Join the discussion @ p2p.wrox.com @ Wrox Programmer to Programmer™

!

"y

L p._, éa
.-"',

Professional

ASP.NET

Design Patterns

Foreword by Scott Hanselman, Program Manager, Microsoft

Scott Millett

PROFESSIONAL
ASP.NET DESIGN PATTERNS

FOREWORD ...ttt ittt tattetaeeeenneeennecenneeennesennesennnns
INTRODUCTION. ..ottt ittt ittt tie e etee i itateeenneeenneeennnsenns
» PARTI INTRODUCING PATTERNS AND PRINCIPLES
CHAPTER 1 The Pattern for Successful Applications
CHAPTER 2 Dissecting the Pattern’'s Pattern
» PARTII THE ANATOMY OF AN ASP.NET APPLICATION:
LEARNING AND APPLYING PATTERNS
CHAPTER 3 Layering Your Application and Separating Your Concerns
CHAPTER 4 The Business Logic Layer: Organization
CHAPTER5 The Business Logic Layer:Patterns
CHAPTER 6 The Service Layer e
CHAPTER7 TheData AccesslLayer.,
CHAPTER 8 The PresentationLayer... i,
CHAPTER9 The User Experiencelayer
» PART Il CASE STUDY: THE ONLINE E-COMMERCE STORE
CHAPTER 10 Requirements and Infrastructure
CHAPTER 11 Creating The ProductCatalog.
CHAPTER 12 Implementing the ShoppingBasket...........
CHAPTER 13 CustomerMembership..... i
CHAPTER14 Orderingand Payment i,
1] 5 =

PROFESSIONAL

ASP.NET Design Patterns

PROFESSIONAL
ASP.NET Design Patterns

Scott Millett

WILEY
Wiley Publishing, Inc.

Professional ASP.NET Design Patterns

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-29278-5
ISBN: 978-0-470-94445-5
ISBN: 978-0-470-95289-4
ISBN: 978-0-470-95301-3

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including with-
out limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with
the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If profes-
sional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor
the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work
as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers should be aware
that Internet Web sites listed in this work may have changed or disappeared between when this work was written and when
it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010929314

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

This book is dedicated to my wonderful wife
Lynsey — not that she will read it, mind you.

ABOUT THE AUTHOR

SCOTT MILLETT is an enterprise software architect working in London for Wiggle.co.uk, an e-commerce
company specializing in cycle and triathlete sports. He has been working with .NET since version 1.0

and was awarded the ASP.NET MVP in 2010. He is the co-author of Wrox’s Professional Enterprise
.NET, and when not writing about or working with .NET he can be found relaxing and enjoying the
music at Glastonbury and all of the major music festivals in the UK during the summer. If you would
like to talk to Scott about the book, anything .NET, or the British music festival scene, feel free to write
to him at scott@elbandit.co.uk, or by giving him a tweet @scottMillett.

CREDITS

ACQUISITIONS EDITOR
Paul Reese

PROJECT EDITOR
Brian Herrmann

TECHNICAL EDITOR
Joe Fawcett

PRODUCTION EDITOR
Eric Charbonneau

COPY EDITOR
Karen Gill

EDITORIAL DIRECTOR
Robyn B. Siesky

EDITORIAL MANAGER
Mary Beth Wakefield

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND
EXECUTIVE GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Lynsey Stanford

COMPOSITOR
James D. Kramer,
Happenstance Type-O-Rama

PROOFREADER
Jen Larsen, Word One

INDEXER
Johnna VanHoose Dinse

COVER PHOTO
© Ozgiir Donmaz/istockphoto.com

ACKNOWLEDGMENTS

| WOULD LIKE TO THANK Brian Herrmann, Paul Reese, and all those at Wrox who have helped to cre-
ate this book. I would also like to thank Joe Fawcett who did a sterling job as the technical editor.

Massive thanks to Imar Spaanjaars (http://imar.spaanjaars.com/) for giving up his personal time
to review chapters and give me some great feedback.

I would also like to take the opportunity to thank a couple of people that I have learned a great deal
from over the last couple of years. I attended JP Boodhoo’s (http://blog.jpboodhoo.com/) .NET

boot camp in the summer of 2009 and it was probably one of the most inspirational weeks I have

ever had, and it reminded me why I love the job I do. Thanks, JP.

When MVC first came along, a fellow named Rob Conery (http://blog.wekeroad.com/) started a
blogging series on creating an MVC store. He explored many great technologies and methodologies
during the store’s construction, including BDD, TDD, DDD, KanBan, and Continuous Integration
to name but a few. I learned more than I could have possibly imagined, in no small part due to the
down-to-earth, fun manner in which Rob presented the content. If this book is half as good as those
videos, I will be a very happy man. Rob now has a company dedicated to providing great video
resources for developers at www . tekpub.com/. It’s well worth a look — top banana.

CONTENTS

FOREWORD Xix
INTRODUCTION Xxi
CHAPTER 1: THE PATTERN FOR SUCCESSFUL APPLICATIONS 3
Design Patterns Explained 4
Origins 4
Necessity 4
Usefulness 5
What They Are Not 5
Design Principles 6
Common Design Principles 6

The S.O.L.I.D. Design Principles 7
Fowler’s Enterprise Design Patterns 8
Layering 8
Domain Logic Patterns 8
Object Relational Mapping 9

Web Presentation Patterns 10
Base, Behavioral, and Structural Patterns 10
Other Design Practices of Note "
Test-driven Development (TDD) "
Domain-driven Design (DDD) 1
Behavior-driven Design (BDD) 12
Summary 12
CHAPTER 2: DISSECTING THE PATTERN’S PATTERN 13
How to Read Design Patterns 13
Gang of Four Pattern Template 14
Simplified Template 14
Design Pattern Groups 15
Creational 15
Structural 15
Behavioral 16
How to Choose and Apply a Design Pattern 17

CONTENTS

A Quick Pattern Example 18
Refactoring to Principles 20
Refactoring to the Adapter Pattern 22
Leveraging Enterprise Patterns 25

Summary 26

PART Ill: THE ANATOMY OF AN ASP.NET APPLICATION:
LEARNING AND APPLYING PATTERNS

CHAPTER 3: LAYERING YOUR APPLICATION AND SEPARATING YOUR

CONCERNS 31
Application Architecture and Design 31
Antipattern — Smart Ul 32
Separating Your Concerns 37
Summary 53
CHAPTER 4: THE BUSINESS LOGIC LAYER: ORGANIZATION 55
Understanding Business Organizational Patterns 56
Transaction Script 56
Active Record 58
Domain Model 68
Anemic Domain Model 88
Domain-Driven Design 90
Summary 93
CHAPTER 5: THE BUSINESS LOGIC LAYER: PATTERNS 95
Leveraging Design Patterns 95
Factory Method 96
Decorator 100
Template Method 105
State Pattern 110
Strategy 15
Leveraging Enterprise Patterns 120
Specification Pattern 120
Composite Pattern 121
Layer Supertype Pattern 127
Applying Design Principles 130
Dependency Inversion Principle and the Dependency Injection Pattern 130
Interface Segregation Principle 137
Liskov Substitution Principle 141

Summary 151

Xiv

CONTENTS

CHAPTER 6: THE SERVICE LAYER 153
Describing the Service Layer 153
Service Oriented Architecture 154
Four Tenets of SOA 156
The Facade Design Pattern 157
Leveraging Messaging Patterns 159
The Document Message and the Request-Response Patterns 159
The Reservation Pattern 160
The Idempotent Pattern 161
An SOA Example 162
Domain Model and Repository 163
Service Layer 171
Client Proxy 184
Client 188
Summary 192
CHAPTER 7: THE DATA ACCESS LAYER 195
Describing the DAL 195
Data Access Strategies 196
The Repository Pattern 196
Data Access Objects Pattern 197
Patterns in Data Access 197
Unit of Work 198
Data Concurrency Control 205
Lazy Loading and the Proxy Pattern 208
Identity Map 213
Query Object Pattern 215
Using an Object Relational Mapper 225
NHibernate 225
MS Entity Framework 226
ORM Code Example 227
Summary 285
CHAPTER 8: THE PRESENTATION LAYER 289
Inversion of Control 289
Factory Design Pattern 290
Service Locator 291
loC Containers 292
Model-View-Presenter 296
ASP.NET Web Forms with MVP 297

XV

CONTENTS

Front Controller 319
Command Pattern 319
Chain of Responsibility Pattern 341

Model-View-Controller 348
ViewModel Pattern 349
The ASP.NET MVC Framework 349
Castle MonoRail 365

Page Controller 372

Summary 372

CHAPTER 9: THE USER EXPERIENCE LAYER 375

What Is AJAX? 375

Using JavaScript Libraries 376

Understanding AJAX Patterns 376
Periodic Refresh and Timeout 376
Unique URL 394
Databinding with JavaScript Templates 394
Predictive Fetch 412

Summary 417

CHAPTER 10: REQUIREMENTS AND INFRASTRUCTURE 421

Agatha’s Clothing Store Requirements 421
Product Catalog and Basket Screens 422
Customer Account Screens 425
Checkout Screens 427
Caching and Logging 428

Architecture 428
Setting Up the Supporting Infrastructure 431

Summary 448

CHAPTER 11: CREATING THE PRODUCT CATALOG 449

Creating The Product Catalog 449
Product Catalog Model 450
Product Catalog Data Tables 454
Product Catalog Repositories 455
Product Services 468

Controllers

XVi

483

CONTENTS

Product Catalog Views 493
Setting Up loC 515
Summary 518
CHAPTER 12: IMPLEMENTING THE SHOPPING BASKET 519
Implementing the Basket 519
Basket Domain Model 519
Create the Basket Tables 529
NHibernate Mapping 529
Basket Service 533
Basket Controller and Basket Views 542
Summary 563
CHAPTER 13: CUSTOMER MEMBERSHIP 565
Customer Membership 565
Customer Model 565
Customer Data Tables 571
Customer NHibernate Mappings 571
Customer Service 574
Authentication Service 582
Customer Controller 590
Account Controllers 594
Customer Membership Views 604
Authentication Views 608
Summary 614
CHAPTER 14: ORDERING AND PAYMENT 615
Checkout 615
Order Model 615
Order Data Tables 631
Order NHibernate Mappings 631
Order Service 635
Taking Payment with PayPal 644
Order, Payment, and Checkout Controllers 653
Order and Checkout Views 662
Summary 672

INDEX 673

xvii

FOREWORD

Houses get built, manufacturing plants create stuff, and automobiles come off assembly lines
enabled by well-known and agreed upon patterns for building things. For well-understood tasks
there’s no reason to reinvent the wheel.

As Christopher Alexander said:

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same way twice.

When the Gang of Four (that you’ll learn about in a minute!) wrote the first Design Patterns book
for software engineers, it was the first time that patterns had been formally expressed in our disci-
pline. In this book, you’ll learn not just about patterns, but also antipatterns and what we can learn
from them as well.

Sometimes it’s not always clear what the best practice is, and mapping design pattern language to
tangible usage within ASP.NET can be a challenge. Scott Millett’s book takes those time tested
design patterns, teaches you how to read them, and then applies them in a concrete and specific way
to the problems that we as ASP.NET programmers have to deal with every day.

Filled with lots of code, instead of endless prose like some books, this book strives to connect

the dots and make these patterns real, applicable and relevant in your daily life as a developer. In
doing so, Millett calls upon not just what comes out of the box with ASP.NET from Microsoft, but
also shows us some of the gifts that open source software has given us like Castle ActiveRecord,
StructureMap, AutoMapper, and NHibernate.

From the Gang of Four to Uncle Bob’s S.0.L.L1.D. to Fowler’s Enterprise patterns, Scott (what a
lovely name) connects timeless patterns to the timely technologies of today like jQuery and JSON,
the Entity Framework, and WCF.

I hope you enjoy reading it as much as I did.

ScoTrT HANSELMAN
Program Manager — Microsoft
http://hanselman.com and @shanselman on Twitter

INTRODUCTION

THIS BOOK IS ALL ABOUT showing you how to use the power of design patterns and core design
principles in real ASP.NET applications. The goal of this book is to educate developers on the fun-
damentals of object oriented programming, design patterns, principles, and methodologies that
can help you become a better programmer. Design patterns and principles enable loosely coupled
and highly cohesive code, which will improve your code’s readability, flexibility, and maintenance.
Each chapter addresses a layer in an enterprise ASP.NET application and shows how proven pat-
terns, principles, and best practices can be leveraged to solve problems and improve the design of
your code. In addition, a professional-level, end-to-end case study is used to show how to use best
practice design patterns and principles in a real website.

WHO THIS BOOK IS FOR

This book is for ASP.NET developers who are comfortable with the .NET framework but are looking
to improve how they code and understand why design patterns, design principles, and best practices
will make their code more maintainable and adaptable. Readers who have had experience with design
patterns before may wish to skip Part 1 of the book, which acts as an introduction to the Gang of
Four design patterns and common design principles, including the S.O.L.I1.D. principles and Martin

Fowler’s enterprise patterns. All code samples are written in C# but the concepts can be applied very
easily to VB.NET.

WHAT THIS BOOK COVERS

This book covers well-known patterns and best practices for developing enterprise-level ASP.NET
applications. The patterns used can be applied to any version of ASP.NET from 1.0 to 4.0. The patterns
themselves are language agnostic and can be applied to any object oriented programming language.

HOW THIS BOOK IS STRUCTURED

Professional ASP.NET Design Patterns can be used both as a step-by-step guide and as a continuous
source of reference to dip into at your leisure. The book is broken into three distinct sections. Part 1
is an introduction to patterns and design principles. Part 2 examines how patterns and principles can
be used in the various layers of an ASP.NET application. Part 3 represents an end-to-end case study
showcasing many of the patterns covered in the book. You may find it useful to work through the
chapters before reading the case study, or you may find it easier to see the patterns in action by read-
ing the case study section first and referring back to Part 2 for a more detailed view on the patterns
and principles used.

INTRODUCTION

Part 1: Introducing Patterns and Principles

The first part of this book begins by introducing the concepts of design patterns, enterprise patterns,
and design principles, including the S.O.L.I1.D. design principles.

Chapter 1: The Pattern for Successful Applications

This chapter explores why, as a professional developer, you need to understand design patterns and
principles, and more importantly, how to utilize them in a real-world enterprise-level application.
It covers the origins of the Gang of Four design patterns, their relevance in today’s world, and their
decoupling from specific programming languages. An overview of some common design principles
and the S.0O.L.1.D. design principles follows, and the chapter ends with a description of Fowler’s
enterprise patterns.

Chapter 2: Dissecting the Pattern’s Pattern

This chapter introduces you to the practical knowledge necessary to use a design pattern template,
and how to read the GoF design patterns using the design templates. The chapter will then teach you
how to understand the design pattern groupings and give information on knowing how to choose
and apply a design pattern. The chapter finishes with an example on refactoring existing code to use
design patterns and principles to increase maintainability.

Part 2: The Anatomy of an ASP.NET Application:
Learning and Applying Patterns

Part two of the book shows how the patterns and principles introduced in the first two chapters can
be applied to various layers of an enterprise-level ASP.NET application.

Chapter 3: Layering Your Application and Separating Your Concerns

This chapter describes the benefits of a layered design over the traditional ASP.NET web forms
code-behind model. It goes on to cover the concepts of logical layering and the separation of your
application’s concerns. The chapter then defines the responsibilities of each distinct layer in an
enterprise-level ASP.NET application that will be covered in the remaining chapters of this part.
The chapter ends with an exercise in refactoring away from the Smart Ul antipattern to a layered
architectural approach.

Chapter 4: The Business Logic Layer: Organization

This chapter covers patterns designed to organize your business logic layer. The chapter begins with
a description of the Transaction Script pattern followed by the Active Record, with an exercise to
demonstrate the pattern using the Castle Windsor project. The last pattern this chapter looks at
is the Domain Model pattern demonstrated in an exercise with NHibernate. The chapter ends with
a review of the domain-driven design (DDD) methodology and how it can be used to focus your
efforts on business logic rather than infrastructure concerns.

XXii

INTRODUCTION

Chapter 5: The Business Logic Layer: Patterns

Chapter 3, like the previous chapter, focuses on the business layer, but this time on the patterns and
principles that can be used construct your objects and how to make sure that you are building your
application for scalability and maintainability. The patterns covered include Factory, Decorator,
Template, State, Strategy, and Composite. Enterprise patterns are covered including Specification
and Layer Supertype. The chapter ends with some design principles that can improve your code’s
maintainability and flexibility; these include Dependency Injection, Interface Segregation, and
Liskov Substitution Principle.

Chapter 6: The Service Layer

This chapter covers the role that the service layer plays in an enterprise ASP.NET application. The
chapter starts with a brief look at Service Oriented Architecture and why it’s needed. The Facade
design pattern is then examined. Messaging patterns such as Document Message, Request-Response,
Reservation, and the Idempotent pattern are then covered. The chapter finishes with an exercise that
utilizes WCF to demonstrate all of the patterns covered in the chapter.

Chapter 7: The Data Access Layer

How to persist the state of your business objects with your data store is a critical part of your applica-
tion architecture. In this chapter, you will learn about design patterns utilized in this layer and how to
incorporate them. Two data access strategies are demonstrated to help organize your persistence layer:
Repository and Data Access Objects. The chapter then covers enterprise patterns and principles that
will help you fulfill your data access requirement needs elegantly, including Lazy Loading, Identity Map,
Unit of Work, and the Query Object. The chapter finishes with an introduction to Object Relational
Mappers and the problems they solve. An enterprise Domain Driven exercise with POCO business enti-
ties utilizing both NHibernate and the MS Entity Framework completes the chapter.

Chapter 8: The Presentation Layer

This chapter introduces you to patterns designed to organize the presentation logic and to keep it
separate from the other layers in your application. The chapter starts with an explanation of how you
can tie your loosely coupled code together with Structure Map, and an Inversion of Control container.
The chapter then moves on to describe a number of presentation patterns, including letting the view be
in charge with the Model-View-Presenter pattern and ASP.NET web forms, the Front Controller presen-
tation pattern utilizing the Command and Chain of Responsibility patterns, as well as the Model-View-
Controller Pattern implemented with the ASP.NET MVC framework and Windsor’s Castle Monorail
framework. The final presentation pattern covered is PageController as used in ASP.NET web forms.
The chapter ends with a pattern that can be used with organizational patterns, namely the ViewModel
pattern and how to automate domain entities to ViewModel mapping with AutoMapper.

Chapter 9: The User Experience Layer

In the final chapter of Part 2 the focus is set on the user experience layer. The chapter starts with
an explanation of what AJAX is and the technologies that make it possible. JavaScript libraries are

xxiii

INTRODUCTION

then covered to show how you can simplify working with JavaScript with powerful libraries such
as jQuery. The main part of the chapter describes some common Ajax patterns: the Ajax Periodic
Refresh and Timeout patterns, maintaining history with the Unique URL pattern, client side data
binding with JTemplate, and the Ajax Predictive Fetch pattern.

Part 3: Case Study: The Online E-Commerce Store

The final part of the book uses an end-to-end example application to demonstrate many of the pat-
terns introduced in Part 2.

Chapter 10: Requirements and Infrastructure

The first case study chapter introduces Agatha’s e-commerce store that you will build in the remain-
ing four chapters. The chapter describes the requirements for the site as well as the base infrastruc-
ture and overall architecture that will be used. ASP.MVC is used for the presentation layer with a
domain model employed for the middle layer organization and NHibernate is leveraged to persist
and retrieve business entities from the database.

Chapter 11: Creating the Product Catalog

Chapter 11 builds the product catalogue browsing functionality of the store. jQuery is heavily used
to give a rich web 2.0 look and feel. Json is utilized to communicate between the controllers and
the ASPX views to provide Ajax functionality. ViewModels are used to provide the controllers with

a flattened view of the domain. AutoMapper is employed to convert the domain entities into the
ViewModels.

Chapter 12: Implementing the Shopping Basket

In this chapter the customer’s shopping basket is implemented. The customer’s cookie is used to store
a summary of the basket contents and a service is created to abstract the access to cookie storage.
Again the web 2.0 look and feel is kept, with all actions on the basket taking place via Ajax calls.

Chapter 13: Customer Membership

Chapter 13 tackles customer membership and authentication. The ASP.NET membership provider
is used for onsite authentication but a second authentication method is used to allow customers to
authenticate with their existing web based accounts such as Facebook and Google. The customer
account screens are also developed.

Chapter 14: Ordering and Payment

The final chapter in the case study exercise sees the payment and checkout functions of the site cre-
ated. PayPal is the chosen payment merchant but the code is abstracted away so that any online pay-
ment merchant can be swapped in easily. The chapter finishes by adding the ordering history to the
customer’s account section.

XXiv

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

The pencil icon indicates notes, tips, hints, tricks, or and asides to the current
discussion.

As for styles in the text:
> We highlight new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.
» We show file names, URLs, and code within the text like so: persistence.properties.
> We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the Web site is highlighted by the
following icon:

O

Available for
download on
Wrox.com

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a code
note such as this:

Code snippet filename

XXV

INTRODUCTION

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-0-470-29278-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page, you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list, including links to each book’s errata, is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the
problem in subsequent editions of the book.

P2P.WROX.COM

XXVi

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other indus-
try experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you, not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

INTRODUCTION

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
Your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXVii

PART |
Introducing Patterns and Principles

» CHAPTER 1: The Pattern for Successful Applications

» CHAPTER 2: Dissecting the Pattern’s Pattern

The Pattern for
Successful Applications

WHAT'’S IN THIS CHAPTER?

> Anintroduction to the Gang of Four Design Patterns

> An overview of some common design principles and the SOLID
design principles

» A description of Fowlers Enterprise Patterns

John Lennon once wrote, “There are no problems, only solutions.” Now, Mr. Lennon never, to
my mind, did much in the way of ASP.NET programming; however, what he said is extremely

relevant in the realm of software development and probably humanity, but that’s a whole other
book. Our job as software developers involves solving problems — problems that other devel-
opers have had to solve countless times before albeit in various guises. Throughout the lifetime
of object-oriented programming, a number of patterns, principles, and best practices have been
discovered, named, and catalogued. With knowledge of these patterns and a common solu-

tion vocabulary, we can begin to break down complex problems, encapsulate what varies, and

develop applications in a uniformed way with tried and trusted solutions.

This book is all about introducing you to design patterns, principles, and best practices that

you can apply to your ASP.NET applications. By their very nature, patterns and principles are
language agnostic, so the knowledge gained in this book can be applied to win forms, WPF
and Silverlight applications, as well as other first-class object-oriented languages.

This chapter will cover what design patterns are, where they come from, and why it’s important to
study them. Fundamental to design patterns are solid object-oriented design principles, which will
be covered in this chapter in the form of Robert Martin’s S.O.L.1.D. principles. I will also intro-
duce you to some more advanced patterns as laid out in Martin Fowler’s Patterns of Enterprise
Application Architecture book.

4 | CHAPTER1 THE PATTERN FOR SUCCESSFUL APPLICATIONS

DESIGN PATTERNS EXPLAINED

Design patterns are high-level abstract solution templates. Think of them as blueprints for solutions
rather than the solutions themselves. You won’t find a framework that you can simply apply to your
application; instead, you will typically arrive at design patterns through refactoring your code and
generalizing your problem.

Design patterns aren’t just applicable to software development; design patterns can be found in all areas
of life from engineering to architecture. In fact, it was the architect Christopher Alexander who intro-
duced the idea of patterns in 1970 to build a common vocabulary for design discussion. He wrote:

The elements of this language are entities called patterns. Each pattern describes a
problem that occurs over and over again in our environment and then describes the
core of the solution to that problem in such a way that you can use this solution a
million times over without ever doing it the same way twice.

Alexander’s comments are just as applicable to software design as they are to buildings and town
planning.

Origins

The origins of the design patterns that are prevalent in software architecture today were born from the
experiences and knowledge of programmers over many years of using object-oriented programming lan-
guages. A set of the most common patterns were catalogued in a book entitled Design Patterns: Elements
of Reusable Object-Oriented Software, more affectionately known as the Design Patterns Bible. This
book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, better known as
the Gang of Four.

They collected 23 design patterns and organized them into 3 groups:
> Creational Patterns: These deal with object construction and referencing.

> Structural Patterns: These deal with the relationships between objects and how they interact
with each other to form larger complex objects.

> Behavioral Patterns: These deal with the communication between objects, especially in terms
of responsibility and algorithms.

Each pattern is presented in a template so readers can learn how to decipher and apply the pattern.
We will be covering the practical knowledge necessary to use a design pattern template in Chapter 2
along with a brief overview of each pattern that we will be looking at in the rest of this book.

Necessity

Patterns are essential to software design and development. They enable the expression of intent
through a shared vocabulary when problem solving at the design stage as well as within the source
code. Patterns promote the use of good object-oriented software design, as they are built around
solid object-oriented design principles.

Design Patterns Explained | 5

Patterns are an effective way to describe solutions to complex problems. With solid knowledge of
design patterns, you can communicate quickly and easily with other members of a team without
having to be concerned with the low-level implementation details.

Patterns are language agnostic; therefore, they are transferable over other object-oriented languages.
The knowledge you gain through learning patterns will serve you in any first-class object-oriented
language you decide to program in.

Usefulness

The useful and ultimate value of design patterns lies in the fact that they are tried and tested solu-
tions, which gives confidence in their effectiveness. If you are an experienced developer and have
been programming in .NET or another object-oriented language for a number of years, you might
find that you are already using some of the design patterns mentioned in the Gang of Four book.
However, by being able to identify the patterns you are using, you can communicate far more effec-
tively with other developers who, with an understanding of the patterns, will understand the structure
of your solution.

Design patterns are all about the reuse of solutions. All problems are not equal, of course, but if you can
break down a problem and find the similarities with problems that have been solved before, you can then
apply those solutions. After decades of object-oriented programming, most of the problems you’ll encoun-
ter will have been solved countless times before, and there will be a pattern available to assist in your
solution implementation. Even if you believe your problem to be unique, by breaking it down to its root
elements, you should be able to generalize it enough to find an appropriate solution.

The name of the design pattern is useful because it reflects its behavior and purpose and provides a
common vocabulary in solution brainstorming. It is far easier to talk in terms of a pattern name than
in detail about how an implementation of it would work.

What They Are Not

Design patterns are no silver bullet. You have to fully understand your problem, generalize it, and
then apply a pattern applicable to it. However, not all problems require a design pattern. It’s true
that design patterns can help make complex problems simple, but they can also make simple prob-
lems complex.

After reading a patterns book, many developers fall into the trap of trying to apply patterns to every-
thing they do, thus achieving quite the opposite of what patterns are all about — making things simple.
The better way to apply patterns, as stated before, is by identifying the fundamental problem you are
trying to solve and looking for a solution that fits it. This book will help with the identification of when
and how to use patterns and goes on to cover the implementation from an ASP.NET point of view.

You don’t always have to use design patterns. If you have arrived at a solution to a problem that is
simple but not simplistic and is clear and maintainable, don’t beat yourself up if it doesn’t fit into
one of the 23 Gang of Four design patterns. Otherwise, you will overcomplicate your design.

This talk of patterns might seem rather vague at the moment, but as you progress through the book,
you will learn about the types of problems each pattern was designed to solve and work through imple-
mentations of these patterns in ASP.NET. With this knowledge, you can then apply the patterns to your
applications.

6 | CHAPTER1 THE PATTERN FOR SUCCESSFUL APPLICATIONS

DESIGN PRINCIPLES

Design principles form the foundations that design patterns are built upon. They are more funda-
mental than design patterns. When you follow proven design principles, your code base becomes
infinitely more flexible and adaptable to change, as well as more maintainable. I will briefly intro-
duce you to some of the more widely known design principles and a series of principles known as the
S.O.L.L.D. principles. Later in the book we will look at these principles more deeply and implement
them and best practices in ASP.NET.

Common Design Principles

There are a number of common design principles that, like design patterns, have become best practice
over the years and helped to form a foundation onto which enterprise-level and maintainable software
can be built. The following sections preview some of the more widely known principles.

Keep It Simple Stupid (KISS)

An all-too-common issue in software programming is the need to overcomplicate a solution. The goal
of the KISS principle is concerned with the need to keep code simple but not simplistic, thus avoiding
any unnecessary complexities.

Don’t Repeat Yourself (DRY)

The DRY principle aims to avoiding repetition of any part of a system by abstracting out things that
are common and placing those things in a single location. This principle is not only concerned with
code but any logic that is duplicated in a system; ultimately there should only be one representation
for every piece of knowledge in a system.

Tell, Don’t Ask

The Tell, Don’t Ask principle is closely aligned with encapsulation and the assigning of responsi-
bilities to their correct classes. The principle states that you should to tell objects what actions you
want them to perform rather than asking questions about the state of the object and then making
a decision yourself on what action you want to perform. This helps to align the responsibilities and
avoid tight coupling between classes.

You Ain’t Gonna Need It (YAGNI)

The YAGNI principle refers to the need to only include functionality that is necessary for the applica-
tion and put off any temptation to add other features that you may think you need. A design meth-
odology that adheres to YAGNI is test-driven development (TDD). TDD is all about writing tests

that prove the functionality of a system and then writing only the code to get the test to pass. TDD is
discussed a little later in this chapter.

Separation of Concerns (SoC)

SoC is the process of dissecting a piece of software into distinct features that encapsulate unique behav-
ior and data that can be used by other classes. Generally, a concern represents a feature or behavior of

Design Principles | 7

a class. The act of separating a program into discrete responsibilities significantly increases code reuse,
maintenance, and testability.

The remainder of this book refers back to these principles so you can see how they are implemented
and help form clean and maintainable object-oriented systems. The next group of design principles
you will look at were collected together under the grouping of the S.O.L.I.D. design principles.

The S.O.L.1.D. Design Principles

The S.O.L.1.D. design principles are a collection of best practices for object-oriented design. All
of the Gang of Four design patterns adhere to these principles in one form or another. The term
S.0.L.1.D. comes from the initial letter of each of the five principles that were collected in the book
Agile Principles, Patterns, and Practices in C# by Robert C. Martin, or Uncle Bob to his friends.
The following sections look at each one in turn.

Single Responsibility Principle (SRP)

The principle of SRP is closely aligned with SoC. It states that every object should only have one
reason to change and a single focus of responsibility. By adhering to this principle, you avoid the
problem of monolithic class design that is the software equivalent of a Swiss army knife. By having
concise objects, you again increase the readability and maintenance of a system.

Open-Closed Principle (OCP)

The OCP states that classes should be open for extension and closed for modification, in that you
should be able to add new features and extend a class without changing its internal behavior. The
principle strives to avoid breaking the existing class and other classes that depend on it, which
would create a ripple effect of bugs and errors throughout your application.

Liskov Substitution Principle (LSP)

The LSP dictates that you should be able to use any derived class in place of a parent class and have it
behave in the same manner without modification. This principle is in line with OCP in that it ensures
that a derived class does not affect the behavior of a parent class, or, put another way, derived classes
must be substitutable for their base classes.

Interface Segregation Principle (ISP)

The ISP is all about splitting the methods of a contract into groups of responsibility and assigning
interfaces to these groups to prevent a client from needing to implement one large interface and a
host of methods that they do not use. The purpose behind this is so that classes wanting to use the
same interfaces only need to implement a specific set of methods as opposed to a monolithic inter-
face of methods.

Dependency Inversion Principle (DIP)

The DIP is all about isolating your classes from concrete implementations and having them depend on
abstract classes or interfaces. It promotes the mantra of coding to an interface rather than an imple-
mentation, which increases flexibility within a system by ensuring you are not tightly coupled to one
implementation.

8 | CHAPTER1 THE PATTERN FOR SUCCESSFUL APPLICATIONS

Dependency Injection (DI) and Inversion of Control (loC)

Closely linked to the DIP are the DI principle and the IOC principle. DI is the act of supplying a low
level or dependent class via a constructor, method, or property. Used in conjunction with DI, these
dependent classes can be inverted to interfaces or abstract classes that will lead to loosely coupled
systems that are highly testable and easy to change.

In [oC, a system’s flow of control is inverted compared to procedural programming. An example of
this is an IoC container, whose purpose is to inject services into client code without having the client
code specifying the concrete implementation. The control in this instance that is being inverted is the
act of the client obtaining the service.

Throughout this book, you will examine each of the S.O.L.1.D. principles in more detail. Next, how-
ever, you will investigate some enterprise-level patterns designed to deal with specific scenarios that
are built upon common design principles and design patterns.

FOWLER’S ENTERPRISE DESIGN PATTERNS

Martin Fowler’s Patterns of Enterprise Application Architecture book is a best practice and pat-
terns reference for building enterprise-level applications. As with the GoF patterns book, experienced
developers will no doubt already be following many of the catalogued patterns. The value in Fowler’s
work, however, is the categorization of these patterns along with a common language for describing
them. The book is split into two sections. The first half deals with n-tier applications and the organiz-
ing of data access, middleware, and presentation layers. The second half is a patterns reference rather
like the GoF patterns book but more implementation specific.

Throughout this book, you will be looking at the ASP.NET implementations of Fowler’s patterns.
The following sections examine what the rest of the book will tackle.

Layering

Chapter 3 covers the options at your disposal to layer an enterprise ASP.NET application. You will
look at the problems with the traditional code behind the model of web forms, and how to separate
the concerns of presentation, business logic, and data access with a traditional layered approach.

Domain Logic Patterns

Chapter 4 examines three popular methods for organizing your business logic: Transaction Script,
Active Record, and Domain Model.

Transaction Script

Transaction Script is the organization of business logic in a linear, procedural fashion. It maps fine-
grained business use cases to fine-grained methods.

Active Record

Active Record organizes business logic in a way that closely matches the underlying data structure,
namely an object that represents a row in a table.

Fowler’s Enterprise Design Patterns | 9

Domain Model

The Domain Model pattern is an abstraction of real domain objects. Both data and behavior are
modeled. Complex relationships between objects can exist that match the real domain.

You will look at how to use each of these patterns in ASP.NET and when it is appropriate to choose
one pattern over another.

Object Relational Mapping

In Chapter 7 your attention will turn to how you can persist the state of our business entities as well
as how you can retrieve them from a data store. You will look at the enterprise patterns required for
the infrastructure code to support persistence, including the patterns introduced in the following
sections.

Unit of Work

The Unit of Work pattern is designed to maintain a list of business objects that have been changed
by a business transaction, whether that be adding, removing, or updating. The Unit of Work then
coordinates the persistence of the changes as one atomic action. If there are problems, the entire
transaction rolls back.

Repository

The Repository pattern, by and large, is used with logical collections of objects, or aggregates as they
are better known. It acts as an in-memory collection or repository for business entities, completely
abstracting away the underlying data infrastructure.

Data Mapper

The Data Mapper pattern is used to hydrate an object from raw data and transfer information from
a business object to a database. Neither the business object nor the database is aware of the other.

Identity Map

An Identity Map keeps tabs on every object loaded from a database, ensuring everything is loaded
only once. When objects are subsequently requested, the Identity Map is checked before retrieving
from the database.

Lazy Loading

Lazy or deferred loading is the act of deferring the process of obtaining a resource until it’s needed.
If you imagine a Customer object with an address book, you could hydrate the customer from the
database but hold the population of the address book until the address book is needed. This enables
the on-demand loading of the address book, thus avoiding the hit to the database if the address data
is never needed.

Query Object

The Query Object pattern is an implementation of a Gang of Four interpreter design pattern. The query
object acts as an object-oriented query that is abstracted from the underlying database, referring to

10 | CHAPTER1 THE PATTERN FOR SUCCESSFUL APPLICATIONS

properties and classes rather than real tables and columns. Typically, you will also have a translator
object to generate the native SQL to query the database.

Web Presentation Patterns

In Chapter 8, you will turn your attention to the presentation needs of enterprise-level ASP.NET appli-
cations. The chapter focuses on patterns designed to keep business logic separate from presentation
logic. First you will look at the problems with the code behind model that was prominent in early web
forms development; then you will investigate patterns that can be used to keep domain and presenta-
tion logic separate, as well as allowing the presentation layer to be effectively tested.

Each of these patterns is tasked with separating the concerns of presentation logic with that of busi-
ness logic. The patterns covered for ASP.NET presentation needs are:

> Model-View-Presenter

> Model-View-Controller
> Front Controller
>

Page Controller

Base, Behavioral, and Structural Patterns

Throughout the book, you will be seeing how to leverage other enterprise patterns found in Fowler’s
book in enterprise ASP.NET applications. These patterns will include Null Object, Separated
Interface, Registry, and Gateway.

Null Object Pattern

Also known as the Special Case pattern, this acts as a return value rather than returning null to
the calling code. The null object will share the same interface or inherit from the same base class
as the expected result, which alleviates the need to check for null cases throughout the code base.

Separated Interface

The Separated Interface pattern is the act of keeping the interfaces in a separate assembly or namespace
to the implementations. This ensures that the client is completely unaware of the concrete implementa-

tions and can promote programming to abstractions rather than implementations and the Dependency

Inversion principle.

Gateway

The Gateway pattern allows clients to access complex resources via a simplified interface. The Gateway
object basically wraps the resource API into a single method call that can be used anywhere in the
application. It also hides any API complexities.

All of the enterprise patterns introduced here will be covered in more detail throughout the book

with exercises to see how they are implemented in an ASP.NET scenario. The next section wraps up
the chapter with a brief look at design methodologies and practices that use the patterns and prin-

ciples you have been introduced to in this chapter.

Other Design Practices of Note | 11

OTHER DESIGN PRACTICES OF NOTE

In addition to the design patterns, principles, and enterprise patterns that have been covered so far, I
would like to introduce you to a few design methodologies: test-driven development, behavior-driven
development, and domain-driven development. This section won’t cover these topics deeply because
they are out of the scope of this book. However, the sample code featured in each of the chapters to
demonstrate patterns and principles that you can download from www.wrox.com has been designed
using these methodologies.

Test-driven Development (TDD)

Contrary to the name, TDD is more of a design methodology than a testing strategy; the name simply
just doesn’t do it justice. The main concept behind it is to allow your tests to shape the design of a sys-
tem. When creating a software solution you start by writing a failing test to assert some business logic.
Then you write the code to get that test to pass; last, you clean up any code via refactoring. This series
of steps has been coined the red-green-refactor. The red and green refer to the colors that testing frame-
works use to show tests passing and failing.

By going through the process of TDD, you end up with a loosely coupled system with a suite of tests
that confirm all behavior. A byproduct of TDD is that your tests provide a sort of living documenta-
tion that describes what your system can and can’t do. Because it is part of the system, the tests will
never go out of date, unlike written documentation and code comments.

For more information on TDD, take a look at these books:
> Test Driven Development: By Example by Kent Beck
> The Art of Unit Testing: With Examples in .NET by Roy Osherove
> Professional Enterprise .NET by Jon Arking and Scott Millett (published by Wrox)

Domain-driven Design (DDD)

In a nutshell, DDD is a collection of patterns and principles that aid in your efforts to build applica-
tions that reflect an understanding of and meet the requirements of your business. Outside of that, it’s
a whole new way of thinking about your development methodology. DDD is about modeling the real
domain by fully understanding it first and then placing all the terminology, rules, and logic into an
abstract representation within your code, typically in the form of a domain model. DDD is not a frame-
work, but it does have a set of building blocks or concepts that you can incorporate into your solution.

You’ll use this methodology when you build the case study application in Chapters 10 and 11. Some
of the deeper aspects of DDD are examined in Chapter 4.

For more information on DDD, take a look at these books:
> Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans

> Applying Domain-Driven Design and Patterns: With Examples in C# and .NET by Jimmy
Nilsson

» .NET Domain-Driven Design with C#: Problem - Design - Solution by Tim McCarthy

12 | CHAPTER1 THE PATTERN FOR SUCCESSFUL APPLICATIONS

Behavior-driven Design (BDD)

You can think of BDD as an evolution of TDD merged with DDD. BDD focuses on the behavior of a
system rather than just testing it. The specifications created when using BDD use the same ubiquitous
language as seen in the real domain, which can be beneficial for both technical and business users.

The documentation that is produced when writing specifications in BDD gives readers an idea of how
a system will behave in various scenarios instead of simply verifying that methods are doing what they
are supposed to. BDD is intended to meet the needs of both business and technical users by mixing in
aspects of DDD with core TDD concepts. BDD can be performed using standard unit testing frame-
works, but specific BDD frameworks have emerged, and BDD looks to be the next big thing.

Again, if you download from www.wrox.com the code for the case study you will build in Chapters 10 and
11, you will find BDD specifications written to demonstrate the behavior of the system. Unfortunately, at
the time of writing, there were no books on the subject of BDD. Therefore, my advice is to search for as
much information on the Internet as possible on this great methodology.

SUMMARY

In this chapter, you were introduced to a series of design patterns, principles, and enterprise patterns
that can be leveraged in ASP.NET applications.

» The Gang of Four patterns are 23 patterns catalogued into a book known as the Design Patterns
Bible. These design patterns are solution templates to common recurring problems. They can also
be used as a shared vocabulary in teams when discussing complex problems.

> Robert Martin’s S.O.L.1.D. design principles form the foundations to which many design
patterns adhere. These principles are intended to promote object-oriented systems that are
loosely coupled, highly maintainable, and adaptable to change.

> Fowler’s enterprise patterns are designed to be leveraged in enterprise-level applications. They
include patterns to organize business logic, patterns to organize presentation logic, patterns to
organize data access, as well as a host of base patterns that you can use throughout a system.

The introduction to these patterns and principles has been fairly high level, but as you progress
through the book, you will find a deeper explanation of all of the concepts discussed in this chapter,
and ASP.NET implementations from real-world scenarios that you can hopefully relate to and apply
in your systems to solve problems.

The next chapter takes a closer look at the Gang of Four patterns that will be covered in this book.
You will be introduced to the practical knowledge necessary to use a design pattern template and
how to read a pattern.

Dissecting the Pattern’s Pattern

WHAT’S IN THIS CHAPTER?

How to read GoF design patterns using the design templates
Learning and understanding the design pattern groupings

Knowing how to choose and apply a design pattern

Y Y VY Y

A quick example on refactoring existing code to use design patterns
and principles to increase maintainability

Many books on the market give an overview and a template for individual design patterns but
leave it up to the developer to learn how to decipher and apply the pattern. In this chapter, you
will gain the practical knowledge necessary to use a design pattern solution template and apply
it to your code base. You will then learn about the 23 design patterns and the groups they
belong to. Finally, you will run through a quick exercise in which you will implement some
design principles and patterns that you have read about.

HOW TO READ DESIGN PATTERNS

In the original design patterns book by the Gang of Four, each pattern was presented in a
pattern template. The idea behind the pattern template was to enable the reader to decipher
a pattern and learn about what set of problems it was designed to solve. In this book, I use a
simplified version of the GoF pattern template to describe the GoF patterns, Fowler’s enter-
prise patterns, and the S.O.L.1.D. design principles.

14 | CHAPTER2 DISSECTING THE PATTERN’S PATTERN

Gang of Four Pattern Template

The GoF book described each pattern using the following template:

>

Pattern Name and Classification: The Pattern Name is important because it helps to form the
common pattern vocabulary. The Classification defines the job of the pattern, be it Creational,
Structural, or Behavioral. These classifications are examined in more detail later in this chapter.

Intent: The Intent section reveals the problems that the pattern sets out to solve and why it
is useful.

Also Known As: The Also Known As section details the other names that some patterns are
known as.

Motivation: The Motivation section describes a problem scenario and how to use a design
pattern to solve it.

Applicability: The Applicability section lists the situations when it is advantageous to apply
the design pattern.

Structure: The Structure section is a graphical representation of the pattern, including the col-
laborations and relationships between objects. Typically this is shown as a UML diagram.

Participants: The Participants are all the objects involved in the design pattern.

Collaborations: The Collaborations section details how the participants work together to form
the design pattern.

Consequences: The Consequences section lists any benefits and liabilities caused when imple-
menting the design pattern.

Implementations: The Implementations section details any gotchas and best practices when
implementing the design pattern.

Sample Code: The Sample Code section shows an implementation of the design pattern.

Known Uses: The Known Uses section shows implementations of the pattern in real-life
applications.

Related Patterns: The Related Patterns section lists other patterns that collaborate or work
well with the design pattern.

Simplified Template

To avoid duplicating what the GoF book already does and to present the design patterns, enterprise
patterns, and design principles in a more concise and standard format, I will be using a simplified
pattern template as set out next.

Name and Intent

As with the GoF section with the same name, the Name and Intent section will reflect the purpose
of the pattern or principle, its uses, the benefits it can have on your application, as well as the moti-
vation behind using the pattern or principle.

Design Pattern Groups | 15

UML Diagram

Where applicable, a UML diagram will show a graphical representation of the pattern or principle
structure. A graphical representation will display the generic solution template as well as an imple-
mentation detailed in the code example.

Code Example

To really understand a design pattern or principle, it’s important to see an implementation of it. The
code example will be specific to ASP.NET in its content and will be pulled from real-life projects, not
Hello World samples.

There will be an enterprise-level case study in the third part of this book so you can see how to use
design patterns in all aspects of an application. Now that you understand how the design patterns
will be presented to you and how you can read them, you can start to look in more detail at the
groups of patterns that the GoF covers.

DESIGN PATTERN GROUPS

Twenty-three design patterns are featured in the GoF design patterns book, falling within one of
three subgroups: Creational, Structural, or Behavioral. This section will take a quick look at each
group and the patterns within. Throughout this book, you will examine the patterns that are useful
for ASP.NET development.

Creational

Creational patterns deal with object construction and referencing. They abstract away the respon-
sibility of instantiating instances of objects from the client, thus keeping code loosely coupled and
the responsibility of creating complex objects in one place adhering to the Single Responsibility and
Separation of Concerns principles.

Following are the patterns in the Creational group:
> Abstract Factory: Provides an interface to create families of related objects.

> Factory: Enables a class to delegate the responsibility of creating a valid object. This pattern
is covered in Chapter 5.

> Builder: Enables various versions of an object to be constructed by separating the construc-
tion for the object itself.

> Prototype: Allows classes to be copied or cloned from a prototype instance rather than creat-
ing new Instances.

> Singleton: Enables a class to be instantiated once with a single global point of access to it.

Structural

Structural patterns deal with the composition and relationships of objects to fulfill the needs of
larger systems.

16 | CHAPTER2 DISSECTING THE PATTERN'S PATTERN

Following are the patterns in the Structural group:

> Adapter: Enables classes of incompatible interfaces to be used together. This pattern is covered
in this chapter.

> Bridge: Separates an abstraction from its implementation, allowing implementations and
abstractions to vary independently of one another.

> Composite: Allows a group of objects representing hierarchies to be treated in the same way
as a single instance of an object. This pattern is covered in Chapter 5.

> Decorator: Can dynamically surround a class and extend its behavior. This pattern is covered
in Chapter 5.

> Facade: Provides a simple interface and controls access to a series of complicated interfaces
and subsystems. This pattern is covered in Chapter 6.

> Flyweight: Provides a way to share data among many small classes in an efficient manner.

> Proxy: Provides a placeholder to a more complex class that is costly to instantiate. This pattern
is covered in Chapter 7.

Behavioral

Behavioral patterns deal with the communication between objects in terms of responsibility and
algorithms. The patterns in this group encapsulate complex behavior and abstract it away from the
flow of control of a system, thus enabling complex systems to be easily understood and maintained.

Following are the patterns in the Behavioral group:

>

Chain of Responsibility: Allows commands to be chained together dynamically to handle a
request. This pattern is covered in Chapter 9.

Command: Encapsulates a method as an object and separates the execution of a command
from its invoker. This pattern is covered in Chapter 9.

Interpreter: Specifies how to evaluate sentences in a language.
Iterator: Provides a way to navigate a collection in a formalized manner.

Mediator: Defines an object that allows communication between two other objects without
them knowing about one another.

Memento: Allows you to restore an object to its previous state.
Observer: Defines the way one or more classes can be alerted to a change in another class.

State: Allows an object to alter its behavior by delegating to a separate and changeable state
object. This pattern is covered in Chapter 5.

Strategy: Enables an algorithm to be encapsulated within a class and switched at run time to
alter an object’s behavior. This pattern is covered in Chapter 5.

Template Method: Defines the control of flow of an algorithm but allows subclasses to over-
ride or implement execution steps. This pattern is covered in Chapter 5.

Visitor: Enables new functionality to be performed on a class without affecting its structure.

How to Choose and Apply a Design Pattern | 17

You should now understand the role of each of the GoF patterns. You will examine many of these
patterns in greater detail in the remainder of this book. With such a large menu to choose from,
it’s important to understand how to go about selecting and applying the most appropriate pattern
for your problem. This is exactly what you will learn about in the next section.

HOW TO CHOOSE AND APPLY A DESIGN PATTERN

You can choose from many design patterns, so how do you identify which one is appropriate for
your problem? To know which design pattern to use and how to apply the solution template to your
specific problem, it’s important to understand these guidelines.

>

You can’t apply patterns without knowing about them. The first important step is to expand
your knowledge and study patterns and principles both in the abstract and concrete form. You
can implement a pattern in many ways. The more you see different implementations of patterns,
the more you will understand the intent of the pattern and how a single pattern can have varying
implementations.

Do you need to introduce the complexity of a design pattern? It’s common for developers to
try to use a pattern to solve every problem when they are studying patterns. You always need
to weigh the upfront time needed to implement a pattern for the benefit that it’s going to give.
Remember the KISS principle: Keep It Simple, Stupid.

Generalize your problem; identify the issues you’re facing in a more abstract manner. Look
at how the intent of each pattern and principle is written, and see if your problem fits with
the problem that a particular pattern or principle is trying to solve. Remember that design
patterns are high-level solutions; try to abstract your problem, and don’t focus too hard on
the details of your specific issue.

Look at patterns of a similar nature and patterns in the same group. Just because you have
used a pattern before doesn’t mean it will always be the correct pattern choice when solving
a problem.

Encapsulate what varies. Look at what will likely change with your application. If you know
that a special offer discount algorithm will change over time, look for a pattern that will help
you change it without impacting the rest of your application.

After you have chosen a design pattern, ensure that you use the language of your pattern along
with the language of the domain when naming the participants in a solution. For example, if
you are using the strategy pattern to provide a solution for costing various shipping couriers,
name them accordingly, such as FedExshippingCostStrategy. By using the pattern’s com-
mon vocabulary along with the language of your domain, you will immediately make your
code more readable and understandable to other developers with patterns knowledge.

When it comes to design patterns, there is no substitute for studying. The more you know about each of
the design patterns, the better equipped you will be at applying them. Scan the intent of each pattern to
refresh your memory when you have a problem and are looking for a solution.

A great learning exercise is to try to identify patterns in the .NET Framework. For example,
the ASP.NET Cache uses the Singleton pattern; creating a new Guid uses the Factory pattern; the
NET 2 XML classes use the Factory pattern whereas version 1.0 did not.

18 | CHAPTER2 DISSECTING THE PATTERN'S PATTERN

By now you should have an understanding of how to read and decipher a design pattern, an overview of
the list of design patterns, and the knowledge of how to choose and apply a pattern. To help the cement
this knowledge and make the abstract talk of patterns into something more concrete, you will walk
through a quick example to see how you can apply design patterns and principles to legacy code.

A QUICK PATTERN EXAMPLE

It’s all well and good to talk about how great patterns and principles are, but it’s important to see them
in action. With this in mind, this section examines how a simple piece of ASP.NET code that you have
probably seen countless times before can be improved with the use of patterns and design principles.

You are going to look at a section of code that you (wroduccservice @ _ “ProductRepository (3
. Class. 4 _produrtRepnsitory ass
might find in a typical e-commerce application —

1 : = Mothods " | & Methods
sp.ec1.ﬁcall}.7, the code that retrieves all products S s [e
within a given category. Figure 2-1 shows a class | # productservice . J

diagram containing a ProductService class with
the single GetAl1ProductsIn method, a Product
class that represents the store’s products, and a |
ProductRepository class that is used to retrieve

products from a database.

%)

| Product
sz

FIGURE 2-1

The job of the Productservice class is to coordinate the retrieval of a list of products from the reposi-
tory for a given category ID and then store the results in cache so the next call can be executed faster.

Before going any further, you need to build the classes and look at the code.

1. Fire up Visual Studio and create a new solution named ASppatterns.Chap2, as shown in
Figure 2-2.

2. Add a new C# Class Library project to this solution by selecting File = Add = New Project,
and name the project ASPPatterns.Chap2.Service. Delete the Class1.cs class file that
visual studio creates for you by default.

3. Add a new class to the project named Product:

public class Product
{
}

4. Add anew class to the project named ProductRepository with the following code listing:

public class ProductRepository
{
public IList<Product> GetAllProductsIn(int categoryId)

{
IList<Product> products = new List<Product>();

// Database operation to populate products ..

return products;

A Quick Pattern Example | 19

5.

New Project

Eraject types:

Smart Devire
14 Office

Database
Repurliny
Starter Kits
Test
WCF
“orkFlow

- Visual C#

- Wisual C++

&= Cther Project Types
Selup ared Depluyment

it d

-

Yisual Studio i i

.NET Framcwork 3.5 | E |Ei

- =y
Ly Blank Zolution
My Templates

L:ﬂs:arch Onfine Templates...

[]add to Source Contral

| Lreate an empty solution ¢ 0 prajects |
Hame: | aspeatterns. chap2l |
| cprojects|, ¥ [(erowss... |

FIGURE 2-2

Add the Productservice class with the following definition. You also need to add a reference
to the System.Web namespace because this class deals with the HTTP context cache API:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Web;

namespace ASPPatterns.Chap2.Service
{
public class ProductService

{

private ProductRepository _productRepository;

public ProductService ()

{

_productRepository = new ProductRepository();

public IList<Product> GetAllProductsIn(int categoryId)

{

IList<Product> products;

string storageKey = string.Format (
"products_in_category_id_{0}", categoryId);

products = (List<Product>)HttpContext.Current.Cache.Get (storageKey) ;

if (products == null)
{

products = _productRepository.GetAllProductsIn(categoryId) ;
HttpContext.Current.Cache.Insert (storagekKey, products);

20 | CHAPTER2 DISSECTING THE PATTERN’S PATTERN

return products;

The Product and ProductRepository classes don’t require any explanation because they are simple
placeholders in this scenario. The Productservice single method is straightforward and it simply
coordinates the retrieval of products from the cache, and in the event of the cache being empty, the
retrieval of products from the repository and the insertion into the cache.

So what’s wrong with the current codebase?

> The ProductService depends on the ProductRepository class. If the ProductRepository
class changes its API, changes are going to need to be made in the ProductService class.

> The code is untestable. Without having a real ProductRepository class connecting to a real
database, you’re unable to test the ProductsService’s method because of the tight coupling
that exists between these two classes. Another problem related to testing is the dependency
on the HTTP context for use in the caching of the products. It is hard to test code that is so
tightly coupled to HTTP context.

> You’re stuck with the HTTP context for caching. In its current state, using a different cache
storage provider such as Velocity or Memcached would require altering of the Productservice
class and any other class that uses caching. Velocity and Memcached are both distributed mem-
ory object caching systems that can be used in place of ASP.NET’s default caching mechanism.

Now that you know what’s wrong with the code, you can look at fixing it.

Refactoring to Principles

First, consider the problem of the Productservice class dependency on the ProductRepository class. In
its current state, the ProductService class is fragile; if the API of the ProductRepository class changes,
the Productservice class might need to be modified. This breaks the separation of concerns and single
responsibility principle.

The Dependency Inversion Principle

Depend on abstractions, not on concretions.

We can employ the Dependency Inversion principle to decouple the Productservice class from the
ProductRepository by having both depend on an abstraction — an interface. Open the Product
Repository class, right-click on the class name, and select Refactor & Extract Interface from the con-
text menu that appears. When the Extract Interface dialog appear, check the box next to the method
name to ensure that it is included in the interface, and click OK. A new interface is created for you
named TProductRepository. Clean up the code produced by including the System.Collections.Generic

A Quick Pattern Example | 21

namespace as a using statement and marking the interface as public, which can be seen in the following
code listing:

using System;
using System.Collections.Generic;

namespace ASPPatterns.Chap2.Service
{
public interface IProductRepository

{
IList<Product> GetAllProductsIn(int categoryId);

The ProductRepository class is amended to implement the newly created interface, like so:

public class ProductRepository : IProductRepository

{
public IList<Product> GetAllProductsIn(int categoryId)
{

IList<Product> products = new List<Product>();
// Database operation to populate products ..

return products;

The last thing you need to do is update the Productservice class to ensure that it references the
interface rather than the concrete implementation:

public class ProductService
{
private IProductRepository _productRepository;

public ProductService()
{

_productRepository = new ProductRepository();

public IList<Product> GetAllProductsIn(int categoryId)
{

What have you achieved by introducing a new interface? The Productservice class now depends
only on an abstraction rather than a concrete implementation; this means that the Productservice

class is completely ignorant of any implementation, ensuring that it is less fragile and the code base
as a whole is less resilient to change.

22 | CHAPTER2 DISSECTING THE PATTERN'S PATTERN

However, there is one slight problem: the Productservice class is still responsible for creating the con-
crete implementation and currently it is impossible to test the code without a valid ProductRepository
class. Dependency Injection can help here.

The Dependency Injection Principle

The ProductService class is still tied to the concrete implementation of the ProductRepository
because it’s currently the job of the Productservice class to create the instance. This can be seen in
the Productservice class constructor. Dependency Injection can move the responsibility of creating
the ProductRepository implementation out of the Productservice class and having it injected via
the class’s constructor, as can be seen in the following code listing:

public class ProductService
{
private IProductRepository _productRepository;

public ProductService (IProductRepository productRepository)
{
_productRepository = productRepository;

public IList<Product> GetAllProductsIn(int categoryId)
{

This enables a substitute to be passed to the Productservice class during testing, which enables you
to test the ProductService class in isolation. By removing the responsibility of obtaining dependen-
cies from the ProductService, you are ensuring that the Productservice class adheres to the Single
Responsibility principle: it is now only concerned with the coordinating of retrieving data from the
cache or repository and not for creating the concrete TProductRepository implementation.

Dependency Injection comes in three flavors: Constructer, Method, and Property. You have just used
Constructor Injection. Dependency Injection is explored in more depth later in the book.

The last thing you need to do is sort out the dependency on the HTTP context for your caching
requirements. For this you will employ the services of a simple design pattern.

Refactoring to the Adapter Pattern

Because you don’t own the source code to the HTTP context class, you can’t simply create an inter-
face for it and have it implement it like you did for the ProductRepository class. Luckily, this type
of problem has been solved countless times before, and there is a design pattern to help you out. The
Adapter pattern basically translates one interface for a class into a compatible interface, so you can
apply this pattern to change the HTTP context caching API into a compatible API that you want to
use. Then you can inject this via an interface into the Productservice class using the Dependency
Injection principle.

A Quick Pattern Example | 23

Create a new interface named TCacheStorage with the following contract:

public interface ICacheStorage

{
void Remove (string key) ;
void Store(string key, object data);
T Retrieve<T>(string key);

Now that you have the new interface, you can update the ProductService class to use it instead of
the HTTP context implementation:

public class ProductService

{
private IProductRepository _productRepository;
private ICacheStorage _cacheStorage;

public ProductService (IProductRepository productRepository,
ICacheStorage cacheStorage)

_productRepository = productRepository;
_cacheStorage = cacheStorage;

public IList<Product> GetAllProductsIn(int categoryId)
{
IList<Product> products;
string storageKey = string.Format (
"products_in_category_id_{0}", categoryId);
products = _cacheStorage.Retrieve<List<Product>> (storageKey);

if (products == null)
products = _productRepository.GetAllProductsIn(categoryId);

_cacheStorage.Store(storageKey, products);

return products;

The problem now is that the HTTP Context Cache API can’t implicitly implement the new
ICacheStorage interface. How can the Adapter pattern help you out of this pickle?

The intent of the Adapter design pattern as stated by the Gang of Four is as follows:

Converts the interface of a class into another interface clients expect.
That sounds like exactly what you’re after.

Figure 2-3 shows the UML representation of the Adapter pattern.

24 | CHAPTER2 DISSECTING THE PATTERN’S PATTERN

Client Target
target
+Operation()
Adapater Adaptee
adaptee
+Operation() +SpecificOperation()
FIGURE 2-3

As you can see in Figure 2-3, a client has a reference to an abstraction — the Target. In this case
this is the TcacheStorage interface. The Adapter is an implementation of the Target interface and
simply delegates the operation method to the Adaptee, which runs its own SpecificOperation
method. You can see that the adapter simply wraps an instance of the adaptee and delegates the
work off to it while implementing the contract of the Target interface.

Take a look at what the UML looks like for this specific problem. Figure 2-4 shows the classes you
have and the adapter class you need to implement the Adapter pattern with the HTTP context

cache API.
ICacheStorage
ProductService

> +Retrieve()
+Store()
+Remove()
HttpContextCacheAdapter HttpContext
+Retrieve() > +Get()
+Store() +Insert()
+Remove() +Remove()

FIGURE 2-4

In Figure 2-4, you can see that a new class — HttpContextCacheAdapter — is needed. This class is
a wrapper for the HTTP context cache and delegates work to its methods.

To implement the Adapter pattern, you need to create the missing Ht tpContextCacheAdapter, so
add a new class named HttpContextCacheaAdapter with the following definition to the project:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

A Quick Pattern Example | 25

using System.Web;

namespace ASPPatterns.Chap2.Service

{
public class HttpContextCacheAdapter : ICacheStorage

{

public void Remove (string key)

{
HttpContext.Current.Cache.Remove (key) ;

}

public void Store(string key, object data)

{
HttpContext.Current.Cache.Insert (key, data);

}

public T Retrieve<T>(string key)

{
T itemStored = (T)HttpContext.Current.Cache.Get (key);

if (itemStored == null)
itemStored = default(T);

return itemStored;

It is now easy to implement a new caching solution without affecting any existing code. For instance, if
you wanted to use Memcached or MS Velocity, all you would need to do is create an adapter that allows
the Productservice class to interact with the caching storage provider via the common ICacheStorage

interface.

The Adapter pattern is deceptively simple; its sole purpose is to let classes with incompatible inter-
faces work together.

The adapter isn’t the only pattern that can help with caching data. You will be looking at how the
Proxy design pattern can help with caching later in the case study in Chapter 11.

Leveraging Enterprise Patterns

In the current design, to use the Productservice class you always have to provide the constructor
with an implementation of TCacheStorage, but what if you don’t want to cache data? One option is to
provide a null reference, but that would mean littering the code with checks for a null 1cachestorage
implementation. A far better way is to use the Null Object pattern for these special cases.

Null Object Pattern

The Null Object pattern, sometimes called the Special Case pattern, is another deceptively simple

pattern. It’s useful when you don’t want to specify or can’t specify a valid instance of a class, and

you don’t really want to pass around a nul1l reference. The role of the nul1 object is to replace the
null reference and implement the same interface but with no behavior.

26 | CHAPTER2 DISSECTING THE PATTERN’S PATTERN

Here’s how the Null Object pattern can help if you don’t want to cache data in the Productservice
class. Add a new class to the project named NullobjectcCache with the following definition:

public class NullObjectCache : ICacheStorage
) {
public void Remove (string key)
Available for {
download on .
Wrox.com // Do nothing

}

public void Store(string key, object data)
{

// Do nothing
}

public T Retrieve<T> (string storageKey)

{
return default(T);

Code file NullObjectCache.cs in project ASPPatterns.Chap2.Service

The NullobjectCache can now be passed to the ProductService. When asked to cache data,
it will do nothing and will always return null to the ProductService, ensuring no data will be
cached.

In the code download that accompanies this book, you will find a second project of unit tests using
the N'Unit framework that verify the behavior of the Productservice class.

SUMMARY

This chapter delved a little deeper into the world of design patterns. Here’s a recap of what was
covered.

The chapter began with a discussion on how to read design patterns. You looked at the pattern
template the GoF uses to describe each pattern in a consistent manner. You then discussed the
more concise template that will be used to describe the patterns and principles that will be pre-
sented in the rest of this book.

The GoF design patterns belong to one of three groups: Creational, Structural, or Behavioral. Creational
design patterns deal with the responsibility of constructing objects; Structural design patterns are con-
cerned with getting objects to work together to produce new functionality; and Behavioral design pat-
terns are all about algorithms and communication.

Knowing when, how, and which design pattern to apply is a hard task for beginners but one that
gets significantly easier with experience. Design patterns are high-level abstract solutions; knowing
when to apply them requires you to think about your problem in a high-level, abstract way. By gen-
eralizing your problem, you stand a much better chance of easily finding a solution that can resolve
it. Design patterns are not appropriate to use for all problems; sometimes a simple solution will suf-
fice, and the need to introduce complexity just to incorporate a design pattern is not necessary.

Summary | 27

The chapter concluded with a brief look at how you can apply some of the patterns and principles that
you have been introduced to. You looked at a small piece of code that’s typical to a host of ASP.NET
applications and showed how refactoring to some design principles and design patterns can improve
the quality of the code without changing its behavior. You first refactored to the Dependency Inversion
principle to remove tight coupling on dependent classes. To further improve loose coupling and to
enable us to test the code in isolation, you employed the Dependency Injection principle to supply the
dependent classes via the ProductService constructor. You then leveraged the Adapter design pattern
to enable the HTTP context cache API to implement a caching interface that we developed. Last, you
looked at how the Null Object pattern can be used as a stand-in when we didn’t want to cache data.

The second part of this book explores how patterns can be used in different parts of an ASP.NET
application. In the next chapter, you will be introduced to the concept of logical separation in
an ASP.NET application. You will look at the benefits of a layered application over the traditional
ASP.NET code-behind model.

PART Il

The Anatomy of
an ASP.NET Application:
Learning and Applying Patterns

» CHAPTER 3: Layering Your Application and Separating Your Concerns
» CHAPTER 4: The Business Logic Layer: Organization

» CHAPTER 5: The Business Logic Layer: Patterns

» CHAPTER 6: The Service Layer

» CHAPTER 7: The Data Access Layer

» CHAPTER 8: The Presentation Layer

» CHAPTER 9: The User Experience Layer

Layering Your Application and
Separating Your Concerns

WHAT'’S IN THIS CHAPTER?

» The benefits of a layered design over the traditional ASP.NET web
forms code-behind model

> The concepts of logic layering and the separation of your applications
concerns

> The responsibilities of each distinct layer in an enterprise level
ASP.NET application

» Example code refactoring from the Smart Ul antipattern to a layered
approach

This chapter discusses the concept of logical separation in an ASP.NET application. It covers
the Smart Ul antipattern and its shortcomings when used in enterprise-level ASP.NET applica-
tions. It then introduces the benefits of a layered approach to building an ASP.NET application
over the code-behind model and what it means to truly separate your concerns. Following that,
it looks at the role of each layer and identifies the responsibilities of each of them; the layers
which form the content for the remaining chapters of this book.

APPLICATION ARCHITECTURE AND DESIGN

You cannot build a maintainable and scalable application on poor foundations. Planning a
good architecture is critical to the success of an application. Before examining a structured
approach to designing your application, you must learn why you need to think about the logi-
cal structure of your application and the problems you will encounter if you do not start with
a good architectural footing.

32 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

Antipattern — Smart Ul

ASP.NET web forms and Visual Studio make it incredibly easy to create applications simply by
dragging and dropping controls onto a HTML designer. Accompanying a page, the code-behind file
contains all the event handling, data access, and business logic of the application. The problem with
this approach is that all concerns are mingled, causing problems for testing and resulting in a dupli-
cation of business logic because it is difficult to reuse logic that is intrinsically tied to a particular
view (ASPX page).

Smart Ul applications aren’t to be avoided at all costs; they are great for prototyping and for throwaway
or short-lived applications. The problem, however, is that temporary applications that are successful
often are modified and built upon and become mission-critical applications that are hard to maintain.

Seeing, it’s said, is believing. To that end, create an example of a Smart UI web application and start
to add some business logic to it, and you should see how the concerns and responsibilities are inter-
twined. Later in the chapter you will rewrite the code and show that, by layering your application,
you can adhere to the Separation of Concerns (SoC) principles, thus allowing your application to be
far more maintainable and scalable.

To demonstrate the Smart UI antipattern, you will build a page that displays products in a grid
similar to what you might typically find in an e-commerce application. The page will list products
for sale, displaying their name, recommended retail price (RRP), selling price, discount, and savings
percentage. Later you will introduce some business logic by allowing the user to apply a trade dis-
count to the products on sale, but first, the initial display:

1. Fire up Visual Studio and create a new blank solution named ASPpPatterns.Chap3.SmartUT
and add a new web application to it named ASPPatterns.Chap3.SmartUI.Web

2. After Visual Studio has built your new web application, add a new SQL express database to
the project by right-clicking on the web site and selecting Add => New Item and selecting a
SQL Server Database. Name the database shop.mdf.

3. Now you need to add a table to the database to CobmnName | DataType | Alow s
. . . . Productid |
hold information on the products. Right-click on the Wlmg ':mhar{m) S
newly created database and select Open. When the RRP sy o
database explorer opens, right-click on the tables ek Srplmeney S
folder and select New Table from the context-sensitive
menu. Create the table with the schema as shown in FIGURE 3-1
Figure 3-1, and name the table Products. Ensure you
set the ProductId to an identity column so that it will
automatically generate an ID.
4. Add the data in Figure 3-2 to the table. "~ [Podwtid____ Producitiams AR Taeinghrs
. . 4 1] Dl 19,5900 99,9900
5. With the table created, you can simply drag 2 Hormes 0.9500 7.5500
and drop it onto the Default.aspx page. 3 Shovel 9.9900 9.9900
* MLEL ALEL ALLL ALEL

This automatically creates a Gridview and
adds a sQLDataSource control to the page.
You should now be able to run the web
application and see all the products listed
from the database.

FIGURE 3-2

Application Architecture and Design | 33

6. Now add the extra columns that will show any discount and savings. Edit the source file for
Default.aspx to include the new template columns and the onRowDataBound property, as
shown in the following listing:

<asp:Gridview ID="GridViewl" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductId"
DataSourceID="SglDataSourcel"
EmptyDataText="There are no data records to display."
OnRowDataBound="GridViewl_ RowDataBound">
<Columns>
<asp:BoundField DataField="ProductId"
HeaderText="ProductId" ReadOnly="True"
SortExpression="ProductId" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:BoundField DataField="RRP" HeaderText="RRP"
SortExpression="RRP" DataFormatString="{0:C}" />
<asp:BoundField DataField="SellingPrice" HeaderText="SellingPrice"
SortExpression="SellingPrice"
DataFormatString="{0:C}" />
<asp:TemplateField HeaderText="Discount">
<ItemTemplate>
<asp:Label runat="server" ID="lblDiscount"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Savings">
<ItemTemplate>
<asp:Label runat="server" ID="lblSavings"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:Gridview>

7. After that is done, open the code-behind page, Default.aspx.cs, and add the following
three methods:

public partial class Default : System.Web.UI.Page
J
i protected void GridvViewl_RowDataBound (object sender,
dA:)'\?vllll?g;?i fg': GridviewRowEventArgs e)
Wrox.com {

if (e.Row.RowType == DataControlRowType.DataRow)

decimal RRP = decimal.Parse(((
System.Data.DataRowView)e.Row.DatalItem) ["RRP"].ToString()) ;

decimal SellingPrice = decimal.Parse(((
System.Data.DataRowView)e.Row.Dataltem) ["SellingPrice"].ToString());

Label 1blSavings =

(Label)e.Row.FindControl ("1lblSavings") ;
Label 1blDiscount =

(Label)e.Row.FindControl ("1blDiscount") ;

1blSavings.Text =
DisplaySavings (RRP, SellingPrice);

34 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

1blDiscount.Text = DisplayDiscount (RRP, SellingPrice);

protected string DisplayDiscount (decimal RRP, decimal SalePrice)

{
string discountText = "";

if (RRP > SalePrice)
discountText = String.Format("{0:C}", (RRP - SalePrice));

return discountText;
protected string DisplaySavings (decimal RRP, decimal SalePrice)
{

string savingsTest = "";

if (RRP > SalePrice)
savingsTest = (1 - (SalePrice / RRP)).ToString("#%");

return savingsTest;

Default.aspx.cs located in the ASPPatterns.Chap3.SmartUL.Web project

The Gridviewl RowDataBound method is called when each data row is bound to data in the
Griaview control. The method obtains the RRP and selling price and uses DisplayDiscount and
DisplaySavings methods to work out the correct discount. Then it updates the corresponding label
server controls. By adding these methods, you are introducing business logic into the user interface
(UI) along with the data access. This means that if we wanted to display product prices on a differ-
ent page, we would need to duplicate the business logic or create some kind of static helper methods.

The page is not only taking the responsibility of the business logic; as it stands, the single ASP.NET

web form page is responsible for the data access requirements. Because you used the RAD server con-
trols to provide data access, it will be extremely difficult to test the page and stub out a data access
implementation.

Now that the base functionality is in place, you can add the extra business requirements, which will
begin to expose the issues you will face when coding to the Smart Ul pattern. The business logic that
you will be adding will enable a trade discount to be applied to the prices so that they reflect an extra
5 percent of savings. The UI will need a new control: a drop-down list that will enable the users to
specify the discount they want to see applied to the products — trade discount or no discount.

Modify the Default.aspx page so that there is a new drop-down list control and the selling price is
changed to a template field, as can be seen in the following code listing:

Display prices with
‘) <asp:DropDownList ID="ddlDiscountType" runat="server" AutoPostBack="True"
onselectedindexchanged="ddlDiscountType_SelectedIndexChanged">

ﬁx‘a,mg;% ':I: <asp:ListItem Value="0">No Discount</asp:ListItem>

Wrox.com

Application Architecture and Design

| 35

<asp:ListItem Value="1">Trade Discount</asp:ListItem>
</asp:DropDownList>

<asp:Gridview ID="GridViewl" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductId" DataSourceID="SglDataSourcel"
EmptyDataText="There are no data records to display."
OnRowDataBound="GridvViewl_RowDataBound">
<Columns>
<asp:BoundField DataField="ProductId" HeaderText="ProductId"
ReadOnly="True" SortExpression="ProductId" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:BoundField DataField="RRP" HeaderText="RRP"
SortExpression="RRP" DataFormatString="{0:C}" />
<asp:TemplateField HeaderText="SellingPrice"
SortExpression="SellingPrice">
<ItemTemplate>
<asp:Label ID="1blSellingPrice" runat="server"
Text="'<%# Bind("SellingPrice") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Discount">
<ItemTemplate>
<asp:Label runat="server" ID="lblDiscount"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Savings">
<ItemTemplate>
<asp:Label runat="server" ID="lblSavings"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:GridView>

Default.aspx located in the ASPPatterns.Chap3.SmartULWeb project

Now update the code-behind so that the logic that will apply the extra trade discount can be added.

This can be seen in the bolded code that follows, with the introduction of a new method called
ApplyExtraDiscountsTo and the update to the Gridviewl RowDataBound event that will set the

selling price dependent on the discount strategy applied:

public partial class Default : System.Web.UI.Page
‘\;, ¢
: protected void Gridviewl_RowDataBound (object sender, GridViewRowEventArgs e)
Available for {
download on)
Wrox.com if (e.Row.RowType == DataControlRowType.DataRow)

decimal RRP = decimal.Parse (((
System.Data.DataRowView)e.Row.Dataltem) ["RRP"].ToString()) ;

decimal SellingPrice = decimal.Parse(((
System.Data.DataRowView)e.Row.DataItem) ["SellingPrice"].ToString());

Label 1blSellingPrice = (Label)e.Row.FindControl ("lblSellingPrice");
Label 1blSavings = (Label)e.Row.FindControl ("lblSavings") ;

36 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

Label 1blDiscount =

lblSavings.Text =

(Label)e.Row.FindControl ("1blDiscount") ;

DisplaySavings (RRP,

ApplyExtraDiscountsTo(SellingPrice));

1blDiscount.Text

DisplayDiscount (RRP,

ApplyExtraDiscountsTo(SellingPrice));

1blSellingPrice.Text =

String.Format ("{0:C}",

ApplyExtraDiscountsTo(SellingPrice));

protected string DisplayDiscount (decimal RRP, decimal SalePrice)

{

string discountText = "";

if (RRP > SalePrice)

discountText =

return discountText;

String.Format ("{0:C}",

(RRP - SalePrice));

protected string DisplaySavings (decimal RRP, decimal SalePrice)

{

string savingsTest = "";

if (RRP > SalePrice)

savingsTest =

return savingsTest;

(1 -

(SalePrice / RRP)).ToString("#%");

protected decimal ApplyExtraDiscountsTo(decimal OriginalSalePrice)

{
decimal price =

int discountType =

if (discountType == 1)

{

OriginalSalePrice;

Intl6.Parse(this.ddlDiscountType.Selectedvalue);

price = price * 0.95M;

return price;

protected void ddlDiscountType_SelectedIndexChanged(object sender, EventArgs e)

{
Gridviewl.DataBind();

Default.aspx.cs located in the ASPPatterns.Chap3.SmartUL.Web project

You can now run the application and change discount strategies to see the prices with the trade and

no discounts applied to them.

Application Architecture and Design | 37

What’s wrong with the method you used to display the products and prices? Well, nothing if the
application stopped here, but because this is only part of a larger application, the capability to apply
discounts will be needed elsewhere, and in its present state the logic is embedded in this single page.
This means that the logic will be duplicated when new features are added.

Separating Your Concerns

An antidote to the Smart Ul antipattern is the notion of layering your applications. Layering an applica-
tion is a form of separation of concerns and can be achieved via namespaces, folders, or with separate
projects. Figure 3-3 shows the typical architecture of an enterprise-level layered ASP.NET application.

EXpL;ieernce Infrastructure
Domain (Logging etc)
Services

Presentation
Domain

Model
Application
Services

%

Repositories

Database

FIGURE 3-3

To demonstrate how you can achieve SoC through layering an ASP.NET application and to look at
details of each of the layers, you will reconstruct the small e-commerce page that you built earlier to
demonstrate the Smart Ul antipattern.

1. Create a new blank solution in Visual Studio and name it ASPPatterns.Chap3.Layered.

2. Add a new class library project to the solution by right-clicking the solution name and select-
ing Add = New Project. Name the new project ASPPatterns.Chap3.Layered.Repository.

3. Add a further three class library projects to the solution named:
> ASPPatterns.Chap3.Layered.Model
> ASPPatterns.Chap3.Layered. Service

> ASPPatterns.Chap3.Layered.Presentation

38 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

4. Add anew web application to the project by selecting Add = New Project and selecting the
Web Application Project. Name the project ASPPatterns.Chap3.Layered.WebUT.

5. Right-click on the ASPPatterns.Chap3.Layered.Repository project and add a project ref-
erence to the ASPPatterns.Chap3.Layered.Model project.

6. Right-click on the AspPatterns.Chap3.Layered.Service project and add a project refer-
ence to the ASPPatterns. Chap3.Layered.Repository and ASPPatterns. Chap3.Layered
.Model projects.

7. Right-click on the ASPPatterns.Chap3.Layered. Presentation project and add a project
reference to the ASPPatterns. Chap3.Layered.Model and ASPPatterns. Chap3.Layered
.Service projects.

8. Right-click on the ASPPatterns.Chap3.Layered.webUI web application and add a project ref-
erence to the ASPPatterns. Chap3.Layered.Model, ASPPatterns.Chap3.Layered. Service,
ASPPatterns.Chap3.Layered.Presentation, and ASPPatterns .Chap3.Layered
.Repository projects.

9. Add a solution folder for each of the layers of the applica- [Eli
tion so that your solution resembles Figure 3-4.

n 'ASPPatterrs Chap®. Layered' (6 projects)
1. Data Arreas | ayer
T : T 41 (] AsPPatterns.Chapis,Layered, Repository
With your layered project structure compl.ete, you can begln to Id i i
tackle each of the concerns of the application one at a time, begin- - (5] aspPalterms.Chaps Layered. Model
. . . B £F 2. Service Layer
ning with the business layer. @ (5 AsPPatterns. Chap3.Layered. Service
= & 4. Presentation Layver
=) .E LSPPatterns. Chap3 Layered. Presentation
. = 7 5. |ker Fyperience | aver
Business Layer - 1) askratterns. Chaps.Lavered.webUl
You’re going to start by implementing the business logic for the

application. In the Smart Ul example, you will remember that the
business logic was intermingled with the presentation logic in the

FIGURE 3-4

code-behind of the ASPX page. With the layered approach, you’ll create a domain model to hold all
behavior and data related to the business of the simple e-commerce store that we are modeling. You
will learn a lot more about the Domain Model pattern in the next chapter, but in a nutshell, think of
it as the conceptual model of the system containing all the entities involved and their relationships.

The Domain Model pattern is designed to organize complex business logic and
relationships. You will look at the Domain Model pattern in more detail in the
next chapter.

Figure 3-5 shows the model you will be using. The Product class represents the products of the
e-commerce store; the Price class will contain the business logic to determine savings and discount;
and the discount strategy implementations will contain the logic to apply the trade discount and no
discounts, respectively.

Application Architecture and Design | 39

| Product P | & pnce | Price ¥ | @¥ _diccountstrateqy IDiscountStrategy
Class = Class > Intertace

Y IDiscountStrateqy

)

ANBADEcomtS tratagy)
Class

I'|
V. —
TradeDiscountStrategy ¥
Class

) IDiscountStrategy

FIGURE 3-5

You will create the domain model in the ASPPatterns.Chap3.Layered.Model project. Add a new
interface to the ASPPatterns. Chap3.Layered.Model project named IDiscountStrategy with the
following definition:

public interface IDiscountStrategy
, {
: decimal ApplyExtraDiscountsTo(decimal OriginalSalePrice);
Available for)
download on
Wrox.com

IDiscountStrategy.cs located in the ASPPatterns.Chap3.Layered.Model project

The purpose of naming the interface IDiscountStrategy is that it actually matches a design pattern
named Strategy. You will learn a lot more about the Strategy pattern in Chapter 5; this pattern is
being applied here because it enables algorithms to be selected and changed at runtime. The algorithms
that will be applied to the Price object are the Discount algorithms. If you look back at the Smart Ul
example, you will notice that the language I used to describe the process of applying discounts to prod-
ucts used the word strategy. When describing a problem, generalize it and focus on the variations. By
doing so you will often happen upon the name of a design pattern, and the solution to your problem
will present itself without you even looking for it.

The Strategy pattern enables an algorithm to be encapsulated within a class and
switched at runtime to alter an object’s behavior. Again, you will examine this
pattern in more detail in Chapter 5.

Now that you have the interface, you can add the two implementations of the discount strategy.
First, create a new class named TradeDiscountStrategy with the following definition:

public class TradeDiscountStrategy : IDiscountStrategy
, {
: public decimal ApplyExtraDiscountsTo(decimal originalSalePrice)
Available for {
download on

Wrox.com

40 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

decimal price = originalSalePrice;
price = price * 0.95M;

return price;

TradeDiscountStrategy.cs located in the ASPPatterns.Chap3.Layered.Model project

Second, employ the Null Object pattern that was introduced in the previous chapter. Create a new
class named NullDiscountStrategy with the following definition:

public class NullDiscountStrategy : IDiscountStrategy
’ {
Available f public decimal ApplyExtraDiscountsTo(decimal OriginalSalePrice)
vailable for
download on { o)
Wrox.com return OriginalSalePrice;
}
}

NullDiscountStrategy.cs located in the ASPPatterns.Chap3.Layered.Model project

With the discounts strategies in place, create the Price object. Create a new class named price with
the following definition:

public class Price
, {

private IDiscountStrategy _discountStrategy = new NullDiscountStrategy();

sx:,'mg;ﬁ':l: private decimal _rrp;
Wrox.com private decimal _sellingPrice;

public Price(decimal RRP, decimal SellingPrice)

{
_rrp = RRP;
_sellingPrice = SellingPrice;
}
public void SetDiscountStrategyTo (IDiscountStrategy DiscountStrategy)
{
_discountStrategy = DiscountStrategy;
}
public decimal SellingPrice
{
get { return _discountStrategy.ApplyExtraDiscountsTo(_sellingPrice); 1}
}

public decimal RRP
{

get { return _rrp; }

Application Architecture and Design | 41

public decimal Discount
{
get {
if (RRP > SellingPrice)
return (RRP - SellingPrice);
else
return 0;}

}

public decimal Savings
{
get{
if (RRP > SellingPrice)
return 1 - (SellingPrice / RRP);
else
return 0;}

Price.cs located in the ASPPatterns.Chap3.Layered.Model project

The price object uses the setter flavor of Dependency Injection to enable the discount strategy to be
applied to the product’s price.

Dependency Injection was introduced in the previous chapter, where you

used Constructor Injection to supply a cache provider to the product’s service.
Here you’re using another flavor of DI, namely Setter Injection, so you can swap
implementations at will after the Price object is instantiated. DI is covered in
greater detail in Chapter §.

To complete the model, create the simple Product class. Add a new class to the model project named
pProduct with the following code listing:

public class Product
, {

public int Id {get; set;}

dA‘ol\?vllI\?lI))ill?lf(())r: public string Name { get; set; }
Wrox.com public Price Price { get; set; }

Product.cs located in the ASPPatterns.Chap3.Layered.Model project

The business entities are created, but you need a way to hydrate the products from a data store. A
service will allow clients to interact with the domain model and retrieve products with a discount
applied. To enable the client to specify which discount to apply to the products, you need to create
an enumeration that will be used as a service method parameter.

42 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

Create a new class named customerType with the following code listing:

public enum CustomerType
\) {
Available f Standard = 0,
vailable for -
download on Trade = 1
Wrox.com }

CustomerType.cs located in the ASPPatterns.Chap3.Layered.Model project

Again, to determine which discount strategy to apply to the price, you need to create a factory class
whose sole responsibility will be to return the matching discount strategy for a given CustomerType.

Create a new class named DiscountFactory with the following definition:

public static class DiscountFactory
\) ¢
N public static IDiscountStrategy GetDiscountStrategyFor
Available for
download on (CustomerType customerType)
Wrox.com {

switch (customerType)
{
case CustomerType.Trade:
return new TradeDiscountStrategy();
default:
return new NullDiscountStrategy () ;

DiscountFactory.cs located in the ASPPatterns.Chap3.Layered.Model project

The Factory pattern enables a class to delegate the responsibility of creating a
valid object. This pattern will be covered in Chapter §.

The service layer will interact with a data store to retrieve products. You will use the Repository pat-
tern to achieve this, but you will only specify the interface for the repository because you don’t want
the model project to be concerned with the specifics of what kind of data store will be used or what
kind of technologies will be used to query it. Create a new interface named IProductRepository
with the single method as shown here:

public interface IProductRepository
\ , {
IList<Product> FindAll();
Available for)
download on
Wrox.com

IProductRepository.cs located in the ASPPatterns.Chap3.Layered.Model project

Application Architecture and Design | 43

y The Repository pattern acts as an in-memory collection or repository for busi-
ness entities, completely abstracting away the underlying data infrastructure.
This pattern is discussed in more detail in Chapter 7.

The service class needs to be able to apply a given discount strategy to a collection of products. You
could create a custom collection to achieve this, but I prefer the flexibility of extension methods, so
create a new class named ProductListExtensionMethods with the following definition:

\) public static class ProductListExtensionMethods

{
: public static void Apply(this IList<Product> products,
d“;m?g;%m IDiscountStrategy discountStrategy)
Wrox.com {

foreach (Product p in products)
{

p.Price.SetDiscountStrategyTo (discountStrategy) ;

ProductListExtensionMethods.cs located in the ASPPatterns.Chap3.Layered.Model project

y The Separated Interface pattern ensures that the client is completely unaware of
the concrete implementations and can help to promote programming to abstrac-
tions rather than implementations and the Dependency Inversion principle.

You can now create the service class that clients will use to interact with the domain. Create a new
class named Productservice with the code listing that follows:

public class ProductService
\) {
: private IProductRepository _productRepository;
Available for
download on
Wrox.com

public ProductService (IProductRepository productRepository)

{
_productRepository = productRepository;

public IList<Product> GetAllProductsFor (CustomerType customerType)
{

IDiscountStrategy discountStrategy =
DiscountFactory.GetDiscountStrategyFor (customerType) ;

44 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

IList<Product> products = _productRepository.FindAll();
products.Apply (discountStrategy) ;

return products;

ProductService.cs located in the ASPPatterns.Chap3.Layered.Model project

You have now completed all of the business logic that the application will contain. Notice how the

business layer is not tied to a particular data store and uses interfaces to program against a reposi-

tory for all of its persistence needs. The business layer can now be tested in complete isolation from
any other part of the application and will also not be affected by changes to other layers. The next

layer you will work on is the service layer, which will act as the gateway into the application.

Service Layer

The role of the service layer is to act as an entry point into the application; sometimes this is known
as a facade. The service layer provides the presentation layer with a strongly typed view model, some-
times called the presentation model. A view model is a strongly typed class that is optimized for spe-
cific views. The view model you will be creating will display the products; again, you will read more
about the View Model pattern later in the book.

The Facade pattern provides a simple interface and controls access to a series
of complicated interfaces and subsystems. This pattern is covered in detail in
Chapter 6.

y View models are strongly typed classes that are optimized for specific views and
contain logic to assist in the presentation of data. This pattern is covered in
detail in Chapter 8.

Add a new class to the ASPPatterns.Chap3.Layered.Service prOjeCt named ProductViewModel
with the following class listing:

J public class ProductViewModel
{
- Public int ProductId {get; set;}
ﬁx‘aulmg;%m public string Name { get; set; }
Wrox.com public string RRP { get; set; }
public string SellingPrice { get; set; }

public string Discount { get; set; }

Application Architecture and Design | 45

public string Savings { get; set; }

ProductViewModel.cs located in the ASPPatterns.Chap3.Layered.Service project

For a client to interact with the service layer, you will be using a Request/Response messaging pat-
tern, covered in detail in Chapter 6. The request part will be supplied by the client and will carry all
necessary parameters; in this case, it will contain the CustomerType enumeration as defined in the
domain model. Create a new class named ProductListRequest matching the code that follows:

! using ASPPatterns.Chap3.Layered.Model;
: namespace ASPPatterns.Chap3.Layered.Service
Available for {
download on .)
Wrox.com public class ProductListRequest

{
public CustomerType CustomerType { get; set; }

ProductListRequest.cs located in the ASPPatterns.Chap3.Layered.Service project

For the Response object, you will define a few more properties so that the client can check whether
the request was completed successfully. There will also be a Message property to enable the service
to give information to the client if the call was not completed successfully. Create a new class named
ProductListResponse with the code listing that follows:

public class ProductListResponse
\) {
: public bool Success { get; set; }
Available for bli . . .
download on public string Message { get; set; }
Wrox.com public IList<ProductViewModel> Products { get; set; }

ProductListResponse.cs located in the ASPPatterns.Chap3.Layered.Service project

To convert the Product entity into the ProductviewModel, you need a couple of methods: one to
convert a single product and one to convert a list. You could add these methods to the Product entity
in the domain model, but they aren’t exactly business logic, so the next best thing is to create them as
extension methods so that they can be used as if they were first-class citizens of the Product entity.

Create a new class within the Services project named ProductMapperExtensionMethods, and add
the two methods shown in the following code listing:

public static class ProductMapperExtensionMethods
J
: public static IList<ProductViewModel> ConvertToProductListViewModel (
dA:J’\Trll?E;?i?r: this IList<Model.Product> products)
Wrox.com {

IList<ProductViewModel> productViewModels = new List<ProductViewModel> () ;

foreach (Model.Product p in products)

46 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

productViewModels.Add (p.ConvertToProductViewModel ()) ;

return productViewModels;

public static ProductViewModel ConvertToProductViewModel (
this Model.Product product)

ProductViewModel productViewModel = new ProductViewModel () ;
productViewModel .ProductId = product.Id;
productViewModel .Name = product.Name;
productViewModel .RRP = String.Format ("{0:C}", product.Price.RRP);
productViewModel.SellingPrice =

String.Format ("{0:C}", product.Price.SellingPrice);

if (product.Price.Discount > 0)
productViewModel.Discount =

String.Format ("{0:C}", product.Price.Discount) ;

if (product.Price.Savings < 1 && product.Price.Savings > 0)
productViewModel.Savings = product.Price.Savings.ToString ("#%");

return productViewModel;

ProductMapperExtensionMethods.cs located in the ASPPatterns.Chap3.Layered.Service project

Finally, add the ProductService class that will interact with the domain model service to retrieve
a list of products and then convert them to a list of ProductviewModels. Add a new class to the ser-
vice project named ProductService, with the following definition:

public class ProductService
!’ {

i private Model.ProductService _productService;
Available for

download on) . . :
Wrox.com public ProductService (Model.ProductService ProductService)

{

_productService = ProductService;

public ProductListResponse GetAllProductsFor (
ProductListRequest productListRequest)

ProductListResponse productListResponse = new ProductListResponse();
try
{

IList<Model.Product> productEntities =
_productService.GetAllProductsFor (productListRequest.CustomerType) ;

productListResponse.Products =

Application Architecture and Design

| 47

}

productEntities.ConvertToProductListViewModel () ;
productListResponse.Success = true;

catch (Exception ex)

{

// Log the exception..

productListResponse.Success = false;

// Return a friendly error message
productListResponse.Message = "An error occurred";

}

return productListResponse;

ProductService.cs located in the ASPPatterns.Chap3.Layered.Service project

The service class catches any errors and returns a friendly message to the client; this is a good place
to log errors. By handling any errors here and exposing a success flag, you enable the client to react
elegantly if there is a problem with the service layer. This completes the service layer of the applica-
tion and you can move on to creating the data access layer.

Data Access Layer

As with the Smart UI, you need a database to store the products. Create a database in the WebUI
project with the same schema, name, and data that you used in the Smart Ul exercise.

For speed, use Ling to SQL as the data access layer, so the first thing to do is create the Ling to SQL
data context. Add a new Ling to SQL class to the ASPPatterns.Chap3.Layered.Repository project
by right-clicking the project name and selecting Add &> New Item. Then select Ling to SQL Classes,

and name the class Shop.dbml.

With the Server Explorer window open, drag the Products table onto the design surface. Visual Studio
creates a Ling to SQL entity named Product, as can be seen in Figure 3-6.

“i ASPPatterns.Chapl.Layered - Micrasoft Visisal Studio
B Bt e froe el Debug Dgte Jook Tet ANTSS ke

el
3 b FR 0| sfreavoucertised

NPT A== - 1 I8 TN A R R
Fible- g [BR L T

Lig ool A L

N moelobe v 8 X

3 Stered Progedres
[l Furchons

D Ty
[ssermbes
M S

s
@ O Symonyms
-

& | -

Eror Lt
[0Brmors| 2 Warmings | (1) 8 Hessages

i S 3 5. User Experence Layer

G0 T A
T Sk A vattace. Chagid Ly (8 projects)
Dinka fucess Layer

o Chg
S 2. Bumease Loge Lipw
i (T aseruteene Chand. Layered Model
B LY. S Lo

& (3 AsPaters Chapd Layered Service
B4 Preserdation Layer

- (I ARt Chagit Laymeed Prossrt st

i R ot o Lyt Wbt

-ix

Desoregion Fis. L Cobmn

Enaty

FIGURE 3-6

48 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

You can now create a concrete implementation of the TProductRepository interface that you cre-
ated in the model project. Add a new class to the Repository project named ProductRepository
with the following definition.

using System;
\) using System.Collections.Generic;
using System.Ling;
Available for

downloadon ~ USing System.Text;
Wrox.com using ASPPatterns.Chap3.Layered.Model;

namespace ASPPatterns.Chap3.Layered.Repository
{
public class ProductRepository : IProductRepository
{
public IList<Model.Product> FindAll ()
{
var products = from p in new ShopDataContext () .Products
select new Model.Product
{
Id = p.Productld,
Name = p.ProductName,
Price = new Model.Price(p.RRP, p.SellingPrice)
Y

return products.ToList () ;

ProductRepository located in the ASPPatterns.Chap3.Layered.Repository project

In the Finda11 method, you are querying Ling to SQL to obtain all the products and then creating a
list of Product Business entities from the data and returning them.

You have completed the business, data access, and service layers of the application. You now need to
create the presentation and user experience layers so that users can interact with the application. You
will tackle the presentation layer next, and define a set of views that your application will require
before creating the web front end.

Presentation Layer

To separate the presentation logic from the user experience (user interface), employ the Model-
View-Presenter pattern, which you will learn more about in Chapter 8. Create a new interface in the
ASPPatterns.Chap3.Layered.Presentation project named IProductListView with the following

contract:
! using ASPPatterns.Chap3.Layered.Service;
: public interface IProductListView
Available for {
download on

Wrox.com void Display (IList<ProductViewModel> Products) ;

Application Architecture and Design | 49

Model .CustomerType CustomerType { get; }
string ErrorMessage { set; }

IProductListView located in the ASPPatterns.Chap3.Layered.Presentation project

This interface will be implemented by the ASPX web form. By working with interfaces, you can stub
out the view when it comes to testing.

Create a new class named ProductListPresenter with the following code listing:

\) using ASPPatterns.Chap3.Layered.Service;
Available for hao3 a .
downloadon R@mespace ASPPatterns.Chap3.Layered.Presentation
Wrox.com {

public class ProductListPresenter

{
private IProductListView _productListView;
private Service.ProductService _productService;

public ProductListPresenter (IProductListView ProductListView,
Service.ProductService ProductService)

_productService = ProductService;
_productListView = ProductListView;

public void Display ()

{
ProductListRequest productListRequest = new ProductListRequest();
productListRequest.CustomerType = _productListView.CustomerType;

ProductListResponse productResponse =
_productService.GetAllProductsFor (productListRequest) ;

if (productResponse.Success)
{
_productListView.Display (productResponse.Products) ;
}
else

{

_productListView.ErrorMessage = productResponse.Message;

ProductListPresenter.cs located in the ASPPatterns.Chap3.Layered.Presentation project

The presenter class is responsible for obtaining data, handling user events, and updating the view
via its interface.

50 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

This completes the very thin and simple presentation layer. The benefit of having the presentation

layer is that it is now easy to test the presentation of the data and interactions between the user and

the system without worrying about the difficult-to-unit-test web forms. You can also now add any
flavor of user experience on top of your application such as WPF, WINforms, or a web forms appli-

cation. For now, though, you will stick with web forms and you will tackle this layer next.

User Experience Layer

Finally, you can implement the view so that the products are displayed on the web page. Before get-
ting to work on the HTML, however, you need a way to glue the loosely coupled application together
so that concrete implementation of the TProductRepository is created. For this you are going to
use StructureMap, an Inversion of Control container. You will learn about Inversion of Control and
Inversion of Control Containers in Chapter 8.

Navigate to http://sourceforge.net/projects/structuremap and download the latest version
of structureMap. Once the compressed file has downloaded, unzip it, and extract all files to your
desktop. Switch back into Visual Studio, right-click on the solution name, and select Open Folder In
Windows Explorer. This will open at the root of your solution. Add a new folder called Lib to the
root and copy the structureMap.dil file from your desktop into the Lib folder. Then add a refer-
ence to the StructureMap.dll from within the WebUI project.

Create a new class named BootStrapper in the WebUI project with the following listing:

using StructureMap;
‘) using StructureMap.Configuration.DSL;
using ASPPatterns.Chap3.Layered.Repository;

Available for using ASPPatterns.Chap3.Layered.Model;

download on
Wrox.com

namespace ASPPatterns.Chap3.Layered.WebUI
{
public class BootStrapper
{
public static void ConfigureStructureMap ()
{
ObjectFactory.Initialize(x =>
{
x.AddRegistry<ProductRegistry> () ;
1)

}

public class ProductRegistry : Registry
{
public ProductRegistry ()
{
ForRequestedType<IProductRepository> ()
.TheDefaultIsConcreteType<ProductRepository>();

BootStrapper.cs located in the ASPPatterns.Chap3.Layered . WebUI project

Application Architecture and Design | 51

The purpose of the BootStrapper class is to register all the concrete dependencies with structureMap.
When the client code uses structureMap to resolve a class, StructureMap inspects the dependencies
of that class and automatically injects them based on the selected concrete implements that were speci-
fied in the ProductRegistry.

The configureStructureMap method needs to be run when your application is started so you can
add a reference to it in the global.asax file. The global.asax file won’t exist by default, so add it
to the root of your WebUI project. Then update the file as can be seen in the following listing:

namespace ASPPatterns.Chap3.Layered.WebUI
, {
: public class Global : System.Web.HttpApplication
Available for {
download on
Wrox.com protected void Application_Start (object sender, EventArgs e)

{
BootStrapper.ConfigureStructureMap () ;

Global.asax located in the ASPPatterns.Chap3.Layered . WebUI project

Open the default.aspx source view and edit the HTML markup so it matches what follows:

<asp:ListItem Value="0">Standard</asp:ListItem>
<asp:ListItem Value="1">Trade</asp:ListItem>
</asp:DropDownList>

! <asp:DropDownList AutoPostBack="true" ID="ddlCustomerType" runat="server">

Available for
download on
Wrox.com

<asp:Label ID="lblErrorMessage" runat="server" ></asp:Label>

<asp:Repeater ID="rptProducts" runat="server" >
<HeaderTemplate>
<table>
<tr>
<td>Name</td>
<td>RRP</td>
<td>Selling Price</td>
<td>Discount</td>
<td>Savings</td>
</tr>
<tr>
<td colspan="5"><hr /></td>
</tr>
</HeaderTemplate>
<ItemTemplate>
<tr>
<td><%# Eval ("Name") %></td>
<td><%# Eval ("RRP")%></td>
<td><%# Eval ("SellingPrice") %></td>
<td><%# Eval("Discount") %></td>
<td><%# Eval ("Savings") %></td>
</tr>
</ItemTemplate>
<FooterTemplate>

52 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

</table>
</FooterTemplate>
</asp:Repeater>

Default.aspx located in the ASPPatterns.Chap3.Layered.WebUI project

Switch to the code-behind of the page and edit it so that it implements the TProductListView inter-
face from the presentation project, as in the code listing that follows:

using ASPPatterns.Chap3.Layered.Model;

J using ASPPatterns.Chap3.Layered.Repository;
Available § using ASPPatterns.Chap3.Layered.Presentation;
wailable for . S
download on us%ng ASPPatterns.Chap3.Layered.Service;
Wrox.com using StructureMap;

namespace ASPPatterns.Chap3.Layered.WebUI
{
public partial class _Default : System.Web.UI.Page, IProductListView
{
private ProductListPresenter _presenter;

protected void Page_Init (object sender, EventArgs e)
{
_presenter = new ProductListPresenter (this,
ObjectFactory.GetInstance<Service.ProductService>());
this.ddlCustomerType.SelectedIndexChanged +=
delegate { _presenter.Display();};

protected void Page_Load(object sender, EventArgs e)
{
if (Page.IsPostBack != true)
_presenter.Display() ;

public void Display (IList<ProductViewModel> products)
{
rptProducts.DataSource = products;
rptProducts.DataBind() ;

public CustomerType CustomerType
{
get { return (CustomerType)Enum.ToObject (typeof (CustomerType),
int.Parse(this.ddlCustomerType.Selectedvalue)); }

public string ErrorMessage
{
set { lblErrorMessage.Text =
String.Format ("<p>Error
{0}<p/>", value); }

Default.aspx.cs located in the ASPPatterns.Chap3.Layered. WebUI project

Summary | 53

The page simply creates a new instance of the ProductListPresenter during the page initiation

event and obtains an implementation of the ProductService via the StructureMap’s ObjectFactory
.GetInstance method. The page then delegates all the other work to the Presenter, simply handling
user events and forwarding calls. Again, you will look at structureMap in more detail in Chapter 8,
so don’t worry that you are flying through the implementation at the moment.

There was a lot more work involved in creating the layered application, but you now have a loosely
coupled application that can be tested, is maintainable, and has a strong separation of concerns.
Figure 3-7 shows the interactions between the layers and clearly defines the responsibilities of each.

ProductService | Model | ProductRepository |

Defaul

1
Display !

I
:DispIay(ILTst<ProductViewModeI>)'
<«

;; GetAllProductsFor(ProductListRequest)

3
o>

GetAllProductsFor(CustomerType)
>

IList<Product>

A

: ConvertToProductListViewModeI:

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 ProductListResponse

S SR

I

FIGURE 3-7

D Apply(discountStrategy)
1
4
1
I

)

This book is not about unit testing or test-driven development; however, you
will find a test project full of unit tests and behavior specifications in the code
download that accompanies this book. I strongly advise you take a look at it.

SUMMARY

In this chapter you were introduced to the benefit of layering enterprise-level ASP.NET applications.
The chapter began with an example of the limitations that the Smart Ul antipattern can cause and
how all concerns are the responsibility of the specific ASPX page. This leads to an application of
logic and a maintenance headache as more and more features are added to the application.

The remedy to this problem is to separate the concerns of the application into distinct layers. The exer-
cise that you tackled chose to separate the layers into projects; however, using folders or namespaces
is just as effective. While working through the layer application exercise, you briefly encountered a
number of design patterns and principles that you will be examining in greater depth throughout the
remainder of this book.

54 | CHAPTER3 LAYERING YOUR APPLICATION AND SEPARATING YOUR CONCERNS

The next six chapters will explore each of the layers in detail before putting all of the patterns and
principles into practice with a case study application. The discussion on layering your application
continues with patterns to help your organize business logic in the next chapter.

The Business Logic Layer:
Organization

WHAT'’S IN THIS CHAPTER?

» When and how to use the Transaction Script pattern to organize
business logic

» When and how to use Active Record with the Castle Windsor project
to organize business logic

» When and how to use the Domain Model pattern with NHibernate to
organize business logic

> Explanation of the difference between the Anemic Model and the
Domain Model patterns to organize business logic

» Understanding domain-driven design (DDD) and how to use it to focus
your efforts on business logic rather than infrastructure concerns

The business layer is arguably the most import layer within any enterprise application, so it’s
important to organize your business logic in the most appropriate manner that befits the com-
plexity of your application. In this chapter you will be introduced to four patterns first pub-
lished in Fowler’s Patterns of Enterprise Application Architecture book: Transaction Script,
Active Record, Anemic Model, and Domain Model. Each of these domain logic patterns has
strengths and weaknesses depending on what type of application you are building.

Armed with knowledge of the architectural patterns to organize your domain logic, you will
then read about DDD, a design method that can help you understand the business domain that
you are modeling more effectively and ensure that the business needs are at the forefront of
your mind.

56 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

UNDERSTANDING BUSINESS ORGANIZATIONAL PATTERNS

Not all applications are equal, and not all require a complex architecture to encapsulate the business
logic of a system. As developers, it’s important to understand the strengths and weaknesses of all the
domain logic patterns so that you can use the most appropriate one.

Transaction Script

Of the four domain logic patterns you will read about in this chapter, Transaction Script is by far the
easiest to understand and get up and running with. The Transaction Script pattern follows a proce-
dural style of development rather than an object-oriented approach. Typically a single procedure is
created for each of your business transactions, and it is grouped in some kind of static manager or
service class. Each procedure contains all the business logic that is required to complete the business
transaction from the workflow, business rules, and validation checks to persistence in the database.
Figure 4-1 shows a graphical representation of the Transaction Script pattern.

OrderService
Static Class

= Methods

¢ CalculateValueOfOrdersWaitingForStock
& GenerateCourierManifest
¢ NotifyCustomersOfOrderDelays

FIGURE 4-1

One of the strengths of the Transaction Script pattern is that it is simple to understand; it can be fast
to get new team members up to speed without prior knowledge of the pattern. As new requirements
arise, it is easy to add more methods to the class without fear of impacting or breaking existing
functionality.

The Transaction Script Pattern is a great for small applications with little or no logic that are not
likely to grow in feature set, and for teams with junior developers who are not comfortable with
object oriented programming concepts.

The problems with the Transaction Script pattern are revealed when an application grows and the
business logic complexities increase. As an application is extended, so is the mass of methods, mak-
ing for an unhelpful API full of fine-grained methods that overlap in terms of functionality. You can
use submethods to avoid repetitive code such as the validation and business rules, but duplication in
the workflow cannot be avoided, and the code base can quickly become unwieldy and unmanageable
as the application grows.

Understanding Business Organizational Patterns | 57

Because the Transaction Script pattern is simple, you won’t be asked to run through an exercise;
instead, consider the code snippet that follows, which comes from an HR holiday book application
to give you a flavor of how the pattern may look in action.

public class HolidayService
, {

ﬁﬁgﬂgﬁ%ﬁ public static bool BookHolidayFor (int employeeId, DateTime From, DateTime To)
Wrox.com {

bool booked = false;
TimeSpan numberOfDaysRequestedForHoliday = To - From;

if (numberOfDaysRequestedForHoliday.Days > 0)

{
if (RequestHolidayDoesNotClashWithExistingHoliday (employeeId, From, To))

{
int holidayAvailable = GetHolidayRemainingFor (employeeld) ;

if (holidayAvailable >=
numberOfDaysRequestedForHoliday.Days)

SubmitHolidayBookingFor (employeeId, From, To);
booked = true;

return booked;

private static int GetHolidayRemainingFor (int employeeId)

{
//

public static List<EmployeeDTO> GetAllEmployeesOnLeaveBetween (
DateTime From, DateTime To)

//

public static List<EmployeeDTO> GetAllEmployeesWithHolidayRemaining()

{
//

Code snippet ASPPatterns.Chap4.TransactionScript

As you can see, the entire business case is encapsulated within a single method. The BookHolidayFor
method is dealing with many responsibilities such as data retrieval and persistence, as well business
logic to determine if a holiday can be taken. This style of procedural programming goes against

58

CHAPTER 4 THE BUSINESS LOGIC LAYER: ORGANIZATION

the very nature of object oriented programming, which is fine if logic is kept to the minimum and the
application is small and thus easy to manage.

If you have a simple application with minimal business logic, which doesn’t warrant a fully object-
oriented approach, the Transaction Script pattern can be a good fit. However, if your application
will grow, you may need to rethink your business logic structure and look to a more scalable pattern
like the Active Record pattern, which is the subject of the next section.

Active Record

The Active Record pattern is a popular pattern that is especially effective when your underlying data-
base model matches your business model. Typically, a business object exists for each table in your
database. The business object represents a single row in that table and contains data and behavior
as well as a means to persist it and methods to add new instances and find collections of objects.
Figure 4-2 shows how Post and comment objects from a blogging application relate to their corre-
sponding database tables. The figure also shows that Post contains a collection on Comment objects.

ElProperties

¢ DateAdded

1
1
1
1
1
1
1
I
1
| o ld
: ¢ Subject
Posts X ¢ Text -
1 1
old | ElMethods :
. ! !
Subject | ¢ Delete |
Text ' O FindAll !
DateAdded , ¢ FindByld |
1
[l ¢ Save :
\ 7
Comments & Comments
¢ld : Comment :
Text | Class s
Author 1 |
DateAdded || | EProperties :
1
Postld ' 0 Author |
| oDateAdded j«—I
1
. old |
: O Text :
1 1
\ ElMethods :
1 1
X ¢ Delete X
: ¢ FindAll !
1
: ¢ FindByld [
l ¢ Save :
\

FIGURE 4-2

Understanding Business Organizational Patterns | 59

In the Active Record pattern, each business object is responsible for its own persistence and related
business logic.

The Active Record pattern is great for simple applications that have a one-to-one mapping between
the data model and the business model, such as with a blogging or a forum engine; it’s also a good

pattern to use if you have an existing database model or tend to build applications with a “data first”

approach. Because the business objects have a one-to-one mapping to the tables in the database and

all have the same create, read, update, and delete (CRUD) methods, it’s possible to use code generation
tools to auto-generate your business model for you. Good code generation tools also build in all the

database validation logic to ensure that you are allowing only valid data to be persisted. Automatically
generating your business objects and frameworks that use the Active Record pattern is examined in
Chapter 7, when how to persist business objects is discussed. As with the Transaction Script pattern,
Active Record is similarly straightforward and easy to grasp.

The Active Record pattern is popular with web over database applications, particularly with the
Ruby on Rails framework that combines an MVC pattern (Chapter 8) with an Active Record ORM
(Chapter 7). In the .NET world, one of the most popular open source Active Record frameworks is
the Castle ActiveRecord project that is built upon NHibernate (Chapter 7); that’s what you will be
using with an ASP.NET MVC application to build a simple blog site. Because a blog contains only a
small amount of business logic and there is a good correlation between the business objects and data
model, the Active Record pattern is a great match.

Navigate to www.castleproject.org/castle/download.html and download the latest release for
the ActiveRecord project; at the time of writing this was ActiveRecord 2.1.1 released on January
15, 2010. The download is a simple zip file containing all the assemblies you will need to use the
ActiveRecord framework. When the zip file has downloaded, extract all the files to a folder on your
desktop.

Now you need to create a new solution for the project. Create a new solution named ASPPatterns
.Chap4.ActiveRecord. Add a new C# class library to the solution named AspPatterns.Chap4
.ActiveRecord.Model and a new MVC web application named AsPPatterns.Chap4.Active
Record.UI.MVC.

@ The ASP.NET Framework version 2.0 is preinstalled with Visual Studio 2010.
However, for Visual Studio 2008 users you will need to navigate to www.asp.net/
mvc/ to install the framework.

Right-click on the solution and select Open Folder in Windows Explorer; within this folder create a
new folder named Lib and move all the files from the Castle ActiveRecord download into it. Then
flip back to the solution and right-click on the AsPPatterns.Chap4.ActiveRecord.Model project
and click Add Reference, select the Browse tab, and navigate to the new Lib folder in the root of your
solution and add all the assemblies. Right-click on the aAsPPatterns.Chap4.ActiveRecord.UI.MVC
project and add a reference to the following assemblies:

» Castle.ActiveRecord.dll

» NHibernate.dll

60

CHAPTER 4 THE BUSINESS LOGIC LAYER: ORGANIZATION

Finally, again from the AspPatterns.Chap4.ActiveRecord.UI.MVC project, add a project reference
to the ASPPatterns.Chap4.ActiveRecord.Model project. Now that your solution is set up, you can
create a database to store the blog posts.

Right-click on the ASPPatterns.Chap4.ActiveRecord.UT.MvC project and select Add Item. Then
select a new database named Blog.mdf. Once the database has been created, double-click on it to be
taken to the Server Explorer and create two tables with the following definitions.

TABLE 4-1: Posts Table

COLUMN NAME DATA TYPE ALLOW NULLS
Id Int IDENTITY, Primary Key False
Subject nvarchar(200) False
Text nvarchar(MAX) False
DateAdded Datetime False

TABLE 4-2: Comments Table

COLUMN NAME DATA TYPE ALLOW NULLS
Id Int IDENTITY, Primary Key False
Text nvarchar(MAX) False
Author nvarchar(50) False
DateAdded Datetime False
PostId Int False

Create a new database diagram, add both tables, and create a relationship between them by select-
ing and dragging the Posts table 1d column to the Comments table Post1d column. After you have
made your changes, save the diagram and okay the updates to the tables.

Finally, you can start to create the model that will represent the Blog Posts and Post Comments
entities. Add a new C# class to the ASPPatterns.Chap4.ActiveRecord.Model project name
comment with the following code listing:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Castle.ActiveRecord;

namespace ASPPatterns.Chap4.ActiveRecord.Model
{
[ActiveRecord ("Comments")]
public class Comment : ActiveRecordBase<Comment>

Understanding Business Organizational Patterns | 61

[PrimaryKey]
public int Id { get; set; }

[BelongsTo ("PostID")]
public Post Post { get; set; }

[Property]
public string Text { get; set; }

[Property]
public string Author { get; set; }

[Property]
public DateTime DateAdded { get; set; }

The attributes that decorate the properties of the comment class inform the framework which prop-
erties match database table columns. The Castle ActiveRecord framework then uses this information
to automatically persist and retrieve the business entities without the need to write lengthy SQL.

Add a second class to the project named Post with the following definition:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Castle.ActiveRecord;

using Castle.ActiveRecord.Queries;

namespace ASPPatterns.Chap4.ActiveRecord.Model
{
[ActiveRecord("Posts")]
public class Post : ActiveRecordBase<Post>
{
[PrimaryKey]
public int Id { get; set; }

[Property]
public string Subject { get; set; }

[Property]
public string Text { get; set; }

public string ShortText
{
get {
if (Text.Length > 20)
return Text.Substring(0, 20) + "...";
else
return Text;

62 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

[HasMany]
public IList<Comment> Comments { get; set; }

[Property]
public DateTime DateAdded { get; set; }

public static Post FindLatestPost()
{
SimpleQuery<Post> g = new SimpleQuery<Post>
(@"from Post p order by p.DateAdded desc");

return (Post)qg.Execute()[0];

And that’s all you need to do for the model and data access. Simple, isn’t it? This is what the Ruby
on Rails guys have been boasting about for so long.

You can now construct the web site to display the posts and comments, but first you need to remove
all the files that Visual Studio added for you when you created the project. Go back to the MVC
project and remove all the files from the following folders generated for you by Visual Studio:

> Content
> Controllers

> Views

Add a new controller to the controllers folder named BlogController with the following code
definition:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using System.Web.Mvc;

using System.Web.Mvc.Ajax;

using ASPPatterns.Chap4.ActiveRecord.Model;

namespace ASPPatterns.Chap4.ActiveRecord.UI.MVC.Controllers
{ public class BlogController : Controller
{ // GET: /Blog/
public ActionResult Index()
{ Post[] posts = Post.FindAll();

if (posts.Count() > 0)

{
ViewData["AllPosts"] = posts;
ViewData["LatestPost"] = Post.FindLatestPost () ;
return View() ;

Understanding Business Organizational Patterns | 63

}
else
return Create();

// POST: /Blog/
[AcceptVerbs (HttpVerbs.Post)]
public ActionResult CreateComment (string id, FormCollection collection)
{
int postId = 0;
int.TryParse(id, out postId);
Post post = Post.Find(postId);

Comment comment = new Comment () ;
comment.Post = post;

comment .Author = Request.Form["Author"];
comment .DateAdded = DateTime.Now;
comment .Text = Request.Form["Comment"];

comment . Save () ;

return Detail (post.Id.ToString());

// GET: /Blog/Detail/1l
public ActionResult Detail (string id)

{
ViewData["AllPosts"] = Post.FindAll();

int postId = 0;
int.TryParse(id, out postId);

ViewData["LatestPost"] = Post.Find(postId);

return View("Index") ;

// GET: /Blog/Create
public ActionResult Create()

{
return View("AddPost") ;

// POST: /Blog/Create
[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create(FormCollection collection)
{
Post post = new Post();
post.DateAdded = DateTime.Now;
post.Subject = Request.Form["Subject"];
post.Text = Request.Form["Content"]; ;
post.Save() ;

return Detail (post.Id.ToString());

64 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

Add two new folders to the views folder: Blog and Shared. To the Shared folder add a new Master
page named BlogMaster .Master, with the markup seen here:

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

<link href="../../Content/Site.css" rel="stylesheet" type="text/css" />
<title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>
</head>
<body>

<div id="document">
<div id="header"><hl>My Blog</hl></div>
<div id="nav"><%= Html.ActionLink("Create Post", "Create") %></div>
<asp:ContentPlaceHolder ID="MainContent" runat="server">
</asp:ContentPlaceHolder>
</div>
</body>
</html>

Add a new view within the Blog view folder named 1ndex with the following markup.

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/BlogMaster.Master"
Inherits="System.Web.Mvc.ViewPage" %>
<%@ Import Namespace="ASPPatterns.Chap4.ActiveRecord.Model" %>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

<div id="content"><h2><%= Html.Encode(((Post)ViewData["LatestPost"]).Subject) %></h2>
<%= ((Post)ViewData|["LatestPost"]).Text.Replace("\n", "
") %>

<i>posted on
<%= Html.Encode(((Post)ViewData["LatestPost"])

.DateAdded.ToLongDateString()) %></i>
<hr />
Comments

<% foreach (var item in ((Post)ViewDatal["LatestPost"]) .Comments)
{ %>
<p><i><%= Html.Encode (item.Author) %>
said on <%= Html.Encode (item.DateAdded.ToLongDateString()) %>
at <%= Html.Encode (item.DateAdded.ToShortTimeString()) %>...</i>

<%= Html.Encode(item.Text) %>
</p>
<% } %>

<p>Add a comment</p>

<% using (Html.BeginForm("CreateComment", "Blog", new {

Id = ((Post)ViewData["LatestPost"]).Id }, FormMethod.Post))
{%>
<p>

Your name

<%= Html.TextBox ("Author")%> </p>

<p>

Understanding Business Organizational Patterns | 65

Your comment

<%= Html.TextArea ("Comment") $></p>

<p>
<input type="submit" value="Add Comment" />

</p>
<%} %>
</div>
<div id="rightNav"><h2>A1ll Posts</h2>

<% foreach (var item in (Post[])ViewDatal["AllPosts"])
{ %>

<%= Html.ActionLink (item.Subject, "Detail",
new { Id=item.Id 1})%>

<%= Html.Encode (item.ShortText) %>
</1li>
<% } %>

</div>

</asp:Content>

Add a second new view named addpost to the Blog view folder with the following markup:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/BlogMaster.Master"
Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
<% using (Html.BeginForm())
{%>
<p>
Subject

<%= Html.TextBox("Subject")%> </p>

<p>
Content

<%= Html.TextArea ("Content")%></p>

<p>
<input type="submit" value="Create" />
</p>
<%} %>
</asp:Content>

Open the Global .asax file and update it as shown here:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using System.Web.Mvc;

using System.Web.Routing;

using ASPPatterns.Chap4.ActiveRecord.Model;
using Castle.ActiveRecord.Framework;

66 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

using System.Configuration;

namespace ASPPatterns.Chap4.ActiveRecord.UI.MVC

{
public class MvcApplication : System.Web.HttpApplication

{
public static void RegisterRoutes (RouteCollection routes)
{

routes.IgnoreRoute ("{resource}.axd/{*pathInfo}");

routes.MapRoute (

"Default",
"{controller}/{action}/{id}",
new { controller = "Blog", action = "Index", id = "" }

)

protected void Application_Start()
{

RegisterRoutes (RouteTable.Routes) ;

IConfigurationSource source = ConfigurationManager
.GetSection("activeRecord") as IConfigurationSource;
Castle.ActiveRecord.ActiveRecordStarter
.Initialize(source, typeof (Post), typeof (Comment)) ;

The code in the Global.asax file simply tells the Castle ActiveRecord framework to initialize so you
can start working with it.

The last thing you need to do to get the Castle ActiveRecord up and running is to amend the web.
config file to include the Castle ActiveRecord declarations as displayed in the following configura-
tion snippet:

<configuration>
<configSections>
<section
name="activeRecord"
type="Castle.ActiveRecord.Framework.Config.ActiveRecordSectionHandler,
Castle.ActiveRecord" />

</configSections>
<activeRecord isWeb="true">
<config>
<add key="hibernate.connection.driver_class"
value="NHibernate.Driver.SqglClientDriver" />
<add key="dialect" value="NHibernate.Dialect.MsSql2005Dialect"/>
<add key="hibernate.connection.provider"
value="NHibernate.Connection.DriverConnectionProvider"/>
<add key="connection.connection_string"
value="DataSource=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Blog.mdf;

Understanding Business Organizational Patterns | 67

Integrated Security=True;User Instance=True"/>

<add key="proxyfactory.factory_class"

value="NHibernate.ByteCode.Castle.ProxyFactoryFactory,
NHibernate.ByteCode.Castle" />

</config>
</activeRecord>

</configuration >

To make the blog look pretty, you can add a new style sheet file within the content folder named

Site.css:

#document {
width:750px;
margin:0 auto;

}

#content {
float:left;
width:500px;
}

#rightNav {
float:right;
width:250px;
}

Run the solution, and you will be able to use your blog. Figure 4-3 shows the blog application

running.
(8 vewpel - Winiows et Exlre g _é@'
G@ [) bt ocatera: 663 Biog Detai3 e

| B bR i Favoie Tesh Hidp
v Favorites | il ViewPagel

= - Bager Seyr Tocke @

leches mactor neque, vel sodales dolor maoris quis ipsum. Fusce eget massa massa, T

some contens

My Blog
Create Post
Lorem ipsum dolor sit amet, consectetur All Posts
adipiscing elit.

-y new post
Phiaselbus sibls e, soodabes il molis . sodales il e, Vi manis Bgula, aky -
poeta a varias in, pharetra eu toctor. Nulls lobortis, velit 8 semper bland?, ebh + ot % by

dalos sit amet,

rutnam vestibubum bectus. Integer in egestas turpis. Quiscque s
fermentam sc imperdict e, imperdiet in fikis. Aliquam hendrenit, nisi ultrices sagitts

jasta. Ut tincicunt semper tellus ut suscipit. Sed poen menus, pharetra non iouls
id, posuere cu vebt. Sed augue velt, veatibubam cget coodmentun sed malesuada
vl quaen. T in Biguka v Proin s mcoks poves. Bed iristique et adipiscing
lewemn Frugial acoumsan.

poctad an 21 Jauay 2010

Cormnents

Scott said on 21 Javuary 2010 at 21:24...
Dones veneratis justo tit amet felis puhiner curvos. Nune eoasequat fisto et mulls
b s Jobortis eral fermenthian. Etiam ac dul san. Sed sed nibh cget sem

| obortis comsequat Aliquam ut s i fels dhetun clementum. Vestbubm ante
ippsumm prizmis i fcibus, ovci boctus et ultrices posuere cubiis Crzas, Ut lacinia
faclisis nterdum.

& Intermet | Protested Mode On

contectets adipiscing ot

aligasm, massa i scelerisue ante, i pellenlesque by fpoum oc bacus. Quisqoe Poaselas bk une,
o manc. Doner: prbvinar kices bemps. Dowee vehictls ket oo, + sabiect
pellentesque egestas nisi. Nullam id Eigula vitss sapien comvalis soederisque, Etiam Ty e,
comemedo ot 1 mague hctas tnciduet. Ut #u arcn erat * iy gt .

uhd Thafgkih Bfelj
Aliquam elefend massa quis leo semper e aiquam mils pretiom Nulla eget dui T i‘M

G-y

0%~

FIGURE 4-3

68

CHAPTER 4 THE BUSINESS LOGIC LAYER: ORGANIZATION

You built the blogging application extremely quickly; this was due in no small measure to the Castle
ActiveRecord framework, which was able to automate your data retrieval and access due to the close
correlation between your object model and your data model.

The Active Record pattern is no silver bullet. It excels with a good underlying data model that maps to
the business model, but when there is a mismatch, sometimes called an impedance mismatch, the pat-
tern can struggle to cope. This is the result of complex systems sometimes having a different concep-

tual business model than the data model. When there is a rich business domain with lots of complex

rules, logic, and workflow, the domain model approach is favored. It’s the pattern you will be explor-

ing next.

Domain Model

You can think of a domain model as a conceptual layer that represents the domain you are work-
ing in. Things exist in this model and have relationships to other things. What do I mean by things?
Well, for example, if you were building an e-commerce store, the “things” that would live in the
model would represent a Basket, Order, Order Item, and the like. These things have data and, more
importantly, they have behavior. Not only would an order have properties that represent a creation
date, status, and order number, but it would contain the business logic to apply a voucher to, includ-
ing all the domain rules that surround it: Is the voucher valid? Can the voucher be used with the
products in the basket? Are there any other offers in place that would render the voucher invalid?
The closer your domain model represents the real domain the better, as it will be easier for you to
understand and replicate the complex business logic, rules, and validation process that exist in an
organization. The main difference between the domain model and the Active Record pattern is that
the business entities that live in the domain model have no knowledge of how to persist themselves,
and there doesn’t necessarily need to be a one-to-one mapping between the data model and the busi-
ness model.

POCO and PI

As mentioned previously, the domain model, unlike the Active Record pattern, has no knowledge of
persistence. The term persistence ignorance (PI) has been coined for the plain nature of the plain old
common runtime object (POCO) business entities. How then do you persist a business object with
the domain model? Typically, the Repository pattern (Chapter 7) is used. When you are employing
the Domain Model pattern, it’s the responsibility of the Repository object, along with a data mapper
(Chapter 7), to map a business entity and its object graph of associated entities to the data model.

Code Example

To demonstrate the Domain Model pattern, you will create a solution to model a banking domain
that will involve the creation of accounts and the transferring of funds between them.

Create a new solution named ASPPatterns.Chap4.DomainModel and add to it the following class
library projects:

> ASPPatterns.Chap4.DomainModel .Model

Understanding Business Organizational Patterns | 69

>

>

ASPPatterns.Chap4.DomainModel . AppService

ASPPatterns.Chap4.DomainModel .Repository

Also add a new web application named aspPPatterns.Chap4.DomainModel .UT .Web. Right-click
on the Repository project and add a project reference to the Model project. Right-click on the
AppService project and add a project reference to the Model and Repository projects. Finally,
right-click on the web project and add a project reference to the appService project.

Figure 4-4 is a graphical representation of the projects you have created. The responsibilities of each
project are listed following the diagram.

>

ASPPatterns.Chap4.DomainModel.Ul.Web

ASPPatterns.Chap4.DomainModel.Model: The Domain Model project will contain all of the
business logic within the application. Domain objects will live in here and will have relation-
ships to other objects to represent the banking domain the application is built around. The
project will also define contracts in the form of interfaces for domain object persistence and
retrieval; the Repository pattern will be employed for all persistence management needs. (The
Repository pattern is discussed in greater detail in Chapter 7.) The Model project will not
have a reference to any other project ensuring, it remains free of any infrastructure concerns
and focuses squarely on the business domain.

ASPPatterns.Chap4.DomainModel.Repository: The Repository project will contain imple-
mentations of the repository interfaces defined in the Model project. The Repository has a
reference to the Model project in order to hydrate domain objects from the database as well
as to persist. The Repository project is concerned only with the responsibility of domain
object persistence and retrieval.

Application Services
ASPPatterns.Chap4.DomainModel.AppService

Domain Model
ASPPatterns.Chap4.DomainModel

>

Presentation/UX

Repositories
ASPPatterns.Chap4.DomainModel.Repository

Database

FIGURE 4-4

70 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

> ASPPatterns.Chap4.DomainModel.AppService: The AppService project will act as the gate-
way into the application—the API if you will. The presentation layer will communicate with
the AppService via messages, which are simple data transfer objects. The messaging patterns
are covered in detail in Chapter 7. The AppService layer will also define view models, which
are flattened views of the domain model used solely for the displaying of data. Chapter 8 cov-
ers this topic in greater detail.

> ASPPatterns.Chap4.DomainModel.UL. Web: The UL.Web project is responsible for the
presentation and use experience needs of the application. This project talks only to the
AppService and receives strongly typed view models that have been created specifically for
the views of the user experience.

With your solution structure in place you can set up the database to store the state of the bank
accounts in the domain. Add a new item to the web project, select new database, and name it
BankAccount .mdf. Once the database has been created, double-click on it to be taken to the Server
Explorer and create two tables with the following definitions.

TABLE 4-3: BankAccounts Table

COLUMN NAME DATA TYPE ALLOW NULLS
BankAccountId uniqueidentifier, Primary Key False
Balance Money False
CustomerRef nvarchar(50) False

TABLE 4-4: Transactions Table

COLUMN NAME DATA TYPE ALLOW NULLS
BankAccountId uniqueidentifier False
Deposit money False
Withdrawal money False
Reference nvarchar(50) False

Create a new database diagram, add both tables, and create a relationship between them by select-
ing and dragging the Bankaccounts table’s BankAccountId column to the Transactions table’s
BankAccountId column. After you have made your changes, save the diagram and okay the updates
to the tables.

With the solution framework and database set up, you can begin the real work of modeling your
domain. In this scenario a BankAccount creates a Transaction for every action that occurs.
Figure 4-5 shows the class diagram for the simple domain model.

Understanding Business Organizational Patterns | 71

Class

=
=

66660

£
BankAccount

& Fields

= Properties
BF AccountMNo

Balance
CustomerRef

E Methods

BankAccount (+ 1 overload)
CanWithdrawal

Deposit

GetTransactions

Withdrawal

)

g¥ _transactions

A %,
Transaction ®

FIGURE 4-5

Class

= Properties
B Date
Bf Deposit
@ Reference
% Withdrawal
= Methods

@ Transaction

Create a new class named Transaction within the Model project with the following code definition:

public class Transaction

{

public Transaction(decimal deposit, decimal withdrawal,
string reference, DateTime date)

this.Deposit = deposit;

this.Withdrawal = withdrawal;
this.Reference = reference;

this.Date

= date;

public decimal Deposit
{ get; internal set; }

public decimal Withdrawal
{ get; internal set; }

public string Reference
{ get; internal set; }

public DateTime Date
{ get; internal set; }

Note that, for the purposes of this example, the Transaction object has no identifier property and
that the corresponding data table doesn’t have a primary key specified. The Transaction object is
what is known as a value object, a term used in domain driven design and discussed at the end of
this chapter.

Add a second class named Bankaccount and enter the code listing that follows:

public class BankAccount

{

72 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

private decimal _balance;

private Guid _accountNo;

private string _customerRef;

private IList<Transaction> _transactions;

public BankAccount() : this(Guid.NewGuid(), 0,
new List<Transaction>(), "")

_transactions.Add(new Transaction(Om, Om, "account created", DateTime.Now)) ;

public BankAccount (Guid Id, decimal balance,
IList<Transaction> transactions, string customerRef)

AccountNo = Id;
_balance = balance;

_transactions = transactions;
_customerRef = customerRef;

public Guid AccountNo
{
get { return _accountNo; }
internal set { _accountNo = value; }

public decimal Balance
{
get { return _balance; }
internal set { _balance = value; }

public string CustomerRef

{
get { return _customerRef; }
set { _customerRef = value; }

public bool CanWithdraw(decimal amount)
{

return (Balance >= amount);

public void Withdraw(decimal amount, string reference)
{
if (CanWithdraw (amount))
{
Balance -= amount;
_transactions.Add(new Transaction(Om, amount,
reference, DateTime.Now));

public void Deposit (decimal amount, string reference)

Understanding Business Organizational Patterns | 73

Balance += amount;
_transactions.Add (new Transaction(amount, Om, reference, DateTime.Now)) ;

public IEnumerable<Transaction> GetTransactions ()

{

return _transactions;

The Bankaccount has three simple methods:
> CanWithdraw
> Withdraw

> Deposit

Because there is a canwi thdraw method, you should expect calling code to use the Test-Doer pattern
before trying to withdraw funds from an account like so:

If (myBankAccount.CanWithdraw (amountToWithdraw))
{

myBankAccount .Withdraw (amountToWithdraw) ;

If a call to withdraw is called with insufficient funds without a check, then an exception should be
raised. With this in mind, you will require a new custom exception, so add another class to the Model
project named InsufficientFundsException with the following code listing:

public class InsufficientFundsException : ApplicationException
{
}

And amend the withdraw method on the Bankaccount class like so:

public void Withdraw(decimal amount, string reference)
{
if (CanWithdraw (amount))
{
Balance -= amount;
_transactions.Add (new Transaction(0Om, amount, reference, DateTime.Now)) ;
}
else
{
throw new InsufficientFundsException();

You now need a method to persist the BankAccount and Transactions, but because you don’t want
to pollute the Domain Model project, you are going to add only the interface for a Repository to
define the contract for the entity’s persistence and retrieval needs. This is a nod back to what you
read about in terms of the PI and POCO, concepts covered earlier in this chapter.

74 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

Create a new interface named TBankAccountRepository with the following contract:

public interface IBankAccountRepository
{
void Add(BankAccount bankAccount) ;
void Save (BankAccount bankAccount)
IEnumerable<BankAccount> FindAll ()
BankAccount FindBy (Guid AccountId)

i
i

i

Some actions don’t sit well as methods on a domain entity. For cases like these, you can use a domain
service. The action of transferring funds between two accounts is a responsibility that belongs on a
service class. You will read more about domain services at the end of the chapter.

Add a new class to the Model project named BankAccountService with the following code definition:

public class BankAccountService
{
private IBankAccountRepository _bankAccountRepository;

public BankAccountService (IBankAccountRepository bankAccountRepository)
{

_bankAccountRepository = bankAccountRepository;

public void Transfer (Guid accountNoTo, Guid accountNoFrom,

decimal amount)

BankAccount bankAccountTo =
_bankAccountRepository.FindBy (accountNoTo) ;
BankAccount bankAccountFrom = _bankAccountRepository.FindBy (accountNoFrom) ;

if (bankAccountFrom.CanWithdraw (amount))
{
bankAccountTo.Deposit (amount,

"From Acc " + bankAccountFrom.CustomerRef + " ");
bankAccountFrom.Withdraw (amount,

"Transfer To Acc " + bankAccountTo.CustomerRef + " ");

_bankAccountRepository.Save (bankAccountTo) ;
_bankAccountRepository.Save (bankAccountFrom) ;
}
else
{

throw new InsufficientFundsException();

In the current implementation of the BankAccountService, any errors that occur between saving the
two bank accounts will leave the data in an invalid state. In Chapter 7 you will see how the Unit of
Work pattern can ensure that transactions that need to can commit as one atomic action, or rollback
in case of an exception.

Understanding Business Organizational Patterns | 75

Now that you have built the domain model, you can get to work on a method to persist the Bank
Account and Transaction business objects. From within the Repository project, add a new class
named BankaccountRepository. This class will be an implementation of the TBankAccount
Repository. My apologies for the length of the code listing that follows. In Chapter 7, you will
look at some popular object relational mappers that will cut down on the amount of time you spend
writing ADO.NET infrastructure code.

You will need to add a reference to the System.Configuration assembly because the Bankaccount
Repository needs to obtain a connection string from the application’s web.config file.

using ASPPatterns.Chap4.DomainModel .Model;
using System.Data.SglClient;

using System.Data;

using System.Configuration;

namespace ASPPatterns.Chap4.DomainModel.Repository

{
public class BankAccountRepository : IBankAccountRepository
{

private string _connectionString;

public BankAccountRepository ()
{
_connectionString = ConfigurationManager
.ConnectionStrings|["BankAccountConnectionString"].ConnectionString;

public void Add(BankAccount bankAccount)
{
string insertSqgl = "INSERT INTO BankAccounts " +
" (BankAccountID, Balance, CustomerRef) VALUES " +
" (@BankAccountID, @Balance, @CustomerRef)";

using (SglConnection connection =
new SglConnection(_connectionString))

SglCommand command = connection.CreateCommand () ;
command.CommandText = insertSql;

SetCommandParametersForInsertUpdateTo (bankAccount, command) ;
connection.Open/() ;

command . ExecuteNonQuery () ;
UpdateTransactionsFor (bankAccount) ;

public void Save (BankAccount bankAccount)
{
string bankAccoutnUpdateSqgl =
"UPDATE BankAccounts " +
"SET Balance = @Balance, CustomerRef= @CustomerRef " +

76 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

"WHERE BankAccountID = @BankAccountID;";

using (SglConnection connection =
new SqglConnection (_connectionString))

SglCommand command = connection.CreateCommand () ;
command.CommandText = bankAccoutnUpdateSql;

SetCommandParametersForInsertUpdateTo (bankAccount, command) ;
connection.Open() ;

command . ExecuteNonQuery () ;

UpdateTransactionsFor (bankAccount) ;

private static void SetCommandParametersForInsertUpdateTo (
BankAccount bankAccount, SglCommand command)

command . Parameters.Add (

new SglParameter ("@BankAccountID", bankAccount.AccountNo)) ;
command.Parameters.Add (new SglParameter ("@Balance", bankAccount.Balance)) ;
command. Parameters.Add (

new SglParameter ("@CustomerRef", bankAccount.CustomerRef)) ;

private void UpdateTransactionsFor (BankAccount bankAccount)
{
string deleteTransactionSQl =
"DELETE Transactions WHERE BankAccountId = @BankAccountId;";

using (SglConnection connection =
new SglConnection(_connectionString))

SglCommand command = connection.CreateCommand() ;
command.CommandText = deleteTransactionSQl;
command. Parameters.Add (

new SqlParameter ("@BankAccountID", bankAccount.AccountNo)) ;
connection.Open() ;
command . ExecuteNonQuery () ;

string insertTransactionSqgl =
"INSERT INTO Transactions " +
" (BankAccountID, Deposit, Withdraw, Reference, [Date]) VALUES " +
" (@BankAccountID, @Deposit, @Withdraw, G@Reference, @Date)";

foreach (Transaction tran in bankAccount.GetTransactions ()

{

using (SglConnection connection =
new SglConnection(_connectionString))

SglCommand command = connection.CreateCommand () ;

Understanding Business Organizational Patterns | 77

command.CommandText = insertTransactionSql;

command. Parameters.Add (
new SglParameter ("@BankAccountID",
bankAccount.AccountNo)) ;
command. Parameters.Add (new SglParameter ("@Deposit", tran.Deposit));
command. Parameters.Add (
new SqglParameter ("@Withdraw", tran.Withdrawal));
command . Parameters.Add (
new SglParameter ("@Reference", tran.Reference));
command.Parameters.Add (new SglParameter ("@Date", tran.Date));

connection.Open() ;
command . ExecuteNonQuery () ;

public IEnumerable<BankAccount> FindAll ()
{

IList<BankAccount> accounts = new List<BankAccount>();

string queryString =
"SELECT * FROM dbo.Transactions INNER JOIN " +
"dbo.BankAccounts ON " +
"dbo.Transactions.BankAccountId = dbo.BankAccounts.BankAccountId " +
"ORDER BY dbo.BankAccounts.BankAccountId;";

using (SglConnection connection =
new SglConnection(_connectionString))

SglCommand command = connection.CreateCommand () ;
command.CommandText = queryString;

connection.Open() ;

using (SglDataReader reader = command.ExecuteReader ())
{

accounts = CreateListOfAccountsFrom(reader) ;

return accounts;

private IList<BankAccount> CreateListOfAccountsFrom (
IDataReader datareader)

IList<BankAccount> accounts = new List<BankAccount>();
BankAccount bankAccount;

string id = "";

IList<Transaction> transactions = new List<Transaction>();

while (datareader.Read()

{
if (id != datareader["BankAccountId"].ToString())

78 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

id = datareader["BankAccountId"].ToString() ;

transactions = new List<Transaction>();

bankAccount = new BankAccount (
new Guid(id), Decimal.Parse(datareader["Balance"].ToString()),
transactions, datareader["CustomerRef"].ToString());

accounts.Add (bankAccount) ;
}
transactions.Add(CreateTransactionFrom(datareader)) ;

return accounts;

private Transaction CreateTransactionFrom(IDataRecord rawData)
{
return new Transaction (
Decimal.Parse (rawData["Deposit"].ToString()),
Decimal.Parse(rawData["Withdraw"].ToString()),
rawData["Reference"].ToString (),
DateTime.Parse(rawData["Date"].ToString()));

public BankAccount FindBy (Guid accountId)
{
BankAccount account;

string queryString = "SELECT * FROM " +
"dbo.Transactions INNER JOIN " +
"dbo.BankAccounts ON " +
"dbo.Transactions.BankAccountId = " +
"dbo.BankAccounts.BankAccountId " +
"WHERE dbo.BankAccounts.BankAccountId = @BankAccountId;";

using (SglConnection connection =
new SglConnection(_connectionString))

SglCommand command = connection.CreateCommand() ;
command.CommandText = queryString;

SqglParameter Idparam = new SglParameter ("@BankAccountId", accountId);
command.Parameters.Add (Idparam) ;

connection.Open() ;
using (SglDataReader reader = command.ExecuteReader())

{

account = CreateListOfAccountsFrom(reader) [0];

}

return account;

Understanding Business Organizational Patterns | 79

Now that you have dealt with the persistence and retrieval needs, you can add a service layer for cli-
ents to interact with the system in an easy manner.

Add a new folder to the appservices project named viewModel and add to it a new class named
BankAccountView and one named Transactionview with the following definition:

public class TransactionView

{
public string Deposit { get; set; }
public string Withdrawal { get; set; }
public string Reference { get; set; }
public DateTime Date { get; set; }

public class BankAccountView
{
public Guid AccountNo { get; set; }
public string Balance { get; set; }
public string CustomerRef { get; set; }
public IList<TransactionView> Transactions { get; set; }

The BankaccountView and Transactionview offer a flattened view of the domain model for pre-
sentation purposes, which is an idea you will examine more closely in Chapter 6. To transform your
domain entities into data transfer view models, you will need a mapper class. Again, you will take

a closer look at this and a way to automate this process in Chapter 8. Create a new class named
viewMapper with the following two static methods:

using ASPPatterns.Chap4.DomainModel.Model;

namespace ASPPatterns.Chap4.DomainModel.AppService
{
public static class ViewMapper
{
public static TransactionView CreateTransactionViewFrom (
Transaction tran)

return new TransactionView

{
Deposit = tran.Deposit.ToString("C"),
Withdrawal = tran.Withdrawal.ToString("C"),
Reference = tran.Reference,
Date = tran.Date

Y

public static BankAccountView CreateBankAccountViewFrom (
BankAccount acc)

return new BankAccountView

{
AccountNo = acc.AccountNo,
Balance = acc.Balance.ToString("C"),
CustomerRef = acc.CustomerRef,

80 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

Transactions = new List<TransactionView> ()

Y

Add a second folder to the appservices project named Messages; this folder will contain all the
request-reply objects used to communicate with the service layer. Messaging patterns are covered in
more detail in Chapter 6. Because all the replies shared a common set of properties, you can create
a base class. Add a new class to the Messages folder named ResponseBase, with the following code
listing:
namespace ASPPatterns.Chap4.DomainModel.AppService.Messages
{
public abstract class ResponseBase
{

public bool Success { get; set; }
public string Message { get; set; }

The Success property indicates whether the method called was run successfully, and the Message
property contains details of the outcome of the method run.

You now need to implement all the request and reply objects; create a new class for each of the class
listings displayed next:

public class BankAccountCreateRequest
{

public string CustomerName { get; set; }

public class BankAccountCreateResponse : ResponseBase

{
public Guid BankAccountId { get; set; }

public class DepositRequest

{
public Guid AccountId { get; set; }
public decimal Amount { get; set; }

public class FindAllBankAccountResponse : ResponseBase
{

public IList<BankAccountView> BankAccountView { get; set; }

public class FindBankAccountResponse : ResponseBase
{
public BankAccountView BankAccount { get; set; }

public class TransferRequest
{

Understanding Business Organizational Patterns | 81

public Guid AccountIdTo { get; set; }
public Guid AccountIdFrom { get; set; }
public decimal Amount { get; set; }

public class TransferResponse : ResponseBase
{
}

public class WithdrawalRequest

{
public Guid AccountId { get; set; }
public decimal Amount { get; set; }

With all the messaging objects in place, you can add the service class that coordinates the method
calls to the domain entities: service and repository. Add a new class named applicationBank
AccountService at the root of the Appservice project:

using ASPPatterns.Chap4.DomainModel .Model;
using ASPPatterns.Chap4.DomainModel .Repository;
using ASPPatterns.Chap4.DomainModel .AppService.Messages;

namespace ASPPatterns.Chap4.DomainModel.AppService
{
public class ApplicationBankAccountService
{
private BankAccountService _bankAccountService;
private IBankAccountRepository _bankRepository;

public ApplicationBankAccountService()
this (new BankAccountRepository(),
new BankAccountService (new BankAccountRepository())

public ApplicationBankAccountService (
IBankAccountRepository bankRepository,
BankAccountService bankAccountService)

_bankRepository = bankRepository;
_bankAccountService = bankAccountService;

public ApplicationBankAccountService (
BankAccountService bankAccountService,
IBankAccountRepository bankRepository)

_bankAccountService = bankAccountService;
_bankRepository = bankRepository;
public BankAccountCreateResponse CreateBankAccount (

BankAccountCreateRequest bankAccountCreateRequest)

BankAccountCreateResponse bankAccountCreateResponse =
new BankAccountCreateResponse () ;

82 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

BankAccount bankAccount = new BankAccount () ;

bankAccount.CustomerRef = bankAccountCreateRequest.CustomerName;
_bankRepository.Add (bankAccount) ;

return bankAccountCreateResponse;

public void Deposit (DepositRequest depositRequest)
{

BankAccount bankAccount = _bankRepository.FindBy (depositRequest.AccountId) ;

bankAccount.Deposit (depositRequest.Amount, "");

_bankRepository.Save (bankAccount) ;

public void Withdrawal (WithdrawalRequest withdrawalRequest)
{

BankAccount bankAccount =
_bankRepository.FindBy (withdrawalRequest.AccountId) ;

bankAccount.Withdraw (withdrawalRequest.Amount, "");
_bankRepository.Save (bankAccount) ;
public TransferResponse Transfer (TransferRequest request)
{
TransferResponse response = new TransferResponse();
try

{
_bankAccountService.Transfer (request.AccountIdTo,

request.AccountIdFrom, request.Amount) ;

response.Success = true;
}
catch (InsufficientFundsException)
{
response.Message = "There is not enough funds in account no:
request.AccountIdFrom.ToString () ;
response.Success = false;

return response;

public FindAllBankAccountResponse GetAllBankAccounts ()
{
FindAllBankAccountResponse FindAllBankAccountResponse =
new FindAllBankAccountResponse () ;
IList<BankAccountView> bankAccountViews =
new List<BankAccountView> () ;
FindAllBankAccountResponse.BankAccountView = bankAccountViews;

foreach (BankAccount acc in _bankRepository.FindAll())

+

Understanding Business Organizational Patterns | 83

bankAccountViews.Add (
ViewMapper .CreateBankAccountViewFrom(acc)) ;

return FindAllBankAccountResponse;

public FindBankAccountResponse GetBankAccountBy (Guid Id)

{
FindBankAccountResponse bankAccountResponse = new FindBankAccountResponse () ;
BankAccount acc = _bankRepository.FindBy (Id);
BankAccountView bankAccountView = ViewMapper.CreateBankAccountViewFrom(acc) ;

foreach (Transaction tran in acc.GetTransactions())

{
bankAccountView.Transactions.Add (
ViewMapper.CreateTransactionViewFrom(tran)) ;

bankAccountResponse.BankAccount = bankAccountView;

return bankAccountResponse;

The BankaccountapplicationService class coordinates the application activity and delegates all
business tasks to the domain model. This layer does not contain business logic and helps to prevent
any non-business-related code from polluting the domain model project. The layer also transforms
domain entities into data transfer objects that protect the inner workings of the domain and provide
an easy API for the presentation layer to work with.

To keep things simple I have elected to use “poor man’s dependency injection” and hard coded the
default constructor to use the repository domain service implementations that you have coded. In
Chapter 8, you will learn about Inversion of Control and Inversion of Control Containers to supply
the dependencies of a class.

Your last action is to create a user interface to enable accounts to be created and transactions to take
place. Open the Default.aspx in source mode from within the web project and edit the markup so
it matches the following snippet:

<form id="forml" runat="server">
<div>

<fieldset>
<legend>Create New Account</legend>
<p>
Customer Ref:
<asp:TextBox ID="txtCustomerRef" runat="server" />

<asp:Button ID="btCreateAccount" runat="server" Text="Create Account"

84 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

onclick="btCreateAccount_Click" />
</p>
</fieldset>

<fieldset>
<legend>Account Detail</legend>
<p>
<asp:DropDownList AutoPostBack="true"
ID="ddlBankAccounts" runat="server"
onselectedindexchanged="ddlBankAccounts_SelectedIndexChanged"/ >
</p>
<p>
Account No:
<asp:Label ID="1blAccountNo" runat="server" />
</p>
<p>
Customer Ref:
<asp:Label ID="lblCustomerRef" runat="server" />

</p>
<p>
Balance:
<asp:Label ID="1lblBalance" runat="server" />
</p>
<p>
Amount f<asp:TextBox ID="txtAmount" runat="server" Width="60px"/>

<asp:Button ID="btnWithdrawal" runat="server" Text="Withdrawal"
onclick="btnWithdrawal_ Click" />

<asp:Button ID="btnDeposit" runat="server" Text="Deposit"
onclick="btnDeposit_Click" />
</p>
<p>
Transfer
f<asp:TextBox ID="txtAmountToTransfer" runat="server"
Width="60px" />

 to
<asp:DropDownList AutoPostBack="true"
ID="ddlBankAccountsToTransferTo" runat="server"/>

<asp:Button ID="btnTransfer" runat="server" Text="Commit"
onclick="btnTransfer_ Click" />
</p>
<p>
Transactions</p>
<asp:Repeater ID="rptTransactions" runat="server">
<HeaderTemplate>
<table>
<tr>
<td>deposit</td>
<td>withdrawal</td>
<td>reference</td>
</tr>
</HeaderTemplate>

Understanding Business Organizational Patterns | 85

<ItemTemplate>
<tr>
<td><%# Eval ("Deposit") %></td>
<td><%# Eval ("Withdrawal") $%></td>
<td><%# Eval ("Reference") %></td>
<td><%# Eval("Date") %></td>
</tr>
</ItemTemplate>
<FooterTemplate>
</table>
</FooterTemplate>
</asp:Repeater>
</fieldset>
</div>
</form>
</body>
</html>

Switch to the code behind of the Default.aspx page and update to match the following code listing:

using System;

using System.Web.UI.WebControls;

using ASPPatterns.Chap4.DomainModel .AppService;

using ASPPatterns.Chap4.DomainModel .AppService.Messages;

namespace ASPPatterns.Chap4.DomainModel.UI.Web
{
public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
ShowAllAccounts () ;

private void ShowAllAccounts()
{
ddlBankAccounts.Items.Clear () ;

FindAllBankAccountResponse response =
new ApplicationBankAccountService().GetAllBankAccounts();
ddlBankAccounts.Items.Add (new ListItem("Select An Account", ""));

foreach (BankAccountView accView in response.BankAccountView)
{
ddlBankAccounts.Items.Add (
new ListItem(accView.CustomerRef, accView.AccountNo.ToString()));

protected void btCreateAccount_Click(object sender, EventArgs e)
{
BankAccountCreateRequest createAccountRequest =
new BankAccountCreateRequest () ;
createAccountRequest.CustomerName = this.txtCustomerRef.Text;

86 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

ApplicationBankAccountService service = new ApplicationBankAccountService();
service.CreateBankAccount (createAccountRequest) ;

ShowAllAccounts () ;

protected void ddlBankAccounts_SelectedIndexChanged (object sender, EventArgs e)
{
DisplaySelectedAccount () ;

private void DisplaySelectedAccount ()
{
if (ddlBankAccounts.SelectedvValue.ToString() != "")
{
ApplicationBankAccountService service =
new ApplicationBankAccountService();
FindBankAccountResponse response =
service.GetBankAccountBy (
new Guid(ddlBankAccounts.SelectedValue.ToString()));
BankAccountView accView = response.BankAccount;

this.lblAccountNo.Text = accView.Balance.ToString();
this.lblBalance.Text = accView.Balance.ToString() ;
this.lblCustomerRef.Text = accView.CustomerRef;

rptTransactions.DataSource = accView.Transactions;
rptTransactions.DataBind() ;

FindAllBankAccountResponse allAccountsResponse =
service.GetAllBankAccounts() ;

ddlBankAccountsToTransferTo.Items.Clear () ;

foreach (BankAccountView acc in allAccountsResponse.BankAccountView)
{
if (acc.AccountNo.ToString() !=
ddlBankAccounts.SelectedValue.ToString())
ddlBankAccountsToTransferTo.Items.Add (
new ListItem(acc.CustomerRef, acc.AccountNo.ToString()));

protected void btnWithdrawal_Click(object sender, EventArgs e)

{
ApplicationBankAccountService service = new ApplicationBankAccountService();
WithdrawalRequest request = new WithdrawalRequest () ;
Guid AccId = new Guid(ddlBankAccounts.Selectedvalue.ToString());
request.AccountId = AccIld;
request.Amount = Decimal.Parse (txtAmount.Text) ;

service.Withdrawal (request) ;
DisplaySelectedAccount () ;

Understanding Business Organizational Patterns | 87

protected void btnDeposit_Click(object sender, EventArgs e)

{
ApplicationBankAccountService service = new ApplicationBankAccountService();
DepositRequest request = new DepositRequest();
Guid AccId = new Guid(ddlBankAccounts.SelectedValue.ToString());
request.AccountId = AccId;
request.Amount = Decimal.Parse (txtAmount.Text) ;

service.Deposit (request) ;
DisplaySelectedAccount () ;

protected void btnTransfer_Click(object sender, EventArgs e)

{
ApplicationBankAccountService service = new ApplicationBankAccountService();
TransferRequest request = new TransferRequest();
request.AccountIdFrom = new Guid(ddlBankAccounts.SelectedvValue.ToString()) ;
request.AccountIdTo =

new Guid(ddlBankAccountsToTransferTo.SelectedValue.ToString()) ;

request.Amount = Decimal.Parse (txtAmountToTransfer.Text) ;

service.Transfer (request) ;
DisplaySelectedAccount () ;

Finally add the connection string for the database to the web.config file of the web application:

<connectionStrings>
<add name="BankAccountConnectionString"
connectionString="DataSource=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|\BankAccount.mdf;
Integrated Security=True;User Instance=True"
providerName="System.Data.SqglClient"/>
</connectionStrings>

And that’s all there is to it. Launch the application, and you will see a screen that looks similar to the
one in Figure 4-6.

Trying to solve complex business problems in software is difficult, but when using the Domain
Model pattern, you first create an abstract model of the real business model. With this model in
place, you can then model complex logic by following the real domain and recreating the workflow
and processing in your domain model. Another advantage that a Domain Model pattern holds over
the Transaction Script and the Active Record patterns is that, because it contains no data access
code, you can easily unit test it without having to mock and stub out dependencies of such a data
access layer. Again, the Domain Model pattern may not always be a great fit for your application
needs. One of its great strengths is dealing with complex business logic, but a full-blown domain
model is architectural overkill when very little business logic is contained within the application.
Another disadvantage of the pattern is the steep learning curve needed to become proficient in it
compared to the Active Record and Transaction Script options. Using the pattern effectively takes

88 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

time and experience and, most importantly, a sound knowledge of the business domain you are try-
ing to model.

a htlp-a’ﬂmlhoﬂ:mmhult.aspx Windows Internet Explnrer

o~ P‘%
o |] http://lncalhostSh 40/ Detault 2 -! = 1 +3 | X (| Bing

File Edit View Favorites Tools Help
e Favorites | @ httpi//locolhost56249/D.. | it ~ B} v [0 @ = Pagew Safety~ Tookw @~ "

Create New Acconnt

Customer Ref: Marys Account ~ [Croate Account

Account Detail

.Mii.l_)_l'.‘.i_ M;c_uulll E
Account No- £00 00

Customer Ref: Marys Account

Balance: £01.00

Aot £ (i)
ransfer £ to[Bob Account [=] | Commit |
Transactions

deposit withdrawal reference
£0.00 £0.00 account created 25/01/2010 22:48:36

& Internet | Protected Mode: On £~ BI10% -

FIGURE 4-6

Anemic Domain Model

The Anemic Domain Model is sometimes referred to as an antipattern. At first glance, the pattern is
very similar to the Domain Model in that you will still find domain objects that represent the busi-

ness domain. Any behavior, however, is not contained within the domain objects. instead, it is found
outside of the model, leaving domain objects as simple data transfer classes.

The major disadvantage of this pattern is that the domain services take on the role of a more pro-
cedural style of code rather like the Transaction Script pattern that you saw at the beginning of the
chapter, which brings along the issues associated with it. One such issue is the violation of the “Tell,
Don’t Ask” principle which states that objects should tell the client what they can or can’t do rather
than exposing properties and leaving it up to the client to determine if an object is in a particular
state for a given action to take place.

If you consider the example that you used for the Domain Model exercise, the Transaction and
BankAccount domain objects are now stripped of their logic and are simply data containers as can
be seen in the following code snippet.

public class Transaction

{

Understanding Business Organizational Patterns | 89

public Guid Id { get; set; }

public decimal Deposit { get; set; }
public decimal Withdraw { get; set; }
public string Reference { get; set; }
public DateTime Date { get; set; }
public Guid BankAccountId { get; set; }

public class BankAccount
{
public BankAccount ()
{

Transactions = new List<Transaction>();

public Guid AccountNo { get; set; }

public decimal Balance { get; set; }

public string CustomerRef { get; set; }

public IList<Transaction> Transactions { get; set; }

Separate classes are involved to implement logic. The Specification pattern, covered in more detail
in Chapter 5, can be used to determine if an account has sufficient funds to make a withdrawal, as
shown here:

public class BankAccountHasEnoughFundsToWithdrawSpecification
{
private decimal _amountToWithdraw;

public BankAccountHasEnoughFundsToWithdrawSpecification (
decimal amountToWithdraw)

_amountToWithdraw = amountToWithdraw;

public bool IsSatisfiedBy (BankAccount bankAccount)
{

return bankAccount.Balance >= _amountToWithdraw;

The domain service class that you created in the Domain model will now utilize the specification
when coordinating a withdrawal or bank transfer:

public class BankAccountService

{

public void Transfer (Guid accountNoTo, Guid accountNoFrom,
decimal amount)

BankAccount bankAccountTo =
_bankAccountRepository.FindBy (accountNoTo) ;
BankAccount bankAccountFrom =

90 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

_bankAccountRepository.FindBy (accountNoFrom) ;

BankAccountHasEnoughFundsToWithdrawSpecification HasEnoughFunds =
new BankAccountHasEnoughFundsToWithdrawSpecification (amount) ;

if (HasEnoughFunds.IsSatisfiedBy (bankAccountFrom))
{
// .. make the bank transfer..
}
else
{

throw new InsufficientFundsException();

public void Withdraw(Guid accountNo, decimal amount,
string reference)

BankAccount bankAccount =
_bankAccountRepository.FindBy (accountNo) ;

BankAccountHasEnoughFundsToWithdrawSpecification HasEnoughFunds =
new BankAccountHasEnoughFundsToWithdrawSpecification (amount) ;

if (HasEnoughFunds.IsSatisfiedBy (bankAccount))
{
// .. make the withdraw ..

The next section discusses domain-driven design, a popular design methodology that concentrates
on business logic over infrastructure concerns, which is a good fit for the Domain Model pattern
and the organization of complex business logic.

Domain-Driven Design

The Domain Model pattern is useful when dealing with complex business logic. A popular design
methodology that utilizes the Domain Model pattern is known as DDD.

In a nutshell, DDD is a collection of patterns and principles that aid in your efforts to build applica-
tions that reflect an understanding of and meet the requirements of your business. Outside of that,
it’s a whole new way of thinking about your development methodology. DDD is about modeling the
real domain by first fully understanding it and placing all the terminology, rules, and logic into an
abstract representation within your code, typically in the form of a domain model.

You will take a look at the main aspects of DDD because this is the methodology that is used for the
majority of exercises in the remainder of this book.

Understanding Business Organizational Patterns | 91

The Ubiquitous Language

The notion of a ubiquitous language is that it should act as a common vocabulary that is used by
developers, domain experts, and anyone else involved in a project to describe the domain. A domain
expert is someone with the knowledge and skills in a particular domain who will work closely with
you as you develop the domain model to ensure that you fully understand the business model before
trying to represent it in code. In the example of a loan application, this could be an underwriter.
Through listening to this person, you will build a vocabulary of all terminology used during the
process of approving a loan. Your class, methods, and property names should all be based around
the same ubiquitous language. This enables you to talk to domain experts about code in a language
that they understand; also, new developers working on the code should get a good grounding in what
the domain is really all about. It will also enable them to talk to business experts about the smallest
details of complex business logic with relative ease. When all parties involved in the development of
an application are speaking the same language, problems and solutions can be conveyed easily, mak-
ing the application quicker and easier to build.

DDD is not a framework, but it does have a set of building blocks or concepts that you can incorpo-
rate into your solution. The following sections introduce these concepts one at a time.

Entities

Entities are the things discussed previously in the Domain Model section, such as an order, cus-
tomer, and product in an e-commerce site and a blog, and post objects in a blogging application.
They encompass the data and behavior of the real entity in an abstract manner. Any logic pertaining
to an entity should be contained within it. Entities are the things that require an identity, which
will remain with it throughout its lifetime. Consider a borrower in terms of a loan application; a
borrower has a name, but names can change and can be duplicated, so you need to add a separate
identity that will stay with the borrower through its life in the loan application regardless of a name,
job, or address change. Typically, a system uses some kind of unique identifier or auto-numbering
value for any entities that don’t have a natural way to identify them. Sometimes entities do have natu-
ral keys, such as a Social Security number or an employee number. Not all the objects in your domain
model are unique and require an identity. For some objects, it’s the data that is of most importance,
not identity; these objects are called value objects.

Value Objects

Value objects have no identity; they are of value because of their attributes only. Value objects gen-
erally don’t live on their own; they are typically, but not always, attributes of an entity. If you cast
your mind back to the simple Bank Account application that you worked on in the Domain Model,
you remember that the Transaction object had no identity because it exists only in terms of the
Bank Account that it is associated with; it is a value object because, in this context, it doesn’t exist
on its own.

Aggregates and Aggregate Roots

Big systems or complex domains can have hundreds of entity and value objects, which have complex
relationships. The domain model needs a method of managing these associations; more importantly,

92 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

logical groups of entities and value objects need to define an interface that lets other entities work
with them. Without such a structure, the interaction between groups of objects can be confusing
and lead to problems later.

The notion of an aggregation groups logical entities and value objects. From the DDD definition, an
aggregate is simply “a cluster of associated objects that are treated as a unit for the purpose of data
changes.” The aggregate root is an entity, which is the only member of the aggregate that any object
outside the aggregate is allowed to hold a reference to. The idea of an aggregate exists in DDD to
ensure data integrity within the domain model. An aggregate root is a special entity that acts as the
logical way into the aggregate. For example, if you take an order in the context of an e-commerce
shop, you can regard it as the aggregate root, because you only want to be able to edit an order line
or apply a voucher by going through the root of the aggregate—that is, the order entity. This enables
complex object graphs to remain consistent and business rules to be adhered to. So, instead of an order
just exposing a collection of vouchers issued against it through a simple List property, it can have
methods with complex rules that enable vouchers to be applied to it and expose the list of vouchers as
a read-only collection for display purposes.

Domain Services

As you saw in the Domain Model Pattern Bank Account exercise, the BankAccountService class
contained the logic to transfer funds between two bank accounts. Methods that don’t really fit on a
single entity or require access to the repository are contained within domain services. The domain
service layer can also contain domain logic of its own and is as much part of the domain model as
entities and value objects.

Application Services

The Application service is a thin layer that sits above the domain model and coordinates the applica-
tion activity. It does not contain business logic and does not hold the state of any entities; however, it
can store the state of a business workflow transaction. You use an Application service in the Domain
Model Bank Account exercise to provide an API into the domain model using the Request-Reply mes-
saging pattern.

Repository

The Repository pattern, which you will examine in more detail in Chapter 7, acts as an in-memory
collection or repository for business entities, completely abstracting away the underlying data infra-
structure. This pattern allows you to keep your domain model free of any infrastructure concerns,
making it POCO and PI.

Layering

Layering is an important concept in DDD because it helps to enforce the separation of concerns.
Figure 4-7 shows a graphical representation of the layers and concepts that make up DDD; however,
I should stress that DDD is much more about your mindset when developing complex business appli-
cations than how you set up your solution.

Summary | 93

Domain
Services

Application Domain

Services
Request-Reply | ‘Model
ASPX [« > Entities, Value
Objects,
Factories
FIGURE 4-7

The Bank Account application you worked on for the

domain model exercise was built around the concepts of
DDD. Figure 4-8 shows the layers in the Bank Account
application and how they relate to the concepts of DDD.

You have only had a brief introduction to DDD in this chap-
ter, although you will revisit it for the case study, where you
will also be introduced to user stories for building require-
ments and understanding the domain you are working in.
For a deeper insight into this methodology, I recommend the
following books:

Infrastructure
Logging, Security, etc.

Repositories

Databas

Snlution Fuplorer (£
By
[P] 5ol tion 'aSPPattems. Chapd.Damainbodsl (4 penjects)
= & 1. User bxperience
& (# ASPPallerns.Chapd.Dumaintodel UL Welb
¢ 2. Application Services
(3 AspPatterns. Chap4,DomainModel. AppSarvice
= | 3. Domain Model and Doman Services
() asPPatterns.Chap4.DomainModel.Model
= L 4. Repostory
@ (5] ASPPalleris. Chaps DusnainMudel Repusilory

m

FIGURE 4-8

» Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley 2003)

by Eric Evans

> Applying Domain-Driven Design and Patterns: Using .Net With Examples in C# and .NET

(Addison-Wesley 2006) by Jimmy Nilsson

SUMMARY

In this chapter you learned about some popular and proven patterns for organizing your business

logic. The three main methods were:

>

Transaction Script: If you have a simple application with little or no logic, Transaction Script

is a great choice as a straightforward solution that is easily understood by other developers

picking up your code down the line.

94 | CHAPTER4 THE BUSINESS LOGIC LAYER: ORGANIZATION

> Active Record: If your business layer is simply a thin veil over the top of your database, this is
a great pattern to opt for. There are many code-generation tools that can automatically create
your business objects for you based on your database schema, and it’s not too difficult to cre-
ate your own.

> Domain Model: The domain model excels when you have an involved, rich, complex business
domain to model. It’s a pure object-oriented approach that involves creating an abstract model
of the real business domain and is useful when dealing with complex logic and workflow. The
domain model is persistence ignorant and relies on mapper classes and the Repository pattern
to persist and retrieve business entities.

> Anemic Model: The anemic model is an antipattern of the domain model. At first glance they
appear the same, but after further inspection, the domain objects that represent the domain
you are modeling are no more than data transfer objects with no behavior. The logic of the
domain is contained in procedural type methods that validate or check the state of an object,
violating the “Tell, Don’t Ask” principle discussed in Chapter 1.

After learning about the four main methods for organizing your business logic layer, you were intro-

duced to a design methodology named domain-driven design (DDD), which utilizes a domain model to

represent complex logic in terms of services, entities, value objects, and aggregates. DDD also encour-

aged you to focus on the business logic and the domain you are working with and used the POCO or PI
principle to ensure that no infrastructure concerns polluted the pure business domain model.

You saw how the concepts and building blocks of DDD were applied to the Bank Account application
and how they enabled a clean model of the domain you were working within, free of any infrastruc-
ture concerns and an application that spoke the same language as the domain in terms of project,
class, and method names. In the case study that you will work on in Chapters 10 and 11, you will see
how a larger and more complex domain is used and how, by sticking to the principles of DDD, it is
easy to map complex workflow and business transactions.

The next chapter investigates the kinds of patterns and principles that you can use within the busi-
ness layer of an enterprise application.

The Business Logic Layer:
Patterns

WHAT'’S IN THIS CHAPTER?

> How to use the Factory, Decorator, Template, State, Strategy,
and Composite GoF patterns in the business layer of an ASP.NET

application

> Demonstrations of how to utilize the Specification and Layer Supertype
enterprise patterns in your ASP.NET code

>

Improve your code’s maintainability and flexibility with Dependency
Injection, Interface Segregation, and the Liskov Substitution Principle

The previous chapter introduced the kinds of patterns you can use to organize your applica-
tions’ middleware. This chapter looks at some specific patterns that you can leverage within the
business logic layer. You examine some Gang of Four design patterns, some Enterprise design
patterns, and finally some design principles that can help you keep your business logic loosely
coupled and highly cohesive. You can use design patterns in any layer of your application. The
series of patterns and principles in this chapter is shown in the context of the business layer
of an application, but nothing can stop you from applying these patterns in the presentation,
infrastructure, or data access layers of your application.

LEVERAGING DESIGN PATTERNS

In this first section, you look at the following design patterns that can assist you in your solu-
tion to your application’s business problems:

> Factory Method pattern

> Decorator pattern

96 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

> Template Method pattern
> State pattern

> Strategy pattern

Factory Method

The Factory Method pattern belongs to the creational group of the Gang of Four design patterns
and handles the issue of creating objects without specifying the exact class of object to be created.

Intent

The main objective of the Factory pattern is to hide the complexities of creating objects. As well, the
client doesn’t normally specify a particular class to be created. Instead, the client will code against
an interface or abstract class and leave the responsibility to the Factory class to create the concrete
type. Typically a Factory class has a static method that returns an abstract class or interface. The
client usually, but not always, supplies some kind of information; using the supplied information the
Factory then determines which subclass to create and return.

The ability to abstract away the responsibility of creating subclasses allows your client code to be
completely ignorant of how dependent classes are created. This follows the Dependency Inversion
principle (DIP) that you will read about later in this chapter. Another benefit of the Factory Method
pattern is that you centralize the code for the creation of objects; if a change is required in the way an
object is generated, it can be easily located and updated without affecting the code that depends on it.

UML
Figure 5-1 shows the UML representation of the Factory Method pattern.

switch (Type)

case (“ProductA”):

product = FactoryMethod(Type) return new ConcreteProductA,;

Client Factory IProduct
---------- >
+FactoryMethod()
E ConcreteProductA ConcreteProductB
>

FIGURE 5-1

Leveraging Design Patterns | 97

The classes shown in Figure 5-1 collaborate to form the Factory Method pattern. Their roles are as
follows:

> The client class obtains an implementation of TProduct via a call to the Factory class. The
Client passes some information on the type of subclass but has no idea how to create it.

The Factory class is responsible for creating the correct subclass based on information supplied
via a parameter.

» The 1product is the interface that the c1ient references in its code routine and that is imple-
mented by the concreteProducta and ConcreteProductB classes.

ConcreteProductA and ConcreteProductB are the subclass implementations of TProduct.

Code Example

In this example you employ the Factory Method pattern to obtain the correct shipping courier in a
fictional e-commerce application. In this scenario, an orderService class has a single method named
Dispatch that coordinates the creation of a courier object, which in turn is used to create a consign-
ment identifier for a parcel. Figure 5-2 shows all the classes involved in the solution.

Order E3 ' IShippingCourier @] OrderService &
Clas Inteslace Clas
=2 Propertics E Mcthods B Methods

ﬁ CourierTrackingld @ GenerateConsignmentlabelfor @ Dispatch

% TotalCost . .

" WeightInkc O

o Dispatchaddress

E 3N |

i i

- I L]

I o 1@ Methods I
. . —L ! il
3] [1]

@ CrealeShippingCuouria 1
- - -

Il Properties
"R CountryCode

FIGURE 5-2

To build the solution, you need a project, so start by creating a solution named ASPPatterns.Chap5
.FactoryPattern, and a new C# class library project and naming it ASPPatterns.Chap5.Factory
Pattern.Model.

First you will build the simple domain model, which consists of an order entity and an Address value
object, which represent a real order and dispatch address. Add a new class to the project named address
with the following code listing:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
public class Address
{
public string CountryCode { get; set; }

98 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

Add a second class to the project named order, with the code listing as defined here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{

public class Order

{
public decimal TotalCost { get; set; }
public decimal WeightInKG { get; set; }
public string CourierTrackingId { get; set; }
public Address DispatchAddress { get; set; }

Next you need to create the interface for the couriers. Add a new interface to the project named
IShippingCourier, with the contract as defined here:

namespace ASPPatterns.Chap5.FactoryPattern.Model

{
public interface IShippingCourier

{

string GenerateConsignmentLabelFor (Address address) ;

The 1ShippingCourier has a single simple method that takes an Address parameter as an argument
and returns a consignment ID as a string.

Now that you have the contract defined, you can add two implementations of the interface. Add a
new class to the project named pHL with the following code listing:

namespace ASPPatterns.Chap5.FactoryPattern.Model

{
public class DHL : IShippingCourier

{

public string GenerateConsignmentLabelFor (Address address)

{
return "DHL-XXXX-XXXX-XXXX";

Add a second implementation of the interface to the project this time named RoyalMail, as shown here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
public class RoyalMail : IShippingCourier
{
public string GenerateConsignmentLabelFor (Address address)

{
return "RMXXXX-XXXX-XXXX"; ;

Leveraging Design Patterns | 99

To keep the exercise simple, the two courier implementations just return hard-coded string values that
represent courier consignment IDs; in reality these classes would integrate with the courier’s third-party
solution to generate trackable consignment IDs.

The role of the Factory class is to determine which courier should be used based on the value and
weight of the order. Add a new class to the project named UKShippingCourierFactory with the
code listing as defined here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
public static class UKShippingCourierFactory
{
public static IShippingCourier CreateShippingCourier (Order order)
{
if ((order.TotalCost > 100) || (order.WeightInKG > 5))
return new DHL() ;
else
return new RoyalMail () ;

The Factory class has a single static method named createshippingCourier that returns a ship-
ping courier implementing the IShippingCourier interface. The Factory method determines which
courier to return based on the total cost and weight of an order.

Finally, add the orderservice class. Add a new class to the project named orderservice with the
code listing here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
public class OrderService
{
public void Dispatch(Order order)
{
IShippingCourier shippingCourier =
UKShippingCourierFactory.CreateShippingCourierFor (order) ;

order.CourierTrackingId =
shippingCourier.GenerateConsignmentLabelFor (order.DispatchAddress) ;

As you can see, the Dispatch method simply coordinates the obtaining of a valid courier and the creation
of a consignment identifier. The role of the Factory class in this instance is to be solely responsible for
creating a valid shipping courier based on some business logic. By abstracting away business logic to the
Factory class, you are removing the burden from the orderservice class, which can concentrate on its
single responsibility of coordinating a task rather than worrying about the low-level details of how this
is achieved. If you ever need to introduce a new shipping courier or change the business rules on which
courier to use, you can do so by amending the Factory class with no impact on the service class; this
concept is fundamental to nearly all the patterns and principles found in this book. Keeping your code

100 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

decoupled from dependent classes enables it to be maintained far more easily, and extensions to it can be
made without impacting other modules.

Please refer to the ASPPatterns.Chap5.FactoryPattern solution that can be
downloaded from www.wrox.com to see how I have confirmed the behavior of
the Factory pattern using unit tests.

The Factory pattern is a useful one; you will see it used throughout the rest of this chapter and book.
For example, in Chapter 8 you will see how the Factory pattern is built into the ASP.NET MVC
Framework and how it hides the complexity of creating a correct controller based on a routing match.

The next pattern you will examine deals with the function of adding behavior to a class without
changing its structure.

Decorator

The Decorator pattern belongs to the structural patterns group of design patterns and allows new
behavior to be added to an existing object on the fly.

Intent

The Decorator pattern enables new behavior to be added to an object dynamically via composition. The
pattern achieves this by either inheriting from the same base class or implementing a shared interface in
conjunction with injecting an instance of the class to be decorated. In other words, the Decorator pat-
tern is the process of wrapping an existing class with a class that extends the behavior or state. Multiple
decorators can be added to a class to combine extended behavior, as you will see in the example later in
this section.

UML
Figure 5-3 shows the UML representation of the Decorator pattern.
The classes shown in Figure 5-3 collaborate to form the Decorator pattern. Their roles are as follows:

» The 1Product defines the interface for a product. The befaultProduct and ProductDecorator
must implement this interface.

> The pefaultpProduct provides the base functionality of the class that can be decorated.

> The ProductDecorator implements the TProduct interface and is injected with a reference
to an TProduct instance that enables the inner instance to be wrapped.

> ConcreteDecoratorA aI’ld ConcreteDecoratorA inherit from ProductDecorator aI’ld add
state and new behavior to the TProduct instance.

Leveraging Design Patterns | 101

IProduct

+DoSomething()

DefaultProduct ProductDecorator

+DoSomething() +DoSomething()
+ProductDecorator(in decoratedProduct : IProoduct)

T

ConcreteProductA ConcreteProductB

+DoSomething() +DoSomething()

+DoSomething()

base.DoSomething();
DoSomethingElse();

]

FIGURE 5-3

Code Example

In this example you use the Decorator pattern to apply a discount and a currency multiplier to a
list of products that may be used in some kind of product catalog. Again, a ProductService class
coordinates the retrieval of a list of products and then decorates those products with a discount and
currency multiplication. Figure 5-4 shows the classes to be used in this scenario.

-
I e ——— S -
ProductService B3 | Product E '~ BasePrice @
Class Class I Class
\
& Methods \’:
9 GetAllProducts P =

@ _productRepnsinry R Price = ¢

@ rroductService ‘ Class " J

(roductitcpository @ IPrice &
Interface Interfac; |’--'---'---------_--"-—-"_‘1:
¥
. | Stabec Class L}
= Methods I=l Properties I\ Jﬁ

@ FndAl = Cost

FIGURE 5-4

102 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

To build the solution, start by creating a new solution named ASPPatterns.Chap5.DecoratorPattern
and add a new C# class library project named ASPPatterns.Chap5.DecoratorPattern.Model. Again,
you begin by creating your simple domain model consisting of the Product entity and the price inter-
face, along with two decorator objects that implement the Price interface.

Add a new interface to the project named Tprice with the following contract:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
public interface IPrice
{
decimal Cost { get; set; }

Now add a class that represents the Product entity named Product and add the following property:

namespace ASPPatterns.Chap5.DecoratorPattern.Model

{
public class Product
{

public IPrice Price { get; set; }

You can add three implementations of the TpPrice interface. The first implementation is the BasePrice
class. This gives the default behavior of the product’s price and is set by the repository when hydrating

a list of products from the data store. Add a new class named BasePrice to the project with the fol-
lowing definition:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{

public class BasePrice : IPrice

{

private Decimal _cost;

public decimal Cost

{
get { return _cost; }
set { _cost = value; }

The second implementation of the TPrice interface you add is the class that decorates the default price
behavior with the logic that applies a trade discount. Add a new class named TradeDiscountPrice
Decorator to the project, with a matching code definition as shown here:

namespace ASPPatterns.Chap5.DecoratorPattern.Model

{

public class TradeDiscountPriceDecorator : IPrice
{

private IPrice _basePrice;

public TradeDiscountPriceDecorator (IPrice price)

Leveraging Design Patterns | 103

_basePrice = price;

public decimal Cost

{
get { return _basePrice.Cost * 0.95m; }
set { _basePrice.Cost = value; }

The role of the TradeDiscountPriceDecorator class is to wrap an implementation of the TpPrice
interface, supplied via the TradeDiscountPriceDecorator constructor, and reduce the cost by a fac-
tor of 5 percent. Because the Product class is only referencing a price via an interface it, along with any
client using it, will be unaware that they are talking to the TradeDiscountPriceDecorator class.

The third implementation of the 1price interface is the class that decorates an implementation of IPrice
with the currency multiplication. Add a new class to the project named currencyPriceDecorator with
the following code listing:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
public class CurrencyPriceDecorator : IPrice
{
private IPrice _basePrice;
private decimal _exchangeRate;

public CurrencyPriceDecorator (IPrice price, decimal exchangeRate)
{

_basePrice = price;

_exchangeRate = exchangeRate;

public decimal Cost

{
get { return _basePrice.Cost * _exchangeRate; }
set { _basePrice.Cost = value; }

As with the TradeDiscountPriceDecorator class, the CurrencyPriceDecorator takes an implemen-
tation of IPrice as an argument constructor, along with an exchange rate, and applies this exchange
rate to the base price — whether that is the actual BasepPrice class or in fact the TradeDiscountpPrice
Decorator class.

To apply the decorating behavior to the Product class, you add a set of extension methods. Add a
new class to the project named ProductCollectionExtensionMethods with the following code
definition:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
public static class ProductCollectionExtensionMethods

104 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

public static void ApplyCurrencyMultiplier (this IEnumerable<Product> products)
{
foreach (Product p in products)
p.Price = new CurrencyPriceDecorator(p.Price, 0.78m);

public static void ApplyTradeDiscount (this IEnumerable<Product> products)
{
foreach (Product p in products)
p.Price = new TradeDiscountPriceDecorator (p.Price);

The two methods simply iterate through the collection of products and apply the currencyPrice
Decorator or TradeDiscountPriceDecorator depending on which method is called. Typically, a
Factory class or some other type of configuration is used to obtain the value of the exchange rate
for the currency algorithm, but in this exercise I have elected to hard-code the value to keep things
simple.

I am using extension methods so that the code in the Productservice class is kept to a minimum
and so that the Productservice class is responsible only for the coordination of a task and not the
underlying logic of applying decorating classes. The code is far more fluent when reading with exten-
sion methods, as will be shown in the Productservice class implementation to follow shortly.

To enable the ProductService class to obtain a collection of products, you need to add the product
repository interface, so add a new interface to the project named IProductRepository with the
single Finda11 method that simply returns a collection of Product classes as shown here:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
public interface IProductRepository

{
IEnumerable<Product> FindAll();

To complete the solution, you need to add the Productservice class that coordinates the retrieval
and application of the trade discount and currency multiplication. Add a new class to the project
named ProductService with the following code listing:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
public class ProductService
{
private IProductRepository _productRepository;

public ProductService (IProductRepository productRepository)
{
_productRepository = productRepository;

Leveraging Design Patterns | 105

public IEnumerable<Product> GetAllProducts ()
{
IEnumerable<Product> products = _productRepository.FindAll () ;

products.ApplyTradeDiscount () ;
products.ApplyCurrencyMultiplier() ;

return products;

As you can see, the ProductService class takes an TProductRepository as a constructor argu-
ment and has a single method that returns a collection of products decorated with the trade discount
and the currency multiplication behavior. As mentioned previously, by using the extension methods,
the code in the ProductService method is kept to a minimum, and it’s immediately clear what the
responsibility of the Productservice class is without getting distracted by how the application of
the discount and currency multiplier is achieved.

Please refer to the ASPPatterns.Chap5.DecoratorPattern solution available
from www .wrox . com to see how I have confirmed the behavior of the Decorator
pattern using unit tests and specifications.

The Decorator pattern is extremely useful when you want to add extra functionality to existing classes
but you don’t want to be tied to a specific implementation. As well as adding new functionality, decora-
tors can restrict functionality; a security decorator can ensure only users with certain privileges can call
methods or routines. Decorators are also good for wrapping infrastructure code like logging around
method calls without polluting your domain model.

The next pattern defines the skeleton of an algorithm that allows inherited classes to override a number
of steps in the workflow.

Template Method
The Template method pattern belongs to the behavioral group of patterns from the Gang of Four

and is applied when a skeleton of an algorithm is defined but some steps are deferred to subclasses.

Intent

The Template method defines the skeleton structure of an algorithm but defers certain steps and
details to subclasses. The structure and the flow of the algorithm remain static, but the details of the
steps are deferred to subclasses.

UML

Figure 5-5 shows the UML representation of the Decorator pattern.

106 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

AbstractClass TemplateMethod()

{
+TemplateMethod() -f.--oooo-- InternalOperation1();
+InternalOperation1() . .
+InternalOperation2() InternalOperation2();

s)
| |

ConcreteProductA ConcreteProductB

+InternalOperation1() +InternalOperation1()
+InternalOperation2() +InternalOperation2()

FIGURE 5-5

The classes shown in Figure 5-5 collaborate to form the Template pattern. Their roles are as follows:

> The abstractClass defines a skeleton process workflow with abstract steps that concrete
Classa and ConcreteClassB override and implement. This enables the details of an algo-
rithm to alter depending on the subclasses but allow the structure to remain consistent.

> ConcreteClassA and ConcreteClassB inherit from the AbstractClass, implement the
abstract methods, and give the detail to the algorithm.

Code Example

In this example, you apply the Template pattern to a system that handles order returns at an e-commerce
site. For each order return, a series of processes occur that differ slightly depending on the type of return
that is being processed. At this fictional company, order returns come in two flavors: a no quibbles
return and a faulty order return. A no quibbles return enables customers to return goods and receive a
full refund minus the price of the original post and packaging; the product is then returned into stock. A
faulty return is issued if the customer receives a faulty item and would like a refund, which includes the
original post and packaging paid as well as an order for a manufacturer return.

Figure 5-6 shows the classes involved in this exercise.

To get started with this exercise, create a new solution named ASPPatterns.Chap5. TemplateMethod
Pattern and add a C# class library project to it named ASPPatterns.Chap5. TemplateMethodPattern
.Model. As before, create the initial domain model. Once this is built you will then implement the skele-
ton template method before adding the template method subclasses and lastly the service class, which
will coordinate the task of returning an order.

Add a new class to the project named Returnaction with the following code listing:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
public enum ReturnAction
{
FaultyReturn = 0,
NoQuibblesReturn = 1

Leveraging Design Patterns | 107

S T e e e e e e e o L ’
I' ReturnProcessFactory 2] | ReturnService (= | RetumProcessTemplate 2]
| static Clase R || Abstract Class
[} [:
| B Methods 1 | = Methods | 5 Methods
i ¥ CreateFram : ¥ Process : 3% CalcutateRetunaror
- ‘. 7% Genergtefeturniransactiontor
| ¥ Process |
L .
ReturnOrder £
Class
 Properties
= AmountToRefund
5 PaymentTransactionld
F- p— @ =
; :m‘?e:mt FaultyReturnProcess & NotjuibhlesReturnProcess =
S ThoeTe Class Class
& Productid + RelunPiocess Templale + ReturnProcessTemplale
' QtyBeingRetumed
- = Methods & Methods
2 Action V CalrulateRefundFor 7% CalculateRefundFar
79 GenerateReturnTranzactionFor 7% GenerateRetumTransactionFor
ReturnAction ®
Crum
FaultyReturn
MNoQuibblesReturn

FIGURE 5-6

This enumeration enables you to determine which type of return order is being processed.

Next add the return order entity by adding a new class to the project named Returnorder with the
following definition:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
public class ReturnOrder
{
public ReturnAction Action { get; set; }
public string PaymentTransactionId { get; set; }
public decimal PricePaid { get; set; }
public decimal PostageCost { get; set; }
public long ProductId { get; set; }
public decimal AmountToRefund { get; set; }

The Returnorder entity represents the customer’s order being returned. The Action property deter-
mines what type of return order it is, the PaymentTransactionId refers to the original payment used
to purchase the order, and the PricePaid and PostageCost refer to the order total and shipping costs,
respectively. The Product1d holds the unique identifier of the product being returned. Finally, the
AmountToRefund is set; this is the amount to be refunded to the customer.

With the domain model created, you can implement the abstract template method that will be over-
ridden by the specific faulty and no quibbles subclasses. To create the template method, add a new
class to the project named ReturnProcessTemplate with the following definition:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{

108 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

public abstract class ReturnProcessTemplate

{
protected abstract void GenerateReturnTransactionFor (ReturnOrder returnOrder) ;
protected abstract void CalculateRefundFor (ReturnOrder returnOrder);

public void Process (ReturnOrder returnOrder)

{
GenerateReturnTransactionFor (returnOrder) ;
CalculateRefundFor (returnOrder) ;

The class and the first two methods are abstract and are required to be implemented by a subclass.
The third method simply calls in the two abstract methods and passes a Returnorder entity as an
argument.

You can now add the two template method subclasses. First add a new class to the project named
NoQuibblesReturnProcess with the following code listing:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
public class NoQuibblesReturnProcess : ReturnProcessTemplate
{
protected override void GenerateReturnTransactionFor (ReturnOrder returnOrder)
{
// Code to put items back into stock...

protected override void CalculateRefundFor (ReturnOrder returnOrder)
{
ReturnOrder.AmountToRefund = returnOrder.PricePaid;

As mentioned previously, the NoQuibblesReturnProcess returns the item into stock; this logic resides
in the override to the GenerateReturnTransactionFor method. The code for this has not been included
to keep the exercise simple, but you would typically find some code here to add a stock transaction that
increased the total stock for the returned product.

The calculateRefundFor overridden method simply sets the AmountToRefund property on the return
order to the original price of the product. Note that no postage costs are refunded.

The second subclass, which inherits the ReturnProcessTemplate, is the FaultyReturnProcess
class. This class handles the processing of faulty returned items. Add a new class to the project named
FaultyReturnProcess with the class listing here:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model

{
public class FaultyReturnProcess : ReturnProcessTemplate
{

protected override void GenerateReturnTransactionFor (ReturnOrder returnOrder)

{

Leveraging Design Patterns | 109

// Code to send generate order that sends faulty item back to
// manufacturer...

protected override void CalculateRefundFor (ReturnOrder returnOrder)
{
ReturnOrder.AmountToRefund = returnOrder.PricePaid +
returnOrder.PostageCost;

The overridden GenerateReturnTransactionFor method creates a manufacturer return order
for sending the faulty item for a refund; again, for clarity, the code for this has not been included.
TheCalculateRefundFor(ﬁf&rsfﬂnntheNoQuibblesReturnProcessinthatthepostcoﬁsare
included in a refund for the customer.

Before you create the service class that coordinates the process of returning an item, you need a way
to obtain the correct processing class based on the type of order being returned. This type of func-
tionality is perfect for the Factory method that you read about previously in this chapter. Create a
new class named ReturnProcessFactory that returns the correct processing object as detailed here:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
public static class ReturnProcessFactory
{
public static ReturnProcessTemplate CreateFrom (
ReturnAction returnAction)

switch (returnAction)
{
case (ReturnAction.FaultyReturn) :
return new FaultyReturnProcess();
case (ReturnAction.NoQuibblesReturn) :
return new NoQuibblesReturnProcess() ;
default:
throw new ApplicationException (
"No Process Template defined for Return Action of " +
returnAction.ToString());

The Factory class hides the complexity (albeit not very complex in this example) from any client
and ensures that the logic is contained in one place and is the responsibility of the Factory class.

Finally, you can add the Returnorderservice class to the project as shown here:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{

public class ReturnService

{

public void Process (ReturnOrder returnOrder)

110 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

ReturnProcessTemplate returnProcess =
ReturnProcessFactory.CreateFrom(returnOrder.Action) ;

returnProcess.Process (returnOrder) ;

// Code to refund the money back to the customer...

The service has one simple Process method that takes a Returnorder as an argument. The service
first obtains a ReturnProcessTemplate implementation from the factory, passing in the Returnorder
entity, and in turn calls the Process method on the ReturnProcessTemplate. The call returns the item
using the subclass’s method and calculates the amount that the customer is entitled to receive. The code
to actually refund the customer monies has been left out for brevity.

y Please refer to the ASPPatterns.Chap5 . TemplateMethodPattern solution in the
code download available from www.wrox.com that accompanies this book to see
how I have confirmed the behavior of the Template Method pattern using unit tests.

The Template Method pattern is useful when you want to centralize code common to a series of sub-
classes. To achieve this, you separate the code that varies from the code that is similar; this enables
you to avoid duplication and enables better maintenance of your code base.

The next pattern you will investigate enables the state and behavior of an object to be easily changed
at runtime.

State Pattern

The State pattern belongs to the behavioral group of design patterns and is used to represent the state
of an object separate from all other behavior.

Intent

The State pattern allows an object to alter its behavior when its internal state changes. This is achieved
by swapping internal state objects that implement state-dependent behavior. An object defers all state-
based behavior to a dependent state subclass; this alleviates the need for a mass of case statements
within methods on the object.

UML

Figure 5-7 shows the UML representation of the State pattern.
The classes shown in Figure 5-7 collaborate to form the State pattern. Their roles are as follows:

> The context is the object that has state, which is represented by an instance of the state
interface. This is the single interface that client code interacts against.

Leveraging Design Patterns | 111

+DoSomething()

state.HandleSomething();
}

Context State
o——————
+DoSomething() +HandleSomething()
+HandleSomethin | |
(90 ConcreteProductA ConcreteProductB
Context_ChangeTo(newConcreteStateB()); +HandleSomething() +HandleSomething()
}

FIGURE 5-7

> The state represents the interface that defines the behavior dependent on the state of the
Context.

> ConcreteStatea and ConcreteStateB represent specific states in the lifetime of the context.
They implement behavior specific to these states.

Code Example

This example examines how the State pattern can be used to provide the state behavior for an order
object. An order is said to be in one of three states at any one time: New, Shipped, or Canceled. A
new order can be shipped or cancelled. Shipped and Canceled orders cannot be cancelled or shipped.

Figures 5-8 shows the classes involved in this implementation of the State pattern.

T, e
Order [E3 | IOrderState F3
Class Interface
=2 Propertics ¥ _orderstate 2 Propertics

ﬁ;“ Customer ﬁ Status

o @ Methods

"R QrderedDate & CunCamel
= Methode 9 Cancel

© CanCancel @ CanShip

@ Cancel @ Ship

@ CanShip

=% Change .

L W

% ship OrderShippedState =

@ Status Class

|:j

OrderStatus ® OrderCanceledState ?J
Enum Class

New)

Shipped P e —

Canceled (LII?E!NEH’S(BR £ J

FIGURE 5-8

112 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

Create a new solution named ASPPatterns.Chap5.StatePattern and add a new C# library project
to it named ASPPatterns.Chap5.StatePattern.Model. With the project created, add a new inter-
face named Torderstate with the following contract:

namespace ASPPatterns.Chap5.StatePattern.Model
{
public interface IOrderState
{
bool CanShip(Order order) ;
void Ship(Order order);

bool CanCancel (Order order) ;
void Cancel (Order order) ;

Next add an enumeration named orderstatus that will be used to identify which state an order is in:

namespace ASPPatterns.Chap5.StatePattern.Model
{
public enum OrderStatus
{
New = 0,
Shipped = 1,
Canceled = 2

Now you can create the actual order class, add a new class to the project named order, and add the
code that follows:

namespace ASPPatterns.Chap5.StatePattern.Model
{

public class Order

{

private IOrderState _orderState;
public Order (IOrderState baseState)
{
_orderState = baseState;
public int Id { get; set; }
public string Customer { get; set; }
public DateTime OrderedDate { get; set; }
public OrderStatus Status()

{

return _orderState.Status;

public bool CanCancel ()
{
return _orderState.CanCancel (this);

Leveraging Design Patterns | 113

public void Cancel ()

{
if (CanCancel())
_orderState.Cancel (this) ;

public bool CanShip ()

{
return _orderState.CanShip(this);

}

public void Ship()
{
if (CanShip())
_orderState.Ship(this);
}

Internal void Change (IOrderState orderState)
{

_orderState = orderState;

The first state to be created is the canceled order state. When an order is canceled, it cannot be shipped.
Add a new class to the project named canceledorderstate that implements the Torderstate interface
with the code listing that follows:

namespace ASPPatterns.Chap5.StatePattern.Model

{
public class OrderCanceledState : IOrderState

{
public bool CanShip(Order order)

{
return false;

public void Ship(Order order)
{

throw new NotImplementedException (
"You can't ship a canceled order!");

public OrderStatus Status
{

get { return OrderStatus.Canceled; }

}

public bool CanCancel (Order order)
{

return false;

}

public void Cancel (Order order)

114 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

throw new NotImplementedException (
"This order is already cancelled!");

The next state to implement is the order shipped state. Add another class to implement the
IorderState interface, and name it OrderShippedState:

namespace ASPPatterns.Chap5.StatePattern.Model
{
public class OrderShippedState : IOrderState
{
public bool CanShip (Order order)
{

return false;

}

public void Ship(Order order)
{
throw new NotImplementedException (
"You can't ship a shipped order!");

}

public OrderStatus Status

{
get { return OrderStatus.Shipped; }
}

public bool CanCancel (Order Order)
{

return false;

}

public void Cancel (Order order)
{
throw new NotImplementedException (
"You can't cancel a shipped order!");

Finally, add the last order state, which identifies a new order. Add a new class to the project named
OrderNewState, which again implements the Torderstate interface as defined here:

namespace ASPPatterns.Chap5.StatePattern.Model
{
public class OrderNewState : IOrderState
{
public bool CanShip (Order order)
{

return true;

}

public void Ship(Order order)

Leveraging Design Patterns | 115

Order.Change (new OrderShippedState());
}

public OrderStatus Status

{
get { return OrderStatus.New; }

}

public bool CanCancel (Order order)
{

return true;

}

public void Cancel (Order order)

{
order.Change (new OrderCanceledState());

As you can see from this exercise, all state-dependent behavior has been moved into separate sub-
classes. This makes it easy to introduce a new state later and to test the state in isolation. By taking

advantage of this pattern, you prevent monolithic methods that need to determine the state of the
object before implementing behavior; this is typically done through a set of case of nested i f-else

blocks.

@ Please refer to the code in the ASPPatterns.Chap5.StatePattern solution

named which is available from www.wrox.com to see how I have confirmed the
behavior of the State pattern using unit tests.

The state is beneficial to use when you have an object that changes behavior depending on its state.
It’s also a great pattern to refactor toward when you find classes are becoming littered with condi-
tional statements in the form of switch/case or if blocks.

The pattern discussed in the next session enables algorithms to be selected at runtime.

Strategy

Chapter 2 briefly covered the Strategy pattern when it was used to enable the discount algorithm to
be swapped out depending on the type of customer viewing the products. This section digs deeper
into this pattern so you can see how to use it in the business layer of an ASP.NET application.

Intent

The Strategy pattern is the process of disassociating an algorithm from its host and enabling the
ability to swap algorithms dynamically at run time. The Strategy pattern encapsulates algorithms as
objects. Clients reference them by an abstract or interface, which enables them to be interchangeable.

116 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

UML
Figure 5-9 shows the UML representation of the Strategy pattern.
Context IStrategy
+Operation() +Calculate()
E ConcreteStrategyA ConcreteStrategyB
Operation() +Calculate() +Calculate()

Strategy.Calculate();

)

FIGURE 5-9

The classes shown in Figure 5-9 collaborate to form the Strategy pattern. Their roles are as follows:

> The context defers all calculations to a ConcreteStrategy referenced by its abstract class
or interface (Strategy); the Context may also expose some form of method or property so
that the strategy implementation can be changed.

> The strategy is an interface for the algorithm. In this instance it contains a single calculate
method.

> The concreteStrategy is an implementation of the Strategy.

Code Example

To demonstrate the Strategy pattern, you will work through an exercise based on a discount being
applied to an e-commerce shopping basket. Figure 5-10 shows the classes involved in this exercise to
demonstrate the Strategy pattern.

To get started, create a new solution named ASPPatterns.Chap5.StrategyPattern and add a
C# class library project named ASPPatterns.Chap5.StrategyPattern.Model. Add a new class,
named Basket, to represent the basket with the following code listing:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
public class Basket
{
public decimal TotalCost { get; set; }

Leveraging Design Patterns | 117

Basket [IBasketDiscountStrategy ®
- @ _basketDiscount i
I=l Properties =l Methods

= TotalCost @ GetTolalCostAlerApplyingDiscounlTo
= Methods

@ Basket

¥ GetlotalCnstAtter] herount

\'T [BacketDiccountStrategy

DiscountType &= MoBasketDiscount &
Enum Class
MNoDiscount
MaoneyOff '.T.) [BasketDiscountStrategy
P tageCff f o
crceniag BasketDiscountPercentageQff ¥
Class
BasketDiscountFactory 63
Clavss 'i) [BasketDiscountStrategy
= Methods | BasketDiscountMoneyUtt @
- Class
¥ Getbyscount
FIGURE 5-10

At the moment there is just a simple property to hold the total cost of the basket. After you have added
the discount strategies, return to this class and add a method to obtain the basket total.

To create the discount strategies, first add a new interface named TBasketDiscountStrategy with
the following simple contract:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{

public interface IBasketDiscountStrategy

{
decimal GetTotalCostAfterApplyingDiscountTo (Basket basket);

The single method takes a basket object. An implementation applies a specific discount and then
returns the basket price, including the discount.

The first discount strategy you create enables customers to receive a discount if they meet a certain dis-
count threshold. The thresholds are $10 off basket totals over $100 and $5 off basket totals over $50;
if the basket value is $50 or below, no discount is applied. Add a new class named BasketDiscount
MoneyOf f to the project with the following code definition:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{ public class BasketDiscountMoneyOff : IBasketDiscountStrategy
{ public decimal GetTotalCostAfterApplyingDiscountTo (Basket basket)
{ if (basket.TotalCost > 100)
return basket.TotalCost - 10m;

118 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

if (basket.TotalCost > 50)

return basket.TotalCost - 5m;
else

return basket.TotalCost;

The second discount strategy you apply is a percentage off a basket’s total value. When this discount
is applied, customers receive 15 percent off the total value of the basket. Add another new class that
inqﬂenwntstheIBasketDiscountStrategyIunnedBasketDiscountPercentageOff,asshownin
the code that follows:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{ public class BasketDiscountPercentageOff : IBasketDiscountStrategy
{ public decimal GetTotalCostAfterApplyingDiscountTo (Basket basket)
{ return basket.TotalCost * 0.85m;

Finally, you need to add a special case discount strategy to be used if no discounts are set. This is an
implementation of the Null Object pattern discussed briefly in Chapter 2 and that you will read about
later in this chapter. Add a new class to the project named NoBasketDiscount that is shown here:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
public class NoBasketDiscount : IBasketDiscountStrategy
{
public decimal GetTotalCostAfterApplyingDiscountTo (Basket basket)
{

return basket.TotalCost;

This discount strategy simply returns the total cost of the basket without applying any kind of dis-
count algorithm.

To determine which strategy algorithm to apply to a basket, you will use the Factory Method pattern
discussed earlier in this chapter. To enable the Factory Method pattern to build the correct discount
strategy, you need to supply it with some information in the form of an enumeration. Create a new
class named DiscountType and add it to the project as shown here:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
public enum DiscountType
{
NoDiscount

=0,
MoneyOff = 1,

Leveraging Design Patterns | 119

PercentageOff = 2

With the enumeration in place, you can create the Factory class. Add a new class to the project named
BasketDiscountFactory that contains a single static method to create the implementation of the
IBasketDiscountStrategy based on the given enumeration as laid out here:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
public class BasketDiscountFactory

{
public static IBasketDiscountStrategy GetDiscount (DiscountType DiscountType)
{
switch (DiscountType)
{
case DiscountType.MoneyOff:
return new BasketDiscountMoneyOff () ;
case DiscountType.PercentageOff:
return new BasketDiscountPercentageOff () ;
default:

return new NoBasketDiscount () ;

Finally, you can return to the Basket class and update it to include a new constructor and method
to return the basket to total cost with an applied discount as shown in the following code:
namespace ASPPatterns.Chap5.StrategyPattern.Model
{
public class Basket
{

private IBasketDiscountStrategy _basketDiscount;

public Basket (DiscountType discountType)
{
_basketDiscount = BasketDiscountFactory.GetDiscount (discountType) ;

public decimal TotalCost { get; set; }
public decimal GetTotalCostAfterDiscount ()

{
return _basketDiscount.GetTotalCostAfterApplyingDiscountTo(this);

The basket is completely unaware of the underlying algorithm that will be used to determine the total
price, due to the discount strategy being injected to it and referred to using an interface.

120 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

y Please refer to the ASPPatterns.Chap5.StrategyPattern solution available
from www.wrox . com to see how I have confirmed the behavior of the Strategy
pattern using unit tests and specifications.

LEVERAGING ENTERPRISE PATTERNS

Martin Fowler’s book, Patterns of Enterprise Application Architecture, outlined a number of enter-
prise patterns that can be used within applications. This section examines the Specification pattern
on its own and in conjunction with the Composite Design pattern, and discusses how it can help
with business logic criteria. You also look at the Layered Supertype pattern, which removes duplica-
tion in commonly used functions.

Specification Pattern

The Specification pattern encapsulates business logic in a boolean algorithm outside of a business
entity. These manageable units of logic can then be chained together to form more flexible complex
business logic.

Intent

You cannot share or reuse selection criteria logic embedded within business entities. The Specification
pattern attempts to address this problem by separating business logic that is used to match an object
from the actual object.

Code Example

To demonstrate the Specification pattern, you will be working through an exercise that is based on
the domain of an online DVD rental company. In this simple example, you employ the Specification
pattern to determine if a customer can rent more DVDs. Figure 5-11 shows the classes involved in
the Specification exercise solution.

[ISpecification=T> (2 |
Genenc Intertace

| CustomerAccount 2 |

Cl
i g¥ hasReachedRentalThreshold

B Properties | & Methnds
S NumberOfRentalsThisManth & Issatisfiedsy
E Methods
& CanRent () ISpecification<CustomerAccount>
L] 1 —.
CustormerAccount HasReachedRentalThresholdSpecification =
Class
FIGURE 5-11

Create a new solution named ASPPatterns.Chap5.Specification and add a C# class library proj-
ect for this exercised name ASPPatterns.Chap5.Specification.Model. Add a new interface to the
project named ISpecification to be used as the interface for your specifications, as shown here:

namespace ASPPatterns.Chap5.Specification.Model

Leveraging Enterprise Patterns | 121

public interface ISpecification<T>
{
bool IsSatisfiedBy (T candidate);

Next, create a new implementation of the interface named HasReachedRentalThresholdSpecification
that determines if a customer account can rent a DVD. The listing for this class is shown here:

namespace ASPPatterns.Chap5.Specification.Model
{
public class HasReachedRentalThresholdSpecification :

ISpecification<CustomerAccount>

public bool IsSatisfiedBy (CustomerAccount candidate)
{
return candidate.NumberOfRentalsThisMonth >= 5;

Don’t worry that the new class won’t build; this is because of the absent customeraccount class.

To rectify this, add a new class to the project named customeraccount with the following code
definition:

namespace ASPPatterns.Chap5.Specification.Model
{
public class CustomerAccount

{
private ISpecification<CustomerAccount> _hasReachedRentalThreshold;

public CustomerAccount ()
{
_hasReachedRentalThreshold = new HasReachedRentalThresholdSpecification();

public decimal NumberOfRentalsThisMonth { get; set; }
public bool CanRent ()

{
return !_hasReachedRentalThreshold.IsSatisfiedBy(this);

In the preceding exercise, you looked at a simple application of the Specification pattern, but it’s sim-
ple to chain specifications together to build complex business logic. To achieve this, you can leverage
the Composite Design pattern, which is the subject of the next section.

Composite Pattern

The Composite pattern allows a collection of objects to be treated as a single instance of an object.

122 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

Intent

In the Composite pattern, objects can be grouped into tree-like or hierarchical collections dynami-
cally and used as if they were a single object. This lets you build up behavior on the fly without the
client code needing to understand the complex structure.

UML

Figure 5-12 shows the UML representation of the Composite Design pattern.

Component

Client

+DoSomething()
+Add(in Component : Component)
+Children()

Leaf Component

+DoSomething() +DoSomething()

. v

.
’

, v
/ \
’ v

\

DoSomething() DoSomething()
{

// Business Logic. . . foreach (Component child in Children)

)

child.DoSomething();
}

FIGURE 5-12

The classes shown in Figure 5-12 collaborate to form the Composite pattern. Their roles are as follows:

> The component is the abstract base class that provides the means to enable objects to join to
create chains of behavior.

> The Leaf is a concrete implementation of the Ccomponent abstract class that defines specific
business logic behavior.

> The composite is also a concrete implementation of the Component that enables related
Components to be joined and provides the ability to call recursively into their behavior.

> The client adds objects to and removes objects from the composite.

Code Example

In this example, you expand on the small exercise you started in the “Specification Pattern” sec-
tion. The Specification pattern exercise was based on the domain of an online DVD rental site. You

Leveraging Enterprise Patterns | 123

built a specification to determine if a customer could rent a DVD based on the number of previous
rentals. Now the business logic needs to be altered to consider whether a customer’s account is still
active and if they have any late fees. You can alter the existing Specification pattern to consider the
new requirements, but another way to tackle this quandary is to create a set of small specifications
and then chain them together using the Composite pattern; this allows you to reuse the logic in
other parts of your system.

Figure 5-13 shows the class diagram from Figure 5-11 with the additional classes needed to create a
composite specification.

O Ispecication<1>

O o SO
| CompasiteSpecification «T+
i Gereric Abstract Clas

|

HanReathedRentaTnesobdS pes ification. () | ContometAccomtHind ateFresSpeification (% | AnlSpeesific ation< T> ® | NotSpeecific ativm = T> ®
Class Class GenericClass GenericClas
+ Ci i ification < Ci + G i i ion<Ci -+ CompositeSpecification«T» + CompositeSpecification«T»
B Fedidy B Fielils
CustomerAccountStillActivespecitication (5 Methods H Methods
Class. @ AndbSpe ificatinn 9 hSatisfirdfy
+¢ @ LSatisfisdBy @ NotSpecification

FIGURE 5-13

First expand the customeraccount class that you created in the Specification pattern. Then add the
bolded properties in the code listing that follows:

namespace ASPPatterns.Chap5.Specification.Model
{

public class CustomerAccount

{
private ISpecification<CustomerAccount> _hasReachedRentalThreshold;
public CustomerAccount ()
{
_hasReachedRentalThreshold = new HasReachedRentalThresholdSpecification() ;
public decimal NumberOfRentalsThisMonth { get; set; }
public bool AccountActive { get; set; }
public decimal LateFees { get; set; }
public bool CanRent ()

{
return !_hasReachedRentalThreshold.IsSatisfiedBy(this);

124 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

The Accountactive property shows whether the account is restricted, and the LateFees property
stores the total fees the customer owes. The new canrRent method needs to consider whether the
account is active, whether the customer has late fees, and if they have reached their rental threshold.

The first thing you need to do is create the two extra specifications to determine if late fees are owed
and whether the account is active. Add a new class to the ASPPatterns.Chap5.Specification.Model
project you built earlier and name it CustomerAccountStillActiveSpecification. Then modify the
new class to match the listing that follows:

namespace ASPPatterns.Chap5.Specification.Model

{
public class CustomerAccountStillActiveSpecification
ISpecification<CustomerAccount>

public override bool IsSatisfiedBy (CustomerAccount candidate)

{

return candidate.AccountActive;

This specification simply returns whether the Accountactive property is equal to true.

It’s worth mentioning that at present, there doesn’t seem to be a whole lot of benefit to using
CustomerAccountSti1lActiveSpecification;myCustomerAccount.AccountActive\VoukiSuﬁ
fice. However, if the rules change, and you need something like the following two lines, a specifica-
tion suddenly makes a whole lot more sense:

return candidate.AccountActive &&
candidate.EmailAddressConfirmed;

The second specification you add determines if the customer account has late fees. Add a new class
to the project named CustomerAccountHasLateFeesSpecification, as detailed here:

namespace ASPPatterns.Chap5.Specification.Model
{
public class CustomerAccountHasLateFeesSpecification
ISpecification<CustomerAccount>

public override bool IsSatisfiedBy (CustomerAccount candidate)
{
return candidate.LateFees > 0;

Now that you have all three specification classes in place, you can add the necessary classes to enable
building of a composite specification. Add a new class to the project named compositeSpecification
that matches the code listed here:

namespace ASPPatterns.Chap5.Specification.Model

{
public abstract class CompositeSpecification<T> : ISpecification<T>
{

Leveraging Enterprise Patterns | 125

public abstract bool IsSatisfiedBy (T candidate);

public ISpecification<T> And(ISpecification<T> other)

{

return new AndSpecification<T>(this, other);

public ISpecification<T> Not ()
{

return new NotSpecification<T> (this);

As you can see, this class also implements the TSpecifcation interface so it can be used as if it were
a normal specification. You should also be able to see the two new classes: the andspecification

and the NotSpecification. These two classes provide the chaining functionality to your Composite
Specification.

Add a new class named andspecification with the following code definition:

namespace ASPPatterns.Chap5.Specification.Model

{
public class AndSpecification<T> : CompositeSpecification<T>
{
private ISpecification<T> _leftSpecification;
private ISpecification<T> _rightSpecification;
public AndSpecification(ISpecification<T> leftSpecification,
ISpecification<T> rightSpecification)
{
_leftSpecification = leftSpecification;
_rightSpecification = rightSpecification;
}
public override bool IsSatisfiedBy (T candidate)
{
return _leftSpecification.IsSatisfiedBy(candidate) &&
_rightSpecification.IsSatisfiedBy (candidate) ;
}
}

The andsSpecification is a simple class that takes two parameters of type ISpecification and in
the TssatisfiedBy method returns true if both the specifications are satisfied.

Add another new class named NotSpecification with the following definition:

namespace ASPPatterns.Chap5.Specification.Model

{

public class NotSpecification<T> : CompositeSpecification<T>

{

private ISpecification<T> _innerSpecification;

public NotSpecification(ISpecification<T> innerSpecification)

126 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

_innerSpecification = innerSpecification;

public override bool IsSatisfiedBy (T candidate)
{

return !_innerSpecification.IsSatisfiedBy (candidate) ;

As was the case with the andspecification, the NotSpecification is another simple class that,
this time, takes a single TSpecification as a constructor argument and inverts the result of the
inner specification in the Issatisfied method. Notice that both the andspecification and the
NotSpecificationinheﬂtfﬂnntheCompositeSpecificationCkms,dnminheﬂﬁngtheAndand
Not methods. This is what allows you to chain specifications together.

To complete this exercise, you need the three original specifications to inherit from the composite
Specification class, as shown in this code snippet:

public class HasReachedRentalThresholdSpecification
CompositeSpecification<CustomerAccount>

public class CustomerAccountStillActiveSpecification
CompositeSpecification<CustomerAccount>

public class CustomerAccountHasLateFeesSpecification
CompositeSpecification<CustomerAccount>

The last alteration you need to make is to the TSpecification interface. It is to include the extra
methods added to the composite specification, which enables you to reference specifications via an
interface and still have the ability to chain them together.

Update the Tspecification interface to include the two bolded method signatures that follow:

namespace ASPPatterns.Chap5.Specification.Model

{

public interface ISpecification<T>
{
bool IsSatisfiedBy (T candidate);

ISpecification<T> And(ISpecification<T> other);

ISpecification<T> Not();

Leveraging Enterprise Patterns | 127

Now you can implement the new logic into your Customeraccount’s CanRent method, as shown in
the code listing that follows:

namespace ASPPatterns.Chap5.Specification.Model
{
public class CustomerAccount
{
private ISpecification<CustomerAccount> _hasReachedRentalThreshold;
private ISpecification<CustomerAccount> _customerAccountIsActive;
private ISpecification<CustomerAccount> _customerAccountHasLateFees;

public CustomerAccount ()

{
_hasReachedRentalThreshold = new HasReachedRentalThresholdSpecification();
_customerAccountIsActive = new CustomerAccountStillActiveSpecification();
_customerAccountHasLateFees = new CustomerAccountHasLateFeesSpecification();

public decimal NumberOfRentalsThisMonth { get; set; }
public bool AccountActive { get; set; }
public decimal LateFees { get; set; }
public bool CanRent ()
{
ISpecification<CustomerAccount> canRent =
_customerAccountIsActive.And (
_hasReachedRentalThreshold.Not ()) .And(

_customerAccountHasLateFees.Not ()) ;

return canRent.IsSatisfiedBy(this);

Download the ASPPatterns.Chap5 . Specification solution from www.wrox.com
to view a set of unit tests that verify the behavior of the specification example.

Layer Supertype Pattern

The Layer Supertype pattern defines an object that acts as the base class for all types in its layer,
and is very much based around inheritance.

Intent

For instances when all objects in your layer share a set of common business logic, you can use the
Layer Supertype to remove duplication and centralize logic.

128 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

Code Example

To demonstrate the Layer Supertype pattern, you build a class that provides the basic functionality
to be used by all entity classes in a business domain model.

You can see the classes used in this exercise in Figure 5-14.

" EntityBase<T> @)
Genenc Abstract Class i

; H Fields

| 3 Properties

=

| 5 Methads

P 4% Add
3% UneckrorBrokentules i
% ClearCollectionOfRrokenRules |
‘Y EntityBace (= 1 overload) I
‘% GetBrokenBusinessRules
& LValid
,ﬁ‘ ThrowExceptionlfValuelsNull

T

Product E3
Class
=+ EnlilyBase<Guid>

@)

Customer
Class
- EnlilyBase<lung>

FIGURE 5-14

Start by creating a new solution named AsPPatterns.Chap5.LayerSuperType and add a C# class
library project to it named ASPPatterns.Chap5.LayerSuperType.Model. Add a new abstract class to
the project named EntityBase; this is the Supertype that all the business entities inherit from. Because
all entities need an identifier, the Supertype class can provide the logic to store an ID and ensure it is
never changed once set. Another job that the Supertype can perform is providing a simple framework
for checking whether the entity class is valid. The code listing that follows shows the abstract base class
with the methods for validation and storing the entity’s ID:

namespace ASPPatterns.Chapb.LayerSuperType.Model
{
public abstract class EntityBase<T>
{
private T _id;
private IList<string> _brokenRules = new List<string>();
private bool _idHasBeenSet = false;

public EntityBase()
{1}

public EntityBase(T id)

{
this.Id = id;

public T Id

Leveraging Enterprise Patterns | 129

get { return _id; }
set

{
if (_idHasBeenSet)
ThrowExceptionIfOverwritingAnId ()

_id = value;
_idHasBeenSet = true;

private void ThrowExceptionIfOverwritingAnId()
{

throw new ApplicationException("You cannot change the id of an entity.");

public bool IsValid()

{
ClearCollectionOfBrokenRules () ;
CheckForBrokenRules () ;
return _brokenRules.Count() == 0;

protected abstract void CheckForBrokenRules () ;

private void ClearCollectionOfBrokenRules ()

{

_brokenRules.Clear () ;

public IEnumerable<string> GetBrokenBusinessRules ()

{

return _brokenRules;

protected void AddBrokenRule(string brokenRule)

{
_brokenRules.Add (brokenRule) ;

You have used generics in the base class because you can’t guarantee that all entities in your model
will use the same type for identification.

Now you can add a new entity class that uses this Supertype. Add a new class named customer to
your project with the next code listing:

namespace ASPPatterns.Chap5.LayerSuperType

{
public class Customer : EntityBase<long>

{
public Customer() { }

public Customer (long Id)

130 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

: base(Id)
{3}

public string FirstName { get; set; }
public string LastName { get; set; }

protected override void CheckForBrokenRules ()
{
if (String.IsNullOrEmpty (FirstName))
base.AddBrokenRule ("You must supply a first name.");

if (String.IsNullOrEmpty (LastName))
base.AddBrokenRule("You must supply a last name.");

}

The Layer Supertype is a simple pattern purely based around inheritance, but one that can be used
to great effect in removing duplication in common logic.

The next section of this chapter details how design principles can be leveraged in an ASP.NET
application.

APPLYING DESIGN PRINCIPLES

As with design and enterprise patterns, design principles should be followed throughout your appli-
cation to enable high cohesion and loose coupling. This section examines the Dependency Inversion
and Injection principles as well as the Separated Interface principle.

Dependency Inversion Principle and the Dependency Injection
Pattern
The Dependency Inversion principle (DIP) helps to decouple your code by ensuring that you depend
on abstractions rather than concrete implementations. This principle, which is paramount to under-
standing design patterns, has been used throughout this chapter and will be used in the remaining
chapters. Dependency Injection (DI) is an implementation of this principle. You will often find the

names Dependency Inversion and Dependency Injection used interchangeably, but they both refer to
the same process of decoupling your code.

Intent
Robert C. Martin defines the DIP like so:

> High-level modules should not depend on low-level modules. Both should depend on
abstractions.

> Abstractions should not depend on details. Details should depend on abstractions.

By employing the DIP, you can ensure that your high-level modules depend on abstractions rather
than concrete implementations of lower-level modules.

Applying Design Principles | 131

The DI pattern is an application of this principle. DI is the act of supplying all classes that a service
needs rather that leaving the responsibility to the service to obtain dependent classes.

DI typically comes in three forms:
» Constructor Injection
> Setter Injection

> Method Injection

Code Example

In this example, you refactor a portion of code to introduce the DI principle to completely decouple
a ProductService class from its underlying dependencies. The example is based on the domain of
a product catalogue; a ProductService class requires a repository to obtain a set of products and

a discount strategy to apply a discount to each product before returning the collection to the caller.
Figure 5-15 shows the classes involved in this simple scenario.

(LingProductRepository (3

Llass

| ProductService &
Class @* _productRepository

Class

(i RunmProdaDiscount) # discountStratey
& Methods
@ FindAll

= Methods

9 GetProducls
¥ ProductService

»] |

' Product

Class

& Methods
¥ AdjustPnceWith

FIGURE 5-15

The Product class is a simple object that represents a product in the catalog; in this scenario it has
a single method named adjustPricewith that takes the ChristmasProductDiscount object as an
argument. The LingProductRepository is a simple repository that retrieves a collection of products
from an underlying data store. The christmasProductDiscount represents the type of discount to
be applied to the Product. The class contains no code and is used merely as a placeholder to demon-
strate the principle of DI. Finally, the Productservice class is responsible for retrieving the collec-
tion of products from the repository and then applying a given discount to them before returning to
the calling code.

Before you can refactor this code, you need to build it, so first create a new solution named ASPPatterns
.Chap5 .DependencyInjection and add a C# Class Library Project named ASPPatterns.Chap5
.DependencyInjection.Model to it, then add a new class to it named christmasProductDiscount.
The interface is empty, as shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{

public class ChristmasProductDiscount

{

}

132 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

Next, you can add a class to represent the Product. This contains a single method that has no code but

demonstrates the interaction between a Product and a ChristmasProductDiscount. The code for the
Product class is shown here:

namespace ASPPatterns.Chapb.DependencyInjection.Model
{
public class Product

{

public void AdjustPriceWith (ChristmasProductDiscount discount)

{

Add another new class to the project named LingProductRepository. For brevity, the implementa-
tion of the Finda11l method simply returns an empty collection of products, saving you the need to

create a real database and LinqToSQL data context. The code for the L.ingProductRepository is
shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
public class LingProductRepository
{
public IEnumerable<Product> FindAll ()
{

return new List<Product>();

To complete the scenario, you need to add the Productservice class. Unlike the other classes in
this exercise, the ProductService class does quite a bit. Add a new class to the project named
ProductService with the following code definition:

namespace ASPPatterns.Chapb.DependencyInjection.Model
{
public class ProductService
{
private LingProductRepository _productRepository;
private ChristmasProductDiscount _discountStrategy;

public ProductService()

{
_productRepository = new LingProductRepository();
_discountStrategy = new ChristmasProductDiscount () ;

public IEnumerable<Product> GetProducts ()

{
IEnumerable<Product> products = _productRepository.FindAll();

foreach (Product p in products)

Applying Design Principles | 133

p.AdjustPriceWith(_discountStrategy) ;

return products;

You can see that, in the constructor, the two dependent classes are created. The sole method on the
service simply obtains a collection of products from the repository and applies a discount to each
one before returning them to the caller.

The problem with the Productservice class is that it’s tightly coupled to the concrete implementations
of the repository and discount offer. This has the negative effect of making the Productservice class
hard to maintain because it’s impossible to test in isolation due to the need to have a valid christmas
ProductDiscount class as well as the LingProductRepository. If and when the product discount strat-
egy changes, a change would need to be made to the service class, which breaks the single responsibility
principle. To decouple the high-level module (Productservice) from the low-level details (christmas
ProductDiscount and LingProductRepository), you can refactor the code toward the DIP by introduc-
ing two forms of DI.

To begin the process of moving toward the DI pattern, you must ensure that lower-level modules are
referenced by abstractions rather than concrete types. Therefore, the first job is to introduce some
interfaces for the ChristmasProductDiscount and LingProductRepository classes.

Add a new interface to the project named TProductbiscountStrategy and ensure that the christmas
ProductDiscount implements it. The code for both the TProductbiscountstrategy and updated
ChristmasProductDiscount is shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{

public interface IProductDiscountStrategy

{

}

namespace ASPPatterns.Chapb.DependencyInjection.Model

{
public class ChristmasProductDiscount : IProductDiscountStrategy
{
}

Now you need to modify all code that references the ChristmasProductDiscount to reference the
new interface.

First update the Product class as shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
public class Product

{

134 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

public void AdjustPriceWith (IProductDiscountStrategy discount)
{
}

Next, update the Productservice class, again as shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
public class ProductService
{
private LingProductRepository _productRepository;
private IProductDiscountStrategy _discountStrategy;

public ProductService()

{
_productRepository = new LingProductRepository();
_discountStrategy = new ChristmasProductDiscount();

public IEnumerable<Product> GetProducts ()
{
IEnumerable<Product> products = _productRepository.FindAll();

foreach (Product p in products)
p.AdjustPriceWith(_discountStrategy) ;

return products;

Third, introduce an interface for the LingProductRepository. Because the LingProductRepository
has a method defined, you can use a shortcut to create the interface. Open the LingProductRepository
class and right-click to bring up the context-sensitive menu and select Refactor © Extract Interface.
Name the interface IProductRepository, and ensure that the Findall method is checked. Click OK,
and the new interface is created with the following definition:

using System;
using System.Collections.Generic;

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
public interface IProductRepository
{
IEnumerable<Product> FindAll();

The LingProductRepository implements the new interface automatically. You can now update the
ProductService class so that it references this new interface, like so:

namespace ASPPatterns.Chapb.DependencyInjection.Model
{

Applying Design Principles | 135

public class ProductService

{
private IProductRepository _productRepository;
private IProductDiscountStrategy _discountStrategy;

public ProductService()

{
_productRepository = new LingProductRepository();
_discountStrategy = new ChristmasProductDiscount();

public IEnumerable<Product> GetProducts ()
{
IEnumerable<Product> products = _productRepository.FindAll();

foreach (Product p in products)
p.AdjustPriceWith(_discountStrategy) ;

return products;

Now that the high-level service class is referencing all the dependents or lower-level classes by
interfaces, you can continue to introduce the DI pattern.

The first flavor of DI to introduce is Constructor Injection. Instead of leaving the responsibility of
obtaining an instance of TProductRepository to the ProductService class, you can move it up as
a parameter in the constructor, as shown in the code here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
public class ProductService
{
private IProductRepository _productRepository;
private IDiscountStrategy _discountStrategy;

public ProductService (IProductRepository productRepository)
{
_productRepository = productRepository;
_discountStrategy = new ChristmasProductDiscount();

public IEnumerable<Product> GetProducts ()
{
IEnumerable<Product> products = _productRepository.FindAll();

foreach (Product p in products)
p.AdjustPriceWith(_discountStrategy) ;

return products;

136 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

The second flavor of DI you will be refactoring to is known as Method Injection. Currently, if you want
to alter the discount offer applied to the products, you are required to alter the ProductService class.

This is a code smell, because the Productservice class should be responsible only for coordinating the

task of retrieving and applying a discount; this is its single responsibility and its only reason to change.
Obtaining the correct discount offer should be of no concern to the service class. To achieve this, you
need to move the instantiation of the discount offer out of the service constructor and onto the param-
eter list of the GetProducts method, and rename it to GetProductsAndApplyDiscount as shown here:

namespace ASPPatterns.Chapb.DependencyInjection.Model
{
public class ProductService
{
private IProductRepository _productRepository;

public ProductService (IProductRepository productRepository)
{

_productRepository = productRepository;
}

public IEnumerable<Product> GetProductsAndApplyDiscount (

IProductDiscountStrategy discount)
{
IEnumerable<Product> products = _productRepository.FindAll() ;

foreach (Product p in products)
p.AdjustPriceWith(discount);

return products;

A code smell is any symptom in the source code of a program that possibly
indicates a deeper problem, such as a reliance on hard coded, so-called magic
strings, or a tight coupling to a concrete implementation of a dependent class.

As you may have noticed in the code, you can also rename the method name to something a little
more fluent. This refactor has also made the Productservice class open to extension while being
closed for modification, because now any type of discount that implements the TProductbiscount
Strategy can be applied to the product collection without change to the Productservice class.
The Open/Closed principle is another principle that you will read more about in the next chapter.

Figure 5-16 shows the final class diagram for this exercise, after all your refactorings.

Applying Design Principles | 137

IProduct DscountSrategy
Interface

'..l.' IProductDiscountStrategy

ChristmasProductDiscount

Class.

FIGURE 5-16

ProductService
Class

E Methods

¢ GetProductsAndApplyDiscount
@ ProductService

)

§¥ _productRepository

(IProductRepository
Intertace

Class.

S

= Methods
¥ AdjustPnceWith

Interface Segregation Principle

The Interface Segregation principle states that clients should not be forced to depend on interfaces

they don’t use.

Intent

| B Methads

=)

¥ FAndAll

';l." IProductRepository

| LingProductRepository

Class

5 Methods

w)

¥ Findall

As interfaces grow, they take on more responsibility. It is crucial that you ensure they aren’t trying
to be all things to all objects. The Interface Segregation principle is all about separating fat interfaces
into small, specific groups of related functionality. This enables subclasses to be created that imple-
ment only subsets of behavior instead of classes having to implement a monolithic contract littered
with the dreaded NotImplementedException.

Code Example

To demonstrate the principle of Interface Segregation, you will work through a small exercise that
revolves around the domain of a product catalog. Currently the product catalog is made up of movie
products in the form of DVDs and Blu-Ray discs. There is a matching class for each product sub-
type, as shown in Figure 5-17.

[IProduct
| Interface

= Properties

= Certification

™= Price

P RunningTime

B Stock

2 Weightinkg

'-'.FJ Product

O Praduct

Class

s

DvD

Class

«
S

FIGURE 5-17

138 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

Both of these classes implement an TProduct interface. Now that you understand the simple domain,
you can build the solution as it stands.

Create a new solution named ASPPatterns.Chap5. InterfaceSegregation and add a project named
ASPPatterns.ChapS.InterfaceSegregation,thenadd:aneﬁlhneﬂhcetoitnannxiIProduct\Vﬁh
the following contract:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
public interface IProduct
{
decimal Price { get; set; }
decimal WeightInKg { get; set; }
int Stock { get; set; }
int Certification { get; set; }
int RunningTime { get; set; }

This interface nicely satisfies the needs of the two products in the catalog. You can add the two other
classes to complete the solution as is. Add a new class named pvp and another named BluRayDisc
that both implement the TProduct interface:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model

{ public class DVD : IProduct
{ public decimal Price { get; set; }
public decimal WeightInKg { get; set; }
public int Stock { get; set; }

public int Certification { get; set; }

public int RunningTime { get; set; }

namespace ASPPatterns.Chapb.InterfaceSegregation.Model
{ public class BluRayDisc : IProduct
{ public decimal Price { get; set; }
public decimal WeightInKg { get; set; }
public int Stock { get; set; }

public int Certification { get; set; }

public int RunningTime { get; set; }

Applying Design Principles | 139

All is good with the world. Now introduce a new product type that isn’t a movie. Add a new class
to the project named TShirt. The Tshirt class is a product, so it needs to implement the TProduct
interface. Create the following new class:

namespace ASPPatterns.Chapb.InterfaceSegregation.Model
{

public class TShirt : IProduct

{

public decimal Price { get; set; }
public decimal WeightInKg { get; set; }
public int Stock { get; set; }

public int Certification { get; set; }

public int RunningTime { get; set; }

The problem with the Tshirt class implementing the TProduct interface is that the certification
and RunningTime properties mean nothing to a Tshirt and don’t really belong to it. The answer to
this issue is to split what differs between the movie products and the Tshirt class and add this to a

movie-specific interface.

Add a new interface named TMovie with the following contract:

namespace ASPPatterns.Chapb.InterfaceSegregation.Model
{
public interface IMovie
{
int Certification { get; set; }
int RunningTime { get; set; }

You can now remove the Certification and RunningTime properties from the TProduct interface.
Because the TProduct interface no longer defines these properties in its contract, the TShirt class
doesn’t need to implement them. So now you can update the TShirt class as shown here:

namespace ASPPatterns.Chapb.InterfaceSegregation.Model
{

public class TShirt : IProduct

{

public decimal Price { get; set; }
public decimal WeightInKg { get; set; }

public int Stock { get; set; }

140 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

The last action you need to take is to ensure that both the pvp and BlurRayDisc class implement the
new IMovie interface, as shown in the lines in boldface:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model

{
public class DVD : IProduct, IMovie
{
public decimal Price { get; set; }
public decimal WeightInKg { get; set; }
public int Stock { get; set; }
public int Certification { get; set; }
public int RunningTime { get; set; }
}
}

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
public class BluRayDisc : IProduct, IMovie

{ public decimal Price { get; set; }
public decimal WeightInKg { get; set; }
public int Stock { get; set; }
public int Certification { get; set; }
public int RunningTime { get; set; }

}

Figure 5-18 shows the complete set of classes after the refactors.

(IProduct & (Movie &
Interface Interface
=l Propertiec =l Propertiec

ﬁ Price ﬁ Certifivativn

= stock 75 RunningTime

S Weightinkg

C) IProduct) Product
'-I" Product | IMovie IMovie
TShirt ¥ " BluRayDisc) " pvp ¥
Class. Class Class
- V.
FIGURE 5-18

This is the essence of the Interface Segregation principle. It’s simple to grasp, but sometimes even the
big boys get it wrong. If you have ever written your own custom ASP.NET Membership Provider,
you would have had to implement a monster of a contract even if you only wanted to use a subset of

Applying Design Principles | 141

the functionality, like the ability to log in and out. By splitting up interfaces, you increase the capa-
bility to reuse and understand your code.

Liskov Substitution Principle

The Liskov Substitution principle (LSP) states that subclasses must behave the same as their base class.

Intent

Robert Martin states that subtypes must be substitutable for their base types, meaning that the behavior
of a subtype must follow the expected behavior of a base type.

Code Example

To clearly demonstrate the LSP, you’ll look at some code that violates it. Then you will refactor the
code toward the principle. This exercise should enable you to see the benefit of following the prin-
ciple and the problems caused if it is ignored.

Figure 5-19 shows the classes involved in this exercise. The domain that this code extract is taken
from forms the refund module of an e-commerce company. Specifically, the organization takes and
refunds payments using the PayPal and WorldPay payment merchants via their respective web ser-
vices — in this example, you will simply mock out these web services.

E.Iw&Mfﬂm@ l?S"'
| AbstractCi —_—
! S RetundService E3
| Class
! 1= Methads
i @ Refurd & Methods
: ? . @ Refund
| RefundRequest 3 | RefundResponse &
p —, p) Cla: Cl
PayPalPayment 1E3 WorldPayPayment E3 = il
Class Class .
=+ PaymentServiceBace =+ PaymentServiceBase = Properties B Properties
B Payment B Message
4 Properties L Praperties i—“? PaymentTransac iunkd ? Sutcess
B Methods = Methods ' RefundAmount
¥ PayPalPayment ¢ Refund
¥ Refund ¥ WorldPayPayment
MockPayPalWebService e MockWorldPayWebService (% | PaymentType 3 PaymentServiceFactory (2
Class Class Frum Class
B Methods = Methods PayPal = Methods
¥ MakeRefund ¥ MakeRefund WorkdPay ¥ GetPaymentServiceFrom
¥ Ubtainloken o
FIGURE 5-19

The RefundService class coordinates the refunding of a RefundrRequest by first obtaining the cor-
rect payment class (WorldPayPayment or PayPalPayment) via the PaymentServiceFactory. After
a refund has been made, the status of the transaction is wrapped within the Refundresponse object
and returned to the client.

142 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

To get started with this exercise, create a new solution named ASPPatterns.Chap5.Liskov
SubstitutionPrinciple and add a C# class library named AsPpatterns.Chap5.LiskovSubstitution

Principle. The first item you can add to the project is the PaymentType enumeration. Add the two
options as shown in this code listing:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public enum PaymentType
{
PayPal = 1,
WorldPay = 2

Next, add two new classes named RefundRequest and RefundrResponse with the following code
definitions:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public class RefundRequest
{
public PaymentType Payment { get; set; }
public string PaymentTransactionId { get; set; }
public decimal RefundAmount { get; set; }

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public class RefundResponse
{
public bool Success { get; set; }
public string Message { get; set; }

The RefundRequest is sent to the RefundService as the single Refund method parameter, and
RefundResponse is returned by the RefundService with the status of the refund transaction.

The next two classes represent the live WorldPay and PayPal web services. These are simply mock
classes that demonstrate the functionality that the payment merchants offer. Add two new classes

nanleMockWorldPayWebServicezuuiMockPayPalWebService,andqukwethecodeforeach\vﬁh
the listings shown next:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
// Stub class to act as a PayPal web service
public class MockPayPalWebService
{
public string ObtainToken (string accountName, string password)

{

return " - - "

Applying Design Principles | 143

public string MakeRefund(decimal amount, string transactionId, string token)
{
return "Auth:0999";

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public class MockWorldPayWebService

{
public string MakeRefund(decimal amount, string transactionId,
string username, string password,
string productId)

return "A_Success-09901";

As you can see, the API for the payment merchants differs slightly. The return strings are hard-coded
to keep the demonstration code simple.

To enable the Refundservice to interact with the payment merchants as if they had the same interface,
yOquedtoaddzlPaymentServiceBaseCkwsthattheWorldPayPaymentandPayPalPaymentcan
inherit from and wrap the real web service APIs by using the Adapter pattern. Add a new abstract class
to the project named PaymentServiceBase, with the following abstract Refund method shown here:

namespace ASPPatterns.Chapb5.LiskovSubstitutionPrinciple
{

public abstract class PaymentServiceBase

{

public abstract string Refund(decimal amount, string transactionId);

The RefundService can interact with the abstract PaymentServiceBase class and be blissfully
unaware of which real implementation it is dealing with because they both behave the same — the
essence of the LSP.

Now that you have the base class in place, you can create the two merchant adapters. Add a new
class to the project named PayPalPayment, which inherits from the PaymentserviceBase class and
has the following code definition:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple

{
public class PayPalPayment : PaymentServiceBase
{
public string AccountName { get; set; }
public string Password { get; set; }

public override string Refund(decimal amount, string transactionId)

144 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

MockPayPalWebService payPalWebService = new MockPayPalWebService() ;
string token = payPalWebService.ObtainToken (AccountName, Password) ;
string response = payPalWebService.MakeRefund (amount, transactionId, token);

return response;

Because the PayPal web service requires a token with any transaction, you must first log in to obtain
a token; therefore, you have to include the two extra properties of AccountName and Password. The
Refund method creates a new instance of the web service (a mock object in this example), obtains a

transaction token by logging in, and then performs the refund before returning the result to the call-
ing code.

Next, you can add the implementation for the WorldPay merchant adapter. Add a new class to the
project named Wor1dPayPayment, again inheriting from the PaymentServiceBase abstract class
with the following code listing:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public class WorldPayPayment : PaymentServiceBase
{
public string AccountId { get; set; }
public string AccountPassword { get; set; }
public string ProductId { get; set; }

public override string Refund(decimal amount, string transactionId)
{
MockWorldPayWebService worldPayWebService = new MockWorldPayWebService() ;

string response = worldPayWebService.MakeRefund (
amount, transactionId, AccountId, AccountPassword, ProductId);

return response;

Again, you have had to add two extra properties for logging in and a third to specify the product you
are refunding against because the WorldPay merchant allows you to have more than one account when
you need to support multiple currencies. The actual Refund method implementation is simpler than
that of the PayPalpayment class because you don’t have to obtain a token before making a refund.

The last two classes you need to tackle are the Refundservice and the PaymentServiceFactory,

which is responsible for creating the concrete implementation of the payment adapter. Because the

RefundService class depends on the PaymentServiceFactory, you need to build it first. Add a new
class to the project named PaymentServiceFactory, and input the following code listing for it:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple

Applying Design Principles | 145

public class PaymentServiceFactory
{
public static PaymentServiceBase GetPaymentServiceFrom(PaymentType paymentType)
{
switch (paymentType)
{
case PaymentType.PayPal:
return new PayPalPayment () ;
case PaymentType.WorldPay:
return new WorldPayPayment () ;
default:
throw new ApplicationException (
"No Payment Service available for " + paymentType.ToString());

If you read the section on the Factory Method pattern at the start of this chapter, it should be
straightforward what is happening in this class. The PaymentType enum is passed, and the matching
concrete payment adapter is created and returned to the caller.

Finally, you can add the Refundservice class, add a class with the same name, and input the code
that follows:

namespace ASPPatterns.Chapb5.LiskovSubstitutionPrinciple
{
public class RefundService
{
public RefundResponse Refund(RefundRequest refundRequest)
{
PaymentServiceBase paymentService = PaymentServiceFactory
.GetPaymentServiceFrom(refundRequest.Payment) ;

RefundResponse refundResponse = new RefundResponse() ;

if ((paymentService as PayPalPayment) != null)

{
((PayPalPayment)paymentService) .AccountName = "Scottl23-PP";
((PayPalPayment)paymentService) .Password = "ABCXYZ-PP";

if ((paymentService as WorldPayPayment) != null)
{
((WorldPayPayment)paymentService)
.AccountId = "Scottl23-WpP";
((WorldPayPayment)paymentService)
.AccountPassword = "ABCXYZ-WP";
((WorldPayPayment)paymentService) .ProductId = "1";

string merchantResponse =
paymentService.Refund (refundRequest.RefundAmount,

146 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

refundRequest .PaymentTransactionId) ;
refundResponse.Message = merchantResponse;

if (merchantResponse.Contains("A_Success") ||
merchantResponse.Contains ("Auth"))
refundResponse.Success = true;
else
refundResponse.Success = false;

return refundResponse;

It should be immediately obvious that there is a problem. In its present state, despite your best
efforts, it is not possible to substitute the subtype for its base type because each implementation of
the payment adapter must be handled differently. You can see this in the code snippet that follows;
the downcasting of the base class is another code smell that breaks the LSP:

if ((paymentService as PayPalPayment) != null)
{
((PayPalPayment)paymentService)
.AccountName = "Scottl23-PP";
((PayPalPayment)paymentService)
.Password = "ABCXYZ-PP";

if ((paymentService as WorldPayPayment) != null)
{
((WorldPayPayment)paymentService)
.AccountId = "Scottl23-WP";
((WorldPayPayment)paymentService)
.AccountPassword = "ABCXYZ-WP";
((WorldPayPayment)paymentService) .ProductId = "1";

In a more subtle way, the return code section, shown next, breaks the principle in that you are
required to handle all cases for all subtypes; thus, you cannot substitute the subtype without ensur-
ing you have code specific to that subtype; in this example code, check for a PayPal payment refund
success and a WorldPay refund success:

if (merchantResponse.Contains("A_Success") ||
merchantResponse.Contains ("Auth"))
refundResponse.Success = true;
else
refundResponse.Success = false;

You can resolve these issues without too much pain. First, tackle the problem of the downcasting.
It is clear that without the respective merchants’ login credentials, the web services methods cannot
be called. Both adapters depend on these values, so it makes sense to move these parameters into

Applying Design Principles | 147

the constructor so that neither adapter can be created without them. Update the code in both the
WorldPayPayment and PayPalPayment classes so that it matches this:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{

public class WorldPayPayment : PaymentServiceBase

{

public WorldPayPayment (string accountlId, string accountPassword,
string productId)

{
this.AccountId = accountId;
this.AccountPassword = accountPassword;
this.ProductId = productId;

}

public string AccountId { get; set; }
public string AccountPassword { get; set; }
public string ProductId { get; set; }

public override string Refund(decimal amount, string transactionId)

{
MockWorldPayWebService worldPayWebService = new MockWorldPayWebService() ;

string response = worldPayWebService.MakeRefund (
amount, transactionId, AccountId, AccountPassword, ProductId) ;

return response;

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple

{
public class PayPalPayment : PaymentServiceBase

{
public PayPalPayment (string accountName, string password)
{
this.AccountName = accountName;
this.Password = password;
}

public string AccountName { get; set; }
public string Password { get; set; }

public override string Refund(decimal amount, string transactionId)

{
MockPayPalWebService payPalWebService = new MockPayPalWebService() ;
string token = payPalWebService.ObtainToken (AccountName, Password) ;

string response = payPalWebService.MakeRefund (amount, transactionId, token);

return response;

148 | CHAPTER5 THE BUSINESS LOGIC LAYER: PATTERNS

Because the adapter classes now have constructors, you must update the PaymentServiceFactory
class as shown in the following bolded lines:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public class PaymentServiceFactory
{
public static PaymentServiceBase GetPaymentServiceFrom(PaymentType paymentType)
{
switch (paymentType)
{
case PaymentType.PayPal:
return new PayPalPayment ("Scottl23-PP", "ABCXYZ-PP");
case PaymentType.WorldPay:

return new WorldPayPayment ("Scottl23-wP", "ABCXYZ-WP", "1");
default:

throw new ApplicationException (
"No Payment Service available for " + paymentType.ToString());

In this example, the login credentials are hard-coded strings to keep things simple. In a real applica-
tion, these would typically be stored in some kind of configuration file. You can now return to the
RefundService class and remove the downcasting issue.

The second problem with the Refundservice class as it stands is the refund transaction response.
Currently, the Refundservice class has to inspect the result of the transaction and ensure that it
matches the authorization criteria of one of the subtypes, which again breaks the LSP. You can
address this by changing the return type from the string to the Refundresponse object.

Update the PaymentServiceBase, PayPalPayment, and WorldPayPayment class with the highlighted
code modifications as shown here:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public abstract class PaymentServiceBase

{
public abstract RefundResponse Refund(decimal amount, string transactionId);

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public class WorldPayPayment : PaymentServiceBase
{
public WorldPayPayment (string accountId, string accountPassword,
string productId)

this.AccountId = accountId;
this.AccountPassword = accountPassword;
this.ProductId = productId;

}

public string AccountId { get; set; }

Applying Design Principles | 149

public string AccountPassword { get; set; }
public string ProductId { get; set; }

public override RefundResponse Refund(decimal amount, string transactionId)

{
RefundResponse refundResponse = new RefundResponse();
MockWorldPayWebService worldPayWebService = new MockWorldPayWebService() ;

string response = worldPayWebService.MakeRefund
(amount, transactionId, AccountId, AccountPassword, ProductId);

refundResponse.Message = response;

if (response.Contains("A_Success"))
refundResponse.Success = true;
else
refundResponse.Success = false;

return refundResponse;

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple

{
public class PayPalPayment : PaymentServiceBase
{
public PayPalPayment (string accountName, string password)
{
this.AccountName = accountName;
this.Password = password;

public string AccountName { get; set; }
public string Password { get; set; }
public override RefundResponse Refund(decimal amount, string transactionId)
{
MockPayPalWebService payPalWebService = new MockPayPalWebService() ;
RefundResponse refundResponse = new RefundResponse();
string token = payPalWebService.ObtainToken (AccountName, Password) ;
string response = payPalWebService.MakeRefund(amount, transactionId, token);
refundResponse.Message = response;
if (response.Contains("Auth"))
refundResponse.Success = true;
else

refundResponse.Success = false;

return refundResponse;

150 | CHAPTERS5 THE BUSINESS LOGIC LAYER: PATTERNS

The individual subtypes are now responsible for determining if the refund was successful. They return
a simple boolean flag along with the specific transaction response. The RefundService class can now
be updated to treat the subtype in the same manner as the base type, with no need to downcast or
check for a specific subtype behavior. The updated Refundservice class listing is shown here:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
public class RefundService
{
public RefundResponse Refund(RefundRequest refundRequest)
{
PaymentServiceBase paymentService =
PaymentServiceFactory.GetPaymentServiceFrom(refundRequest.Payment) ;
RefundResponse refundResponse;

refundResponse = paymentService.Refund
(refundRequest.RefundAmount, refundRequest.PaymentTransactionId) ;

return refundResponse;

Figure 5-20 shows the full class diagram after your refactors.

" RefundService

= Class
E3
Absslracl Clas
L) = Methods
‘? % Refund
N —
RefundRequest & RefundRespanse (&
— f = 1 Cla Cla:
PayPalPayment &) WorldPayPayment G 1 '
Class Class = - r
+ PaymentServiceBase + PaymentServiceBase = Properties B Properties
iy Payment = Messaye
* Properties 4 Propertics 25 PaymentTransactionld = Sucess
= Methods = Methods ™ HetundAmount
9 Refund % Refund
MockPayPalWebService) MockWorldPayWebService = PaymentType k3 PaymentServiceFactory
Class Class Frum Class
B Methods B Methods PayPal = Methods
@ MakeRefund ¥ MakeRefund Wik ¥ GetPaymentServiceFrom
¢ Optanigken @ [te—memeoernrere—
FIGURE 5-20

From working through the exercise, you should understand the subtleness behind the LSP. In a nut-
shell, it’s all about thinking through how your subclasses should act based on the contract of their
base classes.

Summary | 151

SUMMARY

In this chapter, you learned about patterns and principles that you can use, but not exclusively within
the business layer of your application.

You examined the following patterns and principles:

> The Factory pattern enables you to encapsulate the creation of objects and remove the respon-
sibility from client code.

The Decorator pattern allows you to add behavior and state to an existing class dynamically.

The Template pattern defines a skeleton algorithm that delegates to subclasses to implement
specific steps that could vary.

The State pattern allows you to separate behavior dependent on state from the object itself.

The Strategy pattern permits you to swap algorithms dynamically and separate calculations
from data.

> The Specification pattern allows selection criteria logic to be separated and reused from busi-
ness entities.

> The Composite pattern enables objects to be combined but act as a single instance to join logic
and behavior dynamically.

> The Layer Supertype pattern acts as a common base class from all objects in the business layer
providing implementation for common logic.

> The Dependency Injection principle inverts the responsibility of obtaining dependent classes by
allowing them to be injected via a class’s constructor, property, or method.

> The Interface Segregation principle splits fat interfaces into separate related groups of contracts,
making it easier to use and more understandable in your code.

> The Liskov Substitution Principle reminds you that subclasses should act as you would expect
a base class to be used, without the need to downcast to check for specific subclass behavior.

The next chapter investigates patterns and principles that can be used in the service layer of an enter-
prise application as well as some SOA (Service Oriented Architecture) patterns that are specific to the
service layer.

The Service Layer

WHAT’S IN THIS CHAPTER?

> The role of services and the service layer in an enterprise ASP.NET
application

> Service oriented architecture and why it's needed
» The use of the Facade pattern

> Messaging patterns such as document message, request-response,
reservation, and idempotent

> An exercise that utilizes WCF for SOA in addition to well-known
messaging patterns

Chapter 4 dealt with the organization of your business middleware, but how do you expose
the business logic to your applications in an easy-to-use and consistent manner that maps to
your business needs? The answer lies in the service layer.

Sitting between your presentation and business layer, the service layer provides an interface
that defines the application’s boundaries and the operations available to the client. Behind the
facade that the service layer portrays to the client is the encapsulation of business logic, valida-
tion, and workflow and the coordination of persistence and retrieval of business entities.

DESCRIBING THE SERVICE LAYER

The role of the service layer is similar to that of the Transaction Script pattern that was intro-
duced in Chapter 4 in that it typically maps to business use cases. Unlike the Transaction pattern,
however, the service layer simply coordinates the business use case transaction and delegates
work to the business objects for all the lower-level implementation details. The service layer
encapsulates the business model and acts as an interface into the application for all parties, rather
like a business facade. Another difference between the service layer and the Transaction Script
pattern is in the level of granularity; typically, the Transaction Script pattern has fine-grained
method calls and offers a chattier interface than a coarse-grained service layer does.

154 | CHAPTER6 THE SERVICE LAYER

Service Oriented Architecture

Service oriented architecture (SOA) refers to the principles and practices of designing a set of loosely
integrated services typically, but not always, for distributed applications. Services are basically core
business functions that are used by one or many business applications. You can think of the set of
services as a business’s API. In the real world, business applications modeling processes need to be
dynamic and change often, but the core business rules tend to stay the same. Having these as inde-
pendent services offers a more flexible architecture and makes it easier to quickly build business
applications around the fundamental business procedures.

SOA probably seems very abstract, so before examining it perhaps it’s best to see an example of how
applying SOA to a legacy application can help improve the architecture and business process reuse.
Figure 6-1 shows a typical layout for a medium-sized business.

PayPal <
U
=
Purchase
O— Ordering
=
Order
Management
N
y l =
| Product Catalogue
Management
= Databas: ® | Returns
= s System
E-commerce Customer
Store Services g
System ®§
D=
Customer
Management Ay Ware House
System N _ Magats_:]tzr:qent
>IN Yy
o
SMTP Server
FIGURE 6-1

The systems architecture is for an e-commerce company; all the applications contain a business model,
plus logic and rules from their point of view or context. Each application connects directly with the
database to persist and retrieve the state of those business objects to the database. All applications
send e-mail, so they require a connection to the SMTP server. Many of the systems such as Returns,
Order Management, and the E-commerce storefront require a connection to the PayPal web services
for the taking and refunding of payments. The purchase ordering department manually confirms
orders with suppliers via e-mail.

Describing the Service Layer | 155

Over years of working with the current architecture the company has identified some issues that should
be addressed:

> Because each application has its own interpretation of the domain, there is a duplication of
business logic so a change to any aspect of the business that requires a logic change to the
software needs to be propagated to all the subsystems, which is a maintenance headache.

> There is a lot of business process duplication because the contexts of each application tend
to overlap. For example, the customer service team needs to see orders for a customer, which
represents an overlap with the functionality of the Order Management system. Similarly, the
Returns system needs to adjust stock during the process of returning an item, which overlaps
with the functionality provided by the Warehouse Management system.

> The applications are closely coupled to the data structure; if a change to the database is required,
changes to all applications using the data tables need to be synchronized so they are updated at
the same time.

> Confirming stock availability and purchase orders with suppliers is currently a time-consuming
manual process.

> The business requires lots of highly paid developers to maintain the domain logic within each of
the subsystems. New developers to the team often spend a lot of time working through each appli-
cation to get a handle on the company’s business logic.

> An audit trail and standard logging mechanism are required to be rolled out across all appli-
cations so that the customer service department can easily view an order’s history, but this
has been put off because of the implication cost.

An enterprise SOA approach will seek to address all these issues and restate all business processes
as services that communicate with each other and potentially with services outside of the enterprise.
The purchase ordering function, for instance, will be converted to a B2B system. All business logic
engrained within each of the individual legacy applications will be extracted and exposed as a service
so that core business logic can be shared but remain in one central location to assist in logic reusability
and maintenance. A Service Bus can then be used to keep the services loosely coupled with each
other and to coordinate the flow of information, making it easy to change services as long as the ser-
vice contract remains the same.

Figure 6-2 shows how the applications within the organization have been restructured to embrace SOA.

All the business core functions have now been turned into service endpoints. The myriad applications are
now simply dumb presentation screens with a thin layer of application logic, with all the business logic
happening behind the service interface. There is now no logic or code duplication, and business processes
can be shared with all the subsystems. The purchase ordering department now communicates with suppli-
ers via a B2B service that enables stock availability to be updated every hour without manual interaction.

With the new SOA in place, the business can now see these benefits:

> Maintenance is no longer such a big issue; changes to business logic now occur only in one place:
behind a service interface. As the company grows, applications can be replaced or rearchitected
without affecting the entire system as long as the service contract remains the same. Applications
now contain little logic, so junior developers can easily code the thin applications that use the ser-

156 | CHAPTER6 THE SERVICE LAYER

vices. New developers no longer need to understand the inner workings of the company because
they now have an API that exposes all the business functionality from them to work with.

> Logging and an audit trail can now be applied to all business transactions because of the exis-
tence of a central location.

> An API has been defined for the companys; this logic can now be shared across all applications,
making it fast and almost effortless to deploy small, targeted applications for departments.

Suppliers
PayPal Databa ‘ L\‘ B2B
SMTP
Server

(Service Bus J

S/ \\ ‘/// \ /S//V /S/ T\

44 A A A
Merchandising |Payment Order Customer Product
Services Services Services Services Services

® ® ® Q= =
Purchase E-commerce Order Returns Customer Customer Ware House Product
Ordering Store Management System Management Services Management Management
System System System
FIGURE 6-2

> The data store is now abstracted away behind the service layer. This means that data can be
cached from a central location, and any changes required to the data schema need only affect
the business logic behind the service layer, not all the applications.

> Interaction between the applications and service layer is via a coarse-grained interface, making
for a less chatty system and in turn ensuring that the database is no longer a scalability issue.

Hopefully you can see that, by applying a SOA to the organization, you have decreased maintenance
complexity and increased the reusability of the code base. This is, of course, just one application of
SOA that can be successfully rolled out, but it is by no means the definitive answer to this question:
what is SOA?

Four Tenets of SOA

You can adhere to four service principles to ensure better designed services. These are known as the
Four Tenets of SOA, and they are explained in the following sections.

Describing the Service Layer | 157

Boundaries Are Explicit

A service interface needs to be as clean and simple as possible and have a consistent approach to the
exchange of data, often referred to as messages. It is also a good idea to keep a service’s API small
and clear, favoring coarse-grained methods rather than a host of finer-grained methods. You will see
later in the “Leveraging Messaging Patterns” section how a number of patterns can be used to create
clean and clear service methods.

Services Are Autonomous

Service methods should be loosely coupled and not rely on other methods to perform a business
transaction; a client should not be required to call methods in a particular order to perform a busi-
ness transaction. A client should be able to invoke a single service and within one atomic action
receive a response on the success or failure of that transaction. Service methods should also be state-
less and not leave a system in a partially done state before another service is called to complete a
request.

Services Share Schema and Contract, Not Class

One of the goals of SOA is interoperability; to this end a service should only expose a contract, not
the implementation of the service. Communication is achieved via XML, also known as messages;
these are platform neutral and help to achieve interoperability.

Service Compatibility Is Based on Policy

A service should expose a policy on what it can be used for. Clients can then consume a service with
good knowledge of how to use it and what to expect in terms of response. Information on what a
service does can be exposed using the WS-Policy specification; the WS-Policy represents a set of
specifications that describe the capabilities and constraints of the service.

If you are still finding the SOA design methodology a little abstract, there is a large exercise at the end
of this chapter that uses WCF to build a SOA. This should help to cement the main points of SOA.

This has only been a brief overview of SOA. For a more in-depth look at SOA, take a look at
SOA Design Patterns and/or SOA Principles of Service Design by the SOA guru Thomas Erl.

In the next section you will learn how one of the Gang of Four patterns can be used in the service
layer of an enterprise ASP.NET application.

The Facade Design Pattern

A common pattern used by SOA clients is Facade. The Facade pattern simplifies the interface of a
complex subsystem or group of subsystems, giving a client an uncomplicated API to use that is con-
sistent with other APIs that the client may be used to working against.

Intent

The Facade pattern provides a simple interface to a complex API. The Facade pattern can be used in
many different scenarios:

158 | CHAPTER6 THE SERVICE LAYER

> It can make a third-party library easier to use by wrapping in an interface consistent with the
rest of the application.

> It can help to loosely couple code by abstracting away dependencies to other systems and
libraries.

> It can wrap a complicated subsystem with a simpler interface. This is demonstrated in the UML
that follows.

The Facade pattern can be used in the service layer to hide the complexities of talking to remote
applications via WCF or web services. You will see an exercise where the Facade pattern is employed
to do just this later in the chapter.

UML
Figure 6-3 shows the UML representation of the Facade pattern.
Client
]
Facade PerformAction()
{
m . .
Perfoml'lActlon() ----------------- SubSystemA.DoWork();
prTTTees drmmmmoeoes ' SubSystemB.DoWork();
v A4 }
SubSystemA SubSystemB
+DoWork() +DoWork()
FIGURE 6-3

Figure 6-3 shows all the collaborating roles in the Facade pattern.

> The client uses the simple API of the Facade to perform a task. The client remains unaware of
what is really needed to achieve the transaction.

> The Facade hides the complexities of the system behind its simple API. The Facade then del-
egates to the subsystems and collates the responses.

> subSystema and SubSystemB perform the work for the client.

There is a lengthy code exercise at the end of this chapter that shows how the
client of an SOA can use the Facade pattern.

In the next section you will look at patterns found in the communication with services.

Leveraging Messaging Patterns | 159

LEVERAGING MESSAGING PATTERNS

Design patterns that are associated in the realm of large-scale distributed applications like SOA systems
are often referred to as Messaging patterns. Messaging patterns, like Design patterns, provide standard
solutions to complex problems. Messaging patterns tackle the sharing of data in a uniform manner
among many disconnected systems. In this section you will learn about some common Messaging pat-
terns that you will use in an SOA example with WCF at the end of the chapter. If you are interested
in Messaging patterns, pick up the book Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions by Gregor Hohpe and Bobby Woolf.

The Document Message and the Request-Response Patterns

The Document Message pattern enables a uniform and flexible approach to communicating with
services. Instead of using the typical RPC style of parameterized methods to expose the service API,
message objects are employed. Consider this set of RPC-like methods that show why the Document
Message pattern has been adopted:

Customer[] RetrieveCustomers (string country) ;

Customer[] RetrieveCustomers (string country, string postalCode);
Customer[] RetrieveCustomers (string country, string postalCode, string street);

The preceding service methods enable the client to obtain customer records in three different ways:
by supplying a country, by supplying a country and a postal code, and by supplying a street in addi-
tion to the country and postal code parameters. As you can see, this type of method approach can
fast become a nightmare to maintain and for the client of the API to work with.

The Document Message pattern simplifies the communication by encapsulating all information
within the body of the document, leading to a more straightforward and clean service signature, as
can be seen here:

Customer[] FindBy (CustomerSearchRequest request) ;

The Document Message class is shown in the following code:

public class CustomerSearchRequest

{
public string Country { get; set; }
public string PostalCode { get; set; }
public string Street { get; set; }

Messages frequently contain other arbitrary items of information, including service version numbers,
a confirmation identifier, and authentication data. These items can be added to a common base class
that all requests can inherit. By using the Document Message pattern for all communication, you
make it easy for the service method to evolve and include additional parameters without needing to
change the signature of the method, as you saw earlier with the RPC example.

The Request-Response pattern ensures that responses as well as requests use the Document Message
pattern, so the signature for the RetrieveCustomers method now resembles this:

CustomerSearchResponse RetrieveCustomers (CustomerSearchRequest request) ;

160

| CHAPTER6 THE SERVICE LAYER

As with the Request object, the Response can also inherit from a base class, which can provide access
to common properties like a generic message and success flag, as well as a Correlation ID. You will
learn about Correlation IDs when you look at the Idempotent pattern, coming up shortly.

Figure 6-4 is a graphical representation of the Request-Response pattern utilizing the Document
Message pattern.

5 §
@Q

= I«%
Client Service

CustomerSearchRequest

Country: “UK”

RetrieveCustomers(CustomerSearchRequest)
PostalCode: “PO”

Street: “”

CustomerSearchResponse

Success: True
‘ Message: “5 customers were found residing in the

‘ Customers: Customer []

A

UK with a Post Code starting with PO.”

-/ -/

FIGURE 6-4

You can use the Request-Response pattern consistently across all service methods, making for a flex-
ible, simple-to-use API. If you look at PayPal’s API by navigating to www.x.com/docs/DOC-1374 and
viewing a SOAP operation, you will see that it follows this pattern.

The Reservation Pattern

As you read earlier, one of the four tenets of SOA services is that they should be autonomous. There
are times, though, when it is necessary to maintain the state of a long-running process during a
complex transaction that requires several messages to be sent to complete a unit of work. For these
situations, you can assign a reservation number to the first response. The client can use this reserva-
tion number in subsequent requests to allow the service layer to pick up a transaction. Typically, an
expiration date is used to allow the reserved state to expire after a given time so it doesn’t hold onto
resources for an undefined amount of time.

Figure 6-5 shows a simple scenario to demonstrate the Reservation pattern. Note the message
exchange within a ticket purchase service.

The client first calls the ReserveTickets service method, supplying data on the event and the num-
ber of tickets required. The response from the service layer includes a reservation ID and an expira-
tion date that will guarantee the tickets are held for the client. The client application then performs
some logic that may involve taking details from the customer as part of a checkout process. Finally,

Leveraging Messaging Patterns | 161

the client sends the reservation ID in a request via the PurchaseTicket service method; the service
validates the reservation ID and confirms the purchase of the tickets.

Service

ReservationRequest

Event: 1-223-787 ReserveTickets (ReservationRequest)

Y

Tickets: 2

ReservationResponse

| Reservationld: 98765
‘ ExpiryDate: 2010-11-20 09:00:00

A

Take Customers Details

PurchaseRequest

Reservationld: 98765 | PurchaseTicket (PurchaseRequest)

PurchaseResponse

| TicketConfirmationld: 78665-1

A

— —
| |
| |

FIGURE 6-5

The Idempotent Pattern

In computing, an idempotent operation is one that has no additional effect if it is called more than
once with the same input parameters. A service has no control over the clients that use it, so it’s
important to ensure that repeat calls do not have undesirable effects on the state of a system.

The Idempotent pattern states that any state-altering request should be tagged with a unique identi-
fier. This unique identifier should be checked with some kind of response storage to ensure that it
has not been processed before. If the response is found, the result can be returned without affecting
the state of the process that was originally called.

162 | CHAPTER6 THE SERVICE LAYER

Figure 6-6 displays a simple scenario showing the Idempotent pattern in operation. The client sends
a request via a service call and specifies a unique identification number. Upon receiving the request,

the service checks to see if it has handled it before by searching a local response repository. If the
response that matches the unique identifier does not exist, the business transaction can take place.
If it does exist, however, the stored response is retrieved and returned to the client.

g D4
Client Service

Request

N

Check cache
for existing
response to
this message

If no cached response
then action message
and persist altered

state to the database

Databas

Y

4‘ Correlationld: 56-2-4-1 I

Response

Put response
in cache

A

i Response: 778891 ’»
T

FIGURE 6-6

A further benefit to including a unique identifier
with every request can be gained by having the
service include the same ID in the response to the
client. This allows the client calling the service to
verify the response that matches the request; in
this case, the unique identifier is known as a cor-
relation ID.

AN SOA EXAMPLE

To demonstrate the principles of SOA and mes-
saging patterns in a more practical or hands-on
manner, you will work through an exercise that
facilitates the reservation and purchasing of tick-
ets. In this domain a central service exposes an
API via HTTP, allowing any number of clients
to hook up and sell tickets. Figure 6-7 shows the
logical diagram for the application you will be
building.

A

Retrieve response
from cache

External Clients Application
=
=
Affiliate A
HTTP Ticket
8 Service
®§
HTTP
Affiliate B
Internal Client
@\‘ W)
=
Affiliate C Ticket Shop
FIGURE 6-7

An SOA Example | 163

You will be working on the parts of the system labeled Application and Internal Client using the
Reservation pattern to reserve tickets and the Idempotent pattern to ensure that any tickets pur-
chased are purchased only once.

Start by creating a new visual studio solution named ASPPatterns.Chap6.EventTickets and add-
ing two solution folders: service and client.

Domain Model and Repository

The first part of the application you will build is the domain model, which will handle all the appli-
cation’s business logic. For a deeper discussion of the Domain Model pattern, refer to Chapter 4.
Figure 6-8 shows the domain model that you will be constructing.

A o £
TicketReservation (3 Event E3
Class. Class
= Properties = Properties | licketPurchasa &
Class
=T Event = Allocation
X ExpiryTime ' ReservedTickets 1 | = PurchacedTickets | = Propeties
ﬁ HasBeenRedeemed =~ E Name v =
= 1 & Methods - IE:E"‘
' TicketQuantity @ AvailableAliocation P TicketQuantity
5 Methods W CanPurchaseTicketWith
W HacExpired @ CanRecerveTicket
@ StillActive 9 Cvent
¥ GetReservationWith
4% HasReservationWith
W PurchaseTicketWith
g = S
licketReservationfactory & @ ReserveTicket licketPurchasetactory (=
Class A* ThrowExceptionWithDetailsOnReservationlssue Class
4% ThrowExceptionWithDetailsCnWhyTicketsCanr
= Methods = = Methods
@ CreateReservation ‘¥ CreateTicket
FIGURE 6-8

The Event class represents the event that affiliates can purchase tickets for. The Event class con-
tains two collections of tickets: the TicketPurchase class represents the actual ticket purchase, and
the TicketReservation class represents the reserved tickets. The two factory classes provide simple
interfaces for creating valid TicketReservation and TicketPurchase instances.

Add a new C# class library to the solution within the service solution folder named asprPatterns
.Chap6 .EventTickets.Model. To this new project add a new class named TicketReservation
with the following code listing;:

public class TicketReservation

{
public Guid Id { get; set; }
public Event Event { get; set; }
public DateTime ExpiryTime { get; set; }
public int TicketQuantity { get; set; }
public bool HasBeenRedeemed { get; set; }

public bool HasExpired()
{

return DateTime.Now > ExpiryTime;

164 | CHAPTER6 THE SERVICE LAYER

public bool StillActive()
{

return !HasBeenRedeemed && !HasExpired();

You will receive a compile-time error because the Event class does not yet exist. Don’t worry, though;
you will get to this in a jiffy. Add a second class to the project named TicketPurchase with the code
definition as displayed here.

public class TicketPurchase

{

public Guid Id { get; set; }

public Event Event { get; set; }

public int TicketQuantity { get; set; }
}

Before you add the Event class, you need to create the two factory classes that are responsible for
creating valid instances of a TicketPurchase and TicketReservation, respectively. Add two new
classes to the project named TicketPurchaseFactory and TicketReservationFactory with the
following code listing:

public class TicketPurchaseFactory

{
public static TicketPurchase CreateTicket (Event Event, int tktQty)
{
TicketPurchase ticket = new TicketPurchase();
ticket.Id = Guid.NewGuid() ;
ticket.Event = Event;
ticket.TicketQuantity = tktQty;
return ticket;
}
}

public class TicketReservationFactory

{
public static TicketReservation CreateReservation(Event Event, int tktQty)
{

TicketReservation reservation = new TicketReservation();

reservation.Id = Guid.NewGuid() ;

reservation.Event = Event;

reservation.ExpiryTime = DateTime.Now.AddMinutes (1) ;
reservation.TicketQuantity = tktQty;

return reservation;

An SOA Example | 165

The two factory classes are fairly straightforward. One point to note, though, is that TicketReservations
are constructed with an expiration time of only one minute. In a real application this would be longer, but
one minute will enable you to allow the reservation to time out when testing.

With the two ticket classes and factory classes in place, you can add the Event class so that the Model
Project can build. Add the new Event class and the following code:

public class Event

{
\) public Event ()

Available for {
download on

Wrox.com ReservedTickets = new List<TicketReservation>();

PurchasedTickets = new List<TicketPurchase>();

public Guid Id { get; set; }

public string Name { get; set; }

public int Allocation { get; set; }

public List<TicketReservation> ReservedTickets { get; set; }
public List<TicketPurchase> PurchasedTickets { get; set; }

public int AvailableAllocation()
{
int salesAndReservations = 0;

PurchasedTickets.ForEach(t => salesAndReservations += t.TicketQuantity);

ReservedTickets.FindAll (r => r.StillActive()
.ForEach(r => salesAndReservations += r.TicketQuantity) ;

return Allocation - salesAndReservations;

public bool CanPurchaseTicketWith(Guid reservationId)

{
if (HasReservationWith (reservationId))
return GetReservationWith (reservationId).StillActive();

return false;

public TicketPurchase PurchaseTicketWith (Guid reservationId)
{
if (!CanPurchaseTicketWith(reservationId))
Throw new ApplicationException (
DetermineWhyATicketCannotbePurchasedWith (reservationId));

TicketReservation reservation = GetReservationWith(reservationId) ;

TicketPurchase ticket =
TicketPurchaseFactory.CreateTicket (this, reservation.TicketQuantity);

reservation.HasBeenRedeemed = true;
PurchasedTickets.Add (ticket) ;

return ticket;

166 | CHAPTER6 THE SERVICE LAYER

public TicketReservation GetReservationWith(Guid reservationId)
{
if (!HasReservationWith(reservationId))
throw new ApplicationException (
String.Format ("No reservation ticket with matching id of '{0}'",
reservationId.ToString()));

return ReservedTickets.FirstOrDefault(t => t.Id == reservationId);

private bool HasReservationWith (Guid reservationId)
{

return ReservedTickets.Exists(t => t.Id == reservationId);

public string DetermineWhyATicketCannotbePurchasedWith (Guid reservationId)
{
string reservationIssue = "";
if (HasReservationWith (reservationId))
{
TicketReservation reservation = GetReservationWith(reservationId) ;
if (reservation.HasExpired())
reservationIssue =
String.Format ("Ticket reservation '{0}' has expired",
reservationId.ToString());
else if (reservation.HasBeenRedeemed)
reservationIssue =
String.Format ("Ticket reservation '{0}' has already been redeemed",
reservationId.ToString());
}
else
reservationIssue =
String.Format ("There is no ticket reservation with the Id '{0}'",
reservationId.ToString());

return reservationIssue;

private void ThrowExceptionWithDetailsOnWhyTicketsCannotBeReserved ()
{
throw new ApplicationException
("There are no tickets available to reserve.");

public bool CanReserveTicket (int gty)

{
return AvailableAllocation() >= qty;

public TicketReservation ReserveTicket (int tktQty)

{
if (!CanReserveTicket (tktQty))

An SOA Example | 167

ThrowExceptionWithDetailsOnWhyTicketsCannotBeReserved() ;

TicketReservation reservation =
TicketReservationFactory.CreateReservation (this, tktQty);

ReservedTickets.Add (reservation) ;

return reservation;

code snippet Event.cs in ASPPatterns.Chap6.EventTickets.Model

Before you go any further, take a look at the methods on the Event class:

> AvailableAllocation (): This method calculates the number of tickets available to sell
based on the initial number of tickets available to an event minus the number of tickets
already sold and the number of tickets that are currently reserved.

> CanReserveTicket (int gty): This method checks whether there are enough tickets avail-
able for reservation.

> ReserveTicket (int tktQty): This method creates a new TicketReservation and adds it
to the Events collection.

» HasReservationWith (Guid reservationId): This method returns a Boolean that determines
whether a TicketReservation exists.

> GetReservationWith (Guid reservationId): This method returns the TicketReservation
that matches the passed in reservation ID.

» canPurchaseTicketWith(Guid reservationId): This method determines if a ticket can be
purchased based on the reservation ID.

» purchaseTicketWith (Guid reservationId): This method creates a TicketPurchase that
matches the reserved ticket.

> DetermineWhyATicketCannotbePurchasedwWith (Guid reservationId): This method
returns a string detailing why a ticket cannot be purchased based on a reservation ID.

With the domain model built, you need a way to persist and retrieve the Event aggregation. Add a
new interface to the model project named TEventRepository with the following contract:

public interface IEventRepository

{
Event FindBy (Guid id);
void Save (Event eventEntity);

The interface is simplified in this example to keep the exercise straightforward. In a full application
you would expect to see a method to add Events as well. This completes all the code for the domain
model. Next you can look at creating the EventRepository implementation.

168 | CHAPTER6 THE SERVICE LAYER

Add another new C# class library to the solution under the service solution folder named Asppatterns
.Chap6 . EventTickets.Repository, and add a project reference to the Model project:

using System.Data.SglClient;

\) using System.Data;
using ASPPatterns.Chap6.EventTickets.Model;
Available for

download on

Wrox.com namespace ASPPatterns.Chap6.EventTickets.Repository

{
public class EventRepository : IEventRepository
{
private string connectionString =
@"Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\EventTickets.mdf;"
+ @"Integrated Security=True;User Instance=True";

public Event FindBy(Guid id)

{
Event Event = default (Event);

string queryString =
"SELECT * FROM dbo.Events WHERE Id = @EventId " +
"SELECT * FROM dbo.PurchasedTickets WHERE EventId = @EventId " +
"SELECT * FROM dbo.ReservedTickets WHERE EventId = @EventId;";

using (SglConnection connection =
new SglConnection (connectionString))

SglCommand command = connection.CreateCommand () ;
command.CommandText = queryString;

SglParameter Idparam = new SglParameter ("@EventId", id.ToString());
command . Parameters.Add (Idparam) ;

connection.Open() ;

using (SglDataReader reader = command.ExecuteReader ())
{
if (reader.HasRows)
{
reader.Read () ;
Event = new Event();
Event.PurchasedTickets = new List<TicketPurchase>();
Event.ReservedTickets = new List<TicketReservation>();
Event.Allocation = int.Parse(reader["Allocation"].ToString());
Event.Id = new Guid(reader["Id"].ToString());
Event.Name = reader["Name"].ToString() ;

if (reader.NextResult())
{

if (reader.HasRows)

while (reader.Read())
{
TicketPurchase ticketPurchase =
new TicketPurchase() ;

An SOA Example | 169

ticketPurchase.Id =
new Guid(reader["Id"].ToString());
ticketPurchase.Event = Event;
ticketPurchase.TicketQuantity =
int.Parse(reader["TicketQuantity"].ToString());
Event.PurchasedTickets.Add (ticketPurchase) ;

if (reader.NextResult())
{
if (reader.HasRows)
{
while (reader.Read())
{
TicketReservation ticketReservation =
new TicketReservation();
ticketReservation.Id =
new Guid(reader["Id"].ToString());
ticketReservation.Event = Event;
ticketReservation.ExpiryTime =
DateTime.Parse (reader["ExpiryTime"].ToString());
ticketReservation.TicketQuantity =
int.Parse(reader["TicketQuantity"].ToString());
ticketReservation.HasBeenRedeemed =
bool.Parse (reader ["HasBeenRedeemed"] .ToString()) ;
Event.ReservedTickets.Add (ticketReservation) ;

return Event;

public void Save(Event Event)
{
// Code to save the Event entity
// is not required in this scenario

RemovePurchasedAndReservedTicketsFrom(Event) ;

InsertPurchasedTicketsFrom(Event) ;
InsertReservedTicketsFrom(Event) ;

public void InsertReservedTicketsFrom(Event Event)
{
string insertSQL =
"INSERT INTO ReservedTickets " +
"(Id, EventId, TicketQuantity, ExpiryTime, HasBeenRedeemed) " +

170 | CHAPTER6 THE SERVICE LAYER

"VALUES " +
"(@Id, @EventId, @TicketQuantity, @ExpiryTime, @HasBeenRedeemed);";

foreach (TicketReservation ticket in Event.ReservedTickets)
{
using (SglConnection connection =
new SglConnection (connectionString))

SglCommand command = connection.CreateCommand () ;
command.CommandText = insertSQL;

SglParameter Idparam =
new SqlParameter ("@Id", ticket.Id.ToString());
command.Parameters.Add (Idparam) ;

SglParameter EventIdparam =
new SglParameter ("@EventId", ticket.Event.Id.ToString());
command. Parameters.Add (EventIdparam) ;

SglParameter TktQtyparam =
new SglParameter ("@TicketQuantity", ticket.TicketQuantity);
command.Parameters.Add (TktQtyparam) ;

SglParameter Expiryparam =
new SglParameter ("@ExpiryTime", ticket.ExpiryTime);
command.Parameters.Add (Expiryparam) ;

SqglParameter HasBeenRedeemedparam =
new SglParameter ("@HasBeenRedeemed", ticket.HasBeenRedeemed) ;
command. Parameters.Add (HasBeenRedeemedparam) ;

connection.Open() ;
command . ExecuteNonQuery () ;

public void InsertPurchasedTicketsFrom(Event Event)

{

string insertSQL = "INSERT INTO PurchasedTickets " +
"(Id, EventId, TicketQuantity) " +
"VALUES " +

"(@Id, @EventId, @TicketQuantity);";

foreach (TicketPurchase ticket in Event.PurchasedTickets)
{
using (SglConnection connection =
new SglConnection (connectionString))

SglCommand command = connection.CreateCommand () ;

An SOA Example | 171

command.CommandText = insertSQL;

SglParameter Idparam =
new SqlParameter ("@Id", ticket.Id.ToString());
command . Parameters.Add (Idparam) ;

SqglParameter EventIdparam =
new SglParameter ("@EventId", ticket.Event.Id.ToString());
command. Parameters.Add (EventIdparam) ;

SglParameter TktQtyparam =
new SglParameter ("@TicketQuantity", ticket.TicketQuantity);
command . Parameters.Add (TktQtyparam) ;

connection.Open/() ;
command . ExecuteNonQuery () ;

public void RemovePurchasedAndReservedTicketsFrom(Event Event)
{
string deleteSQL = "DELETE PurchasedTickets WHERE EventId = @EventId; " +
"DELETE ReservedTickets WHERE EventId = @EventId;";

using (SglConnection connection =
new SglConnection (connectionString))

SglCommand command = connection.CreateCommand () ;
command.CommandText = deleteSQL;

SglParameter Idparam =
new SqlParameter ("@EventId", Event.Id.ToString());
command. Parameters.Add (Idparam) ;

connection.Open/() ;
command . ExecuteNonQuery () ;

code snippet EventRepository.cs in ASPPatterns.Chap6.EventTickets.Repository

There’s a lot of ADO.NET code here, but don’t dwell on it; it’s just a means to an end. You will dis-
cover far better ways to persist and retrieve business objects in the next chapter.

Service Layer

With the data access and business logic of the application built, you can decorate it with the service
layer. Figure 6-9 shows how the service layer exposes a simple API to the client.

172

CHAPTER 6 THE SERVICE LAYER

ASPPatterns.Chap6.EventTickets.HTTPHost

ASPPatterns.Chap6.EventTickets.Service

A
ASPPatterns.Chap6.EventTickets.ServiceProxy ASPPatterns.Chap6.EventTickets.Contracts

=

R Request A
®§ S ASPPatterns. Chap6 EventTickets.Model
&
Ticket Shop Response / |)
Ticket

Service ASPPatterns.Chap6.EventTickets.Repository
ASPPatterns.Chapg/.EventTickets.WebShop

Databas
ASPPatterns.Chap6.EventTickets.DataContract

FIGURE 6-9

The service layer consists of four separate projects:

> ASPPatterns.Chap6.EventTickets.Contracts: This project holds the interface used to
define the service contract.

> ASPPatterns.Chap6.EventTickets.Service: This project contains the implementation of
the service contract and coordinates the workflow of business logic and entity persistence/
retrieval.

> ASPPatterns.Chap6.EventTickets.DataContract: This project contains the message’s
DTOs to pass data via the client; this uses the Document Message messaging pattern to
exchange data.

> ASPPatterns.Chap6.EventTickets.HTTPHost: This project hosts the WCF service.

y Separating the interface from the implementation of the service using different
assemblies enables the client to be completely unaware of the implementation.
This leads to a better design through loose coupling.

You are going to start with the ASPPatterns.Chap6.EventTickets.DataContract to hold all the
Data Transfer Objects that will be involved in the service workflow. Because you will be using the
WCF model to expose your services, you need to add some extra namespaces to the project. Right-
click on the project and select Add Reference, select the .NET tab, and add a reference to the follow-
ing assemblies:

> System.Runtime.Serialization

> System. ServiceModel

An SOA Example | 173

All the response objects will inherit from a base class that contains some common behavior. Add a
new abstract class to the project named Response and add the following code:

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
[DataContract]
public abstract class Response
{
[DataMember]
public bool Success { get; set; }

[DataMember]
public string Message { get; set; }

The two response objects that will inherit from the Response base class are PurchaseTicketResponse
and ReserveTicketResponse. Add these two classes to the DataContracts project with the following
code definitions. The attributes that decorated the properties are key to WCF being able to enable seri-
alization when transporting the request and responses over the wire:

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{

[DataContract]

public class PurchaseTicketResponse : Response

{
[DataMember]
public string TicketId { get; set; }

[DataMember]
public String EventName { get; set; }

[DataMember]
public String EventId { get; set; }

[DataMember]
public int NoOfTickets { get; set; }

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chapé6.EventTickets.DataContract
{
[DataContract]
public class ReserveTicketResponse : Response
{
[DataMember]

174 | CHAPTER6 THE SERVICE LAYER

public string ReservationNumber {get; set;}

[DataMember]
public DateTime ExpirationDate { get; set; }

[DataMember]
public String EventName { get; set; }

[DataMember]
public String EventId { get; set; }

[DataMember]
public int NoOfTickets { get; set; }

Next, add two classes that will represent the request portion of the messaging data transfer objects.
Add two new classes named PurchaseTicketRequest and ReserveTicketRequest. These data
containers are again decorated with the WCF attributes to enable serialization:

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
[DataContract]
public class PurchaseTicketRequest
{
[DataMember]
public string CorrelationId { get; set; }

[DataMember]
public string ReservationId { get; set; }

[DataMember]
public string EventId { get; set; }

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
[DataContract]
public class ReserveTicketRequest
{
[DataMember]
public string EventId { get; set; }
[DataMember]
public int TicketQuantity { get; set; }

An SOA Example | 175

The next project you need to add for the construction of the service layer is the AsPPatterns.Chapé
.EventTickets.Contracts project. Again, you will need to add a reference to the following assemblies:

> System.Runtime.Serialization

> System. ServiceModel

You also need to add a reference to the DataContract project.

This project holds the contract that the service will implement and that the client can work against.
Add a new class to the project named 1TicketService with the following code contract:

using System.ServiceModel;
using ASPPatterns.Chap6.EventTickets.DataContract;

namespace ASPPatterns.Chap6.EventTickets.Contracts
{
[ServiceContract (Namespace = "ASPPatterns.Chap6.EventTickets/")]
public interface ITicketService
{
[OperationContract ()]
ReserveTicketResponse ReserveTicket (ReserveTicketRequest reserveTicketRequest) ;

[OperationContract ()]
PurchaseTicketResponse
PurchaseTicket (PurchaseTicketRequest PurchaseTicketRequest) ;

Add another class library to the service solution folder named AsPPatterns.Chap6.EventTickets
.Service. This will hold the concrete implementation of the service as defined in the previous project.

Add the following project references to this project:

> ASPPatterns.Chap6.EventTickets.Contracts

> ASPPatterns.Chap6.EventTickets.DataContract
> ASPPatterns.Chap6.EventTickets.Model
>

ASPPatterns.Chap6.EventTickets.Repository

Add two new classes named TicketPurchaseExtensionMethods and TicketReservationExtension
Methods. These extension method classes enable the service class to convert a TicketReservation
and TicketPurchase entity respectively into a message document in a fluent manner, which will
become clear when you create the service class:

using ASPPatterns.Chap6.EventTickets.DataContract;
using ASPPatterns.Chap6.EventTickets.Model;

namespace ASPPatterns.Chap6.EventTickets.Service

{
public static class TicketPurchaseExtensionMethods
{

public static PurchaseTicketResponse ConvertToPurchaseTicketResponse

176 | CHAPTER6 THE SERVICE LAYER

(this TicketPurchase ticketPurchase)
PurchaseTicketResponse response = new PurchaseTicketResponse();

response.TicketId = ticketPurchase.Id.ToString();
response.EventName = ticketPurchase.Event.Name;
response.EventId = ticketPurchase.Event.Id.ToString();
response.NoOfTickets = ticketPurchase.TicketQuantity;

return response;

using ASPPatterns.Chap6.EventTickets.DataContract;
using ASPPatterns.Chap6.EventTickets.Model;

namespace ASPPatterns.Chap6.EventTickets.Service
{
public static class TicketReservationExtensionMethods
{
public static ReserveTicketResponse ConvertToReserveTicketResponse
(this TicketReservation ticketReservation)

ReserveTicketResponse response = new ReserveTicketResponse () ;

response.EventId = ticketReservation.Event.Id.ToString();
response.EventName = ticketReservation.Event.Name;
response.NoOfTickets = ticketReservation.TicketQuantity;
response.ExpirationDate = ticketReservation.ExpiryTime;
response.ReservationNumber = ticketReservation.Id.ToString();

return response;

To ensure that unexpected issues don’t arise due to problems with a client using the services that you
are about to build, you are going to adopt the Idempotent Messaging pattern.

Add a new class to the Services project named MessageResponseHistory with the following code
listing:
public class MessageResponseHistory<T>

{

private Dictionary<string, T> _responseHistory;

public MessageResponseHistory ()
{

_responseHistory = new Dictionary<string, T>();

public bool IsAUniqueRequest (string correlationId)
{

return !_responseHistory.ContainsKey (correlationId);

An SOA Example | 177

public void LogResponse (string correlationId, T response)

{

if (_responseHistory.ContainsKey (correlationId))
_responseHistory[correlationId]

else

= response;

_responseHistory.Add (correlationId, response);

public T RetrievePreviousResponseFor (string correlationId)

{

return _responseHistory[correlationId];

This class will hold in memory the result of the service response that is associated with a given correlation

identifier. This class could easily be hooked up to some kind of data store to provide out-of-process storage

of message responses. It may not be necessary to hold the result of every response, so this class could be

made to buffer the last N number of responses to ensure that the business logic is called only once.

Before you create the service class, there is just one more class that you will create to mock handling

errors and returning a reference identifier. Add a new class named ErrorLog to the project with the
single method detailed here:

public class ErrorLog

{

public static string GenerateErrorRefMessageAndLog (Exception exception)

{

// Here you would log the error and the unique reference ID
return String.Format
("If you wish to contact us please quote reference '{0}'",

Guid.NewGuid() .ToString());

Now with all the supporting classes for the service implementation in place, you can create the actual
service class. Add a new class to the project named TicketService with the following code listing:

using
using
using
using
using
using

System. ServiceModel .Activation;

ASPPatterns.
ASPPatterns
ASPPatterns.
ASPPatterns.
ASPPatterns.

Chap6 .
.Chap6.
Chap6 .
Chap6 .
Chap6 .

EventTickets.Contracts;
EventTickets;
EventTickets.DataContract;
EventTickets.Model;
EventTickets.Repository;

namespace ASPPatterns.Chap6.EventTickets.Service

{

[AspNetCompatibilityRequirements (RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class TicketService : ITicketService

{

private IEventRepository _eventRepository;
private static MessageResponseHistory<PurchaseTicketResponse>

178 | CHAPTER6 THE SERVICE LAYER

_reservationResponse =
new MessageResponseHistory<PurchaseTicketResponse> () ;

public TicketService (IEventRepository eventRepository)
{

_eventRepository = eventRepository;

public TicketService() : this (new EventRepository())

{3

public ReserveTicketResponse ReserveTicket
(ReserveTicketRequest reserveTicketRequest)

ReserveTicketResponse response = new ReserveTicketResponse();
try

Event Event = _eventRepository.FindBy (
new Guid(reserveTicketRequest.EventId)) ;
TicketReservation reservation;

if (Event.CanReserveTicket (reserveTicketRequest.TicketQuantity)
{
reservation =
Event.ReserveTicket (reserveTicketRequest.TicketQuantity) ;
_eventRepository.Save (Event) ;
response = reservation.ConvertToReserveTicketResponse() ;
response.Success = true;
}
else
{
response.Success = false;
response.Message = String.Format (
"There are {0} ticket(s) available.",
Event.AvailableAllocation()) ;

}

catch (Exception ex)

{
// Shield exceptions
response.Message = ErrorLog.GenerateErrorRefMessageAndLog (ex) ;
response.Success = false;

}

return response;
public PurchaseTicketResponse PurchaseTicket
(PurchaseTicketRequest purchaseTicketRequest)
PurchaseTicketResponse response = new PurchaseTicketResponse();

try

An SOA Example | 179

// Check for a duplicate transaction using the Idempotent pattern;

// the Domain Logic could cope but you can't be sure.

if (_reservationResponse.IsAUniqueRequest
(purchaseTicketRequest.CorrelationId))

TicketPurchase ticket;
Event Event = _eventRepository.FindBy (
new Guid(purchaseTicketRequest.EventId)) ;

if (Event.CanPurchaseTicketWith
(new Guid(purchaseTicketRequest.ReservationId)))

ticket = Event.PurchaseTicketWith (
new Guid(purchaseTicketRequest.ReservationId)) ;

_eventRepository.Save (Event) ;

response = ticket.ConvertToPurchaseTicketResponse() ;
response.Success = true;
}
else
{
response.Message =
Event.DetermineWhyATicketCannotbePurchasedwith (
new Guid(purchaseTicketRequest.ReservationId)) ;
response.Success = false;

_reservationResponse.LogResponse (
purchaseTicketRequest.CorrelationId, response);
}
else
{
response = _reservationResponse.RetrievePreviousResponseFor (
purchaseTicketRequest.CorrelationId) ;

}

catch (Exception ex)

{
// Shield exceptions
response.Message = ErrorLog.GenerateErrorRefMessageAndLog (ex) ;
response.Success = false;

return response;

It’s important to explain exactly what this class is doing. First, the TicketService class has a ref-
erence to a static instance of a MessageResponseHistory object; this enables all service response
messages to be logged against a correlation identifier. When a new message request is received, the

180 | CHAPTER6 THE SERVICE LAYER

service can check the MessageResponseHistory to determine if it has already been processed. You
will see this in action when you examine the PurchaseTicket method.

private static MessageResponseHistory<PurchaseTicketResponse>
_reservationResponse =
new MessageResponseHistory<PurchaseTicketResponse> () ;

The service has two constructors: one that takes no arguments and one that takes an instance of a
class that implements the TEventRepository:

public TicketService (IEventRepository eventRepository)
{

_eventRepository = eventRepository;

public TicketService() : this (new EventRepository())

{1}

To keep things simple, I have opted to hard-code the concrete implementation of the ADO.NET Event
Repository. However, later in the book you will be introduced to an Inversion of Control (IoC)
container that will enable dependencies to be injected into your code without tying you to a particular
implementation.

The ReserveTicket method is invoked by the client using the service. The sole parameter is the
ReserveTicketRequest as defined in the DatacContract project. The first action of the method is
to retrieve the event that is associated with the requests event. Because I wanted to keep the exercise
as small as possible, I neglected to add validation of the request to ensure that it contains a valid
ReserveTicketRequest; this could be a simple method to ensure the request contains a valid GUID
and a nonnegative ticket quantity. Similarly, you could add code to check that an event exists for the
given EventId before trying to retrieve it.

If a valid event is found, its CanReserveTicket method is called to determine whether the quantity
of tickets requested can in fact be reserved. Refer to the description of the Event methods earlier in

this section to see how the Event entity determines whether the reservation request can be satisfied.
If the Event entity can reserve the requested number of tickets, a call to the Events ReserveTicket
is made; this workflow follows the Tester-Doer pattern. The ReserveTicket method creates a new

TicketReservation and adds it to the internal collection of reservations within the Event entity.

The changes to the event are then persisted using the EventRepository, and the TicketReservation
inVOkestheConvertToReserveTicketResponseeXIenﬁonlnethOdtOlfturn;1ReserveTicketResponse
ready to send back to the client:

public ReserveTicketResponse ReserveTicket
(ReserveTicketRequest reserveTicketRequest)

ReserveTicketResponse response = new ReserveTicketResponse () ;

try
{
Event Event = _eventRepository.FindBy (
new Guid(reserveTicketRequest.EventId));
TicketReservation reservation;

An SOA Example | 181

if (Event.CanReserveTicket (reserveTicketRequest.TicketQuantity))
{
reservation =
Event.ReserveTicket (reserveTicketRequest.TicketQuantity) ;
_eventRepository.Save (Event) ;
response = reservation.ConvertToReserveTicketResponse() ;
response.Success = true;
}
else

{

response.Success false;
response.Message = String.Format (
"There are {0} ticket(s) available.",
Event.AvailableAllocation());

}

catch (Exception ex)

{
// Shield exceptions
response.Message = ErrorLog.GenerateErrorRefMessageAndLog (ex) ;
response.Success = false;

}

return response;

If the quantity of tickets cannot be reserved, the success flag on the response message is set to
false, and a message detailing the remaining ticket allocation is generated. All the logic within the
ReserveTicket method is wrapped within a single try catch block to ensure exceptions aren’t leaked
that could reveal the internal workings of the service. When an exception occurs, the ErrorLog static
class is used to log the exception and return a unique reference number the client can use. The unique
reference is then added to the response and returned to the client with the success flag set to false,
indicating that there was problem when the method was called.

The PurchaseTicket method is set up not too unlike the Reservericket method; again, any vali-
dation of the Request object has been left out for the sake of brevity:

public PurchaseTicketResponse PurchaseTicket
(PurchaseTicketRequest purchaseTicketRequest)

PurchaseTicketResponse response = new PurchaseTicketResponse();
try
// Check for a duplicate transaction using the Idempotent pattern;
// the Domain Logic could cope, but you can't be sure.
if (_reservationResponse.IsAUniqueRequest
(PurchaseTicketRequest.CorrelationId))
TicketPurchase ticket;
Event Event = _eventRepository.FindBy (

new Guid(purchaseTicketRequest.EventId)) ;

if (Event.CanPurchaseTicketWith

182 | CHAPTER6 THE SERVICE LAYER

(new Guid (purchaseTicketRequest.ReservationId)))

ticket = Event.PurchaseTicketWith (
new Guid(purchaseTicketRequest.ReservationId)) ;

_eventRepository.Save (Event) ;

response = ticket.ConvertToPurchaseTicketResponse () ;
response.Success = true;

}

else
{
response.Message =
Event .DetermineWhyATicketCannotbePurchasedWith (
new Guid (purchaseTicketRequest.ReservationId)) ;
response.Success = false;

_reservationResponse.LogResponse (
purchaseTicketRequest.CorrelationId, response);
}
else
{
response = _reservationResponse.RetrievePreviousResponseFor (
purchaseTicketRequest.CorrelationId) ;

}
catch (Exception ex)

{
// Shield Exceptions
response.Message = ErrorLog.GenerateErrorRefMessageAndLog (ex) ;
response.Success = false;

return response;

This first action of the PurchaseTicket method is to check to see whether this service call has been
completed previously. You use the Idempotent pattern here to determine if there is a matching correla-
tion ID and response. The static MessageResponseHistory object takes care of storing and checking for
a matching response. If a match is found, the response is retrieved from the MessageResponseHistory
object and returned to the client ensuring that no unexpected problems arise if a client duplicates a
call to the service. If the response has not already been called, the workflow is similar to that of the
ReserveTicket method. An event is retrieved with a matching event ID, and a check is made to ensure
a ticket purchase transaction can continue with the given reservation ID. On success, the ticket is pur-
chased and a response is generated again using the extension method. The response is then logged with
the MessageResponseHistory object and returned to the client. If the ticket cannot be purchased using
the given reservation ID, a call to the event entity’s DeterminewhyATicketCannotbePurchasedWith
method returns details on any issues. Again, a single Try catch block surrounds the method to ensure
that any exception thrown will not reveal the internal structure of the service.

An SOA Example | 183

The final project required for the service layer solution is the hosting project. Add a new WCF
Service application project from the web node of the New Projects dialog box, and call this project
ASPPatterns.Chap6 .EventTickets.HTTPHost. Add a reference to the following two projects:

> ASPPatterns.Chap6.EventTickets.Contracts

> ASPPatterns.Chap6.EventTickets.Service

Delete the servicel.sve code behind file and the 1servicel.svc interface that are generated by
Visual Studio. Rename servicel.svc to TicketService.sve and update the markup so that it
matches the code that follows:

<%@ ServiceHost Language="C#"
Service="ASPPatterns.Chap6.EventTickets.Service.TicketService" %>

Open the web.config file so that you can configure the endpoints for the WCF service. You are going
to be serving via HTTP, so the binding will be set to wsHt tpBinding. The contract for the service is
defined in a separate assembly ASPPatterns.Chap6.EventTickets.Contracts.ITicketService:

<configuration>

<system.serviceModel>
<services>
<service name="ASPPatterns.Chap6.EventTickets.Service.TicketService"
behaviorConfiguration="metadataBehavior">
<endpoint address=""
binding="wsHttpBinding"
contract="ASPPatterns.Chap6.EventTickets.Contracts.ITicketService" />
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="metadataBehavior">
<serviceMetadata httpGetEnabled="true" />
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>
</configuration>

The one last thing before the service layer is complete is the building of the database that will store

the state of the Event and Ticket entities. Add a new database to the HTTPHost project named
EventTickets and create the following three tables.

TABLE 6-1: Events

COLUMN NAME DATA TYPE ALLOW NULLS
ID Uniqueidentifier, Primary Key False
Name nvarchar(50) False

Allocation Int False

184 | CHAPTER6 THE SERVICE LAYER

TABLE 6-2: PurchasedTickets

COLUMN NAME DATA TYPE ALLOW NULLS
D Uniqueidentifier, Primary Key False
TicketQuantity Int False
EventID Uniqueidentifier False

TABLE 6-3: ReservedTickets

COLUMN NAME DATA TYPE ALLOW NULLS
ID Uniqueidentifier, Primary Key False
ExpiryTime Datetime False
TicketQuantity Int False
EventID Uniqueidentifier False
HasBeenRedeemed Bit False

Run the following SQL to populate the Events table because you haven’t added the code to the
repository to support adding events:

INSERT INTO EVENTS

(Id, Name, Allocation)

VALUES

(NEWID(), 'Portsmouth v Southampton', 50)

This completes the service layer. Your solution should resemble Figure 6-10.

With the service layer complete, you can turn to building the client projects that will consume
the service.

Client Proxy

To enable the client to use the service, you need to create a proxy. You could have Visual Studio
generate one for you by adding a service reference and pointing it at the HTTPHost project’s
TicketService. However, because you own the client and the service, it makes perfect sense to
reuse the data contracts and service contract and create the proxy yourself.

Add a new C# class library project to the client solution folder named AspPPatterns.Chapé.
EventTickets.ServiceProxy. Add a project reference to the following projects:

> ASPPatterns.Chap6.EventTickets.Contracts

> ASPPatterns.Chapé.EventTickets.DataContract

An SOA Example | 185

Solution Fxplorer

g Solution ‘ASPPatterns.Chap6.EventTickets (8 projects)
@~ 4 client

B & Service
=t (3 ASPPatterns.Chaph FuentTickets.Cantracts
Q =4 Properties
|ij || References
P 4] MicketService.cs
B (58 ASPPatterns.Chaph.EventTickets.DataContract
E (58 Properties
@ = Relerences
ﬁg PurchaseTicketRequest.cs
LQ PurchaseTicketResponse.cs
‘ﬁ HReserve | icketRequest.cs
&) ReserveTicketRespanse.cs
i -] Response.cs
(] i.aASF'Paﬂzm&.Chapﬁ.Eveanickei:.l-mPHnd
H - [Propertics
E = References
® (13 App_Data
! \ﬂ TicketServicesve
|'._% Web.config
- ,3 ASPPatterns.Chap6.EventTickets.Model
@- & Properties
a =] Heferences
|) Event.cs
] IEventRepository.cs
4] TicketPurchase.cs
f.g TicketPurchascFactory.cs
°|'=—1 TicketReservation.cs
ﬁ TicketReservalivnFaclory.cs
B UMLcd
H- \3 ASPPatterns.Chapl.EventTickets.Repository
; Properties
G- [Reterences
L &) EventRepository.cs
- (G ASPPatterns.Chaph.EventTickets. Service
o Ea Properties
- [References
+ ‘Q Crrorlog.cs
°_§1 MessayeRespunseHislory.cs
C}] TicketPurchaseExtensionMethods.cs
A Tic vati i cs

Lﬁ TicketService.cs

FIGURE 6-10

Add a new class to the serviceProxy project named TicketServiceClientProxy with the follow-

ing definition:

using System.ServiceModel;

using ASPPatterns.Chap6.EventTickets.Contracts;
using ASPPatterns.Chap6.EventTickets.DataContract;

namespace ASPPatterns.Chap6.EventTickets.ServiceProxy

{

public class TicketServiceClientProxy

{

public ReserveTicketResponse ReserveTicket (
ReserveTicketRequest reserveTicketRequest)

return base.Channel.ReserveTicket (reserveTicketRequest) ;

ClientBase<ITicketService>, ITicketService

186

| CHAPTER6 THE SERVICE LAYER

J

public PurchaseTicketResponse PurchaseTicket (
PurchaseTicketRequest purchaseTicketRequest)

return base.Channel.PurchaseTicket (purchaseTicketRequest) ;

This class provides the channel that allows you to talk to the WCF service. The clientBase abstract
class that the TicketServiceClientProxy inherits from reads from a default target endpoint from
the application configuration file, which you will add to the web application in the next section. This
is the same base class that is used when Visual Studio automatically creates a proxy service for you.

With the proxy service in place, you can build a service facade for the client web application to talk to.

You are creating a facade to hide the complexities of talking to the service and to loosely couple the cli-
ent application from the service, which will help with testing. The service facade will use two specific
Presentation model classes: TicketPresentation and TicketReservationPresentation. The web

application only uses these classes to display data from the service facade; any logic contained within
is strictly presentation logic. You will learn more about Presentation models in Chapter 8. Add the two

classes, and update them to match the following code listing:

public class TicketPresentation

{

public string TicketId { get; set; }

public string EventId { get; set; }

public string Description { get; set; }

public bool WasAbleToPurchaseTicket { get; set; }
}

public class TicketReservationPresentation
{
public string EventId { get; set; }
public string ReservationId {get; set;}
public string Description { get; set; }
public DateTime ExpiryDate { get; set; }
public bool TicketWasSuccessfullyReserved { get; set; }

With the supporting Presentation model classes in place, you can add the TicketServiceFacade
class with the following code listing;:

using ASPPatterns.Chap6.EventTickets.Contracts;
using ASPPatterns.Chap6.EventTickets.DataContract;

Available for namespace ASPPatterns.Chap6.EventTickets.ServiceProxy
download on

Wrox.com

{

public class TicketServiceFacade
{
private ITicketService _ticketService;

public TicketServiceFacade (ITicketService ticketService)

{

An SOA Example | 187

_ticketService = ticketService;

public TicketReservationPresentation ReserveTicketsFor (
string EventId, int NoOfTkts)

TicketReservationPresentation reservation =
new TicketReservationPresentation() ;
ReserveTicketRequest request = new ReserveTicketRequest();

request.EventId = EventId;
request.TicketQuantity = NoOfTkts;

ReserveTicketResponse response = _ticketService.ReserveTicket (request) ;
if (response.Success)

reservation.TicketWasSuccessfullyReserved = true;
reservation.ReservationId = response.ReservationNumber;
reservation.ExpiryDate = response.ExpirationDate;
reservation.EventId = response.EventId;
reservation.Description = String.Format (
"{0} ticket(s) reserved for {1}.
" +
"<small>This reservation will expire on {2} at {3}.</small>",
response.NoOfTickets, response.EventName,
response.ExpirationDate.ToLongDateString (),
response.ExpirationDate.ToLongTimeString()) ;
}
else
{
reservation.TicketWasSuccessfullyReserved = false;
reservation.Description = response.Message;

return reservation;

public TicketPresentation PurchaseReservedTicket (
string eventId, string reservationId)

TicketPresentation ticket = new TicketPresentation();
PurchaseTicketResponse response = new PurchaseTicketResponse();
PurchaseTicketRequest request = new PurchaseTicketRequest();
request.ReservationId = reservationId;
request.EventId = eventId;
request.CorrelationId = reservationId;
response = _ticketService.PurchaseTicket (request) ;
if (response.Success)
{
ticket.Description = String.Format (
"{0} ticket(s) purchased for {1}.
" +
"<small>Your e-ticket id is {2}.</small>",
response.NoOfTickets, response.EventName,
response.TicketId) ;
ticket.EventId = response.EventId;
ticket.TicketId = response.TicketId;

188 | CHAPTER6 THE SERVICE LAYER

ticket.WasAbleToPurchaseTicket = true;
}

else

{
ticket.WasAbleToPurchaseTicket = false;
ticket.Description = response.Message;

return ticket;

code snippet TicketServiceFacade.cs in ASPPatterns.Chap6.EventTickets.ServiceProxy

The role of the service facade is to simplify the interaction between the client and the service. The
client application does not need to be responsible for knowing about messaging patterns and how
to talk with the service proxy. The two methods of the TicketServiceFacade should be fairly
straightforward because they follow the same workflow.

1. Generate a request.

2. DPass the request to the proxy service (referenced by its interface so that you can test with a
mock service).

3. Retrieve the response and build the Presentation model.

With the service proxy constructed you can create a client web application that will use the service
proxy to simplify the communication with the real web service.

Client

The last part of the solution consists of creating the web site that will talk to the service facade and
in turn to the proxy who talks to the actual service layer.

Add a new web application to the client solution folder named AsPPatterns.Chap6.
EventTickets.WebShop. Add a reference to the following projects:

> ASPPatterns.Chap6.EventTickets.ServiceProxy

> ASPPatterns.Chapé6.EventTickets.Contracts

In addition, add a reference to the .NET system.ServiceModel assembly.

The first item you will add to the web application project is a Basket class that will act as a simple
shopping basket for customers to purchase tickets. Add the new Basket class with the following listing:

using System.Web;
using ASPPatterns.Chap6.EventTickets.ServiceProxy;

namespace ASPPatterns.Chap6.EventTickets.WebShop
{

public class Basket

An SOA Example | 189

public Guid Id { get; set;}
public TicketReservationPresentation Reservation { get; set; }

public static Basket GetBasket ()
{
if (HttpContext.Current.Session["Basket"] == null)
HttpContext.Current.Session["Basket"] = new Basket
{ Id = Guid.NewGuid() };

return (Basket)HttpContext.Current.Session["Basket"];

public static void Clear()
{

HttpContext.Current.Session["Basket"] = null;

This Basket class will simply hold onto the current TicketReservationPresentation.

The first web page that you will create is the form that will allow customers to input the number of
tickets they want to reserve. Amend the Default.aspx markup to match the snippet that follows:

<form id="forml" runat="server">
<div>

<h2>Basket</h2>

I want

<asp:TextBox ID="txtNoOfTickets" runat="server" Width="43px"/>

tickets to see

<asp:DropDownList ID="ddlEvents" runat="server">
<asp:ListItem Value="2de874d0-00b7-4c86-9925-c7£2c243151c">
Portsmouth vs Southampton</asp:ListItem>

</asp:DropDownList>

<p>

<asp:Button
ID="btnReserveTickets" runat="server"
Text="Reserve & Checkout" onclick="btnReserveTickets_Click" />

<small>"Reserve & Checkout" Reserves the Tickets for you as part

of the Reservation Pattern.</small>

</p>

</div>
</form>

Ensure that the bolded item in the drop-down list matches the event that you added to the Events table.

Switch to the code behind, and amend it to match the code listing that follows:

using ASPPatterns.Chap6.EventTickets.ServiceProxy;
using ASPPatterns.Chap6.EventTickets.Contracts;

namespace ASPPatterns.Chap6.EventTickets.WebShop

190 | CHAPTER6 THE SERVICE LAYER

public partial class _Default : System.Web.UI.Page
{
protected void btnReserveTickets_Click(object sender, EventArgs e)
{
Basket.Clear () ;

TicketServiceFacade ticketService =
new TicketServiceFacade (new TicketServiceClientProxy());
TicketReservationPresentation reservation =
ticketService.ReserveTicketsFor (ddlEvents.Selectedvalue,
int.Parse(this.txtNoOfTickets.Text)) ;

if (reservation.TicketWasSuccessfullyReserved)

Basket.GetBasket () .Reservation = reservation;
Response.Redirect ("Checkout.aspx") ;

Response.Write("Your tickets were unable to be reserved.
" +
reservation.Description) ;

The single method handles the btnReserveTickets click event and creates a new TicketService
Facade passing in an instance of the TicketServiceClientProxy. As previously mentioned in
Chapter 8, you will look at a better method of supplying your dependencies using an [oC container.
Once the TicketServiceFacade is created, a call to the ReserveTicketsFor method is made,
passing in the customer choices. A TicketReservationPresentation is returned; based on the
TicketWasSuccessfullyReserved flag, the customer is forwarded to the checkout page, or a mes-
sage is displayed explaining why the tickets cannot be allocated.

Now that you can reserve tickets, you need to be able to purchase them. Create a new web form
named Checkout .aspx and add the following markup:

<form id="forml" runat="server">

<div>
<h2>Checkout</h2>
In your basket you have:
<p>
<asp:Label ID="lblBasketContents" runat="server" Text="" />
</p>

<asp:Button ID="btnPlaceOrder" runat="server"
Text="Place Order" onclick="btnPlaceOrder_Click" />

<small>Click the "Place Order" button again and the Ticket Id will
always return the same due to the use of the Idempotent Pattern.</small>
<p>
<asp:Label ID="1lblThankYou" runat="server" Text=""></asp:Label>
<p/>

An SOA Example | 191

</div>
</form>

Flip over to the code behind and update it with the following code listing:

using ASPPatterns.Chap6.EventTickets.ServiceProxy;
using ASPPatterns.Chap6.EventTickets.Contracts;

namespace ASPPatterns.Chap6.EventTickets.WebShop
{
public partial class Checkout : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
DisplayTicketReservations() ;

private void DisplayTicketReservations ()
{

1blBasketContents.Text = Basket.GetBasket ().Reservation.Description;

protected void btnPlaceOrder_Click(object sender, EventArgs e)
{
TicketServiceFacade ticketService =
new TicketServiceFacade (new TicketServiceClientProxy());
TicketPresentation ticket =
ticketService.PurchaseReservedTicket (
Basket.GetBasket () .Reservation.EventId,
Basket.GetBasket () .Reservation.ReservationId.ToString()) ;

DisplayTicketReservations () ;

if (ticket.WasAbleToPurchaseTicket)
1blThankYou.Text = "<h2>Thank you for your order.</h2>" +

ticket.Description;
else

1blThankYou.Text = "<h2>Sorry there was a problem with your order.</h2>"
+ ticket.Description;

The code behind page creates a TicketServiceFacade in the same manner as the Default.aspx
page and calls the PurchaseReservedTicket method, passing through the original reservation ID
and event ID held within the basket. A TicketPresentation is returned from the method call and,
depending on the WasAbleToPurchaseTicket flag, a message is displayed with the successfully pur-
chased ticket ID or a message detailing why the ticket could not be purchased.

192 | CHAPTER6 THE SERVICE LAYER

To let the TicketServiceClientProxy talk to the WCF service, you have to amend the web.config
with the binding settings. Open the web.config file and enter the following XML:

<configuration>

<system.serviceModel>
<client>
<endpoint
address="http://localhost:25076/TicketService.svc"
binding="wsHttpBinding"
contract="ASPPatterns.Chap6.EventTickets.Contracts.ITicketService"/>
</client>
</system.serviceModel>
</configuration>

Ensure that the bolded address port number
matches the port number that the built-in web @ ASP.NET Development Server ® X

server uses to serve the HTTPHost project. To fteey lecobias B0) chl INS
obtain this, right-click on the HTTPHost project
and select Debug = Start New Instance. Make a

note of the port number that is displayed on your FIGURE 6-11
taskbar, as shown in Figure 6-11.
With the HTTPPost project still running, you can Sotution Explocer TT—
right-click on the web application project and select & ;
Debug = Start New Instance to launch the web site.
Ou can now tes € system. Knsure Oowever. a = &l ASPPatterns.Chapb.Event | ickets.ServiceProxy
Y test the system. E ,h , that @
the HTTPPost project is always running to service the o ibod
requests. |] TicketPresentation.cs

- 4] TicketReservationPresentation.cs
- '}1 TicketServiceClientProxy.cs

That completes the SOA exercise; Figure 6-12 shows 8 Msiiai

the solution with the added client projects. & (R ASPPatterms.Chapl EventTicketsWebShop
- [Ed Properties
With the service built, other clients can now use the AT
- [App.

web service, and a host of ticket affiliate agents can use |
it to reserve and purchase tickets.

. &) Rasket.cs
3] Checkout.aspx
[F] Default.aspx

i} Web.config
B g Service
] .E ASPPatterns.Chaph.LventTickets.Contracts I
s U M MARY i E ASPPatterns.Chapb EventTickels.DataContract

1 .3 ASPPatterns.Chap6.EventTickets, HTTPHost

[ﬁ ASPPatterns.Chap6.EventTickets.Model
In this chapter you looked at the role the service layer - (3 AsPPatterns.Chapb Eventlckets.Repository

. | (& 0 ASPPatterns.Chaph.FuentTickets Service

plays in an enterprise application. Sitting between the .
presentation and business layer, the service interface ! 4
encapsulates the business domain logic, coordinates FIGURE 6-12

transactions and responses, and defines an API as a set

of coarse-grained methods available to clients. You read about what SOA was and saw how to apply
it to an organization to improve maintenance and reusability. SOA has principles in the form of the
following tenets:

> Boundaries are explicit.

Summary | 193

>

>

>

Services are autonomous.
Services share schema and contract, not class.

Service compatibility is based on policy.

The Facade design pattern was introduced to show how a complicated interface can be hidden behind
a simplified API that is consistent to your application. Toward the end of the chapter, you used this
pattern to abstract the mechanics of communicating with the service endpoints using that messaging

pattern, making a simplified interface for the client application.

Messaging patterns were then introduced as a way to create SOAs. You looked at four messaging
patterns:

>

>
>
>

Document Message
Request-Response
Reservation

Idempotent

You finished the chapter with by putting into practice all the information you read about regarding
SOA. The exercise used WCF to enable affiliate applications to reserve and purchase tickets via a
service interface that encapsulated a domain model.

In the next chapter, you will investigate the various patterns and principles that you can use in the
data access layer of an enterprise ASP.NET application.

The Data Access Layer

WHAT’S IN THIS CHAPTER?

> Two data access strategies to help organize your persistence layer:
Repository and Data Access Objects

> Data patterns and principles to help you fulfill your data access
requirement needs elegantly, including Lazy Loading, Identity Map,
Unit of Work, and Query Object

> Anintroduction to object relational mappers and the problems they
solve

> An enterprise domain-driven exercise with POCO business entities
utilizing both NHibernate and the MS Entity Framework

So far, you have read about the business layer of an enterprise ASP.NET application, the pat-
terns used to organize it, and the patterns found within. You then looked at the service layer,
which gave an entry point into a system. This chapter focuses on the data access layer (DAL)
and covers patterns that allow you to retrieve and persist your business entities, ensuring you
leave your data in a valid state.

DESCRIBING THE DAL

The DAL is the layer in your application that is solely responsible for talking to the data store

and persisting and retrieving your business objects. (Note the reference to a data store and not
a database. You don’t always have to have a database; sometimes an XML file is sufficient.)

The DAL typically includes all the create, read, update, and delete (CRUD) methods, transac-

tion management, data concurrency, as well as a querying mechanism to enable your business
logic layer to retrieve objects for any given criteria.

196

CHAPTER 7 THE DATA ACCESS LAYER

The DAL should not contain business logic and should be accessed via the business logic layer through
interfaces; this adheres to the separation of concerns principle and ensures that the business layer
remains unaware of the underlying data access implementation strategy. This is important for both
testing and ensuring your business layer is not dependent on a particular data access implementation.

DATA ACCESS STRATEGIES

The choice you make for the organization of your business layer helps shape the architecture of your
data access strategy. This section examines three patterns that you can use with the business organi-
zation methods as described in Chapter 5. These patterns are Transaction Script, Active Record, and
Domain Model.

The Repository Pattern

You have seen examples in previous chapters of the Repository pattern. A Repository acts like an
in-memory collection, completely isolating business entities from the underlying data infrastructure,
which makes it a great accompaniment for the Domain Model business pattern that utilizes plain
old common lanuage runtime object (POCO) and persistence ignorant (PI) objects, as discussed
in Chapter 4. When used in projects that support the domain-driven design (DDD) methodology,
a Repository typically exists for each aggregate root identified within your domain model. (See
Chapter 4 for more information on DDD.)

A typical interface for a Repository is shown here:

public interface IRepository<T>

{
IEnumerable<T> FindAll();
IEnumerable<T> FindAll (int index, int count);

IEnumerable<T> FindBy (Query query) ;
IEnumerable<T> FindBy (Query query, int index, int count);

T FindBy (Guid Id);

void Add(T entity);
void Save (T entity);
void Remove (T entity);

As you can see, the interface provides the standard methods for business entity persistence, but
retrieval of business entities is handled slightly differently. A Query Object, which will be discussed
later in the chapter, queries the Repository in a data-agnostic manner, thus decoupling the business
modules from the underlying data store implementation and the data schema.

With the advent of Language Integrated Query (LINQ) and the delayed execution model, Repositories
can now expose an IQueryable Findall method that allows the business layer to query a Repository
directly, as in the code snippet that follows:

public interface IRepository<T>

Patterns in Data Access | 197

IQueryable<T> FindAll();
T FindBy (Guid Id);

void AdAd(T entity);
void Save (T entity);
void Remove (T entity);

An TQueryable return type, however, is not universally viewed as such a good way to go when try-
ing to keep persistence concerns out of your domain or business layer, because not all LINQ provid-
ers behave in the same manner or offer the same level of features.

You will see examples of the Repository pattern used throughout this chapter.

Data Access Objects Pattern

The Data Access Objects (DAO) pattern is a simple one designed to separate the elements of your
DAL from the rest of the application. On the face of it, it seems similar to the Repository pattern.
However, the DAO does not hide the fact that behind the interface is a data table, and typically one
DAO is created for each table in the database.

The code snippet that follows shows an example of an interface for a DAO:

public interface IProductDAO

{
Product Get (int id);

IEnumerable<Product> FindByCategory (int id);
IEnumerable<Product> FindByBrand(int id);
IEnumerable<Product> FindByTopSelling(int count) ;

void Add(Product product) ;
void Save (Product product) ;
void Remove (Product product);

Because of their one-to-one match with data tables, DAOs are good matches for both the Active
Record and Transaction Script Business patterns. In the end, the DAO and Repository patterns are
very similar. The Repository pattern acts at a higher level of abstraction working with aggregations
of business entities whereas the DAO objects usually have one-to-one mapping with data tables and
entities.

PATTERNS IN DATA ACCESS

The remainder of this chapter focuses on the patterns found behind the interfaces or gateways in
the persistence layer offered by both the Repository and DAO interfaces. The patterns cover the
fundamentals of any DAL’s strategy — namely, transaction management, data integrity, and data

querying.

198 | CHAPTER7 THE DATA ACCESS LAYER

Unit of Work

The Unit of Work pattern is designed to maintain a list of business objects that have been changed
by a business transaction, whether by adding, removing, or updating. The Unit of Work then coor-
dinates the persistence of the changes and any concurrency problems flagged. The benefit of utilizing
the Unit of Work in your DAL is to ensure data integrity; if an issue arises partway through persist-
ing a series of business objects as part of a transaction, all changes should be rolled back to ensure
that the data remains in a valid state.

To demonstrate the Unit of Work pattern, you will be using a simple banking domain to model the
transfer of funds between two accounts. Figure 7-1 shows the interaction between the service layer
and the repository layer using the Unit of Work pattern to ensure that the transfer commits as one
atomic Unit of Work.

Client AccountService AccountRepository UnitOfWork

Transfer(AccountA, AccountB, Amount) :

3
2>

Save(AccountA)

Save(AccountB)

RegisterAmended(AccountB)

Commit()

e Ko

FIGURE 7-1

The Unit of Work structure in this example is based on the framework that Tim McCarthy uses in
his book .NET Domain-Driven Design with C#: Problem-Design-Solution.

Figure 7-2 shows the classes that you will create in this exercise and exactly how they relate to each
other to make unit of work pattern.

Create a new solution named ASPPatterns.Chap7.UnitOfWork and add the following class library
projects:

> ASPPatterns.Chap7.UnitOfWork.Infrastructure
> ASPPatterns.Chap7.UnitOfWork.Model

> ASPPatterns.Chap7.UnitOfWork.Repository

oeq pajjod

SI %I0M BY} UMOUY} S| uondaoxa
Ue J| 0S UOJ}OBSURI} B Ul IN2D0
suonoe sy} Jo ||y ‘9seqeiep sy} 0}
a1epdn |enjoe sy} Ino ALied 0}
aoepiaul Aloysodaylopionun|
sy Buisn Aloysodal ayy

01 >2eq S||ed poyiaw Juwod syl

‘Bunepdn jo

MI0M 83U} Op ||IMm jey} Aioysodal
2y} yum Buoje paiepdn aq oy
Amus sy sa103s YIoMOHUN YL

A

 (sIU1 ‘gIunodoy)papusyIlsiBay

A

<

AIOMIONUN

SIY} “YIUNO0DDY)papusylalsibay

A

(g1unodoy)anes

1
1
"
| (Y1UN02oYy)anes
i
1
1
1

¢-L 3dNold

(Junowy ‘gUN022Y “YIUN0DDY)IaSuel]

9JIAI9SIUNODDY

A1oysodayiopmiONUN] 8Yl pue A10}1sodayiunoddy|
a2y} y1og suswa|dwi A1oysodayiunoddy ay|

ETe)

200 | CHAPTER7 THE DATA ACCESS LAYER

Right-click on the AsPPatterns.Chap7.UnitOfWork.Model and add a project reference to the
ASPPatterns.Chap7.UnitOfWork.Infrastructure project. Right-click on the Aspratterns
.Chap7.UnitOofWork.Repository project and add a project reference to the ASPPatterns.Chap?
.UnitOfWork.Infrastructure and the ASPPatterns.Chap7.UnitOfWork.Model projects.

You will start the solution by creating all the infrastructure code to support the Unit of Work pattern.
Add a new interface to the infrastructure named TAggregateRoot with the following contract:

public interface IAggregateRoot
{
}

The TAaggregateRoot interface is actually a pattern in itself called the marker interface pattern. The
interface acts as meta data for a class and methods that interact with instances of that class test for
the existence of the interface before carrying out their work. You will see this pattern used later in
this chapter when you build a repository layer that will only persist business objects that implement
theIAggregateRootintmfaC&

The Unit of Work implementation will use the TaggregateRoot interface to reference any business
entity that is partaking in an atomic transaction. Add another interface to the Infrastructure
project named TUnitOfWorkRepository, with the contract listing that follows:

public interface IUnitOfWorkRepository

{
void PersistCreationOf (IAggregateRoot entity);
void PersistUpdateOf (IAggregateRoot entity);
void PersistDeletionOf (IAggregateRoot entity);

The 1UnitofworkRepository is a second interface that all Repositories are required to implement if
they intend to be used in a Unit of Work. You could have added this contract definition to the model
Repository interface that you will add later, but the interfaces are addressing two different types of
concerns. This is the definition of the Interface Segregation principle that Chapter 5 introduced.

Finally, add a third interface to the Infrastructure project named IUnitOfWork, the definition of
which you can find here:

public interface IUnitOfWork
{
void RegisterAmended (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository) ;
void RegisterNew (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository) ;
void RegisterRemoved (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository) ;
void Commit () ;

The Tunitofwork interface requires the TUnitOfWorkRepository when registering an amend/
addition/deletion so that, on commitment, the Unit of Work can delegate the work of the actual
persistence method to the appropriate concrete implementation. The logic behind the Tunitofwork

Patterns in Data Access |

201

methods will become a lot clearer when you look at a default implementation of the Tunitofwork
interface, which is what you are going to do next.

Add a new class to the Tnfrastructure project named UnitofwWork, and update the newly created
class with the following code:

using System.Transactions;
\) namespace ASPPatterns.Chap7.UnitOfWork.Infrastructure
Available for {
dwmtgggn public class UnitOfWork : IUnitOfWork
{

private Dictionary<IAggregateRoot, IUnitOfWorkRepository> addedEntities;
private Dictionary<IAggregateRoot, IUnitOfWorkRepository> changedEntities;
private Dictionary<IAggregateRoot, IUnitOfWorkRepository> deletedEntities;

public UnitOfWork ()
{

addedEntities =

new Dictionary<IAggregateRoot, IUnitOfWorkRepository>();
changedEntities =

new Dictionary<IAggregateRoot, IUnitOfWorkRepository>();
deletedEntities =

new Dictionary<IAggregateRoot, IUnitOfWorkRepository>();
public void RegisterAmended (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)
if (!changedEntities.ContainsKey (entity))

changedEntities.Add (entity, unitofWorkRepository) ;

public void RegisterNew (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

if (laddedEntities.ContainsKey (entity))

addedEntities.Add(entity, unitofWorkRepository) ;

public void RegisterRemoved (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

if (!deletedEntities.ContainsKey (entity))

deletedEntities.Add (entity, unitofWorkRepository);

public void Commit ()

202

| CHAPTER7 THE DATA ACCESS LAYER

using (TransactionScope scope = new TransactionScope())
{
foreach (IAggregateRoot entity in this.addedEntities.Keys)
{
this.addedEntities[entity].PersistCreationOf (entity) ;

foreach (IAggregateRoot entity in this.changedEntities.Keys)
{
this.changedEntities[entity].PersistUpdateOf (entity) ;

foreach (IAggregateRoot entity in this.deletedEntities.Keys)
{
this.deletedEntities[entity].PersistDeletionOf (entity) ;

scope.Complete() ;

Code snippet UnitOf Work.cs in the project ASPPatterns.Chap7.UnitOf Work

You are required to add a reference to System. Transactions so you can use the TransactionScope
class, which will ensure the persistence will commit in an atomic transaction. The Unitofwork class
uses three dictionaries to track pending changes to business entities. The first dictionary corresponds
to entities to be added to the data store. The second dictionary tracks entities to be updated, and the
third deals with entity removal. A matching TUnitofworkRepository is stored against the entity
key in the dictionary and is used in the commit method to call the Repository, which will contain
the code to actually persist an entity. The commit method loops through each dictionary and calls
the appropriate TUnitofWorkRepository method passing a reference to the entity. The work in the
commit method is wrapped in a TransactionScope using block; this ensures that no work is done
until the TransactionScope Complete method is called. If an exception occurs while you are per-
forming work within the TUnitofWorkRepository, all work is rolled back, and the data store is left
in its original state.

To demonstrate the Unit of Work pattern in action, you will build a simple bank account domain to
handle transfers between two accounts. Add a new class to the Model project named Account. The
Account class represents a bank account and contains a single property to hold the account balance.
The code listing for this class is shown here:

using ASPPatterns.Chap7.UnitOfWork.Infrastructure;

namespace ASPPatterns.Chap7.UnitOfWork.Model
{

public class Account : IAggregateRoot

{

public decimal balance { get; set; }

Patterns in Data Access | 203

To enable persistence of the Account, you will add a cut down version of a Repository interface
containing the methods relevant to this example. Create a new interface within the Model project
named TAccountRepository with the following contract:

public interface IAccountRepository
{
void Save (Account account);
void Add(Account account) ;
void Remove (Account account);

There is no need to add contract definitions for Account retrieval, because this demonstration will
not use them.

To complete the model, you will create a service class to coordinate the transferring of monies between
two accounts. Add a new class named AccountService with the following code:

using ASPPatterns.Chap7.UnitOfWork.Infrastructure;

namespace ASPPatterns.Chap7.UnitOfWork.Model
{
public class AccountService
{
private IAccountRepository _accountRepository;
private IUnitOfWork _unitOfWork;

public AccountService (IAccountRepository accountRepository,
IUnitOfWork unitOfWork)

_accountRepository = accountRepository;
_unitOfWork = unitOfWork;

public void Transfer (Account from, Account to, decimal amount)
{
if (from.balance >= amount)
{
from.balance -= amount;
to.balance += amount;

_accountRepository.Save (from) ;
_accountRepository.Save (to) ;
_unitOfWork.Commit () ;

The AccountService requires an implementation of the TaccountRepository and TUnitOfWork via its
constructor. (See Chapter 5, which covers Dependency Injection.) The Transfer method checks that the
transfer of funds can take place before adjusting the balances of each account. It then calls the account
Repository to save both accounts. Finally, it calls the commit method of the Unit of Work instance to
ensure that the transaction is completed as an atomic Unit of Work. So how do the Repository and Unit
of Work interact? Well, you’ll stub out an implementation of the account Repository to find out.

204 | CHAPTER7 THE DATA ACCESS LAYER

Add a new class named AccountRepository to the Repository project and update it with the fol-
lowing code listing:

using ASPPatterns.Chap7.UnitOfWork.Model;
using ASPPatterns.Chap7.UnitOfWork.Infrastructure;

namespace ASPPatterns.Chap7.UnitOfWork.Repository

{

public class AccountRepository : IAccountRepository, IUnitOfWorkRepository

{

private IUnitOfWork _unitOfWork;

public AccountRepository (IUnitOfWork unitOfWork)
{
_unitOfWork = unitOfWork;

public void Save (Account account)
{
_unitOfWork.RegisterAmended (account, this);

public void Add(Account account)
{
_unitOfWork.RegisterNew (account, this);

public void Remove (Account account)
{

_unitOfWork.RegisterRemoved (account, this);

public void PersistUpdateOf (IAggregateRoot entity)
{
// ADO.NET code to update the entity...

public void PersistCreationOf (IAggregateRoot entity)

// ADO.NET code to add the entity...

public void PersistDeletionOf (IAggregateRoot entity)

// ADO.NET code to delete the entity...

TheAccountRepositoryinqﬂmnenmlxnhtheModel.IAccountRepositoryandtheInfrastructre
.TUnitOfWorkRepository interfaces. The implementation of the TaAccountRepository methods
simply delegates work to the Unit of Work, passing the entity to be persisted along with a reference

to the Repository, which of course implements the TunitofwWorkRepository. As seen previously
when the Unit of Work’s commit method is called, the Unit of Work refers to the Repository’s imple-
mentation of the TunitofWorkRepository contract to perform the real persistence requirements.

Patterns in Data Access | 205

For brevity, and to keep the example simple and easy to follow, the ADO.NET code to persist the
Account entity has been omitted. Note that the Unit of Work implementation is injected into the
Repository via its constructor. This allows many Repositories to share the Unit of Work, because
some transactions will span more than one Repository.

Data Concurrency Control

Data Concurrency Control is the system of handling multiple modifications to business objects being
persisted at the same time. When multiple users change the state of a business object and try to con-
currently persist it to the database, a mechanism needs to be in place to ensure that one user’s modifi-
cation does not negatively affect the state of the transaction from other concurrent users.

There are two forms of concurrency control: optimistic and pessimistic. The optimistic concurrency
option assumes that there are no issues with multiple users making changes simultaneously to the
state of business objects, also known as last change wins. For some systems, this is perfectly reason-
able behavior; however, when the state of your business objects needs to be consistent with the state
when retrieved from the database, pessimistic concurrency is required.

Pessimistic concurrency can come in many flavors, from locking the data table when a record is retrieved
to keeping a copy of the original contents of a business object and comparing that to the version in the
data store before an update is made to ensure there have been no changes to a record during a transac-
tion. In this section, you will use a version number to check whether a business entity has been amended
since being retrieved from the database. Upon an update, the version number of the business entity will
be compared to the version number residing in the database before committing a change. This ensures
that the business entity has not been modified since being retrieved.

To demonstrate the pessimistic concurrency pattern, you will build a simple application to save details
and ensure that data integrity is maintained between the retrieval and update of an entity.

Create a new solution named ASPPatterns.Chap7.Concurrency and add the following class library
projects:

> ASPPatterns.Chap7.Concurrency.Model
> ASPPatterns.Chap7.Concurrency.Repository

Right-click on the Repository project and add a reference to the Model project. Add a new class to
the Model project named Person. Update the class with the following code listing:

public class Person
{
public Guid Id { get; set; }
public string FirstName { get; set; }

public string LastName { get; set; }

public int Version { get; set; }

The version property will be set when the Person entity is retrieved from the data store. If you feel
uncomfortable with the version property being on the Person entity because in the domain that you
are modeling a version isn’t an attribute of a Person, you could use an Entity Layer Supertype class as

206 | CHAPTER7 THE DATA ACCESS LAYER

shown in the following code snippet (see also Chapter 5) or return a Proxy version of the Person entity
and include the version ID within. You will examine the Proxy design pattern later in this chapter.

public abstract class EntityBase
{

private int Version { get; set; }

public class Person : EntityBase

{

To complete the simple domain model, add a new interface to the Model project named IPerson
Repository with the following cut-down contract definition:

public interface IPersonRepository

{
void Add(Person person) ;
void Save (Person person) ;
Person FindBy (Guid Id);

}

With the Model complete, you can turn your attention to the implementation of the Person Repository.
Add a new class to the Repository project named PersonRepository that implements Model . TPerson

Repository. With this example, I have included the relevant ADO.NET code to show how concurrency
checking with versions works:

using ASPPatterns.Chap7.Concurrency.Model;
‘) using System.Data.SglClient;
Available for namespace ASPPatterns.Chap7.Concurrency.Repository
download on
Wrox.com {

public class PersonRepository : IPersonRepository
{
private string _connectionString;
private string _findByIdSQL =
"SELECT * FROM People WHERE PersonlId = @PersonId";
private string _insertSQL =
"INSERT People (FirstName, LastName, PersonId, Version) VALUES " +
"(@FirstName, @LastName, @PersonId, @Version)";
private string _updateSQL =
"UPDATE People SET FirstName = "
+ "@FirstName, LastName = @LastName, Version = " +
"@Version + 1 WHERE PersonId = @PersonId AND Version = @Version;";

public PersonRepository(string connectionString)
{

_connectionString = connectionString;

public void Add(Person person)
{
using (SglConnection connection =
new SglConnection(_connectionString))

SglCommand command = connection.CreateCommand () ;

Patterns in Data Access | 207

command.CommandText = _insertSQL;

command . Parameters.Add

(new SglParameter ("@PersonId", person.Id));
command.Parameters.Add

(new SglParameter ("@Version", person.Version));
command . Parameters.Add

(new SglParameter ("@FirstName", person.FirstName)) ;
command . Parameters.Add

(new SglParameter ("@QLastName", person.LastName)) ;

connection.Open/() ;
command . ExecuteNonQuery () ;

public void Save (Person person)
{
int numberOfRecordsAffected = 0;

using (SglConnection connection =
new SglConnection (_connectionString))

SglCommand command = connection.CreateCommand() ;
command.CommandText = _updateSQL;

command . Parameters.Add

(new SglParameter ("@PersonId", person.Id));
command . Parameters.Add

(new SglParameter ("@Version", person.Version));
command.Parameters.Add

(new SglParameter ("@FirstName", person.FirstName)) ;
command . Parameters.Add

(new SglParameter ("@QLastName", person.LastName)) ;

connection.Open/() ;
numberOfRecordsAffected = command.ExecuteNonQuery () ;

if (numberOfRecordsAffected == 0)
throw new ApplicationException (
@"No changes were made to Person Id (" + person.Id + "), this was "
+ "due to another process updating the data.");
else

person.Version++;

public Person FindBy (Guid Id)

{
Person person = default (Person);
using (SglConnection connection = new SglConnection(_connectionString))
{

SglCommand command = connection.CreateCommand() ;

208 | CHAPTER7 THE DATA ACCESS LAYER

command . CommandText = _findByIdSQL;
command.Parameters.Add (new SglParameter ("@PersonId", Id));
connection.Open() ;

using (SglDataReader reader = command.ExecuteReader())
{
if (reader.Read())
{
person = new Person
{
FirstName = reader["FirstName"].ToString(),
LastName = reader["LastName"].ToString(),
Id = new Guid(reader["PersonId"].ToString()),
Version = int.Parse(reader["Version"].ToString())

return person;

Code snippet PersonRepository.cs in the project ASPPatterns.Chap7.Concurrency

The FindBy and Add methods are straightforward enough with ADO.NET code to populate a single
Person entity from a select query and ADO.NET to insert a new Person entity into the database.
The save method contains the logic that controls data integrity of the Person entity. When a Person
entity is being saved to the database, the version of the changed entity is included in the where clause. If
the versions do not match, no update occurs, and the ExecuteNonQuery method returns a zero records
affected count. At this point, some kind of stale entity exception could be thrown to alert the user that
the Person entity has changed or been deleted since the original retrieval and the update has failed.

If you download the source code for this exercise, you will find accompanying unit tests that verify
the behavior of the pessimistic concurrency pattern.

Lazy Loading and the Proxy Pattern

Lazy Loading is an enterprise design pattern that defers the loading of a resource until you need it.
Martin Fowler defined it as “an object that doesn’t contain all of the data you need but knows how
to get it” in Patterns of Enterprise Application Architecture. If you take the canonical customer
and order example, when retrieving a customer from the database, you may not want to pull back
his entire order history if you need only part of it. By deferring the execution of retrieving the cus-
tomer’s orders, you can increase the speed at which the customer info is returned and decrease the
load on the database server. If the customer orders collection is required, you can pull it from the
database directly from the orders collection property. Shortly, you will see an example of the Lazy
Loading pattern, which utilizes the Proxy pattern.

The Proxy pattern acts as a surrogate for another object, enabling the proxy to control access to it
and allowing it to add extra logic related to the operation.

Patterns in Data Access | 209

Intent

Because the Proxy pattern controls access to other objects’ properties, it is extremely useful for sce-
narios that sometimes need access to expensive resources, such as these:

> A virtual proxy is a placeholder for resource-intensive objects. The real object or methods on
that object are called only when they are needed.

> A remote proxy provides a local representative for an object that resides in a different
address space; you saw an application of this in the previous chapter in the WCF example. In
fact, a proxy is created when you add a reference to a service via Visual Studio.

UML

Figure 7-3 shows the UML representation of the Proxy pattern and all the collaborating roles.

> The client depends on the abstract customer. Both the RealCustomer and the
ProxyCustomer implement the same interface, so the client is unaware of which she is using.

» The ProxyCustomer has a reference to the RealCustomer and controls the access to the
RealCustomer properties. The ProxyCustomer can perform extra logic before calling on
the RealCustomer properties.

> The customer defines the interface that the client will program against and that the
RealCustomer and ProxyCustomer will implement.

» The RealCustomer defines the default behavior for the customer interface.

Client
¥
Customer
+GetOrderHistory()
+Name() GetOrderHistory() A
// Retrieve orders from database
/A
| | return orders;
RealCustomer ProxyCustomer [-------- }
D EEEEEEEEEED N
ame
+GetOrderHistory() +GetOrderHistory() (0
+Name() +*Name) return RealCustomer.Name();
}

FIGURE 7-3

Code Example

For the code example, you will be working in the domain of Customers and Orders. A customer
Repository enables you to retrieve customers who have a deferred loading on their orders

210 | CHAPTER7 THE DATA ACCESS LAYER

collection. Figure 7-4 shows the sequence of code that you will be writing for the Lazy Loading pat-
tern using the Proxy pattern.

| Client CustomerService | | CustomerRepository | | Customer | | ProxyCustomer | CustomerRepository

T T T T T

1 1 1 1 1 1
I GetCustomer() _! : : : :
—_——

1 1 FindCustomer() ! 1 1 1
1 r > 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 L new() >! 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 [G El 1 1
1 1 1 1 1 1
: : : new(Customer) ‘: :
1 1 f T gl 1
1 1 1 1 1 1
1 L 5 i J 1
1 1 :‘ 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
€----------- ettt bl I I I
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 | Orders | o |
r T T T 1 I
: : : : : FindOpenOrdersFor(Customer)‘:
I I I I i I
1 1 1 1 1 1
€ -mmmmmmmmm o L [T L] R] R L EEEEEE L L 4
1 1 1 1 1 1
1 1 1 1 1 1

FIGURE 7-4

Create a new solution named ASPPatterns.Chap7.ProxyPattern and add the following class libraries:
> ASPPatterns.Chap7.ProxyPattern.Model

> ASPPatterns.Chap7.ProxyPattern.Repository

Right-click on the Repository project and add a reference to the Model project.

Add a new class to the Model project named order with the following definition:

public class Order
{
public Guid Id { get; set; }
public DateTime OrderDate { get; set; }

The order class represents a customer’s order. The attributes of an order have been deliberately
kept to a minimum to simplify the example.

Next, add a second class to the Model project named customer with the following code definition:

public class Customer
{
public Guid Id { get; set; }
public string Name { get; set; }
public virtual IEnumerable<Order> Orders { get; set; }

Patterns in Data Access | 211

Again, as with the order class, I have included minimal properties to represent a Customer. To
enable the retrieval of a customer, you need a Repository contract defined in the Model project, so
add a new interface named TCustomerRepository with the following contract:

public interface ICustomerRepository

{
Customer FindBy (Guid id);

In this example, you are only interested in retrieving a Customer by his 1d. No other methods that
you would normally find on a Repository interface are applicable for this demonstration of the Lazy
Loading and Proxy pattern.

You will also require a Repository to retrieve all of a customer’s orders, so add a second interface to
the Model project named I0rderRepository:

public interface IOrderRepository

{
IEnumerable<Order> FindAllBy (Guid customerId) ;

Again, you are only interested in the orders of a specific Customer, so this is the only method sig-
nature that appears on the interface.

Now that you have created the model, you can turn your attention to creating the implementations
of the Repositories in the Repository project.

Add a new class named orderRepository to the Repository project. Have it implement the Torder
Repository from the Model project and update the class so that it matches the following listing:

using ASPPatterns.Chap7.ProxyPattern.Model;

namespace ASPPatterns.Chap7.ProxyPattern.Repository

{
public class OrderRepository : IOrderRepository

{
public IEnumerable<Order> FindAllBy (Guid customerId)

{

IEnumerable<Order> customerOrders = new List<Order>();

// Code to connect to the database and populate the collection
// of customers' orders...

return customerOrders;

Your next step is to create the CustomerProxy class. This class will inherit from the customer class
as defined in the Model project and act as the customer unbeknownst to the client code. The code
that follows shows the implementation for the customerproxy class:

using ASPPatterns.Chap7.ProxyPattern.Model;

namespace ASPPatterns.Chap7.ProxyPattern.Repository

212 | CHAPTER7 THE DATA ACCESS LAYER

public class CustomerProxy : Customer

{

When calling the get method of the orders property, a check is made on a flag that identifies whether
the orders collection has been loaded from the Repository. If the orders collection has not been
loaded, a call is made to the orderRepository property to populate the orders collection, the flag is

private bool _haveLoadedOrders = false;
private IEnumerable<Order> _orders;

public IOrderRepository OrderRepository { get;

public bool HaveLoadedOrders ()
{
return _haveLoadedOrders;

public override IEnumerable<Order> Orders
{
get
{
if (!'HaveLoadedOrders())
{
RetrieveOrders () ;
_haveLoadedOrders = true;

return _orders;

base.Orders = value;

private void RetrieveOrders ()

{

set;

_orders = OrderRepository.FindAllBy (base.Id);

updated, and the orders are returned.

The final class to implement for this exercise is the implementation of the TCustomerRepository as
defined in the Model project. Create a new class named CustomerRepository and have it implement

the TCustomerRepository. The full listing for this class is as follows:

using ASPPatterns.Chap7.ProxyPattern.Model;

namespace ASPPatterns.Chap7.ProxyPattern.Repository

{

public class CustomerRepository :

{

private IOrderRepository _orderRepository;

public CustomerRepository (IOrderRepository orderRepository)

ICustomerRepository

Patterns in Data Access | 213

_orderRepository = orderRepository;

}

public Customer FindBy (Guid id)
{

Customer customer = new CustomerProxy();
// Code to connect to the database and retrieve a customer..
((CustomerProxy)customer) .OrderRepository = _orderRepository;

return customer;

In the FindBy method, a CustomerProxy is created, and its properties are populated from the call to
the database. An instance of an orderRepository, injected via the CustomerRepository constructor,
is set on the CustomerProxy object before being returned to the calling code.

If you download the source code for this exercise, you will find accompanying unit tests that verify
the behavior of the proxy customer and the Lazy Loading of the orders collection.

Identity Map

From the description from Martin Fowler’s Patterns of Enterprise Application Architecture, an
Identity Map “ensures that each object gets loaded only once by keeping every loaded object in a
map” and “looks up objects using the map when referring to them.” When dealing with data con-
currency, it is important to have a strategy for multiple users affecting the same business entity, but
it is just as important for a single user to use a consistent version of a business entity through a long-
running or complex transaction. An Identity Map provides this functionality by keeping a version
of all business objects used in a transaction; if the same Employee entity is requested twice, the same
instance is returned.

Typically, an Identity Map is used per business transaction. This ensures that if an entity is retrieved
twice in the same transaction, it will be unique and include any modifications that the transaction
made.

To demonstrate this pattern, you will walk through a simple coding exercise that creates an Identity
Map for use with the retrieval of simple Employee business objects from a Repository. Create a new
solution named ASPPatterns.Chap7.IdentityMap and add the following new class library projects:

> ASPPatterns.Chap7.IdentityMap.Model

> ASPPatterns.Chap7.IdentityMap.Repository

Right-click on the Repository project and add a reference to the Model project.

Add a new class to the Model project named Employee with the following code listing:

public class Employee
{

214 | CHAPTER7 THE DATA ACCESS LAYER

public Guid Id { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

The only other class in the Model project is a Repository with a single method definition that allows
the retrieval of Employees by their 1d. Create a new interface and name it TEmployeeRepository.
Then add the FindBy method signature as shown here:

public interface IEmployeeRepository
{
Employee FindBy (Guid Id);

With the Model in place, you can switch your attention to the Repository project. Add a new class
to this project named IdentityMap. This class will use generics to provide a type safe Identity Map
implementation for supplying unique Employee entities during a business transaction. The code for
the IdentityMap class is shown here:

public class IdentityMap<T>
{

Hashtable entities = new Hashtable();

public T GetById(Guid Id)
{
if (entities.ContainsKey (Id))
return (T)entities[Id];
else
return default(T);

public void Store(T entity, Guid key)
{
if (!entities.Contains (key))
entities.Add (key, entity);

The TdentityMap contains a hash table to store the business entities that are being used in a trans-
action and provides a simple interface to store and retrieve an entity.

You will use the TdentityMap within an implementation of the TEmployeeRepository. Add a new
class to the Repository project named EmployeeRepository, and have it implement the TEmployee
Repository interface contained within the Model project. The listing for this class is displayed here:

using ASPPatterns.Chap7.IdentityMap.Model;

namespace ASPPatterns.Chap7.IdentityMap.Repository
{
public class EmployeeRepository : IEmployeeRepository
{
private IdentityMap<Employee> _employeeMap;

public EmployeeRepository)
{

Patterns in Data Access | 215

_employeeMap = new IdentityMap<Employee> () ;
}

public Employee FindBy (Guid Id)

{
Employee employee = _employeeMap.GetById(Id);

if (employee == null)
{
employee = DatastoreFindBy (Id);
if (employee != null)
_employeeMap.Store (employee, employee.Id);

return employee;

}

private Employee DatastoreFindBy (Guid Id)

{
Employee employee = default (Employee) ;

// Code to hydrate employee from datastore...

return employee;

When the FindBy method is called, the Employee Repository first checks the TdentityMap to
determine if the Employee entity has been retrieved before. If it has, it is returned to the caller.
If not, the data store is queried for the Employee instance using its identity and then is added to
the TdentityMap ready to be retrieved if the same Employee entity is needed from the Employee
Repository again.

As with all the code examples in this book, if you download the source code for this exercise, you
will find accompanying unit tests that verify the behavior of the Identity Map pattern.

The next pattern you will look at deals with querying the data access layer.

Query Object Pattern

You saw at the beginning of this chapter that the interface for a Repository defined a method that

took a Query Object. The Query Object represented a query written in the language of the domain
and was an implementation of the Query Object pattern. The Query Object pattern as described by
Fowler is “an object that represents a database query.” Without some mechanism of querying, the
Repository would be awash with myriad retrieval methods such as can be seen in this code snippet:

public interface ICustomerRepository
{
IEnumerable<Customer> FindAll () ;
IEnumerable<Customer> FindAllVIPCustomers () ;
IEnumerable<Customer> FindByOrder (Guid ID);
IEnumerable<Customer> FindAllCustomersThatHaveOutstandingOrders () ;

216 | CHAPTER7 THE DATA ACCESS LAYER

Instead, the Query Object enables any query to be constructed and then sent to the Repository to
be satisfied. The major benefit of the Query Object pattern is that it completely abstracts away the
underlying database querying language and thus keeps the infrastructure concerns of data persis-
tence and retrieval out of the business layer. At some point, however, the raw querying language of
the database needs to be created; this is achieved using a database-specific QueryTranslator that
takes the Query Objects and converts them into the language of the database.

You will now create an implementation of the Query Object pattern. Create a solution named
ASPPatterns.Chap7.QueryObject and add the following class libraries to the solution:

> ASPPatterns.Chap7.QueryObject.Infrastructure

> ASPPatterns.Chap7.QueryObject.Model

> ASPPatterns.Chap7.QueryObject.Repository
Right-click on the Model project and add a reference to the Infrastructure project. Right-click
also on the Repository project and add a reference to the Model and Infrastructure project.

You will start with defining the model for the Query Object pattern. Figure 7-5 shows the class diagram.

—_—
OrderByClause (&
Class
e = Propertiec
Query @] 5 OrderByProperty = Desc
T E = PropertyName
M ——
& Fields
QueryOperatar ® y_ﬂ _criteria
il j‘ QueryOperator ,}V _name ,(riterion &
< (<)
And E;ppmﬁ a5y P = 5
Or = Name) Enum
& Methads B citeia_ | @ fieias ' criteriaOperator
¢ Add & _triteriaCperator |7 = Equal
9 ## _propertyName esserThanCrEqua
¥ IsNamedQ & N LesserThanOrEqual
g o _value NotApplicable
¥ Query (+ 1 ove..
| = Propertics
T PropertyName
' PropertyN
B Value
= Methods
L - - - -
I NamedQueryFact =) ‘@ Criterion
1 Static Ciass I —
1
1
1
1
1
/

[}
| & Methods
{ ¥ (UreateRetneveUrdersUsingAComplexUuery

- - - -

FIGURE 7-5

Add a new folder to the Infrastructure project named Query and add a new enumeration named
CriteriaOperator. The enumeration class is shown here:

public enum CriteriaOperator
{
Equal,
LessThanOrEqual,
NotApplicable

Patterns in Data Access | 217

In this example, you will require only the three criteria operations shown in the preceding listing.
For a full implementation, you would add the remaining operations.

Next, add a class to represent the criterion named criterion. The criterion represents part of
the filter that forms the query, specifying an entity property, a value to compare it to, and the way it
should be compared. The code for the criterion class is displayed here:

public class Criterion
{
private string _propertyName;
private object _value;
private CriteriaOperator _criteriaOperator;

public Criterion(string propertyName, object value,
CriteriaOperator criteriaOperator)

_propertyName = propertyName;
_value = value;
_criteriaOperator = criteriaOperator;

public string PropertyName
{
get { return _propertyName; }

public object Value
{

get { return _value; }

public CriteriaOperator criteriaOperator
{

get { return _criteriaOperator; }

The next class to create will represent the ordering property to be used on the query. Create a new
class named orderByClause with the following code listing:

public class OrderByClause

{
public string PropertyName { get; set; }
public bool Desc { get; set; }

You use a second enumeration to determine how the Criterion objects will be evaluated together.
Add a new enumeration named QueryOperator with the following syntax:

public enum QueryOperator
{

And,

Or

218 | CHAPTER7 THE DATA ACCESS LAYER

Sometimes complex queries are difficult to create. In these cases, you can use a named query that
points to a view or stored procedure in the database. These named queries are added as an enumera-
tion. Add a new class named QueryName to store this list of queries with the following code listing:

public enum QueryName

{
Dynamic = 0,
RetrieveOrdersUsingAComplexQuery = 1

Included in the list is the Dynamic value. This value will be used if the query is not named and is
instead created by the business layer.

The class that brings the Query Object pattern together is the Query class. Add a new class to the
project named Query, and update it with the following code definition:

public class Query
{
private QueryName _name;
private IList<Criterion> _criteria;

public Query ()
this (QueryName.Dynamic, new List<Criterion>())

{1}

public Query(QueryName name, IList<Criterion> criteria)

{
_name = name;
_criteria = criteria;
}
public QueryName Name
{
get { return _name; }
}
public bool IsNamedQuery ()
{
return Name != QueryName.Dynamic;
}
public IEnumerable<Criterion> Criteria
{
get {return _criteria ;}
}

public void Add(Criterion criterion)
{
if (!IsNamedQuery())
_criteria.Add(criterion) ;
else
throw new ApplicationException (
"You cannot add additional criteria to named queries");

Patterns in Data Access | 219

public QueryOperator QueryOperator { get; set; }

public OrderByClause OrderByProperty { get; set; }

The class contains a collection of Criterion objects, an OrderByClause, and an Operator value.
The Query class also contains an TsNamedQuery method that flags if the query has been dynamically
generated or relates to a precreated query in the Repository.

The last class you need to create is the NamedQueryFactory class. Add this to the project and update
as follows:

public static class NamedQueryFactory
{
public static Query CreateRetrieveOrdersUsingAComplexQuery (Guid CustomerId)
{
IList<Criterion> criteria = new List<Criterion>();
Query query =
new Query (QueryName.RetrieveOrdersUsingAComplexQuery, criteria);

criteria.Add(new Criterion ("CustomerId", CustomerId,
CriteriaOperator.NotApplicable));

return query;

This class simply creates a Query Object for a named query. The QueryTranslator can inspect
the Query Object to determine if it’s a named query and use the Criterions as values for a stored
database query. This completes the Query Object pattern implementation. Please note that there is
no notion of a subquery in the Query Object pattern that you have created. To provide subqueries,
you simply need to add a collection of Query Objects to the Query Object. However, if you need to
use subqueries or anything other than simple querying, it is often better to use a stored query in the
Repository or database.

You will build upon the Query Object framework you have built here to include
subqueries in the case study part at the end of this book.

You will now create a simple domain model to demonstrate using the Query Object implementation
that you have created. Add a new class to the Model project named order:

public class Order

{
public Guid Id { get; set; }
public bool HasShipped { get; set; }
public DateTime OrderDate { get; set; }
public Guid CustomerId { get; set; }

220 | CHAPTER7 THE DATA ACCESS LAYER

You also need to create an interface for an order Repository within the Model project. Because you

are only interested in the functions of the Query Object pattern, you only need to include the single
method relating to obtaining order entities from the Repository using a Query Object. With this in
mind, add a new interface to the Model project named T0rderRepository with the contract shown
in the code listing that follows:

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;

namespace ASPPatterns.Chap7.QueryObject.Model
{
public interface IOrderRepository

{
IEnumerable<Order> FindBy (Query query) ;

The final class to add to the Model project is the domain service class, which will use the Query Object
implementation to query the Repository.

Add a new class named orderservice, and update it with the code that follows:

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;
\) namespace ASPPatterns.Chap7.QueryObject.Model
Available for {
dm:!g:g[gn public class OrderService

{
private IOrderRepository _orderRepository;

public OrderService (IOrderRepository orderRepository)
{

_orderRepository = orderRepository;

public IEnumerable<Order> FindAllCustomersOrdersBy (Guid customerId)
{

IEnumerable<Order> customerOrders = new List<Order>();
Query query = new Query();
query.Add
(new Criterion("CustomerId", customerId, CriteriaOperator.Equal));
query.OrderByProperty = new OrderByClause
{ PropertyName = "CustomerId", Desc = true };

customerOrders = _orderRepository.FindBy (query) ;
return customerOrders;
public IEnumerable<Order> FindAllCustomersOrdersWithInOrderDateBy (
Guid customerId, DateTime orderDate)
IEnumerable<Order> customerOrders = new List<Order>();

Query query = new Query();

Patterns in Data Access | 221

query.Add
(new Criterion("CustomerId", customerId, CriteriaOperator.Equal));
query.QueryOperator = QueryOperator.And;
query.Add (new Criterion
("OrderDate", orderDate, CriteriaOperator.LessThanOrEqual)) ;
query.OrderByProperty = new OrderByClause
{ PropertyName = "OrderDate", Desc = true };

customerOrders = _orderRepository.FindBy (query) ;

return customerOrders;

public IEnumerable<Order> FindAllCustomersOrdersUsingAComplexQueryWith (

Guid customerId)
IEnumerable<Order> customerOrders = new List<Order> () ;

Query query =
NamedQueryFactory.CreateRetrieveOrdersUsingAComplexQuery (customerId) ;

customerOrders = _orderRepository.FindBy (query) ;

return customerOrders;

Code snippet OrderService.cs in the project ASPPatterns.Chap7.QueryObject

The orderservice class contains three methods that create queries that are then passed to the
Repository. The FindallCustomersOrdersBy and FindallCustomersOrdersWithInOrderDateBy
methods create a dynamic query by adding criterions and an orderByClause. The last method,
FindAllCustomersOrdersUsingAComplerueryWith,B:3nankxiquerythatusestheNameQuery
Factory to create the Query Object to be passed to the Repository.

With the domain model and service layer complete, you can now implement the TorderRepository
and create a QueryTranslator to convert the Query Object into a language that your database can

understand.

Add a new class to the Repository project named orderQueryTranslator. This class will contain
an extension method that gives the Query Object the ability to convert itself into an SQL command
ready to be run against the database.

J

Available for
download on
Wrox.com

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;
using System.Data.SglClient;
using System.Data;

namespace ASPPatterns.Chap7.QueryObject.Repository
{
public static class OrderQueryTranslator

{
private static string baseSelectQuery = "SELECT * FROM Orders ";

public static void TranslateInto (this Query query, SglCommand command)

222

CHAPTER 7 THE DATA ACCESS LAYER

{
if (query.IsNamedQuery())
{
command.CommandType = CommandType.StoredProcedure;
command .CommandText = query.Name.ToString() ;
foreach (Criterion criterion in query.Criteria)
{
command . Parameters.Add (
new SglParameter ("@" + criterion.PropertyName,
criterion.Value)) ;
}
}
else

StringBuilder sglQuery = new StringBuilder();
sglQuery.Append (baseSelectQuery) ;

bool _isNotfirstFilterClause = false;

if (query.Criteria.Count() > 0)
sglQuery.Append ("WHERE ") ;

foreach (Criterion criterion in query.Criteria)
{
if (_isNotfirstFilterClause)
sglQuery.Append (GetQueryOperator (query)) ;

sglQuery.Append (AddFilterClauseFrom(criterion)) ;
command. Parameters.Add (

new SglParameter ("@" + criterion.PropertyName,
criterion.Value)) ;

_isNotfirstFilterClause = true;

sglQuery.Append (GenerateOrderByClauseFrom(query.OrderByProperty)) ;

command.CommandType = CommandType.Text;
command.CommandText = sglQuery.ToString() ;

private static string GenerateOrderByClauseFrom

(OrderByClause orderByClause)

return String.Format ("ORDER BY {0} {1}",

FindTableColumnFor (orderByClause.PropertyName) ,
orderByClause.Desc ? "DESC" : "ASC");

private static string GetQueryOperator (Query query)

{

Patterns in Data Access | 223

if (query.QueryOperator == QueryOperator.And)
return "AND ";

else
return "OR ";

private static string AddFilterClauseFrom(Criterion criterion)
{
return string.Format ("{0} {1} @{2} ",
FindTableColumnFor (criterion.PropertyName),
FindSQLOperatorFor (criterion.criteriaOperator),
criterion.PropertyName) ;

private static string FindSQLOperatorFor (CriteriaOperator criteriaOperator)
{
switch (criteriaOperator)
{
case CriteriaOperator.Equal:
return "=";
case CriteriaOperator.LessThanOrEqual:
return "<=";
default:
throw new ApplicationException("No operator defined.");

private static string FindTableColumnFor (string propertyName)
{
switch (propertyName)
{
case "CustomerId":
return "CustomerId";
case "OrderDate":
return "OrderDate";
default:
throw new ApplicationException (
"No column defined for this property.");

Code snippet OrderQueryTranslator.cs in the project ASPPatterns.Chap7.QueryObject

The TranslateInto method takes an ADO.NET command and populates it with a database query.
The first thing that the TranslateInto method does is identify whether the Query Object is a named
query. If it is, the command is set to expect a stored procedure, the name of which is the query enu-
meration name. The stored procedure exists in the database within the unit tests project that can be
found in the code download that accompanies this book. The criterions of the Query then provide
any parameters that the stored procedure expects.

If the Query has been dynamically created, the translator loops through each of the criterions
and builds up a SQL statement, using methods to convert the property name of the order entity

224 | CHAPTER7 THE DATA ACCESS LAYER

into the column name of the order table. You may be wondering why the FindTableColumnFor
method exists. At the moment there is a one-to-one mapping between the data table column and
entity property but this may not always be the case — especially as the domain model evolves over
time. The second and final class that you need in the Repository project is the implementation of
the TorderRepository as defined in the Model project. Add a new class to the Repository project
named OrderRepository and update the class with this code:

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;
\) using ASPPatterns.Chap7.QueryObject.Model;
using System.Data.SglClient;
Available for
dax:?g&gn namespace ASPPatterns.Chap7.QueryObject.Repository

{
public class OrderRepository : IOrderRepository
{

private string _connectionString;
public OrderRepository(string connectionString)

{

_connectionString = connectionString;

public IEnumerable<Order> FindBy (Query query)

{
IList<Order> orders = new List<Order>();
using (SglConnection connection =
new SglConnection (_connectionString))
{
SglCommand command = connection.CreateCommand () ;
query.TranslateInto (command) ;
connection.Open/() ;
using (SglDataReader reader = command.ExecuteReader ())
{
while (reader.Read())
{
orders.Add (new Order
{
CustomerId = new Guid(reader["CustomerId"].ToString()),
OrderDate = DateTime.Parse(
reader["OrderDate"] .ToString()),
Id = new Guid(reader["Id"].ToString())
});
}
}
}
return orders;
}

Code snippet OrderRepository.cs in the project ASPPatterns.Chap7.QueryObject

Using an Object Relational Mapper | 225

The orderRepository calls the TranslateInto extension method on the Query Object to populate
an ADO.NET command object. When the command object is populated with the SQL statement,
the command is executed and a collection of orders is generated and returned to the caller.

Those of you with a keen eye have probably noticed the similarity between the Query Object pattern
and LINQ. The system.Ling.Expressions namespace is an implementation of a Query Object
pattern, and under the covers LINQ to SQL works in a very similar manner to the framework you
have created.

To see the code working, you need to download the source code that accompanies this book. It con-
tains a host of unit tests that verify the behavior of the Query Object implementation.

USING AN OBJECT RELATIONAL MAPPER

Traditional Microsoft developers have built their own DAL by hand to map the business objects to
their corresponding database tables. There’s nothing inherently bad about this; it’s just that it can be
a little, dare I say, boring? Not only that, but hand-rolling your own DAL can be error prone, because
ADO.NET is not type safe, and it can be difficult to maintain when changes are needed in the schema
of the application as similar code is duplicated. With large projects, the amount of plumbing code
needed can quickly engulf the project, and developers can lose sight of the end goal — that is, getting
the business processes and logic right — because of hours spent writing stored procedures and low-
level ADO.NET objects.

The role of an object relational mapper (ORM) is to bridge the gap between the relational model (the
database) and the object-oriented model. This problem is often referred to as the impedance mismatch.
Using mapping files or attributes on a business object, you can use an ORM framework to persist
business objects to the database and retrieve them simply via the ORM framework’s API with no or
little SQL needed.

You will now look at two of the popular ORM:s for the .NET framework.

NHibernate

NHibernate is a port of the popular open source Hibernate framework for Java. Hibernate has been
around for years, and it’s a proven and robust piece of software. ORM has had a slow take-up in the
NET world, but with the release of LINQ to SQL and the beta of the Entity Framework, many devel-
opers are starting to see the benefit of automating their DAL. One of the best features of NHibernate
is the support for persistence ignorance; this means that your business objects don’t have to inherit
from base classes or implement framework interfaces. NHibernate uses an instance of an ISession as
its DataContext; it is similar to the DataContexts of LINQ to SQL and the Entity Framework in that
it acts as your persistence manager and gateway into the database, allowing you to query against it,
as well as saving, deleting, and adding entities. There are a number of ways to map business objects
to database tables in NHibernate. One of the most popular is via an XML configuration file (shown
in Figure 7-6), but attributes and a fluent code mapping option are also available.

226 | CHAPTER7 THE DATA ACCESS LAYER

Data
Store | Orders Orderltems
Table Table

L\ /

XML Mapping\Metq Data

\V

POCO Entities and
Value Objects

Ord | | Address
/ Entity Componet

[\
Orderltems Shipping
Entity Courier
FIGURE 7-6

For a more in-depth introduction to NHibernate, read the book titled NHibernate in Action by Pierre
Kuate et al., or my Wrox Blox, “NHibernate with ASP.NET Problem Design Solution.”

MS Entity Framework

The Entity Framework is Microsoft’s enterprise-level ORM. It differs from NHibernate in that it
maps business entities to far more complex or unusual relational data models. This is because of
the three layers of mapping, which you will learn about as you step through a simple exercise in a
moment. The Entity Framework’s strength lies in the mapping of relational data models that don’t
have a one-to-one mapping to the business model, as shown in Figure 7-7.

-
Data
Store

Store Schema Definition Language (SSDL)

Employees | | Office Contains tables, view and stored
Table Table procedures modelled in SSDL
/
\ /

Mapping Specificgfion Language (MSL)

The mapping between the conceptual
and the logical layer

/ A\
Conceptual Schema\f{efinition Language (CSDL)
Manager | | Employee Entities, Relationships,
Entity Entity EntitySets

FIGURE 7-7

Using an Object Relational Mapper | 227

For a more in-depth look at the MS Entity Framework, read Programming Entity Framework by
Julia Lerman.

ORM Code Example

To demonstrate the amount of work an ORM can save you, you will build a simple application that
utilizes both NHibernate and Entity Framework as part of a Repository layer. The business code
will be able to use either Repository without needing to alter any code. Furthermore, a pure ADO.
NET version of the Repository supporting all the patterns you have looked at will be included in the
code download that accompanies this book so that you can evaluate the amount of work required to
build your own ORM rather than use an existing framework.

The application you will be building is based on the domain of a library. Figure 7-8 shows the actors
and the use cases that the system will satisfy.

Within the system, members can be added, books can be added, and members can loan and return
books. The only business rule is that a book cannot be loaned out to more than one member at any
one time. This domain model and the related business rules have been kept simple so that you can

focus on how to use NHibernate and Entity Framework as a Repository within your enterprise
ASP.NET application.

Library Domain Model Library System

For this coding exercise, you need to use Visual
Studio 2010 because it supports Entity Framework 4,
which at the time of writing was in its beta state. Loan a Book

Create a new solution named ASPPatterns. Chap7
.Library and add the following C# class libraries:

> ASPPatterns.Chap7.Library Member Return a Book

.Infrastructure
ASPPatterns.Chap7.Library.Model

> ASPPatterns.Chap7.Library

.Repository.EF
P Y Add a Book

» ASPPatterns.Chap7.Library

.Repository.NHibernate

(o)
—
()

Add a Book Title

> ASPPatterns.Chap7.Library.Services

Add a new web application project to the solution

named ASPPatterns.Chap7.Library.UI.Web. Librarian
You need to add the following references to each of Add a Member
the projects:

> Right-click on the AsPPatterns.Chap7
.Library.Model project and add a reference =~ FIGURE 7-8
to the Infrastructure project.

228 | CHAPTER7 THE DATA ACCESS LAYER

> Right-click on the ASPPatterns.Chap7.Library.Repository.EF project and add a refer-
ence to the Infrastructure project and the Model project.

> Right-click on the ASPPatterns.Chap7.Library.Repository.NHibernate project and add
a reference to the Infrastructure project and the Model project.

> Right-click on the AsPPatterns.Chap7.Library.Services project and add a reference to
the Infrastructure project and the Model project.

> Right-click on the AsPPatterns.Chap7.Library.UTI.Web project and add a reference to all
the class library projects in the solution.

Before you begin to design the domain model that will rep- [Soiution Explorer v 0 x
resent the library domain, you need to set up the infrastruc- | =ieal 3 514 1@

. ? Sclution 'ASPPatterns.Chap? Library® (6 projects)
ture concerns. Luckily, you can reuse the set of classes you 2B A Pinaing bbb

created for the Query Object pattern and the Unit of Work b Propaies
. . . p [References
pattern exercises earlier in the chapter. Copy the Query - DOy
folder from within the ASPPatterns.Chap7.QueryObject i]l ?rfferjﬂuﬂerm'-cs
. .] Crtenon.cs
.Infrastructure project and add it to the AsPratterns &) NamedQueryFactory.cs
.Chap7.Library.Infrastructure projects. Next, cre- ﬂ g"*”ﬂyc""““'“
. . = ucry,cs
ate a UnitofWork folder within the ASPPatterns.Chap7) QueryName.cs
. : 4] QueryOperaturcs
.Library.Infrastructure project and copy all the files R i
from ASPPatterns.Chap7.UnitOfWork.Infrastructure. 4 UnitOfWork.cs
Y d d h h . h '-'ﬂ UnitOtWorkRepository.cs
ou need to update the namespaces so they start wit) UntOfWorkcs
ASPPatterns.Chap7.Library instead of ASPPatterns] IaggregateRoot cs
. . . » |30 ASPPatterns.Chap7.Library.Madel
.Chap7.QueryObject/UnitofwWork. Your solution should . (7 ASPPatters Chap? Library.Repository.£F

d m ASPPatterns.Chap?.Library. Repository. Nl libemate
(5] AspPatterns Chap? Librry Services
, [# ASPPatterms.Chap.Library. ULWeb

now resemble Figure 7-9.

I have moved the IaggregateRoot interface into the root
of the Infrastructure project because it’s not intrinsi- A solution Explorer |t
cally tied with the Unit of Work operations. FIGURE 7-9

With the infrastructure concerns taken care of, you can work on the domain model for the library
system. Figure 7-10 shows the class diagram for the library domain model.

There will be a matching Repository for each of the aggregate roots (the classes that implement the
IAggregateRoot interface.

The first class you need to create is BookTitle. Add this class to the Model project with the code
listing that follows:

using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model

{
public class BookTitle : IAggregateRoot

{
public string ISBN { get; set; }

public string Title { get; set; }

Using an Object Relational Mapper | 229

9 TAygregaleRool

BookTitle 3
Class
= Properties
= men
= Titke
= Title
9 TAyyregaleRool
Book &
l
e 7 Book
| = Properties k
3‘ OnloanTe g
| \
E D\ggrclgmkool
| Member o) Loars ®
Class F Loans Class
= Propeities = Propeities
ZF Firsthlame B Member ZF DateForReturn
e ¢} . o
B LastMame B LoanDate
& Methads ' RetumDate
@ Canloan = Methods
4% TindCurrentOut... % HasNolBeenRetumed
@ Loan ¥ MarkAsReturned
¥ Return —_—
FIGURE 7-10

The BookTitle represents the title information for a book, such as the IsBN and Title. If you wanted
to expand on this model, you could add an author attribute to the BookTit1le.

The entity that will represent the book that a member can loan out is the Book class. Add this to the
Model project with the code as displayed here:

using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model
{
public class Book : IAggregateRoot
{
public Guid Id { get; set; }

public virtual BookTitle Title { get; set; }

public virtual Member OnLoanTo { get; set; }

The onLoanTo property is null if it is not currently on loan; otherwise, it contains the Member
that the book is on loan to at the current time. Notice that the BookTitle and Member properties of
the Book class have been marked as virtual to allow Entity Framework and NHibernate to create

230 | CHAPTER7 THE DATA ACCESS LAYER

proxies for these properties to support Lazy Loading. The Lazy Loading and Proxy patterns were
discussed earlier in this chapter.

The next class to create is the Member class. This class represents the Member entity and contains
some logic to enable the loaning and returning of books. It is a valid argument to state that a mem-
ber doesn’t loan a book herself and that a librarian would perform a loan transaction; however, to
keep the sample simple, leave this functionality associated with a member.

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model

{
public class Member : IAggregateRoot

{
public Guid Id { get; set; }

public string LastName { get; set; }
public string FirstName { get; set; }
public virtual IList<Loan> Loans { get; set; }

public void Return (Book book)
{

Loan loan = FindCurrentOutstandingLoanFor (book) ;

if (loan != null)
{
loan.MarkAsReturned() ;
book.OnLoanTo = null;
}
else
throw new ApplicationException (String.Format (
"Cannot return book '{0}'. Member '{1}'"
+ " does not have this book on loan.",
book.Id.ToString(), this.Id.ToString()));

private Loan FindCurrentOutstandingLoanFor (Book book)

{
return Loans.FirstOrDefault
(1 => (1.Book.Id == book.Id && 1.HasNotBeenReturned()));

public bool CanLoan (Book book)
{

return book.OnLoanTo == null;

public Loan Loan (Book book)
{

Using an Object Relational Mapper | 231

Loan loan = default(Loan);

if (CanLoan (book))

{
loan = LoanFactory.CreateLoanFrom(book, this);
Loans.Add(loan) ;

}

else

throw new ApplicationException(String.Format (
"Cannot loan book '{0}'. Book is on loan to member '{1}'",
book.Id.ToString(), book.OnLoanTo.Id.ToString()));

return loan;

Here’s a rundown of each of the methods of the Member class that contains business logic:

> canLoan: This is a simple method that establishes whether the Book attempting to be loaned
is in fact on loan to a Member already.

» Loan: This method first establishes that a Book can be loaned. If all is well, a Loan is created
using the LoanFactory. You will create both the L.oan and the LoanFactory shortly. If the
Loan is already out with another member, an exception is thrown.

> FindCurrentOutstandingLoanFor: This method returns the outstanding L.oan for a given

Book.

> Return: This method first obtains the Loan that relates to the Book trying to be returned. If a
Loan exists, it is marked as returned, and the onLoanTo property of the Book is set to null. If
the Book cannot be returned, an exception is thrown because this is an exceptional event.

The next class to create is the Loan class, which the Member class referenced already. Create the Loan
class and update it with the following code listing:

using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model

{

public class Loan

{
public

public
public
public
public
public

public

Guid Id { get; set; }

DateTime LoanDate { get; set; }
DateTime DateForReturn { get; set; }
DateTime? ReturnDate { get; set; }
virtual Book Book { get; set; }
Member Member { get; set; }

bool HasNotBeenReturned ()

232 | CHAPTER7 THE DATA ACCESS LAYER

return ReturnDate == null;

public void MarkAsReturned()
{

ReturnDate = DateTime.Now;

The Loan class is simple. Again, the Book property has the virtual attribute defined to enable Lazy
Loading;:

public static class LoanFactory
{

public static Loan CreateLoanFrom(Book book, Member member)

{
Loan loan = new Loan();
loan.Book = book;
loan.Member = member;
loan.LoanDate = DateTime.Now;
loan.DateForReturn = DateTime.Now.AddDays (7) ;
return loan;

In this implementation of the library domain model, there are no business rules or validation check-
ing on the domain entities. This functionality has been left out to keep the sample as simple as pos-
sible. For information on how to add validation to your domain entities, please check the case study
which starts on Chapter 10.

The next three classes define the Repository interfaces for each of the aggregate roots. Add

three interfaces to the Model project named IBookRepository, IBookTitleRepository, and
IMemberRepository. The code for these Repositories matches the contract defined for a Repository
that the beginning of this chapter introduced:

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Model
{
public interface IBookRepository
{
void Add(Book book) ;
void Remove (Book book) ;
void Save (Book book) ;

Book FindBy (Guid Id);

IEnumerable<Book> FindAll();
IEnumerable<Book> FindAll (int index, int count);

IEnumerable<Book> FindBy (Query query) ;

Using an Object Relational Mapper | 233

IEnumerable<Book> FindBy (Query query, int index, int count);

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Model
{
public interface IBookTitleRepository
{
void Add(BookTitle book) ;
void Remove (BookTitle book) ;
void Save (BookTitle book) ;

BookTitle FindBy(string ISBN);

IEnumerable<BookTitle> FindAll();
IEnumerable<BookTitle> FindAll (int index, int count);

IEnumerable<BookTitle> FindBy (Query query);
IEnumerable<BookTitle> FindBy (Query query, int index, int count);

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Model

{
public interface IMemberRepository

{
void Add(Member member) ;
void Remove (Member member) ;
void Save (Member member) ;

Member FindBy (Guid Id);

IEnumerable<Member> FindAll () ;
IEnumerable<Member> FindAll (int index, int count);

IEnumerable<Member> FindBy (Query query) ;
IEnumerable<Member> FindBy (Query query, int index, int count);

With the model and Repository interfaces in place, you can now turn your attention to the domain
services. The only service that is required is a LoanService. Add the Loanservice class to the
Model project and update it with the following code listing:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

234 | CHAPTER7 THE DATA ACCESS LAYER

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Model
{
public class LoanService
{
private IMemberRepository _memberRepository;
private IBookRepository _bookRepository;
private IUnitOfWork _unitOfWork;

public LoanService (IBookRepository bookRepository,
IMemberRepository memberRepository,
IUnitOfWork unitOfWork)

_bookRepository = bookRepository;
_memberRepository = memberRepository;
_unitOfWork = unitOfWork;

public Loan Loan(Guid memberId, Guid bookId)
{
Loan loan = default (Loan) ;
Book book = _bookRepository.FindBy (bookId) ;
Member member = _memberRepository.FindBy (memberId) ;

if (member.CanLoan (book))

{
member . Loan (book) ;
book.OnLoanTo = member;
_memberRepository.Save (member) ;
_bookRepository.Save (book) ;
_unitOfWork.Commit () ;

return loan;

public void Return (Guid bookId)

{
Book book = _bookRepository.FindBy (bookId) ;
Member member = book.OnLoanTo;

member .Return (book) ;
_memberRepository.Save (member) ;

_bookRepository.Save (book) ;
_unitOfWork.Commit () ;

Using an Object Relational Mapper | 235

The LoanService has two methods:
> 1oan: Coordinates the loaning of a Book

> Return: Coordinates the returning of a Book

The LoanService is injected with an instance of an Solution Explaies v o X
IBookRepository, an IMemberRepository, and an a2 E A e

; Sclution 'ASPPatterns.Chap? Library’ (6 projects)
i (G ASPPatterns.Chep.LibraryInfrastructure
a \’3 ASPPallerns.Chap?.Libnary. Model

IUnitOfWork via its constructor.

The Model project now resembles Figure 7-11.

G| Properlies
» [References
This completes all the code for the business logic relating g oy
. . . . 2] Bookltle.cs

to the domain of a lending library. In the next section, you @) RookRepositary.cs

: : : :] IBookTitleRepocitory.cc
W}H add a service layer. th.?t will expose an interface that 8 Membefepoibonye
will act as an entry point into the system. @ Loancs

4] LoanFactory.cs
4 ¥
4] LoanService.cs
é
H 4] Membercs
The Service Layer e
» \EASPParLems.Chap]’.liblal}'.Repusi‘toly.EF

The service layer as discussed in the previous chapter acts s el A5 Darreme Chauc iy bnochmeylidibesntes

as a facade or entry point into the system. The service [0 AspPatterns Chapl. Library.Services

layer you will build in this section will use some of messag- " A ASPRatioro Chag? L racy ML Web

ing patterns discussed in Chapter 6, so refer to that chapter — LESuion Belore B s
as you progress through this section. FIGURE 7-11

Create a new folder within the services project named views, and add a new class named BookTitle
view. This class, like all views in this section, is a data transfer object that will act as a specific view of
the domain. The BookTitle is a simple view; you can find the code for it in the following code listing:
public class BookTitleView
{

public string ISBN { get; set; }
public string Title { get; set; }

Add another three classes to the views folder: Bookview, Loanview, and Memberview. These are

views of the domain model that are required for this application. The code for the three classes is
shown here:

public class BookView

{
public string Id { get; set; }
public string ISBN { get; set; }
public string Title { get; set; }
public string OnLoanTo { get; set; }
}

public class LoanView

{
public string BookTitle { get; set; }
public string CopyId { get; set; }
public string LoanId { get; set; }

236 | CHAPTER7 THE DATA ACCESS LAYER

public string LoanDate { get; set; }
public string ReturnDate { get; set; }
public string DateForReturn { get; set; }
public string MemberName { get; set; }
public string MemberId { get; set; }
public bool StillOutOnLoan { get; set; }

}

public class MemberView

{
public string MemberId { get; set; }
public string FullName { get; set; }
public IList<LoanView> Loans { get; set; }

}

Add another new folder to the root of the services project named Mappers. The Mappers folder
contains all the extension methods to convert domain entities into view data transfer objects.

Four classes provide extension methods to each of the domain entities and enable them to be converted
to their corresponding views. Add four new classes to the Mappers folder named LoanExtension
Methods, MemberExtensionMethods, BookTitleExtensionMethods, and BookExtensionMethods.

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers
{
public static class LoanExtensionMethods
{
public static LoanView ConvertToLoanView (this Loan loan)
{
return new LoanView
{
BookTitle = loan.Book.Title.Title,
CopyId = loan.Book.Id.ToString(),
LoanId = loan.Id.ToString(),
MemberId = loan.Member.Id.ToString(),
MemberName = loan.Member.FirstName + ' ' + loan.Member.LastName,
LoanDate = loan.LoanDate.ToString(),
ReturnDate = loan.ReturnDate.ToString(),
DateForReturn = loan.DateForReturn.ToString(),
StillOutOnLoan = loan.HasNotBeenReturned()
Y

public static IList<LoanView> ConvertToLoanViews
(this IEnumerable<Loan> loans)

IList<LoanView> loanViews = new List<LoanView> () ;
foreach (Loan loan in loans)
{

loanViews.Add (loan.ConvertToLoanView()) ;

return loanViews;

Using an Object Relational Mapper | 237

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers
{
public static class MemberExtensionMethods
{
public static MemberView ConvertToMemberView (this Member member)
{
return new MemberView
{
FullName = member.FirstName + ' ' + member.LastName,
MemberId = member.Id.ToString(),
Loans = GenerateLoanViewsFrom(member.Loans)
Y

private static IList<LoanView> GenerateLoanViewsFrom
(IEnumerable<Loan> loans)

if (loans == null)
return new List<LoanView> () ;
else
return loans.ConvertToLoanViews () ;

public static IList<MemberView> ConvertToMemberViews (
this IEnumerable<Member> members)

IList<MemberView> memberViews = new List<MemberView> () ;
foreach (Member member in members)
{

memberViews.Add (member.ConvertToMemberView()) ;

return memberViews;

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers

{
public static class BookTitleExtensionMethods

238 | CHAPTER7 THE DATA ACCESS LAYER

public static BookTitleView ConvertToBookTitleView

(this BookTitle bookTitle)

return new BookTitleView

ISBN = bookTitle.ISBN,
Title = bookTitle.Title

public static IList<BookTitleView> ConvertToBookTitleViews

(this IEnumerable<BookTitle> bookTitles)

IList<BookTitleView> bookViews = new List<BookTitleView> () ;
foreach (BookTitle bookTitle in bookTitles)

bookViews.Add (bookTitle.ConvertToBookTitleView()) ;

return bookViews;

{
{
{
}i
}
{
{
}
}
}

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers

{

public static class BookExtensionMethods

public static BookView ConvertToBookView (this Book book)

return new BookView

Id = book.Id.ToString(),

ISBN = book.Title.ISBN,

Title = book.Title.Title ,

OnLoanTo = FormatMemberNameFrom (book.OnLoanTo)

private static string FormatMemberNameFrom (Member member)

else

{
{
{
}i
}
{
if
}

(member !'= null)
return String.Format ("{0} {1}", member.FirstName, member.LastName) ;
return "";

public static IList<BookView> ConvertToBookViews

(this IEnumerable<Book> books)

Using an Object Relational Mapper | 239

IList<BookView> bookViews = new List<BookView> () ;
foreach (Book book in books)

{
bookViews.Add (book.ConvertToBookView ()) ;

return bookViews;

Add a third folder to the root of the services project named Messages. This folder will contain
the message objects that are exchanged between the client and the service layer. The message and
request-response pattern are covered in Chapter 6.

All response messages inherit from a common base class named ResponseBase that provides common
behavior. This behavior is in the form of a Boolean flag property named Success that lets clients know
if their request was handled without error. The Message property contains information on the state of
the response. If there was an error while processing a request, the Message would contain details on
the error (not the exception details). If the request was successfully processed, the Message could be
empty or contain some kind of confirmation message.

namespace ASPPatterns.Chap7.Library.Services.Messages
{

public abstract class ResponseBase

{
public bool Success { get; set; }
public string Message { get; set; }

Each business use case is exposed as a method on the service class, and each business use case has

a corresponding request and reply object. These objects are simple data transfer objects that make
interacting with the service layer from the client simple and consistent. All data required for a busi-
ness use case is contained within the request object via properties. The response objects inherit from
the ResponseBase and contain extra properties if the client expects a return value.

For the business case of adding a book, create a pair of request-response classes within the Messages
folder named AddBookRequest and AddBookResponse, as seen here:

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class AddBookRequest

{
public string ISBN { get; set; }

namespace ASPPatterns.Chap7.Library.Services.Messages
{
public class AddBookResponse : ResponseBase

{

}

240 | CHAPTER7 THE DATA ACCESS LAYER

For the business case of adding a book title, create a pair of request-response classes within the
Messages ﬁﬂdernanKxiAddBookTitleRequestznuiAddBookTitleResponse,hkethﬁ:

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class AddBookTitleRequest

{
public string ISBN { get; set; }

public string Title { get; set; }

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class AddBookTitleResponse : ResponseBase

{
}

For the business case of adding a member, create a pair of request-response classes within the Messages
folder named AddMemberRequest and AddMemberResponse, as shown here:

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class AddMemberRequest

{
public string FirstName { get; set; }

public string LastName { get; set; }

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class AddMemberResponse : ResponseBase

{
}

For the business case of finding a book or books, create a pair of request-response classes within the
Messages folder named FindBooksRequest and FindBooksResponse,hkeso:

namespace ASPPatterns.Chap7.Library.Services.Messages

{

public class FindBooksRequest

{
public string Id { get; set; }
public string ISBN { get; set; }
public bool All { get; set; }

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages

{

public class FindBooksResponse : ResponseBase

Using an Object Relational Mapper | 241

public IEnumerable<BookView> Books { get; set; }

For the business case of finding a book title or titles, create a pair of request-response classes within
the Messages folder named FindBookTitlesRequest and FindBookTitlesResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class FindBookTitlesRequest

{
public string ISBN { get; set; }

public bool All { get; set; }

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class FindBookTitlesResponse : ResponseBase

{
public IEnumerable<BookTitleView> BookTitles { get; set; }

For the business case of finding a member, create a pair of request-response classes within the Messages
folder named FindMemberRequest and FindMemberResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages

{

public class FindMemberRequest

{
public string MemberId { get; set; }

public bool All { get; set; }

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages

{

public class FindMembersResponse : ResponseBase

{
public IEnumerable<MemberView> MembersFound { get; set; }

For the business case of loaning a book, create a pair of request-response classes within the Messages
ﬁﬂdernanuxiLoanBookRequest and.LoanBookResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class LoanBookRequest

{

242 | CHAPTER7 THE DATA ACCESS LAYER

public string MemberId { get; set; }
public string CopyId { get; set; }

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages

{

public class LoanBookResponse : ResponseBase

{

public LoanView loan { get; set; }

For the business case of returning a book, create a pair of request-response classes within the
Messages folder named ReturnBookRequest and ReturnBookResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages

{
public class ReturnBookRequest

{
public string CopyId { get; set; }

namespace ASPPatterns.Chap7.Library.Services.Messages
{

public class ReturnBookResponse : ResponseBase
{
}

The final class to create within the services project is the LibraryService class. Because you can
perform only a handful of operations at this library, it makes sense to group them into one library
service class. Add a new class to the root of the services project named LibraryService, and
update it with the code listing shown here:

using ASPPatterns.Chap7.Library.Services.Messages;

\) using ASPPatterns.Chap7.Library.Services.Mappers;
using ASPPatterns.Chap7.Library.Services.Views;
Available for using ASPPatterns.Chap7.Library.Model;
daﬂ:g:&:n using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Services
{
public class LibraryService
{
private IUnitOfWork _uow;
private IBookRepository _bookRepository;
private IBookTitleRepository _bookTitleRepository;
private IMemberRepository _memberRepository;
private LoanService _loanService;

public LibraryService (IBookTitleRepository bookTitleRepository,

Using an Object Relational Mapper | 243

IBookRepository bookRepository,
IMemberRepository memberRepository,
IUnitOfWork unitOfWork)

_uow = unitOfWork;
_memberRepository = memberRepository;
_bookTitleRepository = bookTitleRepository;
_bookRepository = bookRepository;
_loanService =
new LoanService (_bookRepository, _memberRepository, _uow);

public AddBookResponse AddBook (AddBookRequest request)
{

AddBookResponse response = new AddBookResponse () ;

BookTitle bookTitle = _bookTitleRepository.FindBy(request.ISBN) ;
Book book = new Book();

book.Title = bookTitle;

book.Id = Guid.NewGuid() ;

_bookRepository.Add (book) ;

_uow.Commit () ;

response.Success = true;
return response;
public AddBookTitleResponse AddBookTitle (AddBookTitleRequest request)
{ AddBookTitleResponse response = new AddBookTitleResponse();
BookTitle bookTitle = new BookTitle();
bookTitle.ISBN = request.ISBN;

bookTitle.Title = request.Title;

_bookTitleRepository.Add (bookTitle) ;
_uow.Commit () ;

response.Success = true;

return response;

public FindBooksResponse FindBooks (FindBooksRequest request)
{

FindBooksResponse response = new FindBooksResponse();

IEnumerable<Book> books = _bookRepository.FindAll();
IEnumerable<BookView> bookViews = books.ConvertToBookViews () ;

response.Books = bookViews;

return response;

244 | CHAPTER7 THE DATA ACCESS LAYER

}
public FindBookTitlesResponse FindBookTitles (FindBookTitlesRequest request)
{
FindBookTitlesResponse response = new FindBookTitlesResponse();
IList<BookTitleView> bookTitles = new List<BookTitleView>();
if (request.All)
{
bookTitles =
_bookTitleRepository.FindAll () .ConvertToBookTitleViews () ;
}
else
{
BookTitle bookTitle = _bookTitleRepository.FindBy (request.ISBN) ;
bookTitles.Add (bookTitle.ConvertToBookTitleView()) ;
}
response.BookTitles = bookTitles;
response.Success = true;
return response;
}
public LoanBookResponse LoanBook (LoanBookRequest request)
{
LoanBookResponse response = new LoanBookResponse() ;
Loan loan = _loanService.Loan
new Guid(request.MemberId), new Guid(request.CopyId));
if (loan !'= null)
{
response.loan = loan.ConvertToLoanView() ;
response.Success = true;
}
else
{
response.Success = false;
}
return response;
}

public ReturnBookResponse ReturnBook (ReturnBookRequest request)
{
ReturnBookResponse response = new ReturnBookResponse();

_loanService.Return(new Guid(request.CopyId));

return response;

Using an Object Relational Mapper | 245

public AddMemberResponse AddMember (AddMemberRequest request)
{

AddMemberResponse response = new AddMemberResponse() ;

Member member = new Member () ;
member.FirstName = request.FirstName;
member.LastName = request.LastName;
member.Id = Guid.NewGuid() ;

_memberRepository.Add (member) ;
_uow.Commit () ;

return response;

public FindMembersResponse FindMembers (FindMemberRequest request)
{
FindMembersResponse response = new FindMembersResponse() ;
IList<MemberView> members = new List<MemberView> () ;

if (request.All)
{
members = _memberRepository.FindAll () .ConvertToMemberViews () ;
}
else
{
Member member =
_memberRepository.FindBy (new Guid(request.MemberId)) ;
members .Add (member . ConvertToMemberView ()) ;

response.MembersFound = members;
response.Success = true;

return response;

Code snippet LibraryService.cs in the project ASPPatterns.Chap7.Library.Services

The LibraryService class contains eight methods that map to the eight business cases related to the
Library domain. All eight methods are straightforward and coordinate the retrieval or persistence of
an entity to the corresponding Repository. The LoanBook and ReturnBook methods are slightly dif-
ferent in that they use a LoanService, which is a domain service to coordinate the returning or loaning
of a book. The coordination of this activity is a domain concern.

All dependencies in the form of Repositories and the Unit of Work implementation are injected into
the service class via its constructor. This is a form of Dependency Injection, which Chapter 5 covered.

Again, there is no validation of the request messages; this has been omitted to keep the sample concise.
In a real-world application, you should validate all requests.

246 | CHAPTER7 THE DATA ACCESS LAYER

The services project now resembles Figure 7-12.

Solution Explorer *AXx

L S EALE
')_2 Sclution 'ASPPatterns.Chap? Library’ (6 projects)
b |G ASPPatterns.Chap?.LibraryInfrastructure
[;E ASPPallerns.ChepT Libiary.Model
[\EASPParrems.Chap]’.l.iblaly.Repositoly.EF
[@ASPParDems.Chap]’.lihlaly.Reposi‘tow.NHihemaTe
Fl @ ANPPatterns.Chapl Library Services
[Zd| Properties
(=3l References
« [& Mappers
:él DookDxtensionMethods.cs
4] DookTitleDxtensionMethods.cs
4] LuanExtensionMethods.cs
’é] MemberBxtensionMethods.cs
4 [y Messages
&) AddHonkRequest.cs
] AddBookResponse.cs
4] AddBookTitleRequest.cs
4] AddBookTitlcResponse.cs
:é' AddMemberRequest.cs
‘é] AddMembeResponse.cs
4] FindBooksRequest.cs
Q FindBooksResponse.cs
ﬁ FindBookTitlesRequest.cs
2] hindBook | tesResponse.cs
&) FindMemberRequest.cs
4] FindMemberzResponse.cs
‘4] LoanBookRequest.cs
:é] LoanDookResponse.cs
Q RespunseBase.cs
’=-] ReturnBookRequest.cs
%] ReturnBookResponse.cs
4 [Views
2] BonktieView.cs
&) BookView.cs
2] LoanView.cs
4] MemberView.cs
‘Q__liblnr)r__Scwice,cs

o [ASPPatterm.Chap7.Library. ULWel

E

ﬂ RLINGL RSN Iy Team Explorer &2 Server Explorer

FIGURE 7-12

With the Domain Model, supporting infrastructure code (Unit of Work pattern and Query Object
pattern), and service layer in place, you can work on the persistence concerns, starting with the
database and continuing with the NHibernate and Entity Framework Repository implementations.

Database

From within the UT.web web application project, right-click and select Add => New Item from
the pop-up menu. Then select the Data tab and choose SQL Server Database. Name the database
Library.mdf.

Construct the library database schema as shown in Figure 7-13.

Using an Object Relational Mapper | 247

t_Books t_Loans
Caearn Hame Data Type Allerw Mully e T— Data Type P
¥ N varchar{S3) BT uniqueidentifies
Tale mae S Copyld unrquendertiie:
Membedd uniqueidentifies
LeanDite datebime
i RetumDate datetime v
DateForfistum datetime
i
et el
t_Copies 4
Column Hame Data Type Alow il
T W wnguniteediier y
Memberid unigueidentiier 22
RocklSBN waechai(30] £ W
Kt
t Members
Celuren Hame. Dsts Type Ao Nulh
T uniqueidentifies
Furithlaene ervarchar{30)
Lasthame mvarchar{50}

NHibernate Repository

To work with NHibernate, you need the framework. Navigate to www.nhibernate.org and click on
the latest release; at the time of writing, this is version 2.0.1.GA. You are redirected to SourceForge.
Once there, click Download to display all the downloads for this release. Select the project named, at
the time of this writing, NHibernate-2.1.0.Beta2-bin.zip. When this download has completed,
extract all the containing folders and files into a new folder named 1ib that you should create within
the root of the solution folder. When all files have been extracted, switch back to Visual Studio, and

from the NHibernateRepository project, add a reference to the following files from the 1ib folder:

> TIesi.Collections
> LinFu.DynamicProxy

> log4dnet

> NHibernate

> NHibernate.ByteCode.LinFu

The first task is to create files that map the database tables and columns to your domain entities and

properties, as defined in the Model project.

Add a new folder named MappingFiles, and add to it a new XML file named BookTitle.hbm.xml.
The XML file is meta data whose purpose is to inform the NHibernate framework how your domain
model and the data model relate to each other. There are two other ways to add meta data: one is
via a fluent interface in code, and the other is via attributes in the entity class. For this example, you
will be using an XML mapping file.

The listing that follows shows the meta data for the BookTitle.hbm.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
namespace="ASPPatterns.Chap7.Library.Model"

248 | CHAPTER7 THE DATA ACCESS LAYER

assembly="ASPPatterns.Chap7.Library.Model">

<class name="ASPPatterns.Chap7.Library.Model.BookTitle"
table="t_Books" lazy="false" >

<id name="ISBN" column="ISBN" type="String">
<generator class="assigned" />
</id>

<property name="Title">
<column name="Title" sgl-type="nvarchar(50)" not-null="true" />
</property>

</class>

</hibernate-mapping>

After you have updated the BookTitle.hbm.xml file to match the preceding listing, you need to change
the build action for the file. Right-click on the class to bring up its properties from the context-sensitive
menu. Once the Properties dialog is displayed, change the build action to Embedded Resource. This
ensures that the XML data is embedded when the assembly is built. All the mapping files need to have
their build actions changed to Embedded Resource.

The next mapping file is for the Book entity. Add a new XML file to the MappingFiles folder named
Book.hbm.xml, and update it with the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
namespace="ASPPatterns.Chap7.Library.Model"
assembly="ASPPatterns.Chap7.Library.Model">

<class name="ASPPatterns.Chap7.Library.Model.Book" table="t_Copies" lazy="false">

<id name="Id" column="Id" type="guid">
<generator class="guid" />
</id>

<many-to-one name="Title"
class="BookTitle"
column="BookISBN"
not-null="true"/>

<many-to-one name="OnLoanTo"
class="Member"
column="MemberId" />

</class>
</hibernate-mapping>

Add a third XML file for the Loan entity named Loan . hbm.xml with the markup displayed here:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
namespace="ASPPatterns.Chap7.Library.Model"

Using an Object Relational Mapper | 249

assembly="ASPPatterns.Chap7.Library.Model">

<class name="ASPPatterns.Chap7.Library.Model.Loan"
table="t_Loans" lazy="false" >

<id name="Id" column="Id" type="guid">
<generator class="guid" />
</id>

<many-to-one name="Book"
class="Book"
column="CopyId" />

<property name="LoanDate">
<column name="LoanDate" sgl-type="datetime" not-null="true" />
</property>

<property name="DateForReturn">
<column name="DateForReturn" sgl-type="datetime" not-null="true" />
</property>

<property name="ReturnDate">
<column name="ReturnDate" sgl-type="datetime" not-null="false" />
</property>

<many-to-one name="Member"
class="Member"
column="MemberId" not-null="false" />
</class>
</hibernate-mapping>

Finally, add an XML file for the Member entity with the name Member . hbm.xm1 and the following
markup:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
namespace="ASPPatterns.Chap7.Library.Model"
assembly="ASPPatterns.Chap7.Library.Model">

<class name="ASPPatterns.Chap7.Library.Model .Member"
table="t_Members" lazy="false">

<id name="Id" column="Id" type="guid">
<generator class="guid" />
</id>

<property name="FirstName">
<column name="FirstName" sgl-type="nvarchar (50)" not-null="true" />
</property>

<property name="LastName">
<column name="LastName" sqgl-type="nvarchar (50)" not-null="true" />
</property>

<bag name="Loans" inverse="true" cascade="all" lazy="true" >
<key column="MemberId"/>

250

| CHAPTER7 THE DATA ACCESS LAYER

<one-to-many class="Loan"></one-to-many>
</bag>

</class>

</hibernate-mapping>

Again, ensure you have changed each of the file’s build action to Embedded Resource so that the
NHibernate framework can find the mapping meta data.

I won’t go into detail about the syntax of these files because this is not a book on using NHibernate,
but it should be easy to work out how NHibernate maps columns and tables to business entities and
properties. For a deeper insight into the world of NHibernate, check out the many online resources
or the book NHibernate in Action.

Now that you have configured how your business entities map to your data tables, you can begin pro-
gramming the NHibernate Repository. Create a folder within the root of the NHibernateRepository
project named SessionStorage; this contains all the code necessary to store a Unit of Work, also
known as a session in NHibernate. You will store instances of a session differently depending on
whether you are working within a web application or a Windows smart client; for this reason, you
will create an interface to communication with a session container. Create a new interface named
ISessionStorageContainer with the following contract:

using NHibernate;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage
{
public interface ISessionStorageContainer

{
ISession GetCurrentSession();
void Store(ISession session);

Because you will be working within a web environment that has an HTTP context, you require a
session container that utilizes the HTTP item’s collection to store NHibernate sessions. Add a new
class that implements the TSessionStorageContainer interface named HttpSessionContainer
with the following code listing:

using global: :NHibernate;
using System.Web;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage
{

public class HttpSessionContainer : ISessionStorageContainer

{

private string _sessionKey = "NHSession";
public ISession GetCurrentSession/()
{

ISession nhSession = null;

if (HttpContext.Current.Items.Contains (_sessionKey))

Using an Object Relational Mapper | 251

nhSession = (ISession)HttpContext.Current.Items|[_sessionKey];

return nhSession;

public void Store(ISession session)

{
if (HttpContext.Current.Items.Contains(_sessionKey))
HttpContext.Current.Items|[_sessionKey] = session;
else
HttpContext.Current.Items.Add(_sessionKey, session);
}

This class stores and retrieves NHibernate sessions from the HTTP items collection. For completeness,
you can create a smart client version for use in non-web scenarios. Add a new class to the session
Storage ﬁﬂdernannxiThreadSessionStorageContainerthatakoinﬂﬂenwntstheISessionStorage
Ccontainer. The code for this class is shown here:

using global: :NHibernate;
using System.Collections;
using System.Threading;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage

{

public class ThreadSessionStorageContainer : ISessionStorageContainer

{

private static readonly Hashtable _nhSessions = new Hashtable();
public ISession GetCurrentSession/()
{

ISession nhSession = null;

if (_nhSessions.Contains (GetThreadName ()))
nhSession = (ISession)_nhSessions[GetThreadName()];

return nhSession;

public void Store(ISession session)

{
if (_nhSessions.Contains (GetThreadName ()))
_nhSessions[GetThreadName ()] = session;
else
_nhSessions.Add (GetThreadName (), session);
}

private static string GetThreadName ()
{

return Thread.CurrentThread.Name;

252 | CHAPTER7 THE DATA ACCESS LAYER

This class retains sessions within a hash table using the current thread name as a key.

To obtain the best session container for your application, you will add a factory class that will be respon-
sible for creating and supplying a valid session container. Add a new class to the Sessionstorage folder
named SessionStorageFactory with the following listing:

using System.Web;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage
{

public static class SessionStorageFactory

{
public static ISessionStorageContainer _nhSessionStorageContainer;
public static ISessionStorageContainer GetStorageContainer ()
{
if (_nhSessionStorageContainer == null)
{
if (HttpContext.Current == null)
_nhSessionStorageContainer =
new ThreadSessionStorageContainer () ;
else
_nhSessionStorageContainer = new HttpSessionContainer();
}
return _nhSessionStorageContainer;
}
}

This sessionStorageFactory determines if an HTTP context exists. If so, an HttpSessionContainer
is created; otherwise, a ThreadSessionStorageContainer is used. Once the concrete implementation of
the ISessionStorageContainer interface is created, it is stored in a static variable named _nhSession
StorageContainer

With the ability to store sessions taken care of, you now need a way to create them so that you can
use NHibernate to persist and retrieve your business entities. Add a new class to the root of the
NHibernate project and name it SessionFactory. The code for this class follows:

using NHibernate;

using NHibernate.Cfg;

using System.Web;

using ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate
{

public class SessionFactory

{

private static ISessionFactory _SessionFactory;

private static void Init()

{

Using an Object Relational Mapper | 253

Configuration config = new Configuration();
config.AddAssembly ("ASPPatterns.Chap7.Library.Repository.NHibernate") ;

logédnet.Config.XmlConfigurator.Configure() ;
config.Configure();

_SessionFactory = config.BuildSessionFactory();

private static ISessionFactory GetSessionFactory ()

{
if (_SessionFactory == null)
Init();

return _SessionFactory;

private static ISession GetNewSession()

{

return GetSessionFactory () .OpenSession();

public static ISession GetCurrentSession/()

{
ISessionStorageContainer _sessionStorageContainer =
SessionStorageFactory.GetStorageContainer () ;

ISession currentSession = _sessionStorageContainer.GetCurrentSession();
if (currentSession == null)
{

currentSession = GetNewSession() ;
_sessionStorageContainer.Store (currentSession) ;

return currentSession;

Here’s a look at each method of this class.

>

Tnit: This method is called from the GetSessionFactory method only once. Within the Tnit,

you create an instance of NHibernate’s configuration class, called the configure method. It con-
figures NHibernate based on the application configuration file that you will define later in the
web.config file. You then add the assembly that contains the embedded mapping meta data.

Finally, you ask the configuration to build an instance of the ISessionFactory.

ISessionFactory: An ISessionFactory is typically created as a singleton object because
of the relatively expensive operation of creating it. One of the jobs of the sessionFactory is
to provide TSession instances. As mentioned before, the TSession is the main interface that

254 | CHAPTER7 THE DATA ACCESS LAYER

persists and retrieves business entities. Think of the TSession as your gateway to the database.
The NHibernate site defines it as the “persistence manager.”

> GetSessionFactory: The GetSessionFactory method is called and invokes the Init method
if it has not already done so.

> GetNewSession: The GetNewSession private method uses the GetSessionFactory to create
a new session to work with.

> GetCurrentSession: The GetCurrentSession method, which you will be using with the
implementations of the Repositories, creates a new session and stores it in the appropriate
session container, obtained from the SessionStorageFactory.

Now that you have configured NHibernate, you can start to use it. Add a new class to the root of the
NHibernate project named NHUnitOfwWork. This is NHibernate’s implementation of the Unit of Work
pattern that you defined in the Infrastructure project. The code for this class can be seen here:

using ASPPatterns.Chap7.Library.Infrastructure;
using NHibernate;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate

{
public class NHUnitOfWork : IUnitOfWork

{
public void RegisterAmended (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

SessionProvider.GetCurrentSession () .SaveOrUpdate (entity) ;

public void RegisterNew (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

SessionProvider.GetCurrentSession() .Save (entity) ;

public void RegisterRemoved (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

SessionProvider.GetCurrentSession() .Delete(entity);

public void Commit ()
{
using (ITransaction transaction =
SessionProvider.GetCurrentSession () .BeginTransaction())

try

{ transaction.Commit(); }
catch (Exception ex)

{

transaction.Rollback() ;

Using an Object Relational Mapper | 255

throw;

As the T1session interface implements the Unit of Work pattern discussed earlier in this chapter,

no changes will occur until a transaction is committed. Another pattern built into NHibernate is
Identity Map, which maintains a single instance of a business entity in the TSession no matter how
many times you retrieve it.

The Repository implementations are easy to create thanks to generics. You can create a base Repository
class using generics to provide all the functionality for all the Repositories. Create a new folder named
Repositories and add a new class to it named Repository, with the code listing shown here:

using NHibernate;

using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Infrastructure;

using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories

{
public abstract class Repository<T, EntityKey> where T : IAggregateRoot
{

private IUnitOfWork _uow;

public Repository (IUnitOfWork uow)
{

_uow = uow;

public void Add(T entity)
{

_uow.RegisterNew(entity, null);

public void Remove (T entity)

{

_uow.RegisterRemoved (entity, null);

public void Save(T entity)
{
_uow.RegisterAmended (entity, null);

public T FindBy (EntityKey Id)
{
return SessionProvider.GetCurrentSession() .Get<T>(Id);

public IEnumerable<T> FindAll ()

256 | CHAPTER7 THE DATA ACCESS LAYER

ICriteria CriteriaQuery =
SessionProvider.GetCurrentSession() .CreateCriteria (typeof (T));

return (List<T>)CriteriaQuery.List<T>();

}
public IEnumerable<T> FindAll (int index, int count)
{
ICriteria CriteriaQuery =
SessionProvider.GetCurrentSession () .CreateCriteria(typeof (T));
return (List<T>)CriteriaQuery.SetFetchSize (count)
.SetFirstResult (index) .List<T> () ;
}
public IEnumerable<T> FindBy (Query query)
{
ICriteria nhQuery = query.TranslateIntoNHQuery<T> () ;
return nhQuery.List<T>();
}
public IEnumerable<T> FindBy (Query query, int index, int count)
{
ICriteria nhQuery = query.TranslateIntoNHQuery<T> () ;
return nhQuery.SetFetchSize (count) .SetFirstResult (index) .List<T>();
}

You will build the QueryTranslator classes a little later, so don’t worry that your class can’t com-
pile at this stage. With the generic Repository base class in place, you can add the implementations.

Create three new classes within the Repositories folder named BookRepository, BookTitle
Repository, and MemberRepository: one for each of the interfaces defined in the Models project.
The code listing for these classes is shown here:

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
public class BookRepository : Repository<Book, Guid>, IBookRepository
{
public BookRepository (IUnitOfWork unitOfWork) : base(unitOfWork)
{1}

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;

Using an Object Relational Mapper | 257

using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
public class BookTitleRepository : Repository<BookTitle, string>,
IBookTitleRepository

public BookTitleRepository (IUnitOfWork unitOfWork) : base(unitOfWork)
{1}

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
public class MemberRepository : Repository<Member, Guid>, IMemberRepository
{
public MemberRepository (IUnitOfWork unitOfWork) : base (unitOfWork)
{1}

The final class to create to complete the NHibernate Repository is the QueryTranslator. This class
provides an extension method for the Query Object as defined in the Infrastructure project. Add
a new class for the QueryTranslator, and update it with the code listing that follows:

using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;

using NHibernate;

using NHibernate.Criterion;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
public static class QueryTranslator
{
public static ICriteria TranslateIntoNHQuery<T>(this Query query)
{

ICriteria criteria;

if (query.IsNamedQuery())
{
criteria = FindNHQueryFor (query) ;
}
else
{
criteria =
SessionProvider.GetCurrentSession () .CreateCriteria (typeof (T));

foreach (Criterion ¢ in query.Criteria)

{

| CHAPTER7 THE DATA ACCESS LAYER

global: :NHibernate.Criterion.ICriterion criterion;

switch (c.criteriaOperator)
{
case CriteriaOperator.Equal:
criterion = Expression.Eg(c.PropertyName, c.Value);
break;
case CriteriaOperator.LesserThanOrEqual:
criterion = Expression.Le(c.PropertyName, c.Value);
break;
default:
throw new ApplicationException("No operator defined");

if (query.QueryOperator == QueryOperator.And)
criteria.Add (Expression.Conjunction() .Add(criterion)) ;
else
criteria.Add (Expression.Disjunction() .Add(criterion)) ;
}

criteria.AddOrder (new Order (
query.OrderByProperty.PropertyName,
lquery.OrderByProperty.Desc)) ;
}

return criteria;

}

private static ICriteria FindNHQueryFor (Query query)

{
// No complex queries have been defined in this sample.
throw new NotImplementedException();

NHibernate has two interfaces for querying: TQuery and 1Criteria. The TQuery interface sup-
ports NHibernate’s own brand of SQL — HQL that queries using object syntax (that is, classes and
properties instead of SQL syntax tables and columns). The 1Criteria interface enables the query-
ing of entities in an object-oriented manner as well as querying by example. The QueryTranslator
class simply converts your query into an ICriteria instance ready for use with NHibernate.
NHibernate also supports native SQL for retrieving entities, so if you have a particularly complex
query, you can create a stored procedure or run the raw SQL from within NHibernate. These
queries would then be defined as Named Queries in the Query Object pattern so that the Query
Translator could use the FindNHQueryFor method to obtain an ICriteria instance.

To finish the NHibernate Repository, you need to update the web.config file from within the UT.web
web application project to include NHibernate configuration meta data. You can see this in the code
snippet that follows:

<configuration>

<configSections>

<! -- NHibernate Section -- >

<section name="hibernate-configuration"
type="NHibernate.Cfg.ConfigurationSectionHandler, NHibernate"/>

Using an Object Relational Mapper | 259

<! -- NHibernate Section End -- >
</configSections >

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
<session-factory name="NHibernate.Test">
<property name="connection.driver_class">
NHibernate.Driver.SglClientDriver</property>
<property name="connection.connection_string">
Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|Library.mdf;
Integrated Security=True;User Instance=True
</property>

<property name="adonet.batch_size">10</property>
<property name="show_sqgl">true</property>
<property name="dialect">
NHibernate.Dialect.MsSgl2005Dialect</property>
<property name="use_outer_join">true</property>
<property name="command_timeout">60</property>
<property name="query.substitutions">

true 1, false 0, yes 'Y', no 'N'</property>
<property name="proxyfactory.factory class">
NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
NHibernate.ByteCode.LinFu</property>
</session-factory>

</hibernate-configuration>

</configuration>

The Repository.NHibernate project now resembles Figure 7-14.

You will now create a version of the Repository using Microsoft’s Entity Framework.

Entity Framework Repository

Unlike NHibernate, Microsoft’s Entity Framework has a built-in graphical designer and wizard
step-by-step menu for configuring the model and database mapping. Other than that, NHibernate
and Entity Framework are similar, as you will see after you have built an Entity Framework reposi-
tory layer implementation in this section.

Create a new ADO.NET Entity Model by right-clicking on the Repository.EF project, selecting
Add New Item, and choosing the ADO.NET Entity Data Model item from the data submenu. Name
the model Library.edmx and click Add. To create your Entity Data Model, you are taken through
a series of steps from the Entity Data Model Wizard. The first step is to determine how you want

to create your model. Because you have already set up a database, you can select Generate from
Database, as shown in Figure 7-15.

The second step asks you to confirm the location of the database, as shown in Figure 7-16. By default,
the wizard should pick up the local database you created within the UT .web web application project.
Leave the default settings and the name of the connection string, and click Next.

260 | CHAPTER7 THE DATA ACCESS LAYER

| Sclution Explorer = 1

Gaf23lAale
Solution "ASPPatterns.Chap7 Library' (6 projects)
» (G ASPPatterns.ChapT.l ibrary Infrastructure
» () ASPPatterns.ChapT Library.Madel
5 i ASPPalleins.ChapT Libiary. Repusitory.EF
a (] ASPPatterns.Chap? Library.Repository.Nl libernate
v [Properties
= References
4 | MappingFiles
4] Book.hbmxml
=) BookTitle.hbmxmi
| pan.hbm.xml
=] Memherhbm.xmi
2 [Reposituries
4] DookRepository.cs
] DookTitleRepositary.cs
2] MemberRepository.cs
&) QueryTranslator.cs
’,:_J Repository.cs
4 [SessionStorage
\:.] HttpSessinnContainer.cs
4] SessinnStarageCantainer.cs
‘,ﬂ SessionSlorageFaclony.cs
4] ThieadSessionSlorageCunlainer.cs
& NHUnitOfWork.cs
) SessionFactory.cs
{5l ASPPatterns.Chap] Library Services
ASPPatterns.Chap/ Library.ULWeb |

Selution Explorer f o2
pl

FIGURE 7-14

r
Fntity Nata Model Wizard

Lb Choose Model Contents

Whial should e model conlain?

[P [mpty model

from
N database

N Generates the model fram a database. Classes are generated from the model when the project is compiled.
This wizard also lets you specify the database connection and database objects to include in the model.

L -

FIGURE 7-15

Using an Object Relational Mapper | 261

Entity Data Model Wizard [0 s

pr—
Lb Choose Your Data Connection

‘Which data connection should your application use t t to the d

[ibrary.md =] [tew Connection...

This connection string appears to contain sensitive data (for example. a password) that is required to
connect to the database. Storing sensitive data in the connection string can be a security risk. Do you want
Il toinclude this sens

itive data in the connection string?

! Mo, exclude sensitive data from the connection string. I'will set it in my application code.
| Yes, include the sensitive data in the connection string.
Entity connection string:
data-res://*/Library.cedl|res://*/Library sedi| -
res//*fLibrary. i 5 Data.SqlClient provider c ion string="Data Source=.

\SQLEXPRESS; AltachDbFilename="C\Projects\Wiox ASP.NET Design Pallerns
|| \ASPRatterns.Chap7.Libran/\ASPRattems,Chap? Library.JLWeb\App_Data\Library.mef Integrated

Security=True;User Instance-True'
I -
[#] Save entity connection settings in App.Config as:
ibraryFntitied
<Breviows |[Met>][mwen | [Cancel
FIGURE 7-16

The Entity Framework then prompts you to copy the database to the Repository.EF project, as

shown in Figure 7-17. Click No.

("Entity Dats Model Wizard (2] =]

p—
L_b Choose Your Data Connection

Which data connection should your application use t t to the database?
| ibrary.mei || Mew Connection.

connecl Lo Ly
to include t

The connection you selected uces a local data file that is not in the
current project. Would you like to copy the file to your project and

mudily the connection?

[¥] Save entity connection settings in App.Config as:

Librarytntities

I < Previous. “ Mext >] | Finush i Lancel

FIGURE 7-17

262 | CHAPTER7 THE DATA ACCESS LAYER

The wizard generates a list of database objects that you can include in your model. Select the items as
shown in Figure 7-18, and deselect the option to include foreign keys in the model. Then click Finish.

.
Entity Data Model Wizard [

| i !) Choose Your Databasc Objects

Whirh databaze ahjects do you want to include in your model?

@173 Tables
[ZIE] sysdiagrams (dbao)
[t_Books (dbo)
= t_Copics (dbo)
=] t_Loans (dba)
VI _Members (dbu)

T Views

7k Stored Procedures

[¥] Pluralize ur singularize generated object names

[7] Include foreign key columns in the model

Model Namespace:
LibraryModel
[= Brriirs :' Net > [_finich [Chica)
FIGURE 7-18

The Entity Data Model Wizard now generates a model for you. You need to modify the default
model so that you can use it with the domain model you created in the Model project. Perform the
following refinements to the model generated by Visual Studio:

> Rename the t_Members entity to Member

Remove the navigation property t_Copies

Rename the t_TLoans navigation property to Loans
Rename the t_copies entity to Book

Remove the t_Toans navigation property

Rename the t_Books navigation property to Title
Rename the t_Members navigation property to OnLoanTo
Rename the t_TLoans entity to Loan

Rename the t_Copies navigation property to Book
Rename the t_Members navigation property to Member

Rename the t_Books entity to BookTitle

Y Y Y VY VY Y VY VY VY VYYy

Remove the t_copies navigation property

Using an Object Relational Mapper

| 263

After you have updated your model, it should resemble Figure 7-19.

a Properhes
=]
j‘ FirstName s
| 5 LastName
= Mavigation Properties
| = Loans

Y

FIGURE 7-19

= Properties

P14

d‘ loan

(23

= Pruperties
¥4
™ LoanDate
™ RetumDate
j‘ DateForRetum
= Navigation Properties
= Bouk

= Member

Y =

=] Navigalion Properties

= Title

:ﬂ OnLoanTo

#5158
5 Title
= Mavigation Properties

There are just a few more changes you need to make before you start to create the Repository imple-
mentations. Right-click on the Library.edmx file and select Properties. Then delete the EntityModel
CodeGenerator from the Custom Tool property box.

You created your business entities in the Model project earlier, so there is no need to let Entity Framework
generate the model classes for you.

Right-click anywhere within the Entity Framework diagram and select Properties. Then change the

namespace of the project to ASPPatterns.Chap7.Library.Model, as shown in Figure 7-20.

[properties
p

=
Code Generation Strateqy
Connection 5tring

Databacze Schema Mame
DDL Generation Template
Entity Cunlainer Access
Entity Container Name
Lary | nading Fnahled

Pluralize Mew Objects

Validate On Ruild

Natahaze Generatinn Workflow

Metadata Artifact Processing

D ASFrottcrns Chop?.Library Model

ASPPatterns.Uhap/.Library.Model ConceptualbntityModel

Default

metadata=res//*/Library.csdl|res://* fLibrary.ssdl|res:/

TahlePerTypeStrateqy xaml (VS)
dbo

S5DLTo5QLI0.4 (VS)

Public

LibraryEntities

True

Embed in Output Aczembly

True

Transform Related Text Templates On Save True

True

L a=0 4

HNamespace

The namespace for the Entity Data Model.

FIGURE 7-20

264 | CHAPTER7 THE DATA ACCESS LAYER

The Entity Framework now uses the business enti-
ties that you defined in the Model project.

Right-click on the 1d property of the Loan entity
andchangetheStoredGenerationPatterntO
Identity, as shown in Figure 7-21.

This is required so that Entity Framework can
create an identity for newly created 1.oan entities.

Even though you have been using the designer to
configure the mapping layer, if you were to right-
click on the Library.edmx file, select Open With,
and choose the XML (Text) Editor, you would
find the XML mapping meta data similar to the
NHibernate mapping files. Following is the XML
meta data that represents the three layers of the
Entity Framework.

Properties *Ax
ASPPatterns.Chap7.Library.Model.Loanld Property -
B
Cuncurrency Mude Nune
Default Value (None)
& Documentation
Entity Key True
Getter Public
Name Id
Nullable False
Setter FPubhc
T ey =
Type Guid
StoreGeneratedPattern
D ines if Lhe o punding column in the database will be auto-y i

during insert and update operations

FIGURE 7-21

> Store Schema Definition Language (SSDL): The SSDL maps the database structure, including
tables and relationships, views, and stored procedures. This is your logic layer.

> Conceptual Schema Definition Language (CSDL): The CSDL maps the conceptual view

detailing your entities and their relationships. This is the conceptual layer.

> Mapping Specification Language (MSL): The MSL maps the logical layer to the conceptual
layer. It maps your business entities to the underlying database.

With the domain model and data model mapped, you can start to build the Entity Framework
Repository. Create a new file in the root of the Repository.EF project named LibraryDataContext

with the following listing:

using System.Data.Objects;
using System.Data;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF

{

public class LibraryDataContext : ObjectContext

{

private ObjectSet<Member> _members;

private ObjectSet<Book> _books;

private ObjectSet<BookTitle> _bookTitles;

public LibraryDataContext ()

: base("name=LibraryEntities",

{

"LibraryEntities")

_members = CreateObjectSet<Member> () ;

_books = CreateObjectSet<Book> () ;

_bookTitles = CreateObjectSet<BookTitle> () ;
base.ContextOptions.LazyLoadingEnabled = true;

}

public ObjectSet<Member> Members

Using an Object Relational Mapper | 265

get { return _members; }

public ObjectSet<Book> Books
{

get { return _books; }

public ObjectSet<BookTitle> BookTitles
{
get { return _bookTitles; }

This class is similar to the NHibernate’s session class in that it provides the gateway to the persis-
tence management and retrieval of business entities using Entity Framework.

Just as with NHibernate, you need to create a set of classes to store current DataContext (Session in
the case of NHibernate). These classes are set up in the same manner as was used with NHibernate.
Add a new folder to the Repository.EF project named DataContextStorage, and add an interface for
the storage container named IDataContextStorageContainer whose contract can be found here:

public interface IDataContextStorageContainer
{
LibraryDataContext GetDataContext () ;
void Store(LibraryDataContext libraryDataContext) ;

Next, create an implementation for use within a web scenario named HttpDataContextStorage
Container:

using System.Web;

namespace ASPPatterns.Chap7.Library.Repository.EF.DataContextStorage

{
public class HttpDataContextStorageContainer : IDataContextStorageContainer
{

private string _dataContextKey = "DataContext";

public LibraryDataContext GetDataContext ()
{
LibraryDataContext objectContext = null;
if (HttpContext.Current.Items.Contains(_dataContextKey))
objectContext =
(LibraryDataContext)HttpContext.Current.Items[_dataContextKey];

return objectContext;

public void Store(LibraryDataContext libraryDataContext)
{
if (HttpContext.Current.Items.Contains(_dataContextKey))
HttpContext.Current.Items|[_dataContextKey] = libraryDataContext;

266 | CHAPTER7 THE DATA ACCESS LAYER

else
HttpContext.Current.Items.Add(_dataContextKey, libraryDataContext) ;

Also, create an implementation for use within a non-web scenario named ThreadbataContext
StorageContainer with the following code:

using System.Threading;

namespace ASPPatterns.Chap7.Library.Repository.EF.DataContextStorage
{
public class ThreadDataContextStorageContainer : IDataContextStorageContainer

{
private static readonly Hashtable _libraryDataContexts = new Hashtable();
public LibraryDataContext GetDataContext ()
{
LibraryDataContext libraryDataContext = null;
if (_libraryDataContexts.Contains (GetThreadName ()))
libraryDataContext =
(LibraryDataContext)_libraryDataContexts[GetThreadName ()];
return libraryDataContext;
}
public void Store(LibraryDataContext libraryDataContext)
{
if (_libraryDataContexts.Contains (GetThreadName ()))
_libraryDataContexts [GetThreadName ()] = libraryDataContext;
else
_libraryDataContexts.Add (GetThreadName (), libraryDataContext);
}
private static string GetThreadName ()
{
return Thread.CurrentThread.Name;
}
}

As was the case with NHibernate, to determine which storage container to use, you will use a fac-
tory class. Create a new class within the root of the project named pataContextStorageFactory
with the following code listing:

public class DataContextStorageFactory
{

public static IDataContextStorageContainer _dataContextStorageContainer;

public static IDataContextStorageContainer CreateStorageContainer ()
{
if (_dataContectStorageContainer == null)

Using an Object Relational Mapper | 267

if (HttpContext.Current == null)
_dataContextStorageContainer =
new ThreadDataContextStorageContainer();
else

_dataContextStorageContainer =
new HttpDataContextStorageContainer () ;

return _dataContextStorageContainer;

As with NHibernate’s GetCurrentSession, you need a way to obtain the current Entity Framework
DataContext. You can achieve this by using a DataContext factory. Add a new class to the root of
the Repository.EF project named DataContextFactory with the following code listing:

using ASPPatterns.Chap7.Library.Repository.EF.DataContextStorage;

namespace ASPPatterns.Chap7.Library.Repository.EF
{
public class DataContextFactory
{
public static LibraryDataContext GetDataContext ()
{
IDataContextStorageContainer _dataContextStorageContainer =
DataContextStorageFactory.CreateStorageContainer () ;

LibraryDataContext libraryDataContext =
_dataContextStorageContainer.GetDataContext () ;
if (libraryDataContext == null)
{
libraryDataContext = new LibraryDataContext () ;
_dataContextStorageContainer.Store(libraryDataContext) ;

return libraryDataContext;

The next class you will create is Entity Framework’s implementation of the Tunitofwork interface,

as defined in the Infrastructure project. Add a new class named EFUnitofwork and update with
the code shown here:

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.EF
{
public class EFUnitOfWork : IUnitOfWork
{
public void Commit ()
{
DataContextFactory.GetDataContext () .SaveChanges () ;

268 | CHAPTER7 THE DATA ACCESS LAYER

public void RegisterAmended (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

unitofWorkRepository.PersistUpdateOf (entity) ;

public void RegisterNew (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

unitofWorkRepository.PersistCreationOf (entity) ;

public void RegisterRemoved (IAggregateRoot entity,
IUnitOfWorkRepository unitofWorkRepository)

unitofWorkRepository.PersistDeletionOf (entity) ;

The EFunitofwork class delegates all work persistence back to the TUnitofworkRepository but
does commit the change to the database via the patacontextFactory that you looked at previously.

Querying within Entity Framework is achieved using LINQ to Entities, which is similar to the LINQ
to SQL querying mechanism, using strongly typed objects or the literal-based Entity SQL. You will use
the literal-based Entity SQL to convert the generic Query Object to language that Entity Framework
understands.

Add a new folder named QueryTranslators to the Repository.EF project, and add a class that each
of the Repositories will inherit from. This will be named QueryTransiator and will offer a method to
produce an Entity SQL String builder along with a list of Object Parameters from the Query Object.

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators
{
public abstract class QueryTranslator
{
public void CreateQueryAndObjectParameters (Query query,
StringBuilder queryBuilder,
IList<ObjectParameter> paraColl)

foreach (Criterion criterion in query.Criteria)
{
switch (criterion.criteriaOperator)
{
case CriteriaOperator.Equal:
queryBuilder.Append (
String.Format ("it.{0} = @{0}",
criterion.PropertyName)) ;
break;

Using an Object Relational Mapper | 269

case CriteriaOperator.LesserThanOrEqual:
queryBuilder.Append (
String.Format ("it.{0} <= @{0}",
criterion.PropertyName)) ;
break;
default:
throw new ApplicationException("No operator defined");

paraColl.Add(
new ObjectParameter (criterion.PropertyName, criterion.Value));

Do this for each of the Repositories defined in the Model project — BookQueryTranslator, BookTitle
QueryTranslator, and MemberQueryTranslator. The code for each of these classes is shown here:

using System.Data.Objects;

using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators
{ public class BookQueryTranslator : QueryTranslator
{ public ObjectQuery<Book> Translate (Query query)
{ ObjectQuery<Book> bookQuery;

if (query.IsNamedQuery())

{
bookQuery = FindEFQueryFor (query) ;

}

else

{
StringBuilder queryBuilder = new StringBuilder();
IList<ObjectParameter> paraColl = new List<ObjectParameter>();
CreateQueryAndObjectParameters (query, queryBuilder, paraColl);

bookQuery =
DataContextFactory.GetDataContext () .Books.Include("Title")
.Where (queryBuilder.ToString (), paraColl.ToArray())
.OrderBy (
String.Format ("it.{0} desc",
query.OrderByProperty.PropertyName)) ;

return bookQuery;

private ObjectQuery<Book> FindEFQueryFor (Query query)
{

270

CHAPTER7 THE DATA ACCESS LAYER

// No complex queries have been defined in this sample.
throw new NotImplementedException();

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators

{

public class BookTitleQueryTranslator : QueryTranslator

public ObjectQuery<BookTitle> Translate (Query query)

ObjectQuery<BookTitle> bookTitleQuery;

if

else

(query.IsNamedQuery())

bookTitleQuery = FindEFQueryFor (query) ;

StringBuilder queryBuilder = new StringBuilder();
IList<ObjectParameter> paraColl = new List<ObjectParameter>();
CreateQueryAndObjectParameters (query, queryBuilder, paraColl);

bookTitleQuery = DataContextFactory.GetDataContext ().BookTitles
.Where (queryBuilder.ToString (), paraColl.ToArray())
.OrderBy (
String.Format ("it.{0} desc", query.OrderByProperty.PropertyName)) ;

return bookTitleQuery;

private ObjectQuery<BookTitle> FindEFQueryFor (Query query)

// No complex queries have been defined in this sample.
throw new NotImplementedException();

{
{
{
}
{
}
}
{
}
}

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators

Using an Object Relational Mapper | 271

J

public class MemberQueryTranslator : QueryTranslator
{
public ObjectQuery<Member> Translate (Query query)
{

ObjectQuery<Member> memberQuery;

if (query.IsNamedQuery())
{

memberQuery = FindEFQueryFor (query) ;
}

else

{
StringBuilder queryBuilder = new StringBuilder();
IList<ObjectParameter> paraColl = new List<ObjectParameter>();
CreateQueryAndObjectParameters (query, queryBuilder, paraColl);

memberQuery = DataContextFactory.GetDataContext () .Members
.Where (queryBuilder.ToString (), paraColl.ToArray())
.OrderBy (
String.Format ("it.{0} desc", query.OrderByProperty.PropertyName)) ;

return memberQuery;

private ObjectQuery<Member> FindEFQueryFor (Query query)

{
// No complex queries have been defined in this sample.
throw new NotImplementedException();

Each of the translator classes first establishes if the query is for a named query or if it is to be built
dynamically. If it’s to be built dynamically, a call to the base method createQueryandobject
pParameters is made a string builder, and a collection of object parameters is populated from the
query. Once returned, the query is built and the order property is added.

It is now time to build the Repository implementations. Add a new folder to the root of the
Repository.EF project named Repositories. Add a new class that will act as a base class for all
Repositories, named Repository. You can see the code for this file here:

using ASPPatterns.Chap7.Library.Infrastructure;

using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

Available for using ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators;

download on

Wrox.com

using System.Data.Objects;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories
{
public abstract class Repository<T, EntityKey>
IUnitOfWorkRepository where T : IAggregateRoot
{

272 | CHAPTER7 THE DATA ACCESS LAYER

private IUnitOfWork _uow;

public Repository (IUnitOfWork uow)

{
_uow = uow;
}
public void Add(T entity)
{
_uow.RegisterNew(entity, this);
}
public void Remove (T entity)
{
_uow.RegisterRemoved (entity, this);
}
public void Save(T entity)
{
// Do nothing as EF tracks changes
}

public abstract IQueryable<T> GetObjectSet();

public abstract string GetEntitySetName () ;

public abstract T FindBy (EntityKey Id);

public abstract ObjectQuery<T> TranslateIntoObjectQueryFrom(Query query);

public IEnumerable<T> FindAll ()

{
return GetObjectSet () .ToList<T>();

}

public IEnumerable<T> FindAll (int index, int count)

{
return GetObjectSet () .Skip (index) .Take (count) .ToList<T>();

}

public IEnumerable<T> FindBy (Query query)

{
ObjectQuery<T> efQuery = TranslateIntoObjectQueryFrom(query) ;
return efQuery.ToList<T>();

}

public IEnumerable<T> FindBy (Query query, int index, int count)

{
ObjectQuery<T> efQuery = TranslateIntoObjectQueryFrom(query) ;
return efQuery.Skip (index) .Take (count) .ToList<T> () ;

}

public void PersistCreationOf (IAggregateRoot entity)

Using an Object Relational Mapper | 273

DataContextFactory.GetDataContext () .AddObject (GetEntitySetName (),
entity);

}

public void PersistUpdateOf (IAggregateRoot entity)

{
// Do nothing as EF tracks changes

}

public void PersistDeletionOf (IAggregateRoot entity)

{
DataContextFactory.GetDataContext () .DeleteObject (entity) ;

Code snippet Repository.cs in the project ASPPatterns.Chap7.Library.Repository.EF

The three Repository implementations that will inherit from the Repository base class are
BookRepository,BookTitleRepository,an(lMemberRepository.TTNECOdeforeaCh of these
Repositories is shown here:

using
using
using
using
using
using

System.Data.Objects;

ASPPatterns.Chap7.Library.Model;
ASPPatterns.Chap7.Library.Infrastructure;
ASPPatterns.Chap7.Library.Infrastructure.Query;
ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories

{

public class BookRepository : Repository<Book, Guid>, IBookRepository

{

public BookRepository (IUnitOfWork uow) : base (uow)
{ }

public override Book FindBy (Guid Id)

{
return GetObjectSet () .FirstOrDefault<Book>(b => b.Id == Id);

public override IQueryable<Book> GetObjectSet ()

{
return DataContextFactory.GetDataContext ().CreateObjectSet<Book> () ;

public override string GetEntitySetName ()
{

return "Books";

public override ObjectQuery<Book> TranslateIntoObjectQueryFrom(Query query)
{

274 | CHAPTER7 THE DATA ACCESS LAYER

using
using
using
using
using
using

return new BookQueryTranslator ().Translate(query) ;

System.Data.Objects;

System.Data;

ASPPatterns.Chap7.Library.Model;
ASPPatterns.Chap7.Library.Infrastructure;
ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories

{

public class BookTitleRepository

Repository<BookTitle, string>, IBookTitleRepository

public BookTitleRepository (IUnitOfWork uow)

base (uow)
{3}
public override BookTitle FindBy(string Id)
{
return GetObjectSet () .FirstOrDefault<BookTitle> (b => b.ISBN == Id);
}

public override IQueryable<BookTitle> GetObjectSet ()
{
return DataContextFactory.GetDataContext () .CreateObjectSet<BookTitle>();

public override string GetEntitySetName ()
{

return "BookTitles";

public override ObjectQuery<BookTitle> TranslateIntoObjectQueryFrom
(Query query)

throw new NotImplementedException() ;

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;

Using an Object Relational Mapper | 275

using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories
{
public class MemberRepository : Repository<Member, Guid>, IMemberRepository
{
public MemberRepository (IUnitOfWork uow) : base (uow)
{1}

public override Member FindBy (Guid Id)
{
return GetObjectSet () .FirstOrDefault<Member>(m => m.Id == Id);

public override IQueryable<Member> GetObjectSet ()
{

return DataContextFactory.GetDataContext () .CreateObjectSet<Member> () ;

public override string GetEntitySetName ()
{

return "Members";

public override ObjectQuery<Member>
TranslateIntoObjectQueryFrom(Infrastructure.Query.Query query)

return new MemberQueryTranslator () .Translate (query) ;

The last task to complete the Entity Framework Repository implementation is adding some configu-
ration data to the web.config file, which you can find within the uT.web web application project.
The data you need to add is the Entity Framework connection string. This connection string is
located in the App.config file found within the Repository.EF. You can see the Web.config file
code snippet here:

<connectionStrings>
<add name="LibraryEntities"
providerName="System.Data.EntityClient"

connectionString=
"metadata=res://*/Library.csdl|res://*/Library.ssdl|res://*/Library.msl;
provider=System.Data.SqglClient;
provider connection string='Data Source=.\SQLEXPRESS;AttachDbFilename="
|DataDirectory|Library.mdf"
;Integrated Security=True;User Instance=True;MultipleActiveResultSets=True'"/>

</connectionStrings>

276 | CHAPTER7 THE DATA ACCESS LAYER

The Repository.EF project now resembles Figure 7-22.

Solution Explorer *Ax

ol SIS
')_2 Sclution 'ASPPatterns.Chap? . Library’ (6 projects)
b |G ASPPatterns.Chap?.LibraryInfrastructure
[;’E ASPPalterns. ChepT Libiary.Model
] J ASPPatterns.Chap7.Library.Repository.EF
[[Edl Properties
i [Heferences
4 |5y DataContextStorage
4] DataContextStorageFactory.cs
4] HitpD. textSt o —
4] IDataContextStorageContainer.cs
:él ThreadDataContextStorageContainer.cs
a [QueryTranslaturs
’;Q BookQueryTranslator.cs
Q BookTitleQueryTranslator.cs
f,’_-] Member{Juery Iranslator.cs
&) QueryTranslatar.cs
4 |y Repositories
4] BookRepository.cs
4] BookTitleRepository.cs
:él MemberRlepository.cs
‘é] Repusitury.cs
i App.Conflig
‘Q DataContextFactory.cs
A EFUNitOfWaork.cs
& Library.edmy
) LibraryDataContext cs
b+ I AsPP .Chap] Library.Repository. NHit
b (G ASPPatterns.Chap].Library.Services
& i@ ASPPatters.Chap7.Library.ULWeb

ﬂ Solution Explorer

FIGURE 7-22

It’s now time to bring the whole solution together and create the presentation layer that will use all
the projects you have built.

Presentation

You will build a basic presentation layer using ASP.NET web forms so that you can see the full
application working. To allow switching between the NHibernate and Entity Framework Repository
implementations, you will add a setting to the web.config file. Open the web.config file and add
the following code snippet:

<appSettings>
<! --
NH - NHibernate Repository
EF - Entity Framework Repository
-— >
<add key="PersistenceStrategy" value="NH"/>
</appSettings>

Using an Object Relational Mapper | 277

A service factory enables you to easily switch between the two Repositories and provides a valid
instance of the LibraryService class with all dependencies. Add a new class to the UT.web web
application named ServiceFactory, and update it to match the code listing that follows:

using
using
using
using
using
using

ASPPatterns.Chap7.Library.Services;
ASPPatterns.Chap7.Library.Model;
ASPPatterns.Chap7.Library.Infrastructure;
ASPPatterns.Chap7.Library;
ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
System.Configuration;

namespace ASPPatterns.Chap7.Library.UI.Web

{

/// <summary>

/// For a better solution, look at Chapter 8,

/// which uses an IoC Container to inject the concrete implementations
/// </summary>

public static class ServiceFactory

{

public static LibraryService CreateLibraryService ()

{

IUnitOfWork uow;

IBookRepository bookRepository;
IBookTitleRepository bookTitleRepository;
IMemberRepository memberRepository;

string persistenceStrategy =
ConfigurationManager.AppSettings["PersistenceStrategy"];

if (persistenceStrategy == "EF")
{
uow = new Repository.EF.EFUnitOfWork() ;
bookRepository =
new Repository.EF.Repositories.BookRepository (uow) ;
bookTitleRepository =
new Repository.EF.Repositories.BookTitleRepository (uow) ;
memberRepository =
new Repository.EF.Repositories.MemberRepository (uow) ;
}
else
{
uow = new Repository.NHibernate.NHUnitOfWork() ;
bookRepository =
new Repository.NHibernate.Repositories.BookRepository (uow) ;
bookTitleRepository =
new Repository.NHibernate.Repositories
.BookTitleRepository (uow) ;
memberRepository =
new Repository.NHibernate.Repositories.MemberRepository (uow) ;

return new LibraryService (

278 | CHAPTER7 THE DATA ACCESS LAYER

bookTitleRepository, bookRepository, memberRepository, uow);

The serviceFactory has a single method named createlLibraryService that returns an instance
of the Libraryservice configured to use the Repository defined in the web.config file.

Now for the presentation needs. Open the Default.aspx file in the source code version and update
the markup to match what follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

\) Inherits="ASPPatterns.Chap7.Library.UI.Web.Default" %>
:i\vailellbll:j for <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
ownload on

Wrox.com "http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head id="Headl" runat="server">

<title></title>
</head>
<body>
<form id="forml" runat="server">
<div>
<hl>Library System</hl>
<h2>Members</h2>

Add new member:

First Name <asp:TextBox ID="txtFirstName" runat="server" />

Last Name <asp:TextBox ID="txtLastName" runat="server" />

<asp:Button ID="btnCreateMember" runat="server"

Text="Add Member" onclick="btnCreateMember_ Click" />

</div>
<p>
All Members
<asp:Repeater ID="rptMembers" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<1li><%# Eval ("FullName") %>
(<a href="MemberDetail.aspx?Id=<%# Eval ("MemberId")%>">view details)
</1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
</p>
<h2>Books</h2>
Add a Book

Title <asp:DropDownList ID="ddlBookTitles" runat="server" />

Using an Object Relational Mapper | 279

<asp:Button ID="btnAddBook" runat="server"
onclick="btnAddBook_Click" Text="Add Book" />
<p>
All Books
<asp:Repeater ID="rptBooks" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<%# Eval("Title")%></1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
</p>

<p>
Add
Book Title

ISBN<asp:TextBox ID="txtBookISBN" runat="server" />

Title<asp:TextBox ID="txtBookTitle" runat="server" /></p>

<p>
<asp:Button ID="btnAddTitle" runat="server"

onclick="btnAddTitle_Click" Text="Add Title" /></p>

<p>
All Book titles<asp:Repeater ID="rptBookTitles" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<%# Eval("Title")%>

<small>ISBN: <%# Eval("ISBN")%></small></1li>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
</p>
</form>
</body>
</html>

Code snippet Default.aspx in the project ASPPatterns.Chap7.Library.UL.Web

The Default.aspx page lists all Members, Books, and BookTitles and lets you add new Members,
Books, and BookTitles.

The code behind for the befault.aspx is shown here:

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;

280 | CHAPTER7 THE DATA ACCESS LAYER

using ASPPatterns.Chap7.Library.Services.Views;

using ASPPatterns.Chap7.Library.Services.Messages;
using ASPPatterns.Chap7.Library.Services;

using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.UI.Web
{

public partial class Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
DisplayCustomers () ;
DisplayBooks () ;
}
}
private void DisplayCustomers ()
{
FindMemberRequest request = new FindMemberRequest () ;
LibraryService service = ServiceFactory.CreateLibraryService();
request.All = true;
FindMembersResponse response = service.FindMembers (request) ;
rptMembers.DataSource = response.MembersFound;
rptMembers.DataBind() ;
}
protected void btnCreateMember_ Click(object sender, EventArgs e)
{
LibraryService service = ServiceFactory.CreateLibraryService();
AddMemberRequest request = new AddMemberRequest () ;
request.FirstName = txtFirstName.Text;
request.LastName = txtLastName.Text;
service.AddMember (request) ;
DisplayCustomers () ;
}
protected void btnAddBook_Click(object sender,
{
LibraryService service = ServiceFactory.CreateLibraryService();
AddBookRequest request = new AddBookRequest();
request.ISBN = ddlBookTitles.SelectedvValue;
service.AddBook (request) ;
DisplayBooks () ;
}

private void DisplayBooks ()
{

EventArgs e)

Using an Object Relational Mapper | 281

LibraryService service = ServiceFactory.CreateLibraryService();
FindBooksRequest request = new FindBooksRequest () ;

request.All = true;

FindBooksResponse response = service.FindBooks (request) ;

rptBooks.DataSource = response.Books;
rptBooks.DataBind() ;

FindBookTitlesRequest bookTitleRequest = new FindBookTitlesRequest();
bookTitleRequest.All = true;
FindBookTitlesResponse bookTitlesResponse =

service.FindBookTitles (bookTitleRequest) ;

ddlBookTitles.DataSource = bookTitlesResponse.BookTitles;
ddlBookTitles.DataTextField = "Title";
ddlBookTitles.DatavValueField = "ISBN";
ddlBookTitles.DataBind() ;

rptBookTitles.DataSource = bookTitlesResponse.BookTitles;
rptBookTitles.DataBind () ;

protected void btnAddTitle_Click(object sender, EventArgs e)
{
AddBookTitleRequest request = new AddBookTitleRequest();
request.ISBN = txtBookISBN.Text;
request.Title = txtBookTitle.Text;

LibraryService service = ServiceFactory.CreateLibraryService();

service.AddBookTitle (request) ;
DisplayBooks () ;

There isn’t anything exciting going on in the code behind apart from the building of messages and
their sending and receiving between the client and the service layer.

The second page you will create is used to loan books to Members. You access this page by clicking
on a Member from the Default.aspx page. Add a new ASP.NET web form to the web application
named MemberDetail.aspx and update the markup with the code listing that follows:

<%@ Import Namespace="ASPPatterns.Chap7.Library.Services.Views" %>
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="MemberDetail.aspx.cs"
Inherits="ASPPatterns.Chap7.Library.UI.Web.MemberDetail" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">

282 | CHAPTER7 THE DATA ACCESS LAYER

<title></title>
</head>
<body>
<form id="forml" runat="server">
<div>
<hl>Library System</hl>
Library System Home
<h2><asp:Literal ID="litName" runat="server" /></h2>
<p>
Books on Loan
<asp:Repeater ID="rptLoans" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<1li><%# Eval ("BookTitle")%>

<small>
<%# DisplayLoanStatus ((LoanView)Container.Dataltem) %></small>
</1li>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

</p>

Select a book to loan out:

<asp:Repeater ID="rptBooks" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<%# Eval("Title") %>
<%# LoanStatus ((BookView)Container.Dataltem)$%></1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
</div>
</form>
</body>
</html>

The MemberDetail.aspx page lists a history of loans for the given Member and a list of all available
books to loan. The code behind for this page follows:

using ASPPatterns.Chap7.Library.Repository.EF;
using ASPPatterns.Chap7.Library.Services.Messages;
using ASPPatterns.Chap7.Library.Services.Views;

Using an Object Relational Mapper | 283

using ASPPatterns.Chap7.Library.Services;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.UI.Web
{
public partial class MemberDetail : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
string memberId = Request.QueryString["Id"];
string copyToReturnId = "";
string copyToLoanId= "";

if (Request.QueryString.AllKeys
.FirstOrDefault (s => s == "CopyIdToReturn") != null)
copyToReturnId = Request.QueryString["CopyIdToReturn"];

if (Request.QueryString.AllKeys
.FirstOrDefault(s => s == "CopyToLoanId") != null)
copyToLoanId = Request.QueryString["CopyToLoanId"];

if (copyToLoanId != "")
LoanBook (new Guid(copyToLoanId)) ;

if (copyToReturnId != "")
ReturnBook (new Guid (copyToReturnId)) ;

DisplayMember (new Guid (memberId)) ;
DisplayBooks () ;

private void LoanBook (Guid copyId)

{
LibraryService service = ServiceFactory.CreateLibraryService();
LoanBookRequest request = new LoanBookRequest () ;
LoanBookResponse response;
request.CopyId = copyId.ToString() ;
request.MemberId = Request.QueryString["Id"];

response = service.LoanBook (request) ;

private void ReturnBook (Guid copyId)
{

LibraryService service = ServiceFactory.CreateLibraryService();
ReturnBookRequest request = new ReturnBookRequest();

request.CopyId = copyId.ToString();

service.ReturnBook (request) ;

284 | CHAPTER7 THE DATA ACCESS LAYER

}
private void DisplayMember (Guid Id)
{
LibraryService service = ServiceFactory.CreateLibraryService();
FindMemberRequest request =
new FindMemberRequest { MemberId = Id.ToString() };
FindMembersResponse response = service.FindMembers (request) ;
if (response.Success)
{
litName.Text = response.MembersFound.First () .FullName;
rptLoans.DataSource = response.MembersFound
.First () .Loans.OrderBy (1l => 1l.LoanDate) ;
rptLoans.DataBind() ;
}
}

private void DisplayBooks ()

{
LibraryService service = ServiceFactory.CreateLibraryService();
FindBooksRequest request = new FindBooksRequest () ;
request.All = true;
FindBooksResponse response = service.FindBooks (request) ;
this.rptBooks.DataSource = response.Books;
rptBooks.DataBind () ;

}

public string DisplayLoanStatus (LoanView loan)
{
if (loan.StillOutOnLoan)
return String.Format (
@"due back on {0} <a href=""Memberdetail.aspx? "
+ @"CopyIdToReturn={1}&Id={2}"">return?",
loan.DateForReturn, loan.CopyId, loan.MemberId);
else
return "returned on " + loan.ReturnDate;

}
public string LoanStatus (BookView book)
{

if (!String.IsNullOrEmpty (book.OnLoanTo))

return "On loan to " + book.OnLoanTo;
else
return String.Format (
@"Loan?",
Request.QueryString["Id"], book.Id);

}

Summary | 285

Again, the code behind is straightforward, and logic is Solution Explorer >0 x
relevant only to presentation needs. Figure 7-23 shows the Sl S E| Al e
1 b l . . ; Sclution 'ASPPatterns.Chap? Library’ (6 projects)
COmp ete UT.Web we app lcation prO]eCt' 2 \j ASPPatterns.Chap?.Library Infrastructure
. . . b \3 ASPPatterns.Chap7.Library.Model
Set the web application as your start-up project, and press o (3 ASPPaltems.ChapT Library Repository.EF
. : . B \’3 ASPPalterns.ChepT . Libiary.Repusitory. NHiberate
F5 to run the application. Figures 7-24 and 7-25 show you . (3 ASPPattems ChapT LibarySenvices
the application in use. . :2! ASPPatterns.Chap?.Library.ULWeb
Sdl Properties
After you have run through the application and used all IR References
. X K L 4 ,_.«.C:pp_nala
the functions, change the Repository setting from within b [Library.maf
the web fig to test the other Reposit b B Defauieanpy
e web.config to test the other Repository. > MembeDetsilasp
4] ServiccFactory.cs
i Web.config

Raw ADO.NET Repository

If you want to see a raw ADO.NET Repository implemen- &3 solution Explorer [T
tation using all the patterns discussed in the first half of FIGURE 7-23

this chapter, download this book’s source code from www.

Wrox.com.

As you can see, several options are available when it comes to implementing your repository layer.
Both the NHibernate and Entity Framework products are powerful but do require some initial
upfront investment in terms of time to learn the syntax and API. However, the cost of investment
is low compared to building your own Repository that supports all the patterns discussed in this
chapter.

SUMMARY

This chapter introduced the following patterns that you can apply to the DAL of an enterprise ASP.
NET application:

> Repository: The Repository pattern is used mostly with logical collections of objects, or
aggregates as they are better known. The CRUD methods take an instance of the aggregate
root and persist and retrieve all the associated objects in the object graph. This works well if
you are taking a domain-driven design approach to development. It is also a good fit with the
domain model business pattern and the POCO/PI business models.

> DAO: This simple pattern is designed to separate the elements of your DAL from the rest of
the application. Typically, a DAO exists for each table and contains all the CRUD methods,
which makes it an ideal DAL pattern for the Transaction Script and Active Record business
patterns.

> Unit of Work: The Unit of Work pattern maintains all the entities that a business transaction
adds, updates, and removes and commits the changes as one atomic action. This ensures that,
if an exception were to occur, all changes would be rolled back and the data would be left in
a valid state.

286 | CHAPTER7 THE DATA ACCESS LAYER

> Data Concurrency: Data concurrency is vital (16 nepiocalhozt27924/Defautazp - Windows Iner. o |
in any enterprise application. You looked at e TS PR R (25 P
using version IDs to ensure thgt anot}_1er user —
hadn’t modified a business entity during a ' -
business transaction. This again ensured that I Liby st Bl
your data remained valid at all times. | LADEAKY DSySten
> Lazy Loading and Proxy: Lazy Loading is Members
the process of deferrmg_ the loadmg of an A fisaber
expensive resource until you need it. The First Name
proxy pattern provides acts as a surrogate Last Name
to another object. You saw how the proxy
pattern returned a ProxyCustomer instead | Al Members
of a real customer. The ProxyCustomer was |« Tymsey Mttt (iew detaio)
then able to only load the collection of orders . ?oiﬂ\ﬁcm'(—)ﬁez::n%
= Scoft tt (view 5}
when needed. » Agallia Millett (view detals)
. i + Cohmbo Millett (view details)
> Identity Map: An Identity Map pattern
ensures that each business entity retrieved Books
. . i
from the DAL is loaded only once by storing —— E
that business entity into a map and loading it | Tite [4SPNET Dosign Pattoms =] [AddBosk]
from there for subsequent calls for the dura-
. . . | All Books
tion of a business transaction.
)) |+ Professional Enterprise NET 1
> Query Object: The Query Object pattern i
. . . . Add Book Tide
provides a data provider—agnostic manner in
which to query a Repository for a business j| 1sBN_)
entities. || Tie
Add Title |
You then looked at two popular ORMs:
All Book rifles
> NHibernate: NHibernate is a port of the « ASP NET Design Patterns
popular Hibernate open source ORM for I OEDITES
) » Fly Fishing
Java. NHibernate has been around for years, ISEN: 61687651
. . + Professional Enterprise NET
and it’s a proven and robust piece of software oot L
with a large active community working on the { |
product. FIGURE 7-24

> Entity Framework: Entity Framework is Microsoft’s enterprise-level ORM. Much criticized
when it launched, it’s now in version 4 and has support for POCO and PI, which makes it a
great product for your persistence needs.

It should now be clear that there is a lot to do to ensure your enterprise-level ASP.NET application
has a solid and well-thought-out persistence layer. Whether you are going to opt for an ORM or roll
your own, it’s important that you understand the patterns and principles involved so that you can be
best placed to build a solution for your data access needs.

Summary | 287

B ting

o -

¢ Favorites |ggmtp-mucamnsrzm.*... [| i~ =

»

-
Library System
Library System Iome
Lynsey Millett
Books on Loan
« Professional Enterprise NLT
duc back on 28/032010 19:41:31 retum?
« Professional Enterprisc NET
retumed on 21/03/2010 19:41:33

Select a book to loan out:

* Professional Enterprise NET On loan to Lynsey Millett
* Professional Enterprise . NET Loan?

* ASP NET Design Patterns Loan?

* Fly Fishing Loan?

| E————

FIGURE 7-25

In the next chapter, you will look at patterns that can be used to separate concerns at the presenta-
tion level of your ASP.NET applications.

The Presentation Layer

WHAT’S IN THIS CHAPTER?

> Tying your loosely coupled code with StructureMap and Inversion of
Control container

> Letting the view be in charge with the Model-View-Presenter pattern
and ASP.NET web forms

> FrontController - Command pattern and Chain of Responsibility pattern

» Model-View-Controller pattern with ASP.NET MVC and Castle Monorail

> PageController pattern with ASP.NET web forms

>

The ViewModel pattern and how to automate domain entities to
ViewModel mapping with AutoMapper

This chapter deals with the needs of the presentation of an ASP.NET enterprise application and dis-
cusses a number of patterns at your disposal to organize your presentation code. The chapter starts
with a discussion of how you can tie together your loosely coupled code so that a concrete imple-
mentation can be consumed from the presentation layer via the use of an Inversion of Control (IoC)
container. The chapter then moves onto the patterns that promote separation of concerns, including
the Model-View-Presenter pattern, the Front Controller pattern, the Model-View-Controller pat-
tern, and the Page Controller pattern. Various frameworks and open source products are discussed
to assist you in the organization of your presentation concerns, and a number of coding exercises
are presented to help you understand the patterns concepts.

INVERSION OF CONTROL

Throughout this book, you have read about the benefits and principles behind loosely coupling
your code. In Chapter 3, you were introduced to the Dependency Inversion (sometimes known
as Dependency Injection) principle from the S.0.L.1.D. design principles, which taught you to

290 | CHAPTERS8 THE PRESENTATION LAYER

depend on abstractions rather than implementations, thereby inverting the relationship of a dependent
to its dependencies. However, at some point, you need to create concrete implementations. This typi-
cally occurs at the presentation or service layer, so you are now left with the unenviable task of creat-
ing those dependencies without coupling your code to a specific implementation. Luckily, a number
of patterns can help you with this task, which you will look at now.

Factory Design Pattern

Many of the exercises up to this point have utilized the Factory Design pattern (see Chapter 5) to cre-
ate all the concrete implementations. You have typically seen code similar to the snippet shown here:

public static class OrderServiceFactory

{

public static OrderService CreateOrderService ()

{
ICourier courier = new FedExCourier();
IDispatchService DispatchService = new DispatchService (courier) ;

IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant () ;
IPaymentGateway paymentGateway =
new PaymentGateway (StreamLinePaymentMerchant) ;

return new OrderService (DispatchService, paymentGateway) ;

The orderserviceFactory completely removes the responsibility from the client code and provides
a simple method to obtain a complex service, the orderservice. However, the Factory pattern has
its drawbacks: when you introduce more dependencies and thus more ways to create the service, the
number of methods on the class increases to accommodate all the different orderservice depen-
dency permutations, as you see in the following code snippet:

public static class OrderServiceFactory
{

public static OrderService CreateFedExOrderService ()

{
ICourier courier = new FedExCourier();
IDispatchService DispatchService = new DispatchService (courier) ;

IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant () ;
IPaymentGateway paymentGateway =
new PaymentGateway (StreamLinePaymentMerchant) ;

return new OrderService (DispatchService, paymentGateway) ;

public static OrderService CreateDHLOrderService ()

{
ICourier courier = new DHLCourier();
IDispatchService DispatchService = DispatchService(courier) ;

IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant () ;

Inversion of Control | 291

IPaymentGateway paymentGateway =
new PaymentGateway (StreamLinePaymentMerchant) ;

return new OrderService(DispatchService, paymentGateway) ;

public static OrderService CreateTNTOrderService ()
{
ICourier courier = new TNTCourier();
IDispatchService DispatchService = DispatchService(courier) ;

IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant () ;
IPaymentGateway paymentGateway =
new PaymentGateway (StreamLinePaymentMerchant) ;

return new OrderService (DispatchService, paymentGateway) ;

The downside is that a client using the factory is tightly coupled to a single implementation of the
orderService, and variations to the type of orderService class needed by the client require a
change in the factory class method being called.

The next pattern to solve the issue of creating concrete types is the Service Locator pattern.

Service Locator

The role of the Service Locator is to act as a central service repository with a simple interface that
knows how to get hold of any service required by the application. A Service Locator provides methods
to register services and usually takes a literal name value of a service or an object type to resolve them.

Think of a Service Locator as a kind of beefed-up factory. Instead of having a mass of different fac-
tory methods for variants of your service, you have a single Resolve method that will allow you to
obtain any service for a given key. Like the Factory pattern, the Service Locator pattern hides the
complexities of wiring up a service with its required dependent objects, except that the service loca-
tor can be reused in many applications and is a lot more abstract than the Factory Design pattern.

OrderService orderService =
servicelLocator.Locate<OrderService> ("OrderServiceWithFedExCourier") ;

Typically, the code to register the service would reside in a startup class, ideally in the global.asax
file’s Application_Start event. The Service Locator is a far easier model to work with and does
not need lots of explicitly named methods to provide implementations of the orderservice.

The code snippet that follows shows how a simple ServiceLocator would look.

public class ServiceLocator
{
private IDictionary<string, Object> registeredTypes =
new Dictionary<string, Object>();
public void Register<T>(string ServiceName, T obj)
{
registeredTypes.Add (ServiceName, obj);

292

| CHAPTERS8 THE PRESENTATION LAYER

public T Locate<T>(string ServiceName)
{

return (T)registeredTypes[ServiceName];

For a more in-depth look at the Service Locator pattern, read my previous book, Professional
Enterprise .NET, published by Wrox.

The third pattern you will look at to resolve dependencies is the IoC container.

loC Containers

All the options you have looked at so far have one thing in common: the client code is responsible
for obtaining or fetching a service and all its dependencies. The Factory and Service Locator patterns
remove the need to know how to construct the service but still place the burden on the client code to
specify which service implementation is required. What an IoC container does is completely invert
this relationship by injecting the service into the client, thus pushing rather than pulling, if you will.
The term Inversion of Control describes the act of the client relinquishing control to the IoC con-
tainer, that is the Inversion of Control from client to container. There is another name for this pattern
that is a lot more descriptive: the Hollywood principle of “Don’t call us, we’ll call you.” Essentially,
IoC is all about taking the traditional flow of control — the client code creating the service — and
inverting it using the IoC container to inject the service into the client code.

When you use an [oC container, the client code can simply depend on an interface or abstract class
and not have a care in the world as to what is providing it with the concrete implementation at
runtime.

There are numerous open source [oC containers out there, such as Castle Windsor, Spring.Net,
Ninject, and PicoContainer.NET, as well as Microsoft’s Unity, but you will be using StructureMap
by Jeremy D. Miller in the next exercise and for the rest of the exercises in this chapter.

StructureMap

To demonstrate the power of an IoC container, you will work through an exercise based on the code
snippets shown in the discussion on the Factory and Service Locator patterns. The exercise revolves
around the domain of an order payment and dispatch service. The domain model you will create will
contain no code, but it will demonstrate how an IoC container can resolve nested dependencies.

To get started with StructureMap, the first thing you need to do is download the framework. Navigate to
http://sourceforge.net/projects/structuremap and download the latest version of StructureMap.
Once the compressed file has downloaded, unzip it, and extract all files to a folder on your desktop ready
to be included with the solution.

Create a new solution named ASPPatterns.Chap8.ToC, and to it add a class library project named
ASPPatterns.Chap8.ToC.Model and a web application project named ASPPatterns.Chap8.ToC
.UT.web. Right-click on the UT.web web application and a reference to the Model project.

Inversion of Control | 293

Add two folders within the Model project named Dispatch and Payment. Also, add two new interfaces
to the Dispatch folder named TDispatchService and TCourier with the following code contracts:

public interface IDispatchService
{
}

public interface ICourier
{
}

Add a class to the Dispatch folder named DispatchService that implements the IDispatchService
interface, and update the class with the code as displayed here:

public class DispatchService : IDispatchService

{

private ICourier _courier;

public DispatchService(ICourier courier)

{

_courler = courler;

public override string ToString()

{

return _courier.ToString();

Next, add a second class named FedExCourier that implements the Tcourier interface as shown here:

public class FedExCourier : ICourier
{
}

Add two new interfaces to the Payment folder named IPaymentGateway and IPaymentMerchant with
the contracts defined here:

public interface IPaymentGateway
{
}

public interface IPaymentMerchant
{
}

Add a class to the Payment folder named StreamLinePaymentMerchant that implements the IPayment
Merchant interface as shown in the code listing that follows:

public class StreamLinePaymentMerchant : IPaymentMerchant
{

}

294 | CHAPTERS8 THE PRESENTATION LAYER

Add a class to the Payment folder named PaymentGateway that implements the IPaymentGateway
interface as shown here:

public class PaymentGateway : IPaymentGateway

{

IPaymentMerchant _paymentMerchant;

public PaymentGateway (IPaymentMerchant paymentMerchant)
{
_paymentMerchant = paymentMerchant;

public override string ToString()
{
return _paymentMerchant.ToString() ;

Finally, to finish the Model project, add a new class named orderservice to the root of the project
with the following code definition:

using ASPPatterns.Chap8.IoC.Model.Payment;
using ASPPatterns.Chap8.IoC.Model.Dispatch;

namespace ASPPatterns.Chap8.IoC.Model

{

public class OrderService

{

private IPaymentGateway _paymentGateway;
private IDispatchService _DispatchService;

public OrderService (IPaymentGateway paymentGateway,
IDispatchService DispatchService)

_paymentGateway = paymentGateway;
_DispatchService = DispatchService;

public override string ToString()
{
return String.Format ("Payment Gateway: {0}, Dispatch Service: {1}"
_paymentGateway.ToString (), _DispatchService.ToString());

The Tostring method override enables you to ascertain that the IoC container correctly resolved all
dependencies, which will become clearer later.

The next step is to add a reference to the structureMap.dil that you downloaded earlier. Right-click
on the UT.web web application project and add a reference to StructureMap.d1l. Next, add a new
class to the UT.web project named BootStrapper with the following code listing:

using StructureMap;
using StructureMap.Configuration.DSL;

Inversion of Control |

295

using ASPPatterns.Chap8.IoC.Model.Payment;
using ASPPatterns.Chap8.IoC.Model.Dispatch;

namespace ASPPatterns.Chap8.IoC.UI.Web

{

public class BootStrapper

{

public static void ConfigureStructureMap ()
{
ObjectFactory.Initialize(x =>
{
x.AddRegistry<ModelRegistry> () ;

)

public class ModelRegistry : Registry
{
public ModelRegistry ()
{
ForRequestedType<IPaymentGateway> ()
.TheDefault.Is.OfConcreteType<PaymentGateway> () ;

ForRequestedType<IPaymentMerchant> ()
.TheDefault.Is.OfConcreteType<StreamLinePaymentMerchant> () ;

ForRequestedType<IDispatchService> ()
.TheDefault.Is.OfConcreteType<DispatchService> () ;

ForRequestedType<ICourier> ()
.TheDefault.Is.OfConcreteType<FedExCourier> () ;

The ModelRegistry class is simply setting up the concrete implementations to return when a spe-
cific type is asked for. The Registry is then initialized with the StructureMap framework within
the configurestructureMap method. There are a couple of different ways to configure your con-
crete dependencies via attributes and xml files that are detailed on the StructureMap project page
http://structuremap.github.com/structuremap/.

Typically, you will want to configure your dependencies at startup, so add a global.asax to your
UT .Web project if one does not exist, and then add the code to call the configurestructureMap
method during the Application_start event, as can be seen here:

public class Global : System.Web.HttpApplication

{

protected void Application_Start (object sender, EventArgs e)

{

BootStrapper.ConfigureStructureMap () ;

296

| CHAPTER8 THE PRESENTATION LAYER

Finally, you can use StructureMap to obtain an instance of the orderservice with all dependen-
cies resolved. Switch to the code behind view of the befault.aspx page and add the following lines
within the Page_Load event:

using ASPPatterns.Chap8.IoC.Model;

using ASPPatterns.Chap8.IoC.Model.Payment;
using ASPPatterns.Chap8.IoC.Model.Dispatch;
using StructureMap;

namespace ASPPatterns.Chap8.IoC.UI.Web
{
public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
OrderService orderService =
ObjectFactory.GetInstance<OrderService> () ;

Response.Write (orderService.ToString()) ;

When you run the page, it displays the names of both of the nested dependencies. You may have
noticed that you didn’t explicitly register the orderservice type with StructureMap even though
it was able to resolve it. This happens because StructureMap auto-wires the dependencies based on
what it already has in its container. Auto-wiring your dependencies gives you the maximum ben-
efit of using any type of container. Your client code can remain blissfully unaware of the concrete
dependencies defined.

You will be utilizing StructureMap with the remaining exercises in this chapter.

The remainder of this book covers patterns design to organize your presentation logic and to sep-
arate it from your business and data access layer. The first pattern you will look at is the Model-
View-Presenter.

MODEL-VIEW-PRESENTER

The Model-View-Presenter (MVP) pattern places the emphasis on the view to control the flow of
logic throughout the presentation layer. Three distinct parts make up the MVP pattern:

> The model represents the business data that is to be displayed by or modified by the view.

> The view displays the model data obtained via the presenter and delegates user input to the
presenter.

> The presenter is called from the view to display data pulled from the model and to handle
user input.

Model-View-Presenter | 297

Figure 8-1 shows how these three parts work together.

%—)[View <=2 > Presenter]
A

Y

Model

FIGURE 8-1

As shown in the diagram, a user requests a view. The view in turn delegates the request to the asso-
ciated presenter and typically passes a reference to itself upon construction of the presenter. The
presenter then talks to the model to retrieve the business data applicable to the view. Once obtained,
the presenter updates the reference of the view with model data.

A framework has been built to enable the MVP pattern to be used with ASP.NET web forms. You
can find more information by navigating to http: //webformsmvp . com. You will create an implemen-
tation of the MVP pattern using web forms without the need of a framework.

ASP.NET Web Forms with MVP

The domain model that you will build for this exercise will be used for the presentation patterns in the
remainder of this chapter. The solution revolves around the domain of an online shop — specifically,
the displaying of the product catalog.

Create a new solution named ASPPatterns.Chap8.MVP and add the following three class library
projects:

» ASPPatterns.Chap8.MVP.Model
> ASPPatterns.Chap8.MVP.Presentation

> ASPPatterns.Chap8.MVP.StubRepository

Next, add a web application project named ASPPatterns.Chap8.MVP.UT.Web. To set up the project
dependencies, right-click on the stubRepository project and add a reference to the Model project.
Next, right-click on the Presentation project and a reference to both the Model project and

the stubRepository project. Finally, right-click on the uT.web project and add a reference to the
Model, StubRepository, and Presentation projects.

With the solution set up, you can begin to flesh out the domain model. Add a new class to the Model
project named Ccategory with the following code listing:

public class Category

{
public int Id { get; set; }
public string Name { get; set; }

298 | CHAPTERS8 THE PRESENTATION LAYER

Add a second class to the Model project named Product, and update it to match the code shown here:

public class Product

{
public int Id { get; set; }
public Category Category { get; set; }
public string Name { get; set; }
public decimal Price { get; set; }
public string Description { get; set; }

Next, add two interfaces that will define a contract for the Product and category repositories. Name
the two interfaces TCategoryRepository and IProductRepository, respectively. Update the inter-
faces to match the code contracts that follow:

public interface ICategoryRepository
{
IEnumerable<Category> FindAll () ;
Category FindBy (int Id);

public interface IProductRepository

{
IEnumerable<Product> FindAll();
Product FindBy (int Id);

Finally, add a domain service class named ProductsService that coordinates the retrieval of Products
and categories using the repository contracts. The code for the ProductService class is shown here:

public class ProductService

{
private ICategoryRepository _categoryRepository;
private IProductRepository _productRepository;

public ProductService (ICategoryRepository categoryRepository,
IProductRepository productRepository)

_categoryRepository = categoryRepository;
_productRepository = productRepository;

public Product GetProductBy (int id)
{
return _productRepository.FindBy (id) ;

public IEnumerable<Product> GetAllProductsIn(int categoryId)
{
return _productRepository.FindAll ()
.Where(cat => cat.Category.Id == categoryId);

public Category GetCategoryBy (int id)

Model-View-Presenter | 299

J

return _categoryRepository.FindBy (id) ;

public IEnumerable<Category> GetAllCategories()

{
return _categoryRepository.FindAll();

public IEnumerable<Product> GetBestSellingProducts ()

{
return _productRepository.FindAll () .Take(4);

The domain model has purposely been kept simple so it wouldn’t detract from the presentation pat-
terns. With the model in place, you can create a stub repository implementation. You are creating a
stub because there is no real need to create a fully database-driven solution.

Add a new class to the stubRespository project named DataContext, which will provide the data
for your repositories. You can see the code for this class here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.StubRepository

Available for {

download on

Wrox.com

public class DataContext

{
private List<Product> _products;
private List<Category> _categories;

public DataContext ()

{
_categories = new List<Category>();

Category hatCategory = new Category { Id = 1, Name = "Hats" };
Category gloveCategory = new Category { Id = 2, Name = "Gloves" };
Category scarfCategory = new Category { Id = 3, Name = "Scarfs" };

_categories.Add (hatCategory) ;
_categories.Add (gloveCategory) ;
_categories.Add(scarfCategory) ;

_products = new List<Product>();
_products.Add (new Product

{ Id = 1, Name = "BaseBall Cap", Price = 9.99m, Category = hatCategory });
_products.Add (new Product

{ Id = 2, Name = "Flat Cap", Price = 5.99m, Category = hatCategory });
_products.Add (new Product
{ Id = 3, Name = "Top Hat", Price = 6.99m, Category = hatCategory });

_products.Add (new Product
{ Id = 4, Name = "Mitten", Price = 10.99m, Category = gloveCategory 1});
_products.Add (new Product

300 | CHAPTER8 THE PRESENTATION LAYER

{ Id = 5, Name = "Fingerless Glove", Price = 13.99m,
Category = gloveCategory 1});
_products.Add (new Product
{ Id = 6, Name = "Leather Glove", Price = 7.99m,
Category = gloveCategory 1});

_products.Add (new Product
{ Id = 7, Name = "Silk Scarf"
Price = 23.99m, Category = scarfCategory 1});
_products.Add (new Product
{ Id = 8, Name = "Woolen", Price = 14.99m, Category = scarfCategory });

}
public List<Product> Products
{
get { return _products; }
}
public List<Category> Categories
{
get { return _categories; }
}

Code snippet DataContext.cs in project ASPPatterns.Chap8.MVP.StubRepository

The patacontext simply defines a collection of Products and categories that you can work against.
With your data in place, you can create implementations of the repository contracts defined in the
Model project. Add a new class to the StubRepository project named IProductRepository, and
update it to match this listing:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.StubRepository
{

public class ProductRepository : IProductRepository

{
public IEnumerable<Product> FindAll ()
{
return new DataContext () .Products;
}

public Product FindBy (int Id)
{
Product productFound = new DataContext ()
.Products.FirstOrDefault (prod => prod.Id == Id);

if (productFound != null)
{
productFound.Description =
"orem ipsum dolor sit amet, consectetur adipiscing elit." +
"Praesent est libero, imperdiet eget dapibus vel, tempus." +
"Nullam eu metus justo." +
"Curabitur sit amet lectus lorem, a tempus felis. " +
"Phasellus consectetur eleifend est, euismod cursus tellus.";

Model-View-Presenter | 301

return productFound;

The FindBy method adds some descriptive text to the found product for use on the product detail
page that you will see later in this exercise.

The second and last class required for the stubrRepository project is the implementation of the
ICategoryRepository interface defined in the Model project. Add a new class named category
Repository, and again update it to match the code that follows:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.StubRepository
{
public class CategoryRepository : ICategoryRepository
{
public IEnumerable<Category> FindAll ()
{

return new DataContext () .Categories;

public Category FindBy (int Id)
{

return new DataContext ().Categories.FirstOrDefault (cat => cat.Id == Id);

This completes the stubRepository project. You will use the Model and stubRepository projects
throughout this chapter to demonstrate the various presentation patterns.

Now switch to the Presentation project and add a new interface named THomeview with the following
contract definition:

public interface IHomeView

{
IEnumerable<Product> TopSellingProduct { set; }
IEnumerable<Category> CategoryList {set; }

This interface defines the view for the home page of the e-commerce shop. On the home page are
categories of products and a selection of the top-selling products.

Create a new class to act as the presenter associated with this view, name the class HomePagePresenter,
and update it to match the code listing that follows:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
public class HomePagePresenter : IHomePagePresenter

{

302

| CHAPTER8 THE PRESENTATION LAYER

private IHomeView _view;
private ProductService _productService;

public HomePagePresenter (IHomeView view, ProductService productService)
{

_productService = productService;

_view = view;

public void Display ()

{
_view.TopSellingProduct = _productService.GetBestSellingProducts/();
_view.CategoryList = _productService.GetAllCategories();

The presenter is lightweight and simply populates the properties of the view with Products and
Categories retrieved from the ProductService. You will notice that the presenter implements an
THomePagePresenter interface; I have defined this to loosely couple the code and to aid testing.
Please add this to the project with the following contract:

public interface IHomePagePresenter
{
void Display () ;

Next is the view that contains all products within a category. Create a new interface for this view
named TCategoryProductsView, and update it to match the contract displayed here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
public interface ICategoryProductsView
{
Category Category { set; }
int CategoryId { get;}
IEnumerable<Product> CategoryProductList { set; }
IEnumerable<Category> CategoryList { set; }

The 1CategoryProductsvView again displays a list of categories but also all the products within a
category specified by the category1d property. The categoryId property has been marked as get
only, so the view will specify this information. The remaining property is the Category property,
which will be filled with the category matching the category1d. The category can then be used to
display a title for the page using its Name property.

Create a presenter that works with the view named categoryProductspPresenter, and update it to
match the code listing shown here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation

Model-View-Presenter | 303

public class CategoryProductsPresenter : ICategoryProductsPresenter
{

private ICategoryProductsView _view;

private ProductService _productService;

public CategoryProductsPresenter (ICategoryProductsView view,
ProductService productService)

_productService = productService;
_view = view;

public void Display ()
{
_view.CategoryProductList =
_productService.GetAllProductsIn(_view.CategoryId) ;
_view.Category = _productService.GetCategoryBy (_view.CategoryId);
_view.CategoryList = _productService.GetAllCategories();

'TheCategoryProductsPresenterisSﬁnﬂartotheHomePagePresenterinthatitupdatesthevkﬂv
with categories and products obtained from the Productservice. It differs slightly, however, in that
it asks the view to supply the categoryTd. As you will see later, the view supplies the categoryId
from the value of the query string parameter passed to the page. Again, I have defined an interface
for the presenter named ICategoryProductsPresenter, seen here:

public interface ICategoryProductsPresenter
{
void Display () ;

The next view that you create represents the product detail view. This view displays details on a spe-
cific product and enables customers to add the product to a basket. It requires a number of support-
ing classes that you need to create before the view itself.

Add a new folder to the Presentation project named Basket and add a new interface to it named
IBasket. You can see the contract for this interface here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation.Basket
{
public interface IBasket
{
IEnumerable<Product> Items { get; }
void Add(Product product) ;

The interface defines a contract for a simple basket that stores products added from the product
detail view.

304 | CHAPTERS8 THE PRESENTATION LAYER

Add a new class to the Basket folder named webBasket that implements the TBasket interface. You
need to add a reference to the system.web assembly because you will be referencing the HttpContext.
You can see the code for the webBasket class here:

using System.Collections.Generic;
using System.Web;
using ASPPatterns.Chap8.MVP.Model;
namespace ASPPatterns.Chap8.MVP.Presentation.Basket
{
public class WebBasket : IBasket
{
public IEnumerable<Product> Items
{
get { return GetBasketProducts(); }
}
public void Add(Product product)
{
IList<Product> products = GetBasketProducts();
products.Add (product) ;

private IList<Product> GetBasketProducts/()
{

IList<Product> products =
HttpContext.Current.Session["Basket"] as IList<Product>;

if (products == null)

{
products = new List<Product>();
HttpContext.Current.Session["Basket"] = products;

return products;

The webBasket class simply uses the current session to store and retrieve a collection of products.

The second supporting set of classes required for the product detail view is to enable the navigation
to the basket page after the Add to Basket button is clicked from the product detail view. Create a
second folder within the Presentation project named Navigation. To this folder add a new enu-
meration class shown here:

public enum PageDirectory

{
Basket

Next, add an interface named TPageNavigator and update it to match the code listing that follows:

public interface IPageNavigator
{

void NaviagteTo (PageDirectory page) ;

Model-View-Presenter | 305

Finally, you can create an implementation of the TPageNavigator interface. Add a new class named
PageNavigator and update it with the following code definition:

public class PageNavigator : IPageNavigator
{
public void NaviagteTo (PageDirectory page)
{
switch (page)
{
case PageDirectory.Basket:
HttpContext.Current.Response.Redirect ("/Views/Basket/Basket.aspx") ;
break;
default:
throw new ApplicationException (
"Cannot navigate to " + page.ToString());

The pageNavigator simply registers an HTTP redirect for the matching PageDirectory enumeration.

With the supporting classes in place, you can create the product detail view. First, create an interface
at the root of the Presentation project named TProductDetailVview with the contract that follows:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
public interface IProductDetailView
{
int ProductId {get;}
string Name {set;}
decimal Price { set; }
string Description { set; }
IEnumerable<Category> CategoryList { set; }

Next, add a corresponding Presenter class named ProductDetailPresenter, seen here:

using ASPPatterns.Chap8.MVP.Model;
\) using ASPPatterns.Chap8.MVP.Presentation.Basket;

using ASPPatterns.Chap8.MVP.Presentation.Navigation;
Available for
dwmtg&:n namespace ASPPatterns.Chap8.MVP.Presentation
{
public class ProductDetailPresenter : IProductDetailPresenter
{
private IProductDetailView _view;
private ProductService _productService;
private IBasket _basket;
private IPageNavigator _pageNavigator;

public ProductDetailPresenter (IProductDetailView view,
ProductService productService,

306 | CHAPTERS8 THE PRESENTATION LAYER

IBasket basket, IPageNavigator pageNavigator)

{
_productService = productService;
_view = view;
_basket = basket;
_pageNavigator = pageNavigator;
}
public void Display ()
{
Product product = _productService.GetProductBy (_view.ProductId) ;
_view.Name = product.Name;
_view.Description = product.Description;
_view.Price = product.Price;
_view.CategoryList = _productService.GetAllCategories();
}
public void AddProductToBasketAndShowBasketPage ()
{
Product product = _productService.GetProductBy (_view.ProductId) ;
_basket.Add (product) ;
_pageNavigator.NaviagteTo (PageDirectory.Basket) ;
}

Code snippet ProductDetailPresenter.cs in project ASPPatterns.Chap8.MVP.Presentation

The ProductDetailPresenter class takes an IBasket and IPageNavigator instance along with
the IProductDetailvView and ProductService. The Display method is similar to what you have
seen before, but the AddProductToBasketaAndShowBasketPage method uses the TBasket and
IPageNavigator to store the current product and navigate to the basket page view.

Again, the ProductDetailPresenter implements an interface named IProductDetailPresenter
that can be added to the project, the code for which can be seen here:

public interface IProductDetailPresenter
{
void Display () ;
void AddProductToBasketAndShowBasketPage() ;

The last view to create is the view of the basket. Create a new interface named IBasketView with
the following code contract:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
public interface IBasketView

{

Model-View-Presenter | 307

IEnumerable<Category> CategoryList { set; }
IEnumerable<Product> BasketItems { set; }

The IBasketView interface displays all products in the customer’s basket along with a list of prod-
uct categories for the catalog navigation.

Next, create a new Presenter class to accompany the TBasketVview named BasketPresenter, and
update it to match the following code listing:

using ASPPatterns.Chap8.MVP.Model;
using ASPPatterns.Chap8.MVP.Presentation.Basket;

namespace ASPPatterns.Chap8.MVP.Presentation
{
public class BasketPresenter : IBasketPresenter
{
private IBasketView _view;
private ProductService _productService;
private IBasket _basket;

public BasketPresenter (IBasketView view, ProductService productService,
IBasket basket)

_productService = productService;
_view = view;
_basket = basket;

public void Display ()
{
_view.BasketItems = _basket.Items;
_view.CategoryList = _productService.GetAllCategories();

The BasketPresenter is as straightforward as the previous presenters except that it utilizes the
TBasket as well as the Productservice to provide data to the view.

Again, the BasketPresenter implements an interface called TBasketPresenter, seen here:

public interface IBasketPresenter
{
void Display () ;

This completes the Presentation project, so now you can concentrate on the view implementation.

Create a new folder within the UT.web web application named views, and within this folder add
four folders named Basket, Home, Product, and Shared. This folder contains your ASPX pages
that implement the view interfaces as defined in the Presentation project. You also need to add a

308 | CHAPTERS8 THE PRESENTATION LAYER

reference to the structureMap.dll, because you will be using it as an [oC container, as discussed at
the beginning of this chapter.

Each of the views shares a number of characteristics — namely, the displaying of a list of categories
and the displaying of products. Because of this, you will create two user controls or partial views
that can be shared. Add a new user control to the shared folder named categoryList.ascx with
the following markup:

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="CategoryList.ascx.cs"
Inherits="ASPPatterns.Chap8.MVP.UI.Web.Views.Shared.CategoryList" %>

<asp:Repeater ID="rptCategoryList" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>

<a href="/Views/Product/CategoryProducts.aspx?CategoryId=<%# Eval("Id")%>">
<%# Eval ("Name")%>
</1li>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

Switch to the code behind view and add the following method, which allows the setting of the
Category collection source:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Shared
{ public partial class CategoryList : System.Web.UI.UserControl
{ public void SetCategoriesToDisplay (IEnumerable<Category> categories)
{ this.rptCategoryList.DataSource = categories;
this.rptCategoryList.DataBind() ;

The second partial view you will create is for the displaying of products. Add a user control named
ProductList.ascx to the Shared folder with the markup as displayed here:

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="ProductList.ascx.cs"
Inherits="ASPPatterns.Chap8.MVP.UI.Web.Views.Shared.ProductList" %>

<%@ Import Namespace="System.Collections.Generic"$>

<%@ Import Namespace="ASPPatterns.Chap8.MVP.Model"%>

<asp:Repeater ID="rptProducts" runat="server">
<ItemTemplate>

Model-View-Presenter | 309

<%# Eval ("Name") %> only <%#Eval ("Price", "{0:C}")%>

<a href="/Views/Product/ProductDetail.aspx?ProductId=<%# Eval ("Id") %>">
more information
<hr />
</ItemTemplate>
</asp:Repeater>

Again, switch to the code behind view and add the following method this time to set the Product
collection source:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Shared
{
public partial class ProductList : System.Web.UI.UserControl

{
public void SetProductsToDisplay (IEnumerable<Product> products)

{
this.rptProducts.DataSource = products;
this.rptProducts.DataBind() ;

To ensure the view has a consistent look and feel, use a master page to set the page layout. Add a
new master page to the Shared folder named shop.master with the markup as displayed here:

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Shop.master.cs"
Inherits="ASPPatterns.Chap8.MVP.UI.Web.Views.Shared.Shop" %>
<%@ Register src="~/Views/Shared/CategoryList.ascx"
tagname="CategoryList" tagprefix="ucl" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

<title></title>
</head>
<body>
<form id="forml" runat="server">
<div>
<table width="70%">
<tr>

<td colspan="2">

<h2>Scotts Shop</h2><hr /></td>
</tr>
<tr>

<td valign="top" width="15%">

<ucl:CategoryList ID="CategoryListl" runat="server" />
</td>
<td valign="top" width="85%">
<asp:ContentPlaceHolder ID="ContentPlaceHolderl" runat="server"/>

</td>

</tr>

310 | CHAPTER8 THE PRESENTATION LAYER

</table>
</div>
</form>
</body>
</html>

Switch to the code behind view and add the following property:

public partial class Shop : System.Web.UI.MasterPage

{
public CategoryList CategoryListControl

{
get { return this.CategoryListl; }

This makes it easier when working with the master page to set the categoryList control’s data
source.

Now with the layout and display controls created, you can start to implement the views defined in
the Model project.

Add a new web form to the Home folder named Tndex.aspx with the following markup:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Shop.Master"
AutoEventWireup="true" CodeBehind="Index.aspx.cs"
Inherits="ASPPatterns.Chap8.MVP.UI.Web.Views.Home.Index" %>
<%@ Register src="~/Views/Shared/ProductList.ascx" tagname="ProductList"
tagprefix="ucl" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="ContentPlaceHolderl" runat="server">
<h2>Today's Top Products</h2>
<ucl:ProductList ID="plBestSellingProducts" runat="server" />

</asp:Content>

Switch to the code behind and amend the class so that it implements the THomeview, and update the
class so that it matches the code listing that follows:

using ASPPatterns.Chap8.MVP.Presentation;

using ASPPatterns.Chap8.MVP.Model;

using ASPPatterns.Chap8.MVP.StubRepository;
using ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
using StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Home

{
public partial class Index : System.Web.UI.Page, IHomeView

{

private IHomePagePresenter _presenter;

protected void Page_Init (object sender, EventArgs e)
{
_presenter =
new HomePagePresenter (this, ObjectFactory

Model-View-Presenter | 311

.GetInstance<ProductService>()) ;

protected void Page_Load(object sender, EventArgs e)
{
_presenter.Display () ;

public IEnumerable<Model.Product> TopSellingProduct

{
set { plBestSellingProducts.SetProductsToDisplay (value); }

public IEnumerable<Category> CategoryList

{
set {
Shop shopMasterPage = (Shop)Page.Master;
shopMasterPage.CategoryListControl.SetCategoriesToDisplay (value) ;

Here’s a rundown of what’s happening in the code behind: In the Page_Tnit event, the presenter
is created first, passing a reference to the page itself using the this keyword and then using the
StructureMap object factory to resolve the ProductService dependencies. During the Page_Load
event, the Display method is called, which sets both the TopSellingProduct and categoryList
properties. The view then uses the data to populate the display controls plBestSellingProducts
andCategoryListControlConnnnaiontheMasterPage

The next view to implement is the ICategoryProductsview defined in the Model project. Create a
new web form named categoryProducts.aspx within the Product folder and update the markup
to match the code that follows:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Shop.Master"
AutoEventWireup="true" CodeBehind="CategoryProducts.aspx.cs"
Inherits="ASPPatterns.Chap8.MVP.UI.Web.Views.Product.CategoryProducts" %>
<%@ Register src="~/Views/Shared/ProductList.ascx" tagname="ProductList"
tagprefix="ucl" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="ContentPlaceHolderl" runat="server">
<h2>Al11 <asp:Literal ID="litCategoryName" runat="server" /></h2>
<ucl:ProductList ID="plCategoryProducts" runat="server" />

</asp:Content>

Switch to the code behind view and update the class. Have it implement the TcategoryProductsview
so that it matches the code listing shown here:

using ASPPatterns.Chap8.MVP.Presentation;

using ASPPatterns.Chap8.MVP.Model;

using ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
using StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Product

312 | CHAPTER8 THE PRESENTATION LAYER

public partial class CategoryProducts : System.Web.UI.Page, ICategoryProductsView

{
private ICategoryProductsPresenter _presenter;
protected void Page_Init (object sender, EventArgs e)
{
_presenter = new CategoryProductsPresenter (this,
ObjectFactory.GetInstance<ProductService>());
}
protected void Page_Load(object sender, EventArgs e)
{
_presenter.Display () ;
}
public int CategoryId
{
get { return int.Parse(Request.QueryString["CategoryId"]); }
}
public Category Category
{
set { litCategoryName.Text = value.Name; }
}
public IEnumerable<Model.Product> CategoryProductList
{
set { this.plCategoryProducts.SetProductsToDisplay (value); }
}
public IEnumerable<Category> CategoryList
{
set
{
Shop shopMasterPage = (Shop)Page.Master;
shopMasterPage.CategoryListControl.SetCategoriesToDisplay (value) ;
}
}
}

The class is similar to the code behind for the Tndex.aspx page you created earlier. The main differ-
ence is that the view sets the category in question via the query string parameter passed to the page,
which can be seen in the categoryId property setter.

Next, add another web form to the Product folder named Productbetail.aspx, which implements
the TProductDetailview as defined within the Model project. Update the markup of this page to
match the HTML listing here:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Shop.Master"
AutoEventWireup="true" CodeBehind="ProductDetail.aspx.cs"

Model-View-Presenter | 313

Inherits="ASPPatterns.Chap8.MVP.UI.Web.Views.Product.ProductDetail" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="ContentPlaceHolderl" runat="server">
<h2><asp:Literal ID="litName" runat="server"/></h2>

<p>pay:

<asp:Literal ID="litPrice" runat="server"/></p>

<p><asp:Literal ID="litDescription" runat="server"/></p>
<p><asp:Button ID="btnAddToBasket" runat="server" Text="Add to Basket"

onclick="btnAddToBasket_Click"/></p>

</asp:Content>

Again, switch to the code behind view and update the code listing so that it implements the
IProductDetailView, as shown next:

using
using
using
using
using
using

ASPPatterns.Chap8.MVP.Presentation;
ASPPatterns.Chap8.MVP.Model;
ASPPatterns.Chap8.MVP.Presentation.Basket;
ASPPatterns.Chap8.MVP.Presentation.Navigation;
ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Product

{

public partial class ProductDetail : System.Web.UI.Page, IProductDetailView

{

private IProductDetailPresenter _presenter;

protected void Page_Init (object sender, EventArgs e)
{

_presenter = new ProductDetailPresenter (this,
ObjectFactory.GetInstance<ProductService> (),
ObjectFactory.GetInstance<IBasket> (),
ObjectFactory.GetInstance<IPageNavigator>());

protected void Page_Load(object sender, EventArgs e)
{
_presenter.Display () ;

public int ProductId

{
get { return int.Parse(Request.QueryString["ProductId"]); }

public string Name

{

set { this.litName.Text = value; }

public decimal Price
{
set { this.litPrice.Text = String.Format("{0:C}", value); }

314 | CHAPTERS8 THE PRESENTATION LAYER

public string Description
{

set { this.litDescription.Text = value; }

public IEnumerable<Category> CategoryList
{

set

{
Shop shopMasterPage = (Shop)Page.Master;
shopMasterPage.CategoryListControl.SetCategoriesToDisplay (value) ;

protected void btnAddToBasket_Click(object sender, EventArgs e)

{
_presenter.AddProductToBasketAndShowBasketPage () ;

Again, this view implementation is similar to the ones you have created thus far. The one change is
the call to the presenter’s AddProductToBasketAndShowBasketPage method during the btnaddro
Basket_Click event firing. This method adds the product to a session basket and then redirects the
page to the basket display page.

The final view to implement is the basket view. Add a new web form to the Basket folder named
Basket .aspx and update the HTML markup view to match the listing that follows:
<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Shop.Master"

AutoEventWireup="true" CodeBehind="Basket.aspx.cs"
Inherits="ASPPatterns.Chap8.MVP.UI.Web.Views.Basket.Basket" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="ContentPlaceHolderl" runat="server">
<h2>Your Basket</h2>

<asp:Repeater ID="rptBasket" runat="server">
<ItemTemplate>
<1li>1 x <a href="/Views/Product/ProductDetail.aspx?ProductId=<%# Eval("Id") %>">

<%# Eval ("Name") %> for <%#Eval ("Price", "{0:C}")%></1li>

</ItemTemplate>

</asp:Repeater>

</asp:Content>

Switch to the code behind and amend the class, as you have done before, to implement the
IBasketView; then update it to match the listing that follows:
using ASPPatterns.Chap8.MVP.Presentation;

using ASPPatterns.Chap8.MVP.StubRepository;
using ASPPatterns.Chap8.MVP.Model;

Model-View-Presenter | 315

using ASPPatterns.Chap8.MVP.Presentation.Basket;
using ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
using StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Basket

{
public partial class Basket : System.Web.UI.Page, IBasketView
{

private IBasketPresenter _presenter;

protected void Page_Init (object sender, EventArgs e)
{
_presenter = new BasketPresenter(this,
ObjectFactory.GetInstance<ProductService>(),
ObjectFactory.GetInstance<IBasket>());

protected void Page_Load(object sender, EventArgs e)
{
_presenter.Display () ;

public IEnumerable<Category> CategoryList
{

set

{
Shop shopMasterPage = (Shop)Page.Master;
shopMasterPage.CategoryListControl.SetCategoriesToDisplay (value) ;

public IEnumerable<Model.Product> BasketItems
{
set {
rptBasket.DataSource = value;
rptBasket.DataBind() ;

The view implementation is straightforward and matches the other views that you have created up
to this point.

With all the views created, you now need to configure StructureMap to register all the dependences
of the presenters. Add a new class to the UT.web project named BootStrapper and update it to match
the code listing that follows:

using StructureMap;

using StructureMap.Configuration.DSL;

using ASPPatterns.Chap8.MVP.Model;

using ASPPatterns.Chap8.MVP.Presentation.Navigation;

316 | CHAPTER8 THE PRESENTATION LAYER

using ASPPatterns.Chap8.MVP.StubRepository;
using ASPPatterns.Chap8.MVP.Presentation;
using ASPPatterns.Chap8.MVP.Presentation.Basket;

namespace ASPPatterns.Chap8.MVP.UI.Web
{
public class BootStrapper
{
public static void ConfigureDependencies ()
{
// Initialize the registry
ObjectFactory.Initialize(x =>
{
x.AddRegistry<ControllerRegistry> () ;

1)

public class ControllerRegistry : Registry
{
public ControllerRegistry ()
{
ForRequestedType<ICategoryRepository> ()
.TheDefault.Is.OfConcreteType<CategoryRepository>();
ForRequestedType<IProductRepository> ()
.TheDefault.Is.OfConcreteType<ProductRepository>();
ForRequestedType<IPageNavigator> ()
.TheDefault.Is.OfConcreteType<PageNavigator> () ;
ForRequestedType<IBasket> ()
.TheDefault.Is.OfConcreteType<WebBasket> () ;

The class defines the concrete types to be used when creating the Productservice.

ConfigureDependencies is called when the application starts for the first time, so it makes sense to
call it within the Application_start event. Add a Global.asax file if one does not already exist,
and add the following method call to the Application_Start event.

public class Global : System.Web.HttpApplication

{
protected void Application_Start (object sender, EventArgs e)
{

BootStrapper.ConfigureDependencies () ;

The final task is to update the code behind of the pefault.aspx page created by Visual Studio so
that it redirects to the Tndex.aspx page within the Home folder, as can be seen here:
