Praise for

Inside the Microsoft Build Engine: Using MSBuild
and Team Foundation Build, Second Edition

“Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build is a practical book
covering all the essentials of MSBuild and the Team Foundation Server build system. But what
makes the book extra valuable is its focus on real-life scenarios that often are hard to find a good,
working solution for. In fact there is information in the book you're unlikely to find anywhere else.
With the second edition of the book, the authors fill the gaps again, this time by covering the
new TFS build workflow technology as well as MSBuild 4.0. It is an invaluable book that saves lots
of time whenever you work with any aspect of automated builds in Visual Studio and TFS. This is
a book I'll make sure to have with me all the time!”

-Mathias Olausson, ALM Consultant, QWise/Callista, Sweden

“As an ALM Consultant | come across many teams that are struggling with their build tools and
processes. The second edition of Sayed and William's book is the perfect answer for these teams.
Not only will it show you how to get your builds back on track, | challenge anyone not to be able

to use the information in this book to improve their existing builds. It includes updated content
focusing on the new Visual Studio 2010 release and is packed with practical examples you could start
using straight away. You simply must include it in your technical library.”

-Anthony Borton, Microsoft Visual Studio ALM MVP, Senior ALM trainer/consultant,
Enhance ALM Pty Ltd, Australia

“The first edition of Inside the Microsoft Build Engine was a brilliant look at the internals of MSBuild,
so it's fantastic to see Sayed and William updating it with all the new features in MSBuild 4.0 and also
delving into the Team Foundation Server 2010 workflow based build process. It's also a real pleasure
to see deployment with MSDeploy covered so that you can learn not only how to automate your
builds, but also how to automate your deployments. A great book. Go out and get a copy now.”
-Richard Banks, Visual Studio ALM MVP and Principal Consultant with Readify, Australia

“Did you know about the TaskFactory in MSBuild? If not, you're not alone - but you will know
after reading this book. This book provides insights into the current technologies of the Microsoft
Build Engine. Starting with background information about MSBuild, it covers also the necessary
basics of Workflow Foundation which are applied during the description of advanced topics
of Team Foundation Build. The level of detail is targeted to experienced build masters having
a development background - even the overview is stuffed with new information, references, hints
and best practices about MSBuild. Samples are provided as step-by-step guidance easy to follow
inside Visual Studio. What | found astonishing is the practical focus of the samples such as web
project deployment. | could have used at least half of them in my development projects! Simply
put: A must read for all build experts that have to deal with MSBuild and the Team Foundation
Server build engine who are not only interested in solutions but also background information!”
-Sven Hubert, AIT TeamSystemPro Team, Consultant, MVP Visual Studio ALM — www.tfsblog.de
i

Praise for

“The reason that | only own one MSBuild/Team Build book is because there is no need for another.
This book covers both topics from soup to nuts and is written in a way that allows new users to ramp
up quickly. The real-world code examples used to illustrate the topics are useful in their own right.
The Second Edition covers all of the changes in MSBuild 4.0 and all of the newness that is Team Build
2010. This is my ‘go to’ guide, and the only book on these topics that | recommend to my clients.”
-Steve St Jean, Visual Studio ALM MVP, DevProcess (ALM) Consultant with Notion
Solutions, an Imaginet Company

“Whether you consider yourself experienced or you are taking your first steps in the build and
automation arena, this 2" edition will prove a valuable read. Skilled MSBuild users will do well
to remind themselves of the intricacies of MSBuild and learn of the new 4.0 features whilst
novices are taken on a steady paced journey to quickly acquire the knowledge and confidence
in developing successful solutions. This edition brings additional value to our ever changing
profession in discussing MSDeploy and the new Windows Workflow 4.0 based Team Foundation
Build. Regardless of your experience, | wholeheartedly recommend this book.”

-Mike Fourie, Visual Studio ALM MVP and ALM Ranger, United Kingdom

“The first edition of this book had a perfect balance between a tutorial and a reference book.

I say this as | used the book first to kick start my MS Build knowledge and then as reference
whenever | needed information on some advanced topic. My main interest is Team Foundation
Server and | learned MS Build more from necessity than an urge, hence | was very curious to
see the 2nd edition. Sayed and William did not disappoint me - the four chapters on Team Build
cover all points needed to customize builds. As a bonus there are three whole chapters on web
deployment which is a recurrent request | hear during my consulting and presentations on TFS.
If | had to summarize my opinion in a single sentence, | would just say "Buy the book, you won't

regret it
-Tiago Pascoal, Visual Studio ALM MVP and Visual Studio ALM Ranger, Portugal

“Reliable and repeatable build processes are often the Achilles’ heel of development teams. Often
this is down to a lack of understanding of the underlying technologies and how they fit together.
No matter which Continuous Integration (Cl) tool you may be using, this book provides the
fundamental information you need to establish solid build and deployment engineering practices
and demystifies the various Microsoft technologies used along the way. This book is the essential
reference for any team building software on the Microsoft.NET platform.”

-Stuart Preston, Visual Studio ALM Ranger and Chief Technology Officer at RippleRock

“Successfully deploying application is one of the big challenges in today’s modern software
development. As applications become more complex to develop, they also become more complex
to deploy. This well-written book provides us a deep-dive on how developers can improve

their productivity and accomplish the business needs using Microsoft deployment technology:
MSBuild, Web Deploy and Team Build. Microsoft provides us the right tools, and this book
provides us the information we need to extract real value from these tools.”

-Daniel Oliveira, MVP, Visual Studio ALM Ranger and ALM Consultant at TechResult

Foreword by Brian Harry
nical Fellow, Ti ati

Inside the Microsoft’
Build Engine

Using MSBuild
and Team Foundation

Build

Sayed Ibrahim Hashimi
William Bartholomew

Download from Wow! eBook <www.wowebook.com>

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2010 by Sayed Hashimi and William Bartholomew

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2010940848
ISBN: 978-0-7356-4524-0

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property
of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave

Project Editor: Iram Nawaz

Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Marc H. Young

Cover: Tom Draper Design

Body Part No. X17-29997

| would like to dedicate this book to my parents, Sayed A. Hashimi and Sohayla Hashimi, as well as my
college advisor, Dr. Ben Lok. My parents have, over the course of the years, sacrificed a lot to give us the
opportunity for us to be able to achieve our dreams. | can only hope that they are proud of the person
that | have become. When | first met Ben, | wanted to get into a research program that he had going.
Thankfully, he was willing to accept me. Ben helped show me how rewarding hard work can be, and he
has enabled me to succeed in my career. When [look back on influences in my life, who are not relatives,

he ranks at the top of my list. | am sure that | wouldn’t be where | am had it not been for him.
—Sayed Ibrahim Hashimi

To my mother, Rosanna O’Sullivan, and my father, Roy Bartholomew, for their unfaltering support in all

my endeavors.
—William Bartholomew

I would like to dedicate this book to my parents, Syama Mohana Rao Adharapurapu and Nalini
Adharapurapu, my brother, Raghavendra Adharapurapu, my sister, Raga Sudha Vijjapurapu, and my

wife, Deepti Ramakrishna.
—Pavan Adharapurapu

| dedicate this book to my wife, Samantha, and my daughters, Amelie and Madeline, as well as my
parents, Leonea and Craig. Their love has no boundaries and their support has made me believe that

I can accomplish anything.

—Jason Ward

Contents at a Glance

Part |

Part I
4
5

Part Il

PartV
10
11
12

Part VI
13
14
15
16

Overview

MSBuild Quick Start. 3
MSBuild Deep Dive, Part1, 23
MSBuild Deep Dive, Part2 i, 53

Customizing MSBuild
Custom Tasks. 87
Custom Loggersottt 129

Advanced MSBuild Topics
Batching and Incremental Builds 163

External TOOIS oo e 193

MSBuild Cookbook
Practical Applications, Part 1............................. 223
Practical Applications, Part2............................. 245

MSBuild in Visual C++ 2010

MSBuild in Visual C++ 2010, Part 1covu... 267
MSBuild in Visual C++ 2010, Part 2cuuuuu.... 289
Extending Visual C++ 2010.............c.oiiiiieninn... 317

Team Foundation Build

Team Build Quick Start. 347
Team Build Deep Divecoiiiiniiiiiii i, 395
Workflow Foundation Quick Start........................ 423
Process Template Customization 455

vii

viii

Contents at a Glance

part VIl Web Development Tool

17 Web Deployment Tool, Part 1........... 489
18 Web Deployment Tool, Part2............................ 521
19 Web Deployment Tool Practical Applications 545
Appendix A New Features in MSBuild 4.0
(availableonline) i 569
Appendix B Building Large Source Trees
(availableonline) i 579

Appendix C Upgrading from Team Foundation
Build 2008 (availableonline) 585

Table of Contents

FOreWord e XiX

INtrodUCtion ... o e XXi

Part| Overview

1 MSBuildQuickStart......... ..o 3
Project File Details.t i 3
Propertiesand Targetso.iiiiiin ittt 4
=T T 9
Item Metadata oot e 11
Simple Conditions i i e e 15
Default/Initial Targets. it e 17
MSBuild.exe Command-LineUsageccoiiuiiiiniiiniennennnnn 18
Extending the Build Process oot 21

2 MSBuild Deep Dive, Partlc.ciiiiiiniinnnan.. 23
Properties . .ot e e 24
Environment Variables 26

Reserved Propertiest e 27
Command-Line Properties.......... ..., 30
Dynamic Properties.ottt 32
BeMS o e e e 34
Copy Task ...t 36
Well-Known Item Metadata................ ... i, 41
CustomMetadatat i 44
Item Transformationsttt 47

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Table of Contents

3 MSBuild Deep Dive,Part2, 53
Dynamic Propertiesand Items i 53
Dynamic Properties and Items: MSBuild 3.5........................ 53
Property and Item Evaluation i i, 60
Importing Files e 64
Extending the Build Process.ttt 69
Property Functions and Item Functions. 77
Property Functions i 77
String Property Functions. i 78
Static Property Functions. i 79
MSBuild Property Functions i, 80

Item Functions e 82

Part I Customizing MSBuild

4 CustomTasks........c.iiiuiiiiiini ittt 87
Custom Task Requirementsottt 87
Creating Your First Tasko i 88
Task Input/Output. e 91
Supported Task Input and Output Types. ..., 95
Using Arrays with Task Inputs and Outputs 97
Inline Tasks oo e 101
TaskFactory e 111
Extending ToolTask i i 116

ToolTask Methods i, 118
ToolTask Propertiesttt e 119
Debugging Tasksttt i e 124

5 CustomLoggersoiiniiiiiiiii i, 129
OVEIVIEBW . oo ettt ettt e e e 129
Console Logger . ..ot e e 130
File LOgger. . . oot e 132
ILogger Interface e e 134
Creating Custom Loggers.oiitui i et 135
Extending the Logger AbstractClass i, 140
Extending Existing Loggersouiiiiiini ittt 146
FileLoggerBase and XmlLogger.t iiinnaaan. 151

Debugging Loggers.ttt e 157

Table of Contents

Part Il Advanced MSBuild Topics

6 Batching and IncrementalBuilds 163

Batching Overviewo i 163

Task Batching et e 166

Target Batching i 170

Combining Task and Target Batching............ 172

Multi-batching 175

Using Batching to Build Multiple Configurations 177

Batching Using Multiple Expressions........... i, 181

Batching Using Shared Metadata.............. oiiiiii... 183

Incremental Building. 188

Partially Building Targetsccoiiiiiiiiiiiiiiiinaan.. 190

7 ExternalTools i 193

EXec Taskot e 193

MSBuild Taskot e e e 197
MSBuild and Visual Studio Known Error

Message Formats it e 203

Creating Reusable Build Elements 204

NUNIE .« . e e e 206

(0o T o 2P 215

Part IV MSBuild Cookbook

8 Practical Applications, Part1 223
Setting the Assembly Version i 223
Building Multiple Projects it 225
Attaching Multiple File Loggers ...ttt 231

Creatingalogger Macrooiiiiiiiniiiii e, 232
Custom Before/After Build StepsintheBuildLab....................... 233
Handling Errorsttt e e 235
Replacing Values in Config Files i ... 237
Extendingthe Clean i 239

9 Practical Applications, Part2 245
Starting and Stopping Services.ttt e 245
Web Deployment Project Overview.ccoiiiiiiiiiiinnnn. 246

Zipping Output Files, Then Uploadingtoan FTP Site.................... 252

xii Table of Contents

Compressing JavaScript Files.o i i 254
Encrypting web.config 256
Building Dependent Projects.o 258
Deployment Using Web Deployment Projects.......................... 260

PartV MSBuild in Visual C++ 2010

10 MSBuild in Visual C++ 2010, Part 1 267
The New .vexproj Project File 267
Anatomy of the Visual C++ Build Process.......................oou... 269
Diagnostic Qutput. 271
Build Parallelism. e 272

Configuring Project- and File-Level Build
Parallelism o 273
File Tracker-Based Incremental Build 279
Incremental Build. 279
File Tracker e e 279
Trust Visual C++ Incremental Build 281
Troubleshooting. i e 281
Property Sheets i e 281
System Property Sheets and User Property
Sheets . ..o e 284
Visual C++ Directoriesouuiieitiie ittt iiiaeeeans 285

11 MSBuild in Visual C++ 2010, Part 2 289

Property Pages.t e 289
Reading and Writing Property Values 289
Build Customizations 294
Platforms and Platform Toolsets. oo, 297
Native and Managed Multi-targeting L. 300
Native Multi-targeting i 300
How Does Native Multi-targeting Work? 301
Managed Multi-targeting. i 301
Default Visual C++ Tasksand Targetsccoiiiiiiiinneann.. 302
Default Visual C++ Taskscooiiiiiiiiiiiiiiiiiinnnnnn.. 303
Default Visual C++ Targetsoiiiiiiiiiiiiiiiinnaan 303
ImportBefore, ImportAfter, ForcelmportBeforeCppTargets,
and ForcelmportAfterCppTargetsccoiiiinnnnnn... 306

Default Visual C++ Property Sheets.......... oo i, 307

Table of Contents

Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010.......... 311
IDE CONVEISION . . .ottt t e et et et et et iiaeeeee 311
Command-Line CoONVErsionouuuiieeiiinneeennnneann. 314

UMY . ottt it e et ettt et ettt e et e 315

12 Extending Visual C++ 2010............ ..., 317

Build Events, Custom Build Steps, and the Custom

Build Tool o 317
Build Eventst e 317
Custom Build Step i e 319
CustomBuild Tool i 322

Adding a Custom TargettotheBuild 324

Creating a New Property Pageottt iiiiinnn. 326
Troubleshooting. oo i 331

Creating a Build Customization o it 332

Adding a New Platform and Platform Toolset 338

Deploying Your EXtensions ittt 342

Part VI Team Foundation Build

13 Team Build Quick Start i, 347
Introductionto Team Build i i 347
Team Build Features i 347
High-Level Architecture i, 348
Preparing forTeam Build i 350
Team Build Deployment Topologiesccoiiiiiean... 350
What Makes a Good Build Machine? 351
Installing Team Build on the Team Foundation
Y= = 352
Setting Up aBuild Controller....... it 352
SettingUpaBuildAgent 355
Drop Folders.ot e e 359
Creating a Build Definition......... 360
General 360
1T T =T A 361
WOrKSPace. . . oot 365
Build Defaultst 367
ProCesSS. . oot e 368

Retention Policyooiiiii i it 369

xiii

xiv Table of Contents

Working with Build Queues and Historyo o .t 371
Visual Studio.........oo i 372
Working with Builds from the Command Line..................... 383

Team Build Security.o e 388
Service ACCOUNTSt 388
PermisSiONS ittt e 391

14 Team Build Deep Dive ...t iiininen.n. 395

Process Templatest e 395

Default Templatet i 396
LOgging . oo e 396
Build Number. ... e 397
Agent Reservationottt 398
Clean oo e 399
Y NC e et 400
Label.o 400
Compileand Testottt e e 401
Source Indexing and Symbol Publishing 404
Associate Changesets and Work Items. 407
Copy Filestothe Drop Locationcoiiiiiiiininn... 407
Revert Files and Check in Gated Changes 409
Create Work Items for Build Failure, 409

Configuring the Team Build Service........o i, 409
Changing Communications Ports oot 409
RequUIriNg SSL . ..ttt e 410
Running Interactively 411
Running Multiple Build Agents........... ... it 412
Build Controller Concurrencyccouiiiiiiiiininnnnan. 413

Team Build APl e 414
Creatinga Projectttt 414
Connecting to Team Project Collection........................... 415
ConnectingtoTeam Build i i 416
Working with Build Service Hosts.o o it 416
Working with Build Definitions............. 417
Working with Builds 419

15 Workflow Foundation Quick Start........................ 423

Introduction to Workflow Foundation................................. 423

Typesof Workflows i 423

Download from Wow! eBook <www.wowebook.com>

Table of Contents

Building a Simple Workflow Application.......................... 424
WOrKflow Designttt e 426
Built-in Activities 426
WorkingwithData i, 428
Exception Handlingo i 430
Custom Activities.ttt i e 433
Workflow EXteNnsionsottt 437
Persistence 437
Trackingt e e 437
Putting It All Together—Workflow Foundation Image Resizer Sample
Application e 438
OVEIVIEW . o ottt i 438
Building the Application........ 438
Running the Application........ i i 452
Debugging the Application o i 452
SUMMAIY . .t e et e e e e e 453
16 Process Template Customization 455
Getting Started. 455
Creating a Process Template Library 455
Creating a Custom Activity Library............ oo.. 460
Process Parameters i 461
Defining. .. oot e 461
Metadata...... ... 463
UserInterface.ttt it 466
Supported REASONS viti i e e s 468
Backward and Forward Compatibility 469
Team Build Activities.o 469
AgeNtSCOPe. . . i e e e 469
CheckinGatedChangesc ittt 470
ConvertWorkspaceltem/ConvertWorkspaceltems 470
ExpandEnvironmentVariables o il 470
FindMatchingFiles i 470
GetBuildAgent 471
GetBuildDetail 471
GetBuildDirectoryt e 471
GetBuildEnvironment 471
GetTeamProjectCollectiono, 471

InvokeForReason e 471

Xvi Table of Contents

INVOKEPIrOCESS . . . o oottt e 471
MSBuUIld . . . e 472
SetBuildProperties. o i 472
SharedResourceSCope.ttt i e 473
UpdateBuildNumber. 473
Custom Activities.ot e 473
BuildActivity Attribute. 473
EXtensiONsot 474
LOggiNg . e e ettt e e 475
Logging Verbosityt 475
Logging Activitiescouuiiiiii i e 476
Logging Programmatically......... it 477
Adding Hyperlinks. o 478
EXCEPLiONS . ..o ot e 482
Deploying .. oo 482
Process Templatesttt 482
Custom Assemblies o i e 483
Downloading and Loading Dependent
Assemblies 485

Part VIl Web Development Tool

17 Web DeploymentTool, Part1............................ 489
Web Deployment Tool Overviewooiuiiiiiiiiiniiinnnaan. 490
Working with Web Packages............ ... oo it 490

Package Creation......... ... ittt 492
Installing Packagesot i 494
msdeploy.exe Usage Options.ttt 498
MSDeploy Providersot e 500
MSDeploy RUlest e 504
MSDeploy Parameters.ttt e 510
—declareParam e 513
—setParam 515
MSDeploy Manifest Provider.t 517

18 Web DeploymentTool, Part2................. 521

Web Publishing Pipeline Overview.t 521

XML Document Transformationsot nnnnnn.. 521

Table of Contents Xvii

Web Publishing Pipeline Phases it 530
Excluding Files e 533
Including Additional Files. o i i 536
Database oo i 539

19 Web Deployment Tool Practical Applications 545

Publishing Using MSBuild. 545

Parameterizing Packages i 550

Using —setParamFile 554

Using the MSDeploy Temp Agent.ottt 556

Deploying Your Site from Team Build 557

Deploying to Multiple Destinations Using Team Build 560

Excluding ACLs fromthe Package i, 565

Synchronizing an Application to Another Server........................ 566

INdEX oo e 589

Appendix A New Features in MSBuild 4.0
(availableonline) i 569

Appendix B Building Large Source Trees
(availableonline)o i 579

Appendix C Upgrading from Team Foundation
Build 2008 (availableonline) 585

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Foreword

Often when people think about build, they think just about the act of compiling some source
code —when | hit F5 in the IDE, it builds, right? Well yes, kind of. In a real production build
system, there is so much more to it than that. There are many kinds of builds — F5, desktop,
nightly, continuous, rolling, gated, buddy etc. The variety of build types is reflective of the
important role build plays in the software development process and the varied ways it

does so. Build is a key integration point in the process. It is where developers’ work comes
together; it is where developers hand off to test and where release hands off to operations.
No wonder there are so many requirements on it.

As | mentioned, build is about a lot more than compiling the code. It can include making sure
the right code is assembled, compiling, testing, version stamping, packaging, deployment
and more. Of course, because software systems are all different and organizations are
different, many of the activities need to be completely different. As a result, extensibility
plays a major role. In TFS 2010, we increased the extensibility options by including a build
workflow engine (based on the .NET Workflow Foundation) on top of the existing msbuild
capabilities. Unfortunately, as flexibility increases, so does the amount you need to know to
make sound decisions and fully automate your build workflow.

This book is a great resource to help you understand the variety of roles build plays in
software development and how you can leverage msbuild and TFS. It will show you how
to use “out of the box" solutions, provide guidance on when to customize, what the best
customization approaches are and details on and examples of how to actually do it. | think
it will be an invaluable resource to keep on your reference shelf.

Brian Harry
Technical Fellow

Team Foundation Server, Microsoft

Xix

Introduction

Build has historically been kind of like a black art, in the sense that there are just a few
people who know and understand build, and are passionate about it. But in today’s evolving
environment that is changing. Now more and more people are becoming interested in
build, and making it a part of their routine development activities. Today's applications are
different from those that we were building five to ten years ago. Along with that the process
by which we write software is different as well. Nowadays it is not uncommon for a project
to have sophisticated build processes which include such things as code generation, code
analysis, unit testing, automated deployment, etc. To deal with these changes developers are
no longer shielded from the build process. Developers have to understand the build process
so that they can leverage it to meet their needs.

Back in 2005 Microsoft released MSBuild, which is the build engine used to build most Visual
Studio projects. That release was MSBuild 2.0. Since that release Microsoft has released two
major versions of MSBuild—MSBuild 3.5 and MSBuild 4.0. In MSBuild 3.5 Microsoft released
such goodness as multi-processor support, multi-targeting, items and properties being
defined inside of targets and a few other things which brought MSBuild to where it needed
to be. In MSBuild 4.0 there were a lot of really great features delivered. The feature which
stands out the most is the support for building Visual C++ projects. Starting with Visual
Studio 2010 your Visual C++ project files are in MSBuild format. Modifying MSBuild to be
able to support building Visual C++ projects was a big effort on Microsoft’s part, but they
understood that the value they were delivering to customers would be worth it. Along with
support for Visual C++ there were a number of significant feature add ons, such as support
for BeforeTargets/AfterTargets, inline tasks, property functions, item functions and a new
object model to name a few. During that same period Team Build has undergone a number
of big changes.

Team Foundation Build (or Team Build as it is more commonly known) is now in its third
version. Team Build 2005 and 2008 were entirely based on MSBuild using it for both build
orchestration as well as the build process itself. While this had the advantage of just needing
to learn one technology MSBuild wasn’t suited for tasks such as distributing builds across
multiple machines and performing complex branching logic. Team Build 2010 leverages the
formidable combination of Workflow Foundation (for build orchestration) and MSBuild (for
build processes) to provide a powerful, enterprise-capable, build automation tool. Team Build
2010 provides a custom Workflow Foundation service host that runs on the build servers
that allows the build process to be distributed across multiple machines. The Workflow
Foundation based process template can perform any complex branching and custom logic
that is supported by Workflow Foundation, including the ability to call MSBuild based
project files.

xxi

xxii

Introduction

A common companion to build is deployment. In many cases the same script which builds your
application is used to deploy it. This is why in this updated book we have a section, Part VIl Web
Deployment Tool, in which we dedicate three chapters to the topic. MSDeploy is a tool which
was first released in 2009. It can be used to deploy websites, and other applications, to local
and remote servers. In this section we will show you how to leverage MSDeploy and the Web
Publishing Pipeline (WPP) in order to deploy your web applications. Two chapters are devoted
to the theory of both MSDeploy and the WPP. There is also a cookbook chapter which shows
real world examples of how to use these new technologies. Once you've automated your build
and deployment process for the first time you will wonder why you didn't do that for all of your
projects.

Who This Book Is For

This book is written for anyone who uses, or is interested in using, MSBuild or Team Build.
If you are using Visual Studio to your applications then you are already using MSBuild.
Inside the Microsoft Build Engine is for all developers and build masters using Microsoft
technologies. If you are interested in learning more about how your applications are being
built and how you can customize this process then you need this book. If you are using
Team Build, or thinking of using it tomorrow, then this book is a must read. It will save you
countless hours.

This book will help the needs of enterprise teams as well as individuals. You should be
familiar with creating applications using Visual Studio. You are not required to be familiar
with the build process, as this book will start from the basics and build on that. Because one
of the most effective methods for learning is through examples, this book contains many
examples.

Assumptions
To get the most from this book, you should meet the following profile:

B You should be an familiar with Visual Studio
B You should have experience with the technologies you are interested in building

B You should have a solid grasp of XML.

Organization of This Book

Inside the Microsoft Build Engine is divided into seven parts:

Part I, “Overview,” describes all the fundamentals of creating and extending MSBuild project
files. Chapter 1, “MSBuild Quick Start,” is a brief chapter to get you started quickly with
MSBuild. If you are already familiar with MSBuild then you can skip this chapter; its content

Introduction xxiii

will be covered in more detail within chapters 2 and 3. Chapter 2, “MSBuild Deep Dive,

Part 1,” discusses such things as static properties, static items, targets, tasks, and msbuild
.exe usage. Chapter 3, "MSBuild Deep Dive, Part 2,” extends on Chapter 2 with dynamic
properties, dynamic items, how properties and items are evaluated, importing external files,
extending the build process, property functions, and item functions.

Part Il, "Customizing MSBuild,” covers the two ways that MSBuild can be extended: custom
tasks and custom loggers. Chapter 4, “Custom Tasks,” covers all that you need to know to
create your own custom MSBuild tasks. Chapter 5, “Custom Loggers,” details how to create
custom loggers and how to attach them to your build process.

Part Ill, “Advanced MSBuild Topics,” discusses advanced MSBuild concepts. Chapter 6,
“Batching and Incremental Builds,” covers two very important topics, MSBuild batching

and supporting incremental building. Batching is the process of categorizing items and
processing them in batches. Incremental building enables MSBuild to detect when a target

is up-to-date and can be skipped. Incremental building can drastically reduce build times for
most developer builds. Chapter 7, “External Tools,” provides some guidelines for integrating
external tools into the build process. It also shows how NUnit and FXCop can be integrated in
the build process in a reusable fashion.

Part IV, “MSBuild Cookbook,” consists of two chapters that are devoted to real-world
examples. Chapter 8, “Practical Applications, Part 1,” contains several examples, including:
setting the assembly version, customizing the build process in build labs, handling errors, and
replacing values in configuration files. Chapter 9, “Practical Applications, Part 2,” covers more
examples, most of which are targeted toward developers who are building Web applications
using .NET. It includes Web Deployment Projects, starting and stopping services, zipping
output files, compressing Javascript file, and encrypting the web.config file.

Part V, “MSBuild in Visual C++ 2010" discusses how MSBuild powers various features

of Visual C++ in light of Visual C++ 2010's switch to MSBuild for its build engine. Chapter 10,
“MSBuild in Visual C++ 2010, Part 1" introduces the reader to the new .vcxproj file format
for Visual C++ projects and illustrates the Visual C++ build process with a block diagram.
Then it continues describing its features such as Build Parallelism, Property Sheets, etc. and
how MSBuild enables these features. Of particular interest are the new File Tracker based
Incremental Build and movement of Visual C++ Directories settings to a property sheet from
the earlier Tools > Option page. Chapter 11, “MSBuild in Visual C++ 2010, Part 1" continues
the theme of Chapter 10 by describing more Visual C++ features and the underlying
MSBuild implementation. This includes Property Pages, Build Customizations, Platform and
Platform Toolsets, project upgrade, etc. It also includes a discussion of all the default tasks,
targets and property sheets that are shipped with Visual C++ 2010. Of particular interest

is the section on multi-targeting which explains the exciting new feature in Visual C++

2010 which allows building projects using older toolsets such as Visual C++ 2008 toolset.
We describe both how to use this feature as well as how this feature is implemented using

xxiv

Introduction

MSBuild. Chapter 12, “Extending Visual C++ 2010" describes how you can extend the build
system in various ways by leveraging the underlying MSBuild engine. Discussed in this chapter
are authoring Build Events, Custom Build Steps, Custom Build Tool to customize Visual C++
build system in a simple way when the full power of MSBuild extensibility is not needed. This is
followed by a discussion of adding a custom target and creating a Build Customization which
allows you to use the full set of extensibility features offered by MSBuild. One of the important
topics in this chapter deals with adding support for a new Platform or a Platform Toolset. The
example of using the popular GCC toolset to build Visual C++ projects is used to drive home
the point that extending platforms and platform toolsets is easy and natural in Visual C++ 2010.

Part VI, “Team Foundation Build,” introduces Team Foundation Build (Team Build) in

Chapter 13, "Team Build Quick Start”. In this chapter we discuss the architectural components
of Team Foundation Build and walkthrough the installation process and the basics

of configuring it. In Chapter 14, “Team Build Deep Dive”, we examine the process templates
that ship with Team Build as well the Team Build API. Chapter 15, “Workflow Foundation
Quick Start”, introduces the basics of Workflow Foundation to enable customizing the build
process. Chapter 16, “Process Template Customization”, then leverages this knowledge and
explains how to create customized build processes.

Part VII, “Web Deployment Tool” first introduces the Web Deployment Tool (MSDeploy) in
Chapter 17 "Web Deployment Tool, Part 1". In that chapter we discuss what MSDeploy is,

and how it can be used. We describe how MSDeploy can be used for “online deployment”

in which you deploy your application to the target in real time and we discuss “offline
deployments” in which you create a package which gets handed off to someone else for the
actual deployment. In Chapter 18 “Web Deployment Tool, Part 2" we introduce the Web
Publishing Pipeline (WPP). The WPP is the process which your web application follows to go
from build output to being deployed on your remote server. It's all captured in a few MSBuild
scripts, so it is very customizable and extensible. In that chapter we cover how you can
customize and extend the WPP to suit your needs. Then in Chapter 19 “Web Deploy Practical
Applications” we show many different examples of how you can use MSDeploy and WPP to
deploy your packages. We cover such things as Publishing using MSBuild, parameterizing
packages, deploying with Team Build, and a few others.

For Appendices A, B, and C please go to http.//oreilly.com/catalog/0790145301949/.

System Requirements

The following list contains the minimum hardware and software requirements to run the
code samples provided with the book.

B NET 4.0 Framework
B Visual Studio 2010 Express Edition or greater

B 50 MB of available space on the installation drive

Introduction XXV

For Team Build chapters:

® Visual Studio 2010 Professional

B Some functionality (such as Code Analysis) requires Visual Studio 2010 Premium or
Visual Studio 2010 Ultimate

B Access to a server running Team Foundation Server 2010

B Access to a build machine running Team Foundation Build 2010 (Chapter 13 walks you
through installing this)

® A trial Virtual PC with Microsoft Visual Studio 2010 and Team Foundation Server 2010
RTM is available from http://www.microsoft.com/downloads/en/details
.aspx?FamilylD=509c3bal-4efc-42b5-b6d8-0232b2cbb26e

Code Samples

Follow these steps to install the code samples on your computer:

1. Navigate to http.//oreilly.com/catalog/0790145301949/.
2. Click the Companion Content link.

3. You'll see instructions for downloading the files.

4.

Copy the files to the following location on your computer.

Acknowledgements

The authors are happy to share the following acknowledgments.

Sayed Ibrahim Hashimi

Before | wrote my first book | thought that writing a book involved just a few people, but
now having written my third book | realize how many different people it takes to successfully
launch a book. Unfortunately with books most of the credit goes to the authors, but the
others involved deserve much more credit than they are naturally given. As an author, the
most we can do is thank them and mention their names here in the acknowledgements
section. When | reflect on the writing of this book there are a lot of names, but there is one
that stands out in particular, Dan Moseley. Dan is a part of the MSBuild team. He has gone
way above and beyond what | could have ever imagined. I've never seen someone peer
review a chapter as good, or as fast, as Dan has. Without Dan’s invaluable insight the book
would simply not be what it is today. In my whole career I've only encountered a few people
who are as passionate about what they do as Dan. | hope that | can be as passionate about
building products as he is.

XXVi

Introduction

Besides Dan | would like to first thank my co-authors and technical editor. William
Bartholomew, who wrote the Team Build chapters, is a wonderful guy to work with. He is
recognized as a Team Build expert, and | think his depth of knowledge shows in his work.
Pavan Adharapurapu wrote the chapters covering Visual C++. When we first started talking
about updating the book to cover MSBuild 4.0 to be honest | was a bit nervous. | was
nervous because | had not written any un-managed code in more than 5 years, and because
of that | knew that I could not write the content on Visual C++ and do it justice. Then we
found Pavan. Pavan helped build the Visual C++ project system, and he pours his heart into
everything that he does. Looking back | am confident that he was the best person to write
those chapters and | am thankful that he was willing. Also I'd like to thank Jason Ward, who
wrote a chapter on Workflow Foundation. Jason who has a great background in Workflow
Foundation as well as Team Build was an excellent candidate to write that chapter. | started
with the authors, but the technical editor, Marc Young deserves the same level of recognition.
This having been my third book | was familiar with what a technical editor is responsible for
doing. Their primary job is essentially to point out the fact that | don't know what I'm talking
about, which Marc did very well. But Marc went beyond his responsibilities. Marc was the one
who suggested that we organize all the sample code based on the chapters. At first | didn’t
really think it was a good idea, but he volunteered to reorganize the content and even redo
a bunch of screen shots. | really don't think he knew what he was volunteering for! Now that
it is over | wonder if he would volunteer again. | can honestly say that Marc was the best
technical editor that I've ever worked with. His attention to detail is incredible, to the point
that he was reverse engineering the code to validate some statements that | was making (and
some were wrong). Before this book | knew what a technical editor was supposed to be, and
now | know what a technical editor can be. Thanks to all of you guys!

As | mentioned at the beginning of this acknowledgement there are many others who

came together to help complete this book besides those of us writing it. I'd like to thank
Microsoft Press and everyone there who worked on it. | know there were some that were
involved that I didn't even know of. I'd like to thank those that | do know of by name. Devon
Musgrave, who also worked with us on the first edition, is a great guy to work with. This book
really started with him. We were having dinner one night a while back and he said to me
something along the lines of “what do you think of updating the book?” | knew that it would
be a wonderful project and it was. Iram Nawaz who was the Project Editor of the book was
just fantastic. She made sure that we stayed on schedule (sorry for the times | was late ©)
and was a great person to work with. The book wouldn’t have made it on time if it was not
for her. Along with these guys from Microsoft Press | would like to than the editors; Susan
McClung and Nicole Schlutt for their perseverance to correct my bad writing.

There are several people who work on either the MSBuild/MSDeploy/Visual Studio product
groups that | would like to thank as well. When the guys who built the technologies you
are writing about help you, it brings the book to a whole new level. | would like to thank
the following people for giving their valued assistance (in no particular order, and sorry if

Introduction XXVii

I missed anyone); Jay Shrestha, Chris Mann, Andrew Arnott, Vishal Joshi, Bilal Aslam, Faith
Allington, Ming Chen, Joe Davis and Owais Shaikh.

William Bartholomew

Firstly I'd like to thank my co-authors, Sayed, Pavan, and Jason, because without their
contributions this book would not be as broad as it is. From Microsoft Press I'd like to thank
Devon Musgrave, Ben Ryan, Iram Nawaz, Susan McClung, and the art team, for their efforts
in converting our ideas into a publishable book. Thanks must go to Marc Young for his
technical review efforts in ensuring that the procedures are easily followed, the samples
work, and the book makes sense. Finally, I'd like to thank the Team Build Team, in particular
Aaron Hallberg and Buck Hodges, for the tireless support.

Pavan Adharapurapu

A large number of people helped make this book happen. | would like to start off by
thanking Dan Moseley, my manager at Microsoft who encouraged me to write the book
and for providing thorough and detailed feedback for the chapters that | wrote. Brian Tyler,
the architect of my team provided encouragement and great feedback. Many people from
the Visual C and the project system teams here at Microsoft helped make the book a better
one by providing feedback on their areas of expertise. In alphabetical order they are: Olga
Arkhipova, Andrew Arnott, llya Biryukov, Felix Huang, Cliff Hudson, Renin John, Sara Joiner,
Marian Luparu, Chris Mann, Bogdan Mihalcea, Kieran Mockford, Amit Mohindra, Li Shao.
Any mistakes that remain are mine.

I would like to thank Devon Musgrave, Iram Nawaz, Susan McClung and Marc Young from
Microsoft Press for their guidance and patience.

Finally, | would like to thank my wonderful wife Deepti who provided great support and
understanding throughout the many weekends | spent locked up writing and revising the
book. Deepti, | promise to make it up to you.

Jason Ward

First of all, I'd like to thank William Bartholomew for giving me the opportunity to contribute
to this book. William displays an amazing amount of talent, passion and integrity in all his
work. I'm honored to have his friendship as well as the opportunity to work with him on

a daily basis.

I'd also like to thank Avi Pilosof and Rich Lowry for giving me the wonderful opportunity
to work at Microsoft. From the moment | met them it was clear that moving my family
half way around the world was the right thing to do. Their mentorship, passion, friendship

Download from Wow! eBook <www.wowebook.com>

Xxviii Introduction

and overarching goal of ‘doing the right thing’ has only further reinforced that working at
Microsoft was everything | had hoped it would be. They are the embodiment of all things
good at Microsoft.

Finally I'd like to thank the thousands of people working at Microsoft for producing the
wonderful applications and experiences that millions of people around the world use and
enjoy on a daily basis. It is truly an honor to work with you as we change the world.

Errata and Book Support

We've made every effort to ensure the accuracy of this book and its companion content.
If you do find an error, please report it on our Microsoft Press site at oreilly.com:

1. Go to http://microsoftpress.oreilly.com.

2. In the Search box, enter the book’s ISBN or title.
3. Select your book from the search results.
4

. On your book's catalog page, under the cover image, you'll see a list of links.
Click View/Submit Errata.

You'll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http.//www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress

Part |

Overview
In this part:
Chapter 1: MSBuild Quick Start i 3
Chapter 2: MSBuild Deep Dive, Part 1...........ooiiiiiiiniiinnennnnnn. 23
Chapter 3: MSBuild Deep Dive, Part 2......... ...ttt 53

Chapter 1

MSBuild Quick Start

When you are learning a new subject, it's exciting to just dive right in and get your hands
dirty. The purpose of this chapter is to enable you to do just that. I'll describe all the key
elements you need to know to get started using MSBuild. If you're already familiar with
MSBuild, feel free to skip this chapter—all of the material presented here will be covered
in later areas in the book as well, with the exception of the msbuild.exe usage details.

The topics covered in this chapter include the structure of an MSBuild file, properties, targets,
items, and invoking MSBuild. Let's get started.

Project File Details

An MSBuild file—typically called an “MSBuild project file"—is just an XML file. These XML
files are described by two XML Schema Definition (XSD) documents that are created by
Microsoft: Microsoft.Build.Commontypes.xsd and Microsoft.Build.Core.xsd. These files
are located in the %WINDIR%\Microsoft.NET\Framework\vINNNN\MSBuild folder, where
vINNNN is the version folder for the Microsoft .NET Framework 2.0, 3.5, or 4.0. If you have
a 64-bit machine, then you will find those files in the Framework64 folder as well. (In this
book, I'll assume you are using .NET Framework 4.0 unless otherwise specified. As a side
note, a new version of MSBuild was not shipped with .NET Framework 3.0.) Microsoft
.Build.Commontypes.xsd describes the elements commonly found in Microsoft Visual
Studio-generated project files, and Microsoft.Build.Core.xsd describes all the fixed elements
in an MSBuild project file. The simplest MSBuild file would contain the following:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
</Project>

This XML fragment will identify that this is an MSBuild file. All your content will be placed
inside the Project element. Specifically, we will be declaring properties, items, targets, and a
few other things directly under the Project element. When building software applications,
you will always need to know two pieces of information: what is being built and what build
parameters are being used. Typically, files are being built, and these would be contained in
MSBuild items. Build parameters, like Configuration or OutputPath, are contained in MSBuild
properties. We'll now discuss how to declare properties as well as targets, and following that
we'll discuss items.

4

Part| Overview

Properties and Targets

MSBuild properties are simply key-value pairs. The key for the property is the name that you
will use to refer to the property. The value is its value. When you declare static properties,
they are always contained in a PropertyGroup element, which occurs directly within

the Project element. We will discuss dynamic properties (those declared and generated
dynamically inside targets) in the next chapter. The following snippet is a simple example

of declaring static properties:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<AppServer>\\sayedApp</AppServer>
<WebServer>\\sayedwWeb</WebServer>
</PropertyGroup>
</Project>

As previously stated, the PropertyGroup element, inside the Project element, will contain
all of our properties. The name of a property is the XML tag name of the element, and the
value of the property is the value inside the element. In this example, we have declared
two properties, AppServer and WebServer, with the values \\sayedApp and \\sayedWeb,
respectively. You can create as many PropertyGroup elements under the Project tag as you
want. The previous fragment could have been defined like this:

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<AppServer>\\sayedApp</AppServer>
</PropertyGroup>
<PropertyGroup>
<WebServer>\\sayedwWeb</WebServer>
</PropertyGroup>
</Project>

The MSBuild engine will process all elements sequentially within each PropertyGroup in the
same manner. If you take a look at a project created by Visual Studio, you'll notice that many
properties are declared. These properties have values that will be used throughout the build
process for that project. Here is a region from a sample project that | created:

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == "' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>

<ProductVersion>8.0.50727</ProductVersion>
<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>{A71540FD-9949-4AC4-9927-A66B84F97769}</ProjectCuid>
<OutputType>WinExe</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>WindowsAppTicationl</RootNamespace>
<Assemb1yName>WindowsApplicationl</AssemblyName>
</PropertyGroup>

Chapter 1 MSBuild Quick Start 5

<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<DebugSymbol1s>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG; TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarninglLevel>4</WarninglLevel>
</PropertyGroup>

</Project>
You can see that values for the output type, the name of the assembly, and many others

are defined in properties. Defining properties is great, but we also need to be able to utilize
them, which is performed inside targets. We will move on to discuss Target declarations.

MSBuild fundamentally has two execution elements: tasks and targets. A task is the smallest
unit of work in an MSBuild file, and a target is a sequential set of tasks. A task must always
be contained within a target. Here's a sample that shows you the simplest MSBuild file that
contains a target:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="HelloWorld">
</Target>

</Project>

In this sample, we have created a new target named HelloWorld, but it doesn’t perform

any work at this point because it is empty. When MSBuild is installed, you are given many
tasks out of the box, such as Copy, Move, Exec, ResGen, and Csc. You can find a list of these
tasks at the MSBuild Task Reference (http.//msdn2.microsoft.com/en-us/library/7z253716.
aspx). We will now use the Message task. This task is used to send a message to the logger(s)
that are listening to the build process. In many cases this means a message is sent to the
console executing the build. When you invoke a task in an MSBuild file, you can pass its input
parameters by inserting XML attributes with values. These attributes will vary from task to
task depending on what inputs the task is able to accept. From the documentation of the
Message task (http://msdn2.microsoft.com/en-us/library/6yyQyx8d.aspx) you can see that

it accepts a string parameter named Text. The following snippet shows you how to use the
Message task to send the classic message “Hello world!”

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="HelloWorld">
<Message Text="Hello world!" />
</Target>
</Project>

Now we will verify that this works as expected. To do this, place the previous snippet into
a file named HelloWorld.proj. Now open a Visual Studio command prompt, found in the
Visual Studio Tools folder in the Start menu for Visual Studio. When you open this prompt,

Part| Overview

the path to msbuild.exe is already on the path. The command you will be invoking to start
MSBuild is msbuild.exe. The basic usage for the command is as follows:

msbuild [INPUT_FILE] /t:[TARGETS_TO_EXECUTE]

So the command in our case would be

msbuild HelloWorld.proj /t:HelloWorld

This command says to execute the HelloWorld target, which is contained in the HelloWorld
.proj file. The result of this invocation is shown in Figure 1-1.

C:~InsideM8Build~ChBl>mshuild HelloWorld.proj ~nologo
Build started 9/24-201@ 5:55:31 PM.
Project "C:“\InsideMSBuild~ChBi-HelloWorld.proj" on node 1 {default targets>.
HelloWorld:

Hello world?
Done Building Project “G:xInsideMSBuild~ChBisHelloWorld.proj'" {(default targets>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 1-1 Result of HelloWorld target

Note In this example, as well as all others in the book, we specify the /nologo switch. This
simply avoids printing the MSBuild version information to the console and saves space in the
book. Feel free to use it or not as you see fit.

We can see that the HelloWorld target is executed and that the message "Hello world!" is
displayed on the console. The Message task also accepts another parameter, Importance. The
possible values for this parameter are high, normal, or low. The Importance value may affect
how the loggers interpret the purpose of the message. If you want the message logged no
matter the verbosity, use the high importance level. We're discussing properties, so let's take
a look at how we can specify the text using a property. I've extended the HelloWorld.proj file
to include a few new items. The contents are shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="HelloWorld">
<Message Text="Hello world!"™ />
</Target>

<PropertyGroup>
<HelloMessage>Hello from property</HelloMessage>
</PropertyGroup>
<Target Name="HelloProperty'">
<Message Text="$(HelloMessage)" />
</Target>
</Project>

| have added a new property, HelloMessage, with the value “Hello from property”, as well as
a new target, HelloProperty. The HelloProperty target passes the value of the property using

Chapter 1 MSBuild Quick Start

the $(PropertyName) syntax. This is the syntax you use to evaluate a property. We can see
this in action by executing the command msbuild HelloWorld.proj /t:HelloProperty.
The result is shown in Figure 1-2.

GC:xInsideMSBuild~ChB1>mshuild HelloWorld.proj ~t:HelloProperty ~nologo

Build started 9-24-2018 5:59:26 PM.

Project "C:~InsideM8Build-ChBi-HelloWorld.proj" on node 1 {(HelloProperty target{s>>».

HelloProperty:

Hello from property
Done Building Project "G:xInsideMSBuild~Ch@1i-HellolWorld.proj'" (HelloProperty targetCsi).

Build succeeded.
8 Warning{s>
8 Errordis)

FIGURE 1-2 Result of HelloProperty target

As you can seeg, the value of the property was successfully passed to the Message
task. Now that we have discussed targets and basic property usage, let's move on to
discuss how we can declare properties whose values are derived from other
properties.

To see how to declare a property by using the value of an existing property, take a look at
the project file, NestedProperties.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<Configuration Condition=" '$(Configuration)' == "' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == "' ">AnyCPU</Platform>
<DroplLocation>
\\sayedData\MSBuildExamples\Drops\$(Configuration)\$(PTlatform)\
</DropLocation>
</PropertyGroup>

<Target Name="PrepareFilesForDrop">
<Message Text="DropLocation : $(DropLocation)" />
</Target>
</Project>

We can see here that three properties have been declared. On both the Configuration

and Platform properties, a Condition attribute appears. We'll discuss this attribute later in
this chapter. The remaining property, DropLocation, is defined using the values of the two
previously declared items. The DropLocation property has three components: a constant
value and two values that are derived from the Configuration and Platform properties.
When the MSBuild engine sees the $(PropertyName) notation, it will replace that with the
value of the specified property. So the evaluated value for DropLocation would be
\\sayedData\MSBuildExamples\Drops\Debug\AnyCPU\. You can verify that by executing the
PrepareFilesForDrop target with msbuild.exe. The reference for properties can be found at
http://msdn.microsoft.com/en-us/library/ms171458.aspx.

When you use MSBuild, a handful of properties are available to you out of the box that
cannot be modified. These are known as reserved properties. Table 1-1 contains all the
reserved properties.

Part| Overview

TABLE 1-1 Reserved Properties
Name
MSBuildExtensionsPath

MSBuildExtensionsPath32

MSBuildExtensionsPath64*

MSBuildLastTaskResult*
MSBuildNodeCount

MSBuildProgramFiles32*
MSBuildProjectDefaultTargets
MSBuildProjectDirectory
MSBuildProjectDirectoryNoRoot

MSBuildProjectExtension
MSBuildProjectFile
MSBuildProjectFullPath
MSBuildProjectName
MSBuildStartupDirectory
MSBuildThisFile*

MSBuildThisFileDirectory*
MSBuildThisFileDirectoryNoRoot*

MSBuildThisFileExtension*
MSBuildThisFileFullPath*
MSBuildThisFileName*

MSBuildToolsPath
(MSBuildBinPath)

MSBuildToolsVersion

Description

The full path where MSBuild extensions are located. By
default, this is stored under %programfiles%\msbuild.

The full path where MSBuild 32-bit extensions are located. This
typically is located under the Program Files folder. For 32-bit
machines, this value will be the same as MSBuildExtensionsPath.

The full path where MSBuild 64-bit extensions are located. This
typically is under the Program Files folder. For 32-bit machines,
this value will be empty.

This value holds the return value from the previous task. It will
be true if the task completed successfully, and false otherwise.

The number of nodes (processes) that are being used to build the
projects. If the /m switch is not used, then this value will be 1.

This points to the 32-bit Program Files folder.
Contains the list of the default targets.
The full path to the directory where the project file is located.

The full path to the directory where the project file is located,
excluding the root directory.

The extension of the project file, including the period.

The name of the project file, including the extension.

The full path to the project file.

The name of the project file, without the extension.

The full path to the folder where the MSBuild process is invoked.

The name of the file, including the extension but excluding the
path, which contains the target that is currently executing.

This is the full path to the directory that contains the file that is
currently being executed.

The same as MSBuildThisFileDirectory, except with the root
removed.

The extension of the file that is currently executing.
The full path to the file that is currently executing.

The name of the file, excluding the extension and path, of the
currently executing file.

The full path to the location where the MSBuild binaries are
located.

For MSBuild 2.0, this property is named MSBuildBinPath; in
MSBuild 3.5, it is deprecated.

The version of the tools being used to build the project.
Possible values include 2.0, 3.5, and 4.0. The default value for
this is 2.0.

* Denotes parameters new with MSBuild 4.0.

Chapter 1 MSBuild Quick Start 9

You would use these properties just as you would properties that you have declared in

your own project file. To see an example of this, look at any Visual Studio—generated

project file. When you create a new C# project, you will find the import statement <Import
Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> located near the
bottom. This import statement uses the MSBuildToolsPath reserved property to resolve the
full path to the Microsoft.CSharp.targets file and insert its content at this location. This is
the file that drives the build process for C# projects. We will discuss its content throughout
the remainder of this book. In Chapter 3, “MSBuild Deep Dive, Part 2,” we discuss specifically
how the Import statement is processed.

Items

Building applications usually means dealing with many files. Because of this, you use

a specific construct when referencing files in MSBuild: items. Items are usually file-based
references, but they can be used for other purposes as well. If you create a project

using Visual Studio, you may notice that you see many ltemGroup elements as well as
PropertyGroup elements. The ltemGroup element contains all the statically defined items.
Static item definitions are those declared as a direct child of the Project element. Dynamic
items, which we discuss in the next chapter, are those defined inside a target. When you
define a property, you are declaring a key-value pair, which is a one-to-one relationship.
When you declare items, one item can contain a list of many values. In terms of code,

a property is analogous to a variable and an item to an array. Take a look at how an item
is declared in the following snippet taken from the ItemsSimple.proj file:

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<SoTutionFile Include="..\InsideMSBuild.sln" />
</ItemGroup>
<Target Name="PrintSolutionInfo">
<Message Text="SolutionFile: @(SolutionFile)" />
</Target>
</Project>

In this file, there is an ItemGroup that has a subelement, SolutionFile. ltemGroup is the
element type that all statically declared items must be placed within. The name of the
subelement, SolutionFile in this case, is actually the item type of the item that is

created. The SolutionFile element has an attribute, Include. This determines what values

the item contains. Relating it back to an array, SolutionFile is the name of the variable that
references the array, and the Include attribute is used to populate the array’s values. The
Include attribute can contain the following types of values (or any combination thereof): one
distinct value, a list of values delimited with semicolons, or a value using wildcards. In this
sample, the Include attribute contains one value. When you need to evaluate the contents of
an item, you would use the @(ItemType) syntax. This is similar to the $(PropertyName) syntax
for properties. To see this in action, take a look at the PrintSolutioninfo target. This target

on

10

Part| Overview

passes the value of the item into the Message task to be printed to the console. You can see
the result of executing this target in Figure 1-3.

GC:nInsideMSBuild~ChiAl>msbuild ItemsSimple.proj ~t:PrintSolutioninfo ~nologo

Build started 9242018 6:84:18 PM.

Project "C:xInsideMSBuild~ChBi~ItemsSimple.proj"” on node 1 (PrintSolutionInfo target{si>.
Print8olutionInfo:

SolutionFile: ..~InsideMS8Build.sln
Done Building Project ""C::\InsideM8Build~ChBisItemsSimple.proj"” (PrintSolutionInfo target{sd).

Build succeeded.
A Yarning(s)>
B Errorisd

FIGURE 1-3 PrintSolutionInfo result

In this case, the item SolutionFile contains a single value, so it doesn't seem very different
from a property because the single value was simply passed to the Message task. Let's take
a look at an item with more than one value. This is an extended version of the ItemsSimple
.proj file shown earlier:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<SolutionFile Include="..\InsideMSBuild.sTn" />
</ItemGroup>
<Target Name="PrintSolutionInfo">
<Message Text="SolutionFile: @(SolutionFile)" />
</Target>

<ItemGroup>
<CompiTe
Include="Forml.cs;Forml.Designer.cs;Program.cs;Properties\AssemblyInfo.cs" />
</ItemGroup>
<Target Name="PrintCompileInfo">
<Message Text="Compile: @(Compile)" />
</Target>
</Project>

In the modified version, | have created a new item, Compile, which includes four values that
are separated by semicolons. The PrintCompilelnfo target passes these values to the Message
task. When you invoke the PrintCompilelnfo target on the MSBuild file just shown, the result
will be Compile: Forml.cs;Forml.Designer.cs;Program.cs;Properties
\AssemblyInfo.cs. It may look like the Message task simply took the value in the Include
attribute and passed it to the Message task, but this is not the case. The Message task has

a single input parameter, Text, as discussed earlier. This parameter is a string property.
Because an item is a multivalued object, it cannot be passed directly into the Text property.
It first has to be converted into a string. MSBuild does this for you by separating each value
with a semicolon. In Chapter 2, | will discuss how you can customize this conversion process.

An item definition doesn't have to be defined entirely by a single element. It can span multiple
elements. For example, the Compile item shown earlier could have been declared like this:

<ItemGroup>
<Compile Include="Forml.cs" />

Chapter 1 MSBuild Quick Start 11

<Compile Include="Forml.Designer.cs" />

<Compile Include="Program.cs" />

<Compile Include="Properties\AssemblyInfo.cs" />
</ItemGroup>

In this version, each file is placed into the Compile item individually. These Compile elements
could also have been contained in their own ltemGroup as well, as shown in the next snippet.

<ItemGroup>

<Compile Include="Forml.cs" />
</ItemGroup>
<ItemGroup>

<Compile Include="Forml.Designer.cs" />
</ItemGroup>
<ItemGroup>

<Compile Include="Program.cs" />
</ItemGroup>
<ItemGroup>

<Compile Include="Properties\AssemblyInfo.cs" />
</ItemGroup>

The end result of these declarations would all be the same. You should note that an item is
an ordered list, so the order in which values are added to the item is preserved and may in
some context affect behavior based on usage. When a property declaration appears after

a previous one, the previous value is overwritten. Items act differently from this in that the
value of the item is simply appended to instead of being overwritten. We've now discussed
two of the three ways to create items. Let's look at using wildcards to create items.

Many times, items refer to existing files. If this is the case, you can use wildcards to
automatically include files that meet the constraints of the wildcards. You can use three
wildcard elements with MSBuild: ?, * and **. The ? descriptor is used to denote that exactly
one character can take its place. For example, the include declaration of b?t. cs could
include values such as bat.cs, bot.cs, bet.cs, blt.cs, and so on. The * descriptor can be
replaced with zero or more characters (not including slashes), so the declaration b*t.cs
could include values such as bat.cs, bot.cs, best.cs, bt.cs, etc. The ** descriptor tells MSBuild
to search directories recursively for the pattern. In effect, “*" matches any characters except
for “/" while "**" matches any characters, including "/". For example, Include="src***.cs"
would include all files under the src folder (including subfolders) with the .cs extension.

Item Metadata

Another difference between properties and items is that items can have metadata associated
with them. When you create an item, each of its elements is a full-fledged .NET object, which
can have a set of values (metadata) associated with it. The metadata that is available on every
item, which is called well-known metadata, is summarized in Table 1-2.

12

Part| Overview

TABLE 1-2 Well-Known Metadata

Name
Identity

FullPath
RootDir
Filename
Extension
RelativeDir
Directory

RecursiveDir

ModifiedTime
CreatedTime

AccessedTime

Description

The value that was specified in the Include attribute of the item after it was
evaluated.

Full path of the file.

The root directory to which the file belongs, such as C:\.

The name of the file, not including the extension.

The extension of the file, including the period.

Contains the path specified in the Include attribute, up to the final backslash (\).
Directory of the item, without the root directory.

This is the expanded directory path starting from the first ** of the include
declaration. If no ** is present, then this value is empty. If multiple ** are present,
then RecursiveDir will be the expanded value starting from the first **. This may
sound peculiar, but it is what makes recursive copying possible.

The last time the file was modified.
The time the file was created.

The last time the file was accessed.

Download from Wow! eBook <www.wowebook.com>

To access metadata values, you have to use this syntax:
@(ItemType->'%(MetadataName) ')

[temType is the name of the item, and MetadataName is the name of the metadata that you
are accessing. This is the most basic syntax. To examine what types of values the well-known
metadata returns, take a look at the file, WellKknownMetadata.proj, shown here:

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<src Include="src\one.txt" />
</ItemGroup>
<Target Name="PrintWellKnownMetadata">

<Message Text="===== Well known metadata ====="/>

<!-- %40 = @ -->

<l-- %25 = % -->

<Message Text="%40(src->"'%25(Ful1Path)'): @(src->"'%(FullPath)')"/>
<Message Text="%40(src->"'%25(RootDir)'): @(src->'%(RootDir)"')"/>

<Message Text="%40(src->'%25(Filename)'): @(src->'%(Filename)')"/>
<Message Text="%40(src->"'%25(Extension)'): @(src->"'%(Extension)')"/>
<Message Text="%40(src->"'%25(RelativeDir)'): @(src->'%(RelativeDir)')"/>
<Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')"/>
<Message Text="%40(src->"'%25(RecursiveDir)'): @(src->"'%(RecursiveDir)')"/>
<Message Text="%40(src->"'%25(Identity)'): @(src->'%(Identity)')"/>
<Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')"/>
<Message Text="%40(src->"'%25(CreatedTime)'): @(src->'%(CreatedTime)')"/>
<Message Text="%40(src->"'%25(AccessedTime)'): @(src->"'%(AccessedTime)')"/>

</Target>
</Project>

Chapter 1 MSBuild Quick Start 13

Note In order to use reserved characters, such as the % and @, you have to escape them.
This is accomplished by the syntax %HV, where HV is the hex value of the character. This is
demonstrated here with %25 and %40.

Note In this example, we have specified the ToolsVersion value to be 4.0. This determines
which version of the MSBuild tools will be used. Although not needed for this sample, we will be
specifying this version number from this point forward. The default value is 2.0.

This MSBuild file prints the values for the well-known metadata for the src item. The result of
executing the PrintWellKknownMetadata target is shown in Figure 1-4.

C:xInsideM8Build~ChBl >msbhuild WellKnownMetadata.proj ~t:PrintWellKnownMetadata ~nologo
Build started 9-24-2010 6:10:01 P
Project "'C: <InsideMSBuild\ChB1l\WellKknounMetadata. proj" on node 1 (PrintWellKnownMetadata target{s>
2.
PrintWellEnownMetadatas:
===== Well known metadata =====
B{src—>"#{(FullPath>’ >: C “InsideM8Build~ChB1lsrchone.txt
Blsrc—>"“(Rootdir>’ 2t Cix
Blgpc—>'#(Filename>’'>: one
Blsrc—>" x(Extension?’'>: .txt
Blgpc—>'#(RelativeDird’ >z srch
Bsrc—>' x(Directory?’ >: InsideMSBuild~ChB1issprc~
Blgpc—>' % (Recursivelird’ >:
B{src—>' x(Identity?’ >: sprchone.
Blgpc—>' % (ModifiedTime>’ >: ZBIB B9 A8 22:15:12.4218750
B¢src—>' x{CreatedTime>’ >: 2010-09-68 22:15:12.4218758
B{src—>' n{AccessedTine)’ 3= 2010-B?-B8 22:15:12.4218750
Dgng)Building Project "G:xInsideMSBuild~ChBisWellKnownMetadata.proj'" (PrintWellKnownMetadata targe
t{sa3>.

Build succeeded.
Warning{s>
B Erroris>

FIGURE 1-4 PrintWellKknownMetadata result

The figure gives you a better understanding of the well-known metadata’s usage. Keep in
mind that this demonstrates the usage of metadata in the case where the item contains only
a single value.

To see how things change when an item contains more than one value, let's examine
MetadataExampleOl.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<Compile Include="*.cs" />
</ItemGroup>

<Target Name="PrintCompileInfo">
<Message Text="Compile fullpath: @(Compile->'%(FullPath)')" />
</Target>
</Project>

In this project file we simply evaluate the FullPath metadata on the Compile item. From the
examples with this text, the directory containing this example contains four files: Classl.cs,
Class2.cs, Class3.c, and Class4.cs. These are the files that will be contained in the Compile
item. Take a look at the result of the PrintCompilelnfo target in Figure 1-5.

14

Part| Overview

C:~InsideM8Build~ChB1l>msbhuild MetadataExampleB1.proj #t:PrintCompilelnfo /nologo
Build started 9-24-2810 6:18:39 PM.
Project "C:~InsideMS8Build-ChBi-MetadataExampleB®i.proj" on node 1 (PrintCompilelnfo target{s)>>.
PrintCompileInfo:
Compile fullpath: CG:\InsideMS8Build~ChB1ivClassl.cs;C:NInsideMSBuild~ChBi~Class2.cs;C:N\InsideMSBui
1d~Ch#ixClass3.ce;C:n\InsideMSBuild~ChBi\Class4. cs
Done Building Project "C:islnsideMSBuildsChWlsMetadataExampleWl.proj'" <(PrintCompilelnfo target{(s)).

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 1-5 PrintCompilelnfo result

You have to look carefully at this output to decipher the result. What is happening here

is that a single string is created by combining the full path of each file, separated by

a semicolon. The @(ItemType->'...%()...") syntaxis an “ltem Transformation.” We

will cover transformations in greater detail in Chapter 2. In the next section, we'll discuss
conditions. Before we do that, take a minute to look at the project file for a simple Windows
application that was generated by Visual Studio. You should recognize many things.

<Project DefaultTargets="Build"
xmIns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">

<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == >Debug</Configuration>
<Platform Condition=" '$(PTlatform)' == "' ">AnyCPU</Platform>
<ProductVersion>8.0.50727</ProductVersion>
<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>{0F34CE5D-2AB0-49A9-8254-B21D1D2EFFAl}</ProjectGuid>
<OutputType>WinExe</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>WindowsApplicationl</RootNamespace>
<Assemb1yName>WindowsApplicationl</AssemblyName>

</PropertyGroup>

<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<DebugSymbol1s>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG; TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarninglLevel>

</PropertyGroup>

<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<DebugType>pdbonTly</DebugType>
<Optimize>true</Optimize>
<OutputPath>bin\Release\</OutputPath>
<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarninglLevel>4</WarningLevel>

</PropertyGroup>

<ItemGroup>
<Reference Include="System" />
<Reference Include="System.Data" />
<Reference Include="System.Deployment" />
<Reference Include="System.Drawing" />
<Reference Include="System.Windows.Forms" />
<Reference Include="System.Xml" />

</ItemGroup>

e

Chapter 1 MSBuild Quick Start 15

<ItemGroup>

<Compile Include="Forml.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="Forml.Designer.cs">
<DependentUpon>Forml.cs</DependentUpon>

</Compile>

<Compile Include="Program.cs" />

<Compile Include="Properties\AssemblyInfo.cs" />

<EmbeddedResource Include="Properties\Resources.resx">
<Generator>ResXFileCodeGenerator</Generator>
<LastGenOutput>Resources.Designer.cs</LastGenOutput>
<SubType>Designer</SubType>

</EmbeddedResource>

<Compile Include="Properties\Resources.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Resources. resx</DependentUpon>

</Compile>

<None Include="Properties\Settings.settings">
<Generator>SettingsSingleFileGenerator</Generator>
<LastGenOutput>Settings.Designer.cs</LastGenOutput>

</None>

<Compile Include="Properties\Settings.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Settings.settings</DependentUpon>
<DesignTimeSharedInput>True</DesignTimeSharedInput>

</Compile>

</ItemGroup>
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
<!-- To modify your build process, add your task

inside one of the targets below and uncomment it.
Other similar extension points exist,
see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>
-=>
</Project>

Simple Conditions

When you are building, you often have to make decisions based on conditions. MSBuild
allows almost every XML element to contain a conditional statement within it. The statement
would be declared in the Condition attribute. If this attribute evaluates to false, then the
element and all its child elements are ignored. In the sample Visual Studio project that was
shown at the end of the previous section, you will find the statement <Configuration
Condition=" '$(Configuration)' == "' ">Debug</Configuration>. In this declaration,
the condition is checking to see if the property is empty. If so, then it will be defined;
otherwise, the statement will be skipped. This is a method to provide a default overridable
value for a property. Table 1-3 describes a few common types of conditional operators.

16

Part| Overview

TABLE 1-3 Simple Conditional Operators
Symbol Description
== Checks for equality; returns true if both have the same value.
1= Checks for inequality; returns true if both do not have the same value.
Exists Checks for the existence of a file. Returns true if the provided file exists.

IExists Checks for the nonexistence of a file. Returns true if the file provided is not found.

Because you can add a conditional attribute to any MSBuild element (excluding the Otherwise
element), this means that we can decide to include entries in items as necessary. For example,
when building ASP.NET applications, in some scenarios, you might want to include files that
will assist debugging. Take a look at the MSBuild file, ConditionExample01.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<PropertyGroup>
<Configuration>Release</Configuration>
</PropertyGroup>
<ItemGroup>
<Content Include="script.js"/>
<Content Include="script.debug.js" Condition="$(Configuration)=="Debug'" />
</ItemGroup>

<Target Name="PrintContent">
<Message Text="Configuration: $(Configuration)" />
<Message Text="Content: @(Content)" />
</Target>
</Project>

If we execute the command msbuild ConditionExampleOl.proj /t:PrintContent, the
result would be what is shown in Figure 1-6.
C:~InsideM8Build~ChBl >mshuild CundltlunExampleBl proj ~t:PrintContent ~/nologo
Build started 9242018 6:24:55
Project "'C: \Ins1deHSBu11d\ChBl\Cnnd1t1DnExampleBI proj" on node 1 (PrintContent target{s>>».
PrintContent:
Conf iguration: Release

Content: script.js
Done Building Project "C:“\InsideMSBuild“~ChBi-ConditionExampleBl.proj" <PrintContent target{s)>.

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 1-6 PrintContent target result

As you can see, because the Configuration value was not set to Debug, the script.debugjs file
was not included in the Content item. Now we will examine the usage of the Exists function.
To do this, take a look at the target _CheckForCompileOutputs, taken from the Microsoft
.Common.targets file, a file included with MSBuild that contains most of the rules for building
VB and C# projects:

<Target
Name="_CheckForCompileOQutputs">

Chapter 1 MSBuild Quick Start 17

<!--Record the main compile outputs.-->
<ItemGroup>
<FileWrites
Include="@(IntermediateAssembly)"
Condition="Exists('@(IntermediateAssembly)')" />
</ItemGroup>

<!-- Record the .xml if one was produced. -->
<PropertyGroup>
<_DocumentationFileProduced
Condition=""!Exists('@(DocFileItem)')">false</_DocumentationFileProduced>
</PropertyGroup>

<ItemGroup>
<FileWrites
Include="@(DocFileItem)"

Condition=""'$(_DocumentationFileProduced) '=="true'" />
</ItemGroup>
<!-- Record the .pdb if one was produced. -->
<PropertyGroup>

<_DebugSymboTsProduced
Condition="!Exists('@(_DebugSymbolsIntermediatePath)')">false
</_DebugSymbolsProduced>
</PropertyGroup>

<ItemGroup>
<FileWrites
Include="@(_DebugSymbolsIntermediatePath)"
Condition=""$(_DebugSymbolsProduced) '=="true'" />
</ItemGroup>
</Target>

From the first FileWrites item definition, the condition is defined as Exists
(@(IntermediateAssembly)). This will determine whether the file referenced by the
IntermediateAssembly item exists on disk. If it doesn't, then the declaration task is
skipped. This was a brief overview of conditional statements, but it should be enough to
get you started. Let's move on to learn a bit more about targets.

Default/Initial Targets

When you create an MSBuild file, you will typically create it such that a target, or a set of
targets, will be executed most of the time. In this scenario, these targets can be specified

as default targets. These targets will be executed if a target is not specifically chosen to be
executed. Without the declaration of a default target, the first defined target in the logical
project file, after all imports have been resolved, is treated as the default target. A logical
project file is one with all Import statements processed. Using default target(s) is how Visual

18

Part| Overview

Studio builds your managed project. If you take a look at Visual Studio—generated project
files, you will notice that the Build target is specified as the default target:

<Project DefaultTargets="Build"
xmIns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">

</Project>

As mentioned previously, you can have either one target or many targets be your default
target(s). If the declaration contains more than one, the target names need to be separated
by a semicolon. When you use a command such as msbuild ProjectFile.proj, because
you have not specified a target to execute, the default target(s) will be executed. It's
important to note that the list of DefaultTargets will be preserved, not modified, through
an Import, provided that a project previously processed hasn't had a DefaultTargets list.
This is one difference between DefaultTargets and InitialTargets. Values for InitialTargets are
aggregated for all imports because each file may have its own initialization checks.

These targets listed in InitialTargets will always be executed even if the project file is
imported by other project files. Similar to default targets, the initial targets list

is declared as an attribute on the Project element with the name InitialTargets. If

you take a look at the Microsoft.Common.targets file, you will notice that the

target _CheckForlnvalidConfigurationAndPlatform is declared as the initial target. This target
will perform a couple sanity checks before allowing the build to continue. | would strongly
encourage the use of default targets. InitialTargets should be used to verify initial conditions
before the build starts and raises an error or warning if applicable. Next, we will discuss the
command-line usage of the msbuild.exe command.

MSBuild.exe Command-Line Usage

In this section, we'll discuss the most important options when invoking msbuild.exe. When
you invoke the msbuild.exe executable, you can pass many parameters to customize the
process. We'll first take a look at the options that are available with MSBuild 2.0, and then
we'll discuss what differences exist for MSBuild 3.5 and MSBuild 4.0. Table 1-4 summarizes
the parameters you can pass to msbuild.exe. Many commands include a short version that
can be used; these versions are listed in the table within parentheses.

TABLE 1-4 MSBuild.exe Command-Line Switches

Switch Description

/help (/?) Displays the usage information for msbuild.exe.
/nologo Suppresses the copyright and startup banner.
/version (/ver) Displays version information.

@file Used to pick up response file(s) for parameters.

Chapter 1 MSBuild Quick Start 19

Switch Description

/noautoresponse (/noautoresp) Used to suppress automatically, including msbuild.rsp as a
response file.

/target (/1) Used to specify which target(s) should be built. If specifying more
than one target, they should each be separated by a semicolon.
Commas are valid separators, but semicolons are the ones most
commonly used.

/property:<n>=<v> (/p) Used to specify properties. If providing more than one property,
they should each be separated by a semicolon. Property values
should be specified in the format: name=value. These values
would supersede any static property definitions. Commas are
valid separators, but semicolons are the ones most
commonly used.

/verbosity (/v) Sets the verbosity of the build. The options are quiet (q), minimal
(m), normal (n), detailed (d), and diagnostic (diag). This is passed
to each logger, and the logger is able to make its own decision
about how to interpret it.

/validate (/val) Used to ensure that the project file is in the correct format
before the build is started.

/logger (/1) Attaches the specified logger to the build. This switch can be
provided multiple times to attach any number of loggers. Also,
you can pass parameters to the loggers with this switch.

/consoleloggerparameters (/clp) Used to pass parameters to the console logger.

/noconsolelogger (/noconlog) Used to suppress the usage of the console logger, which is
otherwise always attached.

/filelogger (/fl) Attaches a file logger to the build.

/fileloggerparameters (/flp) Passes parameters to the file logger. If you want to attach

multiple file loggers, you do so by specifying additional
parameters in the switches /flp1, /flp2, /flp3, and so on.

/distributedFileLogger (/dl) Used to attach a distributed logger. This is an advanced switch
that you will most likely not use and that could have been
excluded altogether.

/maxcpucount (/m) Sets the maximum number of processes that should be used by
msbuild.exe to build the project.

/ignoreprojectextensions Instructs MSBuild to ignore the extensions passed.

(/ignore)

/toolsversion (/tv) Specifies the version of the .NET Framework tools that should be

used to build the project.

/nodeReuse (/nr) Used to specify whether nodes should be reused or not.
Typically, there should be no need to specify this; the default value
is optimal.

20 Part | Overview

Switch Description

/preprocess (/pp)* This will output the complete logical file to either the console or
to a specified file. To have the result written out to the file, use the
syntax /pp:file.

Usually, this file will build just as if you were building the original
project (there are exceptions though, such as $(MSBuildThisFile)).
The real purpose of this is to help diagnose a problem with the
build by avoiding the need to jump between many different
files. For example, if a particular property is getting overwritten
somewhere, it is much easier to search for it in the single
“preprocessed” file than it is to search for it in the many
imported files.

/detailedSummary (/ds)* It displays information about how the projects were scheduled to
different CPUs. You can use this to help figure out how to make
the build faster. For example, you can use this to determine which
project was stalling other projects.

* Denotes parameters new with MSBuild 4.0.

From Table 1-4, the most commonly used parameters are target, property, and logger.
You might also be interested in using the FileLogger switch. To give you an example, | will
use an MSBuild file that we discussed earlier, the ConditionExample01.proj file. Take a look
at the following command that will attach the file logger to the build process: msbuild
ConditionExample0l.proj /f1. Because we didn't specify the name of the log file to be
written to, the default, msbuild.log, will be used. Using this same project file, let's see how
to override the Configuration value. From that file, the Configuration value would be set to
Release, but we can override it from the command line with the following statement:
msbuild ConditionExample0l.proj /p:Configuration=Debug /t:PrintContent.In
this command, we are using the /p (property) switch to provide a property value to the build
engine, and we are specifying to execute the PrintContent target. The result is shown in
Figure 1-7.

C:nInzideM5Builds\Ch#1 >*mzbuild ConditionExampleBl.proj ~p:Configuration=Debuy st:PrintContent /nolog
o
Build started 9-24-2010 6:42:28 PM.
Project "C:“\InsideMSBuild~ChBi-ConditionExampleBl.proj" on node 1 {(PrintContent target{sd>.
PrintContent:

Conf iguration: Debug

Gontent: script.jsiscript.debuyg.js
Done Building Project "C:xInsideMSBuild~ChB1sConditionExample®l.proj" (PrintContent target{s)).

Build succeeded.
A Yarning(s)>
8 Errordisd

FIGURE 1-7 Specifying a property from the command line

The messages on the console show that the value for Configuration was indeed Debug,
and as expected, the debug JavaScript file was included in the Content item. Now that
you know the basic usage of the msbuild.exe command, we'll move on to the last topic:
extending the build process.

Chapter 1 MSBuild Quick Start 21

Extending the Build Process

With versions of Visual Studio prior to 2005, the build was mostly a black box. The process by
which Visual Studio built your applications was internal to the Visual Studio product itself. The
only way you could customize the process was to use execute commands for pre- and post-build
events. With this, you were able to embed a series of commands to be executed. You were not
able to change how Visual Studio built your applications. With the advent of MSBuild, Visual
Studio has externalized the build process and you now have complete control over it. Since
MSBuild is delivered with the .NET Framework, Visual Studio is not required to build applications.
Because of this, we can create build servers that do not need to have Visual Studio installed. We'll
examine this by showing how to augment the build process. Throughout the rest of this book, we
will describe how to extend the build process in more detail.

The pre- and post-build events mentioned earlier are still available, but you now have other
options. The three main ways to add a pre- or post-build action are:

B Pre- and post-build events
B Override BeforeBuild/AfterBuild target
B Extend the BuildDependsOn list

The pre- and post-build events are the same as described previously. This is a good approach
for backward compatibility and ease of use. Configuring this using Visual Studio doesn't require
knowledge of MSBuild. Figure 1-8 shows the Build Events tab on the ProjectProperties page.

Here, you can see the two locations for the pre- and post-build events toward the center of
the image. The dialog that is displayed is the post-build event command editor. This helps you
construct the command. You define the command here, and MSBuild executes it for you at the
appropriate time using the Exec task (http.//msdn2.microsoft.com/en-us/library/x8zx72cd.aspx).
Typically, these events are used to copy or move files around before or after the build.

Using the pre- and post-build event works fairly well if you want to execute a set of
commands. If you need more control over what is occurring, you will want to manually
modify the project file itself. When you create a new project using Visual Studio, the project
file generated is an MSBuild file, which is an XML file. You can use any editor you choose, but
if you use Visual Studio, you will have IntelliSense when you are editing it! With your solution
loaded in Visual Studio, you can right-click the project, select Unload Project, right-click

the project again, and select Edit. If you take a look at the project file, you will notice this
statement toward the bottom of the file.

<!-- To modify your build process, add your task inside one
of the targets below and uncomment it.
Other similar extension points exist, see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>
-—>

Part| Overview

Application
RIS /A,

Build
Build Events Pre-build event cormrmand line:
Debug
Resources . -
Sarlies Edit Pre-build ..
Settings Paost-build event comemand line:

echo 'build finished'
Reference Paths
Signing -

Code Analysis
Edit Post-build . |

Post-build Bvent Carnrmand Line @

echo 'build finished'

Macro Walue it
OutDir hin\Debugh 5
ConfigurationMarme Debug
ProjectMame RuleStack.Engine Tests
TargetMame RuleStack.Engine Tests
TargetPath ChData\DewvelopmentiR... -
| << Macros |
QK] | Cancel |

FIGURE 1-8 Build Events tab

From the previous snippet, we can see that there are predefined targets designed to handle
these types of customizations. We can simply follow the directions from the project file, by
defining the BeforeBuild or AfterBuild target. You will want to make sure that these definitions
are after the Import element for the Microsoft.*targets file, where * represents the language
of the project you are editing. For example, you could insert the following AfterBuild target:

<Target Name="AfterBuild">
<Message Text="Build has completed!" />
</Target>

When the build has finished, this target will be executed and the message ‘Build has
completed!” will be passed to the loggers. We will cover the third option, extending the
BuildDependsOn list, in Chapter 3.

In this chapter, we have covered many features of MSBuild, including properties, items,
targets, and tasks. Now you should have all that you need to get started customizing your
build process. From this point on, the remainder of the book will work on filling in the details
that were left out here so that you can become an MSBuild expert!

Chapter 2

MSBuild Deep Dive, Part 1

In the previous chapter, we gave a brief overview of all the key elements in MSBuild. In this
chapter and the next, we'll examine most of those ideas in more detail. We'll discuss properties,
items, targets, tasks, transformations, and much more. After you have completed this chapter,
you will have a solid grasp of how to create and modify MSBuild files to suit your needs. After
the next chapter, we'll explore ways to extend MSBuild as well as some advanced topics.

What is MSBuild? MSBuild is a general-purpose build system created by Microsoft and is
used to build most Microsoft Visual Studio projects. MSBuild is shipped with the Microsoft
.NET Framework. What this means is that you do not need to have Visual Studio installed in
order to build your applications. This is very beneficial because you don’t need to purchase
licenses of Visual Studio for dedicated build machines, and it makes configuring build
machines easier. Another benefit is that MSBuild will be installed on many machines. If .NET
Framework 2.0 or later is available on a machine, so is a version of MSBuild. The following
terms have been used to identify an MSBuild file: MSBuild file, MSBuild project file, MSBuild
targets file, MSBuild script, etc. When you create an MSBuild file, you should follow these
conventions for specifying the extension of the file:

B .proj A projectfile

B _.targets A file that contains shared targets, which are imported into other files
B _props Default settings for a build process

B _tasks A file that contains UsingTask declarations

An MSBuild file is just an XML file. You can use any editor you choose to create and edit
MSBuild files. The preferred editor is Visual Studio, because it provides IntelliSense on the
MSBuild files as you are editing them. This IntelliSense will greatly decrease the amount

of time required to write an MSBuild file. The IntelliSense is driven by a few XML Schema
Definition (XSD) files. These XSD files, which are all in Visual Studio’s XML directory, are
Microsoft.Build.xsd, Microsoft.Build.Core.xsd, and Microsoft.Build.Commontypes.xsd. The
Microsoft.Build.xsd file imports the other two files, and provides an extension point for
task developers to include their own files. The Microsoft.Build.Core.xsd file describes all the
fundamental elements that an MSBuild file can contain.

Microsoft.Build.Commonttypes.xsd defines all known elements; this is mainly used to
describe the elements that Visual Studio—generated project files can contain. The XSD that
is used is not 100 percent complete, but in most cases you will not notice that. Now that
we have discussed what it takes to edit an MSBuild file, let's discuss properties in detail. If
you are not familiar with invoking msbuild.exe from the command line, take a look back at
Chapter 1, “MSBuild Quick Start”; this is not covered again here.

23

24

Part| Overview

Properties

MSBuild has two main constructs for representing data: properties and items. A property is a
key-value pair. Each property can have exactly one value. An item list differs from a property
in that it can have many values. In programming terms, a property is similar to a scalar
variable, and an item list is similar to an array variable, whose order is preserved. Properties
are declared inside the Project element in a PropertyGroup element. We'll now take a look at
how properties are declared. The following file, Properties01.proj, demonstrates declaration
and usage of a property.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<PropertyGroup>
<Configuration>Debug</Configuration>
</PropertyGroup>

<Target Name="PrintConfig">
<Message Text="Config: $(Configuration)" />
</Target>

</Project>

As stated previously, we needed a PropertyGroup element, and the Configuration

property was defined inside of that. By doing this we have created a new property named
Configuration and given it the value Debug. When you create properties, you are not limited
to defining only one property per PropertyGroup element. You can define any number of
properties inside a single PropertyGroup element. In the target PrintConfig, the Message task
is invoked in order to print the value of the Configuration property. If you are not familiar
with what a target is, refer back to Chapter 1, “MSBuild Quick Start.” You can execute that
target with the command msbuild.exe PropertiesOl.proj /t:PrintConfig. The results
of this command are shown in Figure 2-1.

g;;igsiggzg23i%g;gtg%igsggé%q4grgﬁertiesBi.p»oj #t:PrintConfig /nologo
g:gg:ggn;gé?lnsideHSBuild\ChBZ\PPopertiesBl.proj" on node 1 (PrintConfig target(sl>.

Config: Debug
Done Building Project "C:“\InsideMS8Build~ChB2\PropertiesBl.proj" (PrintConfig target(sd).

Build succeeded.
A Yarning(s)
B Erroris>

FIGURE 2-1 PrintConfig target results

From the result in Figure 2-1, we can see that the correct value for the Configuration
property was printed as expected. As properties are declared, their values are recorded in
a top-to-bottom order. What this means is that if a property is defined, and then defined
again, the last value will be the one that is applied. Take a look at a modified version of the
previous example; this one is contained in the Properties02.proj file.

Chapter 2 MSBuild Deep Dive, Part 1 25

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<PropertyGroup>
<Configuration>Debug</Configuration>
</PropertyGroup>

<PropertyGroup>
<Configuration>Release</Configuration>
</PropertyGroup>

<Target Name="PrintConfig">
<Message Text="Config: $(Configuration)" />
</Target>

</Project>

In this example, we have declared the Configuration property once again, after the existing
declaration, and specified that it have the value Release. Because the new value is declared
after the previous one, we would expect the new value to hold. If you execute the PrintConfig
target on this file, you will see that this is indeed the case. Properties in MSBuild can be
declared any number of times. This is not an erroneous condition, and there is no way to
detect this. Now we will look at another version of the previous file, a slightly modified one.
Take a look at the contents of the following Properties03.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<PropertyGroup>
<Configuration>Debug</Configuration>
</PropertyGroup>

<PropertyGroup>
<Configuration>Release</Configuration>
</PropertyGroup>

<Target Name="PrintConfig">
<Message Text="Config: $(Configuration)"/>
</Target>

<PropertyGroup>
<Configuration>CustomRelease</Configuration>
</PropertyGroup>

</Project>

This example is a little different in the sense that there is a value for Configuration declared
after the PrintConfig target. That value is CustomRelease. So if we execute the PrintConfig
target, what should be the result, Release or CustomRelease? We can execute msbuild.exe
Properties03.proj /t:PrintConfig to find out. The results of this command are shown in
Figure 2-2.

26

Part| Overview

GC:nInsideMSBuild~ChB2 >mzbuild Properties®@3.proj st:PrintConfiy ~nologo
Build started 9282018 9:54:18 PM.
Project "GC:xInsideMSBuild~ChB2Z~FropertiesB3.proj"” on node 1 (PrintConfig targetd{sd>.
PrintConfig:

Config: CustomRelease
Done Building Project “G:xInsideMSBuild“~ChBZ\Properties@3.proj" (PrintConfiyg target(s»>.

Build succeeded.
Warning{s>
B Erroris>

FIGURE 2-2 PrintConfig result for Properties03.proj

As can be seen from the results in Figure 2-2, the value for Configuration that was printed
was CustomRelease! How is this possible? It was defined after the PrintConfig target! This is
because MSBuild processes the entire file for properties and items before any targets are
executed. You can imagine all the properties being in a dictionary, and as the project file is
processed, its values are placed in the dictionary. Property names are not case sensitive, so
Configuration and CoNfiguratlON would refer to the same property. After the entire file,
including imported files, is processed, all the final values for statically declared properties and
items have been resolved. Once all the properties and items have been resolved, targets are
allowed to execute. We'll take a closer look at this process in the section entitled “Property
and Item Evaluation,” in Chapter 3, “MSBuild Deep Dive, Part 2.

Note We will discuss importing files in Chapter 3.

Environment Variables

We have described the basic usage of properties. Now we'll discuss a few other related
topics. When you are building your applications, sometimes you might need to extract values
from environment variables. This is a lot simpler than you might imagine if you use MSBuild.
You can access values, just as you would properties, for environment variables. For example,
take a look at the following project file, Properties04.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<Target Name="PrintEnvVar">

<Message Text="Temp: $(Temp)" />

<Message Text="Windir: $(windir)" />

<Message Text="VS100COMNTOOLS: $(VS100COMNTOOLS)" />
</Target>

</Project>

In this example, we can see that no properties have been declared and no other files are
imported. Inside the target, PrintEnvVar, we can see that we have made a few messages to print
the values of some properties. These values are being pulled from the environment variables.
When you use the $(PropertyName) syntax to retrieve a value, MSBuild will first look to see if

Chapter 2 MSBuild Deep Dive, Part 1 27

there is a corresponding property. If there is, its value is returned. If there isn't, then it will look at
the environment variables for a variable with the provided name. If such a variable exists, its value
is returned. If you execute the command msbuild.exe Properties04.proj /t:PrintEnvVar
you should see a result similar to that shown in Figure 2-3.
C:~InsideMSBuild~ChB2>msbhuild Properties@4.proj ~t:PrintEnvUar ~nologo
Build started 9282018 9:57:37 PM.
Project "C::\InsideMSBuild~ChB2“\Properties@4.proj" on node 1 (PrintEnvlUar target(sd>.
PrintEnvlar:

Temp: C:xUserssIbrahim<fAppDatasLocal«Temp

Windir: C:~MWINDOUS

US1ABCOMNTOOLE = C:“Program Files“Microsoft Uiszual Studioc 18.0“Common?Tools™
Done Building Project "C:\InsideM8BuildsChB2“PropertiesB@4.proj" (PrintEnvlar target{s>>».

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 2-3 Environment variable usage

As demonstrated in Figure 2-3, the values for the appropriate environment variables were
printed as expected.

Note When MSBuild starts (that is, when msbuild.exe starts or when Visual Studio starts), all the
environment variables and their values are captured at that time. So if a value for an environment
variable changes after that, it will not be reflected in the build. Also, you should be aware that
each project is isolated from environment variable changes and changes to the current directory
that are made by other projects.

If you don't have Visual Studio 2010 installed on the machine running this file, then the value
may be empty for the VSIOOCOMNTOOLS property. As we just saw, you can get the value for
an environment variable by using the property notation. Assigning a value to a property that
has the same name as an environment variable has no effect on the environment variable
itself. The $(PropertyName) notation can get a value from an environment variable, but it will
never assign values to environment variables. Let's move on to discuss reserved properties.

Reserved Properties

There are a fixed number of reserved properties. These are properties that are globally
available to every MSBuild script and that can never be overwritten. These properties are
provided to users by the MSBuild engine itself, and many of them are very useful. These are
summarized in Table 2-1.

TABLE 2-1 Reserved Properties
Name Description
MSBuildProjectDirectory The full path to the directory where the project file is located.

MSBuildProjectDirectoryNoRoot The full path to the directory where the project file is located,
excluding the root (for example, c:\).

28 Part | Overview

Name

MSBuildProjectFile
MSBuildProjectExtension
MSBuildProjectFullPath
MSBuildProjectName
MSBuildProjectDefaultTargets
MSBuildExtensionsPath

MSBuildExtensionsPath32

MSBuildExtensionsPath64 *

MSBuildNodeCount

MSBuildStartupDirectory

MSBuildToolsPath
(MSBuildBinPath)

MSBuildToolsVersion

MSBuildLastTaskResult *

MSBuildProgramFiles32 *

MSBuildThisFile *

MSBuildThisFileDirectory *

Description

The name of the project file, including the extension.
The extension of the project file, including the period.
The full path to the project file.

The name of the project file, without the extension.
Contains a list of the default targets.

The full path to where MSBuild extensions are located. This is
typically under the Program Files folder. Note that now this
always points to the 32-bit location.

The full path to where MSBuild 32 bit extensions are located.
This is typically under the Program Files folder. For 32-bit
machines, this value will be the same as MSBuildExtensionsPath.

The full path to where MSBuild 64-bit extensions are located.
This is typically under the Program Files folder. For 32-bit
machines, this value will be empty.

The maximum number of nodes (processes) that are being used
to build the project. If the /m switch is not used, then this value
will be 1. If you use the /m switch without specifying a number

of nodes, then the default is the number of CPUs available.

The full path to the folder where the MSBuild process was
invoked.

The full path to the location where the MSBuild binaries are
located.

In MSBuild 2.0, this property is named MSBuildBinPath and

is deprecated in MSBuild 3.5 and later. MSBuildBinPath and
MSBuildToolsPath have the same value, but you should use only
MSBuildToolsPath.

The version of the tools being used to build the project. Possible
values include 2.0, 3.5, and 4.0. The default value is 2.0.

This contains true if the last executed task was a success
(task returned true) and false if it ended in a failure. If a
task fails, typically the build stops unless you specified
ContinueOnError="true".

This contains the path to the 32-bit Program Files folder.
To get the value for the default Program Files folder, use
$(ProgramFiles).

Contains the file name, including the extension, of the

file that contains the property usage. This differs from
MSBuildProjectFile in that MSBuildProjectFile always refers to
the file that was invoked, not any imported file name.

The path of the folder of the file that uses the property. This is
useful if you need to define any items whose location you know
relative to the targets file.

Name

Chapter 2 MSBuild Deep Dive, Part 1 29

Description

MSBuildThisFileDirectoryNoRoot * Same as MSBuildThisFileDirectory without the root (for

example, InsideMSBuild\Ch02 instead of C:\InsideMSBuild\

Ch02).
MSBuildThisFileExtension * The extension of the file referenced by MSBuildThisFile.
MSBuildThisFileFullPath * The full path to the file that contains the usage of the property.
MSBuildThisFileName * The name of the file, excluding the extension, to the file that

contains usage of the property.

MSBuildOverrideTasksPath * MSBuild 4.0 introduces override tasks, which are tasks that force

themselves to be used instead of any other defined task with
the same name, and this property points to a file that contains
the overrides. The override tasks feature is used internally to
help MSBuild 4.0 work well with other versions of MSBuild.

* denotes parameters new with MSBuild 4.0

Note You are allowed to override the values for MSBuildExtensionsPath, as well as the 32- and
64-bit variants. This is useful in case you check shared tasks into source control and want to use

those files.

You would use these properties in the same way as you would any other properties. In order
to understand what types of values these properties are set to, | have created the following
sample file, ReservedProperties0l1.proj, to print out all these values.

<Project xmIns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">
<Target Name="PrintReservedProperties">

<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message
<Message

Text="MSBuildProjectDirectory: $(MSBuildProjectDirectory)" />
Text="MSBuildProjectDirectoryNoRoot: $(MSBuildProjectDirectoryNoRoot)" />
Text="MSBuildProjectFile: $(MSBuildProjectFile)" />
Text="MSBuildProjectExtension: $(MSBuildProjectExtension)" />
Text="MSBuildProjectFul1Path: $(MSBuildProjectFullPath)" />
Text="MSBuildProjectName: $(MSBuildProjectName)" />
Text="MSBuildToolsPath: $(MSBuildToolsPath)" />
Text="MSBuildProjectDefaultTargets: $(MSBuildProjectDefaultTargets)" />
Text="MSBuildExtensionsPath: $(MSBuildExtensionsPath)" />
Text="MSBuildExtensionsPath32: $(MSBuildExtensionsPath32)" />
Text="MSBuildExtensionsPath64: $(MSBuildExtensionsPath64)" />
Text="MSBuildNodeCount: $(MSBuildNodeCount)" />
Text="MSBuildStartupDirectory: $(MSBuildStartupDirectory)" />
Text="MSBuildToolsPath: $(MSBuildToolsPath)" />
Text="MSBuildToolsVersion: $(MSBuildToolsVersion)" />
Text="MSBuildLastTaskResult: $(MSBuildLastTaskResult)" />
Text="MSBuildProgramFiles32: $(MSBuildProgramFiles32)" />
Text="MSBuildThisFile: $(MSBuildThisFile)" />
Text="MSBuildThisFileDirectory: $(MSBuildThisFileDirectory)" />
Text="MSBuildThisFileDirectoryNoRoot: $(MSBuildThisFileDirectoryNoRoot)" />
Text="MSBuildThisFileExtension: $(MSBuildThisFileExtension)" />
Text="MSBuildThisFileFullPath: $(MSBuildThisFileFullPath)" />

30

Part| Overview

<Message Text="MSBuildThisFileName: $(MSBuildThisFileName)" />
<Message Text="MSBuildOverrideTasksPath: $(MSBuildOverrideTasksPath)" />
</Target>
</Project>

If you execute this build file using the command msbuild.exe ReservedProperties0l
.proj /t:PrintReservedProperties, you would see the results shown in Figure 2-4.

C:InsideMSBuild“\ChB2>mshuild ReservedPropertiesB1l.proj ~t:PrintReservedProperties ~nologo
Build started 9-/28-2010 10:@3:58 PM.
Project "C:w\InsideMS8Build~ChB2-ReservedPropertiesBl.proj" on node 1 (PrintReservedProperties targe
tls2>.
PrintReservedProperties:
MSBuildProjectDirectory: G:xInsideMSBuild~Ch@z2
MEBuildProjectDirectoryMoRoot: InsideMSBuild\ChB2
MSBuildProjectFile: ReseruedPPnpert1esBl proj
MEBuildProjectExtension: .proj
MSBuildProjectFullPath: C: \Ins1deHSBu11d\ChBZ\ResePuedPPnpert13331 proj
MEBuildProjectMame: ReservedPropertiesB1
MSBuildToolsPath: G:“WINDOWS-\Microsoft.NET“\Framework-uv4.8.3031%
MEBuildProjectDefaultTargets:
MSBuildExtensionsPath: G:“Program Files-MSBuild
MEBuildExtensionsPath32: C:\Program Files“MSBuild
MSBuildExtensionsPath64:
MSBuildNodeCount:z 1
MS8BuildStartuplirectory: C:ixInsideMSBuildsCh@z
MSBuildToolsPath: C:\WINDOWS-\Microsoft . NET\Framework-uvd._ B.30319
MSBuildToolsUersion: 4.8
MSBuildLastTaskResult: true
MS5BuildProgramFiles32: GC:“\Program F1les
MS5BuildThisFile: ReservedProperties@l.p
MSBuildThisFileDirectory: C: \InsldeHSBu11d\Ch32\
MS5BuildThisFileDirectoryNoRoot: InsideMS8Build\Ch@2-
MSBuildThisFileExtension: .proj
MS5BuildThisFileFullPath: C:xInsideMSBuild“ChA2\ReservedPropertieszAl._proj
MEBuildThisFileMame: ReservedProperties@i
MSBuildQverrideTasksPath:
Done Building Project "C:x\InsideMSBuild“\ChB2“ReservedPropertiesBl.proj" (PrintReservedProperties t
arget{sl>.

Build succeeded.
A Warning(s>
B Errorisd

FIGURE 2-4 Reserved properties

Most of these values are straightforward. You should note that the values relating to the
MSBuild file, with the exception of those starting with MSBuildThis, are always qualified
relative to the MSBuild file that is invoking the entire process. This becomes clear when you
use the Import element to import additional MSBuild files. For the MSBuildThis properties,
those values always refer to the file that contains the element. We will take a look at
importing external files in the next chapter.

Command-Line Properties

You can also provide properties through the command line. As stated in Chapter 1, we can
use the /property switch (short version /p) to achieve this. We will see how this works now.
When you use the /p switch, you must specify the values in the format /p: <n>=<v>, where
<n> is the name of the property and <v> is its value. You can provide multiple values by
separating the pairs by a semicolon or a comma. We will demonstrate a simple case with the
following project file, Properties05.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

Chapter 2 MSBuild Deep Dive, Part 1

<Target Name="PrintInfo">
<Message Text="AssemblyName: $(AssemblyName)" />
<Message Text ="OutputPath: $(OutputPath)" />
</Target>

</Project>

Because there are no values for AssemblyName or OutputPath, it would be pointless to
execute this MSBuild file. If we pass them in through the command line, you can see their
values. If you specify values for AssemblyName and OutputPath with the command
msbuild.exe Properties05.proj /t:PrintInfo /p:AssemblyName=Sedo.Namhu
.Common;OutputPath="deploy\Release\\", then the result would be what is shown in
Figure 2-5.

C:\InsideMSBuildsFundamentals*>msbuild.exe PropertiesB5.proj /t:PrintInfo /p:fissemblyMame=8edo.Namhu
-Common ; OutputPath="deploy~Release~" nologo

Build started 5132018 11:57:34 PM.

grqj:?tf"c:\InsideHSBuild\Fundanentals\PropertiesBS.pruj" on node 1 (PrintInfo target{sd>.

ragse;hiname Sedo.Namhu. Common

OutputPath: "deploy~BRelease\'
Done Building Project "C:xInsideMSBuildsFundamentals\PropertiesB5.proj" (PrintInfo target{s)>.

Build succeeded.
B Yarning{s>
B Errords)

FIGURE 2-5 PrintInfo result for Properties05.proj

From Figure 2-5, we can see that the values for the properties that were provided at the
command line were successfully passed through. Note in this example that we passed
the OutputPath contained in quotes and the end is marked with \\ because \" is an
escaped quote mark (“). In this case, the quotes are optional, but if you are passing values

31

containing spaces, then they are required. When you provide a value for a property through

the command line, it takes precedence over all other static property declarations. To
demonstrate this, take a look at a different version of this file, Properties06.proj, with the
values defined.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<PropertyGroup>
<AssemblyName>assemblyName</Assemb1yName>
</PropertyGroup>

<Target Name="PrintInfo">
<Message Text="AssemblyName: $(AssemblyName)" />
<Message Text ="OutputPath: $(OutputPath)" />
</Target>

<PropertyGroup>
<OutputPath>outputPath</OutputPath>
</PropertyGroup>

</Project>

Download from Wow! eBook <www.wowebook.com>

32

Part| Overview

In this file, we have specified a value for both AssemblyName and OutputPath. To show that
the location of the property with respect to targets doesn't affect the result, | have placed
one value at the beginning of the file and the other at the end. If you execute the command
msbuild.exe Properties06.proj /t:PrintInfo /p:AssemblyName=Sedo.Namhu
.Common;OutputPath="deploy\Release\\", the result would be the same as that shown in
Figure 2-5. Command-line properties are special properties and have some special behavior
that you should be aware of:

B Command-line properties cannot have their values changed (except through dynamic
properties, which is covered in the next section).

B The values get passed to all projects through the MSBuild task.

B Their values take precedence over all other property type values, including
environment variables and toolset properties. The MSBuild toolset defines what version
of the MSBuild tools will be used. For example, you can use v2.0, v3.5, or v4.0.

Thus far, we have covered pretty much everything you need to know about static properties.
Now we'll move on to discuss dynamic properties.

Dynamic Properties

When you create properties in your build scripts, static properties will be good enough most
of the time. But there are many times when you need to either create new properties or

to modify the values of existing properties during the build within targets. These types of
properties can be called dynamic properties. Let’s take a look at how we can create and use
these properties.

In MSBuild 2.0, there was only one way to create dynamic properties, and that was using
the CreateProperty task. In MSBuild 3.5 and 4.0, there is a much cleaner approach that you
should use, which we cover right after our discussion on the CreateProperty task. Before we
discuss how we can use CreateProperty, we have to discuss how to get a value from a task
out to the MSBuild file calling it. When a task exposes a value to MSBuild, this is known as
an Output property. MSBuild files can extract output values from tasks using the Output
element. The Output element must be placed inside the tags of the task to extract the value.
A task can see only those items and properties passed into it explicitly. This is by design and
makes it easier to maintain and reuse tasks. To demonstrate this, take a look at the following
project file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<Target Name="PrintProperty">
<Message Text="AssemblyName: $(AssemblyName)" />

<CreateProperty Value="Sedodream.Build.Tasks">

Chapter 2 MSBuild Deep Dive, Part 1 33

<Output TaskParameter="Value" PropertyName="AssemblyName" />
</CreateProperty>

<Message Text="AssemblyName: $(AssemblyName)" />
</Target>

</Project>

In this file, the PrintProperty target first prints the value for AssemblyName, which hasn't
been defined so it should be empty. Then the CreateProperty task is used to define the
AssemblyName property. Let's take a close look at this so we can fully understand the
invocations. The statement <CreateProperty Value="Sedodream.Build.Tasks"> invokes
CreateProperty and initializes the property named Value to Sedodream.Build.Tasks. The
inner statement, <Output TaskParameter="Value" PropertyName="AssemblyName" />,
populates the MSBuild property AssemblyName with the value for the .NET property
Value. The Output element must declare a TaskParameter, which is the name of the task’s
.NET property to output, and can either contain a value of PropertyName or ltemName,
depending on whether it is supposed to output a property or item, respectively. In this case,
we are emitting a property so we use the value PropertyName. Looking back at the example
shown previously, we would expect that after the CreateProperty task executes, the property
AssemblyName will be set to Sedodream.Build.Tasks. The result of the PrintProperty target
is shown in Figure 2-6.
gu:igsggggggslégsgbg%igs?Elés g:ngﬁrtlesﬂ? proj <t:PrintProperty ~nologo
;:gg:gﬁong:;Ts1deHSBu11d\ChBZ\PPDpePt13537 proj" on node 1 (PrintProperty target(s)>.

AssemblyName :

AssemblyName : Sedodream Build.Tasks
Done Building Project "C:~InsideMS8Build-ChB2“Properties@?7.proj" (PrintProperty target{sd>.

Build succeeded.
A8 Warning{s>
8 Error(sd

FIGURE 2-6 PrintProperty results

From the results shown in Figure 2-6, we can see that the value for AssemblyName was set,
as expected, by the CreateProperty task. In this example, we are creating a property that
did not exist previously, but the CreateProperty task also can modify the value for existing
properties. If you use the task to output a value to a property that already exists, then it will
be overwritten. This is true unless a property is reserved. Command-line parameters cannot
be overwritten by statically declared properties, only by properties within targets.

If you are using MSBuild 3.5 or 4.0, you can use the CreateProperty task, but there is a
cleaner method. You can place PropertyGroup declarations directly inside of targets. With
this new approach, you can create static and dynamic properties in the same manner.
The cleaner version of the previous example is shown as follows. This is contained in the
Properties08.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

34

Part| Overview

<Target Name="PrintProperty">
<Message Text="AssemblyName: $(AssemblyName)" />

<PropertyGroup>
<AssemblyName>Sedodream.Build.Tasks</AssemblyName>
</PropertyGroup>

<Message Text="AssemblyName: $(AssemblyName)" />
</Target>

</Project>

The results of the preceding project file are identical to the example shown in Properties07
.proj, but the syntax is much clearer. This is the preferred approach to creating dynamic
properties. This syntax is not supported by MSBuild 2.0, so be sure not to use it in such files.
Now that we have thoroughly covered properties, we'll move on to discuss items in detail.

Items

When software is being built, files and directories are used heavily. Because of the usage and
importance of files and directories, MSBuild has a specific construct to support these. This
construct is items. In the previous section, we covered properties. As stated previously, in
programming terms, properties can be considered a regular scalar variable. This is because

a property has a unique name and a single value. An item can be thought of as an array.
This is because an item has a single name but can have multiple values. Properties use
PropertyGroup to declare properties; similarly, items use an ltemGroup element. Take a look
at the following very simple example from ItemsO1.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src\one.txt" />
</ItemGroup>

<Target Name="Print">
<Message Text="SourceFiles: @(SourceFiles)" />
</Target>

</Project>

As stated previously, statically declared items will be inside an ltemGroup element. The value

for the Include attribute determines what values get assigned to the item. Of the few types of
values that can be assigned to the Include attribute, we'll start with the simplest. The simplest
value for Include is a text value. In the previous sample, one item, SourceFiles, is declared. The
SourceFiles item is set to include one file, which is located at src\one.txt. To get the value of

Chapter 2 MSBuild Deep Dive, Part 1

an item, you use the @(/temType) syntax. In the Print target this is used on the SourceFiles
item. The result of the Print target is shown in Figure 2-7.

G:nInsideMSBuild~ChB2>msbuild ItemsB1.proj ~t:Print ~nologo
Build started 9-28-2010 18:26:35 PM.
;ruject "C:xInsideMSBuild~ChA2~ItemsBl.proj" on node 1 {(Print target(s)>.
rint :

BourceFiles: srchone.txt
Donc Building Projcct "C:wInzidcMEBuildwChB2-ItcmzBl.proj" <Print targectl{s>>.

Build succeeded.
A8 Warning{s>
8 Error(sd

FIGURE 2-7 Print target result for Items01.proj

35

From the result shown in Figure 2-7, you can see that the file was assigned to the SourceFiles

item as expected. From this example, an item seems to behave exactly as a property; this
is because we assigned only a single value to the item. The behavior changes when there
are more values assigned to the item. The following example is a modified version of the
previous example. This modified version is contained in the Items02.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src\one.txt" />
<SourceFiles Include="src\two.txt" />
</ItemGroup>

<Target Name="Print">
<Message Text="SourceFiles: @(SourceFiles)" />
</Target>

</Project>

In this version, the SourceFiles item type is declared twice. When more than one item
declaration is encountered, the values are appended to each other instead of overwritten

like properties. Alternatively, you could have declared the SourceFiles item on a single line by

placing both values inside the Include attribute, separated by a semicolon. So the previous

sample would be equivalent to the following one. With respect to item declarations, ordering

is significant and preserved.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src\one.txt;src\two.txt" />
</ItemGroup>

<Target Name="Print'">
<Message Text="SourceFiles: @(SourceFiles)" />

</Target>

</Project>

36 Part | Overview

If you execute the Print target on this file, the result will be what is shown in Figure 2-8.

C:5\InsideMSBuild\ChB2>mshuild ItemsB2 _proj ~t:Print ~nologo
Build started 28,2018 1@:28:25 PM.
Project "C:xInzideMSBuild~ChBA2\Itemz@B2_proj" on node 1 (Print target(s)>.
Print:
SourceFiles: srchone.txt;spchtuwo.
Done Building Project “'C: \InsldeHSBulld\ChBZ\ItemsBZ proj" (Print target(sd).

Build succeeded.
A Yarning(s)
B Erroris>

FIGURE 2-8 Print target results for ltems02.proj

In this version, we have supplied two values into the SourceFiles item. If you look at the
documentation for the Message task, you will notice that the Text property is a string.
Fundamentally, there are two types of values in MSBuild: single-valued values and
multi-valued values. These are known as scalar values and vector values, respectively.
Properties are scalar values, and items are vector values. What happens when we have a
vector value that we need to pass to a task that is accepting only scalar values? MSBuild

will first flatten the item before sending it to the task. The value that is passed to the Text
property on the Message can be only a single-valued parameter, not a multi-valued one.
The @(ItemType) operator flattens the SourceFiles item for us, before it is sent into the task.
When using @(ItemType), if there is only one value inside the item, that value is used. If there
is more than one value contained by the item, then all values are combined, separated by a
semicolon by default. Flattening an item is the most basic example of an item transformation.
We'll discuss this topic, and using custom separators, in more detail in the section entitled
“Item Transformations,” later in this chapter. For now, let's move on to see how items are
more commonly used.

Note MSBuild doesn't recognize file types by extension as some other build tools do. Also, be
aware that item lists do not have to point to files; they can be any type of list-based value. We
will see examples of this throughout this book.

Copy Task

A very common scenario for builds is copying a set of files from one place to another.
How can we achieve this with MSBuild? There are several ways to do this, which we will
demonstrate in this chapter. Before we discuss how to copy the files, we'll first take a close
look at the Include statement of an item. | have created some sample files shown in the
following tree, which we will use for the remainder of the chapter.

C:\InsideMSBuild\Ch02

Chapter 2 MSBuild Deep Dive, Part 1 37

! one.txt

! two.txt

! three.txt
' four

1

|

+---sub
sub_one.txt
sub_two. txt
sub_three.txt
sub_four.txt

Previously, | said that three types of values can be contained in the Include declaration of
an item:

1. Asingle value

"o

2. Multiple values separated by a “;
3. Declared using wildcards

We have shown how 1 and 2 work, so now we'll discuss 3—using wildcards to declare items.
These wildcards always resolve values to items on disk. There are three wildcard declarations:
* ** and ?. You may already be familiar with these from usage in other tools, but we will
quickly review them once again here. The * descriptor is used to declare that either zero

or more characters can be used in its place. The ** descriptor is used to search directories
recursively, and the ? is a placeholder for only one character. Effectively, the "*" descriptor
matches any characters except for “/” while “**" descriptor matches any characters, including
“/". For example, if file.*proj used this declaration, the following values would meet the
criteria: file.csproj, file.vbproj, file.vdproj, file.vcproj, file.proj, file.mproj, file.1proj, etc. In contrast,
file.?proj will allow only one character to replace the ? character. Therefore, from the previous
list of matching names, only file.mproj and file.1proj meet those criteria. We will examine the
** descriptor shortly in an example. Take a look at the snippet from the following Copy01
.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src*" />
</ItemGroup>

<Target Name="PrintFiles">
<Message Text="SourceFiles: @(SourceFiles)" />
</Target>

</Project>

In this example, we have used the * syntax to populate the SourceFiles item. Using this
syntax, we would expect all the files in the src\ folder to be placed into the item. In order to
verify this, you can execute the PrintFiles target. If you were to do this, the result would be

38

Part| Overview

the statement ‘SourceFiles: src\four.txt;src\one.txt;src\three.txt;src\two
.txt'—so we were able to successfully populate the item. Back to the ** wildcard: take a look
at the following portion of the Copy02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src***.txt" />
</ItemGroup>

<Target Name="PrintFiles">
<Message Text="SourceFiles: @(SourceFiles)" />
</Target>
</Project>

In this version of the SourceFiles declaration, we used the ** descriptor to denote that the
src\ folder should be searched recursively for files matching the pattern *.txt. We could

have stayed with the * pattern here as well, but | changed it for demonstration. We would
expect all the files in the src\ and src\sub\ folder to be placed into the SourceFiles item. If you
execute the PrintFiles target on this file, you would get the result shown in Figure 2-9.
C:5\InsideMSBuild“\ChB2>msbhuild CopyB2 proj #t:PrintFiles ~nologo

Build started 2-28-2018 1A:3M:1%

;rngﬁtl"C_\InsldeHSBulld\ChBZ\CupyBZ .proj"” on node 1 (PrintFiles target{(s)>.

P&zur;e;iies srchfour. txtisrchone txt;srchsubrzub_four. txt;zrcisubhzub_one txt;srchsubhzub_three

-txts;srehsubssub_two. txt,src\three txtisprentwo.txt
Done Building Project “C: \InsldeHSEulld\ChB2\Copy82 proj" (PrintFiles target<{s)>>.

Build succeeded.
B Warningds)
8 Error(s>

FIGURE 2-9 PrintFiles result for Copy02.proj

As expected, the SourceFiles item does contain all the files in both of those folders. Now that
we have discussed items declared using wildcards, we'll revert to the topic of copying files.

In order to copy files from one location to another, we can use the built-in Copy task. This
task has a few different input parameters, which are summarized in Table 2-2.

TABLE 2-2 Copy Task Parameters

Name Description

SourceFiles Contains the files that should be copied.

DestinationFolder The path to the folder where the files should be copied. If this
parameter is specified, then the DestinationFiles parameter cannot be
used.

DestinationFiles Contains the locations where the files should be copied to. If this is used,

there must be a one-to-one correspondence between this list and the
SourceFiles list. Also, if this is used, the DestinationFolder parameter
cannot be used.

CopiedFiles Output parameter that contains the files that were successfully copied.

Chapter 2 MSBuild Deep Dive, Part 1 39

Name Description

SkipUnchangedFiles If true, then only changed files, based on their timestamp and size, will
be copied. Otherwise, all files will be copied.

OverwriteReadOnlyFiles If true, then read-only files will be overwritten. Otherwise, read-only
files will not be overwritten.

Retries * The number of times that the copy should be retried if previous
attempts fail. The default value is 0. This can be used to make builds
more robust if multiple projects tend to copy a file to the same place.

RetryDelayMilliseconds * The delay, in milliseconds, between any retries.

UseHardlinkslfPossible * If true, then hard links are created instead of actually copying the files.
This is useful for speeding up the file copying process as well as saving

disk space. One downside to hard links is the increased likelihood for file
locks.

* denotes new parameters with MSBuild 4.0

When you use the Copy task, you will always use the SourceFiles property to define what
files should be copied. As for the location where the files will be copied to, you have a
choice of using either DestinationFolder or DestinationFiles. The only time you should use
DestinationFolder instead of DestinationFiles is when you are copying files into the same
destination directory. Take a look at the following complete version of the Copy01.proj; the
bold delineates the added parts.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src*" />
</ItemGroup>

<PropertyGroup>
<Dest>dest\</Dest>
</PropertyGroup>

<Target Name="PrintFiles">
<Message Text="SourceFiles: @(SourceFiles)" />
</Target>
<Target Name="CopyFiles'">
<Copy SourceFiles="@(SourceFiles)"
DestinationFolder="$(Dest)" />
</Target>
</Project>

This file now contains a CopyFiles target, which invokes the Copy task in order to copy the
files in the src folder to the dest folder. Notice that the Dest property ends with a slash; when
creating properties that point to directories, it is a best practice to declare them ending

in a trailing slash. A forward or backward slash will work equally well. In this example, the
DestinationFolder property is used to specify the folder into which the files should be copied.
If you execute the CopyFiles target, the result will be what is shown in Figure 2-10.

40

Part| Overview

C:\InzideM5Build~\ChB2>*mzhuild CopyBl.proj At:CopyFiles nologo
Build started 9/28-20818 18:31:57 PH.
Project '"C:xInsideMSBuild~ChB2-CopyAl.proj'" on node 1 (CopyFiles target(s>>.
CopyFiles:
Creating directory “"dest".
Copying file from "srcnfour.txt" to "destnfour.txt'.
Copying file from “srchone.txt" to “dest“one.txt".
Copying file from "srcsthree.txt' to "deststhree.txt".
GCopying file from "srcntwo.txt" to "destntwo.txt™.
Done Building Project "C:5\InsideMSBuild-ChB2-Copy®l .proj" (CopyFiles target{sl>.

Build succeeded.
B Warning<s>)
B Error(s>

FIGURE 2-10 CopyFiles result for Copy01.proj

From the result shown in Figure 2-10, we can see that the files were copied successfully.

We can now take a look at how we can copy files from more than one folder to another
location. In order to achieve this, we will use DestinationFiles instead of the DestinationFolder
property. We could use DestinationFolder along with batching, an advanced technique
discussed in Chapter 6, “Batching and Incremental Builds.” For now, we will use the
DestinationFiles approach. The completed version of the Copy02.proj file is shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src***.txt" />
</ItemGroup>

<PropertyGroup>
<Dest>$(MSBuildProjectDirectory)\dest\</Dest>
</PropertyGroup>

<Target Name="PrintFiles">
<Message Text="SourceFiles: @(SourceFiles)" />
</Target>
<Target Name="CopyFiles'">
<Copy SourceFiles="@(SourceFiles)"
DestinationFiles=
"@(SourceFiles->"'$(Dest)%(RecursiveDir)%(Filename)%(Extension)')" />
</Target>
</Project>

In this sample, the portions in bold are the regions that have been added. This MSBuild file
declares the SourceFiles item to include all the files in the src\ folder as well as all folders
underneath it. In the CopyFiles target, the DestinationFiles parameter is used to specify

the location where the files are to be copied to. The value for the DestinationFiles is called

an item transformation on the SourceFiles item. We'll take a closer look at these later in

this chapter. Iltem transformations also depend on item metadata, which we will discuss

in the next section. Until we cover those subjects, we cannot fully examine this example,

so we will revisit it later in this chapter. With that being said, we can at least execute the
CopyFiles target to see if it does work as expected. The result of this invocation is captured in
Figure 2-11.

Chapter 2 MSBuild Deep Dive, Part 1 41

C=xInzideMEBuild \Ch#2>mzbuild CopyB2 proj ~t:CopyFilez snologo

Build started 2-28-2818 18:35:11 PM.

Project "C:xInszideMSBuild~ChB2 CopyB2_proj" on node 1 (CopyFiles target(zd)._

CopyFiles:
Creating directory "C:xInsideMSBuild~ChBZ-dest'_
Copying file from "src~four.txt" to "C:\InsideMSBuild\ChB2\dest“four.txt'.
Copying file from "sprchone.txt'" to "C:xInsideNSBuild~ChBZ-dest™one.txt"'.
Creating directory "C:x\InsideMSBuild~ChB2sdest\sub".
GCopying file from "srchsubssub_four.txt' to "C:xInsideM8Build\ChB2:destwsub:sub_four.txt'.
Copying file from "srchsubssub_one.txt" to "C:\InsideMSBuildsChB2\dest“subNsub_one.txt'".
Copying file from "srchsubssub_three.txt” to "C:iNInsideM3Builds\ChB2hdestssubhsub_three.txt".
Copying file from "srchsubhsub_two._txt' to "C:\InzideMSBuildsCh@2:\dest>\subM\sub_two_txt'.
Copying file from “srcsthree.txt" to "C:sInsideM8Build“\ChB2-dest>three.txt".
Copying file from "srchtwo_txt" to "C:xInsideNSBuildsChB2hdestNtwo_ txt".

Done Building Project ""C:“\InsideMSBuild~ChB2“Copy@2.proj" (CopyFiles target(s)>.

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 2-11 Result of the CopyfFiles task for Copy02.proj

From the result shown in Figure 2-11, we can see that the files from src\ and src\sub\ were
successfully copied into the dest folder. Now we'll move on to discuss item metadata, which
is another distinction between items and properties.

Well-Known Item Metadata

When you create items, each value in an item also has a set of metadata associated with it.
This is another difference between items and properties. A property is a key-value pair, but
each element in an item is much richer than a property. Each of these can have zero or more
metadata values associated with them. These metadata are also key-value pairs. For files and
directories, you are given a set of metadata automatically. These are well-known metadata.
They are read-only and are summarized in Table 2-3.

TABLE 2-3 Well-Known Metadata

Name Description

FullPath Full path of the file.

RootDir The root directory to which the file belongs, such as c:\.

Filename The name of the file, not including the extension.

Extension The extension of the file, including the period.

RelativeDir Contains the path specified in the Include attribute, up to the final backslash (\).
Directory Directory of the item, without the root directory.

RecursiveDir This is the expanded directory path starting from the first ** of the include

declaration. If no ** is present, then this value is empty. If multiple ** are
present, then RecursiveDir will be the expanded value starting from the first **.
This may sound peculiar, but it is what makes recursive copying possible.

Identity The value that was specified in the Include attribute of the item.
ModifiedTime The last time the file was modified.
CreatedTime The time the file was created.

AccessedTime The last time the file was accessed.

42

Part| Overview

Note For well-known metadata, the Include value of the item needs to be a path for the values
to be populated.

We will now see how we can use these, and later in the chapter we'll discuss custom
metadata. In order to demonstrate using well-known metadata, take a look at the following
simple project. This is taken from the file WellKknownMetadata.proj.

<Project xmins="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<src Include="src\one.txt" />
</ItemGroup>
<Target Name="PrintWellKnownMetadata">

<Message Text="===== Well known metadata =====" />

<l-- %40 = @ -->

<l-- %25 = % -->

<Message Text="%40(src->"'%25(FullPath)'): @(src->"'%(FullPath)")" />
<Message Text="%40(src->'%25(Rootdir)'): @(src->'%(Rootdir)')" />

<Message Text="%40(src->"'%25(Filename)'): @(src->'%(Filename)')" />
<Message Text="%40(src->"'%25(Extension)'): @(src->'%(Extension)')" />
<Message Text="%40(src->'%25(RelativeDir)'): @(src->'%(RelativeDir)')" />
<Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')" />
<Message Text="%40(src->"'%25(RecursiveDir)'): @(src->"'%(RecursiveDir)')" />
<Message Text="%40(src->'%25(Identity)"'): @(src->'%(Identity)"')" />
<Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')" />
<Message Text="%40(src->'%25(CreatedTime)'): @(src->'%(CreatedTime)')" />
<Message Text="%40(src->"'%25(AccessedTime)'): @(src->'%(AccessedTime)')" />

</Target>
</Project>

Note In order to use reserved characters such as % and @, you have to escape. This
is accomplished by the syntax %HV, where HV is the hex value of the character. This is
demonstrated in this code sample with %25 and %40.

From the preceding project, one item is created: the src item. This item purposefully contains
only a single file, one.txt. In order to extract a single metadata value from an item, you can
use the @(ItemType->'%(MetadataName) ') syntax, where ltemType is the name of the

item and MetadataName is the name of the metadata to extract. We can see that in the
PrintWellKnownMetadata target, all the well-known values from Table 2-3 are printed. The
@(ItemType->'%(MetadataName)') syntax is a simplified version of an item transformation,
which we will discuss in the next section. If you execute the PrintWellKnownMetadata target
on this file, the result will be what is shown in Figure 2-12.

Chapter 2 MSBuild Deep Dive, Part 1 43

C:xIngideMSBuild~ChB2>mszbuild WellKnownMetadata.proj ~t:PrintlellKnownMetadata ~nologo
Build started 2-28.-2818 18:37:87 PM.
Project "C:x\InsideMSBuild~ChB2“UellKnownMetadata.proj" on node 1 (PrintWellKnownMetadata target(sd
.
PrintWellKnownMetadata:

===== Well known metadata =====

B(gpc—>'%(FullPath)’'>: C:\InsideMSBuild\ChB2\src-one.txt

B(sprc—>'%(Rootdird’ > C:N

B{src—>'«{Filename’>: one

B{sprc—>' w{Extension)}’)>: .txt

B(zspc—>' #x(RelativeDir)d’'d: srch

B(zpc—>' 2(Directory)’ >: InzideMSBuild \ChBA2 \zrc™

B{src—>' «{Recursivelird’ >:

B{sprc—>'2{Ildentity)’ »: src one.txt

B(spc—>'2(ModifiedTime>’>: 2010-A7-88 21:45:13.6875800

B(spc—>'2{(CreatedTine>’>: 2018-A?-A8 21:45:13.68758608

B{src—>'z{AccessedTine>’>: 2010-89-B8 21:45:13.68750680
Done Building Project '"G:~InsideMS$Build“~ChB2“WellKnownMetadata.proj" (PrintWellKEnownMetadata targe
t(s)d.

Build succeeded.
A8 Warning{s)
A Errords)

FIGURE 2-12 Well-known metadata

The result in Figure 2-12 demonstrates most of the well-known metadata that are available
to be used for files and directories. One metadata value that needs further explanation is
RecursiveDir. In order to see this value being populated, you need to create an item with
the ** wildcard declaration. To see this, we can examine a slightly modified version of the
previous file, the following WellKnownMetadata02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<src Include="src**\sub_one.txt" />
</ItemGroup>
<Target Name="PrintWellKnownMetadata">

<Message Text="===== Well known metadata =====" />

<l-- %40 = @ -->

<l-- %25 = % -->

<Message Text="%40(src->"'%25(FullPath)'): @(src->'%(FullPath)")" />
<Message Text="%40(src->'%25(Rootdir)'): @(src->"'%(Rootdir)')" />

<Message Text="%40(src->"'%25(Filename)'): @(src->'%(Filename)')" />
<Message Text="%40(src->"'%25(Extension)'): @(src->'%(Extension)')" />
<Message Text="%40(src->"'%25(RelativeDir)'): @(src->'%(RelativeDir)')" />
<Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')" />
<Message Text="%40(src->"'%25(RecursiveDir)'): @(src->"'%(RecursiveDir)')" />
<Message Text="%40(src->'%25(Identity)'): @(src->'%(Identity)')" />
<Message Text="%40(src->"'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')" />
<Message Text="%40(src->"'%25(CreatedTime)'): @(src->'%(CreatedTime)')" />
<Message Text="%40(src->"'%25(AccessedTime)'): @(src->'%(AccessedTime)')" />

</Target>
</Project>

The section that has changed from the previous version has been put in bold. | have modified
this to use the ** qualifier, but at the same time to allow only a single file to be in the item. If
you were to execute this MSBuild file, you would see results very similar to the previous one,
but the main difference in the output is the line @(src->"'%(RecursiveDir) ') : sub\. As
Table 2-3 states, RecursiveDir will take the value that matches the ** declaration. In this case,
the value used was sub\, which is exactly what we would expect. The summary in Table 2-3

44

Part| Overview

is not entirely correct for RecursiveDir, but it is more concise than the correct definition. To
understand the behavior of RecursiveDir, take a look at the following code block, and its
explanation, which is contained in WellKknownMetadata03.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<src Include="src**\sub\sub_one.txt" />
</ItemGroup>
<Target Name="PrintWellKnownMetadata">

<Message Text="===== Well known metadata =====" />

<l-- %40 = @ -->

<l-- %25 =% -->

<Message Text="%40(src->"'%25(FullPath)'): @(src->'%(FullPath))" />
<Message Text="%40(src->"'%25(Rootdir)"'): @(src->'%(Rootdir)')" />

<Message Text="%40(src->"'%25(Filename)'): @(src->'%(Filename)')" />
<Message Text="%40(src->"'%25(Extension)'): @(src->'%(Extension)')" />
<Message Text="%40(src->"'%25(RelativeDir)'): @(src->'%(RelativeDir)')" />
<Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')" />
<Message Text="%40(src->"'%25(RecursiveDir)'): @(src->"'%(RecursiveDir)')" />
<Message Text="%40(src->"'%25(Identity)'): @(src->'%(Identity))" />
<Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')" />
<Message Text="%40(src->"'%25(CreatedTime)'): @(src->'%(CreatedTime)')" />
<Message Text="%40(src->"'%25(AccessedTime)'): @(src->'%(AccessedTime)')" />

</Target>
</Project>

The line that has been changed is bold, and the part to make note of is that part of the path
is specified after the ** declaration on the src item. If you print the RecursiveDir value for this
new item, you will get the same result of ‘@(src->'%(RecursiveDir)'): sub\’, so the result
was the same even though we specified the subdirectory name after the **. This is because
the RecursiveDir metadata doesn’t examine what the item specification declared after the
initial **. It looks at the item specification, finds the first occurrence of ** and returns the
remaining section of the path from that specification. If you have multiple **s in a single
item specification, it wouldn't affect the result of the RecursiveDir; it would still behave as

| described by finding the first occurrence of the ** and return the path that follows. Now
that we have discussed well-known metadata in depth, we will move on to discuss custom
metadata followed by item transformations.

Custom Metadata

When you declare items that point to files or directories, you get a set of metadata for
free—this is the well-known metadata that we discussed in the previous section. What if
you have the need to associate some additional data with an item? You can do this; they are
called custom metadata and they behave exactly the same as well-known metadata, with
the exception that well-known metadata are read-only. When you declare an item, you will

Chapter 2 MSBuild Deep Dive, Part 1 45

associate the metadata with its declaration. In this section, we will describe how to create and
use custom metadata in your build scripts.

Metadata behaves similarly to properties in the sense that they are key-value pairs. So each
piece of metadata, custom or not, has a name, which is the key, and a value, which is untyped
as for property values but “cast” as needed to pass into tasks. For statically created items,
you will declare the metadata as a child of the item element itself. The metadata key is the
element name, and the value of the metadata is the value of the XML element. For example,
take a look at the following project file, MetadataOl.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<Server Include="Serverl">
<Type>2008</Type>
<Name>SVR01</Name>
<AdminContact>Sayed Ibrahim Hashimi</AdminContact>
</Server>
<Server Include="Server2">
<Type>2003</Type>
<Name>SVR02</Name>
<AdminContact>Sayed Y. Hashimi</AdminContact>
</Server>
<Server Include="Server3">
<Type>2008</Type>
<Name>SVR03</Name>
<AdminContact>Nicole Woodsmall</AdminContact>
</Server>
<Server Include="Server4"s>
<Type>2003</Type>
<Name>SVR04</Name>
<AdminContact>Keith Tingle</AdminContact>
</Server>
</ItemGroup>

<Target Name="PrintInfo" Outputs="%(Server.Identity)">
<Message Text="Server: @(Server)" />
<Message Text="Admin: @(Server->'%(AdminContact)')" />
</Target>

</Project>

In this project file, we have declared an item, Server, which will have three metadata values
associated with it. If you take a look at each item’s declaration, you will see that each

has three XML child elements: Type, Name, and AdminContact. Each of these is custom
metadata, and after the item is created, you can access those values using the same syntax
as you would with well-known metadata. You can have any number of metadata elements
declared. Also, you should note that if your item’s declaration uses wildcards, then each
item value created from the Include will have the attached metadata. You are not limited

46

Part| Overview

to text in declaring these values; you can use any MSBuild statements as a metadata value
declaration. In the previous project file, there is one target, Printinfo, which, as it is named,
prints the information for the Server item. This target uses another technique called batching,
which in this case will cause the target to be executed once per each value in Server. We will
thoroughly examine batching in Chapter 6. If you execute this target, the result will be what
is shown in Figure 2-13.

C:nInzideM5BuildsCh@A2>mezbuild Metadata®l.proj st:PrintInfo ~nologo
Build started 92820108 1B8:41:54 PM.
Project "GC:xInsideMSBuild~Ch@A2-MetadataBl.proj" on node 1 (PrintInfo target(sl>.
PrintInfo:
Server: Serverl
Admin: Sayed Ibrahim Hashimi
PrintInfo:
Server: Server2
Admin: Sayed Y. Hashimi
PrintInfo:
Server: Serverd
Admin: Nicole Woodsmall
PrintInfo:
Server: Serverd
Admin: HKeith Tingle
Done Building Project "G:xInsideMSBuild~Ch@2-MetadataBl.proj'" (PrintInfo target(sd)>.

Build succeeded.
A Warning(s)>
B Errorisd

FIGURE 2-13 PrintInfo target results on MetadataOl.proj

The Printinfo target extracts custom metadata values in the same way as well-known
metadata values are extracted. Figure 2-13 demonstrates that this does work exactly as
expected. Well-known metadata are always read-only, whereas custom metadata are not.
Therefore, if you provide a value for already-existing metadata, that value will be overwritten.
For instance, consider the following taken from Metadata02.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<Server Include="Serverl">
<Type>2008</Type>
<Name>SVR01</Name>
<AdminContact>Adam Barr</AdminContact>
<AdminContact>Kim Abercrombie</AdminContact>
</Server>
</ItemGroup>

<Target Name="PrintInfo" Outputs="%(Server.Identity)">
<Message Text="Server: @(Server)" />
<Message Text="Admin: @(Server->'%(AdminContact)')" />
</Target>
</Project>

Notice that the Server item defines AdminContact twice, with the second value equal
to “Kim Abercrombie”. If you execute the Printinfo target, the result for @(Server-
>'%(AdminContact) ') would be "Kim Abercrombie” instead of “Adam Barr".

Chapter 2 MSBuild Deep Dive, Part 1 47
Item Transformations

When you are using MSBuild, there are many times that you would like to take an existing
item, modify it a bit, and then pass it to a task. For example, if you are copying a set of files
from one place to another, you would like to take an item that points to an existing set of
files, change its location to point to the destination, and then give it to the Copy task for the
DestinationFiles property. MSBuild has a mechanism for this behavior built in: this process is
called item transformations, and we will discuss it in detail in this section. A transformation
can be expressed as A => A', where A is the original item and A’ is the transformed item.
Transformations always create new item lists and never modify the original item list. The
most important thing to remember is that A and A’ will always have the same number of
elements. This is because the transformation is processed on each element to generate the
new item. A transformation can be visualized as that shown in Figure 2-14.

Item Transformation

VYYVYVVYVYY

FIGURE 2-14 Item transformation visualization

As stated previously, the visualization in Figure 2-14 reemphasizes that an item
transformation is a one-to-one translation.

Now that we have defined what an item transformation is, we will take a look at the
transformation syntax and explain how it can be effectively used. Here is the syntax:

@(ItemType->'TransformExpression[TransformExpression. . .]'[,Separator])

where ltemType is the name of the item being transformed, TransformExpression is a
transform expression, and Separator is an optional parameter that will be used as the
separator between values.

Note Elements contained in [] are optional.

"

The default value for the separator is “;". You can use the syntax @(ItemType, [Separator])
where you do not declare any expressions but only override the separator. The three
acceptable types of transform expression are summarized in Table 2-4.

48

Part| Overview

TABLE 2-4 Transform Expressions

Type Description Example

Text Any plain text c:\test

Property Property value extraction expression $(Configuration)
Item Metadata Iltem metadata extraction expression %(FullPath)

As stated, there are only three possible types of transform expressions, and we will
demonstrate all of them in this section. You should note that there is no restriction on what
type/order transform expressions are declared in the transformation. To start our discussion
on transformations, we will examine the following file, TransformationO1.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="A11">
<ItemGroup>
<SourceFiles Include="src**\
</ItemGroup>

></SourceFiles>

<PropertyGroup>
<DestFolder>copy\</DestFolder>
</PropertyGroup>

<!-- %40 @ -->
<l-- %25 =% -->
<Target Name="PrintSourceFiles">
<Message Text="%40(SourceFiles):"
Importance="high" />
<Message Text="@(SourceFiles)" />
</Target>
<Target Name="DemoOl">
<Message Text="%40(SourceFiles->'%25(Filename)"'):"
Importance="high" />
<Message Text="@(SourceFiles->'%(Filename)')" />
</Target>
<Target Name="Demo02">
<Message Text="%40(SourceFiles->"'%25(Filename)%25(Extension)'):"
Importance="high"/>
<Message Text="@(SourceFiles->"'%(Filename)%(Extension)')" />
</Target>
<Target Name="Demo03">
<Message Text="%40(SourceFiles->"'%25(Filename)%25(Extension).bak'):"
Importance="high" />
<Message Text="@(SourceFiles->'%(Filename)%(Extension).bak')" />
</Target>

<ItemGroup>
<Transform0l
Include="@(SourceFiles->'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')" />
</ItemGroup>

Chapter 2 MSBuild Deep Dive, Part 1 49

<Target Name="Demo04">
<Message Text="%40(Transform01l):"
Importance="high" />
<Message Text="@(Transform01l)" />
<Message Text="===== Copying files =====
Importance="high" />
<Copy SourceFiles="@(SourceFiles)" DestinationFiles="@(Transform0l)" />
</Target>

<Target Name="A11"
DependsOnTargets="PrintSourceFiles;Demo0l;Demo02;Demo03;Demo04" />

</Project>

At the top of the project file, there is one item as well as one property declared. The item,
SourceFiles, points to some files that will be used throughout the example. The property,
DestFolder, contains a path to where some files should be copied. There is another item
defined toward the bottom of the file, which we will discuss later. This file contains five
relevant targets, one of which, PrintSourceFiles, prints out the list of files in the SourceFiles
item for reference when executing the other targets. Each of these targets essentially
contains one transformation that you should understand. The All target is declared simply to
execute the other targets for demonstration here. In the following list, we will describe these
targets and the transformations’ purpose.

Demo0O1

The transformation on the SourceFiles target is defined as @(SourceFiles-
>'%(Filename) '). This will transform the SourceFiles item list into a list containing the
Filename metadata value. If you recall from Table 2-2, this is the file name, with no path
information and no extension.

Demo02

The transformation in this target, @(SourceFiles->'%(Filename)%(Extension) "), extends
the previous transformation to add the extension, using the Extension well-known metadata.

Demo03

The transformation in this target, @(SourceFiles->'%(Filename)%(Extension).bak"),
demonstrates how we can use a combination of metadata values along with free text. This
transformation adds .bak to the end of the name of the file.

Demo04

This target is a little different in the sense that it doesn't actually contain the transformation
itself. This target uses the Transform01 item, which is a transformed version of the
SourceFiles item. The transformation to create this item is defined as

50

Part| Overview

@(SourceFiles->"'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)').In
this transformation, we create a new item that uses the DestFolder path to create a list of
file paths where the SourceFiles files should be copied to. Because the SourceFiles item
can contain items in subfolders, it uses the RecursiveDir metadata value to re-create the
appropriate directory structure in the DestFolder.

This file starts with a very simple example and then builds on it. These four transformations
describe the three types of transform expressions that are available. Now let’s take a look at
the result of executing all these targets, which is shown in Figure 2-15.

In the result shown in Figure 2-15, you can take a look at each transformation and make sure
that it performs the transformation that you would expect. Also, for the Demo04 target, we
can see that the files were successfully copied into the appropriate location.

C:\InsideMSBuild~ChB2*msbuild TransformationBl.proj ~#t:All ~nologo
Build started 9-28.-2018 18:43:56 PM.
Project "C:x\InsideM8Build ChB2:\Transformationdl_proj" on node 1 (A1l target{sd).
PrintSourceFiles:
B{SourceFiles)>:
sprchfour.txt;srehone . txtssrehsubisub_four. txtisreisubisub_one . txt;srehsubhsub_three.txt;sreisubs
sub_two._txtisrchthree txtisrcituwo.txt
Demo@l =
B{SourceFiles—>'«{(Filename)’ >z
fourjonessub_four;sub_one;sub_threessub_twosthree;two
Demo@2 =
B(SourceFiles—>'«(Filename)x (Extension)’>:
. fug;.txt;une.txt;sub_fuur.txt;suh_pne.txt;suh_three.txt;suh_twu.txt;three.txt;twu.txt
enodd :
B(SourceFiles—>' % (Filename)x (Extension) _hak’):
four.txt.bak;one.txt_bak;sub_four.txt.bak;sub_one.txt_bak:;subh_three.txt.bak;sub_two.txt_bak;thre
e.txt.baks;two.txt . bak
Deno@4:
B(Transformil’:
copy~four.txticopy one.txt;;copyssubisub_four. txticopyrsubisub_one . txt;copyssubixsub_three.txt;cop
yusubssub_two.txticopysthree.txt;copystwo.txt
===== Gopying files =====
Creating directory “copy'.
Copying file from "swvchfour.txt" to “copysfour. txt'.
Copying file from "srchone.txt" to “copyhone.txt".
Creating directory “copyssub'.
Copying File from "srchsubssub_four.txt" to “copyssubssub_four.txt".
Copying file from "swchsubisub_one.txt" to “copyssubisub_one.txt".
Copying file from "srchsubssub_three.txt' to "copyssubssub_three.txt™.
Copying file from "srchsubssub two.txt" to "copy\sub\suh_ﬁwo.txt".
Copying file from "src\three txt™ tn “copysthree.txt"
Copying file from “spchtuwo.txt" to "“copystwo.txt'.
Done Building Project "C:xInsideMSBuild~Ch@2-TransformationBl.proj” (All target(sl).

Build succeeded.
A Warning{s>»
Error{s)>

FIGURE 2-15 Transformation01.proj result
We will now revisit a previous example, the one contained in the following Copy02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<SourceFiles Include="src***.txt" />
</ItemGroup>

<PropertyGroup>
<Dest>$(MSBuildProjectDirectory)\dest\</Dest>
</PropertyGroup>

<Target Name="PrintFiles">
<Message Text="SourceFiles: @(SourceFiles)" />

Chapter 2 MSBuild Deep Dive, Part 1 51

</Target>
<Target Name="CopyFiles">
<Copy SourceFiles="@(SourceFiles)"
DestinationFiles=
"@(SourceFiles->"'$(Dest)%(RecursiveDir)%(Filename)%(Extension)')" />
</Target>
</Project>

We'll now fully describe the Copy statement in this build file. Let's dissect the DestinationFiles
value. This value, @(SourceFiles->'$(Dest)%(RecursiveDir)%(Filename)%(Extension) "),
is a transform. The components of the value are:

m $(Dest)

B %(RecursiveDir)
B %(Filename)

m %(Extension)

where $(Dest) is an evaluation of the Dest property, and the others are evaluations for
metadata values on the SourceFiles item. From this transformation, there is only one static
value, which is the value for $(Dest). Aside from that, all the values will be taken from the
metadata for each item element. These metadata values were previously discussed in this
chapter. The output of the CopyFiles target is shown in Figure 2-16.
G:nInsideMSBuild~ChB2>msbuild CopvyB2.proj ~t:CopyFiles ~nologo
Build started 2282010 10:47:280 PM.
Project "GC:xInsideM5Build~ChB2~CopyB2.proj"” on node 1 <CopyFiles target{sr).
CopyFiles:

Creating directory "C:xInsideMS5Build~ChB2-dest".

Copying file from "spcifour_txt" to "C:\InsideMEBuildsChB2sdest>Ffour._ txt'.

Copying file from “srchone.txt" to "C:ixInsideMSBuild~ChB2-dest-one.txt".

Creating directory "C:xInsideMS8Build~ChBZsdestszsuhbh'.

Copying file from "srchsubssub_four.txt" to "C:sInsideMSBuildsChB2sdestssubSsub_four.txt'.

Copying file from "sechsubssub_one.txt" to "C:xInsideMSBuildsChB2\destssubhzuh_one.txt'.

Copying file from "srchsubssub_three.txt" to "C:\InsideM3Build~ChB2-dest~subssub_three.txt'.

Copying file from "sechsubssub_two.txt" to “C:ixInsideMSBuildsChB2sdestssubhzsuh_two.txt'.

Copying file from "srcsthree.txt" to "C:\InsideMSBuild\ChB2-dest“three.txt".

Copying file from "spchtwo.txt'” to "C:xInsideMS8BuildsChB2-dest“two.txt'.
Done Building Project "C:\InsideMSBuildsChB2\CopyB2.proj" {(CopyFiles target(s>>.

Build succeeded.
B Warning{sl
B Erroris>

FIGURE 2-16 CopyFiles target result on Copy02.proj

From the output, we can see that eight files were successfully copied to the destination

as expected. Now we will examine the first copy message in more detail to describe the
transformation. In this example, the original item was specified as src\four.txt and it was
transformed into the file on the right side. In the transformed specification, the $(Dest) value
was assigned c:\InsideMSBuild\Ch02\dest\; the %(RecursiveDir) did not return a value, so it
was an empty string; the %(Filename) evaluated to the value “four”; and %(Extension) became
.txt. If you take a look at the output for the files in the subdirectory, you can see that the
%(RecursiveDir) metadata returned the path correctly. Now we have covered what you need
to know about item transformations, which are used extensively throughout MSBuild files.

52

Part| Overview

In this chapter, we have introduced a lot of material, including properties, items, metadata,
and transformations. Now we will move on to the next chapter, in which we will continue this
discussion and add the topics of dynamic properties and dynamic items. In the next chapter,
you will learn how properties and items are evaluated, and how to import other MSBuild files
and extend the build process.

Chapter 3

MSBuild Deep Dive, Part 2

In the previous chapter, we discussed a variety of topics, including static properties, static
items, and transformations. In this chapter, we will extend that discussion and conclude with
a foundation that is required to successfully use MSBuild. We will start by discussing dynamic
properties and items. We will also see how properties and items are evaluated as well as how
you can extend your own build process. Following this chapter, we will discuss custom tasks,
custom loggers, and other advanced topics.

Dynamic Properties and Items

Many times when building software, static items and properties, those defined outside of
targets, will do the job fine. For example, most of the time you know what files you are
building and the possible values for Configuration. From that you can determine what

files need to be built. Despite this, there are many instances where you will need to create
properties and items as your build is occurring. For example, if you want to build your
product and then copy the binaries from the output path to another location you will need
to be able to discover those created files. Properties and items that are created as your build
process is executing are called dynamic properties and dynamic items. In this section, we will
examine how to use these dynamic values.

Note In MSBuild 2.0, you were limited to creating dynamic properties and items with the tasks
CreateProperty and Createltem, respectively. They are now obsolete.

Dynamic Properties and Items: MSBuild 3.5

MSBuild 3.5 introduced the ability to use the PropertyGroup and ItemGroup elements
inside targets. With this enhancement, we can declare dynamic properties and items just as
we would normally declare them. You can see how dynamic properties are created in the
following example taken from DynamicOl.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="A11">

<PropertyGroup>

<Configuration>Debug</Configuration>
</PropertyGroup>

53

54

Part| Overview

<Target Name="PrintConfig">
<Message Text="Config: $(Configuration)" />
</Target>

<Target Name="PrintConfig2">
<PropertyGroup>
<Configuration>Release</Configuration>
</PropertyGroup>

<Message Text="Config: $(Configuration)" />
</Target>

<Target Name="A11" DependsOnTargets="PrintConfig;PrintConfig2" />
</Project>

If you execute the All target, which simply executes the other targets, the result is that shown
in Figure 3-1.

GC:nInsideMSBuild~ChA3>msbuild DynamicBl.proj ~t:All ~nologo
Build started 292018 18:12:41 PM.
Project "C:xInsideMSBuild~ChBA3~DynamicBl.proj" on node 1 <All target{si>.
PrintConfig:

Config: Debug
PrintConfig2:

Config: Release
Done Building Project ""C::\InsideMS8Build~ChB3“\DynamicBl._proj" (All target(si>.

Build succeeded.
A Yarning(s)>
B Errorisd

FIGURE 3-1 Dynamic property result

As you can see from the result shown in Figure 3-1, the value for the Configuration property
was overridden dynamically inside the PrintConfig2 target. The usage of PropertyGroup is
not limited to modifying values for existing properties; you can create new properties as well.

To demonstrate that new properties can be created, the previous example has been
modified. Take a look at the new file, Dynamic02.proj, which is shown next.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="A11">

<PropertyGroup>
<Configuration>Debug</Configuration>
</PropertyGroup>

<Target Name="PrintConfig">
<Message Text="Config: $(Configuration)" />
</Target>

<Target Name="PrintConfig2">
<PropertyGroup>
<Configuration>Release</Configuration>
<OutputPath>$(Configuration)\dest\</OutputPath>
</PropertyGroup>

<Message Text="Config: $(Configuration)" />

Chapter 3 MSBuild Deep Dive, Part 2 55

<Message Text="OutputPath: $(OutputPath)" />
</Target>

<Target Name="A11" DependsOnTargets="PrintConfig;PrintConfig2" />
</Project>

In this example, the changed areas have been highlighted. Inside the PrintConfig2 target

a new property, OutputPath, is created using the PropertyGroup element. This new property
will contain the value of the Configuration property followed by dest\. After that, the newly
created property and the value of the Configuration property are printed out. Figure 3-2
shows the result of running this script.

C:5\InsideM8Build~ChA3>mzsbhuild DynamicB2_proj ~t:Al1l /nologo
Build started 9-9-2018 18:1%:48 PM.
Project "C:xInzideMSBuild~ChBA3“\DynamicB2_proj" on node 1 (A1l target(s)>.
PrintConfig:
Config: Debug
PrintConfig2:
Config: Release
OutputPath: Releasesdests
Done Building Project "C:~InsideMS8Build-ChB3-DynamicB2.proj" (All target{s>>».

Build succeeded.
Warning<s>»
8 Error(s)

FIGURE 3-2 Results for Dynamic02.proj

From the results shown in Figure 3-2, you can see that the OutputPath property was indeed
created and initialized successfully. Now that we have discussed dynamic properties, we can
take a look at how dynamic items are created.

The problem with static items is that the value for static items is always evaluated before any
target executes. Thus, if you need an item to contain any generated files, you must create
the item dynamically. To create dynamic items, you can use the ltemGroup element inside

a target. Inside a target, the ItemGroup element even has some new features. You are able to
remove values from an item and you can modify the metadata value for an item. Doing so
was not possible using MSBuild 2.0. Consider the following sample, which is contained in the
MetadataOl.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<Server Include="Serverl">
<Type>2008</Type>
<Name>SVR01</Name>
<AdminContact>Sayed Ibrahim Hashimi</AdminContact>
</Server>
<Server Include="Server2">
<Type>2003</Type>
<Name>SVR02</Name>
<AdminContact>Sayed Y. Hashimi</AdminContact>
</Server>
<Server Include="Server3">
<Type>2008</Type>
<Name>SVR03</Name>

56

Part| Overview

<AdminContact>Nicole Woodsmall</AdminContact>
</Server>
<Server Include="Server4">

<Type>2003</Type>

<Name>SVR04</Name>

<AdminContact>Keith Tingle</AdminContact>
</Server>

</ItemGroup>

<Target Name="PrintInfo">
<Message Text="%(Server.Identity) : %(Server.AdminContact)" />

<!-- just for new line -->

<Message Text=" " />

<Message Text="Overriding AdminContact" Importance="high" />
<!-- Override the AdminContact if it is set to Keith Tingle -->

<ItemGroup>
<Server Condition=""'%(Server.AdminContact)' == 'Keith Tingle'">
<AdminContact>Sayed Ibrahim Hashimi</AdminContact>
</Server>
</ItemGroup>

<Message Text="%(Server.Identity) : %(Server.AdminContact)" />

<Message Text=" "/>
<Message Text="Removing item" Importance="high" />
<!-- Remove an item -->
<ItemGroup>
<Server Remove='"Server2" />
</ItemGroup>
<Message Text="%(Server.Identity) : %(Server.AdminContact)" />

<!l--<Message Text="Server: @(Server)" />
<Message Text="Admin: @(Server->'%(AdminContact)')" />-->
</Target>
</Project>

In this MSBuild file, we have created an item type, Server, which contains a list of values
relating to servers. Each item value contains some custom metadata that describes it,
including AdminContact. Inside the PrintInfo target, the ItemGroup declaration of the Server
item is redefining the AdminContact metadata value, but only for items whose AdminContact
is set to the value 'Kim Abercrombie’. If the condition was not placed on the Server item type,
then it would affect all the Server item values. Following that, you can see how an item value
is removed. Now we can see if all this works by executing the PrintInfo target of this MSBuild
file. The results are shown in Figure 3-3.

As you can see from the output, first the value for the AdminContact metadata was modified
for one of the values and then an item value was removed from the Server item type. Now
that we have seen how dynamic items are created, we will move on to a more realistic
example.

Consider this typical scenario: After you build a project, you would like to copy all the
files in the output directory to another location. | will show you how this can be achieved

Download from Wow! eBook <www.wowebook.com>

Chapter 3 MSBuild Deep Dive, Part 2 57

C:~InsideM8Build~ChB3>mshuild MetadataBl.proj ~t:PrintInfo ~nologo
Build started 9-9-2010 18:39:17 PM.
Project "C:~InsideM8Build-ChB3-MetadataBl.proj"” on node 1 (PrintInfo target{s>)>

PrintInfo:
Serverld = Sayed Ibrahim Hazhimi
Server?2 : Sayed Y. Hashimi

Serverd : Nicole Woodsmall
Serverd : Keith Tingle
Overriding AdminContact
Serverl = Sayed Ibrahim Hazhimi
Server?2 : Sayed Y. Hashimi
Scrverd : Hicole Woodamall
Serverd : Sayed Ibrahim Hashimi
Removing item
Serverd : Sayed Ibrahim Hashimi
Serverd : Micole Woodsmall
Serverd : Sayed Ibrahim Hashimi
Done Building Project "C:N\InsideMSBuild~ChB3\MetadataBl.proj" (PrintInfo target
L2 D

Build succeeded.
A Yarning(s)>
B Errvords>

FIGURE 3-3 MetadataOl.proj result

using dynamic items. In the sample files, | have created a simple Windows application,
WindowsApplication2. In the . csproj file for the project, | have added this functionality. The
following sample shows an abbreviated version of the WindowsApplication2.csproj file, which
contains all the added portions.

<Project ToolsVersion="4.0"
DefaultTargets="Build"
xmIns="http://schemas.microsoft.com/developer/msbuild/2003">

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

<!-- Extend build to copy the files 1in output dir -->
<PropertyGroup>
<BuildDependsOn>
$(BuildDependsOn);
CopyOutputFiles
</BuildDependsOn>
<OutputCopyFolder>$(MSBuildProjectDirectory)\CustomOutput\</OutputCopyFolders>
</PropertyGroup>
<Target Name="CopyOutputFiles">

<!-- Dynamically create the item because these files
are created during build -->
<ItemGroup>
<OutputFiles Include="$(OutputPath)***" />
</ItemGroup>

<MakeDir Directories="$(OutputCopyFolder)" />
<Copy SourceFiles="@(OutputFiles)"

DestinationFiles=
"@(OutputFiles->"'$(OutputCopyFolder)%(RecursiveDir)%(FileName)%(Extension)')" />
</Target>

</Project>

In this snippet, | first re-declare the BuildDependsOn property; this is the property that
contains the list of targets that will be executed when the build target runs. | extend this
value by using a reference to itself using the $(BuildDependsOn) declaration. So | take the

58

Part| Overview

current list of targets and add the CopyOutputFiles target to the end of the list. We will talk
more about this later in this chapter; the important part to understand now is that this target
will be executed after the project has been built. Take a look at the usage of the ltemGroup
inside the CopyQutputFiles target. The Include value on this picks up all the files in the
OutputPath as well as subfolders. These files are placed into a new item named OutputFiles.
Following this, the additional output directory is created if it doesn't exist, and then the files
are copied to this new location. The Copy task is passed a value of @(OutputFiles->"'$
(OutputCopyFolder)%(RecursiveDir)%(FileName)%(Extension) ') for the
DestinationFiles parameter. If you recall from the previous chapter, this is an Item
Transformation. In this transformation, we place all the files under the OutputCopyFolder
directory in the same relative location to where they are in the OutputPath folder. We
achieve this by using the RecursiveDir well-known metadata. We can see if this works by
building the project. | will execute the Rebuild target to ensure that all artifacts from previous
builds are removed. The result of this is shown in Figure 3-4.

G: \Ins1deHSBu11d\ChB3\Hlndnwsﬂppllcat1Dn2)msbulld WindowsfApplication2.csproj ~t:Rebuild /nologo
Build started 9-/11-2010 10:18:02
Project "'C: \Ins1deHSBu11d\ChB3\Hlndnwsﬂppllcat1Dn2\N1ndowstp11cat1on2 csproj"” on node 1 (Rebuild
target(sli)._
CoreClean:
Deleting file "C:xInsideM8Build~ChB3“UWindowsApplication2:shins\Debug WindowsApplication?.exe™.
Deleting file '"G:~InsideMSBuild~ChB3-WindowsfApplication2sbinsDebugsWindowsfpplication2.pdh".
Deleting file "C:~InsideMS8Build~Ch@3“HWindowsApplication2™ohjs\Debug WindowsApplication2.Propertie
s .Resowrces .resources''.
2eliti“g file "G:xInsideMS8Build~ChB3“WindowsApplication2xobjs\Debug GenerateResource—ResGen.read.
-tlog
Dgleiing file "CG:xInsideM8Build~ChBA3~WindowsApplication2xobj DebugrGenerateResource—ResGen.urite
-1.tlog".
Deleting file "C:~InsideMS8Build~ChB3“WindowsApplicationZ2xobjsDebug WindowsApplication2.exe".
Deleting file '"G:~InsideMSBuild-~ChB3-WindowsfApplication2~ohbjsDebugsWindowsfpplication2.pdh".
CustomAfterClean:
Deleting file "C:%\InsideMSBuild~ChB3-WindowsfApplication2:CustomQutput:WindowsApplication2.exe".
Deleting file "C:~InsideMS8Build-~ChB3-WindowsfApplication2:CustomOutput WindowsApplication2.pdh™.
Removing directory "C::\InsideMSBuild~Ch@3“WindovsApplication2:\CustomQutputs'.
CoreResGen:
C:s\Program Files“\Microsoft SDKs“\Windows“v6.BA“bin“ResGen.exe AuseSourcePath ~sr:c:“\UWINDOUS\Micros
of t .MNET~Framework-w2 . 0.58727~mscorlib.dll ~r:"c:“Program Files“Reference fAssemblies Microsoft Fr
ame ~Framewvork\wi.h
8y Removed to save space 227Systen.Data
od” MINDOUS\Micros
of £t . MEL AP PAMEWOPK WL . U DB £ WD YSTEM.OLL AP:Ca WLNUUWS MILCPOS0I T . MEL "' FANEWOPK W . d. 58727\System
Drawing_dll ~w:c:“WINDOWS\Microzoft_ NET“Framework:\v2 _ @8.587278ystem.Windows Forms_d1ll /r:c:\WIND
CoreCompile:
CosWINDOWESMicrosof t .NET“\Frameworksv4.B.30319Csc.exe /noconfig /nowarn:1781.1782 /nostdlib+ ser
rorreport iprompt ~warn:4 sdefine:DEBUG;TRACE ~reference:c:“WINDOWS Microsoft . NET“Framework-w2.f.
(5 aneworksvl . 5\Sy
ste Removed to save space kw3 . 5\Systen
.Dc 372 Systen._Dat
GLll /ITLGIGIHLG =L = WLILVIHG MILLIUSUL b = FLL M CANG YU W D dB & f s ystem. reproyncny A1l sreference:
c S WINDOWSNMicrosoft . NET\Franeuork-u2 . 6. LA728ystemn.dl]l sreference:c:\WINDOWS\Microzoft _ NET“Fra
CupyFllesTuOutputDlrectury
Copying file from "objsDebugsWindowsfApplication?.exe'" to "bhin“Debug“Windowsfipplication2.exe".
WindowsfApplication2 -> CG:\InsideM8Build“ChB3“WindowsfApplication2:bin“Debug:WindowsApplicationZ.e

xe
Copying file from "obhjsDebugsWindowsfpplication?.pdh"” to "hinsDebug“Windowsfipplication2.pdh".
AfterBuild:
Build has completed?
CopyOutputFiles:
Creating directory "G:\InsideMSBuild~ChB3“Windovsfpplication2:CustomQutputs'.
Copying file from "hin“Debug“WindowsApplication?.exe"” to "C:\InsideMS5Build“ChA3“WindowsApplicati
on25CustomQutputsWindowsfApplication2.exe".
Copying file from "h1n\Dehug\N1ndnwspr11catinnz pdb" to "C:\InsideMEBuildsChB3*WindowsApplicati
onZ\CustomOutput\HlndDwstpllcat1Dn2 pdh*’
Done Building Project "'G: \Ins1deHSBu11d\ChB3\Nlndowsﬂpp11cat1on2\W1ndowspr11cat1on2 csproj” (Rebu
ild target<{s>>

Build succeeded.
Warning<{s>»
8 Error(s)

FIGURE 3-4 Build of WindowsApplication2.csproj

In the log shown in Figure 3-4, you can see that the CopyOutputFiles target was called
after the build target executed and you can see that the files were copied into the folder

Chapter 3 MSBuild Deep Dive, Part 2 59

specified. One other thing to note about this project file is that | extend the clean process to
remove these files. The relevant elements added to the project file are shown in the following
snippet.

<!-- Extend clean process to delete created files -->
<PropertyGroup>
<CleanDependsOn>
$(CleanDependsOn) ;
CustomAfterClean
</CleanDependsOn>
</PropertyGroup>
<Target Name="CustomAfterClean">
<ItemGroup>
<CopiedFilesToDelete Include="$(OutputCopyFolder)***" />
</ItemGroup>
<Delete Files="@(CopiedFilesToDelete)" />
<RemoveDir Directories="$(OutputCopyFolder)" />
</Target>

If you extend the build process to create additional files, you should always extend the clean
process to remove these files. MSBuild will clean up all the files it generates, but you are
responsible for cleaning yours. If you are implementing incremental building, you should pay
particular attention to this advice. This is because projects that are not properly cleaned may
result in incorrect builds when building incrementally. We will talk more about incremental
building in Chapter 6, “Batching and Incremental Builds.” In this example, | have manually
created files as a separate step, but sometimes there is a better way.

For C# or Visual Basic .NET (VB.NET) projects, there is a simple way to have your files
automatically deleted for you. If you are creating files early in the build process, you can add
files that should be deleted on clean by appending them to the FileWrites item. This is an
item that the C# and VB.NET MSBuild files use to determine which files need to be deleted
the next time the project is cleaned. The contents of this item are written into a file named
$(MSBuildProjectFile).FileListAbsolute.txt in the intermediate output path folder. You can
use this method only if you are appending the value to the FileWrites list before the Clean/
IncrementalClean target is executed and the file resides under the output path folder. This is
a great way to make sure that generated code files are deleted at the appropriate time. This
is discussed in more detail in Chapter 8, “Practical Applications, Part 1.

Removing Items

Previously, it was mentioned that you can remove values from items using the ltemGroup
element. In MSBuild 2.0, once a value was placed inside an item, there was no way to
remove it, so items were append-only. The remove function was added in MSBuild 3.5. This
is facilitated by a new attribute, Remove, on the ItemGroup element. This is supported for
dynamic items only. | will demonstrate this with dynamic items. The usage of this is shown in
the following Dynamic03.proj file.

60 Part | Overview

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<PropertyGroup>
<SourceRoot>src\</SourceRoot>
</PropertyGroup>
<ItemGroup>
<SrcFiles Include="$(SourceRoot)***
</ItemGroup>

N

<Target Name="Build">
<Message Text="SrcFiles: @(SrcFiles)" />
<Message Text="Removing from item" Importance="high" />
<ItemGroup>
<SrcFiles Remove="$(SourceRoot)sub*" />
</ItemGroup>
<Message Text="SrcFiles: @(SrcFiles)" />
</Target>

</Project>

In this sample, SrcFiles is initially created to include all files in and under the src folder. Then
in the Build target, all the files in the src\sub\ folder are removed from the SrcFiles item. You
can see that this works as described by examining the results shown in Figure 3-5.
C:5\IngideMEBuild“ChB3>mshuild DynamicB3._proj ~t:Build /nologo
Build started 9112018 1B8:37:59 PM.
Erq{set "C:xInzsideMSBuild~ChA3«DynamicB3_proj"” on node 1 (Build target{sl>>.
uércﬁiles: spesfour.txtispresone . txt isrerNsubhsub_four.txtisrcisubisub_one . txt ;sreisubrisub_three . tx
tisrchsubssub_two.txtisresthree. txtssreNtwo.txt
Removing from item

SrcFiles: spcafour.txtisprchone.txt;sprosnthree.txtisrcntwo.txt
Done Building Project "C:~InsideM8Build“ChB3“DynamicB3.proj" (Build target{s>>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 3-5 Demonstration of removing values from items

The results here are pretty straightforward; several files were removed from SrcFiles after
the ltemGroup element was processed by the MSBuild engine. We will now move on to cover
the order that properties and items are evaluated in MSBuild.

Property and Item Evaluation

When the MSBuild engine begins to process a build file, it is evaluated in a top-down fashion
in a multi-pass manner. These passes are described in order in the following list:

0. Load all environment and global properties, and toolset properties. In Microsoft Visual
Studio 2010, for example, C++ defines several properties in the MSBuild 4.0 toolset.

1. Evaluate properties and process imports as encountered
2. Evaluate item definitions

3. Evaluate items

Chapter 3 MSBuild Deep Dive, Part 2 61
4. Evaluate using tasks
5. Start build and reading targets

The first step is numbered 0 (no, it's not a typo) because it doesn’t pertain to
processing the file but is important in its evaluation. The first pass (humbered 1) is to
populate all static properties and to process all import statements. As an import statement
is encountered, the contents of the import file are duplicated inline into the current project
file. When an import is encountered, the current directory is temporarily set to the directory
where the imported file resides, for use when processing imports found within the imported
file. This occurs only during the processing of the import statement. This is performed to
ensure that import elements are processed correctly. For relative paths in items, the directory
of the invoked MSBuild file is always used. This current directory is not maintained while any
targets in the imported files are executed. We will discuss the directory issue later in this
chapter, but first we will take a look at properties and items.

In this section, we will focus on the process in which properties and items are populated.
Then in the next section, we will take a look at importing external files. As stated previously,
MSBuild will process your file in multiple passes. The first pass is to process all imports and
properties. These items are evaluated as they are encountered. Following this, items are
evaluated. You should note that if you create a property that references an item, the value of
the property is evaluated when it is used. What this means is that at the time you reference
the property, the item reference is evaluated and expanded. Therefore, if the item changes,
so can the property. To start our discussion of property and item evaluation, we will work our
way through a very simple case. Take a look at the following EvalOl.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="PrintInfo">

<PropertyGroup>
<PropOne>one</PropOne>
<PropTwo>$ (PropThree) </PropTwo>
<PropThree>three</PropThree>
<PropFour>$(PropThree) </PropFour>
</PropertyGroup>

<Target Name="PrintInfo">
<Message Text="PropOne: $(PropOne)" />
<Message Text="PropTwo: $(PropTwo)" />
<Message Text="PropThree: $(PropThree)" />
<Message Text="PropFour: $(PropFour)" />
</Target>
</Project>

Since all these properties do not depend on items, we would expect all of them to be
evaluated at the same time from top to bottom. Two properties in this file, which are in
bold in the code, depend on the value of PropThree. One of the properties, PropTwo, occurs

62

Part| Overview

before PropThree, and the other, PropFour, occurs after PropThree. In the only target,
PrintInfo, we simply print the values for each of these four properties. This printout is shown
in Figure 3-6.
GC:xInsideMSBuild~ChB3>msbuild EvalBl.proj ~t:PrintInfo ~nologo
Build started 91120108 168:43:681 PM.
Project "C:~InsideMS3Build“~ChB3“EvalBl.proj"” on node 1 (PrintInfo target{sd>.
PrintInfo:
Proplne: one
PropTwo =
PropThree: three

PropFour: three
Done Building Project "C:“InsideMS8Build~ChB3“Eval@l.proj"” (PrintInfo target(s)>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 3-6 PrintInfo target on Eval0l.proj

In the result shown here, take note of two things. The first is that PropTwo doesn't have

a value; this is because PropThree did not have a value when it was populated. The other
significant observation here is that PropFour was successfully populated with the value
from PropThree. This is because the declaration of PropFour occurs after the definition for
PropThree. Now let’s take a look at the same example, using items instead of properties.
The following contents are taken from the Eval02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
DefaultTargets="PrintInfo" ToolsVersion="4.0">

<ItemGroup>
<ItemOne Include="One" />
<ItemTwo Include="@(ItemThree)" />
<ItemThree Include="Three" />
<ItemFour Include="@(ItemThree)" />
</ItemGroup>

<Target Name="PrintInfo">
<Message Text="ItemOne: @(ItemOne)" />
<Message Text="ItemTwo: @(ItemTwo)" />
<Message Text="ItemThree: @(ItemThree)" />
<Message Text="ItemFour: @(ItemFour)" />
</Target>
</Project>

This example simply replaced all the properties in the previous file with items. Since they are
all items, they will be evaluated in a similar manner as the properties were in the previous
example. The output, as you might expect, is the same as the previous one as well, so it is not
listed a second time. Instead, we will look at properties and items together.

For a slightly more interesting example, we will take a look at what happens when we
introduce properties and items together. You will find the contents of a new example in the
following Eval03.proj file. As you look at this, try to guess what the output of the Printinfo
target will be for this file.

Chapter 3 MSBuild Deep Dive, Part 2 63

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="PrintInfo">

<PropertyGroup>
<OutputPathCopy>$(OutputPath)</OutputPathCopy>
</PropertyGroup>

<ItemGroup>
<OutputPathItem Include="$(OutputPath)" />
</ItemGroup>

<PropertyGroup>
<Configuration>Debug</Configuration>
<OutputPath>bin\$(Configuration)\</OutputPath>
</PropertyGroup>

<Target Name="PrintInfo">
<Message Text="Configuration: $(Configuration)" />
<Message Text="OutputPath: $(OutputPath)"/>
<Message Text="OutputPathCopy: $(OutputPathCopy)" />
<Message Text="OutputPathItem: @(OutputPathItem)" />
</Target>

</Project>

The two important elements in this project file are the first property and item declared,
OutputPathCopy and OutputPathltem, respectively. Both of these are declared before the
property on which both depend. That property is the OutputPath property. In the Printinfo
target, all the properties and the single item are printed out. You will find the results of that
target in Figure 3-7.
GC:nInsideMSBuild~ChBA3»msbuild EvalB3.proj ~t:PrintInfo ~nologo
Build started 9.-11-20108 18:46:31 PM.
;;gg:?ﬁf:?:\lnsideHSBuild\ChBS\EualBS.pruj" on node 1 ¢PrintInfo target(s>>.

Configu;ation: Debuy

OutputPath: hin“Debug'

OutputPathCopy:

Yy
OutputFPFathltem: hinsDebug™
Done Building Project "C:\InsideMS8Build~ChB3%Eval@3.proj" (PrintInfo target(sd).

Build succeeded.
A Warning(s>
B Erroris>

FIGURE 3-7 PrintInfo result on Eval03.proj

As mentioned previously, the interesting pieces of this are the OutputPathCopy property
and the OutputPathltem item. If you take a look at the preceding figure, you can see that
the value was placed into OutputPathltem but not into OutputPathCopy. This is because the
item’s final value was evaluated after the OutputPath property was declared. This is because
the OutputPath property doesn’'t depend on an item. This section should have given you

a good idea of how properties and items are evaluated by MSBuild. We'll now discuss how
you can import other files.

64

Part| Overview

Importing Files

MSBuild natively supports importing project files or targets. In fact, this is how Visual

Studio builds your projects. In this section, we will see how this works and how you can take
advantage of it in your build process. To reuse the contents of other files, you must use the
Import element. This element must be placed directly inside the Project element, at the same
level as a Target element. You specify the file that is to be imported by using the Project
attribute. The only other attribute that can be placed on the Import element is the Condition
attribute, as with most other MSBuild elements. These are the only two attributes that can
be specified for the Import element. If you take a look at any C# project created by Visual
Studio, you will find the following declaration:

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

Note With MSBuild 4.0, you can now wrap up one or more Import elements inside
an ImportGroup element. This is the only occasion that the import doesn’t have to be
an immediate child of the Project element.

This imports the Microsoft.CSharp.targets file; the reserved property MSBuildToolsPath is
used to resolve the full path to this file. This file is created by Microsoft to fully describe the
build process for C# projects. Other managed projects have their own build scripts that are
imported into their own project files. The Microsoft.CSharp.targets file, like Microsoft
VisualBasic.targets (used for VB.NET projects), describes all the steps to build the project
while the actual project file describes what is being built. These files then import the shared
file Microsoft.Common.targets, which contains the common steps to build managed projects.
This explains why there is not a single target in project files generated by Visual Studio. All
the targets required to build managed projects are imported from another file. We will now
move on to discuss how to import external files.

When MSBuild processes an import statement, the current working directory is set to the
directory of the imported project file. This is necessary to correctly resolve the location of
paths declared in import elements or inside the UsingTask element. In addition, the imported
file is then expanded inline at the location where the Import element occurs. This can be
visualized by the image shown in Figure 3-8.

Note With MSBuild 4.0, you can use the new /preprocess (/pp) switch to examine the
contents of the project that MSBuild uses. This will contain all imports. In order to write the
contents to a file, you can use the notation /pp: filename. txt, where filename.txt is the file

to write to.

Chapter 3 MSBuild Deep Dive, Part 2

Environment Global Toolset
Variables Variables Variables

(. . .
Project File

Import
Import
|

Import
Import
|

Import

Import
|

. J

FIGURE 3-8 Project file import visualization

When the MSBuild engine processes a build file, it builds a representation of it in memory.
When files are imported, the in-memory representation is made to include the contents of
the imported file. We will now take a look at how Visual Studio behaves in building your
managed projects by reviewing the contents of the following two MSBuild files: Import01
.proj and Import0l.targets.

<!-- ImportOl.proj -->

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="A11">

<PropertyGroup>
<SourceRoot>$(MSBuildProjectDirectory)\src\</SourceRoot>
<Configuration>Debug</Configuration>

</PropertyGroup>

<ItemGroup>
<SourceFiles Include="$(SourceRoot)*" />

</ItemGroup>

<Import Project="$(MSBuildProjectDirectory)\ImportOl.targets" />

<Target Name="PrintOutputPath">
<Message Text="OutputPath: $(OutputPath)" />
<Message Text="MSBuildProjectFile: $(MSBuildProjectFile)" />
</Target>
<Target Name="AT1"
DependsOnTargets="PrintInfo;PrintOutputPath" />
</Project>

65

66 Part | Overview

<!-- TImportOl.targets -->
<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<Target Name="PrintInfo">
<Message Text="SourceRoot: $(SourceRoot)" />
<Message Text="Configuration: $(Configuration)" />
<Message Text="SourceFiles: @(SourceFiles)" />
</Target>

<PropertyGroup>
<OutputPath>bin\$(Configuration)\</OutputPath>
</PropertyGroup>

</Project>

In this example, the Import01l.proj imports the Import0l.targets file; the import statement
has been highlighted here. This is a simplified view of how managed projects are built.
With managed projects, the project file that is generated by Visual Studio defines all the
properties and items to be built, and an imported file defines how to build those values.
So in this example, Imports01.proj (project file) represents the project file created by Visual
Studio, and the ImportO1.targets (targets file) represents the build file that is imported by
those generated projects, based on the language that this file changes. Back to the example,
the project file defines a few properties as well as an item. Along with these, the target
PrintOutputPath is defined, which prints out the value for the OutputPath, which is defined
in the targets file. The targets file defines the aforementioned property and defines a target,
PrintInfo, which prints out the values for those items defined in the project file. | will execute
both targets, Printinfo and PrintOutputPath, by executing the All target. The results of this
are shown in Figure 3-9.
Baild searted 9/11,2010 1014926 DR, ¢ o0 (HIALL snolege
g:gg:gﬁf:g:\InsideHSBuild\ChBB\Impnrtﬂl.proj" on node 1 CAll target{s)>.
ggg;gggggz;ngi\%giigeHSBuild\ChB3\src\
SourceFiles: G:xInsideMSBuildsChB3ssrossfour.txt;GinInsideMSBuildNChB3ssreNsone.txt;CinInsidelSE

wild~ChB3ssrcssthree.txt;C:nInsideMSBuild\ChA3\srciNtwo . txt
PrintQutputPath:

OutputPath: binsDebugs

MSBuildProjectFile: Import®l.proj
Done Building Project "C:x\InsideMSBuild“\ChB3NImportBl.proj" (All target{s)>>.

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 3-9 Import01.proj results

Here are some things to note:
1. Allitems and properties defined in Import01.proj before the Import element are
available to Import0Ol.targets.

2. All items and properties defined in ImportOl.targets are available to ImportOl.proj
after the Import element.

Chapter 3 MSBuild Deep Dive, Part 2 67

3. All properties and targets are defined from top to bottom, and the last definition that
occurs is the value that persists.

4. Targets are executed after all items, properties, and imports are evaluated.

Because of the first item in the previous list, the target Printinfo was able to print out the
values for the properties and items in Import01.proj successfully. Because of the second item
in the previous list, the target PrintOutputPath was able to get the value for the OutputPath
that was defined in ImportO1l.targets. The third point was not demonstrated here, but it is
important to understand it. Any file can define any property except reserved properties,

and any target it desires. Because a property or a target can have only one in-memory
representation, the last definition encountered is the value that will be used to build the
project. The last point listed, that targets begin execution after all static items and properties
are processed, is very important as well. By the time any target is executed, the MSBuild
engine has already completed creating its in-memory representation of the build script. This
means that when a target executes, it has no connection back to the file that contains it. It
could have been defined in any file that was imported.

We will now examine another set of files that will help us further understand how build

files behave when importing other files. This example will be demonstrated by two new
files, Import02.proj and Import02.targets. In this example, the Import02.targets file is stored
in a subfolder named Import. The following sample shows the complete definition of both
these files.

<!-- Import02.proj -->

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="A11">

<Target Name="PrintPath">
<Message Text="MSBuildProjectFullPath: $(MSBuildProjectFullPath)" />
</Target>

<Import Project="Import\Import02.targets" />

<Target Name="AT1"
DependsOnTargets="PrintPath;PrintPathImport;PrintCompile" />
</Project>

<!-- Import02.targets -->
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<Compile Include="Classl.cs" />
</ItemGroup>

<Target Name="PrintPathImport">
<Message Text="MSBuildProjectFullPath: $(MSBuildProjectFullPath)" />
</Target>

68

Part| Overview

<Target Name="PrintCompile">

<Message Text="Compile: @(Compile)" />

<Message Text="Compile.Fullpath: @(Compile->'%(Fullpath)', '%0a%0d')" />
</Target>

</Project>

Both of these files contain a target that prints the value of the MSBuildProjectFullPath
reserved property. This is to demonstrate the fact that all the properties and items, including
built-in properties, have defined values before those targets execute. Also, in the imported
file, an item named Compile is defined, which includes a single file named Class1.cs. This file
resides in the same folder as the Import02.targets. Can you guess what the results of the
PrintCompile target would be? If you execute all these targets, the results would be as shown
in Figure 3-10.
C:\InsideMSBuild~ChB3>mshuild ImportB2.proj ~t:All ~nologo
Build started 9-11-2010 11:84:1% AM.
;rgjz;tt;?:\InsideHSBuild\ChB3\ImpDPtBZ.prnj" on node 1 ¢All target(sd>.

PﬁEBuildﬁrojectFullPath: C:xInsideMSBuild~ChB3~\ImportB2 _proj
PrintPathlmport:

MEBuildProjectFullPath: C:“\IngideMSBuild\ChB3-\ImportB2_proj
PrintCompile:

Compile: Classl.cs

Compile.Fullpath: G:~InsideM8Build-ChB3-Classl.cs
Done Building Project "C::\InsideMS8Builds\ChB3\ImportB2_proj" (All targetlsdl._

Build succeeded.
A Yarning(s)
8 Errordsl>

FIGURE 3-10 Import02.proj result

If you take a look at the results shown in Figure 3-10, you can see that the value for the
MSBuildProjectFullPath property evaluates to the same value regardless of the file that
contains the target that prints it. This exemplifies the fact that the file that contains a target
has no effect on the values for properties and items. If you need to get the name/path of the
current file, then you can use the reserved properties MSBuildThisFile and related reserved
properties. For the full list, see the section entitled “Reserved Properties,” in Chapter 2,
“MSBuild Deep Dive, Part 1."

The imported file also contains another target, PrintCompile, which prints out the value

for the Compile item defined in that file. The file that is included in the Compile item is the
Classl.cs file. This file resides in the Import folder. If you look at the Import02.targets file,

it is obvious that the Compile item is attempting to include that Classl.cs file. The printed
value for that path to that file does not place it in the Import folder. Instead, it references the
folder of the outermost file, the Import02.proj file. If an imported file declares items to files,
it will always be defined relative to the file that the MSBuild process starts with. If you need
to declare items in files that will be imported, they should be defined using properties that
are defined in the importing file, or you can explicitly define them using MSBuildThisFile and
related properties. We have covered how to import external files in some detail. Throughout
the remainder of this text, we will be using this technique. We'll now move on to discuss how
you can extend the build process for managed projects.

Chapter 3 MSBuild Deep Dive, Part 2 69

Extending the Build Process

MSBuild aims to expose the build process and to allow users to completely customize the
process. MSBuild does indeed achieve both of these goals, and it does a good job of it! We
will now take a close look at that build process and see how it can be extended.

When you create a managed project using Visual Studio, toward the bottom of the project
file, you will find an import statement such as the following one, which was taken from a C#
project.

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

This statement imports another known file that defines how C# projects are built. This
project file is shipped along with MSBuild, which is delivered as a part of the Microsoft .NET
Framework. The contents of the project files created by Visual Studio define only properties
and items; there are no targets included in that file. All the targets for building managed
projects are contained in those shared files provided with MSBuild. If you need to extend the
build process, you can do so by modifying the project file itself. The four most common ways
to extend the build process for managed projects are (listed in order of ease of use):

1. PreBuildEvent and PostBuildEvent

2. Override BeforeBuild, AfterBuild, and similar targets
3. Target Hooks (i.e. BeforeTargets and AfterTarget)

4. Target injection

In versions of Visual Studio prior to 2005, the only way to extend the build process was

to define a command, such as a batch file or external program, which would be executed
before or after the build was completed. These are the pre-build event and post-build event
respectively. These “events” are implemented using plain MSBuild properties and targets;
there is no event construct in MSBuild files. These build events are still supported in current
versions of Visual Studio, for backward compatibility and because the Visual Studio user
interface already supports this concept. You can enter these commands in Visual Studio on
each project’s Properties page, on the build tab, as shown in Figure 3-11.

From the user interface shown in Figure 3-11, you can insert a set of commands that

will be executed before or after the build executes. This is captured in MSBuild simply as

a property; the two properties that are used to capture these values are PreBuildEvent and
PostBuildEvent. These properties will be defined in the project file itself. This method is
the simplest one to extend the build process, but also the least powerful. | would suggest
avoiding this technique. A better approach would be one of the other techniques. We will
now discuss the second option.

70 Part | Overview

Application
[RFE= [RFE=
Build

Build Events Pre-build event cornmand line:
Debug

Resources
Services Edit Pre-build ...

Settings Post-build event command line:

Reference Paths

Signing -
Security
Edit Post-build ... |
Publish
Run the post-build event:
Cade Snalysis On successful build v|
Pre-build Event Comrmand Line @
Macro Walue b
OutDir binkDebugh
ConfigurationMame Debug
Praiarthlame Mifimdmwesdnnlicatinn? 5
‘ << Macros |
[QK] ‘ Cancel |

FIGURE 3-11 Build events in Visual Studio

After the PreBuildEvent and PostBuildEvent properties, the next option is to override existing
targets that were created as extension points. Previously, | showed that the C# projects
import a project file named Microsoft.CSharp.targets; other managed languages define their
own shared file. All these files will then import another file, Microsoft. Common.targets. This
file, which contains all the common elements in building managed projects, defines many
targets that were created simply to be overridden. For example, if you take a look at a project
file created by Visual Studio, you will see a comment like the following.

<!-- To modify your build process, add your task inside one of
the targets below and uncomment it.
Other similar extension points exist,
see Microsoft.Common.targets.

<Target Name="BeforeBuild">

</Target>

<Target Name="AfterBuild">

</Target>

-—>

Chapter 3 MSBuild Deep Dive, Part 2 71

These and other targets are defined as empty targets in the Microsoft.Common.targets file.
The following list shows 14 such targets:

® BeforeBuild

m AfterBuild

m BeforeRebuild

B AfterRebuild

B BeforeResolveReferences

B AfterResolveReferences

B BeforeResGen

B AfterResGen

B BeforeCompile

B AfterCompile

m BeforeClean

B AfterClean

m BeforePublish

B AfterPublish

All these targets are simply extension points and will be executed at the appropriate time.
If you define a target with the same name after the import element, then your target will
override the default empty target. For example, consider the following project file.

<Project DefaultTargets="Build"
xmIns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
<!-- To modify your build process, add your task inside one of
the targets below and uncomment it.
Other similar extension points exist,
see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>
-->
<Target Name="AfterBuild">
<Message Text="Build has completed!" Importance="high" />
</Target>

</Project>

72

Part| Overview

In the preceding snippet, the AfterBuild target was defined to invoke the Message task with
the statement “Build has completed!” If you build this, you will see the message printed to
the console after the project has been built. If you do not see the message when you are
building in Visual Studio, you may need to increase the verbosity used by Visual Studio. This
is defined in the Options dialog under the Project and Solutions, Build and Run node.

The option just described is a great way to extend the build process, and | highly recommend
using it. The only problem with this technique is that only one AfterBuild, or any of those
targets listed previously, can be defined at once. Because of this, if two or more imports are
processed that define the same target, then the previous definition will be overridden. So

if you are creating reusable build scripts, this technique is not suitable. Instead, you can use
target hooks or target injection. Now we will discuss the target hooks.

MSBuild 4.0 added a new concept called target hooks. With this came two new attributes

on the Target element: BeforeTargets and AfterTargets. Many times when you are creating

a target, you don't care about the exact time that it executes, but you just want it to execute
before or after one or more targets. BeforeTargets and AfterTargets easily facilitate this. When
you author a target and you know one or more targets it should execute after, you can
specify them in a semicolon-separated list in the AfterTargets attribute. And the idea applies
for targets that should be executed before the target; just put them inside the BeforeTargets
value. For example, consider the simple project file, BeforeAfter01.proj, shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Build">

<Target Name="Build">
<Message Text="Build target"/>
</Target>

<Target Name="GenerateCode" BeforeTargets="Build">
<Message Text="GenerateCode target"/>
</Target>

<Target Name="CustomCopyOutput" AfterTargets="Build">
<Message Text="CustomCopyOutput target"/>
</Target>

</Project>

In this file, there are three targets defined, in no particular order, and each just prints

a message stating that the target has executed. The default target is the Build target. The
GenerateCode target uses the BeforeTargets attribute to ensure that it is executed before

the Build target, and the CustomCopyOutput target uses AfterTargets, specifying Build so
that it executes after the Build target. Figure 3-12 shows the result of executing msbuild.exe
BeforeAfter0Ol.proj /t:Build.

Chapter 3 MSBuild Deep Dive, Part 2 73

C=xIn=zideMSBuild " ChB3>mzbuild BefoweAfter#l _proj ~t:Build snologo
Build started 9-11-2818 18:52:18 PM.
Project "C:xInzideMS5Build~ChB3“BeforeAfterdl . proj" on node 1 (Build target(s)>.
GenerateCode :
GenerateCode target
Build:
Build target
CustonCopylut put =
CustomCopyQutput target
Done Building Project "C::\InszideMSBuild~Ch@3\BeforefAfterBl_proj" (Build target{sd).

Build succeeded.
A Yarning(s)
B Errvords>

FIGURE 3-12 BeforeAfter0l.proj

As you can see, we were able to extend the behavior of the Build target without modifying
it. This approach works even if you are extending targets that are defined outside the current
file. For example, you can use this approach when you edit your C# or VB.NET project files
even though most targets are defined inside the Microsoft.Common.targets file.

Let's define how BeforeTargets and AfterTargets behave a bit more precisely. In this
discussion, the target listed in BeforeTargets and AfterTargets is X. BeforeTargets means that
when target X is about to run the first time, even if its condition evaluates to false, then run
BeforeTargets before it if it hasn't run already. AfterTargets is very similar to this, and it can be
defined as follows: After target X runs for the first time, or if it was invoked and its condition
was false, then run AfterTargets if it hasn't run already.

If you specified more than one target inside the BeforeTargets or AfterTargets attribute, then
you are not guaranteed that they will be executed in that order. For example, take a look at
the BeforeAfter02.proj file shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<Target Name="CustomBuild" BeforeTargets="Prebuildl;Prebuild2">
<Message Text="CustomBuild target"/>
</Target>

<Target Name="Prebuildl">
<Message Text="Prebuildl target"/>
</Target>

<Target Name="Prebuild2">
<Message Text="Prebuild2 target"/>
</Target>

</Project>

The Prebuildl and Prebuild2 targets are free to execute in any order. The fact that they

are defined as Prebuildl, Prebuild2 has no effect on the order of execution. To clarify,
Prebuild2 may execute before Prebuildl; the BeforeTargets declaration has no effect on that.
If you want a dependency there, then you must handle that accordingly.

Download from Wow! eBook <www.wowebook.com>

74

Part| Overview

This is a great approach, but it does have some drawbacks. Since these concepts were
introduced with MSBuild 4.0, you cannot use this method with any previous version, and

the target you define has to know to inject itself into the build process. Many times, you are
dealing with the other case: That is, you have a target that has already been defined and

you want to inject that target into your existing build process. Target injection solves both of
these concerns, and we will discuss that now.

Target injection is the most flexible option when extending the build process. It is also the
least intuitive and most difficult method. With that being said, it is pretty easy once you see
how it works. If you take a look at the Microsoft.Common.targets, the file that is at the core
of building managed projects, you will see targets defined like the one that follows.

<Target
Name="Build"
Condition=" '$(_InvalidConfigurationWarning)' != 'true'
DependsOnTargets="$(BuildDependsOn)"
Outputs="$(TargetPath)" />

If you take a look at this target, you will quickly notice that it doesn't actually do anything—it's

an empty target. You might wonder, what is the purpose of creating a target that doesn't do
anything? What this empty target does do, however, is specify a set of targets that must be executed
before it is. These targets are placed in the DependsOnTargets attribute as $(BuildDependsOn).
Immediately above the declaration for the Build target is the following property declaration.

<PropertyGroup>
<BuildDependsOn>
BeforeBuild;
CoreBuild;
AfterBuild
</BuildDependsOn>
</PropertyGroup>

This specifies the value for the BuildDependsOn property, which is a list of targets that must
be executed before the Build target is allowed to execute. It is no coincidence that these
target names are placed into a property instead of declared inline in the Target element. The
reason that they were placed inside a property was as an extension point. Because they are
placed in a property, you can override the value, thereby extending the build process. We
will now take a look at how we can inject a target inside the build process, using the Build
target as an example. When you utilize these properties, odds are that you don't want to
simply override the value for BuildDependsOn but add to it. From the samples, | have created
a Windows Forms project named WindowsApplicationl.csproj. Inside that project file, you
will find the following statement:

<Project DefaultTargets="Build"
xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

Chapter 3 MSBuild Deep Dive, Part 2 75

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

<PropertyGroup>
<BuildDependsOn>
$(BuildDependsOn) ;
CustomAfterBuild
</BuildDependsOn>
</PropertyGroup>

<Target Name="CustomAfterBuild">
<Message Text="Inside CustomAfterBuild target"
Importance="high" />
</Target>

</Project>

In the preceding snippet, you see that the Microsoft.CSharp.targets file is imported, which

then imports Microsoft.Common.targets. The Microsoft.Common.targets file defines the
BuildDependsOn property, so it is available after that import statement. After the Import element,
you can see that the BuildDependsOn property was re-declared. It is very important that this
declaration comes after the Import element. If you declared a value for BuildDependsOn before

the Import element, then it would simply be overwritten in the imported file. As stated previously
in this chapter, that last definition for a property is the one that is used.

Looking back at the declaration for BuildDependsOn just shown, you can see that the new

value for the property is declared using the value for the property itself. If you append to

a dependency property by referencing the current value, you do not have to worry if the current
value is empty. In this case, the resulting dependency property will have extra semicolons,

which is not a problem. What this notation does is allow you to take an existing property and
append, or prepend, to it. In this case, we have appended the target CustomAfterBuild to

the BuildDependsOn property. When MSBuild begins to process the Build target, it will first
execute all targets on the TargetDependsOn list, and therefore execute the list of targets that we
specified. We can see if this works by simply building the WindowsApplicationl.csproj file. The
definition for the CustomAfterBuild target follows. The results of the command msbuild. exe
WindowsApplicationl.csproj are shown in Figure 3-13.

G: \Ins1deHSBu11d\ChB3\Hlndnwsﬂppllcat1on1>mshu11d WindowsfApplicationl.csproj /nologo
Build started 18/6-2010 11:83:19
Project "'C: \Ins1deHSBu11d\ChB3\Hlndnwsﬂpp11cat1on1\N1ndowsﬂpp11cat1on1 csproj"” on node 1 (default
targets).
CoreResGen:
All outputs are up—to—date.
CoreCompile:
?kipping target "CoreCompile® bhecause all output files are up—to—date with respect to the input fi
es.
_CopyAppConf igFile:
Skipping target “_CopyfippConfigFile" because all output files are up-to-date with respect to the i
nput files.
CopyFilesToOutputDirectory:
Hlndowsﬂppllcatlnnl =» G:xInsideMSBuild~ChA3sWindowsApplicationlxhinDebugsWindowsApplicationl.e

CustomﬂfterBulld:

Inside CustomfifterBuild target
Done Building Project "G:xInsideMSBuild~Ch@3:WindowsApplicationl“WindowsApplicationl.csproj" (defa
ult targetsd.

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 3-13 Target injection on Build

76

Part| Overview

From the results, you can see that we were able to successfully inject our target into this
process. After looking through the Microsoft.Common.targets file, | was able to find several
dependency properties available for your use. Those are listed in Table 3-1.

TABLE 3-1 Predefined Target Dependency Properties

BuildDependsOn

CoreBuildDependsOn
RebuildDependsOn

RunDependsOn
PrepareForBuildDependsOn
GetFrameworkPathsDependsOn
PreBuildEventDependsOn
UnmanagedUnregistrationDependsOn
ResolveReferencesDependsOn
GetRedistListsDependsOn
ResolveAssemblyReferencesDependsOn
PrepareResourcesDependsOn
PrepareResourceNamesDependsOn
ResGenDependsOn
CoreResGenDependsOn
CompileLicxFilesDependsOn
CompileDependsOn
GetTargetPathDependsOn
CreateCustomManifestResourceNamesDependsOn

GenerateManifestsDependsOn

CreateSatelliteAssembliesDependsOn
PrepareForRunDependsOn
UnmanagedRegistrationDependsOn
CleanDependsOn

CoreCleanDependsOn

PostBuildEventDependsOn

PublishDependsOn

PublishOnlyDependsOn

PublishBuildDependsOn
BuiltProjectOutputGroupDependsOn
DebugSymbolsProjectOutputGroupDependsOn
DocumentationProjectOutputGroupDependsOn
SatelliteDlIsProjectOutputGroupDependsOn
SourceFilesProjectOutputGroupDependsOn
ContentFilesProjectOutputGroupDependsOn
SGenFilesOutputGroupDependsOn
DesignTimeResolveAssemblyReferencesDependsOn
AssignTargetPathsDependsOn
ComputelntermediateSatelliteAssembliesDependsOn

GetCopyToOutputDirectoryltemsDependsOn

Note These properties do not apply to C++ projects because they do not import the Microsoft.
Common.targets file. For C++ projects, you will have to use target hooks.

As you can see, there are many places where you can place customizations to the build process
in an unobtrusive, safe, and supported manner. The names of these properties are for the most
part self-explanatory. | will not expand on these here, but if you need more information, you
should go directly to the source: the Microsoft.Common.targets file. You should also know that
the Microsoft.CSharp.targets file and other files for managed languages do define a few other
dependency properties that can be used. They will not be listed here. Throughout this text, we
will be using this procedure, so you will become familiar with it.

There is an important difference between how target hooks (BeforeTargets and AfterTargets)
work, compared to target injection (DependsOnTargets), and that relate to the behavior
exhibited when the condition on the target evaluates to false. When using target hooks,

if the condition on the target that is being hooked onto is false, the targets declaring

Chapter 3 MSBuild Deep Dive, Part 2 77

BeforeTargets and AfterTargets will still be executed (if they haven't already, of course). This
is not the case when you use DependsOnTargets. If the target that is being extended has
a condition that evaluates to false, the DependsOnTargets property is ignored.

Note A target will be executed only once during a build. For example, if the Compile target has
already executed, then if the build encounters a CallTarget task for Compile after that, it will be

skipped. This is by design.

Now that we have discussed how to extend the build process, let's discuss a couple of new
features with MSBuild 4.0: property functions and item functions.

Property Functions and Item Functions

With previous versions of MSBuild, if you needed to perform simple, common operations on
properties and items, you always needed to invoke a custom task. In MSBuild 4.0, however, there
is support for many common tasks. For instance, if you want to compute the length of a string

or extract a substring for a property, you shouldn't need to use a task. Well, now you don't have
to because you can use property functions to do things like this. Also, with MSBuild 4.0, item
functions have been introduced. You can use item functions to alleviate some of the need for
batching, which many MSBuild users have found to be difficult to understand. We will cover both
of these features in this section, starting with property functions.

Property Functions

As we just mentioned, property functions can be used to perform a set of simple operations
that previously would have required a custom task. There are three types of property
functions, which are outlined in Table 3-2. Each of these types has its own unique syntax,
which we will cover in this section.

TABLE 3-2 Types of Property Functions
Type Description

String property functions Since all properties are represented as strings, you can call any
instance method from the String class on your properties.

Static property functions During a build, there is a set of common classes on which you can
call static methods, or properties. For example, you can call any static
method or property on System.String, System.Int16, and so on. For
a full list of these classes, along with a few specific other items, see
http://msdn.microsoft.com/en-us/library/dd633440.aspx.

MSBuild property This is a set of functions that have been created specifically for use
functions during builds. They perform a variety of operations such as basic
arithmetic, logical operations, etc.

78

Part| Overview

String Property Functions

Because you can access either the instance properties of the property or instance methods
with string property functions, two syntaxes will be used. To access an instance property,
then you will use the following syntax:

$({PropertyName} .{InstanceProperty})

where {PropertyName} is the MSBuild property name and {InstanceProperty} is the name of
the string instance property that you want to access. For example, if you wanted to find the
length of the Configuration property, you would use $(Configuration.Length).

In order to access an instance method of the String class, you would use the following syntax:

$({PropertyName} .{MethodName} ([parameters]))

where {PropertyName} is the name of the property, and {MethodName} is the name of the
string method that you want to call. If you need to pass in any parameters, you would do
so using the optional [parameters]. For example, either $(Configuration.ToLower()) or
$(Configuration.Substring(0,2)) would be valid.

One of the really useful features of property functions is that you can chain the commands
together. For example, if you wanted to perform a substring on the OutputPath property and
then see if the results ends with a "\', you would use the statement $(OutputPath
.Substring(0,10) .EndsWith('\")). Here, you can see that we first invoke the Substring
method on the OutputPath property and then the EndsWith method. In order to give you

a better idea of this in action, take a look at the contents of the following code snippet, from
the PropertyFunctions01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == "' ">Debug</Configuration>
<OutputPath>bin\Debug\</OutputPath>

</PropertyGroup>

<Target Name="Demo">
<Message Text="Configuration: $(Configuration)" Importance="high"/>
<Message Text="OutputPath: $(OutputPath)" Importance="high"/>
<Message Text="

Importance="high" />
<Message Text="OutputPath Tlength: $(OutputPath.Length)"/>
<Message Text="OutputPath ends with '\': $(OutputPath.EndsWith('\'))"/>
<Message Text="OutputPath no trailing slash: $(OutputPath.TrimEnd('\'))"/>
<Message Text="OutputPath no trailing slash ends with Configuration:
$(OutputPath.TrimEnd('\").EndsWith('$(Configuration)'))"/>
<Message Text="OutputPath root:

Chapter 3 MSBuild Deep Dive, Part 2 79

$(OutputPath.TrimEnd('\"') .Replace($(Configuration),''))"/>
<Message Text="OutputPath root no trailing slash:
$(OutputPath.TrimeEnd('\") .Replace($(Configuration),'"').TrimEnd('\"'))"/>
</Target>

</Project>

In this project file, we have created one target, Demo, which uses property functions in
a variety of ways. Take a look at the result shown in Figure 3-14.

C:xIn=zideM5Build~ChA3msbuild PropertyFunctions@1.proj ~t:Demo “nologo
Build started 18-25-2818 %:46:31 PM.
Project "C:xInzideMSBuild~ChA3“\FropertyFunctionzA1l.proj" on node 1 (Demo target(sdl.
Demo:
Conf iguration: Debug
OutputPath: binsDebugs

OutputPath length: 18
OutputPath ends with ‘%' True
OutputPath no trailing slash: binsDebug
OutputPath no trailing slash ends with Configuration: True
OutputPath root: bins
OutputPath woot no trailing slash: hin
Done Building Project "C:\InsideMSBuild“~ChB3“PropertyFunctionsBl.proj" <(Demo target{s>>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 3-14 Result of Demo Target in PropertyFunctions01.proj

From Figure 3-14 and its corresponding sample, you can see how powerful property
functions become when you chain them together.

Static Property Functions

Along with the string property functions, you can access static members of many system classes.
Some of those classes include System.DateTime, System.Math, System.String, and System
.StringComparer, among many others. For a full list of these classes, you can visit http;//msdn
.microsoft.com/en-us/library/dd633440.aspx. Along with these functions, there are also a number
of specific static methods and properties in other classes which you can access. For example, you
can call many methods on the System.lO.File and System.|O.Directory classes.

Just like string functions, you can access either methods or properties. The syntax when
accessing a static property would be as follows:

$({ClassName}: : {PropertyName})

where {ClassName} is the full class name (such as System.DateTime) and {PropertyName} is
the name of the static property that you want to access.

To access a method, you would use similar syntax:

$({ClassName}:: {MethodName} ([parameters])

where {ClassName} is the class name and {MethodName} is the name of the method. If you
have any parameters to pass in, you would place those inside the parenthesis. Take a look at
the following code, from the PropertyFunctions02.proj file.

80 Part | Overview

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<Target Name="Demo">
<Message Text="DateTime.Now: $([System.DateTime]::Now)"/>
<Message Text="Days in month: $([System.DateTime]::DaysInMonth(2011,2))"/>
<Message Text="New Guid: $([System.Guid]::NewGuid())"/>
<Message Text="IsMatch:
$([System.Text.RegularExpressions.Regex]::IsMatch('someInputHere','.*In.*'))"/>
<Message Text="Framework path: $([Microsoft.Build.Utilities.ToolLocationHelper]::
GetPathToDotNetFramework (
Microsoft.Build.Utilities.TargetDotNetFrameworkVersion.Version40))"/>
<Message Text="MSBuild.exe path:
$([Microsoft.Build.Utilities.ToolLocationHelper]::GetPathToSystemFile(
'msbuild.exe'))"/>
</Target>
</Project>

In this example, you can see a few different ways to use static property functions. Figure 3-15
shows the result if you execute the Demo target.
C:5\InzideM8Build~ChB3>mshuild PropertyFunctions=B2_proj ~t:Demo ~nologo
Build started 18-31-2818 11:19:39 PM.
grnJect "C:xInsideM8Build~ChA3“PropertyFunctionz@2 _proj" on node 1 (Demo target(zd)._
eggéeTlme Now: 18-31-2018 11:19:3% PN
Days in month: 28
New Guid: 51788h4b-6a35-431a-Bafa—71a?507d6%734
IsMatch: True
Framework path: G:sWindows-Microsoft.NET~Framework-v4.8.36031%

mespaint.exe path: C:\lWindowsssystem32\mspaint.exe
Done Building Project "C:\InsideM8Build“ChB3“PropertyFunctionsB2.proj" (Demo target{s>>».

Build succeeded.
B Warning{s>
8 Erroris)

FIGURE 3-15 Result of the Demo target in the PropertyFunctions02.proj file.

MSBuild Property Functions

The last kind of property functions are MSBuild property functions; these are a set of special
methods that can be called using the following syntax:

$([MSBuild]::{MethodName} ([parameters]))

where {MethodName} is the name of the method and [parameters] are the parameters that
you are sending in.

Table 3-3 lists the MSBuild property functions.

TABLE 3-3 MSBuild Property Functions

Function Signature Description
double Add(double a, double b) Adds two doubles
long Add(long a, long b) Adds two longs

double Subtract(double a, double b) Subtracts two doubles

Chapter 3 MSBuild Deep Dive, Part 2

Function Signature Description

long Subtract(long a, long b) Subtracts two longs

double Multiply(double a, double b) Multiplies two doubles

long Multiply(long a, long b) Multiplies two longs

double Divide(double a, double b) Divides two doubles

long Divide(long a, long b) Divides two longs

double Modulo(double a, double b) Returns the result of a % b

long Modulo(long a, long b) Returns the resultofa % b

string Escape(string unescaped) Escapes the string using the MSBuild escaping rules

string Unescape(string escaped) Unescapes the string using the MSBuild escaping
rules

int BitwiseOr(int first, int second) Returns the result of first | second

int BitwiseAnd(int first, int second) Returns the result of first & second

int BitwiseXor(int first, int second) Returns the result of first A second

int BitwiseNot(int first) Returns the result of ~first

81

Along with these methods, there are a handful of other methods that you can call. For more
information on these, take a look at http.//msdn.microsoft.com/en-us/library/dd633440.aspx.

To see how to use MSBuild property functions, see the following code snippet, which was

taken from the PropertyFunctions03.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<Target Name="Demo">
<Message Text="Add: $([MSBuild]::Add(5,9))"/>
<Message Text="Subtract0l: $([MSBuild]::Subtract(90,768))"/>
<Message Text="Mult0l: $([MSBuild]::Multiply(4,9))"/>
<Message Text="Div0l: $([MSBuild]::Divide(100,5.2))"/>
</Target>
</Project>

After executing the Demo target, the result is shown in Figure 3-16.

G:InsideM8Build~ChB3>mshuild PropertyFunctionsB3.proj ~t:Demo ~nologo
Build started 18-19-2010 10:29:13 PM.
Project "C:~InsideMSBuild-ChB3“PropertyFunctionsB3.proj" on node 1 {(Demo target(s>>.
emo :

fAdd: 14

Subtract@l: —678

MultBi: 36

Div@Al: 19.23876923807692
Done Building Project "C:\InsideMSBuild~ChB3“PropertyFunctionsB3.proj" (Demo target{(s>>».

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 3-16 Result of the Demo target in PropertyFunctions03.proj

Now that we have discussed property functions, let’s take a look at item functions.

82

Part| Overview

Item Functions

Item functions are exactly what they sound like: functions on an item list that you can call
directly from your MSBuild script. For example, you can filter an item list for its distinct
value, or filter an item list based on a metadata value, and a few other operations. Table 3-4
summarizes the item functions that you can call.

TABLE 3-4 Item Functions

Function Description

DirectoryName Returns a list of the directory names of each value in the item list
Metadata Returns the values for the metadata name specified
DistinctWithCase Returns the distinct (case-sensitive) values from the item list
Distinct Returns the distinct (case-insensitive) values from the item list
ClearMetadata Returns an item list whose values do not contain any metadata
WithMetadataValue Returns the values from the item list that have a value defined for

the given metadata value

AnyHaveMetadataValue Returns true if any value in the item list has a value for the given
metadata name, otherwise false

The syntax when using item functions is as follows:

@({ItemListName}->{ItemFunctionName}([parameters]))

where {ltemListName} is the name of the item list, and {ItemFunctionName} is the name

of the item function to invoke. If you need any parameters, then you can pass them inside
the parentheses. When you are using item functions, you should keep in mind that you are
executing a function over a set of values. Therefore, in many cases, the result will be a list of
results. Take a look at the following code snippet, from the IltemFunctions01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<ItemGroup>
<None Include="one.txt;two.txt;three.txt;One.txt"/>

<Reference Include="System;">
<Private>True</Private>

</Reference>

<Reference Include="System.Data">
<Private>False</Private>

</Reference>

<Reference Include="System.Deployment">
<Private>True</Private>

</Reference>

</ItemGroup>

<Target Name="Demo">

Chapter 3 MSBuild Deep Dive, Part 2 83

<Message Text="None: @(None)" Importance="high"/>
<Message Text="Reference: @(Reference)" Importance="high"/>
<Message Text=" "/>
<Message Text="Distinct: @(None->Distinct())"/>
<Message Text="DistinctWithCase: @(None->DistinctWithCase())"/>
<Message Text="Metadata: @(Reference->Metadata('Private'))"/>
</Target>
</Project>

Figure 3-17 shows the results of executing the Demo target from ItemFunctions01.proj. From
this sample, you can see how to execute item functions.

G:xInsideMSBuild~ChA3 > msbuild ItemFunctions@l.proj ~t:Demo ~nologo
Build started 18192618 11:05:27 PM.
Eroject "G:xInsideMSBuild~ChA3~ItemFunctionsBl.proj"” on node 1 (Demo target(s>>.
emo
Hone: one.txts;two.txt;three.txt;One.txt
Reference: System;Bystem.Data;Bystem.Deployment

Distinct: one.txtitwo.txtithree._txt
DistinctWithCase: one.txti;two.txt;three.txt;One.txt
Metadata: True;False;True
Done Building Project "C:\InsideMS8Build~ChB3\ItemFunctionsBl.proj" (Demo target(sd>.

Build succeeded.
Warning{s>
B Erroris>

FIGURE 3-17 Result of the Demo target in Itemfunctions01.proj

In this and the previous chapter, a lot of material was covered, and | don't expect you to
master it by simply reading these chapters. Mastery can be achieved only by using these
ideas in your own MSBuild scripts. The remainder of the book will use these chapters as a
basis on which to craft your knowledge of MSBuild. In these two chapters, we have covered
90 percent of what you need to know to make MSBuild do what you need 90 percent of the
time. The rest of the material in the book will make up for the gaps that were left out here
and define how you customize your build process.

Part Il

Customizing MSBuild

In this part:
Chapter 4: Custom Tasksttt i i 87
Chapter 5: CuStom LOggers.ottt ieae e eiaaen 129

85

Chapter 4
Custom Tasks

MSBuild is shipped with many built-in tasks, and there are many tasks that are available by
third parties. Even with these, there may be times where you need to write your own task.
In this chapter, we will take a look at how custom tasks are created and used. In the next
chapter, we will cover custom loggers. Before you create a new task, you should make sure
that you cannot reuse an already existing task to fulfill your needs. Here is a list of a few
open-source task repositories where you can find MSBuild tasks:

B MSBuild Extension Pack (http://msbuildextensionpack.codeplex.com/)
B Microsoft SDC Tasks (http.//sdctasks.codeplex.com/)
B MSBuild Community Tasks (http://msbuildtasks.tigris.org)

Note The MSBuild Extension Pack is the preferred task repository. First, check there for a task
that you might need.

Custom tasks allow you to write Microsoft .NET Framework code that can be used in your
build process. Custom tasks have all the same abilities that built-in tasks have. We will

also discuss inline tasks, which enable you to create tasks without compiling an assembly
and then use them like any other task. There are many advantages to using inline tasks: You
don’t have to compile them, they are easy to maintain, and easy to share, just to name a few.
Until this chapter, we have created only MSBuild project files; in this chapter, we will focus
primarily on how your tasks can be written to be used effectively with MSBuild.

Custom Task Requirements

Essentially the only requirement of a custom task is to implement the
Microsoft.Build.Framework.|Task interface. This interface contains two properties and
one method. The class diagram for that interface is shown in Figure 4-1.

bl

| ITask
Interface
a

=| Properties
’_“”id Fuidtnagmne itatngne
B Hostobiact ; TTasktost
= Methods
W Executaf? boal

FIGURE 4-1 ITask interface
87

88

Part Il Customizing MSBuild

The two properties, BuildEngine and HostObject, will be set by the MSBuild engine itself.
These will be set when the task is constructed by the MSBuild engine. The contract for the
Execute method is that if it returns true, then the task was a success; otherwise, it is treated
as a failure. Except in disastrous cases, such as running out of memory, the task should not
throw an exception. If a problem occurs, it should log an error and then return false.

Creating Your First Task

As many other texts do, we will create a Hello World example. This simple example, which
follows, was taken from the HelloWorld.cs file.

public class HelloWorld : ITask
{
public IBuildEngine BuildEngine
{ get; set; }
public ITaskHost HostObject
{ get; set; }

public bool Execute()
{
// set up support for Togging
TaskLoggingHelper loggingHelper = new TaskLoggingHelper(this);
loggingHelper.LogMessageFromText (
"Hello MSBuild", MessageImportance.High);

return true;

3

In this first example, we have created a HelloWorld task that outputs the message Hello
MSBuild to the loggers attached to MSBuild. This is achieved by using an instance of the
TaskLoggingHelper class. In this case, we have directly implemented the ITask interface.

The only piece that we are really interested in is the implementation of the Execute method.
Despite this being pretty simple, | will show you an even simpler way to create this task,

but we will first take a look at how we can integrate this task into an MSBuild project file,
HelloWorld01.proj, which follows.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="HelloWorld" />

<Target Name="Demo">
<HelloWorld />
</Target>
</Project>

Chapter 4 Custom Tasks 89

When you create a new task, you have to declare that you are going to use it. This is achieved
by the UsingTask element. The UsingTask element has only a few possible attributes, which
are summarized in Table 4-1.

Note If you have more than one task with the same TaskName value declared, the first one
encountered is the one that will be used.

TABLE 4-1 UsingTask Attributes
Name Description

TaskName The class name of the task that is to be used. If there is a naming conflict, this
value should be specified using the full namespace. If there is a conflict, then
unexpected results might occur.

This is a required property.

AssemblyFile Specifies the location of the assembly that contains the task to be loaded. This
must be a full path. This will result in the assembly being loaded by the System.
Reflection.Assembly.LoadFrom method.

Either this attribute or AssemblyName must be used, but not both. Of the two,
AssemblyFile is the most used attribute.

AssemblyName Name of the assembly that contains the task to be loaded. Using this property
will result in the assembly being loaded by the System.Reflection.Assembly.Load
method. You would use this if your task’s assembly is in the global assembly
cache (GAC). If you are deploying a task assembly publicly, you generally
should put it in the GAC.

Either this attribute or AssemblyFile must be used, but not both. Of the two
options, AssemblyFile is used most commonly.

TaskFactory* This specifies the class in the assembly that is responsible for creating new
instances of the task. This is primarily used for inline tasks, which we will cover
in the section entitled “Inline Tasks,” later in this chapter.

* Denotes an attribute that was introduced with MSBuild 4.0.

In this example, UsingTask references the Example.Tasks.dll in the parent directory. This is
because the project file is placed in a folder in the output directory. This will be explained

in more detail later in this chapter. After you have declared that you are going to reference
the task, with a UsingTask element, you are free to invoke the task inside any targets. The
preceding sample file shows a single target, Demo. This target executes the task with the
statement <He1loWorld />. Since this task doesn't have any inputs or outputs, we do not
need to specify any attributes or children in the XML. This is all that is required to invoke this
task. The result of executing the Demo target from this build file is shown in Figure 4-2.

C:xInsideM8Build~ChB4~bin“Debug~Samples>msbuild HelloWor1ldBl.proj #t:Demo ~nologo
Build started 2122010 10:40:18 AM.
Project "C:“\InsideMSBuild~ChB4~bin“Debug-SamplessHelloWorlddl.proj"” on node 1 (Demo target{sd>.
Demo =
Hello MEBuild
Done Building Project "G:xInsideMSBuild~ChB4~bin>Debug SamplessHelloWorlddl.proj" (Demo target(slr)

Build succeeded.
B Warning{sl
8 Errords>

FIGURE 4-2 HelloWorld01.proj execution

920

Part Il Customizing MSBuild
As you can see from Figure 4-2, the Hello World message was successfully printed on the console.

Even though this example was pretty simple, it can be even simpler by using the classes
Microsoft.Build.Utilities.Task, Microsoft.Build.Utilities.ToolTask, and Microsoft.Build.Utilities
.AppDomainlsolatedTask. Typically, when you create a new task, you should extend one of
these classes instead of implementing the ITask interface yourself, unless you must extend
another class. Table 4-2 shows a brief description that can help you decide which of these
classes to extend.

TABLE 4-2 Common Task Abstract Classes
Class Name When to Extend

Task Most MSBuild tasks will extend this class. This class should be
extended whenever your task does not wrap an executable.

ToolTask Extend this class when you are creating a task that will wrap a call to
an .exe file. It includes all the functionally of the Task class, because it
derives from it, but adds support for running external programs.

AppDomainlsolatedTask When you need your task to be loaded in its own app domain, then
you should use this as your base class. A typical reason to derive from
this class is if you need to use a task that is contained in an assembly
that was created during the executing build process. Deriving from
this class will mean that the task will be loaded in a new app domain,
which will be unloaded after you're done. It is uncommon to derive from
this class. If MSBuild is loaded in Microsoft Visual Studio, then tasks can
be locked. The lock will remain until Visual Studio is closed. If the build
was run on the command line, then it will be locked between builds
unless you set /nonodereuse to false.

When you extend one of these classes, all you have to do is implement the Execute method.
The abstract class will create the required properties in the ITask interface. In the case of
the Hello World example, we would pick the Task class to extend. We can create a new task,
HelloWorld02. This new, simpler implementation is shown as follows.

public class HelloWor1d02 : Task

{
public override bool Execute()
{
Log.LogMessageFromText("Hello MSBuild from Task!", MessageImportance.High);
return true;
}
}

In this new implementation, the only requirement is to implement the Execute method. By using one
of these abstract classes, we can focus on what the task is supposed to accomplish. Also, you may have
noticed that logging the Hello World statement is different from the previous implementation. This is
because those helper classes also define a property, Log, which is of the type Microsoft.Build.Utilities.
TaskLoggingHelper, which makes logging much easier. Now that we have briefly described how to
create simple MSBuild tasks, we will discuss how values can be passed into and out of MSBuild tasks.
Later in this chapter, we'll discuss how to extend the ToolTask class.

Download from Wow! eBook <www.wowebook.com>

Chapter 4 Custom Tasks 91

Task Input/Output

When you create custom MSBuild tasks, they will most likely need to accept some input
and/or provide some output values. Inside your task, these are implemented with normal
.NET properties that may be decorated with attributes. Don't confuse these with MSBuild
properties. We will first examine a very simple example and then move on to discuss more
realistic tasks. Building on the HelloWorld02 task, I've created a new task, HelloWorld03,
which accepts two input parameters. Those input parameters are FirstName and LastName.
The definition of the HelloWorld03 task is shown as follows.

public class HelloWor1d03 : Task
{

[Required]

pubTlic string FirstName

{ get; set; }

public string LastName
{ get; set; }

pubTlic override bool Execute()
{
Log.LogMessage(string.Format("Hello {0} {1}", FirstName, LastName));

return true;

}

As you can see, both of the properties here were defined as any other .NET property would
be. You may have noticed that the FirstName property has a Required (Microsoft.Build
.Framework.Required) attribute attached to it. As the name states, this is a property that is
required to be set before the task is allowed to be executed. This is checked by MSBuild itself.
If a user attempts to invoke a task without providing values for all required parameters, then
the task will fail.

Any property that has a writeable property is available as an MSBuild input parameter. There
are some limitations on the type, but we will discuss that later in this chapter. Now we can
see how we can provide values to these custom input parameters from an MSBuild project
file; see the following example, which is taken from HelloWorld03.proj.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="HelloWor1d03" />

<Target Name="Demo">
<HelloWor1d03 FirstName="Mike" LastName="Murphy" />
</Target>
</Project>

92

Part Il Customizing MSBuild

When you provide values as input into an MSBuild task, you will always provide those values
using XML attributes, where the attribute name is the name of the .NET property and the
attribute value is the value that the .NET property should be set to. From this example, we
can see that the FirstName and LastName attributes correspond to the names of the .NET
properties that we created in the task previously. If you execute the Demo target in this
MSBuild file, you would see the result shown in Figure 4-3.

GC:xInsideMSBuild~Ch@4~bin~Debug~Samples >msbuild HelloWor1d@3.proj ~t:Demo ~nologo
Build started ?-13-2018 9:53:26 PM.
Eroject "G:xIngideMSBuild~ChB4~hin~Debug~Samples~HelloWor1ld@3.proj" on node 1 (Demo target{s)>.
emo *

Hello Mike Murphy
Done Building Project "C::\InsideMS8Builds~ChB4~bin“Debug:Samples:HelloWor1ld@3 _proj" (Demo target{sd)

Build succeeded.
8 Warning{s>
8 Errordis)

FIGURE 4-3 HelloWorld03 example

As we expected, the values were successfully passed into that task and were then passed to the
console logger. Now we can see how to pass a value from a task back to the calling MSBuild
project file. Once again I've modified the previous task and created a new one, HelloWorld04,
which exposes an output property named Message. The class is shown as follows:

public class HelloWor1d04 : Task

{
[Required]
public string FirstName
{ get; set; }

public string LastName
{ get; set; }

[Output]
public string Message
{ get; set; }

pubTlic override bool Execute()

{
Message = string.Format("Fullname: {0} {1}", FirstName, LastName);
Log.LogMessage(string.Format("Hello {0} {1}", FirstName, LastName));

return true;

}

Just like inputs, outputs are simply .NET properties. Output properties must be decorated
with the Microsoft.Build.Framework.Output attribute. When you extract a value from a task
you will always use an Output element as a child of the task node itself. An example of this
is demonstrated in the following sample, HelloWorld04.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003

ToolsVersion="4.0"
DefaultTargets="Demo">

Chapter 4 Custom Tasks 93

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="HelloWorld4" />

<Target Name="Demo">

<HelloWor1d4 FirstName="Mike" LastName="Murphy">
<Output PropertyName="PropFromTask" TaskParameter="Message" />
</HelloWorTld4>

<Message Text ="From task: $(PropFromTask)" />

</Target>
</Project>

If the task you are using has multiple outputs, then you can declare multiple Output
elements. The Output element has three attributes, in addition to the Condition attribute,
which are briefly outlined in Table 4-3.

TABLE 4-3 Output Element Attributes

Attribute Description

TaskParameter This is the name of the .NET property that you are accessing the value of.
This is a required attribute.

PropertyName The name of the MSBuild property in which the value should be placed.
Either this or temName must be used, but not both.

ItemName The name of the MSBuild item list in which the values should be placed.
Either this or PropertyName must be used, but not both.

In the HelloWorld04 example, we are outputting the value of the Message property on the
task into an MSBuild property named PropFromTask. This is why we use the PropertyName
attribute instead of /ftemName. This syntax takes getting used to, but is easy to use after that.
Now let's take a look at a more realistic task.

All the custom tasks that we have discussed thus far were variations of the HelloWorld task.
We will now take a look at a few tasks that are actually useful in your own build scripts. We
will start with the GetDate task. This is a task that returns the current date in a specified
format. This task is shown in the following code block.

public class GetDate : Task
{

public string Format

{ get; set; }

[Output]
public string Date
{ get; private set; }

pubTlic override bool Execute()

{

DateTime now = DateTime.Now;

94

Part Il Customizing MSBuild

Date = now.ToString(Format, null);
return true;

3

This task defines an optional input parameter, Format. (This is an optional parameter because
it is not decorated with the Required attribute.) A single output property is declared, named
Date, which is a string representation of the time in which the task was invoked. We can see
this used in the following GetDateO1.proj file.

<Project xmIns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="GetDate" />

<Target Name="Demo">
<GetDate>
<Output PropertyName="DateUnformatted" TaskParameter="Date" />
</GetDate>

<GetDate Format="yyyyMMdd.hh.ss">
<Output PropertyName="DateValue" TaskParameter="Date" />
</GetDate>

<PropertyGroup>
<FolderName>$(MSBuildProjectName)_$(DateValue)</FolderName>
</PropertyGroup>

<Message Text="DateUnformatted value: $(DateUnformatted)" />

<Message Text="DateValue value: $(DatevValue)" />

<Message Text="FolderName value: $(FolderName)" />
</Target>

</Project>

In this example, we are invoking the GetDate task twice, once without specifying a format
and the other with a format passed in. The values are stored in MSBuild properties named
DateUnformatted and DateValue, and then these values are passed to the Message task.
The result of this build file is shown in Figure 4-4.

C=xInzideMSBuilds\Ch@4~bin~Debug-Samplez>meshuild GetDate®l_proj st:Demo ~nologo
Build started ?-13-2818 18:22:3% PM.
Project "C:xInsideMSBuildsChB4shin“Debhug-8amplessGetDatedl . proj" on node 1 (Demo target(s)>.
Demo:
Datelnformatted value: 2132818 18:22:3% PM
DatelValue value: 20188%13.10.39
FolderMame wvalue: GetDateBl_201606913.16.3%
Done Building Project "C::\InsideMS8Build~ChB4~bin\DebugsSamplessGetDatedl _proj" (Demo targetlsdl_

Build succeeded.
A Yarning(s)
B Errvords>

FIGURE 4-4 GetDate0l example

Chapter 4 Custom Tasks 95
In this demonstration, we have shown how we can pass values into and out of the task.

To recap, when you pass a value into a task, it is always passed in as an attribute on the task’s
element. Output values will be exposed to the build script by using an Output element as a
child of the Task element. We will now move on to discuss what types are supported.

Supported Task Input and Output Types

Task inputs and outputs are the only means by which a project file can communicate with

a task. A task will not have access to any properties or items that are not passed into it. This
is by design, so that it is easy to see what information is passed into and out of the task by
reading the project file. When you create values that can be passed into and out of tasks,
there are a variety of types that are supported. Since XML is the representation that all
MSBuild scripts are stored in, all values must be able to be converted to and from a string.
As mentioned in Chapter 2, “MSBuild Deep Dive, Part 1,” there are fundamentally two
types of values that are supported by MSBuild: scalar values and vector values. For vector
values, an array of acceptable scalar types is allowed. Table 4-4 summarizes what types are
supported to be passed through MSBuild tasks.

TABLE 4-4 Types Supported for MSBuild Inputs and Outputs

Type Description
String String values are simply passed back and forth directly, no conversion necessary.
|Taskltem This interface (Microsoft.Build.Framework.ITaskltem) is a part of MSBuild itself. It

is typically used when referencing files and for item value members. If an MSBuild
task needs to deal with items as input or output, then they should be exposed by
ITaskltem properties. It will allow you to pass items with metadata on them to the
task; it also allows the task to set or modify metadata on the item and then return
those items back into the build process.

Value MSBuild will allow you to pass value types back and forth from task to script. The
conversion support is limited to subclasses of ITaskltem and those types that the
System.Convert.ChangeType method is able to convert from and to strings. Those
types are: bool, byte, char, DateTime, Decimal, Double, int, long, sbyte, short,
Single, uint, ulong, and ushort.

Arrays of these types are acceptable as well.

When using the bool type, acceptable values include true, false, on, off, yes,
and no, and when used with the ! operator, such as /true.

In the tasks that we have created thus far, we have shown only task inputs and outputs using
string values. From the value types listed in Table 4-4, you can see that there are many other
types of values that we can pass into and out of tasks. When you create task properties of
any supported type, you don't have to worry about the conversion between string and the
actual type. The MSBuild engine will take care of this automatically. The most interesting
type listed in Table 4-4 is the ITaskltem type. This is shipped with MSBuild, in the Microsoft
.Build.Framework assembly, and is heavily used in tasks. In the next task, we will demonstrate
using objects of this type.

96

Part Il Customizing MSBuild

The next sample we will discuss is the TempFile task. This task creates a temp file and returns
its locations to the calling build script. The location value is passed as the property
TempFilePath, which is declared as an ITaskltem. The class definition is shown as follows.

public class TempFile : Task

{
[Output]
public ITaskItem TempFilePath
{ get; private set; }
public override bool Execute()
{
string path = System.IO.Path.GetTempFileName(Q);
TempFilePath = new TaskItem(path);
return true;
}
}

Inside the Execute method, we get the full path to a new temporary file, and create a new
Taskltem object that refers to it and assign it to the TempFilePath property. The Taskltem
class is the class that you should use when you have to create new objects that implement
[Taskltem. The constructor being called is TaskItem(string itemSpec). The itemSpec
(item specification) parameter is the representation of the value passed in the Include
attribute in an MSBuild file. After the value for TempFilePath is set, the task returns true
to indicate that the task completed without errors. You can see this task being used in the
corresponding sample file, TempFile01.proj, as follows:

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="TempFile" />

<Target Name="Demo">
<TempFile>
<Output ItemName="TestFile" TaskParameter="TempFilePath" />
</TempFile>

<Message Text="TestFile: @(TestFile)" />
<Message Text="TestFile.Filename: @(TestFile->'%(Filename)')" />
<Message Text="TestFile.Extension: @(TestFile->'%(Extension)')" />

</Target>

</Project>

As with every custom task, we first declare that we are going to be using the task with

a UsingTask statement. This makes the TempFile task available for use. In the example, the
value from the task is placed into an item named TestFile, and then a few messages are sent
to the logger. The output of the Demo target is shown in Figure 4-5.

Chapter 4 Custom Tasks 97

As can be seen from this sample, the task successfully created a temp file and returned its
path back to the calling MSBuild file. Since we place the value from the task into an item, we
could retrieve values for metadata of that item as well. In the TempFile task, the TempFilePath
was declared as an ITaskltem, which is the preferred method. If a consuming MSBuild
script places a value into an item, it is automatically converted into a representation using
[Taskltem. So in this example the difference is trivial, but you should generally use ITaskltem
when you expect to expose properties to be items in consuming scripts.
GC:nInsideMSBuildsCh@4~bin~Debug~Samples>msbuild TempFileBAl.proj ~t:Demo ~nologo
Build started ?-13-2818 18:59:48 PM.
Eroj?ct "G:xIngideM8Build~ChB4~hin~Debug~Samples~TempFileAl .proj" on node 1 <Demo target(sir>.

e?:;tFile: C:wDocuments and Settings“Marc-Local Settings“Temp“tmp48.tmp

TestFile _Filename: tmp48

TestFile .Extension: .tmp
Done Building Project "C:xInsideMSBuildsChB4shinsDebug Samples«TempFile®dl . proj" (Demo target(s)>.

Build succeeded.
A Warning(s)>
B8 Errorisd

FIGURE 4-5 TempFile task demonstration

Using objects that are ITaskltems is preferred because you are able to pass a richer object to
and from a task. Objects of this type can have metadata associated with it, which the task can
interact with. We will discuss this concept in more detail in the next section.

Using Arrays with Task Inputs and Outputs

We have now discussed various topics about passing values into and out of tasks; one of the
only issues that we have not discussed is passing vector values into and out of tasks. We will
discuss that now, by examining a real MSBuild task. This task was taken from my open-source
task repository, Sedodream Tasks, which is available at Codeplex at http://sedodream
.codeplex.com/. The task that we will demonstrate is a custom Move task. If you are using
MSBuild 4.0, there is a built-in Move task that you can use, but for previous versions, there
wasn’'t one. This task was designed to work similar to the Copy task in the sense that it has

a similar set of inputs, outputs, and behavior. The properties that are declared by the task are
shown in the following code snippet.

[Required]
public ITaskItem[] SourceFiles
{ get; set; }

public ITaskItem[] DestinationFiles
{ get; set; }

public ITaskItem DestinationFolder
{ get; set; }

[Output]
public ITaskItem[] MovedFiles
{ get; private set; }

98

Part Il Customizing MSBuild

[Output]
public Tong[] FileLengths
{ get; private set; }

From these properties, there are three that are declared as arrays of ITaskltem objects and
the remaining as a scalar ITaskltem. These could have been created using string[], but this
would limit the information that we could gather from the values. Specifically, a string object
cannot have any metadata associated with it, whereas ITaskltem objects can. You will find

an example of the usage of this task in the following file, MoveExample01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="Move" />

<PropertyGroup>
<SampleFilesPath>$(MSBuildProjectDirectory)\sampleFiles\</SampleFilesPath>
<DestPath>$(MSBuildProjectDirectory)\dest\</DestPath>

</PropertyGroup>

<ItemGroup>
<SampTleFiles Include="$(SampleFilesPath)***.txt"
Exclude="$(SourceFolder)**\.svn***" />
</ItemGroup>

<Target Name="Demo">
<Move SourceFiles="@(SampleFiles)"
DestinationFiles=
"@(SampleFiles->'$(DestPath)%(RecursiveDir)%(Filename)%(Extension)')">
</Move>
</Target>

</Project>

In this example, we create a new item, SampleFiles, and pass that into the SourceFiles
property for the Move task. The value for DestinationFiles is a transformation of the
SourceFiles item. When you use tasks that have inputs that should have a one-to-one
correspondence, it is common for one of them to be a transformation of the other. This
is what is shown here. Previously, we mentioned that the ITaskltem type of objects can
have metadata; we will now discuss that in more detail. In the code for a custom task,
you can get and set the values for an item’s metadata by using the GetMetadata and
SetMetadata methods, respectively. We will see this at work in the sample task | created,
MetadataExample.

In order to demonstrate clearly how you can use metadata on items passed into and out of
custom tasks, | have created a sample task, MetadataExample, that demonstrates this. This
task is very simple and is shown in its entirety as follows.

Chapter 4 Custom Tasks 929

public class MetadataExample : Task

{
[Required]
public ITaskItem[] ServerList
{ get; set; }
[Output]
pubTlic ITaskItem[] Result
{ get; set; }
pubTlic override bool Execute()
{
if (ServerList.Length > 0)
{
Result = new TaskItem[ServerList.Length];
for(int i=0; i<Result.Length; i++)
{
ITaskItem item = ServerList[i];
ITaskItem newItem = new TaskItem(item.ItemSpec);
string fullpath = item.GetMetadata("Fullpath™);
newItem.SetMetadata("ServerName", item.GetMetadata("Name"));
newItem.SetMetadata("DropLoc", item.GetMetadata('"DropLocation"));
newItem.SetMetadata("IpAddress", string.Format("127.0.0.{0}", i+10));
Result[i] = newItem;
}
}
return true;
}
}

In this task, we have two properties, both of which are declared as I[Taskltem[]. ServerList is
a required input parameter and Result is the output parameter. In the Execute method, we
get some values from the metadata and use it to populate values into the Result item. We
can see this in action in the following MetadatakExampleO1.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="MetadataExample" />

<PropertyGroup>
<ConfigFileRoot>$(MSBuildProjectDirectory)\sampleConfigFiles\</ConfigFileRoot>
</PropertyGroup>
<ItemGroup>
<Server Include="$(ConfigFileRoot)serverl.app.config">
<Name>serverl</Name>
<DropLocation>D:\Drops\</DropLocation>
</Server>
<Server Include="$(ConfigFileRoot)server2.app.config">

100 Part Il Customizing MSBuild

<Name>server2</Name>
<DroplLocation>E:\Builds\Drops\</DropLocation>

</Server>

<Server Include="$(ConfigFileRoot)server3.app.config">
<Name>server3</Name>
<DropLocation>D:\Data\DropDir\</DropLocation>

</Server>

<Server Include="$(ConfigFileRoot)server4.app.config">
<Name>server4</Name>
<DropLocation>D:\Projects\DropLocation\</DropLocation>

</Server>

</ItemGroup>

<Target Name="Demo">

<MetadataExample ServerList="@(Server)">
<Output ItemName="ServerIpList" TaskParameter="Result" />
</MetadataExample>

<Message Text="ServerIplList: @(ServerIpList)" />

<Message
Text="Server: %(ServerIpList.ServerName)
%(ServerIpList.DropLoc)
%(ServerIpList.IpAddress)" />
</Target>

</Project>

In this project file, we have created an item named Server and attached a value for Name
and DropLocation metadata for each item. Inside the Demo target of this project file, we
invoke the MetadataExample task and pass in the Server item. Then we place the output of
the task into an item named ServerlpList with the Output element. Finally, we print a message
to display the custom metadata values that the task set. If you execute this project file, you
would see the results shown in Figure 4-6.

C:xIngideMSBuild«~ChB4~hinxDebugsSamples >mzbuild MetadataExampleBl.proj ~t:Demo ~nologo
Build started %-14-2818 18:03:44 P
groaect L] \Ins1deHSBu11d\ChB4\h1n\Debug\Samples\HetadataExampleﬂi proj" on node 1 {(Demo target{s>

Demo =
ServerlpList: G:xInsideMSBuild~ChB4~bhin>Debug~SamplesssampleConfigFilesserverl.app.config;C:xIn
sideM8Build~ChB4~hin“Debug~SamplesssampleConf igFilessserver?.app.config;C:~InsideMSBuild~ChB4~bi
nsDebugsBamplesssampleConfigFiles\server3.app.config;C: \Ins1deHSBu11d\ChB4\h1n\Dehug\Sanples\sam
pleConfigFilessserverd.app.config
Server: serverl
D:“\Drops™
127.8.8.18
Server: server?
E:%Builds“\Drops*
127.8.8.11
Server: serverd
D:sDatasDropDies
127.8.8.12
Server: serverd
D:5\ProjectssDropLocation™
127.8.8.13
Done Building Project "C:\InsideMSBuild~Ch@4xhin“Debug“Sanples‘\MetadataExampleBl.proj" (Demo targe
t{sd>.

Build succeeded.
8 Warning{s>
A Error(s>

FIGURE 4-6 Using metadata

Chapter 4 Custom Tasks 101

If you look at the results shown here, you can see that we were able to successfully pass
metadata into and out of a task. Note that once an item value has been passed to a task, any
modifications to it are not reflected back into the MSBuild file. So if you use the SetMetadata
method on an item that was passed into the task by an input, it will not be reflected back in
the calling MSBuild file. Now that we have discussed all that you need to know to pass values
in and out of tasks, we will discuss inline tasks and then move on to extending the ToolTask
class, which we briefly touched on earlier.

Inline Tasks

As you can see, writing a task is pretty easy, but sometimes it is inconvenient to write the
task, store the source of that task, compile it into an assembly, and then deploy that assembly
into your build process. It would be a lot simpler if you could just write the task inside

an MSBuild file and let MSBuild take care of the rest. With MSBuild 4.0, you can do just that.
This new feature is known as inline tasks, and we will cover those now, and then move on to
look at an easy way to create tasks that wrap command-line tools.

First, | will show you what a very simple inline task looks like and how to use it. After that,
we will go over the details. Similar to the previous sections, the first inline task that we create
will be a Hello World task. Take a look at the following snippet, which is contained in the
Hello-IT-01.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask
TaskName="HelToWorldIt01l"
TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<Task>
<Code Type="Fragment" Language="cs">
<! [CDATA[
Log.LogMessage("Hello MSBuild");
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">

<HelloWor1dIt0l />
</Target>
</Project>

Here, | have used a UsingTask element, which you are already familiar with, but added some
new things to it. We've already discussed all its attributes in Table 4-1, but we didn't tell you
about the Code element that you can declare under it. This is where you would place your

102 Part Il Customizing MSBuild

code. This task is written in C#, which is why we have a cs value for the Language attribute.
We will go over this soon, along with the TaskFactory attribute of the UsingTask element.
The value for the TaskName attribute in the UsingTask element is set to He1ToWor1dIt01,
which is the name of the class that gets generated for you. If you were writing this as a
typical compiled task, then it would be the name of the class, just like HelloWorld was the
name of the first take we created in this chapter. In order to call this task, you would do
the same thing if it was a compiled task. The results of the msbuild Hello-IT-01.proj
/t:Demo command are shown in Figure 4-7.

Baild seantod 9o14,2008 156150 P, oo (1 @i-prod stibeno /nologo

g:;g?ct "C:\InsideMSBuild~ChB4~Samples~Hello—IT-B1.proj" on node 1 <{Demo target(s>>.

Hello MSBuild
Done Building Project "G:xInsideMSBuild~ChBA4:Samples~Hello-IT-Bl.proj" <Demo targetCsi).

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 4-7 HelloWorld inline task

As you can see from this figure, the result of the HelloWorldIt01 task is the same as the
compiled task HelloWorld01 that we created earlier.

Now that you have seen how to create and use an inline task, we will take a close look at

the different ways of creating inline tasks. First, let’s discuss creating inline tasks in different
languages. So far, we have only covered C#, but you can create inline tasks in different
languages. You can create them in any language you want, but the ones supported by
default are C# and VB.NET. In order to create inline tasks in any other language, you will have
to create a new task factory or find it online. If you are using C# for the Language attribute,
the following case-insensitive values are valid: c#, cs, and csharp. For VB.NET, the following
case-insensitive values are allowed: vb, vbs, visualbasic, and vbscript.

Note The allowed values for the Language attribute are derived from the System.CodeDom
.Compiler.Compilerinfo class.

As an example, here is the VB.NET version of the previous inline task, in a bit more verbose
fashion so that it is obvious that it is not C#.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask
TaskName="HelloWor1dIt02"
TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<Task>
<Code Type="Fragment" Language="vb">
<! [CDATAL

Chapter 4 Custom Tasks 103

Dim message As String
message = String.Format("{0} {1}{2}", "Hello", "World",", from VB.NET")
Log.LogMessage(message)
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">

<HeTloWor1dIt02 />
</Target>
</Project>

If you execute the Demo target, the result is just "He11o World, from VB.NET". We will

not show any more samples in VB.NET for the remainder of the book, but converting C#
examples should be pretty straightforward. We will now move on to discuss how parameters,
both input and output, are handled for inline tasks.

Just like compiled tasks, inline tasks can have both input and output parameters. In fact, your
parameters can be as rich as they are with normal compiled tasks. If you want your tasks

to contain parameters, then you will have to use the ParameterGroup element to define
them. Take a look at the new inline task that is created in the next snippet from the file
PrintMessage01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask
TaskName="PrintMessage"
TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<ParameterGroup>
<Message Required="true"/>
</ParameterGroup>
<Task>
<Code Type="Fragment" Language="c#">
<! [CDATAL
Log.LogMessageFromText (Message,MessageImportance.High);
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">
<PrintMessage Message="Print this message" />
</Target>

<Target Name="DemoNoMessage'>
<PrintMessage />
</Target>
</Project>

104

Part Il Customizing MSBuild

In this snippet, a new task, PrintMessage, was defined inline, which just logs the string
provided in the Message property. It does this by using the Log helper object from the
Microsoft.Build.Utilities.Task class, which is the base class for all inline tasks. We will discuss
this more soon. In this project file, | have created the PrintMessage task, and it uses the
ParameterGroup element to define the lone Message parameter, which is marked as required
by setting the Required attribute to true. The default value for this is false. Figure 4-8 shows
the result of executing the command msbuild PrintMessage0l.proj /t:Demo /nologo.
gu:igs;ggzg251%2;gtggigagp%§ngsgﬁlld PrintMessage®l.proj ~t:Demo /nologo

gggg?ct "C:NInsideMSBuildsChB4~Samples~PrintMessagedl.proj" on node 1 (Demo target(sl>.

Print thisz message
Done Building Project “G:inInsideMSBuild~GhB4nSamplessPrintMessage@l.proj" (Demo target(s)>.

Build succeeded.
Warning<s>»
8 Erroris)

FIGURE 4-8 PrintMessage Demo target result

The Demo target calls the PrintMessage task and passes it the value “Print this message” for
the Message attribute. In that project file, the other target, DemoNoMessage, just calls the
PrintMessage task as we were invoking the HelloWorld tasks previously, without passing

in any parameters. In this case, the build should fail in the same way that it would for

a compiled task because the required parameter is not specified. If you execute that target,
you will see the failure message shown in Figure 4-9.

G: \Ins1deHSBu11d\ChB4\Samples)mshulld PrintMessage®l.proj ~t:DemoNoMessage ~nologo

Build started 9152018 9:48:85

Project "'C: \Ins1deHSBu1ld\ChB4\Samples\PrlntHessageBi proj"” on node 1 {DemoMoMessage target{s>>.
C:\InsideHSBui1d\ChE4\Samples\PrintHessageEl.prnj(zﬁ 53: error MEB4B44: The "PrintMezsszage' task wa

s not given a value for the required parameter "Message"
Done gg%%%ﬁng Project "'G: \Ins1deHSBu11d\ChB4\Samples\PPlntHessageBl proj'" (DemoMoMessage target(s)

Build FALLED.

"G:xInsideM5Build~ChA4~Samples~FPrintMessagedl.proj" (DemoMoMessage target> <1> —>
{DemoNoMeszage target) —>

[H] \Ins1deHSBu1ld\ChB4\Samples\PrlntHessageBi proj<26.5»: error MSB4844: The "PrintMessage' task
was not given a value for the required parameter "Messzage"

A Yarning(s)>
1 Ervor{s>

FIGURE 4-9 PrintMessage DemoNoMessage target result

From the result shown in this figure, you can see that you get the exact same error message
that you would have if you were using a normal task. We have discussed input parameters;
let's now take a look at how we can create a task that also creates an output parameter.

The sample file, CreateGuid01.proj, contains the contents shown in the following code
section.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask
TaskName="CreateGuid01"

Chapter 4 Custom Tasks 105

TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<ParameterGroup>
<Id Output="true"/>
</ParameterGroup>
<Task>
<Code Type="Fragment" Language="cs">
<! [CDATAL
Id = Guid.NewGuid() .ToString(Q);
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">
<CreateGuid0l>
<Output PropertyName="MyId" TaskParameter="I1d"/>
</CreateGuid0l>
<Message Text="MyId: $(MyId)"/>
</Target>
</Project>

In this file, we have created a new inline task, CreateGuid01, and that task has declared

an output parameter, Id. The fact that the Id parameter has the value Output="true” makes
it an output parameter. Then, inside the Demo target, we invoke that task and extract the
value for Id and place it into the Myld property, just as we would have done if we were using
a normal task. Figure 4-10 shows the results of executing that target.
C:~InsideMSBuild~ChB4-Samples*msbuild CreateGuidBl.proj ~t:Demo ~nologo
Build started ?/15-2010 2:45:58 PM.
groaect "G:xInsideMSBuild~ChA4~8amples CreateGuidBl.proj" on node 1 (Demo target{s>>».

emo =

Myld: ed?edbf3-269f-4a22-87e6-22b67alcP4eld
Done Building Project "C:InsideM8Build-ChB4-Samples~CreateGuidBl.proj" (Demo target(s>>.

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 4-10 CreateGuid01 demo

You can see that we were able to use the result of the output parameter inside the project
file, as we expected. Thus far, we have not discussed what type of properties (NET properties,
that is) we are creating. If you do not specify a type for a property (input or output), then

it will default to being a string. But you can specify the type by using the ParameterType
attribute on the parameter declaration. In this attribute, you should specify the full name

of the type that you want to use, and it can be any valid type. We discussed the supported
types in the section entitled “Supported Task Input and Output Types,” earlier in this chapter.

Take a look at the new inline task, Add01, that we created from the AddO1.proj file. This task
just takes two numbers, adds them, and places the result into an output parameter.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

106

Part Il Customizing MSBuild

<UsingTask
TaskName="Add01"
TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<ParameterGroup>
<Valuel ParameterType="System.Double" Required="true"/>
<Value2 ParameterType="System.Double" Required="true"/>
<Sum ParameterType="System.Double" Output="true"/>
</ParameterGroup>
<Task>
<Code Type="Fragment" Language="cs">
<! [CDATAL
Sum = Valuel + Value2;
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">
<PropertyGroup>
<x>1.2</x>
<y>3.4</y>
</PropertyGroup>
<Add01 Valuel="$(x)" Value2="$(y)">
<Output PropertyName="Result" TaskParameter="Sum"/>
</Add01>
<Message Text="$(x) + $(y) = $(Result)"/>
</Target>
</Project>

This task declares three properties—Valuel, Value2, and Sum—all of which are declared as
being of type System.Double (double). Then, inside the Demo target, we showed the task
at work. It was able to add the two values provided and placed the result into the output
parameter. We will not show the result here, but if you want to see it in action, you can
execute the command msbuild Add0l.proj /t:Demo.

Thus far, all the inline tasks that we have created used only scalar values (those with only one
value), but we will now take a look at a task that uses a vector value. Previously, you saw the
CreateGuid01 task that created one globally unique identifier (GUID), but what if you need
more than one? Then you create a new inline task for just that purpose. The CreateGuid02
task handles this. It is capable of creating many IDs and placing them into an output
parameter, which is defined as an array of strings. The task and a sample target are shown

in the next snippet from the CreateGuid02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask
TaskName="CreateGuid02"
TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >

Chapter 4 Custom Tasks 107

<ParameterGroup>
<NumToCreate ParameterType="System.Int32" Required="true" />
<Guids ParameterType="System.String[]" Output="true" />
</ParameterGroup>
<Task>
<Code Type="Fragment" Language="cs">
<! [CDATAL
List<string> guids = new List<string>Q);
for (int i = 0; 1 < NumToCreate; i++)

{
guids.Add(Guid.NewGuid().ToString();
}
Guids = guids.ToArray(Q);
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">
<CreateGuid02 NumToCreate="1">
<Output ItemName="Id01l" TaskParameter="Guids" />
</CreateGuid02>
<Message Text="Id0l: @(IdoL)" />

<CreateGuid02 NumToCreate="4">
<Output ItemName="Id02" TaskParameter="Guids" />

</CreateGuid02>
<Message Text=" "/>
<Message Text="Id02: @(Id02)" />
</Target>
</Project>

The CreateGuid02 task has two parameters defined: one input and one output. The input parameter,
NumToCreate, is a required parameter, and it is used to determine how many new IDs to create. The
other parameter, Guids, is the resulting list of IDs, and it's marked with the Output="true” value. Take
a look at the ParameterType="System.String[]” attribute declaration, which is saying that the Guids
property (a .NET property) will be defined as an array of strings. Then, inside the body of the task,

a List<string> object is used to contain the values, and at the end of the task, the Guids property

is assigned the value of guids.ToArray(), as shown in Figure 4-11.

C:\InsideHSBuild\ChB4\Samples)msbuﬁld CreateGuid@2.proj ~t:Demo ~nologo

Build started ?-15-2010 18:08:37 PM.
Project "C:“\InsideMSBuild~ChB4~Samples~CreateGuidf2.proj" on node 1 (Demo target{sdl.

Demo:
Id@i:= ?£91532e—h4f3-4f45-Bcc2-F481b4fBecOl
1dB2: h3f3eef8—Baad-432d-%e48—FacbfBBccllB;4a3b?bac—Bocea—47ee—9fdl-6120%eff7cc2;0d76aBea—3383-4e

Z2U-E3Ye—aea¥hbYabbebseabltfade—d6bd—debc—b’sh-tdicaWhcadia
Done Building Project "G:xInsideMSBuild~ChB4:Samples-CreateGuid®2.proj" (Demo target(s)>.

Build succeeded.
A8 Warning{s>
8 Error(sd

FIGURE 4-11 CreateGuid02 inline task result

In the Demo target, we invoke the CreateGuid02 task twice. The first time, we use it to create
just one value and placed that into the Id01 item. You could have placed this into a property

108

Part Il Customizing MSBuild

if you wanted, but we placed it into an item here for consistency. The second invocation
specified that four values should be created. You can verify that this was the case by looking
at the result in Figure 4-11. By now, you should be pretty comfortable with task parameters.
Let's look at some other aspects of inline tasks.

There are a couple other issues that we have not yet discussed, which are very important
because the tasks that we have created have been very basic. To give a better idea, let's
discuss what is happening internally. At runtime, MSBuild uses the CodeDOM to generate
a class from your inline task, which it then compiles and loads just like any other task.

Note For more info on CodeDOM, you can visit the reference at http://msdn.microsoft.com/
en-us/library/y2k85ax6.aspx.

Let's take a look at what that class looks like. In the next snippet, you will find the class that
was automatically created for us to implement the CreateGuid02 task. It has been formatted
a bit to preserve space for printing.

namespace InlineCode {
using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using System.Ling;
using System.IO;
using Microsoft.Build.Framework;
using Microsoft.Build.Utilities;

public class CreateGuid02 : Microsoft.Build.Utilities.Task {
private bool _Success = true;
public virtual bool Success {
get { return _Success; }
set { _Success = value; }

}

private int _NumToCreate;
pubTlic virtual int NumToCreate
{
get { return _NumToCreate; }
set { _NumToCreate = value; }

}

private string[] _Guids;
pubTlic virtual string[] Guids
{
get { return _Guids; }
set { _Guids = value; }

}

public override bool Execute()

{

List<string> guids = new List<string>Q);

Download from Wow! eBook <www.wowebook.com>

Chapter 4 Custom Tasks 109

for (int i = 0; i < NumToCreate; i++)
{
guids.Add(Guid.NewGuid() .ToString();
}
Guids = guids.ToArray(Q);

return _Success;

}

From this, you can see how your tasks are created. The parameters are declared as you would
have declared them, and then the body of the task is placed inside the Execute method. One
thing to take note of here is that you don't see the [Required] and [Output] attributes; these
are handled separately, but they do behave as expected. The other thing that you should
notice are the namespaces that have been declared as being used via using statements at the
top of the class. You will always have these namespaces at your disposal. If you need more,
you can insert more with the Using element under the task element. For example, if you
wanted to use the Regex class from the System.Text.RegularExpressions namespace without
qualifying its name, then you can add the using System.Text.RegularExpressions;
statement to the generated class. The Replace01 inline task from Replace0l.proj, shown next,
shows how you would accomplish this.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask
TaskName="Replace01"
TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<ParameterGroup>
<Input Required="true"/>
<Pattern Required="true"/>
<Replacement Required="true"/>
<Result Output="true"/>
</ParameterGroup>
<Task>
<Using Namespace="System.Text.RegularExpressions" />
<Code Type="Fragment" Language="cs">
<! [CDATAL
Result = Regex.Replace(Input, Pattern, Replacement);
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">
<Replace0l Input="This is a ssn 123-45-7894 value"
Pattern="\d{3}\-\d{2}\-\d{4}"
Rep] acement=""%% ik ks
<Output PropertyName="MaskedSsnString" TaskParameter="Result"/>

110

Part Il Customizing MSBuild

</Replace0l>
<Message Text="MaskedSsnString: $(MaskedSsnString)"/>
</Target>
</Project>

In this example, | use the Replace0l task to mask a Social Security value that is contained in
a string. Now that we have covered using statements, you might be wondering how you can
add references to other assemblies. You do this with the Reference element under Task.

It is very similar to Using, but instead of a Namespace attribute, it has an Include attribute.
To clarify this, we will take a look at a sample. In the Example.Tasks project file, | have created
a simple static class, ExampleValues, shown here.

namespace Examples.Tasks

{
public static class ExampleValues
{
public const string Name = "Example-values";
}
}

In this class, | just create a const property, Name, that | access from the inline task that |
create. This task, Ref01, is defined in the IT-Ref01.proj file in the Samples directory of the
Example.Tasks project. The contents of that file are shown here.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask
TaskName="Ref01"
TaskFactory="CodeTaskFactory"
AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<ParameterGroup>
<Value Output="true"/>
</ParameterGroup>
<Task>
<Reference Include="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11" />
<Using Namespace="Examples.Tasks"/>
<Code Type="Fragment" Language="cs">
<! [CDATAL
Value = ExampleValues.Name;
11>
</Code>
</Task>
</UsingTask>

<Target Name="Demo">

<Ref01>
<Output PropertyName="Result" TaskParameter="Value"/>
</Ref01>
<Message Text="Result: $(Result)"/>
</Target>

</Project>

Chapter 4 Custom Tasks 111

In this sample, the Ref01 task is defined, and it uses the Reference element to let MSBuild
know where the assembly is that should be referenced when building the Ref01 task. Along
with that, | also insert a using statement for the namespace Examples.Tasks. That way, | do
not have to qualify the ExampleValues class when | use it. Then, inside the Demo target, |
simply use the task as | normally would have. You can see the result of executing that target
in Figure 4-12.

g;;iﬁsigggigsiggIgtggigigEP;gggES;aples)msbuild IT-RefBl.proj ~t:Demo ~nologo

g:;g?ct "C:x\IngideMEBuild~ChB4~hin\Debug Samples~IT-Ref@l.proj" on node 1 (Demo target(sd).

Result: Example—uvalues
Done Building Project “G:iNInsideMSBuildwGhB4sbinsDebugsSamplessIT-Ref@l.proj'" <(Demo targeti(s?>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 4-12 RefO1 InlineTasks result

From this figure, you can see that we were able to successfully reference another assembly
when the inline task was built. We've covered default inline tasks pretty well. We will now
move on to cover what a TaskFactory is.

TaskFactory

In the previous examples for inline tasks that we have shown, you might have been
wondering about the attribute TaskFactory="CodeTaskFactory”, which we assigned to

each UsingTask element. The task factory, which this attribute refers to, is the object that is
responsible for creating instances of those tasks dynamically. As was mentioned previously,
you can create inline tasks with managed languages by default, and these use the CodeDOM
to compile those at run time. You are not limited to using inline tasks in this way. You can
create your own task factory to allow you to author your own inline tasks in whatever
language you choose. For example, if you download the MSBuild Extension Pack (available
from http.//msbuildextensionpack.codeplex.com/), then you can author inline tasks using
IronRuby or IronPython. To author tasks with those languages, you need to use a task factory
called DIrTaskFactory, which is contained in the extension pack.

If you want to be able to author inline tasks in a language that is not supported, you can

do that by creating your own task factory, which is straightforward. In this section, we will
discuss a very basic task factory that can be used to execute batch files. This task factory is
not very useful because the Exec task already exists, but it will introduce you to the concepts
of creating your own task factory. To create a new task factory, all that you need to do is
implement the Microsoft.Build.Framework.ITaskFactory interface. This interface has two
properties and a handful of methods that you will need to implement. That interface is
shown in Figure 4-13.

112

Part Il Customizing MSBuild

bl

.ITaskFactnrf
Interface
d
=/ Properties
jf Factarehdame ! strimg
o TaskTpe : Type
= pethods
W CleanupTask . vaid
W CregteTaskp. iTask
W GetTaskParametars): TaskProperbinfa]
W Initializz() Baal

FIGURE 4-13 |TaskFactory interface

We will now go over all these properties and methods. In Table 4-5, you will see the
descriptions of the two properties of the [TaskFactory interface.

TABLE 4-5 ITaskFactory Properties
Property Description

FactoryName This is the name of the factory, such as DIrTaskFactory, CodeTaskFactory,
or BatchFileTaskFactory. This is the name that you will need to use inside
the MSBuild files to specify which task factory should be used. Most
implementations will return just the name of the task factory class.

TaskType This returns the type for the task that this factory will create.

These properties are pretty straightforward, so we will not go over them in detail. We will
now discuss the four methods that are defined in that interface. Let's start with the /nitialize
method:

bool Initialize(string taskName, IDictionary<string, TaskPropertyInfo> parameterGroup,
string taskBody, IBuildEngine taskFactorylLoggingHost);

When your task factory is created by the MSBuild engine, it will be constructed using the
default constructor, so make sure that you have one defined, and then the Initialize method
will be called to prepare it. TaskName is the name of the task which is being created; this

is the value of the TaskName attribute from the UsingTask element. Depending on the
implementation, you may be able to ignore this. The container for all the parameters that
are being passed into the task is called parameterGroup. If your UsingTask element declares
a parameter, then the parameters will all be contained in the parameterGroup property.
Typically, you will want to take those values and store them because you will return those
same values in the GetTaskParameters method. Since the MSBuild script will pass in the
parameters into the Initialize method, many times you will just return those parameters

as is, but you are given a chance to modify them if your task factory requires it. The only
remaining method is the CleanupTask method, which is called when the task is no longer
needed and can be disposed of. Now that we have discussed all the methods that you will

Chapter 4 Custom Tasks 113

need to implement, let’s take a look at an example and then we will go a bit deeper. In the
following code block, you'll find the contents of the BatchFileTaskFactory.cs file.

public class BatchFileTaskFactory : ITaskFactory

{
protected string TaskXmlBody
{ get; set; }

protected IDictionary<string, TaskPropertyInfo> ParameterGroup
{ get; private set; }

public virtual void CleanupTask(ITask task)

{
Contract.Requires(task != null);
// If the task is disposable then dispose it
IDisposable disposableTask = task as IDisposable;
if (disposableTask != null)
{
disposableTask.Dispose();
}
}

pubTlic virtual ITask CreateTask(IBuildEngine taskFactorylLoggingHost)
{ return new BatchFileTask(this.TaskXml1Body); }

pubTlic string FactoryName
{

get { return this.GetType().Name; }
}

public virtual TaskPropertyInfo[] GetTaskParameters()
{ return this.ParameterGroup.Values.ToArray(Q); }

pubTlic virtual bool Initialize(
string taskName,
IDictionary<string, TaskPropertyInfo> parameterGroup,
string taskBody,
IBuildEngine taskFactorylLoggingHost)

{
Contract.Requires(!string.IsNull0OrEmpty(taskName));
Contract.Requires(parameterGroup != null);
Contract.Requires(taskBody != null);
Contract.Requires(taskFactoryLoggingHost != null);
this.TaskXm1Body = taskBody;
this.ParameterGroup = parameterGroup;
return true;

}

public Type TaskType

{
get { return typeof(BatchFileTask); }

}

114

Part Il Customizing MSBuild

By looking at this sample task factory and the descriptions for the properties and methods
that we just discussed, what is happening is pretty straightforward. There is no magic
happening here. When an inline task element is being encountered for the first time, MSBuild
will call the task factory to create an instance of that inline task and then call the Initialize
method. Initialize will essentially be “passed” everything contained in the UsingTask element.
After that, MSBuild will call the CreateTask method to create a specific instance of the task for
that usage of the task. After the instance is created, all the parameters passed into the task
element in the target will be assigned as they would a normal task. Then the task is executed,
and finally, if any Output elements are present, they will be processed.

If you take a look at the CreateTask method, you will see that we are creating a new instance
of BatchFileTask and passing it the task body contents. This class is simply an implementation
of the ITask interface that we create. You can create and return any object that implements
the ITask interface, including those tasks that already exist. Even though you could return
tasks that already exist, the odds are that you will create a new task specifically to execute
the behavior contained in the task body. For instance, if you created a Perl task factory, you
could create a task that could execute the Perl scripts contained in the body of the task. In
this case, we will just execute the batch file. The definition of BatchFileTask is shown in its
entirety in the next code section.

public class BatchFileTask : Task

{
pubTlic BatchFileTask(string xm1Body)
{
this.InitalizeFromXml(xm1Body);
}

private string Filepath
{ get; set; }

public string Message
{ get; set; }

pubTlic int ExitCode
{ get; set; }

private void InitalizeFromXml(string xmlBody)

{
if (!string.IsNul10rWhiteSpace(xm1Body))
{
// parse the doc, should Took Tike this <Script Filepath="..."/>
XDocument doc = XDocument.Parse(xmlBody) ;
XNamespace xnamespace =
@"http://schemas.microsoft.com/developer/msbuild/2003";
var node = (from n in doc.Elements(xnamespace + "Script")
select n).SingleOrDefault();
if (node != null)
{
this.Filepath = node.Attribute("Filepath™).Value;
}
}

Chapter 4 Custom Tasks 115

public override bool Execute()

{

if (!string.IsNul10rWhiteSpace(Filepath))

{
// make sure the file exists
if ('File.Exists(this.Filepath))
{

Log.LogError("Batch file not found at [{0}]", this.Filepath);

}

else
{
Log.LogMessage(
MessageImportance.High,
"Executing batch file from [{0}]",
this.Filepath);
string cmdFilepath = ToollLocationHelper.GetPathToSystemFile("cmd.exe");
Process process = new Process();
process.StartInfo = new ProcessStartInfo(this.Filepath);
process.StartInfo.UseShellExecute = true;
process.StartInfo.CreateNoWindow = true;
process.Start();
process.WaitForExit(Q);
int exitCode = process.ExitCode;
if (exitCode != 0)
{
Log.LogError(
"Non-zero exit code [{0}] from batch file [{1}]",
exitCode,
this.Filepath);
}

// you could set this via a parameter
// process.StartInfo.WorkingDirectory

}

return !this.Log.HaslLoggedErrors;

3

The only thing that makes this task different from a normal task is the way that it's created. In
this case, there is no default constructor, so it can't be used outside a task factory. The XML
fragment that is contained inside the body of the task from an inline task declaration must
be passed to it.

Note If you want to create a dynamic task, you might be interested in learning about the
Microsoft.Build.Framework.IGeneratedTask interface. By implementing this interface, you do
not have to specify that your task can be passed in any parameters. When you use this interface,
properties can be retrieved or set on the task using the GetPropertyValue and SetPropertyValue
methods instead of declaring the parameters at the time the task is defined.

IGeneratedTask is a bad choice of name because the tasks are not really generated; regular
tasks are implemented internally with a task factory. A better name, perhaps, would have been
IDynamicTask.

116

Part Il Customizing MSBuild

We've covered inline tasks and task factories pretty well up to this point. There is more
to know about task factories, but we will not cover all the details here. If you need more
information, a good place to look is the MSDN reference for MSBuild. We will now switch
back to standard tasks and discuss the ToolTask class.

Extending ToolTask

There are many instances in which you need to invoke an .exe file in your build process.
There is a task, the Exec task, which allows you to execute any command. This works great
and is used throughout the MSBuild community. If you find yourself executing the same
.exe file on several occasions, then it may be worth writing a custom task to execute the
command. Custom tasks that wrap up executables have many advantages to simply using
the Exec task. Some of those benefits are outlined in the following list:

B Ease of use Since custom tasks have specific properties for inputs and outputs, they
are very easy to use.

B Better input validation You can write .NET code to validate the parameters that the
script is requesting be sent to the executable.

B Easier path resolution Sometimes you may not know where the .exe file resides. You
may have to search the registry or examine a set of folders. This is typically performed
more easily in code than in an MSBuild script.

B Pre- and post-processing Because you are creating a custom task, you can perform
actions before and/or after the execution of the executable.

B Parsing stdout and stderr The ToolTask class can detect errors and warnings from
messages that are sent into the stdout and stderr streams.

B Enables task execution skipping By overriding the SkipTaskExecution method, you can
programmatically determine if the task should be skipped.

When you have decided to write a custom task to wrap an executable file, you should
consider extending the ToolTask class. This class, which is in the Microsoft.Build.Utilities
assembly, was designed specifically for this. The class diagram for the ToolTask abstract class
is shown in Figure 4-14, which was generated with the MSBuild 3.5 assemblies.

As shown in the previous diagram, the ToolTask class extends the task class. This class
implements the Execute method from the task class, but it does define one abstract

method and one abstract property that need to be implemented. Those are the
GenerateFullPathToTool method and the ToolName property. There are many other methods
and properties that are relevant in this class, and we will discuss some of those now. We will
discuss only the methods and properties with which you are likely to interact.

ICancelableTask
ITask

{ ToolTask
Abstract Class
=b Task
A3
= Properties
5 EchoOff: bool
ﬁ ErvironmentOverride : StringDictionary
5 Ervironmentvariables : stringl]
ExitCode :int
HasLoggedErrars : bool
LogStandardErrordsError : bool
ResponseFileEncoding : Encoding
StandardErrorEncoding : Encoding
StandardErrorlmportance : string
StandardErrodmportanceTollse : Messagelmportance
StandardErrorlogginglmportance @ Messagelmportance
StandardOutputEncoding : Encoding
Standard Outputlmportance @ string

b 1 o oo o i o o i o L

StandardOutputlrmportanceTolse @ Messagelmportance
StandardOutputlogginglmportance : bMessagelmportance

li
e

0y L iy oy iy i i iy U

TaskProcessTerminationTimeout : int
Tirneout : int
ToolCanceled : ManualResetBvent
ToolExe ! string
Tagivame ; string
ToolPath : string
UseCormmandProcessar: bool
YieldDuringToolExecution : bool
= Methads

¥ CallHostObjectToExecute() : bool

W Cancel():void

7% DeleteTempFile) :void

W Executed: bool

2% ExecuteTool():int
W GenerateCommandLlineCommands() : string
7% GeneratefuilPathToToal(}: string
2% GenerateResponseFileCommandsi) @ string
7% GetProcessStartnfo() : ProcessStarInfo
2% GetResponseFileSwitchi) : string
¥ GetWorkingDirectare) @ string
7% HandleTaskExecutionErrars() : bool
7% InitializeHostObject() : HostObjectInitialization Status
¥ LogEventsFromTedOutputd @ void
7% LogPathToTool(@ void
¥ LogToolCommandd @ woid
7% SkipTaskExecution(: bool
7% ToolTask() (+ 2 overloads)
W WalidateParameters() : bool

FIGURE 4-14 ToolTask class diagram

|

Chapter 4 Custom Tasks

(P ITask

Task
Abstract Class
2

= Properties

»)

BuildEngine ; IBuildEngine
BuildEngine? : IBuildEngine?
BuildEngined : IBuildEngine3
HelpkeynordPrefiz @ string
HostObject: ITaskHost

Log : TaskLoggingHelper

liy Ly fiy i iy iy

2 TaskResources : ResourceManager

= Methads
W Crecute(d: Hoal
7% Task({+ 2 overloads)

117

118

Part Il

Customizing MSBuild

ToolTask Methods

Cancel This method is called to cancel the task execution. Once this method is called
by MSBuild, if the task does not complete, it will be forcefully terminated.

DeleteTempFile This is simply a helper method that can be used to delete files.
The advantage of using this method is that it doesn't fail the build if the file can't be
deleted; it only warns and continues.

ExecuteTool This is the method called that will execute the tool based on the values
from the input parameters.

GenerateFullPathToTool You will have to implement this method. The return value, as
the name suggests, is the full path to the tool that you are executing.

GenerateCommandLineCommands This is used to generate any parameters that are
passed to the command. The return value will be appended to the full tool path for the
command that will be executed. This value, along with the response file, if provided, is
passed to the System.Diagnostics.ProcessStartInfo(string,string) constructor
as the command-line arguments.

GenerateResponsefFileCommands If your tool accepts a response file for initialization,
then you can return a string that contains the values that should be contained in

a response file sent to the tool. These commands will be written to a temporary file

and then passed to the tool. When you use this method, you may also need to override
the GetResponseFileSwitch method. A typical reason for preferring a response file is that
you can pass many parameters. If you pass parameters on the command line, you are
typically limited to 8 Kb, imposed by cmd.exe.

GetProcessStartinfo This method is used to initialize the information that will be used
to create the process when the tool is executed.

GetResponseFileSwitch If the tool that you are invoking accepts a response file, then
you need to override this method if you want to supply a response file to it. If the tool
simply accepts the file path as the response file, then you do not need to override
this method; that is the default behavior. If the tool requires a switch to process the
response file, then override this method to create the switch to be passed to the tool.

GetWorkingDirectory If you need to specify the working directory of the tool, then
override this method to override the working directory to use. If null is returned from
this method, then the current directory will be used as the working directory. This is the
default behavior.

HandleTaskExecutionErrors This method will be called after the command completes with
a nonzero exit code. The return value of this method is used as the return value of the task
itself. If you have a scenario where you would like to conditionally ignore certain exit codes,

Chapter 4 Custom Tasks 119

then you can override this method and examine the exit code and decide to return true or
false. There exist tools that return nonzero exit codes even when the tool succeeds. If you
return true, then the build will proceed as if there were no error.

SkipTaskExecution The return value of this method will determine if the command
should actually be executed. If this method returns false, then the task will be executed;
otherwise it will not. If the task execution is skipped due to the return value of this
method, it will not be treated as an error but as an intended response. The default
implementation of this method simply returns false. You can use this opportunity to

do custom dependency checking, and skip the task if everything is up to date.

ValidateParameters This is an empty method that can be used to validate any input
parameters that have been passed to the task. If this method returns false, then the task
will automatically fail. By default, this method simply returns true. If your task accepts
inputs, then you can place your input validation in this method and it will be called by
the default implementation of the Execute method. If the Execute method is overridden,
then this validation method should be called near the beginning of the process.

ToolTask Properties

EchoOff If this property is set to true, then command-line echoing will be turned off.

EnvironmentVariables This property is an array of key/value pairs, where the key is the
name of the environment variable and the value is the value of the environment variable.
These values are passed to the spawned process. If a value exists in both the regular
environment block and in this set of values, then the value defined in this array will be used.

ExitCode Contains the exit code of the tool. This is an MSBuild Output property, so its
value will be available to build files using the task.

LogStandardErrorAsError If the value for this property is true, then any message
received in the standard error stream will be logged as an error.

ResponseFileEncoding Contains the encoding that should be used to write out the
response file. The default value for this is System.Text.Encoding.UTF8.

StandardErrorEncoding Contains the encoding value that should used for error output.
The default value for this is the default encoding of the system running the task.

StandardErrorimportance Contains the Messagelmportance level that tool errors will
be logged at. The default value for this is Messagelmportance.High.

StandardErrorimportanceToUse Gets the effective importance that standard error
messages will be logged at.

StandardErrorLogginglmportance Contains the Messagelmportance level for messages
sent to the standard error stream. The default value for this is Messagelmportance.Normal.

Download from Wow! eBook <www.wowebook.com>

120

Part 1l

Customizing MSBuild

StandardOutputEncoding Contains the encoding of the standard output stream.
The default value for this is the default value of the machine running the task.

StandardOutputlmportance Contains the encoding of the standard output stream.
The default value for this is Messagelmportance.Normal.

StandardOutputimportanceToUse Gets the effective importance that the standard
output messages will be logged at.

StandardOutputLogginglmportance Contains the Messagelmportance level that
messages sent to the standard output will be logged at. The default value for this is
Messagelmportance.Low.

TaskProcessTerminationTimeout This property is the timeout period, in milliseconds,
that the task will be given after the Cancel method is called and before the process is
forcefully terminated.

ToolCanceled This property is used to signal when a tool is canceled.

Timeout Contains the amount of the time that the task will be allowed to run. If the
task exceeds the initial value, set prior to execution, then it will be stopped, and the
task will fail. This value is given in milliseconds.

ToolExe This property serves as an alternative to the ToolIName property. The
problem with the ToolName property is that it is read-only, so there is no option to
change the name of the .exe file; this property introduces that option. If this is specified,
it will take precedence over ToolName.

ToolName Contains the name of the executable file to run. This should not include
the path, just the name of the actual executable file. If ToolExe is specified, then that
value is used in place of this.

ToolPath Contains the full path to the folder where the tool is located. If this property
returns a value, then the result from the GenerateFullPathToTool method is ignored.

UseCommandProcessor When this property is set to true, the tool task will be
executed using the command processor; otherwise, the tool task will be placed in
a batch file and executed.

YieldDuringToolExecution If this property is set to true, then while the tool is executing, it
will yield so that other projects can continue to build. If you have long-running tasks, then
you should set this value to true so that you can have build times.

The MSBuild team has created this helper class to ensure that wrapping an existing .exe file is
very simple. This is because there are many preexisting tools that can be very useful during
the build process. If you are writing a task that will invoke an executable, you should extend
this base class so you can focus on what is important and not on the plumbing of calling it.

In order to demonstrate how we can effectively use this class, | will create a new task that

wraps up an .exe file that is delivered with Visual Studio, which is the MakeZipExe.exe

Chapter 4 Custom Tasks 121

executable. Before we take a look at the task that will be created for this executable, let's take
a look at the usage for this tool, as shown in Figure 4-15.

G:nInsideMSBuild>makezipexe
Microsoft (R> Zip File to Exe converter version 1.8
Copyright <C»> Microsoft Corporation 2885. All rights reserved.

Uszage =

—zipfile:filename
Path to the zip file to turn into an exe.

—output:filename
Path to the .exe file to generate. If this is not specified.
then an .exe file with the same name as the input file (but
with the _exe extension) will be used.

—overwrite

" OQuerurite the output the file if it exists.

Thiz help screen.

FIGURE 4-15 MakeZipExe.exe usage

This tool has only a few parameters that can be provided but is certainly a useful tool, so it
should pose as a good demonstration task. From the usage of the tool, we can see that we
should create three properties that will be sent to the tool: Zipfile, OutputFile, and Overwrite.
The only required property will be Zipfile, because this is the only required parameter by the
tool itself. Now we can take a look at the following task definition.

public class MakeZipExe : ToolTask
{

private const string ExeName = "makezipexe.exe";

pubTlic MakeZipExe()
{

Overwrite = false;

[Required]

public ITaskItem Zipfile { get; set; }
public ITaskItem OutputFile { get; set; }
public bool Overwrite { get; set; }

protected override bool ValidateParameters()
{

base.Log.LogMessageFromText("Validating arguments", MessageImportance.LlLow);

if (!File.Exists(Zipfile.GetMetadata("FullPath™)))

{
string message = string.Format("Missing ZipFile: {0}", Zipfile);
base.Log.LogError(message, null);
return false;
}
if (File.Exists(OutputFile.GetMetadata("FullPath")) && !Overwrite)
{
string message = string.Format("Output file {0}, Overwrite false.",
OutputFile);
base.Log.LogError(message, null);
return false;
}

return base.ValidateParameters();

122 Part Il Customizing MSBuild

protected override string GenerateFullPathToTool()

{
string path = ToolPath;
// If ToolPath was not provided by the MSBuild script try to find it.
if (string.IsNullOrEmpty(path))

{
using (RegistryKey key = Registry.LocalMachine.OpenSubKey(
@"SOFTWARE\Microsoft\VisualStudio\10.0\Setup\VS™))
{
if (key != null)
{
string keyValue =
key.GetValue("EnvironmentDirectory”, null).ToString(Q);
path = keyValue;
}
}
}
if (string.IsNullOrEmpty(path))
{
using (RegistryKey key = Registry.LocalMachine.OpenSubKey(
@"SOFTWARE\Microsoft\VisualStudio\9.0\Setup\VS"))
{
if (key != null)
{
string keyValue =
key.GetValue("EnvironmentDirectory”, null).ToString(Q);
path = keyValue;
}
}
}
if (string.IsNullOrEmpty(path))
{
using (RegistryKey key = Registry.LocalMachine.OpenSubKey
(@"SOFTWARE\Microsoft\VisualStudio\8.0\Setup\VS™))
{
if (key != null)
{
string keyValue =
key.GetValue("EnvironmentDirectory”, null).ToString(Q);
path = keyValue;
}
}
}
if (string.IsNullOrEmpty(path))
{
Log.LogError("VisualStudio install directory not found",
null);
return string.Empty;
}

string fullpath = Path.Combine(path, ToolName);
return fullpath;

Chapter 4 Custom Tasks 123

protected override string GenerateCommandLineCommands()
{
StringBuilder sb = new StringBuilder(Q);
if (Zipfile != null)
{
sb.Append(
string.Format("-zipfile: {0} ",
Zipfile.GetMetadata("FullPath")));
}
if (OutputFile != null)
{
sb.Append(
string.Format("-output:{0} ",
OutputFile.GetMetadata("FullPath")));
}

if (Overwrite)
sb.Append("-overwrite:true ");

return sb.ToString(Q);
}

protected override string ToolName

{

get { return ExeName; }

3
}
One of the things to take note of here is the usage of [Taskltem. Earlier in this chapter, we
mentioned that you should try to employ objects of this type for properties that refer to
files and directories. This task overrides the abstract TooIName property to return the name
of the file to be executed. Along with this property, three methods—ValidateParameters,
GeneratefullPathToTool, and GenerateCommandLineCommands—are overridden. In most
implementations extending ToolTask, these methods will be found. ValidateParameters is used
to validate the input provided from the calling script and to throw meaningful errors for invalid
input. GeneratefFullPathToTool is an abstract method and must be implemented by the concrete
class. GenerateCommandLineCommands is the method that will be called to determine what
values will be passed into the command as parameters. If you have a tool that doesn't accept any
parameters, then you do not need to implement this method. If you noticed, we did not have to
define the Execute or ExecuteTool methods; this is because ToolTask implements these methods
by calling the other methods declared in this class. Now we can see how this task can be used.

Using this task is no different from using a task that extends Task or directly implements [Task.
You have to declare that you are interested in using the task with the UsingTask statement
and then invoke it in a target. | have created the following example file, MakeZipExeO1. proj.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

124 Part Il Customizing MSBuild

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="MakeZipExe" />

<Target Name="Demo">
<MakeZipExe ZipFile="Sample.zip"
OutputFile="SampTle.exe"
Overwrite="true"
ToolPath="$(DevEnvDir)">

</MakeZipExe>
</Target>
</Project>

In this simple execution of the task, we invoke the MakeZipExe task inside the Demo target.
We specify the zipfile that should be the source for the self-extracting zipfile and where the
output needs to be written to. If you execute the Demo target, you will see that the Sample
.exe file is successfully created. In the results captured in Figure 4-16, | increased the verbosity
of the console logger to “detailed” in order to display the relevant messages.

C:5\InzideMSBuild~ChB4 \bhins\Debug Samples*mesbuild MakeZipExeBl_proj st:Demo sclp:v=detailed /nologo
Build started 18-4-2018 18:12:12 PM.
Project "'C: \Ins1deHSBu11d\ChB4\b1n\Debug\Samples\HakeZ1pExeBl proj"” on node 1 (Demo target(sd).
Building with tools version “4.
Target "Demo" in project 'C: \Ins1deHSBu11d\ChB4\h1n\Debug\Samples\HakeZ1pExeBi proj" C(entry point)
Uslng "MakeZipExe' task from assembly "C:\InsideMS8Build\ChB4“hin“Debug Samples™..“\Examples.Tasks.d
11*.
Validating arguments
command—line = —zipfile:C:xInsideMS8Build~Ch@4 hin:\Debug-SamplessSample.zip —output:G:\InsideMSBu
ild~Ch@4~bhinsDebugsSamples~Bample.exe —overwrite:true
C:nwProgram FilessMicrosoft Uisual Studio 18.8\Common?~IDEsmakezipexe.exe —zipfile:C:“\InsideMSBui
1d~ChB4~bin“Debug~Samples-Sample.zip —output:C:NInsideMSBuild\ChB4\hinsDebugiSamplessSanple.exe
—ouerurite:true
Microsoft (R> Zip File to Exe converter version 1.8
Copyright <G> Microsoft Corporation 2885. All rights reserved.
exe file generation successful.

Done building target "Demo' in project "MakeZipExe®1.proj"
Done Building Project “'C: \Ins1deHSBu11d\ChB4\h1n\Debug\Samples\HakeZ1pExeBi proj" (Demo target(sd)

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 4-16 MakeZipExe task demonstration

From the image in Figure 4-16, we can see that the MakeZipExe tool was successfully
discovered and invoked with the expected parameters. Also, the result file, Sample.exe,
was correctly created. Now that we have introduced how you can quickly and effectively
create custom MSBuild tasks that wrap command-line tools, we'll move on to discuss the
little-known topic of debugging MSBuild tasks.

Debugging Tasks

When you write custom MSBuild tasks, you are writing managed code, and hooking into
an existing process, the MSBuild engine. Even though MSBuild tasks are very easy to write,
you will inevitably run into times when they do not behave as you expect. This will be the
case especially when you are writing complex tasks. When this time arrives, you will need to
debug your tasks, which we discuss in this section.

Chapter 4 Custom Tasks 125

When you need to debug your custom MSBuild tasks, you will find that there are primarily
three ways to debug these tasks. Ultimately, the goal when debugging tasks is to have all the
tools available when one is debugging .NET applications. We should be able to use Visual
Studio to debug custom tasks. The following are three ways that you can debug tasks:

1. Examine the content of the log.
2. Use Debugger.Launch() to prompt for debugger attachment.
3. Start MSBuild as an external program, and debug normally.

The first technique, examining the log, is obviously the simplest, but it will also provide the
least amount of information. Also, it is not an interactive process; you simply examine the
log file that was generated. You can increase the number of messages that your task logs to
discover more about its behavior, and you can increase the verbosity of the loggers. If you
set the verbosity to be “diagnostic,” then all properties and items are dumped by the logger.

We will now discuss the second option, the Debugger.Launch() method. When you are trying
to debug an MSBuild task, one technique that | have seen employed is to add the statement
System.Diagnostics.Debugger.Launch() . Typically, you will place this statement inside
the Execute method. When this statement is encountered, you will be prompted about
attaching a debugger to the process. After this, you can start executing the build script

that you would like to debug that invokes the task you are trying to debug. You should be
prompted with a dialog similar to the one shown in Figure 4-17.

Visual Studio Just-In-Time Debugger. @

An urhandled exception {Launch far user') accurred in M5Build. exe [5960].

Possible Debuggers:

IMSBuildExamples - Microsoft Yisual Studio: Visual Studio 2008
Mews instance of Microsoft CLR Debugger 2005

Mew instance of Yisual Studio 2005

Mew instance of Yisual Studio 2003

[Manualy chooss the debugging engines.

Do wou want ka debug using the selected debugger?

FIGURE 4-17 Debugger selection dialog

From this dialog, you can choose Visual Studio as the debugger. Following this, you can set
breakpoints, step into methods, and all the other benefits that you are accustomed to except

126

Part Il Customizing MSBuild

for Edit and Continue. This is a great technique to employ, but it has at least the following
drawbacks:

B You have to change the task (adding a Debugger.Launch() statement).
B There is no support for Edit and Continue.

The way to get around these issues is to employ the last method, which is starting MSBuild as

an external program. Once you create a task and a build script that exercises the task, you can
use Visual Studio to start the MSBuild.exe executable on the specified build script and to use the
debugger to debug it. This is similar to but not exactly the same as the previous approach. In the
Debug pane of the Project properties, you will see an option called Start External Program,; this is
the option that we will use. | will show you how to achieve this by debugging a task contained in
the samples, the MetadataExample task that we discussed earlier.

Normally when | am writing tasks, | create a set of sample MSBuild scripts that can be used to
exercise and demonstrate the task usage of the task. If it is possible, | place these samples in the
project that contains the task itself. The reason for this is that it allows me to be able to maintain
the task and the samples in one place. Another reason is that it makes it a little simpler to debug
the tasks. For sample scripts | set the files to be copied to the output directory. Another reason
that you will want to do so is so that you can execute the MSBuild scripts in their output folders
and know that you are using the latest version of the task. In the samples, this folder is named
Samples. This is why you have seen UsingTask statements such as:

<UsingTask AssemblyFile="$(MSBuildProjectDirectory)\..\Examples.Tasks.d11"
TaskName="AspnetRegsql" />

In this example, we know that we will be executing this script from the output directory

and it is contained in a directory named Samples. So the Example.Tasks.dll assembly is
located in the directory above the current project; this is why | use the ". ." in the AssemblyFile
attribute. Another advantage of taking this approach is that if your sample scripts need
dummy files to go along with them, you can place them all inside that folder and set the
Copy To Output Directory option appropriately. You can set the attribute directly inside
Visual Studio in the Properties grid. You can see this in Figure 4-18.

Properties
AsphletReqSqlExample.proj File Fropertie: -
=
Pl
Build Action Mone

(Caopy to Output Directe Copy if newer)

Cuztorm Tool

Custar Tool Mamespz

File Marne AspMetRegsqlBample praj

Full Path C:'\Im\deMSBuiId\Examples.TI

FIGURE 4-18 Copy To Output Directory

Chapter 4 Custom Tasks 127

In this figure, | have set the value of Copy To Output Directory to be Copy If Newer, but you could
also set it to Copy Always; either should work. Now we can debug the MetadatakExample task.
I will use the following MetadataExampleOl.proj file to demonstrate this.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<UsingTask AssemblyFile="..\Examples.Tasks.d11"
TaskName="MetadataExample" />

<PropertyGroup>
<ConfigFileRoot>$(MSBuildProjectDirectory)\sampleConfigFiles\</ConfigFileRoot>
</PropertyGroup>
<ItemGroup>
<Server Include="$(ConfigFileRoot)serverl.app.config">
<Name>serverl</Name>
<DroplLocation>D:\Drops\</DropLocation>
</Server>
<Server Include="$(ConfigFileRoot)server2.app.config">
<Name>server2</Name>
<DroplLocation>E:\Builds\Drops\</DropLocation>
</Server>
<Server Include="$(ConfigFileRoot)server3.app.config">
<Name>server3</Name>
<DropLocation>D:\Data\DropDir\</DropLocation>
</Server>
<Server Include="$(ConfigFileRoot)server4.app.config">
<Name>serverd</Name>
<DropLocation>D:\Projects\DropLocation\</DropLocation>
</Server>
</ItemGroup>

<Target Name="Demo">
<MetadataExample ServerList="@(Server)">
<Output ItemName="ServerIplList" TaskParameter="Result" />
</MetadataExample>

<Message Text="ServerIpList: @(ServerIpList)"/>

<Message
Text="Server: %(ServerIpList.ServerName)
%(ServerIpList.DropLoc)
%(ServerIpList.IpAddress)"/>
</Target>
</Project>

For the project that contains this task (in this case, Examples.Tasks), go to the Properties page for
the project by selecting Properties from the Project menu. On the Debug tab, we have to specify
that we want to invoke MSBuild, which will load our assembly when it detects the UsingTask
statement referencing it. The following list describes three settings that you should be aware of:

B Start external program You should select this value and provide the full path to
the msbuild.exe file. Make sure to pick the correct version of MSBuild that you are
intending to use. These files are located in the directory %Windows%\Microsoft.

128

Part Il

Customizing MSBuild

NET\Framework\v3.5\ and %Windows%\Microsoft.NET\Framework\v4.0.30319\ for
MSBuild 3.5 and MSBuild 4.0, respectively.

Command line arguments Here, you should place the path to the MSBuild sample file
that invokes the task that you are trying to debug. Also, you can provide any properties
or other switches to the msbuild.exe executable. | typically also attach a FileLogger
item in case | might need to examine it to determine what was happening before or
after the task was invoked. For instance, you may need to examine the log to determine
what other targets were executed.

Working directory You should set this to the full path where the sample script lies,
which should be under the output directory of the tasks’ project itself.

You should note that these values are not stored in the project file but in the user file, so if
you are working in a team, it should not affect any of the others working with you. You can
see the value that | set this to for the MetadataExample task in Figure 4-19.

Application - -
Configuration: |Active (Debug) '| Platform: ‘Active (Any CPLUY '|
Build
Build Everts Start fction
Debug Start project
@ Start external program: CC:\Wlndnws\Mlcmsnft.NET\Framewnrk\vdﬂ.SDElQ\l | D
Resources —
Start browser with LIRL:
Services
Start Opti
Settings SRS
Comrmand line arquments: i i =i
Reference Paths 9 MakeZipExelLproj f Flpiv=diag
Sighing
Code Anakysis

Warking directary: CC:\InsideMSBuiId\ChD4\bin\Debug\SampIes |_D

Use rermote machine

Enable Debuggers

Enable unmanaged code debugging

Enable SQL Server debugging

FIGURE 4-19 Project properties

Here, I've highlighted the areas listed previously. In this example, | am using MSBuild 4.0 on
the MetadataExample0l.proj file. After you have set these values correctly, all you have to do
is set breakpoints where you want to stop and then hit F5! From there, you can step through
the task and use all the tools that Visual Studio makes available to you.

Now

we have covered everything you need to know to efficiently and effectively write

custom MSBuild tasks. In this chapter, we have discussed getting started writing tasks,
handling task input and output, what task base classes are available, debugging tasks,

and more. Writing custom MSBuild tasks is one way to extend MSBuild itself; the other way is
to write custom loggers. In the next chapter, we will cover custom loggers in detail. Following
that chapter, we will start the MSBuild cookbook section.

Chapter 5
Custom Loggers

We have identified that there are two ways to extend MSBuild: by custom tasks and custom
loggers. In the previous chapter, we covered custom tasks; in this chapter, we will discuss
custom loggers. We'll start by discussing what loggers are available by default and how
they can be used. After that, we'll take a look at what it takes to write and use a new custom
logger. Now let’s get started.

Overview

One of the most important aspects of a build tool is its logging support. You can create the
best build tool ever, but if the logging mechanism doesn’'t meet the needs of consumers,
then it will never be used. MSBuild has a great deal of flexibility with respect to loggers.
There are two loggers that are shipped with MSBuild: the console logger and the file
logger. We will cover these two loggers in the next two sections. A logger is an object that
can accept and respond to build events. For example, throughout this book we have been
sending messages to the loggers using the Message task.

The Message task has two properties: Text and Importance. The Text property contains

the message that is to be logged, and the Importance a value indicating the priority of the
message. When this task is executed, the MSBuild engine will raise an event on each attached
logger sending both pieces of information. Individual loggers are allowed to interpret how
messages with high importance versus those with low importance are to be handled. This
importance level, along with the verbosity setting for the logger, typically determines how
the message is logged. Each logger can have its own verbosity setting, which plays a role in
what messages are logged and how. In the case of the console logger, messages with high
importance are highlighted, whereas those with low importance are suppressed when the
verbosity setting is set to normal, the default value.

We can now take a look at how different messages are passed through to the console logger
using the Message task. The next block contains the content of the Logging01.proj project file.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

<Target Name="Demo">
<Message Text="high importance message" Importance="high" />
<Message Text="normal importance message" Importance="normal" />
<Message Text="Tow importance message" Importance="Tow" />
</Target>

</Project>

129

130

Part Il Customizing MSBuild

In this project file, the single target, Demo, contains three calls to the Message task. Each task
has a different setting for the Importance attribute. If you execute the command msbuild
Logging0l.proj /t:Demo, the result will be what is shown in Figure 5-1.

G:xInsideMSBuild~Ch@A5~bin~Debug~8amples*mzhuild Logging®@l.proj ~t:Demo ~nologo
Build started ?-17-2018 9:23:57 PM.
Eruaect “"C:xInsideMSBuild~ChA5~hinsDebugsSamplessLoggingBl.proj" on node 1 <(Demo target(s>>.
emo

high importance message

normal importance message
Done Building Project "'C: \Ins1deHSBulld\ChBS\bln\Debug\Samples\LugglngBl proj" <(Demo target(s>>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 5-1 Message importance demonstration 1

In Figure 5-1, you will see that only the messages with high importance and normal
importance are shown. The message with a low-importance level is suppressed. This is

a decision made by the console logger, based on the importance of the message as well as the
verbosity setting of the logger. Also, notice that the message with high importance is printed
in a more noticeable color. In the next section, we will cover the console logger in detail. For
now let’s just say that the extra command line switch /clp:v=d increases the verbosity
setting of the console logger. If you execute the command msbuild Logging0l.proj
/t:Demo /clp:v=d, then the result would be what is shown in Figure 5-2.

C:xInsideM8Build~ChB5-bin“Debug~Samples>msbhuild LoggingBl.proj ~t:Demo ~clp:v=d ~nologo
Build started ?-17-2010 9:29:11 PM.
Project "'C: \Ins1deHSBulld\ChBS\bln\Debug\Samples\LngglngBl proj" on node 1 (Demo target(sd>.
Building with tnnls version "4.8"
Target "Demo’ in pPDJBDt " \Ins1deHSBu11d\ChBS\b1n\Debug\Samples\LDgglngBl proj" Centry pointd:
Using “"Message" task from assembly “Microsoft.Build.Tasks.v4.8, Uersion=4.8.0.8, Culture=neutral.
PublcheyToken bB3P5P7P11dSBa3a"
Task “"Message"
high importance message
Done executing task "Message".
Task '"Meszage"
normal importance messago
Done executing task "Message'.
Task '"Message"’
low importance message
Done executing task "Hessage
Done building target ""Demo’’ 1n project "Logging@l .
Done Building Project “'C: \Ins1deHSBulld\ChBS\bln\Debug\Samples\LDgglngBl proj" <(Demo target(sd).

Build succeeded.
Warning{s>
B Erroris>

FIGURE 5-2 Message importance demonstration 2

From the results shown in Figure 5-2, you can see that there is much more information
logged to the console compared to Figure 5-1. Not only is the low importance message
logged but much more information as well. We will now discuss the two loggers that are
shipped with MSBuild.

Console Logger

When you invoke msbuild.exe, the console logger will be attached by default; you can
disable this by using the /noconsolelogger (/noconlog) switch. You can set the verbosity
of the console logger using the /verbosity (/v) switch when using msbuild.exe. The
defined values for the verbosity are shown in Table 5-1.

Chapter 5 Custom Loggers 131

TABLE 5-1 Logger Verbosity

Long Name
Quiet
Minimal
Normal
Detailed

Diagnostic

Short Name
q

m

n

d

diag

When you are specifying the verbosity for either of these loggers, you can use the long
name or the short name. A common practice is to set the verbosity of the console logger

to Minimal and attach file loggers with higher verbosities. That way the console shows the
progress and errors/warnings, and a log file is available for diagnosis. The console logger
accepts only a few parameters and they are outlined in Table 5-2. The parameters are passed
by the /consoleloggerparameters (/clp) switch.

TABLE 5-2 Console Logger Parameters

Name

PerformanceSummary

NoSummary

NoltemAndPropertyList

Verbosity
Summary
ErrorsOnly
WarningsOnly

ShowCommandLine

ShowTimestamp
ShowEventld
ForceNoAlign
DiableMPLogging

EnableMPLogging

DisableConsoleColor*

Description

When passed as a parameter, the console logger will output messages
that show the amount of time spent building tasks, targets, and projects.
If you are trying to profile long running builds, this may be very useful.

When passed, this suppresses the errors and warnings summary that is
typically displayed at the end of the log.

Indicates to not display the values for properties and items that are
typically shown at the start of the build log when using the diagnostic
verbosity setting.

Overrides the verbosity for the console logger.

Shows errors and warnings summary at the end of the log.
Shows only errors.

Shows only warnings.

Shows TaskCommandLineEvent messages. This is raised when the
TaskLoggingHelper.LogCommandLine method is invoked.

Displays a timestamp to every message.
Displays the event ID for started, finished, and message events.
Does not align the text to the size of the console buffer.

Disables the multiprocessor logging style of output when running in
non-multiprocessor mode.

Enables the multiprocessor logging style even when running in
non-multiprocessor mode. This logging style is on by default.

When you provide this switch, all text written to the console will use the
default color.

* denotes parameters new with MSBuild 4.0.

132

Part Il Customizing MSBuild

When you are using the console logger, you will typically not need to pass any of these
parameters with the exception of the verbosity parameter. In the previous section, the
command msbuild Logging0l.proj /t:Demo /clp:v=d was demonstrated to increase the
verbosity of the console logger. Now we know that the /c1p:v=d switch sets the verbosity of
the console logger to detailed. You can pass additional parameters by separating them with
a semicolon. For example, you can extend the previous command to include event IDs and

a performance summary by using msbuild Logging0l.proj /t:Demo /nologo /clp:v=d;
ShowEventId;Summary;PerformanceSummary. Now let’s take a look at the file logger.

File Logger

The other logger that is shipped with MSBuild is the file logger, which logs messages to

a file. With MSBuild 4.0, a set of command-line switches are provided to attach a file logger.
In order to attach a file logger, you can use the /fl switch and the /flp switch to specify its
parameters, similar to the /clp switch. For example, you can use the command msbuild
Logging0l1.proj /f1 to attach a file logger without specifying any parameters. You can also
use /fl[n] and /flp[n], where n ranges from 1 to 9 in order to attach additional file loggers.
When you use these switches, /flpl corresponds to /fl1 and /flp4 to /fl4. If you specify
parameters using /flp[n], then the /fl[n] is implied, so it is optional; so if you pass /flp4, then
you do not have to pass /fl4 as well. In case you were wondering what the difference is
between using a file logger and piping the content of the console to a file, it's mainly that
you can attach multiple file loggers.

The command msbuild Logging0l.proj /f1 /f11 /f12 /£13 will attach four file
loggers. These will produce four different logs: msbuild.log, msbuildl.log, msbuild2.log, and
msbuild3.log. When you don’t specify a file name, then the default is msbuild/n].log, where
[n] corresponds to /fl[n]. Since we didn’t specify any parameters, they would all log the same
content. We will cover the available parameters after we discuss the MSBuild 2.0 syntax.

If you are using .NET 2.0, you have to use the /logger (/) switch to attach the file
logger. The syntax for that is switch is /1:<LoggerClassName>,
<LoggerAssembly>[;LoggerParameters].

The values in that syntax are described as:

B LoggerClassName The name of the logger class. A partial or full namespace is
acceptable but not required.

B LoggerAssembly The assembly that contains the logger. This can be either the path
to the assembly or the assembly name.

B LoggerParameters The string that should be passed to the logger as the value for
the Parameters property. This is passed to the logger exactly as declared. These must
be interpreted by the logger itself.

Chapter 5 Custom Loggers 133

In order to attach the file logger in MSBuild 2.0, you will use the syntax
/1:FileLogger,Microsoft.Build.Engine[,LoggerParameters]. The LoggerParameters
value is an optional string that will be passed to the file logger. Here is an example of
building the Logging01.proj with a file logger attached to the build process: msbuild
Logging0l.proj /1:FilelLogger,Microsoft.Build.Engine.

When you are using MSBuild 2.0, the default verbosity of the file logger is Normal; in
MSBuild 3.5 and later, it is Detailed. In order to change the verbosity level, you can pass

it as a value in the parameters. We will discuss this after we take a look at the available
parameters. Now that we have described how to attach the file logger to a build process,
take a look at all the parameters that can be sent to the file logger, as described in Table 5-3.

TABLE 5-3 FileLogger Parameters
Parameter Name Description

Append If a log file already exists, it will be appended to instead of overwritten. You
do not need to specify a value for this parameter; its existence will set it. In
fact, if you specify a value, even false, it will be ignored!

Encoding Used to specify the encoding that will be used to write the log file. This is
interpreted by the System.Text.Encoding.GetEncoding(string) method.
The default value is the default encoding for the system.

Logfile Specifies the path to where the log file will be written.
The default value is msbuild.log.

Verbosity Used to specify the value for the verbosity of the logger. This uses the same
values as mentioned previously.
The default value is Normal for MSBuild 2.0 and Detailed for MSBuild 3.5.

Note Along with these values, all parameters for ConsoleLogger can be provided as well, but
there are some differences in default values. For example, text coloring is off as well as word

wrapping.

You can specify the parameters using the /flp switch. You can set the verbosity to diagnostic
by the command msbuild Overview0l.proj /f1 /flp:v=diag. The same for 2.0 syntax is
msbuild OverviewOl.proj /1:FilelLogger,Microsoft.Build.Engine;v=diag.

Building on the previous example, the command to attach a file logger that logs in
diagnostic mode to a file named overview.log would be msbuild Overview0l.proj /f1
/f1p:Verbosity=diag;logfile=overview.log in MSBuild 3.5 syntax. In MSBuild 2.0
syntax, that would be msbuild OverviewOl.proj /1:FileLogger,Microsoft.Build
.Engine; V=diag;logfile=overview.log. You should note that when you are using
MSBuild, you are free to attach any number of loggers as you desire; you can even attach
more than one instance of the same logger. For example, a common scenario is to attach
a file logger reading only errors and warnings, minimal verbosity, and another at a higher
verbosity. This is a good idea because the log on minimal verbosity can be used to quickly

134

Part Il Customizing MSBuild

determine where build errors occur, and the other(s) can be used to determine how to
resolve them. The syntax to use for that would be msbuild Overview0l.proj
/f1p:v=m;Tlogfile=overview.minimal.log /f1pl:v=d;logfile=overview.detailed
.Tog. Now that we have discussed the preexisting loggers, let's move on to discuss creating
custom loggers.

ILogger Interface

Before we can discuss how to create new loggers, we must first take a look at what loggers
are. A logger is any object that implements the /Logger (Microsoft.Build.Framework.|Logger)
interface. This is a simple interface; it contains only two properties and two methods. The
class diagram for this interface is shown in Figure 5-3.

E; =

]

ILogger
Interface
2

= Properties
f Parameters! Sty
ﬁ Werkasity | Laggeriferfasity
= bethods
W Initiaiizef: void
W Shwtdawrp wold

FIGURE 5-3 /Logger interface

The Verbosity property determines the level of detail that should be included in the log.

If the verbosity is set by using the /verbosity (/v) switch on msbuild.exe, then this value is
passed to each attached logger, but it can be overridden by parameters passed to individual
loggers as well. The values for this are (in the order of least detail to most): Minimal, Quiet,
Normal, Detailed, and Diagnostic. It is up to the writer of the logger to interpret what these
values mean and how they change what events are being logged. MSBuild doesn't use
verbosity at all itself. It just passes it on to loggers. (Some loggers also accept verbosity just
for them, like the console and file loggers.) The loggers can ignore it completely. Also, you
should know that the build (that is, the MSBuild files) cannot tell what the verbosity is and
modify what is logged based on that.

The Parameters property is a string property that contains all the parameters that are sent

to the logger. It is also the responsibility of the logger to parse the string for individual
values. Typically, the string that is passed is parsed by loggers as key-value pairs separated by
a semicolon. Loggers do not currently have the strongly typed properties interface that tasks
do. Instead, they are passed the properties string directly and have to parse it themselves.
We will now discuss creating custom loggers.

Chapter 5 Custom Loggers 135

Creating Custom Loggers
There are three ways to create a new custom logger:

1. Implement the ILogger interface
2. Extend the abstract Microsoft.Build.Utilities.Logger class
3. Extend an existing logger

In Figure 5-3, we showed the /Logger interface, which all loggers must implement. The
abstract Logger class has been provided to serve as a base class for new loggers. This class
implements all the requirements of the ILogger interface except overriding the Initialize
method, which is left to subclasses. The third option is most likely the simplest; all you have
to do is extend an existing logger and override a specific behavior. We will see how to utilize
all three methods in this chapter.

We will first take a look at implementing the /Logger interface. We previously discussed

the Parameters and Verbosity properties, so we will now look at the Initialize method.

The signature for this method is void Initialize(Microsoft.Build.Framework.
IEventSource eventSource). This method is called by the MSBuild engine before the build
process begins. The passed-in object, EventSource, can be used to register build events that
the logger is interested in. The event source is a class that contains a number of events, one
per logging message type. By registering an event handler for these events, we get access to
the event when it is raised by the MSBuild engine. Those events are summarized in Table 5-4.

TABLE 5-4 |EventSource Build Events

Name Description

MessageRaised Raised when a build registers a message.
WarningRaised Raised when a warning occurs.
ErrorRaised Raised when a build error occurs.
BuildStarted Raised when the build starts.
BuildFinished Raised when the build is completed.
ProjectStarted Raised when a project is starting to build.
ProjectFinished Raised when a project is finished building.
TargetStarted Raised when a target is started.
TargetFinished Raised when a target is finished building.
TaskStarted Raised when a task is starting to execute.
TaskFinished Raised when a task is finished executing.
AnyEventRaised Raised when any build event occurs. In other words, all events raise

their specific handler, and then raise an AnyEvent. If you have a simple
logger, you can just subscribe to AnyEventRaised only.

136 Part Il Customizing MSBuild

Name Description

CustomEventRaised Raised when a custom build event occurs. This is used when
an event doesn't fall into any other category; for instance, the
ExternalProjectStarted event. This is used in the following way:

1. The user derives from CustomBuildEventArgs to define a new
event args

2. Their tasks can fire it as desired.

3. MSBuild will route it.
This exists so that you can pass arbitrary information to your logger.
For this to work, you must follow the following rules:

B The class must be serializable.

B |mplementation should be loadable by any node; that is, be
careful if you put it in the same assembly as a task because
one node could use AssemblyFile during the build, so the
event args are found, but the other node uses AssemblyName
and the type may not be found.

StatusEventRaised Raised when a status event occurs. Status events include build
started, build finished, target started, target finished, and so on.

Custom loggers can attach handlers to any number of these events. Each of these event
handlers passes a specific subclass of BuildEventArgs. For example, a TargetStarted event will
be passed a BuildTargetStarted event argument. The class diagram for this class is shown in
Figure 5-4.
METEntargs 5 1
Class

=]

.

| ButldEventArgs @]
Abstract Class

= Eventhrgs

=

= Properties
f BuildEventContest
iy Helpkeyword
iy hessage
' SenderMame
' Threadld
iy Tirmestarnp

= hethods

7% BuildBventfirgs (+ 2 overloads)

FIGURE 5-4 BuildEventArgs class diagram

All the event arguments that are passed to each individual event handler will contain at least
this information; some will contain even more data. For example the BuildWarningEventArgs
object contains additional information that helps identify where in the build script the
warning was raised.

Chapter 5 Custom Loggers 137

The samples contain the complete source to the IndentFileLogger. This is a very simple
logger that logs messages with indentation depending on when the message was received.
This is implemented using an int that keeps track of the current indentation. When

a started event (for example, ProjectStarted or TargetStarted) is encountered, the indent
level is increased. Conversely, when a finished event is encountered, then the indent level

is decreased. The reason for discussing this logger is not the implementation, but how the
results are logged to demonstrate the order in which these events are raised. When building
the sample solution with this logger attached, the first section of the log is shown as follows.
Note that some lines were truncated to fit this page.

BuildStarted:Build started.

ProjectStarted:Project "InsideMSBuild.sTn" (default targets):
BuildMessage:Building with tools version "2.0".
TargetStarted:Target "ValidateSolutionConfiguration" ...

BuildMessage:Task "Error" skipped, due to false condition;
BuildMessage:Task "Warning" skipped, due to false condition;
BuildMessage:Using "Message" task from assembly ...
TaskStarted:Task "Message"
BuildMessage:Building solution configuration ...
TaskFinished:Done executing task "Message".
TargetFinished:Done building target ...
TargetStarted:Target "ValidateToolsVersions™ ...
BuildMessage:Task "Error" skipped, due to false condition;
TargetFinished:Done building target "ValidateToolsVersions" ...
TargetStarted:Target "ValidateProjects" ...
BuildMessage:Task "Message" skipped, due to false condition;

TargetFinished:Done building target "ValidateProjects" ...
TargetStarted:Target "Build" ...

BuildMessage:Using "MSBuild" task from assembly ...

TaskStarted:Task "MSBuild"

BuildMessage:Global Properties:

BuildMessage: BuildingSolutionFile=true

IndentFileLogger starts each log message with the event type that raised it. From the
preceding output, you can see the order in which these events are raised. BuildStarted will

be followed by ProjectStarted, then TargetStarted and any task-related events inside of that.
Messages, errors, warnings, and status events can be raised at any point during the build
process. We will move on to discuss creating custom loggers by taking a look at a very simple
logger, HelloLogger.

HelloLogger will not accept any parameters, and it will ignore the Verbosity setting. We will
leave that for other examples later in this chapter. The Initialize method for this logger is
shown as follows.

public void Initialize(IEventSource eventSource)
{

// always writes to a Tog with this name

Part Il Customizing MSBuild

string logFile = "hello.log";
if (File.Exists(logFile))
{ File.Delete(logFile); }

// initialize the writer

writer = new StreamWriter(logFile);

writer.AutoFlush = true;

//this writer must be closed in the Shutdown() method

// register to the events you are interested in here
eventSource.AnyEventRaised += AnyEventRaised;
eventSource.BuildStarted += BuildStarted;
eventSource.BuildFinished += BuildFinished;
eventSource.CustomEventRaised += CustomEvent;
eventSource.ErrorRaised += ErrorRaised;
eventSource.MessageRaised += MessageRaised;
eventSource.ProjectStarted += ProjectStarted;
eventSource.ProjectStarted += ProjectFinished;
eventSource.StatusEventRaised += StatusEvent;
eventSource.TargetStarted += TargetStarted;
eventSource.TargetFinished += TargetFinished;
eventSource.TaskStarted += TaskStarted;
eventSource.TaskFinished += TaskFinished;
eventSource.WarningRaised += WarningRaised;

}

In this method, we first initialize the writer to the file that will contain the contents of the log.
Following that, we attach an event handler to all the available build events. Even though each
event is assigned a distinct handler in this logger, each delegate performs the same operation:
writer.WriteLine(GetLogMessage(e)) ;. In the next code snippet, you can see the definition
for the ILogger parameters, the Shutdown method, and a couple of helper methods. From the
event handlers, only the BuildStarted event handler is shown; the other event handlers are
implemented similarly. The full source is available with the code samples for this text.

void BuildStarted(object sender, BuildStartedEventArgs e)
{ writer.WriteLine(GetLogMessage("BuildStarted",e)); }

/// <summary>

/// This is set by the MSBuild engine
/// </summary>

public string Parameters

{ get; set; }

/// <summary>
/// Called by MSBuild engine to give you a chance to
/// perform any cleanup
/// </summary>
public void Shutdown()
{

// close the writer

if (writer != null)

{

writer.Flush(Q);

Chapter 5 Custom Loggers 139

writer.Close();
writer = null;

public LoggerVerbosity Verbosity
{ get; set; }

protected string GetLogMessage(string eventName, BuildEventArgs e)

{

if (string.IsNullOrEmpty(eventName)){ throw new ArgumentNullException("eventName™); }

string eMessage = string.Format("{0O}\t{1}\t{2}",
eventName,
FormatString(e.Message),
FormatString(e.HelpKeyword)
)5

return eMessage;

protected string FormatString(string str)
{
string result = string.Empty;
if (!string.IsNullOrEmpty(str))
{
result = str.Replace("\t", " ")
.Replace("\r\n", "\r\n\t\t\t\t");
}

return result;

}

From the previous snippet, we can see that the Verbosity and Parameters properties are
implemented even though they are not used. Inside the Shutdown method is where the
writer to the log file is closed out. The only other elements in this class are a couple of helper
methods to get the log message from a build event argument, as well as a method to format
the message for the logger. From the folder InsideMSBuild\Ch05\bin\Debug\Samples\, the
command to build the Unittest.Projl.csproj with HelloLogger attached would be

msbuild.exe ..\..\..\unittest\Unittest.Projl\Unittest.Projl.csproj
/1:HelloLogger, . .\Examples.Loggers.d11.

If you execute this command, you will see a file, hello.log, written to the working directory.
This is the log created by this logger. A portion of this log is shown next with some of the
lines truncated.

BuildStarted Build started.

StatusEvent Build started.

AnyEventRaised Build started.

MessageRaised Overriding target "GetFrameworkPaths" in project ...
AnyEventRaised Overriding target "GetFrameworkPaths" in project ...
MessageRaised Overriding target "SatelliteD11sProjectOutputGroup"” ...
AnyEventRaised Overriding target "SatelliteDl1sProjectOutputGroup"” ...
ProjectStarted Project "Unittest.Projl.csproj" (default targets):

Download from Wow! eBook <www.wowebook.com>

140

Part Il Customizing MSBuild

ProjectFinished Project "Unittest.Projl.csproj" (default targets):

StatusEvent
AnyEventRaised
MessageRaised
AnyEventRaised
TargetStarted
StatusEvent
AnyEventRaised
MessageRaised
AnyEventRaised
MessageRaised
AnyEventRaised
MessageRaised
AnyEventRaised
TaskStarted
StatusEvent
AnyEventRaised
MessageRaised
AnyEventRaised
TaskFinished

Project "Unittest.Projl.csproj" (default targets):

Project "Unittest.Projl.csproj" (default targets):

Building with tools version "4.0".

Building with tools version "4.0".

Target "_CheckForInvalidConfigurationAndPlatform" in file ...
Target "_CheckForInvalidConfigurationAndPlatform” in file ...
Target "_CheckForInvalidConfigurationAndPlatform” in file ...
Task "Error" skipped, due to false condition;

Task "Error" skipped, due to false condition;

Task "Warning" skipped, due to false condition;

Task "Warning" skipped, due to false condition;

Using "Message" task from assembly ...

Using "Message" task from assembly ...

Task "Message"

Task "Message"

Task "Message"

Configuration=Debug

Configuration=Debug

Done executing task "Message".

From the log file, we can see that HelloLogger successfully logged the build process as
expected. Now that we've shown an example of creating a completely new MSBuild logger,
we'll move on to discuss employing one of the other methods of creating custom loggers
mentioned previously.

Extending the Logger Abstract Class

The definition for an MSBuild logger is that it implements the ILogger interface. You don't
need to implement this interface directly; you can extend the Logger abstract class instead.
When you extend this class, you need to provide the definition only for the Initialize method.
The class diagram for the Logger class is shown in Figure 5-5.

Abstract Class
-]

=l Properties

= Methods

Logger(

F A WA

' Parameters ; string
B Werbosity | Loggerierhosity

% FormatErrorBeent) @ string
FormatWarningBwent) : string
Initiaiizef : vaid
Lverbosityltleast] : bool

Shutdowen) @ waid

FIGURE 5-5 Logger class diagram

Chapter 5 Custom Loggers 141

From Figure 5-5, you can see that there are three helper methods that can be used to help
the logging process. Those methods are summarized in Table 5-5.

TABLE 5-5 Logger Methods
Name Description

FormatErrorEvent This can be used to format a BuildErrorEventArgs object into a
readable string.

FormatWarningEvent This can be used to format a BuildWarningEventArgs object into a
readable string.

IsVerbosityAtLeast Can be used to determine if the current verbosity setting of the
logger is greater than the value passed in.

We will now create a simple logger that extends the Logger class and that makes use of
both Verbosity and Parameters. This logger builds on the previous example and is called
HelloLogger2.

The HelloLogger2 logger will parse the parameters as well as use the verbosity setting to
determine what messages should be placed in the log file. In this logger, the Initialize method
has changed a little bit; the most significant change is that the method InitializeParameters is
called. The next snippet contains this method and a few supporting methods. In the snippet,

| have bolded a few key elements that we will discuss.

public override void Initialize(IEventSource eventSource)
{
// parse the values passed in as parameters
InitializeParameters();

if (string.IsNullOrEmpty(LogFile))
{
//apply default Tog name here
LogFile = "hello2.Tlog";
3

if (File.Exists(LogFile))
{ File.Delete(LogFile); }

// initialize the writer
writer = new StreamWriter(LogFile);

// register to the events you are interested in here
eventSource.BuildStarted += BuildStarted;
eventSource.BuildFinished += BuildFinished;
eventSource.CustomEventRaised += CustomEvent;
eventSource.ErrorRaised += ErrorRaised;
eventSource.MessageRaised += MessageRaised;
eventSource.ProjectStarted += ProjectStarted;
eventSource.ProjectStarted += ProjectFinished;
eventSource.TargetStarted += TargetStarted;
eventSource.TargetFinished += TargetFinished;

142

Part Il Customizing MSBuild

eventSource.TaskStarted += TaskStarted;
eventSource.TaskFinished += TaskFinished;
eventSource.WarningRaised += WarningRaised;
}
/// <summary>
/// Read values form <c>Parameters</c> string and populate
/// other properties.
/// </summary>
protected virtual void InitializeParameters()
{
try
{
if (!string.IsNul1OrEmpty(Parameters))
{
// Parameters string should be in the format:
// Propl=valuel;Prop2=value2;Prop3=value;. ..
foreach (string paramString 1in
this.Parameters.Split(new char[] {';'}))
{
// now we have Propl=valuel
string[] keyValue =
paramString.Split(new char[] {'="});
if (keyValue == null || keyValue.lLength < 2)
{
continue;
}
// keyValue[0] = Propl
// keyValue[l] = valuel
this.ProcessParam(keyValue[0].ToLower(), keyValue[l]);

}
catch (Exception e)
{
throw new LoggerException(
string.Format(
"Unable to initialize parameters; message={0}",
e.Message),

e);
}

/// <summary>
/// Method that will process the parameter value.
/// If either <code>name</code> or
/// <code>value</code> is empty then this parameter
/// will not be processed.
/// </summary>
/// <param name="name'">name of the paramater</param>
/// <param name="value">value of the parameter</param>
protected virtual void ProcessParam(string name, string value)
{

try

{

if (!string.IsNul1OrEmpty(name) &&

Chapter 5 Custom Loggers

Istring.IsNul10rEmpty(value))

{
switch (name.Trim().ToUpper())
{
case ("LOGFILE"):
case ("L"):
this.LogFile = value;
break;
case ("VERBOSITY"):
case ("V"):
ProcessVerbosity(value);
break;
}
}
}
catch (Exception e)
{
string message = string.Format(
"Unable to process parameters;[name={0}, value={1}] message={2}",
name, value, e.Message);
throw new LoggerException(message, e);
}

/// <summary>

/// This will set the verbosity level from the parameter
/// </summary>

/// <param name="Tlevel"></param>

protected virtual void ProcessVerbosity(string level)

{
if (!string.IsNullOrEmpty(level))
{
switch (level.Trim(Q).ToUpper())
{
case ("QUIET"):
case ("Q"):
this.Verbosity = LoggerVerbosity.Quiet;
break;

case ("MINIMAL"):

case ("M"):
this.Verbosity = LoggerVerbosity.Minimal;
break;

case ("NORMAL™):

case ("N"):
this.Verbosity = LoggerVerbosity.Normal;
break;

case ("DETAILED"):

case ("D"):
this.Verbosity = LoggerVerbosity.Detailed;
break;

143

144

Part Il Customizing MSBuild

case ("DIAGNOSTIC"):

case ("DIAG"):
this.Verbosity = LoggerVerbosity.Diagnostic;
break;

3

The first highlighted line is found inside the InitializeParameters method, which calls the
ProcessParam method for each parameter passed in. Once the Parameters string has been
parsed, we have to interpret what it contains. The InitializeParameters method splits the
string into an array of strings containing key-value pairs. As mentioned previously, the format
of the Parameters string is entirely up to the logger. By convention, | have chosen to separate
elements by a semicolon and to specify name-values in the format <name>=<value>. Unless
you have a specific requirement that would not allow this, you should do the same.

The next highlight is on the usage of the LoggerException. This is a special type of exception
that the MSBuild engine specifically handles. MSBuild loggers should throw this type of
exception instead of any other exceptions. When this exception is thrown, it gives the
MSBuild engine a chance to gracefully shut down the process. Once this exception is caught,
the Shutdown method on all attached loggers will be called before the msbuild.exe process
exits. If any other type of exception is thrown, MSBuild considers this a bug in the logger
and logs the call stack to the console to help you to fix the bug.

The final item highlighted is the ProcessVerbosity method. This method is called inside the
ProcessParam method to initialize the value for the verbosity. If a logger supports its own
verbosity setting, one other than the current verbosity for the entire build, then it must

do so through the parameters string. If you remember from the previous discussion, the
default verbosity setting is determined from the /verbosity (/v) switch for msbuild.exe.
This logger is able to have a different verbosity if a Verbosity (V) value is passed through the
parameters string. If you create your own logger, you should be able to reuse the definition
of this method to take care of this parameter for you.

We have now discussed how the parameters are parsed, so we can take a look at how the
verbosity influences what log messages are sent to the log file. | based the types of messages
that were being logged on messages that the console logger logs. There are two types of
messages that you always want to log: Errors and Warnings. The next code snippet contains
the handlers for these two events, as well as the BuildStarted and BuildFinished handlers.

void ErrorRaised(object sender, BuildErrorEventArgs e)

{
// always write out errors
writer.WriteLine(GetLogMessage("ErrorRaised", e));
}
void WarningRaised(object sender, BuildWarningEventArgs e)
{

// always log warnings

Chapter 5 Custom Loggers

writer.WriteLine(GetLogMessage("WarningRaised", e));

}
void BuildStarted(object sender, BuildStartedEventArgs e)
{
if (IsVerbosityAtLeast(LoggerVerbosity.Normal))
{
writer.WriteLine(GetLogMessage("BuildStarted", e));
}
}
void BuildFinished(object sender, BuildFinishedEventArgs e)
{
if (IsVerbosityAtLeast(LoggerVerbosity.Normal))
{
writer.WriteLine(GetLogMessage("BuildFinished", e));
}
}

145

In the previous snippet, you can see that the errors and warnings are always written to the log,
as previously mentioned. The BuildStarted and BuildFinished events are not always written to
the log. These messages should be passed only if the verbosity is set to Normal or higher. This
is accomplished by the bold “if" statements. If the events are paired, for instance BuildStarted
and BuildFinished, you should make sure that the required verbosity for both messages is the
same. In the previous snippet, both handlers check to see that the verbosity is set to Normal
or higher. Of all the event handlers in this logger, the only handler that is a bit different is the

MessageRaised event. The definition for that handler is shown in the next snippet.

void MessageRaised(object sender, BuildMessageEventArgs e)

{

bool TogMessage = false;

switch (e.Importance)
{
case MessageImportance.High:
TogMessage = IsVerbosityAtLeast(LoggerVerbosity.Minimal);
break;
case MessageImportance.Normal:
TogMessage = IsVerbosityAtLeast(LoggerVerbosity.Normal);
break;
case MessageImportance.low:
TogMessage = IsVerbosityAtLeast(LoggerVerbosity.Detailed);
break;
default:
throw new LoggerException(
string.Format(
"Unrecognized value for MessageImportance: [{0}]",
e.Importance));

}

if (TogMessage)
{

writer.WriteLine(GetLogMessage("MessageRaised", e));

}

146

Part Il Customizing MSBuild

The reason why this event handler is different from the others is that the
BuildMessageEventArgs has an importance associated with it. Because of this, we have to
examine the verbosity as well as the importance set for the message. This event is raised by
the Message task, through an instance of the Microsoft.Build.Utilities.TaskLoggingHelper class.
The value for the importance on the event argument comes from the Importance parameter
passed to the Message task. Using this logger is similar to using the previous logger. In the
next image, you can see how we attach HelloLogger2 with a log file named unittest.diag.log
and a Verbosity setting of Diagnostic.

C:~InsideM8Build~ChB5~bin“Debug~8amples>msbhuild ..>~..N. . SunittestsUnittest . ProjisUnittest.Projl.csp
roj #t:Rebuild ~1:HelloLogger2.._“Examples_Loggers.dll;logfile=unittest._diag.log;v=diag /nologo
Build started 9-1%-2810 2:23:28 PH.
Project ""C:\InzideMSBuild~ChB5-unittests\Unittest._ ProjisUnittest.Projl._ceproj" on node 1 (Rebuild t
arget{s>>».
CoreClean:
Deleting file '"C:~InsideMSBuild~ChB5-unittest~Unittest.ProjisbhinsDebugslUnittest. Projl.d11".
Deleting file "C:xInsideM8Build~ChB5-unittestsUnittest.ProjisbinsDebugsUnittest.Projl.pdh".
Deleting file '"G:~InsideMSBuild~ChB5-unittest~Unittest.ProjisbinsDebugsnunit.framework.d11".
Deleting file "C:xInsideM8Build~ChB5%unittestsUnittest . ProjisbinsDebuginunit.framewvork.xml™.
Deleting file '"C:~InsideMSBuild~ChB5-unittest~Unittest.ProjisobjsDebugsResolvefissemblyReference.
cache'’ .
Deleting file '"G:~InsideMSBuild~ChB5-unittest~Unittest.ProjisobjsDebugslUnittest.Projl.d11".
Deleting file C:~InsideMS8Build~ChB5-unittestsUnittest.ProjisobjsDebugsUnittest.Projl.pdh".
CoreCompile:
C:nWINDOWS*Microsof t .NET~Framework-v4.0.30319Csc.exe snoconfig snowarn:1701.1782 rnostdlib+ ser
rorreportiprompt ~Swarn:4d ~define:DEBUG;TRACE ~reference:c:\WINDOWS\Microsoft.NET“Franeworksw2.B.
58727 mscorlib.dll sreference:'CinInsideMSBuild~Contrib\NUnit 2.5.7%binvnet—2.0\franevork nunit.
framework.d11" Areference:"c:“Program Files“Reference fissemblies“Microsoft Frameworksw3.5x8ysten
.Core.d11" sreference:'c:“Program Files“Reference Assemblies“Microsoft Framework-wwl.5 \System.Dat
a.DataSetExtensions.dll" ~reference:c:NWINDOWS-Hicrosoft.NET~Frameworksww2.B. 5872 8ysten.Data.dl
1 sreference:c:~WINDOWS-Microsof t .MET~Framework-.w2 . 8.58727 %ystemn.dll rreference:c: WINDOUWS-Micr
osoft .MET~Frameworksw2 B.58728System.¥ml.d1]l ~reference:'"c:“\Program Files\Reference fAssenblies
Microsof txFramework w3 .5 \System.iml.Ling.d11" ~debug+ rdebug:full ~filealign:512 ~soptimize— sout
zobjsDebugsUnittest.Projl.dll ~target:library Properties“Assemblylnfo.cs TestOperators.cs
_CopyFilesMarkedGopyLocal:
Copying file from "'C: \Ins1deHSBu11d\Cnntrib\NUnit 2.5.7binvnet-2.85frameworksnunit . franevork.dl
1" to “bin“Debug-nui -framework.dll”
Copying file from "C:\Ins1deHSBu11d\Cnntr1b\NUn1t 2.5.MDbinvnet—2 Bnframeworkinunit . franevork.xmn
1" to “bin“Debugsnunit.framework.xml"
CopyFilesToOutputDirectory:
Copying file from "obhjsDebugsUnittest.Projl.d11l" to "bhinsDebugsUnittest.Proji.dll".
Unittest _Projl -» C:x\InsideM8BuildsChB5sunittests\Unittest. ProJi\h1n\Dehug\Un1ttest Proji.dll
Copying file from "ohjsDebugsUnittest.Projl.pdbh"” to "bhinsDebugsUnittest.Projl.pdh".
Done Building Project "C::\InsideMS8Builds~ChB5sunittests\Unittest._ ProjisUnittest._ Projl. csproJ" (Rebui
1d target{s>>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 5-6 HelloLogger2 usage

We can see that the logger was successfully attached to the build process and the expected
log file was indeed created. Now that we have covered many details of creating custom
loggers, we'll see how we can extend ConsoleLogger to create new loggers.

Extending Existing Loggers

In the previous section, we saw how we could create new loggers by implementing the
ILogger interface and extending the Logger abstract class. The only other method to create
a new logger is to extend an existing logger. We'll now see how to accomplish this by
extending the console logger. The console logger can be used as a basis for various loggers,
not just those that log to the console. You may be surprised to find out that the FileLogger
class extends the ConsoleLogger class! In some cases, you could consider encapsulation
(composition) instead of derivation. If you have too many levels of derived classes, it can be

Chapter 5 Custom Loggers

problematic to maintain. Some reasons that you should consider extending this class are
outlined here.

147

B Ease of Creation From the three methods listed previously for creating new loggers,

extending an existing logger is the easiest method.

B Automatic Indentation The console logger already has a sophisticated means for
indenting the log messages to logically group log messages, as well as implementing

rules to know when to show certain events. It's quite a lot of work to make a logger
produce output that looks good. When you extend the console logger, you can get
functionality for free.

this

B Consistent Verbosity Interpretation Because you are extending the console logger,
you can let it determine what log messages need to be logged based on the verbosity

setting instead of doing it manually.

Because of the advantages of extending the console logger, you should give it strong

consideration before you implement the same logic. The console logger has five properties,

which are summarized in Table 5-6.

TABLE 5-6 ConsoleLogger Properties

Name Type Description

Parameters string The property that contains the parameter string
that was passed to the logger.

ShowSummary bool If true, then a summary of errors and warnings will
be written by the logger.

SkipProjectStartedText bool If true, then the log message stating that a project
that is beginning to build is not written by the
logger.

Verbosity Microsoft.Build. Determines the amount of detail that should

Framework, be contained in the log. Possible values: Quiet,

LoggerVerbosity Minimal, Normal, Detailed, and Diagnostic.

WriteHandler delegate The delegate that will be called to physically write
log statements. In custom implementations that
are not logging to the console, you will need to
override this property.

The values for the properties listed in this table will affect what statements will be
logged and how they will be logged. For example, if your logger should never show the
summary text, then you should set the value for ShowSummary to false and not allow it
to be overridden. The most interesting property is the WriteHandler property. This is the
delegate that will be called to place the messages into the log. The declaration for this
delegate is public delegate void WriteHandler(string message). If the console
logger determines that a message should be logged based on event and verbosity, then

this delegate is invoked to perform the write into the log. If you are creating a new logger

148

Part Il Customizing MSBuild

to write to a destination other than the console, you will have to override this value. This is
performed in the CustomFileLogger, which we'll now take a look at.

The CustomFileLogger is a new custom logger that, as its name suggests, writes its log to

a file. It extends ConsoleLogger and overrides WriteHandler to achieve this. Earlier we stated
the indentation is taken care of by the base class. When you override the WriteHandler
method, the indentation has already been placed in the output. All WriteHandler can do is
write the text of the log message. You cannot access the current indent level. The properties
of this logger, as well as the Initialize and Shutdown methods, are shown in the next snippet.

protected string LogFile { get; set; }
protected bool Append { get; set; }
protected StreamWriter FileWriter {get;set;}

public override void Initialize(Microsoft.Build.Framework.IEventSource eventSource, int
nodeCount)
{

// default value

Append = false;

ParseCustomParameters();
base.Initialize(eventSource, nodeCount);

if (string.IsNullOrEmpty(LogFile))
{

// default value

LogFile = "custom.build.log";
}

FileWriter = new StreamWriter(LogFile, Append);
FileWriter.AutoFlush = true;

base.WriteHandler = new WriteHandler(HandleWrite);

}

public override void Shutdown()
{
base.Shutdown();
if (FileWriter != null)
{
FileWriter.Close();
FileWriter = null;

}

In the Initialize method, you can see that it calls ParseCustomParameters, which will extract
the values that have been passed through the logger's parameters. We will see this method
shortly. In addition to this, the important items in that method are: base.Initialize is called,
the file writer is initialized, and WriteHandler is overridden to point to the HandleWrite
method. In the Shutdown method, the file writer is closed out to ensure that the stream is

Download from Wow! eBook <www.wowebook.com>

Chapter 5 Custom Loggers

149

closed gracefully. Now we can take a look at how the parameters are parsed out; the related
methods are shown here.

public virtual void ParseCustomParameters()

if (!string.IsNul1OrEmpty(Parameters))

string[] paramPairs = Parameters.Split(';');
for (int i = 0; i < paramPairs.Length; i++)

{
if (paramPairs[i].Length > 0)
{
string[] paramPair = paramPairs[i].Split('=");
if (!string.IsNull0OrEmpty(paramPair[0]))
{
if (paramPair.Length > 1)
{
ApplyParam(paramPair[0], paramPair[1]);
}
else
{
ApplyParam(paramPair[0], null);
}
}
}
}

public virtual void ApplyParam(string paramName, string paramValue)

if (!string.IsNulTOrEmpty(paramName))

{
{
}
3
{
{
}

string paramNameUpper = paramName.ToUpperInvariant();
switch (paramNameUpper)
{
case "LOGFILE":
case "L":
LogFile = paramValue;
break;

case "APPEND":
if (string.Compare(paramvValue, "true", true) == 0)
{
Append = true;
}
else
{
Append = false;
}

break;

150

Part Il Customizing MSBuild

Inside the ParseCustomParameters method, | have bolded two lines of code. The first bold
line, string[] paramPairs = Parameters.Split(';'), splits up the string based on

“" characters. This creates an array of strings that contain key-value pairs in the format
<name>:<va/ue>. The other bold line is string[] paramPair = paramPairs[i].
Split('="). This separates the key-value string into a key and value; then these values are
interpreted by the ApplyParam method. | point these statements out to reinforce the fact
that the logger itself is completely responsible for parsing and interpreting what the values
in the string mean. Even the value for the verbosity is not automatically processed by the
Logger class, but it is by the ConsoleLogger class.

Now that we have seen how CustomFileLogger was created, we can see how to use it. In
order to attach this logger, as with any custom logger, we will use the /1 (/Togger) switch
on msbuild.exe. We can see an example of attaching this logger in Figure 5-7, which shows
the beginning of a build with this logger. The command for this from the \InsideMSBuild\
Ch05\bin\Debug\Samples\ folder is

msbuild . .\..\..\..\ChO4\Examples.Tasks.csproj /t:Rebuild /1:CustomFilelLogger,..\Examples.
Loggers.dl1,

GC:nInsideMSBuild~Ch@5~bin~Debug-Samples *mshuild ..%..%. ... “\ChB4\Examples.Tasks.csproj ~t:Rebuild ~
1:CustomFileLogger...“Examples.Loggers.dll /nologo
Build started ?-1%-/2010 10:17:22 PM.
Project "C:w\InsideMSBuild~ChB4~Examples.Tasks.csproj" on node 1 (Rebuild target{s>>.
CoreClean:
Deleting file '"C:%\InsideMSBuild~ChB4\bhin“\DebugsSamples\sampleFiless\four.txt".
Deleting file "C:xInsideMS8Build~ChB4~hin>Debug~SamplesssampleFiles~one.txt".
Deleting file '"C:“IngideMSBuild~ChB4 \bin“\Debug:SamplesszampleFiless\subs\sub_four. txt'".
Deleting file '"G:~InsideMSBuild-~ChB4\bin“Debugs8amplesssampleFilesssubssub_one.txt".
Deleting file '"C:“IngideMSBuild-~ChB4‘\bin“\Debug‘\S8amplesizampleFilesssubssub_three txt".
Deleting file '"G:~InsideMS8Build-~ChB4\bin“Debugs8amplesssampleFilesssubssub_two.txt".
Deleting file "C:xInsideMS8Build-~ChB4“hin“\DebugsSamplesssampleFilessthree.txt".
Deleting file '"G:~InsideMSBuild-~ChB4“\bin“\Debug“8amples:sampleFiles\two.txt".
Deleting file "C:\Ins1deHSBu11d\ChB4\h1n\Dehug\Samples\ﬂspNetRegSqlExample proj'.
Deleting file '"C:-~InsideMSBuild-~ChB4“bin“Debug“Samples:\Batch-FileBl.cmnd"
Deleting file "C:xInsideMS8Build-~ChB4~hin>Debug~Samples:\BatchTlfBl.proj".
Deleting file '"C:“\InsideMSBuild~ChB4\bin“\Debug“8amples:\GetDateBl.proj".
Deleting file "C:~InsideMS8Build-~ChB4~hin>Debug~Samples:HelloWorldAZ. proj'.
Deleting file '"C:“\InsideMSBuild~ChB4\bin“\Debug“8amples:Hellollor1ldBl.proj".
Deleting file '"G:~InsideMSBuild-~ChB84\bin“Debugs8amples~HelloWorldB4.proj".
Deleting file "C:“IngideMSBuild~ChB4 \bin“\Debug:Samples\IT-RefBi . DPOJ"

Deleting file "C:\Ins1deHSBu11d\ChB4\h1n\Dehug\Samples\IT RubyBl . proj”
TaTatine £ila MeiTrnaidaMCRL i TAWPLAAN hint Tiahuot Camnlan ALaTinbvall nwn it

FIGURE 5-7 CustomFileLogger usage example

In Figure 5-7, we can see that the build for the Example.Tasks project is invoked with the new
custom logger attached to the process. Since the build successfully started, we know that
MSBuild was able to create a new instance of the logger and attach it to the process. If you
repeat this command, you will see that a new log file, custom.build.log, has been created.
We didn’t specify a value for LogFile, so the default value is used, which is custom.build

Jog. As shown with the file logger, it is useful to attach multiple loggers to the build process.
In order to do so, you simply use multiple /I switches. You can see this in action in Figure 5-8.
The command here is

msbuild ..\..\..\..\ChO4\Examples.Tasks.csproj /t:Rebuild /1:CustomFilelLogger,..\Examples.
Loggers.d11;v=m;logfile=custom.minimal.log /1:CustomFileLogger,. .\Examples.Loggers.
d11;v=diag;logfile=custom.diag.log

Chapter 5 Custom Loggers 151

C:nInzideMSBuilds\Ch@5%bin~Debug-8amples *msbhuildM. N NChB4vExamples .Tasks.csproj st:Rebuild ~
1:CustomFileLogger...“\Examples.Loggers.dll;v=m;logfile=custom.minimal.log ~l:CustomFileLogger,..“Ex
amples .Loggers.dll;v=diag;logfile=custom.diag.loy /nologo
Build started 9-1%-20108 18:27:15 PM.
Project "G:xInzideMSBuild~ChBA4“\Examples.Tasks.csproj"” on node 1 (Rebuild target{s)>>.
CoreClean:

Deleting file "C:xInsideMS8Build-~ChB4~hin~Debug~famplesssampleFiles~four.txt".

Deleting file '"C:%\InsideMSBuild~ChB4-~bin“Debug-famplesssampleFiles“one.txt".

Deleting file "C:xInsideMS8Build~ChB4~hin~Debug~famplesssampleFilesssubssub_four.txt™.

Deleting file '"C:%\InsideMSBuild~ChB4-~bin“Debug-famplesssampleFiles\sub\sub_one.txt".

Deleting file '"G:~InsideMSBuild-~ChB4-~bin~Debug~famplesssamnpleFiles\subssub_three.txt".

Deleting file '"C:“IngideMSBuild:~ChB4“bin“Debug famplesssampleFiless\subs\sub_two . txt'".

Deleting file '"G:~InsideMSBuild-~ChB4-~bin~Debug~famplesssamnpleFiles\three.txt".

Deleting file '"C:“InsideMSBuild:~ChB4“bin“Debug famplesssampleFiles\two txt"._

Deleting file "C:\Ins1deHSBu11d\ChB4\b1n\Debug\Samples\ﬂspNetRegSqlExample proj".

Nelatine Fila "M=vTneidaM@Bui 1ANChAd hin\Nehun\Camnlac\Ratrh—Filall ~md

FIGURE 5-8 Attaching multiple CustomFileLoggers

The MSBuild command demonstrated in Figure 5-8 shows how we can attach two instances
of the CustomFileLogger to the build process. One is set to a Minimal verbosity setting and
the other to Diagnostic mode. The file custom.minimal.log will be used to quickly identify
errors and warnings, and the custom.diag.log file can be used to diagnose the build process.
With this content, we have now covered extending existing loggers, which was the third
option for creating new custom loggers. Extending the console logger in this fashion is

a good idea, but it does have some limitations. The most difficult limitation to deal with

for some loggers is the fact that you are simply logging lines of text; you don't really have
an idea of the state of the process. This is because the console logger is handling this and
then simply calling into WriteHandler to handle writing text to the log file. One example
where you would need to know which event caused messages to be logged would be if you
were using XmlLogger. In order to create the correct XML element, you need to know what
build event occurred. We will see how to do this now.

FileLoggerBase and XmlLogger

In order to demonstrate a realistic logger that doesn't extend ConsoleLogger, | will show you
XmlLogger. The full source for this logger is available at my open-source MSBuild project,
http://codeplex.com/sedodream, as well as in the samples provided with this text. By default,
MSBuild will create a text-based log, but if you are going to feed this log to other applications
for processing or presentation, it might be easier if you had an XML-based log. Since one
doesn't ship with MSBuild, you can write your own. In this section, we will do just that.

Before we get into the implementation of the XmlLogger, take a look at the output from
the logger shown next. The command, executed from the \InsideMSBuild\Ch05\bin\Debug\
Samples directory, is:

msbuild PropertiesO4.proj /1:XmlLogger,..\Examples.Loggers.d11

The resulting XML file (with formatting changes to fit this layout) is shown in the next snippet.

<MSBuiTd>
<Build Started="8/15/2010 1:39:09 PM"
Verbosity="Normal"
Finished="8/15/2010 1:39:09 PM"
Succeeded="True">

152 Part Il Customizing MSBuild

<Message>Build started.</Message>
<Project Name="C:\InsideMSBuild\Ch05\bin\Debug\Samples\Properties04.proj"
Message="Project "Properties04.proj" (default targets):"
Started="8/15/2010 1:39:09 PM"
Finished="8/15/2010 1:39:09 PM">
<Target Started="8/15/2010 1:39:09 PM"
Name="PrintEnvVar"
Message="Target "PrintEnvVar" in project "
C:\InsideMSBuild\Ch05\bin\Debug\Samples\Properties04.proj
" (entry point):"
Finished="8/15/2010 1:39:09 PM" Succeeded="True">
<Task Started="8/15/2010 1:39:09 PM" Name="Message"
Finished="8/15/2010 1:39:09 PM">
<Message Importance="Normal">
Temp: C:\Users\Ibrahim\AppData\Local\Temp</Message>
</Task>
<Task Started="8/15/2010 1:39:09 PM" Name="Message"
Finished="8/15/2010 1:39:09 PM">
<Message Importance="Normal">Windir: C:\Windows</Message>
</Task>
<Task Started="8/15/2010 1:39:09 PM" Name="Message"
Finished="8/15/2010 1:39:09 PM">
<Message Importance="Normal">
VS100COMNTOOLS: C:\Program Files (x86)\Microsoft Visual Studio
10.0\Common7\Too1s\</Message>
</Task>
</Target>
</Project>
<Message>Build succeeded.</Message>
</Build>
</MSBuild>

We will start our discussion by taking a look at the XmlLogger's base class FileLoggerBase.
This is an abstract class that | have written to assist in the creation of file-based loggers. In
Figure 5-9, you will find a class diagram for the XmlLogger.

From the class diagram, we can see that the FileLoggerBase class extends from the Microsoft
.Build.Utilities.Logger class. The FileLoggerBase class adds some common functionality that
will make creating loggers easier; most notably, it will read the values for the parameters
shown in Table 5-7.

TABLE 5-7 FileLoggerBase Known Properties

Parameter Description

LogFile The name of the file to which the log should be written.

Verbosity The verbosity setting for the logger. These can be specified by full name or
short name.

Append Value that determines if the file should be appended to, if it exists, or

overwritten. If false, then the file will be overwritten if it exists.

ShowSummary Value that determines if a summary should be displayed in the log. It is up
to each concrete logger to determine how this affects the behavior of the
application.

Chapter 5 Custom Loggers 153

| Loga
bstract Class

[XmlLogger B3
Class
-+ FileloggerBase

i FileLaggerBase 63) il
Abstract Class E Methods
+ Logger &% BuildEnor
Fields _A,V BuildFinished
2" BuildMessage
= Properties 5% BuildStarted
= hppend " BuildWarning
§ DefiniedParameters 3% Createdtribute
= LogFile 3% CreateFinishedAttribute
= ShoweSurmmary 3% CreateMessageElement
= Methods 3% CreateStartedAttribute
% AddToParameters _.,V CustormEvent
3% GetParametertalue #¥ GetCurrentElement
© Initialize . Initialize
% InitializeParameters 3% Initializebvents
3% Processhppend 7% InitializeXmlDoc
3% ProcessParam 5 ProjectFinished
% ProcessShowSummary &7 ProjectStarted
3% ProcessVerbosity ¥ Shutdown

5% TargetFinished
&% TargetStarted
&% TaskFinished
5% TaskStarted

\

FIGURE 5-9 XmlLogger class diagram

When parameters are passed to the logger on the command line, they are made available
in the Parameters property in the ILogger interface. This property is a string and needs to be
parsed by each logger. FileLoggerBase will parse parameters that are passed in the format
paramName=value;paramName2=value2;.... This is performed when the Initialize method

is called. Now that we have discussed what FileLoggerBase basically takes care of, let's take

a look at the XmlLogger implementation.

The XmlLogger uses a set of stacks to keep track of what needs to be written out to the XML
document at the end of the build. The following example shows the definition of the Initialize
method in the XmlLogger.

public override void Initialize(IEventSource eventSource)
{

errorList = new List<string>Q);

warninglList = new List<string>Q);

buildElements = new Stack<XmlETement>(Q);
projectElements = new Stack<XmlElement>(Q);
targetElements = new Stack<XmlETement>(Q);
taskElements = new Stack<XmlElement>();
buildTypelList = new Stack<BuildType>Q);

154 Part Il Customizing MSBuild

// apply default values
LogFile = "build.Tog.xm1";
Append = false;
ShowSummary = false;

// have base init the parameters
base.Initialize(eventSource);

this.InitializeEvents(eventSource);

this.InitializeXmIDoc();
}

In this method, we let the FileLoggerBase class take care of parsing the logger parameters,
after which the class fields are initialized. In the InitializeEvents method, the build event
handlers are registered with /EventSource. The following example shows the definition of the
InitializeEvents method.

protected void InitializeEvents(IEventSource eventSource)
{

try

{
eventSource.BuildStarted += this.BuildStarted;
eventSource.BuildFinished += this.BuildFinished;
eventSource.ProjectStarted += this.ProjectStarted;
eventSource.ProjectFinished += this.ProjectFinished;
eventSource.TargetStarted += this.TargetStarted;
eventSource.TargetFinished += this.TargetFinished;
eventSource.TaskStarted += this.TaskStarted;
eventSource.TaskFinished += this.TaskFinished;
eventSource.ErrorRaised += this.BuildError;
eventSource.WarningRaised += this.BuildWarning;
eventSource.MessageRaised += this.BuildMessage;

}

catch (Exception e)

{

string message = string.Format(
"Unable to initialize events; message={0}",
e.Message);
throw new LoggerException(message, e);

}

In the preceding snippet, you will notice in the catch block that it converts the Exception

to one of type LoggerException. This is important because if your logger raises another
exception, then it will be difficult to identify the logger as the reason for the build failure.

Of the 14 events defined in the Microsoft.Build.Framework./EventSource interface, XmlLogger
registers to receive notification of 11 events. Figure 5-10 shows a class diagram for the
IEventSource interface, which lists all the available build events. Table 5-4 includes specific
information regarding these events.

Chapter 5 Custom Loggers 155

P

EventSource E3
Interface
=

= Events

AryEvertRaised
BuildFinished
Builastartsd
CustamEverntRaised
Errarfaized
Meccagefaised
PrajectFinished
Prajectitarted
StatucEvsntRaiced
TargetFiniched
Targststartsd
Taskrimsfed
Taskstar ted
WarningRaised

AU TR T T T TR T R SR TR TR R TR

.

FIGURE 5-10 /EventSource interface

After the events are registered with the event source, the logger will move on to initialize

the XML document itself in the InitializeXmIDoc method. Since we have discussed how this
logger is initialized, we can move on to take a look at a few of the handlers themselves. In the
following example, you will see the definition for the BuildStarted and ProjectStarted events.
In production code, exceptions would be properly handled.

void BuildStarted(object sender, BuildStartedEventArgs e)

{
buildTypeList.Push(BuildType.Build);

Xm1Element buildElement = xm1Doc.CreateElement("Build");

rootETement.AppendChild(buildElement);
buildElement.Attributes.Append(
CreateStartedAttribute(e.Timestamp));
buiTldElement.Attributes.Append(
CreateAttribute("Verbosity", this.Verbosity.ToString()));

if (this.Parameters != null &&
base.IsVerbosityAtLeast(LoggerVerbosity.Detailed))

// Tlog all the parameters that were passed to the logger
XmTETlement paramElement =
xm1Doc.CreateElement("'LoggerParameters™);
buildETlement.AppendChild(paramETement);
foreach (string current in DefiniedParameters)
{
XmT1ETlement currentElement =
xmlDoc.CreateETement("Parameter");
currentElement.InnerText =

156 Part Il Customizing MSBuild

current + + GetParameterValue(current);
paramElement.AppendChild(currentElement);

buildElement.AppendChild(CreateMessageElement(e.Message));

buildETements.Push(buildETement);

void ProjectStarted(object sender, ProjectStartedEventArgs e)
{
buildTypeList.Push(BuildType.Project);

Xml1ETlement projectElement = xmlDoc.CreateETement("Project");
projectElements.Push(projectElement);

buildElements.Peek() .AppendChild(projectElement);

projectElement.Attributes.Append(
CreateAttribute("Name", e.ProjectFile));

projectElement.Attributes.Append(
CreateAttribute("Message", e.Message));

projectElement.Attributes.Append(
CreateStartedAttribute(e.Timestamp));

if (base.IsVerbosityAtLeast(LoggerVerbosity.Detailed))
{
projectETement.Attributes.Append(
CreateAttribute("SenderName", e.SenderName));

if (base.IsVerbosityAtLeast(LoggerVerbosity.Diagnostic))
{
Xml1ETement propertiesElement =
xm1Doc.CreateElement("Properties");
projectETement.AppendChild(propertiesElement) ;

foreach (DictionaryEntry current in e.Properties)
{
if (current.Equals(null) ||
current.Key == null ||
string.IsNul10rEmpty(current.Key.ToString(Q) ||
current.Value == null ||
string.IsNul10rEmpty(current.Value.ToString()))

continue;
}
XmT1ETement newElement =
xm1Doc.CreateElement(current.Key.ToString());
newElement.InnerText = current.Value.ToString(Q);
propertiesElement.AppendChild(newElement);

Chapter 5 Custom Loggers 157

As was stated previously, each logger must interpret what the logger verbosity means. In
the two preceding methods, you can see that in a few locations, the verbosity is checked
before actions are performed. An example of attaching XmlLogger to a build is shown in
Figure 5-11.

C:InsideMSBuild~ChB5“bin“Debug~Samples>msbuild ..~..N. . N SChB4\Examples.Tasks.csproj /t:Rebuild ~
1:EmlLogger. . .“Examples .Loggers.dll;v=d;logfile=build.detailed.xml /nologo
Build started 2-20-2818 ?:56:1% PM.
Project "C:xInzideMSBuildsChB4\Examples.Tasks._csproj"” on node 1 (Rebuild target{s)>.
CoreClean:
Deleting file "C:xInsideMS8Build~ChB4~hin“Debug~SamplesssampleFiles\four. txt".
Deleting file '"C:~InsideMSBuild~ChB4-bin“Debug-SamplesssampleFiles~one.txt".
Deleting file "C:~InsideMS8Build~ChB4~hin“DebugsfamplesssampleFilesssubssub_four.txt™.
Deleting file '"C:-~InsideMSBuild-~ChB4-bin“Debug-~famplesssampleFilesssubssub_one.txt".
Deleting file "C:xInsideMS8Build~ChB4~hin~Debug~famplesssamnpleFilesxsub\sub_three.txt".
Deleting file "G:iInsideMSBuild~ChB4sbin“DebugsfamplesssampleFilesssubhsub_two. txt'.
Deleting file "C:xInsideM8Build~ChB4~hin“DebugsfamplesszsampleFilessthree.txt'.
Deleting file '"C:“InsideMSBuild~ChB4-bin“Debug-SamplesssampleFiles“two.txt".
Deleting file "C:\Ins1deHSBu11d\ChB4\h1n\Dehug\Samples\nspNetRegSqlExample proj'.
Deleting file '"G:“InsideMSBuild~ChB4-bin“Debug~famples~Batch-FileBl.cmd"
Deleting file "C:xInsideM8Build~ChB4~hin“Debugsfamples:BatchTfB1l . proj'.
Deleting file '"G:<InsideMSBuild~ChB4-bin“Debug-Samples:\GetDateBl.proj".
Deleting file "C:xInsideM8BuildChB4~hin“Debug~Samples:HelloWor1dP2 proj'.
Deleting file '"G:“InsideMSBuild~ChB4-bin“Debug-SfamplessHelloWor1ldBi.proj".
Deleting file "C:xInsideMS8Build-~ChB4~hin“Debug~famplesz:HelloWor1ldB4. proj'.
Deleting file '"G:~InsideMSBuild~ChB4~bin“Debug~famples~IT-RefBl.proj".
Delating File "CixTnsideMERudi 1dNChA4 hinsDehnosfammlas T T—RuhuA1 _nwn i

FIGURE 5-11 XmlLogger

In the build command shown in the Figure 5-11, XmlLogger was attached to the build
process. The parameters for that instance specified that the verbosity be set to Detailed

and that the log file be placed at build.detailed.xml. This was indeed the behavior and can be
confirmed by executing this same statement. Now that we have examined XmlLogger, we can
move on to briefly discuss debugging custom loggers.

Debugging Loggers

Custom loggers are very easy to write, and for the most part, they are easy to implement as
well. Still, if you are creating new loggers, you may need to debug the behavior. Debugging
custom loggers is very similar to debugging custom tasks. Just like debugging custom tasks,
there are three methods that can be used to debug loggers:

1. Examine the contents of the log.
2. Use Debugger.Launch().
3. Start MSBuild as an external program.

The simplest and least informative approach is the first one, which entails simply examining
the contents of the log to determine the behavior of the logger. If you decide to use this
technique, you may want to set the verbosity of the logger to either Detailed or Diagnostic,
if possible. This method can be used only for very simple issues and for those that allow the
logger to be properly initialized. If there is an initialization error when creating a logger,

the build process is aborted and no log is written. Unlike the other approaches, this is
non-interactive and there is no debugger. For the other two techniques, the Microsoft Visual
Studio debugger will be used.

158

Part Il Customizing MSBuild

In the second option, the Debugger.Launch() technique, is that when the statement is
executed, a dialog will be shown to attach a debugger once you attach Visual Studio to the
build process. This dialog is shown in Figure 5-12.

Wisual Studio Just-In-Tirme Debugger @

&n unhandled Microsoft \NET Framework exception accurred in MSBuild. exe
[10178].

“canmple:
Mews instance of Microsoft Wisual Studio 2010

4 . 3

Set the currently selected debugger as the default,

tanually choose the debugging engines.

Do wou want ko debug using the selected debugger?

Yes Mo

FIGURE 5-12 Debugger selection dialog

After you have completed this, Visual Studio will be attached to the process and it will stop
at any breakpoints you set. Normal debugging will continue from here. The pros and cons
of this approach were covered in the previous chapter, so they will not be repeated here.

The last approach, starting MSBuild as an external program, is the same as covered in the
previous chapter, but we will quickly review this here as well. For the project that contains the
logger, you can change the Debug Start Action. All the settings can be set on the Properties
page for the Project under the Debug tab. On this tab, there are three values that you will
need to fill in: Start External Program, Command Line Arguments, and Working Directory.
The value for Start External Program should contain the full path to the executable that

you want to run; in this case the full path to msbuild.exe. The Command Line Arguments
value should contain the project file to build, the statement to attach the logger, and any
other properties that you want to pass. The working directory should be set to any known
directory, but ideally to a directory under the output folder for the project. This may simplify
the project file used for debugging. For a more detailed description of these, you can refer
back to Chapter 4, “Custom Tasks.” A sample set of properties to debug CustomFileLogger is
shown in Figure 5-13.

The values that were discussed previously are highlighted in Figure 5-13. Now we have
discussed the three main ways that you can debug custom MSBuild loggers.

Chapter 5 Custom Loggers 159

Application - -
Configuration: | Active (Debug) - Platfarrm: | Active (Any CPLY v|
Build
Start Acti
Build Events artaeten
Debug Start project
@ Start external program: (C:\Winduws\Micrusuft.NET\Framewurk\v4.ﬂ.3D319\r | D
Resources —
Start browser with LIRL:
Sersices
Start Opti
Settings RSB

Command line arguments| CalnsideM3Build\ChiTwnittest
“Unittest, ProjyUnittest. Projlcsproj
AliCustorFileLogger,.\Examples.Loggers.dll

Reference Paths

Signing

Code Analysi —
5 Warking directary: (C:\InsideMSEuiId\ChDS\bin\Debug\SampIes\ [D

Use rernote machine

Enable Debuggers

Enable unrmanaged code debugging

Enable SQL Server debugging

FIGURE 5-13 Debug settings for CustomFileLogger

As you've seen in this chapter, creating MSBuild loggers is very easy and very powerful.

We have covered a lot of material in this chapter, including creating loggers, passing values
to loggers, extending existing loggers, and debugging loggers. If you need to create new
MSBuild loggers, you should now have a great arsenal with which to do so. The best way to
learn how to create good loggers is by creating loggers. | strongly suggest simply diving in
and getting started. You should note that there is another kind of logger that you can create,
distributed loggers, which was intended for multiprocessor builds. In addition, there are two
other advanced interfaces, INodeLogger and IForwardingLogger, which you can implement,
but these are for very specific cases and will not be covered here. These types of loggers are
more complex and suitable for only a limited set of applications, so we will not cover them
in this book. In the next chapter, we will cover two very important but very elusive subjects:
batching and incremental building. Knowing about these topics will turn good build scripts
into great ones.

Part Ill

Advanced MSBuild Topics

In this part:
Chapter 6: Batching and Incremental Builds 163
Chapter 7: External Tools.ot iii iiieeeiaeees 193

161

Chapter 6
Batching and Incremental Builds

Batching and incremental building are two very important yet potentially confusing topics.
In this chapter, we will describe these two topics in great detail. Batching, at a high level,
allows you to repeatedly perform an action over a set of inputs. Incremental building is

a process that enables MSBuild to determine when target outputs are already up to date and
can be skipped. These two topics are advanced and closely related to each other. After you
read this chapter, you will be able to take your build scripts to the next level.

Batching Overview

During a build process, you typically deal with many files, and very often you need to
handle files that are categorized. For instance, you have files that are sent to the compiler,
files that are resources, files that are references, and so on. Because of how common this is,
MSBuild has a construct that is designed for it. Since MSBuild is a declarative language, as
opposed to an imperative one, there must be a way to describe the operation you desire
and let MSBuild take care of the looping for you. This concept is referred to as batching.
Batching is an advanced topic that can be confusing, but it is also very powerful. Batching is
a mechanism for placing items into groups, also referred to as batches, based on matching
metadata. Batching always occurs on metadata; items with the same value for batched
metadata will reside in the same batch. You can think of these batches as buckets; each
bucket represents a set of files with the same values for the batched metadata. There are two
kinds of batching: task batching and target batching. Task batching is where you execute a
given task once per batch, and target batching is where a target is executed once per batch.
Task batching is far more useful than target batching. Note that batches are not required to
contain more than one item; many times, they include only one.

Here is an example, taken from the file Batching01.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion=-"4.0">
<PropertyGroup>
<SourceFolder>src\</SourceFolder>
</PropertyGroup>

<ItemGroup>

<SourceFiles Include="$(SourceFolder)*.txt" />
</ItemGroup>

163

164 Part Il Advanced MSBuild Topics

<Target Name="TaskBatching">

<!-- Transforms items into single string -->
<Message Text="---------—-—----m />
<Message Text="Not batched @(SourceFiles->'%(FullPath)')" />
<!-- Invokes message task per each batch -->
<Message Text="---------————---— ">
<Message Text="Batched %(SourceFiles.FullPath)" />
</Target>
</Project>

In this project, we declare the SourceFiles item to include all files ending in .txt located in the
src folder. Figure 6-1 depicts the file/folder structure in which the project file is located.

—SPC
A1 .txt
B2 . txt
B3 .txt
B4 . txt

uhb
sub_H1 .txt
sub_B2 txt
sub_B3.txt
sub_B4 . txt

FIGURE 6-1 Directory structure

From this image, we can expect that the SourceFiles item will contain the four files in the
src folder. Inside the TaskBatching target, you can see that we simply invoke the message
task a few times. We can examine the output closely and describe where the batching is
occurring. The result is shown in Figure 6-2.

Project "C:\InsideHSBuild\ChBG\Bat;hingBl.proj" on node 1 (TaskBatching target<{s>>.
TaskBatching:

Mot hatched C:xInsideMSBuildsChB6nsren@l.txt;CinInsideMSBuild\ChB6 \src™B2.txt;CiNInsideMSBuild G
hBb6~src B3 . txt;C:\InsideMEBuild~\ChB6\sprc B4, txt

Batched C:\InsideMSBuild\ChB6\src B1l.txt
Batched G:\InsideMSBuild~ChB6~srcsB2.txt
Batched C:\InsideMSBuild“ChBb\src\B3 . txt
Batched G:\InsideMSBuild~ChB6ssrcsB4.txt
Done Building Project "C:xInsideMSBuild“Ch@6“\BatchingBl.proj'" (TaskBatching target{(s)>.

Build succeeded.
A Yarning(s)>
8 Errordsd

FIGURE 6-2 TaskBatching target result

From the previous output, the most important thing to notice is that the statement <Message
Text="Not batched @(SourceFiles->'%(FullPath)')" /> resulted in a single invocation
of the Message task. This is obvious because the prefix Not batched is presented only once.
On the other hand, the other statement, <Message Text="Batched %(SourceFiles
.FullPath)" />, resulted in the Message task being executed four times, once for each file.
Strictly speaking, it is once per batch, where the batch is defined by the metadata FullPath

Chapter 6 Batching and Incremental Builds 165

for SourceFiles. Because the FullPath value will be unique for each file (in this case), it creates
batches that contain only one item. To describe this in a diagram, you can think of a target
(without batching), as shown in Figure 6-3.

[Target)

(s
GO
(<)

. J
FIGURE 6-3 Visualization diagram of target (without batching)

J U U

In unbatched targets, each task is executed one after another until all the tasks have been
executed. In contrast to this, when a batched task is encountered, the batches are created,
and then each batch is passed to the task and executed. Note that the execution of these
batches is not performed in parallel; each batch is processed one after the other. However,
conceptually they are run in parallel, in the sense that no batch can see changes to items or
properties made by another batch that ran before it. After each batch has been processed,
execution continues. This is shown in Figure 6-4.

As shown in Figure 6-4, the MSBuild engine will automatically create the batches and pass
the items into the task that is being batched. In the previous example, we created batches
with only one item. Now, let’s take a little closer look at how batches work. We will first
examine task batching and then move on to target batching.

166 Part Il Advanced MSBuild Topics

Target

- J
FIGURE 6-4 Visualization diagram of target (with batching)

Task Batching

As stated previously, task batching is the process of invoking the same individual task
multiple times, each time with a subset of the original input items, where the input is defined
by the batches created for the task. See the following example, which is contained in the
Batching02.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<PropertyGroup>
<SourceFolder>src\</SourceFolder>
</PropertyGroup>

Chapter 6 Batching and Incremental Builds 167

<ItemGroup>
<SourceFiles Include="$(SourceFolder)0l.txt">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</SourceFiles>
<SourceFiles Include="$(SourceFolder)02.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</SourceFiles>
<SourceFiles Include="$(SourceFolder)03.txt">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</SourceFiles>
<SourceFiles Include="$(SourceFolder)04.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</SourceFiles>
</ItemGroup>

<Target Name="TaskBatching">

<!-- Transforms items into single string -->
<Message Text="r-—====--- - " />
<Message Text="Not batched @(SourceFiles->'%(CopyToOutputDirectory)')" />
<!-- Invokes message task once per each batch -->
<Message Text="—----—-—-— - />
<Message Text="Batched %(SourceFiles.CopyToOutputDirectory)" />
</Target>

<Target Name="TargetBatching" Outputs="%(SourceFiles.CopyToOutputDirectory)">
<Message Text="CopyToOutputDirectory: %(SourceFiles.CopyToOutputDirectory)" />
<Message Text="@(SourceFiles)" />

</Target>

</Project>

In this example, we first declare one item, SourceFiles, with four elements. Each element has
the metadata CopyToOutputDirectory specified. Two elements have CopyToOutputDirectory
set to Always, and the other two have it set to PreserveNewest. We'll examine the result of
the TaskBatching target. This target, which is a copy of the previous example, invokes the
Message task for the SourceFiles item once without batching, and then once with batching
using the CopyToOutputDirectory item metadata. In Figure 6-5, you will find the result of
executing this target.

Project "C:\InsideHSBuild\ChBS\BatéhingBZ.proj" on node 1 (TazskBatching target(s)>.
TaskBatching:

Hot batched Always;PreserveMewest;Always;PreserveMewest

Batched Always
Batched PreserveMewest
Done Building Project "C:“\InsideMSBuildsChB6~BatchingB2.proj" (TaskBatching target(s>>.

Build succeeded.
Warning<{s>»
8 Error(s)

FIGURE 6-5 TaskBatching target result

The output is interesting. In the first invocation, we can see that the values for the
CopyToOutputDirectory metadata were simply appended to each other and passed to
the Message task, as expected. In the last invocation, we can see that the expression

168 Part Il Advanced MSBuild Topics

%(SourceFiles.CopyToOutputDirectory) was evaluated into two distinct values, Always
and PreserveNewest, and the Message task was invoked only once for each of those values.

Now that we have described batching and looked at some trivial examples, we will
take a look at some more realistic applications of batching. The following example,
TaskBatching01.proj, will take a set of files and then copy those files to a set of directories.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<SourceFolder>src\</SourceFolder>
<DestFolder>dest\</DestFolder>
</PropertyGroup>

<ItemGroup>

<SourceFiles Include="$(SourceFolder)*.txt" />

<Dest Include="$(DestFolder)One" />

<Dest Include="$(DestFolder)Two" />

<Dest Include="$(DestFolder)Three" />

<Dest Include="$(DestFolder)Four" />

<Dest Include="$(DestFolder)Five" />
</ItemGroup>

<Target Name="CopyAll">
<!-- Task batching to copy files -->
<Copy SourceFiles ="@(SourceFiles)"
DestinationFolder="%(Dest.FullPath)" SkipUnchangedFiles="false" />

<!-- Task batching to print message -->
<Message Text="Fullpath: %(Dest.FullPath)" />
</Target>
</Project>

In this example, we have defined two properties, SourceFolder and DestFolder. The
SourceFolder contains the path to the folder that contains all the files that we would

like to copy. The directory structure is the same as that shown in Figure 6-1. The
DestFolder property contains the top-level path to the folder where the files will be copied
into—actually, into folders under the DestFolder. From that file, take a look at the following
item declaration.

<ItemGroup>

<SourceFiles Include="$(SourceFolder)*.txt" />

<Dest Include="$(DestFolder)One" />

<Dest Include="$(DestFolder)Two" />

<Dest Include="$(DestFolder)Three" />

<Dest Include="$(DestFolder)Four" />

<Dest Include="$(DestFolder)Five" />
</ItemGroup>

This creates the SourceFiles item, which contains all the files that are to be copied. Then it
declares the Dest item, which contains a list of folders, under DestFolder. This is an example
of using an item that doesn't point to a list of files. In this case, it points to a list of directories.

Chapter 6 Batching and Incremental Builds 169

You can use an item for any list-based value, not only files and directories. Now let's zero in
on the statement:

<Copy SourceFiles ="@(SourceFiles)"
DestinationFolder="%(Dest.FullPath)" SkipUnchangedFiles="false" />

Note SkipUnchangedFiles is set to false only for demonstrative purposes, to ensure that every
file is copied each time.

In this task declaration, the expression %(Dest.Ful1Path) will cause the Copy task to be
invoked once per batch, where the batches are created by an expansion of the FullPath
metadata of the Dest item. Since the FullPath is unique, it will be executed once per element
in Dest, so this expression is equivalent to the following set of statements.

<Copy SourceFiles="@(SourceFiles)"

DestinationFiles="$(DestFolder)One" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"

DestinationFiles="$(DestFolder)Two" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"

DestinationFiles="$(DestFolder)Three" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"

DestinationFiles="$(DestFolder)Four" SkipUnchangedFiles="false" />
<Copy SourceFiles="@(SourceFiles)"

DestinationFiles="$(DestFolder)Five" SkipUnchangedFiles="false" />

So we would expect all the files in SourceFiles to be copied into each of the four folders in
DestFolder. The output of executing the CopyAll target is shown in Figure 6-6.

C:\InsideMSBuild~ChB6>mshuild TaskBatching®l.proj ~t:Copyfll ~nologo

Build started 2-22-2018 18:85:53 PM.

Project "C:“\InsideMSBuild-~ChB6-TaskBatchingBl.proj" on node 1 (CopyAll target(sid.

CopyAll:
Creating directory "C:\InsideMSBuild~ChB&t-dest~One".
Copying file from "spcxBl.txt'" to "C:ixInsideMSBuild~ChB6-dest~One-Bl.txt'.
Copying file from "sprchB2_txt" to "C:\InzideMSBuild~ChB6t-dest~One“\B2_ txt'.
Copying file from “srcsB3.txt" to "C:ixInsideMSBuild~ChB6-dest~One~B3.txt".
Copying file from "src\ﬂ4 txt" to "C:xInszideMSBuild~ChB6-dest~One“\B4_txt'".
Creating dlrectury C: \Ins1deHSBu11d\ChBG\dest\Twu
Copying file from "spchBl_txt" to "C: “InsideMSBuild\Ch@6~dest\Tuo\B1 . txt"
Copying file from “srcsB2.txt" to "C:ixInsideMS5Build~ChB6-dest~TwosB2.txt".
Copying file from "srcuB3.txt" to "C:\InszideMSBuilds\ChB6 dest Two A3 _ txt'._
Copying file from "srcwB4.txt" to "C:sInsideMSBuild~ChB6sdest~Twos\B4.txt'".
Creating directory "C:xInsideM8Build~ChB6-dest~Three".
Copying file from "srcwBl.txt" to “C:\InsideMSBuild~ChB6-dest~Three“\@l.txt".
Copying file from "secuB2_txt" to "C:ivInsideMSBuildsCh#b6 dest“Three B2 _ txt'.
Copying file from "sprcuB3.txt" to "C:\InsideMSBuild-~ChB6t-dest~Three\@3.txt".
Copying file from "sprcxB4.txt" to "C:xInsideMSBuildsChB6~dest Three \Bd.txt'.
Creating directory "C:\InsideMSBuild-~ChB6t-dest~Four".
Copying file from "secuBl._txt" to "C:xInsideMSBuildsChB6“dest“Four:\B1_ txt'.
Copying file from "srcB2.txt" to "C:\InsideMSBuild-~ChB6t-dest“Four~B2. txt'".
Copying file from "sercuB3.txt" to "C:xInsideMSBuildsChB6“dest“Four:\B3._ txt".
Copying file from "spcuB4.txt" to "C:\InsideMSBuild-~ChBt-dest“Four~B4.txt'".
Creating directory "C:xInsideMSBuild~ChB6-dest~Five'.
Copying file from "spcuBl.txt" to "C:sInsideMSBuild~ChB6-dest~Five\Bl.txt".
GCopying file from "sprcxB2.txt" to “"C:xInsideMSBuild~ChA6-dest~Five:\B2._ txt".
Copying file from "spcuB3.txt" to "C:\InsideMSBuild-~ChBt-dest~Five\B3.txt".
Copying file from "sprcB4.txt" to "C:x\InsideMSBuild~ChB6“dest~Five:\B4.txt".
Fullpath: C:x\InsideMSBuild~ChB6-dest-One
Fullpath: C:~InsideMS8Build~ChB6-~dest~Two
Fullpath: C::\InsideMSBuild“ChBt-dest“Three
Fullpath: C:~InsideMS8Build~ChB6-~dest~Four
Fullpath: C::\InsideMSBuild~ChBt-dest“Five

Done Building Project "C:xInsideMSBuild~ChB&~TaskBatchingBl.proj"” <(CopyAll target(sd>>.

Build succeeded.
A8 Warning{s>
8 Errord(sd

FIGURE 6-6 CopyAll target result

170 Part Il Advanced MSBuild Topics

From Figure 6-6, we can see that each file in the SourceFiles item was indeed copied to the
individual directories defined in DestFolder. If you set the verbosity of the logger to Detailed,
you will see that the Copy task was executed five times. Now that we have discussed task
batching, we will move on to discuss target batching.

Target Batching

Target batching is similar to task batching in that an operation is invoked once per batch.
Task batching is the process of invoking an individual task once per batch; target batching is
executing a target once per batch. Target batching is driven entirely by the Outputs attribute
of the target. Based on the batches created, the target is executed once per batch. Target
batching is not used very much in practice, but task batching is. Take a look at the following
file, TargetBatching01.proj, for a simple example.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<PropertyGroup>
<SourceFolder>src\</SourceFolder>
</PropertyGroup>

<ItemGroup>
<SourceFiles Include="$(SourceFolder)*.txt" />
</ItemGroup>

<Target Name="PrintMessage"
Outputs="%(SourceFiles.Fullpath)">
<Message Text="PrintMessage started" />
<Message Text="@(SourceFiles)" />
</Target>
</Project>

In the target PrintMessage, the value %(SourceFiles.FullPath) in the Output attribute means
that the batches will be created using the FullPath metadata of the SourceFiles item. Then
these batches will be used to represent the SourceFiles item. During each of the resulting
target executions, as the batches are referred to using the SourceFiles item, it no longer
contains all items, but instead a subset of the original item list being used with each batch.
Take a look at the result of executing the PrintMessage target, as shown in Figure 6-7.

From the result shown in Figure 6-7, we can see that PrintMessage target was indeed invoked
once per batch—that is, four times—for SourceFiles. Also, note that when target batching
occurs, only the items in each batch are available when the item itself is referenced. For
example, in the PrintMessage target, @(SourceFiles) is actually passed to the Message task,
but only the files in the batch are printed.

Now that we have a better idea of target batching, we will examine an example that is
a little easier to relate to. The following TargetBatching02.proj file demonstrates how to build
a solution file for each of the defined configurations.

Chapter 6 Batching and Incremental Builds 171

G:xInsideMSBuild~ChB6 > msbuild TargetBatchingBl.proj ~t:PrintMessage ~nologo
Build started 922-20108 18:25:51 PM.
Project "C:~\InsideMS3Build-ChB&6-TargetBatching®l.proj" on node 1 {PrintMessage target(s>>.
PrintMeszage:
PrintMessage started
srchBl . txt
PrintMessage:
PrintMeszage started
sroNB2 . txt
PrintMeszage:
PrintMessage started
sroNA3 . txt
PrintMessage:
PrintMesszage started
srchBd.txt
Done Building Project "C:xInsideMSBuild~ChB&6~TargetBatchingBl.proj" (PrintMessage target(s>>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 6-7 PrintMessage target result

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<PropertyGroup>
<SourceRoot>$(MSBuildProjectDirectory)\TestProjects\</SourceRoot>
</PropertyGroup>

<ItemGroup>
<BuildFile Include="$(SourceRoot)TestProjl.sIn" />
<Config Include="Debug configuration">
<Configuration>Debug</Configuration>
</Config>
<Config Include="Release configuration">
<Configuration>Release</Configuration>
</Config>
</ItemGroup>

<Target Name="BuildAl11"
Outputs="%(Config.Configuration)">

<Message Text="Start building for configuration: %(Config.Configuration)" />
<MSBuild Projects="@(BuildFile)"
Properties="Configuration=%(Config.Configuration)"
Targets="Rebuild" />
</Target>
</Project>

The solution file is referenced in the BuildFile item. The other item, Config, defines the values
for the configuration that should be used. These values are defined in the Configuration
metadata. The BuildAll target is the one that builds the solution for each defined configuration.
The batching is achieved by the attribute Outputs="%(Config.Configuration)”. The Outputs
attribute is also related to incremental building, which is discussed later in this chapter. Target
batching is a different use of this attribute. So the BuildAll target will be executed once per
unique value of the Configuration metadata for the Config item, which is Debug and Release.
If you execute the command msbuild TargetBatching02.proj /t:BuildAl1, you will
notice that the target BuildAll is indeed invoked once for Debug and once for Release. This
configuration value is passed through to the build file using the Properties parameter on the
MSBuild task. We have now provided an overview of task and target batching; the next section
will describe the behavior of build scripts when combining task and target batching.

172 Part Il Advanced MSBuild Topics

Combining Task and Target Batching

In this section, we will demonstrate ways to use task and target batching together. In this
discussion, we will examine the following sample project file, Batching03.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<Server Include="Serverl">
<Type>2008</Type>
<Name>SVR01</Name>
<AdminContact>Sayed Ibrahim Hashimi</AdminContact>
</Server>
<Server Include="Server2">
<Type>2003</Type>
<Name>SVR02</Name>
<AdminContact>Sayed Y. Hashimi</AdminContact>
</Server>
<Server Include="Server3">
<Type>2008</Type>
<Name>SVR03</Name>
<AdminContact>Nicole Woodsmall</AdminContact>
</Server>
<Server Include="Server4">
<Type>2003</Type>
<Name>SVR04</Name>
<AdminContact>Keith Tingle</AdminContact>
</Server>
</ItemGroup>

<Target Name="TaskBatching">
<Message Text="%40(Server->'%25(Name)'): @(Server->'%(Name)')" />
<Message Text=" " />
<!--
Task Batching here using the Name metadata.
Notice that Message task is invoked once per unique batch
The same applies for %(Server.Type) below.
-->
<Message Text="%25(Server.Name): %(Server.Name)" />

<Message Text=" " />

<Message Text="%25(Server.Type): %(Server.Type)" />

<Message Text=" " />
</Target>

<!l--
NOTE: Others targets defined here.
-—>

</Project>

This listing does not contain the full source for the project file; a few targets have not been
shown yet. Instead, they will be covered separately later in this section. In this target, we have
declared an item, Server, which contains references to four servers, each with three values

Chapter 6 Batching and Incremental Builds 173

for custom metadata. The custom metadata defined are Type, Name, and AdminContact.
Following that there are four targets, which we will examine in detail now. The TaskBatching
target demonstrates task batching once again. The first message statement, <Message
Text="%40(Server->'%25(Name) ') : @(Server->'%(Name)')" />, is a statement that
does not start batching because that syntax results in the Server item being transformed
into a single string and then passed to the Message task. This was inserted to print out the
values to the logger. Following that, we first batch using the Name metadata with <Message
Text="%25(Server.Name): %(Server.Name)" /> and then similarly with the Type
metadata. You can see the results of the TaskBatching target with the command msbuild
Batching03.proj /t:TaskBatching in Figure 6-8.

¢:~InsideMEBuild~Ch6 >msbuild Batching®3.proj ~t:TaskBatching ~nologo

Project PC<Int AoHSBAT1AChOEuBA thingB3 . proj” on node 1 CTaskBatching target(s>>.

TaskBatching:
B¢Server—>’ x(Mame>’ >: SURB1;SURB2;SURA3 ;SURB4

»(Server_Name): SURBL
#{Server.Name>: SURB2
#{Server _Mame): SURA3
n{Server.Hame>: SURB4

#{Server.Type>: 2888
#*(Sevver.Typed: 2083

Done Building Project "G:xInsideMSBuild~ChB6“BatchingB3.proj'" (TaskBatching target(s)>.

Build succeeded.
A Yarning(s)>
B8 Errorisd

FIGURE 6-8 Result of TaskBatching target

From the result shown in Figure 6-8, we can see that, as expected, there were four batches
created for the Server.Name property and two distinct groups created from the ServerType
value. To reiterate: When the batching is performed, MSBuild will identify the unique values
in the batching expression and create the required groups. Now, we will move on to the
targets that involve target batching.

In the next snippet, the TargetBatchingO1 target is declared, which is also defined inside the
Batching03.proj file. Other sections of this file were shown previously.

<Target Name="TargetBatching01l" Outputs="%(Server.Name)">
<Message Text="===== TargetBatching0l ============" />
<Message Text="%25(Server.Name): %(Server.Name)" />
<Message Text="%25(Server.Type): %(Server.Type)" />
<Message Text="Server: @(Server)" />
<Message Text=" " />
</Target>

The TargetBatchingO1 target creates batches with the Server.Name property. This is due to
the attribute Outputs="%(Server.Name)” being present. When we execute this target, we
would expect that it is executed once for each unique value for Server.Name. Since each
name value is defined as being unique, we should see this target executed four times. The
result is shown in Figure 6-9.

174

Part Il Advanced MSBuild Topics

C:=xIn=zideMEBuild \ChB6>mebuild Batching®3._proj st:TargetBatching®l ~nologo
Build started 9-23-2810 2:81:37 PHM.
Project ""C:\InsideMS8Build~ChB6t~Batchingf3_proj" on node 1 (TargetBatchingBl target(s>>.
TargetBatchingBl =
===== TargetBatchingfl ============
n{Server.Hame>: SURBL
#*(Sevrver.Typed: 2088
Server: Serverl

TargetBatchingBl =
===== TargetBatching@l ============
#{Server.Hame>: SURB2
#*CServer.Type): 2083
Server: Server2

TargetBatchingfl =
----- TargetDatchingfl =——=——=======
»(Server_Name): SURD3
“{Server.Type>: 2088
Server: Serverl

Tar tBatchlngBi

===== TargetBatching@1i
ruer.Name): SURH4
/(Seruer Type>: 2883
Server: Seruverd

Done Building Project “C:xInsideMSBuild~ChB6“BatchingB3.proj'" (TargetBatching@dl target(s)>.

Build succeeded.
A Yarning(s)>
B Errvords>

FIGURE 6-9 TargetBatching01 result

We can see that the target was indeed executed four times, once for each Server item,
because the Server.Name value is unique. The TargetBatching02 target is a carbon

copy of the TargetBatching01 target, with the exception of the Output attribute. The
TargetBatching02 target node contains the attribute Outputs="%(Server.Type)”, which means
that we will execute that target once for each unique set of value for the Type metadata on
the Server item. The result of this target invocation is shown in Figure 6-10.

C:=xInzideMEBuild\ChB6>mebuild Batching®3._proj ~t:TargetBatching®2 ~nologo
Build started 9-23-2818 2:13:56 PM.
Project "C:“\InsideMS8Build~ChB&~BatchingB3 _proj" on node 1 (TargetBatchingB2 targetlsd)_
TargetBatchingB2:
===== TargetBatchingB2? ============
n{Server.Hame>: SURBL
#{Server _Mame): SURA3
#{Server.Type>: 2688
Server: Serverl;Serverd

TargetBatchingB2:
————— TargetBatchingB2 ————————————
#{Server.Name): SURB2
#(Server.Name)>: SURB4
#(Server.Type>: 2683
Server: Serverl;ferverd

Done Building Project "C:“\InsideMS8Build~\ChB&6s\BatchingB3_proj" (TargetBatchingB2 targetlsd>._

Build succeeded.
A Yarning(s)
8 Errords>

FIGURE 6-10 TargetBatching02 target

In the TargetBatching01 target, each target was executing with a context of a single value

for the Server item. This is because the batching produced batches with only one item. In
this sample, we are batching over the Type metadata, which has two unique values, among
four different item values. If you look at the previous result, you can see that the statement
<Message Text="%25(Server.Name): %(Server.Name)" /> produces two values to be
printed. This is because there are two items in both of the batches. This is an example of
target batching on Server.Type and task batching on Server.Name. In the next section, we will
discuss multi-value batches in more detail.

Chapter 6 Batching and Incremental Builds 175

Multi-batching

When you get started with batching, it takes time to understand its behavior, and even more
effort to utilize it effectively. Batching over multiple values requires a deep understanding

of how batching works. In this section, we will take a closer look at batching, mostly through
a series of examples.

We will first examine what the behavior is when we perform task batching with two different
items. When a batched statement is encountered, MSBuild will create unique batches based
on the item itself and the value for the metadata. What this means is that when you are using
qualified batching statements, no batch will contain references to more than one item. A
qualified batching statement is one that declares the item type as well as the metadata name.
It is possible to batch without specifying the item type inside the %(EXPRESSION); we cover
this in the section entitled “Batching Using Shared Metadata,” later in this chapter. In the next
snippet, you will find the contents of the Batching04.proj file. The complete source is not
shown here; a few targets are shown later in this section.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<!l-- Testl items -->
<Testl Include="One">
<a>Al
B
<c>C</c>
</Testl>
<Testl Include="Two">
<a>A
B1l
<c>C</c>
</Testl>
<Testl Include="Three">
<a>Al
Bl
<c>Cl</c>
</Testl>
<!l-- Test2 items -->
<Test2 Include="Four">
<a>A
Bl
<c>Cl</c>
</Test2>
<Test2 Include="Five">
<a>Al
B
<c>C2</c>
</Test2>
<Test2 Include="Six">
<a>A
B
<c>C2</c>

176 Part Il Advanced MSBuild Topics

</Test2>
</ItemGroup>

<Target Name="Task01l">
<Message Text="%25(Testl.a): %(Testl.a)" />

<Message Text="---=---—-———-——————— e " />
<Message Text="%25(Test2.a): %(Test2.a)" />
<Message Text="---=--=-=--———--- e />

<Message Text=
"%25(Testl.a): %(Testl.a) || %25(Test2.a): %(Test2.a)" />
</Target>

<l--
NOTE: Others targets defined here.
-—>

</Project>

In this project file, there are two items declared, Testl and Test2, both of which have
metadata values for a, b, and c. In the Task01 target, the values for the a metadata are
batched first separately, then together. The result from executing this target, shown in
Figure 6-11, might be different from what you expect.

C:5\IngideMSBuild“ChB6>m=build BatchingB4_proj ~t:TaskBl ~nologo
Build started 9-23-2810 9:24:14 PM.
Project ""C:\InzideMSBuild~ChB6-BatchingB4_proj" on node 1 (TaskBl target(sdd._
Task#l:
#{Testl.ad: Al
w{Testi.a>: A

#{Test2.a>: A
#(TestZ.a>: Al

#(Testl.a): ALl i1 x{Test2.ad:
#{Testl.a>: A 1! #{Test2.ad:
#(Testl.a>: i1 x<(TestZ.ad: A
#(Testl.ad: |1 x(Test2.ad: Al
Done Building Project "C:xInsideMSBuild~ChB&~BatchingB4.proj" (TaskBl target(s)>>.

Build succeeded.
B Warning{s>
8 Errordis)

FIGURE 6-11 Batching04.proj Task01 result

As you can see from the result in Figure 6-11, both items have the values A and A1

for the a metadata. When they are batched together with the statement <Message
Text="%25(Testl.a): %(Testl.a) || %25(Test2.a): %(Test2.a)"/>, theresultis
that the Message task is invoked four times, twice for the values on Test1 and twice for the
values on Test2. When there are values for Test1, the values for Test2 are empty, and vice
versa. This is why the message task outputs values for only Test1 or Test2, but never for both
at once. We can get a better perspective of target batching by examining the result from the
TargetOl target. TargetOl1 is shown in the next snippet, and it is defined in the Batching04
.proj as well.

<Target Name="TargetOl1"
Outputs="%(Testl.a)%(Test2.a)">
<Message Text="%25(Testl.a): %(Testl.a) "/>
<Message Text="%25(Testl.Identity) %(Testl.Identity)" />
<Message Text="-------cmmmmcme e " />

Chapter 6 Batching and Incremental Builds 177

<Message Text="%25(Test2.a): %(Test2.a)" />
<Message Text="%25(Test2.Identity) %(Test2.Identity)" />
</Target>

The result of executing this target is shown in Figure 6-12. In this example, | also print the
value for the Identity metadata, which shows which items are included in the batch.

From the result shown in Figure 6-12, you can see that the TargetO1 target was executed four
times, just like the Message task of the previous example. Just as in the previous invocation,
when a value existed for Test1, there was none for Test2. We can now take a look at batching
to build multiple configurations.

GC:nInzideM5Build“Chi6 *mzbuild Batching®B4.proj st:TargetBl snologo
Build started 9-23-2818 9:37:85 PM.
Project "C:xInzideMS5Build~ChB6“Batching®4._proj'" on node 1 (Target@l target(sd>.
TargetBl:

#(Testl.ad: Al

#{Testl.Identity> One

#{Testl.Identity) Three

#(TestZ.ad:

#{Test2.Identity>
TargetBl:

#{Testl.a>: A

#(Testl.Identity> Tuwo

#(TestZ.ad:
#{Test2.Identity>
TargetBl:
#{Testl.a>:
#C(Testl.Identity)>

#(TestZ.ad: A

#{Test2.Identity> Four

#(Test2. Identity) Six
TargetBl:

#(Testl.ad:

#{Testl.Identity>

#(Test2.ad: Al
#(Test2.Identity> Five
Done Building Project "C:“\InsideMSBuild~ChB6\BatchingB4.proj" (TargetBl target(sd).

Build succeeded.
B Warning{s>
8 Errords)

FIGURE 6-12 Batching04.proj TargetO1 result

Using Batching to Build Multiple Configurations

Many situations exist when you might need to build a set of projects for a set of defined
configuration values. We'll examine how to do this now. The basic idea here is that you'll use
the MSBuild task in order to build each project while passing in the Configuration property
value. All the values for the configuration should be placed in an item so that they can be
expanded using batching. The contents of the Batching05.proj file are shown in the next
snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<PropertyGroup>
<SourceRoot>TestProjects\</SourceRoot>
<OutputRoot>. .\BUILD\BuildTemp\</OutputRoot>
</PropertyGroup>

178 Part Il Advanced MSBuild Topics

<ItemGroup>
<AT1Configurations Include="Debug configuration">
<Configuration>Debug</Configuration>
</Al1Configurations>
<AT1Configurations Include="Release configuration">
<Configuration>Release</Configuration>
</Al1Configurations>

<OutputPath Include="$(OutputRoot)One\">
<Path>$ (OutputRoot)One\</Path>
</0utputPath>
<OutputPath Include="$(OutputRoot)Two\">
<Path>$ (OutputRoot) Two\</Path>
</0utputPath>
</ItemGroup>

<ItemGroup>
<Projects Include="$(SourceRoot)TestProjl\TestProjl.csproj" />
<Projects Include="$(SourceRoot)TestProj2\TestProj2.csproj" />
<Projects Include="$(SourceRoot)TestProj3\TestProj3.csproj" />
</ItemGroup>

<!-- Show an example of the Configuration batching deal -->
<Target Name="Task01l">
<!-- Build each project for each defined configuration -->
<MSBuild Projects="@(Projects)"
Properties="Configuration=%(Al11Configurations.Configuration)
Targets="Build"
ToolsVersion="4.0"

/>

</Target>

<!--
NOTE: Others targets defined here.

-—>
</Project>
In this file, there are two noteworthy items: Projects and AllConfigurations, described as
follows:

B Projects Contains a list of projects that should be built

B AllConfigurations Contains the values for all the configurations that should be used
during the build process

The TaskO1 target shown in the previous snippet demonstrates task batching. This target
builds all the projects for the defined configuration values. This is achieved by calling
the MSBuild task and passing in all the projects to be built, along with the value for the
configuration. If you take a look at MSBuild task invocation, it uses the notation

Download from Wow! eBook <www.wowebook.com>

Chapter 6 Batching and Incremental Builds 179

@(Projects), which will send a list of projects to a single MSBuild task. The beginning of
the build process for the TaskO1 target is shown in Figure 6-13.

From the result shown in Figure 6-13, you can see that the TestProjl started building and
then the TestProj2 started to build after that. If the full log were shown here, you would see
that the TestProj3 project then started building. Figure 6-13 shows that the configuration
used for the build was Debug. The remainder of the build not shown in Figure 6-13 is
building using Release as the Configuration value. This works because the only value used for
batching was %(AllConfigurations.Configuration).

C:5\InsideMEBuild“\ChB6>mshuild BatchingB5.proj ~t:TaskBl ~nologo

Build started ?-23-2010 10:04:23 PM.

Project "C:“\InsideMSBuild~\ChB&“BatchingB5_proj" on node 1 (TaskBl target{sdd.

Project "C:~InsideMS8Build-ChB6-BatchingB5.proj" €¢i> is building "C:“InsideMS8Build“~ChB&~TestProject

s\TestProjisTestProjl_ceproj" ¢2» on node 1 (Build target{sl>.

CoreResGen:
C:s\Program Files“\Microsoft SDKs“Windows“u?_BA“bin‘\ResGen.exe suszeSourcePath sr:c:“\UWINDOWS\Micros
of t .NET“Framework-v2.A.58727mscorlib.dll ~r:c:\WINDOWS\Hicrosoft . NET“\Franeworks\w2.8.58727Syste
m_Data._dll /r:c:s\WINDOWSs\Microsoft _ HNET“Framework\v2 B.58727Systen.Deployment.dll /r:c:5\UINDOUS~
Microsof t .NET“Framework+w2. 0. 58727 8ysten.dll ~r:ic:“WINDOWS\Hicrosoft.NET“Framework-w2. @8.507275
ystem.Drawing.d11 p:c:sWINDOWS\Microsoft _ MET“Frameworksuv2 A_5A727System.Windows _Forns.dll /r:c
SHINDOWSSMicrosoft . NET“Framework~w2.8.58727Systen.8nl.d11l ~compile Properties“Resources.resx,o
hisxDebug~TestProjl.Properties . Resources . resources

CoreCompile:
CaAWINDOWS“Microsoft .NET“Framework-wd_@.30319Csc.exe Anoconfig snowarn:17@1.1702 rnostdlih+ ser
rorreport:iprompt Swarn:4 ~define:DEBUG;TRACE ~reference:c:“\WINDOWS\Microsoft.NET“\Framework-w2.B.
58727 mzcorlib.dll Aweference:c:sWINDOWE“Microsoft . NET“\Frameworkww?2 B._587278ystem.Data.dl]l ref
erence :c iSNWINDOWS“Microsof t .NET“Framework-w2.@.587278ysten.Deployment .dll ~reference:c:~WINDOUS
“Microsoft .MET“Framework-wz. A.587278ystem.dll rsreference:c:“\WINDOWS \Microsoft . NET“\Franework-w2.
B.5872°8ystem.Drawing.d1l ~reference:c:“WINDOWS\Microsoft . .NET\Frameworksv2 B.58727Systen.Windo
ws .Forms .d1ll rreference:c:~WINDOWS-Microsoft.NET“Framework\w2.A.58727Systen.8nl.dl]l sdebug+ sde
bug:full soptimize— sout:objsDebugsTestProjl.exe sresource:objs\Debug TestProjl.Properties.Resour
ces.presources Starget:winexe Forml.cs Forml.Designer.cs Program.cs Properties™AssemblyInfo.cs Pr
operties~Resources.Designer.cs Properties-Settings.Designer.cs

CopyFilesToOQutputDirectory:
Copying file from "obhjsDebugsTestProjl.exe'" to "binsDebug“TestProjl.exe'.
TestProjl —> G: \Ins1deHSBulld\ChBE\IestPPDJects\TestProJl\h1n\Dehug\TestProJl exe
Copying file from "obhjsDebugsTestProjl.pdh"” to "bin\Debug“TestProji.pdh".

Dgng)Bulldlng Project "C: \Ins1deHSBulld\ChBG\TestProJects\TestProJi\TestProJi csproj” (Build targe

ti{sa3d.

Project "C:\InsideMSBuild~ChB6“BatchingB5.proj" (1> is building "C:\InsideMSBuild“~ChB&t\TestProject

zxTestProj2~TestProj2.csproj” ¢3> on node 1 <(Build target{s>>.

CoreResGen:
C:~Program FilesMicrosoft SDKs-Windows>u?.BAbin“ResGen.exe ~useSourcePath ~pic:\WINDOWS\Hicros
of t _NET“Framework-uv2_B_58727mzcorlib.dll rp:c:\WINDOWS\Microsoft MET“\Framework\uv2 B._50727\Syste
m.Data.dll Ar:ic:~WINDOWS“Microsoft.NET“Framewvorksw2 B8.58727 8ysten.Deployment .dll /r:c:SUINDOUWS

Microszof t _NET“Framework+w2 _ B_50728ystem_.dll ~r:c:“\WINDOWS\Microsoft NET“\Framework-\u2 @.50727.5
vetem_Thrawvina_ d11 AriciSUTHROWUSSMicraznf i _HETS\Frameunrksu? A_SGA?2?7Ruzten_ Windonws _Farmnz _d11 Aeie

FIGURE 6-13 Batching05.proj Task01 result

For a more complicated variation of the previous example, we will use an example where
you need to build a set of projects for all the defined configurations, and you need to set the
output path for each configuration to a different location. We can achieve this by a careful
application of target batching. The next snippet, taken from Batching05.proj, contains the
Target02 target, which demonstrates this.

<Target Name="TargetOl1l"
Outputs="%(AT1Configurations.Configuration)">
<!-- Build each project for each defined configuration -->
<MSBuild Projects="@(Projects)"
Properties="Configuration=%(Al1Configurations.Configuration)"
Targets="Rebuild"
ToolsVersion="4.0"

/>

180 Part Il Advanced MSBuild Topics

</Target>
<Target Name="Target02" Outputs="%(Projects.Identity)">
<PropertyGroup>
<_CurrentProjectFilename>%(Projects.Filename)</_CurrentProjectFilename>
<_CurrentProjectFullpath>%(Projects.Fullpath)</_CurrentProjectFullpath>
<_CurrentOutputPath>$(OutputRoot) $(_CurrentProjectFilename)\</_CurrentOutputPath>
</PropertyGroup>

<MSBuild Projects="$(_CurrentProjectFullpath)"
Properties="Configuration=%(Al1Configurations.Configuration);
OutputPath=$(_CurrentOutputPath)%(AT1Configurations.Configuration)\"
Targets="Rebuild"
ToolsVersion="4.0"
/>
</Target>
The previous snippet contains two targets, which both build for all configurations. The
Target02 target also specifies the output path. We will focus on Target02. In this target,
| have chosen to batch with the Projects item instead of the AllConfigurations item. This is
because | will need to use some other metadata values from the Projects, such as the file
name. To accommodate for the change, | then batch the MSBuild task over all values for

AllConfigurations. In that target, you will notice properties defined in the following way.

<PropertyGroup>
<_CurrentProjectFilename>%(Projects.Filename)</_CurrentProjectFilename>
</PropertyGroup>

This takes the current value for the Filename for Projects item and places it into the property
named _CurrentProjectFilename. Since we are batching the target on Projects.Identity, we
know that the evaluation of that statement will be processed over only a single item value.
This is needed because the statement %(Projects.Identity) cannot be used directly in the
MSBuild task invocation. If this had been done, the task invocation would have been batched
using two items, Projects and AllConfigurations. As stated previously, each batch will contain
only one value. Because we need the value of Projects and AllConfigurations, we create
properties to refer to needed Projects values and use those instead. In the MSBuild task used
in that target, we are passing the Configuration property as well as the OutputPath property.
So we will build for all configurations, and we override the output path while doing so. If we
build that target, the result would be similar to that shown in Figure 6-14.

From the result shown in Figure 6-14, you can see that TestProj1 started building first for
Debug, and then for Release. Following that, the TestProj2 project began building. We'll now
move on to discuss another form of batching that was briefly mentioned before: batching
using multiple expressions.

Chapter 6 Batching and Incremental Builds 181

C:5\InzideMEBuild\ChB6>mzshbuild BatchingB5_proj ~t:TargetB2 /nologo

Build started ?-23-2018 18:18:34 PM.

Project "C:“\InsideMSBuild~ChB&~BatchingB5_proj" on node 1 (TargetB2 target(sd).

Project "C:~InsideMS8Build-ChB6-BatchingB5.proj" (1> is building "C:“InsideMS8Build“~ChB&~TestProject

s\TestProjisTestProjl_ceproj" ¢2» on node 1 (Build target{sl>.

CoreResGen:
C:nProgram Filezs“\Microzoft SDEs“Windowssu?._BA“bhin“ResGen.exe AuseSourcePath sr:c: \UWINDOUS\Micros
oft .NET“Framework-w2.@.58727mscorlib.d1ll /r:c:\WINDOWSSMicrosoft . NET\Framework-\w2.@.58727\Syste
m.Data.d1l Ar:ic:\WINDOWS“Microsoft . NET“Frameworksu2 B 5872 Systen.Deployment .d1l /»ic:i\WINDOUS-
Microsoft .NET“Framework-w2.B.587278ystem.d1l ~r:c:“\WINDOWS\Microsoft.NET\Framework-\w2. @8.587275
yztem.Draving.d11l Ar:ic:S\WINDOWS“Microsoft .NET“Frameworksww? . B.5872"8ysten._Windows .Fornz .d11l rr:ic
SHINDOWSSMicrosoft . NET“Framework~w2.8.58727Systen.8nl.d11l ~compile Properties“Resources.resx,o
hjisDebug~TestProjl .Properties . Resources . resources

CoreCompile:
CaNWINDOWS“Microsoft .NET“Framework-wd_@.30319Czc.exe Anoconfig snowarn:1701.1702 rnostdlih+ ser
rorreport:iprompt ~warn:4 ~define:DEBUG;TRACE ~reference:c:“\WINDOWS\Microsoft.NET“\Franmework-w2.B.
58727 mzcorlib.dll Areference:c:sWINDOWE“\Microsoft . NET“\Frameworkww2 B._587278ystem.Data.dl]l rref
erence :c iSNWINDOWS“Microsof t .NET“Framework-w2.@. 58727\ 8ysten.Deployment .dll reference:c:~WINDOUS
“Microsoft .MET“Framework-wz. A.587278ystem.dll sreference:c:“\WINDOWS \Microsoft . NET“\Franework-w2.
B.5872°8ystem.Drawing.d1l ~reference:c:“WINDOWENMicrosoft . .NET\Framneworksv2 B.58727Systen.Windo
ws .Forms .d1ll rreference:c:~WINDOWS-Microsoft.NET“Framework\w2.BA.58727Syusten.8nl.dll sdebug+ sde
bug:full soptimize— sout:objsDebugsTestProjl.exe sresource:objs\Debug TestProjl.Properties.Resour
ces.presources Starget:winexe Forml.cs Forml.Designer.cs Program.cs Properties™AssemblyInfo.cs Pr
operties~Resources.Designer.cs Properties-Settings.Designer.cs

CopyFilesToOQutputDirectory:
Copying file from "ohjsDebugsTestProjl.exe" to "..“\BUILDNBuildTempsTestProjisDebugsTestProjl.exe

TéstProji —=» G:x\InsideMS8Build~ChB6~\TestProjects\BUILDNBuildTemp:TestProjisDebugrTestProjl.exe
Eopying file from “objDebug~TestProjl.pdb"” to "..~BUILDNBuildTemp:TestProjl Debug TestProjl.pdh

Dgné)Building Project "C:xInsideMS8Build~ChB6-TestProjects TestProji TestProjl.csproj” (Build targe
tilsdd.

Project ""C:\IngideMSBuild:ChB&6“BatchingB5_proj" (1> iz building "C:\InsideMSBuild“\ChB&\TestProject

s“TestProjl~TestProjl.csproj"” <2:2> on node 1 <Build target{s>>.

CoreResGen:
C:~Program FilessMicrosoft SDKs-Windows“u?.BA~bin“ResGen.exe ~suseSourcePath /ric:“\WINDOWS\MHicros
of t _NET“Framework-uw2_B_58727mzcorlib.dll ~p:c:\WINDOWS\Microsoft MET“Framework\uv2 B._50727\Syste
m.Data.dll #r:ic:~WINDOWS“Microsoft.NET“Framewvorksw2 B8.58727 8ysten.Deployment.dl]l /r:c:SUWINDOWS
Microszof t _NET“Framework-ww2 _ B_507278ystem_.dll ~r:c:“\WINDOWS\Microsoft NET\Framework-\u2 @.50727.%5
ystem.Drawing.d11l ~p:c:sWINDOWS-Microsoft.NET“Frameworks\w2.8. 58727 8ysten.Windows .Forns.dll /r:c
=SMWINDOWS \Microzoft _NET“Frameworksu2 _B_5087278ystemn_.¥ml._d1ll scompile Properties“Resources._resx.o
hj~Release~TestProjl.Properties.Resources.resources

CoreCompile:
C:SWINDOWS“Microsoft .NET“Framework-w4.8.30831?~Csc.exe /noconfig /nowarn:1781.1782 snostdlib+ ser
rorreport —prompt swarn:4 sdefine:TRACE ~reference:c:“\WINDOWS\Microsoft HET“Framework\uv2 B_5@727%
mscorlib.dll sreference:c:“WINDOWS\Microsoft.NET“\Framework-w2 B.58727 Systen.Data.dll /reference
sesSUWINDOWS“Microsof t _.MET“Framework-w2 A_58727System.Deployment .d11l sreference::c: WINDOWS“Micro
soft .NET~Framework-w2.8.58727\8ystem.d1l]l sreference:c:“\WINDOWS\Microsoft.NET\Framework-w2.B8.5072
Bystem.Drawving.dll Areference:c:iwWINDOWES\Microsoft . NET“\Frameworkiw?2 A._587278ysten.Windows .For
ms.dll sreference:c:\WINDOWSSMicrosoft.NET“Frameworksw2. B.58727System.ml.d1]l ~debug:pdbonly /o
ptimize+ Sout:obj“Releaze~TestProjl.exe Arezource:ohj‘\Release’TestProjl.Properties.Resources. res
ources ~target:winexe Forml.cs Forml.Designer.cs Program.cs Properties“issemblyInfo.cs Propertie
z“Resources .Designer.cs PropertiessSettings.Designer.cs

CopyFilesToOutputDirectory:
Copying file from "obj“ReleasesTestProjl.exe'" to "..“\BUILD“BuildTemp:TestProjl-Releaze*TestProjl
.exe'.
TestProjl —» C:xInsideM8Build~ChB6-TestProjects \BUILD\BuildTemp:TestProjlsReleases\TestProjl.exe
Copying file from "ohj-Release“TestProjli.pdh" to "._ NBUILDNBuildTempsTestProjisRelease\TestProji
pdh*

Done Building Project "C:sInsideMSBuildsChB6\TestProjectssTestProjisTlestProjl.csproj" (Build targe
tls>>.

Project "G:xInsideMSBuild~ChA6“BatchingB5.proj" (1> iz building "C::\InsideM5Build:ChBe“TestProject
ssTestProi2sTestProiZ.csoroi" (3> on node 1 {Build target{s>>.

FIGURE 6-14 Batching05.proj Target02 result

Batching Using Multiple Expressions

Thus far, we have covered different ways of batching, but none of them have shown the
behavior if there are multiple batching expressions for the same item. When you have
multiple batching statements for the same item, such as <Message Text="Type: %(Server
.Type) Env: %(Server.Env)"/>, then the MSBuild engine will create unique batches
based on all metadata being batched. Here, you will find the Batching09.proj file; some
targets were removed because we will be discussing them later in this section.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<ItemGroup>
<Server Include="Serverl">
<Type>2008</Type>

182

Part Il Advanced MSBuild Topics

<Name>SVR01</Name>
<AdminContact>Sayed Ibrahim Hashimi</AdminContact>
<Env>PROD</Env>

</Server>

<Server Include="Server2">
<Type>2003</Type>
<Name>SVR02</Name>
<AdminContact>Sayed Y. Hashimi</AdminContact>
<Env>UAT</Env>

</Server>

<Server Include="Server3">
<Type>2008</Type>
<Name>SVR03</Name>
<AdminContact>Nicole Woodsmall</AdminContact>
<Env>PROD</Env>

</Server>

<Server Include="Server4">
<Type>2003</Type>
<Name>SVR04</Name>
<AdminContact>Keith Tingle</AdminContact>
<Env>DEV</Env>

</Server>

</ItemGroup>

<Target Name="PrintTypeEnv'">

<!-- Batches over Type and Env -->
<Message Text="Type: %(Server.Type) Env: %(Server.Env)"/>
</Target>

<!--
NOTE: Others targets defined here.
-=>

</Project>

The PrintTypeEnv target uses batching for the Type and Env metadata from the Server
item list. In this case, the batches will be formed by unique combinations of Type and Env
metadata. If you execute the command msbuild Batching09.proj /t:PrintTypeEnv,
the result would be what is shown in Figure 6-15.
C:xInsideMSBuild~ChB6>mshuild BatchingB?.proj ~t:PrintTypeEnv ~nologo
Build started 9-23-2010 160:25:53 PM.
Project "C:~InsideMS8Build-ChB&-BatchingB?.proj" on node 1 {PrintTypeEnv target{s>>».
PrintTypeEnu:

Type: 2008 Env: PROD

Type: 2883 Env: UAT

Type: 268083 Env: DEU
Done Building Project "G:xInsideMSBuild~ChB6“BatchingB?.proj'" (PrintTypeEnv target(sl)>.

Build succeeded.
8 Warning{s>
8 Errordis)

FIGURE 6-15 PrintTypeEnv target results

In this case, there are three unique combinations of the Type and Env metadata, and there
are two item values with Type=2008 and Env=PROD. Because of this, the Message task

was invoked three times. This behavior is a little different from the examples in the section
entitled “Multi-batching,” earlier in this chapter. In that section, there were multiple batches

Chapter 6 Batching and Incremental Builds 183

created because different metadata was used from different item lists. In this case, we are
using multiple metadata values from the same item list.

Here, you will find the other targets from the Batching09.proj file, which were omitted from
the previously shown snippet.

<Target Name="PrintTypeName">

<!-- Batches over Type and Name -->

<Message Text="Type: %(Server.Type) Name: %(Server.Name)"/>
</Target>
<Target Name="PrintTypeNameEnv">

<!-- Batches over Type, Name and Env -->

<Message Text="Type: %(Server.Type) Name: %(Server.Name) Env: %(Server.Env)"/>
</Target>

These two targets also demonstrate batching with multiple values from the same item. Take a
look at the results of the command msbuild Batching09.proj /t:PrintTypeName;PrintT
ypeNameEnv, shown in Figure 6-16.

C:x\InsideMEBuild“\ChB6>mshuild BatchingB?.proj ~t:PrintTypeMName;PrintTypeNameEnv ~“nologo

Build started ?-23-2018 1B8:33:58 PM.

Project "C:\InsideME8Build~\ChB6“BatchingB?.proj" on node 1 (PrintTypeMName;PrintTypeNaneEnv target{s
>

PrintTypeMame =

Type: 20688 Name: SURB1

Type: 2003 Name: SURB2

Type: 28688 Name: SURB3

Type: 2083 Mame: SURB4
PrintTypeMameEnv:

Type: 20888 Mame: SURB1 Env: PROD

Type: 2003 Hame: SURB2 Enw: UAT

Type: 2068 Mame: SURB3 Env: PROD

Type: 2803 Mame: SURB4 Enwv: DEU
Doge)?uilding Project "C:xInsideMS8Build-~ChB6-BatchingB?.proj" (PrintTypeMN. sPrintTypeN. Env targ
et{sdd.

Build succeeded.
B Warning{sl
8 Errord{s>

FIGURE 6-16 PrintTypeName and PrintTypeNameEnv target results

In the first target, PrintTypeName, the batching is using the Type and Name metadata values.
Since the Name metadata is unique, we would expect that the Message task be executed
once for each value in the Server item list. From the results shown in Figure 6-16, you can
see that this is indeed the case. This also holds true for the PrintTypeNameEnv target, which
extends the first target by also batching on the Env metadata value. There is no limit on

the number of metadata values that can be used for a task. Now we will take a look at why
MSBuild allows batching expressions to be expressed without an item list name.

Batching Using Shared Metadata

The concept of shared metadata is not well known; it is a set of metadata that is common
across more than one item type. For example, in VB.NET and C# project files, many different
items can have a value for the DependentUpon metadata. There are scenarios in which you
would like to batch using different item types that have identical metadata—that is, batching
using shared metadata.

184

Part Il Advanced MSBuild Topics

In all the examples we have discussed thus far, we have always qualified the item type in the
batching expression. For example, we recently used the expression %(Projects.Identity).
In this expression, the item type was Projects and we were batching on the Identity
metadata. Consider this example: As you create projects in Microsoft Visual Studio, several
item types allow a value for the CopyToOutputDirectory value. Some item types that support
this include EmbeddedResource, Compile, Content, and so on. Instead of handling each set
of files individually, it would be ideal if we could act on them all at once. You can do this by
declaring a metadata expression without the item type. You will see this in the following
Batching06.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="PrintInfo">
<ItemGroup>
<None Include="NoneOl.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
<None Include="None02.txt">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
<None Include="None03.txt;None4.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
<Compile Include="src0l.cs;src02.cs;src03.cs">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</Compile>
<Compile Include="src04.cs;src05.cs">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</Compile>
</ItemGroup>

<Target Name="PrintInfo">
<Message Text="%(CopyToOutputDirectory): @(None) @(Compile)" />

<Message Text="====" />
<Message Text="PreserveNewest: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory) '=="'PreserveNewest'" />

<Message Text="Always: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory) '=="Always'" />
</Target>
</Project>

Inside the PrintInfo target, the Message task is invoked with the expression
%(CopyToOutputDirectory). The CopyToOutputDirectory metadata is being referenced
without an item type specified. When this is the case, at least one item type must be
passed to the task so that the MSBuild engine knows what item type(s) to use for batching.
In this case, the Message task is referencing the None and Compile items, so it will create
unique batches for CopyToOutputDirectory consisting of items from both the None

and Compile item types. This works because both item types have the shared metadata
CopyToOutputDirectory. You can see the result of executing this target in Figure 6-17.

Chapter 6 Batching and Incremental Builds 185

G:nInsideMSBuild~ChB6 > msbuild Batching®6.proj ~t:PrintInfo ~nologo
Build started 9242818 7:43:22 PM.
Project "GC:xInsideMSBuild~ChB6~BatchingB6.proj'" on node 1 (PrintInfo target{si>.
PrintInfo:

PreserveNewest: NoneBl.txt;NoneB3.txt;Noned.txt srcBl.cs;srcB2.csssrcBi.cs

Always: MoneB2 _txt srcB4._cs;srcBS._cs

PreserveNewest: srcBl.css;srcB2.csssrcBld_cs NoneBl.txt;NoneB3.txt;Noned. txt

Always: srcBd.cs;srcBb.cs NoneB2.txt
Done Building Project "C::\InszideMS8Build~ChB@6\Batching@6 _proj" (PrintInfo target(sd).

Build succeeded.
A Yarning(s)>
8 Errords>

FIGURE 6-17 Common metadata batching, example 1

From the result shown in Figure 6-17, we can see that the statement <Message
Text="%(CopyToOutputDirectory): @(None) @(Compile)"/> was executed once for

the value PreserveNewest and once for Always. Also during the batching, values from both
None and Compile item types were placed in the same batch. Because of this, we can create
steps in our build process that don't discriminate based on an item type, only on one of its
metadata values. If you do use this, you must ensure that every value in each referenced
item type has declared the used metadata value. For example, if the result in Figure 6-17 had
an additional ItemGroup declaration before the PrintInfo target, such as

<ItemGroup>
<Compile Include="src06.cs" />
</ItemGroup>

then the target would fail, showing the error message in Figure 6-18.

C:\InsideMSBuild“\ChB6>mshuild BatchingB6.proj ~t:PrintInfo ~nologo

Build started 9242018 7:48:41 PM.

Project "C:“\InsideMS8Build~ChB&~Batching@6.proj" on node 1 (PrintInfo target{sd).
GC:nInsideMSBuild~ChB6~BatchingB6 . proj(27.5>: error M5B48%96: The item “srcBb.cs" in item list “Comp
ile" does not define a value for metadata "CopyToOutputDirectory". In order to use this metadata,
either gqualify it by specifying #<(Compile.CopyTofQutputDirectory?, or ensure that all items in thi
g list define a value for this metadata.

Done Building Project "C:InsideM8Build“~ChB&“\BatchingB6.proj" (PrintInfo target{s>> —— FAILED.

Build FAILED.
"C:xInsideMSBuild~ChB6~BatchingB6.proj" (PrintInfo targetd> (1> ->
{PrintInfo targetl) —>

C:5\IngideMSBuild\ChB6 BatchingB6 proj(2?.5>: error MEB4@96: The item "srcBb_ce" in item list "Co
mpile" does not define a value for metadata "CopyToOutputDirectory”. In order to use this netadat
a. either gualify it by specifying % (Compile.CopyToOutputDirectory?,. or ensure that all items in t
his list define a value for this metadata.

B Warning{s>
1 Error(s)

FIGURE 6-18 Common metadata batching error

This is one difference in behavior from the batching methods that we already discussed. In all
previous cases, if an item value did not have the specified metadata value defined, it would
be treated as empty. In this case, it causes the build to fail. If you need to use this type of
batching but you are not sure if all the item values have defined the metadata, then you may
have to provide a default value. You can use the new ltemDefinitionGroup element to provide
this for you. The following Batching07.proj file demonstrates this behavior.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="PrintInfo">
<ItemGroup>

186 Part Il Advanced MSBuild Topics

<None Include="NoneOl.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</None>

<None Include="None02.txt">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>

</None>

<None Include="None03.txt;None4.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</None>

<Compile Include="src0l.cs;src02.cs;src03.cs">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</Compile>

<Compile Include="src04.cs;src05.cs">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>

</Compile>

</ItemGroup>

<ItemGroup>
<Compile Include="src06.cs" />
</ItemGroup>

<ItemDefinitionGroup>
<Compile>
<CopyToOutputDirectory>Never</CopyToOutputDirectory>
</Compile>
</ItemDefinitionGroup>

<Target Name="PrintInfo">
<ItemGroup>
<Compile Include="src07.cs" />
<Compile Include="src08.cs">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</Compile>
</ItemGroup>

<Message Text="%(CopyToOutputDirectory): @(None) @(Compile)" />

<Message Text="====" />
<Message Text="PreserveNewest: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory)'=="'PreserveNewest'" />

<Message Text="Always: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory) '=="Always'" />
<Message Text="Never: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory) '=="Never'" />
</Target>
</Project>

This file declares a few values for the Compile item type that have not defined

the CopyToOutputDirectory metadata value. A default value is provided via the
ItemDefinitionGroup declaration. I've highlighted the changed regions. The result of
executing the PrintInfo target in this file is shown in Figure 6-19.

From this result, we can see that the default value was successfully applied and we were able
to use batching with unique values of the common metadata value.

Chapter 6 Batching and Incremental Builds

C:~InsideM8Build~ChB6 > mshuild BatchingB7.proj ~t:PrintInfo ~nologo
Build started 9-24-2010 8:58:87 PM.
Project "C:~InsideM8Build-ChB&“BatchingB7.proj" on node 1 {(PrintInfo target(s>>.
PrintInfo:
PreserveNewest: NoneBl.txt;NoneB3.txt;Noned.txt srcBl.cs;srcB2.cs;srcB3.cs
Always: MoneB2 _txt sprcB4.ceisrcBS_ceispcB8_ce
Hever: srcBb.cs;srcB?.cs

PrezcrvcHowcats srcBl.czszreB2.casesrcB3.ce HoncBl.txtiHoneB3.txtiHoncd. txt
Always: srcB4.csssprcAS.csssprcBB.cs NoneB2.txt
Mever: srcBb.cs;srcB?.cs
Done Building Project “G:xInsideMSBuild~ChB6“BatchingB7.proj" (PrintInfo target(s)>.

Build succeeded.
A Yarning(s)>
B Errvords>

FIGURE 6-19 Common metadata batching, example 2

187

Another method of achieving the same result would be to use the ability to dynamically update

an item's metadata value using ltemGroup inside a target. The following Batching08.proj file

removes the ltemDefinitionGroup element and replaces its functionality with this other technique.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="PrintInfo">
<ItemGroup>
<None Include="NoneOl.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
<None Include="None02.txt">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
<None Include="None03.txt;None4.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
<Compile Include="src0l.cs;src02.cs;src03.cs">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</Compile>
<Compile Include="src04.cs;src05.cs">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</Compile>
</ItemGroup>

<ItemGroup>
<Compile Include="src06.cs" />
</ItemGroup>

<Target Name="PrintInfo">
<ItemGroup>
<Compile Include="src07.cs" />
<Compile Include="src08.cs">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</Compile>

</ItemGroup>
<ItemGroup>
<Compile Condition="'%(Compile.CopyToOutputDirectory)'==""">
<CopyToOutputDirectory>Never</CopyToOutputDirectory>
</Compile>

</ItemGroup>

188

Part Il Advanced MSBuild Topics

<Message Text="%(CopyToOutputDirectory): @(None) @(Compile)" />

<Message Text="====" />
<Message Text="PreserveNewest: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory) '=="'PreserveNewest'" />

<Message Text="Always: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory) '=="Always'" />
<Message Text="Never: @(Compile) @(None)"
Condition=""%(CopyToOutputDirectory) '=="Never'" />
</Target>
</Project>

In this demonstration, | have highlighted in bold the text that has changed. You can see

that the ItemGroup element is used inside the Printinfo target. In this case, we are providing
a value for the CopyToOutputDirectory metadata if its value is empty. This is implemented
with task batching and as a condition. The difference between this approach and the
[temDefinitionGroup approach is this: temDefinitionGroup will provide a true default value,
in the sense that it applies even for item values defined later in the build process, whereas
the replacement approach modifies only currently defined item values. We will now move on
to discuss incremental building, another great feature of MSBuild, which is little known.

Incremental Building

As products grow into giants, so do their build times. For a large code base, a build time

of a few hours is not uncommon. Knowing this, there must be a way to ensure that only
components that have changed, or depend on changed components, be built. This is
accomplished through incremental building. Incremental building allows the MSBuild engine
to determine which targets can be skipped, or even partially skipped. This then enables faster
build times in most cases. In this section, we will discuss how you can take advantage of this
in your own build scripts.

We have seen in target batching that the Output parameter of the Target element contains
the batching statement. On the Target element, there is also an Input attribute; when both of
these values are present, incremental building is enabled. In this case, the MSBuild engine will
examine the timestamps of the input files and compare them to the timestamps of the files
provided in the outputs value. If the outputs were created after the inputs, then the target is
skipped. We can now take a look at this in action.

The Incremental01.proj file demonstrates incremental building. It copies a set of files from
one location to another. If the files are up to date, then the target that performs the copy is
skipped. This file is shown next.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<PropertyGroup>
<SourceFolder>$(MSBuildProjectDirectory)\src\</SourceFolder>

Chapter 6 Batching and Incremental Builds 189

<DestFolder>$(MSBuildProjectDirectory)\dest\</DestFolder>
</PropertyGroup>

<ItemGroup>
<SourceFiles Include="$(SourceFolder)*.txt" />
</ItemGroup>

<Target Name="CopyFilesToDest"
Inputs="@(SourceFiles)"
Outputs="@(SourceFiles->"'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')">
<Copy SourceFiles="@(SourceFiles)"
DestinationFiles=
"@(SourceFiles->"'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')" />
</Target>

<Target Name="CleanDestFolder">
<ItemGroup>
<_FilesToDelete Include="$(DestFolder)***"/>
</ItemGroup>
<Delete Files="@(_FilesToDelete)" />
</Target>
</Project>

In this build script, we have declared two targets, CopyFilesToDest and CleanDestFolder.

The important target here is CopyFilesToDest. The inputs for that target are specified as
@(SourceFiles), and outputs as @(SourceFiles->"'$(DestFolder)%(RecursiveDir)
%(Filename)%(Extension) '), which is a transformation of the SourceFiles item. If the files
in the output location are newer than the source files, then we would expect this target to be
skipped. The CleanDestFolder target can be used to delete the output files. Take a look at the
result of the command msbuild IncrementalOl.proj /t:CleanDestFolder;CopyFilesTo
Dest, shown in Figure 6-20.

C:5\InsideMEBuild“\ChB6>msbhuild Incrementaldl.proj ~t:CleanDestFolder;CopyFilesToDest /nologo
Build started ?-24-2810 2:21:4% PM.
Project "C:\InsideME8Build~ChB6“Incrementaldl. proj" on node 1 (CleanDestFolder;CopyFilesToDest taryg
et{s>>.
CleanDestFolder:
Deleting file '"G:~InsideMSBuild~Ch@6t\dest“\B1l.txt".
Deleting file "C:xInsideMS8Build~ChBb6>\dest“BA2_ txt'.
Deleting file '"G:~InsideMSBuild-~ChA6t\dest“\B3.txt".
Deleting file "C:~InsideMS8Build~ChBb“dest~B4._ txt".
CopyFilesToDest:
GCopying file from "C:xInsideMSBuild:\Ch@6 srch\Bl.txt'" to "C:xInsideMSBuildChB6 dest BAl.txt".
Copying file from "C:-\InsideMSBuild\ChB&6N\src\B2 . txt" to NInsideMSBuild\ChBb dest B2 . txt".
GCopying file from "C:xInsideMSBuild~Ch@6 src \B3.txt'" to "C:\InsideMSBuild~ChB6 ~dest~B3.txt".
Copying file from "C:\InsideMSBuild\ChB6 \src\B4.txt" to "C:\InsideMSBuild“\ChBt dest \B4.txt".
Done B%i}ging Project "C:xInsideM8Build~ChB6“IncrementalBl.proj"” (GCleanDestFolder;CopyFilesToDest
target(sid.

Build succeeded.
A Warning(s>
B Erroris>

FIGURE 6-20 CopyFilesToDest result 1

In this example, | purposefully deleted all the output files by calling the CleanDestFolder
target before the CopyFilesToDest target. | do this to ensure that the target is called, which
can be seen in the result in Figure 6-20. From that output, we can see that the files were
successfully copied from the source location to the destination. Now what would happen if
we ran that target again, without first calling the CleanDestFolder target? The result is shown
in Figure 6-21.

190

Part Il Advanced MSBuild Topics

C:~InsideM8Build~ChB6 > mshuild Incrementaldl.proj ~t:CopyFilesToDest ~nologo

Build started 9-24-2010 9:24:17 PM.

Project "C:~InsideMS8Build-ChB&6~IncrementalBl.proj" on node 1 (CopyFilesToDest target{s>>.
CopyFilesToDest:

Sk%pging target "CopyFilesToDest" because all output files are up—to—date with respect to the inpu
t files.

Done Building Project "C:N\InsideMSBuild“\ChB6NIncremental®dl.proj'" (CopyFilesToDest target{s)>.

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 6-21 CopyFilesToDest result 2

As the result shows, the target was successfully skipped because all the outputs were up to
date with respect to the inputs. This basic implementation serves as the basis for incremental
building and is the key to efficient build scripts. The targets shipped by Microsoft to build
managed projects use incremental building extensively. If you make modifications to the
build, your targets should also support this when possible. If you extend the build process for
a managed project to use custom targets that create files, you should also make sure those
files are deleted when the project is cleaned. We will take a look at this specific example in
Chapter 8, "Practical Applications, Part 1.” It's very important that your incremental build
works properly—that is, that it does not touch any files. This is not only because it makes
your life easier as a developer, but also because it's highly antisocial in the context of a larger
build: Subsequent (correctly authored) build steps will be triggered to run because you
touched those files. Sometimes inputs and outputs alone will not enable you to properly
implement incremental builds. For example, if a task operates on files that have transitive
dependencies, such as C++ header files, then you may not be able to (or may not want to) list
all of them in inputs and outputs. In this scenario, you must bypass the inputs and outputs list
and let the task do the timestamp checking for itself before it is run. The GenerateResource
task behaves in this manner because .resx files can refer to other files.

Partially Building Targets

When incremental building is utilized, you may run into times when a target is up to date
for some files, but not all. You shouldn't have to completely rebuild the target simply to
take care of a few files, and indeed, you do not—MSBuild will take care of this for you
automatically. This is called partially building targets.

The best way to describe how partial building works is to demonstrate it. We'll start by
examining the build script shown in the next snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0" DefaultTargets="CopyFilesToDest">
<PropertyGroup>
<SourceFolder>src\</SourceFolder>
<DestFolder>dest\</DestFolder>
</PropertyGroup>

Download from Wow! eBook <www.wowebook.com>

Chapter 6 Batching and Incremental Builds 191

<ItemGroup>
<SourceFiles Include="$(SourceFolder)*.txt" />
</ItemGroup>

<Target Name="CopyFilesToDest"
Inputs="@(SourceFiles)"
Outputs="@(SourceFiles->"'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)"')">
<Copy SourceFiles="@(SourceFiles)"
DestinationFiles=
"@(SourceFiles->"'$(DestFolder)%(RecursiveDir)%(Filename)%(Extension)')" />
</Target>

<Target Name="CleanDestFolder">

<ItemGroup>
<_FilesToDelete Include="$(DestFolder)***"/>
</ItemGroup>
<Delete Files="@(_FilesToDelete)" />
</Target>

<Target Name="DeleteSomeRandomFiles">
<ItemGroup>
<_PartialFilesToDelete Include="$(DestFolder)01l.txt;$(DestFolder)03.txt"/>
</ItemGroup>
<Delete Files="@(_PartialFilesToDelete)" />
</Target>
</Project>

This script, Incremental02.proj, is a modification of the previous example from Incremental01
.proj. The change is the addition of a new target, DeleteSomeRandomFiles. This target

will clean out some of the files in the dest folder, but not all of them. Assuming that the
CopyFilesToDest target has been run previously without being cleaned, the result of the
command msbuild Incremental02.proj /t: DeleteSomeRandomFiles;CopyFilesToDest
is shown in Figure 6-22.

C:xInsideMSBuild~ChB6>mshuild Incremental®2.proj ~t:DeleteSomeRandomFiles;CopyFilesToDest /nologo
Build started 2,24-2018 9:42:45 PM.
Project "GC:xInsideMSBuild~ChB6~IncrementalB2.proj" on node 1 (DeleteSomeRandomFiles;CopyFilesToDes
t target{sdl.
DeleteSomeRandomFiles:

Deleting file "dest~B1_txt'._

Deleting file "dest~B3.txt".
CopyFilesToDest:
Building target "CopyFilesToDest' partially. because some output files are out of date with respec
t to their input Files.

Copying file from "src\Bl txt" to "destwB1. txt"

Copying file from "srcB3.txt" to “dest~BA3.txt"
Done Building Project “'C: \InsideMSBuild\ChB&<Incrementald? . proj'" ¢(DeleteSomeRandomFiles;CopyFilesT
oDest target{(sl>.

Build succeeded.
A8 Warning{s>
8 Error(sd

FIGURE 6-22 Partially building targets

If you take a look at the result shown in Figure 6-22, you will see the message Building
target "CopyFilesToDest" partially, because some output files are out of
date with respect to their input files. Since the DeleteSomeRandomFiles target
deleted only a couple of the generated files, the ones that were not deleted were still up to

192

Part Il Advanced MSBuild Topics

date. Therefore, those files do not need to be rebuilt. MSBuild automatically recognized this
and executed CopyFilesToDest only for the outdated inputs. Following that statement, you
can see that two files were copied to the destination location. Since some of the files were up
to date, the batch that was sent to the CopyFilesToDest target contained only the out-of-date
files. When the inputs and outputs contain the same number of values, MSBuild will match
input to output in a 1:1 fashion. For example, it will assume that the first value in the input
corresponds to the first value of the output, and the second input value to the second output
value, and so on. Using this process, MSBuild is able to determine specifically what set of
inputs are out of date with respect to outputs, and process only those item values. Typically,
you will not have to be concerned with partial building because MSBuild will take care of it,
but you should be aware of it.

In this chapter, we have covered an advanced technique—batching. Batching will allow

you to create build scripts that take full advantage of the MSBuild engine. When you

create build scripts, you should remember that batching is available and use it when it

can serve a purpose. Along with batching, we have discussed incremental building, which
allows for drastically reduced build times for most builds. For any complex build scripts,
incremental building must be implemented. Now that we have covered batching and
incremental building, in the next chapter we will take a look at how external tools can be
used in the build process. We will discuss some guidelines for using external tools, as well as
show how to correctly integrate a few tools.

Chapter 7
External Tools

When you are using MSBuild, sometimes there is no specific task that provides the
functionality that you need. At those times, you will have to use one of the many existing
tools that can and should be used to assist in builds and deployments. Some of the most
commonly used tools include FxCop, StyleCop, NUnit, and so on. In this chapter, | will
describe how external tools can be effectively consumed by MSBuild. We'll examine a few
commonly used tools and discuss how to integrate them into your build process. We'll first
describe how these can simply be invoked in build scripts and then describe a way to create
reusable targets files for tools. Also, we will discuss some guidelines for reusable build scripts.

Exec Task

The simplest method to invoke an existing tool is by using the Exec task. This task is shipped
with MSBuild, and it can be used to execute any program or command. This is the task that is
used to execute the PreBuild and PostBuild events as well. There are several properties in this
task, which are summarized in Table 7-1.

TABLE 7-1 Exec Task Properties
Name Description
Command The command that is to be executed. This is the only required parameter.
WorkingDirectory Specifies the working directory.

Timeout Specifies the timeout, in milliseconds. After the amount of time specified has
passed, the command will be terminated. There is no timeout by default, so
a command will be allowed to execute indefinitely.

ExitCode Output property containing the exit code returned by the execute command.

IgnoreExitCode If true, then the Exec task will not fail the build based on the exit code.
Otherwise, the build is failed for any nonzero exit code.

Currently, there is a bug related to this such that, if this value is set to true
and an error message has been logged, the build should fail, but it doesn't.

Outputs An input/output parameter that contains the output items from the task. This
is not set by the Exec task itself but made available to be set by the consumer.
This parameter is needed only for output inferral. When a target is skipped,
MSBuild tries to create all the properties and items that the target would have
created if it had run. For custom tasks, this is possible only if the output is
also an input. So this should be set to whatever the outputs for the executed
command would be if the task were run, so that MSBuild can properly
determine dependencies. This is output inferral. By exposing the outputs as
an input as well, output inferral is supported. Generally, you will not have to
worry about this.

193

194 Part Il Advanced MSBuild Topics

Name Description

StdErrEncoding An input/output parameter that specifies the encoding that
is used for the standard error stream. The default value is
almost always sufficient; it is the current OEM encoding or
else ANSI. These possible values are code page names for the
desired encoding, for example UTF-8 and UTF-32.

StdOutEncoding An input/output parameter that specifies the encoding that
is used for the standard output stream. These possible values
are code page names for the desired encoding, for example
UTF-8 and UTF-32.

IgnoreStandardErrorWarningFormat If true, the output is not examined for standard errors and
warnings.

CustomErrorRegularExpression If provided, this will be the regular expression pattern used
to determine if an error occurred. MSBuild will attempt to
examine the output of the executing tool for errors and
warnings. For standard compliant tools, this is automatic.
For tools that do not log using the standard conventions
(e.g., GCC compiler), then you can provide an expression
to detect the errors. Also, you may need to provide an
expression for the CustomWarningRegularExpression
parameter.

Typically, you should use this in conjunction with the
IgnoreStandardErrorWarningFormat parameter.

CustomWarningRegularExpression If provided, this will be the regular expression pattern used
to determine that a warning occurred. See the note in the
CustomErrorRegularExpression description about how
MSBuild processes the executables output.

Typically, you should use this in conjunction with the
IgnoreStandardErrorWarningFormat parameter.

The most commonly used Exec properties are Command, IgnoreExitCode, and
WorkingDirectory. In the next code fragment, you will see a very simple usage of this task.
This is from the Exec01.proj file.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<Target Name="Demo">
<Exec Command="echo Hello MSBuild" />
</Target>
</Project>

In this demonstration, we are simply invoking the echo command to pass a message to the
console. When you use the Exec task, the contents of the command are placed in a .cmd file
and passed to cmd.exe for execution. We can verify that this was successfully executed by
examining the result shown in Figure 7-1.

Chapter 7 External Tools 195

C:InsideM8Build~ChB7>mshuild ExecBl.proj ~t:Demo ~nologo
Build started 91120108 4:82:53 PM.
Eruaect “"C:xInsideMSBuild~Ch@7?-ExecBl.proj"” on node 1 (Demo target{s>>.
emo :

echo Hello MSBuild

Hello MEBuild
Done Building Project "C::\InsideMSBuild\ChB7\Exec®l.proj" (Demo target(sd>.

Build succeeded.
B Warning{s>
8 Error(s)

FIGURE 7-1 Exec result

From this result, we can see that the Exec task executed the provided command and the
message was sent to the console. You should use the Exec task to invoke an executable when
a task doesn't exist to invoke it for you. For example, you should use the Exec task to invoke
svcutil.exe, from the Windows SDK, but not csc.exe because the Csc task wraps the csc.exe
executable. A few of the reasons why custom tasks are easier to use is that they can expose

a specific set of properties that the tool can use, the output may be cleaner, and the task may
be able to discover where the .exe is located. Many existing build processes are captured in
non-MSBuild scripts, and the Exec task can be used to invoke those scripts. By doing this, you
can slowly migrate your build process to MSBuild instead of employing an “all or nothing”
approach.

Note In case you are interested in how the Exec task works, here are some details. The Exec
task takes the content of the Command parameter, places it into a temporary file, and then runs
cmd.exe on that file. What this means is that you can use things like multiple lines, environment
variables, and so on. Another implication of this is that because this is running in a child process
(cmd.exe), any changes to environment variables will last only until the task is done.

One common usage of the Exec task, especially when using MSBuild 2.0, is to invoke the
attrib command. This command can be used to change a file's attributes. When applications
are under development, many files are marked as read-only due to the source control
provider. This is great for development, but sometimes it causes problems for a build process
that might copy and replace files with other ones. If you are using MSBuild 3.5, or later,

the Copy task now has a property called OverwriteReadOnlyFiles, which can be used to
bypass the copy read-only file problem. With MSBuild 2.0, you would have to change the
file’s attribute to be writeable. An example of this would be replacing resource files at build
time, or replacing JavaScript files for Web projects. The following Exec02.proj file contains

an example demonstrating using the attrib command.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<ItemGroup>
<SrcFiles Include="src*" />

</ItemGroup>

<Target Name="Demo">
<Message Text="SrcFiles: @(SrcFiles)" />
<Message Text="%0a%0dMaking files Readonly" Importance="high" />
<!-- Make SrcFiles Readonly -->

Part Il Advanced MSBuild Topics

<Exec Command="attrib %(SrcFiles.Identity) +R" />

<!-- Display the attributes -->
<Exec Command="attrib %(SrcFiles.Identity)" />

<Message Text="%0a%0dMaking files writeable" Importance="high" />
<!-- Make SrcFiles Writeable -->
<Exec Command="attrib %(SrcFiles.Identity) -R" />

<!-- Display the attributes -->
<Exec Command="attrib %(SrcFiles.Identity)" />
</Target>
</Project>

This file declares a single item, SrcFiles, and a single target, Demo. Inside the Demo target,
the attrib command is used to apply the read-only flag, display file attributes, remove
read-only attributes, and finally display the attributes one last time. The result of invoking
this build script is captured in Figure 7-2.

C:nInsideMSBuilds\Ch@7>msbuild ExecB2.proj ~t:Demo ~nologo
Build started 9112010 4:82:54 PM.
Eroaect "G:xIngideMSBuild~ChA7?~ExecB2. proj" on node 1 (Demo target(s)>.
emo =

SrcFiles: spcnfour.txtisrchone.txtssprosthree.txtssrontuwo.txt

Making files Readonly
attrib srcnfour.txt +R
attrib srchone.txt +R
attrib spcithree.txt +R
attrib srchtwo.txt +R
attrib sprchfour.txt
A R G:nInsideMSBuild~ChB7%sprcnFour.txt
attrib srchone.txt
A R G:nInsideMSBuild~ChB?7 s rcone.txt
attrib srcithree.txt
A R G:nInsideMSBuild~ChB7~srcnthree.txt
attrib srci\tuwo.txt
A R G:nInsideMSBuild~ChB?~s rcstwo . txt

Making files writeabhle
attrib srchfour.txt —-R
attrib srchone.txt —R
attrib srchthree_txt -R
attrib srchtwo.txt —R
attrib srchfour.txt
n G:nInsideMSBuild~ChB?\sreFouwr.txt
attrib srchone.txt
GC:nInsideMSBuild~ChB?\srchone.txt
attrib srchthree.txt
G:nInsideMSBuild\ChB?\srcithree.txt
attrib srchtwo.txt
C:nInsideMSBuild\ChB?\s rcNtwo . txt
Done Building Project "G:~InsideMSBuild-~ChB7~ExecB2.proj" (Demo target(sd>.

Build succeeded.
A Warning(s>
B Errorisd

FIGURE 7-2 Exec02.proj result

As you can see, the attrib command was successfully invoked to set and clear the read-only
flag. Now that the read-only attribute has been cleared, we are free to copy any file on top of
this one. Another common usage of the Exec task is to interact with source control providers.
With more common source control providers, you may be able to find custom tasks, but
tasks for all providers are not available. You may have to use the Exec task to perform the
operation for you. We will now conclude our discussion of the Exec task and move on to
cover the MSBuild task.

Chapter 7 External Tools 197

MSBuild Task

When you are building products, there will be many instances where you simply want to
build an existing MSBuild file. This could be an MSBuild file that you authored or one that
was created by a third-party tool for you. Of course, you could use the Exec task to perform
this, but a better option is to use the MSBuild task. This is another task that is delivered along
with MSBuild itself. As the name suggests, it will invoke MSBuild on the specified file(s). Some
of the advantages of using this task instead of the Exec task include increased performance,
better integration, and ease of use. One of the main advantages of using the MSBuild task

is that you can make sure that the same project is not built multiple times concurrently. For
example, if you have projects A and B, which both reference project C, if both A and B run
the Exec task on C, then there would be two copies of C building at once unless you used the
MSBuild task. This would cause file access issues and build breaks, which is why you shouldn't
start msbuild.exe inside a build. The properties for this task are outlined in Table 7-2.

TABLE 7-2 MSBuild Task Properties
Name Description

BuildInParallel If true, then the projects will be built in parallel if possible. The default
value for this is false. The Microsoft.Common.targets file passes
a default value of true for this property when using the MSBuild task. To
make your projects build in parallel, you need to use the /m command-
line switch to ensure that more than one processor can be used.

Projects Project file(s) to be built. If you specify more than one, either pass it in
as an item list or as a semicolon-delimited list.

Properties Optional semicolon-delimited list of properties in the format <n>=<v>,
where <n> is the name of the property and <v> is the value. These
are global properties and treated the same as properties passed to the
msbuild.exe command using the /property (/p) switch. You can
also add properties using the Properties or AdditionalProperties project
item metadata.

RemoveProperties A semicolon-delimited list of properties to remove. This is a new
property of MSBuild 4.0.

RebaseOutputs If this is true, then any relative paths from the built projects’ Target
outputs will be adjusted to that of the calling project. The default value
for this is false.

RunEachTargetSeparately If true, then each target will be executed independent of the other
targets in the Target property. If not building in parallel, then each
project will be built once for each target. If building in parallel, then
all projects will be built together for each target. If an error occurs
during a target and this is set to false, subsequent targets are allowed
to execute instead of the entire task execution terminated. The default
value for this is false. It is more efficient to leave this value as false;
otherwise, the engine will be called to build each target in turn, rather
than giving it a list.

198 Part Il Advanced MSBuild Topics

Name

SkipNonexistentProjects

StopOnFirstFailure

TargetAndPropertyListSeparators

TargetOutputs

Targets

ToolsVersion

UnloadProjectsOnCompletion

UseResultsCache

Description

If this is set to true, then if a project doesn't exist, it is skipped
instead of raising an error. The default value for this is false.

The default value for this is false. If set to false and you are
building projects A and B, if A fails, then project B will begin
building. If you are building targets t1 and t2, if t1 fails, then t2
will start.

If this is set to true and an error occurs, the task invocation

will be stopped. This works only if you are building single proc
(as under the covers, it is implemented in the task; that is, the
task has to give each project to the engine one at a time if it is
going to have a chance to stop before the end).

Can be used to change the default semicolon separator for
properties and targets.

Output parameter that contains the outputs from the specified
targets that were built.

Specifies the target(s) to be built. If providing more than one
value, then it should be a semicolon-delimited list just as when
using the /target (/t) switch with msbuild.exe.

Determines which version of tools will be used to build the
project. Valid values are 2.0, 3.5, and 4.0. The default value is
2.0. This determines the version of the tasks and targets that

are used to build your project. Note that Microsoft.Common.
targets also has a property named TargetFrameworkVersion
that can be used to target other framework versions. These are
not the same. TargetFrameworkVersion is a regular property
used by the common Microsoft targets files. If your ToolsVersion
is 2.0, then the TargetFrameworkVersion must be 2.0 as well.

Obsolete. Do not use.

Obsolete. Do not use.

From the properties listed in Table 7-2, the most commonly used are Projects, Targets,
Properties, and TargetOutputs. We will demonstrate the usage of all these properties in this
section. The following snippet shows the contents of two project files: MSBuildTask01.proj

and MSBuildTask01_external.proj.
MSBuildTask01.proj

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"

ToolsVersion="4.0"
DefaultTargets="Demo">

<Target Name="Demo">

<Message Text="Inside Demo target" />
<MSBuild Projects="MSBuildTask01l_external.proj"
Targets="PrintMessage" />

</Target>

</Project>

Chapter 7 External Tools 199

MSBuildTask01_external.proj

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">

<Target Name="PrintMessage">
<Message Text="Hello MSBuild" />
</Target>
</Project>

The MSBuildTask01.proj file contains a single target, Demo. This is the one that we will be
invoking from the MSBuild command line. This target uses the MSBuild task to call the
PrintMessage target contained in the MSBuildTask01_external.proj file. If you executed the
command msbuild MSBuildTask0l.proj /t:Demo, the result would be what is shown in
Figure 7-3.
C:nInzideMSBuild Ch@7>mzbuild MSBuildTask@A1.proj st:Demo ~nologo
Build started 21120108 4:20:87 PM.
Eroject "C:xInsideMSBuild~ChA7?~MS3BuildTaskAl.proj"” on node 1 (Demo target(sl)>.
emo =

Inzide Demo target
Project "C:\InsideMSBuild~ChB7?MSBuildTaskBl.proj™ (1> is building "C:\InsideM5Build~Ch@7“MSBuildT
askBl_external.proj” <2> on node 1 <(PrintMessage target(s>).
PrintMessage:

Hello M8Build
Done Building Project "C::\InsideMSBuild~ChB7“MSBuildTaskB1l_external_proj" (PrintMessage target{s))

Done Building Project "C:\InsideMSBuild“~ChB7“MS5BuildTaskB1l.proj" (Demo target{s>>.

Build succeeded.
B Warning{s>
8 Erroris)

FIGURE 7-3 MSBuildTask01.proj result

From these results, you can see that the PrintMessage target was called using the MSBuild
task from the Demo target. Now that we have seen how to use the MSBuild task, we'll take
a look at how we can send properties into a project.

When you invoke the MSBuild task, the properties and items of the calling MSBuild file

are not passed through to the projects by the MSBuild task. This is by design. You can pass
property values using the Properties parameter of the MSBuild task. You cannot pass items
through, but you can use Properties to initialize items inside the project being built. These
properties are global properties. They are treated in the same manner as properties that
are passed into msbuild.exe using the /p switch; that is, they cannot be overwritten by
static values declared in the project file that will be processed by the MSBuild task. Building
a project with a different set of properties causes it to build again; it has a different identity.
Building a project with the same set of properties causes the build to be skipped. In the
following code section, you will find the contents of the MSBuildTask02.proj file, which is

a modified version of the previous example.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Demo">

200 Part Il Advanced MSBuild Topics

<Target Name="Demo">
<Message Text="Inside Demo target" />
<MSBuild Projects="$(MSBuildProjectFullPath)"
Targets="PrintMessage"
Properties="SourceName=PrintMessage Target"
/>
</Target>

<Target Name="PrintMessage'>
<Message Text="Hello MSBuild from: $(SourceName)" />
</Target>
</Project>

The difference between this example and the previous one is that in this example, a value
for SourceName is passed by the Properties parameter, which is indicated in bold in this
code snippet. As stated in Table 7-2, properties should be passed in the format <n>=<v>.

In this case, the name of the property that we are passing is SourceName and the value is
“PrintMessage target”. If we were to pass more than one value, we would have to delimit the
name-value pairs with a semicolon. You can see the result of building the Demo target of this
file in Figure 7-4.

C=xInzideMEBuild \Ch@7>mebuild MSBuildTaskB2 _proj st:Demo ~nologo

Build started 9112810 4:26:86 PH.

groaect "C:xInsideMSBuild~ChA@7?“MEBuildTazkB2 _proj" on node 1 (Demo targetlsdl.

e?ﬁslde Demo target

Project "C:“\InsideMSBuild~ChBA?“MSBuildTaskB2.proj"” (1> is building "C:\InsideM5Build~ChA7~MSBuildT

azskB2 _proj"” (1:2> on node 1 (PrintMessage target{sd)._

PrintMessage:

Hello MSBuild from: PrintMessage Target
Done Building Project “'C: \Ins1deHSBulld\ChB?\HSBuLIdTaskBZ proj" (PrintMessage target{s>>.

Done Building Project "C:\InsideMSBuild“~ChB7?“MS5BuildTaskB2.proj" (Demo target{s>>.

Build succeeded.
Warning<s>»
8 Error(s)

FIGURE 7-4 MSBuildTask02.proj result

You can see from this result that the SourceName property was successfully passed from the
calling file into the project being built. As you might have noticed, in this case the project
file is performing a build on itself, using the MSBuild task. But the behavior would have been
the same even if it had been building a different file. We can now move on to take a look at
a more realistic example.

A very common scenario is creating an MSBuild file that will be used as the “master” build
file. What this means is that you will have one MSBuild file that is responsible for building

a set of project files, as well as any other steps before, after, or between project builds. You
can achieve this by using the MSBuild task. The next example, taken from MSBuildTask03
.proj, uses the MSBuild task to build two sample unit test projects. The full source for this file
is shown in the following example.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="BuildA11">
<PropertyGroup>

Chapter 7 External Tools 201

<UnitTestSrcRoot>unittest\</UnitTestSrcRoot>
</PropertyGroup>
<ItemGroup>
<UnitTestProjects
Include="$(UnitTestSrcRoot)Unittest.Projl\Unittest.Projl.csproj" />
<UnitTestProjects
Include="$(UnitTestSrcRoot)Unittest.Proj2\Unittest.Proj2.csproj" />
</ItemGroup>

<PropertyGroup>
<!-- BuildA11 convention used here but these could be named anything. -->
<BuildA11DependsOn>
BeforeBuildAlTl;
CoreBuildAll;
AfterBuildAll
</BuildA11DependsOn>
</PropertyGroup>
<Target Name="BuildA11" DependsOnTargets="$(BuildA11DependsOn)" />

<Target Name="CoreBuildA11">
<MSBuild Projects="@(UnitTestProjects)"
Targets="Rebuild"
Properties="Configuration=Release">
<Output ItemName="unitTestBuildOutputs" TaskParameter="TargetOutputs" />
</MSBuild>

<Message Text="unitTestBuildOutputs:%0a%0d@(unitTestBuildOutputs, '%0a%0d')" />
</Target>

<Target Name="BeforeBuildA11">
<Message Text="Before BuildA11" Importance="high" />
</Target>

<Target Name="AfterBuildA11">
<Message Text="After BuildA11" Importance="high" />
</Target>
</Project>

In this project, | have defined an item, UnitTestProjects, which contains the two projects that
are to be built. These projects are built inside the CoreBuildAll target using the MSBuild

task. If you take a look at that task invocation, you will see that we are building the Release
configurations of the specified projects. Also, you can see that we're placing the output value
from the TargetOutputs parameter into the unitTestBuildOutputs item. The TargetOutputs
value will expose any values defined as Outputs on explicitly called targets. In this case,

we are explicitly calling only the Rebuild target. If you take a look at the definition for that
target, from the Microsoft.Common.targets file, you will see what is contained in the next
snippet.

<Target
Name="Rebuild"
Condition=" '$(_InvalidConfigurationWarning)' != 'true'
DependsOnTargets="$ (RebuildDependsOn)"
Outputs="$(TargetPath)" />

202

Part Il Advanced MSBuild Topics

This target has defined the Outputs value to be $(TargetPath), which is a property

pointing to the location of the output file. This will be the value that is transferred into the
unitTestBuildOutputs item. You will see that | have defined a target to be executed before
and after the project is built, using BeforeBuildAll and AfterBuildAll. You can see this in action
by executing the command msbuild MSBuildTask03.proj /t:BuildAl1. The last bit of the
result of this is shown in Figure 7-5.

T.rroji.all Carget: 110Fary rropertless\HSSEeMDLYINT0.CS LeSTUPEFATOPS.CS
CopyFllesHarkeanpyanal:
Copying file from "C:s\InsideMSBuild“\Contrib“nunit2.2%nunit.framework.dll"” to "bin“Release“nunit.
framework.d11"
Copying file frnm "G:xIngideMSBuild~Contribvnunit2 . 2vnunit.framework.xml” to “hin>Release“nunit.
framework.xml"
CopyFllesToOutputDlrectnPy
Copying file from "obhj-Release“~Unittest.Projl.d1l1l" to "bin“ReleasesUnittest.Proji.dll".
Unittest.Projl —» C:xInsideMSBuild~ChA@7wunittestxUnittest.ProjisbinsReleasesUnittest. PPOJl dll
Copying file from "obhj“Release“Unittest.Projl.pdh" to "bin“ReleasesUnittest.Proji.pdb".
23ne Bullglgg Project "C:xInsideMSBuilds\Ch@7-unittests\Unittest.ProjisUnittest.Projl.csproj" (Rebui
target(sid.

Project "C::\InsideMSBuild“ChB?“MSBuildTaskB3.proj" (1> is building "C:\InsideMSBuild“ChB?\unittest

sUnittest.Proj2-Unittest.Proj2.csproj" (3> on node 1 (Rebuild target{s)>>.

CoreClean:
Creating directory "objsRelease-".

CoreCompile:
C:sMWindowssMicrosof t .NET“Frameworksv4.8.38319“Csc.exe ~noconfig /nowarn:1781.1782 snostdlib+ ser
rorreport -prompt swarn:4 sdefine:TRACE rreference:C:sWindows\Microsoft NET“\Framework\u2 _ @.50727
mscorlib.dll sreference:C:xInsideMSBuildsContribNnunit2.2Nnunit.framework.dll rreference:"GC:“Fro
gram Files (xB&>-\Reference Assemblies“Microsoft\Framework-w3 .5x8ystem.Core.dll" rreference:"C:\P
rogram Files (xB6>-Reference Assembhlies“Microsoft“\Framework\wl.5\System.Data.DataSetExtensions.d
11" sreference:C:xWindowss\Microzof t .MNET\Framework'\uv? _A_5872"System.Data.dll sreference:C:\Windo
wssMicrosof t .MET“Framework-w2.8.587278ystem.dll ~reference:C:\Windows \Microsoft.NET“\Franework-w
285872 8yztem.ml.d11 sreference:"C:M\Program Files (xB6)“Reference Aszembliez“Microzoft Frame
work w3 . 5%\Byztem.8ml.Ling.d11" sdebug:pdbonly /filealign:512 soptimize+ sout:obhj\Release\Unittes
t_Proj2_dll rtarget:library TestStirng.cs Properties“Azzemblylnfo.cs

_CopyFilesMarkedCopyLocal:
Copying file from "C:xInszideMSBuild“\Contrib“nunit2.2\nunit.framework.d11l" to "bin“Release“nunit.
framework.dl1'.
Copying file from "C:sInsideMSBuild“\Contrib“nunit2.2\nunit.framework.xml" to "bin“Release“nunit.
framework.xml"

CnpyFllesTnUutputﬂlrectnry
Copying file from "obhj-ReleaseUnittest.Proj2.d11" to "bin“ReleasesUnittest.Proj2.d11".
Unittest.Proj2 —>» C:xInsideMSBuild~ChA7unittestsUnittest.Proj2sbin“ReleasesUnittest. PPOJZ dll
Copying file from "obhj-Release-Unittest.Proj2.pdh" to "bin“ReleasesUnittest.Proj2.pdb".

23ne Bullglgg Project "C:ixInsideMSBuild\Ch@7~unittestsUnittest.Proj2:Unittest.Proj2. CSDPOJ" (Rebui
targetdis

CoreBuildill:

unitTestBuildQutputs:
C:x\InsideMSBuild\ChB?unittest~Unittest.Projirsbin\Release\Unittest.Proji.dll
GC:xInsideMSBuild~Ch@7~unittest~Unittest.Proj2shinsReleasesUnittest .Proj2.dll
AfterBuildAll:

After Buildall
Done Building Project "C:\InsideMS8Build\ChB7*MSBuildTaszkB2.proj" (BuildAll target{sd>>.

Build succeeded.
B Warning{sl
8 Erroris>

FIGURE 7-5 MSBuildTask03.proj result

From the result captured in Figure 7-5, you can see that both unit tests were successfully built
using the MSBuild task. Furthermore, you can see that the result assemblies were placed into
the unitTestBuildOutputs item as expected. Now we have demonstrated how we can utilize
the MSBuild task in order to build child projects. You should note that if you want to take
advantage of the multiprocessor support that MSBuild has, you must invoke msbuild.exe
using the /maxcpucount (/m) switch, and when using the MSBuild task, you should set the
BuildInParallel value to true. The MSBuild task also supports a set of known metadata that
can be used during the build process: Properties, AdditionalProperties, and ToolsVersion.

Thus far, we have discussed the Exec task and the MSBuild task. Now, we’'ll move on to
discuss error message formats. If you have many projects that will utilize the same tools, then
you should create reusable scripts to make integration of the tools simpler.

Chapter 7 External Tools 203

MSBuild and Visual Studio Known Error Message
Formats

When a tool is executed that outputs some text, MSBuild will examine the text for
errors and warnings. Many tools use a known format to report these messages. By
default, MSBuild will examine the text and report errors and/or warnings based on the
output. This behavior can be changed or disabled by using these parameters on the
Exec task: IgnoreStandardErrorWarningFormat, CustomErrorRegularExpression, and
CustomWarningRegularExpression.

Note If you do decide to use your own regular expression to detect error and warnings, then
you should know that MSBuild will look at the result one line at a time. Even if your custom
regex would match something across multiple lines, it will not behave that way because of how
MSBuild processes that text.

Take a look at the following four messages, which are all properly formatted and will be
recognized by MSBuild and Microsoft Visual Studio.

Main.cs(17,20): warning CS0168: The variable 'foo' is declared but never used
C:\dirl\foo.resx(2) : error BC30188: Declaration expected.

cl : Command Tline warning D4024 : unrecognized source file type 'foo.cs', object .
error CS0006: Metadata file 'System.d11' could not be found.

These messages conform to the special five-part format shown in Figure 7-6. The order
of these parts is important and should not change.

:| Command line " warning || D4624 ” unrecognized source file type ‘foo.cs’]

[Origin | [Subcategory | | Category | [Code| | Text |

FIGURE 7-6 Known message format

Now we will describe each of the components of this format:

B Origin (Required) Origin can be blank. If present, the origin is usually a tool name,
such as “cl” in one of the examples. But it could also be a file name, such as “Main.cs,”
shown in another example. If it is a file name, then it must be an absolute or a relative
file name, followed by an optional parenthesized line/column information in one of the
following forms:

(Tine) or (Tine-Tine) or (line-col) or (line,col-col) or (line,col,Tline,col)

204

Part Il Advanced MSBuild Topics

Lines and columns start at 1 in a file; that is, the beginning of a file is 1, and the
leftmost column is 1. If the Origin is a tool name, then it must not change based on
locale; that is, it needs to be locale-neutral.

B Subcategory (Optional) Subcategory is used to classify the category itself further; it
should not be localized.

B Category (Required) Category must be either “error” or “warning”. Case does not
matter. As with origin, category must not be localized.

B Code (Required) Code identifies an application-specific error code/warning code.
Code must not be localized and it must not contain spaces.

B Text User-friendly text that explains the error, and it must be localized if you cater to
multiple locales.

When MSBuild calls command-line tools (for instance, csc.exe or vbc.exe), it looks at the
output emitted by the tool to the standard out and standard error streams. Any lines that
match the error format that | just described will be treated specially; that is, lines that are
recognized as errors or warnings will be turned into build errors and warnings, respectively.

To see the real benefit of this, you have to be building from within Visual Studio. Because
MSBuild treats these messages specially, they get logged as first-class warnings and
errors in the Visual Studio task list. If the Origin specifies line/column information, then
double-clicking the message will take you to the source of the error in the offending file.

Creating Reusable Build Elements

When you are integrating tools into your build process that serve as key elements in a build,
then you should consider creating reusable elements that can be consumed by various
products. Creating reusable build elements is different, and more difficult, than the content
that we have covered thus far. When you are creating these scripts, there are a few rules that
you should follow. We will point out how the scripts that we create in this chapter adhere to
the guidelines outlined in the following list:

1. Needs to be self-contained

2. Process needs to be transparent and extensible to the consumer
3. Overridable behavior

4. A contract should be defined and validated

The first rule, "Needs to be self-contained,” means that all the necessary steps to perform the
desired actions are captured in the defined script. This does not mean that the script cannot
make assumptions (these are covered by rule #4), but it does mean that the tool’s build script
cannot modify values of the calling build script. For example, if you have a build script for
public use that defines how to invoke FxCop, then the FxCop script file should not change the

Chapter 7 External Tools 205

value for the BuildDependsOn property, even though this is tempting. Instead, the importing
build script should place the FxCop target(s) into that property.

The second consideration, “Process needs to be transparent and extensible to the consumer,”
means that the entire process needs to be able to be modified to suit the needs of the
caller. For example, similar to the Microsoft.Common.targets, target dependency lists should
be exposed as properties so that consumers can extend them to inject their own targets.
For example, the Microsoft.Common.targets contains properties such as BuildDependsOn,
CompileDependsOn, ResolveReferencesDependsOn, PrepareResourceNamesDependsOn,
and many others. By exposing such properties, callers can easily change the process of the
script itself. With MSBuild 4.0, you get this by default with BeforeTargets and AfterTargets.
However, DependsOn properties are still good to use because there is a slight difference.
With DependsOn properties, you can redefine all dependencies, but with BeforeTargets and
AfterTargets, you cannot. There are a few disadvantages to using DependsOn properties,
though, which are outlined as follows:

1. The target must explicitly define its DependsOnTargets value in a property.
2. If the property is carelessly overwritten, unexpected results will occur.
3. You can only prepend or append; you cannot inject a step in the middle.

Because of these limitations, this solution is not ideal, either, but it is better than any other
option currently available.

The third rule, "Overridable behavior,” is for the most part built into MSBuild. This is because
every target that is imported into a file can be overridden by simply re-declaring that

target at some point after the Import statement that initially defines it. Because of this, you
should be wary of creating MSBuild scripts that have targets with an excessive number of
task invocations. Just as when you write code, when your targets grow too large, then they
should be re-factored. If your targets are more fine-grained, then others can easily override a
target to customize the behavior. If a target performs many different actions, it is difficult for
others to override because they don't want to have to rewrite the entire target just to change
a small section.

Note You can use the command-line switch /preprocess (/pp) to write out the entire
MSBuild file to a file. This would include all the imported targets, properties, and items.
Sometimes this is very helpful to do because it shows what targets are being used.

Now we can move on to the final guideline, “A contract should be defined and validated.”
Of all the rules, this is the one that is most interesting. Most frameworks, such as the
Microsoft .NET Framework and Microsoft Windows Communication Foundation (WCF),
have a clear mechanism for defining a contract between a consumer and a provider.
Unfortunately, MSBuild doesn’t have such a mechanism. Despite this limitation, we need

206

Part Il Advanced MSBuild Topics

a way to declare an agreement between these two parties, and that agreement should

be validated. In reusable .targets files, the data are always provided by the caller and the
essential behavior is always described by the callee. Because the callee needs to know what
data to act upon, the correct properties and items need to be made available to it. Also, the
validation logic can be placed inside a target, which is called before the essential actions

are performed. If you are validating static items, then you can place these validation targets
inside the InitialTargets declaration. We will see this implemented in all the target files in this
chapter. When you are creating target files, there is a convention that you should be aware
of and make sure to follow: You should prefix with an underscore all properties, items, and
target names that should be considered internal implementation details. By doing so, you
are letting the caller know that its behavior is subject to change or might even be removed in
newer versions. A future version of MSBuild might support some type of scoping mechanism
that can be used to work around this issue. This convention is followed by all target files
provided by Microsoft. Now that we have outlined some guidelines, we can take a look at
what it takes to integrate some specific tools into our build process.

NUnit

If you are not familiar with NUnit, it is an open-source unit testing framework. It is very
similar to the unit testing tools that are available in the team versions of Visual Studio, which
have specific tasks and targets. You can learn more about NUnit at its homepage, nunit.org.
NUnit is not the only alternative to Visual Studio tests; another tool is xUnit.net, and there
are many others. If you are using NUnit to test your applications, then you should automate
running NUnit as a part of your build process. You can achieve this in a few different ways.
One of the best options is to use the NUnit task that is available from the MSBuild Extension
Pack. We will first take a look at this task and then describe how to effectively utilize it.
Table 7-3 describes the properties that are available on the NUnit task.

TABLE 7-3 NUnit Task Properties
Name Description

Assemblies Contains the assemblies that the NUnit task will examine. You can also
pass in the full path to a Visual Studio project, if it ends in one of these
extensions: .csproj, .vbproj, .vjsproj, or .vcproj. Another option here is to
pass an NUnit project file.

This is the only required input.

IncludeCategory Specifies the NUnit test case category or categories that should be
executed. If you decorate your test cases with an NUnit.Framework.Category
attribute, then this feature may be useful. If you are providing multiple
values, then they should be separated by a comma. This corresponds to the
/include command-line parameter of nunit-console.exe.

Download from Wow! eBook <www.wowebook.com>

Name

ExcludeCategory

OutputXmlFile

ErrorOutputFile

NoShadow

Configuration

NoThread

Chapter 7 External Tools 207

Description

Specifies the NUnit test case category or categories that should be
excluded from test execution. If you are passing more than one value
for this, they should be comma-separated. This corresponds to the
/exclude command-line parameter.

This is where the test results XML file will be stored. This is not

a required input, but you should always set this. If this is not set, then
the file will be placed in a file named TestResult.xml in the working
directory. This corresponds to the /xml parameter.

If provided, this file will be populated with any messages that are sent
to the standard error stream. This corresponds to the /err parameter.

By default, NUnit will execute all of your test cases on shadow copies
of your assemblies. These are typically contained in the "%temp%\
nunit20\ShadowCopyCache\" folder. This behavior can be disabled by
providing a value of true for this property. This corresponds to the
/noshadow command-line parameter.

Using this, you can specify the value for configuration that the
test cases should be run against. This corresponds to the /config
command-line parameter.

If a value of true is provided for this property, then the test cases will
be executed in the same thread. The default value for this is false. This
corresponds to the /thread parameter.

Note Other properties exist for this task as well. For the full list, see the documentation for the
MSBuild Extension Pack.

To demonstrate using this task, | have created a simple class containing some test cases, as
shown in the following class definition.

namespace Unittest.Projl

{

using NUnit.Framework;

[TestFixture]

pubTlic class TestOperators

{
[Test]

pubTlic void TestAddition()

{

int result = 1 + 1;
Assert.AreEqual(2, result);

result = 100 + 1;
Assert.AreEqual (101, result);

208 Part Il Advanced MSBuild Topics

result = 1005 + (-1);
Assert.AreEqual (1004, result);

}

[Test]

pubTlic void TestSubtraction()

{
int result =1 - 1;
Assert.AreEqual (0, result);
result = 100 - 1;
Assert.AreEqual (99, result);
result = 1005 - (-1);
Assert.AreEqual (1006, result);

}

3

This class is located in the Unittest.Proj1 project. Now we need to create an MSBuild file that
can be used to execute the unit tests in that project for us using the NUnit task, shown in the
following nunitExample.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="UnitTest">

<PropertyGroup>
<ExtensionTasksPath>
$(MSBuildThisFileDirectory)\..\Contrib\ExtensionPack\4.0\
</ExtensionTasksPath>
</PropertyGroup>
<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>

<ItemGroup>
<UnitTestProjects
Include="$(MSBuildProjectDirectory)\unittest\Unittest.Projl\Unittest.Projl.csproj">
</UnitTestProjects>
</ItemGroup>

<PropertyGroup>
<NUnitResultFile>$(MSBuildProjectDirectory)\nunit-result.xml</NUnitResultFile>
</PropertyGroup>

<Target Name="UnitTest">
<!-- Build all the projects in UnitTestProjects -->
<MSBuild Projects="@(UnitTestProjects)" />
<!-- Execute the test cases, if any fail so will the build -->
<NUnit Assemblies="@(UnitTestProjects)"
ToolPath="..\Contrib\NUnit 2.5.7\bin\net-2.0" />

</Target>
</Project>

In this MSBuild file, | have declared the UnitTestProjects item and included the Unittest.Projl
.csproj file.

Chapter 7 External Tools 209

Note In the previous example, the MSBuild Extension Pack was referenced from a relative
folder, but if you have installed the extension pack on your machine, then you could have
used the MSBuildExtensionsPath property. This property points to the suggested location for
third-party targets and tasks. They should be located in a directory under that path which
typically points to the folder C:\Program Files\MSBuild. Also, there is a related property,
MSBuildExtensionsPath32, which is for tasks and targets that have 32- and 64-bit versions.

In the UnitTest target, the default target for this file, | first build the project, and then | invoke
the NUnit task against it. In this example, | have chosen, for simplicity, to pass the project

file as the NUnit input file. Also, notice that | provide the path to nunit-console.exe via the
ToolPath property, which is available on any task extending the Microsoft.Build.Utilities
.ToolTask class. The listing shown in Figure 7-7 captures the last portion of the results you get
when you execute the command msbuild nunitExample.proj /t:UnitTest /clp:v=d.

In this case, we are setting the verbosity of the console logger to detailed (/c1p:v=d) in
order to output the NUnit messages.

d" depends on it):

Done building target "CoreBuild" in project "Unittest.Projl.csproj”.

Target "AfterBuild" in file "C:“UWindows“Microsoft.NET“Frameworkswd4._ B.38319\Microsoft.Common.target
g" from project "GC::\InzideMSBuild~ChB87~unittest Unittest.Proji~Unittest.Projl.csproj"” (target "Bui
14" depends on it):

Done building target "AfterBuild" in project "Unittest.Projl.csproj'.

Target ""Build" in file "C:\Windows“Microsoft.NET“Framework-\v4.8.38319“Microsoft.Common.targets" fr
om project "C:isInzideMSBuild~ChAwunittestsUnittest.ProjlslUnittest_Projl.csproj"” (entry pointl:
Done building target "Build" in project "Unittest.Projl.csproj".

Done Building Project "C:\IngsideMEBuild“ChB7unittest\Unittest_ ProjlsUnittest._ Projl.csproj” (defau
1t targetsD.

Done executing task "MSBuild".
Using "MUnit" task from assembly "C:\InsideMSBuild~Ch@?\\..“\Contrib:ExtensionPack\4.8\M5Build.Exte
nsionPack.d11".
Task "MUnit"
Command :
C:NInsideMSBuild“\ContribSNUnit 2.5.7%bin“net-2.B\nunit-—console.exe ~/nologo C:\InsideMSBuild-Ch@?7
sauanittests\Unittest. PrnJl\Unittest.Prnjl.csprnj
The "HUnit" task is us1ng "nunit—console.exe" from "G:\InsideMS5Build“Contrib“HNUnit 2.5.7bin“net
—2_B“nunit—console . exe'
ProcessModel: Default DomainUsage: Default
Execution Runtime: Default

Tests run: 2, Ervors: B, Failures: B, Inconclusive: B, Time: B.8678839 seconds
Not vun: B, Invalid: 8. Ignored: B. Skipped: 8
Dir
Done executing task “"MUnit'.

Done building target “"UnitTest" in project “nunitExample.proj"
Done Building Project "C:inInsideMS5Build~\ChB87<nunitExample. DPDJ" {UnitTest target{s>>.

Build succeeded.
A Yarning{s>
B Error<s?

FIGURE 7-7 NUnitExample.proj passing result

From the output shown, we can see that the Unittest.Projl.csproj file was built, and then
the test cases executed via the NUnit task. If any test cases failed, then the build itself would
have failed. To demonstrate this behavior, uncomment the following failing test case in the
TestOperators class.

[Test]
public void TestDivide()
{
int numerator = 100;
int divisor = 20;
int result = numerator / divisor;
Assert.AreEqual (6, result);

210

Part Il Advanced MSBuild Topics

To see how a failing test would affect the build, execute the nunitExample.proj more times.
The result is shown in Figure 7-8.

As stated, since there was at least one failing test case, the entire build failed. The failures
are also summarized at the end of the build. Now that we've described how we can use the
NUnit task, we can take a look at how we can create a reusable targets file to simplify the
process of invoking it.

C:nInzideMSBuilds\Ch@7>mzbuild nunitExample.proj #t:UnitTest “nologo

Build started ?-11-2818 5:30:17 PM.

Project "C:xInzideMSBuild~ChA7“nunitExample.proj"” on node 1 (UnitTest target(s)

Project "C:\InsideMSBuild~ChB?“nunitExample.proj" ¢(1> is building "C: \Ins1deHSBu11d\ChB?\un1ttest\

Unittest . ProjlsUnittest.Projl.csproj"” (2> on node 1 (default targets).

CoreCompile:
C:vWindowssMicrosoft .NET“Framework-w4.8.38317? Csc.exe ~noconfig snowarn:1781.1782 rnostdlibh+ ~er
rorreport:prompt ~warn:4d Adefine:DEBUG;TRACE /reference:C:NWindowssMicrosoft . NET\Framework-w2.B.
58727 mscorlib.dll sreference:CG:inInsideMSBuild™\Contribsnunit2.2Nnunit.framevork.dll /reference:"
C:“\Program Files (xB&>-Reference fssemblies“Microsoft\Frameworks\wl.5 \System.Core.dll" sreference

»Program Files (xB6>-Reference Assembliezs“Microsoft~Framework:w3.5 \System.Data.DataSetExtens
ions.d11" ~reference:C:sHWindowssMicrosoft.MET\Framework-\w2. 8. 58727\8ysten.Data.dl]l /reference:C:
“Windows*Microsof t .NET“Framework-u2.8.587278ysten.dl]l rsreference:C: \Windows Microsof t .NET“Frame
workw2 B.50727\8ystem.¥ml.d11l ~reference:"C:\Program Files (xB6>\Reference fAssemblies“Microsoft
“Framework-v3.5~8ystem.¥ml.Ling.d11" sdebugt+ rdebug:full rfilealign:512 soptimize— -rout:ohj:\Debu
g~Unittest.Projl.dll ~target:library Properties“Assemblylnfo.cs TestOperators.cs

CopyFilesToOutputDirectory:
Copying file from "ohjsDebugsUnittest.Projl.d1ll" to "bhin\DebugsUnittest.Proji.dll".
Unittest.Projl —» C:xInsideMSBuild~ChA7wunittestsUnittest. Proai\h1n\Dehug\Un1ttest Proji.dll
Copying file from "ohjsDebugsUnittest.Projl.pdbh" to "bhin\DebugsUnittest.Proji.pdb".

2one Bullding Project "C:xInsideMS8Build~ChB7wunittestsUnittest.Proji~xUnittest.Projl. CSDPOJ" (defau

t targetsd.

UnitTest:
- Contrib~NUnit 2.5.7~binwnet— 2 Bwnunit—console.exe /nologo G:x\InsideMSBuild~ChA7~unittest:Unit
test.ProjisUnittest.Projl.csproj
ProcessModel: Default DomainlUsage: Default
Execution Runtime: Default
Tests run: 3. Evrors: B, Failures: 1. Inconclusive: @, Time: B.@7%8845 seconds
Mot vun: B. Invalid: B, Ignored: B, Skipped: @

Errors and Failures:
1> Test Failuwe := Unittest.Projl.TestOperators.TestDivide

expected:=<{6>
but was:<{5>

at Unittest._Projl_TestOperators_TestDivide(> in c:“\IngideMSBuild\ChB?\unittest \Unittest . ProjisTe
stOperators.cs:line

Done Building Project "C::\InsideMS8Build“\ChBP\nunitExample_proj'" (UnitTest target{sd>> —— FAILED.
Build FAILED.

FIGURE 7-8 NUnitExample.proj failing result

| have created a reusable targets file, nunit.targets, which can be used across products.
I will show portions of the file in this chapter, but you can see it in its entirety in the sample
sources. The following snippet contains some key elements of this file.

<Target Name="ValidateNUnitSettings">
<!-- Validate assumptions that are contracted -->

<Error Condition="'$(NUnitOutputDir)'=="""
Text="NUnitOutputDir property not defined" />
<Error Condition="'@(NUnitAssemblies)'=="""
Text="NUnitAssemblies not defined" />
<Error Condition=""'%(NUnitAssemblies.ProjectName) '==
Text="Atleast 1 item in NuitAssemblies doesn't have metadata 'ProjectName' defined." />
<Error Condition="!Exists('%(NUnitAssemblies.FullPath)')"
Text="Couldn't Tocate assembly at: %(NUnitAssemblies.FullPath)" />

Chapter 7 External Tools 211

<Error Condition="
lExists('$(GenericBuildRoot)Contrib\NUnit 2.5.7\bin\net-2.0\nunit-console.exe')"
Text="Couldn't locate nunit-console.exe at:
$(GenericBuildRoot)Contrib\NUnit 2.5.7\bin\net-2.0\nunit-console.exe"/>
</Target>

<PropertyGroup>
<!-- Declare target dependencies here -->
<UnitTestDependsOn>
$(UnitTestDependsOn);
BeforeUnitTest;
ValidateNUnitSettings;
UnitTestCore;
DetectNUnitFailures;
ReportNUnitFailures;
AfterUnitTest;
</UnitTestDependsOn>
<UnitTestCleanDependsOn>
$(UnitTestCleanDependsOn) ;
BeforeUnitTestClean;
CoreUnitTestClean;
AfterUnitTestClean;
</UnitTestCleanDependsOn>
</PropertyGroup>

<Target Name="UnitTest"
Inputs="%(NUnitAssemblies.Identity)"
Outputs="@(NUnitAssemblies->"'$(NUnitOutputDir)%(ProjectName) .UNITTEST.xm1"')"
DependsOnTargets="$(UnitTestDependsOn)" />

<Target Name="UnitTestCore" Outputs="%(NUnitAssemblies.Identity)">
<Message Text="Start UnitTest for @(NUnitAssemblies->'%(Fullpath)')" />

<MakeDir Condition="!Exists('$(NUnitOutputDir)')"
Directories="$(NUnitOutputDir)" />

<Message
Condition=""$(GenBuildDebugMode) '=="true'"
Text="Calling NUnit on:%0a%0d@(NunitAssemblies, '%0a%0d')" />

<PropertyGroup>
<NUnitContinueOnError
Condition=""$(NUnitContinueOnError)'==""">true</NUnitContinueOnError>
</PropertyGroup>
<!--
Don't rely on NUnit stopping build on failed unit test, we have more work afterwards

-—>

<ItemGroup>
<_NUnitReportFiles
Include="@(NUnitAssemblies->"'$(NUnitOutputDir)%(ProjectName).unittest.xm1')" />
</ItemGroup>
</Target>

212

Part Il Advanced MSBuild Topics

<Target Name="CleanUnitTest"
DependsOnTargets="$(UnitTestCleanDependsOn)" />
<Target Name="CoreUnitTestClean">
<MakeDir Directories="$(NUnitOutputDir)"
Condition="!Exists('$(NUnitOutputDir)')" />
<ItemGroup>
<_0T1dNUnitResultFiles IncTude="$(NUnitOutputDir)***.unittest.xml" />
<_01dNUnitResultFiles Include="$(NUnitOutputDir)***.FAILED.xm1" />
</ItemGroup>

<Delete Files="@(_OTdNUnitResultFiles)" />
</Target>

You can see the contract defined, in MSBuild terms, inside the ValidateNUnitSettings target.
This target will be executed before the UnitTest target gets executed; this is because it is
contained in the value of the UnitTestDependsOn property. Inside this target, there are five
error statements, each with conditional statements. These conditions define the contract that
this file defines. If any of these erroneous conditions is detected, then the execution will fail.
The following list describes the details of the contract that are asserted in that target.

A property named NUnitOutputDir is defined and not empty.
An item called NUnitAssembilies is defined.
Each item value in NUnitAssemblies contains a value for ProjectName metadata.

Each file in NUnitAssemblies exists on disk.

i & W N

The nunit-console.exe file exists in the expected folder.

By using this contract, we have defined how a calling project file will feed data into this file.
In return, this file will provide the core behavior required to execute the NUnit test cases
contained in the provided assemblies. You should note that when declaring a condition such
as Condition= "'$(NUnitContinueOnError)'=="'"", you should always wrap each term
in quotes. If you do not, you may run into situations where the condition may not evaluate as
expected. Now we can see how the other requirements for reusable targets files are achieved
in this sample.

All the requirements for using the nunit.targets file are contained in the validation target
shown previously. One of the requirements is that a list of assemblies be provided for

which NUnit will be executed with. If you were authoring this file, you might be tempted to
inject the UnitTest target directly into the BuildDependsOn property. This would make the
assumption that the file was being consumed by a typical managed project file and would be
a violation of the first rule outlined. The calling MSBuild file is entirely responsible for injecting
the UnitTest target into its build, not the other way around. Also, your targets files, which

are made publically available, should not override or even assume the existence of targets
provided in Microsoft.Common.targets such as BeforeBuild, BeforeCompile, and so on.

Chapter 7 External Tools 213

How does this targets file meet the requirements for transparency and extensibility? That

is achieved through the use of dependency properties, namely UnitTestDependsOn and
UnitTestCleanDependsOn. These properties are used to define the set of steps to be executed
in order for their corresponding targets to be executed. For example, the UnitTest target
declares its dependency list as DependsOnTargets=$(UnitTestDependsOn). By using these,
we externalize the steps required to execute the UnitTest and CleanUnitTest targets. Now that
we've discussed how this targets file meets the requirements laid out previously, we can now
examine how to use it.

Now that we've created a reusable targets file for invoking NUnit, we'll see how this can be
utilized by calling MSBuild scripts. The following file, UnittestBuild.proj, demonstrates the
usage of this file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Build">
<PropertyGroup>
<SourceRoot>$(MSBuildProjectDirectory)\</SourceRoot>
<UnitTestRoot>$(SourceRoot)unittest\</UnitTestRoot>
<0OutDirName>bin\</0utDirName>
<Configuration>Debug</Configuration>
<NUnitOutputDir>$(SourceRoot)BuildTemp\</NUnitOutputDir>
<GenericBuildRoot>$(SourceRoot)\..\</GenericBuildRoot>
</PropertyGroup>

<ItemGroup>
<UnitTestProjects
Include="$(UnitTestRoot)Unittest.Projl\Unittest.Projl.csproj">
<ProjectName>Unittest.Projl</ProjectName>
</UnitTestProjects>
<UnitTestProjects
Include="$(UnitTestRoot)Unittest.Proj2\Unittest.Proj2.csproj">
<ProjectName>Unittest.Proj2</ProjectName>
</UnitTestProjects>
</ItemGroup>

<PropertyGroup>
<BuildDependsOn>
$(BuildDependsOn) ;
Clean;
CoreBuild;
UnitTest
</BuildDependsOn>
</PropertyGroup>
<Target Name="Build" DependsOnTargets="$(BuildDependsOn)" />
<Target Name="Clean'">
<MSBuild Projects="@(UnitTestProjects)" Targets="Clean" />
</Target>
<Target Name="CoreBuild">

214 Part Il Advanced MSBuild Topics

<!--
Build the NUnit assemblies & put the
assemblies in the NUnitAssemblies Item -->

<MSBuild Projects="@(UnitTestProjects)">
<Output ItemName="NUnitAssemblies"

TaskParameter="TargetOutputs" />
</MSBuild>
</Target>

<PropertyGroup>
<RebuiTldDependsOn>
$(RebuildDependsOn);
Clean;
Build
</RebuildDependsOn>
</PropertyGroup>
<Target Name="Rebuild"
DependsOnTargets="$(RebuildDependsOn)" />
<Import
Project="nunit.targets" />

<PropertyGroup>
<UnitTestDependsOn>
CustomBeforeUnitTest;
$(UnitTestDependsOn);
</UnitTestDependsOn>
</PropertyGroup>

<Target Name="CustomBeforeUnitTest">
<Message Text="NUnitAssemblies:%0a%0d@(NUnitAssemblies, '%0a%0d"')"
Importance="high" />
</Target>
</Project>

In this example, we have created a sample build file that builds a couple of projects and then
sends the resulting assemblies to the NUnit task. I've made bold the text where | declare the
UnitTestProjects item, which contains the projects that we are testing. Following that, you
can see that the UnitTest target is placed into the BuildDependsOn list after the projects

are to be built. Inside the CoreBuild target, the NUnitAssemblies item is created using the
TargetOutputs of the MSBuild task, which is used to build the projects. Also, you can see that
we inject the CustomBeforeUnitTest target into the list of targets required to execute before
the UnitTest target. You should note that this must be defined after the Import statement
for the nunit.targets file. If you build this project file, the result will be what is shown in
Figure 7-9; only a portion of the result is shown here to conserve space.

The test cases in both projects were executed successfully. Since all the test cases

passed, the build was allowed to continue. Also, you can see that CustomBeforeUnitTest
was successfully injected into the build process at the appropriate time. Now we have
demonstrated how we can integrate NUnit into the build process in a reusable means, we'll
move on to discuss FxCop.

Chapter 7 External Tools 215

CustomBeforelnitTest:
MUnitAssemblies:
GC:nInsideMSBuild~Ch@7~unittest~Unittest.ProjishinsDebugslUnittest .Projl.dll
C:5\IngideMEBuild\ChB?unittest Unittest _ Proj2:\bin‘\Debug\Unittest .Proj2 _dll
UnitTestCore:
Start UnitTest for C:\InsideMSBuild \ChBP\unittests\Unittest.ProjisbinsDebugiUnittest . Proji.dll
C:InsideM8Build~ChB7~~. .~\ContribsHUnit 2.5.7bin“net—-2.@8%nunit—console.exe ~nologo C:\InsideMSH
wild~Ch@?sunittestsUnittest ProjishinsDebugsUnittest_Projl.dll /xml=C::\InzideMSBuild~Ch@7~BuildT
enpsUnittest.Projl.unittest.xml
ProcessModel: Default DomainlUsage: Single
Execution Runtime: Default

Tests run: 2. Errors: B, Failures: @, Inconclusive: B, Time: B.8620835 seconds
Not vun: B, Invalid: @A, Ignored: @A, Skipped: @
UnitTestCore:
Start UnitTest for C:.\InsideMSBuild\ChB7“unittest\Unittest.Proj2sbin“\DebugsUnittest.Proj2.d11
C:nIngideMSBuilds\Ch@7 . . ~Contrib“NUnit 2_.5_7“hin“net—-2_@“nunit—-console.exe snologo C:“\InzideMSB
wild~Ch@?~unittestsUnittest.Proj2shinsDebugilUnittest.Proj2.d1ll /xml=C:\InsideMSBuild~Ch@7~BuildT
emp~Unittest.Proj2.unittest.xml
ProcessModel: Default DomainlUsage: Single
Execution Runtime: Default

Tests vrun: 1. Errors: B. Failures: @. Inconclusive: @, Time: @.A5400831 seconds
Mot run: B, Invalid: 8. Ignored: B, Skipped:
DetectNUnitFailures:
Reading Xml Dncument "G:xIngideMSBuild~ChA7?~BuildTempr~Unittest.Projl.unittest.xml".
¥mlRead Result
“NiUnitFailures:
DetectNUnitFailures:
Reading Xml Dncument "G:xIngideMSBuild~ChA7?~BuildTemprxUnittest.Proj2 . .unittest.xml".
¥mlRead Result
“NUnitFailures:
UnitTest:
Skipping target “UnitTest" because all output files are up—to—date with respect to the input files

UnitTest:
Skipping target "UnitTest" because all output files are up-to—date with respect to the input files

Done Building Project "C:x\InsideMS8Build:\Ch@P\UnittestBuild.proj" (default targetsd.

Build succeeded.
A Yarning(s)
B Erroris>

FIGURE 7-9 UnittestBuild.proj result

FxCop

FxCop is a code analysis tool created by Microsoft, which can help identify potential
problem areas and can help enforce best practices. We will discuss how we can integrate
FxCop into the build process here. There also is an FxCop task, provided by the MSBuild
Extension Pack, which is similar to the NUnit task. We will use this task to execute the FxCop
tool against the binaries of our projects. In the following example, we will execute FxCop
against the Examples.Tasks and Example.Loggers project. Another related tool, which we will
not demonstrate here, is StyleCop. StyleCop is a source code analysis tool; it examines the
actual source files to ensure that styling guidelines are followed and to spot potential rule
violations.

Similar to integrating NUnit, a targets file, fxcop.targets, has been created to take care of
the heavy lifting for us. This file also has a validation target, ValidateFxCopSettings, which is
shown in the following snippet.

<Target Name="ValidateFxCopSettings" DependsOnTargets="SetupFxCopProperties">
<Error Condition="'@(FxCopAssemblies)'=="""
Text="%40(FxCopAssemblies) not defined"/>
<Error Condition="!Exists('%(FxCopAssemblies.Fullpath)')"
Text="Path not found (FxCopAssemblies): [%(FxCopAssemblies.Fullpath)]"/>

216 Part Il Advanced MSBuild Topics

<Error Condition=""$(FxCopContribRoot) '==
Text="%24(FxCopContribRoot) is not defined"/>

<Error Condition="!Exists($(FxCopContribRoot))"
Text="Path not found(FxCopContribRoot): [$(FxCopContribRoot)]"/>

<Error Condition="'$(FxCopOutputRoot)'=="""
Text="%24 (FxCopOutputRoot) is not defined"/>
<Error Condition="!Exists($(FxCopOutputRoot))"
Text="Path not found(FxCopOutputRoot): [$(FxCopOutputRoot)]"/>
</Target>

Based on this target, we can see what this file requires for successful integration. The file that
consumes the fxcop.targets file, FxCop_Examples.proj, is very similar to the one for the NUnit
example; it is shown next.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
DefaultTargets="Build">

<PropertyGroup>
<SourceRoot>$(MSBuildProjectDirectory)\</SourceRoot>
<ContribRoot>. .\Contrib\</ContribRoot>
<FxCopOutputRoot>$(SourceRoot)BuildTemp\FxCopTemp\</FxCopOutputRoot>
<Configuration>debug</Configuration>

</PropertyGroup>

<PropertyGroup>
<_TaskOutputRoot>$(SourceRoot) Examples.Tasks\</_TaskOutputRoot>
<_LoggerOutputRoot>$(SourceRoot) Examples.Loggers\</_LoggerOutputRoot>
</PropertyGroup>

<ItemGroup>
<FxCopProjects
Include="$(_TaskOutputRoot)Examples.Tasks.csproj">
<Outputs>$(_TaskOutputRoot)bin\$(Configuration)\Examples.Tasks.d11</Outputs>
</FxCopProjects>
<FxCopProjects
Include="$(_LoggerOutputRoot)Examples.Loggers.csproj">
<Outputs>$(_LoggerOutputRoot)bin\$(Configuration)\Examples.Loggers.d11</Outputs>
</FxCopProjects>

<FxCopAssembTlies Include="@(FxCopProjects->'%(Outputs)')" />
</ItemGroup>

<PropertyGroup>
<BuildDependsOn>
$(BuildDependsOn) ;
CoreBuild;
RunFxcop;
</BuildDependsOn>
<RebuiTldDependsOn>
Clean;
$(BuildDependsOn)
</RebuildDependsOn>
</PropertyGroup>
<Target Name="Rebuild" DependsOnTargets="$(RebuildDependsOn)"/>
<Target Name="Build" DependsOnTargets="$(BuildDependsOn)" />

Chapter 7

<Target Name="Clean">
<MSBuild Projects="@(FxCopProjects)" Targets="Clean" />
</Target>
<Target Name="CoreBuild"
Inputs="@(FxCopProjects)"
Outputs="@(FxCopAssemblies)'>
<MSBuild Projects="@(FxCopProjects)" />
</Target>

<PropertyGroup>
<CleanDependsOn>
$(CleanDependsOn) ;
CleanFxCop;
</CleanDependsOn>
</PropertyGroup>
<Target Name="Clean" DependsOnTargets="$(CleanDependsOn)">
<MSBuild Projects="@(FxCopProjects)" Targets="Clean" />
</Target>
<!-- Extension Pack required for fxcop.targets file -->
<PropertyGroup>

External Tools

<ExtensionTasksPath>$(MSBuildThisFileDirectory)\..\Contrib\ExtensionPack\4.0\

</ExtensionTasksPath>
</PropertyGroup>

<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>

<Import
Project="fxcop.targets"/>

<PropertyGroup>
<RunFxCopDependsOn>
$ (RunFxCopDependsOn) ;
CoreBuild;
CustomAfterFxCop
</RunFxCopDependsOn>
</PropertyGroup>

<Target Name="CustomAfterFxCop">
<Message Text="FxCop executed."
Importance="high" />
</Target>
</Project>

217

From the sample build script, you can see how easy it is to consume this targets file. In the

previous snippet, | have highlighted a few key areas, some of which we will discuss here.

Inside the CoreBuild target, the MSBuild task is used to build the projects. It is important to
note that the CoreBuild target declares values for both Inputs and Outputs. Because of this,

the target will support incremental building and will be executed only if it is out of date.
This is critical in large builds. Sometimes you may have to make changes to your build to

support this, but it is well worth it and is a best practice. The RunFxCop target is injected into
the build process by placing it into the list of targets to execute during a build by extending

the BuildDependsOn property. Along with this, the CustomAfterFxCop target is injected

into the list of targets that will be executed after the RunFxCop target executes. We can see

the results of building this script with the command msbuild.exe FxCop_Example.proj

/t:Buildin Figure 7-10.

218 Part Il Advanced MSBuild Topics

YT SUBLUY-TULL AT LIEALIYI-DLa AUPLLNLEE. /UL - U] SPEDUY SEAANPLES . LUYYEPS ULl / LdryEL - LLUFAFY WU
tomFileLogger.cs FileLoggerBase.cs HelloLogger.cs HelloLogger2.cs IndentFileLogger.cs Properties
“Assemblylnfo.ce SimpleFileLogger.cs XmlLogger.cs "C:xlUserssIbrahinmsAppDatasLocalsTenp~.NETFrame
work. Uersion=v4.B.AssemblyAttributes.cs’

_CopyOutOfDateSourceltemsToOutputDirectory:
Copying file from "C: \Ins1deHSBu11d\ChB7\Examples LoggerssSanplesslog4net . .nsbuild.xnl™ to “hin“D
ebugsSamplesslogdnet _meshuild . xml" .
CopyFilesToOutputDirectory:
Copying file from "ohjs\Debug“Examples _Loggers.dll" to “bin“Debug\Examples.Loggers._ d11".
Examples .Loggers —» G:isInsideMSBuild~Ch@7“Examples.Loggerssbin“Debug“Exanples.Loggers.dll
Copying file from "ohj\Debug“Examples .Loggersz.pdh" to "bin‘Debug\Examples.Loggers . pdh".
Done guilding Project "C:ixInsideMSBuildsCh@7“Examples.Loggers:Exanples.Loggers.csproj"” {(default ta
rgetsld .

CoreFxcop:

FxCop begin analysis on: G:\InsideMSBuild\ChA?Examples.Tasks\bin~debug“Exanples.Tasks.d1ll;C:~\In
=2ideM5Build~ChA7?“\Examples . Loggersshinsdebug“Exanples . Loggers.d11

. -~ContribsMicrosoft FxCop 1.36NFxcopcmd.exe ~d:"..\Contrib“MS8BuildConmunityTasks" /f:"C:\Inside
MSBuild“Chl@?“Examples .Tasksxhinsdebug:\Examples . Tasks .d11" /f:"C:\InzideMSBuild " ChA7“Examples.Log
gersshinsdebugsExamples . Loggers.d11" ~o:"C:NInsideMSBuild\ChB7BuildTenp“FxCopTenp~fxcopResult.x
ml'" so¥=zl:"._“Contrib“\Microsoft FxCop 1.36M\Eml\FxCopReport.xsl™ /p:"._“Contrib“Microsoft FxCop 1
-36~RulesslUsageRules .d11" ~/r:"..~ContribS\Microseft FxCop 1 36\Ru1es\3ecur1tyRu1es d11" sr:". .NCo
ntrib~Microsoft FxCop 1. 3E\Rules\Pnrtah111tyRules dll" sr:". . “Contrib \Microsoft FxCop 1 36\Rules

“PerformanceRules.d11" ~ -SContrib\Microsoft FxCop 1. 36\Rules\Hob111tyRules d11" SConty

ib“Microsoft FxCop 1. 36\Rules\lnteroperah111tyRules dll" /» SContribvMicrosoft FxCop 1 36%Rul

es“GlobalizationRules.d11" ~»:"..~Contrib“Microsoft FxCop 1. 36\Rules\DeslgnRules d11"
DetectFxCopError:

FxCop HTML Report File: C:-InsideMSBuild“Ch87BuildTemp“FxCopTenpsfxcopResult.xnl.htnl

Reading ¥ml Document "C:xInsideMS8Build~ChB?BuildTemp“\FxCopTenp“fxcopResult.xml"

#mlRead Result: 14"

Reading Xml Dncument "G:xIngideMSBuild~ChA7?*BuildTemp FxCopTenp:fxcopResult .xml".

¥mlRead Result: "G56"

Reading Xml Dncument "G:xIngideMSBuild~ChA7?~BuildTemp FxCopTenp>fxcopResult .xml".

#mlRead Result: “'@"

FXCDDCPlthalEPPDPS- 14

FxCopErrors: 56

FxCopCriticalWarnings: A
C:\InsideMSBuild“\ChB?\fxcop. targets(121 53: error : FxCopCriticalErrors detected. count: 14 [C:N\In
2ideMSBuild~ChA7~FxCop_Examples.projl
Done Building Project “'C: \Ins1deHSBu11d\ChB7\FxCDp_Examples proj"” (Build target{(s>> —— FAILED.
Build FAILED.
"C:\InsideMSBuild\ChB?“FxCop_Examples.proj" <(Build target> {1> —>
(DetectFxCopError targetd —>

C:nInsideMSBuild~\ChA?“fxcop.targets{121.5%: error : FxCopCriticalErrors detected. count: 14 [C:%
InzideM8Build \ChB@?FxCop_Examples.projl

A Warning(s)
1 Error<s?>

FIGURE 7-10 RunFxCop result

There were a few FxCop errors detected during the build process; because of this,

the build itself was stopped, as expected. We never have an opportunity to see if the
CustomAfterFxCop target executes; therefore, it is not displayed in Figure 7-10. From the
results shown, you can also see that the full path to the FxCop HTML report is passed for
developers to use in order to help fix all the FxCop-related errors.

Now that we have seen how to use the fxcop.targets file, we can take a closer look at the file
itself. The full source is delivered along with the other examples for this book. For this book,

we will discuss some of the contents of that file here. In the next snippet, you will find the list
of targets that make up the dependencies for the RunFxCop target.

<PropertyGroup>
<RunFxCopDependsOn>
SetupFxCopProperties;
CopySourceFiles;
ValidateFxCopSettings;
BeforeFxCop;
CoreFxCop;
DetectFxCopError;
AfterFxcop
</RunFxCopDependsOn>
</PropertyGroup>

Chapter 7 External Tools 219

The two most important targets from the previous list are ValidateFxCopSettings and
CoreFxCop, which are shown in bold in the code. The validate target declares the contract for
consumers and ensures that it is adhered to, and the CoreFxCop target executes FxCop on
the input specified. We have already seen the definition for the ValidateFxCopSettings target;
in the following snippet, we will see the CoreFxCop target.

<Target Name="CoreFxcop"
Inputs="@(FxCopAssemblies)"
Outputs="$(FxCopReportFile)">
<Message Text="FxCop begin analysis on: @(FxCopAssemblies)"
Importance="high"/>
<Message Text="FxCopReportFile: $(FxCopReportFile)"
Importance="low"/>

<MSBuild.ExtensionPack.CodeQuality.FxCop
TaskAction="Analyse"
Files="@(FxCopAssemblies)"

ShowSummary="true"
FxCopPath="$(MSBuildThisFileDirectory)\..\Contrib\Microsoft FxCop 1.36\FxCopCmd.exe"
OutputFile="$(FxCopReportFile)" />

<ItemGroup>
<_FxCopReportFileItem Include="$(FxCopReportFile)"/>
</ItemGroup>
<PropertyGroup>
<_FxCopHtm1ReportFile>@(_FxCopReportFileltem->'%(Fullpath).html')</_FxCopHtmlReportFile>
</PropertyGroup>

<!-- Create human friendly version -->

<Xs1Transformation
Xm1InputPaths="$(FxCopReportFile)"
Xs1InputPath="$(FxCopTransformFile)"
OutputPaths="$(_FxCopHtmIReportFile)" />

</Target>

This target invokes the FxCop task with the provided values. This invocation results in an XML
file being written that contains the results of the analysis. This file is used later in the build
process to detect FxCop failures. After the FxCop target completes executing, that same

XML file is fed into the XslTransformation task, which is provided with MSBuild, to create

a human-readable version of the FxCop report. Similar to the CoreBuild target shown earlier,
the CoreFxCop target defines values for Inputs and Outputs; this will allow the target to be
skipped if all FxCopAssemblies are older than the FxCopReportFile file. The remaining aspects
of this file are specific implementation details and will not be discussed here.

In this chapter, we have discussed a few different ways that you can invoke tools external
to your build process. We have also discussed how you can create reusable build elements
for build processes that will be repeated from project to project. This chapter concludes
our coverage of MSBuild in this fashion. The next two chapters will take a cookbook-style
approach to delivering material.

Part IV

MSBuild Cookbook

In this part:
Chapter 8: Practical Applications, Part1............, 223
Chapter 9: Practical Applications, Part 2......... it 245

221

Download from Wow! eBook <www.wowebook.com>

Chapter 8
Practical Applications, Part 1

In the previous chapters, we have presented the material that you will need to extend

and customize your build process. Stating how to do something and giving an example

of doing it are two entirely different things. In order to provide the most benefit, this chapter
and the next one are dedicated to providing practical examples that can be used in your
build process. In this chapter, we will discuss examples such as setting an assembly version,
handling errors, extending the clean process, and a few more.

Setting the Assembly Version

A common scenario when building projects is the need to set the version information for
an assembly. You can easily accomplish this with the MSBuild Extension Pack (http.//
msbuildextensionpack.codeplex.com/). When you download and install the extension pack,
it installs all the files into the $(MSBuildExtensionsPath)\ExtensionPack folder. Those files
include MSBuild.ExtensionPack.VersionNumber.targets, which you will need to import into
your project to help you set the version information. If you are using version control, then
| suggest that you place the files under version control so that all of your developers do
not have to install the extension pack. In my sample, you will see how to set the version
information as if the files were under version control.

After you've downloaded and installed the extension pack, you can copy the files under the
ExtensionPack to a folder with a known location relative to the project for which you want
to set the version. In my example, | created a sample WPF application, WpfApplicationl, and
placed the files inside a Contrib folder at the same level as the projects folder. Then | edited
the project file, WpfApplicationl.csproj, to include the following snippet after the Import for
Microsoft.CSharp.targets.

<PropertyGroup>
<ExtensionTasksPath>..\Contrib\ExtensionPack\4.0\</ExtensionTasksPath>
</PropertyGroup>

<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.VersionNumber.targets"
Condition=" '$(BuildingInsideVisualStudio)'!="'true' " />

<PropertyGroup Condition=" '$(BuildingInsideVisualStudio)'!="true' ">
<AssemblyMajorVersion>2</AssemblyMajorVersion>
<AssemblyMinorVersion>5</AssemblyMinorVersion>
<AssembTyFileMajorVersion>2</AssemblyFileMajorVersion>
<AssemblyFileMinorVersion>5</AssemblyFileMinorVersion>
<AssemblyInfoSpec>Properties\AssemblyInfo.cs</AssemblyInfoSpec>
</PropertyGroup>

223

224

Part IV MSBuild Cookbook

First, | declare the ExtensionTasksPath property, which is required if you want to use the
MSBuild Extension Pack from a location other than the MSBuildExtensionsPath. After that,

I import the MSBuild.ExtensionPack VersionNumber.targets file. This is the targets file that
knows how to edit the AssemblyInfo.cs file to inject the correct version information. All we
have to do is to declare some properties and it will take care of the rest for us. You can read
that file for a full list of properties that it supports, but | have shown a few of them in the
previous snippet. The properties that | set include the following: AssemblyMajorVersion,
AssemblyMinorVersion, AssemblyFileMajorVersion, AssemblyFileMinorVersion, and
AssemblyInfoSpec. The first two properties correspond to the first two numbers

of AssemblyVersion, and the next two relate to the first two values for AssemblyFileVersion.
The last property identifies where the Assemblylnfo.cs file can be found.

Also, you may notice that | have placed a condition on the import for the version

number targets file as well as the property group containing those properties, Condition="
'$(BuildingInsideVisualStudio)'!="true"' ".By including this property, we will not run
this task while the developers are building inside Microsoft Visual Studio. So when we run our
builds from a command line, through Team Build, or any other Continuous Integration (Cl)
tool, the versioning task will be executed. Now all we have to do is build the project, and the
version information will be taken care of for us. When | built the WpfApplicationl project and
attached a FileLogger, the following statement was contained in the log.

Target "UpdateAssemblyInfoFiles" in file "C:\InsideMSBuild\Ch08\SetAssemblyVersion\Contrib\
ExtensionPack\4.0\
MSBuild.ExtensionPack.VersionNumber.targets" from project "C:\InsideMSBuild\Ch08\
SetAssembTlyVersion\WpfApplicationl
\WpfApplicationl.csproj" (target "CoreCompile" depends on it):
Building target "UpdateAssemblyInfoFiles" completely.
Output file "obj\x86\Debug\WpfApplicationl.exe" does not exist.
Using "AssemblyInfo" task from assembly "C:\InsideMSBuild\Ch08\SetAssemblyVersion\Contrib\
ExtensionPack\
4,0\MSBuild.ExtensionPack.d11".
Task "AssemblyInfo"
Updating assembly info for Properties\AssemblyInfo.cs
Updating major version to 2
Updating minor version to 5
Update method 1is DateString
Updating build number to 0912
Update method is AutoIncrement
Updating revision number to 01
Final assembly version is 2.5.0912.01
Updating major version to 2
Updating minor version to 5
Update method 1is DateString
Updating build number to 0912
Update method is AutoIncrement
Updating revision number to 01
Final assembly version is 2.5.0912.01
Done executing task "AssemblyInfo".

Chapter 8 Practical Applications, Part 1 225

From the log statement, you can see that the version properties were set twice, once for the
assembly version and again for the file version. If you examined the assembly, you would

see that these properties were indeed set as reported. In this example, | did not override any
other properties that could be set by the task, but there are many others. Take a look at the
documentation provided along with the download for more information regarding its usage.

We will revisit this in another example that shows how to set the version properties for more
than one project file to the same value. The drawback of using this task is that it modifies

a source file, which is a bad practice. One reason is because the source file must be checked
out in order to build. A better solution would be to remove the assembly attributes from
the AssemblyInfo.cs file and instead have a task that would be executed before the Compile
target. This task would then create a new file, in the intermediate folder, that contains the
attributes for the assembly and is appended to the Compile item list. Then the file should

be appended to the FileWrites list so it can be removed on a clean. For more specific
information regarding cleaning, see the example in the section entitled “Extending the
Clean,” later in this chapter.

Building Multiple Projects

When you are working in a team environment, you will typically want a little more control
when building your applications than just building the solution. For example, many
applications are now using generated code, running code analysis tools, executing test cases,
and so on. When you need to create a build process, there are typically two approaches that
you can take:

B Write a build file that builds the solution
B Create a build file that builds the projects individually

The main difference between the two is that when you build a solution file, you don’t have
control over what happens as the solution builds each individual project. You can supplement
the solution’s build process by adding steps before and after the solution is built. If you don't
need this fine-grained control over the actual building, then | would suggest that you take
this approach. The obvious advantage of using the Solution file is that this is the file used by
Visual Studio. So when you use msbuild.exe on a solution file, you should get the exact same
build that you would within Visual Studio. The major drawback is that solution files are very
limited; for example, you cannot change the build process, and solution files can't be nested.
In this section, we will demonstrate both techniques.

We have discussed the MSBuild task (the one that builds MSBuild projects) in the previous
chapter. We will need to utilize this task in order to build the solution and projects. There
have been some enhancements to the MSBuild task in version 3.5. The MSBuild task is able
to process properties contained in an item’s metadata instead of just accepting values as the

226

Part IV MSBuild Cookbook

Properties input parameter. The following list presents three ways to pass properties into the
MSBuild task.

1. Asvalues in the Properties parameter of the MSBuild task
2. Item metadata named Properties
3. Item metadata named AdditionalProperties

The second option will always take precedence over the first, if both are supplied, so use only
one or the other. The third option, however, can be used in conjunction with either the first
or the second. Effectively, if a Properties metadata value is found on a project file passed to
the MSBuild task, then any properties contained in the Properties input parameter on the
MSBuild task itself will be ignored. The third option is always appended to either value from
the first two options. Take a look at the contents of the following MSBuildTaskProperties.proj
file.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Build">

<PropertyGroup>
<ExternalProjectFile>External.proj</ExternalProjectFile>
</PropertyGroup>

<ItemGroup>
<!-- No values for Properties or AdditionalProperties -->
<Projects Include="$(ExternalProjectFile)" />

<!-- Only values for Properties -->
<Projects Include="$(ExternalProjectFile)">
<Properties>
Name=0ne;
Source=PropertiesMD;
</Properties>
</Projects>

<!-- 0Only values for AdditionalProperties -->
<Projects Include="$(ExternalProjectFile)">
<AdditionalProperties>
Name=Two;
Source=AdditionalPropertiesMD;
</AdditionalProperties>
</Projects>

<!-- Values for both Properties and AdditionalProperties -->
<Projects Include="$(ExternalProjectFile)">
<Properties>
Name=Three;
Source=PropertiesMD;
</Properties>
<AdditionalProperties>
Name=Three;

Chapter 8 Practical Applications, Part 1 227

Source=AdditionalPropertiesMD;
</AdditionalProperties>
</Projects>
</ItemGroup>

<Target Name="Build">
<!-- Execute the PrintInfo target for all projects in Projects -->
<MSBuild Properties="Name=propertiesMSBuildTask"
Projects="@(Projects)"
Targets="PrintInfo"
/>
</Target>

</Project>

This project will call the Printinfo target of the External.proj file. This file is shown in the next
snippet.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Build">

<PropertyGroup>
<!-- Defaults here -->
<Name>none</Name>
<Source>none</Source>
</PropertyGroup>

<Target Name="PrintInfo">
<!-- Prints the values of the Name & Source properties -->
<Message Text="Name: $(Name)"/>
<Message Text="Source: $(Source)"/>
</Target>
</Project>

Toward the top of the External.proj project file, two properties are declared, Name and
Source. We will be overriding these values, but default values were provided in the case that
they were not overridden. The MSBuildTaskProperties.proj project file declares an item type,
Projects, which contains a list of projects to be built. All the item values point to the External
.proj file using the property ExternalProjectFile. If you look at how the Projects items are
declared, you will see that the four item declarations demonstrate four different ways that
values can be passed using the Properties and AdditionalProperties metadata. One item
contains no values for either, the second only values for Properties, the third only values for
AdditionalProperties, and the last has values for both. Inside the Build target, we use the
MSBuild task to execute the Printinfo target, which prints the value for the Name and Source
properties.

The output shown in Figure 8-1 demonstrates the difference between these three methods
of providing properties. From the results, you can see that values from both the Properties
and AdditionalProperties metadata values were used while building the projects.

228

Part IV MSBuild Cookbook

C:~InsideMSBuild~ChB8>mshuild MSBuildTaskProperties.proj ~t:Build ~nologo
Build started 9-12-2810 2:11:45 PM.
Project “C:\InsideMSBuild-ChB8-MEBuildTaskProperties.proj"” on node 1 (Build target(s)).
Project "C:“\IngideMSBuild~ChB8-\MSBuildTaskProperties proj" (1> iz building "C:\IngideMSBuild~ChB8-
External.proj" <2» on node 1 {PrintInfo target{sd>}).
PrintInfo:
Hame : propertiesMS5BuildTask
Source: none
Done Building Project "C:\InsideM8Build“ChBB“External.proj" (PrintInfo target{s>>.
Project "C:~InsideM8Build-~ChB8-MSBuildTaskProperties.proj"” <1> is building "C:~InsideMSBuild~ChB8&-
External_proj" ¢2:2> on node 1 (PrintInfo targetdsdd.
PrintInfo:
Mame = One
Source: PropertiesMD;
Done Building Project "C:xInsideMSBuild~ChB8“\External.proj" (PrintInfo target{s)>.
Project "C:xInzideMSBuild~ChBA8“\MEBuildTaskProperties . proj"” (1 is building “C:\InszideMSBuild~ChA8*
External.proj” (2:3> on node 1 (PrintInfo target{s)).
PrintInfo:
Hame: Two
Source: AdditionalPropertiesMD;
Done Building Project "C:\InsideM8Build“ChBB“External.proj" (PrintInfo target{s>>.
Project "C:~InsideM8Build~ChB8-MSBuildTaskProperties.proj"” <1> is building "C:~InsideMSBuild~ChB8&-
External_proj" (2:4> on node 1 {PrintInfo targetdsdd.
PrintInfo:
Mame : Three
Source: AdditionalPropertiesMD;
Done Building Project "C:xInsideMSBuild~ChB8“\External.proj" (PrintInfo target{s)>.

Done Building Project "C:xInsideMSBuild~ChBA8“MEBuildTaskProperties. proj"” (Build target(s)).

Build succeeded.
A Yarning(s)
B Errords?>

FIGURE 8-1 Build target results

| would suggest using the Properties metadata very carefully because when it is used, the
values for the Properties parameter on the MSBuild task are completely ignored. If you
mistakenly use this and you continue to pass properties directly into the MSBuild task, it
may be difficult to track down the cause of errors. Using AdditionalProperties is very safe.
When these values are present, they take precedence, but values passed directly into the
MSBuild task are allowed as well. After we discuss how we can build the projects using the
solution file, we will exercise these new behaviors when we build the projects individually.
The advantage of using the Properties metadata, or AdditionalProperties, is that you can
pass different sets of properties to different projects, whereas using the Properties attribute
always passes the same global properties to all projects specified in the MSBuild task.

We will start by looking at building a solution file from an MSBuild project using the
MSBuild task. One idea when creating a master build file is that you want to perform
steps before and after the build. In the next code block, you will find the contents of the
ExampleBuild_SIn.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="FullBuild">

<ItemGroup>
<!-- define all the configurations that we should build -->
<AT1Configurations Include="Debug" />
<AT1Configurations Include="Release" />

</ItemGroup>

<ItemGroup>
<SoTlutionToBuild Include="SampleSolution\SampleSolution.sIn" />
</ItemGroup>

Chapter 8 Practical Applications, Part 1 229

<PropertyGroup>
<Fu11BuildDependsOn>
$(Ful1BuildDependsOn) ;

BeforeBuild;

CoreBuild;

AfterBuild
</Ful1BuildDependsOn>
<Ful1RebuildDependsOn>

$(Ful1RebuildDependsOn) ;

Clean;

Ful1Build
</Ful1RebuildDependsOn>

</PropertyGroup>

<Target Name="FullBuild"
DependsOnTargets="$(Ful1BuildDependsOn)" />
<Target Name="BeforeBuild">

<!-- TODO: Get Tatest source from version control -->
<!-- TODO: Generate code -->
</Target>

<Target Name="AfterBuild">
<!-- TODO: Unit tests -->
<!-- TODO: Code Analysis -->
</Target>

<Target Name="CoreBuild">
<MSBuild
Projects="@(SolutionToBuild)"
BuildInParallel="true"
Properties="Configuration=%(Al1Configurations.Identity)" />
</Target>

<Target Name="FullRebuild"
DependsOnTargets="$(Ful1RebuildDependsOn)" />
<Target Name="Clean">
<!-- Clean for each configuration -->
<MSBuild
Projects="@(SolutionToBuild)"
BuildInParallel="true"
Properties="Configuration=%(Al1Configurations.Identity)"
Targets="Clean"
/>
</Target>

</Project>

This is the project that is used to build the solution file. In this file, the main target, FullBuild,
similar to the Microsoft.Common.targets Build target, performs no actions itself. It simply

sets up a set of dependent targets to be executed. This list of targets is contained in the
FullBuildDependsOn property. | have chosen to do this to make it easier to perform steps
before or after the build process. The actual build takes place in the CoreBuild target. In this
target, the MSBuild task is invoked on the SolutionToBuild item type. Also, you should note that
we are specifying the Properties="Configuration=%(Al11Configurations.Identity)" so
that the correct configuration value is passed to the project. By doing so, the MSBuild task will

230

Part IV MSBuild Cookbook

be invoked using task batching for all the values defined in the AllConfigurations item type. In
this case, we will build the solution in Debug and Release mode. If you execute the command
msbuild.exe ExampleBuild_S1n.proj, you will see that the solution was indeed built for
Debug and Release configuration values.

When you build the solution file, you don't have much control over the build process.

For example, if you need to set the assembly version by providing values for the
AssemblyFileMajorVersion, AssemblyMajorVersion, and other related properties, this cannot
be easily achieved because you cannot pass properties to individual projects to be used
during the build. In contrast, when building each project, this is easily achieved by using

the MSBuild task. In the next example, | will build the projects themselves while setting the
assembly file version for all projects. The next snippet shows the relevant changes to the
previous example. The full source can be found in the ExampleBuild_Projects.proj file.

<ItemGroup>
<!--
Properties and AdditionalProperties metadata are automatically
passed when using the MSBuild task.
If Properties metadata exists it takes precedence over and REPLACES
any value for Properties provided to the MSBuild task itself.
-—>
<ProjectsToBuild Include="SampleSolution\ClassLibraryl\ClassLibraryl.csproj">
<AdditionalProperties>
AssemblyFileMajorVersion=2;AssemblyMajorVersion=2;
AssemblyFileMinorVersion=6;AssemblyMinorVersion=6
</AdditionalProperties>
</ProjectsToBuild>
<ProjectsToBuild Include="SampleSolution\ClassLibrary2\ClassLibrary2.csproj">
<AdditionalProperties>
AssemblyFileMajorVersion=2;AssemblyMajorVersion=2;
AssemblyFileMinorVersion=6;AssemblyMinorVersion=6
</AdditionalProperties>
</ProjectsToBuild>
<ProjectsToBuild Include="SampleSolution\WpfApplicationl\WpfApplicationl.csproj">
<AdditionalProperties>
AssemblyFileMajorVersion=3;AssemblyMajorVersion=3;
AssemblyFileMinorVersion=91;AssemblyMinorVersion=91
</AdditionalProperties>
</ProjectsToBuild>
<ProjectsToBuild Include="SampleSolution\WindowsFormsApplicationl\
WindowsFormsApplicationl.csproj">
<AdditionalProperties>
AssemblyFileMajorVersion=3;AssemblyMajorVersion=3;
AssemblyFileMinorVersion=91;AssemblyMinorVersion=91
</AdditionalProperties>
</ProjectsToBuild>
<ProjectsToBuild Include="SampleSolution\unittest\Unittest.Projl\Unittest.Projl.csproj">
</ProjectsToBuild>
<ProjectsToBuild Include="SampleSolution\unittest\Unittest.Proj2\Unittest.Proj2.csproj">
</ProjectsToBuild>
</ItemGroup>
<Target Name="CoreBuild">

Chapter 8 Practical Applications, Part 1 231

<MSBuiTd
Projects="@(ProjectsToBuild)"
BuildInParallel="true"
Properties="Configuration=%(Al1Configurations.Identity)"
/>
</Target>

<Target Name="Clean">
<!-- Clean for each configuration -->
<MSBuiTd
Projects="@(ProjectsToBuild)"
BuildInParallel="true"
Properties="Configuration=%(Al1Configurations.Identity)"
Targets="Clean" />
</Target>

In this example, instead of using the SolutionToBuild item, a new item, ProjectsToBuild, is
declared. (Note that these names are arbitrary—you could have named them whatever you
wanted.) This item contains the list of projects that should be built. If you take a look at the
declaration, you will notice that an AdditionalProperties metadata value is defined for some
of the item values. As previously mentioned, if an item that you are passing to the MSBuild
task contains metadata values for either Properties or AdditionalProperties, then these will be
used as properties while building the project. This is a feature that has been available since
MSBuild 3.5. To achieve the same with MSBuild 2.0, you would have to build each project
individually and pass the properties in the Properties attribute. When using MSBuild 3.5 or
later, one major drawback (besides usability) of this approach is that you would not be able
to take advantage of building in parallel. In order for the MSBuild to build projects in parallel,
all the projects must be passed into a single instance of the MSBuild task. MSBuild is not able
to parallelize multiple declarations of the MSBuild task. Also, to take advantage of parallel
build, you would need to specify that the property BuildIinParallel be set to true, as well as
invoking msbuild.exe with the /m switch.

The properties defined here for a few of the ProjectsToBuild item values determine what the
major and minor version values should be. If you recall from the sample shown in the section
entitled “Setting the Assembly Version,” earlier in this chapter, these are properties that will be
used by the Assemblylnfo task to set the assembly and file version of the created assembly.
The command msbuild ExampleBuild_Projects.proj /t:FullBuild can be used to build
all of the projects. The assemblies with version information also would be correctly stamped
with the expected version numbers. | will not display the log here because of its size.

Attaching Multiple File Loggers

We have discussed creating and using loggers in detail in Chapter 5, “Custom Loggers.” We
mentioned that you could attach several instances of the file logger to the build process by
using the notation /1 [n], where [n] is an optional value in the range 1-9. If you use the

switch /f1p[n] without a corresponding /f1[n], then the corresponding /f1[n] is implied

232

Part IV MSBuild Cookbook

and can be omitted. In that chapter, we didn't expand on why you would want to do this, but
we will here. When a developer is kicking off a build process, a good set of loggers to have
attached is outlined in Table 8-1.

TABLE 8-1 Loggers to Attach to a Typical Build

Type Setting

ConsoleLogger Verbosity = minimal and display summary
FileLogger Verbosity = detailed

FileLogger errorsonly

FileLogger warningsonly

We purposefully turn down the verbosity of the console logger to show only the most
important log messages. This is because it is typically difficult to gain any insight on

a decent-sized build from the console logger, as well as for performance reasons. It is

much faster to write to a file and then to the console. Builds that write a lot of information
to the console take longer than those that do not. This reduced amount of information is
fine because we attach a file logger to capture the remaining information into a file, so if
needed, the results are always available there. Two other instances of the file logger are
suggested, one to capture errors and the other for warnings. This allows the developers

to be able to pinpoint specific information about errors and warnings, in order to clear
them out. To summarize, there are really two reasons to have logs: to see progress and to
diagnose problems. In order to see the progress, the build should log to the console as well
as have a low verbosity. In order to diagnose problems, the logs need to be written to a file
and have detailed information. Take a look at the command shown next, which builds the
WopfApplicationl project, under the SetAssemblyVersion folder, with the loggers described in
Table 8-1.

msbuild.exe /clp:verbosity=minimal /clp:summary
/f1p:verbosity=detailed;logfile=build.detailed.log
/flpl:errorsonly;logfile=build.errors.log
/f1p2:warningsonly;Togfile=build.warnings.Tlog

/m /p:BuildInParallel=true

WpfApplicationl.csproj /t:rebuild

In the command shown previously, we passed the appropriate parameters to the msbuild.exe
to attach the desired loggers. Along with this, we specified the /m switch as well as defined
the BuildInParallel value as true. Because of this, the projects will be built in parallel instead
of serially.

Creating a Logger Macro

Because you generally want to attach the same set of loggers to a build process, we need
a way to make it easier to attach all the loggers. One way that you might have guessed is
to create a batch file; another is to create a DOS macro to perform the same action. A DOS

Chapter 8 Practical Applications, Part 1 233

macro is one of the lesser-known features of the command prompt. You can create and
manage macros using the DOSKEY command.

We can create a parameterized macro that can automatically attach these loggers for us.
In this case, we would need to create a macro with the following command.

doskey build=msbuild.exe /clp:verbosity=minimal /clp:summary
/flp:verbosity=detailed;logfile=build.detailed.log
/f1pl:errorsonly;logfile=build.errors.log
/f1p2:warningsonly;Togfile=build.warnings.Tog

/m /p:BuildInParallel=true

$:‘:

The previous command will create a new macro named build that executes msbuild.exe,
which is assumed to be on the path, while attaching the loggers declared. You should take
note of the usage of the $* symbol. When you invoke a macro, the $* symbol will be replaced
with any text following the macro name on the command line. In our previous example, the
command would have been simplified to build WpfApplicationl.csproj /t:Rebuild.

In this case, the $* would have been replaced with the value ‘WpfApplicationl.csproj
/t:Rebuild. Once you create this macro, it is very easy to attach the same set of loggers

to each build that you perform. One drawback to using a macro, however, is that the macro
declaration lasts only for the duration of the command prompt. When the command prompt
closes, the macros created in it will no longer be available. You are able to save the macros to
a file using a command such as doskey /macros > FileName, where FileName is the name
of the file to store the macros in. When you start a new command prompt, you can load

the macros using the command doskey /macrofile = FileName. You could place this file
under source control and have developers load it when the command prompt is opened.

Custom Before/After Build Steps in the Build Lab

There are scenarios when you would like to execute a set of steps before or after a build
executes, but only on certain machines. On build machines, for example, you may want

to encrypt config files, or obfuscate your code every time a Visual Studio project is built.
The Microsoft.Common.targets file exposes this functionality. Inside that file, there are two
import statements, one at the very top and the other at the very end:

<Import Project="$(CustomBeforeMicrosoftCommonTargets)"
Condition="Exists('$(CustomBeforeMicrosoftCommonTargets)"')"/>

<Import Project="$(CustomAfterMicrosoftCommonTargets)"
Condition="Exists('$(CustomAfterMicrosoftCommonTargets)')"/>

These statements will import a file, if it exists, at the locations contained in the
CustomBeforeMicrosoftCommonTargets and CustomAfterMicrosoftCommonTargets
properties. The default values for these locations are %ProgramFiles32%\MSBuild\vNNNN\
Custom.Before.Microsoft.Common.targets and %ProgramFiles32%\MSBuild\vNNNN\Custom

234 Part IV MSBuild Cookbook

.After.Microsoft.Common.targets, where NNNN is the version of MSBuild being used, which
depends on your tools version. If you place an MSBuild file at either of those locations, it
will be picked up at the appropriate time. If you do create such files, keep in mind that they
will be processed by every build of a managed Visual Studio project that is executed on that
machine. Also, it is worth noting that because you can have only one of each of these files, it
is not typically useful to share various customizations.

Note With MSBuild 4.0, you can also place import files in %Program Files%\msbuild\4.0\
Microsoft.Common.targets\iImportBefore\ and %Program Files%\msbuild\4.0\Microsoft
.Common.targets\ImportAfter\, and the files will be automatically imported at the top
of the Microsoft.Common.targets file for those in ImportBefore, and at the bottom
of that file for ImportAfter. Unlike CustomBeforeMicrosoftCommonTargets and
CustomAfterMicrosoftCommonTargets, you cannot change the path, but you can include more
than one file. You will have to decide which method to use depending on your needs.

You can also override the CustomBeforeMicrosoftCommonTargets and
CustomAfterMicrosoftCommonTargets properties to point to other locations. When you
override these values, you should always provide the full path to the files. If you want the
override to be machine-wide, then you could create these as environment variables. For
a demonstration, | have created the following file, CustomAfter.proj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0">
<!--
Insert custom steps into the build process
-=>
<PropertyGroup>
<BuildDependsOn>
CustomBefore;
$(BuildDependsOn);
CustomAfter;
</BuildDependsOn>
</PropertyGroup>

<Target Name="CustomBefore">
<Message Text="Inside CustomBefore" Importance="high" />
</Target>
<Target Name="CustomAfter">
<Message Text="Inside CustomAfter" Importance="high" />
</Target>
</Project>

In this file, | extend the build process by injecting the CustomBefore and targets into
the build dependency list. From the C:\InsideMSBuild\Ch08\SetAssemblyVersion\
WopfApplicationl directory, the following command was executed:

msbuild WpfApplicationl.csproj /p:CustomAfterMicrosoftCommonTargets=C:\
InsideMSBuild\Ch08\CustomAfter.proj.

Chapter 8 Practical Applications, Part 1 235

The end of the build is shown in Figure 8-2.

rk_d11" rreference:"C:“Program Filesz (xB6>“Reference fAzszembhlies“Microzoft\Frameworks. NETFraneuvor
kw4 BProfilesGlient~System.Core.d1l"” sreference:"C:N\Program Files {(x86>\Reference Assemblies>H
icroszof txFrameworks _HNETFrameworkwuv4_Bv\ProfilesClient“\System_.Data.DataSetExtensions.d11" sreferen
ce:"C:“Program Files (xB&>-Reference fAssemblies“Microsoft“Frameworks.NETFraneworksw4. .8 Profile~C
lient“System_Data.d11" sreference:"C:“\Program Files (x86>“Reference Assemblies‘\Microsoft \Frameuwo
rk~.NETFrameworksw4.85Profile~Client~\System.dll"” rreference:"C:“\Program Files {(xB6>\Reference As
zemblies“Microsof t“Framework _ HNEIFrameworksu4_@\Profile:Client“System.Baml.d11" rreference:"C:\P
rogram Files (xB6>-Reference Assemhlies“Microsoft“Framework.NETFramneworksv4. B5Profile~Client“Sy
stem.¥ml_d11" rsreference:"C:“Program Files (x86)“Reference Aszsemblies\Microsoft \Framework- _ HNETFr
ameworkswd.B5\Profile~Client~\System.¥ml.Ling.d11"” rreference:"C:“\Program Files {(xB6>\Reference fs
zemblies“Microsof t“Frameworks _ HNETFrameworksuw4_BvProfilemClient‘\WindowsBase .d11" ~sdebug+ sdebug:f
ull Afilealign:512 Aoptimize— ~out:objsx865DebugsWpflpplicationl.exe /resource:objsx86sDebugsUpf
Applicationl.g.resources Sresource:obhjsx86°\DebugiWpfApplicationl .Properties . Resources . resources
starget:iwinexe App.xaml.cs MainWindow.xaml.cs Properties“AssemblyInfo.cs Properties‘Resources.De
zigner.cs PropertiessSettings.Designer.cs C:inInzideMS5Builds\ChB8“\SetAssemhlylersion WpfApplicatio
ni“objsx86~Debug~MainWindow.g.cs C:\InsideMSBuild\ChB8\SetfAssemblylersionWpfApplicationisobjsxB
6~Debug“App.g.cs “CixlUzerssIhrahim“AppDlatasLocalsTemps . METFramewvork, Uersion=v4_A,Profile=Client.
Assemblyfittributes.cs"

CopyFilesToOutputDirectory:
Copying file from "obhjsxB6DebugsHWpfApplicationl.exe" to "hinsDebug“\Wpfhpplicationl.exe".
UpfApplicationl -» C:\InsideMSBuild“\Ch#@8\SetAzsemhlylersion:WpfApplicationisbins\Debug UpfApplica
tionl.exe
Copying file from "objx86“Debug~WpfApplicationl.pdh" to "hin‘Debug WpfApplicationl.pdh".

CustomAfter:
Inside CustomfAfter

Done Building Project "C:“\InsideMSBuild“\ChB8\SetfAssemblylersion“\WpfApplicationisWpfApplicationl.cs

proj'" (default targets).

Build succeeded.
A Yarning(s)>
B Errvords>

FIGURE 8-2 External build customization demonstration

From Figure 8-2, you can see that the targets were successfully injected into

the build process and executed at the appropriate time. | chose to override the
CustomAfterMicrosoftCommonTargets property from the command line for this example
(because | don't want this to execute with every Visual Studio project build), but you could
have placed this file in the previously mentioned location to have it automatically executed.
If you do use this procedure, keep in mind that if you need to inject steps into the build
process using the technique shown here, you must do this in the After targets file, not

the Before targets file. If you override a property such as BuildDependsOn in a file that

is imported in the Before targets file, then it will be overridden by the value contained in
Microsoft.Common.targets itself.

Handling Errors

As you create project files, you may need to perform some custom steps in case an error
occurs. MSBuild has a specific element that can be used for this exact task: the OnError
element. If you use the OnError element, it must be the last element found inside the Target
element that contains it. If this is not the case, then the build will be stopped before any
target is executed. Some good examples of when you may want to use this are when you
want to free resources that may have been taken by a previous target, send an email alert
that the build has failed, create a work item to track the failed build, or undo checkout. The
VB.NET/C# build process uses this to run build events that are supposed to be executed

on compilation error. Team Build 2008 uses the OnError element in two places: in the
CallCompile and CoreTest targets. If an error occurs, then either the SetBuildBreakProperties
or SetTestBreakProperties target is called. Following this, the OnBuildBreak target is executed

236

Part IV MSBuild Cookbook

to create a failure work item that will be assigned to a team member. The OnError element
has a parameter called ExecuteTargets, which contains one or more targets that should be
executed if the target fails. If you specify more than one target, then the value should be

a semicolon-delimited list. Targets will be executed in the sequence that they are declared in
the ExecuteTargets list. In the file HandleErrors01.proj, we demonstrate using this element.
The contents of this file are shown in the following snippet.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Build">
<Target Name="Build">

<!--

This target simulates a target which fails.

-=>

<Error Text="An error occurred" />

<OnError ExecuteTargets="HandleErrors" />
</Target>

<Target Name="HandleErrors">

<Message Text="An error has occurred and the build will fail"
Importance="high" />

<!-- TODO: Email error details -->

<!-- TODO: Create a Work Item for fixing the build -->
</Target>
</Project>

This sample uses the OnError element in order to execute the HandleErrors target if an error
occurs during the Build target. The Build target uses the Error task to purposefully raise an
error during the target. Figure 8-3 contains the results of executing the Build target.

GC:~InsideM8Build~ChB8>mshuild HandleErrorsBli.proj ~t:Build ~nologo
Build started 9-12-2810 3:86:58 PM.
Project "C:~InsideM8Build-ChB8-HandleErrorsBl.proj" on node 1 (Build target<{s>>.
C:xInsideM8Build~ChB8*\HandleErrorsBl . proj(8. .53 error = fAn error occurred
HandleErrors:

An error has occurred and the build will fail
Done Building Project "C:“\InsideMSBuild-~ChB8-HandleErrorsBl.proj" <Build target<{s>»> —— FAILED.
Build FAILED.
"C:xInsideM8Build~ChA8~HandleErrors@dl .proj" (Build target> (1> -3
{Build target> —>

C:nInzideM5Builds\ChA8“HandleErrorz@Al . proj(8.5>: error : An error occurred

A Yarning(s)>
1 Errvordsl>

FIGURE 8-3 OnError demonstration

Figure 8-3 shows that the build failed, as expected, when the Error task was called, and the
HandleErrors target was called after this error occurred. In this case, | simply sent some text
to the log using the Message task, but your error handlers can be much more sophisticated.
If there are many instances of the OnError element, then they are handled in sequence,

one after the other. If an error occurs inside a target that is handling an error, then another

Chapter 8 Practical Applications, Part 1 237

error is logged and the build is stopped, unless that target has an OnError element. In that
case, the specified target or targets will be called. If any other targets were pending to be
executed by the OnError element, they are abandoned, and the build is simply stopped.

Replacing Values in Config Files

There will be many times that you will need to update an application’s configuration file at build
time. For example, you may need to update a connection string or the logging level. In order
to update the configuration, we can use a set of XML-related tasks that is available from the
MSBuild Extension Pack. You can find these at http.//msbuildextensionpack.codeplex.com/. In this
example, | am going to update the config file for the sample WpfApplicationl project, under
the UpdateConfig folder. The contents of the app.config file for that project are shown next.

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<appSettings>
<add key="helpUr1" value="http://www.sedodream.com" />
</appSettings>
</configuration>

In this configuration file, | would like to do two things: update the configuration appSettings
value and add a new setting that will contain an email address that can be used for help. We
will have to create a new target, UpdateConfig, to perform these modifications for us. We will
also need to inject this target into the build process by placing the following declaration after
the Import statement for Microsoft.CSharp.targets.

<PropertyGroup>
<ExtensionTasksPath>..\..\..\Contrib\ExtensionPack\4.0\</ExtensionTasksPath>
</PropertyGroup>

<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>

<PropertyGroup>
<BuildDependsOn Condition="'$(BuildingInsideVisualStudio)'!="true'">
$(BuildDependsOn) ;
UpdateConfig
</BuildDependsOn>
</PropertyGroup>

In this example, you can see that | import the MSBuild Extension Pack so that | can use

the XmlFile task that it contains to update the config file. After that, the Build target is
extended by appending the UpdateConfig target to its dependency list. Once again, the
condition '$(BuildingInsideVisualStudio)'!="true' is used to make sure that the
UpdateConfig target is not run while building inside Visual Studio. When we build the project
from the command line, the UpdateConfig target will be called after the project is built. We
introduced this technique in Chapter 3, “MSBuild Deep Dive, Part 2." This target is shown in
the following snippet.

Download from Wow! eBook <www.wowebook.com>

Part IV MSBuild Cookbook

<Target Name="UpdateConfig" DependsOnTargets="CoreBuild">

<!-- Create an item that points to the dest config file -->

<ItemGroup>
<_DestConfigFile

Include="@(AppConfigWithTargetPath->'$(0utDir)%(TargetPath)')"/>

</ItemGroup>

<PropertyGroup>
<_UpdateXPath>/configuration/appSettings/add[@key="helpUrl']</_UpdateXPath>
<_HelpEmailXPath>/configuration/appSettings/add[@key="helpEmail']</_HelpEmailXPath>
<_HelpEmail>sayed.hashimi@gmail.com</_HelpEmail>

</PropertyGroup>

<Message Text="Updating config file %(_DestConfigFile.FullPath)"

Importance="low"/>

<!-- Update existing element -->

<MSBuild.ExtensionPack.Xml.Xm1File
TaskAction="UpdateAttribute"
File="%(_DestConfigFile.FullPath)"
XPath="$(_UpdateXPath)"
Key="value"
Value="http://sedotech.com/help"/>

<!-- Insert a new 'add' element that has a 'key' attribute. -->
<MSBuild.ExtensionPack.Xml.XmlFiTe

TaskAction="AddElement"

File="%(_DestConfigFile.FullPath)"

XPath="/configuration/appSettings"

ETement="add"

Key="key"

Value="helpEmail" />

<!-- Add a 'value' attribute to the new 'add' element. -->

<MSBuild.ExtensionPack.Xml.XmlFiTe
TaskAction="AddAttribute"
File="%(_DestConfigFile.FullPath)"
XPath="$(_HelpEmailXPath)"
Key="value"
Value="$(_HelpEmail)"/>

</Target>

In this target, | used the AppConfigWithTargetPath item to resolve the full path to the
location where the configuration file was being placed after a build has been executed.
Specifically, the item'’s TargetPath metadata value is being used to pinpoint this location.
This item is declared in the Microsoft.Common.targets file. The location where the config file
is finally placed is captured in the _DestConfigFile item. This item, and a few properties that
are declared in this target, all start with an underscore. This is a convention that is used to
denote that the element being declared is internal and should not be referenced by others.
This convention is followed by all the targets files shipped by Microsoft.

The first notable action in the target is the usage of the XmlFile task. This task can be used to
perform modifications to an XML file, including AddAttribute, AddElement, RemoveAttribute,
RemoveElement, UpdateAttribute, and UpdateElement. The action will be decided with the

Chapter 8 Practical Applications, Part 1 239

value for TaskAction. You can use this task to update existing XML elements by setting the
value for an element or setting the value for an attribute. In this case, we want to modify the
helpUrl element <add key="helpUr1" value="http://internal.sedotech.com/help"/>
and place the correct URL into the value attribute. The XPath to locate this element, which is
contained in the _UpdateXPath property, is /configuration/appSettings/add
[@key="helpUr1']. This is passed to the XmlFile task into the XPath input parameter. For
more information about this task, see the MSBuild Extension Pack site.

Following this update, we need to insert a new element that contains an email address that
can be used for support. This setting should be placed in the helpEmail app setting. In order
to achieve this with the extension pack tasks, we first need to create a new XML element,
using the XmlFile task with the TaskAction set to AddElement, to contain the value, and then
update its value using the AddAttribute TaskAction value. After these steps are performed,
the process has been completed. The following config file results show the Debug
configuration.

<?xm1 version="1.0" encoding="utf-8"7>
<configuration>
<appSettings>
<add key="helpUr1" value="http://www.sedodream.com" />
<add key="helpEmail" value="sayed.hashimi@gmail.com" />
</appSettings>
</configuration>

From the resulting configuration file shown, we can see that we were able to successfully
make the needed modifications at build time. You can use a similar technique to assist

in automating your own modifications. Another technique for creating or modifying
configuration files is to perform an XSL transformation to generate them. You can use the
XsITransform task, which is shipped with MSBuild 4.0. This was briefly demonstrated in
Chapter 7, "External Tools,” when discussing FxCop.

Extending the Clean

Whenever you extend the build process to generate files, you must make sure that those files
get cleaned up when the clean process is executed. Two primary ways of performing this are:

B Appending to the FileWrites item list
B [njecting custom targets into the clean process

The Microsoft.Common.targets file maintains a list of files that needs to be removed when
the Clean target is executed; this list is the FileWrites list. It is written to disk in the base
intermediate output path (i.e., obj\Debug) as the ProjectFileName.FileListAbsolute

.txt file, where ProjectFileName is the name of the project file, including the extension. You
can add values to the FileWrites item list if you need files deleted that were generated by

240 Part IV MSBuild Cookbook

custom steps in your build process. You should never manually edit the ProjectFileName
.FileListAbsolute.txt file. Take a look at the segment from the ExtendClean\WpfExtendClean
.csproj file shown next.

<PropertyGroup>
<BuildDependsOn>
CustomBeforeBuild;
$(BuildDependsOn);
</BuildDependsOn>
</PropertyGroup>

<Target Name="CustomBeforeBuild">

<ItemGroup>
<_UserConfigFile Include="user.config" />
</ItemGroup>
<!-- Since this 1is before build, OutputPath directory may not yet exist -->
<MakeDir Directories="$(OutputPath)"/>
<!-- Copy user.config to OutputPath, if the user.config file exists -->

<Copy Condition="Exists('@(_UserConfigFile)')"
SourceFiles="@(_UserConfigFile)"
DestinationFiles="@(_UserConfigFile->'$(OutputPath)user.config')">
<Output ItemName="_CopiedUserFiles" TaskParameter="CopiedFiles"/>
</Copy>
<ItemGroup>
<FileWrites Include="@(_CopiedUserFiles)"/>
</ItemGroup>
</Target>

Here, we are extending the build process by injecting the CustomBeforeBuild target to be
executed before the Build target. The CustomBeforeBuild target is very straightforward: It
copies the user.config file, if it exists, to OutputPath. Following this, the file is appended to
the FileWrites item. Because of this, when a clean is executed, we would expect that this
file would be automatically deleted for us. The results of executing the command msbuild
WpfExtendClean.csproj /t:Build;Clean are shown in Figure 8-4.

CoreClean:
Deleting file '"G:~InsideMSBuild~ChB8-ExtendClean“WpfExtendCGlean“bin“\Debuguser.config".
Deleting file "C:%InsideM8Build~ChB8“ExtendClean WpfExtendClean:bin‘\Debug WpfExtendClean. exe".
Deleting file '"G:~InsideMSBuild~ChB8-ExtendClean“WpfExtendCleansbin“Debug WpfExtendClean.pdh".
Deleting f%lﬁ "C:xIngideMSBuild~ChB8~ExtendCleans\Wpf ExtendClean~obj x86 \Debug ResolveAssenhlyRef
erence.cache'.
Deleting file "C:xInsideMS8Build-~ChB8-ExtendClean“WpfExtendCGlean“ohjs\x86 Debug HainWindow.banl".
Deleting file "C:\Ins1deHSBulld\ChBB\ExtBndClean\prExtendClean\ohJ\xsﬁ\Dehug\Ha1nH1ndou g.cs".
Deleting file "C:~InsideMS8Build~ChB8-ExtendClean“WpfExtendClean“ohj 86 Debug~App.g.
Deleting file "C:\Ins1deHSBulld\ChBB\ExtendClean\prExtendClean\ohJ\xsS\Dehug\HpPExtendclean_ﬂar
kupCompile.cache"
Deletlng flle +H \Ins1deHSBulld\ChBB\ExtendClean\HpPExtendClean\ohJ\x86\Dehug\HpPExtendclean g.r
esources’
Deleting file “C: \Ins1deHSBulld\ChBB\ExtendClean\HpPExtendClean\ohJ\x86\Dehug\HpPExtendclean Pro
perties.Resources.resources’
Deleting file 'C: \Ins1deHSBulld\ChBB\ExtBndClean\prExtendClean\ohJ\xsS\Dehug\GenerateResource r
ead.1.tlog".
Deleting file '"G:~InsideMSBuild-~ChB8-ExtendClean“WpfExtendClean“obj x86\Debug GenerateResource.w
rite.1.tlog'".
Deleting file '"G:~InsideMSBuild-~ChB8-ExtendClean“\WpfExtendCGlean“objs\x86\Debug \UpfExtendClean.exe

Déleting file "C:\InsideMSBuild~ChB8-ExtendClean“WpfExtendClean“obj x86\Debug WpfExtendClean.pdh
Done Building Project "C::\InsideMS8Build“~ChBB\ExtendClean“WpfExtendClean‘\WpfExtendClean.csproj" (Bu
ild;Clean target<s>>.

Build succeeded.
A Yarning(s>
8 Errordisd

FIGURE 8-4 Clean target results

Chapter 8 Practical Applications, Part 1 241

From the results shown in Figure 8-4, you can see that the user.config file was deleted when
we executed the Clean target. This is exactly what we needed. One thing that you should
note when using this technique: If your build step adds to the FileWrites item list, it must do
so every time it would have written the file, even if it didn't because the file was up to date.
For example, the output assembly goes into the FileWrites item list even if the project is up to
date, in which case the compiler would not have been run. Because the ProjectFileName
.FileListAbsolute.txt file is written for every build, you need to include the up-to-date files so
that the next time the Clean target runs, it will delete the files.

Since this works so well, you may be wondering why we would discuss any other method.
The reason is that this technique has some limitations:

B Files to be deleted must be under the output path.
B You must append to the FileWrites item early in the build process.

The first limitation is straightforward: If the file is not under the output path, it will not be
deleted. This is for safety reasons; that way you cannot delete files by mistake. The second
limitation states that you must append to the FileWrites item early in the build process.
More specifically, you must append your values to the FileWrites item before the Clean or
IncrementalClean target executes. When either of these targets gets executed, the clean file,
the file that persists the FileWrites item, is written to disk. Despite these limitations, there are
many cases in which you will be able to effectively use this technique. If you are not able to
use this technique, however, then you can extend the clean process itself manually. Another
advantage to cleaning manually is that you don't have to predict the files that were written.
You can just blow away a whole directory, or use a wildcard expression.

There are some cases when you will be creating or copying files either later in the build
process or to locations that are outside the output path that will need to be cleaned up as
well. For instance, you may need to copy some of the outputs to different locations. In these
cases, you will have to inject targets into the clean process to manage this manually.

Extending the clean process manually is similar to how the build process is extended. You
have the following options: override an existing blank target such as BeforeClean, inject

a target into the clean process, or use BeforeTargets or AfterTargets against the Clean target.
If you choose the first option, you can override either the BeforeClean or the AfterClean
target. This is similar to how the BeforeBuild or AfterBuild target can be overridden, as
discussed in Chapter 3.

In Visual Studio Project files, you will find an import statement similar to the following, which
is for C# project files.

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

Any customizations to the build or clean process should be declared after this statement to
ensure that they are not overwritten. The following snippet shows how we can override the
BeforeClean and AfterClean targets.

242

Part IV MSBuild Cookbook

<Target Name="BeforeClean">
<Message Text="This target is called before the clean begins"/>
<!-- Place clean customizations here -->

</Target>

<Target Name="AfterClean">
<Message Text="This target is called after the clean completes"/>
<!-- Place clean customizations here -->

</Target>

When you override either of these two targets, they will be called at the appropriate time.
If you are creating customizations to a specific project file, this is a great way to go. If you
are creating reusable MSBuild scripts, then you must choose one of the other two options
instead of taking this approach. This is because if the same target gets declared more
than once, then the last target declared will be the definition that is used. All other target
declarations will be ignored.

In order to inject a target into the clean process, the CleanDependsOn property is
extended. This is demonstrated by the following snippet, taken from the ExtendClean\
ClassLibraryExtendClean.csproj file.

<PropertyGroup>
<BuildDependsOn>
$(BuildDependsOn);
CustomAfterBuild
</BuildDependsOn>

<CleanDependsOn>
$(CleanDependsOn) ;
CustomClean

</CleanDependsOn>

<_OutputCopylLocation>$(OutputPath)..\..\CustomOutput\</_OutputCopylLocation>
</PropertyGroup>

<Target Name="CustomAfterBuild">
<ItemGroup>
<_FilesToCopy Include="$(OutputPath)***"/>
</ItemGroup>
<Message Text="_FilesToCopy: @(_FilesToCopy)" Importance="high"/>

<Message Text="DestFiles:
@(_FilesToCopy->'$(_OutputCopylLocation)%(RecursiveDir)%(Filename)%(Extension)')"/>

<Copy SourceFiles="@(_FilesToCopy)"
DestinationFiles=
"@(_FilesToCopy->'$(_OutputCopyLocation)%(RecursiveDir)%(Filename)%(Extension)')"/>
</Target>

<Target Name="CustomClean">
<Message Text="Inside CustomClean" Importance="high"/>
<ItemGroup>
<_CustomFilesToDelete Include="$(_OutputCopylLocation)***"/>
</ItemGroup>

Chapter 8 Practical Applications, Part 1 243

<Delete Files="@(_CustomFilesToDelete)"/>
</Target>

In this snippet, we are re-declaring the CleanDependsOn property and appending the
CustomClean target to its value. Also, BuildDependsOn is similarly extended to copy some
files to another location. By extending the CleanDependsOn property when the Clean
target is executed, the CustomClean target will be called at the end of the process. Inside
the CustomClean target, | create an item, _CustomFilesToDelete, which will contain all the
files that need to be deleted. These files are then deleted using the Delete task. Figure 8-5
contains the results of executing the Build target followed by the Clean target.

VErs10n=v4.U.HSSEMDLYHLLF1DULEeS .CS ™
CopyFilesToOutputDirectory:
gggging file from "“objsDebug“ClassLibraryExtendClean.d1l"” to "hinsDebug™CGlassLibraryExtendClean.

ClaséLibraryExtendClean —» G:~InsideMSBuild\ChA8\ExtendClean“\ClassLibraryExtendCleans\bin“DebugC
lazszLibraryExtendClean.d11l

Copying file from "ohjsDebugsClassLibraryExtendClean.pdb" to "binDebug~ClassLibraryExtendClean .
ab™

CustomAfterBuild:
_FilesToCopy: bhinxDebugsClassLibraryExtendClean.d1ll;binsDebugrClassLibraryExtendClean .pdh
DestFiles: ClassLibraryExtendClean.dll;ClassLibraryExtendClean.pdb
Copying file from "bin“Debug:ClassLibraryExtendClean.d11l" to “hin“Debug>..™..“\CustomOutput Class
LibraryExtendClean.d11".
Copying file from "binDebugsClassLibraryExtendClean.pdh" to “hin:Debug™....“\CustomOutput Class
LibraryExtendClean.pdbh".
CoreClean:
Deleting file "C:“\InsideMSBuild~ChB8\ExtendClean“ClassLibraryExtendCleansbhinsDebugs\ClassLibraryE
xtendClean.dl11".
Deleting file '"C:“\InsideMSBuild~ChB8\ExtendClean“ClassLibraryExtendCleansbhinsDebugs\ClassLibraryE
xtendClean.pdh'.
Deleting file "C:“IngideMSBuild~ChB8\ExtendClean“ClassLibraryExtendClean~objs\Debugs\ClasszLibraryE
xtendClean.d11".
Deleting file "C:“IngideMSBuild~ChB8\ExtendClean“ClassLibraryExtendClean~objs\Debugs\ClasszLibraryE
xtendCGlean.pdh'.
CustomClean:
Inside CustomClean
Deleting file "bin“Debug*..%._“\CustomQutputsClassLibhraryExtendClean.d11".
Deleting file "hinsDebugs..s..“\CustomQutputsGlassLibraryExtendClean.pdb".
Done Building Project "C:xInsideMSBuild“ChHA8“\ExtendClean“ClaszLibraryExtendClean~ClassLibhraryExten
dClean.csproj" (Build;Clean target<{s>>.

Build succeeded.
Warning<s>»
8 Error(s>

FIGURE 8-5 Extending the clean process

Figure 8-5 shows that the CustomClean target was called when expected and deleted the
files that were copied in the CustomAfterBuild target. It is easy to forget about cleaning up
files that your custom process creates or copies, but this is very important. If you do not
clean up these files correctly, then you may encounter unexpected results during your build
process. For instance, targets may continue to be skipped because of incremental building,
even after the clean target has been executed.

In this chapter, we discussed a few very common build customizations, such as setting the
version for an assembly and extending the clean process. We will continue these types

of examples in the next chapter as well. Following that chapter, we will start examining
materials related to Microsoft Visual C++.

Chapter 9
Practical Applications, Part 2

In the previous chapter, we started presenting some possible applications of MSBuild

that you can use in your own build process. In this chapter, we'll examine some examples
geared towards Web applications. Some of the examples in this chapter include starting and
stopping services, encrypting the web.config file, and compressing JavaScript files.

Starting and Stopping Services

There are several instances where either your build or deployment process relies on services
to be running. In these cases, you should ensure that the services are installed and started
before they are needed. It's very easy to start and stop services from MSBuild.

You can use the Exec command to execute the command net start or net stop to

start and stop services. A better alternative for this is to use the WindowsService task

from the MSBuild Extension Pack. The MSBuild Extension Pack can be found at http.//
msbuildextensionpack.codeplex.com/. Using this task, you can perform many actions relating
to services in a unified manner. This task supports these actions: start, stop, install, uninstall,
disable, set manual start, set automatic start, check if a service exists, and update service
identity. For complete information regarding this task, see the documentation provided with
the tasks. When you install the MSBuild Extension Pack, the documentation file is placed

in the same directory as the task assembly, which is typically %Program Files%\MSBuild\
ExtensionPack. The following project file, Services01.proj, demonstrates this task.

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="StartService">

<!-- Extension Pack required for fxcop.targets file -->
<PropertyGroup>
<ExtensionTasksPath>$(MSBuildThisFileDirectory)\..\Contrib\ExtensionPack\4.0\</
ExtensionTasksPath>
</PropertyGroup>

<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks"/>

<Target Name="StartService">

<!--
The convention when using the MSBuild Extension Pack is to
fully qualify the task name to avoid any possible collision with
other tasks.
-2

<MSBuild.ExtensionPack.Computer.WindowsService
TaskAction="Start"
ServiceName="aspnet_state" />

245

246

Web

Part IV MSBuild Cookbook

<!-- Similar to the command -->
<!-- <Exec Command="net start aspnet_state" IgnoreExitCode="true" /> -->
</Target>

<Target Name="StopService">
<MSBuild.ExtensionPack.Computer.WindowsService
TaskAction="Stop"
ServiceName="aspnet_state"/>

<!-- Similar to the command -->
<!-- <Exec Command="net stop aspnet_state" IgnoreExitCode="true" /> -->
</Target>
</Project>

This task accepts a TaskAction parameter that describes what action the task is to perform.
In order to start a service, TaskAction should be set to Start, and the name of the service,
which is required, is provided in the ServiceName parameter. Similarly, to stop a service, Stop
should be the TaskAction parameter.

If you execute the command msbuild Services0l.proj /t:StartService;StopService,
the result will be what is shown in Figure 9-1. You will need to execute this in a command line
that has administrator privileges.

G:xInsideM8Build\Ch@? *msbuild ServicesBl.proj st:S8tartService;StopService nologo
Build started 9-19,2818 5:56:5% PM.
Project "C::\InsideMSBuild“Ch@?“\ServicesBl.proj" on node 1 (StartService;StopService target{sd).
StartService:

Starting: aspnet_state on 'IBRAHIM-P55’' - Stopped...

Started: aspnet_state
StopService:

Stopping: aspnet_state on *IBRAHIM-P55’ — Running...

Please wait, Seruvice state: aspnet_state on °‘IBRAHIN-P55%° — StopPending...

Stopped: aspnet_state on *IBRAHIM-P55’
Done Building Project "C::\InsgideMSBuild\Ch@?\Services®l.proj" (StartService;StopService target(sd)

Build succeeded.
B Warning(s>»
A Erroris)

FIGURE 9-1 Starting and stopping services

In Figure 9-1, the WindowsService task is used to start and then stop the aspnet_state
service. You might use this when you deploy a Web application that depends on the ASP.NET
state service. When you deploy an application that has dependencies such as services, you
must make sure that the dependencies, along with the application, are in a usable state when
the deployment completes.

Deployment Project Overview

When you create Web sites and Web applications (both referred to as Web applications from
this point) using Microsoft Visual Studio, it is a good idea to also use Web Deployment Projects
(WDP) to assist in preparing the application for deployment. WDP is not installed by default
with Visual Studio, but it is an add-in that you can download for free. You can download it by
going to http.//www.microsoft.com/downloads and searching for “Web Deployment Projects”.
The page name should be listed as “Visual Studio 2010 Web Deployment Projects.” This add-in
is supported by Microsoft, and you are encouraged to use it.

Chapter 9 Practical Applications, Part 2 247

The following is a list of features that are provided with WDP:

B Automatic pre-compilation with the build process.
B WDP files are MSBuild files, so they are extensible.
B Various options exist regarding assembly generation, including:
0 Single assembly for all outputs
Q@ One assembly per folder
0 All pages and control outputs to a single assembly
0 Separate assembly for each page and control output
B Ability to sign assemblies.
B Ability to set assembly version.

When you are building and debugging your Web applications using Visual Studio, you place
your markup in one file and the code behind the markup in a separate file. You could take
the contents of the directory as is and allow Microsoft Internet Information Services (lIS) to
compile the pages in place. The obvious problem to the approach is that you expose the
code for your Web application on the Web server that is running it. A much better option is
to pre-compile the application into one or many assemblies and deploy those along with the
page files. A WDP can be used for this as well as the other tasks listed previously.

After you have installed the WDP add-in, you can create a new WDP in Visual Studio by
right-clicking the desired Web application and selecting Add Web Deployment Project.
This will show a dialog that prompts you for the name and location of the Web deployment
project. Once you add the project, you will see it in Solution Explorer, similar to the one
shown in Figure 9-2.

4 5:‘% Webdpplicationl
» [=d| Properties
+ [+3] References
» [Account
7 App_Data
> [Scripts
» [Styles
SNEE] Ahoutaspz
SNEE] Default.aspx
+ 4] Globalasax
s [SiteMaster
5 Wieb.config
|| Services01proj
gg Weblpplicationl.csproj_deploy

FIGURE 9-2 Web Deployment Projects in Solution Explorer

248

Part IV MSBuild Cookbook

The WDP shows up in Visual Studio as any other project would. When you create WDP
projects, the name typically ends in “_deploy” and the extension on the file is .wdproj. Unlike
most other project types, there will never be any project items, such as files or folders, placed
under this node in Visual Studio. This is just an MSBuild project file with some Visual Studio
GUI support. When you build or rebuild the solution, the WDP will also be built. As a best
practice, you should disable building WDP projects for Debug configurations because WDP
builds may be lengthy. You can do this from the Configuration Manager in Visual Studio. You
can always right-click the WDP to explicitly build it even if the current configuration is set to
Debug. If you double-click the WDP, you will be presented with a dialog that consists of four
pages: Compilation, Output Assemblies, Signing, and Deployment. From each of these pages,
you can assign properties to customize that portion of the deployment process. For instance,
take a look at the Output Assemblies page shown in Figure 9-3.

WebApplicationl csproj_deploy Property Pages @

Configurstion: | Active(Debug) ~| Platform: | Active(ny CPL) =) | Corfiguration Manager.. |

4 Configuration Properties
Compilation
Qutput Assermblies
Signing
Deploynent

Merge all outputs to a single assembly

WifebApplicationl.csproj_deploy

Treat as library component (remove the App_Code,.compiled file)

Merge each individual folder output to its own assembly

Merge all pages and control outputs to a single assembly

@) Create a separate assernbly for each page and control output

Merge options
Wersion output assemblies (e.g, LOLOD
1234

1234

oK H Cancel H Apply

FIGURE 9-3 WDP Output Assemblies page

From the dialog in Figure 9-3, the option specified is to create one assembly named
WebApplicationl.csproj_deploy, and the assembly will be stamped with the value 1.2.3.4

for both assembly and file version. All the customizations on these pages are stored in the
MSBuild project file for the WDP. Note that all the options specified for all four pages are
specific to the Configuration and Platform selected in the drop-down lists toward the top of
the dialog. You can even define new configurations, or platforms, to meet your needs. For
instance, you may want to sign your assemblies that are going into production environments
but not elsewhere. In this case, you could create a new configuration, Production, that has
this setting enabled and configured.

We have discussed what WDPs are and the fact that they are MSBuild files. We will now
take a closer look at a WDP file. In order to view the content of a WDP, you can right-click

Chapter 9 Practical Applications, Part 2 249
the WDP node and select Open Project File. The following sample WDP file is taken from
WebApplicationl.csproj_deploy.wdproj.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
ToolsVersion="4.0"
DefaultTargets="Build">

<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == "' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>

<ProductVersion>10.0.30319</ProductVersion>
<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>{C4AC8379-E059-4C19-894D-AA6A849D3CA2}</ProjectCuid>
<SourceWebPhysicalPath>..\WebApplicationl</SourceWebPhysicalPath>
<SourceWebProject>
{3161B34E-AE96-4095-B397-3259E5A9ECIE} | Ch09\WebAppTicationl\WebApplicationl.csproj
</SourceWebProject>
<SourceWebVirtualPath>/WebApplicationl.csproj</SourceWebVirtualPath>
<TargetFrameworkVersion>v4.0</TargetFrameworkVersion>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<DebugSymbol1s>true</DebugSymbols>
<OutputPath>.\Debug</OutputPath>
<EnabTleUpdateable>true</EnableUpdateable>
<UseMerge>true</UseMerge>
<SingleAssemblyName>WebAppTicationl.csproj_deploy</SingleAssemblyName>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<DebugSymbols>false</DebugSymbols>
<OutputPath>.\Release</OutputPath>
<EnabTleUpdateable>true</EnableUpdateable>
<UseMerge>true</UseMerge>
<SingleAssemblyName>WebApplicationl.csproj_deploy</SingleAssemblyName>
</PropertyGroup>
<ItemGroup>
<ProjectReference Include="..\WebApplicationl\WebApplicationl.csproj">
<Project>{3161B34E-AE96-4095-B397-3259E5A9ECIE}</Project>
<Name>WebAppTicationl</Name>
</ProjectReference>
</ItemGroup>
<ItemGroup Condition=""'$(Configuration)|$(Platform)' == 'Debug|AnyCPU'">
<AssemblyAttributes Include="AssemblyFileVersion">
<Value>1.2.3.4</Value>
</AssemblyAttributes>
<AssemblyAttributes Include="AssemblyVersion">
<Value>1.2.3.4</Value>
</AssemblyAttributes>
</ItemGroup>
<Import
Project=
"$(MSBuildExtensionsPath)\Microsoft\WebDeployment\v10.0\Microsoft.WebDeployment.targets"
/>

<PropertyGroup>
<OutputPath>0ut_01\$(Configuration)\</OutputPath>
</PropertyGroup>
</Project>

250

Part IV MSBuild Cookbook

From the WDP shown here, you can see that all the values entered through the Visual

Studio user interface are indeed captured in MSBuild format. Because of this, you can easily
customize and/or extend the process. In fact, in this example, the output path has been
customized using the OutputPath property to be Out_01\$(Configuration)\. This file is similar
to a C# or VB.NET project in the sense that another file, Microsoft. WebDeployment.targets,
which defines the build process, is imported. If you want to get a deeper understanding of
the WDPs, you should take a look at that file.

I've already mentioned that when you build a solution that contains a WDP, the WDP will
also be built automatically, if it is enabled for that configuration. You can also use msbuild
.exe to manually build the WDP as you would any other MSBuild project file. When you build
the WDP, you will notice that all the files that are contained in or under the source root for
your Web application will be included in the deployment. The source root is captured in the
SourceWebPhysicalPath property. This is because WDPs can support either Web sites or Web
applications. If you would like to exclude files from being included in the deployment, you
can use the ExcludeFromBuild item. For instance, in the WebApplication1l_02.csproj_deploy
.wdproj file, which extends the previous example, the following customizations have been
inserted.

<ItemGroup>
<!-- Use the ExcludeFromBuild item to exclude files from being deployed -->
<ExcludeFromBuild
Include="$(SourceWebPhysicalPath)\WebApplicationl.csproj" />
<ExcludeFromBuild
IncTude="$(SourceWebPhysicalPath)\WebApplicationl.csproj.user" />
<ExcludeFromBuild
Include="$(SourceWebPhysicalPath)\CustomOut***" />
<ExcludeFromBuild
Include="$(SourceWebPhysicalPath)**\.svn***" />
</ItemGroup>

<PropertyGroup>
<!-- Customize output Tocation using the OutputPath property -->
<OutputPath>0ut_02\$(Configuration)\</OutputPath>
</PropertyGroup>

In these customizations, the following files will be excluded: the Web applications project
file, the Web applications user file, the contents of the CustomOut folder, which is a copy

of the bin folder, and any files related to version control. Because the WDP will pick up

all files under the SourceWebPhysicalPath directory, this will include any artifacts that are
placed there by your source control provider. In the case of Subversion, you should exclude
those files contained within a .svn folder using the declaration shown previously. Typically,

a snapshot of the Web directory is made and the build is then processed from that directory.
This takes place in the following _CopyBeforeBuild target.

<Target Name="_CopyBeforeBuild"
Condition=" '$(EnableCopyBeforeBuild)' == 'true' or '@(ExcludeFromBuild)' != "' "
DependsOnTargets="$(_CopyBeforeBuildDependsOn)">

Chapter 9 Practical Applications, Part 2 251

<ItemGroup>
<_WDPAT1ExtraFilesUnderTempFolder
Condition=""$(CopyBeforeBuildTargetPath)' != """
Include="$(CopyBeforeBuildTargetPath)**" />
<_WDPAT1ExtraFilesUnderTempFolder
Remove="@(_WebFiles->'$(CopyBeforeBuildTargetPath)\%(DestinationRelativePath)')" />
</ItemGroup>
<!--Remove all extra files in the temp folder that's not in the @
(FilesForPackagingFromProject-->
<Delete Files="@(_WDPAT1ExtraFilesUnderTempFolder)" />

<!--This method support incremental copy instead of wipe out everytime-->
<!--We already expand the path as relative path to the project, there is no need for
sourceDirectory-->
<CopyPipelineFiles
PipelineItems="@(_WebFiles)"
SourceDirectory="$(MSBuildProjectDirectory)"
TargetDirectory="$(CopyBeforeBuildTargetPath)"
SkipMetadataExcludeTrueltems="True"
UpdateItemSpec="False"
DeleteItemsMarkAsExcludeTrue ="True">
<Output
TaskParameter="UpdatedPipelineltems"
ItemName="_WebFilesCopied"/>
</CopyPipelineFiles>

<CreateProperty Value="$(CopyBeforeBuildTargetPath)">
<Output TaskParameter="Value"
PropertyName="_AspNetCompilerSourceWebPath" />
</CreateProperty>

<CallTarget Targets="$(OnAfter_CopyBeforeBuild)"
RunEachTargetSeparately="false" />
</Target>

From this target, we can see that the CopyPipelineFiles task is called to copy the files. The
_WebFiles item contains the files which will be copied. This item is populated in a dependent
target, _CollectFilesForCopyBeforeBuild, taking into account files that should be excluded.
Also note that at the end of the target, the _AspNetCompilerSourceWebPath property is
declared to point to the new directory that was just created. Initially, it points to the full path
of the SourceWebPhysicalPath. This path is passed to the AspNetCompiler task, which is

a custom task that calls aspnet_compiler.exe. There are also some scenarios in which you may
want to remove files from the output Web after the build. In this case, you can define an item
type to contain these files, and then you can override the AfterBuild target to delete these
files. For example, take a look at the following snippet.

<ItemGroup>
<RemoveAfterBuild Include="$(OutputPath)\obj\" />
<RemoveAfterBuild Include="$(OutputPath)\My Project\" />
</ItemGroup>

252 Part IV MSBuild Cookbook

<Target Name="AfterBuild">
<RemoveDir Directories="@(RemoveAfterBuild)" />
</Target>

The difference between this approach and the ExcludeFromBuild approach is that these
files will be removed after the build process instead of being excluded from it. So if you
needed files to be available during your build process but those files are not required by the
application to run, then you should use the RemoveAfterBuild approach.

Zipping Output Files, Then Uploading to an FTP Site

In this sample, the files in the output folder are first compressed into a zip file and then
uploaded to an FTP site. This sample uses these tasks from third parties: DNZip and Ftp. Both
of these tasks are shipped with the MSBuild Extension Pack. The parameters for those tasks
are outlined in Tables 9-1 and 9-2.

TABLE 9-1 DNZip Task Parameters

Name Description

TaskAction Valid values include AddFiles, Create, and Extract.

CompressFiles A parameter that contains files to zip. Either this or CompressPath should be
used, but not both. If both are specified, then CompressPath will be ignored.

CompressPath The path that contains the files to be compressed. Either this or CompressFiles
should be used, but not both. If both are specified, CompressPath will be
ignored.

CompressionLevel Sets the compression level to be used. There are three typical values; Default,
BestSpeed, and BestCompression. Unsurprisingly, the default is Default. A
number of uncommonly used values include LevelO, Levell, Level2, Level3,
Level4, Level5, Level6, Level7, Level8, and Level9. The None value means no
compression at all, Levell is the least amount of compression, and Level9 is the

most.
ExtractPath The path where the zip file is extracted.
Password Sets the password used to create the zip file.
RemoveRoot The root to remove from the zip path. This path should be a part of the files

that are being compressed, not the target path. Note that this is case-sensitive.

ZipFileName A required parameter that is the name of the zip file to be created.

TABLE9-2 Ftp Task Parameters

Name Description

TaskAction Valid values include UploadFiles, DownloadFiles, DeleteFiles,
DeleteDirectory, and CreateDirectory.

FileNames The list of files that need to be transferred.

Host The host to connect to. This should not include the ftp.// prefix.

Port The port used to connect to the FTP server.

Download from Wow! eBook <www.wowebook.com>

Chapter 9 Practical Applications, Part 2 253

Name Description

RemoteDirectoryName The remote path that will be opened on the FTP server.
UserName The user name used to connect to the FTP server.
Password The password to be used when connecting to the FTP site.

In the following snippet, you will find the contents of the ZipOutputFiles target taken from
the WebApplicationl_ftpOl.csproj_deploy.wdproj file.

<Target Name="ZipOutputFiles" DependsOnTargets="Build">
<ItemGroup>
<_FilesToZip
Include="$(OutputPath)***
Exclude="$(OutputPath)obj***;$(OutputPath)bin\Samples***" />

<!-- Create an item so we can get full path -->
<_ZipOutputPathItem Include="$(OutputPath)" />
</ItemGroup>

<l--
Zip task requires that we have the full path
to the working directory, so create an jtem
from OutputPath to get that value.
-->

<PropertyGroup>
<_ZipOutputPathFul1>%(_ZipOutputPathItem.Fullpath)</_ZipOutputPathFull>
<!-- Get Date/Time to create unique .zip file name -->

<_DateTime>$([System.DateTime]: :Now.ToString('ddMMyyyy hh_ss'))</_DateTime>
</PropertyGroup>

<ItemGroup>
<_ZipFile Include="$(OutputPath)..\$(_DateTime)_outputs.zip" />
</ItemGroup>

<MSBuild.ExtensionPack.Compression.DNZip
TaskAction="Create"
CompressFiles="@(_FilesToZip->'%(FullPath)')"
ZipFileName="@(_ZipFile)"
RemoveRoot="$(_ZipOutputPathFull)" />
</Target>

Notice that this target has declared that it depends on the Build target, so the Build target
will be executed before this target is allowed to begin. The item _FilesToZip is created to
contain all the files that should be placed in the zip file. In order to create a unique zip

file name, the current date and time will be a part of the zip file name. To get this value,

a property function is used. Then the Zip task is used to create the zip file. Note that the
RemoveRoot is set to the full path of the OutputPath folder. This is necessary to create the zip
file with the correct hierarchy. The resulting zip file is written to disk in the location contained
in the _ZipFile item. Now that the file has been zipped, all that is left is to transfer the file
using FTP. The related elements are shown next.

254

Part IV MSBuild Cookbook

<PropertyGroup>
<FtpFilesDependsOn>
Build;
ValidateFtpFilesSettings;
ZipOutputFiles;
</FtpFilesDependsOn>
</PropertyGroup>
<Target Name="FtpFiles" DependsOnTargets="$(FtpFilesDependsOn)">
<!-- Ensure _ZipFile is not empty -->
<Error Condition="'@(_ZipFile)'=="""
Text="_ZipFile is required" />

<MSBuild.ExtensionPack.Communication.Ftp

TaskAction="UpTloadFiles"
Host="$ (FtpRoot)"
FileNames="%(_ZipFile.FullPath)"
UserName="$(FtpUsername)"
UserPassword="$(FtpPassword)"
RemoteDirectoryName="$(FtpDirectory)" />

</Target>

<Target Name="ValidateFtpFilesSettings">
<Error Condition="'$(FtpRoot)'=="""
Text="FtpRoot property is required" />
<Error Condition="'$(FtpUsername)'=="""
Text="FtpUsername property is required" />
<Error Condition="'$(FtpPassword)'=="""
Text="FtpPassword property is required" />
</Target>

The target being executed is the FtpFiles target, which depends on the targets contained

in the FtpFilesDependsOn property. The main targets contained in that list are Build,
ValidateFtpFilesSettings, and ZipOutputFiles. The ValidateFtpFilesSettings target ensures

that the properties FtpRoot, FtpUsername, and FtpPassword are not empty. In this example,

they are passed in to MSBuild from the command line using the /p switch. In the FtpFiles

target, the FtpUpload task is used to perform the actual upload. You could execute this

target using the command msbuild WebApplicationl ftp0l.csproj_deploy.wdproj
/t:FtpFiles /f1 /p:FtpRoot=FTP_HOST;FtpUsernameFTP_USERNAME; ftpPassword=FTP_
PASSWORD, FtpDirectory=FTP_DIRECTORY. The UPPER_CASE values are values provided by you.

Compressing JavaScript Files

If your Web applications are deploying JavaScript files, then you should process those files
through a JavaScript compressor before they are placed on the IIS server. A freely available
one, JSMin, can be found at http://www.crockford.com/javascript/jsmin.html. JSMin offers
significant compression results without modifying the actual source that is executed. Instead,
it performs noninvasive operations such as remove comments and remove unnecessary white
space. The JSCompress task available as a part of the MSBuildCommunityTasks compresses
JavaScript files by relying on Jazmin, which is a C# port of JSMin.

Chapter 9 Practical Applications, Part 2 255

The WebApplicationl project from the samples includes a Scripts folder that contains some
JavaScript source files. These files were taken from the open-source Dojo project, which is
available at http://dojotoolkit.org. To demonstrate compressing JavaScript, take a look at the
WDP named WebApplicationl_javascript.csproj_deploy.wdproj, which will automatically
compress JavaScript files if Configuration is set to Release. The additions that were made to
the file are shown next.

<PropertyGroup>
<!-- aspnet_regiis.exe requires a path without the trailing slash -->
<_OutputPathNoTrailingSTash>0ut_JS01\$(Configuration)</_OutputPathNoTrailingSlash>
<!-- Customize output location using the OutputPath property -->

<OutputPath>$(_OutputPathNoTrailingSlash)\</OutputPath>
<_WebProject>$(SourceWebPhysicalPath)\WebApplicationl.csproj</_WebProject>
</PropertyGroup>
<!--
JSCompress task is contained in MSBuildCommunityTasks
This is a required to use the community tasks from a custom location.
-->
<PropertyGroup> <MSBuildCommunityTasksPath>$(MSBuildThisFileDirectory)\..\Contrib\
MSBui TdCommunityTasks\</MSBuildCommunityTasksPath>
</PropertyGroup>
<Import Project="$(MSBuildThisFileDirectory)\..\Contrib\MSBuildCommunityTasks\MSBuild.
Community.Tasks.targets" />
<PropertyGroup>
<BuildDependsOn Condition=" '$(Configuration)'=='Release' ">
BuildWebProject;
$(BuildDependsOn);
CompressJavascript
</BuildDependsOn>
</PropertyGroup>
<Target Name="CompressJavascript">
<ItemGroup>
<_JSFilesToCompress Include="$(OutputPath)Scripts***.js" />
</ItemGroup>
<JSCompress Files="@(_JSFilesToCompress)" />
</Target>
<Target Name="BuildWebProject">
<MSBuild
Projects="$(_WebProject)"
Properties="Configuration=$(Configuration);Platform=$(Platform)" />
</Target>

In this sample, the target will be executed only if the Configuration property is set to Release. The
CompressJavaScript target uses the JSCompress task to compress the JavaScript files contained in
the Scripts folder. The available parameters for that task are summarized in Table 9-4.

TABLE 9-4 JSCompress Task Parameters

Name Description
Files Input parameter that will contain the list of files to be compressed
CompressedFiles Output container containing the list of files that were compressed

Encoding The encoding of the files

256

Part IV MSBuild Cookbook

In this example, we pass the JavaScript files into the Files parameter using the
_JSFilesToCompress item. If you execute the command msbuild
WebApplicationl_javascript0l.csproj_deploy.wdproj /p:Configuration=Release,
then at the end of the build, you will notice what is shown in Figure 9-4.

Because of the usage of the JSSCompress task, the size of the JavaScript files was reduced
from 74.4 Kb to 30.5 Kb. Since websites are using more and more JavaScript, compressing the
source files is becoming more important. It is recommended that you allow developers to
edit human-friendly files while at the same time automating your deployments to compress
the JavaScript files, as shown here.

Copying obJ\Release\TempBulller\b1n\uebﬂpp11cat1on1 B2 _ceproj_deploy.dll to C:\InsideMSBuildsCh

@9\0ut_JEA1\Releasesbin~WebApplicationl 83.csproj deploy.dll.

Copying obJ\Release\TempBulller\Scr1pts\Chart2D Js to C:\IngideMSBuild“\ChB? \0ut_J5B1%ReleaszesSc

ripts~Chart2D. js.

Copying obJ\Release\TempBulller\Scr1pts\DataGr1d Js to C:N\IngideMSBuild \ChB?>\0ut_JSB1“Release’§

criptssDataGrid. js

Copying obJ\Release\TempBulller\Scr1pts\d1J1t all._js to C:\InsideMSBuilds\ChB9\0ut_JSB1\Releasze™

Scripts~dijit—all. js

Copying obJ\Release\TempBulller\Scr1pts\doJo.Js.uncompressed.as to C:\IngideM$Build\Ch@%\0ut_JS

Bi“ReleasesScripts~dojo.js.uncompressed. js.

Skip copying ohj“\Releasze“TempBuildDir\Styles\Site.cszs to C:M\InsideMS8Build\ChB?\0ut_JSHA1%Releasze™

StylessSite.css. File C:\InsideMSBuilds\Ch@?%\0ut_JS@1“Release~Styles\Site.css is up to date
ToggleDebugCompilation:

Updating Web.config <{compilation? element debug attribute to ’False’.

Successfully updated Webh.config <{compilation? element debhug attribute to ’Falsze’.
CompressJavascript:

Compressing JavaScript in "Out_J8@1\Helease“Scripts‘\Chart2D._js".

Compressing JavaScript in "Out_JSB1“Release“Scripts\DataGrid.js".

Compressing JavaScript 1n "Out_J8@1M\ReleasesScriptesdijit—all. js*.

Compressing JavaScript in "Out_JS@1\Release\Scripts’dojo.js.uncompressed.js"
Done Building Project "C:\Ins1deHSBulld\ChE?\uehﬂppllcat1nn1 A3 .csproj_deploy. wdprnJ" (default tar
gets».

Build succeeded.
A Warning{s>
8 Error(s)

FIGURE 9-4 CompressJavaScript example

Encrypting web.config

A built-in tool is available that you can use to encrypt sections of your web.config file.

This tool is aspnet_regiis.exe and it ships with the Microsoft .NET Framework. It was
introduced in version 2.0. This tool can be used for many different purposes; in this section,
we will limit the discussion to using it to encrypt the web.config file.

When a section of the web.config file (or machine.config for that matter) is encrypted using
the aspnet_regiis.exe tool, it is done such that the section will be decrypted on the fly during
the lifetime of the Web application. The encryption is transparent to the application code.
When you use aspnet_regiis.exe to encrypt the configuration file, you will use the -pef switch
to indicate what section needs to be encrypted. In this example, we will also use a WDP,

an extension of those previously discussed. The WDP file for this example can be found in
the WebApplicationl_encWebConfig.csproj_deploy.wdproj file. The customizations that were
made to the file are shown in the following snippet.

<PropertyGroup>
<!-- aspnet_regiis.exe requires a path without the trailing slash -->

Chapter 9 Practical Applications, Part 2

<_OutputPathNoTrailingSTash>0ut_Enc01\$(Configuration)</_OutputPathNoTrailingSlash>

<!-- Customize output Tlocation using the OutputPath property -->

<OutputPath>$(_OutputPathNoTrailingSlash)\</OutputPath>

<_WebProject>$(SourceWebPhysicalPath)\WebApplicationl.csproj</_WebProject>
</PropertyGroup>

<PropertyGroup>
<BuildDependsOn>
BuildWebProject;
$(BuildDependsOn);
EncryptWebConfig
</BuildDependsOn>
</PropertyGroup>
<Target Name="EncryptWebConfig">
<!-- Get the .NET 4.0 path -->
<GetFrameworkPath>
<Output PropertyName="_Net40Path" TaskParameter="FrameworkVersion40Path" />
</GetFrameworkPath>

<PropertyGroup>
<_AspNetRegIisExe>"$(_Net40Path)\aspnet_regiis.exe"</_AspNetReglisExe>
<_pef>-pef "connectionStrings"</_pef>
<_out>" $(_OutputPathNoTrailingSlash)"</_out>
</PropertyGroup>
<Exec Command="$(_AspNetRegIisExe) $(_pef) $(_out)"/>
</Target>
<Target Name="BuildWebProject">
<MSBuild
Projects="$(_WebProject)"
Properties="Configuration=$(Configuration);Platform=$(Platform)" />
</Target>

257

As you can see, the build process was extended by injecting the EncryptWebConfig target to
the end of the BuildDependsOn target. Inside that target, the GetFrameworkPath task is used
to determine where the .NET Framework 4.0 is installed. The properties for that task, which

are all outputs, are summarized in Table 9-5.

TABLE 9-5 GetFrameworkPath Parameters

Name
FrameworkVersionl1Path
FrameworkVersion20Path
FrameworkVersion30Path
FrameworkVersion35Path
FrameworkVersion40Path
Path

Description

Returns the path for the
Returns the path for the
Returns the path for the
Returns the path for the
Returns the path for the

Returns the path for the
process

.NET 1.1 assemblies
.NET 2.0 assemblies
.NET 3.0 assemblies
.NET 3.5 assemblies
.NET 4.0 assemblies
.NET assembilies being used for the build

This example uses the GetFrameworkPath task to determine where .NET 4.0 is installed because
the aspnet_regiss.exe is located in that directory. After that, the following command is executed.

"%Framework4.0%\aspnet_regiis.exe" -pef "connectionStrings"
"Out_Enc01\Debug".

258 Part IV MSBuild Cookbook

After that, the original connectionStrings node from the web.config is transformed into

<connectionStrings configProtectionProvider="RsaProtectedConfigurationProvider">
<EncryptedData Type="http://www.w3.0rg/2001/04/xmlenc#ETement"
xmIns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-chc" />
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xm1dsig#">
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5" />
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xm1dsig#">
<KeyName>Rsa Key</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>jHA75XUfCIPK7dyN4nSZZV1jNsTYTOS2BUudEmo8F13+vAYxRDkowZ] /g4wU
hJanj2HCalnhwHKfBZvaHm1Qej9InYnsssYg3vOr89LvAkHoXz4fUclgbywjWYkyvadqyBog
S1GRsdwLhtGRgdkeF6I76w4009wCOkxo1FYYara4=</CipherValue>
</CipherData>
</EncryptedKey>
</KeyInfo>
<CipherData>
<CipherValue>YyzhkAEVtYsWIykmXZJqzXeDvVINGKX/Xk6hcWA+dcITBM/4qYKsBoxx2nn69iEa
/5hvSo0X1UQFe6fF5YuiziHYOI+n7TNKUJbAt4STIHOWGZYIy72Mbkjw7 TmEEPXRO1YymocZtn1Pbi
aagNscvulL0oSvfR1zFrb4INHuUwgIQFjeq3T1EMGNzThuqoPj1+Csgmgrbc6EVX9C5jubfUSLiw8UZ
/ravVTu2cHVk+Hs1j0twkIUkP6CkcPRi1GA3wvfjI1+KMfUaBB5IRIX1jjQV2cObgQbgcyZTzA3jyR3
£SOXpKZzHI3IYVnOFXTpY/TFB7FHPEG8X0yHZ43cM1f2hCcd104RteWT93SX3rNbvZCS8Y2/81gH
AYbZUft1KRgQwLSB/KDep6g=</CipherValue>
</CipherData>
</EncryptedData>
</connectionStrings>

Note If you want to invoke the aspnet_regiis tool to perform encryption, then the build must
be executed with administrator rights; that is, you must use an elevated command prompt.
Otherwise, you will receive an error.

Now the connection strings have been encrypted. You can encrypt several other sections
of the web.config as well. You should encrypt only the sections that contain sensitive
information because encrypted sections do carry a performance penalty when being used
by the application. If you are encrypting the web.config on a build server, then you have to
make sure that the machine key is the same for the build server as the IIS server, or else the
section(s) will not be successfully unencrypted.

Building Dependent Projects

If you are using a Web Application Project (WAP) as opposed to a website, then there is

one major flaw in the process followed by the Microsoft. WebDeployment.targets file. The
WAP is never built; it is assumed to have already been built. In the case of this example,

if the WebApplicationl project was not built and you executed the command msbuild
WebApplicationl.csproj_deploy.wdproj, the result would be what is shown in Figure 9-5.

Chapter 9 Practical Applications, Part 2 259

GC:~InsideM8Build~ChB? >mshuild WebfApplicationl.csproj_deploy.wdproj /nologo
Build started 9-21-2010 168:44:14 PM.
Project "C:~InsideM8Build-ChB?-WebfAipplicationl.csproj_deploy.wdproj"” on node 1 (default targetsl.
RezolveAzssemblyReferences:
Primary reference "Webfipplicationi'.
Could not find dependent files. Expected file "C:“\InsideMS8Build~ChB@?*WebApplicationlisxhin“leh
ﬂppllcatloni d11" does not exist.
Could not find dependent filez. The system cannot find the path specified. (Exception from H
RESULT = BXSBB?BBB3)
Resolved file path is "'G: \Ins1deHSBulld\ChB?\Wethp11cat1on1\h1n\Wethp11cat1on1 dll™.
Reference found at search path location
AzpNetCompiler:
C:sMindowssMicrosoft .NET“\Frameworksv4.8.30319?aspnet_compiler.exe —v sWebfipplicationl.csproj —p
G:nInsideMSBuild~Ch@?~WebApplicationl —u —f -d obhjxDebug TempBuildDir

Done Building Project "C:“\InsideMS8Build~ChB?-Webfpplicationl . cesproj_deploy. wdproj" (default target
s> — FAILED.

Build FAILED.

B Warning{s>

FIGURE 9-5 WDP failure

Since the WAP is not being built, the AspNetCompiler task fails because it was unable to load
a type that was contained inside the WAP. In order to work around this problem, we will have
to build the WAP. Additionally, we must build the WAP before the _CopyBeforeBuild target

is executed; otherwise, a copy of the Web files will be created that doesn't contain the built
assemblies. Take a look at the following definition of the BuildDependsOn property from
Microsoft. WebDeployment.targets.

<PropertyGroup>
<BuildDependsOn>
_PrepareForBuild;
ResolveProjectReferences;
_ResolveReferences;
ResolveReferences;
_CheckExcludeWAPObjFolderFromBuild;
_CopyBeforeBuild;
BeforeBuild;
AspNetCompiler;
BeforeMerge;
AspNetMerge;
AfterMerge;
CopyToOQutputDir;
RepTlaceWebConfigSections;
CreateVirtualDirectory;
AfterBuild
</BuildDependsOn>
</PropertyGroup>

The important thing to notice here is that the BeforeBuild target is positioned after the
_CopyBeforeBuild target in the dependency list. We cannot use the BeforeBuild target
to build the WAP because it needs to be built prior to the copying step. Instead, we have
to extend the BuildDependsOn property and inject that step at the very beginning. The
WebApplicationl_03.csproj_deploy.wdproj demonstrates this, and the snippet

is shown on the following page.

260

Part IV MSBuild Cookbook

<PropertyGroup>
<!-- Customize output Tocation using the OutputPath property -->
<OutputPath>0ut_JS01\$(Configuration)\</OutputPath>
<_WebProject>$(SourceWebPhysicalPath)\WebApplicationl.csproj</_WebProject>
</PropertyGroup>

<PropertyGroup>
<BuildDependsOn>
BuildWebProject;
$ (BuildDependsOn)
</BuildDependsOn>
</PropertyGroup>

<Target Name="BuildWebProject">
<MSBuild
Projects="$(_WebProject)"
Properties="Configuration=$(Configuration);Platform=$(Platform)" />
</Target>

In this file, the BuildDependsOn property has been prepended to contain the
BuildWebProject target, which builds the WAP. Now that these customizations have been
created, the WAP is not assumed to have been built, and each time the WDP project is built,
the WAP will be built, ensuring that it is up to date with respect to the source files. When you
are building the solution file, you do not have to worry about this because Visual Studio will
build the projects in the correct order.

Deployment Using Web Deployment Projects

There are many appr