_MsDeployDeclareParameters
is based on the MsDeployDeclareParameters item list. If you need to create your own
parameters, you can add extra values to this item list. In order to successfully create the
parameters when you add values to that item list, you have to include the correct metadata.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Chapter 19  Web Deployment Tool Practical Applications	 551

The best way to describe this is to see it in action. In the sample for this chapter, we have
included a WAP named Deploy02. The next snippet shows the appSettings element from the
Web.config file for that WAP.

<appSettings>
 <add key="pageSize" value="2"/>
 <add key="IncludesConfigPath" value="~/Config/includes.xml.config"/>
 <add key="IncludesApplicationName" value="inlinetasks.com"/>
</appSettings>

Here, what we would like to do is to create a parameter for each of these values. Let’s start
with the pageSize value. Since we want to parameterize this using MSBuild, we need to
extend the build/package process. If you remember from Chapter 18, we can create a
.wpp.targets file to do this. In this case, the file would be named Deploy02.wpp.targets. Inside
this file we have created a new target named AddCustomParameters. Inside this target, we
will append the parameters to the MsDeployDeclareParameters item list. Take a look at
the snippet here, which shows this target and what is needed to create the parameter for
pageSize.

<Target Name="AddCustomParameters" BeforeTargets="Package">
 <ItemGroup>
 <MsDeployDeclareParameters Include="PageSize">
 <Kind>XmlFile</Kind>
 <Scope>Web.config</Scope>
 <Match>/configuration/appSettings/add[@key='pageSize']/@value</Match>
 <Description>desc-here</Description>
 <DefaultValue>25</DefaultValue>
 <Tags>applicationSettings</Tags>
 </MsDeployDeclareParameters>
 </ItemGroup>
</Target>

In this target, you can see that we are adding to the MsDeployDeclareParameters item list.
Now let’s break it down a bit. If you are familiar with the –declareParam switch from Chapter
17, then the metadata names should look familiar. The value for the Include attribute will be
the name of the parameter being created, which is the value for the name that is passed to
–declareParam. Now let’s let look at the metadata values. They all match the corresponding
names when using the –declareParam switch. Since we’ve covered –declareParam, it should
be pretty straightforward to create new parameters in this method. The following code block
shows the target that creates the parameters for all three app settings.

<Target Name="AddCustomParameters" BeforeTargets="Package">
 <ItemGroup>
 <MsDeployDeclareParameters Include="PageSize">
 <Kind>XmlFile</Kind>
 <Scope>Web.config</Scope>
 <Match>/configuration/appSettings/add[@key='pageSize']/@value</Match>
 <Description>Enter the value for page size</Description>
 <DefaultValue>25</DefaultValue>

552	 Part VII  Web Deployment Tool

 <Tags>applicationSettings</Tags>
 </MsDeployDeclareParameters>

 <MsDeployDeclareParameters Include="IncludesConfigPath">
 <Kind>XmlFile</Kind>
 <Scope>Web.config</Scope>
 <Match>/configuration/appSettings/add[@key='IncludesConfigPath']/@value</Match>
 <Description>Enter the value for the pate to the include file</Description>
 <DefaultValue>~/Config/includes.xml.config</DefaultValue>
 <Tags>applicationSettings</Tags>
 </MsDeployDeclareParameters>

 <MsDeployDeclareParameters Include="IncludesApplicationName">
 <Kind>XmlFile</Kind>
 <Scope>Web.config</Scope>
 <Match>/configuration/appSettings/add[@key='IncludesApplicationName']/@value</Match>
 <Description>Enter the value for the includes application name</Description>
 <DefaultValue>inlinetasks.com</DefaultValue>
 <Tags>applicationSettings</Tags>
 </MsDeployDeclareParameters>
 </ItemGroup>
</Target>

When this target is executed, the three values will be added to the item, and then, when the
package is created, it will be included in the parameters.xml file. If you open the package
at C:\InsideMSBuild\Ch19\Deploy02\obj\Debug\Package\Deploy02.zip, you will find the
parameters.xml file. The contents of that file are shown here:

<parameters>
 <parameter name="IIS Web Application Name"
 defaultValue="Default Web Site/Deploy02_deploy"
 tags="IisApp">
 <parameterEntry kind="ProviderPath" scope="IisApp"
 match="^C:\\InsideMSBuild\\Ch19\\Deploy02\\obj\\Debug
 \\Package\\PackageTmp$" />
 <parameterEntry kind="ProviderPath" scope="setAcl"
 match="^C:\\InsideMSBuild\\Ch19\\Deploy02\\obj\\Debug
 \\Package\\PackageTmp$" />
 </parameter>
 <parameter name="PageSize"
 description="Enter the value for page size" defaultValue="25"
 tags="applicationSettings">
 <parameterEntry kind="XmlFile" scope="Web.config"
 match="/configuration/appSettings/add[@key='pageSize']/@value" />
 </parameter>
 <parameter name="IncludesConfigPath"
 description="Enter the value for the pate to the include file"
 defaultValue="~/Config/includes.xml.config" tags="applicationSettings">
 <parameterEntry kind="XmlFile" scope="Web.config"
 match="/configuration/appSettings/add[@key='IncludesConfigPath']/@value" />
 </parameter>
 <parameter name="IncludesApplicationName"
 description="Enter the value for the includes application name"
 defaultValue="inlinetasks.com" tags="applicationSettings">

	 Chapter 19  Web Deployment Tool Practical Applications	 553

 <parameterEntry kind="XmlFile" scope="Web.config"
 match="/configuration/appSettings/
 add[@key='IncludesApplicationName']/@value" />
 </parameter>
</parameters>

From this file, we can see that our parameters were created as we had expected. You might
have noticed a couple of extra parameters for the application name and provider path. Those
are included by default in the WPP. Now that your package has been parameterized, you can
import the package from the command line and specify the values, or hand off the package
to someone else, who can import it using the IIS Manager. The IIS Manager will prompt the
user for all parameters defined in the package. If you were to import this package using IIS
Manager, the package parameters dialog that you would see is shown in Figure 19-3.

FIGURE 19-3  IIS Manager Import Application Package Parameters dialog

The parameters that were declared are shown in this dialog, including the values for
the name, description, and default value for each one. Now that we have seen how to
use MSBuild to parameterize the package, let’s make it a bit simpler by using a parameters
.xml file.

Using Parameters.xml to Parameterize the Create Package
In the previous example, we saw the “rough and dirty” method of customizing the
parameters that are included in the generated package. There is a much simpler way to do
this, though. Instead of declaring your parameters using MSBuild, you can just hand-craft

554	 Part VII  Web Deployment Tool

a parameters.xml file and then drop it into the projects directory. Once you do this, all
of the parameters declared in that file will be included in the final parameters.xml file, which
ends up in the created package. For this example, we have created another project called
Deploy03 and we have included the same appSettings values as the previous example. We
added the paramters.xml file with the following contents:

<parameters>
 <parameter name="PageSize"
 description="Enter the value for page size" defaultValue="25"
 tags="applicationSettings">
 <parameterEntry kind="XmlFile" scope="Web.config"
 match="/configuration/appSettings/add[@key='pageSize']/@value" />
 </parameter>
 <parameter name="IncludesConfigPath"
 description="Enter the value for the pate to the include file"
 defaultValue="~/Config/includes.xml.config" tags="applicationSettings">
 <parameterEntry kind="XmlFile" scope="Web.config"
 match="/configuration/appSettings/add[@key='IncludesConfigPath']/@value" />
 </parameter>
 <parameter name="IncludesApplicationName"
 description="Enter the value for the includes application name"
 defaultValue="inlinetasks.com" tags="applicationSettings">
 <parameterEntry kind="XmlFile" scope="Web.config"
 match="/configuration/appSettings/add[@key='IncludesApplicationName']/@value" />
 </parameter>
</parameters>

This file looks very similar to the parameters.xml file in the package for the Deploy02 project.
The only difference is that the parameter for the application name is not found here. You do
not have to include that in your parameters.xml—it will be added automatically. From this
point, after you create a package, it will contain all of the parameters.

If for some reason you did not want to create parameters from this file, then you
could disable this by setting the property ImportParametersFiles to false. Also, if you
wanted to change which file is used to create the parameters, just set the value of the
ProjectParametersXMLFile property to the full path.

Using –setParamFile
In the previous example, we discussed how you can easily parameterize your packages. We
have shown two techniques to set the values of those parameters when the package was
imported: through the IIS Manager or by using –setParam. Using –setParam works all right,
but after just a couple of parameters, it becomes very unwieldy. Fortunately, there is another
way: You can create a file that is used to store the values for these parameters. When you
create a package from a WAP in the Package directory, you might have noticed that there is
a SetParameters.xml file. That is a file that you can use for this purpose. Let’s take Deploy03
as an example. We have copied the package to a new location, C:\InsideMSBuild\Ch19\

	 Chapter 19  Web Deployment Tool Practical Applications	 555

Deploy03-Package\Deploy03.zip, and then we have created the file Deploy03
.qa.SetParameters.xml, which would contain the parameter values for the package. When
we created this file, we just copied the Deploy03.SetParameters.xml from the Deploy03
Package directory. The contents of this file are shown next:

<parameters>
 <setParameter name="IIS Web Application Name" value="Default Web Site/Deploy03QA" />
 <setParameter name="PageSize" value="125" />
 <setParameter name="IncludesConfigPath" value="~/Config/includes.xml.qa.config" />
 <setParameter name="IncludesApplicationName" value="qa.inlinetasks.com" />
</parameters>

In this file, all you need is a setParameter element, which gives the name of the parameter
and its value. In this case, we are setting a value for each parameter. You can see from the IIS
Web Application Name parameter that the destination application will be Default Web Site/
Deploy03QA. Now let’s see how we can use this file with msdeploy.exe to create or update
the site.

When you are using msdeploy.exe in order to use a file as the source for the parameter
values, you just have to use the –setParamFile switch. In this case, the command we used is
shown in the next snippet:

msdeploy -verb:sync
 -source:package=Deploy03.zip
 -dest:auto
 -setParamFile=Deploy03.qa.SetParameters.xml

You can see here that the syntax to pass in the file containing the parameter values is very
simple and straightforward. If you execute the command, you should see the result shown in
Figure 19-4.

FIGURE 19-4  msdeploy.exe Deploying a site using –setParamFile

556	 Part VII  Web Deployment Tool

From this result, you can see that it was successfully deployed to the site Default Web Site/
Deploy03QA, as described in the Deploy03.qa.SetParameters.xml file.

Using the MSDeploy Temp Agent
All of the examples that we have shown when deploying to a remote machine have been
using the MSDeploy Remote Agent Service. If you have anything more than a few servers,
then it quickly becomes problematic to install and maintain the service on all the servers to
which you need to deploy. Fortunately, there is another option: You can use a temporary
agent, or “temp agent.” In this case, you will initiate a deployment to a remote machine
and a temp agent will be installed on the machine. Once the deployment completes, the
temp agent will be removed. If you want to deploy using the temp agent, then you need to
initiate the deployment from a user that is an administrator on the target machine. Also, the
machine where you are issuing the command must have the Remote Agent Service installed.
In my case, we will be deploying to a virtual machine called WIN-MCX6WTF4J4R. Nether the
virtual machine nor the machine that we are using, Ibrahim-P55, is joined to a domain, and
therefore, we will have to issue a net use command in order to use a remote resource as
a remote user. For example, we issued the following command:

net use "\\WIN-MCX6WTF4J4R\C$\Windows" /USER:deploy

Only after doing this can we use the temp agent against the WIN-MCX6WTF4J4R machine.
For this example, we have turned off the Remote Agent Service on that machine. When using
the temp agent, you do not have to install MSDeploy on the remote server.

When you are using the temp agent, you can execute the same commands as you could with
the Remote Agent Service. For example, in order to get a dump of the application at Default
Web Site/Data01, you would use the following command:

msdeploy -verb:dump
 -source:iisApp="Default Web Site/Data01",
 computerName=WIN-MCX6WTF4J4R,username=deploy,password=p@ssw0rd,tempAgent=true

The only difference between this command and one that uses the Remote Agent Service
is the usage of tempAgent=true. In order to show you a bit better what is happening, we
executed and added the –verbose option to include more details in the log. The result
of executing this command is shown in Figure 19-5.

From the results shown in Figure 19-5, we have highlighted the portions showing that the
temp agent is being initialized and shut down. Using the temp agent is a great technique
to deploy your applications to remote servers without having to install the Remote Agent
Service on every target server.

	 Chapter 19  Web Deployment Tool Practical Applications	 557

FIGURE 19-5  Result from a dump using a temp agent

Deploying Your Site from Team Build
Building and deploying your site using Team Build is incredibly easy if you’ve grasped the
concepts presented in this chapter as well as the previous two. Deploying from Team Build
is about as easy as deploying from msbuild.exe using the techniques described in the first
section of this chapter, “Publishing Using MSBuild.” In that section, we showed how you
can deploy your Web by building the solution file and providing some properties on the
command line. We will use this same exact technique in order to deploy from Team Build.

If you want to deploy from Team Build, your best option is first to create the command to
deploy using msbuild.exe. We have created a new project, TfsDeploy01, in the samples for

558	 Part VII  Web Deployment Tool

this chapter. We want to take the WAP that is contained in that project and deploy that to
the WIN-MCX6WTF4J4R machine. In order to do that, we will use the command listed next:

msbuild TfsDeploy01.sln
 /p:Configuration=Release;
 DeployOnBuild=true;
 DeployTarget=MSDeployPublish;
 MSDeployServiceUrl=WIN-MCX6WTF4J4R;
 DeployIisAppPath="Default Web Site/TfsDeploy";
 MSDeployPublishMethod=RemoteAgent;
 Username=deploy;
 Password=p@ssw0rd

Note  If you want to deploy from Team Build, then you must ensure that the build agent
machine has the WPP tasks and targets installed.

Now that we’ve got the command that we need to execute, it is very easy for me to create
a new Team Build definition that can deploy this site. When you are creating your new
build definition, you would set everything up as you normally would. On the Process tab
of the build definition for Items to Build, pick TfsDeploy01.sln. Then you need to pass all the
properties to msbuild.exe as arguments. You can do this under the Advanced node in the
MSBuild Arguments row. Take a look at Figure 19-6 to see this.

FIGURE 19-6  Team Build definition Process tab

	 Chapter 19  Web Deployment Tool Practical Applications	 559

From Figure 19-6, you can see that we have set the Items to Build to TfsDeploy01.sln. The
value for MSBuild Arguments is the following:

/p:Configuration=Release;
 DeployOnBuild=true;
 DeployTarget=MSDeployPublish;
 MSDeployServiceUrl=WIN-MCX6WTF4J4R;
 DeployIisAppPath="Default Web Site/TfsDeploy";
 MSDeployPublishMethod=RemoteAgent;
 Username=deploy;
 Password=p@ssw0rd

The value here is the same set of properties that we used when building the solution. Once
we set up this Team Build definition, we can queue a new build that will build the WAP and
then deploy it to the target machine, WIN-MCX6WTF4J4R. After the build completes, if you
expand the build log, you should see something like what is captured in Figure 19-7.

FIGURE 19-7  MSBuild result in Team Build log

In Figure 19-7, you can see the portion of the log that shows MSBuild getting invoked. As
you can see, the properties that we specified were passed in. Because we were able to pass in
the properties after the build completes, we know that the site will be deployed to the target
server—and it was.

560	 Part VII  Web Deployment Tool

Deploying to Multiple Destinations Using Team Build
Now, let’s say that you wanted to do something a bit more complicated. Let’s say that your
QA environment had two Web servers and you wanted to deploy that same package to
both environments. Not only that, while doing so, you needed to make small changes to the
Web.config file. You can do this pretty easily. First, we’ll walk you through doing it on the
command line with msbuild.exe, and then I’ll show you how that translates to Team Build.

There are many different ways to do this, but here is one approach. For each environment,
create a SetParameters.xml file and place it somewhere in source control. Then, you should
create a .wpp.targets file. Since you don’t want to use this file for each build, you should
not name this file to start with the project name. For example, in this case, we named the
file qa.wpp.targets. Inside this target is where we will use the MSDeploy task to deploy our
application to the different sites. The MSDeploy task contained with the tasks and targets for
the WPP. When you perform a deploy, either it or another task, VSMSDeploy, will be used. In
this case, you could use either task, but we will use the MSDeploy task because you will see
the actual command that is getting executed. The VSMSDeploy task doesn’t use msdeploy
.exe; it interfaces with MSDeploy via its API.

The MSDeploy task has many different properties that you can pass into it. We have outlined
just a few of them in Table 19-2.

TABLE 19-2  MSDeploy Task Properties
Parameter Name Description
Verb This is the verb value passed to MSDeploy. A common value here

would be sync.

Source An item that is used to populate the values for the –source parameter
passed to msdeploy.exe.

Destination An item that is used to populate the values for the –dest parameter
passed to msdeploy.exe.

ImportSetParametersItems The path to a file that will be passed as the –setParamFile value.	

RetryAttempts The number of times that operation will be retried if the operation is
not completed.

AllowUntrusted If set to true, then untrusted certificates will be allowed.

Verbose You can set this to true to enable more verbose output.

WhatIf If set to true, then the –whatif flag will be passed to msdeploy.exe.

Now that we have outlined the MSDeploy task and some of the properties of this task, we
will see how it is used shortly. Before we get around to showing how to use the MSDeploy
task to perform the deployment, however, it’s always best to create the msdeploy.exe
command that you need to mimic first. In this case, the command that we need to execute is

msdeploy -verb:sync
 -source:package=TfsDeploy01.zip

	 Chapter 19  Web Deployment Tool Practical Applications	 561

 -dest:auto,
 computerName=WIN-MCX6WTF4J4R,
 username=deploy,
 password=p@ssw0rd
 -setParamFile=C:\InsideMSBuild\Ch19\TFS\TfsDeploy01\DeploySettings\
 TfsDeploy01.QA01.SetParameters.xml

The command outlined in the previous block will take the TfsDeploy01.zip package and then
deploy it to the WIN-MCX6WTF4J4R machine. In this example, the value for –setParamFile is
set to the TfsDeploy01.QA01.SetParameters.xml file. The contents of that file are shown next:

<parameters>
 <setParameter name="IIS Web Application Name"
 value="QA01 Web Site/TfsDeploy" />
 <setParameter name="PageSize"
 value="150" />
 <setParameter name="IncludesConfigPath"
 value="~/Config/includes.xml.qa01.config" />
 <setParameter name="IncludesApplicationName"
 value="qa01.inlinetasks.com" />
</parameters>

Along with this file, there is another file that contains the settings for the QA02 site. The
contents of that file are shown here:

<parameters>
 <setParameter name="IIS Web Application Name"
 value="QA02 Web Site/TfsDeploy" />
 <setParameter name="PageSize"
 value="500" />
 <setParameter name="IncludesConfigPath"
 value="~/Config/includes.xml.qa02.config" />
 <setParameter name="IncludesApplicationName"
 value="qa02.inlinetasks.com" />
</parameters>

Now we need to create a .wpp.targets file, which can perform the deployment for us. Take
a look at the contents of the qa01.wpp.targets file, which is shown in the following snippet:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Target Name="DeployToQA" DependsOnTargets="Package">
 <Message Text="Deploying to QA01 now"/>
 <!--msdeploy -verb:sync
 -source:package=TfsDeploy01.zip
 -dest:auto,
 computerName=WIN-MCX6WTF4J4R,
 username=deploy,
 password=p@ssw0rd
 -setParamFile=C:\InsideMSBuild\Ch19\TFS\TfsDeploy01\
 DeploySettings\TfsDeploy01.QA01.SetParameters.xml
 -->

562	 Part VII  Web Deployment Tool

 <!--**
 Deploy to QA01
 **-->
 <ItemGroup>
 <QAMsDeploySourceProviderSetting Include="package">
 <Path>$(PackageFileName)</Path>
 </QAMsDeploySourceProviderSetting>

 <QAMsDeployDestinationProviderSetting Include="auto">
 <ComputerName>WIN-MCX6WTF4J4R</ComputerName>
 <UserName>$(Username)</UserName>
 <Password>$(Password)</Password>
 </QAMsDeployDestinationProviderSetting>

 <QASetParamFile Include="..\DeploySettings\TfsDeploy01.QA01.SetParameters.xml"/>
 </ItemGroup>

 <PropertyGroup>
 <_QASetParamFileFullPath>%(QASetParamFile.FullPath)</_QASetParamFileFullPath>
 </PropertyGroup>

 <MSDeploy
 Verb=”sync”
 Source=”@(QAMsDeploySourceProviderSetting)”
 ImportSetParametersItems=”$(_QASetParamFileFullPath)”
 Destination=”@(QAMsDeployDestinationProviderSetting)”/>

 <!--**
 Deploy to QA02
 **-->
 <Message Text="Deploying to QA01 now"/>
 <ItemGroup>
 <QASetParamFile02 Include="..\DeploySettings\TfsDeploy01.QA02.SetParameters.xml"/>
 </ItemGroup>

 <PropertyGroup>
 <_QASetParamFileFullPath>%(QASetParamFile02.FullPath)</_QASetParamFileFullPath>
 </PropertyGroup>

 <MSDeploy
 Verb=”sync”
 Source=”@(QAMsDeploySourceProviderSetting)”
 ImportSetParametersItems=”$(_QASetParamFileFullPath)”
 Destination=”@(QAMsDeployDestinationProviderSetting)”/>
 </Target>

</Project>

In this file, you’ll notice that we are using the MSDeploy task without declaring it with
a UsingTask. Since we are going to set it up such that this file gets imported by the WPP
during the build, we do not need to declare that. The Microsoft.Web.Publishing.targets
file takes care of this for us. Now let’s try and dissect this file a bit. When we are using the
MSDeploy task in this case we are passing four properties to it. We will take a look at each
of these.

	 Chapter 19  Web Deployment Tool Practical Applications	 563

The first of these parameters is Verb="sync", which identifies the value for the
–verb switch. In this case, we are setting it to sync. The next parameter is source="@
(QAMsDeploySourceProviderSetting)", which is used to specify the value for the –source
switch. The value for identity will be used to determine the source provider. In this case, the
source provider is package. Each metadata value that this item value contains will be added
to the source switch as an option. For example, in this case, we have declared a path option.
So the resultant –source switch will be –source:package,path={PackageFileName}, where
{PackageFileName} is the path to the package that is created during the build. The value for
the Destination property is similar to the Source property. The include value determines the
provider type for the –dest switch, and then each metadata value that it contains will be
passed in as an option. The only other property that is passed in is ImportSetParametersItems,
and the value of this property is passed as the –setParamFile value. Now let’s see this at work.

When we build the project, we will specify that this new target should be our DeployTarget,
and we also need to pass in the qa.wpp.targets file as the .wpp.targets file. Normally,
when your project is being built, the .wpp.targets file that will be included is {ProjectName}
.wpp.targets. Since our project name is TfsDeploy01, the qa.wpp.targets file will not be picked
up. Let’s take a look at the region in the Microsoft.Web.Publishing.targets file that includes
this code.

<PropertyGroup>
 <WebPublishPipelineCustomizeTargetFile
 Condition="'$(WebPublishPipelineCustomizeTargetFile)'==''">
 $(WebPublishPipelineProjectDirectory)\$(WebPublishPipelineProjectName).wpp.targets
 </WebPublishPipelineCustomizeTargetFile>
</PropertyGroup>

<Import Project="$(WebPublishPipelineCustomizeTargetFile)"
 Condition="Exists($(WebPublishPipelineCustomizeTargetFile))"/>

When looking at this snippet, keep in mind that this file is under the %ProgramFiles%
directory. We really have two options to change the name of the file that gets imported. We
can change the value for the entire property, WebPublishPipelineCustomizeTargetFile, or we
can change the value for WebPublishPipelineProjectName. Since we are going to be using
Team Build and we know the relative location of the file to the project itself, it is easiest to
just replace the value for WebPublishPipelineProjectName. In this case, we simply need to set
that property to be qa since the file is in the same directory as the project file itself.

Now that we have explained this file a bit, let’s see the command that is used to tie all of this
together, shown in the following code block:

msbuild TfsDeploy01.csproj
 /t:Build
 /p:DeployOnBuild=true;
 DeployTarget=DeployToQA;
 username=deploy;
 password=p@ssw0rd;
 WebPublishPipelineProjectName=qa

564	 Part VII  Web Deployment Tool

From this command, you can see that we set the value for DeployTarget as
DeployToQA, which is the target that we were just looking at. Then we set the value for
WebPublishPipelineProjectName to be qa, as we had discussed earlier. Once this command
is executed, MSDeploy will be invoked to update both sites. The result of the DeployToQA
target is captured in Figure 19-8.

FIGURE 19-8  Result of the DeployToQA target

From Figure 19-8, you can see that only a few updates were performed. This is because
those sites were essentially up to date to begin with. We did this in order to show you the log
of the DeployToQA target. If both sites were not up to date, then the log would have taken
up too much space. From this figure, you can clearly see that the package is deployed first
to the QA01 website, then after that to the QA02 website. In this example, we are deploying
both sites to the same machine; but if you were deploying to multiple machines, then you
would just have to tweak the qa.wpp.targets file. Now, let’s see how to create a Team Build
definition to do the same thing.

Now that we have created an msbuild.exe command to invoke the deploy that we want,
creating a Team Build definition for it is essentially trivial. At this point, all we need to do is
create a new Team Build definition specifying that we want the TfsBuild01.sln file to build
and then pass in the same properties as the MSBuild Arguments value. Take a look at the
TfsDeploy02 Team Build definition process tab shown in Figure 19-9.

From this figure, you can see that we passed in the same properties that we discussed
previously. From now on, whenever we need to deploy to QA, we can just execute the
TfsDeploy02 build.

	 Chapter 19  Web Deployment Tool Practical Applications	 565

FIGURE 19-9  TfsDeploy02 Team Build definition Process tab

Excluding ACLs from the Package
In all the samples where we deploy a package, you might have noticed that there is always
a setAcl action or actions. There may be some cases where you do not want this to occur,
though. First, let’s create a package and see the setAcl providers in the manifest; then, we will
disable and check the manifest again to ensure that we have done the appropriate work. In
the samples for this chapter, we have created a new WAP named Deploy04. When we create
a deployment package, here is the manifest that is being used:

<sitemanifest>
 <IisApp path="C:\InsideMSBuild\Ch19\Deploy04\obj\Debug\Package\PackageTmp"
 managedRuntimeVersion="v4.0" />
 <setAcl path="C:\InsideMSBuild\Ch19\Deploy04\obj\Debug\Package\PackageTmp"
 setAclResourceType="Directory" />

566	 Part VII  Web Deployment Tool

 <setAcl path="C:\InsideMSBuild\Ch19\Deploy04\obj\Debug\Package\PackageTmp"
 setAclUser="anonymousAuthenticationUser" setAclResourceType="Directory" />
</sitemanifest>

In order to disable the setAcl providers in this manifest, you can create a .wpp.targets file. In
this case, it would be named Deploy04.wpp.targets file and be in the same directory as the
project file. Inside that file, you just need to include the following property declaration:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <PropertyGroup>
 <IncludeSetAclProviderOnDestination>false</IncludeSetAclProviderOnDestination>
 </PropertyGroup>

</Project>

After you do this, you can build a new deployment package. The manifest will look like the
following:

<sitemanifest>
 <IisApp path="C:\InsideMSBuild\Ch19\Deploy04\obj\Debug\Package\PackageTmp"
 managedRuntimeVersion="v4.0" />
</sitemanifest>

As you can see, the setAcl providers have been removed as expected. Also, if you didn’t want
to do this every time, then you could pass in this value on the command line using the /p
switch.

Synchronizing an Application to Another Server
Throughout this book, we have discussed MSDeploy only in the context of deployment, but
fundamentally it is a synchronization tool. You can use MSDeploy to synchronize a source
object to a given destination. For example, if you have an application installed on a given
server, you can use MSDeploy to synchronize that site to a different server. For example,
we have an application called Deploy03 running on my local machine, Ibrahim-P55,
under the Site03 website. If we wanted to sync this site to a site named Backup on the
WIN-MCX6WTF4J4R machine, all we have to do is issue the following command:

msdeploy -verb:sync
-source:appHostConfig="Site03/Deploy03"
 -dest:appHostConfig="Backup/Deploy03",
 computerName=WIN-MCX6WTF4J4R,
 username=deploy,
 password=p@ssw0rd

In this command, the source is the Site03/Deploy03 application and the destination is
the Backup/Deploy03 site on my remote server. The result of running this is shown in
Figure 19-10.

	 Chapter 19  Web Deployment Tool Practical Applications	 567

FIGURE 19-10  MSDeploy Synchronizing an Application to a Remote Server

From this result, you can see that the application was synchronized. This included the content
as well as the IIS settings. Note that this will synchronize the settings of only this application,
not of the entire website.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

		 569

Appendix A

New Features in MSBuild 4.0
With MSBuild 4.0, there were a large number of new features added. By far, the biggest
feature that was added is support for building Visual C++ projects. The other features that
were added were more foundational, just to make MSBuild 4.0 better than MSBuild 3.5. In
this appendix, we will discuss those features in detail. Most, but not all of the content in this
appendix has been covered previously in this book.

Support for Visual C++
As mentioned previously, the support for Visual C++ is by far the biggest new feature
of MSBuild 4.0. Many changes were required to get Visual C++ projects using MSBuild. If you
need to learn more about these features, then you should read the chapters in the “MSBuild
in Visual C++” section that is dedicated to this area.

New Command-Line Switches
With MSBuild 4.0, there are two new command-line switches and one new parameter for the
Console Logger. The two new switches are outlined in Table A-1.

TABLE A-1  New Command-Line Switches
Switch Description
/preprocess (/pp) You can use this switch to output the full canonical MSBuild file that

the MSBuild engine uses to execute the build. The result will inline all
the imports. This is very useful to see what elements are being used
for the build.

/detailedSummary (/ds) You can use this switch to include a detailed summary at the end
of the build.

Along with these two switches, you can pass the DisableConsoleColor parameter to the
Console Logger in order to display everything in the same color.

New Reserved Properties
As shown in Table A-2, a number of new reserved properties have been introduced with
MSBuild 4.0.

570	 Appendix A  New Features in MSBuild 4.0

TABLE A-2  New Reserved Properties
Name Description
MSBuildExtensionsPath64 The full path to where MSBuild 64-bit extensions are

located. This is typically under the Program Files folder. For
32-bit machines, this value will be empty.

MSBuildLastTaskResult This contains a value of true if the last executed task
was a success and false if it ended in a failure. If a task
fails, typically the build stops unless you specified
ContinueOnError="true".

MSBuildProgramFiles32 The full path where MSBuild 32-bit extensions are located.
This is typically under the Program Files folder.

MSBuildThisFile Contains the file name, including the extension, to the
file that contains the property usage. This differs from
MSBuildProjectFile in that MSBuildProjectFile always refers
to the file that was invoked, not any imported file name.

MSBuildThisFileDirectory The path of the folder of the file which uses the property.
This is useful if you need to define any items whose location
you know relative to the targets file.

MSBuildThisFileDirectoryNoRoot This is the same as MSBuildThisFileDirectory without the
root (for example, InsideMSBuild\Ch02 instead
of C:\InsideMSBuild\Ch02).

MSBuildThisFileExtension The extension of the file referenced by MSBuildThisFile.

MSBuildThisFileFullPath The full path to the file that contains the usage of the
property.

MSBuildThisFileName The name of the file, excluding the extension, to the file that
contains usage of the property.

MSBuildOverrideTasksPath MSBuild 4.0 introduces override tasks, which are tasks that
force themselves to be used instead of any other defined
task with the same name, and this property points to a file
that contains the overrides. The override tasks feature is used
internally to help MSBuild 4.0 work well with other versions
of MSBuild.

For more information on reserved properties, you can see the section entitled “Reserved
Properties,” in Chapter 2, “MSBuild Deep Dive, Part 1.”	

BeforeTargets and AfterTargets
As we have seen throughout the book, you can now place either the BeforeTargets or
AfterTargets attribute on the Target element. For example, consider the following basic
example.

<Target Name="CustomBeforeBuild" BeforeTargets="Build">
 <Message Text="CustomBeforeBuild"/>
 </Target>

	 Appendix A  New Features in MSBuild 4.0	 571

 <Target Name="CustomAfterBuild" AfterTargets="Build">
 <Message Text="CustomAfterBuild"/>
 </Target>

In this case, we have declared two targets, CustomBeforeBuild and CustomAfterBuild. We
used the BeforeTargets and AfterTargets attributes to inject these targets before and after
the Build target, respectively.

ImportGroup
With previous versions of MSBuild, there was no way to group a set of related imports. Now
you can achieve this with the ImportGroup element. You might be interested in using the
ImportGroup element when you have a set of related imports that you want to conditionally
import. With MSBuild 4.0, you can place the condition on ImportGroup itself, whereas with
previous versions you would have had to put the condition on all Import elements. For
example, consider this snippet.

<ImportGroup Condition=" '$(ImportCustomFiles)'=='true' ">
 <Import Project="custom01.proj"/>
 <Import Project="custom02.proj"/>
 <Import Project="custom03.proj"/>
</ImportGroup>

Here, the three Import elements would be processed only if the value for the
ImportCustomFiles property is set to true.

Import Wildcard
With previous versions of MSBuild, if you wanted to import a file, you had to specify the
name and location of the file. You could not dynamically load a set of files based on a path
wildcard. With MSBuild 4.0, however, you can do just this. For example, let’s say that your
project had an Imports folder where you wanted to drop different MSBuild files that should
be imported into the build. You could easily achieve this with the following line of code.

<Import Project="Imports*"/>

This Import element would import every file in the Imports folder.

Solution Import Files
With previous versions of MSBuild, it was simply not possible to extend the build process
of a solution file. This is because solution files (.sln) are not in MSBuild format. Unfortunately,
this is still the case with this release, but there is a little-known feature that can be used to
extend the build process for solution files. When you build a solution file, it will be converted

572	 Appendix A  New Features in MSBuild 4.0

to an in-memory MSBuild project file, and then that will be built. This in-memory file
contains import declarations that automatically import files from a known location into the
build process. I’ve outlined what the solution build file looks like here.

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 DefaultTargets="Build"
 InitialTargets="ValidateSolutionConfiguration;
 ValidateToolsVersions;ValidateProjects">
 <Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\SolutionFile\
ImportBefore*"
 Condition="'$(ImportByWildcardBeforeSolution)' != 'false' and
 exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\SolutionFile\ImportBefore')" />
 <Import Project="C:\InsideMSBuild\AppxA\before.AppxA.sln.targets"
 Condition="exists('C:\InsideMSBuild\AppxA\before.AppxA.sln.targets')" />

 <!--
 Solution build element here
 -->
 <Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\SolutionFile\
ImportAfter*"
 Condition="'$(ImportByWildcardBeforeSolution)' != 'false' and
 exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\SolutionFile\ImportAfter')" />
 <Import Project="C:\InsideMSBuild\AppxA\after.AppxA.sln.targets"
 Condition="exists('C:\InsideMSBuild\AppxA\after.AppxA.sln.targets')" />
</Project>

As you can see, there are essentially two sets of imports: one to pull files from the
$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\SolutionFile\Importxxx\ folders and the
other to pull files from the same directory as the solution, if those files match a specific
pattern. The difference between these approaches is that if you place a file inside the
$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\SolutionFile\ImportBefore\ folder, it will be
picked up for every build on that machine. The same applies to the ImportAfter folder. If you
create a file matching the pattern before.{SolutionName}.sln.targets or after.{SolutionName}
.sln.targets (where {SolutionName} is the name of the solution), then it will be used only for
that particular solution. Let’s see this at work. In the samples with this book, you will find an
AppxA solution file. In the same folder as the AppxA.sln file, I have created the following two
files.

before.AppxA.sln.targets
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Target Name="FromBeforeAppxA" AfterTargets="Build">
 <Message Text="FromBeforeAppxA" Importance="high"/>
 </Target>

</Project>

after.AppxA.sln.targets
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Target Name="FromAfterAppxA" AfterTargets="Build">

	 Appendix A  New Features in MSBuild 4.0	 573

 <Message Text="FromAfterAppxA" Importance="high"/>
 </Target>

</Project>

In this case, for both files I’ve created a new target and used the AfterTargets=”Build”
attribute value to inject the target into the build process. When I build this solution, the
result is shown in Figure A-1.

FIGURE A-1  Solution import result

From this figure, you can see that the targets from the before and after targets files were
successfully injected into the solution build process.

Property Functions
There are many times that you need to perform a simple operation on a property. For
example, you might want to extract a substring from a property or compute its length. With
previous versions of MSBuild, you had to use, or create, a task for this. With MSBuild 4.0,
you can use property functions. For more information on property functions, see Chapter 3,
“MSBuild Deep Dive, Part 2.”

Item Functions
With MSBuild 4.0, you can now perform simple operations on item lists. For example, you can
compute the number of elements that a list contains, extract the list of distinct elements, get
a list of the elements with a given metadata value, and so on. These operations are known as
item functions. With previous versions of MSBuild, you were forced to use batching or custom
tasks to achieve the same results. For more information on item functions, see Chapter 3.

574	 Appendix A  New Features in MSBuild 4.0

Inline Tasks
With MSBuild 4.0, if you need to create a custom task, you are not forced to precompile
that into an assembly and then reference that during your build. You can simply declare the
task in code within the project file itself. MSBuild will take care of compiling it for you. We
covered inline tasks extensively in Chapter 4, “Custom Tasks.”

Cancellable Builds
If you need to cancel a build from the command prompt, you would typically press the
Ctrl+C keys. With previous versions of MSBuild, this would abruptly end the process, and
your tasks were not given a chance to gracefully handle the cancellation. With MSBuild 4.0,
however, a new interface has been introduced, called Microsoft.Build.Framework
.ICancelableTask. If your task implements this interface when a build is cancelled, then the
Cancel() method will be called on the task in order to give it a chance to exit gracefully.

YieldDuringToolExecution
With MSBuild 4.0 comes a new property on the ToolTask abstract class,
YieldDuringToolExecution. If your tool task has a value of true for YieldDuringToolExecution,
then the process that launches that tool task will be asynchronous so that other projects can
continue to build. For more information on using this property, see Chapter 2.

New Object Model
With MSBuild 4.0, a new object model has been introduced that simplifies the process
needed in order to consume the MSBuild application programming interface (API). The
MSBuild Object Model is outside the scope of this book. For more information take a look at
the MSDN docs on MSBuild.

Debugger
For a while, people have wanted an MSBuild debugger. Now, with MSBuild 4.0, there is
a hidden debugger that you can turn on. This is not a supported feature, but you might find
it helpful in any case. In order to turn on this feature, we have to walk through a few steps.
First, you have to enable the Just My Code option, which can be found on the Tools, Options
menu under the Debugging node (see Figure A-2).

	 Appendix A  New Features in MSBuild 4.0	 575

FIGURE A-2  Just My Code setting

After you have set that, you have to change the value of a registry key, which will enable
you to pass a /debug switch on the command line to msbuild.exe. From an administrator
command prompt, execute the command reg add "HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\MSBuild\4.0" /v DebuggerEnabled /d true. The result should be the same
as that depicted in Figure A-3.

FIGURE A-3  Registry key update

Note  If you have a 64-bit machine, then you should run the following commands to ensure that
debugging is enabled for both the 32- and 64-bit versions of msbuild.exe.

C:\windows\system32\reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSBuild\4.0" /v
DebuggerEnabled /d true

C:\windows\SysWOW64\reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSBuild\4.0" /v
DebuggerEnabled /d true

After you have set this key, when you execute the command msbuild.exe /?, you should
see the /debug switch appear in the usage information as shown in Figure A-4.

If you do not see the /debug switch show up in the usage information, then you have not
initialized the registry key correctly.

576	 Appendix A  New Features in MSBuild 4.0

FIGURE A-4  msbuild.exe usage information showing /debug switch

After you have enabled the /debug switch, you can just append it to a build. For example, in
the samples with this appendix, I have included a project called WindowsFormsApplication1.
To debug the build for that project, you can execute the command msbuild
WindowsFormsApplication1.csproj /debug. After you execute this command, you will see
the dialog shown in Figure A-5.

FIGURE A-5  JIT Debugger dialog

In this dialog, you need to click the Yes, Debug MSBuild.exe option. You will need
Administrator rights to do this. Following this dialog, you’ll see another dialog, shown in
Figure A-6.

	 Appendix A  New Features in MSBuild 4.0	 577

FIGURE A-6  JIT Debugger Selection dialog

When this dialog appears, you should select the Manually Choose The Debugging Engines
check box. The reason that we want to do this is because we want to enable only managed
debugging. Mixed-mode debugging will slow down the performance of this. In order to do
this, after you click Yes in the JIT Debugger Selection dialog, you will be presented with yet
another dialog. This one is shown in Figure A-7.

FIGURE A-7  Debugger Selection dialog

You’ll be happy to learn that after you click OK, you won’t see any more dialogs. You should
now see Microsoft Visual Studio open, with a breakpoint set on the Project node.

Now that we have hit a breakpoint in the build file, we can do familiar things such as
stepping over, stepping into, stepping out, and so on. While debugging, you can take a look

578	 Appendix A  New Features in MSBuild 4.0

at the Locals window. If you don’t see that, then enable it with the menu option Debug,
Windows, Locals. Take a look at this in action in Figure A-8.

FIGURE A-8  Debugging MSBuild

By using the Locals window, or Watch window, you can examine the different values during
the build process. You can also use the Immediate window to view values and make changes
during execution. Unfortunately, the syntax that you will have to use in the Immediate
window is not the same syntax that you would normally use in MSBuild. For example, to get
the value of a property or item, you would use the EvaluateExpression method. To get the
value of the Configuration property, use the command EvaluateExpression
("$(Configuration)"). To see the values in the Compile item list, use the command
EvaluateExpression("@(Compile)"). In order to set the value of a property or create
a new one, you can use the Project.SetProperty method. You could implement this with
the following code: Project.SetProperty(“NewProperty”,”test”). This would create or update
a property named NewProperty to the value “test”. Since this is an unsupported feature,
there is not that much information about it, and it is still unpolished, hence the many dialogs.
However, it can be very useful when you are building a project and don’t understand what is
going on.

		 579

Appendix B

Building Large Source Trees
When you are dealing with a large number of projects (say, more than 100), you need to
organize your projects and have a build process that is efficient, yet flexible enough to meet
the needs of each of the projects. In this appendix, I describe one means for organizing
your source code, as well as an approach for integrating a build process into that structure.
The structure I describe won’t suit every team or every product, but the important ideas to
take away are how to modularize your build process and how to introduce common build
elements into all products that are being built.

You can organize your source into trees of related projects, with the most common projects
at the top. This organization assumes that projects need to build any of the projects
beneath them in the tree and potentially sibling projects, but they should not build projects
directly that exist in the nodes above them. For example, Figure A-1 shows the dependency
relationships of several fictitious projects.

FIGURE A-1  Project dependencies

Here we have two products, SCalculator and SNotepad, and four libraries that they depend
on. We could organize these projects into a tree similar to Figure A-2.

FIGURE A-2  SCalculator and SNotepad organizational tree

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

580	 Appendix B  Building Large Source Trees

Because all the projects depend on the Common project, it is directly under the Root node.
The SCalculator and SNotepad projects are placed inside the Products folder.

What you need here is a strategy that allows developers working on specific subtrees to build
the pieces that they need, but not necessarily the entire structure. You can achieve this by
using a convention in which each folder contains three MSBuild files:

n	 NodeName.setting

n	 NodeName.traversal.targets

n	 dirs.proj

NodeName is the name of the current node—for example, Root, Common, or Common
.UI.Editors. The NodeName.setting file contains any settings (captured as properties or
items) that are used during the build process. For example, settings here might include
BuildInParallel, Configuration, or Platform. The NodeName.traversal.targets file contains the
targets that are used to build the projects. Finally, the dirs.proj file maintains a list of projects
(in the ProjectFiles item) that need to be built for that subtree.

The NodeName.setting and NodeName.traversal.targets files will always import the top-level
corresponding files—root.setting and root.traversal.targets. These top-level files contain
the global settings and targets, and the node-level files are where customizations can be
injected. In many cases, these node-level files need to import only the root file. The code
block that follows shows the contents of the root.traversal.targets file. Fundamentally, there
are three targets in this file: Build, Rebuild, and Clean. The properties and other targets
are there simply to support these three targets. This file uses the ProjectFiles item, which is
declared in the dirs.proj file for that specific directory. The requirements for the dirs.proj file
are to do the following:

	 1.	 Define all projects to be built using ProjectFiles.

	 2.	 Import the NodeName.setting file towards the top.

	 3.	 Import the NodeName.targets file near the bottom.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <!-- Targets used to build all the projects -->

 <PropertyGroup>
 <BuildDependsOn>
 $(BuildDependsOn);
 CoreBuild
 </BuildDependsOn>
 </PropertyGroup>

 <Target Name="Build" DependsOnTargets="$(BuildDependsOn)" />
 <Target Name="CoreBuild">

	 Appendix B  Building Large Source Trees	 581

 <!--
 Properties BuildInParallel and SkipNonexistentProjects
 should be defined in the .setting file.
 -->
 <MSBuild Projects="@(ProjectFiles)"
 BuildInParallel="$(BuildInParallel)"
 SkipNonexistentProjects="$(SkipNonexistentProjects)"
 Targets="Build"
 />
 </Target>

 <PropertyGroup>
 <RebuildDependsOn>
 $(RebuildDependsOn);
 CoreRebuild
 </RebuildDependsOn>
 </PropertyGroup>
 <Target Name="Rebuild" DependsOnTargets="$(RebuildDependsOn)" />
 <Target Name="CoreRebuild">
 <MSBuild Projects="@(ProjectFiles)"
 BuildInParallel="$(BuildInParallel)"
 SkipNonexistentProjects="$(SkipNonexistentProjects)"
 Targets="Rebuild"
 />
 </Target>

 <PropertyGroup>
 <CleanDependsOn>
 $(CleanDependsOn);
 CoreClean
 </CleanDependsOn>
 </PropertyGroup>
 <Target Name="Clean" DependsOnTargets="$(CleanDependsOn)" />
 <Target Name="CoreClean">
 <MSBuild Projects="@(ProjectFiles)"
 BuildInParallel="$(BuildInParallel)"
 SkipNonexistentProjects="$(SkipNonexistentProjects)"
 Targets="Clean"
 />
 </Target>
</Project>

The dirs.proj file should include all projects in that directory, as well as all projects in
subdirectories. It can include normal MSBuild projects, like C# or Microsoft Visual Basic .NET
projects, or other dirs.proj projects (for subdirectories). This file should not include projects
that exist in directories above it. The dirs.proj file should assume that required projects that
are higher in the directory structure are already built.

If you build a project that has a reference to a project that is higher in the directory structure
and that project is out of date, the out-of-date project will be built automatically. As a result,
the dirs.proj file doesn’t have to specify to build higher-level projects. Also, for massive
builds, it is better to use file references instead of project references. With this approach, if

582	 Appendix B  Building Large Source Trees

you switch to project references, you do not have to modify your build process, only your
references. Here are the contents of the root.setting file:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <!--
 Global properties defined in this file
 -->
 <PropertyGroup>
 <BuildInParallel
 Condition="'$(BuildInParallel)'==''">true</BuildInParallel>
 <SkipNonexistentProjects
 Condition="'$(SkipNonexistentProjects)'==''">false</SkipNonexistentProjects>
 </PropertyGroup>

</Project>

This file contains only two properties: BuildInParallel and SkipNonexistentProjects. It is
important to note that these properties use conditions to ensure that any preexisting values
are not overwritten, which allows these properties to be customized easily. The next code
block contains the contents of the dirs.proj file for the Root directory.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <!-- Insert any customizations for settings here -->

 <Import Project="root.setting"/>

 <!-- Define all ProjectFiles here -->
 <ItemGroup>
 <ProjectFiles Include="Common\dirs.proj"/>
 </ItemGroup>

 <Import Project="root.traversal.targets"/>

 <!-- Insert any customizations for targets here -->

</Project>

This dirs.proj file meets all three conditions listed earlier. If any customizations for values in
the root.setting file need to be specified, they would be placed above the Import element
for that file, and any customizations for targets would be placed after the Import element
for that file. This dirs.proj file defines the ProjectFiles item to include just the Common\dirs
.proj file, which is responsible for building its contents. There are no other projects in the
Root folder that need to be built. See the contents of the Common\dirs.proj file, shown in the
next snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

	 Appendix B  Building Large Source Trees	 583

 <!-- Insert any customizations for settings here -->
 <PropertyGroup>
 <SkipNonexistentProjects>true</SkipNonexistentProjects>
 </PropertyGroup>

 <Import Project="common.setting"/>

 <!-- Define all ProjectFiles here -->
 <ItemGroup>
 <ProjectFiles Include="Common.csproj"/>
 <ProjectFiles Include="Common.IO\dirs.proj"/>
 <ProjectFiles Include="Common.UI\dirs.proj"/>
 <ProjectFiles Include="Products\dirs.proj"/>
 </ItemGroup>

 <Import Project="common.traversal.targets"/>

 <!-- Insert any customizations for targets here -->

 <PropertyGroup>
 <BuildDependsOn>
 CommonPrepareForBuild;
 $(BuildDependsOn);
 CommonBuildComplete;
 </BuildDependsOn>
 </PropertyGroup>

 <Target Name="CommonPrepareForBuild">
 <Message Text="CommonPrepareForBuild executed"
 Importance="high"/>
 </Target>
 <Target Name="CommonBuildComplete">
 <Message Text="CommonBuildComplete executed"
 Importance="high"/>
 </Target>
</Project>

This file overrides the SkipNonexistentProjects property, setting it to True. The ProjectFiles
item is populated with four values, three of which are dirs.proj files, and a couple of targets
are added to the build dependency list. If you build the Common\dirs.proj file with the
command msbuild.exe dirs.proj /t:Build, you will see that all the projects are built
and that the custom targets execute. I will not include the results here because of space
limitations, but the source for these files is available with the samples for this book.

In this appendix, we have looked at a few key recommendations that you can use to create
better build processes for your products. As with all best practices, there will be situations in
which these rules may not apply 100 percent of the time and need to be bent a little. The best
way to learn which of these practices works for you is simply to try each one out for yourself.

I would like to thank Dan Moseley, from the MSBuild team, and Brian Kretzler for their
invaluable help on this.

		 585

Appendix C

Upgrading from Team Foundation
Build 2008

As part of the upgrade process from Team Foundation Server 2008 to Team Foundation
Server 2010, all build definitions will be automatically upgraded to use the upgrade template.
This build process template provides the ability for Team Foundation Build 2010 to run build
processes based on the Team Foundation Build 2008 TFSBuild.proj project file.

Although the upgrade template requires little to no additional effort during the upgrade
process, it should be considered a short-term solution until you can switch to the default
template or create a customized process template. The upgrade template is lacking a number
of features that exist in the default template, such as:

n	 Source and symbol server support

n	 Test impact analysis

Upgrade Process
There are five high-level steps to the upgrade from Team Foundation Build 2008 to Team
Foundation Build 2010:

	 1.	 Upgrade the server to Team Foundation Server 2010. This will modify all the build
definitions to use the upgrade template.

	 2.	 Install Team Build 2010 on one or more build controllers. Team Build 2008 didn’t have
a concept of build controllers so you will need to identify machines to act as build
controllers. Refer to Chapter 13, “Team Build Quick Start,” for more information about
setting up build controllers.

	 3.	 Upgrade each of your build agents from Team Build 2008 to Team Build 2010.
This requires uninstalling Team Build 2008 and installing Team Build 2010. Refer to
Chapter 13 for more information about installing Team Build 2010 and setting up build
agents.

	 4.	 Review build definitions and configure if required.

	 5.	 Run test builds to verify the upgraded build definitions and infrastructure.

586	 Appendix C  Upgrading from Team Foundation Build 2008

Upgrade Template
The upgrade template has significantly fewer process parameters than the default template,
as can be seen in Figure C-1.

FIGURE C-1  Upgrade template process parameters

The most important parameter is Configuration Folder Path, which contains the version
control path to the folder containing TFSBuild.proj. Team Build will download the latest
version of this folder to the build agent, but this action can be suppressed by setting the
Do Not Download Build Type parameter to True (in which case the existing folder from the
previous build on the build agent will be used). By default, Team Build will download only
immediate children of the Configuration Folder Path. This can be changed, however, by
setting the Recursion Type parameter to Full.

The Logging Verbosity parameter allows the build’s logging verbosity to be specified. In
addition, the upgrade template supports splitting the MSBuild logs per project by setting
the Log File Per Project parameter to True.

The Agent Settings parameter defines the Name Filter, Tags Filter, Tag Comparison, and
timeouts to use when selecting and executing on a build agent.

	 Appendix C  Upgrading from Team Foundation Build 2008	 587

The Sources Subdirectory, Binaries Subdirectory, and Test Results Subdirectory parameters
can be used to override the name of the directory (relative to the build agent’s working
directory) where sources, binaries, and test results (respectively) are placed.

The MSBuild Platform parameter can be used to specify whether to always use the 32-bit
version of MSBuild (by selecting X86) or to automatically choose the 32- or 64-bit versions
of MSBuild based on the operating system’s bitness (by selecting Auto).

Finally, you can specify any additional arguments to be passed to MSBuild by specifying
them in the MSBuild Arguments parameter.

		 589

Index

Symbols and Numbers
!= conditional operator, 16
!Exists conditional operator, 16
$(Property Name) syntax, 6, 26–27
$* symbol, 233
% (percent sign), 13, 42, 317
%HV syntax, 13, 42, 317
" escape sequence, 340
(UserRootDir)\Microsoft.Cpp.$(Platform).user.props, 311
* (asterisk), 22
* descriptor, 37–38
** descriptor, 37–38, 41
** wildcard declaration, 43–44
, (comma), 30
.bak files, 49
.cmd files, 194
.cpp files, 294
.sln file, 298
.targets file, 270, 295, 325–26
.vcxproj project file, 267–69
.wpp.targets, 295, 534, 551, 561–62, 565–66
.zip file package, 493
/ (slash), 39
/consoleloggerparameters (/clp) switch, 19
/distributedFileLogger (/dl) switch, 19
/filelogger (/fl) switch, 19, 132
/fileloggerparameters (/flp) switch, 19, 132–33
/help (/–), 18
/ignoreprojectextensions (/ignore), 19
/logger (/l) switch, 19, 132
/maxcpucount (/m) switch, 19, 197, 274
/MP option, 274
/noautoresponse (/noautoresp), 19
/noconsolelogger (/noconlog), 19
/nodeReuse (/nr), 19
/nologo switch, 6, 18
/preprocess (/pp) switch, 20, 64, 205, 283
/property

<n>=<v> (/p) switch, 19–20, 30, 197
/target (/t) switch, 19, 198
/toolsversion (/tv) switch, 19
/validate (/val) switch, 19
/verbosity (/v) switch, 19, 134
/version (/ver) switch, 18
; (semicolon), 14, 18, 30, 35–36, 47, 235
? descriptor, 37
@ reserved character, 42
@(ItemType) syntax, 9, 14, 34, 36, 42
@file, 18
_ (underscore), 205, 238
_CheckForCompileOutputs, 16–17

_CheckForInvalidConfigurationAndPlatform, 18
== conditional operator, 16
32-bit program folder, 28

A
abstract classes, 90, 140–46
AccessedTime metadata, 12, 41
Activity Libraries, 455, 460–61
Activity Log view, 378–79
AddAttributeTaskAction, 239
AddElement, 239
adding

activities to Workflow Foundation (WF), 439–40
an empty Activity to process template library, 459–60
build agents, 412
custom targets, 324–26
custom tools, 294–97
docx2HTML tool, 337–38
hyperlinks, 478
parameters, 461–62, 511–12, 550–53
platform toolsets, 338–42
platforms, 298, 338–42
references, 440–44, 461
steps to build process, 233–35

Additional Dependencies field, 321
AdditionalProperties metadata, 197, 202, 226–31
adjustability, 271
AdminContact metadata, 55–59
AfterBuild target, 21–22, 71–72, 228–30, 233–35
AfterClean target, 71, 241–42
AfterCompile target, 71
AfterPublish target, 71
AfterRebuild target, 71
AfterResGen target, 71
AfterResolveReferences target, 71
AfterTargets attribute, 72–73, 320, 325
agent reservation, 398–99
AgentScope, 469–70, 476
Alias parameter, 261
All target, 49, 54
AllConfigurations target, 178, 180
Analyze Test Impact process parameter, 404
AnyEventRaised build event, 135
AnyHaveMetadataValue item function, 82
AppDomainIsolatedTask class, 90
Append parameter, 133
Append property, 152
appHostConfig, 501
Application property sheets, 282
appSettings node, 526
archiveDir provider, 501

590	 arguments

arguments
command-line, 128, 158
-declareParam, 513–15
Workflow Foundation (WF), 428–29

Arguments Designer, 428–29, 444, 447–48
array variables, 24, 34, 97–101
aspnet_regiis.exe, 256–57
AspNetCompiler, 259
assemblies

deployment of custom, 483–84
loading dependent, 485
setting version, 223–25, 231

Assemblies property, 206
AssemblyFile attribute, 89, 126
AssemblyName attribute, 89
AssemblyName property, 31–33
AssignTargetPathsDependsOn property, 76
Associated Changesets and Work Items, 381, 407
asterisk (*), 22
attrib command, 195–96
attributes, 5, 529–30
authentication, 411, 415
auto provider, 501

B
batch files, 232, 317
BatchFileTask, 112–15
BatchFileTaskFactory.cs file, 112–14
batching, 45, 338

building multiple configurations using, 177–80
over multiple values, 175–77
overview, 163–65
qualified statements, 175
target, 163, 176, 179–80
task, 163–65, 176–79
using multiple expressions, 181–83
using shared multidata, 183–88

BeforeBuild target, 21–22, 71, 228–30, 233–35, 258–60
BeforeClean target, 71, 241–42
BeforeCompile target, 71
BeforePublish target, 71
BeforeRebuild target, 71
BeforeResolveReferences target, 71
BeforeTargets attribute, 72–73, 320, 325
BerforeResGen target, 71
binaries, 28
bold fonts, 291
buddy builds, 348, 374–77, 400, 407
build agents, 471

configuring, 357–59
in Team Build architecture, 349
installing, 356–57
running multiple, 412
setting up, 355–56

build controllers, 349, 373, 484
concurrency, 413
configuring, 354–55

in Team Build architecture, 349
installing, 353–54
multiple, 350
setting up, 352–53

Build Customization
architecture, 294–97
converting, 313
creating, 332–38
targets files, 326
usage, 324
user interface, 296

Build Defaults tab, 367
build definitions

creating, 358, 360–67, 418
deployment, 558–59
process parameters, 461–62
querying, 417–18

Build Deployment Package, 490–91
build details, 378–81, 471
Build directory, 471
build events

IEventSource, 135–36
Visual C++ 2010, 317–19

Build Explorer, 377–78
build files, master, 200–2, 228–30
build history, 379, 421–22

querying, 421–22
Build Log File property, 271–72
build machines, 351–52
Build Manager, 270–71, 274
Build number, 397–98, 473
build operation, 270
build parallelism, 273–78
build process

adding custom targets, 324–26
adding custom tools to, 294–97
adding steps into, 233–35
C# projects, 64
command-line, 268, 271
command-line switches for maximum, 19
extending, 21–22, 69–77
Integrated Development Environment (IDE),

268, 270–71
multiple project, 225–31
updating configuration files, 237–39
Visual C++, 269

build process parameters, 368–69
build process template, 351, 368–69
build qualities, 381
build queues

calling, 371–73
cancelling, 378
command-line, 384–85
deleting, 386
postponing, 378
process parameters, 461
querying, 420–21
reprioritizing, 378

	 configuring	 591

stopping, 378, 386
using API, 419–20

build scripts
creating reusable elements, 204–6
invoking reusable target files by calling, 213–14
on Team Foundation Server, 352

build service hosts, 416–17
BuildActivity attribute, 473–74
Buildagents, 350–51
BuildAll target, 171
BuildDependsOn list, 21
BuildDependsOn property, 56, 74–76, 243, 257
BuildEngine property, 88
BuildEnvironment object, 471
BuildEventArgs, 136
BuildFinished build event, 135, 144–46
BuildinParallel property, 197
BuildInParallel property, 231–32
BuildMessageEventArgs, 146
builds

cancellable, 378
deleting, 382–83
distributed, 351
incremental. See incremental builds
retaining, 382
working with, from the command line, 383

BuildStarted build event, 135, 144–46
BuildSuffix property, 319
BuildWarningEventArgs object, 136
BuiltProjectOutputGroupDependsOn property, 76
business logic, 423

C
C#

deleting files, 59
extending the build process, 73
importing files and targets, 64
inline task in, 101–2
OnError element, 235

CallCompile, 235
Cancel method, 118
cancellable builds, 378
category error message component, 204
category field, 465
certificates, 411
chaining, property function, 78–79
changesets, 381, 400, 407
CheckInGatedChanges activity, 470
CL task, 273–74, 279–80
classes

inline task generation, 108
static property function for, 79–80

ClCompile type, 294
clean process

custom files, 190, 241–43
FileWrites item list, 239–41
implementation, 56–60

manual, 241
Visual Studio, 241

Clean target, 341, 399
Clean Workspace type values, 399
CleanDependsOn property, 76, 242–43
CleanDestFolder target, 189–90
CleanupTask method, 112
ClearMetadata item function, 82
code activities, 433
code element, 101
code error message component, 204
CodeActivity, 477–78
CodeDOM, 108
Collect phase, 530–36
comma (,), 30
Command Line Arguments, 128, 158
Command Line category, 335–36
Command parameter, 195
Command property, 193
command-line build, 268, 271, 274, 276
command-line conversion, 314–15
command-line field, 320, 322
command-line parameters, 33
command-line properties, 30–32
command-line switches, 18–20, 132
communications ports, changing, 409–10
Compilation page, 248
compilations, concurrent, 275–76
Compile item, 68
CompileDependsOn property, 76
CompileLicxFilesDependsOn property, 76
compiler switches, 310
compiler tool, 294
composite activities, 433
compress tool, 321
CompressedFiles parameter

DNZip, 252
JSCompress task, 255

CompressionLevel parameter, 252
CompressJavaScript target, 255
compressor, 254–56
CompressPath parameter, 252
ComputeIntermediateSatelliteAssembliesDependsOn

property, 76
condition attribute, 7, 15–17, 64, 224
conditional operators, 16
configuration files, 177–80, 237–39
Configuration Manager, 297–98
Configuration metadata, 171
Configuration property, 7, 24–26, 55, 207, 308
Configurations tab, 369
Configurations To Build process

parameter, 401
configuring

build agents, 357–59
build controllers, 354–55
Clean Workspace type values, 399
project level build parallelism, 273–74

592	 connection strings

configuring, continued
Team Build Service, 409–13
verbosity in IDE, 271

connection strings, 258
Connections pane, 494
connectivity verification, 359
console loggers, 130–32

command-line switch, 19
parameters, 131
properties, 147
verbosity setting, 232

ConsoleLogger class, 146
content type elements, 329
ContentFilesProjectOutputGroupDependsOn

property, 76
contentPath provider, 501
ContentType elements, 329
context, 290–92
continuous integration (CI), 348, 362–63
contracts, 205, 212
Control flow tab, 447
Controller field, 358
conversion

Build Customization, 313
command-line, 314–15
file, 311–15
Integrated Development Environment (IDE), 311–15
microsoft.Cpp.$(platform).user.props, 313
project file, 311–15
property sheet, 313
solution file, 311–15
upgrade log file, 314

conversion, file, 311–15
ConvertWorkspaceItems, 470
CopiedFiles property, 38
Copy Existing Workspace, 367
Copy Local property, 458
Copy task, 36–41, 56–59, 195
Copy To Output Directory, 126–27
CopyBeforeBuild target, 250
CopyFilesToDest target, 189–92
copying

files, 39
files to another location, 56–59
process templates to output directories, 460
to another location, 188–89
to directories, 168–70
to drop location, 407
Web Deployment Project (WDP) files, 251
working folder mappings, 367

CopyOutputFiles target, 56
CopyPipelinesFiles task, 251
CopyToOutputDirectory metadata, 167, 184–85
Core Windows Libraries property sheets, 282
CoreBuild property, 76
CoreBuild target, 217, 229
CoreCleanDependsOn property, 76
CoreFxCop, 218–19

CoreResGenDependsOn property, 76
CoreTest, 235
CppClean target, 325
Create Test Runs Permission, 394
createApp provider, 501
CreateCustomManifestResourceNamesDependsOn

property, 76
CreatedTime metadata, 12, 41
CreateProperty task, 32–33
CreateSatelliteAssembliesDependsOn property, 76
CreateTask method, 114–15
CreateVirtualDirectory task, 261–62
creating

Build Customization, 332–38
build definitions, 358, 360–67, 418
custom activities, 434–37, 473–75
custom activity libraries, 460–61
dynamic items, 55–56
dynamic properties, 53–55
reusable elements, 204–6
work items, 409
work items for build failure, 409
Workflow projects, 438–39

custom activities, 434–37, 473–75
Custom Build Rule, 333
Custom Build Step, 319–22
Custom Build Tool, 322–24
custom tasks

creating, 88–90
requirements, 87
versus executables, 116

CustomActivitiesAndExtensions.xml, 428
CustomAfterBuild target, 75–76
CustomAfterFxCop target, 217
CustomAfterMicrosoftCommonTargets, 233–35
CustomBeforeBuild target, 240–41
CustomBeforeMicrosoftCommonTargets, 233–35
CustomClean target, 243
CustomCopyOutput target, 72
CustomErrorRegularExpression property, 194, 203
CustomEventRaised build event, 136
CustomFileLogger, 148–51, 158
CustomWarningRegularExpression property, 194, 203
Cygwin, 338

D
Database Scripting Options, 540
databases

deployment of, 493, 502, 539–42
Team Project Collection, 349

DateUnformatted property, 94
DateValue property, 94
dbFullSql provider, 501–2, 543–44
Debug mode, 229
Debug symbols, 493
Debugger.Launch() method, 125–26, 158
debugging loggers, 157–59

	 Exec command	 593

debugging tasks, 124–28, 453
DebugSymbolsProjectOutputGroupDependsOn

property, 76
DebugView tool, 332
-declareParam, 205, 511, 513–15, 551
default targets, 17–18, 28
DefaultTargets element, 269
defaultValue argument, -declareParam, 515
Delete Build Definition Permission, 392
Delete Builds Permission, 392
delete verb option, 499
DeleteSomeRandomFiles target, 191
DeleteTempFile method, 118
dependent projects

build parallelism, 274
in project file, 313
mutually exclusive, 351
predefined target, 76
project-level, 274
Web Application Project (WAP), 258–60

DependsOn properties, 205
DependsOnTargets attribute, 74, 76
deployment

database, 493, 502, 539
of extensions, 342–43
of web applications, 490
to multiple destinations, 560–64
using Web Deployment Project (WDP), 260–63

DeployOnBuild, 549
DeployTarget, 549
DeployToServer target, 261
description field, 322, 465
design-time experience, 295, 326–27
DesignTimeResolveAssemblyReferencesDependsOn

property, 76
DestFolder property, 49
DestinationFiles property, 38–41, 51
DestinationFolder property, 38–40
destinaton targets, 500
Destinaton targets, 490
Destroy Builds Permission, 392
detailed verbosity setting, 131, 133
detailedSummary (/ds), 20
devenv.exe, 314
diagnostic output, 271
diagnostic verbosity setting, 131, 133
directories, 28, 285–87, 352
Directory metadata, 12, 41
DirectoryName item function, 82
dirPath provider, 501
dirs.proj file, 131
DisableConsoleColor parameter, 131
DisableMPLogging parameter, 131
disabling

changeset analysis, 407
msdeploy.exe rules, 504
source indexing, 405
tests, 404

disk space, 352
Distinct item function, 82
DistinctWithCase item function, 82
distributed loggers, 159
DNZip, 252
DocumentationProjectOutputGroupDependsOn

property, 76
Docx2HTML tool, 327–28, 333–35, 337–38
Domain Account, 388
DoNotDeleteRule, 505
DOS macros, 232–33
DoWhile activity, 426
drop folders, 350, 359–60, 373
drop location, 407–8
DropLocation property, 7
dump verb option, 499–500

E
EchoOff property, 119
Edit Build Definition Permission, 392
Edit Build Quality Permission, 392
editors

expression, 446
metadata, 464–66
property, 292
user interface, 466–68

EnableMPLogging parameter, 131
EnablePackageProcessLoggingAndAssert, 533, 536, 538
enabling

msdeploy.exe rules, 504
native multi-targeting, 300
source service support, 405
trace messages, 332

Encoding parameter, 133, 255–58
EncryptWebConfig target, 257
environment variables, 119, 195, 317

expansion, 470
extracting values from, 26–27

error messages, 203–4, 271
Error task, 235–37
ErrorOutputFile property, 207
ErrorRaised build event, 135
errors, 144, 203–4

handling, 235–37, 444–45
logging, 144–46
metadata batching, 185
property page, 331

ErrorsOnly parameter, 131
evaluation, 60–63, 291–93
EventSource, 135
exception handling, 430–33, 482
ExcludeApp_Data, 533–34
ExcludeCategory property, 207
ExcludeFromBuild, 250, 252
ExcludeFromPackageFolders, 535
ExcludeGeneratedDebugSymbol, 533–34
Exec command, 245

594	 Exec task

Exec task, 21, 116, 193–96, 340
executables

benefits of, 116
writing, 120–24

Execute After targets, 320–22
Execute Before targets, 320–22
Execute method, 88, 90
ExecuteTargets parameter, 235
ExecuteTool method, 118
Exists conditional operator, 16
Exists function, 16–17
ExitCode property, 119, 193
ExpandEnvironmentVariables, 470
Expression editor, 446
expressions, batching using multiple, 181–83
extensiblity, 205, 213, 306–7
Extension metadata, 12, 41, 49
Extension types, 474–75
extensions, 28

command-line switch for, 19
deployment of, 342–43
property, 29

ExtensionTargets, 325–26
ExtensionTasksPath property, 224
external tools

error messages, 203–4
Exec task, 193–96
FxCop, 215–19
MSBuild task, 197–202
NUnit, 206–14
reusable build elements, 204–6

ExtractPath parameter, 252

F
FactoryName property, 112
file extensions, 267–69, 295
file loggers

attachment, 132–34
command-line switch, 19
multiple, attachment of, 231–32

file name, 29
File tracker, 279–81
FileExtension type, 329
file-level build parallelism, 273–78
FileLogger class, 146
FileLoggerBase class, 152–53
Filename metadata, 12, 41, 49
FileNames parameter, 252
filePath provider, 501, 507
files. See also Project files

Custom Build Tool, 322
deleting, 59–60
importing, 64–68
supported input and output types, 95–97
transfering, using FTP, 253–54

Files parameter, 255
FilesForPackagingFromProject, 537–38

FileWrites item list, 59, 225, 239–41
Filter property, 399
filters, 420
FindMatchingFiles, 470
flattening items, 36
Flowchart activity, 423
ForceImportAfterCppTargets, 307
ForceImportBeforeCppTargets, 307
ForceNoAlign parameter, 131
ForEach<T> activity, 448–49
ForeceImportAfterCppTarget, 307
ForeceImportBeforeCppTarget, 307
FormatErrorEvent method, 141
FormatWarningEvent method, 141
framework version, 302
FrameworkVersionXPath parameter, 257
Ftp, 252

task parameters, 252–53
transfer files using, 253–54

FtpFiles target, 254
FullBuildDependsOn property, 229
FullPath metadata, 12, 41
FxCop, 215–19

G
gacAssembly provider, 501
gated check-in builds, 348, 364–65, 409, 470
General tab, 360
GenerateCode target, 72
GenerateCommandLineCommands method, 118, 123
GenerateFullPathToTool method, 116, 118, 123
GenerateManifestsDependsOn property, 76
GenerateResource task, 190
GenerateResponseFileCommands method, 118
Get Options, 385
GetBuildAgent, 471
GetBuildDetail activity, 459, 471
GetBuildDirectory, 471
GetBuildEnvironment, 471
GetCopyToOutputDirectoryItemsDependsOn

property, 76
GetDate task, 93–95
getDependencies, 499
GetFrameworkPath task, 257–58
GetFrameworkPathsDependsOn property, 76
GetMetadata method, 98
getParameters, 499
GetProcessStartInfo method, 118
GetPropertyValue method, 115
GetRedistListsDependsOn property, 76
GetResponseFileSwitch method, 118
GetService<T> method, 416
getSystemInfo, 499
GetTargetPathDependsOn property, 76
GetTaskParameters method, 112
GetTeamProjectCollection, 471
GetWorkingDirectory method, 118

	 items	 595

global assembly cache (GAC), 89, 462
global exception notification, 432–33
global properties, 199, 228
GNU Compiler Collection (GCC) toolset, 338–41
Guids property, 107–9

H
HandleErrors target, 235–37
HandleTaskExecutionErrors method, 118
hardware configuration, 297, 351–52
HelloLogger, 137–40
Hex value, 42
Host parameter, 252
HostObject property, 88
hyperlinks, 478

I
IBuildServer interface, 416
identity metadata, 12, 41
IEventSource Build Events, 135–36
IEventSource interface, 154–55
If . . . Else activity, 428
IForwardingLogger interface, 159
IGeneratedTask, 115
IgnoreExitCode property, 193
IgnoreStandardErrorWarningFormat property, 194, 203
IIS 7 extension, 494–97
IIS Manager, 551–53
iisApp provider, 501, 503
ILogger interface, 134–35, 138
Image resizer sample application, 438–53
Import Application Package, 511–12
Import Applications, 495
Import element, 22, 30, 64
import statements, 9

overriding, 234–35
processing, 61

ImportAfter, 234, 306
importance parameter, 6
Importance property, 146
Importance property message task, 129–30
ImportBefore, 234, 306
ImportGroup, 326
importing

files or projects, 64–68
property sheets, 283–84

imports
hierarchy of Visual C++ target, 303–4

Imports Designer
Workflow Foundation (WF), 430

Include attribute, 34–35, 41, 110–11
Include statement, 36–37, 45
IncludeCategory property, 206
incremental builds, 188–92, 270

cleaning files, 59
Custom Build Step, 322

file tracker-based, 279–81
troubleshooting, 281
Visual C++, 281

indentation, custom logger, 148
IndentFileLogger, 137
Indexing, 404–5
inheriting project settings, 282
initial targets, 17
Initialize method, 112–14

CustomFileLogger, 148–49
HelloLogger, 137
ILogger interface, 135
XmlLogger, 153–54

InitializeParameters method, 144
InitialTargets attribute, 18
inline tasks, 106–8

authoring, 111
creating, 101–11
statements in, 109–10

in-memory representation, 65, 67
INodeLogger interface, 159
Input attribute, 188
input parameters

creating, 91–95
inline task, 103–4

Insert transformation, 526
InsertAfter elements, 526–28
InsertBefore elements, 526–28
Install Application From Gallery, 494
instance methods, 78
instance property, 78
Integrated Development Environment (IDE)

configuring verbosity in, 271
conversion, 311–15
devenv.exe, 314
enabling file-level parallelism in, 274–76
project-level check, 280

Intellisense, 22–23
InvokeForReason activity, 471
InvokeProcess activity, 471–72
IsVerbosityAtLeast method, 141
ITaskFactory interface, 111–13
ITaskItem type, 95–97, 120–23
item definition metadata. See item metadata
item functions, 82–83
item lists, 24, 36, 47
item metadata, 48, 290
Item transformations, 47–51
ItemDefinitionGroup element, 185–88
ItemGroup element, 9–11, 34–35

batching, 187–88
creating dynamic items, 53, 55–56
importing files, 64
Remove attribute, 59–60

ItemName attribute, 93
items

creating dynamic, 55–56
dynamic, 53

596	 itemSpec parameter

items, continued
evaluating, 9
flattening, 36
ItemGroup element, 9–11
metadata, 11–14
MSBuild, 34–36
order of evaluation, 60–63
removing, 59–60
using wildcards to declare, 37

itemSpec parameter, 96
ItemType, 47, 329

J
JavaScript, 254–56
Jazmin, 254
JSCompress task, 255–56
JSMin, 254

K
key-value pairs, 24, 41, 45
kind argument, -declareParam, 513
known error message formats, 203

L
Lab Management default template, 395
labels, version control, 400–1
language attribute, 101–2, 111
last task result, 28
late evaluation model, 291
License Compiler (LC), 295
linear evaluation model, 291
Link task, 280
linker switches, 310
Linker tool, 289
Log property, 90
Logfile parameter, 133
LogFile property, 152
Logger abstract class

class diagram, 140
extending, 140–46
methods, 141

LoggerAssembly, 132
LoggerClassName, 132
LoggerException, 144, 154
LoggerParameters, 132–33
loggers

attaching multiple, 231–32
command-line switch, 19
console, 130–32
custom, 135–40
debugging, 125, 157–59
defined, 134
distributed, 159
exception handling in, 140

extending existing, 146–51
file, 132–34
macro creation, 232–33
overview, 129–30
Team Build, 396, 475–82
verbosity settings, 131

logical project files, 17, 20, 290, 308
LogStandardErrorAsError property, 119

M
macros, 232–33, 292
MakeDir task, 340
MakeZipExe, 120–24
Manage Build Qualities Permission, 392
Manage Build Queue Permission, 392
managed multi-targeting, 301–2
manifest provider, 501, 517–19, 543
manual triggers, 362
master build files, 200–2, 228–30
match argument, -declareParam, 514–15
Maximum Concurrent C++ Compilations, 276
Maximum Number Of Parallel Project Builds, 273
message tasks, 5, 24, 129–30, 164
MessageRaised build event, 135, 145–46
MetabaseProperties parameter, 262
metadata, 40

batching, 181–88
custom, 44–46
in custom tasks, 98–101
items, 12
overwriting, 46
process parameters, 463–66
shared, 183–88
well-known, 12, 41–44
with more than one value, 13

Metadata item function, 82
MetadataName syntax, 12–13
metaKey provider, 501
Microsoft .Net Framework, 23, 256

changing Target Framework in, 455–57
command-line switch for version specification, 19
GetFrameworkPath task, 257
managed multi-targeting, 300–2
Workflow Foundation (WF), 423

Microsoft Macro Assembler (MASM) Build
Customizations, 295

Microsoft SDC Tasks, 87
Microsoft Visual Studio. See Visual Studio
Microsoft Visual Studio Team System, 347–48
Microsoft. NETFramework.targets, 306
Microsoft.Build.Commontypes.xsd, 3, 23
Microsoft.Build.Core.xsd, 3, 23
Microsoft.Build.CppTasks.$(Platform).dll, 303
Microsoft.Build.CppTasks.Common.dll, 303, 324
Microsoft.Build.Framework.IGeneratedTask

interface, 115
Microsoft.Build.Framework.ILogger, 134

	 MSBuildProjectExtension property	 597

Microsoft.Build.Framework.ITask interface, 87
Microsoft.Build.Framework.ITaskFactory interface, 111
Microsoft.Build.Framework.Output attribute, 92
Microsoft.Build.Tasks.v4.0.dll, 303
Microsoft.Build.Utilities.AppDomainIsolatedTask

class, 90
Microsoft.Build.Utilities.Logger class, 152
Microsoft.Build.Utilities.Task class, 90, 104
Microsoft.Build.Utilities.TaskLoggingHelper, 90
Microsoft.Build.Utilities.ToolTask class, 90
Microsoft.Build.xsd file, 23
Microsoft.BuildSteps.targets, 305
Microsoft.Cl.Common.props, 310
Microsoft.CodeAnalysis.props, 310
Microsoft.Common.targets file, 306

_CheckForCompileOutputs, 16–17
_CheckForInvalidConfigurationAndPlatform, 18
empty targets in, 70–71
FileWrites item list, 239
import statements, 233–35
predefined target dependency properties, 76

Microsoft.Cpp.$(platform).user.props, 313
Microsoft.Cpp.Application.props, 311
Microsoft.Cpp.CoreWin.props, 311
Microsoft.Cpp.Default.props, 308
Microsoft.Cpp.props, 308
Microsoft.Cpp.targets, 305
Microsoft.Cpp.unicodesupport.props, 311
Microsoft.Cpp.Win32.User property sheet, 282, 284–86
Microsoft.CppBuild.targets, 305
Microsoft.CppClean.targets, 306
Microsoft.CppCommon.targets, 305

Custom Build Step, 320
Custom Build Tool, 324

Microsoft.CSharp.targets file, 64, 69–70, 237–38
Microsoft.Link.Common.props, 310
Microsoft.TeamFoundation.Build.Client.dll, 415
Microsoft.TeamFoundation.Build.Workflow.Activities,

477–78
Microsoft.TeamFoundation.Build.Workflow.Tracking, 480
Microsoft.TeamFoundation.Client.dll, 414
Microsoft.TeamFoundation.Common.dll, 415
Migration, 490
MinGW, 338
minimal verbosity setting, 131
ModifiedTime metadata, 12, 41
Move task, 97–98
MSBuild, 472

as an external program to debug, 126–28
batching, 163–65
command-line usage, 18–20
definition of, 23
diagnostic output, 271
file types in, 36
invoking, 5–6
known error message formats, 203–4
publishing, 545, 547–48
starting as an external program for debugging, 158

MSBuild 2.0, 18
append-only items, 59
attrib command, 195
binaries, 28
dynamic properties, 32
file logger syntax, 132–34
passing properties in, 231

MSBuild 3.5, 59–60
binaries, 28
dynamic properties and items, 53
MSBuild task, 225–28
OverwriteReadOnlyFiles property, 195
property creation, 33
remove function, 59–60

MSBuild 4.0
/preprocess (/pp) switch, 64
before/after builds in, 234
binaries, 28
file logger, 132
File tracker, 279–81
import files, 64, 234
item functions, 76
property creation, 33
property functions, 77–81
remove function, 197

MSBuild Build Manager, 270–71, 274
MSBuild Community Tasks, 87
MSBuild Extension Pack, 87

DNZip and ftp, 252
FxCop, 215–19
NUnit, 206
setting assembly version, 223
WindowsService task, 245–46
XmlFile task, 237–39

MSBuild Node, 270–71, 274
MSBuild Project Build Log File Verbosity, 271
MSBuild Project Build Output Verbosity, 271
MSBuild property functions, 77, 80–81
MSBuild task, 197–202, 225–28
msbuild.exe, 5, 250, 557
MSBuild.ExtensionPack.VersionNumber.targets, 223–24
MSBuildCommunityTasks, 254–56
MSBuildExtensions Path property, 8
MSBuildExtensions Path32 property, 8
MSBuildExtensions Path64 property, 8
MSBuildExtensionsPath property, 28, 342
MSBuildExtensionsPath32 property, 28
MSBuildExtensionsPath64, 342
MSBuildExtensionsPath64 property, 28
MSBuildLastTaskResult property, 8, 28
MSBuildNodeCount property, 8, 28
MSBuildOverrideTasksPath property, 29
MSBuildProgramDefaultTargets property, 8
MSBuildProgramFiles32 property, 8, 28
MSBuildProjectDefaultTargets property, 28
MSBuildProjectDirectory property, 8, 27
MSBuildProjectDirectoryNoRoot property, 8, 27
MSBuildProjectExtension property, 8, 28

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

598	 MSBuildProjectFile property

MSBuildProjectFile property, 8, 28
MSBuildProjectFullPath property, 8, 28, 68
MSBuildProjectName property, 8, 28
MSBuildStartupDirectory property, 8, 28
MSBuildThisFile property, 8, 28, 68
MSBuildThisFileDirectory property, 8, 28, 334
MSBuildThisFileDirectoryNoRoot property, 8, 29
MSBuildThisFileExtension property, 8, 29
MSBuildThisFileFullPath property, 8, 29
MSBuildThisFileName property, 8, 29, 334
MSBuildToolsPath property, 8, 28, 64
MSBuildToolsVersion property, 8, 28
MSDeploy. See also Web Deployment Tool

manifest provider, 517–19
parameters, 510–17
providers, 500–4
rules, 504–5

MSDeploy task, 560
MSDeploy Temp Agent, 556
msdeploy.exe

installing web packages using, 497–98
location, 497
syntax, 498
usage options, 498–99
verb options, 499

MsDeployDeclareParameters, 550–51
MSDeployPublish target, 545
multi-batching, 175–77
MultiProcessorCompilation property, 275–76
multi-targeting, 300–2

N
namespaces, 109–10
native activities, 433
native multi-targeting, 300–1
NestedProperties. proj, 7
net use command, 556
network access, 351
nodes, 19, 28
NoItemAndPropertyList parameter, 131
normal verbosity setting, 131, 133
NoShadow property, 207
NoSummary parameter, 131
NoThread property, 207
notification, global exception, 432–33
NT AUTHORITY\NETWORK SERVICE, 388
NUnit, 206–14

O
objectName, 507
OnBuildBreak target, 235
OnError element, 235–37
operators, conditional, 16
origin error message component, 203–4
Output Assemblies, 248
Output attribute, 109
Output element, 32–33, 92–93

output files
deleting, 189
diagnostic, 271
zipping, 252–54

output parameters
creating, 92–95
inline task, 104–6

Output phase, 530
Output property, 32
OutputPath item, 63
OutputPath property, 31–32, 55–59, 63, 240–41

importing files, 66–67
Web Deployment Project (WDP), 250

OutputPathCopy property, 63
OutputPathItem property, 63
Outputs attribute, 170–71, 173
Outputs field

Custom Build Step, 321–22
Custom Build Tool, 322

Outputs property, 193, 200–2
OutputXmlFile property, 207
Overridable behavior, 205
Override BeforeBuild/AfterBuild target, 69–72
Override Check-In Validation by Build Permission, 393
overriding

CustomAfterMicrosoftCommonTargets, 234–35
CustomBeforeMicrosoftCommonTargets, 234–35
existing targets, 70–72
import statements, 234–35
MSBuildExtensionsPath32, 342
targets, 325–26
tasks, 29
VCTargetsPath, 342

OverwriteReadOnlyFiles property, 39, 195
overwriting custom metadata, 46

P
package provider, 501
Package/Publish SQL tab, 539–44
Package/Publish Web tab settings, 530–31
packages. See web packages
PackageUsingManifest target, 550
parallel builds, 231, 272–78, 352
ParallelForEach<T> activity, 447–48
ParameterGroup element, 103
parameters

command-line switches for, 19
console logger, 131
creating, 551–53
file logger, 133
MSDeploy, 510–17
specifying type of, 105

Parameters property
console logger, 147
ILogger interface, 134

Parameters.xml file, 553–54
ParameterType attribute, 105
ParseCustomParameters method, 148–50

	 Projects property	 599

partial evaluation, 291–93
participant, 437
Password parameter

DNZip, 252
Ftp, 253

Path parameter, 257, 261
-pef switch, 256
percent (%) sign, 317
PerformanceSummary parameter, 131
permissions, 391
persistence extensions, 437
Pick activity, 428
PickBranch activity, 428
PipelineCollectFilesPhase, 531
Platform property, 7
platform toolsets

adding, 338–42
changing, 297
overview, 297–300
properties, 32, 300–1
supporting multiple, 299–300
Visual C++ 2010, 300
Visual Studio 2008, 300, 338–41
Visual Studio 2010, 300, 338–41

platforms
adding, 298–300, 338–42
defined, 297
supporting multiple, 299–300

Platforms\ $(Platform)\ImportAfter*.props, 311
Platforms\ $(Platform)\ImportBefore*.props, 310
Platforms\ $(Platform)\PlatformToolsets\

$(PlatformToolset)\ImportAfter*.props, 311
Platforms\ $(Platform)\PlatformToolsets\

$(PlatformToolset)\ImportBefore*.props, 310
Platforms\ $(Platform)\PlatformToolsets\

$(PlatformToolset)\Microsoft.Cpp.$(Platform)
.$(PlatformToolset).props, 310

Platforms\ \$(Platform)\ImportAfter*.targets, 306
Platforms\ \$(Platform)\PlatformToolsets\

\$(PlatformToolset)\ImportBefore*.targets, 306
Platforms\ \$(Platform)\PlatformToolsets\

$(PlatformToolset)\Microsoft.Cpp.\$(Platform)
.$(PlatformToolset).targets, 306

Platforms\$(Platform)\Microsoft.Cpp.$(Platform), 305
Platforms\$(Platform)\Microsoft.Cpp.$(Platform).default

.props, 310
Platforms\$(Platform)\Microsoft.Cpp.$(Platform)

.props, 310
Platforms\\$(Platform)\ImportBefore*.targets, 305
Platforms\Win32\PlatformToolsets\ \$(PlatformToolset)\

ImportAfter*.targets, 306
PlatformToolset property, 300–1
Port parameter, 252
post-build events, 21, 69, 317–19
PostBuildEvent property, 69
PostBuildEvent target, 319
PostBuildEventDependsOn property, 76
pre-build events, 21, 69, 317

PreBuildEvent property, 69
PrebuildEvent target, 319
PreBuildEventDependsOn property, 76
pre-compilation, 247
pre-link events, 317
PreLinkEvent target, 319
PrepareForBuildDependsOn property, 76
PrepareForRunDependsOn property, 76
PrepareResourceNamesDependsOn property, 76
PrepareResourcesDependsOn property, 76
Primitives tab, 447
PrintCompileInfo target, 13–14
PrintConfig target, 24–26
PrintInfo, 31, 45–46, 55–59
PrintOutputPath target, 66–67
PrintSourceFIles, 49
PrintTypeEnv target, 181–83
PrintWellKnownMetadata target, 13, 42
private builds, 348, 374–77

drop location root for, 408
gated check-in, 409
sync process for, 400

Private Drop Location, 374–75
Process parameters

adding, 461–62
compatibility, backward and forward, 469
defining, 461–62
Metadata Editor, 464–66
Supported Reasons, 468–69
User interface, 466–68
verbosity, 475–76

Process Template Library, 455–60
process templates, 368–69, 395

custom, 482–85
deployment, 482–83
process parameters, 461–69

ProcessParam method, 144
ProcessVerbosity method, 144
Profile, 437
program folders, 28
Project attribute, 64
Project Collection Build Service Accounts, 353, 390
Project element, 4, 24, 64
project files

converting, 311–15
creating Team Build API, 414
detail, 3
file extension, 23
logical, 17

Project Properties user interface, 275
ProjectConfiguration, 329
ProjectFinished build event, 135
project-level build parallelism, 273–74
ProjectReference type, 274
projects

building dependent, 258–60
building multiple, 225–31

Projects property, 197–200

600	 Projects target

Projects target, 178, 180
ProjectStarted build event, 135
properties, 24

command-line, 30–32
command-line switch, 19
declaring static, 4–7
dynamic, 32–34, 53–55
evaluating, 6
file extension, 23
global, 199, 228
ITaskFactory, 112
item metadata, 226–28
nested, 7
order of evaluation, 60–63
reserved, 7–9, 27–30
set build, 472
settings, 290
static, 24–32
toolset, 32
viewing, 290

Properties metadata, 202, 228
Properties parameter, 199–200, 226
Properties property, 197
Property Editor, 292
property functions

MSBuild, 77, 80–81
MSBuild 4.0, 77–81
static, 77, 79–80
string, 77–79

Property Manager tool window, 282, 290
property pages, 289, 293

creating, 326–32
post-build events using, 317–18
troubleshooting, 331

Property Pages user interface, 270
build log location, 271
Custom Build Tool, 322–23
property sheets, 283, 286–87
property values, 292
Rule file use in, 295
rules, 327–30

property sheets, 270, 287, 301
Build Customization, 333
converting, 313
system. See System property sheets
Unicode Support, 282
user, 282, 284
viewing, 290
Visual C++, 281–84, 307–11

property transform expression, 48
property values, 289–93
PropertyGroup element, 4–5, 24,

33, 53–55
PropertyName attribute, 93
providers, 490, 500–4
Publish profile, 545–50
PublishBuildDependsOn property, 76
PublishDependsOn property, 76

publishing
MSBuild, 545–50
symbol, 404–6
Web Deploy, 541–44

PublishOnlyDependsOn property, 76

Q
qualified batching statements, 175
querying, 416–17, 420–22
Queue Builds Permission, 393
Queue New Build, 372
Queuing builds using API, 419–20
quiet verbosity setting, 131
quote marks, 31

R
read-only files, overwriting, 195–96
RebaseOutputs property, 197
Rebuild target, 341
RebuildDependsOn property, 76
RecursiveDir metadata, 12, 41, 43–44, 49, 57
redirection, 342
redundancy, 350
Reference element, 110–11, 274, 461
Refresh method, 421
RelativeDir metadata, 12, 41
Release mode, 229
Remote Agent Service, 490, 503
Remove attribute, 59
remove function, 59–60, 197, 528–29
RemoveAfterBuild, 251
RemoveAll transforms, 528–29
RemoveAttributes transforms, 529–30
RemoveDirectoryName parameter, 253
RemoveProperties property, 197
RemoveRoot parameter, 252
Replace command, 505–8
ReplaceExisting parameter, 262
Required attributes, 91, 104, 109
Required process parameters, 466
ResGenDependsOn property, 76
resizing, 438–53
ResolveAssemblyReferencesDependsOn

property, 76
ResolveReferencesDependsOn property, 76
response files, 18–19
ResponseFileEncoding property, 119
Retain Indefinitely Permission, 393
retention policy, 348, 369–71
Retries property, 39
RetryDelayMilliseconds property, 39
reusable build elements, 204–6
Revert files, 409
Rolling builds trigger, 363
RootDir metadata, 12, 41

	 System property sheets	 601

Rule file, 293, 295, 327–32
Build Customization, 333–34
GNU Compiler Collection (GCC) toolset, 341
MSDeploy, 504–5

runCommand provider, 501
RunDependsOn property, 76
RunEachTargetSeparately property, 197
RunFxCop target, 217–18

S
SatelliteDllsProjectOutputGroupDependsOn

property, 76
scalar values, 36, 95
scalar variables, 24, 34
Schedule triggers, 365
scheduled builds, 348
scope argument, -declareParam, 514
Secure Sockets Layer (SSL), 410–11
self-containment, 204
semicolon (;), use of, 14, 18, 30, 35–36, 47, 235
separator, 47
Sequence activity, 423, 445, 447–48
ServerName parameter, 262
Service Accounts, 388–91
service-level settings, 409
services, starting and stopping, 245–46
Set Parameters.xml, 554
setACL provider, 501, 509, 565–66
SetAttributes transforms, 529–30
SetBuildBreakProperties target, 235
SetBuildProperties, 472
SetMetadata method, 98–101
-setParam, 512, 515–17
-setParamFile, 554–56
SetPropertyValue method, 115
SetTestBreakProperties target, 235
settings

service-level, 409
storing, 290
verbosity, 129–30, 134, 396

SGenFilesOutputGroupDependsOn property, 76
SharedResourceScope, 473
shelveset, 400
shelvesets, 372, 374–75
ShowCommandLine parameter, 131
ShowEventId parameter, 131
ShowSummary property

console logger, 147
FileLoggerBase, 152

ShowTimestamp parameter, 131
Shutdown method, 138–39, 144
Signing page, 248
SiteId parameter, 262
Skip command, 505, 508–10
SkipNonexistentProjects property, 198
SkipProjectStartedText property, 147
SkipTaskExecution method, 119

SkipUnchangedFiles property, 39
slash (/), 39
software configuration, 297
solution files

building, 170–71, 228–31
building multiple, 225
converting, 311–15
target batching, 171

SolutionFile element, 9
source control providers, 196
Source indexing, 404–5
Source target, 490, 500
SourceFiles property, 38–39, 49
SourceFilesProjectOutputGroupDependsOn property, 76
SourceWebPhysicalPath property, 250
spaces, in values, 31
standard location, 291
StandardErrorEncoding property, 119
StandardErrorImportance property, 119
StandardErrorImportanceToUse property, 119
StandardErrorLoggingImportance property, 119
StandardOutputEncoding property, 120
StandardOutputImportance property, 120
StandardOutputImportanceToUse property, 120
StandardOutputLoggingImportance property, 120
Start command, 384–85
Start External Program, 126–28, 158
State Machine activity, 423
statements

batching using multiple, 181–83
import, 9, 61, 233–35
include, 36–37, 45
qualified batching, 175

static property functions, 77, 79–80
StatusEventRaised build event, 136
StdErrEncoding property, 194
StdOutEncoding property, 194
Stop Builds Permission, 393
Stop command, 378, 386
StopOnFirstFailure property, 198
storage, metadata, 463
string property functions, 77–79
string values, 95
StyleCop, 215
subcategory error message component, 204
Summary parameter, 131
Summary view, 378, 380
Supported Reasons, 468–69
Switch<T> activity, 426
switches, command line, 18–20
symbol publishing, 404–6
sync verb option, 499–500
synchronization, 400, 490

database, 502
of application to a different server, 566–67
rules for, 504–10
to a remote server, 503–4

System property sheets, 282, 284, 308, 310

602	 System.Design

System.Design, 467
System.Diagnostics.Debugger.Launch() method, 125
System.Drawing, 467
System.Windows.Forms, 467

T
Tag comparison operator, 399
Tags, 358
tags argument, -declareParam, 515
Tags filter property, 399
target batching, 163, 170–71, 176

combining with task batching, 172–74
to build multiple configurations, 179–80

Target element, 188
Target Framework setting, 452, 455–57
target hooks, 72–73, 76–77
target injections, 74–77, 325
TargetAndPropertyListSeparators property, 198
TargetDependsOn list, 75
TargetFinished build event, 135
TargetFrameworkVersion, 198
TargetOutputs property, 198, 200–2
targets, 5

command-line switch, 19
creating dynamic items inside, 55–56
custom, 239, 324–26
defaul Visual C++, 303–6
default, 17–18, 28
file extension, 23
incremental building, 188–90
initial, 17–18
Microsoft.Common.targets file, 71
overriding existing, 70–72
partially building, 190–92
predefined dependency properties, 76
unbatched, 164–65

Targets property, 198
TargetStarted build event, 135
Task abstract classes, 90
task batching, 163–70, 176

combining with target batching, 172–74
to build multiple configurations, 177–79

Task class, 90
task input

creating, 91–92
supported types, 95
using arrays with, 97–101
using metadata, 98–101

task output
creating, 92–93
supported types, 95
using arrays with, 97–101
using metadata, 98–101

Task property, 112
TaskAction parameter, 238–39, 246

DNZip, 252
Ftp, 252

TaskFactory attribute, 89, 111–16
TaskFinished build event, 135
TaskItem class, 96
TaskLoggingHelper class, 88
TaskName attribute, 89, 112
TaskParameter attribute, 33, 93
TaskProcessTerminationTimeout property, 120
tasks, 5

creating, 88–90
custom. See custom tasks
debugging, 124–28
defaul Visual C++, 303
file extension, 23
getting values for, 32
inline, 101–11
input/output, 91
MSBuild, 197–202
open-source repositories for, 87

TaskStarted build event, 135
Team Build

activities, 445–49, 469–75
application programming interface (API), 414
architecture, 348–50
clean process, 399
compilation and testing, 401–4
connecting to, 416
custom activities, 473–75
customization, 458
deployment, 557–59, 564
deployment topologies, 350–51
downloading and loading dependent

assemblies, 485
editors, 466–68
extension types in, 474–75
features, 347–48
hardware selection for, 351–52
installation, 352
libraries, 455–61
logging, 396, 475–82
metadata, 463–66
overview, 347
preparations needed for, 350
prerequisites, 356
running as an interactive process, 411–12
security, 388–91
source indexing, 405
SSL requirement, 410–11
symbol publishing, 404–6
sync process, 400
traceability in, 407
user interface, 466–68
version control, 482–84

Team Build 2008
OnError element, 235

Team Explorer, 348, 372
Team Foundation Build. See Team Build
Team Foundation Server, 349, 352

Administration Console, 388, 409

	 VCTargetsPath	 603

Team Project Collection, 349, 415, 471
permissions, 391

Team system cube, 350
Team System Web Access, 348
TEMP directory, 352
TempFile task, 96–97
Test Connection, 359
testing, 206–14, 401, 403–4
text error message component, 204
Text property, 129–30
text transform expression, 48
TFS Warehouse database, 349
TFSBuild.exe, 348, 383–84

commands, 383
delete command, 386–88
start command, 384–85
start parameters, 384–85
stop command, 386

TfsTeamProjectCollection object, 415
TfsTeamProjectCollectionFactory

class, 415
time integration, 327, 332–38
Timeout property, 120, 193
timestamps, 188, 279–80
Tlog files, 279
tokens, build number, 397–98
ToolCanceled property, 120
ToolExe property, 120
ToolName property, 116, 120
ToolPath property, 120
toolsets. See platform toolsets
ToolsVersion property, 198, 202
ToolTask class, 90

methods, 118–19
overview, 116
properties, 119–20

trace messages, 332
Traceability, 407
Tracker. exe, 270–71
Tracking attributes, 479–80
Tracking extensions, 437
TrackingParticipant base

class, 437
transform expression, 47
Transform phase, 530
transformations

item, 36, 40, 47–51
manual, 524–25
syntax, 14, 47
XDT, 524
XML configuration files, 521
XSL, 219, 239

transparency, 205, 213
triggered builds, sync process for, 400
triggers, 361–67
troubleshooting, property

page, 331
TryCatch, 431–32, 444–46

U
underscore (_), 205, 238
Unicode Support property sheets, 282
UnitTestCleanDependsOn property, 213
UnitTestDependsOn property, 213
UnloadProjectsOnCompletion property, 198
UnmanagedRegistrationDependsOn property, 76
UnmanagedUnregistrationDependsOn property, 76
Update Build Information Permission, 393
UpdateBuildNumber, 473
Upgrade log file, 314
Upgrade template, 395
uploading, 252–54
UseCommandProcessor property, 120
UseHardlinksIfPossible property, 39
User interface, 466–68
User property sheets, 282, 284
user.config file, 240–41
UseResultsCache property, 198
UserName parameter, 253
UsingTask element, 89, 96, 112

in Build Customization, 334
inline task, 101

V
ValidateFtpFilesSettings target, 254
ValidateFxCopSettings, 215–19
ValidateParameters method, 119, 123
validation, 205, 212

command-line switch, 19
FxCop, 215–17

values, 5
batching multiple, 181–83
configuration, 177–80
defining default, 336
extracting from environment variables, 26–27
input/output types, 95
locating final, 292
passing through the command line, 30–32
property, 289–93
property page, 291–92
reserved properties, 30
scalar, 36, 95
unevaluated, 292
use of spaces with, 31
vector, 36, 95, 106–7

variables, 24, 34
Variables Designer, 429
VB.NET (Visual Basic .Net)

deleting files, 59
extending the build process, 73
inline task in, 102–3
OnError element, 235

VCBuild, 267, 281, 291
VCComponents.dat, 285, 287
VCTargetsPath, 305–6, 342

604	 vcupgrade.exe

vcupgrade.exe, 315
vector values, 36, 95, 106–7
verbosity, 271

command-line switch, 19
influence on log messages, 144
initialization, 144
Integrated Development Environment (IDE), 271
logger settings, 129–30, 134, 396
Team Build logging, 396, 475–76

Verbosity parameter, 131, 133
verbosity property

console logger, 147
FileLoggerBase, 152
ILogger interface, 134
with multiple loggers, 232

version
assembly, 223–25, 231
framework, 257, 302
tool, 8, 28, 198, 202

version control, 350, 355, 400–1
Version Control Path To Custom Assemblies, 354
Versionspec Options, 385
View Build Definition Permission, 393
View Builds Permission, 393
View Project-Level Information Permission, 394
View Test Runs Permission, 394
View This Parameter When, 466
Visual Basic .Net (VB.NET)

deleting files, 59
extending the build process, 73
inline task in, 102–3
OnError element, 235

Visual C++
build process, 269
directories, 285–87
incremental builds, 281
MSBuild Build Manager, 270
property sheet hierarchy, 308
property sheets, 281–84
system property sheets, 284
target hooks, 76

Visual C++ 2008
converting, 311–14
directories, 284
native multi-targeting, 300
using, to create a Build Customization, 333

Visual C++ 2010
Build Customization in, 333
build parallelism, 272–78
build process, 269–71
default property sheets, 307–11
default targets, 303–6
default tasks, 302–3
diagnostic output, 271
directories, 287
hooks, 325
import hierarchy, 303–4
migrating from Visual C++ 2008, 311–14

multiple platforms and platform toolsets, 299–300
native multi-targeting, 300–1
project file structure, 267–69
property pages, 289, 293
toolsets, 300

Visual C++ CLR, 301–2
Visual Studio, 23

accessing custom types, 462
build events in, 69
build process using, 21–22
clean process in, 241
configuring a build controller, 354–55
debugging using, 124–28
default targets, 17
deployment of web applications, 490
importing files, 65–68
Integrated Development Environment (IDE),

267, 269–71
known error message formats, 203–4
MakeZipExe, 120–24
solution file, 225
symbol file locations, 406
Web Deployment Project (WDP), 246–51

Visual Studio 2008, 338
managed multi-targeting in, 301–2
toolsets, 300, 338–41

Visual Studio 2010, 338
configuring build agents, 357–58
creating build definitions, 360
creating web packages in, 490–91
database deployment in, 539–44
directories, 285
excuting builds, 390–91
TFSBuild.exe, 383
toolsets, 300, 338–41
vcupgrade.exe, 315

Visual Studio Team System, 347–48, 372

W
WarningRaised build event, 135
warnings, 144–46, 203–4
WarningsOnly parameter, 131
Web Application Project (WAP), 258–60, 545, 550
Web Deployment Package options page, 492–93
Web Deployment Project (WDP), 246–52

creating a new, 247–52
deployment, 260–63
deployment page, 248
disabling, 248
failure, 258–60
features, 247
overview, 246
viewing files, 248–50

Web Deployment Tool. See also MSDeploy
and MSBuild, 545–50
and Team Build, 557–67
overview, 490

	 ZipOutputFiles	 605

Web Publishing Pipeline (WPP). See Web Publishing
Pipeline (WPP)

XML document transformations, 521–30
web packages

adding parameters, 511–12, 550–53
contents, 491
creating, 492–94, 510–11, 550
database, 492
encryption, 494
importing/installing, 495–97
installing, 494
items to deploy options, 493
location, 490, 494
naming, 494
overview, 490–92
path, 494

Web Publishing Pipeline (WPP)
excluding files from, 533–36
including additional files, 536–39
overview, 521
packages, 550
phases, 530

web.config
encryption, 256–58
files, 540
transformations, 521–30

web.Debug config, 521–24
web.Release config, 521
What Do You Want To Build– dropdown, 372
What To Delete column, 371
-whatif switch, 502
While activity, 428
wildcards, 37, 43–45
Windows SDK v.7.1, 269
WindowsService task, 245–46
WithMetadata item function, 82
work items, 409
Workflow Foundation (WF), 423

arguments in, 428
building an application using, 424–26
built-in activities (check with Mike), 426
custom activities, 433–37
exception handling, 430–33
extensions, 437
sample application, 438–53
variables, 429
working with data, 428–30

workflows
custom, 350, 433–37
types of, 423

Working Directory, 128, 358
debugging loggers, 158
table of variables (add each––), 358–59

Working Directory property, 193
Workspace tab, 365–67
WriteBuildError, 476–77
WriteBuildMessage, 476–77
WriteBuildWarning, 476–77
WriteHandler property, 147–48
WriteLine activity, 445–46

X
x64 operating system, 402
x86 operating system, 402
XAML activities, 433
XAML files, 295
XamlTaskFactory, 295, 333–35
XML Document Transform (XDT)

attributes, 524
transforms, 524

XML document transformations, 521
xml files, 295
-xml option, 499, 506
XML Schema definition (XSD) files, 23
XmlFile task, 237–39
XmlLogger

class diagram, 151–52
Initialize method, 153–57

XPath, 500, 527
XSL transformations, 219, 239
XslTransformation task, 219

Y
YieldDuringToolExecution, 120, 273

Z
zip task, 253–54
Zipfile property, 120–23
ZipFileName parameter, 252
ZipOutputFiles, 253–54

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

About the Author
Sayed Ibrahim Hashimi has a computer engineering degree from
the University of Florida. He is currently working at Microsoft as a
program manager, creating better web development tools.
Previously, he was a Microsoft Visual C# MVP. Along with this book
he is also a coauthor of Deploying .NET Application: Learning
MSBuild and Click Once (Apress, 2006), and has written several
publications for magazines such as the MSDN Magazine. He has
previously worked as a developer and independent consultant for
companies ranging from Fortune 500 to startups. He is an expert
in the financial, education, and collection industries.

William Bartholomew is a software development engineer at
Microsoft Corporation in Redmond, Washington. He is a member of
the Developer Division Engineering Systems group, which includes
the build lab responsible for building and shipping Microsoft Visual
Studio.

Pavan Adharapurapu is a software developer at Microsoft. He was
part of the team that was responsible for migrating Microsoft Visual
C++ over to MSBuild in Visual Studio 2010. He is currently working
in the Cloud Computing space and is part of the Azure AppFabric
Services team.

Jason Ward is a development manager at Microsoft. He has more
than two decades of experience as a software developer, having
worked in Australia and the United Kingdom before moving to
Redmond, Washington, where he currently lives with his wife and
two daughters.

microsoft.com/mspress

Best Practices for Software Engineering

ALSO SEE

Code Complete,
Second Edition
Steve McConnell
ISBN 9780735619678

Widely considered one of the best practical guides to
programming—fully updated. Drawing from research,
academia, and everyday commercial practice, McConnell
synthesizes must-know principles and techniques into
clear, pragmatic guidance. Rethink your approach—and
deliver the highest quality code.

Software Estimation:
Demystifying the Black Art
Steve McConnell
ISBN 9780735605350

Amazon.com’s pick for “Best Computer Book of 2006”!
Generating accurate software estimates is fairly straight-
forward—once you understand the art of creating them.
Acclaimed author Steve McConnell demystifi es the
process—illuminating the practical procedures, formulas,
and heuristics you can apply right away.

Agile Portfolio Management
Jochen Krebs
ISBN 9780735625679

Agile processes foster better collaboration, innovation,
and results. So why limit their use to software projects—
when you can transform your entire business? This book
illuminates the opportunities—and rewards—of applying
agile processes to your overall IT portfolio, with best
practices for optimizing results.

The Enterprise and Scrum
Ken Schwaber
ISBN 9780735623378

Extend Scrum’s benefi ts—greater agility, higher-quality
products, and lower costs—beyond individual teams to
the entire enterprise. Scrum cofounder Ken Schwaber
describes proven practices for adopting Scrum principles
across your organization, including that all-critical
component—managing change.

Simple Architectures for
Complex Enterprises
Roger Sessions
ISBN 9780735625785

Why do so many IT projects fail? Enterprise consultant
Roger Sessions believes complex problems require
simple solutions. And in this book, he shows how to
make simplicity a core architectural requirement—as
critical as performance, reliability, or security—to achieve
better, more reliable results for your organization.

Software Requirements,
Second Edition
Karl E. Wiegers
ISBN 9780735618794

More About Software
Requirements:
Thorny Issues and
Practical Advice
Karl E. Wiegers
ISBN 9780735622678

Software Requirement
Patterns
Stephen Withall
ISBN 9780735623989

Agile Project
Management
with Scrum
Ken Schwaber
ISBN 9780735619937

Solid Code
Donis Marshall, John Bruno
ISBN 9780735625921

Dev BestPrac_ResPg_03.indd 1 9/16/10 11:04 PM

Collaborative Technologies—
Resources for Developers

Programming for
Unifi ed Communications
with Microsoft Offi ce
Communications
Server 2007 R2
Rui Maximo, Kurt De Ding,
Vishwa Ranjan, Chris Mayo,
Oscar Newkerk, and the
Microsoft OCS Team
ISBN 9780735626232

Direct from the Microsoft Offi ce Communications
Server product team, get the hands-on guidance
you need to streamline your organization’s real-time,
remote communication and collaboration solutions
across the enterprise and across time zones.

Inside Microsoft®
SharePoint® 2010
Ted Pattison, Andrew Connell,
and Scot Hillier
ISBN 9780735627468

Get the in-depth architectural insights, task-
oriented guidance, and extensive code samples
you need to build robust, enterprise content-
management solutions.

Programming
Microsoft
Dynamics® CRM 4.0
Jim Steger, Mike Snyder,
Brad Bosak, Corey O’Brien,
and Philip Richardson
ISBN 9780735625945

Apply the design and coding practices that
leading CRM consultants use to customize,
integrate, and extend Microsoft Dynamics
CRM 4.0 for specifi c business needs.

Microsoft
.NET and SAP
Juergen Daiberl,
Steve Fox, Scott Adams,
and Thomas Reimer
ISBN 9780735625686

Develop integrated, .NET-SAP solutions—
and deliver better connectivity, collaboration,
and business intelligence.

microsoft.com/mspress

Dev CollabTech_ResPg_02.indd 1 8/24/10 3:36 AM

Microsoft® ASP.NET 4
Step by Step
George Shepherd
ISBN 9780735627017
George Shepherd

Ideal for developers with fundamental programming
skills—but new to ASP.NET—who want hands-on
guidance for developing Web applications in the
Microsoft Visual Studio® 2010 environment.

For C# Developers
Microsoft®
Visual C#® 2010
Step by Step
John Sharp
ISBN 9780735626706

Teach yourself Visual C# 2010—one step at a time.
Ideal for developers with fundamental programming
skills, this practical tutorial delivers hands-on guidance
for creating C# components and Windows–based
applications. CD features practice exercises, code
samples, and a fully searchable eBook.

Microsoft
XNA® Game Studio 3.0:
Learn Programming Now!
Rob Miles
ISBN 9780735626584

Now you can create your own games for Xbox 360®
and Windows—as you learn the underlying skills and
concepts for computer programming. Dive right into
your fi rst project, adding new tools and tricks to your
arsenal as you go. Master the fundamentals of XNA
Game Studio and Visual C#—no experience required!

Programming Windows®
Identity Foundation
Vittorio Bertocci
ISBN 9780735627185

Get practical, hands-on guidance for using WIF to
solve authentication, authorization, and customization
issues in Web applications and services.

Windows via C/C++,
Fifth Edition
Jeffrey Richter, Christophe Nasarre
ISBN 9780735624245

Get the classic book for programming Windows at
the API level in Microsoft Visual C++®—now in its
fi fth edition and covering Windows Vista®.

CLR via C#,
Third Edition
Jeffrey Richter
ISBN 9780735627048

Dig deep and master the intricacies of the common
language runtime (CLR) and the .NET Framework.
Written by programming expert Jeffrey Richter, this
guide is ideal for developers building any kind of
application—ASP.NET, Windows Forms, Microsoft
SQL Server®, Web services, console apps—and
features extensive C# code samples.

microsoft.com/mspress

Dev C#_ResPg_02.indd 1 8/24/10 3:28 AM

For Visual Basic Developers
Microsoft®
Visual Basic® 2010
Step by Step
Michael Halvorson
ISBN 9780735626690

Teach yourself the essential tools and techniques for
Visual Basic 2010—one step at a time. No matter what
your skill level, you’ll fi nd the practical guidance and
examples you need to start building applications for
Windows and the Web.

Microsoft Visual Studio® Tips
251 Ways to Improve Your
Productivity
Sara Ford
ISBN 9780735626409

This book packs proven tips that any developer,
regardless of skill or preferred development language,
can use to help shave hours off everyday development
activities with Visual Studio.

Programming Windows®
Services with Microsoft
Visual Basic 2008
Michael Gernaey
ISBN 9780735624337

The essential guide for developing powerful,
customized Windows services with Visual Basic
2008. Whether you’re looking to perform network
monitoring or design a complex enterprise solution,
you’ll fi nd the expert advice and practical examples
to accelerate your productivity.

Inside the Microsoft Build
Engine: Using MSBuild and
Team Foundation Build,
Second Edition
Sayed Ibrahim Hashimi,
William Bartholomew
ISBN 9780735645240

Your practical guide to using, customizing, and
extending the build engine in Visual Studio 2010.

Parallel Programming
with Microsoft
Visual Studio 2010
Donis Marshall
ISBN 9780735640603

The roadmap for developers wanting to maximize
their applications for multicore architecture using
Visual Studio 2010.

microsoft.com/mspress

Dev Visual Basic_ResPg_02.indd 1 8/24/10 3:38 AM

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

SurvPage_corp.indd 1 8/14/09 4:40 AM

	Contents page
	Forward page
	Introduction
	Who This Book Is For
	Assumptions

	Organization of This Book
	System Requirements
	Code Samples
	Acknowledgements
	Sayed Ibrahim Hashimi
	William Bartholomew
	Pavan Adharapurapu
	Jason Ward

	Errata and Book Support
	We Want to Hear from You
	Stay in Touch

	Part I: Overview
	Chapter 1: MSBuild Quick Start
	Project File Details
	Properties and Targets
	Items
	Item Metadata
	Simple Conditions
	Default/Initial Targets
	MSBuild.exe Command-Line Usage
	Extending the Build Process

	Chapter 2: MSBuild Deep Dive, Part 1
	Properties
	Environment Variables
	Reserved Properties
	Command-Line Properties
	Dynamic Properties

	Items
	Copy Task
	Well-Known Item Metadata
	Custom Metadata
	Item Transformations

	Chapter 3: MSBuild Deep Dive, Part 2
	Dynamic Properties and Items
	Dynamic Properties and Items: MSBuild 3.5

	Property and Item Evaluation
	Importing Files
	Extending the Build Process
	Property Functions and Item Functions
	Property Functions
	String Property Functions
	Static Property Functions
	MSBuild Property Functions
	Item Functions

	Part II: Customizing MSBuild
	Chapter 4: Custom Tasks
	Custom Task Requirements
	Creating Your First Task
	Task Input/Output
	Supported Task Input and Output Types
	Using Arrays with Task Inputs and Outputs
	Inline Tasks
	TaskFactory
	Extending ToolTask
	ToolTask Methods
	ToolTask Properties

	Debugging Tasks

	Chapter 5: Custom Loggers
	Overview
	Console Logger
	File Logger
	ILogger Interface
	Creating Custom Loggers
	Extending the Logger Abstract Class
	Extending Existing Loggers
	FileLoggerBase and XmlLogger
	Debugging Loggers

	Part III: Advanced MSBuild Topics
	Chapter 6: Batching and Incremental Builds
	Batching Overview
	Task Batching
	Target Batching
	Combining Task and Target Batching
	Multi-batching
	Using Batching to Build Multiple Configurations
	Batching Using Multiple Expressions
	Batching Using Shared Metadata
	Incremental Building
	Partially Building Targets

	Chapter 7: External Tools
	Exec Task
	MSBuild Task
	MSBuild and Visual Studio Known Error Message Formats
	Creating Reusable Build Elements
	NUnit
	FxCop

	Part IV: MSBuild Cookbook
	Chapter 8: Practical Applications, Part 1
	Setting the Assembly Version
	Building Multiple Projects
	Attaching Multiple File Loggers
	Creating a Logger Macro

	Custom Before/After Build Steps in the Build Lab
	Handling Errors
	Replacing Values in Config Files
	Extending the Clean

	Chapter 9: Practical Applications, Part 2
	Starting and Stopping Services
	Web Deployment Project Overview
	Zipping Output Files, Then Uploading to an FTP Site
	Compressing JavaScript Files
	Encrypting web.config
	Building Dependent Projects
	Deployment Using Web Deployment Projects

	Part V: MSBuild in Visual C++ 2010
	Chapter 10: MSBuild in Visual C++ 2010, Part 1
	The New .vcxproj Project File
	Anatomy of the Visual C++ Build Process
	Diagnostic Output
	Build Parallelism
	Configuring Project- and File-Level Build Parallelism

	File Tracker–Based Incremental Build
	Incremental Build
	File Tracker
	Trust Visual C++ Incremental Build
	Troubleshooting

	Property Sheets
	System Property Sheets and User Property Sheets

	Visual C++ Directories

	Chapter 11: MSBuild in Visual C++ 2010, Part 2
	Property Pages
	Reading and Writing Property Values

	Build Customizations
	Platforms and Platform Toolsets
	Native and Managed Multi-targeting
	Native Multi-targeting
	How Does Native Multi-targeting Work?
	Managed Multi-targeting

	Default Visual C++ Tasks and Targets
	Default Visual C++ Tasks
	Default Visual C++ Targets
	ImportBefore, ImportAfter, ForceImportBeforeCppTargets, and ForceImportAfterCppTargets

	Default Visual C++ Property Sheets
	Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010
	IDE Conversion
	Command-Line Conversion

	Summary

	Chapter 12: Extending Visual C++ 2010
	Build Events, Custom Build Steps, and the Custom
Build Tool
	Build Events
	Custom Build Step
	Custom Build Tool

	Adding a Custom Target to the Build
	Creating a New Property Page
	Troubleshooting

	Creating a Build Customization
	Adding a New Platform and Platform Toolset
	Deploying Your Extensions

	Part VI: Team Foundation Build
	Chapter 13: Team Build Quick Start
	Introduction to Team Build
	Team Build Features
	High-Level Architecture

	Preparing for Team Build
	Team Build Deployment Topologies
	What Makes a Good Build Machine?
	Installing Team Build on the Team Foundation Server
	Setting Up a Build Controller
	Setting Up a Build Agent
	Drop Folders

	Creating a Build Definition
	General
	Trigger
	Workspace
	Build Defaults
	Process
	Retention Policy

	Working with Build Queues and History
	Visual Studio
	Working with Builds from the Command Line

	Team Build Security
	Service Accounts
	Permissions

	Chapter 14: Team Build Deep Dive
	Process Templates
	Default Template
	Logging
	Build Number
	Agent Reservation
	Clean
	Sync
	Label
	Compile and Test
	Source Indexing and Symbol Publishing
	Associate Changesets and Work Items
	Copy Files to the Drop Location
	Revert Files and Check in Gated Changes
	Create Work Items for Build Failure

	Configuring the Team Build Service
	Changing Communications Ports
	Requiring SSL
	Running Interactively
	Running Multiple Build Agents
	Build Controller Concurrency

	Team Build API
	Creating a Project
	Connecting to Team Project Collection
	Connecting to Team Build
	Working with Build Service Hosts
	Working with Build Definitions
	Working with Builds

	Chapter 15: Workflow Foundation Quick Start
	Introduction to Workflow Foundation
	Types of Workflows
	Building a Simple Workflow Application

	Workflow Design
	Built-in Activities
	Working with Data
	Exception Handling
	Custom Activities

	Workflow Extensions
	Persistence
	Tracking

	Putting It All Together—Workflow Foundation Image Resizer Sample Application
	Overview
	Building the Application
	Running the Application
	Debugging the Application
	Summary

	Chapter 16: Process Template Customization
	Getting Started
	Creating a Process Template Library
	Creating a Custom Activity Library

	Process Parameters
	Defining
	Metadata
	User Interface
	Supported Reasons
	Backward and Forward Compatibility

	Team Build Activities
	AgentScope
	CheckInGatedChanges
	ConvertWorkspaceItem/ConvertWorkspaceItems
	ExpandEnvironmentVariables
	FindMatchingFiles
	GetBuildAgent
	GetBuildDetail
	GetBuildDirectory
	GetBuildEnvironment
	GetTeamProjectCollection
	InvokeForReason
	InvokeProcess
	MSBuild
	SetBuildProperties
	SharedResourceScope
	UpdateBuildNumber

	Custom Activities
	BuildActivity Attribute
	Extensions

	Logging
	Logging Verbosity
	Logging Activities
	Logging Programmatically
	Adding Hyperlinks
	Exceptions

	Deploying
	Process Templates
	Custom Assemblies
	Downloading and Loading Dependent Assemblies

	Part VII: Web Development Tool
	Chapter 17: Web Deployment Tool, Part 1
	Web Deployment Tool Overview
	Working with Web Packages
	Package Creation
	Installing Packages

	msdeploy.exe Usage Options
	MSDeploy Providers
	MSDeploy Rules
	MSDeploy Parameters
	–declareParam
	–setParam

	MSDeploy Manifest Provider

	Chapter 18: Web Deployment Tool, Part 2
	Web Publishing Pipeline Overview
	XML Document Transformations
	Web Publishing Pipeline Phases
	Excluding Files
	Including Additional Files
	Database

	Chapter 19: Web Deployment Tool Practical Applications
	Publishing Using MSBuild
	Parameterizing Packages
	Using –setParamFile
	Using the MSDeploy Temp Agent
	Deploying Your Site from Team Build
	Deploying to Multiple Destinations Using Team Build
	Excluding ACLs from the Package
	Synchronizing an Application to Another Server

	Appendix A: New Features in MSBuild 4.0
	Support for Visual C++
	New Command-Line Switches
	New Reserved Properties
	BeforeTargets and AfterTargets
	ImportGroup
	Import Wildcard
	Solution Import Files
	Property Functions
	Item Functions
	Inline Tasks
	Cancellable Builds
	YieldDuringToolExecution
	New Object Model
	Debugger

	Appendix B: Building Large Source Trees
	Appendix C: Upgrading from Team Foundation Build 2008
	Upgrade Process
	Upgrade Template

	Index page

	About the Author page
	Marketing Page I
	Marketing Page II

	Marketing Page III

	Marketing Page IV

	Survey Page

