

Professional
ASP.NET Design Patterns

Foreword . xix

Introduction. xxi

Part ⊲⊲ I	 Introducing Patterns and Principles

Chapter 1	 The Pattern for Successful Applications. . 3

Chapter 2	 Dissecting the Pattern’s Pattern. . 13

Part I⊲⊲ I	 The Anatomy of an ASP.NET Application:
Learning and Applying Patterns

Chapter 3	 Layering Your Application and Separating Your Concerns 31

Chapter 4	 The Business Logic Layer: Organization. . 55

Chapter 5	 The Business Logic Layer: Patterns. . 95

Chapter 6	 The Service Layer . . 153

Chapter 7	 The Data Access Layer. . 195

Chapter 8	 The Presentation Layer. . 289

Chapter 9	 The User Experience Layer. . 375

Part II⊲⊲ I	 Case Study: The Online E-Commerce Store

Chapter 10	 Requirements and Infrastructure . . 421

Chapter 11	 Creating The Product Catalog. . 449

Chapter 12	 Implementing the Shopping Basket. . 519

Chapter 13	 Customer Membership. . 565

Chapter 14	 Ordering and Payment. . 615

Index . 673

Professional

ASP.NET Design Patterns

Professional

ASP.NET Design Patterns

Scott Millett

Professional ASP.NET Design Patterns

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-29278-5
ISBN: 978-0-470-94445-5
ISBN: 978-0-470-95289-4
ISBN: 978-0-470-95301-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including with-
out limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with
the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If profes-
sional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor
the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work
as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers should be aware
that Internet Web sites listed in this work may have changed or disappeared between when this work was written and when
it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010929314

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

This book is dedicated to my wonderful wife

Lynsey — ​not that she will read it, mind you.

About the Author

Scott Millett is an enterprise software architect working in London for Wiggle.co.uk, an e-commerce
company specializing in cycle and triathlete sports. He has been working with .NET since version 1.0
and was awarded the ASP.NET MVP in 2010. He is the co-author of Wrox’s Professional Enterprise
.NET, and when not writing about or working with .NET he can be found relaxing and enjoying the
music at Glastonbury and all of the major music festivals in the UK during the summer. If you would
like to talk to Scott about the book, anything .NET, or the British music festival scene, feel free to write
to him at scott@elbandit.co.uk, or by giving him a tweet @ScottMillett.

Acquisitions Editor
Paul Reese

Project Editor
Brian Herrmann

Technical Editor
Joe Fawcett

Production Editor
Eric Charbonneau

Copy Editor
Karen Gill

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Associate Director of Marketing
David Mayhew

Production Manager
Tim Tate

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
James D. Kramer,
Happenstance Type-O-Rama

Proofreader
Jen Larsen, Word One

Indexer
Johnna VanHoose Dinse

Cover Photo
© Özgür Donmaz/istockphoto.com

Credits

Acknowledgments

I would like to thank  Brian Herrmann, Paul Reese, and all those at Wrox who have helped to cre-
ate this book. I would also like to thank Joe Fawcett who did a sterling job as the technical editor.

Massive thanks to Imar Spaanjaars (http://imar.spaanjaars.com/) for giving up his personal time
to review chapters and give me some great feedback.

I would also like to take the opportunity to thank a couple of people that I have learned a great deal
from over the last couple of years. I attended JP Boodhoo’s (http://blog.jpboodhoo.com/) .NET
boot camp in the summer of 2009 and it was probably one of the most inspirational weeks I have
ever had, and it reminded me why I love the job I do. Thanks, JP.

When MVC first came along, a fellow named Rob Conery (http://blog.wekeroad.com/) started a
blogging series on creating an MVC store. He explored many great technologies and methodologies
during the store’s construction, including BDD, TDD, DDD, KanBan, and Continuous Integration
to name but a few. I learned more than I could have possibly imagined, in no small part due to the
down-to-earth, fun manner in which Rob presented the content. If this book is half as good as those
videos, I will be a very happy man. Rob now has a company dedicated to providing great video
resources for developers at www.tekpub.com/. It’s well worth a look — ​top banana.

Contents

Foreword	 xix

Introduction	 xxi

Introducing Patterns and PrinciplePart I: s

The Pattern for Successful Applications	Chapter 1: 3

Design Patterns Explained	 4
Origins	 4
Necessity	 4
Usefulness	 5
What They Are Not	 5

Design Principles	 6
Common Design Principles	 6
The S.O.L.I.D. Design Principles	 7

Fowler’s Enterprise Design Patterns	 8
Layering	 8
Domain Logic Patterns	 8
Object Relational Mapping	 9
Web Presentation Patterns	 10
Base, Behavioral, and Structural Patterns	 10

Other Design Practices of Note	 11
Test-driven Development (TDD)	 11
Domain-driven Design (DDD)	 11
Behavior-driven Design (BDD)	 12

Summary	 12

Dissecting the Pattern’s Pattern	Chapter 2: 13

How to Read Design Patterns	 13
Gang of Four Pattern Template	 14
Simplified Template	 14

Design Pattern Groups	 15
Creational	 15
Structural	 15
Behavioral	 16

How to Choose and Apply a Design Pattern	 17

xiv

CONTENTS

A Quick Pattern Example	 18
Refactoring to Principles	 20
Refactoring to the Adapter Pattern	 22
Leveraging Enterprise Patterns	 25

Summary	 26

The Anatomy of an ASP.NET Application: Part II:
Learning and Applying Patterns

Layering Your Application and Separating Your Chapter 3:
Concerns	 31

Application Architecture and Design	 31
Antipattern — ​Smart UI	 32
Separating Your Concerns 	 37

Summary	 53

The Business Logic Layer: Organization	 5Chapter 4: 5

Understanding Business Organizational Patterns	 56
Transaction Script	 56
Active Record	 58
Domain Model	 68
Anemic Domain Model	 88
Domain-Driven Design	 90

Summary	 93

The Business Logic Layer: Patterns	 9Chapter 5: 5

Leveraging Design Patterns	 95
Factory Method	 96
Decorator	 100
Template Method	 105
State Pattern	 110
Strategy	 115

Leveraging Enterprise Patterns	 120
Specification Pattern	 120
Composite Pattern	 121
Layer Supertype Pattern	 127

Applying Design Principles	 130
Dependency Inversion Principle and the Dependency Injection Pattern	 130
Interface Segregation Principle 	 137
Liskov Substitution Principle 	 141

Summary 	 151

xv

CONTENTS

The Service Layer	Chapter 6: 153

Describing the Service Layer	 153
Service Oriented Architecture 	 154
Four Tenets of SOA	 156
The Facade Design Pattern	 157

Leveraging Messaging Patterns	 159
The Document Message and the Request-Response Patterns	 159
The Reservation Pattern	 160
The Idempotent Pattern	 161

An SOA Example	 162
Domain Model and Repository	 163
Service Layer	 171
Client Proxy	 184
Client	 188

Summary	 192

The Data Access Layer	Chapter 7: 195

Describing the DAL	 195
Data Access Strategies	 196

The Repository Pattern	 196
Data Access Objects Pattern	 197

Patterns in Data Access	 197
Unit of Work	 198
Data Concurrency Control	 205
Lazy Loading and the Proxy Pattern	 208
Identity Map	 213
Query Object Pattern	 215

Using an Object Relational Mapper	 225
NHibernate	 225
MS Entity Framework	 226
ORM Code Example	 227

Summary	 285

The Presentation Layer	 28Chapter 8: 9

Inversion of Control	 289
Factory Design Pattern 	 290
Service Locator	 291
IoC Containers	 292

Model-View-Presenter	 296
ASP.NET Web Forms with MVP 	 297

xvi

CONTENTS

Front Controller	 319
Command Pattern	 319
Chain of Responsibility Pattern	 341

Model-View-Controller	 348
ViewModel Pattern	 349
The ASP.NET MVC Framework	 349
Castle MonoRail	 365

Page Controller	 372
Summary	 372

The User Experience Layer	 37Chapter 9: 5

What Is AJAX?	 375
Using JavaScript Libraries	 376
Understanding AJAX Patterns	 376

Periodic Refresh and Timeout 	 376
Unique URL 	 394
Databinding with JavaScript Templates	 394
Predictive Fetch 	 412

Summary	 417

Case Study: The Online E-Commerce StorPart III: e

Requirements and Infrastructure	 4Chapter 10: 21

Agatha’s Clothing Store Requirements	 421
Product Catalog and Basket Screens	 422
Customer Account Screens	 425
Checkout Screens	 427
Caching and Logging	 428

Architecture	 428
Setting Up the Supporting Infrastructure	 431

Summary	 448

Creating The Product Catalog	 44Chapter 11: 9

Creating The Product Catalog	 449
Product Catalog Model	 450
Product Catalog Data Tables	 454
Product Catalog Repositories	 455
Product Services	 468
Controllers	 483

xvii

CONTENTS

Product Catalog Views	 493
Setting Up IoC	 515

Summary	 518

Implementing the Shopping Basket	Chapter 12: 519

Implementing the Basket	 519
Basket Domain Model	 519
Create the Basket Tables	 529
NHibernate Mapping	 529
Basket Service	 533
Basket Controller and Basket Views	 542

Summary	 563

Customer Membership	 56Chapter 13: 5

Customer Membership	 565
Customer Model 	 565
Customer Data Tables	 571
Customer NHibernate Mappings	 571
Customer Service	 574
Authentication Service	 582
Customer Controller	 590
Account Controllers	 594
Customer Membership Views	 604
Authentication Views	 608

Summary	 614

Ordering and Payment	Chapter 14: 615

Checkout	 615
Order Model	 615
Order Data Tables	 631
Order NHibernate Mappings	 631
Order Service	 635
Taking Payment with PayPal	 644
Order, Payment, and Checkout Controllers	 653
Order and Checkout Views	 662

Summary	 672

Index	 673

Foreword

Houses get built, manufacturing plants create stuff, and automobiles come off assembly lines
enabled by well-known and agreed upon patterns for building things. For well-understood tasks
there’s no reason to reinvent the wheel.

As Christopher Alexander said:

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same way twice.

When the Gang of Four (that you’ll learn about in a minute!) wrote the first Design Patterns book
for software engineers, it was the first time that patterns had been formally expressed in our disci-
pline. In this book, you’ll learn not just about patterns, but also antipatterns and what we can learn
from them as well.

Sometimes it’s not always clear what the best practice is, and mapping design pattern language to
tangible usage within ASP.NET can be a challenge. Scott Millett’s book takes those time tested
design patterns, teaches you how to read them, and then applies them in a concrete and specific way
to the problems that we as ASP.NET programmers have to deal with every day.

Filled with lots of code, instead of endless prose like some books, this book strives to connect
the dots and make these patterns real, applicable and relevant in your daily life as a developer. In
doing so, Millett calls upon not just what comes out of the box with ASP.NET from Microsoft, but
also shows us some of the gifts that open source software has given us like Castle ActiveRecord,
StructureMap, AutoMapper, and NHibernate.

From the Gang of Four to Uncle Bob’s S.O.L.I.D. to Fowler’s Enterprise patterns, Scott (what a
lovely name) connects timeless patterns to the timely technologies of today like jQuery and JSON,
the Entity Framework, and WCF.

I hope you enjoy reading it as much as I did.

Scott Hanselman
Program Manager – Microsoft

http://hanselman.com and @shanselman on Twitter

Introduction

This book is all about  showing you how to use the power of design patterns and core design
principles in real ASP.NET applications. The goal of this book is to educate developers on the fun-
damentals of object oriented programming, design patterns, principles, and methodologies that
can help you become a better programmer. Design patterns and principles enable loosely coupled
and highly cohesive code, which will improve your code’s readability, flexibility, and maintenance.
Each chapter addresses a layer in an enterprise ASP.NET application and shows how proven pat-
terns, principles, and best practices can be leveraged to solve problems and improve the design of
your code. In addition, a professional-level, end-to-end case study is used to show how to use best
practice design patterns and principles in a real website.

Who This Book Is For

This book is for ASP.NET developers who are comfortable with the .NET framework but are looking
to improve how they code and understand why design patterns, design principles, and best practices
will make their code more maintainable and adaptable. Readers who have had experience with design
patterns before may wish to skip Part 1 of the book, which acts as an introduction to the Gang of
Four design patterns and common design principles, including the S.O.L.I.D. principles and Martin
Fowler’s enterprise patterns. All code samples are written in C# but the concepts can be applied very
easily to VB.NET.

What This Book Covers

This book covers well-known patterns and best practices for developing enterprise-level ASP.NET
applications. The patterns used can be applied to any version of ASP.NET from 1.0 to 4.0. The patterns
themselves are language agnostic and can be applied to any object oriented programming language.

How This Book Is Structured

Professional ASP.NET Design Patterns can be used both as a step-by-step guide and as a continuous
source of reference to dip into at your leisure. The book is broken into three distinct sections. Part 1
is an introduction to patterns and design principles. Part 2 examines how patterns and principles can
be used in the various layers of an ASP.NET application. Part 3 represents an end-to-end case study
showcasing many of the patterns covered in the book. You may find it useful to work through the
chapters before reading the case study, or you may find it easier to see the patterns in action by read-
ing the case study section first and referring back to Part 2 for a more detailed view on the patterns
and principles used.

xxii

introduction

Part 1: Introducing Patterns and Principles
The first part of this book begins by introducing the concepts of design patterns, enterprise patterns,
and design principles, including the S.O.L.I.D. design principles.

Chapter 1: The Pattern for Successful Applications
This chapter explores why, as a professional developer, you need to understand design patterns and
principles, and more importantly, how to utilize them in a real-world enterprise-level application.
It covers the origins of the Gang of Four design patterns, their relevance in today’s world, and their
decoupling from specific programming languages. An overview of some common design principles
and the S.O.L.I.D. design principles follows, and the chapter ends with a description of Fowler’s
enterprise patterns.

Chapter 2: Dissecting the Pattern’s Pattern
This chapter introduces you to the practical knowledge necessary to use a design pattern template,
and how to read the GoF design patterns using the design templates. The chapter will then teach you
how to understand the design pattern groupings and give information on knowing how to choose
and apply a design pattern. The chapter finishes with an example on refactoring existing code to use
design patterns and principles to increase maintainability.

Part 2: The Anatomy of an ASP.NET Application:
Learning and Applying Patterns

Part two of the book shows how the patterns and principles introduced in the first two chapters can
be applied to various layers of an enterprise-level ASP.NET application.

Chapter 3: Layering Your Application and Separating Your Concerns
This chapter describes the benefits of a layered design over the traditional ASP.NET web forms
code-behind model. It goes on to cover the concepts of logical layering and the separation of your
application’s concerns. The chapter then defines the responsibilities of each distinct layer in an
enterprise-level ASP.NET application that will be covered in the remaining chapters of this part.
The chapter ends with an exercise in refactoring away from the Smart UI antipattern to a layered
architectural approach.

Chapter 4: The Business Logic Layer: Organization
This chapter covers patterns designed to organize your business logic layer. The chapter begins with
a description of the Transaction Script pattern followed by the Active Record, with an exercise to
demonstrate the pattern using the Castle Windsor project. The last pattern this chapter looks at
is the Domain Model pattern demonstrated in an exercise with NHibernate. The chapter ends with
a review of the domain-driven design (DDD) methodology and how it can be used to focus your
efforts on business logic rather than infrastructure concerns.

xxiii

introduction

Chapter 5: The Business Logic Layer: Patterns
Chapter 5, like the previous chapter, focuses on the business layer, but this time on the patterns and
principles that can be used construct your objects and how to make sure that you are building your
application for scalability and maintainability. The patterns covered include Factory, Decorator,
Template, State, Strategy, and Composite. Enterprise patterns are covered including Specification
and Layer Supertype. The chapter ends with some design principles that can improve your code’s
maintainability and flexibility; these include Dependency Injection, Interface Segregation, and
Liskov Substitution Principle.

Chapter 6: The Service Layer
This chapter covers the role that the service layer plays in an enterprise ASP.NET application. The
chapter starts with a brief look at Service Oriented Architecture and why it’s needed. The Facade
design pattern is then examined. Messaging patterns such as Document Message, Request-Response,
Reservation, and the Idempotent pattern are then covered. The chapter finishes with an exercise that
utilizes WCF to demonstrate all of the patterns covered in the chapter.

Chapter 7: The Data Access Layer
How to persist the state of your business objects with your data store is a critical part of your applica-
tion architecture. In this chapter, you will learn about design patterns utilized in this layer and how to
incorporate them. Two data access strategies are demonstrated to help organize your persistence layer:
Repository and Data Access Objects. The chapter then covers enterprise patterns and principles that
will help you fulfill your data access requirement needs elegantly, including Lazy Loading, Identity Map,
Unit of Work, and the Query Object. The chapter finishes with an introduction to Object Relational
Mappers and the problems they solve. An enterprise Domain Driven exercise with POCO business enti-
ties utilizing both NHibernate and the MS Entity Framework completes the chapter.

Chapter 8: The Presentation Layer
This chapter introduces you to patterns designed to organize the presentation logic and to keep it
separate from the other layers in your application. The chapter starts with an explanation of how you
can tie your loosely coupled code together with Structure Map, and an Inversion of Control container.
The chapter then moves on to describe a number of presentation patterns, including letting the view be
in charge with the Model-View-Presenter pattern and ASP.NET web forms, the Front Controller presen-
tation pattern utilizing the Command and Chain of Responsibility patterns, as well as the Model-View-
Controller Pattern implemented with the ASP.NET MVC framework and Windsor’s Castle Monorail
framework. The final presentation pattern covered is PageController as used in ASP.NET web forms.
The chapter ends with a pattern that can be used with organizational patterns, namely the ViewModel
pattern and how to automate domain entities to ViewModel mapping with AutoMapper.

Chapter 9: The User Experience Layer
In the final chapter of Part 2 the focus is set on the user experience layer. The chapter starts with
an explanation of what AJAX is and the technologies that make it possible. JavaScript libraries are

xxiv

introduction

then covered to show how you can simplify working with JavaScript with powerful libraries such
as jQuery. The main part of the chapter describes some common Ajax patterns: the Ajax Periodic
Refresh and Timeout patterns, maintaining history with the Unique URL pattern, client side data
binding with JTemplate, and the Ajax Predictive Fetch pattern.

Part 3: Case Study: The Online E-Commerce Store
The final part of the book uses an end-to-end example application to demonstrate many of the pat-
terns introduced in Part 2.

Chapter 10: Requirements and Infrastructure
The first case study chapter introduces Agatha’s e-commerce store that you will build in the remain-
ing four chapters. The chapter describes the requirements for the site as well as the base infrastruc-
ture and overall architecture that will be used. ASP.MVC is used for the presentation layer with a
domain model employed for the middle layer organization and NHibernate is leveraged to persist
and retrieve business entities from the database.

Chapter 11: Creating the Product Catalog
Chapter 11 builds the product catalogue browsing functionality of the store. jQuery is heavily used
to give a rich web 2.0 look and feel. Json is utilized to communicate between the controllers and
the ASPX views to provide Ajax functionality. ViewModels are used to provide the controllers with
a flattened view of the domain. AutoMapper is employed to convert the domain entities into the
ViewModels.

Chapter 12: Implementing the Shopping Basket
In this chapter the customer’s shopping basket is implemented. The customer’s cookie is used to store
a summary of the basket contents and a service is created to abstract the access to cookie storage.
Again the web 2.0 look and feel is kept, with all actions on the basket taking place via Ajax calls.

Chapter 13: Customer Membership
Chapter 13 tackles customer membership and authentication. The ASP.NET membership provider
is used for onsite authentication but a second authentication method is used to allow customers to
authenticate with their existing web based accounts such as Facebook and Google. The customer
account screens are also developed.

Chapter 14: Ordering and Payment
The final chapter in the case study exercise sees the payment and checkout functions of the site cre-
ated. PayPal is the chosen payment merchant but the code is abstracted away so that any online pay-
ment merchant can be swapped in easily. The chapter finishes by adding the ordering history to the
customer’s account section.

xxv

inTroDucTion

conVenTions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

The pencil icon indicates notes, tips, hints, tricks, or and asides to the current
discussion.

As for styles in the text:

We ➤➤ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.➤➤

We show fi le names, URLs, and code within the text like so: ➤➤ persistence.properties.

We present code in two different ways:➤➤

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

source coDe

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the Web site is highlighted by the
following icon:

Available for
download on
Wrox.com

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code
note such as this:

Code snippet fi lename

xxvi

inTroDucTion

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-29278-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

erraTa

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page, you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list, including links to each book’s errata, is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fi x the
problem in subsequent editions of the book.

P2P.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other indus-
try experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

xxvii

inTroDucTion

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

PART I
introducing Patterns and Principles

chaPTer 1: ⊲ The Pattern for Successful Applications

chaPTer 2: ⊲ Dissecting the Pattern’s Pattern

The Pattern for
successful applications

whaT’s in This chaPTer?

An introduction to the Gang of Four Design Patterns➤➤

An overview of some common design principles and the SOLID ➤➤

design principles

A description of Fowlers Enterprise Patterns➤➤

John Lennon once wrote, “There are no problems, only solutions.” Now, Mr. Lennon never, to
my mind, did much in the way of ASP.NET programming; however, what he said is extremely
relevant in the realm of software development and probably humanity, but that’s a whole other
book. Our job as software developers involves solving problems — problems that other devel-
opers have had to solve countless times before albeit in various guises. Throughout the lifetime
of object-oriented programming, a number of patterns, principles, and best practices have been
discovered, named, and catalogued. With knowledge of these patterns and a common solu-
tion vocabulary, we can begin to break down complex problems, encapsulate what varies, and
develop applications in a uniformed way with tried and trusted solutions.

This book is all about introducing you to design patterns, principles, and best practices that
you can apply to your ASP.NET applications. By their very nature, patterns and principles are
language agnostic, so the knowledge gained in this book can be applied to win forms, WPF
and Silverlight applications, as well as other fi rst-class object-oriented languages.

This chapter will cover what design patterns are, where they come from, and why it’s important to
study them. Fundamental to design patterns are solid object-oriented design principles, which will
be covered in this chapter in the form of Robert Martin’s S.O.L.I.D. principles. I will also intro-
duce you to some more advanced patterns as laid out in Martin Fowler’s Patterns of Enterprise
Application Architecture book.

1

4  ❘  Chapter 1   The Pattern for Successful Applications

Design Patterns Explained

Design patterns are high-level abstract solution templates. Think of them as blueprints for solutions
rather than the solutions themselves. You won’t find a framework that you can simply apply to your
application; instead, you will typically arrive at design patterns through refactoring your code and
generalizing your problem.

Design patterns aren’t just applicable to software development; design patterns can be found in all areas
of life from engineering to architecture. In fact, it was the architect Christopher Alexander who intro-
duced the idea of patterns in 1970 to build a common vocabulary for design discussion. He wrote:

The elements of this language are entities called patterns. Each pattern describes a
problem that occurs over and over again in our environment and then describes the
core of the solution to that problem in such a way that you can use this solution a
million times over without ever doing it the same way twice.

Alexander’s comments are just as applicable to software design as they are to buildings and town
planning.

Origins
The origins of the design patterns that are prevalent in software architecture today were born from the
experiences and knowledge of programmers over many years of using object-oriented programming lan-
guages. A set of the most common patterns were catalogued in a book entitled Design Patterns: Elements
of Reusable Object-Oriented Software, more affectionately known as the Design Patterns Bible. This
book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, better known as
the Gang of Four.

They collected 23 design patterns and organized them into 3 groups:

Creational Patterns:➤➤ These deal with object construction and referencing.

Structural Patterns:➤➤ These deal with the relationships between objects and how they interact
with each other to form larger complex objects.

Behavioral Patterns:➤➤ These deal with the communication between objects, especially in terms
of responsibility and algorithms.

Each pattern is presented in a template so readers can learn how to decipher and apply the pattern.
We will be covering the practical knowledge necessary to use a design pattern template in Chapter 2
along with a brief overview of each pattern that we will be looking at in the rest of this book.

Necessity
Patterns are essential to software design and development. They enable the expression of intent
through a shared vocabulary when problem solving at the design stage as well as within the source
code. Patterns promote the use of good object-oriented software design, as they are built around
solid object-oriented design principles.

Design Patterns Explained  ❘  5

Patterns are an effective way to describe solutions to complex problems. With solid knowledge of
design patterns, you can communicate quickly and easily with other members of a team without
having to be concerned with the low-level implementation details.

Patterns are language agnostic; therefore, they are transferable over other object-oriented languages.
The knowledge you gain through learning patterns will serve you in any first-class object-oriented
language you decide to program in.

Usefulness
The useful and ultimate value of design patterns lies in the fact that they are tried and tested solu-
tions, which gives confidence in their effectiveness. If you are an experienced developer and have
been programming in .NET or another object-oriented language for a number of years, you might
find that you are already using some of the design patterns mentioned in the Gang of Four book.
However, by being able to identify the patterns you are using, you can communicate far more effec-
tively with other developers who, with an understanding of the patterns, will understand the structure
of your solution.

Design patterns are all about the reuse of solutions. All problems are not equal, of course, but if you can
break down a problem and find the similarities with problems that have been solved before, you can then
apply those solutions. After decades of object-oriented programming, most of the problems you’ll encoun-
ter will have been solved countless times before, and there will be a pattern available to assist in your
solution implementation. Even if you believe your problem to be unique, by breaking it down to its root
elements, you should be able to generalize it enough to find an appropriate solution.

The name of the design pattern is useful because it reflects its behavior and purpose and provides a
common vocabulary in solution brainstorming. It is far easier to talk in terms of a pattern name than
in detail about how an implementation of it would work.

What They Are Not
Design patterns are no silver bullet. You have to fully understand your problem, generalize it, and
then apply a pattern applicable to it. However, not all problems require a design pattern. It’s true
that design patterns can help make complex problems simple, but they can also make simple prob-
lems complex.

After reading a patterns book, many developers fall into the trap of trying to apply patterns to every-
thing they do, thus achieving quite the opposite of what patterns are all about — ​making things simple.
The better way to apply patterns, as stated before, is by identifying the fundamental problem you are
trying to solve and looking for a solution that fits it. This book will help with the identification of when
and how to use patterns and goes on to cover the implementation from an ASP.NET point of view.

You don’t always have to use design patterns. If you have arrived at a solution to a problem that is
simple but not simplistic and is clear and maintainable, don’t beat yourself up if it doesn’t fit into
one of the 23 Gang of Four design patterns. Otherwise, you will overcomplicate your design.

This talk of patterns might seem rather vague at the moment, but as you progress through the book,
you will learn about the types of problems each pattern was designed to solve and work through imple-
mentations of these patterns in ASP.NET. With this knowledge, you can then apply the patterns to your
applications.

6  ❘  Chapter 1   The Pattern for Successful Applications

Design Principles

Design principles form the foundations that design patterns are built upon. They are more funda-
mental than design patterns. When you follow proven design principles, your code base becomes
infinitely more flexible and adaptable to change, as well as more maintainable. I will briefly intro-
duce you to some of the more widely known design principles and a series of principles known as the
S.O.L.I.D. principles. Later in the book we will look at these principles more deeply and implement
them and best practices in ASP.NET.

Common Design Principles
There are a number of common design principles that, like design patterns, have become best practice
over the years and helped to form a foundation onto which enterprise-level and maintainable software
can be built. The following sections preview some of the more widely known principles.

Keep It Simple Stupid (KISS)
An all-too-common issue in software programming is the need to overcomplicate a solution. The goal
of the KISS principle is concerned with the need to keep code simple but not simplistic, thus avoiding
any unnecessary complexities.

Don’t Repeat Yourself (DRY)
The DRY principle aims to avoiding repetition of any part of a system by abstracting out things that
are common and placing those things in a single location. This principle is not only concerned with
code but any logic that is duplicated in a system; ultimately there should only be one representation
for every piece of knowledge in a system.

Tell, Don’t Ask
The Tell, Don’t Ask principle is closely aligned with encapsulation and the assigning of responsi-
bilities to their correct classes. The principle states that you should to tell objects what actions you
want them to perform rather than asking questions about the state of the object and then making
a decision yourself on what action you want to perform. This helps to align the responsibilities and
avoid tight coupling between classes.

You Ain’t Gonna Need It (YAGNI)
The YAGNI principle refers to the need to only include functionality that is necessary for the applica-
tion and put off any temptation to add other features that you may think you need. A design meth-
odology that adheres to YAGNI is test-driven development (TDD). TDD is all about writing tests
that prove the functionality of a system and then writing only the code to get the test to pass. TDD is
discussed a little later in this chapter.

Separation of Concerns (SoC)
SoC is the process of dissecting a piece of software into distinct features that encapsulate unique behav-
ior and data that can be used by other classes. Generally, a concern represents a feature or behavior of

Design Principles  ❘  7

a class. The act of separating a program into discrete responsibilities significantly increases code reuse,
maintenance, and testability.

The remainder of this book refers back to these principles so you can see how they are implemented
and help form clean and maintainable object-oriented systems. The next group of design principles
you will look at were collected together under the grouping of the S.O.L.I.D. design principles.

The S.O.L.I.D. Design Principles
The S.O.L.I.D. design principles are a collection of best practices for object-oriented design. All
of the Gang of Four design patterns adhere to these principles in one form or another. The term
S.O.L.I.D. comes from the initial letter of each of the five principles that were collected in the book
Agile Principles, Patterns, and Practices in C# by Robert C. Martin, or Uncle Bob to his friends.
The following sections look at each one in turn.

Single Responsibility Principle (SRP)
The principle of SRP is closely aligned with SoC. It states that every object should only have one
reason to change and a single focus of responsibility. By adhering to this principle, you avoid the
problem of monolithic class design that is the software equivalent of a Swiss army knife. By having
concise objects, you again increase the readability and maintenance of a system.

Open-Closed Principle (OCP)
The OCP states that classes should be open for extension and closed for modification, in that you
should be able to add new features and extend a class without changing its internal behavior. The
principle strives to avoid breaking the existing class and other classes that depend on it, which
would create a ripple effect of bugs and errors throughout your application.

Liskov Substitution Principle (LSP)
The LSP dictates that you should be able to use any derived class in place of a parent class and have it
behave in the same manner without modification. This principle is in line with OCP in that it ensures
that a derived class does not affect the behavior of a parent class, or, put another way, derived classes
must be substitutable for their base classes.

Interface Segregation Principle (ISP)
The ISP is all about splitting the methods of a contract into groups of responsibility and assigning
interfaces to these groups to prevent a client from needing to implement one large interface and a
host of methods that they do not use. The purpose behind this is so that classes wanting to use the
same interfaces only need to implement a specific set of methods as opposed to a monolithic inter-
face of methods.

Dependency Inversion Principle (DIP)
The DIP is all about isolating your classes from concrete implementations and having them depend on
abstract classes or interfaces. It promotes the mantra of coding to an interface rather than an imple-
mentation, which increases flexibility within a system by ensuring you are not tightly coupled to one
implementation.

8  ❘  Chapter 1   The Pattern for Successful Applications

Dependency Injection (DI) and Inversion of Control (IoC)
Closely linked to the DIP are the DI principle and the IOC principle. DI is the act of supplying a low
level or dependent class via a constructor, method, or property. Used in conjunction with DI, these
dependent classes can be inverted to interfaces or abstract classes that will lead to loosely coupled
systems that are highly testable and easy to change.

In IoC, a system’s flow of control is inverted compared to procedural programming. An example of
this is an IoC container, whose purpose is to inject services into client code without having the client
code specifying the concrete implementation. The control in this instance that is being inverted is the
act of the client obtaining the service.

Throughout this book, you will examine each of the S.O.L.I.D. principles in more detail. Next, how-
ever, you will investigate some enterprise-level patterns designed to deal with specific scenarios that
are built upon common design principles and design patterns.

Fowler’s Enterprise Design Patterns

Martin Fowler’s Patterns of Enterprise Application Architecture book is a best practice and pat-
terns reference for building enterprise-level applications. As with the GoF patterns book, experienced
developers will no doubt already be following many of the catalogued patterns. The value in Fowler’s
work, however, is the categorization of these patterns along with a common language for describing
them. The book is split into two sections. The first half deals with n-tier applications and the organiz-
ing of data access, middleware, and presentation layers. The second half is a patterns reference rather
like the GoF patterns book but more implementation specific.

Throughout this book, you will be looking at the ASP.NET implementations of Fowler’s patterns.
The following sections examine what the rest of the book will tackle.

Layering
Chapter 3 covers the options at your disposal to layer an enterprise ASP.NET application. You will
look at the problems with the traditional code behind the model of web forms, and how to separate
the concerns of presentation, business logic, and data access with a traditional layered approach.

Domain Logic Patterns
Chapter 4 examines three popular methods for organizing your business logic: Transaction Script,
Active Record, and Domain Model.

Transaction Script
Transaction Script is the organization of business logic in a linear, procedural fashion. It maps fine-
grained business use cases to fine-grained methods.

Active Record
Active Record organizes business logic in a way that closely matches the underlying data structure,
namely an object that represents a row in a table.

Fowler’s Enterprise Design Patterns  ❘  9

Domain Model
The Domain Model pattern is an abstraction of real domain objects. Both data and behavior are
modeled. Complex relationships between objects can exist that match the real domain.

You will look at how to use each of these patterns in ASP.NET and when it is appropriate to choose
one pattern over another.

Object Relational Mapping
In Chapter 7 your attention will turn to how you can persist the state of our business entities as well
as how you can retrieve them from a data store. You will look at the enterprise patterns required for
the infrastructure code to support persistence, including the patterns introduced in the following
sections.

Unit of Work
The Unit of Work pattern is designed to maintain a list of business objects that have been changed
by a business transaction, whether that be adding, removing, or updating. The Unit of Work then
coordinates the persistence of the changes as one atomic action. If there are problems, the entire
transaction rolls back.

Repository
The Repository pattern, by and large, is used with logical collections of objects, or aggregates as they
are better known. It acts as an in-memory collection or repository for business entities, completely
abstracting away the underlying data infrastructure.

Data Mapper
The Data Mapper pattern is used to hydrate an object from raw data and transfer information from
a business object to a database. Neither the business object nor the database is aware of the other.

Identity Map
An Identity Map keeps tabs on every object loaded from a database, ensuring everything is loaded
only once. When objects are subsequently requested, the Identity Map is checked before retrieving
from the database.

Lazy Loading
Lazy or deferred loading is the act of deferring the process of obtaining a resource until it’s needed.
If you imagine a Customer object with an address book, you could hydrate the customer from the
database but hold the population of the address book until the address book is needed. This enables
the on-demand loading of the address book, thus avoiding the hit to the database if the address data
is never needed.

Query Object
The Query Object pattern is an implementation of a Gang of Four interpreter design pattern. The query
object acts as an object-oriented query that is abstracted from the underlying database, referring to

10  ❘  Chapter 1   The Pattern for Successful Applications

properties and classes rather than real tables and columns. Typically, you will also have a translator
object to generate the native SQL to query the database.

Web Presentation Patterns
In Chapter 8, you will turn your attention to the presentation needs of enterprise-level ASP.NET appli-
cations. The chapter focuses on patterns designed to keep business logic separate from presentation
logic. First you will look at the problems with the code behind model that was prominent in early web
forms development; then you will investigate patterns that can be used to keep domain and presenta-
tion logic separate, as well as allowing the presentation layer to be effectively tested.

Each of these patterns is tasked with separating the concerns of presentation logic with that of busi-
ness logic. The patterns covered for ASP.NET presentation needs are:

Model-View-Presenter➤➤

Model-View-Controller➤➤

Front Controller➤➤

Page Controller➤➤

Base, Behavioral, and Structural Patterns
Throughout the book, you will be seeing how to leverage other enterprise patterns found in Fowler’s
book in enterprise ASP.NET applications. These patterns will include Null Object, Separated
Interface, Registry, and Gateway.

Null Object Pattern
Also known as the Special Case pattern, this acts as a return value rather than returning null to
the calling code. The null object will share the same interface or inherit from the same base class
as the expected result, which alleviates the need to check for null cases throughout the code base.

Separated Interface
The Separated Interface pattern is the act of keeping the interfaces in a separate assembly or namespace
to the implementations. This ensures that the client is completely unaware of the concrete implementa-
tions and can promote programming to abstractions rather than implementations and the Dependency
Inversion principle.

Gateway
The Gateway pattern allows clients to access complex resources via a simplified interface. The Gateway
object basically wraps the resource API into a single method call that can be used anywhere in the
application. It also hides any API complexities.

All of the enterprise patterns introduced here will be covered in more detail throughout the book
with exercises to see how they are implemented in an ASP.NET scenario. The next section wraps up
the chapter with a brief look at design methodologies and practices that use the patterns and prin-
ciples you have been introduced to in this chapter.

Other Design Practices of Note  ❘  11

Other Design Practices of Note

In addition to the design patterns, principles, and enterprise patterns that have been covered so far, I
would like to introduce you to a few design methodologies: test-driven development, behavior-driven
development, and domain-driven development. This section won’t cover these topics deeply because
they are out of the scope of this book. However, the sample code featured in each of the chapters to
demonstrate patterns and principles that you can download from www.wrox.com has been designed
using these methodologies.

Test-driven Development (TDD)
Contrary to the name, TDD is more of a design methodology than a testing strategy; the name simply
just doesn’t do it justice. The main concept behind it is to allow your tests to shape the design of a sys-
tem. When creating a software solution you start by writing a failing test to assert some business logic.
Then you write the code to get that test to pass; last, you clean up any code via refactoring. This series
of steps has been coined the red-green-refactor. The red and green refer to the colors that testing frame-
works use to show tests passing and failing.

By going through the process of TDD, you end up with a loosely coupled system with a suite of tests
that confirm all behavior. A byproduct of TDD is that your tests provide a sort of living documenta-
tion that describes what your system can and can’t do. Because it is part of the system, the tests will
never go out of date, unlike written documentation and code comments.

For more information on TDD, take a look at these books:

Test Driven Development: By Example ➤➤ by Kent Beck

The Art of Unit Testing: With Examples in .NET➤➤ by Roy Osherove

Professional Enterprise .NET ➤➤ by Jon Arking and Scott Millett (published by Wrox)

Domain-driven Design (DDD)
In a nutshell, DDD is a collection of patterns and principles that aid in your efforts to build applica-
tions that reflect an understanding of and meet the requirements of your business. Outside of that, it’s
a whole new way of thinking about your development methodology. DDD is about modeling the real
domain by fully understanding it first and then placing all the terminology, rules, and logic into an
abstract representation within your code, typically in the form of a domain model. DDD is not a frame-
work, but it does have a set of building blocks or concepts that you can incorporate into your solution.

You’ll use this methodology when you build the case study application in Chapters 10 and 11. Some
of the deeper aspects of DDD are examined in Chapter 4.

For more information on DDD, take a look at these books:

Domain-Driven Design: Tackling Complexity in the Heart of Software➤➤ by Eric Evans

Applying Domain-Driven Design and Patterns: With Examples in C# and .NET➤➤ by Jimmy
Nilsson

.NET Domain-Driven Design with C#: Problem - Design - Solution➤➤ by Tim McCarthy

12  ❘  Chapter 1   The Pattern for Successful Applications

Behavior-driven Design (BDD)
You can think of BDD as an evolution of TDD merged with DDD. BDD focuses on the behavior of a
system rather than just testing it. The specifications created when using BDD use the same ubiquitous
language as seen in the real domain, which can be beneficial for both technical and business users.

The documentation that is produced when writing specifications in BDD gives readers an idea of how
a system will behave in various scenarios instead of simply verifying that methods are doing what they
are supposed to. BDD is intended to meet the needs of both business and technical users by mixing in
aspects of DDD with core TDD concepts. BDD can be performed using standard unit testing frame-
works, but specific BDD frameworks have emerged, and BDD looks to be the next big thing.

Again, if you download from www.wrox.com the code for the case study you will build in Chapters 10 and
11, you will find BDD specifications written to demonstrate the behavior of the system. Unfortunately, at
the time of writing, there were no books on the subject of BDD. Therefore, my advice is to search for as
much information on the Internet as possible on this great methodology.

Summary

In this chapter, you were introduced to a series of design patterns, principles, and enterprise patterns
that can be leveraged in ASP.NET applications.

The Gang of Four patterns are 23 patterns catalogued into a book known as the ➤➤ Design Patterns
Bible. These design patterns are solution templates to common recurring problems. They can also
be used as a shared vocabulary in teams when discussing complex problems.

Robert Martin’s S.O.L.I.D. design principles form the foundations to which many design ➤➤

patterns adhere. These principles are intended to promote object-oriented systems that are
loosely coupled, highly maintainable, and adaptable to change.

Fowler’s enterprise patterns are designed to be leveraged in enterprise-level applications. They ➤➤

include patterns to organize business logic, patterns to organize presentation logic, patterns to
organize data access, as well as a host of base patterns that you can use throughout a system.

The introduction to these patterns and principles has been fairly high level, but as you progress
through the book, you will find a deeper explanation of all of the concepts discussed in this chapter,
and ASP.NET implementations from real-world scenarios that you can hopefully relate to and apply
in your systems to solve problems.

The next chapter takes a closer look at the Gang of Four patterns that will be covered in this book.
You will be introduced to the practical knowledge necessary to use a design pattern template and
how to read a pattern.

Dissecting the Pattern’s Pattern

whaT’s in This chaPTer?

How to read GoF design patterns using the design templates➤➤

Learning and understanding the design pattern groupings➤➤

Knowing how to choose and apply a design pattern➤➤

A quick example on refactoring existing code to use design patterns ➤➤

and principles to increase maintainability

Many books on the market give an overview and a template for individual design patterns but
leave it up to the developer to learn how to decipher and apply the pattern. In this chapter, you
will gain the practical knowledge necessary to use a design pattern solution template and apply
it to your code base. You will then learn about the 23 design patterns and the groups they
belong to. Finally, you will run through a quick exercise in which you will implement some
design principles and patterns that you have read about.

how To reaD Design PaTTerns

In the original design patterns book by the Gang of Four, each pattern was presented in a
pattern template. The idea behind the pattern template was to enable the reader to decipher
a pattern and learn about what set of problems it was designed to solve. In this book, I use a
simplifi ed version of the GoF pattern template to describe the GoF patterns, Fowler’s enter-
prise patterns, and the S.O.L.I.D. design principles.

2

14  ❘  Chapter 2   Dissecting the Pattern’s Pattern

Gang of Four Pattern Template
The GoF book described each pattern using the following template:

Pattern Name and Classification: ➤➤ The Pattern Name is important because it helps to form the
common pattern vocabulary. The Classification defines the job of the pattern, be it Creational,
Structural, or Behavioral. These classifications are examined in more detail later in this chapter.

Intent: ➤➤ The Intent section reveals the problems that the pattern sets out to solve and why it
is useful.

Also Known As: ➤➤ The Also Known As section details the other names that some patterns are
known as.

Motivation: ➤➤ The Motivation section describes a problem scenario and how to use a design
pattern to solve it.

Applicability: ➤➤ The Applicability section lists the situations when it is advantageous to apply
the design pattern.

Structure: ➤➤ The Structure section is a graphical representation of the pattern, including the col-
laborations and relationships between objects. Typically this is shown as a UML diagram.

Participants: ➤➤ The Participants are all the objects involved in the design pattern.

Collaborations: ➤➤ The Collaborations section details how the participants work together to form
the design pattern.

Consequences: ➤➤ The Consequences section lists any benefits and liabilities caused when imple-
menting the design pattern.

Implementations: ➤➤ The Implementations section details any gotchas and best practices when
implementing the design pattern.

Sample Code: ➤➤ The Sample Code section shows an implementation of the design pattern.

Known Uses: ➤➤ The Known Uses section shows implementations of the pattern in real-life
applications.

Related Patterns: ➤➤ The Related Patterns section lists other patterns that collaborate or work
well with the design pattern.

Simplified Template
To avoid duplicating what the GoF book already does and to present the design patterns, enterprise
patterns, and design principles in a more concise and standard format, I will be using a simplified
pattern template as set out next.

Name and Intent
As with the GoF section with the same name, the Name and Intent section will reflect the purpose
of the pattern or principle, its uses, the benefits it can have on your application, as well as the moti-
vation behind using the pattern or principle.

Design Pattern Groups  ❘  15

UML Diagram
Where applicable, a UML diagram will show a graphical representation of the pattern or principle
structure. A graphical representation will display the generic solution template as well as an imple-
mentation detailed in the code example.

Code Example
To really understand a design pattern or principle, it’s important to see an implementation of it. The
code example will be specific to ASP.NET in its content and will be pulled from real-life projects, not
Hello World samples.

There will be an enterprise-level case study in the third part of this book so you can see how to use
design patterns in all aspects of an application. Now that you understand how the design patterns
will be presented to you and how you can read them, you can start to look in more detail at the
groups of patterns that the GoF covers.

Design Pattern Groups

Twenty-three design patterns are featured in the GoF design patterns book, falling within one of
three subgroups: Creational, Structural, or Behavioral. This section will take a quick look at each
group and the patterns within. Throughout this book, you will examine the patterns that are useful
for ASP.NET development.

Creational
Creational patterns deal with object construction and referencing. They abstract away the respon-
sibility of instantiating instances of objects from the client, thus keeping code loosely coupled and
the responsibility of creating complex objects in one place adhering to the Single Responsibility and
Separation of Concerns principles.

Following are the patterns in the Creational group:

Abstract Factory: ➤➤ Provides an interface to create families of related objects.

Factory: ➤➤ Enables a class to delegate the responsibility of creating a valid object. This pattern
is covered in Chapter 5.

Builder: ➤➤ Enables various versions of an object to be constructed by separating the construc-
tion for the object itself.

Prototype: ➤➤ Allows classes to be copied or cloned from a prototype instance rather than creat-
ing new instances.

Singleton: ➤➤ Enables a class to be instantiated once with a single global point of access to it.

Structural
Structural patterns deal with the composition and relationships of objects to fulfill the needs of
larger systems.

16  ❘  Chapter 2   Dissecting the Pattern’s Pattern

Following are the patterns in the Structural group:

Adapter: ➤➤ Enables classes of incompatible interfaces to be used together. This pattern is covered
in this chapter.

Bridge: ➤➤ Separates an abstraction from its implementation, allowing implementations and
abstractions to vary independently of one another.

Composite: ➤➤ Allows a group of objects representing hierarchies to be treated in the same way
as a single instance of an object. This pattern is covered in Chapter 5.

Decorator: ➤➤ Can dynamically surround a class and extend its behavior. This pattern is covered
in Chapter 5.

Facade: ➤➤ Provides a simple interface and controls access to a series of complicated interfaces
and subsystems. This pattern is covered in Chapter 6.

Flyweight: ➤➤ Provides a way to share data among many small classes in an efficient manner.

Proxy: ➤➤ Provides a placeholder to a more complex class that is costly to instantiate. This pattern
is covered in Chapter 7.

Behavioral
Behavioral patterns deal with the communication between objects in terms of responsibility and
algorithms. The patterns in this group encapsulate complex behavior and abstract it away from the
flow of control of a system, thus enabling complex systems to be easily understood and maintained.

Following are the patterns in the Behavioral group:

Chain of Responsibility: ➤➤ Allows commands to be chained together dynamically to handle a
request. This pattern is covered in Chapter 9.

Command: ➤➤ Encapsulates a method as an object and separates the execution of a command
from its invoker. This pattern is covered in Chapter 9.

Interpreter: ➤➤ Specifies how to evaluate sentences in a language.

Iterator: ➤➤ Provides a way to navigate a collection in a formalized manner.

Mediator: ➤➤ Defines an object that allows communication between two other objects without
them knowing about one another.

Memento: ➤➤ Allows you to restore an object to its previous state.

Observer: ➤➤ Defines the way one or more classes can be alerted to a change in another class.

State: ➤➤ Allows an object to alter its behavior by delegating to a separate and changeable state
object. This pattern is covered in Chapter 5.

Strategy: ➤➤ Enables an algorithm to be encapsulated within a class and switched at run time to
alter an object’s behavior. This pattern is covered in Chapter 5.

Template Method: ➤➤ Defines the control of flow of an algorithm but allows subclasses to over-
ride or implement execution steps. This pattern is covered in Chapter 5.

Visitor: ➤➤ Enables new functionality to be performed on a class without affecting its structure.

How to Choose and Apply a Design Pattern  ❘  17

You should now understand the role of each of the GoF patterns. You will examine many of these
patterns in greater detail in the remainder of this book. With such a large menu to choose from,
it’s important to understand how to go about selecting and applying the most appropriate pattern
for your problem. This is exactly what you will learn about in the next section.

How to Choose and Apply a Design Pattern

You can choose from many design patterns, so how do you identify which one is appropriate for
your problem? To know which design pattern to use and how to apply the solution template to your
specific problem, it’s important to understand these guidelines.

You can’t apply patterns without knowing about them. The first important step is to expand ➤➤

your knowledge and study patterns and principles both in the abstract and concrete form. You
can implement a pattern in many ways. The more you see different implementations of patterns,
the more you will understand the intent of the pattern and how a single pattern can have varying
implementations.

Do you need to introduce the complexity of a design pattern? It’s common for developers to ➤➤

try to use a pattern to solve every problem when they are studying patterns. You always need
to weigh the upfront time needed to implement a pattern for the benefit that it’s going to give.
Remember the KISS principle: Keep It Simple, Stupid.

Generalize your problem; identify the issues you’re facing in a more abstract manner. Look ➤➤

at how the intent of each pattern and principle is written, and see if your problem fits with
the problem that a particular pattern or principle is trying to solve. Remember that design
patterns are high-level solutions; try to abstract your problem, and don’t focus too hard on
the details of your specific issue.

Look at patterns of a similar nature and patterns in the same group. Just because you have ➤➤

used a pattern before doesn’t mean it will always be the correct pattern choice when solving
a problem.

Encapsulate what varies. Look at what will likely change with your application. If you know ➤➤

that a special offer discount algorithm will change over time, look for a pattern that will help
you change it without impacting the rest of your application.

After you have chosen a design pattern, ensure that you use the language of your pattern along ➤➤

with the language of the domain when naming the participants in a solution. For example, if
you are using the strategy pattern to provide a solution for costing various shipping couriers,
name them accordingly, such as FedExShippingCostStrategy. By using the pattern’s com-
mon vocabulary along with the language of your domain, you will immediately make your
code more readable and understandable to other developers with patterns knowledge.

When it comes to design patterns, there is no substitute for studying. The more you know about each of
the design patterns, the better equipped you will be at applying them. Scan the intent of each pattern to
refresh your memory when you have a problem and are looking for a solution.

A great learning exercise is to try to identify patterns in the .NET Framework. For example,
the ASP.NET Cache uses the Singleton pattern; creating a new Guid uses the Factory pattern; the
.NET 2 XML classes use the Factory pattern whereas version 1.0 did not.

18  ❘  Chapter 2   Dissecting the Pattern’s Pattern

By now you should have an understanding of how to read and decipher a design pattern, an overview of
the list of design patterns, and the knowledge of how to choose and apply a pattern. To help the cement
this knowledge and make the abstract talk of patterns into something more concrete, you will walk
through a quick example to see how you can apply design patterns and principles to legacy code.

A Quick Pattern Example

It’s all well and good to talk about how great patterns and principles are, but it’s important to see them
in action. With this in mind, this section examines how a simple piece of ASP.NET code that you have
probably seen countless times before can be improved with the use of patterns and design principles.

You are going to look at a section of code that you
might find in a typical e-commerce application — ​
specifically, the code that retrieves all products
within a given category. Figure 2-1 shows a class
diagram containing a ProductService class with
the single GetAllProductsIn method, a Product
class that represents the store’s products, and a
ProductRepository class that is used to retrieve
products from a database.

The job of the ProductService class is to coordinate the retrieval of a list of products from the reposi-
tory for a given category ID and then store the results in cache so the next call can be executed faster.

Before going any further, you need to build the classes and look at the code.

	 1.	 Fire up Visual Studio and create a new solution named ASPPatterns.Chap2, as shown in
Figure 2-2.

	 2.	 Add a new C# Class Library project to this solution by selecting File ➪ Add ➪ New Project,
and name the project ASPPatterns.Chap2.Service. Delete the Class1.cs class file that
visual studio creates for you by default.

	 3.	 Add a new class to the project named Product:

 public class Product
 {
 }

	 4.	 Add a new class to the project named ProductRepository with the following code listing:

 public class ProductRepository
 {
 public IList<Product> GetAllProductsIn(int categoryId)
 {
 IList<Product> products = new List<Product>();

 // Database operation to populate products …

 return products;
 }
 }

Figure 2-1

A Quick Pattern Example  ❘  19

Figure 2-2

	 5.	 Add the ProductService class with the following definition. You also need to add a reference
to the System.Web namespace because this class deals with the HTTP context cache API:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Web;

namespace ASPPatterns.Chap2.Service
{
 public class ProductService
 {
 private ProductRepository _productRepository;

 public ProductService()
 {
 _productRepository = new ProductRepository();
 }

 public IList<Product> GetAllProductsIn(int categoryId)
 {
 IList<Product> products;
 string storageKey = string.Format(
 “products_in_category_id_{0}”, categoryId);

 products = (List<Product>)HttpContext.Current.Cache.Get(storageKey);

 if (products == null)
 {
 products = _productRepository.GetAllProductsIn(categoryId);
 HttpContext.Current.Cache.Insert(storageKey, products);

20  ❘  Chapter 2   Dissecting the Pattern’s Pattern

 }

 return products;
 }
 }

The Product and ProductRepository classes don’t require any explanation because they are simple
placeholders in this scenario. The ProductService single method is straightforward and it simply
coordinates the retrieval of products from the cache, and in the event of the cache being empty, the
retrieval of products from the repository and the insertion into the cache.

So what’s wrong with the current codebase?

The ➤➤ ProductService depends on the ProductRepository class. If the ProductRepository
class changes its API, changes are going to need to be made in the ProductService class.

The code is untestable. Without having a real ➤➤ ProductRepository class connecting to a real
database, you’re unable to test the ProductService’s method because of the tight coupling
that exists between these two classes. Another problem related to testing is the dependency
on the HTTP context for use in the caching of the products. It is hard to test code that is so
tightly coupled to HTTP context.

You’re stuck with the HTTP context for caching. In its current state, using a different cache ➤➤

storage provider such as Velocity or Memcached would require altering of the ProductService
class and any other class that uses caching. Velocity and Memcached are both distributed mem-
ory object caching systems that can be used in place of ASP.NET’s default caching mechanism.

Now that you know what’s wrong with the code, you can look at fixing it.

Refactoring to Principles
First, consider the problem of the ProductService class dependency on the ProductRepository class. In
its current state, the ProductService class is fragile; if the API of the ProductRepository class changes,
the ProductService class might need to be modified. This breaks the separation of concerns and single
responsibility principle.

The Dependency Inversion Principle

Depend on abstractions, not on concretions.

We can employ the Dependency Inversion principle to decouple the ProductService class from the
ProductRepository by having both depend on an abstraction — ​an interface. Open the Product​
Repository class, right-click on the class name, and select Refactor ➪ Extract Interface from the con-
text menu that appears. When the Extract Interface dialog appear, check the box next to the method
name to ensure that it is included in the interface, and click OK. A new interface is created for you
named IProductRepository. Clean up the code produced by including the System​.Collections.Generic

A Quick Pattern Example  ❘  21

namespace as a using statement and marking the interface as public, which can be seen in the following
code listing:

using System;
using System.Collections.Generic;

namespace ASPPatterns.Chap2.Service
{
 public interface IProductRepository
 {
 IList<Product> GetAllProductsIn(int categoryId);
 }
}

The ProductRepository class is amended to implement the newly created interface, like so:

 public class ProductRepository : IProductRepository
 {
 public IList<Product> GetAllProductsIn(int categoryId)
 {
 IList<Product> products = new List<Product>();

 // Database operation to populate products …

 return products;
 }
 }

The last thing you need to do is update the ProductService class to ensure that it references the
interface rather than the concrete implementation:

 public class ProductService
 {
 private IProductRepository _productRepository;

 public ProductService()
 {
 _productRepository = new ProductRepository();
 }

 public IList<Product> GetAllProductsIn(int categoryId)
 {
 …
 }
 }

What have you achieved by introducing a new interface? The ProductService class now depends
only on an abstraction rather than a concrete implementation; this means that the ProductService
class is completely ignorant of any implementation, ensuring that it is less fragile and the code base
as a whole is less resilient to change.

22  ❘  Chapter 2   Dissecting the Pattern’s Pattern

However, there is one slight problem: the ProductService class is still responsible for creating the con-
crete implementation and currently it is impossible to test the code without a valid ProductRepository
class. Dependency Injection can help here.

The Dependency Injection Principle
The ProductService class is still tied to the concrete implementation of the ProductRepository
because it’s currently the job of the ProductService class to create the instance. This can be seen in
the ProductService class constructor. Dependency Injection can move the responsibility of creating
the ProductRepository implementation out of the ProductService class and having it injected via
the class’s constructor, as can be seen in the following code listing:

 public class ProductService
 {
 private IProductRepository _productRepository;

 public ProductService(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }

 public IList<Product> GetAllProductsIn(int categoryId)
 {
 …
 }
 }

This enables a substitute to be passed to the ProductService class during testing, which enables you
to test the ProductService class in isolation. By removing the responsibility of obtaining dependen-
cies from the ProductService, you are ensuring that the ProductService class adheres to the Single
Responsibility principle: it is now only concerned with the coordinating of retrieving data from the
cache or repository and not for creating the concrete IProductRepository implementation.

Dependency Injection comes in three flavors: Constructer, Method, and Property. You have just used
Constructor Injection. Dependency Injection is explored in more depth later in the book.

The last thing you need to do is sort out the dependency on the HTTP Context for your caching
requirements. For this you will employ the services of a simple design pattern.

Refactoring to the Adapter Pattern
Because you don’t own the source code to the HTTP Context class, you can’t simply create an inter-
face for it and have it implement it like you did for the ProductRepository class. Luckily, this type
of problem has been solved countless times before, and there is a design pattern to help you out. The
Adapter pattern basically translates one interface for a class into a compatible interface, so you can
apply this pattern to change the HTTP Context caching API into a compatible API that you want to
use. Then you can inject this via an interface into the ProductService class using the Dependency
Injection principle.

A Quick Pattern Example  ❘  23

Create a new interface named ICacheStorage with the following contract:

 public interface ICacheStorage
 {
 void Remove(string key);
 void Store(string key, object data);
 T Retrieve<T>(string key);
 }

Now that you have the new interface, you can update the ProductService class to use it instead of
the HTTP Context implementation:

 public class ProductService
 {
 private IProductRepository _productRepository;
 private ICacheStorage _cacheStorage;

 public ProductService(IProductRepository productRepository,
 ICacheStorage cacheStorage)
 {
 _productRepository = productRepository;
 _cacheStorage = cacheStorage;
 }

 public IList<Product> GetAllProductsIn(int categoryId)
 {
 IList<Product> products;
 string storageKey = string.Format(
 “products_in_category_id_{0}”, categoryId);
 products = _cacheStorage.Retrieve<List<Product>>(storageKey);

 if (products == null)
 {
 products = _productRepository.GetAllProductsIn(categoryId);
 _cacheStorage.Store(storageKey, products);
 }

 return products;
 }
 }

The problem now is that the HTTP Context Cache API can’t implicitly implement the new
ICacheStorage interface. How can the Adapter pattern help you out of this pickle?

The intent of the Adapter design pattern as stated by the Gang of Four is as follows:

Converts the interface of a class into another interface clients expect.

That sounds like exactly what you’re after.

Figure 2-3 shows the UML representation of the Adapter pattern.

24  ❘  Chapter 2   Dissecting the Pattern’s Pattern

Client
target

Target

+Operation()

Adapater
adaptee

+Operation()

Adaptee

+SpecificOperation()

Figure 2-3

As you can see in Figure 2-3, a client has a reference to an abstraction — ​the Target. In this case
this is the ICacheStorage interface. The Adapter is an implementation of the Target interface and
simply delegates the Operation method to the Adaptee, which runs its own SpecificOperation
method. You can see that the Adapter simply wraps an instance of the Adaptee and delegates the
work off to it while implementing the contract of the Target interface.

Take a look at what the UML looks like for this specific problem. Figure 2-4 shows the classes you
have and the Adapter class you need to implement the Adapter pattern with the HTTP Context
cache API.

ProductService
ICacheStorage

+Retrieve()
+Store()
+Remove()

HttpContextCacheAdapter

+Retrieve()
+Store()
+Remove()

HttpContext

+Get()
+Insert()
+Remove()

Figure 2-4

In Figure 2-4, you can see that a new class — ​HttpContextCacheAdapter — ​is needed. This class is
a wrapper for the HTTP Context cache and delegates work to its methods.

To implement the Adapter pattern, you need to create the missing HttpContextCacheAdapter, so
add a new class named HttpContextCacheAdapter with the following definition to the project:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

A Quick Pattern Example  ❘  25

using System.Web;

namespace ASPPatterns.Chap2.Service
{
 public class HttpContextCacheAdapter : ICacheStorage
 {
 public void Remove(string key)
 {
 HttpContext.Current.Cache.Remove(key);
 }

 public void Store(string key, object data)
 {
 HttpContext.Current.Cache.Insert(key, data);
 }

 public T Retrieve<T>(string key)
 {
 T itemStored = (T)HttpContext.Current.Cache.Get(key);
 if (itemStored == null)
 itemStored = default(T);

 return itemStored;
 }
 }
}

It is now easy to implement a new caching solution without affecting any existing code. For instance, if
you wanted to use Memcached or MS Velocity, all you would need to do is create an Adapter that allows
the ProductService class to interact with the caching storage provider via the common ICacheStorage
interface.

The Adapter pattern is deceptively simple; its sole purpose is to let classes with incompatible inter-
faces work together.

The Adapter isn’t the only pattern that can help with caching data. You will be looking at how the
Proxy design pattern can help with caching later in the case study in Chapter 11.

Leveraging Enterprise Patterns
In the current design, to use the ProductService class you always have to provide the constructor
with an implementation of ICacheStorage, but what if you don’t want to cache data? One option is to
provide a null reference, but that would mean littering the code with checks for a null ICacheStorage
implementation. A far better way is to use the Null Object pattern for these special cases.

Null Object Pattern
The Null Object pattern, sometimes called the Special Case pattern, is another deceptively simple
pattern. It’s useful when you don’t want to specify or can’t specify a valid instance of a class, and
you don’t really want to pass around a null reference. The role of the null object is to replace the
null reference and implement the same interface but with no behavior.

26  ❘  Chapter 2   Dissecting the Pattern’s Pattern

Here’s how the Null Object pattern can help if you don’t want to cache data in the ProductService
class. Add a new class to the project named NullObjectCache with the following definition:

public class NullObjectCache : ICacheStorage
 {
 public void Remove(string key)
 {
 // Do nothing
 }

 public void Store(string key, object data)
 {
 // Do nothing
 }

 public T Retrieve<T>(string storageKey)
 {
 return default(T);
 }
 }

Code file NullObjectCache.cs in project ASPPatterns.Chap2.Service

The NullObjectCache can now be passed to the ProductService. When asked to cache data,
it will do nothing and will always return null to the ProductService, ensuring no data will be
cached.

In the code download that accompanies this book, you will find a second project of unit tests using
the NUnit framework that verify the behavior of the ProductService class.

Summary

This chapter delved a little deeper into the world of design patterns. Here’s a recap of what was
covered.

The chapter began with a discussion on how to read design patterns. You looked at the pattern
template the GoF uses to describe each pattern in a consistent manner. You then discussed the
more concise template that will be used to describe the patterns and principles that will be pre-
sented in the rest of this book.

The GoF design patterns belong to one of three groups: Creational, Structural, or Behavioral. Creational
design patterns deal with the responsibility of constructing objects; Structural design patterns are con-
cerned with getting objects to work together to produce new functionality; and Behavioral design pat-
terns are all about algorithms and communication.

Knowing when, how, and which design pattern to apply is a hard task for beginners but one that
gets significantly easier with experience. Design patterns are high-level abstract solutions; knowing
when to apply them requires you to think about your problem in a high-level, abstract way. By gen-
eralizing your problem, you stand a much better chance of easily finding a solution that can resolve
it. Design patterns are not appropriate to use for all problems; sometimes a simple solution will suf-
fice, and the need to introduce complexity just to incorporate a design pattern is not necessary.

Summary  ❘  27

The chapter concluded with a brief look at how you can apply some of the patterns and principles that
you have been introduced to. You looked at a small piece of code that’s typical to a host of ASP.NET
applications and showed how refactoring to some design principles and design patterns can improve
the quality of the code without changing its behavior. You first refactored to the Dependency Inversion
principle to remove tight coupling on dependent classes. To further improve loose coupling and to
enable us to test the code in isolation, you employed the Dependency Injection principle to supply the
dependent classes via the ProductService constructor. You then leveraged the Adapter design pattern
to enable the HTTP Context cache API to implement a caching interface that we developed. Last, you
looked at how the Null Object pattern can be used as a stand-in when we didn’t want to cache data.

The second part of this book explores how patterns can be used in different parts of an ASP.NET
application. In the next chapter, you will be introduced to the concept of logical separation in
an ASP.NET application. You will look at the benefits of a layered application over the traditional
ASP.NET code-behind model.

PART II
The anatomy of
an asP.neT application:
learning and applying Patterns

chaPTer 3: ⊲ Layering Your Application and Separating Your Concerns

chaPTer 4: ⊲ The Business Logic Layer: Organization

chaPTer 5: ⊲ The Business Logic Layer: Patterns

chaPTer 6: ⊲ The Service Layer

chaPTer 7: ⊲ The Data Access Layer

chaPTer 8: ⊲ The Presentation Layer

chaPTer 9: ⊲ The User Experience Layer

layering Your application and
separating Your Concerns

whaT’s in This chaPTer?

The benefi ts of a layered design over the traditional ASP .NET web ➤➤

forms code-behind model

The concepts of logic layering and the separation of your applications ➤➤

concerns

The responsibilities of each distinct layer in an enterprise level ➤➤

ASP .NET application

Example code refactoring from the Smart UI antipattern to a layered ➤➤

approach

This chapter discusses the concept of logical separation in an ASP.NET application. It covers
the Smart UI antipattern and its shortcomings when used in enterprise-level ASP.NET applica-
tions. It then introduces the benefi ts of a layered approach to building an ASP.NET application
over the code-behind model and what it means to truly separate your concerns. Following that,
it looks at the role of each layer and identifi es the responsibilities of each of them; the layers
which form the content for the remaining chapters of this book.

aPPlicaTion archiTecTure anD Design

You cannot build a maintainable and scalable application on poor foundations. Planning a
good architecture is critical to the success of an application. Before examining a structured
approach to designing your application, you must learn why you need to think about the logi-
cal structure of your application and the problems you will encounter if you do not start with
a good architectural footing.

3

32  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

Antipattern — ​Smart UI
ASP.NET web forms and Visual Studio make it incredibly easy to create applications simply by
dragging and dropping controls onto a HTML designer. Accompanying a page, the code-behind file
contains all the event handling, data access, and business logic of the application. The problem with
this approach is that all concerns are mingled, causing problems for testing and resulting in a dupli-
cation of business logic because it is difficult to reuse logic that is intrinsically tied to a particular
view (ASPX page).

Smart UI applications aren’t to be avoided at all costs; they are great for prototyping and for throwaway
or short-lived applications. The problem, however, is that temporary applications that are successful
often are modified and built upon and become mission-critical applications that are hard to maintain.

Seeing, it’s said, is believing. To that end, create an example of a Smart UI web application and start
to add some business logic to it, and you should see how the concerns and responsibilities are inter-
twined. Later in the chapter you will rewrite the code and show that, by layering your application,
you can adhere to the Separation of Concerns (SoC) principles, thus allowing your application to be
far more maintainable and scalable.

To demonstrate the Smart UI antipattern, you will build a page that displays products in a grid
similar to what you might typically find in an e-commerce application. The page will list products
for sale, displaying their name, recommended retail price (RRP), selling price, discount, and savings
percentage. Later you will introduce some business logic by allowing the user to apply a trade dis-
count to the products on sale, but first, the initial display:

	 1.	 Fire up Visual Studio and create a new blank solution named ASPPatterns.Chap3.SmartUI
and add a new web application to it named ASPPatterns.Chap3.SmartUI.Web

	 2.	 After Visual Studio has built your new web application, add a new SQL express database to
the project by right-clicking on the web site and selecting Add ➪ New Item and selecting a
SQL Server Database. Name the database Shop.mdf.

	 3.	 Now you need to add a table to the database to
hold information on the products. Right-click on the
newly created database and select Open. When the
database explorer opens, right-click on the tables
folder and select New Table from the context-sensitive
menu. Create the table with the schema as shown in
Figure 3-1, and name the table Products. Ensure you
set the ProductId to an identity column so that it will
automatically generate an ID.

	 4.	 Add the data in Figure 3-2 to the table.

	 5.	 With the table created, you can simply drag
and drop it onto the Default.aspx page.
This automatically creates a GridView and
adds a SQLDataSource control to the page.
You should now be able to run the web
application and see all the products listed
from the database.

Figure 3-1

Figure 3-2

Application Architecture and Design  ❘  33

	 6.	 Now add the extra columns that will show any discount and savings. Edit the source file for
Default.aspx to include the new template columns and the OnRowDataBound property, as
shown in the following listing:

<asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=”False”
 DataKeyNames=”ProductId”
 DataSourceID=”SqlDataSource1”
 EmptyDataText=”There are no data records to display.”
 OnRowDataBound=”GridView1_RowDataBound”>
 <Columns>
 <asp:BoundField DataField=”ProductId”
 HeaderText=”ProductId” ReadOnly=”True”
 SortExpression=”ProductId” />
 <asp:BoundField DataField=”ProductName” HeaderText=”ProductName”
 SortExpression=”ProductName” />
 <asp:BoundField DataField=”RRP” HeaderText=”RRP”
 SortExpression=”RRP” DataFormatString=”{0:C}” />
 <asp:BoundField DataField=”SellingPrice” HeaderText=”SellingPrice”
 SortExpression=”SellingPrice”
 DataFormatString=”{0:C}” />
 <asp:TemplateField HeaderText=”Discount”>
 <ItemTemplate>
 <asp:Label runat=”server” ID=”lblDiscount”></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText=”Savings”>
 <ItemTemplate>
 <asp:Label runat=”server” ID=”lblSavings”></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

	 7.	 After that is done, open the code-behind page, Default.aspx.cs, and add the following
three methods:

 public partial class Default : System.Web.UI.Page
 {
 protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
 {
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 decimal RRP = decimal.Parse(((
 System.Data.DataRowView)e.Row.DataItem)[“RRP”].ToString());
 decimal SellingPrice = decimal.Parse(((
 System.Data.DataRowView)e.Row.DataItem)[“SellingPrice”].ToString());

 Label lblSavings =
 (Label)e.Row.FindControl(“lblSavings”);
 Label lblDiscount =
 (Label)e.Row.FindControl(“lblDiscount”);

 lblSavings.Text =
 DisplaySavings(RRP, SellingPrice);

34  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

 lblDiscount.Text = DisplayDiscount(RRP, SellingPrice);
 }
 }

 protected string DisplayDiscount(decimal RRP, decimal SalePrice)
 {
 string discountText = “”;

 if (RRP > SalePrice)
 discountText = String.Format(“{0:C}”, (RRP - SalePrice));

 return discountText;
 }

 protected string DisplaySavings(decimal RRP, decimal SalePrice)
 {
 string savingsTest = “”;

 if (RRP > SalePrice)
 savingsTest = (1 - (SalePrice / RRP)).ToString(“#%”);

 return savingsTest;
 }
 }

Default.aspx.cs located in the ASPPatterns.Chap3.SmartUI.Web project

The GridView1_RowDataBound method is called when each data row is bound to data in the
GridView control. The method obtains the RRP and selling price and uses DisplayDiscount and
DisplaySavings methods to work out the correct discount. Then it updates the corresponding label
server controls. By adding these methods, you are introducing business logic into the user interface
(UI) along with the data access. This means that if we wanted to display product prices on a differ-
ent page, we would need to duplicate the business logic or create some kind of static helper methods.

The page is not only taking the responsibility of the business logic; as it stands, the single ASP.NET
web form page is responsible for the data access requirements. Because you used the RAD server con-
trols to provide data access, it will be extremely difficult to test the page and stub out a data access
implementation.

Now that the base functionality is in place, you can add the extra business requirements, which will
begin to expose the issues you will face when coding to the Smart UI pattern. The business logic that
you will be adding will enable a trade discount to be applied to the prices so that they reflect an extra
5 percent of savings. The UI will need a new control: a drop-down list that will enable the users to
specify the discount they want to see applied to the products — ​trade discount or no discount.

Modify the Default.aspx page so that there is a new drop-down list control and the selling price is
changed to a template field, as can be seen in the following code listing:

Display prices with
 <asp:DropDownList ID=”ddlDiscountType” runat=”server” AutoPostBack=”True”
 onselectedindexchanged=”ddlDiscountType_SelectedIndexChanged”>
 <asp:ListItem Value=”0”>No Discount</asp:ListItem>

Application Architecture and Design  ❘  35

 <asp:ListItem Value=”1”>Trade Discount</asp:ListItem>
 </asp:DropDownList>

 <asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=”False”
 DataKeyNames=”ProductId” DataSourceID=”SqlDataSource1”
 EmptyDataText=”There are no data records to display.”
 OnRowDataBound=”GridView1_RowDataBound”>
 <Columns>
 <asp:BoundField DataField=”ProductId” HeaderText=”ProductId”
 ReadOnly=”True” SortExpression=”ProductId” />
 <asp:BoundField DataField=”ProductName” HeaderText=”ProductName”
 SortExpression=”ProductName” />
 <asp:BoundField DataField=”RRP” HeaderText=”RRP”
 SortExpression=”RRP” DataFormatString=”{0:C}” />
 <asp:TemplateField HeaderText=”SellingPrice”
 SortExpression=”SellingPrice”>
 <ItemTemplate>
 <asp:Label ID=”lblSellingPrice” runat=”server”
 Text=’<%# Bind(“SellingPrice”) %>’></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText=”Discount”>
 <ItemTemplate>
 <asp:Label runat=”server” ID=”lblDiscount”></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText=”Savings”>
 <ItemTemplate>
 <asp:Label runat=”server” ID=”lblSavings”></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

Default.aspx located in the ASPPatterns.Chap3.SmartUI.Web project

Now update the code-behind so that the logic that will apply the extra trade discount can be added.
This can be seen in the bolded code that follows, with the introduction of a new method called
ApplyExtraDiscountsTo and the update to the GridView1_RowDataBound event that will set the
selling price dependent on the discount strategy applied:

public partial class Default : System.Web.UI.Page
 {
 protected void GridView1_RowDataBound(object sender, GridViewRowEventArgs e)
 {
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 decimal RRP = decimal.Parse(((
 System.Data.DataRowView)e.Row.DataItem)[“RRP”].ToString());
 decimal SellingPrice = decimal.Parse(((
 System.Data.DataRowView)e.Row.DataItem)[“SellingPrice”].ToString());

 Label lblSellingPrice = (Label)e.Row.FindControl(“lblSellingPrice”);
 Label lblSavings = (Label)e.Row.FindControl(“lblSavings”);

36  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

 Label lblDiscount = (Label)e.Row.FindControl(“lblDiscount”);

 lblSavings.Text = DisplaySavings(RRP,
 ApplyExtraDiscountsTo(SellingPrice));
 lblDiscount.Text = DisplayDiscount(RRP,
 ApplyExtraDiscountsTo(SellingPrice));
 lblSellingPrice.Text = String.Format(“{0:C}”,
 ApplyExtraDiscountsTo(SellingPrice));
 }
 }

 protected string DisplayDiscount(decimal RRP, decimal SalePrice)
 {
 string discountText = “”;

 if (RRP > SalePrice)
 discountText = String.Format(“{0:C}”, (RRP - SalePrice));

 return discountText;
 }

 protected string DisplaySavings(decimal RRP, decimal SalePrice)
 {
 string savingsTest = “”;

 if (RRP > SalePrice)
 savingsTest = (1 - (SalePrice / RRP)).ToString(“#%”);

 return savingsTest;
 }

 protected decimal ApplyExtraDiscountsTo(decimal OriginalSalePrice)
 {
 decimal price = OriginalSalePrice;

 int discountType = Int16.Parse(this.ddlDiscountType.SelectedValue);

 if (discountType == 1)
 {
 price = price * 0.95M;
 }

 return price;
 }

 protected void ddlDiscountType_SelectedIndexChanged(object sender, EventArgs e)
 {
 GridView1.DataBind();
 }

 }

Default.aspx.cs located in the ASPPatterns.Chap3.SmartUI.Web project

You can now run the application and change discount strategies to see the prices with the trade and
no discounts applied to them.

Application Architecture and Design  ❘  37

What’s wrong with the method you used to display the products and prices? Well, nothing if the
application stopped here, but because this is only part of a larger application, the capability to apply
discounts will be needed elsewhere, and in its present state the logic is embedded in this single page.
This means that the logic will be duplicated when new features are added.

Separating Your Concerns
An antidote to the Smart UI antipattern is the notion of layering your applications. Layering an applica-
tion is a form of separation of concerns and can be achieved via namespaces, folders, or with separate
projects. Figure 3-3 shows the typical architecture of an enterprise-level layered ASP.NET application.

Domain
Services

Application
Services

Presentation

User
Experience Infrastructure

(Logging etc)

Repositories

Database

Domain
Model

Figure 3-3

To demonstrate how you can achieve SoC through layering an ASP.NET application and to look at
details of each of the layers, you will reconstruct the small e-commerce page that you built earlier to
demonstrate the Smart UI antipattern.

	 1.	 Create a new blank solution in Visual Studio and name it ASPPatterns.Chap3.Layered.

	 2.	 Add a new class library project to the solution by right-clicking the solution name and select-
ing Add ➪ New Project. Name the new project ASPPatterns.Chap3.Layered.Repository.

	 3.	 Add a further three class library projects to the solution named:

ASPPatterns.Chap3.Layered.Model➤➤

ASPPatterns.Chap3.Layered.Service➤➤

ASPPatterns.Chap3.Layered.Presentation➤➤

38 ❘ chaPTer 3 layering your aPPlicaTion anD SeParaTing your concernS

 4. Add a new web application to the project by selecting Add ➪ New Project and selecting the
Web Application Project. Name the project ASPPatterns.Chap3.Layered.WebUI.

 5. Right-click on the ASPPatterns.Chap3.Layered.Repository project and add a project ref-
erence to the ASPPatterns.Chap3.Layered.Model project.

 6. Right-click on the ASPPatterns.Chap3.Layered.Service project and add a project refer-
ence to the ASPPatterns.Chap3.Layered.Repository and ASPPatterns.Chap3.Layered
.Model projects.

 7. Right-click on the ASPPatterns.Chap3.Layered.Presentation project and add a project
reference to the ASPPatterns.Chap3.Layered.Model and ASPPatterns.Chap3.Layered
.Service projects.

 8. Right-click on the ASPPatterns.Chap3.Layered.WebUI web application and add a project ref-
erence to the ASPPatterns.Chap3.Layered.Model, ASPPatterns.Chap3.Layered.Service,
ASPPatterns.Chap3.Layered.Presentation, and ASPPatterns.Chap3.Layered
.Repository projects.

 9. Add a solution folder for each of the layers of the applica-
tion so that your solution resembles Figure 3-4.

With your layered project structure complete, you can begin to
tackle each of the concerns of the application one at a time, begin-
ning with the business layer.

Business layer
You’re going to start by implementing the business logic for the
application. In the Smart UI example, you will remember that the
business logic was intermingled with the presentation logic in the
code-behind of the ASPX page. With the layered approach, you’ll create a domain model to hold all
behavior and data related to the business of the simple e-commerce store that we are modeling. You
will learn a lot more about the Domain Model pattern in the next chapter, but in a nutshell, think of
it as the conceptual model of the system containing all the entities involved and their relationships.

The Domain Model pattern is designed to organize complex business logic and
relationships. You will look at the Domain Model pattern in more detail in the
next chapter.

Figure 3-5 shows the model you will be using. The Product class represents the products of the
e-commerce store; the Price class will contain the business logic to determine savings and discount;
and the discount strategy implementations will contain the logic to apply the trade discount and no
discounts, respectively.

figure 3-4

application architecture and Design ❘ 39

figure 3-5

You will create the domain model in the ASPPatterns.Chap3.Layered.Model project. Add a new
interface to the ASPPatterns.Chap3.Layered.Model project named IDiscountStrategy with the
following defi nition:

 public interface IDiscountStrategy
 {
 decimal ApplyExtraDiscountsTo(decimal OriginalSalePrice);
 }

IDiscountStrategy.cs located in the ASPPatterns.Chap3.Layered.Model project

The purpose of naming the interface IDiscountStrategy is that it actually matches a design pattern
named Strategy. You will learn a lot more about the Strategy pattern in Chapter 5; this pattern is
being applied here because it enables algorithms to be selected and changed at runtime. The algorithms
that will be applied to the Price object are the Discount algorithms. If you look back at the Smart UI
example, you will notice that the language I used to describe the process of applying discounts to prod-
ucts used the word strategy. When describing a problem, generalize it and focus on the variations. By
doing so you will often happen upon the name of a design pattern, and the solution to your problem
will present itself without you even looking for it.

The Strategy pattern enables an algorithm to be encapsulated within a class and
switched at runtime to alter an object’s behavior. Again, you will examine this
pattern in more detail in Chapter 5.

Now that you have the interface, you can add the two implementations of the discount strategy.
First, create a new class named TradeDiscountStrategy with the following defi nition:

 public class TradeDiscountStrategy : IDiscountStrategy
 {
 public decimal ApplyExtraDiscountsTo(decimal originalSalePrice)
 {

40  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

 decimal price = originalSalePrice;

 price = price * 0.95M;

 return price;
 }
 }

TradeDiscountStrategy.cs located in the ASPPatterns.Chap3.Layered.Model project

Second, employ the Null Object pattern that was introduced in the previous chapter. Create a new
class named NullDiscountStrategy with the following definition:

 public class NullDiscountStrategy : IDiscountStrategy
 {
 public decimal ApplyExtraDiscountsTo(decimal OriginalSalePrice)
 {
 return OriginalSalePrice;
 }
 }

NullDiscountStrategy.cs located in the ASPPatterns.Chap3.Layered.Model project

With the discounts strategies in place, create the Price object. Create a new class named Price with
the following definition:

 public class Price
 {
 private IDiscountStrategy _discountStrategy = new NullDiscountStrategy();
 private decimal _rrp;
 private decimal _sellingPrice;

 public Price(decimal RRP, decimal SellingPrice)
 {
 _rrp = RRP;
 _sellingPrice = SellingPrice;
 }

 public void SetDiscountStrategyTo(IDiscountStrategy DiscountStrategy)
 {
 _discountStrategy = DiscountStrategy;
 }

 public decimal SellingPrice
 {
 get { return _discountStrategy.ApplyExtraDiscountsTo(_sellingPrice); }
 }

 public decimal RRP
 {
 get { return _rrp; }

application architecture and Design ❘ 41

 }

 public decimal Discount
 {
 get {
 if (RRP > SellingPrice)
 return (RRP - SellingPrice);
 else
 return 0;}
 }

 public decimal Savings
 {
 get{
 if (RRP > SellingPrice)
 return 1 - (SellingPrice / RRP);
 else
 return 0;}
 }
 }

Price.cs located in the ASPPatterns.Chap3.Layered.Model project

The Price object uses the setter fl avor of Dependency Injection to enable the discount strategy to be
applied to the product’s price.

Dependency Injection was introduced in the previous chapter, where you
used Constructor Injection to supply a cache provider to the product’s service.
Here you’re using another fl avor of DI, namely Setter Injection, so you can swap
implementations at will after the Price object is instantiated. DI is covered in
greater detail in Chapter 5.

To complete the model, create the simple Product class. Add a new class to the model project named
Product with the following code listing:

 public class Product
 {
 public int Id {get; set;}
 public string Name { get; set; }
 public Price Price { get; set; }
 }

Product.cs located in the ASPPatterns.Chap3.Layered.Model project

The business entities are created, but you need a way to hydrate the products from a data store. A
service will allow clients to interact with the domain model and retrieve products with a discount
applied. To enable the client to specify which discount to apply to the products, you need to create
an enumeration that will be used as a service method parameter.

42 ❘ chaPTer 3 layering your aPPlicaTion anD SeParaTing your concernS

Create a new class named CustomerType with the following code listing:

 public enum CustomerType
 {
 Standard = 0,
 Trade = 1
 }

CustomerType.cs located in the ASPPatterns.Chap3.Layered.Model project

Again, to determine which discount strategy to apply to the price, you need to create a factory class
whose sole responsibility will be to return the matching discount strategy for a given CustomerType.

Create a new class named DiscountFactory with the following defi nition:

 public static class DiscountFactory
 {
 public static IDiscountStrategy GetDiscountStrategyFor
 (CustomerType customerType)
 {
 switch (customerType)
 {
 case CustomerType.Trade:
 return new TradeDiscountStrategy();
 default:
 return new NullDiscountStrategy();
 }
 }
 }

DiscountFactory.cs located in the ASPPatterns.Chap3.Layered.Model project

The Factory pattern enables a class to delegate the responsibility of creating a
valid object. This pattern will be covered in Chapter 5.

The service layer will interact with a data store to retrieve products. You will use the Repository pat-
tern to achieve this, but you will only specify the interface for the repository because you don’t want
the model project to be concerned with the specifi cs of what kind of data store will be used or what
kind of technologies will be used to query it. Create a new interface named IProductRepository
with the single method as shown here:

 public interface IProductRepository
 {
 IList<Product> FindAll();
 }

IProductRepository.cs located in the ASPPatterns.Chap3.Layered.Model project

application architecture and Design ❘ 43

The Repository pattern acts as an in-memory collection or repository for busi-
ness entities, completely abstracting away the underlying data infrastructure.
This pattern is discussed in more detail in Chapter 7.

The service class needs to be able to apply a given discount strategy to a collection of products. You
could create a custom collection to achieve this, but I prefer the fl exibility of extension methods, so
create a new class named ProductListExtensionMethods with the following defi nition:

 public static class ProductListExtensionMethods
 {
 public static void Apply(this IList<Product> products,
 IDiscountStrategy discountStrategy)
 {
 foreach (Product p in products)
 {
 p.Price.SetDiscountStrategyTo(discountStrategy);
 }
 }
 }

ProductListExtensionMethods.cs located in the ASPPatterns.Chap3.Layered.Model project

The Separated Interface pattern ensures that the client is completely unaware of
the concrete implementations and can help to promote programming to abstrac-
tions rather than implementations and the Dependency Inversion principle.

You can now create the service class that clients will use to interact with the domain. Create a new
class named ProductService with the code listing that follows:

 public class ProductService
 {
 private IProductRepository _productRepository;

 public ProductService(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }

 public IList<Product> GetAllProductsFor(CustomerType customerType)
 {
 IDiscountStrategy discountStrategy =
 DiscountFactory.GetDiscountStrategyFor(customerType);

44 ❘ chaPTer 3 layering your aPPlicaTion anD SeParaTing your concernS

 IList<Product> products = _productRepository.FindAll();

 products.Apply(discountStrategy);

 return products;
 }

 }

ProductService.cs located in the ASPPatterns.Chap3.Layered.Model project

You have now completed all of the business logic that the application will contain. Notice how the
business layer is not tied to a particular data store and uses interfaces to program against a reposi-
tory for all of its persistence needs. The business layer can now be tested in complete isolation from
any other part of the application and will also not be affected by changes to other layers. The next
layer you will work on is the service layer, which will act as the gateway into the application.

service layer
The role of the service layer is to act as an entry point into the application; sometimes this is known
as a facade. The service layer provides the presentation layer with a strongly typed view model, some-
times called the presentation model. A view model is a strongly typed class that is optimized for spe-
cifi c views. The view model you will be creating will display the products; again, you will read more
about the View Model pattern later in the book.

The Facade pattern provides a simple interface and controls access to a series
of complicated interfaces and subsystems. This pattern is covered in detail in
Chapter 6.

View models are strongly typed classes that are optimized for specifi c views and
contain logic to assist in the presentation of data. This pattern is covered in
detail in Chapter 8.

Add a new class to the ASPPatterns.Chap3.Layered.Service project named ProductViewModel
with the following class listing:

 public class ProductViewModel
 {
 Public int ProductId {get; set;}
 public string Name { get; set; }
 public string RRP { get; set; }
 public string SellingPrice { get; set; }
 public string Discount { get; set; }

Application Architecture and Design  ❘  45

 public string Savings { get; set; }
 }

ProductViewModel.cs located in the ASPPatterns.Chap3.Layered.Service project

For a client to interact with the service layer, you will be using a Request/Response messaging pat-
tern, covered in detail in Chapter 6. The request part will be supplied by the client and will carry all
necessary parameters; in this case, it will contain the CustomerType enumeration as defined in the
domain model. Create a new class named ProductListRequest matching the code that follows:

using ASPPatterns.Chap3.Layered.Model;

namespace ASPPatterns.Chap3.Layered.Service
{
 public class ProductListRequest
 {
 public CustomerType CustomerType { get; set; }
 }

ProductListRequest.cs located in the ASPPatterns.Chap3.Layered.Service project

For the Response object, you will define a few more properties so that the client can check whether
the request was completed successfully. There will also be a Message property to enable the service
to give information to the client if the call was not completed successfully. Create a new class named
ProductListResponse with the code listing that follows:

 public class ProductListResponse
 {
 public bool Success { get; set; }
 public string Message { get; set; }
 public IList<ProductViewModel> Products { get; set; }
 }

ProductListResponse.cs located in the ASPPatterns.Chap3.Layered.Service project

To convert the Product entity into the ProductViewModel, you need a couple of methods: one to
convert a single product and one to convert a list. You could add these methods to the Product entity
in the domain model, but they aren’t exactly business logic, so the next best thing is to create them as
extension methods so that they can be used as if they were first-class citizens of the Product entity.

Create a new class within the Services project named ProductMapperExtensionMethods, and add
the two methods shown in the following code listing:

 public static class ProductMapperExtensionMethods
 {
 public static IList<ProductViewModel> ConvertToProductListViewModel(
 this IList<Model.Product> products)
 {
 IList<ProductViewModel> productViewModels = new List<ProductViewModel>();

 foreach(Model.Product p in products)

46  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

 {
 productViewModels.Add(p.ConvertToProductViewModel());
 }

 return productViewModels;
 }

 public static ProductViewModel ConvertToProductViewModel(
 this Model.Product product)
 {
 ProductViewModel productViewModel = new ProductViewModel();
 productViewModel.ProductId = product.Id;
 productViewModel.Name = product.Name;
 productViewModel.RRP = String.Format(“{0:C}”, product.Price.RRP);
 productViewModel.SellingPrice =
 String.Format(“{0:C}”, product.Price.SellingPrice);

 if (product.Price.Discount > 0)
 productViewModel.Discount =
 String.Format(“{0:C}”, product.Price.Discount);

 if (product.Price.Savings < 1 && product.Price.Savings > 0)
 productViewModel.Savings = product.Price.Savings.ToString(“#%”);

 return productViewModel;
 }
 }

ProductMapperExtensionMethods.cs located in the ASPPatterns.Chap3.Layered.Service project

Finally, add the ProductService class that will interact with the domain model service to retrieve
a list of products and then convert them to a list of ProductViewModels. Add a new class to the ser-
vice project named ProductService, with the following definition:

 public class ProductService
 {
 private Model.ProductService _productService;

 public ProductService(Model.ProductService ProductService)
 {
 _productService = ProductService;
 }

 public ProductListResponse GetAllProductsFor(
 ProductListRequest productListRequest)
 {
 ProductListResponse productListResponse = new ProductListResponse();

 try
 {
 IList<Model.Product> productEntities =
 _productService.GetAllProductsFor(productListRequest.CustomerType);

 productListResponse.Products =

Application Architecture and Design  ❘  47

 productEntities.ConvertToProductListViewModel();
 productListResponse.Success = true;
 }
 catch (Exception ex)
 {
 // Log the exception…
 productListResponse.Success = false;
 // Return a friendly error message
 productListResponse.Message = “An error occurred”;
 }
 return productListResponse;
 }
 }

ProductService.cs located in the ASPPatterns.Chap3.Layered.Service project

The service class catches any errors and returns a friendly message to the client; this is a good place
to log errors. By handling any errors here and exposing a success flag, you enable the client to react
elegantly if there is a problem with the service layer. This completes the service layer of the applica-
tion and you can move on to creating the data access layer.

Data Access Layer
As with the Smart UI, you need a database to store the products. Create a database in the WebUI
project with the same schema, name, and data that you used in the Smart UI exercise.

For speed, use Linq to SQL as the data access layer, so the first thing to do is create the Linq to SQL
data context. Add a new Linq to SQL class to the ASPPatterns.Chap3.Layered.Repository project
by right-clicking the project name and selecting Add ➪ New Item. Then select Linq to SQL Classes,
and name the class Shop.dbml.

With the Server Explorer window open, drag the Products table onto the design surface. Visual Studio
creates a Linq to SQL entity named Product, as can be seen in Figure 3-6.

Figure 3-6

48  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

You can now create a concrete implementation of the IProductRepository interface that you cre-
ated in the model project. Add a new class to the Repository project named ProductRepository
with the following definition.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ASPPatterns.Chap3.Layered.Model;

namespace ASPPatterns.Chap3.Layered.Repository
{
 public class ProductRepository : IProductRepository
 {
 public IList<Model.Product> FindAll()
 {
 var products = from p in new ShopDataContext().Products
 select new Model.Product
 {
 Id = p.ProductId,
 Name = p.ProductName,
 Price = new Model.Price(p.RRP, p.SellingPrice)
 };

 return products.ToList();
 }

 }
}

ProductRepository located in the ASPPatterns.Chap3.Layered.Repository project

In the FindAll method, you are querying Linq to SQL to obtain all the products and then creating a
list of Product Business entities from the data and returning them.

You have completed the business, data access, and service layers of the application. You now need to
create the presentation and user experience layers so that users can interact with the application. You
will tackle the presentation layer next, and define a set of views that your application will require
before creating the web front end.

Presentation Layer
To separate the presentation logic from the user experience (user interface), employ the Model-
View-Presenter pattern, which you will learn more about in Chapter 8. Create a new interface in the
ASPPatterns.Chap3.Layered.Presentation project named IProductListView with the following
contract:

 using ASPPatterns.Chap3.Layered.Service;

 public interface IProductListView
 {
 void Display(IList<ProductViewModel> Products);

Application Architecture and Design  ❘  49

 Model.CustomerType CustomerType { get; }
 string ErrorMessage { set; }
 }

IProductListView located in the ASPPatterns.Chap3.Layered.Presentation project

This interface will be implemented by the ASPX web form. By working with interfaces, you can stub
out the view when it comes to testing.

Create a new class named ProductListPresenter with the following code listing:

…
using ASPPatterns.Chap3.Layered.Service;

namespace ASPPatterns.Chap3.Layered.Presentation
{
 public class ProductListPresenter
 {
 private IProductListView _productListView;
 private Service.ProductService _productService;

 public ProductListPresenter(IProductListView ProductListView,
 Service.ProductService ProductService)
 {
 _productService = ProductService;
 _productListView = ProductListView;
 }

 public void Display()
 {
 ProductListRequest productListRequest = new ProductListRequest();
 productListRequest.CustomerType = _productListView.CustomerType;

 ProductListResponse productResponse =
 _productService.GetAllProductsFor(productListRequest);

 if (productResponse.Success)
 {
 _productListView.Display(productResponse.Products);
 }
 else
 {
 _productListView.ErrorMessage = productResponse.Message;
 }

 }
 }
}

ProductListPresenter.cs located in the ASPPatterns.Chap3.Layered.Presentation project

The presenter class is responsible for obtaining data, handling user events, and updating the view
via its interface.

50  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

This completes the very thin and simple presentation layer. The benefit of having the presentation
layer is that it is now easy to test the presentation of the data and interactions between the user and
the system without worrying about the difficult-to-unit-test web forms. You can also now add any
flavor of user experience on top of your application such as WPF, WINforms, or a web forms appli-
cation. For now, though, you will stick with web forms and you will tackle this layer next.

User Experience Layer
Finally, you can implement the view so that the products are displayed on the web page. Before get-
ting to work on the HTML, however, you need a way to glue the loosely coupled application together
so that concrete implementation of the IProductRepository is created. For this you are going to
use StructureMap, an Inversion of Control container. You will learn about Inversion of Control and
Inversion of Control Containers in Chapter 8.

Navigate to http://sourceforge.net/projects/structuremap and download the latest version
of StructureMap. Once the compressed file has downloaded, unzip it, and extract all files to your
desktop. Switch back into Visual Studio, right-click on the solution name, and select Open Folder In
Windows Explorer. This will open at the root of your solution. Add a new folder called Lib to the
root and copy the StructureMap.dll file from your desktop into the Lib folder. Then add a refer-
ence to the StructureMap.dll from within the WebUI project.

Create a new class named BootStrapper in the WebUI project with the following listing:

using StructureMap;
using StructureMap.Configuration.DSL;
using ASPPatterns.Chap3.Layered.Repository;
using ASPPatterns.Chap3.Layered.Model;

namespace ASPPatterns.Chap3.Layered.WebUI
{
 public class BootStrapper
 {
 public static void ConfigureStructureMap()
 {
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ProductRegistry>();
 });
 }
 }

 public class ProductRegistry : Registry
 {
 public ProductRegistry()
 {
 ForRequestedType<IProductRepository>()
 .TheDefaultIsConcreteType<ProductRepository>();
 }
 }
}

BootStrapper.cs located in the ASPPatterns.Chap3.Layered.WebUI project

Application Architecture and Design  ❘  51

The purpose of the BootStrapper class is to register all the concrete dependencies with StructureMap.
When the client code uses StructureMap to resolve a class, StructureMap inspects the dependencies
of that class and automatically injects them based on the selected concrete implements that were speci-
fied in the ProductRegistry.

The ConfigureStructureMap method needs to be run when your application is started so you can
add a reference to it in the global.asax file. The global.asax file won’t exist by default, so add it
to the root of your WebUI project. Then update the file as can be seen in the following listing:

namespace ASPPatterns.Chap3.Layered.WebUI
{
 public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(object sender, EventArgs e)
 {
 BootStrapper.ConfigureStructureMap();
 }
 }
}

Global.asax located in the ASPPatterns.Chap3.Layered.WebUI project

Open the default.aspx source view and edit the HTML markup so it matches what follows:

 <asp:DropDownList AutoPostBack=”true” ID=”ddlCustomerType” runat=”server”>
 <asp:ListItem Value=”0”>Standard</asp:ListItem>
 <asp:ListItem Value=”1”>Trade</asp:ListItem>
 </asp:DropDownList>

 <asp:Label ID=”lblErrorMessage” runat=”server” ></asp:Label>

 <asp:Repeater ID=”rptProducts” runat=”server” >
 <HeaderTemplate>
 <table>
 <tr>
 <td>Name</td>
 <td>RRP</td>
 <td>Selling Price</td>
 <td>Discount</td>
 <td>Savings</td>
 </tr>
 <tr>
 <td colspan=”5”><hr /></td>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td><%# Eval(“Name”) %></td>
 <td><%# Eval(“RRP”)%></td>
 <td><%# Eval(“SellingPrice”) %></td>
 <td><%# Eval(“Discount”) %></td>
 <td><%# Eval(“Savings”) %></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>

52  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

 </table>
 </FooterTemplate>
 </asp:Repeater>

Default.aspx located in the ASPPatterns.Chap3.Layered.WebUI project

Switch to the code-behind of the page and edit it so that it implements the IProductListView inter-
face from the presentation project, as in the code listing that follows:

using ASPPatterns.Chap3.Layered.Model;
using ASPPatterns.Chap3.Layered.Repository;
using ASPPatterns.Chap3.Layered.Presentation;
using ASPPatterns.Chap3.Layered.Service;
using StructureMap;

namespace ASPPatterns.Chap3.Layered.WebUI
{
 public partial class _Default : System.Web.UI.Page, IProductListView
 {
 private ProductListPresenter _presenter;

 protected void Page_Init(object sender, EventArgs e)
 {
 _presenter = new ProductListPresenter(this,
 ObjectFactory.GetInstance<Service.ProductService>());
 this.ddlCustomerType.SelectedIndexChanged +=
 delegate { _presenter.Display();};
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (Page.IsPostBack != true)
 _presenter.Display();
 }

 public void Display(IList<ProductViewModel> products)
 {
 rptProducts.DataSource = products;
 rptProducts.DataBind();
 }

 public CustomerType CustomerType
 {
 get { return (CustomerType)Enum.ToObject(typeof(CustomerType),
 int.Parse(this.ddlCustomerType.SelectedValue)); }
 }

 public string ErrorMessage
 {
 set { lblErrorMessage.Text =
 String.Format(“<p>Error
{0}<p/>”, value); }
 }
 }
}

Default.aspx.cs located in the ASPPatterns.Chap3.Layered.WebUI project

summary ❘ 53

The page simply creates a new instance of the ProductListPresenter during the page initiation
event and obtains an implementation of the ProductService via the StructureMap’s ObjectFactory
.GetInstance method. The page then delegates all the other work to the Presenter, simply handling
user events and forwarding calls. Again, you will look at StructureMap in more detail in Chapter 8,
so don’t worry that you are fl ying through the implementation at the moment.

There was a lot more work involved in creating the layered application, but you now have a loosely
coupled application that can be tested, is maintainable, and has a strong separation of concerns.
Figure 3-7 shows the interactions between the layers and clearly defi nes the responsibilities of each.

Display

Default

Display(IList<ProductViewModel>)

GetAllProductsFor(ProductListRequest)

Presenter

ProductListResponse

GetAllProductsFor(CustomerType)

ProductService

IList<Product>

ConvertToProductListViewModel

FindAll

Model

IList<Product>

Apply(discountStrategy)

ProductRepository

figure 3-7

This book is not about unit testing or test-driven development; however, you
will fi nd a test project full of unit tests and behavior specifi cations in the code
download that accompanies this book. I strongly advise you take a look at it.

summary

In this chapter you were introduced to the benefi t of layering enterprise-level ASP.NET applications.
The chapter began with an example of the limitations that the Smart UI antipattern can cause and
how all concerns are the responsibility of the specifi c ASPX page. This leads to an application of
logic and a maintenance headache as more and more features are added to the application.

The remedy to this problem is to separate the concerns of the application into distinct layers. The exer-
cise that you tackled chose to separate the layers into projects; however, using folders or namespaces
is just as effective. While working through the layer application exercise, you briefl y encountered a
number of design patterns and principles that you will be examining in greater depth throughout the
remainder of this book.

54  ❘  Chapter 3   Layering Your Application and Separating Your Concerns

The next six chapters will explore each of the layers in detail before putting all of the patterns and
principles into practice with a case study application. The discussion on layering your application
continues with patterns to help your organize business logic in the next chapter.

The Business logic layer:
organization

whaT’s in This chaPTer?

When and how to use the Transaction Script pattern to organize ➤➤

business logic

When and how to use Active Record with the Castle Windsor project ➤➤

to organize business logic

When and how to use the Domain Model pattern with NHibernate to ➤➤

organize business logic

Explanation of the diff erence between the Anemic Model and the ➤➤

Domain Model patterns to organize business logic

Understanding domain-driven design (DDD) and how to use it to focus ➤➤

your eff orts on business logic rather than infrastructure concerns

The business layer is arguably the most import layer within any enterprise application, so it’s
important to organize your business logic in the most appropriate manner that befi ts the com-
plexity of your application. In this chapter you will be introduced to four patterns fi rst pub-
lished in Fowler’s Patterns of Enterprise Application Architecture book: Transaction Script,
Active Record, Anemic Model, and Domain Model. Each of these domain logic patterns has
strengths and weaknesses depending on what type of application you are building.

Armed with knowledge of the architectural patterns to organize your domain logic, you will
then read about DDD, a design method that can help you understand the business domain that
you are modeling more effectively and ensure that the business needs are at the forefront of
your mind.

4

56  ❘  Chapter 4   The Business Logic Layer: Organization

Understanding Business Organizational Patterns

Not all applications are equal, and not all require a complex architecture to encapsulate the business
logic of a system. As developers, it’s important to understand the strengths and weaknesses of all the
domain logic patterns so that you can use the most appropriate one.

Transaction Script
Of the four domain logic patterns you will read about in this chapter, Transaction Script is by far the
easiest to understand and get up and running with. The Transaction Script pattern follows a proce-
dural style of development rather than an object-oriented approach. Typically a single procedure is
created for each of your business transactions, and it is grouped in some kind of static manager or
service class. Each procedure contains all the business logic that is required to complete the business
transaction from the workflow, business rules, and validation checks to persistence in the database.
Figure 4-1 shows a graphical representation of the Transaction Script pattern.

OrderService
Static Class

Methods

CalculateValueOfOrdersWaitingForStock
GenerateCourierManifest
NotifyCustomersOfOrderDelays

Figure 4-1

One of the strengths of the Transaction Script pattern is that it is simple to understand; it can be fast
to get new team members up to speed without prior knowledge of the pattern. As new requirements
arise, it is easy to add more methods to the class without fear of impacting or breaking existing
functionality.

The Transaction Script Pattern is a great for small applications with little or no logic that are not
likely to grow in feature set, and for teams with junior developers who are not comfortable with
object oriented programming concepts.

The problems with the Transaction Script pattern are revealed when an application grows and the
business logic complexities increase. As an application is extended, so is the mass of methods, mak-
ing for an unhelpful API full of fine-grained methods that overlap in terms of functionality. You can
use submethods to avoid repetitive code such as the validation and business rules, but duplication in
the workflow cannot be avoided, and the code base can quickly become unwieldy and unmanageable
as the application grows.

Understanding Business Organizational Patterns  ❘  57

Because the Transaction Script pattern is simple, you won’t be asked to run through an exercise;
instead, consider the code snippet that follows, which comes from an HR holiday book application
to give you a flavor of how the pattern may look in action.

public class HolidayService
 {

 public static bool BookHolidayFor(int employeeId, DateTime From, DateTime To)
 {
 bool booked = false;
 TimeSpan numberOfDaysRequestedForHoliday = To - From;

 if (numberOfDaysRequestedForHoliday.Days > 0)
 {
 if (RequestHolidayDoesNotClashWithExistingHoliday(employeeId, From, To))
 {
 int holidayAvailable = GetHolidayRemainingFor(employeeId);

 if (holidayAvailable >=
 numberOfDaysRequestedForHoliday.Days)
 {
 SubmitHolidayBookingFor(employeeId, From, To);
 booked = true;
 }
 }
 }

 return booked;
 }

 private static int GetHolidayRemainingFor(int employeeId)
 {
 // ...
 }

 public static List<EmployeeDTO> GetAllEmployeesOnLeaveBetween(
 DateTime From, DateTime To)
 {
 // ...
 }

 public static List<EmployeeDTO> GetAllEmployeesWithHolidayRemaining()
 {
 // ...
 }

 }

Code snippet ASPPatterns.Chap4.TransactionScript

As you can see, the entire business case is encapsulated within a single method. The BookHolidayFor
method is dealing with many responsibilities such as data retrieval and persistence, as well business
logic to determine if a holiday can be taken. This style of procedural programming goes against

58  ❘  Chapter 4   The Business Logic Layer: Organization

the very nature of object oriented programming, which is fine if logic is kept to the minimum and the
application is small and thus easy to manage.

If you have a simple application with minimal business logic, which doesn’t warrant a fully object-
oriented approach, the Transaction Script pattern can be a good fit. However, if your application
will grow, you may need to rethink your business logic structure and look to a more scalable pattern
like the Active Record pattern, which is the subject of the next section.

Active Record
The Active Record pattern is a popular pattern that is especially effective when your underlying data-
base model matches your business model. Typically, a business object exists for each table in your
database. The business object represents a single row in that table and contains data and behavior
as well as a means to persist it and methods to add new instances and find collections of objects.
Figure 4-2 shows how Post and Comment objects from a blogging application relate to their corre-
sponding database tables. The figure also shows that Post contains a collection on Comment objects.

Comment
Class

Properties

Author
DateAdded
Id
Text

Methods

Delete
FindAll
FindById
Save

Post
Class

Properties

DateAdded
Id
Subject
Text

Methods

Delete
FindAll
FindById
Save

CommentsComments

Id
Text
Author
DateAdded
PostId

Posts

Id
Subject
Text
DateAdded

Figure 4-2

Understanding Business organizational Patterns ❘ 59

In the Active Record pattern, each business object is responsible for its own persistence and related
business logic.

The Active Record pattern is great for simple applications that have a one-to-one mapping between
the data model and the business model, such as with a blogging or a forum engine; it’s also a good
pattern to use if you have an existing database model or tend to build applications with a “data fi rst”
approach. Because the business objects have a one-to-one mapping to the tables in the database and
all have the same create, read, update, and delete (CRUD) methods, it’s possible to use code generation
tools to auto-generate your business model for you. Good code generation tools also build in all the
database validation logic to ensure that you are allowing only valid data to be persisted. Automatically
generating your business objects and frameworks that use the Active Record pattern is examined in
Chapter 7, when how to persist business objects is discussed. As with the Transaction Script pattern,
Active Record is similarly straightforward and easy to grasp.

The Active Record pattern is popular with web over database applications, particularly with the
Ruby on Rails framework that combines an MVC pattern (Chapter 8) with an Active Record ORM
(Chapter 7). In the .NET world, one of the most popular open source Active Record frameworks is
the Castle ActiveRecord project that is built upon NHibernate (Chapter 7); that’s what you will be
using with an ASP.NET MVC application to build a simple blog site. Because a blog contains only a
small amount of business logic and there is a good correlation between the business objects and data
model, the Active Record pattern is a great match.

Navigate to www.castleproject.org/castle/download.html and download the latest release for
the ActiveRecord project; at the time of writing this was ActiveRecord 2.1.1 released on January
15, 2010. The download is a simple zip fi le containing all the assemblies you will need to use the
ActiveRecord framework. When the zip fi le has downloaded, extract all the fi les to a folder on your
desktop.

Now you need to create a new solution for the project. Create a new solution named ASPPatterns
.Chap4.ActiveRecord. Add a new C# class library to the solution named ASPPatterns.Chap4
.ActiveRecord.Model and a new MVC web application named ASPPatterns.Chap4.Active
Record.UI.MVC.

The ASP.NET Framework version 2.0 is preinstalled with Visual Studio 2010.
However, for Visual Studio 2008 users you will need to navigate to www.asp.net/
mvc/ to install the framework.

Right-click on the solution and select Open Folder in Windows Explorer; within this folder create a
new folder named Lib and move all the fi les from the Castle ActiveRecord download into it. Then
fl ip back to the solution and right-click on the ASPPatterns.Chap4.ActiveRecord.Model project
and click Add Reference, select the Browse tab, and navigate to the new Lib folder in the root of your
solution and add all the assemblies. Right-click on the ASPPatterns.Chap4.ActiveRecord .UI.MVC
project and add a reference to the following assemblies:

Castle.ActiveRecord.dll➤➤

NHibernate.dll➤➤

60  ❘  Chapter 4   The Business Logic Layer: Organization

Finally, again from the ASPPatterns.Chap4.ActiveRecord.UI.MVC project, add a project reference
to the ASPPatterns.Chap4.ActiveRecord.Model project. Now that your solution is set up, you can
create a database to store the blog posts.

Right-click on the ASPPatterns.Chap4.ActiveRecord.UI.MVC project and select Add Item. Then
select a new database named Blog.mdf. Once the database has been created, double-click on it to be
taken to the Server Explorer and create two tables with the following definitions.

Table 4-1:  Posts Table

Column Name Data Type Allow Nulls

Id Int IDENTITY, Primary Key False

Subject nvarchar(200) False

Text nvarchar(MAX) False

DateAdded Datetime False

Table 4-2:  Comments Table

Column Name Data Type Allow Nulls

Id Int IDENTITY, Primary Key False

Text nvarchar(MAX) False

Author nvarchar(50) False

DateAdded Datetime False

PostId Int False

Create a new database diagram, add both tables, and create a relationship between them by select-
ing and dragging the Posts table Id column to the Comments table PostId column. After you have
made your changes, save the diagram and okay the updates to the tables.

Finally, you can start to create the model that will represent the Blog Posts and Post Comments
entities. Add a new C# class to the ASPPatterns.Chap4.ActiveRecord.Model project name
Comment with the following code listing:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Castle.ActiveRecord;

namespace ASPPatterns.Chap4.ActiveRecord.Model
{
 [ActiveRecord(“Comments”)]
 public class Comment : ActiveRecordBase<Comment>

Understanding Business Organizational Patterns  ❘  61

 {

 [PrimaryKey]
 public int Id { get; set; }

 [BelongsTo(“PostID”)]
 public Post Post { get; set; }

 [Property]
 public string Text { get; set; }

 [Property]
 public string Author { get; set; }

 [Property]
 public DateTime DateAdded { get; set; }
 }
}

The attributes that decorate the properties of the Comment class inform the framework which prop-
erties match database table columns. The Castle ActiveRecord framework then uses this information
to automatically persist and retrieve the business entities without the need to write lengthy SQL.

Add a second class to the project named Post with the following definition:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Castle.ActiveRecord;
using Castle.ActiveRecord.Queries;

namespace ASPPatterns.Chap4.ActiveRecord.Model
{
 [ActiveRecord(“Posts”)]
 public class Post : ActiveRecordBase<Post>
 {
 [PrimaryKey]
 public int Id { get; set; }

 [Property]
 public string Subject { get; set; }

 [Property]
 public string Text { get; set; }

 public string ShortText
 {
 get {
 if (Text.Length > 20)
 return Text.Substring(0, 20) + “...”;
 else
 return Text;
 }

62  ❘  Chapter 4   The Business Logic Layer: Organization

 }

 [HasMany]
 public IList<Comment> Comments { get; set; }

 [Property]
 public DateTime DateAdded { get; set; }

 public static Post FindLatestPost()
 {
 SimpleQuery<Post> q = new SimpleQuery<Post>
 (@”from Post p order by p.DateAdded desc”);

 return (Post)q.Execute()[0];
 }
 }
}

And that’s all you need to do for the model and data access. Simple, isn’t it? This is what the Ruby
on Rails guys have been boasting about for so long.

You can now construct the web site to display the posts and comments, but first you need to remove
all the files that Visual Studio added for you when you created the project. Go back to the MVC
project and remove all the files from the following folders generated for you by Visual Studio:

Content➤➤

Controllers➤➤

Views➤➤

Add a new controller to the Controllers folder named BlogController with the following code
definition:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Mvc.Ajax;
using ASPPatterns.Chap4.ActiveRecord.Model;

namespace ASPPatterns.Chap4.ActiveRecord.UI.MVC.Controllers
{
 public class BlogController : Controller
 {
 // GET: /Blog/
 public ActionResult Index()
 {
 Post[] posts = Post.FindAll();

 if (posts.Count() > 0)
 {
 ViewData[“AllPosts”] = posts;
 ViewData[“LatestPost”] = Post.FindLatestPost();
 return View();

Understanding Business Organizational Patterns  ❘  63

 }
 else
 return Create();
 }

 // POST: /Blog/
 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult CreateComment(string id, FormCollection collection)
 {
 int postId = 0;
 int.TryParse(id, out postId);
 Post post = Post.Find(postId);

 Comment comment = new Comment();
 comment.Post = post;
 comment.Author = Request.Form[“Author”];
 comment.DateAdded = DateTime.Now;
 comment.Text = Request.Form[“Comment”];

 comment.Save();

 return Detail(post.Id.ToString());
 }

 // GET: /Blog/Detail/1
 public ActionResult Detail(string id)
 {
 ViewData[“AllPosts”] = Post.FindAll();

 int postId = 0;
 int.TryParse(id, out postId);

 ViewData[“LatestPost”] = Post.Find(postId);

 return View(“Index”);
 }

 // GET: /Blog/Create
 public ActionResult Create()
 {
 return View(“AddPost”);
 }

 // POST: /Blog/Create
 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Create(FormCollection collection)
 {
 Post post = new Post();
 post.DateAdded = DateTime.Now;
 post.Subject = Request.Form[“Subject”];
 post.Text = Request.Form[“Content”]; ;
 post.Save();

 return Detail(post.Id.ToString());
 }
 }
}

64  ❘  Chapter 4   The Business Logic Layer: Organization

Add two new folders to the Views folder: Blog and Shared. To the Shared folder add a new Master
page named BlogMaster.Master, with the markup seen here:

<%@ Master Language=”C#” Inherits=”System.Web.Mvc.ViewMasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <link href=”../../Content/Site.css” rel=”stylesheet” type=”text/css” />
 <title><asp:ContentPlaceHolder ID=”TitleContent” runat=”server” /></title>
</head>
<body>
 <div id=”document”>
 <div id=”header”><h1>My Blog</h1></div>
 <div id=”nav”><%= Html.ActionLink(“Create Post”, “Create”) %></div>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server”>
 </asp:ContentPlaceHolder>
 </div>
</body>
</html>

Add a new view within the Blog view folder named Index with the following markup.

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/BlogMaster.Master”
 Inherits=”System.Web.Mvc.ViewPage” %>
<%@ Import Namespace=”ASPPatterns.Chap4.ActiveRecord.Model” %>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

<div id=”content”><h2><%= Html.Encode(((Post)ViewData[“LatestPost”]).Subject) %></h2>
 <%= ((Post)ViewData[“LatestPost”]).Text.Replace(“\n”, “
”) %>

<i>posted on
 <%= Html.Encode(((Post)ViewData[“LatestPost”])
 .DateAdded.ToLongDateString()) %></i>
 <hr />
 Comments

 <% foreach (var item in ((Post)ViewData[“LatestPost”]).Comments)
 { %>
 <p><i><%= Html.Encode(item.Author) %>
 said on <%= Html.Encode(item.DateAdded.ToLongDateString()) %>
 at <%= Html.Encode(item.DateAdded.ToShortTimeString()) %>...</i>

 <%= Html.Encode(item.Text) %>
 </p>
 <% } %>

 <p>Add a comment</p>
 <% using (Html.BeginForm(“CreateComment”, “Blog”, new {
 Id = ((Post)ViewData[“LatestPost”]).Id }, FormMethod.Post))
 {%>
 <p>
 Your name

 <%= Html.TextBox(“Author”)%> </p>

 <p>

Understanding Business Organizational Patterns  ❘  65

 Your comment

 <%= Html.TextArea(“Comment”)%></p>

 <p>
 <input type=”submit” value=”Add Comment” />

 </p>
 <%} %>
 </div>
 <div id=”rightNav”><h2>All Posts</h2>

 <% foreach (var item in (Post[])ViewData[“AllPosts”])
 { %>

 <%= Html.ActionLink(item.Subject, “Detail”,
 new { Id=item.Id })%>

 <%= Html.Encode(item.ShortText) %>

 <% } %>

 </div>
</asp:Content>

Add a second new view named AddPost to the Blog view folder with the following markup:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/BlogMaster.Master”
 Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>
 <% using (Html.BeginForm())
 {%>
 <p>
 Subject

 <%= Html.TextBox(“Subject”)%> </p>

 <p>
 Content

 <%= Html.TextArea(“Content”)%></p>

 <p>
 <input type=”submit” value=”Create” />
 </p>
 <%} %>
 </asp:Content>

Open the Global.asax file and update it as shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using ASPPatterns.Chap4.ActiveRecord.Model;
using Castle.ActiveRecord.Framework;

66  ❘  Chapter 4   The Business Logic Layer: Organization

using System.Configuration;

namespace ASPPatterns.Chap4.ActiveRecord.UI.MVC
{
 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(
 “Default”,
 “{controller}/{action}/{id}”,
 new { controller = “Blog”, action = “Index”, id = “” }
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);

 IConfigurationSource source = ConfigurationManager
 .GetSection(“activeRecord”) as IConfigurationSource;
 Castle.ActiveRecord.ActiveRecordStarter
 .Initialize(source, typeof(Post), typeof(Comment));
 }
 }
}

The code in the Global.asax file simply tells the Castle ActiveRecord framework to initialize so you
can start working with it.

The last thing you need to do to get the Castle ActiveRecord up and running is to amend the web.
config file to include the Castle ActiveRecord declarations as displayed in the following configura-
tion snippet:

<configuration>
 <configSections>
 <section
 name=”activeRecord”
 type=”Castle.ActiveRecord.Framework.Config.ActiveRecordSectionHandler,
 Castle.ActiveRecord”/>
 …
 </configSections>
 <activeRecord isWeb=”true”>
 <config>
 <add key=”hibernate.connection.driver_class”
 value=”NHibernate.Driver.SqlClientDriver”/>
 <add key=”dialect” value=”NHibernate.Dialect.MsSql2005Dialect”/>
 <add key=”hibernate.connection.provider”
 value=”NHibernate.Connection.DriverConnectionProvider”/>
 <add key=”connection.connection_string”
 value=”DataSource=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Blog.mdf;

Understanding Business Organizational Patterns  ❘  67

 Integrated Security=True;User Instance=True”/>
 <add key=”proxyfactory.factory_class”
 value=”NHibernate.ByteCode.Castle.ProxyFactoryFactory,
 NHibernate.ByteCode.Castle”/>
 </config>
 </activeRecord>
 …
</configuration >

To make the blog look pretty, you can add a new style sheet file within the content folder named
Site.css:

#document{
width:750px;
margin:0 auto;
}

#content {
float:left;
width:500px;
}

#rightNav {
float:right;
width:250px;
}

Run the solution, and you will be able to use your blog. Figure 4-3 shows the blog application
running.

Figure 4-3

68  ❘  Chapter 4   The Business Logic Layer: Organization

You built the blogging application extremely quickly; this was due in no small measure to the Castle
ActiveRecord framework, which was able to automate your data retrieval and access due to the close
correlation between your object model and your data model.

The Active Record pattern is no silver bullet. It excels with a good underlying data model that maps to
the business model, but when there is a mismatch, sometimes called an impedance mismatch, the pat-
tern can struggle to cope. This is the result of complex systems sometimes having a different concep-
tual business model than the data model. When there is a rich business domain with lots of complex
rules, logic, and workflow, the domain model approach is favored. It’s the pattern you will be explor-
ing next.

Domain Model
You can think of a domain model as a conceptual layer that represents the domain you are work-
ing in. Things exist in this model and have relationships to other things. What do I mean by things?
Well, for example, if you were building an e-commerce store, the “things” that would live in the
model would represent a Basket, Order, Order Item, and the like. These things have data and, more
importantly, they have behavior. Not only would an order have properties that represent a creation
date, status, and order number, but it would contain the business logic to apply a voucher to, includ-
ing all the domain rules that surround it: Is the voucher valid? Can the voucher be used with the
products in the basket? Are there any other offers in place that would render the voucher invalid?
The closer your domain model represents the real domain the better, as it will be easier for you to
understand and replicate the complex business logic, rules, and validation process that exist in an
organization. The main difference between the domain model and the Active Record pattern is that
the business entities that live in the domain model have no knowledge of how to persist themselves,
and there doesn’t necessarily need to be a one-to-one mapping between the data model and the busi-
ness model.

POCO and PI
As mentioned previously, the domain model, unlike the Active Record pattern, has no knowledge of
persistence. The term persistence ignorance (PI) has been coined for the plain nature of the plain old
common runtime object (POCO) business entities. How then do you persist a business object with
the domain model? Typically, the Repository pattern (Chapter 7) is used. When you are employing
the Domain Model pattern, it’s the responsibility of the Repository object, along with a data mapper
(Chapter 7), to map a business entity and its object graph of associated entities to the data model.

Code Example
To demonstrate the Domain Model pattern, you will create a solution to model a banking domain
that will involve the creation of accounts and the transferring of funds between them.

Create a new solution named ASPPatterns.Chap4.DomainModel and add to it the following class
library projects:

ASPPatterns.Chap4.DomainModel.Model➤➤

Understanding Business Organizational Patterns  ❘  69

ASPPatterns.Chap4.DomainModel.AppService➤➤

ASPPatterns.Chap4.DomainModel.Repository➤➤

Also add a new web application named ASPPatterns.Chap4.DomainModel.UI.Web. Right-click
on the Repository project and add a project reference to the Model project. Right-click on the
AppService project and add a project reference to the Model and Repository projects. Finally,
right-click on the Web project and add a project reference to the AppService project.

Figure 4-4 is a graphical representation of the projects you have created. The responsibilities of each
project are listed following the diagram.

ASPPatterns.Chap4.DomainModel.Model:➤➤ The Domain Model project will contain all of the
business logic within the application. Domain objects will live in here and will have relation-
ships to other objects to represent the banking domain the application is built around. The
project will also define contracts in the form of interfaces for domain object persistence and
retrieval; the Repository pattern will be employed for all persistence management needs. (The
Repository pattern is discussed in greater detail in Chapter 7.) The Model project will not
have a reference to any other project ensuring, it remains free of any infrastructure concerns
and focuses squarely on the business domain.

ASPPatterns.Chap4.DomainModel.Repository:➤➤ The Repository project will contain imple-
mentations of the repository interfaces defined in the Model project. The Repository has a
reference to the Model project in order to hydrate domain objects from the database as well
as to persist. The Repository project is concerned only with the responsibility of domain
object persistence and retrieval.

Application Services
ASPPatterns.Chap4.DomainModel.AppService

Repositories
ASPPatterns.Chap4.DomainModel.Repository

Database

Domain Model
ASPPatterns.Chap4.DomainModel

Presentation/UX
ASPPatterns.Chap4.DomainModel.UI.Web

Figure 4-4

70  ❘  Chapter 4   The Business Logic Layer: Organization

ASPPatterns.Chap4.DomainModel.AppService:➤➤ The AppService project will act as the gate-
way into the application—the API if you will. The presentation layer will communicate with
the AppService via messages, which are simple data transfer objects. The messaging patterns
are covered in detail in Chapter 7. The AppService layer will also define view models, which
are flattened views of the domain model used solely for the displaying of data. Chapter 8 cov-
ers this topic in greater detail.

ASPPatterns.Chap4.DomainModel.UI.Web:➤➤ The UI.Web project is responsible for the
presentation and use experience needs of the application. This project talks only to the
AppService and receives strongly typed view models that have been created specifically for
the views of the user experience.

With your solution structure in place you can set up the database to store the state of the bank
accounts in the domain. Add a new item to the Web project, select new database, and name it
BankAccount.mdf. Once the database has been created, double-click on it to be taken to the Server
Explorer and create two tables with the following definitions.

Table 4-3:  BankAccounts Table

Column Name Data Type Allow Nulls

BankAccountId uniqueidentifier, Primary Key False

Balance Money False

CustomerRef nvarchar(50) False

Table 4-4:  Transactions Table

Column Name Data Type Allow Nulls

BankAccountId uniqueidentifier False

Deposit money False

Withdrawal money False

Reference nvarchar(50) False

Create a new database diagram, add both tables, and create a relationship between them by select-
ing and dragging the BankAccounts table’s BankAccountId column to the Transactions table’s
BankAccountId column. After you have made your changes, save the diagram and okay the updates
to the tables.

With the solution framework and database set up, you can begin the real work of modeling your
domain. In this scenario a BankAccount creates a Transaction for every action that occurs.
Figure 4-5 shows the class diagram for the simple domain model.

Understanding Business Organizational Patterns  ❘  71

Figure 4-5

Create a new class named Transaction within the Model project with the following code definition:

 public class Transaction
 {
 public Transaction(decimal deposit, decimal withdrawal,
 string reference, DateTime date)
 {
 this.Deposit = deposit;
 this.Withdrawal = withdrawal;
 this.Reference = reference;
 this.Date = date;
 }

 public decimal Deposit
 { get; internal set; }

 public decimal Withdrawal
 { get; internal set; }

 public string Reference
 { get; internal set; }

 public DateTime Date
 { get; internal set; }
 }

Note that, for the purposes of this example, the Transaction object has no identifier property and
that the corresponding data table doesn’t have a primary key specified. The Transaction object is
what is known as a value object, a term used in domain driven design and discussed at the end of
this chapter.

Add a second class named BankAccount and enter the code listing that follows:

 public class BankAccount
 {

72  ❘  Chapter 4   The Business Logic Layer: Organization

 private decimal _balance;
 private Guid _accountNo;
 private string _customerRef;
 private IList<Transaction> _transactions;

 public BankAccount() : this(Guid.NewGuid(), 0,
 new List<Transaction>(), “”)
 {
 _transactions.Add(new Transaction(0m, 0m, “account created”, DateTime.Now));
 }

 public BankAccount(Guid Id, decimal balance,
 IList<Transaction> transactions, string customerRef)
 {
 AccountNo = Id;
 _balance = balance;
 _transactions = transactions;
 _customerRef = customerRef;
 }

 public Guid AccountNo
 {
 get { return _accountNo; }
 internal set { _accountNo = value; }
 }

 public decimal Balance
 {
 get { return _balance; }
 internal set { _balance = value; }
 }

 public string CustomerRef
 {
 get { return _customerRef; }
 set { _customerRef = value; }
 }

 public bool CanWithdraw(decimal amount)
 {
 return (Balance >= amount);
 }

 public void Withdraw(decimal amount, string reference)
 {
 if (CanWithdraw(amount))
 {
 Balance -= amount;
 _transactions.Add(new Transaction(0m, amount,
 reference, DateTime.Now));
 }
 }

 public void Deposit(decimal amount, string reference)

Understanding Business Organizational Patterns  ❘  73

 {
 Balance += amount;
 _transactions.Add(new Transaction(amount, 0m, reference, DateTime.Now));
 }

 public IEnumerable<Transaction> GetTransactions()
 {
 return _transactions;
 }
 }

The BankAccount has three simple methods:

CanWithdraw➤➤

Withdraw➤➤

Deposit➤➤

Because there is a CanWithdraw method, you should expect calling code to use the Test-Doer pattern
before trying to withdraw funds from an account like so:

If (myBankAccount.CanWithdraw(amountToWithdraw))
{
 myBankAccount.Withdraw(amountToWithdraw);
}

If a call to Withdraw is called with insufficient funds without a check, then an exception should be
raised. With this in mind, you will require a new custom exception, so add another class to the Model
project named InsufficientFundsException with the following code listing:

public class InsufficientFundsException : ApplicationException
{
}

And amend the Withdraw method on the BankAccount class like so:

public void Withdraw(decimal amount, string reference)
{
 if (CanWithdraw(amount))
 {
 Balance -= amount;
 _transactions.Add(new Transaction(0m, amount, reference, DateTime.Now));
 }
 else
 {
 throw new InsufficientFundsException();
 }
}

You now need a method to persist the BankAccount and Transactions, but because you don’t want
to pollute the Domain Model project, you are going to add only the interface for a Repository to
define the contract for the entity’s persistence and retrieval needs. This is a nod back to what you
read about in terms of the PI and POCO, concepts covered earlier in this chapter.

74  ❘  Chapter 4   The Business Logic Layer: Organization

Create a new interface named IBankAccountRepository with the following contract:

 public interface IBankAccountRepository
 {
 void Add(BankAccount bankAccount);
 void Save(BankAccount bankAccount);
 IEnumerable<BankAccount> FindAll();
 BankAccount FindBy(Guid AccountId);
 }

Some actions don’t sit well as methods on a domain entity. For cases like these, you can use a domain
service. The action of transferring funds between two accounts is a responsibility that belongs on a
service class. You will read more about domain services at the end of the chapter.

Add a new class to the Model project named BankAccountService with the following code definition:

 public class BankAccountService
 {
 private IBankAccountRepository _bankAccountRepository;

 public BankAccountService(IBankAccountRepository bankAccountRepository)
 {
 _bankAccountRepository = bankAccountRepository;
 }

 public void Transfer(Guid accountNoTo, Guid accountNoFrom,
 decimal amount)
 {
 BankAccount bankAccountTo =
 _bankAccountRepository.FindBy(accountNoTo);
 BankAccount bankAccountFrom = _bankAccountRepository.FindBy(accountNoFrom);

 if (bankAccountFrom.CanWithdraw(amount))
 {
 bankAccountTo.Deposit(amount,
 “From Acc “ + bankAccountFrom.CustomerRef + “ “);
 bankAccountFrom.Withdraw(amount,
 “Transfer To Acc “ + bankAccountTo.CustomerRef + “ “);

 _bankAccountRepository.Save(bankAccountTo);
 _bankAccountRepository.Save(bankAccountFrom);
 }
 else
 {
 throw new InsufficientFundsException();
 }
 }
 }

In the current implementation of the BankAccountService, any errors that occur between saving the
two bank accounts will leave the data in an invalid state. In Chapter 7 you will see how the Unit of
Work pattern can ensure that transactions that need to can commit as one atomic action, or rollback
in case of an exception.

Understanding Business Organizational Patterns  ❘  75

Now that you have built the domain model, you can get to work on a method to persist the Bank​
Account and Transaction business objects. From within the Repository project, add a new class
named Bank​Account​Repository. This class will be an implementation of the IBankAccount​
Repository. My apologies for the length of the code listing that follows. In Chapter 7, you will
look at some popular object relational mappers that will cut down on the amount of time you spend
writing ADO.NET infrastructure code.

You will need to add a reference to the System.Configuration assembly because the BankAccount​
Repository needs to obtain a connection string from the application’s web.config file.

using ASPPatterns.Chap4.DomainModel.Model;
using System.Data.SqlClient;
using System.Data;
using System.Configuration;

namespace ASPPatterns.Chap4.DomainModel.Repository
{
 public class BankAccountRepository : IBankAccountRepository
 {
 private string _connectionString;

 public BankAccountRepository()
 {
 _connectionString = ConfigurationManager
 .ConnectionStrings[“BankAccountConnectionString”].ConnectionString;
 }

 public void Add(BankAccount bankAccount)
 {
 string insertSql = “INSERT INTO BankAccounts “ +
 “(BankAccountID, Balance, CustomerRef) VALUES “ +
 “(@BankAccountID, @Balance, @CustomerRef)”;

 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = insertSql;

 SetCommandParametersForInsertUpdateTo(bankAccount, command);

 connection.Open();

 command.ExecuteNonQuery();
 }

 UpdateTransactionsFor(bankAccount);
 }

 public void Save(BankAccount bankAccount)
 {
 string bankAccoutnUpdateSql =
 “UPDATE BankAccounts “ +
 “SET Balance = @Balance, CustomerRef= @CustomerRef “ +

76  ❘  Chapter 4   The Business Logic Layer: Organization

 “WHERE BankAccountID = @BankAccountID;”;

 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = bankAccoutnUpdateSql;

 SetCommandParametersForInsertUpdateTo(bankAccount, command);

 connection.Open();

 command.ExecuteNonQuery();
 }

 UpdateTransactionsFor(bankAccount);
 }

 private static void SetCommandParametersForInsertUpdateTo(
 BankAccount bankAccount, SqlCommand command)
 {
 command.Parameters.Add(
 new SqlParameter(“@BankAccountID”, bankAccount.AccountNo));
 command.Parameters.Add(new SqlParameter(“@Balance”, bankAccount.Balance));
 command.Parameters.Add(
 new SqlParameter(“@CustomerRef”, bankAccount.CustomerRef));
 }

 private void UpdateTransactionsFor(BankAccount bankAccount)
 {
 string deleteTransactionSQl =
 “DELETE Transactions WHERE BankAccountId = @BankAccountId;”;

 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = deleteTransactionSQl;
 command.Parameters.Add(
 new SqlParameter(“@BankAccountID”, bankAccount.AccountNo));
 connection.Open();
 command.ExecuteNonQuery();

 }

 string insertTransactionSql =
 “INSERT INTO Transactions “ +
 “(BankAccountID, Deposit, Withdraw, Reference, [Date]) VALUES “ +
 “(@BankAccountID, @Deposit, @Withdraw, @Reference, @Date)”;

 foreach (Transaction tran in bankAccount.GetTransactions())
 {
 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();

Understanding Business Organizational Patterns  ❘  77

 command.CommandText = insertTransactionSql;

 command.Parameters.Add(
 new SqlParameter(“@BankAccountID”,
 bankAccount.AccountNo));
 command.Parameters.Add(new SqlParameter(“@Deposit”, tran.Deposit));
 command.Parameters.Add(
 new SqlParameter(“@Withdraw”, tran.Withdrawal));
 command.Parameters.Add(
 new SqlParameter(“@Reference”, tran.Reference));
 command.Parameters.Add(new SqlParameter(“@Date”, tran.Date));

 connection.Open();
 command.ExecuteNonQuery();
 }
 }
 }

 public IEnumerable<BankAccount> FindAll()
 {
 IList<BankAccount> accounts = new List<BankAccount>();

 string queryString =
 “SELECT * FROM dbo.Transactions INNER JOIN “ +
 “dbo.BankAccounts ON “ +
 “dbo.Transactions.BankAccountId = dbo.BankAccounts.BankAccountId “ +
 “ORDER BY dbo.BankAccounts.BankAccountId;”;

 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = queryString;

 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())
 {
 accounts = CreateListOfAccountsFrom(reader);
 }
 }

 return accounts;
 }

 private IList<BankAccount> CreateListOfAccountsFrom(
 IDataReader datareader)
 {
 IList<BankAccount> accounts = new List<BankAccount>();
 BankAccount bankAccount;
 string id = “”;
 IList<Transaction> transactions = new List<Transaction>();

 while (datareader.Read())
 {
 if (id != datareader[“BankAccountId”].ToString())

78  ❘  Chapter 4   The Business Logic Layer: Organization

 {
 id = datareader[“BankAccountId”].ToString();
 transactions = new List<Transaction>();
 bankAccount = new BankAccount(
 new Guid(id), Decimal.Parse(datareader[“Balance”].ToString()),
 transactions, datareader[“CustomerRef”].ToString());

 accounts.Add(bankAccount);
 }
 transactions.Add(CreateTransactionFrom(datareader));
 }

 return accounts;
 }

 private Transaction CreateTransactionFrom(IDataRecord rawData)
 {
 return new Transaction(
 Decimal.Parse(rawData[“Deposit”].ToString()),
 Decimal.Parse(rawData[“Withdraw”].ToString()),
 rawData[“Reference”].ToString(),
 DateTime.Parse(rawData[“Date”].ToString()));
 }

 public BankAccount FindBy(Guid accountId)
 {
 BankAccount account;

 string queryString = “SELECT * FROM “ +
 “dbo.Transactions INNER JOIN “ +
 “dbo.BankAccounts ON “ +
 “dbo.Transactions.BankAccountId = “ +
 “dbo.BankAccounts.BankAccountId “ +
 “WHERE dbo.BankAccounts.BankAccountId = @BankAccountId;”;

 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = queryString;

 SqlParameter Idparam = new SqlParameter(“@BankAccountId”, accountId);
 command.Parameters.Add(Idparam);

 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())
 {
 account = CreateListOfAccountsFrom(reader)[0];
 }
 }
 return account;
 }
 }
}

Understanding Business Organizational Patterns  ❘  79

Now that you have dealt with the persistence and retrieval needs, you can add a service layer for cli-
ents to interact with the system in an easy manner.

Add a new folder to the AppServices project named ViewModel and add to it a new class named
BankAccountView and one named TransactionView with the following definition:

 public class TransactionView
 {
 public string Deposit { get; set; }
 public string Withdrawal { get; set; }
 public string Reference { get; set; }
 public DateTime Date { get; set; }
 }

 public class BankAccountView
 {
 public Guid AccountNo { get; set; }
 public string Balance { get; set; }
 public string CustomerRef { get; set; }
 public IList<TransactionView> Transactions { get; set; }
 }

The BankAccountView and TransactionView offer a flattened view of the domain model for pre-
sentation purposes, which is an idea you will examine more closely in Chapter 6. To transform your
domain entities into data transfer view models, you will need a mapper class. Again, you will take
a closer look at this and a way to automate this process in Chapter 8. Create a new class named
ViewMapper with the following two static methods:

using ASPPatterns.Chap4.DomainModel.Model;

namespace ASPPatterns.Chap4.DomainModel.AppService
{
 public static class ViewMapper
 {
 public static TransactionView CreateTransactionViewFrom(
 Transaction tran)
 {
 return new TransactionView
 {
 Deposit = tran.Deposit.ToString(“C”),
 Withdrawal = tran.Withdrawal.ToString(“C”),
 Reference = tran.Reference,
 Date = tran.Date
 };
 }

 public static BankAccountView CreateBankAccountViewFrom(
 BankAccount acc)
 {
 return new BankAccountView
 {
 AccountNo = acc.AccountNo,
 Balance = acc.Balance.ToString(“C”),
 CustomerRef = acc.CustomerRef,

80  ❘  Chapter 4   The Business Logic Layer: Organization

 Transactions = new List<TransactionView>()
 };
 }
 }
}

Add a second folder to the AppServices project named Messages; this folder will contain all the
request-reply objects used to communicate with the service layer. Messaging patterns are covered in
more detail in Chapter 6. Because all the replies shared a common set of properties, you can create
a base class. Add a new class to the Messages folder named ResponseBase, with the following code
listing:

namespace ASPPatterns.Chap4.DomainModel.AppService.Messages
{
 public abstract class ResponseBase
 {
 public bool Success { get; set; }
 public string Message { get; set; }
 }
}

The Success property indicates whether the method called was run successfully, and the Message
property contains details of the outcome of the method run.

You now need to implement all the request and reply objects; create a new class for each of the class
listings displayed next:

 public class BankAccountCreateRequest
 {
 public string CustomerName { get; set; }
 }

 public class BankAccountCreateResponse : ResponseBase
 {
 public Guid BankAccountId { get; set; }
 }

 public class DepositRequest
 {
 public Guid AccountId { get; set; }
 public decimal Amount { get; set; }
 }

 public class FindAllBankAccountResponse : ResponseBase
 {
 public IList<BankAccountView> BankAccountView { get; set; }
 }

 public class FindBankAccountResponse : ResponseBase
 {
 public BankAccountView BankAccount { get; set; }
 }

 public class TransferRequest
 {

Understanding Business Organizational Patterns  ❘  81

 public Guid AccountIdTo { get; set; }
 public Guid AccountIdFrom { get; set; }
 public decimal Amount { get; set; }
 }

 public class TransferResponse : ResponseBase
 {
 }

 public class WithdrawalRequest
 {
 public Guid AccountId { get; set; }
 public decimal Amount { get; set; }
 }

With all the messaging objects in place, you can add the service class that coordinates the method
calls to the domain entities: service and repository. Add a new class named ApplicationBank​
AccountService at the root of the AppService project:

using ASPPatterns.Chap4.DomainModel.Model;
using ASPPatterns.Chap4.DomainModel.Repository;
using ASPPatterns.Chap4.DomainModel.AppService.Messages;

namespace ASPPatterns.Chap4.DomainModel.AppService
{
 public class ApplicationBankAccountService
 {
 private BankAccountService _bankAccountService;
 private IBankAccountRepository _bankRepository;

 public ApplicationBankAccountService() :
 this (new BankAccountRepository(),
 new BankAccountService(new BankAccountRepository()))
 { }

 public ApplicationBankAccountService(
 IBankAccountRepository bankRepository,
 BankAccountService bankAccountService)
 {
 _bankRepository = bankRepository;
 _bankAccountService = bankAccountService;
 }

 public ApplicationBankAccountService(
 BankAccountService bankAccountService,
 IBankAccountRepository bankRepository)
 {
 _bankAccountService = bankAccountService;
 _bankRepository = bankRepository;
 }

 public BankAccountCreateResponse CreateBankAccount(
 BankAccountCreateRequest bankAccountCreateRequest)
 {
 BankAccountCreateResponse bankAccountCreateResponse =
 new BankAccountCreateResponse();

82  ❘  Chapter 4   The Business Logic Layer: Organization

 BankAccount bankAccount = new BankAccount();

 bankAccount.CustomerRef = bankAccountCreateRequest.CustomerName;
 _bankRepository.Add(bankAccount);

 return bankAccountCreateResponse;
 }

 public void Deposit(DepositRequest depositRequest)
 {
 BankAccount bankAccount = _bankRepository.FindBy(depositRequest.AccountId);

 bankAccount.Deposit(depositRequest.Amount, “”);

 _bankRepository.Save(bankAccount);
 }

 public void Withdrawal(WithdrawalRequest withdrawalRequest)
 {
 BankAccount bankAccount =
 _bankRepository.FindBy(withdrawalRequest.AccountId);

 bankAccount.Withdraw(withdrawalRequest.Amount, “”);

 _bankRepository.Save(bankAccount);
 }

 public TransferResponse Transfer(TransferRequest request)
 {
 TransferResponse response = new TransferResponse();

 try
 {
 _bankAccountService.Transfer(request.AccountIdTo,
 request.AccountIdFrom, request.Amount);
 response.Success = true;
 }
 catch (InsufficientFundsException)
 {
 response.Message = “There is not enough funds in account no: “ +
 request.AccountIdFrom.ToString();
 response.Success = false;
 }

 return response;
 }

 public FindAllBankAccountResponse GetAllBankAccounts()
 {
 FindAllBankAccountResponse FindAllBankAccountResponse =
 new FindAllBankAccountResponse();
 IList<BankAccountView> bankAccountViews =
 new List<BankAccountView>();
 FindAllBankAccountResponse.BankAccountView = bankAccountViews;

 foreach (BankAccount acc in _bankRepository.FindAll())

Understanding Business Organizational Patterns  ❘  83

 {
 bankAccountViews.Add(
 ViewMapper.CreateBankAccountViewFrom(acc));
 }

 return FindAllBankAccountResponse;
 }

 public FindBankAccountResponse GetBankAccountBy(Guid Id)
 {
 FindBankAccountResponse bankAccountResponse = new FindBankAccountResponse();
 BankAccount acc = _bankRepository.FindBy(Id);
 BankAccountView bankAccountView = ViewMapper.CreateBankAccountViewFrom(acc);

 foreach (Transaction tran in acc.GetTransactions())
 {
 bankAccountView.Transactions.Add(
 ViewMapper.CreateTransactionViewFrom(tran));
 }

 bankAccountResponse.BankAccount = bankAccountView;

 return bankAccountResponse;
 }

 }
}

The BankAccountApplicationService class coordinates the application activity and delegates all
business tasks to the domain model. This layer does not contain business logic and helps to prevent
any non-business-related code from polluting the domain model project. The layer also transforms
domain entities into data transfer objects that protect the inner workings of the domain and provide
an easy API for the presentation layer to work with.

To keep things simple I have elected to use “poor man’s dependency injection” and hard coded the
default constructor to use the repository domain service implementations that you have coded. In
Chapter 8, you will learn about Inversion of Control and Inversion of Control Containers to supply
the dependencies of a class.

Your last action is to create a user interface to enable accounts to be created and transactions to take
place. Open the Default.aspx in source mode from within the Web project and edit the markup so
it matches the following snippet:

 …
 <form id=”form1” runat=”server”>
 <div>

 <fieldset>
 <legend>Create New Account</legend>
 <p>
 Customer Ref:
 <asp:TextBox ID=”txtCustomerRef” runat=”server” />

 <asp:Button ID=”btCreateAccount” runat=”server” Text=”Create Account”

84  ❘  Chapter 4   The Business Logic Layer: Organization

 onclick=”btCreateAccount_Click” />
 </p>
 </fieldset>

 <fieldset>
 <legend>Account Detail</legend>
 <p>
 <asp:DropDownList AutoPostBack=”true”
 ID=”ddlBankAccounts” runat=”server”
 onselectedindexchanged=”ddlBankAccounts_SelectedIndexChanged”/ >
 </p>
 <p>
 Account No:
 <asp:Label ID=”lblAccountNo” runat=”server” />
 </p>
 <p>
 Customer Ref:
 <asp:Label ID=”lblCustomerRef” runat=”server” />
 </p>
 <p>
 Balance:
 <asp:Label ID=”lblBalance” runat=”server” />
 </p>
 <p>
 Amount £<asp:TextBox ID=”txtAmount” runat=”server” Width=”60px”/>

 <asp:Button ID=”btnWithdrawal” runat=”server” Text=”Withdrawal”
 onclick=”btnWithdrawal_Click” />

 <asp:Button ID=”btnDeposit” runat=”server” Text=”Deposit”
 onclick=”btnDeposit_Click” />
 </p>
 <p>
 Transfer
 £<asp:TextBox ID=”txtAmountToTransfer” runat=”server”
 Width=”60px” />

 to
 <asp:DropDownList AutoPostBack=”true”
 ID=”ddlBankAccountsToTransferTo” runat=”server”/>

 <asp:Button ID=”btnTransfer” runat=”server” Text=”Commit”
 onclick=”btnTransfer_Click” />
 </p>
 <p>
 Transactions</p>
 <asp:Repeater ID=”rptTransactions” runat=”server”>
 <HeaderTemplate>
 <table>
 <tr>
 <td>deposit</td>
 <td>withdrawal</td>
 <td>reference</td>
 </tr>
 </HeaderTemplate>

Understanding Business Organizational Patterns  ❘  85

 <ItemTemplate>
 <tr>
 <td><%# Eval(“Deposit”) %></td>
 <td><%# Eval(“Withdrawal”) %></td>
 <td><%# Eval(“Reference”) %></td>
 <td><%# Eval(“Date”) %></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 </fieldset>
 </div>
 </form>
</body>
</html>

Switch to the code behind of the Default.aspx page and update to match the following code listing:

using System;
using System.Web.UI.WebControls;
using ASPPatterns.Chap4.DomainModel.AppService;
using ASPPatterns.Chap4.DomainModel.AppService.Messages;

namespace ASPPatterns.Chap4.DomainModel.UI.Web
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 ShowAllAccounts();
 }

 private void ShowAllAccounts()
 {
 ddlBankAccounts.Items.Clear();

 FindAllBankAccountResponse response =
 new ApplicationBankAccountService().GetAllBankAccounts();
 ddlBankAccounts.Items.Add(new ListItem(“Select An Account”, “”));

 foreach (BankAccountView accView in response.BankAccountView)
 {
 ddlBankAccounts.Items.Add(
 new ListItem(accView.CustomerRef, accView.AccountNo.ToString()));
 }
 }

 protected void btCreateAccount_Click(object sender, EventArgs e)
 {
 BankAccountCreateRequest createAccountRequest =
 new BankAccountCreateRequest();
 createAccountRequest.CustomerName = this.txtCustomerRef.Text;

86  ❘  Chapter 4   The Business Logic Layer: Organization

 ApplicationBankAccountService service = new ApplicationBankAccountService();

 service.CreateBankAccount(createAccountRequest);

 ShowAllAccounts();
 }

 protected void ddlBankAccounts_SelectedIndexChanged(object sender, EventArgs e)
 {
 DisplaySelectedAccount();
 }

 private void DisplaySelectedAccount()
 {
 if (ddlBankAccounts.SelectedValue.ToString() != “”)
 {
 ApplicationBankAccountService service =
 new ApplicationBankAccountService();
 FindBankAccountResponse response =
 service.GetBankAccountBy(
 new Guid(ddlBankAccounts.SelectedValue.ToString()));
 BankAccountView accView = response.BankAccount;

 this.lblAccountNo.Text = accView.Balance.ToString();
 this.lblBalance.Text = accView.Balance.ToString();
 this.lblCustomerRef.Text = accView.CustomerRef;

 rptTransactions.DataSource = accView.Transactions;
 rptTransactions.DataBind();

 FindAllBankAccountResponse allAccountsResponse =
 service.GetAllBankAccounts();

 ddlBankAccountsToTransferTo.Items.Clear();

 foreach (BankAccountView acc in allAccountsResponse.BankAccountView)
 {
 if (acc.AccountNo.ToString() !=
 ddlBankAccounts.SelectedValue.ToString())
 ddlBankAccountsToTransferTo.Items.Add(
 new ListItem(acc.CustomerRef, acc.AccountNo.ToString()));
 }
 }
 }

 protected void btnWithdrawal_Click(object sender, EventArgs e)
 {
 ApplicationBankAccountService service = new ApplicationBankAccountService();
 WithdrawalRequest request = new WithdrawalRequest();
 Guid AccId = new Guid(ddlBankAccounts.SelectedValue.ToString());
 request.AccountId = AccId;
 request.Amount = Decimal.Parse(txtAmount.Text);

 service.Withdrawal(request);
 DisplaySelectedAccount();

Understanding Business Organizational Patterns  ❘  87

 }

 protected void btnDeposit_Click(object sender, EventArgs e)
 {
 ApplicationBankAccountService service = new ApplicationBankAccountService();
 DepositRequest request = new DepositRequest();
 Guid AccId = new Guid(ddlBankAccounts.SelectedValue.ToString());
 request.AccountId = AccId;
 request.Amount = Decimal.Parse(txtAmount.Text);

 service.Deposit(request);
 DisplaySelectedAccount();
 }

 protected void btnTransfer_Click(object sender, EventArgs e)
 {
 ApplicationBankAccountService service = new ApplicationBankAccountService();
 TransferRequest request = new TransferRequest();
 request.AccountIdFrom = new Guid(ddlBankAccounts.SelectedValue.ToString());
 request.AccountIdTo =
 new Guid(ddlBankAccountsToTransferTo.SelectedValue.ToString());
 request.Amount = Decimal.Parse(txtAmountToTransfer.Text);

 service.Transfer(request);
 DisplaySelectedAccount();
 }
 }
}

Finally add the connection string for the database to the web.config file of the web application:

 <connectionStrings>
 <add name=”BankAccountConnectionString”
 connectionString=”DataSource=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\BankAccount.mdf;
 Integrated Security=True;User Instance=True”
 providerName=”System.Data.SqlClient”/>
 </connectionStrings>

And that’s all there is to it. Launch the application, and you will see a screen that looks similar to the
one in Figure 4-6.

Trying to solve complex business problems in software is difficult, but when using the Domain
Model pattern, you first create an abstract model of the real business model. With this model in
place, you can then model complex logic by following the real domain and recreating the workflow
and processing in your domain model. Another advantage that a Domain Model pattern holds over
the Transaction Script and the Active Record patterns is that, because it contains no data access
code, you can easily unit test it without having to mock and stub out dependencies of such a data
access layer. Again, the Domain Model pattern may not always be a great fit for your application
needs. One of its great strengths is dealing with complex business logic, but a full-blown domain
model is architectural overkill when very little business logic is contained within the application.
Another disadvantage of the pattern is the steep learning curve needed to become proficient in it
compared to the Active Record and Transaction Script options. Using the pattern effectively takes

88  ❘  Chapter 4   The Business Logic Layer: Organization

time and experience and, most importantly, a sound knowledge of the business domain you are try-
ing to model.

Figure 4-6

Anemic Domain Model
The Anemic Domain Model is sometimes referred to as an antipattern. At first glance, the pattern is
very similar to the Domain Model in that you will still find domain objects that represent the busi-
ness domain. Any behavior, however, is not contained within the domain objects. instead, it is found
outside of the model, leaving domain objects as simple data transfer classes.

The major disadvantage of this pattern is that the domain services take on the role of a more pro-
cedural style of code rather like the Transaction Script pattern that you saw at the beginning of the
chapter, which brings along the issues associated with it. One such issue is the violation of the “Tell,
Don’t Ask” principle which states that objects should tell the client what they can or can’t do rather
than exposing properties and leaving it up to the client to determine if an object is in a particular
state for a given action to take place.

If you consider the example that you used for the Domain Model exercise, the Transaction and
BankAccount domain objects are now stripped of their logic and are simply data containers as can
be seen in the following code snippet.

 public class Transaction
 {

Understanding Business Organizational Patterns  ❘  89

 public Guid Id { get; set; }
 public decimal Deposit { get; set; }
 public decimal Withdraw { get; set; }
 public string Reference { get; set; }
 public DateTime Date { get; set; }
 public Guid BankAccountId { get; set; }
 }

 public class BankAccount
 {
 public BankAccount()
 {
 Transactions = new List<Transaction>();
 }

 public Guid AccountNo { get; set; }
 public decimal Balance { get; set; }
 public string CustomerRef { get; set; }
 public IList<Transaction> Transactions { get; set; }
 }

Separate classes are involved to implement logic. The Specification pattern, covered in more detail
in Chapter 5, can be used to determine if an account has sufficient funds to make a withdrawal, as
shown here:

 public class BankAccountHasEnoughFundsToWithdrawSpecification
 {
 private decimal _amountToWithdraw;

 public BankAccountHasEnoughFundsToWithdrawSpecification(
 decimal amountToWithdraw)
 {
 _amountToWithdraw = amountToWithdraw;
 }

 public bool IsSatisfiedBy(BankAccount bankAccount)
 {
 return bankAccount.Balance >= _amountToWithdraw;
 }
 }

The domain service class that you created in the Domain model will now utilize the specification
when coordinating a withdrawal or bank transfer:

 public class BankAccountService
 {
 ...

 public void Transfer(Guid accountNoTo, Guid accountNoFrom,
 decimal amount)
 {
 BankAccount bankAccountTo =
 _bankAccountRepository.FindBy(accountNoTo);
 BankAccount bankAccountFrom =

90  ❘  Chapter 4   The Business Logic Layer: Organization

 _bankAccountRepository.FindBy(accountNoFrom);

 BankAccountHasEnoughFundsToWithdrawSpecification HasEnoughFunds =
 new BankAccountHasEnoughFundsToWithdrawSpecification(amount);

 if (HasEnoughFunds.IsSatisfiedBy(bankAccountFrom))
 {
 // … make the bank transfer..
 }
 else
 {
 throw new InsufficientFundsException();
 }
 }

 public void Withdraw(Guid accountNo, decimal amount,
 string reference)
 {
 BankAccount bankAccount =
 _bankAccountRepository.FindBy(accountNo);

 BankAccountHasEnoughFundsToWithdrawSpecification HasEnoughFunds =
 new BankAccountHasEnoughFundsToWithdrawSpecification(amount);

 if (HasEnoughFunds.IsSatisfiedBy(bankAccount))
 {
 // … make the withdraw …
 }
 }

 ...
 }

The next section discusses domain-driven design, a popular design methodology that concentrates
on business logic over infrastructure concerns, which is a good fit for the Domain Model pattern
and the organization of complex business logic.

Domain-Driven Design
The Domain Model pattern is useful when dealing with complex business logic. A popular design
methodology that utilizes the Domain Model pattern is known as DDD.

In a nutshell, DDD is a collection of patterns and principles that aid in your efforts to build applica-
tions that reflect an understanding of and meet the requirements of your business. Outside of that,
it’s a whole new way of thinking about your development methodology. DDD is about modeling the
real domain by first fully understanding it and placing all the terminology, rules, and logic into an
abstract representation within your code, typically in the form of a domain model.

You will take a look at the main aspects of DDD because this is the methodology that is used for the
majority of exercises in the remainder of this book.

Understanding Business Organizational Patterns  ❘  91

The Ubiquitous Language
The notion of a ubiquitous language is that it should act as a common vocabulary that is used by
developers, domain experts, and anyone else involved in a project to describe the domain. A domain
expert is someone with the knowledge and skills in a particular domain who will work closely with
you as you develop the domain model to ensure that you fully understand the business model before
trying to represent it in code. In the example of a loan application, this could be an underwriter.
Through listening to this person, you will build a vocabulary of all terminology used during the
process of approving a loan. Your class, methods, and property names should all be based around
the same ubiquitous language. This enables you to talk to domain experts about code in a language
that they understand; also, new developers working on the code should get a good grounding in what
the domain is really all about. It will also enable them to talk to business experts about the smallest
details of complex business logic with relative ease. When all parties involved in the development of
an application are speaking the same language, problems and solutions can be conveyed easily, mak-
ing the application quicker and easier to build.

DDD is not a framework, but it does have a set of building blocks or concepts that you can incorpo-
rate into your solution. The following sections introduce these concepts one at a time.

Entities
Entities are the things discussed previously in the Domain Model section, such as an order, cus-
tomer, and product in an e-commerce site and a blog, and post objects in a blogging application.
They encompass the data and behavior of the real entity in an abstract manner. Any logic pertaining
to an entity should be contained within it. Entities are the things that require an identity, which
will remain with it throughout its lifetime. Consider a borrower in terms of a loan application; a
borrower has a name, but names can change and can be duplicated, so you need to add a separate
identity that will stay with the borrower through its life in the loan application regardless of a name,
job, or address change. Typically, a system uses some kind of unique identifier or auto-numbering
value for any entities that don’t have a natural way to identify them. Sometimes entities do have natu-
ral keys, such as a Social Security number or an employee number. Not all the objects in your domain
model are unique and require an identity. For some objects, it’s the data that is of most importance,
not identity; these objects are called value objects.

Value Objects
Value objects have no identity; they are of value because of their attributes only. Value objects gen-
erally don’t live on their own; they are typically, but not always, attributes of an entity. If you cast
your mind back to the simple Bank Account application that you worked on in the Domain Model,
you remember that the Transaction object had no identity because it exists only in terms of the
Bank Account that it is associated with; it is a value object because, in this context, it doesn’t exist
on its own.

Aggregates and Aggregate Roots
Big systems or complex domains can have hundreds of entity and value objects, which have complex
relationships. The domain model needs a method of managing these associations; more importantly,

92  ❘  Chapter 4   The Business Logic Layer: Organization

logical groups of entities and value objects need to define an interface that lets other entities work
with them. Without such a structure, the interaction between groups of objects can be confusing
and lead to problems later.

The notion of an aggregation groups logical entities and value objects. From the DDD definition, an
aggregate is simply “a cluster of associated objects that are treated as a unit for the purpose of data
changes.” The aggregate root is an entity, which is the only member of the aggregate that any object
outside the aggregate is allowed to hold a reference to. The idea of an aggregate exists in DDD to
ensure data integrity within the domain model. An aggregate root is a special entity that acts as the
logical way into the aggregate. For example, if you take an order in the context of an e-commerce
shop, you can regard it as the aggregate root, because you only want to be able to edit an order line
or apply a voucher by going through the root of the aggregate—that is, the order entity. This enables
complex object graphs to remain consistent and business rules to be adhered to. So, instead of an order
just exposing a collection of vouchers issued against it through a simple List property, it can have
methods with complex rules that enable vouchers to be applied to it and expose the list of vouchers as
a read-only collection for display purposes.

Domain Services
As you saw in the Domain Model Pattern Bank Account exercise, the BankAccountService class
contained the logic to transfer funds between two bank accounts. Methods that don’t really fit on a
single entity or require access to the repository are contained within domain services. The domain
service layer can also contain domain logic of its own and is as much part of the domain model as
entities and value objects.

Application Services
The Application service is a thin layer that sits above the domain model and coordinates the applica-
tion activity. It does not contain business logic and does not hold the state of any entities; however, it
can store the state of a business workflow transaction. You use an Application service in the Domain
Model Bank Account exercise to provide an API into the domain model using the Request-Reply mes-
saging pattern.

Repository
The Repository pattern, which you will examine in more detail in Chapter 7, acts as an in-memory
collection or repository for business entities, completely abstracting away the underlying data infra-
structure. This pattern allows you to keep your domain model free of any infrastructure concerns,
making it POCO and PI.

Layering
Layering is an important concept in DDD because it helps to enforce the separation of concerns.
Figure 4-7 shows a graphical representation of the layers and concepts that make up DDD; however,
I should stress that DDD is much more about your mindset when developing complex business appli-
cations than how you set up your solution.

Summary  ❘  93

Domain
Services

Application
Services

Request-Reply
ASPX

Infrastructure
Logging, Security, etc.

Repositories

Database

Domain
Model

Entities, Value
Objects,
Factories

Figure 4-7

The Bank Account application you worked on for the
domain model exercise was built around the concepts of
DDD. Figure 4-8 shows the layers in the Bank Account
application and how they relate to the concepts of DDD.

You have only had a brief introduction to DDD in this chap-
ter, although you will revisit it for the case study, where you
will also be introduced to user stories for building require-
ments and understanding the domain you are working in.
For a deeper insight into this methodology, I recommend the
following books:

Domain-Driven Design: Tackling Complexity in the Heart of Software➤➤ (Addison-Wesley 2003)
by Eric Evans

Applying Domain-Driven Design and Patterns: Using .Net With Examples in C# and .NET➤➤
(Addison-Wesley 2006) by Jimmy Nilsson

Summary

In this chapter you learned about some popular and proven patterns for organizing your business
logic. The three main methods were:

Transaction Script:➤➤ If you have a simple application with little or no logic, Transaction Script
is a great choice as a straightforward solution that is easily understood by other developers
picking up your code down the line.

Figure 4-8

94  ❘  Chapter 4   The Business Logic Layer: Organization

Active Record:➤➤ If your business layer is simply a thin veil over the top of your database, this is
a great pattern to opt for. There are many code-generation tools that can automatically create
your business objects for you based on your database schema, and it’s not too difficult to cre-
ate your own.

Domain Model:➤➤ The domain model excels when you have an involved, rich, complex business
domain to model. It’s a pure object-oriented approach that involves creating an abstract model
of the real business domain and is useful when dealing with complex logic and workflow. The
domain model is persistence ignorant and relies on mapper classes and the Repository pattern
to persist and retrieve business entities.

Anemic Model:➤➤ The anemic model is an antipattern of the domain model. At first glance they
appear the same, but after further inspection, the domain objects that represent the domain
you are modeling are no more than data transfer objects with no behavior. The logic of the
domain is contained in procedural type methods that validate or check the state of an object,
violating the “Tell, Don’t Ask” principle discussed in Chapter 1.

After learning about the four main methods for organizing your business logic layer, you were intro-
duced to a design methodology named domain-driven design (DDD), which utilizes a domain model to
represent complex logic in terms of services, entities, value objects, and aggregates. DDD also encour-
aged you to focus on the business logic and the domain you are working with and used the POCO or PI
principle to ensure that no infrastructure concerns polluted the pure business domain model.

You saw how the concepts and building blocks of DDD were applied to the Bank Account application
and how they enabled a clean model of the domain you were working within, free of any infrastruc-
ture concerns and an application that spoke the same language as the domain in terms of project,
class, and method names. In the case study that you will work on in Chapters 10 and 11, you will see
how a larger and more complex domain is used and how, by sticking to the principles of DDD, it is
easy to map complex workflow and business transactions.

The next chapter investigates the kinds of patterns and principles that you can use within the busi-
ness layer of an enterprise application.

The Business logic layer:
Patterns

whaT’s in This chaPTer?

How to use the Factory, Decorator, Template, State, Strategy, ➤➤

and Composite GoF patterns in the business layer of an ASP .NET
application

Demonstrations of how to utilize the Specifi cation and Layer Supertype ➤➤

enterprise patterns in your ASP .NET code

Improve your code’s maintainability and fl exibility with Dependency ➤➤

Injection, Interface Segregation, and the Liskov Substitution Principle

The previous chapter introduced the kinds of patterns you can use to organize your applica-
tions’ middleware. This chapter looks at some specifi c patterns that you can leverage within the
business logic layer. You examine some Gang of Four design patterns, some Enterprise design
patterns, and fi nally some design principles that can help you keep your business logic loosely
coupled and highly cohesive. You can use design patterns in any layer of your application. The
series of patterns and principles in this chapter is shown in the context of the business layer
of an application, but nothing can stop you from applying these patterns in the presentation,
infrastructure, or data access layers of your application.

leVeraging Design PaTTerns

In this fi rst section, you look at the following design patterns that can assist you in your solu-
tion to your application’s business problems:

Factory Method pattern➤➤

Decorator pattern➤➤

5

96  ❘  Chapter 5   The Business Logic Layer: Patterns

Template Method pattern➤➤

State pattern➤➤

Strategy pattern➤➤

Factory Method
The Factory Method pattern belongs to the creational group of the Gang of Four design patterns
and handles the issue of creating objects without specifying the exact class of object to be created.

Intent
The main objective of the Factory pattern is to hide the complexities of creating objects. As well, the
client doesn’t normally specify a particular class to be created. Instead, the client will code against
an interface or abstract class and leave the responsibility to the Factory class to create the concrete
type. Typically a Factory class has a static method that returns an abstract class or interface. The
client usually, but not always, supplies some kind of information; using the supplied information the
Factory then determines which subclass to create and return.

The ability to abstract away the responsibility of creating subclasses allows your client code to be
completely ignorant of how dependent classes are created. This follows the Dependency Inversion
principle (DIP) that you will read about later in this chapter. Another benefit of the Factory Method
pattern is that you centralize the code for the creation of objects; if a change is required in the way an
object is generated, it can be easily located and updated without affecting the code that depends on it.

UML
Figure 5-1 shows the UML representation of the Factory Method pattern.

Client

product = FactoryMethod(Type)

switch (Type)
 {
 case (“ProductA”):
 return new ConcreteProductA;
 . . .

Factory

+FactoryMethod()

IProduct

ConcreteProductA ConcreteProductB

Figure 5-1

Leveraging Design Patterns  ❘  97

The classes shown in Figure 5-1 collaborate to form the Factory Method pattern. Their roles are as
follows:

The ➤➤ Client class obtains an implementation of IProduct via a call to the Factory class. The
Client passes some information on the type of subclass but has no idea how to create it.

The ➤➤ Factory class is responsible for creating the correct subclass based on information supplied
via a parameter.

The ➤➤ IProduct is the interface that the Client references in its code routine and that is imple-
mented by the ConcreteProductA and ConcreteProductB classes.

ConcreteProductA➤➤ and ConcreteProductB are the subclass implementations of IProduct.

Code Example
In this example you employ the Factory Method pattern to obtain the correct shipping courier in a
fictional e-commerce application. In this scenario, an OrderService class has a single method named
Dispatch that coordinates the creation of a courier object, which in turn is used to create a consign-
ment identifier for a parcel. Figure 5-2 shows all the classes involved in the solution.

Figure 5-2

To build the solution, you need a project, so start by creating a solution named ASPPatterns.Chap5​
.FactoryPattern, and a new C# class library project and naming it ASPPatterns.Chap5.Factory​
Pattern.Model.

First you will build the simple domain model, which consists of an Order entity and an Address value
object, which represent a real order and dispatch address. Add a new class to the project named Address
with the following code listing:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
 public class Address
 {
 public string CountryCode { get; set; }
 }
}

98  ❘  Chapter 5   The Business Logic Layer: Patterns

Add a second class to the project named Order, with the code listing as defined here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
 public class Order
 {
 public decimal TotalCost { get; set; }
 public decimal WeightInKG { get; set; }
 public string CourierTrackingId { get; set; }
 public Address DispatchAddress { get; set; }
 }
}

Next you need to create the interface for the couriers. Add a new interface to the project named
IShippingCourier, with the contract as defined here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
 public interface IShippingCourier
 {
 string GenerateConsignmentLabelFor(Address address);
 }
}

The IShippingCourier has a single simple method that takes an Address parameter as an argument
and returns a consignment ID as a string.

Now that you have the contract defined, you can add two implementations of the interface. Add a
new class to the project named DHL with the following code listing:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
 public class DHL : IShippingCourier
 {
 public string GenerateConsignmentLabelFor(Address address)
 {
 return “DHL-XXXX-XXXX-XXXX”;
 }
 }
}

Add a second implementation of the interface to the project this time named RoyalMail, as shown here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
 public class RoyalMail : IShippingCourier
 {
 public string GenerateConsignmentLabelFor(Address address)
 {
 return “RMXXXX-XXXX-XXXX”; ;
 }
 }
}

Leveraging Design Patterns  ❘  99

To keep the exercise simple, the two courier implementations just return hard-coded string values that
represent courier consignment IDs; in reality these classes would integrate with the courier’s third-party
solution to generate trackable consignment IDs.

The role of the Factory class is to determine which courier should be used based on the value and
weight of the order. Add a new class to the project named UKShippingCourierFactory with the
code listing as defined here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
 public static class UKShippingCourierFactory
 {
 public static IShippingCourier CreateShippingCourier(Order order)
 {
 if ((order.TotalCost > 100) || (order.WeightInKG > 5))
 return new DHL();
 else
 return new RoyalMail();
 }
 }
}

The Factory class has a single static method named CreateShippingCourier that returns a ship-
ping courier implementing the IShippingCourier interface. The Factory method determines which
courier to return based on the total cost and weight of an order.

Finally, add the OrderService class. Add a new class to the project named OrderService with the
code listing here:

namespace ASPPatterns.Chap5.FactoryPattern.Model
{
 public class OrderService
 {
 public void Dispatch(Order order)
 {
 IShippingCourier shippingCourier =
 UKShippingCourierFactory.CreateShippingCourierFor(order);

 order.CourierTrackingId =
 shippingCourier.GenerateConsignmentLabelFor(order.DispatchAddress);
 }
 }
}

As you can see, the Dispatch method simply coordinates the obtaining of a valid courier and the creation
of a consignment identifier. The role of the Factory class in this instance is to be solely responsible for
creating a valid shipping courier based on some business logic. By abstracting away business logic to the
Factory class, you are removing the burden from the OrderService class, which can concentrate on its
single responsibility of coordinating a task rather than worrying about the low-level details of how this
is achieved. If you ever need to introduce a new shipping courier or change the business rules on which
courier to use, you can do so by amending the Factory class with no impact on the Service class; this
concept is fundamental to nearly all the patterns and principles found in this book. Keeping your code

100 ❘ chaPTer 5 The BuSineSS logic layer: PaTTernS

decoupled from dependent classes enables it to be maintained far more easily, and extensions to it can be
made without impacting other modules.

Please refer to the ASPPatterns.Chap5.FactoryPattern solution that can be
downloaded from www.wrox.com to see how I have confi rmed the behavior of
the Factory pattern using unit tests.

The Factory pattern is a useful one; you will see it used throughout the rest of this chapter and book.
For example, in Chapter 8 you will see how the Factory pattern is built into the ASP.NET MVC
Framework and how it hides the complexity of creating a correct controller based on a routing match.

The next pattern you will examine deals with the function of adding behavior to a class without
changing its structure.

Decorator
The Decorator pattern belongs to the structural patterns group of design patterns and allows new
behavior to be added to an existing object on the fl y.

intent
The Decorator pattern enables new behavior to be added to an object dynamically via composition. The
pattern achieves this by either inheriting from the same base class or implementing a shared interface in
conjunction with injecting an instance of the class to be decorated. In other words, the Decorator pat-
tern is the process of wrapping an existing class with a class that extends the behavior or state. Multiple
decorators can be added to a class to combine extended behavior, as you will see in the example later in
this section.

UMl
Figure 5-3 shows the UML representation of the Decorator pattern.

The classes shown in Figure 5-3 collaborate to form the Decorator pattern. Their roles are as follows:

The ➤➤ IProduct defi nes the interface for a product. The DefaultProduct and ProductDecorator
must implement this interface.

The ➤➤ DefaultProduct provides the base functionality of the class that can be decorated.

The ➤➤ ProductDecorator implements the IProduct interface and is injected with a reference
to an IProduct instance that enables the inner instance to be wrapped.

ConcreteDecoratorA➤➤ and ConcreteDecoratorA inherit from ProductDecorator and add
state and new behavior to the IProduct instance.

Leveraging Design Patterns  ❘  101

ProductDecorator

+DoSomething()
 {
 base.DoSomething();
 DoSomethingElse();
 }

IProduct

+DoSomething()

+DoSomething()

+DoSomething() +DoSomething()

+DoSomething()
+ProductDecorator(in decoratedProduct : IProoduct)

ConcreteProductA ConcreteProductB

DefaultProduct

Figure 5-3

Code Example
In this example you use the Decorator pattern to apply a discount and a currency multiplier to a
list of products that may be used in some kind of product catalog. Again, a ProductService class
coordinates the retrieval of a list of products and then decorates those products with a discount and
currency multiplication. Figure 5-4 shows the classes to be used in this scenario.

Figure 5-4

102  ❘  Chapter 5   The Business Logic Layer: Patterns

To build the solution, start by creating a new solution named ASPPatterns.Chap5.DecoratorPattern
and add a new C# class library project named ASPPatterns.Chap5.DecoratorPattern.Model. Again,
you begin by creating your simple domain model consisting of the Product entity and the Price inter-
face, along with two decorator objects that implement the Price interface.

Add a new interface to the project named IPrice with the following contract:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public interface IPrice
 {
 decimal Cost { get; set; }
 }
}

Now add a class that represents the Product entity named Product and add the following property:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public class Product
 {
 public IPrice Price { get; set; }
 }
}

You can add three implementations of the IPrice interface. The first implementation is the BasePrice
class. This gives the default behavior of the product’s price and is set by the repository when hydrating
a list of products from the data store. Add a new class named BasePrice to the project with the fol-
lowing definition:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public class BasePrice : IPrice
 {
 private Decimal _cost;

 public decimal Cost
 {
 get { return _cost; }
 set { _cost = value; }
 }
 }
}

The second implementation of the IPrice interface you add is the class that decorates the default price
behavior with the logic that applies a trade discount. Add a new class named TradeDiscountPrice​
Decorator to the project, with a matching code definition as shown here:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public class TradeDiscountPriceDecorator : IPrice
 {
 private IPrice _basePrice;

 public TradeDiscountPriceDecorator(IPrice price)

Leveraging Design Patterns  ❘  103

 {
 _basePrice = price;
 }

 public decimal Cost
 {
 get { return _basePrice.Cost * 0.95m; }
 set { _basePrice.Cost = value; }
 }
 }
}

The role of the TradeDiscountPriceDecorator class is to wrap an implementation of the IPrice
interface, supplied via the TradeDiscountPriceDecorator constructor, and reduce the cost by a fac-
tor of 5 percent. Because the Product class is only referencing a price via an interface it, along with any
client using it, will be unaware that they are talking to the TradeDiscountPriceDecorator class.

The third implementation of the IPrice interface is the class that decorates an implementation of IPrice
with the currency multiplication. Add a new class to the project named CurrencyPriceDecorator with
the following code listing:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public class CurrencyPriceDecorator : IPrice
 {
 private IPrice _basePrice;
 private decimal _exchangeRate;

 public CurrencyPriceDecorator(IPrice price, decimal exchangeRate)
 {
 _basePrice = price;
 _exchangeRate = exchangeRate;
 }

 public decimal Cost
 {
 get { return _basePrice.Cost * _exchangeRate; }
 set { _basePrice.Cost = value; }
 }
 }
}

As with the TradeDiscountPriceDecorator class, the CurrencyPriceDecorator takes an implemen-
tation of IPrice as an argument constructor, along with an exchange rate, and applies this exchange
rate to the base price — ​whether that is the actual BasePrice class or in fact the TradeDiscountPrice​
Decorator class.

To apply the decorating behavior to the Product class, you add a set of extension methods. Add a
new class to the project named ProductCollectionExtensionMethods with the following code
definition:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public static class ProductCollectionExtensionMethods

104  ❘  Chapter 5   The Business Logic Layer: Patterns

 {
 public static void ApplyCurrencyMultiplier(this IEnumerable<Product> products)
 {
 foreach (Product p in products)
 p.Price = new CurrencyPriceDecorator(p.Price, 0.78m);
 }

 public static void ApplyTradeDiscount(this IEnumerable<Product> products)
 {
 foreach (Product p in products)
 p.Price = new TradeDiscountPriceDecorator(p.Price);
 }
 }
}

The two methods simply iterate through the collection of products and apply the CurrencyPrice​
Decorator or TradeDiscountPriceDecorator depending on which method is called. Typically, a
Factory class or some other type of configuration is used to obtain the value of the exchange rate
for the currency algorithm, but in this exercise I have elected to hard-code the value to keep things
simple.

I am using extension methods so that the code in the ProductService class is kept to a minimum
and so that the ProductService class is responsible only for the coordination of a task and not the
underlying logic of applying decorating classes. The code is far more fluent when reading with exten-
sion methods, as will be shown in the ProductService class implementation to follow shortly.

To enable the ProductService class to obtain a collection of products, you need to add the product
repository interface, so add a new interface to the project named IProductRepository with the
single FindAll method that simply returns a collection of Product classes as shown here:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public interface IProductRepository
 {
 IEnumerable<Product> FindAll();
 }
}

To complete the solution, you need to add the ProductService class that coordinates the retrieval
and application of the trade discount and currency multiplication. Add a new class to the project
named ProductService with the following code listing:

namespace ASPPatterns.Chap5.DecoratorPattern.Model
{
 public class ProductService
 {
 private IProductRepository _productRepository;

 public ProductService(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }

leveraging Design Patterns ❘ 105

 public IEnumerable<Product> GetAllProducts()
 {
 IEnumerable<Product> products = _productRepository.FindAll();

 products.ApplyTradeDiscount();

 products.ApplyCurrencyMultiplier();

 return products;
 }
 }
}

As you can see, the ProductService class takes an IProductRepository as a constructor argu-
ment and has a single method that returns a collection of products decorated with the trade discount
and the currency multiplication behavior. As mentioned previously, by using the extension methods,
the code in the ProductService method is kept to a minimum, and it’s immediately clear what the
responsibility of the ProductService class is without getting distracted by how the application of
the discount and currency multiplier is achieved.

Please refer to the ASPPatterns.Chap5.DecoratorPattern solution available
from www.wrox.com to see how I have confi rmed the behavior of the Decorator
pattern using unit tests and specifi cations.

The Decorator pattern is extremely useful when you want to add extra functionality to existing classes
but you don’t want to be tied to a specifi c implementation. As well as adding new functionality, decora-
tors can restrict functionality; a security decorator can ensure only users with certain privileges can call
methods or routines. Decorators are also good for wrapping infrastructure code like logging around
method calls without polluting your domain model.

The next pattern defi nes the skeleton of an algorithm that allows inherited classes to override a number
of steps in the workfl ow.

Template method
The Template method pattern belongs to the behavioral group of patterns from the Gang of Four
and is applied when a skeleton of an algorithm is defi ned but some steps are deferred to subclasses.

intent
The Template method defi nes the skeleton structure of an algorithm but defers certain steps and
details to subclasses. The structure and the fl ow of the algorithm remain static, but the details of the
steps are deferred to subclasses.

UMl
Figure 5-5 shows the UML representation of the Decorator pattern.

106  ❘  Chapter 5   The Business Logic Layer: Patterns

AbstractClass TemplateMethod()
 {
 InternalOperation1();
 . . .
 InternalOperation2();
 }

+InternalOperation1()
+InternalOperation2()

+TemplateMethod()
+InternalOperation1()
+InternalOperation2()

ConcreteProductA

+InternalOperation1()
+InternalOperation2()

ConcreteProductB

Figure 5-5

The classes shown in Figure 5-5 collaborate to form the Template pattern. Their roles are as follows:

The ➤➤ AbstractClass defines a skeleton process workflow with abstract steps that Concrete​
ClassA and ConcreteClassB override and implement. This enables the details of an algo-
rithm to alter depending on the subclasses but allow the structure to remain consistent.

ConcreteClassA➤➤ and ConcreteClassB inherit from the AbstractClass, implement the
abstract methods, and give the detail to the algorithm.

Code Example
In this example, you apply the Template pattern to a system that handles order returns at an e-commerce
site. For each order return, a series of processes occur that differ slightly depending on the type of return
that is being processed. At this fictional company, order returns come in two flavors: a no quibbles
return and a faulty order return. A no quibbles return enables customers to return goods and receive a
full refund minus the price of the original post and packaging; the product is then returned into stock. A
faulty return is issued if the customer receives a faulty item and would like a refund, which includes the
original post and packaging paid as well as an order for a manufacturer return.

Figure 5-6 shows the classes involved in this exercise.

To get started with this exercise, create a new solution named ASPPatterns.Chap5.TemplateMethod​
Pattern and add a C# class library project to it named ASPPatterns.Chap5.TemplateMethodPattern​
.Model. As before, create the initial domain model. Once this is built you will then implement the skele-
ton template method before adding the template method subclasses and lastly the Service class, which
will coordinate the task of returning an order.

Add a new class to the project named ReturnAction with the following code listing:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
 public enum ReturnAction
 {
 FaultyReturn = 0,
 NoQuibblesReturn = 1
 }
}

Leveraging Design Patterns  ❘  107

Figure 5-6

This enumeration enables you to determine which type of return order is being processed.

Next add the return order entity by adding a new class to the project named ReturnOrder with the
following definition:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
 public class ReturnOrder
 {
 public ReturnAction Action { get; set; }
 public string PaymentTransactionId { get; set; }
 public decimal PricePaid { get; set; }
 public decimal PostageCost { get; set; }
 public long ProductId { get; set; }
 public decimal AmountToRefund { get; set; }
 }
}

The ReturnOrder entity represents the customer’s order being returned. The Action property deter-
mines what type of return order it is, the PaymentTransactionId refers to the original payment used
to purchase the order, and the PricePaid and PostageCost refer to the order total and shipping costs,
respectively. The ProductId holds the unique identifier of the product being returned. Finally, the
AmountToRefund is set; this is the amount to be refunded to the customer.

With the domain model created, you can implement the abstract template method that will be over-
ridden by the specific faulty and no quibbles subclasses. To create the template method, add a new
class to the project named ReturnProcessTemplate with the following definition:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{

108  ❘  Chapter 5   The Business Logic Layer: Patterns

 public abstract class ReturnProcessTemplate
 {
 protected abstract void GenerateReturnTransactionFor(ReturnOrder returnOrder);
 protected abstract void CalculateRefundFor(ReturnOrder returnOrder);

 public void Process(ReturnOrder returnOrder)
 {
 GenerateReturnTransactionFor(returnOrder);
 CalculateRefundFor(returnOrder);
 }
 }
}

The class and the first two methods are abstract and are required to be implemented by a subclass.
The third method simply calls in the two abstract methods and passes a ReturnOrder entity as an
argument.

You can now add the two template method subclasses. First add a new class to the project named
NoQuibblesReturnProcess with the following code listing:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
 public class NoQuibblesReturnProcess : ReturnProcessTemplate
 {
 protected override void GenerateReturnTransactionFor(ReturnOrder returnOrder)
 {
 // Code to put items back into stock...
 }

 protected override void CalculateRefundFor(ReturnOrder returnOrder)
 {
 ReturnOrder.AmountToRefund = returnOrder.PricePaid;
 }
 }
}

As mentioned previously, the NoQuibblesReturnProcess returns the item into stock; this logic resides
in the override to the GenerateReturnTransactionFor method. The code for this has not been included
to keep the exercise simple, but you would typically find some code here to add a stock transaction that
increased the total stock for the returned product.

The CalculateRefundFor overridden method simply sets the AmountToRefund property on the return
order to the original price of the product. Note that no postage costs are refunded.

The second subclass, which inherits the ReturnProcessTemplate, is the FaultyReturnProcess
class. This class handles the processing of faulty returned items. Add a new class to the project named
FaultyReturnProcess with the class listing here:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
 public class FaultyReturnProcess : ReturnProcessTemplate
 {
 protected override void GenerateReturnTransactionFor(ReturnOrder returnOrder)
 {

Leveraging Design Patterns  ❘  109

 // Code to send generate order that sends faulty item back to
 // manufacturer...
 }

 protected override void CalculateRefundFor(ReturnOrder returnOrder)
 {
 ReturnOrder.AmountToRefund = returnOrder.PricePaid +
 returnOrder.PostageCost;
 }
 }
}

The overridden GenerateReturnTransactionFor method creates a manufacturer return order
for sending the faulty item for a refund; again, for clarity, the code for this has not been included.
The CalculateRefundFor differs from the NoQuibblesReturnProcess in that the post costs are
included in a refund for the customer.

Before you create the Service class that coordinates the process of returning an item, you need a way
to obtain the correct processing class based on the type of order being returned. This type of func-
tionality is perfect for the Factory method that you read about previously in this chapter. Create a
new class named ReturnProcessFactory that returns the correct processing object as detailed here:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
 public static class ReturnProcessFactory
 {
 public static ReturnProcessTemplate CreateFrom(
 ReturnAction returnAction)
 {
 switch (returnAction)
 {
 case (ReturnAction.FaultyReturn):
 return new FaultyReturnProcess();
 case (ReturnAction.NoQuibblesReturn):
 return new NoQuibblesReturnProcess();
 default:
 throw new ApplicationException(
 “No Process Template defined for Return Action of “ +
 returnAction.ToString());
 }
 }
 }
}

The Factory class hides the complexity (albeit not very complex in this example) from any client
and ensures that the logic is contained in one place and is the responsibility of the Factory class.

Finally, you can add the ReturnOrderService class to the project as shown here:

namespace ASPPatterns.Chap5.TemplateMethodPattern.Model
{
 public class ReturnService
 {
 public void Process(ReturnOrder returnOrder)

110 ❘ chaPTer 5 The BuSineSS logic layer: PaTTernS

 {
 ReturnProcessTemplate returnProcess =
 ReturnProcessFactory.CreateFrom(returnOrder.Action);

 returnProcess.Process(returnOrder);

 // Code to refund the money back to the customer...
 }
 }
}

The service has one simple Process method that takes a ReturnOrder as an argument. The service
fi rst obtains a ReturnProcessTemplate implementation from the factory, passing in the ReturnOrder
entity, and in turn calls the Process method on the ReturnProcessTemplate. The call returns the item
using the subclass’s method and calculates the amount that the customer is entitled to receive. The code
to actually refund the customer monies has been left out for brevity.

Please refer to the ASPPatterns.Chap5.TemplateMethodPattern solution in the
code download available from www.wrox.com that accompanies this book to see
how I have confi rmed the behavior of the Template Method pattern using unit tests.

The Template Method pattern is useful when you want to centralize code common to a series of sub-
classes. To achieve this, you separate the code that varies from the code that is similar; this enables
you to avoid duplication and enables better maintenance of your code base.

The next pattern you will investigate enables the state and behavior of an object to be easily changed
at runtime.

state Pattern
The State pattern belongs to the behavioral group of design patterns and is used to represent the state
of an object separate from all other behavior.

intent
The State pattern allows an object to alter its behavior when its internal state changes. This is achieved
by swapping internal state objects that implement state-dependent behavior. An object defers all state-
based behavior to a dependent state subclass; this alleviates the need for a mass of case statements
within methods on the object.

UMl
Figure 5-7 shows the UML representation of the State pattern.

The classes shown in Figure 5-7 collaborate to form the State pattern. Their roles are as follows:

The ➤➤ Context is the object that has state, which is represented by an instance of the State
interface. This is the single interface that client code interacts against.

Leveraging Design Patterns  ❘  111

State

+DoSomething()
{
 state.HandleSomething();
}

+HandleSomething()
{
 . . .
 Context_ChangeTo(newConcreteStateB());
}

+HandleSomething()

+HandleSomething()

Context

+DoSomething()

ConcreteProductA

+HandleSomething()

ConcreteProductB

Figure 5-7

The ➤➤ State represents the interface that defines the behavior dependent on the state of the
Context.

ConcreteStateA➤➤ and ConcreteStateB represent specific states in the lifetime of the Context.
They implement behavior specific to these states.

Code Example
This example examines how the State pattern can be used to provide the state behavior for an order
object. An order is said to be in one of three states at any one time: New, Shipped, or Canceled. A
new order can be shipped or cancelled. Shipped and Canceled orders cannot be cancelled or shipped.

Figures 5-8 shows the classes involved in this implementation of the State pattern.

Figure 5-8

112  ❘  Chapter 5   The Business Logic Layer: Patterns

Create a new solution named ASPPatterns.Chap5.StatePattern and add a new C# library project
to it named ASPPatterns.Chap5.StatePattern.Model. With the project created, add a new inter-
face named IOrderState with the following contract:

namespace ASPPatterns.Chap5.StatePattern.Model
{
 public interface IOrderState
 {
 bool CanShip(Order order);
 void Ship(Order order);

 bool CanCancel(Order order);
 void Cancel(Order order);
 }
}

Next add an enumeration named OrderStatus that will be used to identify which state an order is in:

namespace ASPPatterns.Chap5.StatePattern.Model
{
 public enum OrderStatus
 {
 New = 0,
 Shipped = 1,
 Canceled = 2
 }
}

Now you can create the actual Order class, add a new class to the project named Order, and add the
code that follows:

namespace ASPPatterns.Chap5.StatePattern.Model
{
 public class Order
 {
 private IOrderState _orderState;

 public Order(IOrderState baseState)
 {
 _orderState = baseState;
 }

 public int Id { get; set; }

 public string Customer { get; set; }

 public DateTime OrderedDate { get; set; }

 public OrderStatus Status()
 {
 return _orderState.Status;
 }

 public bool CanCancel()
 {
 return _orderState.CanCancel(this);

Leveraging Design Patterns  ❘  113

 }

 public void Cancel()
 {
 if (CanCancel())
 _orderState.Cancel(this);
 }

 public bool CanShip()
 {
 return _orderState.CanShip(this);
 }

 public void Ship()
 {
 if (CanShip())
 _orderState.Ship(this);
 }

 Internal void Change(IOrderState orderState)
 {
 _orderState = orderState;
 }
 }
}

The first state to be created is the canceled order state. When an order is canceled, it cannot be shipped.
Add a new class to the project named CanceledOrderState that implements the IOrderState interface
with the code listing that follows:

namespace ASPPatterns.Chap5.StatePattern.Model
{
 public class OrderCanceledState : IOrderState
 {
 public bool CanShip(Order order)
 {
 return false;
 }

 public void Ship(Order order)
 {
 throw new NotImplementedException(
 “You can’t ship a canceled order!”);
 }

 public OrderStatus Status
 {
 get { return OrderStatus.Canceled; }
 }

 public bool CanCancel(Order order)
 {
 return false;
 }

 public void Cancel(Order order)

114  ❘  Chapter 5   The Business Logic Layer: Patterns

 {
 throw new NotImplementedException(
 “This order is already cancelled!”);
 }
 }
}

The next state to implement is the order shipped state. Add another class to implement the
IOrderState interface, and name it OrderShippedState:

namespace ASPPatterns.Chap5.StatePattern.Model
{
 public class OrderShippedState : IOrderState
 {
 public bool CanShip(Order order)
 {
 return false;
 }

 public void Ship(Order order)
 {
 throw new NotImplementedException(
 “You can’t ship a shipped order!”);
 }

 public OrderStatus Status
 {
 get { return OrderStatus.Shipped; }
 }

 public bool CanCancel(Order Order)
 {
 return false;
 }

 public void Cancel(Order order)
 {
 throw new NotImplementedException(
 “You can’t cancel a shipped order!”);
 }
 }
}

Finally, add the last order state, which identifies a new order. Add a new class to the project named
OrderNewState, which again implements the IOrderState interface as defined here:

namespace ASPPatterns.Chap5.StatePattern.Model
{
 public class OrderNewState : IOrderState
 {
 public bool CanShip(Order order)
 {
 return true;
 }

 public void Ship(Order order)

leveraging Design Patterns ❘ 115

 {
 Order.Change(new OrderShippedState());
 }

 public OrderStatus Status
 {
 get { return OrderStatus.New; }
 }

 public bool CanCancel(Order order)
 {
 return true;
 }

 public void Cancel(Order order)
 {
 order.Change(new OrderCanceledState());
 }
 }
}

As you can see from this exercise, all state-dependent behavior has been moved into separate sub-
classes. This makes it easy to introduce a new state later and to test the state in isolation. By taking
advantage of this pattern, you prevent monolithic methods that need to determine the state of the
object before implementing behavior; this is typically done through a set of case of nested if-else
blocks.

Please refer to the code in the ASPPatterns.Chap5.StatePattern solution
named which is available from www.wrox.com to see how I have confi rmed the
behavior of the State pattern using unit tests.

The state is benefi cial to use when you have an object that changes behavior depending on its state.
It’s also a great pattern to refactor toward when you fi nd classes are becoming littered with condi-
tional statements in the form of switch/case or if blocks.

The pattern discussed in the next session enables algorithms to be selected at runtime.

strategy
Chapter 2 briefl y covered the Strategy pattern when it was used to enable the discount algorithm to
be swapped out depending on the type of customer viewing the products. This section digs deeper
into this pattern so you can see how to use it in the business layer of an ASP.NET application.

intent
The Strategy pattern is the process of disassociating an algorithm from its host and enabling the
ability to swap algorithms dynamically at run time. The Strategy pattern encapsulates algorithms as
objects. Clients reference them by an abstract or interface, which enables them to be interchangeable.

116  ❘  Chapter 5   The Business Logic Layer: Patterns

UML
Figure 5-9 shows the UML representation of the Strategy pattern.

IStrategy

Operation()
{
 Strategy.Calculate();
}

+Calculate()

+Calculate()

Context

+Operation()

ConcreteStrategyA ConcreteStrategyB

+Calculate()

Figure 5-9

The classes shown in Figure 5-9 collaborate to form the Strategy pattern. Their roles are as follows:

The ➤➤ Context defers all calculations to a ConcreteStrategy referenced by its abstract class
or interface (Strategy); the Context may also expose some form of method or property so
that the Strategy implementation can be changed.

The ➤➤ Strategy is an interface for the algorithm. In this instance it contains a single calculate
method.

The ➤➤ ConcreteStrategy is an implementation of the Strategy.

Code Example
To demonstrate the Strategy pattern, you will work through an exercise based on a discount being
applied to an e-commerce shopping basket. Figure 5-10 shows the classes involved in this exercise to
demonstrate the Strategy pattern.

To get started, create a new solution named ASPPatterns.Chap5.StrategyPattern and add a
C# class library project named ASPPatterns.Chap5.StrategyPattern.Model. Add a new class,
named Basket, to represent the basket with the following code listing:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public class Basket
 {
 public decimal TotalCost { get; set; }
 }
}

Leveraging Design Patterns  ❘  117

Figure 5-10

At the moment there is just a simple property to hold the total cost of the basket. After you have added
the discount strategies, return to this class and add a method to obtain the basket total.

To create the discount strategies, first add a new interface named IBasketDiscountStrategy with
the following simple contract:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public interface IBasketDiscountStrategy
 {
 decimal GetTotalCostAfterApplyingDiscountTo(Basket basket);
 }
}

The single method takes a basket object. An implementation applies a specific discount and then
returns the basket price, including the discount.

The first discount strategy you create enables customers to receive a discount if they meet a certain dis-
count threshold. The thresholds are $10 off basket totals over $100 and $5 off basket totals over $50;
if the basket value is $50 or below, no discount is applied. Add a new class named BasketDiscount​
MoneyOff to the project with the following code definition:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public class BasketDiscountMoneyOff : IBasketDiscountStrategy
 {
 public decimal GetTotalCostAfterApplyingDiscountTo(Basket basket)
 {
 if (basket.TotalCost > 100)
 return basket.TotalCost - 10m;

118  ❘  Chapter 5   The Business Logic Layer: Patterns

 if (basket.TotalCost > 50)
 return basket.TotalCost - 5m;
 else
 return basket.TotalCost;
 }
 }
}

The second discount strategy you apply is a percentage off a basket’s total value. When this discount
is applied, customers receive 15 percent off the total value of the basket. Add another new class that
implements the IBasketDiscountStrategy named BasketDiscountPercentageOff, as shown in
the code that follows:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public class BasketDiscountPercentageOff : IBasketDiscountStrategy
 {
 public decimal GetTotalCostAfterApplyingDiscountTo(Basket basket)
 {
 return basket.TotalCost * 0.85m;
 }
 }
}

Finally, you need to add a special case discount strategy to be used if no discounts are set. This is an
implementation of the Null Object pattern discussed briefly in Chapter 2 and that you will read about
later in this chapter. Add a new class to the project named NoBasketDiscount that is shown here:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public class NoBasketDiscount : IBasketDiscountStrategy
 {
 public decimal GetTotalCostAfterApplyingDiscountTo(Basket basket)
 {
 return basket.TotalCost;
 }
 }
}

This discount strategy simply returns the total cost of the basket without applying any kind of dis-
count algorithm.

To determine which strategy algorithm to apply to a basket, you will use the Factory Method pattern
discussed earlier in this chapter. To enable the Factory Method pattern to build the correct discount
strategy, you need to supply it with some information in the form of an enumeration. Create a new
class named DiscountType and add it to the project as shown here:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public enum DiscountType
 {
 NoDiscount = 0,
 MoneyOff = 1,

Leveraging Design Patterns  ❘  119

 PercentageOff = 2
 }
}

With the enumeration in place, you can create the Factory class. Add a new class to the project named
BasketDiscountFactory that contains a single static method to create the implementation of the
IBasketDiscountStrategy based on the given enumeration as laid out here:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public class BasketDiscountFactory
 {
 public static IBasketDiscountStrategy GetDiscount(DiscountType DiscountType)
 {
 switch (DiscountType)
 {
 case DiscountType.MoneyOff:
 return new BasketDiscountMoneyOff();
 case DiscountType.PercentageOff:
 return new BasketDiscountPercentageOff();
 default:
 return new NoBasketDiscount();
 }
 }
 }
}

Finally, you can return to the Basket class and update it to include a new constructor and method
to return the basket to total cost with an applied discount as shown in the following code:

namespace ASPPatterns.Chap5.StrategyPattern.Model
{
 public class Basket
 {
 private IBasketDiscountStrategy _basketDiscount;

 public Basket(DiscountType discountType)
 {
 _basketDiscount = BasketDiscountFactory.GetDiscount(discountType);
 }

 public decimal TotalCost { get; set; }

 public decimal GetTotalCostAfterDiscount()
 {
 return _basketDiscount.GetTotalCostAfterApplyingDiscountTo(this);
 }
 }
}

The basket is completely unaware of the underlying algorithm that will be used to determine the total
price, due to the discount strategy being injected to it and referred to using an interface.

120 ❘ chaPTer 5 The BuSineSS logic layer: PaTTernS

Please refer to the ASPPatterns.Chap5.StrategyPattern solution available
from www.wrox.com to see how I have confi rmed the behavior of the Strategy
pattern using unit tests and specifi cations.

leVeraging enTerPrise PaTTerns

Martin Fowler’s book, Patterns of Enterprise Application Architecture, outlined a number of enter-
prise patterns that can be used within applications. This section examines the Specifi cation pattern
on its own and in conjunction with the Composite Design pattern, and discusses how it can help
with business logic criteria. You also look at the Layered Supertype pattern, which removes duplica-
tion in commonly used functions.

specifi cation Pattern
The Specifi cation pattern encapsulates business logic in a boolean algorithm outside of a business
entity. These manageable units of logic can then be chained together to form more fl exible complex
business logic.

intent
You cannot share or reuse selection criteria logic embedded within business entities. The Specifi cation
pattern attempts to address this problem by separating business logic that is used to match an object
from the actual object.

Code example
To demonstrate the Specifi cation pattern, you will be working through an exercise that is based on
the domain of an online DVD rental company. In this simple example, you employ the Specifi cation
pattern to determine if a customer can rent more DVDs. Figure 5-11 shows the classes involved in
the Specifi cation exercise solution.

figure 5-11

Create a new solution named ASPPatterns.Chap5.Specification and add a C# class library proj-
ect for this exercised name ASPPatterns.Chap5.Specification.Model. Add a new interface to the
project named ISpecification to be used as the interface for your specifi cations, as shown here:

namespace ASPPatterns.Chap5.Specification.Model

Leveraging Enterprise Patterns  ❘  121

{
 public interface ISpecification<T>
 {
 bool IsSatisfiedBy(T candidate);
 }
}

Next, create a new implementation of the interface named HasReachedRentalThresholdSpecification
that determines if a customer account can rent a DVD. The listing for this class is shown here:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class HasReachedRentalThresholdSpecification :
 ISpecification<CustomerAccount>
 {
 public bool IsSatisfiedBy(CustomerAccount candidate)
 {
 return candidate.NumberOfRentalsThisMonth >= 5;
 }
 }
}

Don’t worry that the new class won’t build; this is because of the absent CustomerAccount class.
To rectify this, add a new class to the project named CustomerAccount with the following code
definition:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class CustomerAccount
 {
 private ISpecification<CustomerAccount> _hasReachedRentalThreshold;

 public CustomerAccount()
 {
 _hasReachedRentalThreshold = new HasReachedRentalThresholdSpecification();
 }

 public decimal NumberOfRentalsThisMonth { get; set; }

 public bool CanRent()
 {
 return !_hasReachedRentalThreshold.IsSatisfiedBy(this);
 }
 }
}

In the preceding exercise, you looked at a simple application of the Specification pattern, but it’s sim-
ple to chain specifications together to build complex business logic. To achieve this, you can leverage
the Composite Design pattern, which is the subject of the next section.

Composite Pattern
The Composite pattern allows a collection of objects to be treated as a single instance of an object.

122  ❘  Chapter 5   The Business Logic Layer: Patterns

Intent
In the Composite pattern, objects can be grouped into tree-like or hierarchical collections dynami-
cally and used as if they were a single object. This lets you build up behavior on the fly without the
client code needing to understand the complex structure.

UML
Figure 5-12 shows the UML representation of the Composite Design pattern.

Component

DoSomething()
{
 // Business Logic. . .
}

+DoSomething()
+Add(in Component : Component)
+Children()

Client

DoSomething()
{
 foreach (Component child in Children)
 {
 child.DoSomething();
 }
}

+DoSomething()

Leaf Component

+DoSomething()

Figure 5-12

The classes shown in Figure 5-12 collaborate to form the Composite pattern. Their roles are as follows:

The ➤➤ Component is the abstract base class that provides the means to enable objects to join to
create chains of behavior.

The ➤➤ Leaf is a concrete implementation of the Component abstract class that defines specific
business logic behavior.

The ➤➤ Composite is also a concrete implementation of the Component that enables related
Components to be joined and provides the ability to call recursively into their behavior.

The ➤➤ Client adds objects to and removes objects from the Composite.

Code Example
In this example, you expand on the small exercise you started in the “Specification Pattern” sec-
tion. The Specification pattern exercise was based on the domain of an online DVD rental site. You

Leveraging Enterprise Patterns  ❘  123

built a specification to determine if a customer could rent a DVD based on the number of previous
rentals. Now the business logic needs to be altered to consider whether a customer’s account is still
active and if they have any late fees. You can alter the existing Specification pattern to consider the
new requirements, but another way to tackle this quandary is to create a set of small specifications
and then chain them together using the Composite pattern; this allows you to reuse the logic in
other parts of your system.

Figure 5-13 shows the class diagram from Figure 5-11 with the additional classes needed to create a
composite specification.

Figure 5-13

First expand the CustomerAccount class that you created in the Specification pattern. Then add the
bolded properties in the code listing that follows:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class CustomerAccount
 {
 private ISpecification<CustomerAccount> _hasReachedRentalThreshold;

 public CustomerAccount()
 {
 _hasReachedRentalThreshold = new HasReachedRentalThresholdSpecification();
 }

 public decimal NumberOfRentalsThisMonth { get; set; }

 public bool AccountActive { get; set; }

 public decimal LateFees { get; set; }

 public bool CanRent()
 {
 return !_hasReachedRentalThreshold.IsSatisfiedBy(this);
 }
 }
}

124  ❘  Chapter 5   The Business Logic Layer: Patterns

The AccountActive property shows whether the account is restricted, and the LateFees property
stores the total fees the customer owes. The new CanRent method needs to consider whether the
account is active, whether the customer has late fees, and if they have reached their rental threshold.

The first thing you need to do is create the two extra specifications to determine if late fees are owed
and whether the account is active. Add a new class to the ASPPatterns.Chap5.Specification.Model
project you built earlier and name it CustomerAccountStillActiveSpecification. Then modify the
new class to match the listing that follows:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class CustomerAccountStillActiveSpecification :
 ISpecification<CustomerAccount>
 {
 public override bool IsSatisfiedBy(CustomerAccount candidate)
 {
 return candidate.AccountActive;
 }
 }
}

This specification simply returns whether the AccountActive property is equal to true.

It’s worth mentioning that at present, there doesn’t seem to be a whole lot of benefit to using
CustomerAccountStillActiveSpecification; myCustomerAccount.AccountActive would suf-
fice. However, if the rules change, and you need something like the following two lines, a specifica-
tion suddenly makes a whole lot more sense:

return candidate.AccountActive &&
 candidate.EmailAddressConfirmed;

The second specification you add determines if the customer account has late fees. Add a new class
to the project named CustomerAccountHasLateFeesSpecification, as detailed here:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class CustomerAccountHasLateFeesSpecification :
 ISpecification<CustomerAccount>
 {
 public override bool IsSatisfiedBy(CustomerAccount candidate)
 {
 return candidate.LateFees > 0;
 }
 }
}

Now that you have all three specification classes in place, you can add the necessary classes to enable
building of a composite specification. Add a new class to the project named CompositeSpecification
that matches the code listed here:

namespace ASPPatterns.Chap5.Specification.Model
{
 public abstract class CompositeSpecification<T> : ISpecification<T>
 {

Leveraging Enterprise Patterns  ❘  125

 public abstract bool IsSatisfiedBy(T candidate);

 public ISpecification<T> And(ISpecification<T> other)
 {
 return new AndSpecification<T>(this, other);
 }

 public ISpecification<T> Not()
 {
 return new NotSpecification<T>(this);
 }
 }
}

As you can see, this class also implements the ISpecifcation interface so it can be used as if it were
a normal specification. You should also be able to see the two new classes: the AndSpecification
and the NotSpecification. These two classes provide the chaining functionality to your Composite
Specification.

Add a new class named AndSpecification with the following code definition:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class AndSpecification<T> : CompositeSpecification<T>
 {
 private ISpecification<T> _leftSpecification;
 private ISpecification<T> _rightSpecification;

 public AndSpecification(ISpecification<T> leftSpecification,
 ISpecification<T> rightSpecification)
 {
 _leftSpecification = leftSpecification;
 _rightSpecification = rightSpecification;
 }

 public override bool IsSatisfiedBy(T candidate)
 {
 return _leftSpecification.IsSatisfiedBy(candidate) &&
 _rightSpecification.IsSatisfiedBy(candidate);
 }
 }
}

The AndSpecification is a simple class that takes two parameters of type ISpecification and in
the IsSatisfiedBy method returns true if both the specifications are satisfied.

Add another new class named NotSpecification with the following definition:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class NotSpecification<T> : CompositeSpecification<T>
 {
 private ISpecification<T> _innerSpecification;

 public NotSpecification(ISpecification<T> innerSpecification)

126  ❘  Chapter 5   The Business Logic Layer: Patterns

 {
 _innerSpecification = innerSpecification;
 }

 public override bool IsSatisfiedBy(T candidate)
 {
 return !_innerSpecification.IsSatisfiedBy(candidate);
 }
 }
}

As was the case with the AndSpecification, the NotSpecification is another simple class that,
this time, takes a single ISpecification as a constructor argument and inverts the result of the
inner specification in the IsSatisfied method. Notice that both the AndSpecification and the
NotSpecification inherit from the CompositeSpecification class, thus inheriting the And and
Not methods. This is what allows you to chain specifications together.

To complete this exercise, you need the three original specifications to inherit from the Composite​
Specification class, as shown in this code snippet:

 public class HasReachedRentalThresholdSpecification :
 CompositeSpecification<CustomerAccount>
 {
 …
 }

 public class CustomerAccountStillActiveSpecification :
 CompositeSpecification<CustomerAccount>
 {
 …
 }

 public class CustomerAccountHasLateFeesSpecification :
 CompositeSpecification<CustomerAccount>
 {
 …
 }

The last alteration you need to make is to the ISpecification interface. It is to include the extra
methods added to the composite specification, which enables you to reference specifications via an
interface and still have the ability to chain them together.

Update the ISpecification interface to include the two bolded method signatures that follow:

namespace ASPPatterns.Chap5.Specification.Model
{
 public interface ISpecification<T>
 {
 bool IsSatisfiedBy(T candidate);

 ISpecification<T> And(ISpecification<T> other);

 ISpecification<T> Not();
 }
}

leveraging enterprise Patterns ❘ 127

Now you can implement the new logic into your CustomerAccount’s CanRent method, as shown in
the code listing that follows:

namespace ASPPatterns.Chap5.Specification.Model
{
 public class CustomerAccount
 {
 private ISpecification<CustomerAccount> _hasReachedRentalThreshold;
 private ISpecification<CustomerAccount> _customerAccountIsActive;
 private ISpecification<CustomerAccount> _customerAccountHasLateFees;

 public CustomerAccount()
 {
 _hasReachedRentalThreshold = new HasReachedRentalThresholdSpecification();
 _customerAccountIsActive = new CustomerAccountStillActiveSpecification();
 _customerAccountHasLateFees = new CustomerAccountHasLateFeesSpecification();
 }

 public decimal NumberOfRentalsThisMonth { get; set; }

 public bool AccountActive { get; set; }

 public decimal LateFees { get; set; }

 public bool CanRent()
 {
 ISpecification<CustomerAccount> canRent =
 _customerAccountIsActive.And(
 _hasReachedRentalThreshold.Not()).And(
 _customerAccountHasLateFees.Not());

 return canRent.IsSatisfiedBy(this);
 }
 }
}

Download the ASPPatterns.Chap5.Specification solution from www.wrox.com
to view a set of unit tests that verify the behavior of the specifi cation example.

layer supertype Pattern
The Layer Supertype pattern defi nes an object that acts as the base class for all types in its layer,
and is very much based around inheritance.

intent
For instances when all objects in your layer share a set of common business logic, you can use the
Layer Supertype to remove duplication and centralize logic.

128  ❘  Chapter 5   The Business Logic Layer: Patterns

Code Example
To demonstrate the Layer Supertype pattern, you build a class that provides the basic functionality
to be used by all entity classes in a business domain model.

You can see the classes used in this exercise in Figure 5-14.

Figure 5-14

Start by creating a new solution named ASPPatterns.Chap5.LayerSuperType and add a C# class
library project to it named ASPPatterns.Chap5.LayerSuperType.Model. Add a new abstract class to
the project named EntityBase; this is the Supertype that all the business entities inherit from. Because
all entities need an identifier, the Supertype class can provide the logic to store an ID and ensure it is
never changed once set. Another job that the Supertype can perform is providing a simple framework
for checking whether the entity class is valid. The code listing that follows shows the abstract base class
with the methods for validation and storing the entity’s ID:

namespace ASPPatterns.Chap5.LayerSuperType.Model
{
 public abstract class EntityBase<T>
 {
 private T _id;
 private IList<string> _brokenRules = new List<string>();
 private bool _idHasBeenSet = false;

 public EntityBase()
 { }

 public EntityBase(T id)
 {
 this.Id = id;
 }

 public T Id

Leveraging Enterprise Patterns  ❘  129

 {
 get { return _id; }
 set
 {
 if (_idHasBeenSet)
 ThrowExceptionIfOverwritingAnId()

 _id = value;
 _idHasBeenSet = true;
 }
 }

 private void ThrowExceptionIfOverwritingAnId()
 {
 throw new ApplicationException(“You cannot change the id of an entity.”);
 }

 public bool IsValid()
 {
 ClearCollectionOfBrokenRules();
 CheckForBrokenRules();
 return _brokenRules.Count() == 0;
 }

 protected abstract void CheckForBrokenRules();

 private void ClearCollectionOfBrokenRules()
 {
 _brokenRules.Clear();
 }

 public IEnumerable<string> GetBrokenBusinessRules()
 {
 return _brokenRules;
 }

 protected void AddBrokenRule(string brokenRule)
 {
 _brokenRules.Add(brokenRule);
 }
 }
}

You have used generics in the base class because you can’t guarantee that all entities in your model
will use the same type for identification.

Now you can add a new entity class that uses this Supertype. Add a new class named Customer to
your project with the next code listing:

namespace ASPPatterns.Chap5.LayerSuperType
{
 public class Customer : EntityBase<long>
 {
 public Customer() { }

 public Customer(long Id)

130  ❘  Chapter 5   The Business Logic Layer: Patterns

 : base(Id)
 { }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 protected override void CheckForBrokenRules()
 {
 if (String.IsNullOrEmpty(FirstName))
 base.AddBrokenRule(“You must supply a first name.”);

 if (String.IsNullOrEmpty(LastName))
 base.AddBrokenRule(“You must supply a last name.”);
 }
 }
}

The Layer Supertype is a simple pattern purely based around inheritance, but one that can be used
to great effect in removing duplication in common logic.

The next section of this chapter details how design principles can be leveraged in an ASP.NET
application.

Applying Design Principles

As with design and enterprise patterns, design principles should be followed throughout your appli-
cation to enable high cohesion and loose coupling. This section examines the Dependency Inversion
and Injection principles as well as the Separated Interface principle.

Dependency Inversion Principle and the Dependency Injection
Pattern

The Dependency Inversion principle (DIP) helps to decouple your code by ensuring that you depend
on abstractions rather than concrete implementations. This principle, which is paramount to under-
standing design patterns, has been used throughout this chapter and will be used in the remaining
chapters. Dependency Injection (DI) is an implementation of this principle. You will often find the
names Dependency Inversion and Dependency Injection used interchangeably, but they both refer to
the same process of decoupling your code.

Intent
Robert C. Martin defines the DIP like so:

High-level modules should not depend on low-level modules. Both should depend on ➤➤

abstractions.

Abstractions should not depend on details. Details should depend on abstractions.➤➤

By employing the DIP, you can ensure that your high-level modules depend on abstractions rather
than concrete implementations of lower-level modules.

Applying Design Principles  ❘  131

The DI pattern is an application of this principle. DI is the act of supplying all classes that a service
needs rather that leaving the responsibility to the service to obtain dependent classes.

DI typically comes in three forms:

Constructor Injection➤➤

Setter Injection ➤➤

Method Injection➤➤

Code Example
In this example, you refactor a portion of code to introduce the DI principle to completely decouple
a ProductService class from its underlying dependencies. The example is based on the domain of
a product catalogue; a ProductService class requires a repository to obtain a set of products and
a discount strategy to apply a discount to each product before returning the collection to the caller.
Figure 5-15 shows the classes involved in this simple scenario.

Figure 5-15

The Product class is a simple object that represents a product in the catalog; in this scenario it has
a single method named AdjustPriceWith that takes the ChristmasProductDiscount object as an
argument. The LinqProductRepository is a simple repository that retrieves a collection of products
from an underlying data store. The ChristmasProductDiscount represents the type of discount to
be applied to the Product. The class contains no code and is used merely as a placeholder to demon-
strate the principle of DI. Finally, the ProductService class is responsible for retrieving the collec-
tion of products from the repository and then applying a given discount to them before returning to
the calling code.

Before you can refactor this code, you need to build it, so first create a new solution named ASPPatterns​
.Chap5.DependencyInjection and add a C# Class Library Project named ASPPatterns.Chap5​
.DependencyInjection.Model to it, then add a new class to it named ChristmasProductDiscount.
The interface is empty, as shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class ChristmasProductDiscount
 {
 }
}

132  ❘  Chapter 5   The Business Logic Layer: Patterns

Next, you can add a class to represent the Product. This contains a single method that has no code but
demonstrates the interaction between a Product and a ChristmasProductDiscount. The code for the
Product class is shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class Product
 {
 public void AdjustPriceWith(ChristmasProductDiscount discount)
 {

 }
 }
}

Add another new class to the project named LinqProductRepository. For brevity, the implementa-
tion of the FindAll method simply returns an empty collection of products, saving you the need to
create a real database and LinqToSQL data context. The code for the LinqProductRepository is
shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class LinqProductRepository
 {
 public IEnumerable<Product> FindAll()
 {
 return new List<Product>();
 }
 }
}

To complete the scenario, you need to add the ProductService class. Unlike the other classes in
this exercise, the ProductService class does quite a bit. Add a new class to the project named
ProductService with the following code definition:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class ProductService
 {
 private LinqProductRepository _productRepository;
 private ChristmasProductDiscount _discountStrategy;

 public ProductService()
 {
 _productRepository = new LinqProductRepository();
 _discountStrategy = new ChristmasProductDiscount();
 }

 public IEnumerable<Product> GetProducts()
 {
 IEnumerable<Product> products = _productRepository.FindAll();

 foreach (Product p in products)

Applying Design Principles  ❘  133

 p.AdjustPriceWith(_discountStrategy);

 return products;
 }
 }
}

You can see that, in the constructor, the two dependent classes are created. The sole method on the
service simply obtains a collection of products from the repository and applies a discount to each
one before returning them to the caller.

The problem with the ProductService class is that it’s tightly coupled to the concrete implementations
of the repository and discount offer. This has the negative effect of making the ProductService class
hard to maintain because it’s impossible to test in isolation due to the need to have a valid Christmas​
ProductDiscount class as well as the LinqProductRepository. If and when the product discount strat-
egy changes, a change would need to be made to the Service class, which breaks the single responsibility
principle. To decouple the high-level module (ProductService) from the low-level details (Christmas​
ProductDiscount and LinqProductRepository), you can refactor the code toward the DIP by introduc-
ing two forms of DI.

To begin the process of moving toward the DI pattern, you must ensure that lower-level modules are
referenced by abstractions rather than concrete types. Therefore, the first job is to introduce some
interfaces for the ChristmasProductDiscount and LinqProductRepository classes.

Add a new interface to the project named IProductDiscountStrategy and ensure that the Christmas​
ProductDiscount implements it. The code for both the IProductDiscountStrategy and updated
ChristmasProductDiscount is shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public interface IProductDiscountStrategy
 {
 }
}

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class ChristmasProductDiscount : IProductDiscountStrategy
 {
 }
}

Now you need to modify all code that references the ChristmasProductDiscount to reference the
new interface.

First update the Product class as shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class Product
 {

134  ❘  Chapter 5   The Business Logic Layer: Patterns

 public void AdjustPriceWith(IProductDiscountStrategy discount)
 {
 }
 }
}

Next, update the ProductService class, again as shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class ProductService
 {
 private LinqProductRepository _productRepository;
 private IProductDiscountStrategy _discountStrategy;

 public ProductService()
 {
 _productRepository = new LinqProductRepository();
 _discountStrategy = new ChristmasProductDiscount();
 }

 public IEnumerable<Product> GetProducts()
 {
 IEnumerable<Product> products = _productRepository.FindAll();

 foreach (Product p in products)
 p.AdjustPriceWith(_discountStrategy);

 return products;
 }
 }
}

Third, introduce an interface for the LinqProductRepository. Because the LinqProductRepository
has a method defined, you can use a shortcut to create the interface. Open the LinqProductRepository
class and right-click to bring up the context-sensitive menu and select Refactor ➭ Extract Interface.
Name the interface IProductRepository, and ensure that the FindAll method is checked. Click OK,
and the new interface is created with the following definition:

using System;
using System.Collections.Generic;

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public interface IProductRepository
 {
 IEnumerable<Product> FindAll();
 }
}

The LinqProductRepository implements the new interface automatically. You can now update the
ProductService class so that it references this new interface, like so:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{

Applying Design Principles  ❘  135

 public class ProductService
 {
 private IProductRepository _productRepository;
 private IProductDiscountStrategy _discountStrategy;

 public ProductService()
 {
 _productRepository = new LinqProductRepository();
 _discountStrategy = new ChristmasProductDiscount();
 }

 public IEnumerable<Product> GetProducts()
 {
 IEnumerable<Product> products = _productRepository.FindAll();

 foreach (Product p in products)
 p.AdjustPriceWith(_discountStrategy);

 return products;
 }
 }
}

Now that the high-level Service class is referencing all the dependents or lower-level classes by
interfaces, you can continue to introduce the DI pattern.

The first flavor of DI to introduce is Constructor Injection. Instead of leaving the responsibility of
obtaining an instance of IProductRepository to the ProductService class, you can move it up as
a parameter in the constructor, as shown in the code here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class ProductService
 {
 private IProductRepository _productRepository;
 private IDiscountStrategy _discountStrategy;

 public ProductService(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 _discountStrategy = new ChristmasProductDiscount();
 }

 public IEnumerable<Product> GetProducts()
 {
 IEnumerable<Product> products = _productRepository.FindAll();

 foreach (Product p in products)
 p.AdjustPriceWith(_discountStrategy);

 return products;
 }
 }
}

136 ❘ chaPTer 5 The BuSineSS logic layer: PaTTernS

The second fl avor of DI you will be refactoring to is known as Method Injection. Currently, if you want
to alter the discount offer applied to the products, you are required to alter the Product Service class.
This is a code smell, because the ProductService class should be responsible only for coordinating the
task of retrieving and applying a discount; this is its single responsibility and its only reason to change.
Obtaining the correct discount offer should be of no concern to the Service class. To achieve this, you
need to move the instantiation of the discount offer out of the service constructor and onto the param-
eter list of the GetProducts method, and rename it to GetProductsAndApplyDiscount as shown here:

namespace ASPPatterns.Chap5.DependencyInjection.Model
{
 public class ProductService
 {
 private IProductRepository _productRepository;

 public ProductService(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }

 public IEnumerable<Product> GetProductsAndApplyDiscount(
 IProductDiscountStrategy discount)
 {
 IEnumerable<Product> products = _productRepository.FindAll();

 foreach (Product p in products)
 p.AdjustPriceWith(discount);

 return products;
 }
 }
}

A code smell is any symptom in the source code of a program that possibly
indicates a deeper problem, such as a reliance on hard coded, so-called magic
strings, or a tight coupling to a concrete implementation of a dependent class.

As you may have noticed in the code, you can also rename the method name to something a little
more fl uent. This refactor has also made the ProductService class open to extension while being
closed for modifi cation, because now any type of discount that implements the IProductDiscount
Strategy can be applied to the product collection without change to the ProductService class.
The Open/Closed principle is another principle that you will read more about in the next chapter.

Figure 5-16 shows the fi nal class diagram for this exercise, after all your refactorings.

Applying Design Principles  ❘  137

Figure 5-16

Interface Segregation Principle
The Interface Segregation principle states that clients should not be forced to depend on interfaces
they don’t use.

Intent
As interfaces grow, they take on more responsibility. It is crucial that you ensure they aren’t trying
to be all things to all objects. The Interface Segregation principle is all about separating fat interfaces
into small, specific groups of related functionality. This enables subclasses to be created that imple-
ment only subsets of behavior instead of classes having to implement a monolithic contract littered
with the dreaded NotImplementedException.

Code Example
To demonstrate the principle of Interface Segregation, you will work through a small exercise that
revolves around the domain of a product catalog. Currently the product catalog is made up of movie
products in the form of DVDs and Blu-Ray discs. There is a matching class for each product sub-
type, as shown in Figure 5-17.

Figure 5-17

138  ❘  Chapter 5   The Business Logic Layer: Patterns

Both of these classes implement an IProduct interface. Now that you understand the simple domain,
you can build the solution as it stands.

Create a new solution named ASPPatterns.Chap5.InterfaceSegregation and add a project named
ASPPatterns.Chap5.InterfaceSegregation, then add a new interface to it named IProduct with
the following contract:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public interface IProduct
 {
 decimal Price { get; set; }
 decimal WeightInKg { get; set; }
 int Stock { get; set; }
 int Certification { get; set; }
 int RunningTime { get; set; }
 }
}

This interface nicely satisfies the needs of the two products in the catalog. You can add the two other
classes to complete the solution as is. Add a new class named DVD and another named BluRayDisc
that both implement the IProduct interface:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public class DVD : IProduct
 {
 public decimal Price { get; set; }

 public decimal WeightInKg { get; set; }

 public int Stock { get; set; }

 public int Certification { get; set; }

 public int RunningTime { get; set; }
 }
}

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public class BluRayDisc : IProduct
 {
 public decimal Price { get; set; }

 public decimal WeightInKg { get; set; }

 public int Stock { get; set; }

 public int Certification { get; set; }

 public int RunningTime { get; set; }
 }
}

Applying Design Principles  ❘  139

All is good with the world. Now introduce a new product type that isn’t a movie. Add a new class
to the project named TShirt. The TShirt class is a product, so it needs to implement the IProduct
interface. Create the following new class:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public class TShirt : IProduct
 {
 public decimal Price { get; set; }

 public decimal WeightInKg { get; set; }

 public int Stock { get; set; }

 public int Certification { get; set; }

 public int RunningTime { get; set; }
 }
}

The problem with the TShirt class implementing the IProduct interface is that the Certification
and RunningTime properties mean nothing to a TShirt and don’t really belong to it. The answer to
this issue is to split what differs between the movie products and the TShirt class and add this to a
movie-specific interface.

Add a new interface named IMovie with the following contract:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public interface IMovie
 {
 int Certification { get; set; }
 int RunningTime { get; set; }
 }
}

You can now remove the Certification and RunningTime properties from the IProduct interface.
Because the IProduct interface no longer defines these properties in its contract, the TShirt class
doesn’t need to implement them. So now you can update the TShirt class as shown here:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public class TShirt : IProduct
 {
 public decimal Price { get; set; }

 public decimal WeightInKg { get; set; }

 public int Stock { get; set; }
 }
}

140  ❘  Chapter 5   The Business Logic Layer: Patterns

The last action you need to take is to ensure that both the DVD and BluRayDisc class implement the
new IMovie interface, as shown in the lines in boldface:

namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public class DVD : IProduct, IMovie
 {
 public decimal Price { get; set; }

 public decimal WeightInKg { get; set; }

 public int Stock { get; set; }

 public int Certification { get; set; }

 public int RunningTime { get; set; }
 }
}
namespace ASPPatterns.Chap5.InterfaceSegregation.Model
{
 public class BluRayDisc : IProduct, IMovie
 {
 public decimal Price { get; set; }

 public decimal WeightInKg { get; set; }

 public int Stock { get; set; }

 public int Certification { get; set; }

 public int RunningTime { get; set; }
 }
}

Figure 5-18 shows the complete set of classes after the refactors.

Figure 5-18

This is the essence of the Interface Segregation principle. It’s simple to grasp, but sometimes even the
big boys get it wrong. If you have ever written your own custom ASP.NET Membership Provider,
you would have had to implement a monster of a contract even if you only wanted to use a subset of

Applying Design Principles  ❘  141

the functionality, like the ability to log in and out. By splitting up interfaces, you increase the capa-
bility to reuse and understand your code.

Liskov Substitution Principle
The Liskov Substitution principle (LSP) states that subclasses must behave the same as their base class.

Intent
Robert Martin states that subtypes must be substitutable for their base types, meaning that the behavior
of a subtype must follow the expected behavior of a base type.

Code Example
To clearly demonstrate the LSP, you’ll look at some code that violates it. Then you will refactor the
code toward the principle. This exercise should enable you to see the benefit of following the prin-
ciple and the problems caused if it is ignored.

Figure 5-19 shows the classes involved in this exercise. The domain that this code extract is taken
from forms the refund module of an e-commerce company. Specifically, the organization takes and
refunds payments using the PayPal and WorldPay payment merchants via their respective web ser-
vices — ​in this example, you will simply mock out these web services.

Figure 5-19

The RefundService class coordinates the refunding of a RefundRequest by first obtaining the cor-
rect payment class (WorldPayPayment or PayPalPayment) via the PaymentServiceFactory. After
a refund has been made, the status of the transaction is wrapped within the RefundResponse object
and returned to the client.

142  ❘  Chapter 5   The Business Logic Layer: Patterns

To get started with this exercise, create a new solution named ASPPatterns.Chap5.Liskov​
SubstitutionPrinciple and add a C# class library named ASPPatterns.Chap5.LiskovSubstitution​
Principle. The first item you can add to the project is the PaymentType enumeration. Add the two
options as shown in this code listing:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public enum PaymentType
 {
 PayPal = 1,
 WorldPay = 2
 }
}

Next, add two new classes named RefundRequest and RefundResponse with the following code
definitions:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class RefundRequest
 {
 public PaymentType Payment { get; set; }
 public string PaymentTransactionId { get; set; }
 public decimal RefundAmount { get; set; }
 }
}

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class RefundResponse
 {
 public bool Success { get; set; }
 public string Message { get; set; }
 }
}

The RefundRequest is sent to the RefundService as the single Refund method parameter, and
RefundResponse is returned by the RefundService with the status of the refund transaction.

The next two classes represent the live WorldPay and PayPal web services. These are simply mock
classes that demonstrate the functionality that the payment merchants offer. Add two new classes
named MockWorldPayWebService and MockPayPalWebService, and update the code for each with
the listings shown next:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 // Stub class to act as a PayPal web service
 public class MockPayPalWebService
 {
 public string ObtainToken(string accountName, string password)
 {
 return “xxxxxxxx-xxxxxxxxxxxxxx-xxxxxxxxx”;

Applying Design Principles  ❘  143

 }

 public string MakeRefund(decimal amount, string transactionId, string token)
 {
 return “Auth:0999”;
 }
 }
}

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class MockWorldPayWebService
 {
 public string MakeRefund(decimal amount, string transactionId,
 string username, string password,
 string productId)
 {
 return “A_Success-09901”;
 }
 }
}

As you can see, the API for the payment merchants differs slightly. The return strings are hard-coded
to keep the demonstration code simple.

To enable the RefundService to interact with the payment merchants as if they had the same interface,
you need to add a PaymentServiceBase class that the WorldPayPayment and PayPalPayment can
inherit from and wrap the real web service APIs by using the Adapter pattern. Add a new abstract class
to the project named PaymentServiceBase, with the following abstract Refund method shown here:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public abstract class PaymentServiceBase
 {
 public abstract string Refund(decimal amount, string transactionId);
 }
}

The RefundService can interact with the abstract PaymentServiceBase class and be blissfully
unaware of which real implementation it is dealing with because they both behave the same — ​the
essence of the LSP.

Now that you have the base class in place, you can create the two merchant adapters. Add a new
class to the project named PayPalPayment, which inherits from the PaymentServiceBase class and
has the following code definition:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class PayPalPayment : PaymentServiceBase
 {
 public string AccountName { get; set; }
 public string Password { get; set; }

 public override string Refund(decimal amount, string transactionId)

144  ❘  Chapter 5   The Business Logic Layer: Patterns

 {
 MockPayPalWebService payPalWebService = new MockPayPalWebService();

 string token = payPalWebService.ObtainToken(AccountName, Password);

 string response = payPalWebService.MakeRefund(amount, transactionId, token);

 return response;
 }
 }
}

Because the PayPal web service requires a token with any transaction, you must first log in to obtain
a token; therefore, you have to include the two extra properties of AccountName and Password. The
Refund method creates a new instance of the web service (a mock object in this example), obtains a
transaction token by logging in, and then performs the refund before returning the result to the call-
ing code.

Next, you can add the implementation for the WorldPay merchant adapter. Add a new class to the
project named WorldPayPayment, again inheriting from the PaymentServiceBase abstract class
with the following code listing:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class WorldPayPayment : PaymentServiceBase
 {
 public string AccountId { get; set; }
 public string AccountPassword { get; set; }
 public string ProductId { get; set; }

 public override string Refund(decimal amount, string transactionId)
 {
 MockWorldPayWebService worldPayWebService = new MockWorldPayWebService();

 string response = worldPayWebService.MakeRefund(
 amount, transactionId, AccountId, AccountPassword, ProductId);

 return response;
 }
 }
}

Again, you have had to add two extra properties for logging in and a third to specify the product you
are refunding against because the WorldPay merchant allows you to have more than one account when
you need to support multiple currencies. The actual Refund method implementation is simpler than
that of the PayPalPayment class because you don’t have to obtain a token before making a refund.

The last two classes you need to tackle are the RefundService and the PaymentServiceFactory,
which is responsible for creating the concrete implementation of the payment adapter. Because the
RefundService class depends on the PaymentServiceFactory, you need to build it first. Add a new
class to the project named PaymentServiceFactory, and input the following code listing for it:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple

Applying Design Principles  ❘  145

{
 public class PaymentServiceFactory
 {
 public static PaymentServiceBase GetPaymentServiceFrom(PaymentType paymentType)
 {
 switch (paymentType)
 {
 case PaymentType.PayPal:
 return new PayPalPayment();
 case PaymentType.WorldPay:
 return new WorldPayPayment();
 default:
 throw new ApplicationException(
 “No Payment Service available for “ + paymentType.ToString());
 }
 }
 }
}

If you read the section on the Factory Method pattern at the start of this chapter, it should be
straightforward what is happening in this class. The PaymentType enum is passed, and the matching
concrete payment adapter is created and returned to the caller.

Finally, you can add the RefundService class, add a class with the same name, and input the code
that follows:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class RefundService
 {
 public RefundResponse Refund(RefundRequest refundRequest)
 {
 PaymentServiceBase paymentService = PaymentServiceFactory
 .GetPaymentServiceFrom(refundRequest.Payment);

 RefundResponse refundResponse = new RefundResponse();

 if ((paymentService as PayPalPayment) != null)
 {
 ((PayPalPayment)paymentService).AccountName = “Scott123-PP”;
 ((PayPalPayment)paymentService).Password = “ABCXYZ-PP”;
 }

 if ((paymentService as WorldPayPayment) != null)
 {
 ((WorldPayPayment)paymentService)
 .AccountId = “Scott123-WP”;
 ((WorldPayPayment)paymentService)
 .AccountPassword = “ABCXYZ-WP”;
 ((WorldPayPayment)paymentService).ProductId = “1”;
 }

 string merchantResponse =
 paymentService.Refund(refundRequest.RefundAmount,

146  ❘  Chapter 5   The Business Logic Layer: Patterns

 refundRequest.PaymentTransactionId);

 refundResponse.Message = merchantResponse;

 if (merchantResponse.Contains(“A_Success”) ||
 merchantResponse.Contains(“Auth”))
 refundResponse.Success = true;
 else
 refundResponse.Success = false;

 return refundResponse;

 }
 }
}

It should be immediately obvious that there is a problem. In its present state, despite your best
efforts, it is not possible to substitute the subtype for its base type because each implementation of
the payment adapter must be handled differently. You can see this in the code snippet that follows;
the downcasting of the base class is another code smell that breaks the LSP:

 if ((paymentService as PayPalPayment) != null)
 {
 ((PayPalPayment)paymentService)
 .AccountName = “Scott123-PP”;
 ((PayPalPayment)paymentService)
 .Password = “ABCXYZ-PP”;
 }

 if ((paymentService as WorldPayPayment) != null)
 {
 ((WorldPayPayment)paymentService)
 .AccountId = “Scott123-WP”;
 ((WorldPayPayment)paymentService)
 .AccountPassword = “ABCXYZ-WP”;
 ((WorldPayPayment)paymentService).ProductId = “1”;
 }

In a more subtle way, the return code section, shown next, breaks the principle in that you are
required to handle all cases for all subtypes; thus, you cannot substitute the subtype without ensur-
ing you have code specific to that subtype; in this example code, check for a PayPal payment refund
success and a WorldPay refund success:

 if (merchantResponse.Contains(“A_Success”) ||
 merchantResponse.Contains(“Auth”))
 refundResponse.Success = true;
 else
 refundResponse.Success = false;

You can resolve these issues without too much pain. First, tackle the problem of the downcasting.
It is clear that without the respective merchants’ login credentials, the web services methods cannot
be called. Both adapters depend on these values, so it makes sense to move these parameters into

Applying Design Principles  ❘  147

the constructor so that neither adapter can be created without them. Update the code in both the
WorldPayPayment and PayPalPayment classes so that it matches this:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class WorldPayPayment : PaymentServiceBase
 {
 public WorldPayPayment(string accountId, string accountPassword,
 string productId)
 {
 this.AccountId = accountId;
 this.AccountPassword = accountPassword;
 this.ProductId = productId;
 }

 public string AccountId { get; set; }
 public string AccountPassword { get; set; }
 public string ProductId { get; set; }

 public override string Refund(decimal amount, string transactionId)
 {
 MockWorldPayWebService worldPayWebService = new MockWorldPayWebService();

 string response = worldPayWebService.MakeRefund(
 amount, transactionId, AccountId, AccountPassword, ProductId);

 return response;
 }
 }
}

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class PayPalPayment : PaymentServiceBase
 {
 public PayPalPayment(string accountName, string password)
 {
 this.AccountName = accountName;
 this.Password = password;
 }

 public string AccountName { get; set; }
 public string Password { get; set; }

 public override string Refund(decimal amount, string transactionId)
 {
 MockPayPalWebService payPalWebService = new MockPayPalWebService();

 string token = payPalWebService.ObtainToken(AccountName, Password);

 string response = payPalWebService.MakeRefund(amount, transactionId, token);

 return response;
 }
 }
}

148  ❘  Chapter 5   The Business Logic Layer: Patterns

Because the adapter classes now have constructors, you must update the PaymentServiceFactory
class as shown in the following bolded lines:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class PaymentServiceFactory
 {
 public static PaymentServiceBase GetPaymentServiceFrom(PaymentType paymentType)
 {
 switch (paymentType)
 {
 case PaymentType.PayPal:
 return new PayPalPayment(“Scott123-PP”, “ABCXYZ-PP”);
 case PaymentType.WorldPay:
 return new WorldPayPayment(“Scott123-WP”, “ABCXYZ-WP”, “1”);
 default:
 throw new ApplicationException(
 “No Payment Service available for “ + paymentType.ToString());

 }
 }
 }
}

In this example, the login credentials are hard-coded strings to keep things simple. In a real applica-
tion, these would typically be stored in some kind of configuration file. You can now return to the
RefundService class and remove the downcasting issue.

The second problem with the RefundService class as it stands is the refund transaction response.
Currently, the RefundService class has to inspect the result of the transaction and ensure that it
matches the authorization criteria of one of the subtypes, which again breaks the LSP. You can
address this by changing the return type from the string to the RefundResponse object.

Update the PaymentServiceBase, PayPalPayment, and WorldPayPayment class with the highlighted
code modifications as shown here:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public abstract class PaymentServiceBase
 {
 public abstract RefundResponse Refund(decimal amount, string transactionId);
 }
}

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class WorldPayPayment : PaymentServiceBase
 {
 public WorldPayPayment(string accountId, string accountPassword,
 string productId)
 {
 this.AccountId = accountId;
 this.AccountPassword = accountPassword;
 this.ProductId = productId;
 }
 public string AccountId { get; set; }

Applying Design Principles  ❘  149

 public string AccountPassword { get; set; }
 public string ProductId { get; set; }

 public override RefundResponse Refund(decimal amount, string transactionId)
 {
 RefundResponse refundResponse = new RefundResponse();
 MockWorldPayWebService worldPayWebService = new MockWorldPayWebService();

 string response = worldPayWebService.MakeRefund
 (amount, transactionId, AccountId, AccountPassword, ProductId);

 refundResponse.Message = response;

 if (response.Contains(“A_Success”))
 refundResponse.Success = true;
 else
 refundResponse.Success = false;

 return refundResponse;
 }
 }
}

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class PayPalPayment : PaymentServiceBase
 {
 public PayPalPayment(string accountName, string password)
 {
 this.AccountName = accountName;
 this.Password = password;
 }

 public string AccountName { get; set; }
 public string Password { get; set; }

 public override RefundResponse Refund(decimal amount, string transactionId)
 {
 MockPayPalWebService payPalWebService = new MockPayPalWebService();
 RefundResponse refundResponse = new RefundResponse();

 string token = payPalWebService.ObtainToken(AccountName, Password);

 string response = payPalWebService.MakeRefund(amount, transactionId, token);

 refundResponse.Message = response;

 if (response.Contains(“Auth”))
 refundResponse.Success = true;
 else
 refundResponse.Success = false;

 return refundResponse;
 }
 }
}

150  ❘  Chapter 5   The Business Logic Layer: Patterns

The individual subtypes are now responsible for determining if the refund was successful. They return
a simple boolean flag along with the specific transaction response. The RefundService class can now
be updated to treat the subtype in the same manner as the base type, with no need to downcast or
check for a specific subtype behavior. The updated RefundService class listing is shown here:

namespace ASPPatterns.Chap5.LiskovSubstitutionPrinciple
{
 public class RefundService
 {
 public RefundResponse Refund(RefundRequest refundRequest)
 {
 PaymentServiceBase paymentService =
 PaymentServiceFactory.GetPaymentServiceFrom(refundRequest.Payment);
 RefundResponse refundResponse;

 refundResponse = paymentService.Refund
 (refundRequest.RefundAmount, refundRequest.PaymentTransactionId);

 return refundResponse;
 }
 }
}

Figure 5-20 shows the full class diagram after your refactors.

Figure 5-20

From working through the exercise, you should understand the subtleness behind the LSP. In a nut-
shell, it’s all about thinking through how your subclasses should act based on the contract of their
base classes.

Summary   ❘  151

Summary

In this chapter, you learned about patterns and principles that you can use, but not exclusively within
the business layer of your application.

You examined the following patterns and principles:

The Factory pattern enables you to encapsulate the creation of objects and remove the respon-➤➤

sibility from client code.

The Decorator pattern allows you to add behavior and state to an existing class dynamically.➤➤

The Template pattern defines a skeleton algorithm that delegates to subclasses to implement ➤➤

specific steps that could vary.

The State pattern allows you to separate behavior dependent on state from the object itself. ➤➤

The Strategy pattern permits you to swap algorithms dynamically and separate calculations ➤➤

from data.

The Specification pattern allows selection criteria logic to be separated and reused from busi-➤➤

ness entities.

The Composite pattern enables objects to be combined but act as a single instance to join logic ➤➤

and behavior dynamically.

The Layer Supertype pattern acts as a common base class from all objects in the business layer ➤➤

providing implementation for common logic.

The Dependency Injection principle inverts the responsibility of obtaining dependent classes by ➤➤

allowing them to be injected via a class’s constructor, property, or method.

The Interface Segregation principle splits fat interfaces into separate related groups of contracts, ➤➤

making it easier to use and more understandable in your code.

The Liskov Substitution Principle reminds you that subclasses should act as you would expect ➤➤

a base class to be used, without the need to downcast to check for specific subclass behavior.

The next chapter investigates patterns and principles that can be used in the service layer of an enter-
prise application as well as some SOA (Service Oriented Architecture) patterns that are specific to the
service layer.

The service layer
whaT’s in This chaPTer?

The role of services and the service layer in an enterprise ASP .NET ➤➤

application

Service oriented architecture and why it’s needed➤➤

The use of the Facade pattern➤➤

Messaging patterns such as document message, request-response, ➤➤

reservation, and idempotent

An exercise that utilizes WCF for SOA in addition to well-known ➤➤

messaging patterns

Chapter 4 dealt with the organization of your business middleware, but how do you expose
the business logic to your applications in an easy-to-use and consistent manner that maps to
your business needs? The answer lies in the service layer.

Sitting between your presentation and business layer, the service layer provides an interface
that defi nes the application’s boundaries and the operations available to the client. Behind the
façade that the service layer portrays to the client is the encapsulation of business logic, valida-
tion, and workfl ow and the coordination of persistence and retrieval of business entities.

Describing The serVice layer

The role of the service layer is similar to that of the Transaction Script pattern that was intro-
duced in Chapter 4 in that it typically maps to business use cases. Unlike the Transaction pattern,
however, the service layer simply coordinates the business use case transaction and delegates
work to the business objects for all the lower-level implementation details. The service layer
encapsulates the business model and acts as an interface into the application for all parties, rather
like a business façade. Another difference between the service layer and the Transaction Script
pattern is in the level of granularity; typically, the Transaction Script pattern has fi ne-grained
method calls and offers a chattier interface than a coarse-grained service layer does.

6

154  ❘  Chapter 6   The Service Layer

Service Oriented Architecture
Service oriented architecture (SOA) refers to the principles and practices of designing a set of loosely
integrated services typically, but not always, for distributed applications. Services are basically core
business functions that are used by one or many business applications. You can think of the set of
services as a business’s API. In the real world, business applications modeling processes need to be
dynamic and change often, but the core business rules tend to stay the same. Having these as inde-
pendent services offers a more flexible architecture and makes it easier to quickly build business
applications around the fundamental business procedures.

SOA probably seems very abstract, so before examining it perhaps it’s best to see an example of how
applying SOA to a legacy application can help improve the architecture and business process reuse.
Figure 6-1 shows a typical layout for a medium-sized business.

Order
Management

E-commerce
Store

Customer
Services
System

SMTP Server

Ware House
Management

System

Returns
System

Product Catalogue
Management

Purchase
Ordering

Customer
Management

System

PayPal

Database

Figure 6-1

The systems architecture is for an e-commerce company; all the applications contain a business model,
plus logic and rules from their point of view or context. Each application connects directly with the
database to persist and retrieve the state of those business objects to the database. All applications
send e‑mail, so they require a connection to the SMTP server. Many of the systems such as Returns,
Order Management, and the E-commerce storefront require a connection to the PayPal web services
for the taking and refunding of payments. The purchase ordering department manually confirms
orders with suppliers via e‑mail.

Describing the Service Layer  ❘  155

Over years of working with the current architecture the company has identified some issues that should
be addressed:

Because each application has its own interpretation of the domain, there is a duplication of ➤➤

business logic so a change to any aspect of the business that requires a logic change to the
software needs to be propagated to all the subsystems, which is a maintenance headache.

There is a lot of business process duplication because the contexts of each application tend ➤➤

to overlap. For example, the customer service team needs to see orders for a customer, which
represents an overlap with the functionality of the Order Management system. Similarly, the
Returns system needs to adjust stock during the process of returning an item, which overlaps
with the functionality provided by the Warehouse Management system.

The applications are closely coupled to the data structure; if a change to the database is required, ➤➤

changes to all applications using the data tables need to be synchronized so they are updated at
the same time.

Confirming stock availability and purchase orders with suppliers is currently a time-consuming ➤➤

manual process.

The business requires lots of highly paid developers to maintain the domain logic within each of ➤➤

the subsystems. New developers to the team often spend a lot of time working through each appli-
cation to get a handle on the company’s business logic.

An audit trail and standard logging mechanism are required to be rolled out across all appli-➤➤

cations so that the customer service department can easily view an order’s history, but this
has been put off because of the implication cost.

An enterprise SOA approach will seek to address all these issues and restate all business processes
as services that communicate with each other and potentially with services outside of the enterprise.
The purchase ordering function, for instance, will be converted to a B2B system. All business logic
engrained within each of the individual legacy applications will be extracted and exposed as a service
so that core business logic can be shared but remain in one central location to assist in logic reusability
and maintenance. A Service Bus can then be used to keep the services loosely coupled with each
other and to coordinate the flow of information, making it easy to change services as long as the ser-
vice contract remains the same.

Figure 6-2 shows how the applications within the organization have been restructured to embrace SOA.

All the business core functions have now been turned into service endpoints. The myriad applications are
now simply dumb presentation screens with a thin layer of application logic, with all the business logic
happening behind the service interface. There is now no logic or code duplication, and business processes
can be shared with all the subsystems. The purchase ordering department now communicates with suppli-
ers via a B2B service that enables stock availability to be updated every hour without manual interaction.

With the new SOA in place, the business can now see these benefits:

Maintenance is no longer such a big issue; changes to business logic now occur only in one place: ➤➤

behind a service interface. As the company grows, applications can be replaced or rearchitected
without affecting the entire system as long as the service contract remains the same. Applications
now contain little logic, so junior developers can easily code the thin applications that use the ser-

156  ❘  Chapter 6   The Service Layer

vices. New developers no longer need to understand the inner workings of the company because
they now have an API that exposes all the business functionality from them to work with.

Logging and an audit trail can now be applied to all business transactions because of the exis-➤➤

tence of a central location.

An API has been defined for the company; this logic can now be shared across all applications, ➤➤

making it fast and almost effortless to deploy small, targeted applications for departments.

SMTP
Server

Purchase
Ordering

Merchandising
Services

Payment
Services

Order
Services

Customer
Services

Product
Services

E-commerce
Store

Order
Management

Returns
System

Customer
Management

System

Customer
Services
System

Ware House
Management

System

Product
Management

PayPal Suppliers
B2BDatabase

Service Bus

Figure 6-2

The data store is now abstracted away behind the service layer. This means that data can be ➤➤

cached from a central location, and any changes required to the data schema need only affect
the business logic behind the service layer, not all the applications.

Interaction between the applications and service layer is via a coarse-grained interface, making ➤➤

for a less chatty system and in turn ensuring that the database is no longer a scalability issue.

Hopefully you can see that, by applying a SOA to the organization, you have decreased maintenance
complexity and increased the reusability of the code base. This is, of course, just one application of
SOA that can be successfully rolled out, but it is by no means the definitive answer to this question:
what is SOA?

Four Tenets of SOA
You can adhere to four service principles to ensure better designed services. These are known as the
Four Tenets of SOA, and they are explained in the following sections.

Describing the Service Layer  ❘  157

Boundaries Are Explicit
A service interface needs to be as clean and simple as possible and have a consistent approach to the
exchange of data, often referred to as messages. It is also a good idea to keep a service’s API small
and clear, favoring coarse-grained methods rather than a host of finer-grained methods. You will see
later in the “Leveraging Messaging Patterns” section how a number of patterns can be used to create
clean and clear service methods.

Services Are Autonomous
Service methods should be loosely coupled and not rely on other methods to perform a business
transaction; a client should not be required to call methods in a particular order to perform a busi-
ness transaction. A client should be able to invoke a single service and within one atomic action
receive a response on the success or failure of that transaction. Service methods should also be state-
less and not leave a system in a partially done state before another service is called to complete a
request.

Services Share Schema and Contract, Not Class
One of the goals of SOA is interoperability; to this end a service should only expose a contract, not
the implementation of the service. Communication is achieved via XML, also known as messages;
these are platform neutral and help to achieve interoperability.

Service Compatibility Is Based on Policy
A service should expose a policy on what it can be used for. Clients can then consume a service with
good knowledge of how to use it and what to expect in terms of response. Information on what a
service does can be exposed using the WS-Policy specification; the WS-Policy represents a set of
specifications that describe the capabilities and constraints of the service.

If you are still finding the SOA design methodology a little abstract, there is a large exercise at the end
of this chapter that uses WCF to build a SOA. This should help to cement the main points of SOA.

This has only been a brief overview of SOA. For a more in-depth look at SOA, take a look at
SOA Design Patterns and/or SOA Principles of Service Design by the SOA guru Thomas Erl.

In the next section you will learn how one of the Gang of Four patterns can be used in the service
layer of an enterprise ASP.NET application.

The Facade Design Pattern
A common pattern used by SOA clients is Facade. The Facade pattern simplifies the interface of a
complex subsystem or group of subsystems, giving a client an uncomplicated API to use that is con-
sistent with other APIs that the client may be used to working against.

Intent
The Facade pattern provides a simple interface to a complex API. The Facade pattern can be used in
many different scenarios:

158 ❘ chaPTer 6 The Service layer

It can make a third-party library easier to use by wrapping in an interface consistent with the ➤➤

rest of the application.

It can help to loosely couple code by abstracting away dependencies to other systems and ➤➤

libraries.

It can wrap a complicated subsystem with a simpler interface. This is demonstrated in the UML ➤➤

that follows.

The Facade pattern can be used in the service layer to hide the complexities of talking to remote
applications via WCF or web services. You will see an exercise where the Facade pattern is employed
to do just this later in the chapter.

UMl
Figure 6-3 shows the UML representation of the Facade pattern.

Facade

Client

PerformAction()
{
 . . .
 SubSystemA.DoWork();
 . . .
 SubSystemB.DoWork();
}

+DoWork()

+PerformAction()

SubSystemA

+DoWork()

SubSystemB

figure 6-3

Figure 6-3 shows all the collaborating roles in the Facade pattern.

The client uses the simple API of the Facade to perform a task. The client remains unaware of ➤➤

what is really needed to achieve the transaction.

The Facade hides the complexities of the system behind its simple API. The Facade then del-➤➤

egates to the subsystems and collates the responses.

SubSystemA➤➤ and SubSystemB perform the work for the client.

There is a lengthy code exercise at the end of this chapter that shows how the
client of an SOA can use the Facade pattern.

In the next section you will look at patterns found in the communication with services.

Leveraging Messaging Patterns  ❘  159

Leveraging Messaging Patterns

Design patterns that are associated in the realm of large-scale distributed applications like SOA systems
are often referred to as Messaging patterns. Messaging patterns, like Design patterns, provide standard
solutions to complex problems. Messaging patterns tackle the sharing of data in a uniform manner
among many disconnected systems. In this section you will learn about some common Messaging pat-
terns that you will use in an SOA example with WCF at the end of the chapter. If you are interested
in Messaging patterns, pick up the book Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions by Gregor Hohpe and Bobby Woolf.

The Document Message and the Request-Response Patterns
The Document Message pattern enables a uniform and flexible approach to communicating with
services. Instead of using the typical RPC style of parameterized methods to expose the service API,
message objects are employed. Consider this set of RPC-like methods that show why the Document
Message pattern has been adopted:

Customer[] RetrieveCustomers(string country);
Customer[] RetrieveCustomers (string country, string postalCode);
Customer[] RetrieveCustomers (string country, string postalCode, string street);

The preceding service methods enable the client to obtain customer records in three different ways:
by supplying a country, by supplying a country and a postal code, and by supplying a street in addi-
tion to the country and postal code parameters. As you can see, this type of method approach can
fast become a nightmare to maintain and for the client of the API to work with.

The Document Message pattern simplifies the communication by encapsulating all information
within the body of the document, leading to a more straightforward and clean service signature, as
can be seen here:

Customer[] FindBy(CustomerSearchRequest request);

The Document Message class is shown in the following code:

 public class CustomerSearchRequest
 {
 public string Country { get; set; }
 public string PostalCode { get; set; }
 public string Street { get; set; }
 }

Messages frequently contain other arbitrary items of information, including service version numbers,
a confirmation identifier, and authentication data. These items can be added to a common base class
that all requests can inherit. By using the Document Message pattern for all communication, you
make it easy for the service method to evolve and include additional parameters without needing to
change the signature of the method, as you saw earlier with the RPC example.

The Request-Response pattern ensures that responses as well as requests use the Document Message
pattern, so the signature for the RetrieveCustomers method now resembles this:

CustomerSearchResponse RetrieveCustomers(CustomerSearchRequest request);

160  ❘  Chapter 6   The Service Layer

As with the Request object, the Response can also inherit from a base class, which can provide access
to common properties like a generic message and success flag, as well as a Correlation ID. You will
learn about Correlation IDs when you look at the Idempotent pattern, coming up shortly.

Figure 6-4 is a graphical representation of the Request-Response pattern utilizing the Document
Message pattern.

Client

CustomerSearchRequest

RetrieveCustomers(CustomerSearchRequest)

Service

Country: “UK”
PostalCode: “PO”
Street: “”

CustomerSearchResponse

Customers: Customer []
Success: True
Message: “5 customers were found residing in the
UK with a Post Code starting with PO.”

Figure 6-4

You can use the Request-Response pattern consistently across all service methods, making for a flex-
ible, simple-to-use API. If you look at PayPal’s API by navigating to www.x.com/docs/DOC-1374 and
viewing a SOAP operation, you will see that it follows this pattern.

The Reservation Pattern
As you read earlier, one of the four tenets of SOA services is that they should be autonomous. There
are times, though, when it is necessary to maintain the state of a long-running process during a
complex transaction that requires several messages to be sent to complete a unit of work. For these
situations, you can assign a reservation number to the first response. The client can use this reserva-
tion number in subsequent requests to allow the service layer to pick up a transaction. Typically, an
expiration date is used to allow the reserved state to expire after a given time so it doesn’t hold onto
resources for an undefined amount of time.

Figure 6-5 shows a simple scenario to demonstrate the Reservation pattern. Note the message
exchange within a ticket purchase service.

The client first calls the ReserveTickets service method, supplying data on the event and the num-
ber of tickets required. The response from the service layer includes a reservation ID and an expira-
tion date that will guarantee the tickets are held for the client. The client application then performs
some logic that may involve taking details from the customer as part of a checkout process. Finally,

Leveraging Messaging Patterns  ❘  161

the client sends the reservation ID in a request via the PurchaseTicket service method; the service
validates the reservation ID and confirms the purchase of the tickets.

ReservationRequest

ReserveTickets (ReservationRequest)

ReservationResponse

Take Customers Details

PurchaseTicket (PurchaseRequest)

PurchaseResponse

TicketConfirmationId: 78665-1

Client Service

Event: 1-223-787
Tickets: 2

ReservationId: 98765
ExpiryDate: 2010-11-20 09:00:00

PurchaseRequest

ReservationId: 98765

Figure 6-5

The Idempotent Pattern
In computing, an idempotent operation is one that has no additional effect if it is called more than
once with the same input parameters. A service has no control over the clients that use it, so it’s
important to ensure that repeat calls do not have undesirable effects on the state of a system.

The Idempotent pattern states that any state-altering request should be tagged with a unique identi-
fier. This unique identifier should be checked with some kind of response storage to ensure that it
has not been processed before. If the response is found, the result can be returned without affecting
the state of the process that was originally called.

162  ❘  Chapter 6   The Service Layer

Figure 6-6 displays a simple scenario showing the Idempotent pattern in operation. The client sends
a request via a service call and specifies a unique identification number. Upon receiving the request,
the service checks to see if it has handled it before by searching a local response repository. If the
response that matches the unique identifier does not exist, the business transaction can take place.
If it does exist, however, the stored response is retrieved and returned to the client.

CorrelationId: 56-2-4-1

Request

Response: 778891

Response

Retrieve response
from cache

Put response
in cache

If no cached response
then action message
and persist altered
state to the database

Check cache
for existing
response to
this message

Client Service

Message
Cache

Database

Figure 6-6

A further benefit to including a unique identifier
with every request can be gained by having the
service include the same ID in the response to the
client. This allows the client calling the service to
verify the response that matches the request; in
this case, the unique identifier is known as a cor-
relation ID.

An SOA Example

To demonstrate the principles of SOA and mes-
saging patterns in a more practical or hands-on
manner, you will work through an exercise that
facilitates the reservation and purchasing of tick-
ets. In this domain a central service exposes an
API via HTTP, allowing any number of clients
to hook up and sell tickets. Figure 6-7 shows the
logical diagram for the application you will be
building.

Affiliate A

External Clients Application

Internal Client

Ticket
Service

HTTP

HTTP

Affiliate B

Affiliate C Ticket Shop

Figure 6-7

An SOA Example  ❘  163

You will be working on the parts of the system labeled Application and Internal Client using the
Reservation pattern to reserve tickets and the Idempotent pattern to ensure that any tickets pur-
chased are purchased only once.

Start by creating a new visual studio solution named ASPPatterns.Chap6.EventTickets and add-
ing two solution folders: service and client.

Domain Model and Repository
The first part of the application you will build is the domain model, which will handle all the appli-
cation’s business logic. For a deeper discussion of the Domain Model pattern, refer to Chapter 4.
Figure 6-8 shows the domain model that you will be constructing.

Figure 6-8

The Event class represents the event that affiliates can purchase tickets for. The Event class con-
tains two collections of tickets: the TicketPurchase class represents the actual ticket purchase, and
the TicketReservation class represents the reserved tickets. The two factory classes provide simple
interfaces for creating valid TicketReservation and TicketPurchase instances.

Add a new C# class library to the solution within the service solution folder named ASPPatterns​
.Chap6.EventTickets.Model. To this new project add a new class named TicketReservation
with the following code listing:

 public class TicketReservation
 {
 public Guid Id { get; set; }
 public Event Event { get; set; }
 public DateTime ExpiryTime { get; set; }
 public int TicketQuantity { get; set; }
 public bool HasBeenRedeemed { get; set; }

 public bool HasExpired()
 {
 return DateTime.Now > ExpiryTime;

164  ❘  Chapter 6   The Service Layer

 }

 public bool StillActive()
 {
 return !HasBeenRedeemed && !HasExpired();
 }
 }

You will receive a compile-time error because the Event class does not yet exist. Don’t worry, though;
you will get to this in a jiffy. Add a second class to the project named TicketPurchase with the code
definition as displayed here.

 public class TicketPurchase
 {
 public Guid Id { get; set; }
 public Event Event { get; set; }
 public int TicketQuantity { get; set; }
 }

Before you add the Event class, you need to create the two factory classes that are responsible for
creating valid instances of a TicketPurchase and TicketReservation, respectively. Add two new
classes to the project named TicketPurchaseFactory and TicketReservationFactory with the
following code listing:

 public class TicketPurchaseFactory
 {
 public static TicketPurchase CreateTicket(Event Event, int tktQty)
 {
 TicketPurchase ticket = new TicketPurchase();

 ticket.Id = Guid.NewGuid();
 ticket.Event = Event;
 ticket.TicketQuantity = tktQty;

 return ticket;
 }
 }

 public class TicketReservationFactory
 {
 public static TicketReservation CreateReservation(Event Event, int tktQty)
 {
 TicketReservation reservation = new TicketReservation();

 reservation.Id = Guid.NewGuid();
 reservation.Event = Event;
 reservation.ExpiryTime = DateTime.Now.AddMinutes(1);
 reservation.TicketQuantity = tktQty;

 return reservation;
 }
 }

An SOA Example  ❘  165

The two factory classes are fairly straightforward. One point to note, though, is that TicketReservations
are constructed with an expiration time of only one minute. In a real application this would be longer, but
one minute will enable you to allow the reservation to time out when testing.

With the two ticket classes and factory classes in place, you can add the Event class so that the Model
Project can build. Add the new Event class and the following code:

 public class Event
 {
 public Event()
 {
 ReservedTickets = new List<TicketReservation>();
 PurchasedTickets = new List<TicketPurchase>();
 }

 public Guid Id { get; set; }
 public string Name { get; set; }
 public int Allocation { get; set; }
 public List<TicketReservation> ReservedTickets { get; set; }
 public List<TicketPurchase> PurchasedTickets { get; set; }

 public int AvailableAllocation()
 {
 int salesAndReservations = 0;

 PurchasedTickets.ForEach(t => salesAndReservations += t.TicketQuantity);

 ReservedTickets.FindAll(r => r.StillActive())
 .ForEach(r => salesAndReservations += r.TicketQuantity);

 return Allocation - salesAndReservations;
 }

 public bool CanPurchaseTicketWith(Guid reservationId)
 {
 if (HasReservationWith(reservationId))
 return GetReservationWith(reservationId).StillActive();

 return false;
 }

 public TicketPurchase PurchaseTicketWith(Guid reservationId)
 {
 if (!CanPurchaseTicketWith(reservationId))
 Throw new ApplicationException(
 DetermineWhyATicketCannotbePurchasedWith (reservationId));

 TicketReservation reservation = GetReservationWith(reservationId);

 TicketPurchase ticket =
 TicketPurchaseFactory.CreateTicket(this, reservation.TicketQuantity);

 reservation.HasBeenRedeemed = true;

 PurchasedTickets.Add(ticket);

 return ticket;

Available for
download on
Wrox.com

166  ❘  Chapter 6   The Service Layer

 }

 public TicketReservation GetReservationWith(Guid reservationId)
 {
 if (!HasReservationWith(reservationId))
 throw new ApplicationException(
 String.Format(“No reservation ticket with matching id of ‘{0}’”,
 reservationId.ToString()));

 return ReservedTickets.FirstOrDefault(t => t.Id == reservationId);
 }

 private bool HasReservationWith(Guid reservationId)
 {
 return ReservedTickets.Exists(t => t.Id == reservationId);
 }

 public string DetermineWhyATicketCannotbePurchasedWith(Guid reservationId)
 {
 string reservationIssue = “”;
 if (HasReservationWith(reservationId))
 {
 TicketReservation reservation = GetReservationWith(reservationId);
 if (reservation.HasExpired())
 reservationIssue =
 String.Format(“Ticket reservation ‘{0}’ has expired”,
 reservationId.ToString());
 else if (reservation.HasBeenRedeemed)
 reservationIssue =
 String.Format(“Ticket reservation ‘{0}’ has already been redeemed”,
 reservationId.ToString());
 }
 else
 reservationIssue =
 String.Format(“There is no ticket reservation with the Id ‘{0}’”,
 reservationId.ToString());

 return reservationIssue;
 }

 private void ThrowExceptionWithDetailsOnWhyTicketsCannotBeReserved()
 {
 throw new ApplicationException
 (“There are no tickets available to reserve.”);
 }

 public bool CanReserveTicket(int qty)
 {
 return AvailableAllocation() >= qty;
 }

 public TicketReservation ReserveTicket(int tktQty)
 {
 if (!CanReserveTicket(tktQty))

An SOA Example  ❘  167

 ThrowExceptionWithDetailsOnWhyTicketsCannotBeReserved();

 TicketReservation reservation =
 TicketReservationFactory.CreateReservation(this, tktQty);

 ReservedTickets.Add(reservation);

 return reservation;
 }
 }

code snippet Event.cs in ASPPatterns.Chap6.EventTickets.Model

Before you go any further, take a look at the methods on the Event class:

AvailableAllocation()➤➤ : This method calculates the number of tickets available to sell
based on the initial number of tickets available to an event minus the number of tickets
already sold and the number of tickets that are currently reserved.

CanReserveTicket(int qty)➤➤ : This method checks whether there are enough tickets avail-
able for reservation.

ReserveTicket(int tktQty)➤➤ : This method creates a new TicketReservation and adds it
to the Events collection.

HasReservationWith(Guid reservationId)➤➤ : This method returns a Boolean that determines
whether a TicketReservation exists.

GetReservationWith(Guid reservationId)➤➤ : This method returns the TicketReservation
that matches the passed in reservation ID.

CanPurchaseTicketWith(Guid reservationId)➤➤ : This method determines if a ticket can be
purchased based on the reservation ID.

PurchaseTicketWith(Guid reservationId)➤➤ : This method creates a TicketPurchase that
matches the reserved ticket.

DetermineWhyATicketCannotbePurchasedWith(Guid reservationId)➤➤ : This method
returns a string detailing why a ticket cannot be purchased based on a reservation ID.

With the domain model built, you need a way to persist and retrieve the Event aggregation. Add a
new interface to the model project named IEventRepository with the following contract:

 public interface IEventRepository
 {
 Event FindBy(Guid id);
 void Save(Event eventEntity);
 }

The interface is simplified in this example to keep the exercise straightforward. In a full application
you would expect to see a method to add Events as well. This completes all the code for the domain
model. Next you can look at creating the EventRepository implementation.

168  ❘  Chapter 6   The Service Layer

Add another new C# class library to the solution under the service solution folder named ASPPatterns​
.Chap6.EventTickets.Repository, and add a project reference to the Model project:

using System.Data.SqlClient;
using System.Data;
using ASPPatterns.Chap6.EventTickets.Model;

namespace ASPPatterns.Chap6.EventTickets.Repository
{
 public class EventRepository : IEventRepository
 {
 private string connectionString =
@”Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\EventTickets.mdf;”
+ @”Integrated Security=True;User Instance=True”;

 public Event FindBy(Guid id)
 {
 Event Event = default(Event);

 string queryString =
 “SELECT * FROM dbo.Events WHERE Id = @EventId “ +
 “SELECT * FROM dbo.PurchasedTickets WHERE EventId = @EventId “ +
 “SELECT * FROM dbo.ReservedTickets WHERE EventId = @EventId;”;

 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = queryString;

 SqlParameter Idparam = new SqlParameter(“@EventId”, id.ToString());
 command.Parameters.Add(Idparam);

 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())
 {
 if (reader.HasRows)
 {
 reader.Read();
 Event = new Event();
 Event.PurchasedTickets = new List<TicketPurchase>();
 Event.ReservedTickets = new List<TicketReservation>();
 Event.Allocation = int.Parse(reader[“Allocation”].ToString());
 Event.Id = new Guid(reader[“Id”].ToString());
 Event.Name = reader[“Name”].ToString();

 if (reader.NextResult())
 {
 if (reader.HasRows)
 {
 while (reader.Read())
 {
 TicketPurchase ticketPurchase =
 new TicketPurchase();

Available for
download on
Wrox.com

An SOA Example  ❘  169

 ticketPurchase.Id =
 new Guid(reader[“Id”].ToString());
 ticketPurchase.Event = Event;
 ticketPurchase.TicketQuantity =
 int.Parse(reader[“TicketQuantity”].ToString());
 Event.PurchasedTickets.Add(ticketPurchase);
 }
 }
 }

 if (reader.NextResult())
 {
 if (reader.HasRows)
 {
 while (reader.Read())
 {
 TicketReservation ticketReservation =
 new TicketReservation();
 ticketReservation.Id =
 new Guid(reader[“Id”].ToString());
 ticketReservation.Event = Event;
 ticketReservation.ExpiryTime =
 DateTime.Parse(reader[“ExpiryTime”].ToString());
 ticketReservation.TicketQuantity =
 int.Parse(reader[“TicketQuantity”].ToString());
 ticketReservation.HasBeenRedeemed =
 bool.Parse(reader[“HasBeenRedeemed”].ToString());
 Event.ReservedTickets.Add(ticketReservation);
 }
 }
 }
 }
 }
 }

 return Event;
 }

 public void Save(Event Event)
 {
 // Code to save the Event entity
 // is not required in this scenario

 RemovePurchasedAndReservedTicketsFrom(Event);

 InsertPurchasedTicketsFrom(Event);
 InsertReservedTicketsFrom(Event);

 }

 public void InsertReservedTicketsFrom(Event Event)
 {
 string insertSQL =
 “INSERT INTO ReservedTickets “ +
 “(Id, EventId, TicketQuantity, ExpiryTime, HasBeenRedeemed) “ +

170  ❘  Chapter 6   The Service Layer

 “VALUES “ +
 “(@Id, @EventId, @TicketQuantity, @ExpiryTime, @HasBeenRedeemed);”;

 foreach (TicketReservation ticket in Event.ReservedTickets)
 {
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = insertSQL;

 SqlParameter Idparam =
 new SqlParameter(“@Id”, ticket.Id.ToString());
 command.Parameters.Add(Idparam);

 SqlParameter EventIdparam =
 new SqlParameter(“@EventId”, ticket.Event.Id.ToString());
 command.Parameters.Add(EventIdparam);

 SqlParameter TktQtyparam =
 new SqlParameter(“@TicketQuantity”, ticket.TicketQuantity);
 command.Parameters.Add(TktQtyparam);

 SqlParameter Expiryparam =
 new SqlParameter(“@ExpiryTime”, ticket.ExpiryTime);
 command.Parameters.Add(Expiryparam);

 SqlParameter HasBeenRedeemedparam =
 new SqlParameter(“@HasBeenRedeemed”, ticket.HasBeenRedeemed);
 command.Parameters.Add(HasBeenRedeemedparam);

 connection.Open();
 command.ExecuteNonQuery();
 }
 }

 }

 public void InsertPurchasedTicketsFrom(Event Event)
 {
 string insertSQL = “INSERT INTO PurchasedTickets “ +
 “(Id, EventId, TicketQuantity) “ +
 “VALUES “ +
 “(@Id, @EventId, @TicketQuantity);”;

 foreach (TicketPurchase ticket in Event.PurchasedTickets)
 {
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 SqlCommand command = connection.CreateCommand();

An SOA Example  ❘  171

 command.CommandText = insertSQL;

 SqlParameter Idparam =
 new SqlParameter(“@Id”, ticket.Id.ToString());
 command.Parameters.Add(Idparam);

 SqlParameter EventIdparam =
 new SqlParameter(“@EventId”, ticket.Event.Id.ToString());
 command.Parameters.Add(EventIdparam);

 SqlParameter TktQtyparam =
 new SqlParameter(“@TicketQuantity”, ticket.TicketQuantity);
 command.Parameters.Add(TktQtyparam);

 connection.Open();
 command.ExecuteNonQuery();
 }
 }
 }

 public void RemovePurchasedAndReservedTicketsFrom(Event Event)
 {
 string deleteSQL = “DELETE PurchasedTickets WHERE EventId = @EventId; “ +
 “DELETE ReservedTickets WHERE EventId = @EventId;”;

 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = deleteSQL;

 SqlParameter Idparam =
 new SqlParameter(“@EventId”, Event.Id.ToString());
 command.Parameters.Add(Idparam);

 connection.Open();
 command.ExecuteNonQuery();
 }
 }
 }
}

code snippet EventRepository.cs in ASPPatterns.Chap6.EventTickets.Repository

There’s a lot of ADO.NET code here, but don’t dwell on it; it’s just a means to an end. You will dis-
cover far better ways to persist and retrieve business objects in the next chapter.

Service Layer
With the data access and business logic of the application built, you can decorate it with the service
layer. Figure 6-9 shows how the service layer exposes a simple API to the client.

172 ❘ chaPTer 6 The Service layer

ASPPatterns.Chap6.EventTickets.HTTPHost

ASPPatterns.Chap6.EventTickets.Service

ASPPatterns.Chap6.EventTickets.Contracts

Database

Request

Response
Ticket

Service

Ticket Shop

ASPPatterns.Chap6.EventTickets.Model

ASPPatterns.Chap6.EventTickets.Repository

ASPPatterns.Chap6.EventTickets.ServiceProxy

ASPPatterns.Chap6.EventTickets.WebShop

ASPPatterns.Chap6.EventTickets.DataContract

figure 6-9

The service layer consists of four separate projects:

ASPPatterns.Chap6.EventTickets.Contracts➤➤ : This project holds the interface used to
defi ne the service contract.

ASPPatterns.Chap6.EventTickets.Service➤➤ : This project contains the implementation of
the service contract and coordinates the workfl ow of business logic and entity persistence/
retrieval.

ASPPatterns.Chap6.EventTickets.DataContract➤➤ : This project contains the message’s
DTOs to pass data via the client; this uses the Document Message messaging pattern to
exchange data.

ASPPatterns.Chap6.EventTickets.HTTPHost➤➤ : This project hosts the WCF service.

Separating the interface from the implementation of the service using different
assemblies enables the client to be completely unaware of the implementation.
This leads to a better design through loose coupling.

You are going to start with the ASPPatterns.Chap6.EventTickets.DataContract to hold all the
Data Transfer Objects that will be involved in the service workfl ow. Because you will be using the
WCF model to expose your services, you need to add some extra namespaces to the project. Right-
click on the project and select Add Reference, select the .NET tab, and add a reference to the follow-
ing assemblies:

System.Runtime.Serialization➤➤

System.ServiceModel➤➤

An SOA Example  ❘  173

All the response objects will inherit from a base class that contains some common behavior. Add a
new abstract class to the project named Response and add the following code:

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
 [DataContract]
 public abstract class Response
 {
 [DataMember]
 public bool Success { get; set; }

 [DataMember]
 public string Message { get; set; }
 }
}

The two response objects that will inherit from the Response base class are PurchaseTicketResponse
and ReserveTicketResponse. Add these two classes to the DataContracts project with the following
code definitions. The attributes that decorated the properties are key to WCF being able to enable seri-
alization when transporting the request and responses over the wire:

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
 [DataContract]
 public class PurchaseTicketResponse : Response
 {
 [DataMember]
 public string TicketId { get; set; }

 [DataMember]
 public String EventName { get; set; }

 [DataMember]
 public String EventId { get; set; }

 [DataMember]
 public int NoOfTickets { get; set; }
 }
}

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
 [DataContract]
 public class ReserveTicketResponse : Response
 {
 [DataMember]

174  ❘  Chapter 6   The Service Layer

 public string ReservationNumber {get; set;}

 [DataMember]
 public DateTime ExpirationDate { get; set; }

 [DataMember]
 public String EventName { get; set; }

 [DataMember]
 public String EventId { get; set; }

 [DataMember]
 public int NoOfTickets { get; set; }
 }
}

Next, add two classes that will represent the request portion of the messaging data transfer objects.
Add two new classes named PurchaseTicketRequest and ReserveTicketRequest. These data
containers are again decorated with the WCF attributes to enable serialization:

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
 [DataContract]
 public class PurchaseTicketRequest
 {
 [DataMember]
 public string CorrelationId { get; set; }

 [DataMember]
 public string ReservationId { get; set; }

 [DataMember]
 public string EventId { get; set; }
 }
}

using System.ServiceModel;
using System.Runtime.Serialization;

namespace ASPPatterns.Chap6.EventTickets.DataContract
{
 [DataContract]
 public class ReserveTicketRequest
 {
 [DataMember]
 public string EventId { get; set; }
 [DataMember]
 public int TicketQuantity { get; set; }
 }
}

An SOA Example  ❘  175

The next project you need to add for the construction of the service layer is the ASPPatterns.Chap6​
.EventTickets.Contracts project. Again, you will need to add a reference to the following assemblies:

System.Runtime.Serialization➤➤

System.ServiceModel➤➤

You also need to add a reference to the DataContract project.

This project holds the contract that the service will implement and that the client can work against.
Add a new class to the project named ITicketService with the following code contract:

using System.ServiceModel;
using ASPPatterns.Chap6.EventTickets.DataContract;

namespace ASPPatterns.Chap6.EventTickets.Contracts
{
 [ServiceContract(Namespace = “ASPPatterns.Chap6.EventTickets/”)]
 public interface ITicketService
 {
 [OperationContract()]
 ReserveTicketResponse ReserveTicket(ReserveTicketRequest reserveTicketRequest);

 [OperationContract()]
 PurchaseTicketResponse
 PurchaseTicket(PurchaseTicketRequest PurchaseTicketRequest);
 }
}

Add another class library to the service solution folder named ASPPatterns.Chap6.EventTickets​
.Service. This will hold the concrete implementation of the service as defined in the previous project.

Add the following project references to this project:

ASPPatterns.Chap6.EventTickets.Contracts➤➤

ASPPatterns.Chap6.EventTickets.DataContract➤➤

ASPPatterns.Chap6.EventTickets.Model➤➤

ASPPatterns.Chap6.EventTickets.Repository➤➤

Add two new classes named TicketPurchaseExtensionMethods and TicketReservationExtension​
Methods. These extension method classes enable the service class to convert a TicketReservation
and TicketPurchase entity respectively into a message document in a fluent manner, which will
become clear when you create the service class:

using ASPPatterns.Chap6.EventTickets.DataContract;
using ASPPatterns.Chap6.EventTickets.Model;

namespace ASPPatterns.Chap6.EventTickets.Service
{
 public static class TicketPurchaseExtensionMethods
 {
 public static PurchaseTicketResponse ConvertToPurchaseTicketResponse

176  ❘  Chapter 6   The Service Layer

 (this TicketPurchase ticketPurchase)
 {
 PurchaseTicketResponse response = new PurchaseTicketResponse();

 response.TicketId = ticketPurchase.Id.ToString();
 response.EventName = ticketPurchase.Event.Name;
 response.EventId = ticketPurchase.Event.Id.ToString();
 response.NoOfTickets = ticketPurchase.TicketQuantity;

 return response;
 }
 }
}

using ASPPatterns.Chap6.EventTickets.DataContract;
using ASPPatterns.Chap6.EventTickets.Model;

namespace ASPPatterns.Chap6.EventTickets.Service
{
 public static class TicketReservationExtensionMethods
 {
 public static ReserveTicketResponse ConvertToReserveTicketResponse
 (this TicketReservation ticketReservation)
 {
 ReserveTicketResponse response = new ReserveTicketResponse();

 response.EventId = ticketReservation.Event.Id.ToString();
 response.EventName = ticketReservation.Event.Name;
 response.NoOfTickets = ticketReservation.TicketQuantity;
 response.ExpirationDate = ticketReservation.ExpiryTime;
 response.ReservationNumber = ticketReservation.Id.ToString();

 return response;
 }
 }
}

To ensure that unexpected issues don’t arise due to problems with a client using the services that you
are about to build, you are going to adopt the Idempotent Messaging pattern.

Add a new class to the Services project named MessageResponseHistory with the following code
listing:

 public class MessageResponseHistory<T>
 {
 private Dictionary<string, T> _responseHistory;

 public MessageResponseHistory()
 {
 _responseHistory = new Dictionary<string, T>();
 }

 public bool IsAUniqueRequest(string correlationId)
 {
 return !_responseHistory.ContainsKey(correlationId);

An SOA Example  ❘  177

 }

 public void LogResponse(string correlationId, T response)
 {
 if (_responseHistory.ContainsKey(correlationId))
 _responseHistory[correlationId] = response;
 else
 _responseHistory.Add(correlationId, response);
 }

 public T RetrievePreviousResponseFor(string correlationId)
 {
 return _responseHistory[correlationId];
 }
 }

This class will hold in memory the result of the service response that is associated with a given correlation
identifier. This class could easily be hooked up to some kind of data store to provide out-of-process storage
of message responses. It may not be necessary to hold the result of every response, so this class could be
made to buffer the last N number of responses to ensure that the business logic is called only once.

Before you create the service class, there is just one more class that you will create to mock handling
errors and returning a reference identifier. Add a new class named ErrorLog to the project with the
single method detailed here:

 public class ErrorLog
 {
 public static string GenerateErrorRefMessageAndLog(Exception exception)
 {
 // Here you would log the error and the unique reference ID
 return String.Format
 (“If you wish to contact us please quote reference ‘{0}’”,
 Guid.NewGuid().ToString());
 }
 }

Now with all the supporting classes for the service implementation in place, you can create the actual
service class. Add a new class to the project named TicketService with the following code listing:

using System.ServiceModel.Activation;
using ASPPatterns.Chap6.EventTickets.Contracts;
using ASPPatterns.Chap6.EventTickets;
using ASPPatterns.Chap6.EventTickets.DataContract;
using ASPPatterns.Chap6.EventTickets.Model;
using ASPPatterns.Chap6.EventTickets.Repository;

namespace ASPPatterns.Chap6.EventTickets.Service
{
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class TicketService : ITicketService
 {
 private IEventRepository _eventRepository;
 private static MessageResponseHistory<PurchaseTicketResponse>

178  ❘  Chapter 6   The Service Layer

 _reservationResponse =
 new MessageResponseHistory<PurchaseTicketResponse>();

 public TicketService(IEventRepository eventRepository)
 {
 _eventRepository = eventRepository;
 }

 public TicketService() : this (new EventRepository())
 { }

 public ReserveTicketResponse ReserveTicket
 (ReserveTicketRequest reserveTicketRequest)
 {
 ReserveTicketResponse response = new ReserveTicketResponse();

 try
 {
 Event Event = _eventRepository.FindBy(
 new Guid(reserveTicketRequest.EventId));
 TicketReservation reservation;

 if (Event.CanReserveTicket(reserveTicketRequest.TicketQuantity))
 {
 reservation =
 Event.ReserveTicket(reserveTicketRequest.TicketQuantity);
 _eventRepository.Save(Event);
 response = reservation.ConvertToReserveTicketResponse();
 response.Success = true;
 }
 else
 {
 response.Success = false;
 response.Message = String.Format(
 “There are {0} ticket(s) available.”,
 Event.AvailableAllocation());
 }

 }
 catch (Exception ex)
 {
 // Shield exceptions
 response.Message = ErrorLog.GenerateErrorRefMessageAndLog(ex);
 response.Success = false;
 }
 return response;
 }

 public PurchaseTicketResponse PurchaseTicket
 (PurchaseTicketRequest purchaseTicketRequest)
 {
 PurchaseTicketResponse response = new PurchaseTicketResponse();

 try

An SOA Example  ❘  179

 {
 // Check for a duplicate transaction using the Idempotent pattern;
 // the Domain Logic could cope but you can’t be sure.
 if (_reservationResponse.IsAUniqueRequest
 (purchaseTicketRequest.CorrelationId))
 {
 TicketPurchase ticket;
 Event Event = _eventRepository.FindBy(
 new Guid(purchaseTicketRequest.EventId));

 if (Event.CanPurchaseTicketWith
 (new Guid(purchaseTicketRequest.ReservationId)))
 {
 ticket = Event.PurchaseTicketWith(
 new Guid(purchaseTicketRequest.ReservationId));

 _eventRepository.Save(Event);

 response = ticket.ConvertToPurchaseTicketResponse();
 response.Success = true;
 }
 else
 {
 response.Message =
 Event.DetermineWhyATicketCannotbePurchasedWith(
 new Guid(purchaseTicketRequest.ReservationId));
 response.Success = false;
 }

 _reservationResponse.LogResponse(
 purchaseTicketRequest.CorrelationId, response);
 }
 else
 {
 response = _reservationResponse.RetrievePreviousResponseFor(
 purchaseTicketRequest.CorrelationId);
 }
 }
 catch (Exception ex)
 {
 // Shield exceptions
 response.Message = ErrorLog.GenerateErrorRefMessageAndLog(ex);
 response.Success = false;
 }

 return response;
 }
 }
}

It’s important to explain exactly what this class is doing. First, the TicketService class has a ref-
erence to a static instance of a MessageResponseHistory object; this enables all service response
messages to be logged against a correlation identifier. When a new message request is received, the

180  ❘  Chapter 6   The Service Layer

service can check the MessageResponseHistory to determine if it has already been processed. You
will see this in action when you examine the PurchaseTicket method.

private static MessageResponseHistory<PurchaseTicketResponse>
 _reservationResponse =
 new MessageResponseHistory<PurchaseTicketResponse>();

The service has two constructors: one that takes no arguments and one that takes an instance of a
class that implements the IEventRepository:

 public TicketService(IEventRepository eventRepository)
 {
 _eventRepository = eventRepository;
 }

 public TicketService() : this (new EventRepository())
 { }

To keep things simple, I have opted to hard-code the concrete implementation of the ADO.NET Event​
Repository. However, later in the book you will be introduced to an Inversion of Control (IoC)
container that will enable dependencies to be injected into your code without tying you to a particular
implementation.

The ReserveTicket method is invoked by the client using the service. The sole parameter is the
ReserveTicketRequest as defined in the DataContract project. The first action of the method is
to retrieve the event that is associated with the requests event. Because I wanted to keep the exercise
as small as possible, I neglected to add validation of the request to ensure that it contains a valid
ReserveTicketRequest; this could be a simple method to ensure the request contains a valid GUID
and a nonnegative ticket quantity. Similarly, you could add code to check that an event exists for the
given EventId before trying to retrieve it.

If a valid event is found, its CanReserveTicket method is called to determine whether the quantity
of tickets requested can in fact be reserved. Refer to the description of the Event methods earlier in
this section to see how the Event entity determines whether the reservation request can be satisfied.
If the Event entity can reserve the requested number of tickets, a call to the Events ReserveTicket
is made; this workflow follows the Tester-Doer pattern. The ReserveTicket method creates a new
TicketReservation and adds it to the internal collection of reservations within the Event entity.

The changes to the event are then persisted using the EventRepository, and the TicketReservation
invokes the ConvertToReserveTicketResponse extension method to return a ReserveTicketResponse
ready to send back to the client:

public ReserveTicketResponse ReserveTicket
 (ReserveTicketRequest reserveTicketRequest)
 {
 ReserveTicketResponse response = new ReserveTicketResponse();

 try
 {
 Event Event = _eventRepository.FindBy(
 new Guid(reserveTicketRequest.EventId));
 TicketReservation reservation;

An SOA Example  ❘  181

 if (Event.CanReserveTicket(reserveTicketRequest.TicketQuantity))
 {
 reservation =
 Event.ReserveTicket(reserveTicketRequest.TicketQuantity);
 _eventRepository.Save(Event);
 response = reservation.ConvertToReserveTicketResponse();
 response.Success = true;
 }
 else
 {
 response.Success = false;
 response.Message = String.Format(
 “There are {0} ticket(s) available.”,
 Event.AvailableAllocation());
 }

 }
 catch (Exception ex)
 {
 // Shield exceptions
 response.Message = ErrorLog.GenerateErrorRefMessageAndLog(ex);
 response.Success = false;
 }
 return response;
 }

If the quantity of tickets cannot be reserved, the success flag on the response message is set to
false, and a message detailing the remaining ticket allocation is generated. All the logic within the
ReserveTicket method is wrapped within a single try catch block to ensure exceptions aren’t leaked
that could reveal the internal workings of the service. When an exception occurs, the ErrorLog static
class is used to log the exception and return a unique reference number the client can use. The unique
reference is then added to the response and returned to the client with the success flag set to false,
indicating that there was problem when the method was called.

The PurchaseTicket method is set up not too unlike the ReserveTicket method; again, any vali-
dation of the Request object has been left out for the sake of brevity:

public PurchaseTicketResponse PurchaseTicket
 (PurchaseTicketRequest purchaseTicketRequest)
 {
 PurchaseTicketResponse response = new PurchaseTicketResponse();

 try
 {
 // Check for a duplicate transaction using the Idempotent pattern;
 // the Domain Logic could cope, but you can’t be sure.
 if (_reservationResponse.IsAUniqueRequest
 (PurchaseTicketRequest.CorrelationId))
 {
 TicketPurchase ticket;
 Event Event = _eventRepository.FindBy(
 new Guid(purchaseTicketRequest.EventId));

 if (Event.CanPurchaseTicketWith

182  ❘  Chapter 6   The Service Layer

 (new Guid(purchaseTicketRequest.ReservationId)))
 {
 ticket = Event.PurchaseTicketWith(
 new Guid(purchaseTicketRequest.ReservationId));

 _eventRepository.Save(Event);

 response = ticket.ConvertToPurchaseTicketResponse();
 response.Success = true;
 }
 else
 {
 response.Message =
 Event.DetermineWhyATicketCannotbePurchasedWith(
 new Guid(purchaseTicketRequest.ReservationId));
 response.Success = false;
 }

 _reservationResponse.LogResponse(
 purchaseTicketRequest.CorrelationId, response);
 }
 else
 {
 response = _reservationResponse.RetrievePreviousResponseFor(
 purchaseTicketRequest.CorrelationId);
 }
 }
 catch (Exception ex)
 {
 // Shield Exceptions
 response.Message = ErrorLog.GenerateErrorRefMessageAndLog(ex);
 response.Success = false;
 }

 return response;
 }

This first action of the PurchaseTicket method is to check to see whether this service call has been
completed previously. You use the Idempotent pattern here to determine if there is a matching correla-
tion ID and response. The static MessageResponseHistory object takes care of storing and checking for
a matching response. If a match is found, the response is retrieved from the MessageResponseHistory
object and returned to the client ensuring that no unexpected problems arise if a client duplicates a
call to the service. If the response has not already been called, the workflow is similar to that of the
ReserveTicket method. An event is retrieved with a matching event ID, and a check is made to ensure
a ticket purchase transaction can continue with the given reservation ID. On success, the ticket is pur-
chased and a response is generated again using the extension method. The response is then logged with
the MessageResponseHistory object and returned to the client. If the ticket cannot be purchased using
the given reservation ID, a call to the event entity’s DetermineWhyATicketCannotbePurchasedWith
method returns details on any issues. Again, a single Try Catch block surrounds the method to ensure
that any exception thrown will not reveal the internal structure of the service.

An SOA Example  ❘  183

The final project required for the service layer solution is the hosting project. Add a new WCF
Service application project from the web node of the New Projects dialog box, and call this project
ASPPatterns.Chap6.EventTickets.HTTPHost. Add a reference to the following two projects:

ASPPatterns.Chap6.EventTickets.Contracts➤➤

ASPPatterns.Chap6.EventTickets.Service➤➤

Delete the Service1.svc code behind file and the IService1.svc interface that are generated by
Visual Studio. Rename Service1.svc to TicketService.svc and update the markup so that it
matches the code that follows:

<%@ ServiceHost Language=”C#”
 Service=”ASPPatterns.Chap6.EventTickets.Service.TicketService” %>

Open the web.config file so that you can configure the endpoints for the WCF service. You are going
to be serving via HTTP, so the binding will be set to wsHttpBinding. The contract for the service is
defined in a separate assembly ASPPatterns.Chap6.EventTickets.Contracts.ITicketService:

<configuration>
…
<system.serviceModel>
 <services>
 <service name=”ASPPatterns.Chap6.EventTickets.Service.TicketService”
 behaviorConfiguration=”metadataBehavior”>
 <endpoint address=””
 binding=”wsHttpBinding”
 contract=”ASPPatterns.Chap6.EventTickets.Contracts.ITicketService” />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name=”metadataBehavior”>
 <serviceMetadata httpGetEnabled=”true” />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

The one last thing before the service layer is complete is the building of the database that will store
the state of the Event and Ticket entities. Add a new database to the HTTPHost project named
EventTickets and create the following three tables.

Table 6-1:  Events

Column Name Data Type Allow Nulls

ID Uniqueidentifier, Primary Key False

Name nvarchar(50) False

Allocation Int False

184  ❘  Chapter 6   The Service Layer

Table 6-2:  PurchasedTickets

Column Name Data Type Allow Nulls

ID Uniqueidentifier, Primary Key False

TicketQuantity Int False

EventID Uniqueidentifier False

Table 6-3:  ReservedTickets

Column Name Data Type Allow Nulls

ID Uniqueidentifier, Primary Key False

ExpiryTime Datetime False

TicketQuantity Int False

EventID Uniqueidentifier False

HasBeenRedeemed Bit False

Run the following SQL to populate the Events table because you haven’t added the code to the
repository to support adding events:

INSERT INTO EVENTS
(Id, Name, Allocation)
VALUES
(NEWID(), ‘Portsmouth v Southampton’, 50)

This completes the service layer. Your solution should resemble Figure 6-10.

With the service layer complete, you can turn to building the client projects that will consume
the service.

Client Proxy
To enable the client to use the service, you need to create a proxy. You could have Visual Studio
generate one for you by adding a service reference and pointing it at the HTTPHost project’s
TicketService. However, because you own the client and the service, it makes perfect sense to
reuse the data contracts and service contract and create the proxy yourself.

Add a new C# class library project to the client solution folder named ASPPatterns.Chap6.
EventTickets.ServiceProxy. Add a project reference to the following projects:

ASPPatterns.Chap6.EventTickets.Contracts➤➤

ASPPatterns.Chap6.EventTickets.DataContract➤➤

An SOA Example  ❘  185

Figure 6-10

Add a new class to the ServiceProxy project named TicketServiceClientProxy with the follow-
ing definition:

using System.ServiceModel;
using ASPPatterns.Chap6.EventTickets.Contracts;
using ASPPatterns.Chap6.EventTickets.DataContract;

namespace ASPPatterns.Chap6.EventTickets.ServiceProxy
{
 public class TicketServiceClientProxy : ClientBase<ITicketService>, ITicketService
 {
 public ReserveTicketResponse ReserveTicket(
 ReserveTicketRequest reserveTicketRequest)
 {
 return base.Channel.ReserveTicket(reserveTicketRequest);

186  ❘  Chapter 6   The Service Layer

 }

 public PurchaseTicketResponse PurchaseTicket(
 PurchaseTicketRequest purchaseTicketRequest)
 {
 return base.Channel.PurchaseTicket(purchaseTicketRequest);
 }
 }
}

This class provides the channel that allows you to talk to the WCF service. The ClientBase abstract
class that the TicketServiceClientProxy inherits from reads from a default target endpoint from
the application configuration file, which you will add to the web application in the next section. This
is the same base class that is used when Visual Studio automatically creates a proxy service for you.

With the proxy service in place, you can build a service facade for the client web application to talk to.
You are creating a facade to hide the complexities of talking to the service and to loosely couple the cli-
ent application from the service, which will help with testing. The service facade will use two specific
Presentation model classes: TicketPresentation and TicketReservationPresentation. The web
application only uses these classes to display data from the service facade; any logic contained within
is strictly presentation logic. You will learn more about Presentation models in Chapter 8. Add the two
classes, and update them to match the following code listing:

 public class TicketPresentation
 {
 public string TicketId { get; set; }
 public string EventId { get; set; }
 public string Description { get; set; }
 public bool WasAbleToPurchaseTicket { get; set; }
 }

 public class TicketReservationPresentation
 {
 public string EventId { get; set; }
 public string ReservationId {get; set;}
 public string Description { get; set; }
 public DateTime ExpiryDate { get; set; }
 public bool TicketWasSuccessfullyReserved { get; set; }
 }

With the supporting Presentation model classes in place, you can add the TicketServiceFacade
class with the following code listing:

using ASPPatterns.Chap6.EventTickets.Contracts;
using ASPPatterns.Chap6.EventTickets.DataContract;

namespace ASPPatterns.Chap6.EventTickets.ServiceProxy
{
 public class TicketServiceFacade
 {
 private ITicketService _ticketService;

 public TicketServiceFacade(ITicketService ticketService)
 {

Available for
download on
Wrox.com

An SOA Example  ❘  187

 _ticketService = ticketService;
 }

 public TicketReservationPresentation ReserveTicketsFor(
 string EventId, int NoOfTkts)
 {
 TicketReservationPresentation reservation =
 new TicketReservationPresentation();
 ReserveTicketRequest request = new ReserveTicketRequest();

 request.EventId = EventId;
 request.TicketQuantity = NoOfTkts;

 ReserveTicketResponse response = _ticketService.ReserveTicket(request);

 if (response.Success)
 {
 reservation.TicketWasSuccessfullyReserved = true;
 reservation.ReservationId = response.ReservationNumber;
 reservation.ExpiryDate = response.ExpirationDate;
 reservation.EventId = response.EventId;
 reservation.Description = String.Format(
 “{0} ticket(s) reserved for {1}.
” +
 “<small>This reservation will expire on {2} at {3}.</small>”,
 response.NoOfTickets, response.EventName,
 response.ExpirationDate.ToLongDateString(),
 response.ExpirationDate.ToLongTimeString());
 }
 else
 {
 reservation.TicketWasSuccessfullyReserved = false;
 reservation.Description = response.Message;
 }

 return reservation;
 }

 public TicketPresentation PurchaseReservedTicket(
 string eventId, string reservationId)
 {
 TicketPresentation ticket = new TicketPresentation();
 PurchaseTicketResponse response = new PurchaseTicketResponse();
 PurchaseTicketRequest request = new PurchaseTicketRequest();
 request.ReservationId = reservationId;
 request.EventId = eventId;
 request.CorrelationId = reservationId;
 response = _ticketService.PurchaseTicket(request);
 if (response.Success)
 {
 ticket.Description = String.Format(
 “{0} ticket(s) purchased for {1}.
” +
 “<small>Your e-ticket id is {2}.</small>”,
 response.NoOfTickets, response.EventName,
 response.TicketId);
 ticket.EventId = response.EventId;
 ticket.TicketId = response.TicketId;

188  ❘  Chapter 6   The Service Layer

 ticket.WasAbleToPurchaseTicket = true;
 }
 else
 {
 ticket.WasAbleToPurchaseTicket = false;
 ticket.Description = response.Message;
 }

 return ticket;
 }

 }
}

code snippet TicketServiceFacade.cs in ASPPatterns.Chap6.EventTickets.ServiceProxy

The role of the service facade is to simplify the interaction between the client and the service. The
client application does not need to be responsible for knowing about messaging patterns and how
to talk with the service proxy. The two methods of the TicketServiceFacade should be fairly
straightforward because they follow the same workflow.

	 1.	 Generate a request.

	 2.	 Pass the request to the proxy service (referenced by its interface so that you can test with a
mock service).

	 3.	 Retrieve the response and build the Presentation model.

With the service proxy constructed you can create a client web application that will use the service
proxy to simplify the communication with the real web service.

Client
The last part of the solution consists of creating the web site that will talk to the service facade and
in turn to the proxy who talks to the actual service layer.

Add a new web application to the client solution folder named ASPPatterns.Chap6.
EventTickets.WebShop. Add a reference to the following projects:

ASPPatterns.Chap6.EventTickets.ServiceProxy➤➤

ASPPatterns.Chap6.EventTickets.Contracts➤➤

In addition, add a reference to the .NET System.ServiceModel assembly.

The first item you will add to the web application project is a Basket class that will act as a simple
shopping basket for customers to purchase tickets. Add the new Basket class with the following listing:

using System.Web;
using ASPPatterns.Chap6.EventTickets.ServiceProxy;

namespace ASPPatterns.Chap6.EventTickets.WebShop
{
 public class Basket

An SOA Example  ❘  189

 {
 public Guid Id { get; set;}
 public TicketReservationPresentation Reservation { get; set; }

 public static Basket GetBasket()
 {
 if (HttpContext.Current.Session[“Basket”] == null)
 HttpContext.Current.Session[“Basket”] = new Basket
 { Id = Guid.NewGuid()};

 return (Basket)HttpContext.Current.Session[“Basket”];
 }

 public static void Clear()
 {
 HttpContext.Current.Session[“Basket”] = null;
 }
 }
}

This Basket class will simply hold onto the current TicketReservationPresentation.

The first web page that you will create is the form that will allow customers to input the number of
tickets they want to reserve. Amend the Default.aspx markup to match the snippet that follows:

…
<form id=”form1” runat=”server”>
 <div>
 <h2>Basket</h2>
 I want
 <asp:TextBox ID=”txtNoOfTickets” runat=”server” Width=”43px”/>
 tickets to see
 <asp:DropDownList ID=”ddlEvents” runat=”server”>
 <asp:ListItem Value=”2de874d0-00b7-4c86-9925-c7f2c243151c”>
 Portsmouth vs Southampton</asp:ListItem>
 </asp:DropDownList>
 <p>
 <asp:Button
 ID=”btnReserveTickets” runat=”server”
 Text=”Reserve & Checkout” onclick=”btnReserveTickets_Click” />

 <small>”Reserve & Checkout” Reserves the Tickets for you as part
 of the Reservation Pattern.</small>
 </p>
 </div>
</form>
…

Ensure that the bolded item in the drop-down list matches the event that you added to the Events table.

Switch to the code behind, and amend it to match the code listing that follows:

using ASPPatterns.Chap6.EventTickets.ServiceProxy;
using ASPPatterns.Chap6.EventTickets.Contracts;

namespace ASPPatterns.Chap6.EventTickets.WebShop

190  ❘  Chapter 6   The Service Layer

{
 public partial class _Default : System.Web.UI.Page
 {
 protected void btnReserveTickets_Click(object sender, EventArgs e)
 {
 Basket.Clear();

 TicketServiceFacade ticketService =
 new TicketServiceFacade(new TicketServiceClientProxy());
 TicketReservationPresentation reservation =
 ticketService.ReserveTicketsFor(ddlEvents.SelectedValue,
 int.Parse(this.txtNoOfTickets.Text));

 if (reservation.TicketWasSuccessfullyReserved)
 {
 Basket.GetBasket().Reservation = reservation;
 Response.Redirect(“Checkout.aspx”);
 }

 Response.Write(“Your tickets were unable to be reserved.
” +
 reservation.Description);
 }
 }
}

The single method handles the btnReserveTickets click event and creates a new TicketService​
Facade passing in an instance of the TicketServiceClientProxy. As previously mentioned in
Chapter 8, you will look at a better method of supplying your dependencies using an IoC container.
Once the TicketServiceFacade is created, a call to the ReserveTicketsFor method is made,
passing in the customer choices. A TicketReservationPresentation is returned; based on the
TicketWasSuccessfullyReserved flag, the customer is forwarded to the checkout page, or a mes-
sage is displayed explaining why the tickets cannot be allocated.

Now that you can reserve tickets, you need to be able to purchase them. Create a new web form
named Checkout.aspx and add the following markup:

 …
 <form id=”form1” runat=”server”>
 <div>
 <h2>Checkout</h2>
 In your basket you have:
 <p>
 <asp:Label ID=”lblBasketContents” runat=”server” Text=”” />
 </p>
 <asp:Button ID=”btnPlaceOrder” runat=”server”
 Text=”Place Order” onclick=”btnPlaceOrder_Click” />

 <small>Click the “Place Order” button again and the Ticket Id will
 always return the same due to the use of the Idempotent Pattern.</small>
 <p>
 <asp:Label ID=”lblThankYou” runat=”server” Text=””></asp:Label>
 <p/>

An SOA Example  ❘  191

 </div>
 </form>
 …

Flip over to the code behind and update it with the following code listing:

using ASPPatterns.Chap6.EventTickets.ServiceProxy;
using ASPPatterns.Chap6.EventTickets.Contracts;

namespace ASPPatterns.Chap6.EventTickets.WebShop
{
 public partial class Checkout : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 DisplayTicketReservations();
 }

 private void DisplayTicketReservations()
 {
 lblBasketContents.Text = Basket.GetBasket().Reservation.Description;
 }

 protected void btnPlaceOrder_Click(object sender, EventArgs e)
 {
 TicketServiceFacade ticketService =
 new TicketServiceFacade(new TicketServiceClientProxy());
 TicketPresentation ticket =
 ticketService.PurchaseReservedTicket(
 Basket.GetBasket().Reservation.EventId,
 Basket.GetBasket().Reservation.ReservationId.ToString());

 DisplayTicketReservations();

 if (ticket.WasAbleToPurchaseTicket)
 lblThankYou.Text = “<h2>Thank you for your order.</h2>” +
 ticket.Description;
 else
 lblThankYou.Text = “<h2>Sorry there was a problem with your order.</h2>”
 + ticket.Description;
 }

 }
}

The code behind page creates a TicketServiceFacade in the same manner as the Default.aspx
page and calls the PurchaseReservedTicket method, passing through the original reservation ID
and event ID held within the basket. A TicketPresentation is returned from the method call and,
depending on the WasAbleToPurchaseTicket flag, a message is displayed with the successfully pur-
chased ticket ID or a message detailing why the ticket could not be purchased.

192  ❘  Chapter 6   The Service Layer

To let the TicketServiceClientProxy talk to the WCF service, you have to amend the web.config
with the binding settings. Open the web.config file and enter the following XML:

<configuration>
 ...
 <system.serviceModel>
 <client>
 <endpoint
 address=”http://localhost:25076/TicketService.svc”
 binding=”wsHttpBinding”
 contract=”ASPPatterns.Chap6.EventTickets.Contracts.ITicketService”/>
 </client>
 </system.serviceModel>
</configuration>

Ensure that the bolded address port number
matches the port number that the built-in web
server uses to serve the HTTPHost project. To
obtain this, right-click on the HTTPHost project
and select Debug ➪ Start New Instance. Make a
note of the port number that is displayed on your
taskbar, as shown in Figure 6-11.

With the HTTPPost project still running, you can
right-click on the web application project and select
Debug ➪ Start New Instance to launch the web site.
You can now test the system. Ensure, however, that
the HTTPPost project is always running to service the
requests.

That completes the SOA exercise; Figure 6-12 shows
the solution with the added client projects.

With the service built, other clients can now use the
web service, and a host of ticket affiliate agents can use
it to reserve and purchase tickets.

Summary

In this chapter you looked at the role the service layer
plays in an enterprise application. Sitting between the
presentation and business layer, the service interface
encapsulates the business domain logic, coordinates
transactions and responses, and defines an API as a set
of coarse-grained methods available to clients. You read about what SOA was and saw how to apply
it to an organization to improve maintenance and reusability. SOA has principles in the form of the
following tenets:

Boundaries are explicit.➤➤

Figure 6-11

Figure 6-12

Summary  ❘  193

Services are autonomous.➤➤

Services share schema and contract, not class.➤➤

Service compatibility is based on policy.➤➤

The Facade design pattern was introduced to show how a complicated interface can be hidden behind
a simplified API that is consistent to your application. Toward the end of the chapter, you used this
pattern to abstract the mechanics of communicating with the service endpoints using that messaging
pattern, making a simplified interface for the client application.

Messaging patterns were then introduced as a way to create SOAs. You looked at four messaging
patterns:

Document Message➤➤

Request-Response ➤➤

Reservation ➤➤

Idempotent ➤➤

You finished the chapter with by putting into practice all the information you read about regarding
SOA. The exercise used WCF to enable affiliate applications to reserve and purchase tickets via a
service interface that encapsulated a domain model.

In the next chapter, you will investigate the various patterns and principles that you can use in the
data access layer of an enterprise ASP.NET application.

The Data access layer

whaT’s in This chaPTer?

Two data access strategies to help organize your persistence layer: ➤➤

Repository and Data Access Objects

Data patterns and principles to help you fulfi ll your data access ➤➤

requirement needs elegantly, including Lazy Loading, Identity Map,
Unit of Work, and Query Object

An introduction to object relational mappers and the problems they ➤➤

solve

An enterprise domain-driven exercise with POCO business entities ➤➤

utilizing both NHibernate and the MS Entity Framework

So far, you have read about the business layer of an enterprise ASP.NET application, the pat-
terns used to organize it, and the patterns found within. You then looked at the service layer,
which gave an entry point into a system. This chapter focuses on the data access layer (DAL)
and covers patterns that allow you to retrieve and persist your business entities, ensuring you
leave your data in a valid state.

Describing The Dal

The DAL is the layer in your application that is solely responsible for talking to the data store
and persisting and retrieving your business objects. (Note the reference to a data store and not
a database. You don’t always have to have a database; sometimes an XML fi le is suffi cient.)
The DAL typically includes all the create, read, update, and delete (CRUD) methods, transac-
tion management, data concurrency, as well as a querying mechanism to enable your business
logic layer to retrieve objects for any given criteria.

7

196  ❘  Chapter 7   The Data Access Layer

The DAL should not contain business logic and should be accessed via the business logic layer through
interfaces; this adheres to the separation of concerns principle and ensures that the business layer
remains unaware of the underlying data access implementation strategy. This is important for both
testing and ensuring your business layer is not dependent on a particular data access implementation.

Data Access Strategies

The choice you make for the organization of your business layer helps shape the architecture of your
data access strategy. This section examines three patterns that you can use with the business organi-
zation methods as described in Chapter 5. These patterns are Transaction Script, Active Record, and
Domain Model.

The Repository Pattern
You have seen examples in previous chapters of the Repository pattern. A Repository acts like an
in-memory collection, completely isolating business entities from the underlying data infrastructure,
which makes it a great accompaniment for the Domain Model business pattern that utilizes plain
old common lanuage runtime object (POCO) and persistence ignorant (PI) objects, as discussed
in Chapter 4. When used in projects that support the domain-driven design (DDD) methodology,
a Repository typically exists for each aggregate root identified within your domain model. (See
Chapter 4 for more information on DDD.)

A typical interface for a Repository is shown here:

 public interface IRepository<T>
 {
 IEnumerable<T> FindAll();
 IEnumerable<T> FindAll(int index, int count);

 IEnumerable<T> FindBy(Query query);
 IEnumerable<T> FindBy(Query query, int index, int count);

 T FindBy(Guid Id);

 void Add(T entity);
 void Save(T entity);
 void Remove(T entity);
 }

As you can see, the interface provides the standard methods for business entity persistence, but
retrieval of business entities is handled slightly differently. A Query Object, which will be discussed
later in the chapter, queries the Repository in a data-agnostic manner, thus decoupling the business
modules from the underlying data store implementation and the data schema.

With the advent of Language Integrated Query (LINQ) and the delayed execution model, Repositories
can now expose an IQueryable FindAll method that allows the business layer to query a Repository
directly, as in the code snippet that follows:

 public interface IRepository<T>

Patterns in Data Access  ❘  197

 {
 IQueryable<T> FindAll();

 T FindBy(Guid Id);

 void Add(T entity);
 void Save(T entity);
 void Remove(T entity);
 }

An IQueryable return type, however, is not universally viewed as such a good way to go when try-
ing to keep persistence concerns out of your domain or business layer, because not all LINQ provid-
ers behave in the same manner or offer the same level of features.

You will see examples of the Repository pattern used throughout this chapter.

Data Access Objects Pattern
The Data Access Objects (DAO) pattern is a simple one designed to separate the elements of your
DAL from the rest of the application. On the face of it, it seems similar to the Repository pattern.
However, the DAO does not hide the fact that behind the interface is a data table, and typically one
DAO is created for each table in the database.

The code snippet that follows shows an example of an interface for a DAO:

 public interface IProductDAO
 {
 Product Get(int id);

 IEnumerable<Product> FindByCategory(int id);
 IEnumerable<Product> FindByBrand(int id);
 IEnumerable<Product> FindByTopSelling(int count);

 void Add(Product product);
 void Save(Product product);
 void Remove(Product product);
 }

Because of their one-to-one match with data tables, DAOs are good matches for both the Active
Record and Transaction Script Business patterns. In the end, the DAO and Repository patterns are
very similar. The Repository pattern acts at a higher level of abstraction working with aggregations
of business entities whereas the DAO objects usually have one-to-one mapping with data tables and
entities.

Patterns in Data Access

The remainder of this chapter focuses on the patterns found behind the interfaces or gateways in
the persistence layer offered by both the Repository and DAO interfaces. The patterns cover the
fundamentals of any DAL’s strategy — ​namely, transaction management, data integrity, and data
querying.

198  ❘  Chapter 7   The Data Access Layer

Unit of Work
The Unit of Work pattern is designed to maintain a list of business objects that have been changed
by a business transaction, whether by adding, removing, or updating. The Unit of Work then coor-
dinates the persistence of the changes and any concurrency problems flagged. The benefit of utilizing
the Unit of Work in your DAL is to ensure data integrity; if an issue arises partway through persist-
ing a series of business objects as part of a transaction, all changes should be rolled back to ensure
that the data remains in a valid state.

To demonstrate the Unit of Work pattern, you will be using a simple banking domain to model the
transfer of funds between two accounts. Figure 7-1 shows the interaction between the service layer
and the repository layer using the Unit of Work pattern to ensure that the transfer commits as one
atomic Unit of Work.

Transfer(AccountA, AccountB, Amount)

Client

Save(AccountA)

Save(AccountB)

AccountService

RegisterAmended(AccountA)

RegisterAmended(AccountB)

Commit()

AccountRepository UnitOfWork

Figure 7-1

The Unit of Work structure in this example is based on the framework that Tim McCarthy uses in
his book .NET Domain-Driven Design with C#: Problem-Design-Solution.

Figure 7-2 shows the classes that you will create in this exercise and exactly how they relate to each
other to make unit of work pattern.

Create a new solution named ASPPatterns.Chap7.UnitOfWork and add the following class library
projects:

ASPPatterns.Chap7.UnitOfWork.Infrastructure➤➤

ASPPatterns.Chap7.UnitOfWork.Model➤➤

ASPPatterns.Chap7.UnitOfWork.Repository➤➤

Tr
an

sf
er

(A
cc

ou
nt

A
, A

cc
ou

nt
B

, A
m

ou
nt

)

C
lie

nt

S
av

e(
A

cc
ou

nt
A

)

S
av

e(
A

cc
ou

nt
B

)

A
cc

ou
nt

S
er

vi
ce

Re
gi

st
er

A
m

en
de

d(
A

cc
ou

nt
A

, t
hi

s)

Re
gi

st
er

A
m

en
de

d(
A

cc
ou

nt
B

, t
hi

s)

Pe
rs

is
tU

pd
at

eO
f(A

cc
ou

nt
A

)

Pe
rs

is
tU

pd
at

eO
f(A

cc
ou

nt
B

)

C
om

m
it

A
cc

ou
nt

Re
po

si
to

ry
U

ni
tO

fW
or

k

Th
e

U
ni

tO
fW

or
k

st
or

es
 th

e
en

tit
y

to
 b

e
up

da
te

d
al

on
g

w
ith

 th
e

re
po

si
to

ry
 th

at
 w

ill
 d

o
th

e
w

or
k

of
 u

pd
at

in
g.

Th
e

C
om

m
it

m
et

ho
d

ca
lls

 b
ac

k
to

th
e

re
po

si
to

ry
 u

si
ng

 it
s

IU
ni

tO
fW

or
kR

ep
os

ito
ry

 in
te

rf
ac

e
to

 c
ar

ry
 o

ut
 th

e
ac

tu
al

 u
pd

at
e

to
 th

e
da

ta
ba

se
. A

ll
of

 th
e

ac
tio

ns
oc

cu
r

in
 a

 tr
an

sa
ct

io
n

so
 if

 a
n

ex
ce

pt
io

n
is

 th
ro

w
n

th
e

w
or

k
is

ro
lle

d
ba

ck
.

Th
e

A
cc

ou
nt

Re
po

si
to

ry
 im

pl
em

en
ts

 b
ot

h
th

e
IA

cc
ou

nt
Re

po
si

to
ry

 a
nd

 th
e

IU
ni

tO
fW

or
kR

ep
os

ito
ry

Fi
g

u
r

e
7-

2

200  ❘  Chapter 7   The Data Access Layer

Right-click on the ASPPatterns.Chap7.UnitOfWork.Model and add a project reference to the
ASPPatterns.Chap7.UnitOfWork.Infrastructure project. Right-click on the ASPPatterns​
.Chap7.UnitOfWork.Repository project and add a project reference to the ASPPatterns.Chap7​
.UnitOfWork.Infrastructure and the ASPPatterns.Chap7.UnitOfWork.Model projects.

You will start the solution by creating all the infrastructure code to support the Unit of Work pattern.
Add a new interface to the infrastructure named IAggregateRoot with the following contract:

 public interface IAggregateRoot
 {
 }

The IAggregateRoot interface is actually a pattern in itself called the marker interface pattern. The
interface acts as meta data for a class and methods that interact with instances of that class test for
the existence of the interface before carrying out their work. You will see this pattern used later in
this chapter when you build a repository layer that will only persist business objects that implement
the IAggregateRoot interface.

The Unit of Work implementation will use the IAggregateRoot interface to reference any business
entity that is partaking in an atomic transaction. Add another interface to the Infrastructure
project named IUnitOfWorkRepository, with the contract listing that follows:

 public interface IUnitOfWorkRepository
 {
 void PersistCreationOf(IAggregateRoot entity);
 void PersistUpdateOf(IAggregateRoot entity);
 void PersistDeletionOf(IAggregateRoot entity);
 }

The IUnitOfWorkRepository is a second interface that all Repositories are required to implement if
they intend to be used in a Unit of Work. You could have added this contract definition to the model
Repository interface that you will add later, but the interfaces are addressing two different types of
concerns. This is the definition of the Interface Segregation principle that Chapter 5 introduced.

Finally, add a third interface to the Infrastructure project named IUnitOfWork, the definition of
which you can find here:

 public interface IUnitOfWork
 {
 void RegisterAmended(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository);
 void RegisterNew(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository);
 void RegisterRemoved(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository);
 void Commit();
 }

The IUnitOfWork interface requires the IUnitOfWorkRepository when registering an amend/
addition/​deletion so that, on commitment, the Unit of Work can delegate the work of the actual
persistence method to the appropriate concrete implementation. The logic behind the IUnitOfWork

Patterns in Data Access  ❘  201

methods will become a lot clearer when you look at a default implementation of the IUnitOfWork
interface, which is what you are going to do next.

Add a new class to the Infrastructure project named UnitOfWork, and update the newly created
class with the following code:

using System.Transactions;

namespace ASPPatterns.Chap7.UnitOfWork.Infrastructure
{
 public class UnitOfWork : IUnitOfWork
 {
 private Dictionary<IAggregateRoot, IUnitOfWorkRepository> addedEntities;
 private Dictionary<IAggregateRoot, IUnitOfWorkRepository> changedEntities;
 private Dictionary<IAggregateRoot, IUnitOfWorkRepository> deletedEntities;

 public UnitOfWork()
 {
 addedEntities =
 new Dictionary<IAggregateRoot, IUnitOfWorkRepository>();
 changedEntities =
 new Dictionary<IAggregateRoot, IUnitOfWorkRepository>();
 deletedEntities =
 new Dictionary<IAggregateRoot, IUnitOfWorkRepository>();
 }

 public void RegisterAmended(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 if (!changedEntities.ContainsKey(entity))
 {
 changedEntities.Add(entity, unitofWorkRepository);
 }
 }

 public void RegisterNew(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 if (!addedEntities.ContainsKey(entity))
 {
 addedEntities.Add(entity, unitofWorkRepository);
 };
 }

 public void RegisterRemoved(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 if (!deletedEntities.ContainsKey(entity))
 {
 deletedEntities.Add(entity, unitofWorkRepository);
 }
 }

 public void Commit()
 {

Available for
download on
Wrox.com

202  ❘  Chapter 7   The Data Access Layer

 using (TransactionScope scope = new TransactionScope())
 {
 foreach (IAggregateRoot entity in this.addedEntities.Keys)
 {
 this.addedEntities[entity].PersistCreationOf(entity);
 }

 foreach (IAggregateRoot entity in this.changedEntities.Keys)
 {
 this.changedEntities[entity].PersistUpdateOf(entity);
 }

 foreach (IAggregateRoot entity in this.deletedEntities.Keys)
 {
 this.deletedEntities[entity].PersistDeletionOf(entity);
 }

 scope.Complete();
 }
 }

 }
}

Code snippet UnitOfWork.cs in the project ASPPatterns.Chap7.UnitOfWork

You are required to add a reference to System.Transactions so you can use the TransactionScope
class, which will ensure the persistence will commit in an atomic transaction. The UnitOfWork class
uses three dictionaries to track pending changes to business entities. The first dictionary corresponds
to entities to be added to the data store. The second dictionary tracks entities to be updated, and the
third deals with entity removal. A matching IUnitOfWorkRepository is stored against the entity
key in the dictionary and is used in the Commit method to call the Repository, which will contain
the code to actually persist an entity. The Commit method loops through each dictionary and calls
the appropriate IUnitOfWorkRepository method passing a reference to the entity. The work in the
Commit method is wrapped in a TransactionScope using block; this ensures that no work is done
until the TransactionScope Complete method is called. If an exception occurs while you are per-
forming work within the IUnitOfWorkRepository, all work is rolled back, and the data store is left
in its original state.

To demonstrate the Unit of Work pattern in action, you will build a simple bank account domain to
handle transfers between two accounts. Add a new class to the Model project named Account. The
Account class represents a bank account and contains a single property to hold the account balance.
The code listing for this class is shown here:

using ASPPatterns.Chap7.UnitOfWork.Infrastructure;

namespace ASPPatterns.Chap7.UnitOfWork.Model
{
 public class Account : IAggregateRoot
 {
 public decimal balance { get; set; }
 }
}

Patterns in Data Access  ❘  203

To enable persistence of the Account, you will add a cut down version of a Repository interface
containing the methods relevant to this example. Create a new interface within the Model project
named IAccountRepository with the following contract:

 public interface IAccountRepository
 {
 void Save(Account account);
 void Add(Account account);
 void Remove(Account account);
 }

There is no need to add contract definitions for Account retrieval, because this demonstration will
not use them.

To complete the model, you will create a service class to coordinate the transferring of monies between
two accounts. Add a new class named AccountService with the following code:

using ASPPatterns.Chap7.UnitOfWork.Infrastructure;

namespace ASPPatterns.Chap7.UnitOfWork.Model
{
 public class AccountService
 {
 private IAccountRepository _accountRepository;
 private IUnitOfWork _unitOfWork;

 public AccountService(IAccountRepository accountRepository,
 IUnitOfWork unitOfWork)
 {
 _accountRepository = accountRepository;
 _unitOfWork = unitOfWork;
 }

 public void Transfer(Account from, Account to, decimal amount)
 {
 if (from.balance >= amount)
 {
 from.balance -= amount;
 to.balance += amount;

 _accountRepository.Save(from);
 _accountRepository.Save(to);
 _unitOfWork.Commit();
 }
 }
 }
}

The AccountService requires an implementation of the IAccountRepository and IUnitOfWork via its
constructor. (See Chapter 5, which covers Dependency Injection.) The Transfer method checks that the
transfer of funds can take place before adjusting the balances of each account. It then calls the account
Repository to save both accounts. Finally, it calls the Commit method of the Unit of Work instance to
ensure that the transaction is completed as an atomic Unit of Work. So how do the Repository and Unit
of Work interact? Well, you’ll stub out an implementation of the Account Repository to find out.

204  ❘  Chapter 7   The Data Access Layer

Add a new class named AccountRepository to the Repository project and update it with the fol-
lowing code listing:

using ASPPatterns.Chap7.UnitOfWork.Model;
using ASPPatterns.Chap7.UnitOfWork.Infrastructure;

namespace ASPPatterns.Chap7.UnitOfWork.Repository
{
 public class AccountRepository : IAccountRepository, IUnitOfWorkRepository
 {
 private IUnitOfWork _unitOfWork;

 public AccountRepository(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }

 public void Save(Account account)
 {
 _unitOfWork.RegisterAmended(account, this);
 }

 public void Add(Account account)
 {
 _unitOfWork.RegisterNew(account, this);
 }

 public void Remove(Account account)
 {
 _unitOfWork.RegisterRemoved(account, this);
 }

 public void PersistUpdateOf(IAggregateRoot entity)
 {
 // ADO.NET code to update the entity...
 }

 public void PersistCreationOf(IAggregateRoot entity)
 {
 // ADO.NET code to add the entity...
 }

 public void PersistDeletionOf(IAggregateRoot entity)
 {
 // ADO.NET code to delete the entity...
 }
 }
}

The AccountRepository implements both the Model.IAccountRepository and the Infrastructre​
.IUnitOfWorkRepository interfaces. The implementation of the IAccountRepository methods
simply delegates work to the Unit of Work, passing the entity to be persisted along with a reference
to the Repository, which of course implements the IUnitOfWorkRepository. As seen previously
when the Unit of Work’s Commit method is called, the Unit of Work refers to the Repository’s imple-
mentation of the IUnitOfWorkRepository contract to perform the real persistence requirements.

Patterns in Data Access  ❘  205

For brevity, and to keep the example simple and easy to follow, the ADO.NET code to persist the
Account entity has been omitted. Note that the Unit of Work implementation is injected into the
Repository via its constructor. This allows many Repositories to share the Unit of Work, because
some transactions will span more than one Repository.

Data Concurrency Control
Data Concurrency Control is the system of handling multiple modifications to business objects being
persisted at the same time. When multiple users change the state of a business object and try to con-
currently persist it to the database, a mechanism needs to be in place to ensure that one user’s modifi-
cation does not negatively affect the state of the transaction from other concurrent users.

There are two forms of concurrency control: optimistic and pessimistic. The optimistic concurrency
option assumes that there are no issues with multiple users making changes simultaneously to the
state of business objects, also known as last change wins. For some systems, this is perfectly reason-
able behavior; however, when the state of your business objects needs to be consistent with the state
when retrieved from the database, pessimistic concurrency is required.

Pessimistic concurrency can come in many flavors, from locking the data table when a record is retrieved
to keeping a copy of the original contents of a business object and comparing that to the version in the
data store before an update is made to ensure there have been no changes to a record during a transac-
tion. In this section, you will use a version number to check whether a business entity has been amended
since being retrieved from the database. Upon an update, the version number of the business entity will
be compared to the version number residing in the database before committing a change. This ensures
that the business entity has not been modified since being retrieved.

To demonstrate the pessimistic concurrency pattern, you will build a simple application to save details
and ensure that data integrity is maintained between the retrieval and update of an entity.

Create a new solution named ASPPatterns.Chap7.Concurrency and add the following class library
projects:

ASPPatterns.Chap7.Concurrency.Model➤➤

ASPPatterns.Chap7.Concurrency.Repository➤➤

Right-click on the Repository project and add a reference to the Model project. Add a new class to
the Model project named Person. Update the class with the following code listing:

 public class Person
 {
 public Guid Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int Version { get; set; }
 }

The Version property will be set when the Person entity is retrieved from the data store. If you feel
uncomfortable with the Version property being on the Person entity because in the domain that you
are modeling a version isn’t an attribute of a Person, you could use an Entity Layer Supertype class as

206  ❘  Chapter 7   The Data Access Layer

shown in the following code snippet (see also Chapter 5) or return a Proxy version of the Person entity
and include the version ID within. You will examine the Proxy design pattern later in this chapter.

public abstract class EntityBase
{
 private int Version { get; set; }
}

public class Person : EntityBase
{

To complete the simple domain model, add a new interface to the Model project named IPerson​
Repository with the following cut-down contract definition:

 public interface IPersonRepository
 {
 void Add(Person person);
 void Save(Person person);
 Person FindBy(Guid Id);
 }

With the Model complete, you can turn your attention to the implementation of the Person Repository.
Add a new class to the Repository project named PersonRepository that implements Model.IPerson​
Repository. With this example, I have included the relevant ADO.NET code to show how concurrency
checking with versions works:

using ASPPatterns.Chap7.Concurrency.Model;
using System.Data.SqlClient;

namespace ASPPatterns.Chap7.Concurrency.Repository
{
 public class PersonRepository : IPersonRepository
 {
 private string _connectionString;
 private string _findByIdSQL =
 “SELECT * FROM People WHERE PersonId = @PersonId”;
 private string _insertSQL =
 “INSERT People (FirstName, LastName, PersonId, Version) VALUES “ +
 “(@FirstName, @LastName, @PersonId, @Version)”;
 private string _updateSQL =
 “UPDATE People SET FirstName = “
 + “@FirstName, LastName = @LastName, Version = “ +
 “@Version + 1 WHERE PersonId = @PersonId AND Version = @Version;”;

 public PersonRepository(string connectionString)
 {
 _connectionString = connectionString;
 }

 public void Add(Person person)
 {
 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();

Available for
download on
Wrox.com

Patterns in Data Access  ❘  207

 command.CommandText = _insertSQL;

 command.Parameters.Add
 (new SqlParameter(“@PersonId”, person.Id));
 command.Parameters.Add
 (new SqlParameter(“@Version”, person.Version));
 command.Parameters.Add
 (new SqlParameter(“@FirstName”, person.FirstName));
 command.Parameters.Add
 (new SqlParameter(“@LastName”, person.LastName));

 connection.Open();
 command.ExecuteNonQuery();
 }
 }

 public void Save(Person person)
 {
 int numberOfRecordsAffected = 0;

 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = _updateSQL;

 command.Parameters.Add
 (new SqlParameter(“@PersonId”, person.Id));
 command.Parameters.Add
 (new SqlParameter(“@Version”, person.Version));
 command.Parameters.Add
 (new SqlParameter(“@FirstName”, person.FirstName));
 command.Parameters.Add
 (new SqlParameter(“@LastName”, person.LastName));

 connection.Open();
 numberOfRecordsAffected = command.ExecuteNonQuery();
 }

 if (numberOfRecordsAffected == 0)
 throw new ApplicationException(
 @”No changes were made to Person Id (“ + person.Id + “), this was “
 + “due to another process updating the data.”);
 else
 person.Version++;
 }

 public Person FindBy(Guid Id)
 {
 Person person = default(Person);

 using (SqlConnection connection = new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();

208  ❘  Chapter 7   The Data Access Layer

 command.CommandText = _findByIdSQL;
 command.Parameters.Add(new SqlParameter(“@PersonId”, Id));
 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())
 {
 if (reader.Read())
 {
 person = new Person
 {
 FirstName = reader[“FirstName”].ToString(),
 LastName = reader[“LastName”].ToString(),
 Id = new Guid(reader[“PersonId”].ToString()),
 Version = int.Parse(reader[“Version”].ToString())
 };
 }
 }
 }

 return person;
 }
 }
}

Code snippet PersonRepository.cs in the project ASPPatterns.Chap7.Concurrency

The FindBy and Add methods are straightforward enough with ADO.NET code to populate a single
Person entity from a select query and ADO.NET to insert a new Person entity into the database.
The Save method contains the logic that controls data integrity of the Person entity. When a Person
entity is being saved to the database, the version of the changed entity is included in the where clause. If
the versions do not match, no update occurs, and the ExecuteNonQuery method returns a zero records
affected count. At this point, some kind of stale entity exception could be thrown to alert the user that
the Person entity has changed or been deleted since the original retrieval and the update has failed.

If you download the source code for this exercise, you will find accompanying unit tests that verify
the behavior of the pessimistic concurrency pattern.

Lazy Loading and the Proxy Pattern
Lazy Loading is an enterprise design pattern that defers the loading of a resource until you need it.
Martin Fowler defined it as “an object that doesn’t contain all of the data you need but knows how
to get it” in Patterns of Enterprise Application Architecture. If you take the canonical customer
and order example, when retrieving a customer from the database, you may not want to pull back
his entire order history if you need only part of it. By deferring the execution of retrieving the cus-
tomer’s orders, you can increase the speed at which the customer info is returned and decrease the
load on the database server. If the customer Orders collection is required, you can pull it from the
database directly from the Orders collection property. Shortly, you will see an example of the Lazy
Loading pattern, which utilizes the Proxy pattern.

The Proxy pattern acts as a surrogate for another object, enabling the proxy to control access to it
and allowing it to add extra logic related to the operation.

Patterns in Data Access  ❘  209

Intent
Because the Proxy pattern controls access to other objects’ properties, it is extremely useful for sce-
narios that sometimes need access to expensive resources, such as these:

A virtual proxy is a placeholder for resource-intensive objects. The real object or methods on ➤➤

that object are called only when they are needed.

A remote proxy provides a local representative for an object that resides in a different ➤➤

address space; you saw an application of this in the previous chapter in the WCF example. In
fact, a proxy is created when you add a reference to a service via Visual Studio.

UML
Figure 7-3 shows the UML representation of the Proxy pattern and all the collaborating roles.

The ➤➤ Client depends on the abstract Customer. Both the RealCustomer and the
ProxyCustomer implement the same interface, so the client is unaware of which she is using.

The ➤➤ ProxyCustomer has a reference to the RealCustomer and controls the access to the
RealCustomer properties. The ProxyCustomer can perform extra logic before calling on
the RealCustomer properties.

The ➤➤ Customer defines the interface that the Client will program against and that the
RealCustomer and ProxyCustomer will implement.

The ➤➤ RealCustomer defines the default behavior for the Customer interface.

Customer

Client

GetOrderHistory()
{
 // Retrieve orders from database
 // . . .
 return orders;
}

Name()
{
 return RealCustomer.Name();
}

+GetOrderHistory()
+Name()

+GetOrderHistory()
+Name()

RealCustomer

+GetOrderHistory()
+Name()

ProxyCustomer

Figure 7-3

Code Example
For the code example, you will be working in the domain of Customers and Orders. A Customer​
Repository enables you to retrieve customers who have a deferred loading on their Orders

210  ❘  Chapter 7   The Data Access Layer

collection. Figure 7-4 shows the sequence of code that you will be writing for the Lazy Loading pat-
tern using the Proxy pattern.

GetCustomer()

Client

FindCustomer()

CustomerService

new()

CustomerRepository Customer ProxyCustomer

FindOpenOrdersFor(Customer)

CustomerRepository

new(Customer)

Orders

Figure 7-4

Create a new solution named ASPPatterns.Chap7.ProxyPattern and add the following class libraries:

ASPPatterns.Chap7.ProxyPattern.Model➤➤

ASPPatterns.Chap7.ProxyPattern.Repository➤➤

Right-click on the Repository project and add a reference to the Model project.

Add a new class to the Model project named Order with the following definition:

 public class Order
 {
 public Guid Id { get; set; }
 public DateTime OrderDate { get; set; }
 }

The Order class represents a customer’s order. The attributes of an Order have been deliberately
kept to a minimum to simplify the example.

Next, add a second class to the Model project named Customer with the following code definition:

 public class Customer
 {
 public Guid Id { get; set; }
 public string Name { get; set; }
 public virtual IEnumerable<Order> Orders { get; set; }
 }

Patterns in Data Access  ❘  211

Again, as with the Order class, I have included minimal properties to represent a Customer. To
enable the retrieval of a customer, you need a Repository contract defined in the Model project, so
add a new interface named ICustomerRepository with the following contract:

 public interface ICustomerRepository
 {
 Customer FindBy(Guid id);
 }

In this example, you are only interested in retrieving a Customer by his Id. No other methods that
you would normally find on a Repository interface are applicable for this demonstration of the Lazy
Loading and Proxy pattern.

You will also require a Repository to retrieve all of a customer’s orders, so add a second interface to
the Model project named IOrderRepository:

 public interface IOrderRepository
 {
 IEnumerable<Order> FindAllBy(Guid customerId);
 }

Again, you are only interested in the Orders of a specific Customer, so this is the only method sig-
nature that appears on the interface.

Now that you have created the model, you can turn your attention to creating the implementations
of the Repositories in the Repository project.

Add a new class named OrderRepository to the Repository project. Have it implement the IOrder​
Repository from the Model project and update the class so that it matches the following listing:

using ASPPatterns.Chap7.ProxyPattern.Model;

namespace ASPPatterns.Chap7.ProxyPattern.Repository
{
 public class OrderRepository : IOrderRepository
 {
 public IEnumerable<Order> FindAllBy(Guid customerId)
 {
 IEnumerable<Order> customerOrders = new List<Order>();

 // Code to connect to the database and populate the collection
 // of customers’ orders...

 return customerOrders;
 }
 }
}

Your next step is to create the CustomerProxy class. This class will inherit from the Customer class
as defined in the Model project and act as the Customer unbeknownst to the client code. The code
that follows shows the implementation for the CustomerProxy class:

using ASPPatterns.Chap7.ProxyPattern.Model;

namespace ASPPatterns.Chap7.ProxyPattern.Repository

212  ❘  Chapter 7   The Data Access Layer

{
 public class CustomerProxy : Customer
 {
 private bool _haveLoadedOrders = false;
 private IEnumerable<Order> _orders;

 public IOrderRepository OrderRepository { get; set; }

 public bool HaveLoadedOrders()
 {
 return _haveLoadedOrders;
 }

 public override IEnumerable<Order> Orders
 {
 get
 {
 if (!HaveLoadedOrders())
 {
 RetrieveOrders();
 _haveLoadedOrders = true;
 }

 return _orders;
 }
 set
 {
 base.Orders = value;
 }
 }

 private void RetrieveOrders()
 {
 _orders = OrderRepository.FindAllBy(base.Id);
 }
 }
}

When calling the get method of the Orders property, a check is made on a flag that identifies whether
the Orders collection has been loaded from the Repository. If the Orders collection has not been
loaded, a call is made to the OrderRepository property to populate the Orders collection, the flag is
updated, and the Orders are returned.

The final class to implement for this exercise is the implementation of the ICustomerRepository as
defined in the Model project. Create a new class named CustomerRepository and have it implement
the ICustomerRepository. The full listing for this class is as follows:

using ASPPatterns.Chap7.ProxyPattern.Model;

namespace ASPPatterns.Chap7.ProxyPattern.Repository
{
 public class CustomerRepository : ICustomerRepository
 {
 private IOrderRepository _orderRepository;

 public CustomerRepository(IOrderRepository orderRepository)

Patterns in Data Access  ❘  213

 {
 _orderRepository = orderRepository;
 }

 public Customer FindBy(Guid id)
 {

 Customer customer = new CustomerProxy();

 // Code to connect to the database and retrieve a customer…

 ((CustomerProxy)customer).OrderRepository = _orderRepository;

 return customer;
 }
 }
}

In the FindBy method, a CustomerProxy is created, and its properties are populated from the call to
the database. An instance of an OrderRepository, injected via the CustomerRepository constructor,
is set on the CustomerProxy object before being returned to the calling code.

If you download the source code for this exercise, you will find accompanying unit tests that verify
the behavior of the proxy customer and the Lazy Loading of the Orders collection.

Identity Map
From the description from Martin Fowler’s Patterns of Enterprise Application Architecture, an
Identity Map “ensures that each object gets loaded only once by keeping every loaded object in a
map” and “looks up objects using the map when referring to them.” When dealing with data con-
currency, it is important to have a strategy for multiple users affecting the same business entity, but
it is just as important for a single user to use a consistent version of a business entity through a long-
running or complex transaction. An Identity Map provides this functionality by keeping a version
of all business objects used in a transaction; if the same Employee entity is requested twice, the same
instance is returned.

Typically, an Identity Map is used per business transaction. This ensures that if an entity is retrieved
twice in the same transaction, it will be unique and include any modifications that the transaction
made.

To demonstrate this pattern, you will walk through a simple coding exercise that creates an Identity
Map for use with the retrieval of simple Employee business objects from a Repository. Create a new
solution named ASPPatterns.Chap7.IdentityMap and add the following new class library projects:

ASPPatterns.Chap7.IdentityMap.Model➤➤

ASPPatterns.Chap7.IdentityMap.Repository➤➤

Right-click on the Repository project and add a reference to the Model project.

Add a new class to the Model project named Employee with the following code listing:

 public class Employee
 {

214  ❘  Chapter 7   The Data Access Layer

 public Guid Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }

The only other class in the Model project is a Repository with a single method definition that allows
the retrieval of Employees by their Id. Create a new interface and name it IEmployeeRepository.
Then add the FindBy method signature as shown here:

 public interface IEmployeeRepository
 {
 Employee FindBy(Guid Id);
 }

With the Model in place, you can switch your attention to the Repository project. Add a new class
to this project named IdentityMap. This class will use generics to provide a type safe Identity Map
implementation for supplying unique Employee entities during a business transaction. The code for
the IdentityMap class is shown here:

 public class IdentityMap<T>
 {
 Hashtable entities = new Hashtable();

 public T GetById(Guid Id)
 {
 if (entities.ContainsKey(Id))
 return (T)entities[Id];
 else
 return default(T);
 }

 public void Store(T entity, Guid key)
 {
 if (!entities.Contains(key))
 entities.Add(key, entity);
 }
 }

The IdentityMap contains a hash table to store the business entities that are being used in a trans-
action and provides a simple interface to store and retrieve an entity.

You will use the IdentityMap within an implementation of the IEmployeeRepository. Add a new
class to the Repository project named EmployeeRepository, and have it implement the IEmployee​
Repository interface contained within the Model project. The listing for this class is displayed here:

using ASPPatterns.Chap7.IdentityMap.Model;

namespace ASPPatterns.Chap7.IdentityMap.Repository
{
 public class EmployeeRepository : IEmployeeRepository
 {
 private IdentityMap<Employee> _employeeMap;

 public EmployeeRepository)
 {

Patterns in Data Access  ❘  215

 _employeeMap = new IdentityMap<Employee>();
 }

 public Employee FindBy(Guid Id)
 {
 Employee employee = _employeeMap.GetById(Id);

 if (employee == null)
 {
 employee = DatastoreFindBy(Id);
 if (employee != null)
 _employeeMap.Store(employee, employee.Id);
 }

 return employee;
 }

 private Employee DatastoreFindBy(Guid Id)
 {
 Employee employee = default(Employee);

 // Code to hydrate employee from datastore...

 return employee;
 }
 }
}

When the FindBy method is called, the Employee Repository first checks the IdentityMap to
determine if the Employee entity has been retrieved before. If it has, it is returned to the caller.
If not, the data store is queried for the Employee instance using its identity and then is added to
the IdentityMap ready to be retrieved if the same Employee entity is needed from the Employee​
Repository again.

As with all the code examples in this book, if you download the source code for this exercise, you
will find accompanying unit tests that verify the behavior of the Identity Map pattern.

The next pattern you will look at deals with querying the data access layer.

Query Object Pattern
You saw at the beginning of this chapter that the interface for a Repository defined a method that
took a Query Object. The Query Object represented a query written in the language of the domain
and was an implementation of the Query Object pattern. The Query Object pattern as described by
Fowler is “an object that represents a database query.” Without some mechanism of querying, the
Repository would be awash with myriad retrieval methods such as can be seen in this code snippet:

 public interface ICustomerRepository
 {
 IEnumerable<Customer> FindAll();
 IEnumerable<Customer> FindAllVIPCustomers();
 IEnumerable<Customer> FindByOrder(Guid ID);
 IEnumerable<Customer> FindAllCustomersThatHaveOutstandingOrders();
 …
 }

216  ❘  Chapter 7   The Data Access Layer

Instead, the Query Object enables any query to be constructed and then sent to the Repository to
be satisfied. The major benefit of the Query Object pattern is that it completely abstracts away the
underlying database querying language and thus keeps the infrastructure concerns of data persis-
tence and retrieval out of the business layer. At some point, however, the raw querying language of
the database needs to be created; this is achieved using a database-specific QueryTranslator that
takes the Query Objects and converts them into the language of the database.

You will now create an implementation of the Query Object pattern. Create a solution named
ASPPatterns.Chap7.QueryObject and add the following class libraries to the solution:

ASPPatterns.Chap7.QueryObject.Infrastructure➤➤

ASPPatterns.Chap7.QueryObject.Model➤➤

ASPPatterns.Chap7.QueryObject.Repository➤➤

Right-click on the Model project and add a reference to the Infrastructure project. Right-click
also on the Repository project and add a reference to the Model and Infrastructure project.

You will start with defining the model for the Query Object pattern. Figure 7-5 shows the class diagram.

Figure 7-5

Add a new folder to the Infrastructure project named Query and add a new enumeration named
CriteriaOperator. The enumeration class is shown here:

 public enum CriteriaOperator
 {
 Equal,
 LessThanOrEqual,
 NotApplicable
 }

Patterns in Data Access  ❘  217

In this example, you will require only the three criteria operations shown in the preceding listing.
For a full implementation, you would add the remaining operations.

Next, add a class to represent the criterion named Criterion. The Criterion represents part of
the filter that forms the query, specifying an entity property, a value to compare it to, and the way it
should be compared. The code for the Criterion class is displayed here:

 public class Criterion
 {
 private string _propertyName;
 private object _value;
 private CriteriaOperator _criteriaOperator;

 public Criterion(string propertyName, object value,
 CriteriaOperator criteriaOperator)
 {
 _propertyName = propertyName;
 _value = value;
 _criteriaOperator = criteriaOperator;
 }

 public string PropertyName
 {
 get { return _propertyName; }
 }

 public object Value
 {
 get { return _value; }
 }

 public CriteriaOperator criteriaOperator
 {
 get { return _criteriaOperator; }
 }
 }

The next class to create will represent the ordering property to be used on the query. Create a new
class named OrderByClause with the following code listing:

 public class OrderByClause
 {
 public string PropertyName { get; set; }
 public bool Desc { get; set; }
 }

You use a second enumeration to determine how the Criterion objects will be evaluated together.
Add a new enumeration named QueryOperator with the following syntax:

 public enum QueryOperator
 {
 And,
 Or
 }

218  ❘  Chapter 7   The Data Access Layer

Sometimes complex queries are difficult to create. In these cases, you can use a named query that
points to a view or stored procedure in the database. These named queries are added as an enumera-
tion. Add a new class named QueryName to store this list of queries with the following code listing:

 public enum QueryName
 {
 Dynamic = 0,
 RetrieveOrdersUsingAComplexQuery = 1
 }

Included in the list is the Dynamic value. This value will be used if the query is not named and is
instead created by the business layer.

The class that brings the Query Object pattern together is the Query class. Add a new class to the
project named Query, and update it with the following code definition:

 public class Query
 {
 private QueryName _name;
 private IList<Criterion> _criteria;

 public Query()
 : this(QueryName.Dynamic, new List<Criterion>())
 { }

 public Query(QueryName name, IList<Criterion> criteria)
 {
 _name = name;
 _criteria = criteria;
 }

 public QueryName Name
 {
 get { return _name; }
 }

 public bool IsNamedQuery()
 {
 return Name != QueryName.Dynamic;
 }

 public IEnumerable<Criterion> Criteria
 {
 get {return _criteria ;}
 }

 public void Add(Criterion criterion)
 {
 if (!IsNamedQuery())
 _criteria.Add(criterion);
 else
 throw new ApplicationException(
 “You cannot add additional criteria to named queries”);

Patterns in Data access ❘ 219

 }

 public QueryOperator QueryOperator { get; set; }

 public OrderByClause OrderByProperty { get; set; }
 }

The class contains a collection of Criterion objects, an OrderByClause, and an Operator value.
The Query class also contains an IsNamedQuery method that fl ags if the query has been dynamically
generated or relates to a precreated query in the Repository.

The last class you need to create is the NamedQueryFactory class. Add this to the project and update
as follows:

 public static class NamedQueryFactory
 {
 public static Query CreateRetrieveOrdersUsingAComplexQuery(Guid CustomerId)
 {
 IList<Criterion> criteria = new List<Criterion>();
 Query query =
 new Query(QueryName.RetrieveOrdersUsingAComplexQuery, criteria);

 criteria.Add(new Criterion (“CustomerId”, CustomerId,
 CriteriaOperator.NotApplicable));

 return query;
 }
 }

This class simply creates a Query Object for a named query. The QueryTranslator can inspect
the Query Object to determine if it’s a named query and use the Criterions as values for a stored
database query. This completes the Query Object pattern implementation. Please note that there is
no notion of a subquery in the Query Object pattern that you have created. To provide subqueries,
you simply need to add a collection of Query Objects to the Query Object. However, if you need to
use subqueries or anything other than simple querying, it is often better to use a stored query in the
Repository or database.

You will build upon the Query Object framework you have built here to include
subqueries in the case study part at the end of this book.

You will now create a simple domain model to demonstrate using the Query Object implementation
that you have created. Add a new class to the Model project named Order:

 public class Order
 {
 public Guid Id { get; set; }
 public bool HasShipped { get; set; }
 public DateTime OrderDate { get; set; }
 public Guid CustomerId { get; set; }
 }

220  ❘  Chapter 7   The Data Access Layer

You also need to create an interface for an order Repository within the Model project. Because you
are only interested in the functions of the Query Object pattern, you only need to include the single
method relating to obtaining Order entities from the Repository using a Query Object. With this in
mind, add a new interface to the Model project named IOrderRepository with the contract shown
in the code listing that follows:

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;

namespace ASPPatterns.Chap7.QueryObject.Model
{
 public interface IOrderRepository
 {
 IEnumerable<Order> FindBy(Query query);
 }
}

The final class to add to the Model project is the domain service class, which will use the Query Object
implementation to query the Repository.

Add a new class named OrderService, and update it with the code that follows:

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;

namespace ASPPatterns.Chap7.QueryObject.Model
{
 public class OrderService
 {
 private IOrderRepository _orderRepository;

 public OrderService(IOrderRepository orderRepository)
 {
 _orderRepository = orderRepository;
 }

 public IEnumerable<Order> FindAllCustomersOrdersBy(Guid customerId)
 {
 IEnumerable<Order> customerOrders = new List<Order>();

 Query query = new Query();
 query.Add
 (new Criterion(“CustomerId”, customerId, CriteriaOperator.Equal));
 query.OrderByProperty = new OrderByClause
 { PropertyName = “CustomerId”, Desc = true };

 customerOrders = _orderRepository.FindBy(query);

 return customerOrders;
 }

 public IEnumerable<Order> FindAllCustomersOrdersWithInOrderDateBy(
 Guid customerId, DateTime orderDate)
 {
 IEnumerable<Order> customerOrders = new List<Order>();

 Query query = new Query();

Available for
download on
Wrox.com

Patterns in Data Access  ❘  221

 query.Add
 (new Criterion(“CustomerId”, customerId, CriteriaOperator.Equal));
 query.QueryOperator = QueryOperator.And;
 query.Add(new Criterion
 (“OrderDate”, orderDate, CriteriaOperator.LessThanOrEqual));
 query.OrderByProperty = new OrderByClause
 { PropertyName = “OrderDate”, Desc = true };

 customerOrders = _orderRepository.FindBy(query);

 return customerOrders;
 }

 public IEnumerable<Order> FindAllCustomersOrdersUsingAComplexQueryWith(
 Guid customerId)
 {
 IEnumerable<Order> customerOrders = new List<Order>();

 Query query =
 NamedQueryFactory.CreateRetrieveOrdersUsingAComplexQuery(customerId);

 customerOrders = _orderRepository.FindBy(query);

 return customerOrders;
 }
 }
}

Code snippet OrderService.cs in the project ASPPatterns.Chap7.QueryObject

The OrderService class contains three methods that create queries that are then passed to the
Repository. The FindAllCustomersOrdersBy and FindAllCustomersOrdersWithInOrderDateBy
methods create a dynamic query by adding Criterions and an OrderByClause. The last method,
FindAllCustomersOrdersUsingAComplexQueryWith, is a named query that uses the NameQuery​
Factory to create the Query Object to be passed to the Repository.

With the domain model and service layer complete, you can now implement the IOrderRepository
and create a QueryTranslator to convert the Query Object into a language that your database can
understand.

Add a new class to the Repository project named OrderQueryTranslator. This class will contain
an extension method that gives the Query Object the ability to convert itself into an SQL command
ready to be run against the database.

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;
using System.Data.SqlClient;
using System.Data;

namespace ASPPatterns.Chap7.QueryObject.Repository
{
 public static class OrderQueryTranslator
 {
 private static string baseSelectQuery = “SELECT * FROM Orders “;

 public static void TranslateInto(this Query query, SqlCommand command)

Available for
download on
Wrox.com

222  ❘  Chapter 7   The Data Access Layer

 {
 if (query.IsNamedQuery())
 {
 command.CommandType = CommandType.StoredProcedure;
 command.CommandText = query.Name.ToString();

 foreach (Criterion criterion in query.Criteria)
 {
 command.Parameters.Add(
 new SqlParameter(“@” + criterion.PropertyName,
 criterion.Value));
 }
 }
 else
 {
 StringBuilder sqlQuery = new StringBuilder();
 sqlQuery.Append(baseSelectQuery);

 bool _isNotfirstFilterClause = false;

 if (query.Criteria.Count() > 0)
 sqlQuery.Append(“WHERE “);

 foreach (Criterion criterion in query.Criteria)
 {
 if (_isNotfirstFilterClause)
 sqlQuery.Append(GetQueryOperator(query));

 sqlQuery.Append(AddFilterClauseFrom(criterion));

 command.Parameters.Add(
 new SqlParameter(“@” + criterion.PropertyName,
 criterion.Value));

 _isNotfirstFilterClause = true;
 }

 sqlQuery.Append(GenerateOrderByClauseFrom(query.OrderByProperty));

 command.CommandType = CommandType.Text;
 command.CommandText = sqlQuery.ToString();
 }
 }

 private static string GenerateOrderByClauseFrom
 (OrderByClause orderByClause)
 {

 return String.Format(“ORDER BY {0} {1}”,
 FindTableColumnFor(orderByClause.PropertyName),
 orderByClause.Desc ? “DESC” : “ASC”);
 }

 private static string GetQueryOperator(Query query)
 {

Patterns in Data Access  ❘  223

 if (query.QueryOperator == QueryOperator.And)
 return “AND “;
 else
 return “OR “;
 }

 private static string AddFilterClauseFrom(Criterion criterion)
 {
 return string.Format(“{0} {1} @{2} “,
 FindTableColumnFor(criterion.PropertyName),
 FindSQLOperatorFor(criterion.criteriaOperator),
 criterion.PropertyName);
 }

 private static string FindSQLOperatorFor(CriteriaOperator criteriaOperator)
 {
 switch (criteriaOperator)
 {
 case CriteriaOperator.Equal:
 return “=”;
 case CriteriaOperator.LessThanOrEqual:
 return “<=”;
 default:
 throw new ApplicationException(“No operator defined.”);
 }
 }

 private static string FindTableColumnFor(string propertyName)
 {
 switch (propertyName)
 {
 case “CustomerId”:
 return “CustomerId”;
 case “OrderDate”:
 return “OrderDate”;
 default:
 throw new ApplicationException(
 “No column defined for this property.”);
 }
 }
 }
}

Code snippet OrderQueryTranslator.cs in the project ASPPatterns.Chap7.QueryObject

The TranslateInto method takes an ADO.NET command and populates it with a database query.
The first thing that the TranslateInto method does is identify whether the Query Object is a named
query. If it is, the command is set to expect a stored procedure, the name of which is the query enu-
meration name. The stored procedure exists in the database within the unit tests project that can be
found in the code download that accompanies this book. The Criterions of the Query then provide
any parameters that the stored procedure expects.

If the Query has been dynamically created, the translator loops through each of the Criterions
and builds up a SQL statement, using methods to convert the property name of the Order entity

224  ❘  Chapter 7   The Data Access Layer

into the column name of the Order table. You may be wondering why the FindTableColumnFor
method exists. At the moment there is a one-to-one mapping between the data table column and
entity property but this may not always be the case — ​especially as the domain model evolves over
time. The second and final class that you need in the Repository project is the implementation of
the IOrderRepository as defined in the Model project. Add a new class to the Repository project
named OrderRepository and update the class with this code:

using ASPPatterns.Chap7.QueryObject.Infrastructure.Query;
using ASPPatterns.Chap7.QueryObject.Model;
using System.Data.SqlClient;

namespace ASPPatterns.Chap7.QueryObject.Repository
{
 public class OrderRepository : IOrderRepository
 {
 private string _connectionString;

 public OrderRepository(string connectionString)
 {
 _connectionString = connectionString;
 }

 public IEnumerable<Order> FindBy(Query query)
 {
 IList<Order> orders = new List<Order>();

 using (SqlConnection connection =
 new SqlConnection(_connectionString))
 {
 SqlCommand command = connection.CreateCommand();
 query.TranslateInto(command);
 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 {
 orders.Add(new Order
 {
 CustomerId = new Guid(reader[“CustomerId”].ToString()),
 OrderDate = DateTime.Parse(
 reader[“OrderDate”].ToString()),
 Id = new Guid(reader[“Id”].ToString())
 });

 }
 }
 }

 return orders;
 }

 }
}

Code snippet OrderRepository.cs in the project ASPPatterns.Chap7.QueryObject

Available for
download on
Wrox.com

Using an Object Relational Mapper  ❘  225

The OrderRepository calls the TranslateInto extension method on the Query Object to populate
an ADO.NET command object. When the command object is populated with the SQL statement,
the command is executed and a collection of orders is generated and returned to the caller.

Those of you with a keen eye have probably noticed the similarity between the Query Object pattern
and LINQ. The System.Linq.Expressions namespace is an implementation of a Query Object
pattern, and under the covers LINQ to SQL works in a very similar manner to the framework you
have created.

To see the code working, you need to download the source code that accompanies this book. It con-
tains a host of unit tests that verify the behavior of the Query Object implementation.

Using an Object Relational Mapper

Traditional Microsoft developers have built their own DAL by hand to map the business objects to
their corresponding database tables. There’s nothing inherently bad about this; it’s just that it can be
a little, dare I say, boring? Not only that, but hand-rolling your own DAL can be error prone, because
ADO.NET is not type safe, and it can be difficult to maintain when changes are needed in the schema
of the application as similar code is duplicated. With large projects, the amount of plumbing code
needed can quickly engulf the project, and developers can lose sight of the end goal — ​that is, getting
the business processes and logic right — ​because of hours spent writing stored procedures and low-
level ADO.NET objects.

The role of an object relational mapper (ORM) is to bridge the gap between the relational model (the
database) and the object-oriented model. This problem is often referred to as the impedance mismatch.
Using mapping files or attributes on a business object, you can use an ORM framework to persist
business objects to the database and retrieve them simply via the ORM framework’s API with no or
little SQL needed.

You will now look at two of the popular ORMs for the .NET framework.

NHibernate
NHibernate is a port of the popular open source Hibernate framework for Java. Hibernate has been
around for years, and it’s a proven and robust piece of software. ORM has had a slow take-up in the
.NET world, but with the release of LINQ to SQL and the beta of the Entity Framework, many devel-
opers are starting to see the benefit of automating their DAL. One of the best features of NHibernate
is the support for persistence ignorance; this means that your business objects don’t have to inherit
from base classes or implement framework interfaces. NHibernate uses an instance of an ISession as
its DataContext; it is similar to the DataContexts of LINQ to SQL and the Entity Framework in that
it acts as your persistence manager and gateway into the database, allowing you to query against it,
as well as saving, deleting, and adding entities. There are a number of ways to map business objects
to database tables in NHibernate. One of the most popular is via an XML configuration file (shown
in Figure 7-6), but attributes and a fluent code mapping option are also available.

226  ❘  Chapter 7   The Data Access Layer

Data
Store Orders

Table
OrderItems

Table

XML Mapping Meta Data

POCO Entities and
Value Objects

Order
Entity

Shipping
Courier

OrderItems
Entity

Address
Componet

Figure 7-6

For a more in-depth introduction to NHibernate, read the book titled NHibernate in Action by Pierre
Kuate et al., or my Wrox Blox, “NHibernate with ASP.NET Problem Design Solution.”

MS Entity Framework
The Entity Framework is Microsoft’s enterprise-level ORM. It differs from NHibernate in that it
maps business entities to far more complex or unusual relational data models. This is because of
the three layers of mapping, which you will learn about as you step through a simple exercise in a
moment. The Entity Framework’s strength lies in the mapping of relational data models that don’t
have a one-to-one mapping to the business model, as shown in Figure 7-7.

Data
Store

Employees
Table

Office
Table

Contains tables, view and stored
procedures modelled in SSDL

Store Schema Definition Language (SSDL)

The mapping between the conceptual
and the logical layer

Mapping Specification Language (MSL)

Manager
Entity

Employee
Entity

Entities, Relationships,
EntitySets

Conceptual Schema Definition Language (CSDL)

Figure 7-7

Using an Object Relational Mapper  ❘  227

For a more in-depth look at the MS Entity Framework, read Programming Entity Framework by
Julia Lerman.

ORM Code Example
To demonstrate the amount of work an ORM can save you, you will build a simple application that
utilizes both NHibernate and Entity Framework as part of a Repository layer. The business code
will be able to use either Repository without needing to alter any code. Furthermore, a pure ADO.
NET version of the Repository supporting all the patterns you have looked at will be included in the
code download that accompanies this book so that you can evaluate the amount of work required to
build your own ORM rather than use an existing framework.

The application you will be building is based on the domain of a library. Figure 7-8 shows the actors
and the use cases that the system will satisfy.

Within the system, members can be added, books can be added, and members can loan and return
books. The only business rule is that a book cannot be loaned out to more than one member at any
one time. This domain model and the related business rules have been kept simple so that you can
focus on how to use NHibernate and Entity Framework as a Repository within your enterprise
ASP.NET application.

Library Domain Model
For this coding exercise, you need to use Visual
Studio 2010 because it supports Entity Framework 4,
which at the time of writing was in its beta state.

Create a new solution named ASPPatterns.Chap7​
.Library and add the following C# class libraries:

ASPPatterns.Chap7.Library​➤➤

.Infrastructure

ASPPatterns.Chap7.Library.Model➤➤

ASPPatterns.Chap7.Library​➤➤

.Repository.EF

ASPPatterns.Chap7.Library​➤➤

.Repository.NHibernate

ASPPatterns.Chap7.Library.Services➤➤

Add a new web application project to the solution
named ASPPatterns.Chap7.Library.UI.Web.

You need to add the following references to each of
the projects:

Right-click on the ➤➤ ASPPatterns.Chap7​

.Library.Model project and add a reference
to the Infrastructure project.

Add a Book

Add a Book Title

Loan a Book

Library System

Member

Librarian

Return a Book

Add a Member

Figure 7-8

228  ❘  Chapter 7   The Data Access Layer

Right-click on the ➤➤ ASPPatterns.Chap7.Library.Repository.EF project and add a refer-
ence to the Infrastructure project and the Model project.

Right-click on the ➤➤ ASPPatterns.Chap7.Library.Repository.NHibernate project and add
a reference to the Infrastructure project and the Model project.

Right-click on the ➤➤ ASPPatterns.Chap7.Library.Services project and add a reference to
the Infrastructure project and the Model project.

Right-click on the ➤➤ ASPPatterns.Chap7.Library.UI.Web project and add a reference to all
the class library projects in the solution.

Before you begin to design the domain model that will rep-
resent the library domain, you need to set up the infrastruc-
ture concerns. Luckily, you can reuse the set of classes you
created for the Query Object pattern and the Unit of Work
pattern exercises earlier in the chapter. Copy the Query
folder from within the ASPPatterns.Chap7.QueryObject​
.Infrastructure project and add it to the ASPPatterns​
.Chap7.Library.Infrastructure projects. Next, cre-
ate a UnitOfWork folder within the ASPPatterns.Chap7​
.Library.Infrastructure project and copy all the files
from ASPPatterns.Chap7.UnitOfWork.Infrastructure.
You need to update the namespaces so they start with
ASPPatterns.Chap7.Library instead of ASPPatterns​
.Chap7.QueryObject/UnitOfWork. Your solution should
now resemble Figure 7-9.

I have moved the IAggregateRoot interface into the root
of the Infrastructure project because it’s not intrinsi-
cally tied with the Unit of Work operations.

With the infrastructure concerns taken care of, you can work on the domain model for the library
system. Figure 7-10 shows the class diagram for the library domain model.

There will be a matching Repository for each of the aggregate roots (the classes that implement the
IAggregateRoot interface.

The first class you need to create is BookTitle. Add this class to the Model project with the code
listing that follows:

using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model
{
 public class BookTitle : IAggregateRoot
 {
 public string ISBN { get; set; }

 public string Title { get; set; }
 }
}

Figure 7-9

Using an Object Relational Mapper  ❘  229

Figure 7-10

The BookTitle represents the title information for a book, such as the ISBN and Title. If you wanted
to expand on this model, you could add an Author attribute to the BookTitle.

The entity that will represent the book that a member can loan out is the Book class. Add this to the
Model project with the code as displayed here:

using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model
{
 public class Book : IAggregateRoot
 {
 public Guid Id { get; set; }

 public virtual BookTitle Title { get; set; }

 public virtual Member OnLoanTo { get; set; }

 }
}

The OnLoanTo property is null if it is not currently on loan; otherwise, it contains the Member
that the book is on loan to at the current time. Notice that the BookTitle and Member properties of
the Book class have been marked as virtual to allow Entity Framework and NHibernate to create

230  ❘  Chapter 7   The Data Access Layer

proxies for these properties to support Lazy Loading. The Lazy Loading and Proxy patterns were
discussed earlier in this chapter.

The next class to create is the Member class. This class represents the Member entity and contains
some logic to enable the loaning and returning of books. It is a valid argument to state that a mem-
ber doesn’t loan a book herself and that a librarian would perform a loan transaction; however, to
keep the sample simple, leave this functionality associated with a member.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model
{
 public class Member : IAggregateRoot
 {
 public Guid Id { get; set; }

 public string LastName { get; set; }

 public string FirstName { get; set; }

 public virtual IList<Loan> Loans { get; set; }

 public void Return(Book book)
 {
 Loan loan = FindCurrentOutstandingLoanFor(book);

 if (loan != null)
 {
 loan.MarkAsReturned();
 book.OnLoanTo = null;
 }
 else
 throw new ApplicationException(String.Format(
 “Cannot return book ‘{0}’. Member ‘{1}’”
 + “ does not have this book on loan.”,
 book.Id.ToString(), this.Id.ToString()));
 }

 private Loan FindCurrentOutstandingLoanFor(Book book)
 {
 return Loans.FirstOrDefault
 (l => (l.Book.Id == book.Id && l.HasNotBeenReturned()));
 }

 public bool CanLoan(Book book)
 {
 return book.OnLoanTo == null;
 }

 public Loan Loan(Book book)
 {

Using an Object Relational Mapper  ❘  231

 Loan loan = default(Loan);
 if (CanLoan(book))
 {
 loan = LoanFactory.CreateLoanFrom(book, this);
 Loans.Add(loan);
 }
 else
 throw new ApplicationException(String.Format(
 “Cannot loan book ‘{0}’. Book is on loan to member ‘{1}’”,
 book.Id.ToString(), book.OnLoanTo.Id.ToString()));

 return loan;
 }
 }
}

Here’s a rundown of each of the methods of the Member class that contains business logic:

CanLoan➤➤ : This is a simple method that establishes whether the Book attempting to be loaned
is in fact on loan to a Member already.

Loan➤➤ : This method first establishes that a Book can be loaned. If all is well, a Loan is created
using the LoanFactory. You will create both the Loan and the LoanFactory shortly. If the
Loan is already out with another member, an exception is thrown.

FindCurrentOutstandingLoanFor➤➤ : This method returns the outstanding Loan for a given
Book.

Return➤➤ : This method first obtains the Loan that relates to the Book trying to be returned. If a
Loan exists, it is marked as returned, and the OnLoanTo property of the Book is set to null. If
the Book cannot be returned, an exception is thrown because this is an exceptional event.

The next class to create is the Loan class, which the Member class referenced already. Create the Loan
class and update it with the following code listing:

using ASPPatterns.Chap7.Library.Infrastructure;

namespace ASPPatterns.Chap7.Library.Model
{
 public class Loan
 {
 public Guid Id { get; set; }

 public DateTime LoanDate { get; set; }

 public DateTime DateForReturn { get; set; }

 public DateTime? ReturnDate { get; set; }

 public virtual Book Book { get; set; }

 public Member Member { get; set; }

 public bool HasNotBeenReturned()

232  ❘  Chapter 7   The Data Access Layer

 {
 return ReturnDate == null;
 }

 public void MarkAsReturned()
 {
 ReturnDate = DateTime.Now;
 }
 }
}

The Loan class is simple. Again, the Book property has the virtual attribute defined to enable Lazy
Loading:

public static class LoanFactory
 {
 public static Loan CreateLoanFrom(Book book, Member member)
 {
 Loan loan = new Loan();
 loan.Book = book;
 loan.Member = member;
 loan.LoanDate = DateTime.Now;
 loan.DateForReturn = DateTime.Now.AddDays(7);
 return loan;
 }
 }

In this implementation of the library domain model, there are no business rules or validation check-
ing on the domain entities. This functionality has been left out to keep the sample as simple as pos-
sible. For information on how to add validation to your domain entities, please check the case study
which starts on Chapter 10.

The next three classes define the Repository interfaces for each of the aggregate roots. Add
three interfaces to the Model project named IBookRepository, IBookTitleRepository, and
IMemberRepository. The code for these Repositories matches the contract defined for a Repository
that the beginning of this chapter introduced:

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Model
{
 public interface IBookRepository
 {
 void Add(Book book);
 void Remove(Book book);
 void Save(Book book);

 Book FindBy(Guid Id);

 IEnumerable<Book> FindAll();
 IEnumerable<Book> FindAll(int index, int count);

 IEnumerable<Book> FindBy(Query query);

Using an Object Relational Mapper  ❘  233

 IEnumerable<Book> FindBy(Query query, int index, int count);
 }
}

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Model
{
 public interface IBookTitleRepository
 {
 void Add(BookTitle book);
 void Remove(BookTitle book);
 void Save(BookTitle book);

 BookTitle FindBy(string ISBN);

 IEnumerable<BookTitle> FindAll();
 IEnumerable<BookTitle> FindAll(int index, int count);

 IEnumerable<BookTitle> FindBy(Query query);
 IEnumerable<BookTitle> FindBy(Query query, int index, int count);
 }
}

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Model
{
 public interface IMemberRepository
 {
 void Add(Member member);
 void Remove(Member member);
 void Save(Member member);

 Member FindBy(Guid Id);

 IEnumerable<Member> FindAll();
 IEnumerable<Member> FindAll(int index, int count);

 IEnumerable<Member> FindBy(Query query);
 IEnumerable<Member> FindBy(Query query, int index, int count);
 }
}

With the model and Repository interfaces in place, you can now turn your attention to the domain
services. The only service that is required is a LoanService. Add the LoanService class to the
Model project and update it with the following code listing:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

234  ❘  Chapter 7   The Data Access Layer

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Model
{
 public class LoanService
 {
 private IMemberRepository _memberRepository;
 private IBookRepository _bookRepository;
 private IUnitOfWork _unitOfWork;

 public LoanService(IBookRepository bookRepository,
 IMemberRepository memberRepository,
 IUnitOfWork unitOfWork)
 {
 _bookRepository = bookRepository;
 _memberRepository = memberRepository;
 _unitOfWork = unitOfWork;
 }

 public Loan Loan(Guid memberId, Guid bookId)
 {
 Loan loan = default(Loan);
 Book book = _bookRepository.FindBy(bookId);
 Member member = _memberRepository.FindBy(memberId);

 if (member.CanLoan(book))
 {
 member.Loan(book);
 book.OnLoanTo = member;
 _memberRepository.Save(member);
 _bookRepository.Save(book);
 _unitOfWork.Commit();
 }

 return loan;
 }

 public void Return(Guid bookId)
 {
 Book book = _bookRepository.FindBy(bookId);
 Member member = book.OnLoanTo;

 member.Return(book);

 _memberRepository.Save(member);
 _bookRepository.Save(book);
 _unitOfWork.Commit();
 }
 }
}

Using an Object Relational Mapper  ❘  235

The LoanService has two methods:

Loan➤➤ : Coordinates the loaning of a Book

Return➤➤ : Coordinates the returning of a Book

The LoanService is injected with an instance of an
IBookRepository, an IMemberRepository, and an
IUnitOfWork via its constructor.

The Model project now resembles Figure 7-11.

This completes all the code for the business logic relating
to the domain of a lending library. In the next section, you
will add a service layer that will expose an interface that
will act as an entry point into the system.

The Service Layer
The service layer as discussed in the previous chapter acts
as a facade or entry point into the system. The service
layer you will build in this section will use some of messag-
ing patterns discussed in Chapter 6, so refer to that chapter
as you progress through this section.

Create a new folder within the Services project named Views, and add a new class named BookTitle​
View. This class, like all views in this section, is a data transfer object that will act as a specific view of
the domain. The BookTitle is a simple view; you can find the code for it in the following code listing:

 public class BookTitleView
 {
 public string ISBN { get; set; }
 public string Title { get; set; }
 }

Add another three classes to the Views folder: BookView, LoanView, and MemberView. These are
views of the domain model that are required for this application. The code for the three classes is
shown here:

 public class BookView
 {
 public string Id { get; set; }
 public string ISBN { get; set; }
 public string Title { get; set; }
 public string OnLoanTo { get; set; }
 }

 public class LoanView
 {
 public string BookTitle { get; set; }
 public string CopyId { get; set; }
 public string LoanId { get; set; }

Figure 7-11

236  ❘  Chapter 7   The Data Access Layer

 public string LoanDate { get; set; }
 public string ReturnDate { get; set; }
 public string DateForReturn { get; set; }
 public string MemberName { get; set; }
 public string MemberId { get; set; }
 public bool StillOutOnLoan { get; set; }
 }

 public class MemberView
 {
 public string MemberId { get; set; }
 public string FullName { get; set; }
 public IList<LoanView> Loans { get; set; }
 }

Add another new folder to the root of the Services project named Mappers. The Mappers folder
contains all the extension methods to convert domain entities into view data transfer objects.

Four classes provide extension methods to each of the domain entities and enable them to be converted
to their corresponding views. Add four new classes to the Mappers folder named LoanExtension​
Methods, MemberExtensionMethods, BookTitleExtensionMethods, and BookExtensionMethods.

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers
{
 public static class LoanExtensionMethods
 {
 public static LoanView ConvertToLoanView(this Loan loan)
 {
 return new LoanView
 {
 BookTitle = loan.Book.Title.Title,
 CopyId = loan.Book.Id.ToString(),
 LoanId = loan.Id.ToString(),
 MemberId = loan.Member.Id.ToString(),
 MemberName = loan.Member.FirstName + ‘ ‘ + loan.Member.LastName,
 LoanDate = loan.LoanDate.ToString(),
 ReturnDate = loan.ReturnDate.ToString(),
 DateForReturn = loan.DateForReturn.ToString(),
 StillOutOnLoan = loan.HasNotBeenReturned()
 };
 }

 public static IList<LoanView> ConvertToLoanViews
 (this IEnumerable<Loan> loans)
 {
 IList<LoanView> loanViews = new List<LoanView>();
 foreach (Loan loan in loans)
 {
 loanViews.Add(loan.ConvertToLoanView());
 }

 return loanViews;

Using an Object Relational Mapper  ❘  237

 }
 }
}

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers
{
 public static class MemberExtensionMethods
 {
 public static MemberView ConvertToMemberView(this Member member)
 {
 return new MemberView
 {
 FullName = member.FirstName + ‘ ‘ + member.LastName,
 MemberId = member.Id.ToString(),
 Loans = GenerateLoanViewsFrom(member.Loans)
 };
 }

 private static IList<LoanView> GenerateLoanViewsFrom
 (IEnumerable<Loan> loans)
 {
 if (loans == null)
 return new List<LoanView>();
 else
 return loans.ConvertToLoanViews();
 }

 public static IList<MemberView> ConvertToMemberViews(
 this IEnumerable<Member> members)
 {
 IList<MemberView> memberViews = new List<MemberView>();
 foreach (Member member in members)
 {
 memberViews.Add(member.ConvertToMemberView());
 }

 return memberViews;
 }
 }
}

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers
{
 public static class BookTitleExtensionMethods

238  ❘  Chapter 7   The Data Access Layer

 {
 public static BookTitleView ConvertToBookTitleView
 (this BookTitle bookTitle)
 {
 return new BookTitleView
 {
 ISBN = bookTitle.ISBN,
 Title = bookTitle.Title
 };
 }

 public static IList<BookTitleView> ConvertToBookTitleViews
 (this IEnumerable<BookTitle> bookTitles)
 {
 IList<BookTitleView> bookViews = new List<BookTitleView>();
 foreach (BookTitle bookTitle in bookTitles)
 {
 bookViews.Add(bookTitle.ConvertToBookTitleView());
 }

 return bookViews;
 }
 }
}

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Services.Mappers
{
 public static class BookExtensionMethods
 {
 public static BookView ConvertToBookView(this Book book)
 {
 return new BookView
 {
 Id = book.Id.ToString(),
 ISBN = book.Title.ISBN,
 Title = book.Title.Title ,
 OnLoanTo = FormatMemberNameFrom(book.OnLoanTo)
 };
 }

 private static string FormatMemberNameFrom(Member member)
 {
 if (member != null)
 return String.Format(“{0} {1}”, member.FirstName, member.LastName);
 else
 return “”;
 }

 public static IList<BookView> ConvertToBookViews
 (this IEnumerable<Book> books)
 {

Using an Object Relational Mapper  ❘  239

 IList<BookView> bookViews = new List<BookView>();
 foreach (Book book in books)
 {
 bookViews.Add(book.ConvertToBookView());
 }

 return bookViews;
 }
 }
}

Add a third folder to the root of the Services project named Messages. This folder will contain
the message objects that are exchanged between the client and the service layer. The message and
request-response pattern are covered in Chapter 6.

All response messages inherit from a common base class named ResponseBase that provides common
behavior. This behavior is in the form of a Boolean flag property named Success that lets clients know
if their request was handled without error. The Message property contains information on the state of
the response. If there was an error while processing a request, the Message would contain details on
the error (not the exception details). If the request was successfully processed, the Message could be
empty or contain some kind of confirmation message.

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public abstract class ResponseBase
 {
 public bool Success { get; set; }
 public string Message { get; set; }
 }

Each business use case is exposed as a method on the service class, and each business use case has
a corresponding request and reply object. These objects are simple data transfer objects that make
interacting with the service layer from the client simple and consistent. All data required for a busi-
ness use case is contained within the request object via properties. The response objects inherit from
the ResponseBase and contain extra properties if the client expects a return value.

For the business case of adding a book, create a pair of request-response classes within the Messages
folder named AddBookRequest and AddBookResponse, as seen here:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class AddBookRequest
 {
 public string ISBN { get; set; }
 }
}

namespace ASPPatterns.Chap7.Library.Services.Messages
{
public class AddBookResponse : ResponseBase
 {
 }
}

240  ❘  Chapter 7   The Data Access Layer

For the business case of adding a book title, create a pair of request-response classes within the
Messages folder named AddBookTitleRequest and AddBookTitleResponse, like this:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class AddBookTitleRequest
 {
 public string ISBN { get; set; }
 public string Title { get; set; }
 }
}

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class AddBookTitleResponse : ResponseBase
 {
 }
}

For the business case of adding a member, create a pair of request-response classes within the Messages
folder named AddMemberRequest and AddMemberResponse, as shown here:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class AddMemberRequest
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }
}

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class AddMemberResponse : ResponseBase
 {
 }
}

For the business case of finding a book or books, create a pair of request-response classes within the
Messages folder named FindBooksRequest and FindBooksResponse, like so:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class FindBooksRequest
 {
 public string Id { get; set; }
 public string ISBN { get; set; }
 public bool All { get; set; }
 }
}

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class FindBooksResponse : ResponseBase

Using an Object Relational Mapper  ❘  241

 {
 public IEnumerable<BookView> Books { get; set; }
 }
}

For the business case of finding a book title or titles, create a pair of request-response classes within
the Messages folder named FindBookTitlesRequest and FindBookTitlesResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class FindBookTitlesRequest
 {
 public string ISBN { get; set; }
 public bool All { get; set; }
 }
}

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class FindBookTitlesResponse : ResponseBase
 {
 public IEnumerable<BookTitleView> BookTitles { get; set; }
 }
}

For the business case of finding a member, create a pair of request-response classes within the Messages
folder named FindMemberRequest and FindMemberResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class FindMemberRequest
 {
 public string MemberId { get; set; }
 public bool All { get; set; }
 }
}

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class FindMembersResponse : ResponseBase
 {
 public IEnumerable<MemberView> MembersFound { get; set; }
 }
}

For the business case of loaning a book, create a pair of request-response classes within the Messages
folder named LoanBookRequest and LoanBookResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class LoanBookRequest
 {

242  ❘  Chapter 7   The Data Access Layer

 public string MemberId { get; set; }
 public string CopyId { get; set; }
 }
}

using ASPPatterns.Chap7.Library.Services.Views;

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class LoanBookResponse : ResponseBase
 {
 public LoanView loan { get; set; }
 }
}

For the business case of returning a book, create a pair of request-response classes within the
Messages folder named ReturnBookRequest and ReturnBookResponse:

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class ReturnBookRequest
 {
 public string CopyId { get; set; }
 }
}

namespace ASPPatterns.Chap7.Library.Services.Messages
{
 public class ReturnBookResponse : ResponseBase
 {
 }
}

The final class to create within the Services project is the LibraryService class. Because you can
perform only a handful of operations at this library, it makes sense to group them into one library
service class. Add a new class to the root of the Services project named LibraryService, and
update it with the code listing shown here:

using ASPPatterns.Chap7.Library.Services.Messages;
using ASPPatterns.Chap7.Library.Services.Mappers;
using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Services
{
 public class LibraryService
 {
 private IUnitOfWork _uow;
 private IBookRepository _bookRepository;
 private IBookTitleRepository _bookTitleRepository;
 private IMemberRepository _memberRepository;
 private LoanService _loanService;

 public LibraryService(IBookTitleRepository bookTitleRepository,

Available for
download on
Wrox.com

Using an Object Relational Mapper  ❘  243

 IBookRepository bookRepository,
 IMemberRepository memberRepository,
 IUnitOfWork unitOfWork)
 {
 _uow = unitOfWork;
 _memberRepository = memberRepository;
 _bookTitleRepository = bookTitleRepository;
 _bookRepository = bookRepository;
 _loanService =
 new LoanService(_bookRepository, _memberRepository, _uow);
 }

 public AddBookResponse AddBook(AddBookRequest request)
 {
 AddBookResponse response = new AddBookResponse();

 BookTitle bookTitle = _bookTitleRepository.FindBy(request.ISBN);
 Book book = new Book();
 book.Title = bookTitle;
 book.Id = Guid.NewGuid();
 _bookRepository.Add(book);
 _uow.Commit();

 response.Success = true;

 return response;
 }

 public AddBookTitleResponse AddBookTitle(AddBookTitleRequest request)
 {
 AddBookTitleResponse response = new AddBookTitleResponse();

 BookTitle bookTitle = new BookTitle();
 bookTitle.ISBN = request.ISBN;
 bookTitle.Title = request.Title;

 _bookTitleRepository.Add(bookTitle);
 _uow.Commit();

 response.Success = true;

 return response;
 }

 public FindBooksResponse FindBooks(FindBooksRequest request)
 {
 FindBooksResponse response = new FindBooksResponse();

 IEnumerable<Book> books = _bookRepository.FindAll();
 IEnumerable<BookView> bookViews = books.ConvertToBookViews();

 response.Books = bookViews;

 return response;

244  ❘  Chapter 7   The Data Access Layer

 }

 public FindBookTitlesResponse FindBookTitles(FindBookTitlesRequest request)
 {
 FindBookTitlesResponse response = new FindBookTitlesResponse();

 IList<BookTitleView> bookTitles = new List<BookTitleView>();

 if (request.All)
 {
 bookTitles =
 _bookTitleRepository.FindAll().ConvertToBookTitleViews();
 }
 else
 {
 BookTitle bookTitle = _bookTitleRepository.FindBy(request.ISBN);
 bookTitles.Add(bookTitle.ConvertToBookTitleView());
 }

 response.BookTitles = bookTitles;
 response.Success = true;

 return response;
 }

 public LoanBookResponse LoanBook(LoanBookRequest request)
 {
 LoanBookResponse response = new LoanBookResponse();

 Loan loan = _loanService.Loan(
 new Guid(request.MemberId), new Guid(request.CopyId));

 if (loan != null)
 {
 response.loan = loan.ConvertToLoanView();
 response.Success = true;
 }
 else
 {
 response.Success = false;
 }

 return response;
 }

 public ReturnBookResponse ReturnBook(ReturnBookRequest request)
 {
 ReturnBookResponse response = new ReturnBookResponse();

 _loanService.Return(new Guid(request.CopyId));

 return response;

Using an Object Relational Mapper  ❘  245

 }

 public AddMemberResponse AddMember(AddMemberRequest request)
 {
 AddMemberResponse response = new AddMemberResponse();

 Member member = new Member();
 member.FirstName = request.FirstName;
 member.LastName = request.LastName;
 member.Id = Guid.NewGuid();

 _memberRepository.Add(member);
 _uow.Commit();

 return response;
 }

 public FindMembersResponse FindMembers(FindMemberRequest request)
 {
 FindMembersResponse response = new FindMembersResponse();
 IList<MemberView> members = new List<MemberView>();

 if (request.All)
 {
 members = _memberRepository.FindAll().ConvertToMemberViews();
 }
 else
 {
 Member member =
 _memberRepository.FindBy(new Guid(request.MemberId));
 members.Add(member.ConvertToMemberView());
 }

 response.MembersFound = members;
 response.Success = true;

 return response;
 }
 }
}

Code snippet LibraryService.cs in the project ASPPatterns.Chap7.Library.Services

The LibraryService class contains eight methods that map to the eight business cases related to the
Library domain. All eight methods are straightforward and coordinate the retrieval or persistence of
an entity to the corresponding Repository. The LoanBook and ReturnBook methods are slightly dif-
ferent in that they use a LoanService, which is a domain service to coordinate the returning or loaning
of a book. The coordination of this activity is a domain concern.

All dependencies in the form of Repositories and the Unit of Work implementation are injected into
the service class via its constructor. This is a form of Dependency Injection, which Chapter 5 covered.

Again, there is no validation of the request messages; this has been omitted to keep the sample concise.
In a real-world application, you should validate all requests.

246  ❘  Chapter 7   The Data Access Layer

The Services project now resembles Figure 7-12.

Figure 7-12

With the Domain Model, supporting infrastructure code (Unit of Work pattern and Query Object
pattern), and service layer in place, you can work on the persistence concerns, starting with the
database and continuing with the NHibernate and Entity Framework Repository implementations.

Database
From within the UI.Web web application project, right-click and select Add ➪ New Item from
the pop-up menu. Then select the Data tab and choose SQL Server Database. Name the database
Library.mdf.

Construct the library database schema as shown in Figure 7-13.

Using an Object Relational Mapper  ❘  247

Figure 7-13

NHibernate Repository
To work with NHibernate, you need the framework. Navigate to www.nhibernate.org and click on
the latest release; at the time of writing, this is version 2.0.1.GA. You are redirected to SourceForge.
Once there, click Download to display all the downloads for this release. Select the project named, at
the time of this writing, NHibernate-2.1.0.Beta2-bin.zip. When this download has completed,
extract all the containing folders and files into a new folder named lib that you should create within
the root of the solution folder. When all files have been extracted, switch back to Visual Studio, and
from the NHibernateRepository project, add a reference to the following files from the lib folder:

Iesi.Collections➤➤

LinFu.DynamicProxy➤➤

log4net➤➤

NHibernate➤➤

NHibernate.ByteCode.LinFu➤➤

The first task is to create files that map the database tables and columns to your domain entities and
properties, as defined in the Model project.

Add a new folder named MappingFiles, and add to it a new XML file named BookTitle.hbm.xml.
The XML file is meta data whose purpose is to inform the NHibernate framework how your domain
model and the data model relate to each other. There are two other ways to add meta data: one is
via a fluent interface in code, and the other is via attributes in the entity class. For this example, you
will be using an XML mapping file.

The listing that follows shows the meta data for the BookTitle.hbm.xml file:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”ASPPatterns.Chap7.Library.Model”

248  ❘  Chapter 7   The Data Access Layer

 assembly=”ASPPatterns.Chap7.Library.Model”>

 <class name=”ASPPatterns.Chap7.Library.Model.BookTitle”
 table=”t_Books” lazy=”false” >

 <id name=”ISBN” column=”ISBN” type=”String”>
 <generator class=”assigned” />
 </id>

 <property name=”Title”>
 <column name=”Title” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 </class>

</hibernate-mapping>

After you have updated the BookTitle.hbm.xml file to match the preceding listing, you need to change
the build action for the file. Right-click on the class to bring up its properties from the context-sensitive
menu. Once the Properties dialog is displayed, change the build action to Embedded Resource. This
ensures that the XML data is embedded when the assembly is built. All the mapping files need to have
their build actions changed to Embedded Resource.

The next mapping file is for the Book entity. Add a new XML file to the MappingFiles folder named
Book.hbm.xml, and update it with the following markup:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”ASPPatterns.Chap7.Library.Model”
 assembly=”ASPPatterns.Chap7.Library.Model”>

 <class name=”ASPPatterns.Chap7.Library.Model.Book” table=”t_Copies” lazy=”false”>

 <id name=”Id” column=”Id” type=”guid”>
 <generator class=”guid” />
 </id>

 <many-to-one name=”Title”
 class=”BookTitle”
 column=”BookISBN”
 not-null=”true”/>

 <many-to-one name=”OnLoanTo”
 class=”Member”
 column=”MemberId”/>

 </class>

</hibernate-mapping>

Add a third XML file for the Loan entity named Loan.hbm.xml with the markup displayed here:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”ASPPatterns.Chap7.Library.Model”

Using an Object Relational Mapper  ❘  249

 assembly=”ASPPatterns.Chap7.Library.Model”>

 <class name=”ASPPatterns.Chap7.Library.Model.Loan”
 table=”t_Loans” lazy=”false” >

 <id name=”Id” column=”Id” type=”guid”>
 <generator class=”guid” />
 </id>

 <many-to-one name=”Book”
 class=”Book”
 column=”CopyId” />

 <property name=”LoanDate”>
 <column name=”LoanDate” sql-type=”datetime” not-null=”true” />
 </property>

 <property name=”DateForReturn”>
 <column name=”DateForReturn” sql-type=”datetime” not-null=”true” />
 </property>

 <property name=”ReturnDate”>
 <column name=”ReturnDate” sql-type=”datetime” not-null=”false” />
 </property>

 <many-to-one name=”Member”
 class=”Member”
 column=”MemberId” not-null=”false” />
 </class>
</hibernate-mapping>

Finally, add an XML file for the Member entity with the name Member.hbm.xml and the following
markup:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”ASPPatterns.Chap7.Library.Model”
 assembly=”ASPPatterns.Chap7.Library.Model”>

 <class name=”ASPPatterns.Chap7.Library.Model.Member”
 table=”t_Members” lazy=”false”>

 <id name=”Id” column=”Id” type=”guid”>
 <generator class=”guid” />
 </id>

 <property name=”FirstName”>
 <column name=”FirstName” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property name=”LastName”>
 <column name=”LastName” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <bag name=”Loans” inverse=”true” cascade=”all” lazy=”true” >
 <key column=”MemberId”/>

250  ❘  Chapter 7   The Data Access Layer

 <one-to-many class=”Loan”></one-to-many>
 </bag>

 </class>

</hibernate-mapping>

Again, ensure you have changed each of the file’s build action to Embedded Resource so that the
NHibernate framework can find the mapping meta data.

I won’t go into detail about the syntax of these files because this is not a book on using NHibernate,
but it should be easy to work out how NHibernate maps columns and tables to business entities and
properties. For a deeper insight into the world of NHibernate, check out the many online resources
or the book NHibernate in Action.

Now that you have configured how your business entities map to your data tables, you can begin pro-
gramming the NHibernate Repository. Create a folder within the root of the NHibernateRepository
project named SessionStorage; this contains all the code necessary to store a Unit of Work, also
known as a session in NHibernate. You will store instances of a session differently depending on
whether you are working within a web application or a Windows smart client; for this reason, you
will create an interface to communication with a session container. Create a new interface named
ISessionStorageContainer with the following contract:

using NHibernate;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage
{
 public interface ISessionStorageContainer
 {
 ISession GetCurrentSession();
 void Store(ISession session);
 }
}

Because you will be working within a web environment that has an HTTP context, you require a
session container that utilizes the HTTP item’s collection to store NHibernate sessions. Add a new
class that implements the ISessionStorageContainer interface named HttpSessionContainer
with the following code listing:

using global::NHibernate;
using System.Web;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage
{
 public class HttpSessionContainer : ISessionStorageContainer
 {
 private string _sessionKey = “NHSession”;

 public ISession GetCurrentSession()
 {
 ISession nhSession = null;

 if (HttpContext.Current.Items.Contains(_sessionKey))

Using an Object Relational Mapper  ❘  251

 nhSession = (ISession)HttpContext.Current.Items[_sessionKey];

 return nhSession;
 }

 public void Store(ISession session)
 {
 if (HttpContext.Current.Items.Contains(_sessionKey))
 HttpContext.Current.Items[_sessionKey] = session;
 else
 HttpContext.Current.Items.Add(_sessionKey, session);
 }
 }
}

This class stores and retrieves NHibernate sessions from the HTTP items collection. For completeness,
you can create a smart client version for use in non-web scenarios. Add a new class to the Session​
Storage folder named ThreadSessionStorageContainer that also implements the ISessionStorage​
Container. The code for this class is shown here:

using global::NHibernate;
using System.Collections;
using System.Threading;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage
{
 public class ThreadSessionStorageContainer : ISessionStorageContainer
 {
 private static readonly Hashtable _nhSessions = new Hashtable();

 public ISession GetCurrentSession()
 {
 ISession nhSession = null;

 if (_nhSessions.Contains(GetThreadName()))
 nhSession = (ISession)_nhSessions[GetThreadName()];

 return nhSession;
 }

 public void Store(ISession session)
 {
 if (_nhSessions.Contains(GetThreadName()))
 _nhSessions[GetThreadName()] = session;
 else
 _nhSessions.Add(GetThreadName(), session);
 }

 private static string GetThreadName()
 {
 return Thread.CurrentThread.Name;
 }
 }
}

252  ❘  Chapter 7   The Data Access Layer

This class retains sessions within a hash table using the current thread name as a key.

To obtain the best session container for your application, you will add a factory class that will be respon-
sible for creating and supplying a valid session container. Add a new class to the SessionStorage folder
named SessionStorageFactory with the following listing:

using System.Web;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage
{
 public static class SessionStorageFactory
 {
 public static ISessionStorageContainer _nhSessionStorageContainer;

 public static ISessionStorageContainer GetStorageContainer()
 {
 if (_nhSessionStorageContainer == null)
 {
 if (HttpContext.Current == null)
 _nhSessionStorageContainer =
 new ThreadSessionStorageContainer();
 else
 _nhSessionStorageContainer = new HttpSessionContainer();
 }

 return _nhSessionStorageContainer;
 }
 }
}

This SessionStorageFactory determines if an HTTP context exists. If so, an HttpSessionContainer
is created; otherwise, a ThreadSessionStorageContainer is used. Once the concrete implementation of
the ISessionStorageContainer interface is created, it is stored in a static variable named _nhSession​
StorageContainer.

With the ability to store sessions taken care of, you now need a way to create them so that you can
use NHibernate to persist and retrieve your business entities. Add a new class to the root of the
NHibernate project and name it SessionFactory. The code for this class follows:

using NHibernate;
using NHibernate.Cfg;
using System.Web;
using ASPPatterns.Chap7.Library.Repository.NHibernate.SessionStorage;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate
{
 public class SessionFactory
 {
 private static ISessionFactory _SessionFactory;

 private static void Init()
 {

Using an Object Relational Mapper  ❘  253

 Configuration config = new Configuration();
 config.AddAssembly(“ASPPatterns.Chap7.Library.Repository.NHibernate”);

 log4net.Config.XmlConfigurator.Configure();

 config.Configure();

 _SessionFactory = config.BuildSessionFactory();
 }

 private static ISessionFactory GetSessionFactory()
 {
 if (_SessionFactory == null)
 Init();

 return _SessionFactory;
 }

 private static ISession GetNewSession()
 {
 return GetSessionFactory().OpenSession();
 }

 public static ISession GetCurrentSession()
 {
 ISessionStorageContainer _sessionStorageContainer =
 SessionStorageFactory.GetStorageContainer();

 ISession currentSession = _sessionStorageContainer.GetCurrentSession();

 if (currentSession == null)
 {
 currentSession = GetNewSession();
 _sessionStorageContainer.Store(currentSession);
 }

 return currentSession;
 }
 }
}

Here’s a look at each method of this class.

Init➤➤ : This method is called from the GetSessionFactory method only once. Within the Init,
you create an instance of NHibernate’s configuration class, called the configure method. It con-
figures NHibernate based on the application configuration file that you will define later in the
web.config file. You then add the assembly that contains the embedded mapping meta data.
Finally, you ask the configuration to build an instance of the ISessionFactory.

ISessionFactory➤➤ : An ISessionFactory is typically created as a singleton object because
of the relatively expensive operation of creating it. One of the jobs of the SessionFactory is
to provide ISession instances. As mentioned before, the ISession is the main interface that

254  ❘  Chapter 7   The Data Access Layer

persists and retrieves business entities. Think of the ISession as your gateway to the database.
The NHibernate site defines it as the “persistence manager.”

GetSessionFactory➤➤ : The GetSessionFactory method is called and invokes the Init method
if it has not already done so.

GetNewSession➤➤ : The GetNewSession private method uses the GetSessionFactory to create
a new session to work with.

GetCurrentSession➤➤ : The GetCurrentSession method, which you will be using with the
implementations of the Repositories, creates a new session and stores it in the appropriate
session container, obtained from the SessionStorageFactory.

Now that you have configured NHibernate, you can start to use it. Add a new class to the root of the
NHibernate project named NHUnitOfWork. This is NHibernate’s implementation of the Unit of Work
pattern that you defined in the Infrastructure project. The code for this class can be seen here:

using ASPPatterns.Chap7.Library.Infrastructure;
using NHibernate;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate
{
 public class NHUnitOfWork : IUnitOfWork
 {
 public void RegisterAmended(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 SessionProvider.GetCurrentSession().SaveOrUpdate(entity);
 }

 public void RegisterNew(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 SessionProvider.GetCurrentSession().Save(entity);
 }

 public void RegisterRemoved(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 SessionProvider.GetCurrentSession().Delete(entity);
 }

 public void Commit()
 {
 using (ITransaction transaction =
 SessionProvider.GetCurrentSession().BeginTransaction())
 {
 try
 { transaction.Commit(); }
 catch (Exception ex)
 {
 transaction.Rollback();

Using an Object Relational Mapper  ❘  255

 throw;
 }
 }
 }
 }
}

As the ISession interface implements the Unit of Work pattern discussed earlier in this chapter,
no changes will occur until a transaction is committed. Another pattern built into NHibernate is
Identity Map, which maintains a single instance of a business entity in the ISession no matter how
many times you retrieve it.

The Repository implementations are easy to create thanks to generics. You can create a base Repository
class using generics to provide all the functionality for all the Repositories. Create a new folder named
Repositories and add a new class to it named Repository, with the code listing shown here:

using NHibernate;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
 public abstract class Repository<T, EntityKey> where T : IAggregateRoot
 {
 private IUnitOfWork _uow;

 public Repository(IUnitOfWork uow)
 {
 _uow = uow;
 }

 public void Add(T entity)
 {
 _uow.RegisterNew(entity, null);
 }

 public void Remove(T entity)
 {
 _uow.RegisterRemoved(entity, null);
 }

 public void Save(T entity)
 {
 _uow.RegisterAmended(entity, null);
 }

 public T FindBy(EntityKey Id)
 {
 return SessionProvider.GetCurrentSession().Get<T>(Id);
 }

 public IEnumerable<T> FindAll()

256  ❘  Chapter 7   The Data Access Layer

 {
 ICriteria CriteriaQuery =
 SessionProvider.GetCurrentSession().CreateCriteria(typeof(T));

 return (List<T>)CriteriaQuery.List<T>();
 }

 public IEnumerable<T> FindAll(int index, int count)
 {
 ICriteria CriteriaQuery =
 SessionProvider.GetCurrentSession().CreateCriteria(typeof(T));

 return (List<T>)CriteriaQuery.SetFetchSize(count)
 .SetFirstResult(index).List<T>();
 }

 public IEnumerable<T> FindBy(Query query)
 {
 ICriteria nhQuery = query.TranslateIntoNHQuery<T>();

 return nhQuery.List<T>();
 }

 public IEnumerable<T> FindBy(Query query, int index, int count)
 {
 ICriteria nhQuery = query.TranslateIntoNHQuery<T>();

 return nhQuery.SetFetchSize(count).SetFirstResult(index).List<T>();
 }
 }
}

You will build the QueryTranslator classes a little later, so don’t worry that your class can’t com-
pile at this stage. With the generic Repository base class in place, you can add the implementations.

Create three new classes within the Repositories folder named BookRepository, BookTitle​
Repository, and MemberRepository: one for each of the interfaces defined in the Models project.
The code listing for these classes is shown here:

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
 public class BookRepository : Repository<Book, Guid>, IBookRepository
 {
 public BookRepository(IUnitOfWork unitOfWork) : base(unitOfWork)
 { }
 }
}

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;

Using an Object Relational Mapper  ❘  257

using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
 public class BookTitleRepository : Repository<BookTitle, string>,
 IBookTitleRepository
 {
 public BookTitleRepository(IUnitOfWork unitOfWork) : base(unitOfWork)
 { }
 }
}

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
 public class MemberRepository : Repository<Member, Guid>, IMemberRepository
 {
 public MemberRepository(IUnitOfWork unitOfWork) : base(unitOfWork)
 { }
 }
}

The final class to create to complete the NHibernate Repository is the QueryTranslator. This class
provides an extension method for the Query Object as defined in the Infrastructure project. Add
a new class for the QueryTranslator, and update it with the code listing that follows:

using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;
using NHibernate;
using NHibernate.Criterion;

namespace ASPPatterns.Chap7.Library.Repository.NHibernate.Repositories
{
 public static class QueryTranslator
 {
 public static ICriteria TranslateIntoNHQuery<T>(this Query query)
 {
 ICriteria criteria;

 if (query.IsNamedQuery())
 {
 criteria = FindNHQueryFor(query);
 }
 else
 {
 criteria =
 SessionProvider.GetCurrentSession().CreateCriteria(typeof(T));

 foreach (Criterion c in query.Criteria)
 {

258  ❘  Chapter 7   The Data Access Layer

 global::NHibernate.Criterion.ICriterion criterion;

 switch (c.criteriaOperator)
 {
 case CriteriaOperator.Equal:
 criterion = Expression.Eq(c.PropertyName, c.Value);
 break;
 case CriteriaOperator.LesserThanOrEqual:
 criterion = Expression.Le(c.PropertyName, c.Value);
 break;
 default:
 throw new ApplicationException(“No operator defined”);
 }

 if (query.QueryOperator == QueryOperator.And)
 criteria.Add(Expression.Conjunction().Add(criterion));
 else
 criteria.Add(Expression.Disjunction().Add(criterion));
 }

 criteria.AddOrder(new Order(
 query.OrderByProperty.PropertyName,
 !query.OrderByProperty.Desc));
 }
 return criteria;
 }

 private static ICriteria FindNHQueryFor(Query query)
 {
 // No complex queries have been defined in this sample.
 throw new NotImplementedException();
 }
 }
}

NHibernate has two interfaces for querying: IQuery and ICriteria. The IQuery interface sup-
ports NHibernate’s own brand of SQL — ​HQL that queries using object syntax (that is, classes and
properties instead of SQL syntax tables and columns). The ICriteria interface enables the query-
ing of entities in an object-oriented manner as well as querying by example. The QueryTranslator
class simply converts your query into an ICriteria instance ready for use with NHibernate.
NHibernate also supports native SQL for retrieving entities, so if you have a particularly complex
query, you can create a stored procedure or run the raw SQL from within NHibernate. These
queries would then be defined as Named Queries in the Query Object pattern so that the Query​
Translator could use the FindNHQueryFor method to obtain an ICriteria instance.

To finish the NHibernate Repository, you need to update the Web.config file from within the UI.Web
web application project to include NHibernate configuration meta data. You can see this in the code
snippet that follows:

<configuration>
 <configSections>
 <! -- NHibernate Section -- >
 <section name=”hibernate-configuration”
 type=”NHibernate.Cfg.ConfigurationSectionHandler, NHibernate”/>

Using an Object Relational Mapper  ❘  259

 <! -- NHibernate Section End -- >
 </configSections >

 <hibernate-configuration xmlns=”urn:nhibernate-configuration-2.2”>
 <session-factory name=”NHibernate.Test”>
 <property name=”connection.driver_class”>
 NHibernate.Driver.SqlClientDriver</property>
 <property name=”connection.connection_string”>
 Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|Library.mdf;
 Integrated Security=True;User Instance=True
 </property>
 <property name=”adonet.batch_size”>10</property>
 <property name=”show_sql”>true</property>
 <property name=”dialect”>
 NHibernate.Dialect.MsSql2005Dialect</property>
 <property name=”use_outer_join”>true</property>
 <property name=”command_timeout”>60</property>
 <property name=”query.substitutions”>
 true 1, false 0, yes ‘Y’, no ‘N’</property>
 <property name=”proxyfactory.factory_class”>
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
 NHibernate.ByteCode.LinFu</property>
 </session-factory>
 </hibernate-configuration>

....

</configuration>

The Repository.NHibernate project now resembles Figure 7-14.

You will now create a version of the Repository using Microsoft’s Entity Framework.

Entity Framework Repository
Unlike NHibernate, Microsoft’s Entity Framework has a built-in graphical designer and wizard
step-by-step menu for configuring the model and database mapping. Other than that, NHibernate
and Entity Framework are similar, as you will see after you have built an Entity Framework reposi-
tory layer implementation in this section.

Create a new ADO.NET Entity Model by right-clicking on the Repository.EF project, selecting
Add New Item, and choosing the ADO.NET Entity Data Model item from the data submenu. Name
the model Library.edmx and click Add. To create your Entity Data Model, you are taken through
a series of steps from the Entity Data Model Wizard. The first step is to determine how you want
to create your model. Because you have already set up a database, you can select Generate from
Database, as shown in Figure 7-15.

The second step asks you to confirm the location of the database, as shown in Figure 7-16. By default,
the wizard should pick up the local database you created within the UI.Web web application project.
Leave the default settings and the name of the connection string, and click Next.

260  ❘  Chapter 7   The Data Access Layer

Figure 7-14

Figure 7-15

Using an Object Relational Mapper  ❘  261

Figure 7-16

The Entity Framework then prompts you to copy the database to the Repository.EF project, as
shown in Figure 7-17. Click No.

Figure 7-17

262  ❘  Chapter 7   The Data Access Layer

The wizard generates a list of database objects that you can include in your model. Select the items as
shown in Figure 7-18, and deselect the option to include foreign keys in the model. Then click Finish.

Figure 7-18

The Entity Data Model Wizard now generates a model for you. You need to modify the default
model so that you can use it with the domain model you created in the Model project. Perform the
following refinements to the model generated by Visual Studio:

Rename the ➤➤ t_Members entity to Member

Remove the navigation property ➤➤ t_Copies

Rename the ➤➤ t_Loans navigation property to Loans

Rename the ➤➤ t_Copies entity to Book

Remove the ➤➤ t_Loans navigation property

Rename the ➤➤ t_Books navigation property to Title

Rename the ➤➤ t_Members navigation property to OnLoanTo

Rename the ➤➤ t_Loans entity to Loan

Rename the ➤➤ t_Copies navigation property to Book

Rename the ➤➤ t_Members navigation property to Member

Rename the ➤➤ t_Books entity to BookTitle

Remove the ➤➤ t_Copies navigation property

Using an Object Relational Mapper  ❘  263

After you have updated your model, it should resemble Figure 7-19.

Figure 7-19

There are just a few more changes you need to make before you start to create the Repository imple-
mentations. Right-click on the Library.edmx file and select Properties. Then delete the EntityModel​
CodeGenerator from the Custom Tool property box.

You created your business entities in the Model project earlier, so there is no need to let Entity Framework
generate the model classes for you.

Right-click anywhere within the Entity Framework diagram and select Properties. Then change the
namespace of the project to ASPPatterns.Chap7.Library.Model, as shown in Figure 7-20.

Figure 7-20

264  ❘  Chapter 7   The Data Access Layer

The Entity Framework now uses the business enti-
ties that you defined in the Model project.

Right-click on the Id property of the Loan entity
and change the StoredGenerationPattern to
Identity, as shown in Figure 7-21.

This is required so that Entity Framework can
create an identity for newly created Loan entities.

Even though you have been using the designer to
configure the mapping layer, if you were to right-
click on the Library.edmx file, select Open With,
and choose the XML (Text) Editor, you would
find the XML mapping meta data similar to the
NHibernate mapping files. Following is the XML
meta data that represents the three layers of the
Entity Framework.

Store Schema Definition Language (SSDL): ➤➤ The SSDL maps the database structure, including
tables and relationships, views, and stored procedures. This is your logic layer.

Conceptual Schema Definition Language (CSDL): ➤➤ The CSDL maps the conceptual view
detailing your entities and their relationships. This is the conceptual layer.

Mapping Specification Language (MSL): ➤➤ The MSL maps the logical layer to the conceptual
layer. It maps your business entities to the underlying database.

With the domain model and data model mapped, you can start to build the Entity Framework
Repository. Create a new file in the root of the Repository.EF project named LibraryDataContext
with the following listing:

using System.Data.Objects;
using System.Data;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF
{
 public class LibraryDataContext : ObjectContext
 {
 private ObjectSet<Member> _members;
 private ObjectSet<Book> _books;
 private ObjectSet<BookTitle> _bookTitles;

 public LibraryDataContext()
 : base(“name=LibraryEntities”, “LibraryEntities”)
 {
 _members = CreateObjectSet<Member>();
 _books = CreateObjectSet<Book>();
 _bookTitles = CreateObjectSet<BookTitle>();
 base.ContextOptions.LazyLoadingEnabled = true;
 }

 public ObjectSet<Member> Members

Figure 7-21

Using an Object Relational Mapper  ❘  265

 {
 get { return _members; }
 }

 public ObjectSet<Book> Books
 {
 get { return _books; }
 }

 public ObjectSet<BookTitle> BookTitles
 {
 get { return _bookTitles; }
 }
 }
}

This class is similar to the NHibernate’s Session class in that it provides the gateway to the persis-
tence management and retrieval of business entities using Entity Framework.

Just as with NHibernate, you need to create a set of classes to store current DataContext (Session in
the case of NHibernate). These classes are set up in the same manner as was used with NHibernate.
Add a new folder to the Repository.EF project named DataContextStorage, and add an interface for
the storage container named IDataContextStorageContainer whose contract can be found here:

 public interface IDataContextStorageContainer
 {
 LibraryDataContext GetDataContext();
 void Store(LibraryDataContext libraryDataContext);
 }

Next, create an implementation for use within a web scenario named HttpDataContextStorage​
Container:

using System.Web;

namespace ASPPatterns.Chap7.Library.Repository.EF.DataContextStorage
{
 public class HttpDataContextStorageContainer : IDataContextStorageContainer
 {
 private string _dataContextKey = “DataContext”;

 public LibraryDataContext GetDataContext()
 {
 LibraryDataContext objectContext = null;
 if (HttpContext.Current.Items.Contains(_dataContextKey))
 objectContext =
 (LibraryDataContext)HttpContext.Current.Items[_dataContextKey];

 return objectContext;
 }

 public void Store(LibraryDataContext libraryDataContext)
 {
 if (HttpContext.Current.Items.Contains(_dataContextKey))
 HttpContext.Current.Items[_dataContextKey] = libraryDataContext;

266  ❘  Chapter 7   The Data Access Layer

 else
 HttpContext.Current.Items.Add(_dataContextKey, libraryDataContext);
 }

 }
}

Also, create an implementation for use within a non-web scenario named ThreadDataContext​
StorageContainer with the following code:

using System.Threading;

namespace ASPPatterns.Chap7.Library.Repository.EF.DataContextStorage
{
 public class ThreadDataContextStorageContainer : IDataContextStorageContainer
 {
 private static readonly Hashtable _libraryDataContexts = new Hashtable();

 public LibraryDataContext GetDataContext()
 {
 LibraryDataContext libraryDataContext = null;

 if (_libraryDataContexts.Contains(GetThreadName()))
 libraryDataContext =
 (LibraryDataContext)_libraryDataContexts[GetThreadName()];

 return libraryDataContext;
 }

 public void Store(LibraryDataContext libraryDataContext)
 {
 if (_libraryDataContexts.Contains(GetThreadName()))
 _libraryDataContexts[GetThreadName()] = libraryDataContext;
 else
 _libraryDataContexts.Add(GetThreadName(), libraryDataContext);
 }

 private static string GetThreadName()
 {
 return Thread.CurrentThread.Name;
 }
 }
}

As was the case with NHibernate, to determine which storage container to use, you will use a fac-
tory class. Create a new class within the root of the project named DataContextStorageFactory
with the following code listing:

 public class DataContextStorageFactory
 {
 public static IDataContextStorageContainer _dataContextStorageContainer;

 public static IDataContextStorageContainer CreateStorageContainer()
 {
 if (_dataContectStorageContainer == null)

Using an Object Relational Mapper  ❘  267

 {
 if (HttpContext.Current == null)
 _dataContextStorageContainer =
 new ThreadDataContextStorageContainer();
 else
 _dataContextStorageContainer =
 new HttpDataContextStorageContainer();
 }

 return _dataContextStorageContainer;
 }
 }

As with NHibernate’s GetCurrentSession, you need a way to obtain the current Entity Framework
DataContext. You can achieve this by using a DataContext factory. Add a new class to the root of
the Repository.EF project named DataContextFactory with the following code listing:

using ASPPatterns.Chap7.Library.Repository.EF.DataContextStorage;

namespace ASPPatterns.Chap7.Library.Repository.EF
{
 public class DataContextFactory
 {
 public static LibraryDataContext GetDataContext()
 {
 IDataContextStorageContainer _dataContextStorageContainer =
 DataContextStorageFactory.CreateStorageContainer();

 LibraryDataContext libraryDataContext =
 _dataContextStorageContainer.GetDataContext();
 if (libraryDataContext == null)
 {
 libraryDataContext = new LibraryDataContext();
 _dataContextStorageContainer.Store(libraryDataContext);
 }

 return libraryDataContext;
 }
 }
}

The next class you will create is Entity Framework’s implementation of the IUnitOfWork interface,
as defined in the Infrastructure project. Add a new class named EFUnitOfWork and update with
the code shown here:

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;

namespace ASPPatterns.Chap7.Library.Repository.EF
{
 public class EFUnitOfWork : IUnitOfWork
 {
 public void Commit()
 {
 DataContextFactory.GetDataContext().SaveChanges();

268  ❘  Chapter 7   The Data Access Layer

 }

 public void RegisterAmended(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 unitofWorkRepository.PersistUpdateOf(entity);
 }

 public void RegisterNew(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 unitofWorkRepository.PersistCreationOf(entity);
 }

 public void RegisterRemoved(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 unitofWorkRepository.PersistDeletionOf(entity);
 }
 }
}

The EFUnitOfWork class delegates all work persistence back to the IUnitOfWorkRepository but
does commit the change to the database via the DataContextFactory that you looked at previously.

Querying within Entity Framework is achieved using LINQ to Entities, which is similar to the LINQ
to SQL querying mechanism, using strongly typed objects or the literal-based Entity SQL. You will use
the literal-based Entity SQL to convert the generic Query Object to language that Entity Framework
understands.

Add a new folder named QueryTranslators to the Repository.EF project, and add a class that each
of the Repositories will inherit from. This will be named QueryTranslator and will offer a method to
produce an Entity SQL String builder along with a list of Object Parameters from the Query Object.

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators
{
 public abstract class QueryTranslator
 {
 public void CreateQueryAndObjectParameters(Query query,
 StringBuilder queryBuilder,
 IList<ObjectParameter> paraColl)
 {
 foreach (Criterion criterion in query.Criteria)
 {
 switch (criterion.criteriaOperator)
 {
 case CriteriaOperator.Equal:
 queryBuilder.Append(
 String.Format(“it.{0} = @{0}”,
 criterion.PropertyName));
 break;

Using an Object Relational Mapper  ❘  269

 case CriteriaOperator.LesserThanOrEqual:
 queryBuilder.Append(
 String.Format(“it.{0} <= @{0}”,
 criterion.PropertyName));
 break;
 default:
 throw new ApplicationException(“No operator defined”);
 }

 paraColl.Add(
 new ObjectParameter(criterion.PropertyName, criterion.Value));
 }
 }
 }
}

Do this for each of the Repositories defined in the Model project — ​BookQueryTranslator, BookTitle​
QueryTranslator, and MemberQueryTranslator. The code for each of these classes is shown here:

using System.Data.Objects;

using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators
{
 public class BookQueryTranslator : QueryTranslator
 {
 public ObjectQuery<Book> Translate(Query query)
 {
 ObjectQuery<Book> bookQuery;

 if (query.IsNamedQuery())
 {
 bookQuery = FindEFQueryFor(query);
 }
 else
 {
 StringBuilder queryBuilder = new StringBuilder();
 IList<ObjectParameter> paraColl = new List<ObjectParameter>();
 CreateQueryAndObjectParameters(query, queryBuilder, paraColl);

 bookQuery =
 DataContextFactory.GetDataContext().Books.Include(“Title”)
 .Where(queryBuilder.ToString(), paraColl.ToArray())
 .OrderBy(
 String.Format(“it.{0} desc”,
 query.OrderByProperty.PropertyName));
 }

 return bookQuery;
 }

 private ObjectQuery<Book> FindEFQueryFor(Query query)
 {

270  ❘  Chapter 7   The Data Access Layer

 // No complex queries have been defined in this sample.
 throw new NotImplementedException();
 }
 }
}

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators
{
 public class BookTitleQueryTranslator : QueryTranslator
 {
 public ObjectQuery<BookTitle> Translate(Query query)
 {
 ObjectQuery<BookTitle> bookTitleQuery;

 if (query.IsNamedQuery())
 {
 bookTitleQuery = FindEFQueryFor(query);
 }
 else
 {
 StringBuilder queryBuilder = new StringBuilder();
 IList<ObjectParameter> paraColl = new List<ObjectParameter>();
 CreateQueryAndObjectParameters(query, queryBuilder, paraColl);

 bookTitleQuery = DataContextFactory.GetDataContext().BookTitles
 .Where(queryBuilder.ToString(), paraColl.ToArray())
 .OrderBy(
 String.Format(“it.{0} desc”, query.OrderByProperty.PropertyName));

 }

 return bookTitleQuery;
 }

 private ObjectQuery<BookTitle> FindEFQueryFor(Query query)
 {
 // No complex queries have been defined in this sample.
 throw new NotImplementedException();
 }
 }
}

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators

Using an Object Relational Mapper  ❘  271

{
 public class MemberQueryTranslator : QueryTranslator
 {
 public ObjectQuery<Member> Translate(Query query)
 {
 ObjectQuery<Member> memberQuery;

 if (query.IsNamedQuery())
 {
 memberQuery = FindEFQueryFor(query);
 }
 else
 {
 StringBuilder queryBuilder = new StringBuilder();
 IList<ObjectParameter> paraColl = new List<ObjectParameter>();
 CreateQueryAndObjectParameters(query, queryBuilder, paraColl);

 memberQuery = DataContextFactory.GetDataContext().Members
 .Where(queryBuilder.ToString(), paraColl.ToArray())
 .OrderBy(
 String.Format(“it.{0} desc”, query.OrderByProperty.PropertyName));
 }

 return memberQuery;
 }

 private ObjectQuery<Member> FindEFQueryFor(Query query)
 {
 // No complex queries have been defined in this sample.
 throw new NotImplementedException();
 }
 }
}

Each of the translator classes first establishes if the query is for a named query or if it is to be built
dynamically. If it’s to be built dynamically, a call to the base method CreateQueryAndObject​
Parameters is made a string builder, and a collection of object parameters is populated from the
query. Once returned, the query is built and the order property is added.

It is now time to build the Repository implementations. Add a new folder to the root of the
Repository.EF project named Repositories. Add a new class that will act as a base class for all
Repositories, named Repository. You can see the code for this file here:

using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators;
using System.Data.Objects;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories
{
 public abstract class Repository<T, EntityKey>
 : IUnitOfWorkRepository where T : IAggregateRoot
 {

Available for
download on
Wrox.com

272  ❘  Chapter 7   The Data Access Layer

 private IUnitOfWork _uow;

 public Repository(IUnitOfWork uow)
 {
 _uow = uow;
 }

 public void Add(T entity)
 {
 _uow.RegisterNew(entity, this);
 }

 public void Remove(T entity)
 {
 _uow.RegisterRemoved(entity, this);
 }

 public void Save(T entity)
 {
 // Do nothing as EF tracks changes
 }

 public abstract IQueryable<T> GetObjectSet();

 public abstract string GetEntitySetName();

 public abstract T FindBy(EntityKey Id);

 public abstract ObjectQuery<T> TranslateIntoObjectQueryFrom(Query query);

 public IEnumerable<T> FindAll()
 {
 return GetObjectSet().ToList<T>();
 }

 public IEnumerable<T> FindAll(int index, int count)
 {
 return GetObjectSet().Skip(index).Take(count).ToList<T>();
 }

 public IEnumerable<T> FindBy(Query query)
 {
 ObjectQuery<T> efQuery = TranslateIntoObjectQueryFrom(query);

 return efQuery.ToList<T>();
 }

 public IEnumerable<T> FindBy(Query query, int index, int count)
 {
 ObjectQuery<T> efQuery = TranslateIntoObjectQueryFrom(query);

 return efQuery.Skip(index).Take(count).ToList<T>();
 }

 public void PersistCreationOf(IAggregateRoot entity)

Using an Object Relational Mapper  ❘  273

 {
 DataContextFactory.GetDataContext().AddObject(GetEntitySetName(),
 entity);
 }

 public void PersistUpdateOf(IAggregateRoot entity)
 {
 // Do nothing as EF tracks changes
 }

 public void PersistDeletionOf(IAggregateRoot entity)
 {
 DataContextFactory.GetDataContext().DeleteObject(entity);
 }
 }
}

Code snippet Repository.cs in the project ASPPatterns.Chap7.Library.Repository.EF

The three Repository implementations that will inherit from the Repository base class are
BookRepository, BookTitleRepository, and MemberRepository. The code for each of these
Repositories is shown here:

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.Query;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories
{
 public class BookRepository : Repository<Book, Guid>, IBookRepository
 {
 public BookRepository(IUnitOfWork uow) : base(uow)
 { }

 public override Book FindBy(Guid Id)
 {
 return GetObjectSet().FirstOrDefault<Book>(b => b.Id == Id);
 }

 public override IQueryable<Book> GetObjectSet()
 {
 return DataContextFactory.GetDataContext().CreateObjectSet<Book>();
 }

 public override string GetEntitySetName()
 {
 return “Books”;
 }

 public override ObjectQuery<Book> TranslateIntoObjectQueryFrom(Query query)
 {

274  ❘  Chapter 7   The Data Access Layer

 return new BookQueryTranslator().Translate(query);
 }
 }
}

using System.Data.Objects;
using System.Data;
using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories
{
 public class BookTitleRepository
 : Repository<BookTitle, string>, IBookTitleRepository
 {
 public BookTitleRepository(IUnitOfWork uow)
 : base(uow)
 { }

 public override BookTitle FindBy(string Id)
 {
 return GetObjectSet().FirstOrDefault<BookTitle>(b => b.ISBN == Id);
 }

 public override IQueryable<BookTitle> GetObjectSet()
 {
 return DataContextFactory.GetDataContext().CreateObjectSet<BookTitle>();
 }

 public override string GetEntitySetName()
 {
 return “BookTitles”;
 }

 public override ObjectQuery<BookTitle> TranslateIntoObjectQueryFrom
 (Query query)
 {
 throw new NotImplementedException();
 }
 }
}

using System.Data.Objects;
using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;

Using an Object Relational Mapper  ❘  275

using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using ASPPatterns.Chap7.Library.Repository.EF.QueryTranslators;

namespace ASPPatterns.Chap7.Library.Repository.EF.Repositories
{
 public class MemberRepository : Repository<Member, Guid>, IMemberRepository
 {
 public MemberRepository(IUnitOfWork uow) : base(uow)
 { }

 public override Member FindBy(Guid Id)
 {
 return GetObjectSet().FirstOrDefault<Member>(m => m.Id == Id);
 }

 public override IQueryable<Member> GetObjectSet()
 {
 return DataContextFactory.GetDataContext().CreateObjectSet<Member>();
 }

 public override string GetEntitySetName()
 {
 return “Members”;
 }

 public override ObjectQuery<Member>
 TranslateIntoObjectQueryFrom(Infrastructure.Query.Query query)
 {
 return new MemberQueryTranslator().Translate(query);
 }
 }
}

The last task to complete the Entity Framework Repository implementation is adding some configu-
ration data to the Web.config file, which you can find within the UI.Web web application project.
The data you need to add is the Entity Framework connection string. This connection string is
located in the App.config file found within the Repository.EF. You can see the Web.config file
code snippet here:

…
 <connectionStrings>
 <add name=”LibraryEntities”
 providerName=”System.Data.EntityClient”
connectionString=
“metadata=res://*/Library.csdl|res://*/Library.ssdl|res://*/Library.msl;
provider=System.Data.SqlClient;
provider connection string=’Data Source=.\SQLEXPRESS;AttachDbFilename="
|DataDirectory|Library.mdf"
;Integrated Security=True;User Instance=True;MultipleActiveResultSets=True’”/>
 </connectionStrings>
…

276  ❘  Chapter 7   The Data Access Layer

The Repository.EF project now resembles Figure 7-22.

Figure 7-22

It’s now time to bring the whole solution together and create the presentation layer that will use all
the projects you have built.

Presentation
You will build a basic presentation layer using ASP.NET web forms so that you can see the full
application working. To allow switching between the NHibernate and Entity Framework Repository
implementations, you will add a setting to the Web.config file. Open the Web.config file and add
the following code snippet:

…
<appSettings>
 <! -- ​
 NH - NHibernate Repository
 EF - Entity Framework Repository
 -- >
 <add key=”PersistenceStrategy” value=”NH”/>
</appSettings>
…

Using an Object Relational Mapper  ❘  277

A service factory enables you to easily switch between the two Repositories and provides a valid
instance of the LibraryService class with all dependencies. Add a new class to the UI.Web web
application named ServiceFactory, and update it to match the code listing that follows:

using ASPPatterns.Chap7.Library.Services;
using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;
using ASPPatterns.Chap7.Library;
using ASPPatterns.Chap7.Library.Infrastructure.UnitOfWork;
using System.Configuration;

namespace ASPPatterns.Chap7.Library.UI.Web
{
 /// <summary>
 /// For a better solution, look at Chapter 8,
 /// which uses an IoC Container to inject the concrete implementations
 /// </summary>
 public static class ServiceFactory
 {
 public static LibraryService CreateLibraryService()
 {
 IUnitOfWork uow;
 IBookRepository bookRepository;
 IBookTitleRepository bookTitleRepository;
 IMemberRepository memberRepository;

 string persistenceStrategy =
 ConfigurationManager.AppSettings[“PersistenceStrategy”];

 if (persistenceStrategy == “EF”)
 {
 uow = new Repository.EF.EFUnitOfWork();
 bookRepository =
 new Repository.EF.Repositories.BookRepository(uow);
 bookTitleRepository =
 new Repository.EF.Repositories.BookTitleRepository(uow);
 memberRepository =
 new Repository.EF.Repositories.MemberRepository(uow);
 }
 else
 {
 uow = new Repository.NHibernate.NHUnitOfWork();
 bookRepository =
 new Repository.NHibernate.Repositories.BookRepository(uow);
 bookTitleRepository =
 new Repository.NHibernate.Repositories
 .BookTitleRepository(uow);
 memberRepository =
 new Repository.NHibernate.Repositories.MemberRepository(uow);
 }

 return new LibraryService(

278  ❘  Chapter 7   The Data Access Layer

 bookTitleRepository, bookRepository, memberRepository, uow);
 }
 }
}

The ServiceFactory has a single method named CreateLibraryService that returns an instance
of the LibraryService configured to use the Repository defined in the Web.config file.

Now for the presentation needs. Open the Default.aspx file in the source code version and update
the markup to match what follows:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
 Inherits=”ASPPatterns.Chap7.Library.UI.Web.Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <h1>Library System</h1>
 <h2>Members</h2>
 Add new member:

 First Name <asp:TextBox ID=”txtFirstName” runat=”server” />

 Last Name <asp:TextBox ID=”txtLastName” runat=”server” />

 <asp:Button ID=”btnCreateMember” runat=”server”
 Text=”Add Member” onclick=”btnCreateMember_Click” />

 </div>
 <p>
 All Members
 <asp:Repeater ID=”rptMembers” runat=”server”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>
 <%# Eval(“FullName”)%>
 (<a href=”MemberDetail.aspx?Id=<%# Eval(“MemberId”)%>”>view details)

 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>
 </p>
 <h2>Books</h2>
 Add a Book

 Title <asp:DropDownList ID=”ddlBookTitles” runat=”server” />

Available for
download on
Wrox.com

Using an Object Relational Mapper  ❘  279

 <asp:Button ID=”btnAddBook” runat=”server”
 onclick=”btnAddBook_Click” Text=”Add Book” />
 <p>
 All Books
 <asp:Repeater ID=”rptBooks” runat=”server”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>
 <%# Eval(“Title”)%>
 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>
 </p>

 <p>
 Add
 Book Title

 ISBN<asp:TextBox ID=”txtBookISBN” runat=”server” />

 Title<asp:TextBox ID=”txtBookTitle” runat=”server” /></p>
 <p>
 <asp:Button ID=”btnAddTitle” runat=”server”
 onclick=”btnAddTitle_Click” Text=”Add Title” /></p>
 <p>
 All Book titles<asp:Repeater ID=”rptBookTitles” runat=”server”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>
 <%# Eval(“Title”)%>

 <small>ISBN: <%# Eval(“ISBN”)%></small>
 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>
 </p>
 </form>
</body>
</html>

Code snippet Default.aspx in the project ASPPatterns.Chap7.Library.UI.Web

The Default.aspx page lists all Members, Books, and BookTitles and lets you add new Members,
Books, and BookTitles.

The code behind for the Default.aspx is shown here:

using ASPPatterns.Chap7.Library.Model;
using ASPPatterns.Chap7.Library.Infrastructure;

280  ❘  Chapter 7   The Data Access Layer

using ASPPatterns.Chap7.Library.Services.Views;
using ASPPatterns.Chap7.Library.Services.Messages;
using ASPPatterns.Chap7.Library.Services;
using ASPPatterns.Chap7.Library.Infrastructure.Query;

namespace ASPPatterns.Chap7.Library.UI.Web
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 DisplayCustomers();
 DisplayBooks();
 }
 }

 private void DisplayCustomers()
 {
 FindMemberRequest request = new FindMemberRequest();
 LibraryService service = ServiceFactory.CreateLibraryService();
 request.All = true;
 FindMembersResponse response = service.FindMembers(request);

 rptMembers.DataSource = response.MembersFound;
 rptMembers.DataBind();
 }

 protected void btnCreateMember_Click(object sender, EventArgs e)
 {
 LibraryService service = ServiceFactory.CreateLibraryService();
 AddMemberRequest request = new AddMemberRequest();
 request.FirstName = txtFirstName.Text;
 request.LastName = txtLastName.Text;

 service.AddMember(request);

 DisplayCustomers();
 }

 protected void btnAddBook_Click(object sender, EventArgs e)
 {
 LibraryService service = ServiceFactory.CreateLibraryService();
 AddBookRequest request = new AddBookRequest();
 request.ISBN = ddlBookTitles.SelectedValue;

 service.AddBook(request);
 DisplayBooks();
 }

 private void DisplayBooks()
 {

Using an Object Relational Mapper  ❘  281

 LibraryService service = ServiceFactory.CreateLibraryService();
 FindBooksRequest request = new FindBooksRequest();
 request.All = true;
 FindBooksResponse response = service.FindBooks(request);

 rptBooks.DataSource = response.Books;
 rptBooks.DataBind();

 FindBookTitlesRequest bookTitleRequest = new FindBookTitlesRequest();
 bookTitleRequest.All = true;
 FindBookTitlesResponse bookTitlesResponse =
 service.FindBookTitles(bookTitleRequest);

 ddlBookTitles.DataSource = bookTitlesResponse.BookTitles;
 ddlBookTitles.DataTextField = “Title”;
 ddlBookTitles.DataValueField = “ISBN”;
 ddlBookTitles.DataBind();

 rptBookTitles.DataSource = bookTitlesResponse.BookTitles;
 rptBookTitles.DataBind();
 }

 protected void btnAddTitle_Click(object sender, EventArgs e)
 {
 AddBookTitleRequest request = new AddBookTitleRequest();
 request.ISBN = txtBookISBN.Text;
 request.Title = txtBookTitle.Text;

 LibraryService service = ServiceFactory.CreateLibraryService();

 service.AddBookTitle(request);
 DisplayBooks();
 }
 }
}

There isn’t anything exciting going on in the code behind apart from the building of messages and
their sending and receiving between the client and the service layer.

The second page you will create is used to loan books to Members. You access this page by clicking
on a Member from the Default.aspx page. Add a new ASP.NET web form to the web application
named MemberDetail.aspx and update the markup with the code listing that follows:

<%@ Import Namespace=”ASPPatterns.Chap7.Library.Services.Views” %>
<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”MemberDetail.aspx.cs”
 Inherits=”ASPPatterns.Chap7.Library.UI.Web.MemberDetail” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

282  ❘  Chapter 7   The Data Access Layer

 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <h1>Library System</h1>
 Library System Home
 <h2><asp:Literal ID=”litName” runat=”server” /></h2>
 <p>
 Books on Loan
 <asp:Repeater ID=”rptLoans” runat=”server”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>
 <%# Eval(“BookTitle”)%>

 <small>
 <%# DisplayLoanStatus((LoanView)Container.DataItem) %></small>

 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>

 </p>

 Select a book to loan out:

 <asp:Repeater ID=”rptBooks” runat=”server”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>
 <%# Eval(“Title”)%>
 <%# LoanStatus((BookView)Container.DataItem)%>
 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

The MemberDetail.aspx page lists a history of loans for the given Member and a list of all available
books to loan. The code behind for this page follows:

using ASPPatterns.Chap7.Library.Repository.EF;
using ASPPatterns.Chap7.Library.Services.Messages;
using ASPPatterns.Chap7.Library.Services.Views;

Using an Object Relational Mapper  ❘  283

using ASPPatterns.Chap7.Library.Services;

using ASPPatterns.Chap7.Library.Model;

namespace ASPPatterns.Chap7.Library.UI.Web
{
 public partial class MemberDetail : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 string memberId = Request.QueryString[“Id”];
 string copyToReturnId = “”;
 string copyToLoanId= “”;

 if (Request.QueryString.AllKeys
 .FirstOrDefault(s => s == “CopyIdToReturn”) != null)
 copyToReturnId = Request.QueryString[“CopyIdToReturn”];

 if (Request.QueryString.AllKeys
 .FirstOrDefault(s => s == “CopyToLoanId”) != null)
 copyToLoanId = Request.QueryString[“CopyToLoanId”];

 if (copyToLoanId != “”)
 LoanBook(new Guid(copyToLoanId));

 if (copyToReturnId != “”)
 ReturnBook(new Guid(copyToReturnId));

 DisplayMember(new Guid(memberId));
 DisplayBooks();
 }
 }

 private void LoanBook(Guid copyId)
 {
 LibraryService service = ServiceFactory.CreateLibraryService();
 LoanBookRequest request = new LoanBookRequest();
 LoanBookResponse response;
 request.CopyId = copyId.ToString() ;
 request.MemberId = Request.QueryString[“Id”];

 response = service.LoanBook(request);
 }

 private void ReturnBook(Guid copyId)
 {
 LibraryService service = ServiceFactory.CreateLibraryService();
 ReturnBookRequest request = new ReturnBookRequest();

 request.CopyId = copyId.ToString();

 service.ReturnBook(request);

284  ❘  Chapter 7   The Data Access Layer

 }

 private void DisplayMember(Guid Id)
 {
 LibraryService service = ServiceFactory.CreateLibraryService();
 FindMemberRequest request =
 new FindMemberRequest { MemberId = Id.ToString() };
 FindMembersResponse response = service.FindMembers(request);

 if (response.Success)
 {
 litName.Text = response.MembersFound.First().FullName;
 rptLoans.DataSource = response.MembersFound
 .First().Loans.OrderBy(l => l.LoanDate);
 rptLoans.DataBind();
 }
 }

 private void DisplayBooks()
 {
 LibraryService service = ServiceFactory.CreateLibraryService();
 FindBooksRequest request = new FindBooksRequest();
 request.All = true;
 FindBooksResponse response = service.FindBooks(request);

 this.rptBooks.DataSource = response.Books;
 rptBooks.DataBind();

 }

 public string DisplayLoanStatus(LoanView loan)
 {
 if (loan.StillOutOnLoan)
 return String.Format(
 @”due back on {0} <a href=””Memberdetail.aspx? “
+ @”CopyIdToReturn={1}&Id={2}””>return?”,
 loan.DateForReturn, loan.CopyId, loan.MemberId);
 else
 return “returned on “ + loan.ReturnDate;

 }

 public string LoanStatus(BookView book)
 {
 if (!String.IsNullOrEmpty(book.OnLoanTo))
 return “On loan to “ + book.OnLoanTo;
 else
 return String.Format(
 @”Loan?”,
 Request.QueryString[“Id”], book.Id);
 }
 }
}

Summary  ❘  285

Again, the code behind is straightforward, and logic is
relevant only to presentation needs. Figure 7-23 shows the
complete UI.Web web application project.

Set the web application as your start-up project, and press
F5 to run the application. Figures 7-24 and 7-25 show you
the application in use.

After you have run through the application and used all
the functions, change the Repository setting from within
the web.config to test the other Repository.

Raw ADO.NET Repository
If you want to see a raw ADO.NET Repository implemen-
tation using all the patterns discussed in the first half of
this chapter, download this book’s source code from www.
wrox.com.

As you can see, several options are available when it comes to implementing your repository layer.
Both the NHibernate and Entity Framework products are powerful but do require some initial
upfront investment in terms of time to learn the syntax and API. However, the cost of investment
is low compared to building your own Repository that supports all the patterns discussed in this
chapter.

Summary

This chapter introduced the following patterns that you can apply to the DAL of an enterprise ASP.
NET application:

Repository: ➤➤ The Repository pattern is used mostly with logical collections of objects, or
aggregates as they are better known. The CRUD methods take an instance of the aggregate
root and persist and retrieve all the associated objects in the object graph. This works well if
you are taking a domain-driven design approach to development. It is also a good fit with the
domain model business pattern and the POCO/PI business models.

DAO: ➤➤ This simple pattern is designed to separate the elements of your DAL from the rest of
the application. Typically, a DAO exists for each table and contains all the CRUD methods,
which makes it an ideal DAL pattern for the Transaction Script and Active Record business
patterns.

Unit of Work: ➤➤ The Unit of Work pattern maintains all the entities that a business transaction
adds, updates, and removes and commits the changes as one atomic action. This ensures that,
if an exception were to occur, all changes would be rolled back and the data would be left in
a valid state.

Figure 7-23

286  ❘  Chapter 7   The Data Access Layer

Data Concurrency: ➤➤ Data concurrency is vital
in any enterprise application. You looked at
using version IDs to ensure that another user
hadn’t modified a business entity during a
business transaction. This again ensured that
your data remained valid at all times.

Lazy Loading and Proxy: ➤➤ Lazy Loading is
the process of deferring the loading of an
expensive resource until you need it. The
proxy pattern provides acts as a surrogate
to another object. You saw how the proxy
pattern returned a ProxyCustomer instead
of a real customer. The ProxyCustomer was
then able to only load the collection of orders
when needed.

Identity Map: ➤➤ An Identity Map pattern
ensures that each business entity retrieved
from the DAL is loaded only once by storing
that business entity into a map and loading it
from there for subsequent calls for the dura-
tion of a business transaction.

Query Object: ➤➤ The Query Object pattern
provides a data provider–agnostic manner in
which to query a Repository for a business
entities.

You then looked at two popular ORMs:

NHibernate: ➤➤ NHibernate is a port of the
popular Hibernate open source ORM for
Java. NHibernate has been around for years,
and it’s a proven and robust piece of software
with a large active community working on the
product.

Entity Framework: ➤➤ Entity Framework is Microsoft’s enterprise-level ORM. Much criticized
when it launched, it’s now in version 4 and has support for POCO and PI, which makes it a
great product for your persistence needs.

It should now be clear that there is a lot to do to ensure your enterprise-level ASP.NET application
has a solid and well-thought-out persistence layer. Whether you are going to opt for an ORM or roll
your own, it’s important that you understand the patterns and principles involved so that you can be
best placed to build a solution for your data access needs.

Figure 7-24

Summary  ❘  287

Figure 7-25

In the next chapter, you will look at patterns that can be used to separate concerns at the presenta-
tion level of your ASP.NET applications.

The Presentation layer

whaT’s in This chaPTer?

Tying your loosely coupled code with StructureMap and Inversion of ➤➤

Control container

Letting the view be in charge with the Model-View-Presenter pattern ➤➤

and ASP .NET web forms

FrontController - Command pattern and Chain of Responsibility pattern➤➤

Model-View-Controller pattern with ASP .NET MVC and Castle Monorail➤➤

PageController pattern with ASP .NET web forms➤➤

The ViewModel pattern and how to automate domain entities to ➤➤

ViewModel mapping with AutoMapper

This chapter deals with the needs of the presentation of an ASP.NET enterprise application and dis-
cusses a number of patterns at your disposal to organize your presentation code. The chapter starts
with a discussion of how you can tie together your loosely coupled code so that a concrete imple-
mentation can be consumed from the presentation layer via the use of an Inversion of Control (IoC)
container. The chapter then moves onto the patterns that promote separation of concerns, including
the Model-View-Presenter pattern, the Front Controller pattern, the Model-View-Controller pat-
tern, and the Page Controller pattern. Various frameworks and open source products are discussed
to assist you in the organization of your presentation concerns, and a number of coding exercises
are presented to help you understand the patterns concepts.

inVersion of conTrol

Throughout this book, you have read about the benefi ts and principles behind loosely coupling
your code. In Chapter 3, you were introduced to the Dependency Inversion (sometimes known
as Dependency Injection) principle from the S.O.L.I.D. design principles, which taught you to

8

290  ❘  Chapter 8   The Presentation Layer

depend on abstractions rather than implementations, thereby inverting the relationship of a dependent
to its dependencies. However, at some point, you need to create concrete implementations. This typi-
cally occurs at the presentation or service layer, so you are now left with the unenviable task of creat-
ing those dependencies without coupling your code to a specific implementation. Luckily, a number
of patterns can help you with this task, which you will look at now.

Factory Design Pattern
Many of the exercises up to this point have utilized the Factory Design pattern (see Chapter 5) to cre-
ate all the concrete implementations. You have typically seen code similar to the snippet shown here:

 public static class OrderServiceFactory
 {
 public static OrderService CreateOrderService()
 {
 ICourier courier = new FedExCourier();
 IDispatchService DispatchService = new DispatchService(courier);

 IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant();
 IPaymentGateway paymentGateway =
 new PaymentGateway(StreamLinePaymentMerchant);

 return new OrderService(DispatchService, paymentGateway);
 }
 }

The OrderServiceFactory completely removes the responsibility from the client code and provides
a simple method to obtain a complex service, the OrderService. However, the Factory pattern has
its drawbacks: when you introduce more dependencies and thus more ways to create the service, the
number of methods on the class increases to accommodate all the different OrderService depen-
dency permutations, as you see in the following code snippet:

 public static class OrderServiceFactory
 {
 public static OrderService CreateFedExOrderService()
 {
 ICourier courier = new FedExCourier();
 IDispatchService DispatchService = new DispatchService(courier);

 IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant();
 IPaymentGateway paymentGateway =
 new PaymentGateway(StreamLinePaymentMerchant);

 return new OrderService(DispatchService, paymentGateway);
 }

 public static OrderService CreateDHLOrderService()
 {
 ICourier courier = new DHLCourier();
 IDispatchService DispatchService = DispatchService(courier);

 IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant();

Inversion of Control  ❘  291

 IPaymentGateway paymentGateway =
 new PaymentGateway(StreamLinePaymentMerchant);

 return new OrderService(DispatchService, paymentGateway);
 }

 public static OrderService CreateTNTOrderService()
 {
 ICourier courier = new TNTCourier();
 IDispatchService DispatchService = DispatchService(courier);

 IPaymentMerchant paymentMerchant = new StreamLinePaymentMerchant();
 IPaymentGateway paymentGateway =
 new PaymentGateway(StreamLinePaymentMerchant);

 return new OrderService(DispatchService, paymentGateway);
 }
 }

The downside is that a client using the factory is tightly coupled to a single implementation of the
OrderService, and variations to the type of OrderService class needed by the client require a
change in the factory class method being called.

The next pattern to solve the issue of creating concrete types is the Service Locator pattern.

Service Locator
The role of the Service Locator is to act as a central service repository with a simple interface that
knows how to get hold of any service required by the application. A Service Locator provides methods
to register services and usually takes a literal name value of a service or an object type to resolve them.

Think of a Service Locator as a kind of beefed-up factory. Instead of having a mass of different fac-
tory methods for variants of your service, you have a single Resolve method that will allow you to
obtain any service for a given key. Like the Factory pattern, the Service Locator pattern hides the
complexities of wiring up a service with its required dependent objects, except that the service loca-
tor can be reused in many applications and is a lot more abstract than the Factory Design pattern.

OrderService orderService =
 serviceLocator.Locate<OrderService>(“OrderServiceWithFedExCourier”);

Typically, the code to register the service would reside in a startup class, ideally in the global.asax
file’s Application_Start event. The Service Locator is a far easier model to work with and does
not need lots of explicitly named methods to provide implementations of the OrderService.

The code snippet that follows shows how a simple ServiceLocator would look.

 public class ServiceLocator
 {
 private IDictionary<string, Object> registeredTypes =
 new Dictionary<string, Object>();
 public void Register<T>(string ServiceName, T obj)
 {
 registeredTypes.Add(ServiceName, obj);

292  ❘  Chapter 8   The Presentation Layer

 }

 public T Locate<T>(string ServiceName)
 {
 return (T)registeredTypes[ServiceName];
 }
 }

For a more in-depth look at the Service Locator pattern, read my previous book, Professional
Enterprise .NET, published by Wrox.

The third pattern you will look at to resolve dependencies is the IoC container.

IoC Containers
All the options you have looked at so far have one thing in common: the client code is responsible
for obtaining or fetching a service and all its dependencies. The Factory and Service Locator patterns
remove the need to know how to construct the service but still place the burden on the client code to
specify which service implementation is required. What an IoC container does is completely invert
this relationship by injecting the service into the client, thus pushing rather than pulling, if you will.
The term Inversion of Control describes the act of the client relinquishing control to the IoC con-
tainer, that is the Inversion of Control from client to container. There is another name for this pattern
that is a lot more descriptive: the Hollywood principle of “Don’t call us, we’ll call you.” Essentially,
IoC is all about taking the traditional flow of control — ​the client code creating the service — ​and
inverting it using the IoC container to inject the service into the client code.

When you use an IoC container, the client code can simply depend on an interface or abstract class
and not have a care in the world as to what is providing it with the concrete implementation at
runtime.

There are numerous open source IoC containers out there, such as Castle Windsor, Spring.Net,
Ninject, and PicoContainer.NET, as well as Microsoft’s Unity, but you will be using StructureMap
by Jeremy D. Miller in the next exercise and for the rest of the exercises in this chapter.

StructureMap
To demonstrate the power of an IoC container, you will work through an exercise based on the code
snippets shown in the discussion on the Factory and Service Locator patterns. The exercise revolves
around the domain of an order payment and dispatch service. The domain model you will create will
contain no code, but it will demonstrate how an IoC container can resolve nested dependencies.

To get started with StructureMap, the first thing you need to do is download the framework. Navigate to
http://sourceforge.net/projects/structuremap and download the latest version of StructureMap.
Once the compressed file has downloaded, unzip it, and extract all files to a folder on your desktop ready
to be included with the solution.

Create a new solution named ASPPatterns.Chap8.IoC, and to it add a class library project named
ASPPatterns.Chap8.IoC.Model and a web application project named ASPPatterns.Chap8.IoC​
.UI.Web. Right-click on the UI.Web web application and a reference to the Model project.

Inversion of Control  ❘  293

Add two folders within the Model project named Dispatch and Payment. Also, add two new interfaces
to the Dispatch folder named IDispatchService and ICourier with the following code contracts:

 public interface IDispatchService
 {
 }

 public interface ICourier
 {
 }

Add a class to the Dispatch folder named DispatchService that implements the IDispatchService
interface, and update the class with the code as displayed here:

 public class DispatchService : IDispatchService
 {
 private ICourier _courier;

 public DispatchService(ICourier courier)
 {
 _courier = courier;
 }

 public override string ToString()
 {
 return _courier.ToString();
 }
 }

Next, add a second class named FedExCourier that implements the ICourier interface as shown here:

 public class FedExCourier : ICourier
 {
 }

Add two new interfaces to the Payment folder named IPaymentGateway and IPaymentMerchant with
the contracts defined here:

 public interface IPaymentGateway
 {
 }

 public interface IPaymentMerchant
 {
 }

Add a class to the Payment folder named StreamLinePaymentMerchant that implements the IPayment​
Merchant interface as shown in the code listing that follows:

 public class StreamLinePaymentMerchant : IPaymentMerchant
 {
 }

294  ❘  Chapter 8   The Presentation Layer

Add a class to the Payment folder named PaymentGateway that implements the IPaymentGateway
interface as shown here:

 public class PaymentGateway : IPaymentGateway
 {
 IPaymentMerchant _paymentMerchant;

 public PaymentGateway(IPaymentMerchant paymentMerchant)
 {
 _paymentMerchant = paymentMerchant;
 }

 public override string ToString()
 {
 return _paymentMerchant.ToString();
 }
 }

Finally, to finish the Model project, add a new class named OrderService to the root of the project
with the following code definition:

using ASPPatterns.Chap8.IoC.Model.Payment;
using ASPPatterns.Chap8.IoC.Model.Dispatch;

namespace ASPPatterns.Chap8.IoC.Model
{
 public class OrderService
 {
 private IPaymentGateway _paymentGateway;
 private IDispatchService _DispatchService;

 public OrderService(IPaymentGateway paymentGateway,
 IDispatchService DispatchService)
 {
 _paymentGateway = paymentGateway;
 _DispatchService = DispatchService;
 }

 public override string ToString()
 {
 return String.Format(“Payment Gateway: {0}, Dispatch Service: {1}”,
 _paymentGateway.ToString(), _DispatchService.ToString());
 }
 }
}

The ToString method override enables you to ascertain that the IoC container correctly resolved all
dependencies, which will become clearer later.

The next step is to add a reference to the StructureMap.dll that you downloaded earlier. Right-click
on the UI.Web web application project and add a reference to StructureMap.dll. Next, add a new
class to the UI.Web project named BootStrapper with the following code listing:

using StructureMap;
using StructureMap.Configuration.DSL;

Inversion of Control  ❘  295

using ASPPatterns.Chap8.IoC.Model.Payment;
using ASPPatterns.Chap8.IoC.Model.Dispatch;

namespace ASPPatterns.Chap8.IoC.UI.Web
{
 public class BootStrapper
 {
 public static void ConfigureStructureMap()
 {
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ModelRegistry>();

 });
 }

 public class ModelRegistry : Registry
 {
 public ModelRegistry()
 {
 ForRequestedType<IPaymentGateway>()
 .TheDefault.Is.OfConcreteType<PaymentGateway>();

 ForRequestedType<IPaymentMerchant>()
 .TheDefault.Is.OfConcreteType<StreamLinePaymentMerchant>();

 ForRequestedType<IDispatchService>()
 .TheDefault.Is.OfConcreteType<DispatchService>();

 ForRequestedType<ICourier>()
 .TheDefault.Is.OfConcreteType<FedExCourier>();
 }

 }

 }
}

The ModelRegistry class is simply setting up the concrete implementations to return when a spe-
cific type is asked for. The Registry is then initialized with the StructureMap framework within
the ConfigureStructureMap method. There are a couple of different ways to configure your con-
crete dependencies via attributes and xml files that are detailed on the StructureMap project page
http://structuremap.github.com/structuremap/.

Typically, you will want to configure your dependencies at startup, so add a global.asax to your
UI.Web project if one does not exist, and then add the code to call the ConfigureStructureMap
method during the Application_Start event, as can be seen here:

 public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(object sender, EventArgs e)
 {
 BootStrapper.ConfigureStructureMap();
 }
 }

296  ❘  Chapter 8   The Presentation Layer

Finally, you can use StructureMap to obtain an instance of the OrderService with all dependen-
cies resolved. Switch to the code behind view of the Default.aspx page and add the following lines
within the Page_Load event:

using ASPPatterns.Chap8.IoC.Model;
using ASPPatterns.Chap8.IoC.Model.Payment;
using ASPPatterns.Chap8.IoC.Model.Dispatch;
using StructureMap;

namespace ASPPatterns.Chap8.IoC.UI.Web
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 OrderService orderService =
 ObjectFactory.GetInstance<OrderService>();

 Response.Write(orderService.ToString());
 }
 }
}

When you run the page, it displays the names of both of the nested dependencies. You may have
noticed that you didn’t explicitly register the OrderService type with StructureMap even though
it was able to resolve it. This happens because StructureMap auto-wires the dependencies based on
what it already has in its container. Auto-wiring your dependencies gives you the maximum ben-
efit of using any type of container. Your client code can remain blissfully unaware of the concrete
dependencies defined.

You will be utilizing StructureMap with the remaining exercises in this chapter.

The remainder of this book covers patterns design to organize your presentation logic and to sep-
arate it from your business and data access layer. The first pattern you will look at is the Model-
View-Presenter.

Model-View-Presenter

The Model-View-Presenter (MVP) pattern places the emphasis on the view to control the flow of
logic throughout the presentation layer. Three distinct parts make up the MVP pattern:

The model represents the business data that is to be displayed by or modified by the view.➤➤

The view displays the model data obtained via the presenter and delegates user input to the ➤➤

presenter.

The presenter is called from the view to display data pulled from the model and to handle ➤➤

user input.

Model-View-Presenter  ❘  297

Figure 8-1 shows how these three parts work together.

View Presenter

Model

Figure 8-1

As shown in the diagram, a user requests a view. The view in turn delegates the request to the asso-
ciated presenter and typically passes a reference to itself upon construction of the presenter. The
presenter then talks to the model to retrieve the business data applicable to the view. Once obtained,
the presenter updates the reference of the view with model data.

A framework has been built to enable the MVP pattern to be used with ASP.NET web forms. You
can find more information by navigating to http://webformsmvp.com. You will create an implemen-
tation of the MVP pattern using web forms without the need of a framework.

ASP.NET Web Forms with MVP
The domain model that you will build for this exercise will be used for the presentation patterns in the
remainder of this chapter. The solution revolves around the domain of an online shop — specifically,
the displaying of the product catalog.

Create a new solution named ASPPatterns.Chap8.MVP and add the following three class library
projects:

ASPPatterns.Chap8.MVP.Model➤➤

ASPPatterns.Chap8.MVP.Presentation➤➤

ASPPatterns.Chap8.MVP.StubRepository➤➤

Next, add a web application project named ASPPatterns.Chap8.MVP.UI.Web. To set up the project
dependencies, right-click on the StubRepository project and add a reference to the Model project.
Next, right-click on the Presentation project and a reference to both the Model project and
the StubRepository project. Finally, right-click on the UI.Web project and add a reference to the
Model, StubRepository, and Presentation projects.

With the solution set up, you can begin to flesh out the domain model. Add a new class to the Model
project named Category with the following code listing:

 public class Category
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }

298  ❘  Chapter 8   The Presentation Layer

Add a second class to the Model project named Product, and update it to match the code shown here:

 public class Product
 {
 public int Id { get; set; }
 public Category Category { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public string Description { get; set; }
 }

Next, add two interfaces that will define a contract for the Product and Category repositories. Name
the two interfaces ICategoryRepository and IProductRepository, respectively. Update the inter-
faces to match the code contracts that follow:

 public interface ICategoryRepository
 {
 IEnumerable<Category> FindAll();
 Category FindBy(int Id);
 }

 public interface IProductRepository
 {
 IEnumerable<Product> FindAll();
 Product FindBy(int Id);
 }

Finally, add a domain service class named ProductService that coordinates the retrieval of Products
and Categories using the repository contracts. The code for the ProductService class is shown here:

 public class ProductService
 {
 private ICategoryRepository _categoryRepository;
 private IProductRepository _productRepository;

 public ProductService(ICategoryRepository categoryRepository,
 IProductRepository productRepository)
 {
 _categoryRepository = categoryRepository;
 _productRepository = productRepository;
 }

 public Product GetProductBy(int id)
 {
 return _productRepository.FindBy(id);
 }

 public IEnumerable<Product> GetAllProductsIn(int categoryId)
 {
 return _productRepository.FindAll()
 .Where(cat => cat.Category.Id == categoryId);
 }

 public Category GetCategoryBy(int id)

Model-View-Presenter  ❘  299

 {
 return _categoryRepository.FindBy(id);
 }

 public IEnumerable<Category> GetAllCategories()
 {
 return _categoryRepository.FindAll();
 }

 public IEnumerable<Product> GetBestSellingProducts()
 {
 return _productRepository.FindAll().Take(4);
 }
 }

The domain model has purposely been kept simple so it wouldn’t detract from the presentation pat-
terns. With the model in place, you can create a stub repository implementation. You are creating a
stub because there is no real need to create a fully database-driven solution.

Add a new class to the StubRespository project named DataContext, which will provide the data
for your repositories. You can see the code for this class here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.StubRepository
{
 public class DataContext
 {
 private List<Product> _products;
 private List<Category> _categories;

 public DataContext()
 {
 _categories = new List<Category>();

 Category hatCategory = new Category { Id = 1, Name = “Hats” };
 Category gloveCategory = new Category { Id = 2, Name = “Gloves” };
 Category scarfCategory = new Category { Id = 3, Name = “Scarfs” };

 _categories.Add(hatCategory);
 _categories.Add(gloveCategory);
 _categories.Add(scarfCategory);

 _products = new List<Product>();
 _products.Add(new Product
 { Id = 1, Name = “BaseBall Cap”, Price = 9.99m, Category = hatCategory });
 _products.Add(new Product
 { Id = 2, Name = “Flat Cap”, Price = 5.99m, Category = hatCategory });
 _products.Add(new Product
 { Id = 3, Name = “Top Hat”, Price = 6.99m, Category = hatCategory });

 _products.Add(new Product
 { Id = 4, Name = “Mitten”, Price = 10.99m, Category = gloveCategory });
 _products.Add(new Product

Available for
download on
Wrox.com

300  ❘  Chapter 8   The Presentation Layer

 { Id = 5, Name = “Fingerless Glove”, Price = 13.99m,
 Category = gloveCategory });
 _products.Add(new Product
 { Id = 6, Name = “Leather Glove”, Price = 7.99m,
 Category = gloveCategory });

 _products.Add(new Product
 { Id = 7, Name = “Silk Scarf”,
 Price = 23.99m, Category = scarfCategory });
 _products.Add(new Product
 { Id = 8, Name = “Woolen”, Price = 14.99m, Category = scarfCategory });
 }

 public List<Product> Products
 {
 get { return _products; }
 }

 public List<Category> Categories
 {
 get { return _categories; }
 }
 }
}

Code snippet DataContext.cs in project ASPPatterns.Chap8.MVP.StubRepository

The DataContext simply defines a collection of Products and Categories that you can work against.
With your data in place, you can create implementations of the repository contracts defined in the
Model project. Add a new class to the StubRepository project named IProductRepository, and
update it to match this listing:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.StubRepository
{
 public class ProductRepository : IProductRepository
 {
 public IEnumerable<Product> FindAll()
 {
 return new DataContext().Products;
 }

 public Product FindBy(int Id)
 {
 Product productFound = new DataContext()
 .Products.FirstOrDefault(prod => prod.Id == Id);

 if (productFound != null)
 {
 productFound.Description =
 “orem ipsum dolor sit amet, consectetur adipiscing elit.” +
 “Praesent est libero, imperdiet eget dapibus vel, tempus.” +
 “Nullam eu metus justo.” +
 “Curabitur sit amet lectus lorem, a tempus felis. “ +
 “Phasellus consectetur eleifend est, euismod cursus tellus.”;

Model-View-Presenter  ❘  301

 }

 return productFound;
 }
 }
}

The FindBy method adds some descriptive text to the found product for use on the product detail
page that you will see later in this exercise.

The second and last class required for the StubRepository project is the implementation of the
ICategoryRepository interface defined in the Model project. Add a new class named Category​
Repository, and again update it to match the code that follows:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.StubRepository
{
 public class CategoryRepository : ICategoryRepository
 {
 public IEnumerable<Category> FindAll()
 {
 return new DataContext().Categories;
 }

 public Category FindBy(int Id)
 {
 return new DataContext().Categories.FirstOrDefault(cat => cat.Id == Id);
 }
 }
}

This completes the StubRepository project. You will use the Model and StubRepository projects
throughout this chapter to demonstrate the various presentation patterns.

Now switch to the Presentation project and add a new interface named IHomeView with the following
contract definition:

 public interface IHomeView
 {
 IEnumerable<Product> TopSellingProduct { set; }
 IEnumerable<Category> CategoryList {set; }
 }

This interface defines the view for the home page of the e-commerce shop. On the home page are
categories of products and a selection of the top-selling products.

Create a new class to act as the presenter associated with this view, name the class HomePagePresenter,
and update it to match the code listing that follows:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
 public class HomePagePresenter : IHomePagePresenter
 {

302  ❘  Chapter 8   The Presentation Layer

 private IHomeView _view;
 private ProductService _productService;

 public HomePagePresenter(IHomeView view, ProductService productService)
 {
 _productService = productService;
 _view = view;
 }

 public void Display()
 {
 _view.TopSellingProduct = _productService.GetBestSellingProducts();
 _view.CategoryList = _productService.GetAllCategories();
 }
 }
}

The presenter is lightweight and simply populates the properties of the view with Products and
Categories retrieved from the ProductService. You will notice that the presenter implements an
IHomePagePresenter interface; I have defined this to loosely couple the code and to aid testing.
Please add this to the project with the following contract:

 public interface IHomePagePresenter
 {
 void Display();
 }

Next is the view that contains all products within a category. Create a new interface for this view
named ICategoryProductsView, and update it to match the contract displayed here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
 public interface ICategoryProductsView
 {
 Category Category { set; }
 int CategoryId { get;}
 IEnumerable<Product> CategoryProductList { set; }
 IEnumerable<Category> CategoryList { set; }
 }
}

The ICategoryProductsView again displays a list of categories but also all the products within a
category specified by the CategoryId property. The CategoryId property has been marked as get
only, so the view will specify this information. The remaining property is the Category property,
which will be filled with the category matching the CategoryId. The category can then be used to
display a title for the page using its Name property.

Create a presenter that works with the view named CategoryProductsPresenter, and update it to
match the code listing shown here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation

Model-View-Presenter  ❘  303

{
 public class CategoryProductsPresenter : ICategoryProductsPresenter
 {
 private ICategoryProductsView _view;
 private ProductService _productService;

 public CategoryProductsPresenter(ICategoryProductsView view,
 ProductService productService)
 {
 _productService = productService;
 _view = view;
 }

 public void Display()
 {
 _view.CategoryProductList =
 _productService.GetAllProductsIn(_view.CategoryId);
 _view.Category = _productService.GetCategoryBy(_view.CategoryId);
 _view.CategoryList = _productService.GetAllCategories();
 }
 }
}

The CategoryProductsPresenter is similar to the HomePagePresenter in that it updates the view
with categories and products obtained from the ProductService. It differs slightly, however, in that
it asks the view to supply the CategoryId. As you will see later, the view supplies the CategoryId
from the value of the query string parameter passed to the page. Again, I have defined an interface
for the presenter named ICategoryProductsPresenter, seen here:

 public interface ICategoryProductsPresenter
 {
 void Display();
 }

The next view that you create represents the product detail view. This view displays details on a spe-
cific product and enables customers to add the product to a basket. It requires a number of support-
ing classes that you need to create before the view itself.

Add a new folder to the Presentation project named Basket and add a new interface to it named
IBasket. You can see the contract for this interface here:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation.Basket
{
 public interface IBasket
 {
 IEnumerable<Product> Items { get; }
 void Add(Product product);
 }
}

The interface defines a contract for a simple basket that stores products added from the product
detail view.

304  ❘  Chapter 8   The Presentation Layer

Add a new class to the Basket folder named WebBasket that implements the IBasket interface. You
need to add a reference to the System.Web assembly because you will be referencing the HttpContext.
You can see the code for the WebBasket class here:

using System.Collections.Generic;
using System.Web;
using ASPPatterns.Chap8.MVP.Model;
namespace ASPPatterns.Chap8.MVP.Presentation.Basket
{
 public class WebBasket : IBasket
 {
 public IEnumerable<Product> Items
 {
 get { return GetBasketProducts(); }
 }
 public void Add(Product product)
 {
 IList<Product> products = GetBasketProducts();
 products.Add(product);
 }

 private IList<Product> GetBasketProducts()
 {
 IList<Product> products =
 HttpContext.Current.Session[“Basket”] as IList<Product>;

 if (products == null)
 {
 products = new List<Product>();
 HttpContext.Current.Session[“Basket”] = products;
 }

 return products;
 }
 }
}

The WebBasket class simply uses the current session to store and retrieve a collection of products.

The second supporting set of classes required for the product detail view is to enable the navigation
to the basket page after the Add to Basket button is clicked from the product detail view. Create a
second folder within the Presentation project named Navigation. To this folder add a new enu-
meration class shown here:

 public enum PageDirectory
 {
 Basket
 }

Next, add an interface named IPageNavigator and update it to match the code listing that follows:

 public interface IPageNavigator
 {
 void NaviagteTo(PageDirectory page);
 }

Model-View-Presenter  ❘  305

Finally, you can create an implementation of the IPageNavigator interface. Add a new class named
PageNavigator and update it with the following code definition:

 public class PageNavigator : IPageNavigator
 {
 public void NaviagteTo(PageDirectory page)
 {
 switch (page)
 {
 case PageDirectory.Basket:
 HttpContext.Current.Response.Redirect(“/Views/Basket/Basket.aspx”);
 break;
 default:
 throw new ApplicationException(
 “Cannot navigate to “ + page.ToString());
 }
 }
 }

The PageNavigator simply registers an HTTP redirect for the matching PageDirectory enumeration.

With the supporting classes in place, you can create the product detail view. First, create an interface
at the root of the Presentation project named IProductDetailView with the contract that follows:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
 public interface IProductDetailView
 {
 int ProductId {get;}
 string Name {set;}
 decimal Price { set; }
 string Description { set; }
 IEnumerable<Category> CategoryList { set; }
 }
}

Next, add a corresponding Presenter class named ProductDetailPresenter, seen here:

using ASPPatterns.Chap8.MVP.Model;
using ASPPatterns.Chap8.MVP.Presentation.Basket;
using ASPPatterns.Chap8.MVP.Presentation.Navigation;

namespace ASPPatterns.Chap8.MVP.Presentation
{
 public class ProductDetailPresenter : IProductDetailPresenter
 {
 private IProductDetailView _view;
 private ProductService _productService;
 private IBasket _basket;
 private IPageNavigator _pageNavigator;

 public ProductDetailPresenter(IProductDetailView view,
 ProductService productService,

Available for
download on
Wrox.com

306  ❘  Chapter 8   The Presentation Layer

 IBasket basket, IPageNavigator pageNavigator)
 {
 _productService = productService;
 _view = view;
 _basket = basket;
 _pageNavigator = pageNavigator;
 }

 public void Display()
 {
 Product product = _productService.GetProductBy(_view.ProductId);
 _view.Name = product.Name;
 _view.Description = product.Description;
 _view.Price = product.Price;
 _view.CategoryList = _productService.GetAllCategories();
 }

 public void AddProductToBasketAndShowBasketPage()
 {
 Product product = _productService.GetProductBy(_view.ProductId);

 _basket.Add(product);

 _pageNavigator.NaviagteTo(PageDirectory.Basket);
 }
 }
}

Code snippet ProductDetailPresenter.cs in project ASPPatterns.Chap8.MVP.Presentation

The ProductDetailPresenter class takes an IBasket and IPageNavigator instance along with
the IProductDetailView and ProductService. The Display method is similar to what you have
seen before, but the AddProductToBasketAndShowBasketPage method uses the IBasket and
IPageNavigator to store the current product and navigate to the basket page view.

Again, the ProductDetailPresenter implements an interface named IProductDetailPresenter
that can be added to the project, the code for which can be seen here:

 public interface IProductDetailPresenter
 {
 void Display();
 void AddProductToBasketAndShowBasketPage();
 }

The last view to create is the view of the basket. Create a new interface named IBasketView with
the following code contract:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.Presentation
{
 public interface IBasketView
 {

Model-View-Presenter  ❘  307

 IEnumerable<Category> CategoryList { set; }
 IEnumerable<Product> BasketItems { set; }
 }
}

The IBasketView interface displays all products in the customer’s basket along with a list of prod-
uct categories for the catalog navigation.

Next, create a new Presenter class to accompany the IBasketView named BasketPresenter, and
update it to match the following code listing:

using ASPPatterns.Chap8.MVP.Model;
using ASPPatterns.Chap8.MVP.Presentation.Basket;

namespace ASPPatterns.Chap8.MVP.Presentation
{
 public class BasketPresenter : IBasketPresenter
 {
 private IBasketView _view;
 private ProductService _productService;
 private IBasket _basket;

 public BasketPresenter(IBasketView view, ProductService productService,
 IBasket basket)
 {
 _productService = productService;
 _view = view;
 _basket = basket;
 }

 public void Display()
 {
 _view.BasketItems = _basket.Items;
 _view.CategoryList = _productService.GetAllCategories();
 }
 }
}

The BasketPresenter is as straightforward as the previous presenters except that it utilizes the
IBasket as well as the ProductService to provide data to the view.

Again, the BasketPresenter implements an interface called IBasketPresenter, seen here:

 public interface IBasketPresenter
 {
 void Display();
 }

This completes the Presentation project, so now you can concentrate on the view implementation.

Create a new folder within the UI.Web web application named Views, and within this folder add
four folders named Basket, Home, Product, and Shared. This folder contains your ASPX pages
that implement the view interfaces as defined in the Presentation project. You also need to add a

308  ❘  Chapter 8   The Presentation Layer

reference to the StructureMap.dll, because you will be using it as an IoC container, as discussed at
the beginning of this chapter.

Each of the views shares a number of characteristics — ​namely, the displaying of a list of categories
and the displaying of products. Because of this, you will create two user controls or partial views
that can be shared. Add a new user control to the Shared folder named CategoryList.ascx with
the following markup:

<%@ Control Language=”C#” AutoEventWireup=”true”
 CodeBehind=”CategoryList.ascx.cs”
 Inherits=”ASPPatterns.Chap8.MVP.UI.Web.Views.Shared.CategoryList” %>

<asp:Repeater ID=”rptCategoryList” runat=”server”>
 <HeaderTemplate>

 </HeaderTemplate>
 <ItemTemplate>

 <a href=”/Views/Product/CategoryProducts.aspx?CategoryId=<%# Eval(“Id”)%>”>
 <%# Eval(“Name”)%>

 </ItemTemplate>
 <FooterTemplate>

 </FooterTemplate>
</asp:Repeater>

Switch to the code behind view and add the following method, which allows the setting of the
Category collection source:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Shared
{
 public partial class CategoryList : System.Web.UI.UserControl
 {
 public void SetCategoriesToDisplay(IEnumerable<Category> categories)
 {
 this.rptCategoryList.DataSource = categories;
 this.rptCategoryList.DataBind();
 }
 }
}

The second partial view you will create is for the displaying of products. Add a user control named
ProductList.ascx to the Shared folder with the markup as displayed here:

<%@ Control Language=”C#” AutoEventWireup=”true”
 CodeBehind=”ProductList.ascx.cs”
 Inherits=”ASPPatterns.Chap8.MVP.UI.Web.Views.Shared.ProductList” %>
<%@ Import Namespace=”System.Collections.Generic”%>
<%@ Import Namespace=”ASPPatterns.Chap8.MVP.Model”%>

<asp:Repeater ID=”rptProducts” runat=”server”>
 <ItemTemplate>

Model-View-Presenter  ❘  309

 <%# Eval(“Name”) %> only <%#Eval(“Price”, “{0:C}”)%>

 <a href=”/Views/Product/ProductDetail.aspx?ProductId=<%# Eval(“Id”) %>”>
 more information
 <hr />
 </ItemTemplate>
</asp:Repeater>

Again, switch to the code behind view and add the following method this time to set the Product
collection source:

using ASPPatterns.Chap8.MVP.Model;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Shared
{
 public partial class ProductList : System.Web.UI.UserControl
 {
 public void SetProductsToDisplay(IEnumerable<Product> products)
 {
 this.rptProducts.DataSource = products;
 this.rptProducts.DataBind();
 }
 }
}

To ensure the view has a consistent look and feel, use a master page to set the page layout. Add a
new master page to the Shared folder named Shop.master with the markup as displayed here:

<%@ Master Language=”C#” AutoEventWireup=”true”
 CodeBehind=”Shop.master.cs”
 Inherits=”ASPPatterns.Chap8.MVP.UI.Web.Views.Shared.Shop” %>
<%@ Register src=”~/Views/Shared/CategoryList.ascx”
 tagname=”CategoryList” tagprefix=”uc1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <table width=”70%”>
 <tr>
 <td colspan=”2”>
 <h2>Scotts Shop</h2><hr /></td>
 </tr>
 <tr>
 <td valign=”top” width=”15%”>
 <uc1:CategoryList ID=”CategoryList1” runat=”server” />
 </td>
 <td valign=”top” width=”85%”>
 <asp:ContentPlaceHolder ID=”ContentPlaceHolder1” runat=”server”/>
 </td>
 </tr>

310  ❘  Chapter 8   The Presentation Layer

 </table>
 </div>
 </form>
</body>
</html>

Switch to the code behind view and add the following property:

 public partial class Shop : System.Web.UI.MasterPage
 {
 public CategoryList CategoryListControl
 {
 get { return this.CategoryList1; }
 }
 }

This makes it easier when working with the master page to set the CategoryList control’s data
source.

Now with the layout and display controls created, you can start to implement the views defined in
the Model project.

Add a new web form to the Home folder named Index.aspx with the following markup:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
 AutoEventWireup=”true” CodeBehind=”Index.aspx.cs”
 Inherits=”ASPPatterns.Chap8.MVP.UI.Web.Views.Home.Index” %>
<%@ Register src=”~/Views/Shared/ProductList.ascx” tagname=”ProductList”
 tagprefix=”uc1” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>
 <h2>Today’s Top Products</h2>
 <uc1:ProductList ID=”plBestSellingProducts” runat=”server” />
</asp:Content>

Switch to the code behind and amend the class so that it implements the IHomeView, and update the
class so that it matches the code listing that follows:

…
using ASPPatterns.Chap8.MVP.Presentation;
using ASPPatterns.Chap8.MVP.Model;
using ASPPatterns.Chap8.MVP.StubRepository;
using ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
using StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Home
{
 public partial class Index : System.Web.UI.Page, IHomeView
 {
 private IHomePagePresenter _presenter;

 protected void Page_Init(object sender, EventArgs e)
 {
 _presenter =
 new HomePagePresenter(this, ObjectFactory

Model-View-Presenter  ❘  311

 .GetInstance<ProductService>());
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.Display();
 }

 public IEnumerable<Model.Product> TopSellingProduct
 {
 set { plBestSellingProducts.SetProductsToDisplay(value); }
 }

 public IEnumerable<Category> CategoryList
 {
 set {
 Shop shopMasterPage = (Shop)Page.Master;
 shopMasterPage.CategoryListControl.SetCategoriesToDisplay(value);
 }
 }
 }
}

Here’s a rundown of what’s happening in the code behind: In the Page_Init event, the presenter
is created first, passing a reference to the page itself using the this keyword and then using the
StructureMap object factory to resolve the ProductService dependencies. During the Page_Load
event, the Display method is called, which sets both the TopSellingProduct and CategoryList
properties. The view then uses the data to populate the display controls plBestSellingProducts
and CategoryListControl contained on the MasterPage.

The next view to implement is the ICategoryProductsView defined in the Model project. Create a
new web form named CategoryProducts.aspx within the Product folder and update the markup
to match the code that follows:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
 AutoEventWireup=”true” CodeBehind=”CategoryProducts.aspx.cs”
 Inherits=”ASPPatterns.Chap8.MVP.UI.Web.Views.Product.CategoryProducts” %>
<%@ Register src=”~/Views/Shared/ProductList.ascx” tagname=”ProductList”
 tagprefix=”uc1” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>
 <h2>All <asp:Literal ID=”litCategoryName” runat=”server” /></h2>
 <uc1:ProductList ID=”plCategoryProducts” runat=”server” />
</asp:Content>

Switch to the code behind view and update the class. Have it implement the ICategoryProductsView
so that it matches the code listing shown here:

…
using ASPPatterns.Chap8.MVP.Presentation;
using ASPPatterns.Chap8.MVP.Model;
using ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
using StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Product

312  ❘  Chapter 8   The Presentation Layer

{
 public partial class CategoryProducts : System.Web.UI.Page, ICategoryProductsView
 {
 private ICategoryProductsPresenter _presenter;

 protected void Page_Init(object sender, EventArgs e)
 {
 _presenter = new CategoryProductsPresenter(this,
 ObjectFactory.GetInstance<ProductService>());
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.Display();
 }

 public int CategoryId
 {
 get { return int.Parse(Request.QueryString[“CategoryId”]); }
 }

 public Category Category
 {
 set { litCategoryName.Text = value.Name; }
 }

 public IEnumerable<Model.Product> CategoryProductList
 {
 set { this.plCategoryProducts.SetProductsToDisplay(value); }
 }

 public IEnumerable<Category> CategoryList
 {
 set
 {
 Shop shopMasterPage = (Shop)Page.Master;
 shopMasterPage.CategoryListControl.SetCategoriesToDisplay(value);
 }
 }

 }
}

The class is similar to the code behind for the Index.aspx page you created earlier. The main differ-
ence is that the view sets the category in question via the query string parameter passed to the page,
which can be seen in the CategoryId property setter.

Next, add another web form to the Product folder named ProductDetail.aspx, which implements
the IProductDetailView as defined within the Model project. Update the markup of this page to
match the HTML listing here:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
 AutoEventWireup=”true” CodeBehind=”ProductDetail.aspx.cs”

Model-View-Presenter  ❘  313

 Inherits=”ASPPatterns.Chap8.MVP.UI.Web.Views.Product.ProductDetail” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>
<h2><asp:Literal ID=”litName” runat=”server”/></h2>
<p>pay: <asp:Literal ID=”litPrice” runat=”server”/></p>
<p><asp:Literal ID=”litDescription” runat=”server”/></p>
<p><asp:Button ID=”btnAddToBasket” runat=”server” Text=”Add to Basket”
 onclick=”btnAddToBasket_Click”/></p>
</asp:Content>

Again, switch to the code behind view and update the code listing so that it implements the
IProductDetailView, as shown next:

…
using ASPPatterns.Chap8.MVP.Presentation;
using ASPPatterns.Chap8.MVP.Model;
using ASPPatterns.Chap8.MVP.Presentation.Basket;
using ASPPatterns.Chap8.MVP.Presentation.Navigation;
using ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
using StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Product
{
 public partial class ProductDetail : System.Web.UI.Page, IProductDetailView
 {
 private IProductDetailPresenter _presenter;

 protected void Page_Init(object sender, EventArgs e)
 {
 _presenter = new ProductDetailPresenter(this,
 ObjectFactory.GetInstance<ProductService>(),
 ObjectFactory.GetInstance<IBasket>(),
 ObjectFactory.GetInstance<IPageNavigator>());
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.Display();
 }

 public int ProductId
 {
 get { return int.Parse(Request.QueryString[“ProductId”]); }
 }

 public string Name
 {
 set { this.litName.Text = value; }
 }

 public decimal Price
 {
 set { this.litPrice.Text = String.Format(“{0:C}”, value); }

314  ❘  Chapter 8   The Presentation Layer

 }

 public string Description
 {
 set { this.litDescription.Text = value; }
 }

 public IEnumerable<Category> CategoryList
 {
 set
 {
 Shop shopMasterPage = (Shop)Page.Master;
 shopMasterPage.CategoryListControl.SetCategoriesToDisplay(value);
 }
 }

 protected void btnAddToBasket_Click(object sender, EventArgs e)
 {
 _presenter.AddProductToBasketAndShowBasketPage();
 }
 }
}

Again, this view implementation is similar to the ones you have created thus far. The one change is
the call to the presenter’s AddProductToBasketAndShowBasketPage method during the btnAddTo​
Basket_Click event firing. This method adds the product to a session basket and then redirects the
page to the basket display page.

The final view to implement is the basket view. Add a new web form to the Basket folder named
Basket.aspx and update the HTML markup view to match the listing that follows:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
 AutoEventWireup=”true” CodeBehind=”Basket.aspx.cs”
 Inherits=”ASPPatterns.Chap8.MVP.UI.Web.Views.Basket.Basket” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>
<h2>Your Basket</h2>

<asp:Repeater ID=”rptBasket” runat=”server”>
 <ItemTemplate>
 1 x <a href=”/Views/Product/ProductDetail.aspx?ProductId=<%# Eval(“Id”) %>”>
 <%# Eval(“Name”) %> for <%#Eval(“Price”, “{0:C}”)%>
 </ItemTemplate>
</asp:Repeater>

</asp:Content>

Switch to the code behind and amend the class, as you have done before, to implement the
IBasketView; then update it to match the listing that follows:

using ASPPatterns.Chap8.MVP.Presentation;
using ASPPatterns.Chap8.MVP.StubRepository;
using ASPPatterns.Chap8.MVP.Model;

Model-View-Presenter  ❘  315

using ASPPatterns.Chap8.MVP.Presentation.Basket;
using ASPPatterns.Chap8.MVP.UI.Web.Views.Shared;
using StructureMap;

namespace ASPPatterns.Chap8.MVP.UI.Web.Views.Basket
{
 public partial class Basket : System.Web.UI.Page, IBasketView
 {
 private IBasketPresenter _presenter;

 protected void Page_Init(object sender, EventArgs e)
 {
 _presenter = new BasketPresenter(this,
 ObjectFactory.GetInstance<ProductService>(),
 ObjectFactory.GetInstance<IBasket>());
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.Display();
 }

 public IEnumerable<Category> CategoryList
 {
 set
 {
 Shop shopMasterPage = (Shop)Page.Master;
 shopMasterPage.CategoryListControl.SetCategoriesToDisplay(value);
 }
 }

 public IEnumerable<Model.Product> BasketItems
 {
 set {
 rptBasket.DataSource = value;
 rptBasket.DataBind();
 }
 }
 }
}

The view implementation is straightforward and matches the other views that you have created up
to this point.

With all the views created, you now need to configure StructureMap to register all the dependences
of the presenters. Add a new class to the UI.Web project named BootStrapper and update it to match
the code listing that follows:

…
using StructureMap;
using StructureMap.Configuration.DSL;
using ASPPatterns.Chap8.MVP.Model;
using ASPPatterns.Chap8.MVP.Presentation.Navigation;

316  ❘  Chapter 8   The Presentation Layer

using ASPPatterns.Chap8.MVP.StubRepository;
using ASPPatterns.Chap8.MVP.Presentation;
using ASPPatterns.Chap8.MVP.Presentation.Basket;

namespace ASPPatterns.Chap8.MVP.UI.Web
{
 public class BootStrapper
 {
 public static void ConfigureDependencies()
 {
 // Initialize the registry
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ControllerRegistry>();

 });
 }

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 ForRequestedType<ICategoryRepository>()
 .TheDefault.Is.OfConcreteType<CategoryRepository>();
 ForRequestedType<IProductRepository>()
 .TheDefault.Is.OfConcreteType<ProductRepository>();
 ForRequestedType<IPageNavigator>()
 .TheDefault.Is.OfConcreteType<PageNavigator>();
 ForRequestedType<IBasket>()
 .TheDefault.Is.OfConcreteType<WebBasket>();
 }
 }
 }
}

The class defines the concrete types to be used when creating the ProductService.

ConfigureDependencies is called when the application starts for the first time, so it makes sense to
call it within the Application_Start event. Add a Global.asax file if one does not already exist,
and add the following method call to the Application_Start event.

 public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(object sender, EventArgs e)
 {
 BootStrapper.ConfigureDependencies();
 }
 }

The final task is to update the code behind of the Default.aspx page created by Visual Studio so
that it redirects to the Index.aspx page within the Home folder, as can be seen here:

 public partial class _Default : System.Web.UI.Page
 {

Model-View-Presenter  ❘  317

 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Redirect(“/Views/Home/Index.aspx”);
 }
 }

Your solution should now resemble Figure 8-2.

Figure 8-2

With the solution complete, you can now set the UI.Web project as the startup project and press F5
or run the debugger to browse the product catalog.

318  ❘  Chapter 8   The Presentation Layer

Figure 8-3 shows an updated version of the Model-View-Presenter diagram that you saw at the
beginning of this section so that you can see how the classes involved in the displaying of the prod-
uct detail view relate to the Model-View-Presenter concepts.

ProdectDetail.aspx

IProductDetailView

ProdectDetailPresenter

ProductService

Product, Category

IProductDetailPresenter

Figure 8-3

Figure 8-4 shows a sequence in the MVP pattern and how each of the classes interacts to form the
pattern.

Page_Init

Request

Client

HomePagePresenter(this, ProductService)

Page_Load

Display

Index

GetBestSellingProducts()

GetAllCategories()

HomePagePresenter ProductService ProductRepository CategoryRepository

FindAll()

IEnumerable<Category>

IEnumerable<Product>

FindAll()

Figure 8-4

The Model-View-Presenter is a great pattern if you are sticking with the web forms model for ASP.NET
development. You can typically find it within stateful windows client applications so it works well with
the state full view generated by ASP.NET web forms.

Front Controller  ❘  319

The next pattern you will look at for your presentation needs is the Front Controller, which is at the
heart of the Model-View-Controller pattern.

Front Controller

The Front Controller acts as the initial point of contact for requests, centralizing all business func-
tions and supporting infrastructure concerns such as authorization, security, and the rendering of
views. The view in the Front Controller pattern is completely passive and is rendered by the command
that handles the request. This ensures that little if any logic is contained within the views and cer-
tainly helps to avoid the code behind model supported out of the box by the web forms framework,
which can lead to a muddle of concerns between your view and controller. Having a central control-
ler detached from the views also helps to promote code reuse and the sharing of business logic. With
presentation logic in one place, it becomes easy to change the actions of a request.

Figure 8-5 shows the chain of events in the life of the request when employing the Front Controller
pattern. The request is sent to an HttpHandler which then forwards it to the Front Controller. The
Front Controller has a registry of web commands and searches for one that matches the request.
When the WebCommand is found, it processes the request and performs any business logic required
before navigating to the view that the client renders.

Process(Request)

Client

Handle(Request)

HttpHandler

GetCommandToHandle(Request)

FrontController WebCommandRegistry WebCommand Navigator View

WebCommand

NavigateTo(View)

Server.Transfer(View)

Process(Request)

Figure 8-5

In this section, you walk through an exercise that creates a Front Controller first using the Command
pattern and then an alternative version using the Chain of Responsibility pattern.

Command Pattern
The Command pattern defines an object that represents a method, encapsulating all the information
needed to call it at a later time.

Intent
The Command pattern is most useful when dealing with a request that you have no prior knowledge
of what operation to perform in response to it. There are four parts to the Command pattern: the
client, the invoker, the receiver, and of course the command.

320  ❘  Chapter 8   The Presentation Layer

The client instantiates the command object and provides it with a receiver object to handle a request.
An invoker then obtains the command, referencing it via its interface, and invokes its execute method,
which in turn calls into the receiver’s specific method to handle the request.

UML
Figure 8-6 shows the UML representation of the Command pattern and all the collaborating roles
based on the Front Controller pattern that you will be creating next.

FrontController WebCommandRegistry

+GetCommandFor(in Request)+Handle(in Request)

Navigator

+NavigateTo(in View)

WebCommandRegistry

+WebCommandRegistry()

WebCommand

+Process(in Request)

public void Process(Request request)
{
 //Business Logic relevant to the request. . .
 Navigator.NavigateTo(view);
}

Client

Invoker

<<interface>>
IWebCommand

+Process(in Request)

Command

ConcreteCommand

Receiver

Figure 8-6

The ➤➤ IWebCommand interface (command) declares an interface for executing an operation.

The ➤➤ WebCommand (ConcreteCommand) is an implementation of the IWebCommand interface.
The WebCommand requires a Navigator object (receiver), to which it will invoke the corre-
sponding operation(s) on the receiver.

The ➤➤ Navigator (receiver) object knows how to handle the request — ​in this instance, which
view to create.

The ➤➤ WebCommandRegistry (client) creates a collection of WebCommand objects and provides
the receiver at creation time.

The ➤➤ FrontController (invoker) uses the WebCommandRegistry to obtain a WebCommand to
process the request and in turn asks the WebCommand to carry out the request by invoking the
Process method.

Front Controller  ❘  321

Code Example
The exercise you will now work through is based on an implementation that J.P. Boodhoo (http://
www.jpboodhoo.com/) showed me on his excellent .NET boot camp. If you have the opportunity,
take the course. You will build the set of classes as shown in figure 8-5 that was featured at the start
of this section.

Create a new solution named ASPPatterns.Chap8.FrontController and add to it the following
class library projects:

ASPPatterns.Chap8.FrontController.Controller➤➤

ASPPatterns.Chap8.FrontController.Model➤➤

ASPPatterns.Chap8.FrontController.StubRepository➤➤

Next, add a web application project named ASPPatterns.Chap8.FrontController.UI.Web.
With the solution projects in place, you can now set up the project dependencies. Right-click on
the Controller project and add a reference to the Model and StubRepository project. Also add
a reference to the System.Web assembly. Right-click on the StubRepository and add a reference
to the Model project. Finally, right-click on the UI.Web project and add a reference to the Model
and Controller projects. You also need to add a reference to the StructureMap.dll for the
Controller project.

You can copy all the code from the Model and StubRepository projects that you created for the
Model-View-Presenter exercise earlier in the chapter, because this exercise uses the same domain
mode.

From the Controller project, create the following folders: ActionCommands, Navigation, Request,
Routing, Storage, and WebCommands.

The first set of classes you will create will deal with the storage of data generated from the Front
Controller and to be used on the view. Create a new interface named IViewStorage within the
Storage folder with the following contract:

 public interface IViewStorage
 {
 void Add(ViewStorageKeys key, object value);

 object Get(ViewStorageKeys key);
 }

Create a default implementation of this interface named ViewStorage with the following code listing:

…
using System.Web;

 public class ViewStorage : IViewStorage
 {
 public void Add(ViewStorageKeys key, object value)
 {
 HttpContext.Current.Items.Add(key.ToString(), value);

322  ❘  Chapter 8   The Presentation Layer

 }

 public object Get(ViewStorageKeys key)
 {
 return HttpContext.Current.Items[key.ToString()];
 }
 }

The controller will use this ViewStorage class to store the Model data pulled from the
ProductService, and the view will use it via a factory class that you will build next to populate the
.aspx and .ascx pages.

Create the ViewStorageFactory class that the views will use, and update it to match the code defi-
nition that follows:

 public class ViewStorageFactory
 {
 public static IViewStorage GetStorage()
 {
 return new ViewStorage();
 }
 }

The last class to support the storage of Model data is the ViewStorageKeys enumeration class. Create
the enumeration and amend it to match the code listing shown here:

 public enum ViewStorageKeys
 {
 Categories,
 Category,
 Products,
 Product
 }

The enumeration ensures that your code isn’t littered with magic strings that can be misspelled and
cause run-time errors.

The view storage framework will be used to pass data to the .ASPX view as shown in the following
code snippet.

<% Product product = (Product)ViewStorageFactory.GetStorage()
 .Get(ViewStorageKeys.Product); %>

<h2><%=product.Name %></h2>
<p>pay: <%=String.Format(“{0:C}”, product.Price)%></p>
<p><%=product.Description %></p>

The next section of code to create deals with navigation. The enumeration of available pages will be
catered for first. Add a new class to the Navigation folder named PageDirectory, as shown here:

 public enum PageDirectory
 {
 Home,
 CategoryProducts,
 ProductDetail,

Front Controller  ❘  323

 MissingPage
 }

Add a new interface to the Navigation folder named IPageNavigator, as shown next. You will use
the IPageNavigator to navigate to the view after the controller handles the request.

 public interface IPageNavigator
 {
 void NavigateTo(PageDirectory page);
 }

Next, add an implementation of the IPageNavigator named PageNavigator with the following
definition:

…
using System.Web;

namespace ASPPatterns.Chap8.FrontController.Controller.Navigation
{
 public class PageNavigator : ASPPatterns.Chap8.FrontController
 .Controller.Navigation.IPageNavigator
 {
 public void NavigateTo(PageDirectory page)
 {
 switch (page)
 {
 case PageDirectory.Home:
 HttpContext.Current.Server.Transfer(“~/views/Home/Index.aspx”);
 break;
 case PageDirectory.ProductDetail:
 HttpContext.Current
 .Server.Transfer(“~/views/Product/ProductDetail.aspx”);
 break;
 case PageDirectory.CategoryProducts:
 HttpContext.Current
 .Server.Transfer(“~/views/Product/CategoryProducts.aspx”);
 break;
 case PageDirectory.MissingPage:
 HttpContext.Current.Server.Transfer(“~/views/Shared/404.aspx”);
 break;
 }
 }
 }
}

The PageNavigator serves the ASPX view that corresponds to the PageDirectory enumeration.

The third set of classes you will create deals with the function of creating requests from the HTTP
context. Add a new class to the Request folder named Argument. This class will represent the query
string parameter passed to the view:

…
using System.Collections.Specialized;

namespace ASPPatterns.Chap8.FrontController.Controller.Request

324  ❘  Chapter 8   The Presentation Layer

{
 public class Argument<T>
 {
 private string _key;

 public Argument(string key)
 {
 _key = key;
 }

 public string Key
 {
 get { return _key; }
 }

 public T ExtractFrom(NameValueCollection queryArguments)
 {
 try
 {
 return (T)Convert.ChangeType(queryArguments[_key], typeof(T));
 }
 catch
 {
 return default(T);
 }
 }
 }
}

You use the ExtractFrom method to obtain the value of the key from the queryArguments NameValue​
Collection. This collection is populated from the Request.QueryString NameValueCollection,
which you will see later.

Add a second class named ActionArguments to the Request folder to act as a read-only collection
of available arguments for the controller to process.

 public class ActionArguments
 {
 public static readonly Argument<int> CategoryId =
 new Argument<int>(“categoryId”);
 public static readonly Argument<int> ProductId =
 new Argument<int>(“productId”);
 }

The next class to add represents the request itself. Add a new class named WebRequest to the Request
folder with the following definition:

…
using System.Collections.Specialized;

namespace ASPPatterns.Chap8.FrontController.Controller.Request
{
 public class WebRequest
 {
 public string RequestedURL { get; set; }

Front Controller  ❘  325

 public NameValueCollection QueryArguments { get; set; }
 }
}

The WebRequest class contains a RequestedURL property that can hold the URL and a NameValue​
Collection of query arguments to be populated by the query string parameters.

A factory will convert the HttpContext URL into a WebRequest. Before you add the class, you need
to create the interface. Add a new interface named IWebRequestFactory with the following code
contract:

…
using System.Web;

namespace ASPPatterns.Chap8.FrontController.Controller.Request
{
 public interface IWebRequestFactory
 {
 WebRequest CreateFrom(HttpContext context);
 }
}

Now add a class to implement the IWebRequestFactory named WebRequestFactory, as shown here:

…
using System.Web;

namespace ASPPatterns.Chap8.FrontController.Controller.Request
{
 public class WebRequestFactory : IWebRequestFactory
 {
 public WebRequest CreateFrom(HttpContext context)
 {
 WebRequest webrequest = new WebRequest();
 webrequest.RequestedURL = context.Request.Url.ToString();
 webrequest.QueryArguments = context.Request.QueryString;

 return webrequest;
 }
 }
}

The WebRequestFactory creates a new WebRequest and populates its properties with the content of
the current HTTP context.

This completes the Requests section of code. Now you can turn your attention to routing requests to
the correct command. Add a new class in the Routing folder named Route, and update it to match the
code listing shown here:

…
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.Routing
{
 public class Route

326  ❘  Chapter 8   The Presentation Layer

 {
 private string _route;

 public Route(string route)
 {
 _route = route;
 }

 public bool Matches(WebRequest request)
 {
 return request.RequestedURL.ToLower().Contains(_route.ToLower());
 }

 public string URL
 {
 get { return _route; }
 }
 }
}

The Route class takes a string route in the constructor and uses it within the Matches method to
compare to a WebRequest to check. A command will use the Route class to determine whether it
should handle the request.

The second class to add to the Routing folder is named Routes, and it will hold a read-only collec-
tion of valid routes. The code for this class follows:

…
 public class Routes
 {
 public static readonly Route Home = new Route(“/Home.catalog”);
 public static readonly Route CategoryProducts = new Route(“/Products.catalog”);
 public static readonly Route ProductDetail = new Route(“/Product.catalog”);
 }

With all the framework code created, you can start to add the commands that will perform the actions
dependent on the view you requested. As with all the classes in this solution, you will start with an
interface. Add a new interface to the ActionCommands folder named IActionCommand, with the con-
tract as detailed here:

…
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.ActionCommands
{
 public interface IActionCommand
 {
 void Process(WebRequest webRequest);
 }
}

You will use the IActionCommand interface to create discrete actions that web commands can utilize
to build the data for a view.

Front Controller  ❘  327

The first concrete action you will create is for populating the view storage with the best-selling prod-
ucts. Add a new class named GetTopSellingProductsCommand to the ActionCommands folder and
have it implement the IActionCommand, as can be seen in the code that follows:

…
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.ActionCommands
{
 public class GetTopSellingProductsCommand : IActionCommand
 {
 private IViewStorage _storage;
 private ProductService _productService;

 public GetTopSellingProductsCommand(IViewStorage storage,
 ProductService productService)
 {
 _storage = storage;
 _productService = productService;
 }

 public void Process(WebRequest webRequest)
 {
 _storage.Add(ViewStorageKeys.Products,
 _productService.GetBestSellingProducts());
 }
 }
}

The sole responsibility of the GetTopSellingProductsCommand is to populate the ViewStorage with
a list of best-selling products via the ProductService.

The next ActionCommand to create is obtaining a category via its ID. Add a new class to the Action​
Commands folder named GetCategoryCommand, and update it to match the code listing shown here:

…
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.ActionCommands
{
 public class GetCategoryCommand : IActionCommand
 {
 private IViewStorage _storage;
 private ProductService _productService;

 public GetCategoryCommand(IViewStorage storage, ProductService productService)
 {
 _storage = storage;
 _productService = productService;

328  ❘  Chapter 8   The Presentation Layer

 }

 public void Process(WebRequest webRequest)
 {
 int categoryId =
 ActionArguments.CategoryId.ExtractFrom(webRequest.QueryArguments);

 Category category = _productService.GetCategoryBy(categoryId);

 _storage.Add(ViewStorageKeys.Category, category);
 }

 }
}

The GetCategoryCommand class uses the CategoryId ActionArgument to convert the CategoryId
within the QueryArguments into an integer for use with the ProductService’s GetCategoryBy
method to obtain the corresponding Category before adding it to the ViewStorage.

The third command to create is the GetCategoryListCommand, which is responsible for obtaining
and storing a list of categories. You can view the code to this class here:

…
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.ActionCommands
{
 public class GetCategoryListCommand : IActionCommand
 {
 private IViewStorage _storage;
 private ProductService _productService;

 public GetCategoryListCommand(IViewStorage storage,
 ProductService productService)
 {
 _storage = storage;
 _productService = productService;
 }

 public void Process(WebRequest webRequest)
 {
 _storage.Add(ViewStorageKeys.Categories,
 _productService.GetAllCategories());
 }
 }
}

The fourth ActionCommand deals with obtaining the collection of products relating to a specific
category. Create a new class for this ActionCommand named GetCategoryProductsCommand and
modify it to match the code listing that follows:

…
using ASPPatterns.Chap8.FrontController.Model;

Front Controller  ❘  329

using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.ActionCommands
{
 public class GetCategoryProductsCommand : IActionCommand
 {
 private IViewStorage _storage;
 private ProductService _productService;

 public GetCategoryProductsCommand(IViewStorage storage,
 ProductService productService)
 {
 _storage = storage;
 _productService = productService;
 }

 public void Process(WebRequest webRequest)
 {
 int categoryId =
 ActionArguments.CategoryId.ExtractFrom(webRequest.QueryArguments);

 _storage.Add(ViewStorageKeys.Products,
 _productService.GetAllProductsIn(categoryId));
 }
 }
}

The final ActionCommand is responsible for obtaining and storing a Product with a given ProductId.
Add a new class named GetProductDetailCommand, and update it to match the code listing that
follows:

…
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.ActionCommands
{
 public class GetProductDetailCommand : IActionCommand
 {
 private IViewStorage _storage;
 private ProductService _productService;

 public GetProductDetailCommand(IViewStorage storage,
 ProductService productService)
 {
 _storage = storage;
 _productService = productService;
 }

 public void Process(WebRequest webRequest)
 {
 int productId =

330  ❘  Chapter 8   The Presentation Layer

 ActionArguments.ProductId.ExtractFrom(webRequest.QueryArguments);

 _storage.Add(ViewStorageKeys.Product,
 _productService.GetProductBy(productId));
 }
 }
}

Now that you have defined all the discrete ActionCommands, you need to define a web command that
brings together the routes and a collection of ActionCommands that will be used to handle requests.
The WebCommand implements an interface named IWebCommand. Create the IWebCommand interface
within the WebCommands folder, and amend the contract to match the following code listing:

…
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.WebCommands
{
 public interface IWebCommand
 {
 Boolean CanHandle(WebRequest webRequest);
 void Process(WebRequest webRequest);
 }
}

With the contract defined, you can now create an implementation. Add a new class to the WebCommands
folder named WebCommand, and update it to match the code definition found here:

…
using ASPPatterns.Chap8.FrontController.Controller.ActionCommands;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.Routing;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.WebCommands
{
 public class WebCommand : IWebCommand
 {
 private IPageNavigator _navigator;
 private List<IActionCommand> _actionCommands;
 private Route _route;
 private PageDirectory _page;

 public WebCommand(IPageNavigator navigator,
 List<IActionCommand> actionCommands,
 Route route, PageDirectory page)
 {
 _navigator = navigator;
 _actionCommands = actionCommands;
 _route = route;
 _page = page;

Front Controller  ❘  331

 }

 public bool CanHandle(WebRequest webRequest)
 {
 return _route.Matches(webRequest);
 }

 public void Process(WebRequest webRequest)
 {
 _actionCommands.ForEach(cmd => cmd.Process(webRequest));
 _navigator.NavigateTo(_page);
 }
 }
}

The WebCommand takes an instance of an IPageNavigator, a collection of IActionCommands, a
Route, and a PageDirectory enumeration. The WebCommand utilizes the route to determine if it can
handle the request; if so, it executes all the IActionCommands and then navigates to the correct page
to display.

To create the list of WebCommands, you need to use a command registry. Add a new interface to the
WebCommands folder named IWebCommandRegistry, and update it to match the interface shown here:

…
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.WebCommands
{
 public interface IWebCommandRegistry
 {
 IWebCommand GetCommandFor(WebRequest webRequest);
 }
}

Next, create an implementation of the IWebCommandRegistry named WebCommandRegistry, as
shown in the code listing that follows:

…
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Request;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.ActionCommands;
using StructureMap;
using ASPPatterns.Chap8.FrontController.Controller.Routing;

namespace ASPPatterns.Chap8.FrontController.Controller.WebCommands
{
 public class WebCommandRegistry : IWebCommandRegistry
 {
 private IList<IWebCommand> _webCommands = new List<IWebCommand>();

 public WebCommandRegistry()
 {
 _webCommands.Add(CreateGetCategoryProductsCommand());

Available for
download on
Wrox.com

332  ❘  Chapter 8   The Presentation Layer

 _webCommands.Add(CreateGetHomePageCommand());
 _webCommands.Add(CreateGetProductDetailCommand());
 }

 public IWebCommand GetCommandFor(WebRequest webRequest)
 {
 return _webCommands.FirstOrDefault(wc => wc.CanHandle(webRequest)) ??
 new Display404PageCommand(
 ObjectFactory.GetInstance<IPageNavigator>());
 }

 public IWebCommand CreateGetCategoryProductsCommand()
 {
 List<IActionCommand> _categoryProductsActionCommands =
 new List<IActionCommand>();
 _categoryProductsActionCommands.Add(
 ObjectFactory.GetInstance<GetCategoryListCommand>());
 _categoryProductsActionCommands.Add(
 ObjectFactory.GetInstance<GetCategoryProductsCommand>());
 _categoryProductsActionCommands.Add(
 ObjectFactory.GetInstance<GetCategoryCommand>());

 return new WebCommand(
 ObjectFactory.GetInstance<IPageNavigator>(),
 _categoryProductsActionCommands,
 Routes.CategoryProducts,
 PageDirectory.CategoryProducts);
 }

 public IWebCommand CreateGetHomePageCommand()
 {
 List<IActionCommand> _homePageActionCommands = new List<IActionCommand>();
 _homePageActionCommands.Add(
 ObjectFactory.GetInstance<GetCategoryListCommand>());
 _homePageActionCommands.Add(
 ObjectFactory.GetInstance<GetTopSellingProductsCommand>());

 return new WebCommand(
 ObjectFactory.GetInstance<IPageNavigator>(),
 _homePageActionCommands,
 Routes.Home,
 PageDirectory.Home);
 }

 public IWebCommand CreateGetProductDetailCommand()
 {
 List<IActionCommand> _productDetailActionCommands =
 new List<IActionCommand>();
 _productDetailActionCommands.Add(
 ObjectFactory.GetInstance<GetCategoryListCommand>());
 _productDetailActionCommands.Add(
 ObjectFactory.GetInstance<GetProductDetailCommand>());

 return new WebCommand(
 ObjectFactory.GetInstance<IPageNavigator>(),

Front Controller  ❘  333

 _productDetailActionCommands,
 Routes.ProductDetail,
 PageDirectory.ProductDetail);
 }
 }
}

Code snippet WebCommandRegistry.cs in project ASPPatterns.Chap8.FrontController.Controller

Here’s a breakdown of what the WebCommandRegistry is doing. Within the constructor, the various
commands to handle each request of the product browsing catalog are created. If you take CreateGet​
CategoryProductsCommand as an example first, a list of discrete IActionCommands is created that are
relevant to the WebCommand. Then the WebCommand is created with the correct corresponding Route
and PageDirectory, and the StructureMap ObjectFactory is used to resolve dependencies of the
WebCommand. The GetCommandFor method searches for a WebCommand that can satisfy the WebRequest.
If it cannot find one, a default Display404PageCommand is returned, which is the class that you will
create next.

The role of Display404PageCommand is to redirect the customer to an error page in the event of a
matching WebCommand not being found to handle the WebRequest. Add a new class to the WebCommands
folder named Display404PageCommand, and update it with the code listing that follows:

…
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.WebCommands
{
 public class Display404PageCommand : IWebCommand
 {
 private IPageNavigator _navigator;

 public Display404PageCommand(IPageNavigator navigator)
 {
 _navigator = navigator;
 }

 public bool CanHandle(WebRequest webRequest)
 {
 return true;
 }

 public void Process(WebRequest webRequest)
 {
 _navigator.NavigateTo(PageDirectory.MissingPage);
 }
 }
}

You can now create the Front Controller. Add a new class to the root of the Controllers project
named FrontController with the following code definition:

…
using ASPPatterns.Chap8.FrontController.Controller.WebCommands;

334  ❘  Chapter 8   The Presentation Layer

using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller
{
 public class FrontController
 {
 IWebCommandRegistry _webCommandRegistry;

 public FrontController(IWebCommandRegistry webCommandRegistry)
 {
 _webCommandRegistry = webCommandRegistry;
 }

 public void handle(WebRequest request)
 {
 _webCommandRegistry.GetCommandFor(request).Process(request);
 }
 }
}

The FrontController is a simple class that takes an instance of an IWebCommandRegistry and uses
it to search for an IWebCommand to process the WebRequest.

The last major class to create is the custom implementation of the IHttpHandler. Add a new class
to the root of the Controller project named CustomHttpHandler, with the following code listing:

…
using System.Web;
using ASPPatterns.Chap8.FrontController.Controller.Request;
using StructureMap;

namespace ASPPatterns.Chap8.FrontController.Controller
{
 public class CustomHTTPHandler : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 ObjectFactory.GetInstance<FrontController>()
 .handle(ObjectFactory.GetInstance<IWebRequestFactory>()
 .CreateFrom(context));
 }

 public bool IsReusable
 {
 get { return true; }
 }
 }
}

StructureMaps ObjectFactory is used within the ProcessRequest method to obtain an instance
of the FrontController, which is used in turn to handle a WebRequest created by an implementa-
tion of an IWebRequestFactory, which again is resolved by StructureMaps ObjectFactory.

Front Controller  ❘  335

You will need a couple of supporting classes to create within the Controller project. The first is
the dependencies set up to configure StructureMap. Add a new class to the root of the Controller
project named BootStrapper with the following code definition:

…
using ASPPatterns.Chap8.FrontController.Controller.ActionCommands;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.StubRepository;
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.WebCommands;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.Routing;
using StructureMap;
using StructureMap.Configuration.DSL;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller
{
 public class BootStrapper
 {
 public static void ConfigureDependencies()
 {
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ControllerRegistry>();

 });
 }

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 ForRequestedType<ICategoryRepository>()
 .TheDefault.Is.OfConcreteType<CategoryRepository>();
 ForRequestedType<IProductRepository>()
 .TheDefault.Is.OfConcreteType<ProductRepository>();
 ForRequestedType<IViewStorage>()
 .TheDefault.Is.OfConcreteType<ViewStorage>();
 ForRequestedType<IPageNavigator>()
 .TheDefault.Is.OfConcreteType<PageNavigator>();
 ForRequestedType<IWebCommandRegistry>()
 .TheDefault.Is.OfConcreteType<WebCommandRegistry>();
 ForRequestedType<IWebRequestFactory>()
 .TheDefault.Is.OfConcreteType<WebRequestFactory>();
 }
 }
 }
}

The BootStrapper class just hooks up the dependencies of the solution, as you have seen before in
other exercises within this chapter.

336  ❘  Chapter 8   The Presentation Layer

The second supporting class to create is assisting in the creation of URLs for the views. Add a new
class to the root of the Controller project named URLHelper with the following code listing:

…
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Routing;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller
{
 public static class UrlHelper
 {
 public static string BuildHomePageLink()
 {
 return Routes.Home.URL;
 }

 public static string BuildProductDetailLinkFor(Product product)
 {
 return Routes.ProductDetail.URL + “?” +
 ActionArguments.ProductId.Key + “=” + product.Id;
 }

 public static string BuildProductCategoryLinkFor(Category category)
 {
 return Routes.CategoryProducts.URL + “?” +
 ActionArguments.CategoryId.Key + “=” + category.Id;
 }
 }
}

This completes the Controller project. Your project should now resemble the solution in Figure 8-7.

To complete this exercise, turn your attention to the UI.Web project. Create a folder within the UI.Web
project named Views, and add three folders to this folder named Home, Product, and Shared.

Add a new user control to the Shared folder named CategoryList.ascx with the following markup:

<%@ Control Language=”C#” AutoEventWireup=”true” CodeBehind=”CategoryList.ascx.cs”
 Inherits=”ASPPatterns.Chap8.FrontController.UI.Web.Views.Shared.CategoryList”
%>
<%@ Import Namespace=”System.Collections.Generic”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Model”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller.Storage”%>

 <% foreach (Category cat in (IEnumerable<Category>)
 ViewStorageFactory.GetStorage().Get(ViewStorageKeys.Categories))
 {%>

 <a href=”<%=UrlHelper.BuildProductCategoryLinkFor(cat)%>”><%=cat.Name%>

 <%} %>

Front Controller  ❘  337

Figure 8-7

As you can see, the CategoryList.ascx control uses the ViewStorageFactory class defined in
the Controllers project to retrieve the data for it to display. This pattern is used for all the ASPX/
ASCX views in the UI.Web project.

Add a second user control to the Shared folder named ProductList.ascx. Again, modify the markup
to match the code that follows:

<%@ Control Language=”C#” AutoEventWireup=”true” CodeBehind=”ProductList.ascx.cs”
 Inherits=”ASPPatterns.Chap8.FrontController.UI.Web.Views.Shared.ProductList”
%>
<%@ Import Namespace=”System.Collections.Generic”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Model”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller.Storage”%>

 <% foreach (Product prod in (IEnumerable<Product>)

338  ❘  Chapter 8   The Presentation Layer

 ViewStorageFactory.GetStorage().Get(ViewStorageKeys.Products))
 {%>
 <%=prod.Name%> only <%=String.Format(“{0:C}”, prod.Price)%>

 <a href=”<%=UrlHelper.BuildProductDetailLinkFor(prod) %>”>more information
 <hr />
 <%} %>

Next, add a MasterPage to the Shared folder named Shop.Master with the markup displayed here:

<%@ Master Language=”C#” AutoEventWireup=”true” CodeBehind=”Shop.master.cs”
 Inherits=”ASPPatterns.Chap8.FrontController.UI.Web.Views.Shared.Shop” %>
<%@ Register src=”CategoryList.ascx” tagname=”CategoryList” tagprefix=”uc1” %>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller”%>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <table width=”70%”>
 <tr>
 <td colspan=”2”>
 <h2><a href=”<%=UrlHelper.BuildHomePageLink() %>”>Scotts Shop</h2>
 <hr /></td>
 </tr>
 <tr>
 <td valign=”top” width=”15%”>
 <uc1:CategoryList ID=”CategoryList1” runat=”server” /></td>
 <td valign=”top” width=”85%”>
 <asp:ContentPlaceHolder ID=”ContentPlaceHolder1” runat=”server” />
 </td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Then add a page to be displayed if a WebCommand cannot be found to handle the WebRequest. Name
it 404.aspx, and update the markup with the code definition shown here:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”404.aspx.cs”
 Inherits=”ASPPatterns.Chap8.FrontController.UI.Web.Views.Shared._04” %>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller”%>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

Front Controller  ❘  339

 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <h2>Sorry</h2>
 We couldn’t find the page you were after, please navigate back to the
 <a href=”<%=UrlHelper.BuildHomePageLink() %>”>home page.
 </div>
 </form>
</body>
</html>

For the home page view, add a new web form named Index.aspx to the Home folder, and amend the
markup to match that shown here:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/views/Shared/Shop.Master”
 AutoEventWireup=”true” CodeBehind=”Index.aspx.cs”
 Inherits=”ASPPatterns.Chap8.FrontController.UI.Web.Views.Home.Index” %>
<%@ Register src=”~/views/Shared/ProductList.ascx” tagname=”ProductList”
 tagprefix=”uc1” %>

<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>
 <h2>Today’s Top Products</h2>
 <uc1:ProductList ID=”ProductList1” runat=”server” />
</asp:Content>

For the category products view, add a new web form named CategoryProducts.aspx to the Product
folder with the markup displayed here:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
 AutoEventWireup=”true” CodeBehind=”CategoryProducts.aspx.cs”
 Inherits=”ASPPatterns.Chap8.FrontController.UI.Web.Views.Product.CategoryProducts”
%>
<%@ Register src=”~/Views/Shared/ProductList.ascx” tagname=”ProductList”
 tagprefix=”uc1” %>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller.Storage”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Model”%>

<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>
 <h2>All <%=((Category)ViewStorageFactory.GetStorage()
 .Get(ViewStorageKeys.Category)).Name%></h2>
 <uc1:ProductList ID=”ProductList1” runat=”server” />
</asp:Content>

Lastly, for the detailed view of the product, add a new web form named ProductDetail.aspx to
the Product folder, and update the markup to match that shown here:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
 AutoEventWireup=”true” CodeBehind=”ProductDetail.aspx.cs”
 Inherits=”ASPPatterns.Chap8.FrontController.UI.Web.Views.Product.ProductDetail”
%>
<%@ Import Namespace=”System.Collections.Generic”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Model”%>
<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller”%>

340  ❘  Chapter 8   The Presentation Layer

<%@ Import Namespace=”ASPPatterns.Chap8.FrontController.Controller.Storage”%>

<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>

<% Product product = (Product)ViewStorageFactory
 .GetStorage().Get(ViewStorageKeys.Product); %>

<h2><%=product.Name %></h2>
<p>pay: <%=String.Format(“{0:C}”, product.Price)%></p>
<p><%=product.Description %></p>

</asp:Content>

Switch to the code behind view of the Default.aspx page created by Visual Studio, and amend the
Page_Load event to redirect the browser to the Home.Catalog page, as can be seen here:

 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Redirect(“Home.catalog”);
 }
 }

You also need to add a Global.asax file to the UI.Web project if one does not already exist to call
the BootStrapper class on the Application_Start event. See the code that follows:

…
using ASPPatterns.Chap8.FrontController.Controller;

namespace ASPPatterns.Chap8.FrontController.UI.Web
{
 public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(object sender, EventArgs e)
 {
 BootStrapper.ConfigureDependencies();
 }
 }
}

The last change you need to make to the UI.Web project is to register the CustomerHttpHandler you
defined in the Controllers project within the Web.Config file. Open the Web.config file and amend it
to include the next line:

…
<httpHandlers>
 <remove verb=”*” path=”*.asmx”/>

 <add verb=”*” path=”*.catalog” validate=”false”
 type=”ASPPatterns.Chap8.FrontController.Controller.CustomHTTPHandler,
 ASPPatterns.Chap8.FrontController.Controller”/>

 …
</httpHandlers>
…

Front Controller  ❘  341

You can now run the solution and browse the product catalog.

Chain of Responsibility Pattern
Another design pattern that you can use to handle a web request within the Front Controller is the
Chain of Responsibility pattern.

Intent
The intent of the Change of Responsibility pattern is to avoid coupling the sender of a request to its
receiver by giving more than one object a chance to handle the request. This is achieved by chaining
together receiving objects and passing the request along the chain until an object is found that can
handle it.

UML
Figure 8-8 shows the UML representation of the Change of Responsibility pattern and all the col-
laborating roles.

Client RequestHandler

+Handle(in Request)
+SetNextHandler(in RequestHandler)

_nextHandler

ProductDetailHandler

+Handle(in Request)

HomePageHandler

+Handle(in Request)

public override void Handle(Request request)
 {
 if (canHandle(request))
 }
 // Perform Business Logic. . .
 // Render View
 Navigator.NavigateTo(View);
 }
 else
 {
 // Can’t handle request so pass on to the next handler
 base.nextHandler.Handle(request);
 }
}

public RequestHandler SetNextHandler(RequestHandler requestHandler)
 {
 _nextHandler = RequestHandler;
 return_nextHandler;
}

Figure 8-8

The abstract class ➤➤ RequestHandler defines the interface for handling requests and provides a
method named SetNextHandler to chain RequestHandlers.

The ➤➤ Client invokes the Handle method referenced by the abstract RequestHandler class,
and a concrete handler on the chain will handle the request.

The ➤➤ HomePageHandler and ProductDetailHandler check if they can handle the request. If
they can, they perform any action required; otherwise, the request is forwarded to the next
RequestHandler down the chain.

342  ❘  Chapter 8   The Presentation Layer

Code Example
In this exercise, you modify the solution created in the previous section. In the code download,
however, the solution to this section has been created under the solution ASPPatterns.Chap8.CoR.

To start this exercise, create a copy of the entire ASPPatterns.Chap8.FrontController project that
you built in the previous section and add a new folder to the Controller project named Handlers.

Add a new abstract class to the Handlers folder named RequestHandler with the code listing as
displayed here:

…
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.Handlers
{
 public abstract class RequestHandler
 {
 protected RequestHandler _nextHandler;

 public RequestHandler SetNextHandler(RequestHandler requestHandler)
 {
 _nextHandler = requestHandler;
 return _nextHandler;
 }

 public abstract void Handle(WebRequest request);
 }
}

All request handlers inherit from this class. Now you need to create each of the request handlers for
each of the views. Start by adding a new class named CategoryProductsPageHandler with the code
listing shown here:

…
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Controller.Routing;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.Handlers
{
 public class CategoryProductsPageHandler : RequestHandler
 {
 private Route _route;
 private ProductService _productService;
 private IViewStorage _viewStorage;
 private IPageNavigator _pageNavigator;

 public CategoryProductsPageHandler(Route route, ProductService productService,
 IViewStorage viewStorage,
 IPageNavigator pageNavigator)
 {
 _route = route;

Front Controller  ❘  343

 _productService = productService;
 _viewStorage = viewStorage;
 _pageNavigator = pageNavigator;
 }

 public override void Handle(WebRequest request)
 {
 if (_route.Matches(request))
 {
 int categoryId =
 ActionArguments.CategoryId.ExtractFrom(request.QueryArguments);

 IEnumerable<Category> categories = _productService.GetAllCategories();
 _viewStorage.Add(ViewStorageKeys.Categories, categories);

 Category category = _productService.GetCategoryBy(categoryId);
 _viewStorage.Add(ViewStorageKeys.Category, category);

 IEnumerable<Product> products =
 _productService.GetAllProductsIn(categoryId);
 _viewStorage.Add(ViewStorageKeys.Products, products);

 _pageNavigator.NavigateTo(PageDirectory.CategoryProducts);
 }
 else
 base._nextHandler.Handle(request);
 }
 }
}

If the Route matches the WebRequest, the handler handles this request; otherwise, the WebRequest is
passed on to the next handler for processing. Other than that, the code within the Handle method is the
same as was contained in the various IActionCommands of the Command pattern example you created
in the previous section.

You now need to create the remaining RequestHandlers for each of the views. Add another new class
to the Handlers folder named HomePageHandler with the code definition that follows:

…
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Controller.Routing;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.Handlers
{
 public class HomePageHandler : RequestHandler
 {
 private Route _route;
 private ProductService _productService;
 private IViewStorage _viewStorage;
 private IPageNavigator _pageNavigator;

 public HomePageHandler(Route route, ProductService productService,

344  ❘  Chapter 8   The Presentation Layer

 IViewStorage viewStorage, IPageNavigator pageNavigator)
 {
 _route = route;
 _productService = productService;
 _viewStorage = viewStorage;
 _pageNavigator = pageNavigator;
 }

 public override void Handle(WebRequest request)
 {
 if (_route.Matches(request))
 {
 IEnumerable<Category> categories = _productService.GetAllCategories();
 _viewStorage.Add(ViewStorageKeys.Categories, categories);

 IEnumerable<Product> products =
 _productService.GetBestSellingProducts();
 _viewStorage.Add(ViewStorageKeys.Products, products);

 _pageNavigator.NavigateTo(PageDirectory.Home);
 }
 else
 base._nextHandler.Handle(request);
 }
 }
}

Add another RequestHandler to the Handlers folder, this time to handle requests for the product
detail view named ProductDetailHandler with the code as shown here:

…
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Controller.Routing;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.Handlers
{
 public class ProductDetailPageHandler : RequestHandler
 {
 private Route _route;
 private ProductService _productService;
 private IViewStorage _viewStorage;
 private IPageNavigator _pageNavigator;

 public ProductDetailPageHandler(Route route, ProductService productService,
 IViewStorage viewStorage,
 IPageNavigator pageNavigator)
 {
 _route = route;
 _productService = productService;
 _viewStorage = viewStorage;
 _pageNavigator = pageNavigator;

Front Controller  ❘  345

 }

 public override void Handle(WebRequest request)
 {
 if (_route.Matches(request))
 {
 int productId =
 ActionArguments.ProductId.ExtractFrom(request.QueryArguments);

 IEnumerable<Category> categories = _productService.GetAllCategories();
 _viewStorage.Add(ViewStorageKeys.Categories, categories);

 Product product = _productService.GetProductBy(productId);
 _viewStorage.Add(ViewStorageKeys.Product, product);

 _pageNavigator.NavigateTo(PageDirectory.ProductDetail);
 }
 else
 base._nextHandler.Handle(request);
 }
 }
}

Finally, add a RequestHandler that will catch requests not handled by a RequestHandler, name
this class PageNotFoundHandler, and update it to match the code shown here:

…
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller.Handlers
{
 public class PageNotFoundHandler : RequestHandler
 {
 private ProductService _productService;
 private IViewStorage _viewStorage;
 private IPageNavigator _pageNavigator;

 public PageNotFoundHandler(ProductService productService,
 IViewStorage viewStorage,
 IPageNavigator pageNavigator)
 {
 _productService = productService;
 _viewStorage = viewStorage;
 _pageNavigator = pageNavigator;
 }

 public override void Handle(WebRequest request)
 {
 _pageNavigator.NavigateTo(PageDirectory.MissingPage);
 }
 }
}

346  ❘  Chapter 8   The Presentation Layer

To build the Chain of Responsibility using the RequestHandlers, you require a factory class. First,
define a contract for this class within the Handlers folder named IHandlerFactory, and amend the
contract to match the interface listed next:

namespace ASPPatterns.Chap8.FrontController.Controller.Handlers
{
 public interface IHandlerFactory
 {
 RequestHandler GetHandlers();
 }
}

Now you can create the implementation of the IHandlerFactory. Add a new class to the Handlers
folder named HandlerFactory, and amend the code to match the listing shown here:

…
using StructureMap;
using ASPPatterns.Chap8.FrontController.Controller.Routing;
using ASPPatterns.Chap8.FrontController.Model;
using ASPPatterns.Chap8.FrontController.Controller.Storage;
using ASPPatterns.Chap8.FrontController.Controller.Navigation;

namespace ASPPatterns.Chap8.FrontController.Controller.Handlers
{
 public class HandlerFactory : IHandlerFactory
 {
 public RequestHandler GetHandlers()
 {
 RequestHandler handler = GetHomePageHandler();

 handler
 .SetNextHandler(GetCategoryProductsPageHandler())
 .SetNextHandler(GetProductDetailPageHandler())
 .SetNextHandler(GetPageNotFoundHandler());

 return handler;
 }

 private RequestHandler GetPageNotFoundHandler()
 {
 return new PageNotFoundHandler(
 ObjectFactory.GetInstance<ProductService>(),
 ObjectFactory.GetInstance<IViewStorage>(),
 ObjectFactory.GetInstance<IPageNavigator>());
 }

 private RequestHandler GetProductDetailPageHandler()
 {
 return new ProductDetailPageHandler(
 Routes.ProductDetail,
 ObjectFactory.GetInstance<ProductService>(),
 ObjectFactory.GetInstance<IViewStorage>(),
 ObjectFactory.GetInstance<IPageNavigator>());

Available for
download on
Wrox.com

Front Controller  ❘  347

 }

 private RequestHandler GetCategoryProductsPageHandler()
 {
 return new CategoryProductsPageHandler(
 Routes.CategoryProducts,
 ObjectFactory.GetInstance<ProductService>(),
 ObjectFactory.GetInstance<IViewStorage>(),
 ObjectFactory.GetInstance<IPageNavigator>());
 }

 private RequestHandler GetHomePageHandler()
 {
 return new HomePageHandler(
 Routes.Home,
 ObjectFactory.GetInstance<ProductService>(),
 ObjectFactory.GetInstance<IViewStorage>(),
 ObjectFactory.GetInstance<IPageNavigator>());
 }
 }

}

Code snippet HandlerFactory.cs in project ASPPatterns.Chap8.FrontController.Controller

The GetHandlers method constructs the chain of responsibility. Pay particular attention to the
ordering of the handlers, ensuring that PageNotFoundHandler is added last because this handler
always returns true for matching the request and simply navigates to the 404 page.

One of the last things that needs to be done is to amend the FrontController class to accept an
instance of the IHandlerFactory rather than the IWebCommandRegistry, as was used in the previ-
ous section. The updated code for the FrontController class can be seen here:

…
using ASPPatterns.Chap8.FrontController.Controller.Handlers;
using ASPPatterns.Chap8.FrontController.Controller.Request;

namespace ASPPatterns.Chap8.FrontController.Controller
{
 public class FrontController
 {
 RequestHandler _requestHandler;

 public FrontController(IHandlerFactory handlerFactory)
 {
 _requestHandler = handlerFactory.GetHandlers();
 }

 public void handle(WebRequest request)
 {
 _requestHandler.Handle(request);
 }
 }
}

348  ❘  Chapter 8   The Presentation Layer

To complete the change toward using the Chain of Responsibility pattern rather than the Command
pattern, you need to update the BootStrapper’s class to register a default instance of the
IHandlerFactory, as here within the ControllerRegistery subclass.

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 ForRequestedType<ICategoryRepository>()
 .TheDefault.Is.OfConcreteType<CategoryRepository>();
 ForRequestedType<IProductRepository>()
 .TheDefault.Is.OfConcreteType<ProductRepository>();
 ForRequestedType<IViewStorage>()
 .TheDefault.Is.OfConcreteType<ViewStorage>();
 ForRequestedType<IPageNavigator>()
 .TheDefault.Is.OfConcreteType<PageNavigator>();
 ForRequestedType<IWebRequestFactory>()
 .TheDefault.Is.OfConcreteType<WebRequestFactory>();
 ForRequestedType<IHandlerFactory>()
 .TheDefault.Is.OfConcreteType<HandlerFactory>();
 }
 }

The modified solution now looks like Figure 8-9.

Figure 8-9 shows the solution structure from the
downloadable project with the ASPPatterns.Chap8​
.CoR namespace. This is identical to the modified
ASPPatterns.Chap8.FrontController project, as
discussed in the earlier exercise.

You can now run the solution by pressing F5 or by
running the debugger.

Model-View-Controller

The Model-View-Controller (MVC) pattern, like the
Model-View-Presenter pattern, separates an application
into three main components: the model, the view, and the
controller.

The model represents the business data that the ➤➤

view is to display or modify.

The controller can be an implementation of the FrontController pattern. It is the initial ➤➤

contact for a request handling all user interaction. It interacts with the model based on the
request and selects the appropriate view to render.

The view is passive and has no knowledge of the controller. It simply displays the model data ➤➤

supplied from the controller.

Figure 8-9

Model-View-Controller  ❘  349

Figure 8-10 shows the three components and how
they relate to form the MVC pattern.

As shown in the diagram, a user makes a request
that, in the first instance, the controller handles.
The controller interacts with the model based on
the requirements of the request. It renders the
appropriate view and supplies it with the necessary
data to display.

ViewModel Pattern
In the MVC pattern, views typically map to domain model entities; however, for scenarios in which the
view requires data from many entities, a ViewModel can be used. A ViewModel is a class optimized for
use with a specific view template; it provides a flattened view of the domain, potentially exposing prop-
erties that do not exist within the domain model. A ViewModel also helps to detach the view from
the underlying domain model and can be a lot more flexible than using real domain entities.

Figure 8-11 shows a graphical view of how a
ViewModel maps to a series of domain entities.

The CustomerView class exposes two properties: one
that is mapped to a concatenation of the Customer
entity’s FirstName and LastName properties and the
other that is a count of the number of orders the cus-
tomer has.

You will now work through two examples of the MVC
pattern. First, you’ll use Microsoft’s ASP.NET
MVC framework, which will employ the ViewModel
pattern discussed earlier. Then you’ll use the Castle project’s MonoRail framework. You will also
look at a product called AutoMapper, which will assist you when mapping your domain entities to
ViewModel classes.

The ASP.NET MVC Framework
The ASP.NET MVC framework is Microsoft’s implementation of the MVC pattern, giving an alter-
native method for creating ASP.NET sites. The framework is available as a separate install from
http://www.asp.net/mvc/, and version ASP.NET MVC 2.0 is included with Visual Studio 2010.

In the following exercise, you create a solution to the product catalog browsing site that has formed
the domain for all the exercises in this chapter.

Create a new solution named ASPPatterns.Chap8.ASPNETMVC, and add to it the following class
library projects:

ASPPatterns.Chap8.ASPNETMVC.Model➤➤

ASPPatterns.Chap8.ASPNETMVC.StubRepository➤➤

Controller Model

View

Figure 8-10

FirstName
LastName

Customer

Order

Domain Model

FullName
NoOfOrdersPlacedThisYear

CustomerView

View Model

Figure 8-11

350  ❘  Chapter 8   The Presentation Layer

ASPPatterns.Chap8.ASPNETMVC.Controllers➤➤

ASPPatterns.Chap8.ASPNETMVC.AppService➤➤

Also, add a new ASP.NET MVC web application named ASPPatterns.Chap8.ASPNETMVC.UI.Web. With
the projects created, you now need to set up the project dependencies. Right-click on the Controllers
project and add a reference to the AppService project as well as a reference to the System.Web.MVC
assembly and StructureMap assembly that you downloaded earlier in the chapter. Right-click on the
AppService project, and add a reference to the Model and StubRepository project. Right-click on
the StubRepository and add a reference to the Model project. Finally, right-click on the UI.Web project
and add a reference to the AppService project.

You can copy all the code from the Model and StubRepository projects that you created for the
Model-View-Presenter exercise earlier in the chapter because this exercise uses the same domain model.

With the solution framework in place, you can start to create your application. First, add two fold-
ers to the AppService project named Mapping and Views. The Views folder will contain all of the
ViewModel objects as defined in the previous section.

Create a new view within the Views folder named CategoryView.

 public class CategoryView
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }

Create a second view named ProductView, as shown in the listing that follows:

 public class ProductView
 {
 public string Name { get; set; }
 public string Price { get; set; }
 public string Id { get; set; }
 }

Next, create a view of a product with extra detail named ProductDetailView, as shown in the list-
ing that follows:

 public class ProductDetailView : ProductView
 {
 public string Description { get; set; }
 }

The three classes that you have created form the view on the domain model. You will now create
the views specifically for the views being displayed to the user. Create a new base view class that
all the views will inherit from named BaseView, as can be seen here:

 public abstract class BaseView
 {
 public IEnumerable<CategoryView> Categories { get; set; }
 }

Model-View-Controller  ❘  351

Next, create the three classes that will provide the ViewModel for the views that the user will interact
with — ​ namely, the CategoryProductsView, the ProductDetailView, and the HomeView. These
classes are shown here:

 public class CategoryProductsPageView : BaseView
 {
 public IEnumerable<ProductView> Products { get; set; }
 public CategoryView Category { get; set; }
 }

 public class ProductDetailPageView : BaseView
 {
 public ProductDetailView Product { get; set; }
 }

 public class HomeView : BaseView
 {
 public IEnumerable<ProductView> BestSellingProducts { get; set; }
 }

Now that you have the ViewModels defined, you need a method of converting the domain entities into
the ViewModels. Add a new class to the Mapping folder named ProductMapperExtensionMethods
with the code definition displayed here:

…
using ASPPatterns.Chap8.ASPNETMVC.AppService.Views;
using ASPPatterns.Chap8.ASPNETMVC.Model;

namespace ASPPatterns.Chap8.ASPNETMVC.AppService.Mapping
{
 public static class ProductMapperExtensionMethods
 {
 public static IEnumerable<ProductView> ConvertToProductViewList
 (this IEnumerable<Product> products)
 {
 IList<ProductView> productViews = new List<ProductView>();

 foreach (Product p in products)
 {
 productViews.Add(p.ConvertToProductView());
 }

 return productViews;
 }

 public static ProductView ConvertToProductView(this Product product)
 {
 ProductView productView = new ProductView();
 productView.Name = product.Name;
 productView.Id = product.Id.ToString();
 productView.Price = String.Format(“{0:c}”, product.Price);

 return productView;

352  ❘  Chapter 8   The Presentation Layer

 }

 public static ProductDetailView ConvertToProductDetailView(this Product product)
 {
 ProductDetailView productView = new ProductDetailView();
 productView.Name = product.Name;
 productView.Id = product.Id.ToString();
 productView.Price = String.Format(“{0:c}”, product.Price);
 productView.Description = product.Description;

 return productView;
 }
 }
}

This class provides method extensions to the product and collections of product domain entities. This
makes it trivial and fluent to convert your Product entities into ViewModels. Add a second class to the
Mappings folder that will do the same for the Category domain entities, and name this class Category​
MapperExtensionMethods. You can see the code for this class here:

…
using ASPPatterns.Chap8.ASPNETMVC.AppService.Views;
using ASPPatterns.Chap8.ASPNETMVC.Model;

namespace ASPPatterns.Chap8.ASPNETMVC.AppService.Mapping
{
 public static class CategoryMapperExtensionMethods
 {
 public static IEnumerable<CategoryView> ConvertToCategoryViewList
 (this IEnumerable<Category> categories)
 {
 IList<CategoryView> categoryViews = new List<CategoryView>();

 foreach (Category c in categories)
 {
 categoryViews.Add(c.ConvertToCategoryView());
 }

 return categoryViews;
 }

 public static CategoryView ConvertToCategoryView(this Category category)
 {
 CategoryView categoryView = new CategoryView();
 categoryView.Name = category.Name;
 categoryView.Id = category.Id;

 return categoryView;
 }
 }
}

Again, this class provides a simple way to convert the Category domain entity into the CategoryView.

Model-View-Controller  ❘  353

The final class for the AppService project is the ShopService class, which is responsible for coordi-
nating the retrieval of entities and converting them into ViewModels. You can see the code for this
class here:

…
using ASPPatterns.Chap8.ASPNETMVC.Model;
using ASPPatterns.Chap8.ASPNETMVC.AppService.Views;
using ASPPatterns.Chap8.ASPNETMVC.AppService.Mapping;

namespace ASPPatterns.Chap8.ASPNETMVC.AppService
{
 public class ShopService
 {
 private ProductService _productService;

 public ShopService(ProductService productService)
 {
 _productService = productService;
 }

 public HomeView GetHomePageView()
 {
 IEnumerable<ProductView> products =
 _productService.GetBestSellingProducts().ConvertToProductViewList();
 IEnumerable<CategoryView> categories =
 _productService.GetAllCategories().ConvertToCategoryViewList();

 HomeView productViewModel =
 new HomeView { BestSellingProducts = products,
 Categories = categories };

 return productViewModel;
 }

 public ProductDetailPageView GetProductDetailPageViewFor(int ProductId)
 {
 ProductDetailView product =
 _productService.GetProductBy(ProductId)
 .ConvertToProductDetailView();
 IEnumerable<CategoryView> categories =
 _productService.GetAllCategories().ConvertToCategoryViewList();

 ProductDetailPageView productDetailPageViewModel =
 new ProductDetailPageView { Product = product,
 Categories = categories};

 return productDetailPageViewModel;
 }

 public CategoryProductsPageView GetCategoryProductPageViewFor(int categoryId)
 {
 IEnumerable<ProductView> products =
 _productService.GetAllProductsIn(categoryId)
 .ConvertToProductViewList();
 CategoryView category =

Available for
download on
Wrox.com

354  ❘  Chapter 8   The Presentation Layer

 _productService.GetCategoryBy(categoryId).ConvertToCategoryView();
 IEnumerable<CategoryView> categories =
 _productService.GetAllCategories().ConvertToCategoryViewList();

 CategoryProductsPageView categoryProductsPageView =
 new CategoryProductsPageView {
 Category = category,
 Products = products,
 Categories = categories };

 return categoryProductsPageView;
 }
 }
}

Code snippet ShopService.cs in project ASPPatterns.Chap8.ASPNETMVC.AppService

The ShopService uses the ProductService to obtain the domain entities and then converts them
into ViewModels via the extension methods.

With the AppService project complete and the ViewModels defined, you can start to create your
controllers. Add a new class to the Controllers project named HomeController, and update it to
match the listing that follows:

…
using System.Web.Mvc;
using ASPPatterns.Chap8.ASPNETMVC.AppService;
using ASPPatterns.Chap8.ASPNETMVC.AppService.Views;

namespace ASPPatterns.Chap8.ASPNETMVC.Controllers
{
 public class HomeController : Controller
 {
 private ShopService _shopService;

 public HomeController(ShopService shopService)
 {
 _shopService = shopService;
 }

 public ActionResult Index()
 {
 HomeView viewModel = _shopService.GetHomePageView();
 ViewData[“categories”] = viewModel.Categories;

 return View(viewModel);
 }
 }
}

The HomeController inherits from a Controller base class that is part of the System.Web.Mvc assem-
bly. The single method on the HomeController is Index, which will map to the Home/Index URL.
The method returns an abstract ActionResult base class that is again part of the System.Web.Mvc
assembly. The actual ActionResult returned from this method is a ViewResult, which renders a view
to the response that is achieved using the View method and passing the ViewModel as an argument.

Model-View-Controller  ❘  355

The ViewData is a ViewDataDictionary used to store data ready for the view similar to the
ViewStorage that you created in the FrontController project earlier in this chapter. You will see
how to use this when you create the views for this project.

The second controller you will create will handle requests for the ProductDetail and ProductCategory
views. Create a new class named ProductController, and update it to match the code that follows:

…
using System.Web.Mvc;
using ASPPatterns.Chap8.ASPNETMVC.AppService;
using ASPPatterns.Chap8.ASPNETMVC.AppService.Views;

namespace ASPPatterns.Chap8.ASPNETMVC.Controllers
{
 public class ProductController : Controller
 {
 private ShopService _shopService;

 public ProductController(ShopService shopService)
 {
 _shopService = shopService;
 }

 public ActionResult CategoryProducts(int categoryId)
 {
 CategoryProductsPageView viewModel =
 _shopService.GetCategoryProductPageViewFor(categoryId);

 ViewData[“categories”] = viewModel.Categories;

 return View(viewModel);
 }

 public ActionResult Detail(string Id)
 {
 ProductDetailPageView viewModel =
 _shopService.GetProductDetailPageViewFor(int.Parse(Id));

 ViewData[“categories”] = viewModel.Categories;

 return View(“ProductDetail”, viewModel);
 }
 }
}

This ProductController is similar to the HomeController but has methods to display the
CategoryProducts and ProductDetail view. By convention, the call to the View method will
return a view with a name matching that method. As you can see in the Detail method, the view
does not match, so you have specified the ProductDetail name as an argument in the overloaded
constructor View base method.

For the controllers you have created to handle a request, the frameworks routing engine that you will
look at later will pick apart the requested URL to find the controller type. Once found, the framework
will pass it to an MvcHandler whose job it is to instantiate the controller using a ControllerFactory.

356  ❘  Chapter 8   The Presentation Layer

The default ControllerFactory can only instantiate a controller if it has a parameterless constructor.
This is obviously a problem, because your controllers require an instance of the ShopService to work.
To overcome this limitation, you can create your own ControllerFactory that will use StructureMap
to resolve dependencies.

Create a new class within the Controllers project named IoCControllerFactory, and have it
inherit from the DefaultControllerFactory class, as can be seen here:

…
using System.Web.Mvc;
using StructureMap;

namespace ASPPatterns.Chap8.ASPNETMVC.Controllers
{
 public class IoCControllerFactory : DefaultControllerFactory
 {
 protected override IController GetControllerInstance(Type controllerType)
 {
 return ObjectFactory.GetInstance(controllerType) as IController;
 }
 }
}

StructureMap’s ObjectFactory will then be able to resolve any dependencies that the controllers
require.

The last class to create within the Controllers project is the BootStrapper class, which will be
used to register the concrete implementations with StructureMap. Create the BootStrapper class
and update it to match the following listing:

…
using ASPPatterns.Chap8.ASPNETMVC.Model;
using ASPPatterns.Chap8.ASPNETMVC.StubRepository;
using StructureMap;
using StructureMap.Configuration.DSL;

namespace ASPPatterns.Chap8.ASPNETMVC.Controllers
{
 public class BootStrapper
 {
 public static void ConfigureDependencies()
 {
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ControllerRegistry>();

 });
 }

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 ForRequestedType<ICategoryRepository>()

Model-View-Controller  ❘  357

 .TheDefault.Is.OfConcreteType<CategoryRepository>();
 ForRequestedType<IProductRepository>()
 .TheDefault.Is.OfConcreteType<ProductRepository>();
 }
 }
 }
}

Your solution will resemble Figure 8-12.

Now it’s time to switch your attention to creating the
views. Visual Studio has already created a whole host of
classes for you, but you want to start with a clean palette,
so delete all the files within the UI.Web application proj-
ect except for the following files:

Global.asax➤➤

Web.Config ➤➤

Default.aspx➤➤

Views/Web.Config➤➤

Now add the following folders within the Views folder:

Home➤➤

Product➤➤

Shared➤➤

Add a new partial view to the Shared folder by right-
clicking and selecting View from the context-sensitive
menu. When the dialog box appears, check the Create a
Partial View (.ascx) and Create a Strongly-Typed View check boxes and select ASPPatterns.Chap8​
.ASPNETMVC.AppService.Views.CategoryView from the drop-down list. Name the partial view
Categories and click the Add button.

Because the view will deal with collections of CategoryViews, amend the Inherits keyword to be
strongly typed to an IList of CategoryView, as can be seen in the code listing that follows:

<%@ Control Language=”C#”
 Inherits=”System.Web.Mvc.ViewUserControl<IList<CategoryView>>”
%>
<%@ Import Namespace=”ASPPatterns.Chap8.ASPNETMVC.AppService.Views”%>

 <% foreach (var item in Model) { %>
 <%= Html.ActionLink(item.Name,
 “CategoryProducts”,
 “Product”, new { CategoryId = item.Id }, null)%>

<% } %>

Figure 8-12

358  ❘  Chapter 8   The Presentation Layer

Because the page inherits from the System.Web.Mvc.ViewUserControl class, you get the HTML link
helper class to build your links. Also, because the class is strongly typed, you have full intellisense
on the ViewData via the Model property.

Add a second partial view to the Shared folder named Products.ascx, and strongly type it to the
ASPPatterns.Chap8.ASPNETMVC.AppService.Views.ProductView class. Update the markup to match
the code listing that follows, remembering to change the ProductView to an IList<ProductView>.

<%@ Control Language=”C#”
 Inherits=”System.Web.Mvc.ViewUserControl<List< ProductView>>” %>

<%@ Import Namespace=”ASPPatterns.Chap8.ASPNETMVC.AppService.Views”%>

 <% foreach (var item in Model) { %>
 <%=item.Name%> only <%=String.Format(“{0:C}”, item.Price)%>

 <%= Html.ActionLink(“More Information”, “Detail”,
 “Product”, new { Id = item.Id }, null)%>
 <hr />
<% } %>

The final file to add to the Shared folder is an MVC View Master Page. Right-click on the Shared
folder and select Add New Item. You can find the MVC View Master Page from the MVC tab beneath
the Web tab when the Add New Item dialog box appears. Name the master page Shop.Master, and
update the markup to match the code shown here:

<%@ Master Language=”C#” Inherits=”System.Web.Mvc.ViewMasterPage” %>
<%@ Import Namespace=”ASPPatterns.Chap8.ASPNETMVC.AppService.Views”%>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
</head>

<body>
 <table width=”70%”>
 <tr>
 <td colspan=”2”>
 <h2><%= Html.ActionLink(“Scotts Shop”, “Index”, “Home”) %></h2><hr /></td>
 </tr>
 <tr>
 <td valign=”top” width=”15%”>
 <% Html.RenderPartial(“~/Views/Shared/Categories.ascx”,
 (IList< CategoryView>)ViewData[“categories”]); %></td>
 <td valign=”top” width=”85%”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server” /></td>
 </tr>
 </table>
</body>
</html>

Next, add a new view to the Home folder strongly typed to AppService.Views.HomeView, and name
it Index.aspx. The markup for this view can be seen here:

<%@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage<HomeView>” %>

Model-View-Controller  ❘  359

 <%@ Import Namespace=”ASPPatterns.Chap8.ASPNETMVC.AppService.Views”%>

<asp:Content ID=”indexContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2>Today’s Top Products</h2>
 <% Html.RenderPartial(“~/Views/Shared/Products.ascx”, Model.BestSellingProducts); %>
</asp:Content>

The view uses the Products.ascx partial view and loads it using the base HTML helper methods.
It also passes it the view model data required.

Add another view to the Product folder, this time strongly typed to the AppService.Views.Category​
View, and name it CategoryProducts.aspx. The markup for this view is displayed here:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage<CategoryProductsPageView>” %>
<%@ Import Namespace=”ASPPatterns.Chap8.ASPNETMVC.AppService.Views”%>

<asp:Content ID=”Content1” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2>All <%=Model.Category.Name %></h2>
 <% Html.RenderPartial(“~/Views/Shared/Products.ascx”, Model.Products); %>
</asp:Content>

To complete the view requirements, add a second view to the Product folder named Product​
Detail.aspx and strongly type it to the AppService.Views.ProductDetailPageView class.
Again, the markup for this view is displayed here:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage<ProductDetailPageView>” %>

<%@ Import Namespace=”ASPPatterns.Chap8.ASPNETMVC.AppService.Views”%>

<asp:Content ID=”Content1” ContentPlaceHolderID=”MainContent” runat=”server”>

 <% ProductDetailView productModel = Model.Product; %>

 <h2><%=productModel.Name%></h2>
 <p>pay: <%=productModel.Price%></p>
 <p><%=productModel.Description%></p>

</asp:Content>

You now need to configure the IoCControllerFactory that you created in the Controllers proj-
ect and call the BootStrapper.ConfigureDependencies method to register all dependencies with
StructureMap. Open the Global.asax file and update it to include the two new calls, as shown in
the code listing that follows:

…
using ASPPatterns.Chap8.ASPNETMVC.Controllers;

namespace ASPPatterns.Chap8.ASPNETMVC.UI.Web
{
 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {

360  ❘  Chapter 8   The Presentation Layer

 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);
 routes.IgnoreRoute(“{*favicon}”, new
 { favicon = @”(.*/)?favicon.ico(/.*)?” });

 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}”, // URL with parameters
 new { controller = “Home”,
 action = “Index”, id = “” } // Parameter defaults
);
 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);

 BootStrapper.ConfigureDependencies();

 ControllerBuilder.Current.SetControllerFactory(new IoCControllerFactory());
 }
 }
}

The other interesting thing that is happening in
this class is the mapping of routes to control-
lers. The RegisterRoutes method adds a new
URL template pattern that, if matched by the
requested URL, is passed onto an MvcHandler,
which in turn obtains a controller from the
IoCControllerFactory to handle the request.
Note also that you will need to include an
IgnoreRoute declaration to ignore requests for
faviocon.ico that is requested by default by
some browsers.

Figure 8-13 is an update to the MVC diagram first shown at the beginning of this section to relate
the actual classes to the concepts discussed earlier.

The solution is now complete, and you will be able to press F5 or run the debugger to browse through
the product catalog.

Mapping ViewModels with AutoMapper
The mapping of domain entities to ViewModels is a tedious task of left to right object-to-object
mapping. AutoMapper is an open source product that can automate this mapping using a fluent
configuration API. You can find more information on AutoMapper via the project home page at
http://automapper.codeplex.com.

To demonstrate the power and features of AutoMapper, you will use a different domain model than
you have used up to now to show how AutoMapper can be used to automate the mapping between
your domain entities and the ViewModels. The domain model is based on a Customer/Order model
that is typically seen in an e-commerce store.

HomeController

HomeController’s dependencies resolved using
the IoCControllerFactory

ShopService

Home/index.aspx HomeView

Figure 8-13

Model-View-Controller  ❘  361

Create a new solution named ASPPatterns.Chap8.AutoMapper and add the following class libraries:

ASPPatterns.Chap8.AutoMapper.Model➤➤

ASPPatterns.Chap8.AutoMapper.AppService➤➤

ASPPatterns.Chap8.AutoMapper.StubRepository➤➤

Finally, add a web application project named ASPPatterns.Chap8.AutoMapper.UI.Web. Before you
go any further, you need to download the AutoMapper assembly. Navigate to the project’s home page
at http://automapper.codeplex.com/ and click the download link. AutoMapper is just a single
dll. To keep things organized, create a folder named Lib via Windows Explorer at the root of your
solution and save the AutoMapper.dll there.

Now that you have all the projects in place, you need to set up the dependencies. Right-click on the
StubRepository and add a reference to the Model project. Right-click on the AppService project
and add a reference to the Model and StubRepository projects as well as the AutoMapper.dll.
Finally right-click on the UI.Web application and add a reference to the AppService project.

You are going to create a simple domain model to demonstrate the power of AutoMapper. Add four
new classes to the Model project named Customer, Product, Item, and Order, with the following
code listing:

 public class Customer
 {
 public string Name { get; set; }
 }

 public class Product
 {
 public string Name { get; set; }
 }

 public class Item
 {
 public Product Product { get; set; }
 public int Qty { get; set; }
 }

 public class Order
 {
 public Customer Customer { get; set; }
 public DateTime OrderDate { get; set; }
 public IList<Item> Items { get; set; }
 }

These classes form the simple domain model that you will program against. To retrieve an order, you
will create a repository interface that will be implemented in the StubRepository project. Add a new
interface to the Model project named IOrderRepository, and update it to match the contract that
follows:

 public interface IOrderRepository
 {
 Order FindBy(int Id);
 }

362  ❘  Chapter 8   The Presentation Layer

Switch to the StubRepository project and add a new class that implements the newly created
IOrderRepository. Name this class OrderRepository, and update it to match the listing that
follows:

…
using ASPPatterns.Chap8.AutoMapper.Model;

namespace ASPPatterns.Chap8.AutoMapper.StubRepository
{
 public class OrderRepository : IOrderRepository
 {
 public Order FindBy(int Id)
 {
 Order order = new Order();
 order.OrderDate = DateTime.Now;
 order.Customer = new Customer { Name = “Scott Millett” };
 order.Items = new List<Item>();
 order.Items.Add(new Item { Qty = 1,
 Product = new Product { Name = “Hat” } });

 return order;
 }
 }
}

The OrderRepository lives only to provide some dummy data to work against.

Next, add a new folder to the AppService project named Views, and add two new classes within this
folder named ItemView and OrderView. The code for these classes is shown here:

 public class ItemView
 {
 public string ProductName { get; set; }
 public int Qty { get; set; }
 }

 public class OrderView
 {
 public string CustomerName { get; set; }
 public DateTime OrderDate { get; set; }
 public IList<ItemView> Items { get; set; }
 }

Now, usually you would create a series of classes to convert the domain entities into views — ​basically, a
lot of object-to-object mapping. What AutoMapper brings to the table is the ability to map your domain
entities into view models for you. Create a BootStrapper class to set up the entity to view model map-
ping contracts and add the following code:

…
using AutoMapper;
using ASPPatterns.Chap8.AutoMapper.Model;
using ASPPatterns.Chap8.AutoMapper.AppService.Views;

namespace ASPPatterns.Chap8.AutoMapper.AppService
{

Model-View-Controller  ❘  363

 public class BootStrapper
 {
 public static void ConfigureAutoMapper()
 {
 Mapper.CreateMap<Order, OrderView>();
 Mapper.CreateMap<Item, ItemView>();
 }
 }
}

The ConfigureAutoMapper method simply tells AutoMapper to create a mapping between the
domain entities and the view models. It is able to perform this flattening of the domain model due
to the naming of the view model properties. The Order entity has a Customer entity property, and
the Customer entity has a property named Name. AutoMapper is able to deduce that the OrderView
property CustomerName is from the Customer’s Name property and thus map it accordingly. The
rest of the mapping within the ItemView is performed in the same way. For more complex mapping,
please refer to the AutoMapper project home page http://automapper.codeplex.com/. You will
also use some more advanced features of AutoMapper in the case study that starts in Chapter 10.

You are now able to add an extension method to the Views folder named OrderExtensionMethods
that calls AutoMapper to perform the conversion for you:

…
using ASPPatterns.Chap8.AutoMapper.Model;
using AutoMapper;

namespace ASPPatterns.Chap8.AutoMapper.AppService.Views
{
 public static class OrderExtensionMethods
 {
 public static OrderView ConvertToOrderView(this Order order)
 {
 return Mapper.Map<Order, OrderView>(order);
 }
 }
}

The final class to complete the AppService project is the OrderService class. Add a new class to
the root of the project named OrderService, and update it to match the following code listing:

…
using AutoMapper;
using ASPPatterns.Chap8.AutoMapper.Model;
using ASPPatterns.Chap8.AutoMapper.StubRepository;
using ASPPatterns.Chap8.AutoMapper.AppService.Views;

namespace ASPPatterns.Chap8.AutoMapper.AppService
{
 public class OrderService
 {
 private IOrderRepository _orderRepository;

 public OrderService()
 : this(new OrderRepository())

364  ❘  Chapter 8   The Presentation Layer

 { }

 public OrderService(IOrderRepository orderRepository)
 {
 _orderRepository = orderRepository;
 }

 public OrderView GetOrder(int orderId)
 {
 OrderView orderView;
 Order order = _orderRepository.FindBy(orderId);

 orderView = order.ConvertToOrderView();

 return orderView;
 }
 }
}

I have added some poor man’s dependency injection by adding a parameterless constructor that cre-
ates a concrete version of the OrderRepository to keep the solution simple.

The GetOrder method obtains an Order entity and then calls the extension method to convert it to
an OrderView with a little help from AutoMapper.

You can create a call to the OrderService from the Default.aspx code behind in the UI.Web
application to complete the exercise. Add the following code to the code behind view of the
Default.aspx page:

…
using ASPPatterns.Chap8.AutoMapper.AppService;
using ASPPatterns.Chap8.AutoMapper.AppService.Views;

namespace ASPPatterns.Chap8.AutoMapper.UI.Web
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 OrderView order = new OrderService().GetOrder(1);

 Response.Write(String.Format(“CustomerName: {0}
”, order.CustomerName));
 Response.Write(String.Format(“OrderDate: {0}
”, order.OrderDate));

 foreach (ItemView item in order.Items)
 {
 Response.Write(String.Format
 (“Qty: {0}, Product: {1}
”, item.Qty, item.ProductName));
 }
 }
 }
}

Model-View-Controller  ❘  365

Lastly, you need to call into the BootStrapper class on the application start event, so add a
Global.asax file if one does not already exist, and update the code behind to include a call to the
BootStrapper.ConfigureAutoMapper method as shown next:

…
using ASPPatterns.Chap8.AutoMapper.AppService;

namespace ASPPatterns.Chap8.AutoMapper.UI.Web
{
 public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(object sender, EventArgs e)
 {
 BootStrapper.ConfigureAutoMapper();
 }
 }
}

You can now run the project and see that the AutoMapper generates the ViewModel.

You have only touched the surface on the functionality that AutoMapper can bring to help your
domain model to view model mapping needs. Please consult the project’s home page for more infor-
mation on the advanced features of AutoMapper.

Castle MonoRail
Castle MonoRail is an open source web application framework built on top of the ASP.NET plat-
form reminiscent of the Rails framework for Ruby. MonoRail follows the MVC pattern and can
be used with the Castle ActiveRecord framework, as discussed in Chapter 4 for the ActiveRecord
exercise. You can find more information on the Castle MonoRail project at the project’s homepage
at www.castleproject.org/monorail/.

To demonstrate the MonoRail framework you will be using the same domain model that you have
used throughout this chapter and will construct the same product catalog browsing site as in the
ASP.NET MVC exercise to enable you to compare frameworks.

Create a new solution named ASPPatterns.Chap8.CastleMonoRail, and add the following class
libraries to it:

ASPPatterns.Chap8.CastleMonoRail.Model➤➤

ASPPatterns.Chap8.CastleMonoRail.StubRepository➤➤

ASPPatterns.Chap8.CastleMonoRail.Controllers➤➤

Add a web application project to the solution named ASPPatterns.Chap8.CastleMonoRail.UI​
.NVelocity.

NVelocity is a template engine written in C# for .Net that is a port of the popular Java project Velocity;
you can find out more on it from its project home page http://nvelocity.sourceforge.net. You will
be using NVelocity to generate your Html views.

366  ❘  Chapter 8   The Presentation Layer

You need to download the Castle MonoRail framework to use MonoRail, so navigate to www.castle​
project.org/castle/download.html and download the assemblies; at the time of writing, this was
version 2.0. Once it’s downloaded, create a folder named Lib via Windows Explorer in the root of
the Solution folder and extract all the Castle MonoRail files into it. Once it’s extracted, right-click
on the Controllers project and add a reference to the Castle.MonoRail.Framework.dll. Next,
right-click on the UI.NVelocity project and add a reference to the following assemblies:

Castle.Components.DictionaryAdapter➤➤

Castle.Core➤➤

Castle.MonoRail.Framework➤➤

Castle.MonoRail.Framework.Views.NVelocity➤➤

NVelocity➤➤

To finish setting the project’s dependencies, right-click on the StubRepository project and add a
reference to the Model project. Right-click on the Controllers project and add a reference to the
Model and Controllers project as well as the StructureMap.dll you downloaded at the beginning
of this chapter. Lastly, right-click on the UI.NVelocity project and add a reference to the Model and
Controllers projects.

You can copy all the code from the Model and StubRepository projects that you created for the
Model-View-Presenter exercise earlier in the chapter because this exercise uses the same domain model.

The first class you need to create is the HomeController class within the Controllers project. Add
the class, and update it to match the listing that follows:

…
using Castle.MonoRail.Framework;
using ASPPatterns.Chap8.CastleMonoRail.Model;
using ASPPatterns.Chap8.CastleMonoRail.StubRepository;
using StructureMap;

namespace ASPPatterns.Chap8.CastleMonoRail.UI.Web.Controllers
{
 [Layout(“default”)]
 public class HomeController : SmartDispatcherController
 {
 private ProductService _productService;

 public HomeController()
 {
 _productService = ObjectFactory.GetInstance<ProductService>();
 }

 public void Index()
 {
 PropertyBag[“products”] = _productService.GetBestSellingProducts();
 PropertyBag[“categories”] = _productService.GetAllCategories();
 }
 }
}

Model-View-Controller  ❘  367

The HomeController inherits from the SmartDispatcherController base controller, which is part
of the MonoRail framework. The layout attribute that decorates the class simply lets the framework
know which layout template to use when rendering the view, which you will create a little later. The
layout attribute basically works like an ASPX master page. The constructor uses StructureMap to
obtain an instance of the ProductService with all dependencies resolved. The single Index method
obtains the data needed for the view and stores it within a property bag. By convention, there is no
need to call a method to show the view, because a view matching the name of the Index method
name is displayed by default. In contrast, ASP.MVC works in the same way except a call to View()
must be made, but if no argument is passed the view that matches the name of the action is rendered.

Add a second class to the project named ProductController, and update it to match the code listing
that follows:

…
using Castle.MonoRail.Framework;
using ASPPatterns.Chap8.CastleMonoRail.Model;
using ASPPatterns.Chap8.CastleMonoRail.StubRepository;
using StructureMap;

namespace ASPPatterns.Chap8.CastleMonoRail.UI.Web.Controllers
{
 [Layout(“default”)]
 public class ProductController : SmartDispatcherController
 {
 private ProductService _productService;

 public ProductController()
 {
 _productService = ObjectFactory.GetInstance<ProductService>();
 }

 public void ProductDetail()
 {
 int productId;
 int.TryParse(Request.QueryString[“ProductId”], out productId);

 Product product = _productService.GetProductBy(productId);

 if (product != null)
 {
 PropertyBag[“product”] = _productService.GetProductBy(productId);
 PropertyBag[“categories”] = _productService.GetAllCategories();
 }
 else
 {
 // The view name is passed here
 // as it does not match the method name
 RenderView(“productnotfound”);
 }
 }

 public void CategoryProducts()
 {

368  ❘  Chapter 8   The Presentation Layer

 int categoryId = int.Parse(Request.QueryString[“CategoryId”]);

 PropertyBag[“products”] = _productService.GetAllProductsIn(categoryId);
 PropertyBag[“categories”] = _productService.GetAllCategories();
 PropertyBag[“category”] = _productService.GetCategoryBy(categoryId);

 }
 }
}

The ProductController is nearly identical to the HomeController. It differs only in that it displays
an alternative view if a product cannot be found that relates to the product ID obtained from the
query string, as can be seen in the ProductDetail method.

To register the dependencies, you again create a BootStrapper class, seen here:

…
using StructureMap.Configuration.DSL;
using StructureMap;
using ASPPatterns.Chap8.CastleMonoRail.Model;
using ASPPatterns.Chap8.CastleMonoRail.StubRepository;

namespace ASPPatterns.Chap8.CastleMonoRail.Controllers
{
 public class BootStrapper
 {
 public static void ConfigureDependencies()
 {
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ControllerRegistry>();

 });
 }

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 ForRequestedType<ICategoryRepository>()
 .TheDefault.Is.OfConcreteType<CategoryRepository>();
 ForRequestedType<IProductRepository>()
 .TheDefault.Is.OfConcreteType<ProductRepository>();
 }
 }
 }
}

This completes the Controllers project. You are now going to use a view engine called NVelocity
to build the views. You could have also used a number of other view engines, such as AspView, Brail,
StringTemplate, and indeed the ASPX web forms engine. Add a new Views folder, and within it add
the following four folders:

Home➤➤

Product➤➤

Model-View-Controller  ❘  369

Layout➤➤

Shared➤➤

Add a new partial view to the Shared folder named categories.vm with the following markup:

 #foreach($category in $categories)

 $UrlHelper.Link($category.Name, “%{controller=’Product’,
 action=’CategoryProducts’,
 querystring=’CategoryId=$category.Id’}”)

 #end

Because Visual Studio won’t have an item type for the extension .vm, create a text file and amend
the extension to *.vm. The call to the $categories references the view model that you added via the
PropertyBag property within the Controllers project. URLHelper is a class that helps you to create
links based on your controller methods. For more information on the NVelocity syntax refer to the
projects home page at http://nvelocity.sourceforge.net.

Create another partial view in the Shared folder named products.vm, and update it to match the
markup shown here:

#foreach($product in $products)

 $product.Name only $product.Price

 $UrlHelper.Link(“more information”, “%{controller=’Product’,
 action=’ProductDetail’, querystring=’ProductId=$product.Id’}”)
 <hr />

#end

This view is nearly identical to the categories.vm view.

The next file to create is the layout template that you decorated your controller classes with back in
the Controllers project. Add a new file to the Layout folder named default.vm, and update it to
match the markup shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <div>
 <table width=”70%”>
 <tr>
 <td colspan=”2”><h2>
 $UrlHelper.Link(“Scotts Shop”, “%{controller=’Home’, action=’Index’}”)

370  ❘  Chapter 8   The Presentation Layer

 </h2><hr /></td>
 </tr>
 <tr>
 <td valign=”top” width=”15%”>#parse(“Shared/categories.vm”)</td>
 <td valign=”top” width=”85%”>$childContent</td>
 </tr>
 </table>
 </div>
</body>
</html>

The default.vm layout template includes the categories.vm partial view by using the #parse
method. The layout also defines a content area named $childContent that will be populated by the
concrete view that the controller generates.

Create a new view for the product catalog home page within the Home folder named index.vm, and
update it with the following markup:

<p>
 <h2>Today’s Top Products</h2>
 #parse(“Shared/products.vm”)
</p>

Again, this view uses the shared products.vm partial view to render the best selling products.

Create another view for the displaying of products within a specific category in the Product folder
named categoryproducts.vm. Again, update it to match the markup that follows:

<h2>All $category.Name</h2>
#parse(“Shared/products.vm”)

Add another view to the Product folder named productdetail.vm that renders the details of a
product, as shown here:

<h2>$product.Name</h2>
<p>pay: $product.Price</p>
<p>$product.Description</p>

The final view to create is displayed if a product cannot be found. Name this view
productnotfound.vm, and add it again to the Product folder.

Sorry the product you were looking for could not be found.

Please return to the $UrlHelper.Link(“home page”, “%{controller=’Home’,
 action=’Index’}”) and try again.

This completes all the views. You now need to change to the Web.Config file so that you can hook up
the MonoRail HttpHandler and configure the location of your controllers. Open the Web.config file
and add the following sections:

<configuration>

<configSections>
 <section name=”monorail”
 type=”Castle.MonoRail.Framework.Configuration.MonoRailSectionHandler,

Model-View-Controller  ❘  371

 Castle.MonoRail.Framework”/>
 …
</configSections>

<monorail>
 <controllers>
 <assembly>ASPPatterns.Chap8.CastleMonoRail.Controllers</assembly>
 </controllers>
 <viewEngines viewPathRoot=”Views”>
 <add type=”Castle.MonoRail.Framework.Views.NVelocity.NVelocityViewEngine,
 Castle.MonoRail.Framework.Views.NVelocity”/>
 </viewEngines>
</monorail>

…

<httpHandlers>
 <remove verb=”*” path=”*.asmx”/>
 <add verb=”*” path=”*.catalog”
 type=”Castle.MonoRail.Framework.MonoRailHttpHandlerFactory,
 Castle.MonoRail.Framework”/>
 …
</httpHandlers>

…

</configuration>

You also need to redirect all calls to Default.aspx to redirect to the default home controller, as can
be seen here:

…
public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Redirect(“home/index.catalog”);
 }
 }

Lastly, add a Global.asax file and add a call to the BootStrapper.ConfigureDependencies method
within the Application_Start event, as can be seen here:

…
using ASPPatterns.Chap8.CastleMonoRail.Controllers;

namespace ASPPatterns.Chap8.CastleMonoRail.UI.NVelocity
{
 public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(object sender, EventArgs e)
 {
 BootStrapper.ConfigureDependencies();
 }
 }
}

372  ❘  Chapter 8   The Presentation Layer

The completed solution resembles Figure 8-14.

You can now press F5 or run the debugger to navigate
the product catalog.

Page Controller

The Page Controller is a simple pattern that has one
controller for each view of the web application. That
controller may be the page itself, as was the case in clas-
sic ASP, or it can follow the code behind model and live
in a separate object that corresponds to the page. The
Page Controller pattern is built in to the ASP.NET Web
Forms framework and uses a separate code behind class
to separate the view from the Page Controller. This can
be seen by the way the ASP.NET page is divided into
two distinct parts: the .aspx, which forms the view,
and the .aspx.cs code behind file, forming the Page
Controller. The code behind updates the view with the
data from the model and coordinates the rendering of
other views via redirection.

Figure 8-15 shows a graphical representation of the
Page Controller pattern classes involved in the Page
Controller pattern.

View 1

View 2

PageController

PageController

Model

Figure 8-15

I won’t include a coding exercise for this pattern as you have already been using it if you have used
web forms.

Summary

This chapter started with a look at how you can tie up your loosely coupled code by using an Inversion
of Control container within your presentation layer to obtain concrete implementations of services
simply by referencing an interface, thus leaving your code loosely coupled and not tied to a particular
implementation of a service. The container you looked at was the popular open source StructureMap.

Figure 8-14

Summary  ❘  373

You then went on to look at the following patterns, which help organize your presentation logic:

Model-View-Presenter: ➤➤ The Model-View-Presenter pattern splits an application into three dis-
tinct sections: the model representing a view of the business domain to be displayed or inter-
acted with; the view that displays the model data; and the presenter that mediates between the
model and the view by persisting data changed by the view and retrieved data from the model
for displaying on the view. The view is the gateway to the pattern and all actions are routed
through it and delegated to the presenter. The MVP pattern is particularly suited to ASP.NET
web forms because it provides a stateful view of the web.

Front Controller: ➤➤ The Front Controller acts as the initial point of contact for handling a request.
The controller manages the handling of the request and delegates it to the appropriate handler,
which in turn handles any model retrieval or persistence and renders the corresponding view.
The view is completely passive in this pattern and rarely if ever follows the code behind model.

Model-View-Controller: ➤➤ Like the MVP pattern, the Model-View-Controller pattern has three
distinct parts: the model, which as in MVP represents a view of the business domain to be dis-
played or interacted with; the view that is rendered by the controller; and the controller itself
that is based on the Front Controller pattern and is the initial point of contact for a request.
After a request is made, the controller delegates to an appropriate command to handle the
request and renders the view, passing any model data required as part of the process.

ViewModel: ➤➤ The ViewModel pattern defines strongly typed classes that are created for the sole
purpose of satisfying a particular view. They are Data Transfer Objects and usually have a one-
to-one relationship with the view template. The ViewModels are typically but not always flat-
tened views of a particular subset of the Domain entity’s object graph. ViewModels can be used
with all the presentation patterns discussed in this chapter.

Page Controller: ➤➤ The Page Controller pattern defines one controller for each view in the appli-
cation. The Page Controller pattern is an easy-to-grasp pattern especially for people coming
from a web forms background because this is the pattern built into the framework.

In the next chapter, you look at the patterns that appear in the user experience portion of an enterprise-
level application — ​specifically AJAX design patterns.

The User experience layer

whaT’s in This chaPTer?

An explanation of what AJAX is➤➤

Using JavaScript libraries to simplify your scripting needs➤➤

The AJAX Periodic Refresh and Timeout patterns➤➤

Maintaining history with the Unique URL pattern➤➤

Client-side data binding with jTemplate➤➤

The AJAX Predictive Fetch pattern➤➤

This chapter starts with a description of what AJAX is and what JavaScript libraries are available
to make it easier to write AJAX applications. The chapter ends with common AJAX patterns that
make up the user experience layer, with full exercises to see how these patterns are implemented.

whaT is ajax?

AJAX (Asynchronous JavaScript and XML) is a way of programming to make asynchronous
client callbacks from the browser to the server. Traditionally, data that the server returns is
serialized into XML; however, more often JSON (JavaScript Object Notation) is used, because
JSON is lightweight and therefore faster than XML.

The underlying technology used for AJAX is the XMLHttpRequest object. The XMLHttpRequest
object allows client-side JavaScript code to send HTTP requests and handle responses. The ability
to request data from a server asynchronously is half of the AJAX story, because now you need to
update the browser page to show the new information. You can achieve this by using the Document
Object Model (DOM). The DOM enables the page to be updated with the new data retrieved from
the XMLHttpRequest object. These two pieces of technology are what make AJAX possible.

9

376  ❘  Chapter 9   The User Experience Layer

However, you will rarely use these objects directly, because many powerful and free JavaScript librar-
ies make using AJAX simple and hide the complexities of cross-browser DOM implementation. The
next section discusses these.

Using JavaScript Libraries

A JavaScript library is a library of prewritten JavaScript controls and helper methods that facilitate the ease
of cross-browser development. A number of libraries have been developed to ease JavaScript programming,
such as Script.aculo.us, Dojo Toolkit, and Google Web Toolkit. Microsoft has even created its own
AJAX JavaScript library for use with the AJAX control kit: a drag-and-drop method of developing AJAX
applications with no requirements to hand-code JavaScript. Microsoft, however, has shifted its focus from
the client-side JavaScript library to the more server-side AJAX control toolkit and has opted to support
jQuery as its JavaScript library of choice. jQuery is included with the ASP.NET MVC project template
that you used in Chapter 8. In Visual Studio 2010, jQuery 1.4.1 is included with both ASP.NET Web
Forms and MVC 2. jQuery is the library you will be using for the remainder of this chapter, so the next
section takes a closer look at it.

jQuery is the most popular JavaScript library in use today, so much so that even Microsoft has
started shipping it with Visual Studio 2010. It has fast become the developers’ choice due to its ani-
mation functionalities as well as its AJAX and event-handling features. You can download the library
free from http://jquery.com/; you will use the jQuery library for the exercise to demonstrate the
AJAX patterns.

This chapter will not go into detail on using jQuery, so I suggest a dedicated book on the subject,
such as the Wrox Blox jQuery for ASP.NET Developers by Joe Brinkman or jQuery in Action by
Bear Bibeault and Yehuda Katz.

Understanding AJAX Patterns

Just as with server-side code and the Gang of Four patterns, patterns have started to emerge for client-
side code and AJAX technologies to help with best practices. You will examine the following patterns
in this section:

Periodic Refresh and Timeout ➤➤

Unique URL ➤➤

Data binding with JavaScript Templates➤➤

Predictive Fetch ➤➤

Periodic Refresh and Timeout
As the name suggests, the Periodic Refresh pattern sees the browser periodically issuing an
XMLHttpRequest call to retrieve new or updated information and update the display. The BBC’s
goal flashes and major incidents text commentary ticker that provides all the action at the football
matches (soccer) use the Periodic Refresh pattern. Figures 9-1 through 9-3 show how the page updates
periodically to demonstrate major events of games being played.

Understanding AJAX Patterns  ❘  377

Figure 9-1

Figure 9-2

378  ❘  Chapter 9   The User Experience Layer

Figure 9-3

The pattern is also used for online chat programs and social networking applications to update the
messages or status of users. Another popular use of the pattern is for web-based e‑mail accounts.
Once a user logs in, the browser automatically checks for new e‑mails periodically; there’s no need
for the page to post back or the user to manually refresh it.

The problem that comes with the Periodic Refresh pattern is that users typically leave a browser open
without interacting with it, meaning that the application happily polls for hours or even days. This
could cause a lot of extra load on web servers. To solve this issue, you can use the Timeout pattern.

The Timeout pattern is another well-named pattern that times out the browser after a specified period
of user inactivity; the browser can then either alert the server that the user has left or in the case of the
Periodic Refresh pattern stop the updates to the page until the user resumes activity.

Periodic Refresh and Timeout Pattern Code Example
In this example, you will re-create the BBC’s goal flashes and major incidents text commentary ticker
to automatically keep the browser up-to-date with a football (soccer) match. However, to save server
resources, you need to pause the periodic refresh after a specified period of user inactivity. If the user
resumes interaction with the page, the page should in turn resume polling the server for updates.

This example uses lots of complex jQuery routines, so it is suggested that you download the source
code for reference; however, the full code listing with step-by-step instructions is included if you
want to follow along.

Understanding AJAX Patterns  ❘  379

Create a new empty Visual Studio solution named ASPPatterns.Chap9.PeriodicRefresh, and add
the following projects to the solution:

A class library named ➤➤ ASPPatterns.Chap9.PeriodicRefresh.Model

A class library named ➤➤ ASPPatterns.Chap9.PeriodicRefresh.Repository

A web application project named ➤➤ ASPPatterns.Chap9.PeriodicRefresh.UI.Web

With your projects created, you now need to set up the project dependencies. Right-click on the
Repository project and add a reference to the Model project. Lastly, right-click on the web applica-
tion and add a reference to the Model and Repository projects.

Add a new class to the Model project named Event with the code definition that follows:

 public class Event
 {
 public int Id { get; set; }
 public string Time { get; set; }
 public DateTime RealTime { get; set; }
 public string Text { get; set; }
 }

The Event class holds information pertaining to an event that has occurred in a football match. The
RealTime property simulates events occurring during a match.

To retrieve a list of events, you need to define an interface for an Event repository. Add a new inter-
face named IEventRepository to the Model project, as shown here:

 public interface IEventRepository
 {
 IEnumerable<Event> FindAllSince(int eventId);
 }

For the implementation of the IEventRepository, you will use an in-memory collection of events to
keep the project simple. Create a new class within the Repository project named EventRepository,
and update it to match the code listing that follows:

…
using ASPPatterns.Chap9.PeriodicRefresh.Model;

namespace ASPPatterns.Chap9.PeriodicRefresh.Repository
{
 public class EventRepository : IEventRepository
 {
 private DateTime _startTime = DateTime.Now;

 public IEnumerable<Event> FindAllSince(int eventId)
 {
 return GetAllEvents()
 .FindAll(e => (e.Id > eventId) && (e.RealTime < DateTime.Now));
 }

 private List<Event> GetAllEvents()
 {

380  ❘  Chapter 9   The User Experience Layer

 List<Event> events = new List<Event>();

 events.Add(new Event { Id = 1,
 Text = “Corner taken left-footed by Jamie Hara” +
 “ from the right by-line…”,
 RealTime = _startTime,
 Time = _startTime.ToShortTimeString() });

 events.Add(new Event { Id = 2,
 Text = “Quincy Owusu-Abeyie fires in a goal from deep inside…”,
 RealTime = _startTime.AddSeconds(10),
 Time = _startTime.ToShortTimeString() });

 events.Add(new Event { Id = 3,
 Text = “Dean Hammond takes a shot. Save made by David James.”,
 RealTime = _startTime.AddSeconds(12),
 Time = _startTime.ToShortTimeString() });

 …

 events.Add(new Event { Id = 31,
 Text = “The final whistle is blown by the referee.”,
 RealTime = _startTime.AddSeconds(130),
 Time = _startTime.AddMinutes(23).ToShortTimeString() });

 return events;
 }
 }
}

The EventRepository implements the single method on the IEventRepository interface as well as
a second method that returns a collection of events. Only a portion of the full collection of events is
shown to give you an idea of how the collection is created. The FindAllSince method retrieves all
events that have occurred up to the current time or after the Event ID passed as the method parame-
ter. Note that the EventRepository has a private _startTime member that determines whether the
event has occurred. In a real commentary application, there would be some kind of administration
portal for reporters to enter updates on a sporting event in real time.

To enable the browser and client-side JavaScript to periodically check for new events within the foot-
ball match, you need to create a web service. Add a new web service to the UI.Web web application
project named LiveScoreSummary.asmx, and update it to match the listing that follows:

using System.Collections.Generic;
using System.Web.Services;
using ASPPatterns.Chap9.PeriodicRefresh.Model;
using ASPPatterns.Chap9.PeriodicRefresh.Repository;

namespace ASPPatterns.Chap9.PeriodicRefresh.UI.Web
{
 /// <summary>
 /// Summary description for LiveScoreSummary
 /// </summary>
 [WebService(Namespace = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]

Understanding AJAX Patterns  ❘  381

 // To allow this web service to be called from script,
 // using ASP.NET AJAX, uncomment the following line.
 [System.Web.Script.Services.ScriptService]
 public class LiveScoreSummary : System.Web.Services.WebService
 {
 private static IEventRepository _eventRepository;

 public static void SetUpEventData()
 {
 _eventRepository = new EventRepository();
 }

 [WebMethod]
 public IEnumerable<Event> GetEventsThatHaveOccuredSince(int eventId)
 {
 return _ eventRepository.FindAllSince(eventId);
 }
 }
}

Pay particular attention to the un-commenting of the [System.Web.Script.Services.ScriptService]
attribute that decorates the class. This allows the service to be called from JavaScript.

The web service has a single method that calls into the repository and returns a collection of
events that have occurred since the Event ID passed. The second method on the class creates a new
EventRepository to work with. This is important because the dummy data is time dependent.

To ensure that a new EventRepository is created, you can invoke the LiveScoreSummary
SetUpEventData method on the Page_Load event. Doing so resets the data every time you refresh
the page so that you can test the behavior of the client-side JavaScript:

 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 LiveScoreSummary.SetUpEventData();
 }
 }

Before you implement the script that will be the implementation of the Periodic Refresh and Timeout
patterns, you need to add some supporting content files. Add a new folder to the UI.Web web project
named Content, and to it add a file named Site.CSS, as displayed here:

.Loading
{
 background: #CCC;
 text-align: center;
 display: none;
 position : absolute;
 z-index:1;
 font-family : verdana,helvetica,arial,sans-serif;
 font-size : 13px;
}

#Paused

382  ❘  Chapter 9   The User Experience Layer

{
 background: #FFFF00;
 display: none;
 font-weight : bold;
 font-family : verdana,helvetica,arial,sans-serif;
 font-size : 13px;
 text-align: center;
}

.LoadingBlock
{
 background: #CCC;
 display: none;
}

p
{
 font-family : verdana,helvetica,arial,sans-serif;
 font-size : 13px;
}

.EventItem
{
 line-height:1.3em;
 font-family : verdana,helvetica,arial,sans-serif;
 font-size : 13px;
}

#Events
{
 width: 500px;
}

#wrap{
 width:500px;
 margin:0 auto;
 text-align:left;
}

#main-content{
 float:left;
}

Also, add an image file named ajax-loader.gif to the Content folder, which you can find in the
code download.

Next, add a second folder named Scripts, and add the jQuery-1.3.2.js JavaScript library to the
folder. You can download jQuery from http://docs.jquery.com/Downloading_jQuery. The lat-
est version at the time of writing is 1.4.2, which also works, but 1.3.2 was the version that shipped
with the ASP.NET MVC Framework module.

The final code for this project is the client-side JavaScript routines that reside within the markup of
the Default.aspx page. For simplicity, I have embedded the JavaScript within the page; however, in

Understanding AJAX Patterns  ❘  383

a production, it makes sense to move the functions into a JavaScript library file. There is a lot going
on in the Default.aspx page. Look at the source code that follows, which is included for complete-
ness. You’ll then see what is happening function by function:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
 Inherits=”ASPPatterns.Chap9.PeriodicRefresh.UI.Web._Default” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
 <script type=”text/javascript” src=”/Scripts/jquery-1.3.2.js”></script>
 <link href=”/Content/Site.css” type=”text/css” rel=”stylesheet” />
 <script type=”text/javascript”>

 var pollforupdates = true;
 var mostRecentEvent = 0;
 var timer;

 $(document).ready(function() {
 // Periodic Refresh Pattern Implementation
 // When the document has fully loaded, start the polling for data
 getLatestEvents();

 // Timeout Pattern Implementation
 // Set up a timer to monitor user inactivity
 setupTimerToCheckForInactivity();
 // Hook up event handlers to actions that prove
 // the user is still using the page
 hookUpEventHandlersToDetermineActivity();
 });

 function getLatestEvents() {

 // This method performs an asynchronous POST to
 // retrieve any new events since the last event was displayed
 dto = { ‘eventId’: mostRecentEvent };
 varType = “POST”;
 varUrl = “LiveScoreSummary.asmx/GetEventsThatHaveOccuredSince”;
 varContentType = “application/json; charset=utf-8”;
 varDataType = “json”;
 varData = JSON.stringify(dto);

 $.ajaxSetup({ cache: false });

 $.ajax({
 type: varType, //GET or POST or PUT or DELETE verb
 url: varUrl, // Location of the service
 data: varData, //Data sent to server
 contentType: varContentType, // content type sent to server
 dataType: varDataType, // expected data format from server
 success: serviceSuccessful, // on successful service, call the
 // serviceSuccessful method

Available for
download on
Wrox.com

384  ❘  Chapter 9   The User Experience Layer

 error: serviceFailed // on unsuccessful service, call
 // the serviceFailed method
 });
 }

 function setupTimerToCheckForInactivity() {

 // This method sets up a timer to pause the
 // polling of events after a given time.
 // In this example, a user is inactive if he hasn’t
 // interacted with the screen for more than 5 seconds.
 timer = setTimeout(
 function() {
 pauseUpdates()
 }, 5000);
 }

 function hookUpEventHandlersToDetermineActivity() {

 // This method sets up event handlers that
 // reset the inactivity timer

 // This hooks into the mouse move event
 $(document).mousemove(function(event) {
 resetInactivityTimeCounter();
 });

 // This hooks into the window focus event
 $(window).bind(“focus”, function() {
 resetInactivityTimeCounter();
 });

 }

 function pauseUpdates() {
 pollforupdates = false;
 }

 function displayPauseMessage() {
 $(“#Paused”).slideDown(“slow”);
 }

 function resetInactivityTimeCounter() {

 // If the viewer had timed out, the
 // polling for events would need to resume
 if (pollforupdates == false) {
 pollforupdates = true;
 getLatestEvents();
 }

 $(“#Paused”).hide();
 // Stop the timer
 clearTimeout(timer);
 // Restart the timer

Understanding AJAX Patterns  ❘  385

 setupTimerToCheckForInactivity()
 }

 function serviceFailed(result) {
 alert(‘Service call failed: ‘ + result.status + ‘’ + result.statusText);
 }

 function serviceSuccessful(resultObject) {
 // On a successful AJAX POST, the JSON array result
 // is passed to the displayEvents method
 displayEvents(resultObject.d, 0);
 }

 function displayEvents(events, indexOfEventToAdd) {

 if (events.length > indexOfEventToAdd)
 {
 var event = events[indexOfEventToAdd];
 var eventId = “#Event_” + event.Id;

 if (eventDoesNotExistOnPage(eventId)) {

 // Update the most recent event
 mostRecentEvent = event.Id

 addEventDivAndShowLoadingDiv(event, eventId);

 // Wait 2 seconds and then hide the loading divs
 // and show the event
 setTimeout(function() {

 hideLoadingDivAndShowEventDiv(eventId);

 // Wait 2 seconds and then display
 // the next event returned from
 // the call to the service recursively calling
 // this function
 setTimeout(function() {
 displayEvents(events, indexOfEventToAdd + 1)
 }, 2000);

 }, 2000);
 }
 else {
 // The event already exists on the page, so
 // check the next event by recursively calling this function
 displayEvents(events, indexOfEventToAdd + 1)
 }
 }
 else {

 // Check to see if you should call the AJAX method
 // i.e. if the user is still active
 if (pollforupdates == true) {
 pauseThenCheckForNewEvents()

386  ❘  Chapter 9   The User Experience Layer

 }
 else
 displayPauseMessage();
 }
 }

 function hideLoadingDivAndShowEventDiv(eventId) {
 $(“#LoadingBlock”).hide();
 $(eventId).show();
 $(“#Loading”).fadeOut(‘slow’);
 }

 function addEventDivAndShowLoadingDiv(event, eventId) {

 // Prepend the new event to the event div
 $(“#Event”).prepend(“<div id=’Event_” +
 event.Id + “‘ class=’EventItem’>” +
 event.Time + “ : “ + event.Text + “

</div>”);

 // Get the position of the new event div
 var pos = $(eventId).offset();
 var width = $(“#Event”).width();
 var height = $(eventId).height();

 // Hide the new event div because you want to show a loading
 // screen to alert the user of a new event
 $(eventId).hide();

 // Show the waiting loading div directly over the newly added event
 $(“#Loading”).css({ “width”: width + “px”,
 “left”: pos.left + “px”,
 “top”: pos.top + “px”,
 “height”: height + “px” });
 $(“#LoadingBlock”).css({ “height”: height + “px” });
 $(“#Loading”).slideDown(“slow”);
 $(“#LoadingBlock”).slideDown(“slow”);
 }

 function pauseThenCheckForNewEvents() {
 // Wait 3 seconds and then call the AJAX method to
 // retrieve new events
 setTimeout(
 function() {
 getLatestEvents()
 }, 3000);
 }

 function eventDoesNotExistOnPage(eventId) {
 // This checks to see if there is a div
 // for the given event
 return ($(eventId).length == 0);
 }

 </script>

Understanding AJAX Patterns  ❘  387

</head>
<body>
 <form id=”form1” runat=”server”>
 <div id=”wrap”>
 <h1>The Periodic Refresh Pattern</h1>
 <p>
 All the action as it happens from today’s football games

 by your man in the stand Steve Mills
 </p>
 <hr />
 <div id=”main-content”>
 <div id=”Paused”>Paused due to inactivity.</div>
 <div id=”Events”>
 <div id=”LoadingBlock” class=”LoadingBlock”></div>
 <div id=”Event”></div>
 </div>
 <div id=”Loading” class=”Loading”>Updating...
 </div>
 </div>
 </div>
 </form>
</body>
</html>

Code snippet Default.aspx in project ASPPatterns.Chap9.PeriodicRefresh.UI.Web

The script contains implementations for both the Periodic Refresh and Timeout patterns, both of
which are started when the document is fully loaded.

 $(document).ready(function() {
 // Periodic Refresh Pattern Implementation
 // When the document has fully loaded, start the polling for data
 getLatestEvents();

 // Timeout Pattern Implementation
 // Set up a timer to monitor user inactivity
 setupTimerToCheckForInactivity();
 // hook up event handlers to actions that prove the user is still using
 // the page
 hookUpEventHandlersToDetermineActivity();
 });

The next sections look at both of these pattern implementations in detail.

Periodic Refresh Implementation Script
The displaying of events forms the Periodic Refresh AJAX pattern. The first method, getLatest​
Events, calls into the web service passing the last event ID displayed (initially 0) and receives a
JSON array of event objects from the server.

 function getLatestEvents() {

 // This method performs an asynchronous POST to
 // retrieve any new events since the last event was displayed

388 ❘ chaPTer 9 The uSer exPerience layer

 dto = { ‘eventId’: mostRecentEvent };

 varType = “POST”;
 varUrl = “LiveScoreSummary.asmx/GetEventsThatHaveOccuredSince”;
 varContentType = “application/json; charset=utf-8”;
 varDataType = “json”;
 varData = JSON.stringify(dto);

 $.ajaxSetup({ cache: false });

 $.ajax({
 type: varType, //GET or POST or PUT or DELETE verb
 url: varUrl, // Location of the service
 data: varData, //Data sent to server
 contentType: varContentType, // content type sent to server
 dataType: varDataType, // expected data format from server
 success: serviceSuccessful, // on successful service, call the
 // serviceSuccessful method
 error: serviceFailed // on unsuccessful service, call
 // the serviceFailed method
 });
 }

If the call is successful, the serviceSuccessful method is called, which simply passes the JSON
array to the displayEvents method:

 function serviceSuccessful(resultObject) {
 // On a successful AJAX POST, the JSON array result
 // is passed to the displayEvents method
 displayEvents(resultObject.d, 0);
 }

The indexOfEventToAdd parameter tells the displayEvents method the index of which Event to
display. The displayEvents method is then called recursively until all events within the JSON array
have been displayed.

If you are wondering what the d attribute is that wraps the array of Json events,
it is basically a security feature and ensures that the Json array returned from
the web service call is not valid JavaScript. The reason for wanting to return
invalid JavaScript is to prevent cross-site scripting attacks. For more information
on this security measure, visit www.asp.net/ajaxlibrary/Using%20JSON%20
Syntax%20with%20Ajax.ashx.

The displayEvents method fi rst determines whether there is an event at the index specifi ed; if there’s
not, the logic checks to see if the method should continue to poll (pauseThenCheckForNewEvents) or
simply display a message letting users know that they have become inactive (displayPauseMessage).

If there is an event at the specifi ed index, a check is made to see if it has already been added to the
page (eventDoesNotExistOnPage). If it has been added, the next event in the array is processed by

Understanding AJAX Patterns  ❘  389

recursively calling the method and increasing the index by 1. If the event does not already appear on
the page, it is added, and a loading div is displayed (addEventDivAndShowLoadingDiv). The loading
div is removed after 2 seconds to give the user the chance to be alerted to an updated event message
(hideLoadingDivAndShowEventDiv). After a further 2 seconds, the next event in the array is pro-
cessed by recursively calling the method and increasing the index by 1.

 function displayEvents(events, indexOfEventToAdd) {

 if (events.length > indexOfEventToAdd)
 {
 var event = events[indexOfEventToAdd];
 var eventId = “#Event_” + event.Id;

 if (eventDoesNotExistOnPage(eventId)) {

 // Update most recent event
 mostRecentEvent = event.Id

 addEventDivAndShowLoadingDiv(event, eventId);

 // Wait 2 seconds and then hide the loading divs
 // and show the event
 setTimeout(function() {

 hideLoadingDivAndShowEventDiv(eventId);

 // Wait 2 seconds and then display the
 // next event returned from
 // the call to the service recursively
 // calling this function
 setTimeout(function() {
 displayEvents(events, indexOfEventToAdd + 1)
 }, 2000);

 }, 2000);
 }
 else {
 // The event already exists on the page, so
 // check the next event by recursively calling this function
 displayEvents(events, indexOfEventToAdd + 1);
 }
 }
 else {

 // Check to see if we should call the AJAX method
 // i.e. if the user is still active
 if (pollforupdates == true) {
 pauseThenCheckForNewEvents();
 }
 else
 displayPauseMessage();
 }
 }

390  ❘  Chapter 9   The User Experience Layer

The script contained within the methods addEventDivAndShowLoadingDiv and hideLoadingDivAnd​
ShowEventDiv uses jQuery’s animation functions. The details of using the jQuery animation func-
tions are beyond the scope of this book, but a dedicated jQuery reference is recommended. The jQuery
scripts should be easy to understand.

You will now see how the Timeout pattern is implemented in the script.

Timeout Pattern Implementation Script
When the setupTimerToCheckForInactivity method is called, it sets a 5-second timer. When trig-
gered, this timer calls a method named pauseUpdates, which in turn sets a flag named pollforupdates
to false. This flag is used with the displayEvents to determine whether polling should continue. In a
production application, the time to determine a user’s inactivity would be longer; however, keeping it to a
low number helps you view the behavior of the Timeout pattern after you moved focus from the browser
window.

 function setupTimerToCheckForInactivity() {

 // This method sets up a timer to pause the
 // polling of events after a given time.
 // In this example, a user is inactive if he hasn’t
 // interacted with the screen for more than 5 seconds.
 timer = setTimeout(
 function() {
 pauseUpdates()
 }, 5000);
 }

 function pauseUpdates() {
 pollforupdates = false;
 }

However, if the user is active, you don’t want the polling of events to stop. You avoid this by calling
the hookUpEventHandlersToDetermineActivity method when the document is fully loaded and
setting up two event handlers:

 function hookUpEventHandlersToDetermineActivity() {

 // This method sets up event handlers that
 // reset the inactivity timer

 // This hooks into the mouse move event
 $(document).mousemove(function(event) {
 resetInactivityTimeCounter();
 });

 // This hooks into the window focus event
 $(window).bind(“focus”, function() {
 resetInactivityTimeCounter();
 });
 }

Understanding AJAX Patterns  ❘  391

The event handlers trigger the resetInactivityTimeCounter method if the mouse is moved or the
window is put in focus. The resetInactivityTimeCounter resets the check for user inactivity.

The resetInactivityTimeCounter method also kicks the polling for events back on if it has been
stopped due to user inactivity:

 function resetInactivityTimeCounter() {

 // If the viewer had timed out, the
 // polling for events needs to resume
 if (pollforupdates == false) {
 pollforupdates = true;
 getLatestEvents();
 }

 $(“#Paused”).hide();
 // Stop the timer
 clearTimeout(timer);
 // Restart the timer
 setupTimerToCheckForInactivity()
 }

With the solution complete, you can now run the project and see the events update as if you were
watching the commentary on a live football match. Figure 9-4 shows the browser updating with a
new event, and Figure 9-5 shows the pause message displayed due to user inactivity.

Figure 9-4

392  ❘  Chapter 9   The User Experience Layer

Figure 9-5

You will now install a popular plug-in for the Firefox web browser so you can see what is happening
for each request.

Using Firefox and Firebug for Web Development
If you really want to see what’s going on under the hood when programming with AJAX, download the
Firefox browser from www.mozilla.com/firefox and install Firebug from http://getfirebug.com/.
Now you can right-click on the Default.aspx page, click Browse With, and select Firefox. Open Firebug
by clicking on the bug icon in the right corner of the browser or by navigating to Tools ➪ Firebug ➪ Open
Firebug.

When the page loads, click on the Console tab. You see all the elements that are needed for the page
being downloaded. You then see a call to the web service, as shown in Figure 9-6.

By expanding on the POST call, you can inspect the headers, post data, and response. In Figure 9-6,
you are posting an event ID of 5.

Figure 9-7 shows the response from the server.

Figure 9-8 shows the JSON-formatted response.

Using Firebug is a great way to understand what is being sent to and from the web server. It’s also a
great tool to use when debugging. You will use this tool with the other two AJAX exercises in this
chapter.

Understanding AJAX Patterns  ❘  393

Figure 9-6

Figure 9-7

394  ❘  Chapter 9   The User Experience Layer

Figure 9-8

Unique URL
One of the issues with AJAX applications is the fact that, because calls to the server happen asynchro-
nously, the URL of the browser never changes. Thus, it’s impossible to bookmark a state in an applica-
tion, such as when filtering through a list of products or saving the order of the sorted products.

To get around this issue, you need to provide unique URLs for the various states of an application.
When a user filters a product page or alters the sorting options, the URL should alter as well, allow-
ing the user to bookmark the page and return to it in the same state.

To accomplish this, you can set the window.location.hash value, as can be seen in the code snip-
pet that follows:

window.location.hash = newStateInformation;

Updating the browser address bar like so without causing a redirect:

http://www.mysite.co.uk/mypage.aspx#OpenState

The location.hash property usually anchors to a bookmark with a long page, but you can use it
with an AJAX application to provide a means of saving state.

To retrieve the state, check when the page loaded to see if there is a bookmark. If there is, the script
should return to the state of that bookmark value. You will look at an example using this pattern in
the next section.

Databinding with JavaScript Templates
jTemplates is a template engine for JavaScript available from http://jtemplates.tpython.com
that helps to display large lists of information without the need to write masses of JavaScript code.

Understanding AJAX Patterns  ❘  395

The page that follows is an example of the template in action. You need to download jTemplates
from http://jtemplates.tpython.com and reference the jQuery library that you used in the last
exercise to see this demo working.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <script type=”text/javascript” src=”jquery-1.3.2.js”></script>
 <script type=”text/javascript” src=”jquery-jtemplates.js”></script>

 <script type=”text/javascript”>
 // data - JSON array
 $(document).ready(function() {
 var data = {
 items: [
 { Id: 1, Name: ‘Scott’, Age: 32 },
 { Id: 2, Name: ‘Lynsey’, Age: 31 },
 { Id: 3, Name: ‘Agatha’, Age: 3 },
 { Id: 4, Name: ‘Kojack’, Age: 2 },
]
 };

 // Attach the template to the output div
 $(“#userList”).setTemplate($(“#userListTemplate”).html());
 // Process the template by feeding in the JSON array
 $(“#userList”).processTemplate(data);
 });
 </script>
 <title></title>
</head>

<body>
 <! -- template -- >
 <script type=”text/html” id=”userListTemplate”>
 <table>
 {#foreach $T.items as record}
 <tr>
 <td>{$T.record.Name}</td>
 <td>{$T.record.Age}</td>
 <td>
 view details
 </td>
 </tr>
 {#/for}
 </table>
 </script>

 <! -- results output div -- >
 <div id=”userList”></div>
</body>
</html>

396  ❘  Chapter 9   The User Experience Layer

The template is defined within a script tag so that it is not shown when the page loads:

 <script type=”text/html” id=”userListTemplate”>
 <table>
 {#foreach $T.items as record}
 <tr>
 <td>{$T.record.Name}</td>
 <td>{$T.record.Age}</td>
 <td>
 view details
 </td>
 </tr>
 {#/for}
 </table>
 </script>

Then when the document is ready and fully loaded, a set of dummy JSON objects is created, the
template is set against the output div called userlist, the template is processed, and the JSON
array is fed in.

 $(document).ready(function() {
 var data = {
 items: [
 { Id: 1, Name: ‘Scott’, Age: 32 },
 { Id: 2, Name: ‘Lynsey’, Age: 31 },
 { Id: 3, Name: ‘Agatha’, Age: 3 },
 { Id: 4, Name: ‘Kojack’, Age: 2 }
]
 };

 // Attach the template to the output div
 $(“#userList”).setTemplate($(“#userListTemplate”).html());
 // Process the template by feeding in the JSON array
 $(“#userList”).processTemplate(data);
 });

You can see the output of the sample page in Figure 9-9.

Many features of jTemplate are beyond the scope
of this book, but you can find more information
on them at the project’s home page at http://
jtemplates.tpython.com.

History and Templates Code Example
To demonstrate the data-binding capabilities with
jTemplate and the unique URL pattern, you will
build upon the solution you created in the previous
chapter: a product catalog browsing site. This site
will be written using the ASP.NET MVC framework
and will allow customers to refine their category
browsing by brand using an asynchronous callback
to the server.

Figure 9-9

Understanding AJAX Patterns  ❘  397

Create a new Visual Studio solution named ASPPatterns.Chap9.AjaxTemplates, and add the fol-
lowing class library projects to it:

ASPPatterns.Chap9.AjaxTemplates.Controllers➤➤

ASPPatterns.Chap9.AjaxTemplates.Model➤➤

ASPPatterns.Chap9.AjaxTemplates.StubRepository➤➤

Lastly, add a new ASP.NET MVC application to the solution named ASPPatterns.Chap9.Ajax​
Templates.UI.Web.

Now you’ll set the references between the projects. Right-click on the Controllers project and add
a reference to the Model and the StubRepository project; also add a reference to System.Web.Mvc.
Right-click on the StubRepository project and add a reference to the Model project. Finally, right-
click on the UI.Web project and add a reference to the Controllers and Model projects.

The model for the project is based on the same model that you used for the sample applications in
the previous chapter. Figure 9-10 shows the objects that form the domain model of the application.

Figure 9-10

From within the model project create a new class that represents product brands named Brand:

 public class Brand
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }

Add a class that represents product categories named Category:

 public class Category

398  ❘  Chapter 9   The User Experience Layer

 {
 public int Id { get; set; }
 public string Name { get; set; }
 }

Next, add the class that represents the product itself:

 public class Product
 {
 public Brand Brand { get; set; }
 public Category Category { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public int Id { get; set; }
 }

To retrieve products and categories, create the two repository contracts named
ICategoryRepository and IProductRepository:

 public interface ICategoryRepository
 {
 IEnumerable<Category> FindAll();
 Category FindBy(int Id);
 }

 public interface IProductRepository
 {
 IEnumerable<Product> FindAll();
 IEnumerable<Product> FindAllBy(int categoryId);
 }

To coordinate the retrieving of products and categories, create a ProductService class, as can be
seen here:

 public class ProductService
 {
 private ICategoryRepository _categoryRepository;
 private IProductRepository _productRepository;

 public ProductService(ICategoryRepository categoryRepository,
 IProductRepository productRepository)
 {
 _categoryRepository = categoryRepository;
 _productRepository = productRepository;
 }

 public IEnumerable<Product> GetAllProductsIn(int categoryId)
 {
 return _productRepository.FindAllBy(categoryId);
 }

 public IEnumerable<Product> GetAllProductsIn(int categoryId, int brandId)
 {
 return _productRepository.FindAllBy(categoryId)
 .Where(prod => prod.Brand.Id == brandId);

Understanding AJAX Patterns  ❘  399

 }

 public Category GetCategoryBy(int id)
 {
 return _categoryRepository.FindBy(id);
 }

 public IEnumerable<Category> GetAllCategories()
 {
 return _categoryRepository.FindAll();
 }

 public IEnumerable<Product> GetBestSellingProducts()
 {
 return _productRepository.FindAll().Take(4);
 }
 }

Your Model project is now complete.

Switch your attention to the StubRepository project, because you are now going to create the
repository implements as defined in the Model project by the interfaces ICategoryRepository and
IProductRepository. To keep the solution simple, you will use an in-memory collection of prod-
ucts that a data context will generate. Add a new class named DataContext to the StubRepository
project, and update it to match the code listing that follows:

using System.Collections.Generic;
using ASPPatterns.Chap9.AjaxTemplates.Model;

namespace ASPPatterns.Chap9.AjaxTemplates.StubRepository
{
 public class DataContext
 {
 private List<Product> _products;
 private List<Category> _categories;

 public DataContext()
 {
 Brand brandX = new Brand { Id = 1, Name = “Brand X” };
 Brand brandY = new Brand { Id = 2, Name = “Brand Y” };

 _categories = new List<Category>();

 Category hatCategory = new Category { Id = 1, Name = “Hats” };
 Category gloveCategory = new Category { Id = 2, Name = “Gloves” };
 Category scarfCategory = new Category { Id = 3, Name = “Scarfs” };

 _categories.Add(hatCategory);
 _categories.Add(gloveCategory);
 _categories.Add(scarfCategory);

 _products = new List<Product>();

 _products.Add(new Product { Id = 1, Name = “BaseBall Cap”,
 Price = 9.99m,

Available for
download on
Wrox.com

400  ❘  Chapter 9   The User Experience Layer

 Category = hatCategory, Brand = brandX });
 _products.Add(new Product { Id = 2, Name = “Flat Cap”, Price = 5.99m,
 Category = hatCategory, Brand = brandX });
 _products.Add(new Product { Id = 3, Name = “Top Hat”, Price = 6.99m,
 Category = hatCategory, Brand = brandY });

 _products.Add(new Product { Id = 4, Name = “Mitten”,
 Price = 10.99m,
 Category = gloveCategory,
 Brand = brandY });
 _products.Add(new Product { Id = 5, Name = “Fingerless Glove”,
 Price = 13.99m, Category = gloveCategory,
 Brand = brandY });
 _products.Add(new Product { Id = 6, Name = “Leather Glove”,
 Price = 7.99m,
 Category = gloveCategory,
 Brand = brandX });

 _products.Add(new Product { Id = 7, Name = “Silk Scarf”,
 Price = 23.99m,
 Category = scarfCategory,
 Brand = brandY });
 _products.Add(new Product { Id = 8, Name = “Woolen”,
 Price = 14.99m,
 Category = scarfCategory,
 Brand = brandX });
 }

 public List<Product> Products
 {
 get { return _products; }
 }

 public List<Category> Categories
 {
 get { return _categories; }
 }
 }
}

Code snippet DataContext.cs in project ASPPatterns.Chap9.AjaxTemplates.StubRepository

With the DataContext in place, you can now create the implementations of the ICategoryRepository
and IProductRepository contracts. Add two new classes to the StubRepository project named
CategoryRepository and ProductRepository, as shown here:

using System.Collections.Generic;
using System.Linq;
using ASPPatterns.Chap9.AjaxTemplates.Model;

namespace ASPPatterns.Chap9.AjaxTemplates.StubRepository
{
 public class CategoryRepository : ICategoryRepository
 {

Understanding AJAX Patterns  ❘  401

 public IEnumerable<Category> FindAll()
 {
 return new DataContext().Categories;
 }

 public Category FindBy(int Id)
 {
 return new DataContext().Categories
 .FirstOrDefault(cat => cat.Id == Id);
 }
 }
}

using System.Collections.Generic;
using ASPPatterns.Chap9.AjaxTemplates.Model;

namespace ASPPatterns.Chap9.AjaxTemplates.StubRepository
{
 public class ProductRepository : IProductRepository
 {
 public IEnumerable<Product> FindAll()
 {
 return new DataContext().Products;
 }

 public IEnumerable<Product> FindAllBy(int categoryId)
 {
 return new DataContext().Products
 .FindAll(prod => prod.Category.Id == categoryId);
 }
 }
}

With the data retrieval concerns covered, you can turn your attention to the Controllers project.
Add a new class to the Controllers project named CategoryBrandView, as defined here:

using System.Collections.Generic;
using ASPPatterns.Chap9.AjaxTemplates.Model;

namespace ASPPatterns.Chap9.AjaxTemplates.Controllers
{
 public class CategoryBrandView
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public IEnumerable<Brand> Brands { get; set; }
 }
}

The CategoryBrandView class provides a view of the domain model specifically for refining products
browsing by brand. To create a CategoryBrandView, you need to invent a mapping class that takes
real domain entities and converts them into the view model. Add a new class named CategoryBrand​
ViewMapper to the Controllers project, and update it to match the listing that follows:

using System.Collections.Generic;

402  ❘  Chapter 9   The User Experience Layer

using System.Linq;
using ASPPatterns.Chap9.AjaxTemplates.Model;

namespace ASPPatterns.Chap9.AjaxTemplates.Controllers
{
 public class CategoryBrandViewMapper
 {
 public static List<CategoryBrandView> GetCategoryBrandViews(
 IEnumerable<Category> categories)
 {
 return GetCategoryBrandViews(0, categories, null);
 }

 public static List<CategoryBrandView> GetCategoryBrandViews(
 int categoryId,
 IEnumerable<Category> categories,
 IEnumerable<Product> products)
 {
 List<CategoryBrandView> categoryBrandViews =
 new List<CategoryBrandView>();

 foreach (Category cat in categories)
 {
 CategoryBrandView categoryBrandView =
 new CategoryBrandView
 { Name = cat.Name, CategoryId = cat.Id,
 Brands = new List<Brand>() };

 if (cat.Id == categoryId)
 categoryBrandView.Brands = (from p in products
 group p by p.Brand into b
 select b.Key as Brand)
 .ToList<Brand>();

 categoryBrandViews.Add(categoryBrandView);
 }
 return categoryBrandViews;
 }
 }
}

The CategoryBrandViewMapper has an overloaded method named GetCategoryBrandViews that
converts a list of categories into CategoryBrandViews. The overloaded method takes a specific
category ID and a list of products within that category as optional parameters. When supplied with
these extra parameters, the method populates the category matching the categoryId with a collec-
tion of distinct brands that belong to products within that category. This displays the refine-by list-
ings that you will see later.

Next, create a new MVC controller named HomeController, and update it to match the code list-
ing that follows. To keep the solution simple, I used a form of poor man’s dependency injection (see
Chapter 5 for more information on dependency injection) by creating an overloaded constructor and
hard-coded a default set of dependencies:

Understanding AJAX Patterns  ❘  403

using System.Collections.Generic;
using System.Web.Mvc;
using ASPPatterns.Chap9.AjaxTemplates.Model;
using ASPPatterns.Chap9.AjaxTemplates.StubRepository;

namespace ASPPatterns.Chap9.AjaxTemplates.Controllers
{
 public class HomeController : Controller
 {
 private ProductService _productService;

 public HomeController()
 : this(new ProductService(new CategoryRepository(),
 new ProductRepository()))
 { }

 public HomeController(ProductService productService)
 {
 _productService = productService;
 }

 public ActionResult Index()
 {
 IEnumerable<Category> categories = _productService.GetAllCategories();
 IList<CategoryBrandView> categoryBrandViews =
 CategoryBrandViewMapper.GetCategoryBrandViews(categories);

 ViewData[“categories”] = categoryBrandViews;

 return View();
 }
 }
}

The HomeController has a single action, Index, that refers to the home page of the product cata-
log browsing site. This site simply lists the categories of products. You will create the view for this
action a little later.

The next class to create is the ProductController:

using System.Collections.Generic;
using System.Web.Mvc;
using ASPPatterns.Chap9.AjaxTemplates.Model;
using ASPPatterns.Chap9.AjaxTemplates.StubRepository;

namespace ASPPatterns.Chap9.AjaxTemplates.Controllers
{
 public class ProductController : Controller
 {
 private ProductService _productService;

 public ProductController()
 : this(new ProductService(new CategoryRepository(),
 new ProductRepository()))

404 ❘ chaPTer 9 The uSer exPerience layer

 { }

 public ProductController(ProductService productService)
 {
 _productService = productService;
 }

 public ActionResult CategoryProducts(int categoryId)
 {
 IEnumerable<Category> categories = _productService.GetAllCategories();
 IEnumerable<Product> products = _productService
 .GetAllProductsIn(categoryId);
 List<CategoryBrandView> categoryBrandViews =
 CategoryBrandViewMapper
 .GetCategoryBrandViews(categoryId,
 categories,
 products);

 ViewData[“categories”] = categoryBrandViews;

 return View(products);
 }

 public JsonResult GetProductsIn(string categoryId, string brandId)
 {
 IEnumerable<Product> products = _productService
 .GetAllProductsIn(int.Parse(categoryId), int.Parse(brandId));

 // To simulate a long-running task
 System.Threading.Thread.Sleep(1000);

 return Json(products);
 }
 }
}

If you are using MVC 2 you will need to update the GetProductsIn method to
allow the Json object to be returned as shown in bold in the following code:

public JsonResult GetProductsIn(string categoryId, string brandId)
 {
 IEnumerable<Product> products = _productService
 .GetAllProductsIn(int.Parse(categoryId),
 int.Parse(brandId));

 System.Threading.Thread.Sleep(1000);

 return Json(products, JsonRequestBehavior.AllowGet);
 }

Understanding AJAX Patterns  ❘  405

The ProductController has an action to display the products in a given category called Category​
Products, and it has a method that returns a JsonResult called GetProductsIn that returns a JSON
array of products that have a matching category and brand ID.

Now that the project is all set up, all that is left is to create the user experience. Switch your atten-
tion to the UI.Web ASP.NET MVC project, and delete the Controllers folder because you already
defined your controllers in a separate project. Next, delete the Views/Account folder and all files
under the Home and Shared folders.

Next, navigate to the Views/Shared folder and add a new partial view to the folder named
Categories.ascx with the following markup:

<%@ Control Language=”C#” Inherits=”System.Web.Mvc.ViewUserControl” %>
<%@ Import Namespace=”ASPPatterns.Chap9.AjaxTemplates.Model” %>
<%@ Import Namespace=”ASPPatterns.Chap9.AjaxTemplates.Controllers” %>

<% foreach (CategoryBrandView categoryBrandView in
 (IEnumerable<CategoryBrandView>)ViewData[“categories”])
 {%>
 <%= Html.ActionLink(categoryBrandView.Name,
 “CategoryProducts”,
 “Product”,
 new { CategoryId = categoryBrandView.CategoryId }, null)%>
 <% if (categoryBrandView.Brands.Count() > 0) {%>
 <p>
 refine by brand:

 <% foreach (Brand brand in categoryBrandView.Brands)
 { %>
 <a href=”JavaScript:filterProductsBy(<%=brand.Id %>,
 <%=categoryBrandView.CategoryId %>);”>
 <%=brand.Name%>

 <% } %>
 </p>
 <% } %>

<%} %>

The Categories.ascx partial view displays the list of CategoryBrandViews held within the view data.
If the CategoryBrandView has a list of brands, each brand is displayed below the category name; this
allows the user to refine the category search by brand.

To keep a consistent look and feel, create a master template again within the Shared folder named
Shop.Master. You can see the markup for the Shop.Master page here:

<%@ Master Language=”C#” Inherits=”System.Web.Mvc.ViewMasterPage” %>
<%@ Register src=”Categories.ascx” tagname=”Categories” tagprefix=”uc1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

406  ❘  Chapter 9   The User Experience Layer

<head runat=”server”>
 <script type=”text/javascript” src=”/Scripts/jquery-1.3.2.js”></script>
 <script type=”text/javascript” src=”/Scripts/jquery-jtemplates.js”></script>
 <link href=”/Content/Site.css” type=”text/css” rel=”stylesheet” />
</head>
<body>
 <form id=”form1” runat=”server”>
 <div id=”wrap”>
 <h1>The DataBinding and History Pattern</h1><hr />
 <div id=”main-content”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server” />
 </div>
 <div id=”sub-content”>
 <uc1:Categories ID=”Categories1” runat=”server” />
 </div>
 </div>
 </form>
</body>
</html>

Create a new view named Index.aspx, and select Shop.Master for its master template; then update
the file to match the markup that follows:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
 Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”MainContent” runat=”server”>
 Welcome to my shop. Please browse the product categories.
</asp:Content>

The last view to create is the category products view; this view displays all products within a specific
category and allows the user to refine the results by filtering by product brand.

Create a new view named CategoryProducts.aspx, and strongly type it to an IEnumerable<Model​
.Product> collection. Again, to keep the project simple, I have added the JavaScript in line with the
page. Look at the markup that follows, and then I will step through what is happening:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Shop.Master”
Inherits=”System.Web.Mvc.ViewPage<IEnumerable<Product>>” %>
<%@ Import Namespace=”ASPPatterns.Chap9.AjaxTemplates.Model” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”MainContent” runat=”server”>

<script type=”text/javascript”>

 $(document).ready(function() {
 initializeStateFromURL();
 });

 function initializeStateFromURL() {

 figuresRE = /#([0-9])/;
 figuresSpec = window.location.hash;
 if (!figuresRE.test(figuresSpec)) {
 return; // Ignore URL if invalid

Available for
download on
Wrox.com

Understanding AJAX Patterns  ❘  407

 }

 var brandId = figuresSpec.replace(figuresRE, “$1”);
 var categoryId = $(“#categoryId”).val();

 filterProductsBy(brandId, categoryId);

 }

 function filterProductsBy(brandId, categoryId) {

 showOverlay();

 window.location.hash = brandId;

 $.getJSON(‘/Product/GetProductsIn?brandId=’ + brandId +
 ‘&categoryId=’ + categoryId,
 function(data) {

 var mydata = {
 items: data
 };

 $(“#items”).setTemplate($(“#productItemTemplate”).html());
 $(“#items”).processTemplate(mydata);

 hideOverlay();
 }
);

 }

 function hideOverlay() {

 $(“#overlay”).animate({ opacity: “hide” }, “slow”);
 }

 function showOverlay() {

 //Get the position of the placeholder element
 var pos = $(“#products”).offset();
 var width = $(“#products”).width();
 var height = $(“#products”).height();
 //Show the waiting overlay directly over the products
 $(“#overlay”).css({ “width”: width + “px”,
 “left”: pos.left + “px”,
 “top”: pos.top + “px”,
 “height”: height + “px” });
 $(“#overlay”).show();

 $(“#overlay”).animate
 (
 { opacity: 0.7 },
 1,

408  ❘  Chapter 9   The User Experience Layer

 function() { }
);
 }

 </script>

 <script type=”text/html” id=”productItemTemplate”>
 {#foreach $T.items as record}
 {$T.record.Brand.Name} {$T.record.Name} only {$T.record.Price}

 more information<hr />
 {#/for}
 </script>

 <h2>Category Products</h2>

 <div id=”products”>
 <div id=”overlay” class=”overlay”></div>
 <div id=”items”>
 <% foreach (Product product in Model)
 {%>
 <%=product.Brand.Name %> <%=product.Name %> only <%=product.Price %>

 more information<hr />
 <%} %>
 </div>
 </div>

 <input type=”hidden” id=”categoryId” name=”categoryId”
 value=”<%=Request.QueryString[“categoryId”] %>” />

</asp:Content>

Code snippet CategoryProducts.aspx in project ASPPatterns.Chap9.AjaxTemplates.UI.Web

When a user clicks to refine by a brand, the filterProductsBy method is called. It displays the load-
ing overlay div by calling the showOverlay method. Then the current URL is set to include the brand
ID being refined; this enables the page to be bookmarked and linked to. Next, the JSON array is
retrieved via a call to the GetProductsIn action, and the jTemplate library processes the response
and updates the view. Finally, the loading div is hidden by calling the hideOverlay method:

function filterProductsBy(brandId, categoryId) {

 showOverlay();

 window.location.hash = brandId;

 $.getJSON(‘/Product/GetProductsIn?brandId=’ + brandId +
 ‘&categoryId=’ + categoryId,
 function(data) {

 var mydata = {
 items: data
 };

 $(“#items”).setTemplate($(“#productItemTemplate”).html());

Understanding AJAX Patterns  ❘  409

 $(“#items”).processTemplate(mydata);

 hideOverlay();
 }
);
 }

The jTemplate library picks up the template as defined in the script tags and replaces the placehold-
ers with a list of products:

 <script type=”text/html” id=”productItemTemplate”>
 {#foreach $T.items as record}
 {$T.record.Brand.Name} {$T.record.Name} only {$T.record.Price}

 more information<hr />
{#/for}
 </script>

If a user bookmarks the page or arrives at the page by following a link upon the page being fully
loaded, there is a check to see if the brand refinement ID has been set:

 $(document).ready(function() {
 initializeStateFromURL();
 });

 function initializeStateFromURL() {

 figuresRE = /#([0-9])/;
 figuresSpec = window.location.hash;
 if (!figuresRE.test(figuresSpec)) {
 return; // Ignore URL if invalid
 }

 var brandId = figuresSpec.replace(figuresRE, “$1”);
 var categoryId = $(“#categoryId”).val();

 filterProductsBy(brandId, categoryId);

 }

If the URL contains a brand ID, the call to filter the products is made automatically. To make it easier,
pick up the category ID from a hidden text box on the page, which is set server side.

Before running the project, you need to update the Content/Site.css file to match what follows:

#overlay{
 background: #ccc url(/content/ajax-loader.gif) no-repeat 50% 150px;
 display: none;
 position: absolute;
 text-align: center;
 z-index:1;
 border:1px dashed #CCC;
}

#products{

410  ❘  Chapter 9   The User Experience Layer

 border:1px dashed #CCC;
 height: 300px;
}

#wrap{
 width:770px;
 margin:0 auto;
 text-align:left;
}

#main-content{
 width:400px;
 float:left;
 margin-left:185px;
}

#sub-content{
 width:175px;
 float:left;
 margin-left:-585px;
}

Now you can run the solution, and you can see the brand filtering without a post back. Notice that
the URL changes to include the brand ID, as evident in Figures 9-11 and 9-12.

If you want to look at the JSON that the server is returning, switch to Firefox and open Firebug, as
you can see in Figure 9-13.

Figure 9-11

Understanding AJAX Patterns  ❘  411

Figure 9-12

Figure 9-13

412  ❘  Chapter 9   The User Experience Layer

In the next section you will examine the predictive fetch pattern, which anticipates a user’s action
and proactively retrieves data before it is needed, making for a faster user experience.

Predictive Fetch
The Predictive Fetch pattern does what it says by predicting the most likely information that the user
will require and fetching it asynchronously before he needs it. When the user does want that informa-
tion, it is available instantly.

For the pattern to work effectively, you must know the next likely action of your user. In some appli-
cations, this can be easy to determine, such as a user reading a long article that spans several pages.
If the user is on the page for more than 20 seconds, you can assume that he is reading the page and
is likely to want to read the next page, so it makes sense to download the data for the reader while he
is reading.

Incorrectly implemented, the Predictive Fetch pattern can be counterproductive in that you will spend
server time and resources downloading data that the user will never see. You must understand your
users to make optimal use of this pattern.

A progression of the predictive fetch pattern (also known as the on demand pattern) can be seen on
Amazon.com in the form of scrolling-based fetching. If you navigate to www.amazon.com/Beginning-​
ASP-NET-4-C-VB/dp/0470502215/ and scroll down, you briefly see a loader image, the customer
discussions section, a recommendations section, and so on. These sections are added to the DOM on
demand just before the user needs them.

You will now walk through a small exercise that demonstrates the Predictive Fetch pattern.

Predictive Fetch Code Example
To demonstrate the Predictive Fetch example, you will create a simple blog post page that contains
comments from previous readers. By default, the page will not display the comments. However, after
5 seconds, the page will asynchronously download the comments ready for the reader to view after
he has read the blog post.

Create a new Visual Studio solution named ASPPatterns.Chap9.PredictiveFetch. Add a new C#
class library project to the solution named ASPPatterns.Chap9.PredictiveFetch.Model. Next,
add a web application project named ASPPatterns.Chap9.PredictiveFetch.UI.Web. Right-click
on the UI.Web project and add a reference to the Model project.

The Model project contains one simple class named Comment to represent the comment from a reader.
Add the new Comment class to the Model project, and update it with a single Text property:

 public class Comment
 {
 public string Text { get; set; }
 }

Next, switch your attention to the UI.Web project. Add a new folder named Scripts, and add the
jquery-1.3.2.js JavaScript library to the folder. You can download jQuery from http://docs​
.jquery.com/Downloading_jQuery. The latest version at the time of writing is 1.4.2, which also

Understanding AJAX Patterns  ❘  413

works, but 1.3.2 was the version that shipped with the ASP.NET MVC Framework module. Also,
download the jTemplate script file from http://jtemplates.tpython.com/ that you used in the
previous exercise, and add it to the Scripts folder.

Add a second folder to the UI.Web project named Content. Then add a CSS file named Site.css to
the folder and update it to match the listing that follows:

#Loading
{
 text-align: center;
 display: none;
 font-family : verdana,helvetica,arial,sans-serif;
 font-size : 13px;
}

You also need to add a loading GIF to the Content folder. If you download the code, you will find a
file named ajax-loader.gif that you can use.

Right-click and select Add New Item. Then select AJAX-Enabled WCF Service, and name it
BlogService. This service enables the web page to obtain the comments for the blog post while
the user is reading the blog post:

using System.ServiceModel;
using System.ServiceModel.Activation;
using ASPPatterns.Chap9.PredictiveFetch.Model;
using System.Collections.Generic;

namespace ASPPatterns.Chap9.PredictiveFetch.UI.Web
{
 [ServiceContract(Namespace = “”)]
 [AspNetCompatibilityRequirements
 (RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
 public class BlogService
 {
 // Add [WebGet] attribute to use HTTP GET
 [OperationContract]
 public List<Comment> GetCommentsFor(long postId)
 {
 // Simulates a long-running task
 System.Threading.Thread.Sleep(3000);

 List<Comment> posts = new List<Comment>();

 posts.Add(new Comment { Text = “Lorem ipsum ...” });
 posts.Add(new Comment { Text = “Suspendisse ut faucibus mi...”});
 posts.Add(new Comment { Text = “Lorem ipsum dolor sit amet, ... “ });
 posts.Add(new Comment { Text = “Lorem ipsum dolor sit amet...” });

 return posts;
 }
 }
}

414  ❘  Chapter 9   The User Experience Layer

To simulate the long-running task of obtaining comments, there is a call for the current thread to sleep
for 3 seconds before returning the collection of comments. Other than that, the class is straightforward.

The final step for the solution is to add the script that predictively fetches the comments for the blog
post. Open the Default.aspx file that Visual Studio created for you, and update the markup to match
the following code. Then I’ll walk you through what is going on.

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
 Inherits=”ASPPatterns.Chap9.PredictiveFetch.UI.Web._Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
 <script type=”text/javascript” src=”/Scripts/jquery-1.3.2.js”></script>
 <script type=”text/javascript” src=”/Scripts/jquery-jtemplates.js”></script>
 <link href=”/Content/Site.css” type=”text/css” rel=”stylesheet” />
 <script type=”text/javascript”>

 var showCommentsAfterLoad = false;
 var timerToShowComments;
 var blogComments;

 $.ajaxSetup({
 type: “post”,
 contentType: “application/json; charset=utf-8”,
 dataType: “json”
 })

 $(document).ready(function() {

 timerToShowComments = setTimeout(function() {
 getComments()
 }, 5000);
 });

 function storeComments(comments)
 {
 blogComments = comments;
 if (showCommentsAfterLoad == true)
 showComments(blogComments);
 }

 function showComments(comments) {
 $(“#comments”).setTemplate($(“#productItemTemplate”).html());
 $(“#comments”).processTemplate(comments);
 $(“#Loading”).hide();
 }

 function getComments()
 {
 // The post ID parameter is for illustration only

Available for
download on
Wrox.com

Understanding AJAX Patterns  ❘  415

 var dto = { postId: 100 };
 $.ajax(
 {
 url: “/BlogService.svc/GetCommentsFor”,
 data: JSON.stringify(dto),
 success: storeComments
 });
 }

 function displayComments() {

 if (blogComments != null)
 {
 showComments(blogComments);
 }
 else
 {
 showCommentsAfterLoad = true;
 clearTimeout(timerToShowComments);
 getComments();
 $(“#Loading”).show();
 }
 }

 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <script type=”text/html” id=”productItemTemplate”>
 {#foreach $T.d as record}
 {$T.record.Text}
<hr />
 {#/for}
 </script>
 <div>
 <h1>
 Post Title
 </h1>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Donec justo nisl,
 ...
 </p>
 <p>
 <i>Posted by Scott Millett on 17 March 2010.</i></p>
 <p>
 Read comments on this post.
 </p>
 <div id=”comments”></div>
 <div id=”Loading”>Updating... </div>
 </div>
 </form>
</body>
</html>

Code snippet Default.aspx in project ASPPatterns.Chap9.PredictiveFetch.UI.Web

416  ❘  Chapter 9   The User Experience Layer

When the document is fully loaded, a timer is set for 5 seconds to call a getComments function that
fetches the collection of comments:

 $(document).ready(function() {

 timerToShowComments = setTimeout(function() {
 getComments()
 }, 5000);
 });

The getComments method calls the web service. On success, it calls into the storeComments method:

 function getComments()
 {
 // The post ID parameter is for illustration only
 var dto = { postId: 100 };
 $.ajax(
 {
 url: “/BlogService.svc/GetCommentsFor”,
 data: JSON.stringify(dto),
 success: storeComments
 });
 }

The storeComments method saves the comments to a variable named blogComments; then a check
is made to ascertain if the user had requested to see the comments. If so, the comments are displayed
using the showComments method:

 function storeComments(comments)
 {
 blogComments = comments;
 if (showCommentsAfterLoad == true)
 showComments(blogComments);
 }

The showComments method uses the jTemplate script library to display the collection of comments:

 function showComments(comments) {
 $(“#comments”).setTemplate($(“#productItemTemplate”).html());
 $(“#comments”).processTemplate(comments);
 $(“#Loading”).hide();
 }

The link that the users can click when they want to view comments calls into the displayComments
method. This method checks whether the comments have already been downloaded as part of the pre-
dictive fetch; if not, the timer to automatically retrieve the comments is cleared, and the comments are
pulled down immediately. The loading div is shown to the user; the call to retrieve the comments will
take 3 seconds:

 function displayComments() {

 if (blogComments != null)
 {
 showComments(blogComments);
 }

Summary  ❘  417

 else
 {
 showCommentsAfterLoad = true;
 clearTimeout(timerToShowComments);
 getComments();
 $(“#Loading”).show();
 }
 }

Build the solution and then right-click on the Default.aspx file. Select Browse With, and select the
Firefox web browser. You will be able to see the AJAX call using Firebug, as shown in Figure 9-14.

Figure 9-14

Summary

This chapter introduced you to AJAX and how it fits in with the user experience layer. You read about
the two technologies that enable AJAX to happen: the XMLHttpRequest object and the Document
Object Model. You then looked at a popular JavaScript library named jQuery that can help you deal
with the complexities of JavaScript and cross-browser interpretation.

With an understanding of AJAX and JavaScript libraries, you looked a number of AJAX patterns:

Periodic Refresh and Timeout: ➤➤ The Periodic Refresh pattern concerns the updating of a page
at given intervals, typically used for chat programs, web-based e‑mail, and sporting events

418  ❘  Chapter 9   The User Experience Layer

commentary. The Timeout pattern ensures that the periodic refresh occurs only while the user
is still active and times out the user by setting a timer that fires after a period of inactivity.

Client-side data binding with ➤➤ jTemplate: Templates like jTemplate make it easy to bind JSON
data arrays to a client-side template without having to write masses of JavaScript code.

Unique URL: ➤➤ The Unique URL pattern enables you to bookmark AJAX applications and
restore them to a given application state by using the URL bookmark hash.

Predictive Fetch: ➤➤ The Predictive Fetch pattern guesses at what the most likely action of the
user will be and then asynchronously downloads the data related to the action to offer a
better user experience.

The final part of this book focuses on a case study pulling in the knowledge gained from the previous
chapters to form a working online e-commerce store.

PART III
case study: The online
e-commerce store

chaPTer ⊲ 10: Requirements and Infrastructure

chaPTer ⊲ 11: Creating the Product Catalog

chaPTer ⊲ 12: Implementing the Shopping Basket

chaPTer ⊲ 13: Customer Membership

chaPTer ⊲ 14: Ordering and Payment

requirements and infrastructure

whaT’s in This chaPTer?

Introduction to Agatha’s e-commerce store, which will form the case ➤➤

study putting into practice all the patterns and principles you have
learned up to this point

Building the ➤➤ Infrastructure project to support the application

Using the design patterns and principles that you have learned to ➤➤

keep the code base loosely coupled and easy to maintain

The fi nal fi ve chapters in this book form a case study that puts into practice all the design pat-
terns and principles you have learned throughout the previous nine chapters. The case study is
based on an e-commerce site built for a fi ctional clothes retailer named Agatha’s. In this chap-
ter, you are given a set of requirements for the e-commerce site so you can build the infrastruc-
ture to support the site’s construction in the next four chapters.

agaTha’s cloThing sTore requiremenTs

Figure 10-1 shows the layout of the website you will build. It has three main sections:

Product Catalog: ➤➤ Customers will be able to view a selection of “top” products from the
home page of the site. A full list of product categories will be displayed on all Product
Catalog pages, enabling customers to view all products within a given category. A page
to display the full details of a product will also be included in the product catalog brows-
ing functionality. Finally, the Product Catalog will include the ability to add products to
a basket ready for checkout.

10

422  ❘  Chapter 10   Requirements and Infrastructure

Customer Account: ➤➤ This is where customers can check on the status of orders and view a com-
plete order history. Customers can also update their details and manage a delivery address book.
Customers need to register and log in prior to being able to access this area.

Checkout and Payment: ➤➤ The checkout area enables customers to create orders and pay
for them using a third-party pay merchant. Customers need to register and log in prior to
accessing this area.

Product Category Product Detail

Home

Product Catalog

Basket

Login/Register

Address Book Order History

Customer Details

Customer Account

Address Detail Order Detail

Confirm Order

Order Placed

Checkout and Payment

Payment
Merchant

Figure 10-1

You will now examine each of the three sections in more detail with screen shots so you can see the
look and feel of each page and information on the requirements of each of the sections.

Product Catalog and Basket Screens
Figure 10-2 shows the layout for the home page to the site.

The home page contains a list of product categories in the top-left corner, a list of top products in
the main content area of the page, and a summary of items in the basket along with options to log in
or register in the top right. The basket summary and account options are featured on all the Product
Catalog pages. One of the requirements of the site is that all pages are fast to load and don’t make
unnecessary calls to the database. With this in mind, you will store the basket summary information
in a cookie and update the cookie every time the basket contents change.

Figure 10-3 shows the Product Category page. This page displays all products within a given category
and allows customers to refine their search by selecting only products in a combination of brands,
colors, and sizes.

Agatha’s Clothing Store Requirements  ❘  423

Figure 10-2

Figure 10-3

424  ❘  Chapter 10   Requirements and Infrastructure

Another requirement of the site is to give the customers a rich experience so the feature that allows
the user to refine the list of displayed products in a given category will be achieved using Ajax calls.

Figure 10-4 shows the Product Detail page. From here, customers can select the size of a product
and add it to their basket.

Figure 10-4

As with the requirement for product category refinements, you can add an item to a basket via an
Ajax call. The summary refreshes to indicate to the user that his selection is now in the basket.

Figure 10-5 shows the Basket Detail page. From here, customers can remove products, adjust the quan-
tity of the product required, and select the delivery option. Again, all this functionality is achieved via
Ajax calls without needing the entire page to post back to the server.

Figure 10-5

The look, feel, and layout of the product catalog pages is replicated throughout the site with different
options for the left-side navigation being displayed at the various sections.

You will now look at the screens and the requirements for the Customer Account section.

Agatha’s Clothing Store Requirements  ❘  425

Customer Account Screens
Figure 10-6 shows the Login page. Notice that this page gives customers two options to log in. The first
is authentication using the site’s own customer membership functionality, and the second authenticates
by using a third-party Internet account such as Google, Twitter, or OpenID. A third-party tool that you
will set up in Chapter 13 supplies the functionality of authentication through Internet sites.

Figure 10-6

Figure 10-7 shows the User Details Management page. From here, a user can update her name and
address details. Notice how the top-right navigation option changes from Create Account / Log On
to View Your Account / Log Off. Also, notice that the left-hand navigation is in context with the
customer account section and shows the options available in this section.

Figure 10-7

426  ❘  Chapter 10   Requirements and Infrastructure

Figure 10-8 shows the Delivery Address Management page. From here, a user can add new delivery
addresses and update existing ones. Figure 10-9 shows the Add New / Edit Existing Delivery Address
Details page.

Figure 10-8

Figure 10-9

Figure 10-10 displays all the orders that the user has placed. If a user cannot complete the payment
for an order, she can navigate to this page and pay later. The next section covers creating orders and
taking payments.

Figure 10-11 shows the Order Detail page, which displays all the details pertaining to a given order.
Similar to the All Orders page, this page displays the Pay link if the user has not completed the pay-
ment for the order.

You will now look at the screens and the requirements that will allow orders to be created and pay-
ments taken.

Agatha’s Clothing Store Requirements  ❘  427

Figure 10-10

Figure 10-11

Checkout Screens
Figure 10-12 shows the Order Confirmation page, which allows the user to select an address or cre-
ate a new one before placing the order.

After the order is created, the user is be redirected via an HTTP Post call to a third-party payment
merchant that you will look at in more detail in Chapter 14. A requirement of taking payments is
being be able to handle any payment merchants that use HTTP Post to check out.

428 ❘ chaPTer 10 requiremenTS anD infraSTrucTure

figure 10-12

caching and logging
The site needs to be fast and responsive, so you should use the caching of product data. The caching
mechanism should be easy to change to support any type of storage (that is, distrusted or in mem-
ory). As with the caching, the logging functionality needs to be able to support any type of logging
framework.

With the requirements gathered, it’s time to look at the architecture you will be using and then fi re
up Visual Studio and start to create the solution.

archiTecTure

Figure 10-13 shows the architecture that the site will be using. The front end of the site will utilize
the ASP.NET MVC framework, with the controllers in a separate project class library. The views
within the ASP.NET MVC site are strongly typed to view models that the service layer supplies.
When called from the controllers, the service layer retrieves business entities from the repository
layer and converts them into custom view models for use with the views. The implementation of the
repository layer utilizes NHibernate as the object relational wrapper (ORM). For product catalog
views, the controller talks to the cached service layer, which returns cached results if they exist. If
cached results do not exist, the cached service layer speaks to the real service layer and updates its
cache before returning to the controller.

Now that you understand the requirements and the architecture of the site, you can begin working
on the solution. In the remainder of this section, you will build the solution structure and parts of
the supporting infrastructure projects.

You can use either ASP.NET MVC 1 in Visual Studio 2005 or ASP.NET MVC 2
in Visual Studio 2010 to create this solution; any breaking changes between the
two are highlighted in the text.

Architecture  ❘  429

Domain Model
Agathas.Storefront.Model

(Product, Consumer,
Category, etc.)

Presentation / UX
Agathas.Storefront.UI.Web.MVC

Database

View

ViewModel

Controllers (MVC)
Agathas.Storefront.Controllers

Application Service
Agathas.Storefront.Services

Infrastructure
Agathas.Storefront.Infrastructure

(Payment Services, Logging, Email, etc.)

Repository
Agathas.Storefront.Repository.NHibernate

(NHibernate Repositories)

Cashed Service
Agathas.Storefront.Service.Cache

Figure 10-13

Create a new solution named Agathas.Storefront and add the following class library projects to it:

Agathas.Storefront.Controllers➤➤

Agathas.Storefront.Infrastructure➤➤

Agathas.Storefront.Model➤➤

Agathas.Storefront.Repository.NHibernate➤➤

Agathas.Storefront.Services➤➤

Agathas.Storefront.Services.Cache➤➤

You can delete the Class1.cs class that Visual Studio helpfully creates for you in all of the projects.
Next add an MVC application project to the solution named Agathas.Storefront.UI.Web.MVC.

With the solution skeleton in place, you can set up all the dependencies between the projects and
.NET assemblies.

To the Agathas.Storefront.Controllers project, add the following references:

(Project) ➤➤ Agathas.Storefront.Infrastructure

(Project) ➤➤ Agathas.Storefront.Model

(Project) ➤➤ Agathas.Storefront.Services

(.NET) ➤➤ System.Web.Mvc

(.NET) ➤➤ System.ServiceModel.Web

430  ❘  Chapter 10   Requirements and Infrastructure

(.NET) ➤➤ System.Web.Abstractions

(.NET) System.Runtime.Serialization➤➤

To the Agathas.Storefront.Infrastructure project, add the following references:

(.NET) ➤➤ System.Configuration

(.NET) ➤➤ System.Web

(.NET) ➤➤ System.Web.Mvc

To the Agathas.Storefront.Model project, add the following references:

(Project) ➤➤ Agathas.Storefront.Infrastructure

To the Agathas.Storefront.Repository.NHibernate project, add the following references

(Project) ➤➤ Agathas.Storefront.Infrastructure

(Project) ➤➤ Agathas.Storefront.Model

(.NET) ➤➤ System.Web

To the Agathas.Storefront.Services project, add the following references:

(Project) ➤➤ Agathas.Storefront.Infrastructure

(Project) ➤➤ Agathas.Storefront.Model

To the Agathas.Storefront.Services.Cache project, add the following references:

(Project) ➤➤ Agathas.Storefront.Infrastructure

(Project) ➤➤ Agathas.Storefront.Services

(Project) ➤➤ Agathas.Storefront.Model

(.NET) ➤➤ System.Web

Finally to the Agathas.Storefront.UI.Web.MVC project, add the following references:

(Project) ➤➤ Agathas.Storefront.Infrastructure

(Project) ➤➤ Agathas.Storefront.Services

(Project) ➤➤ Agathas.Storefront.Services.Cache

(Project) ➤➤ Agathas.Storefront.Model

(Project) ➤➤ Agathas.Storefront.Controllers

(Project) Agathas➤➤ .Storefront.Repository.NHibernate

Architecture  ❘  431

You have now set up the foundations for your solution. Before you start to work on the product
catalog feature, however, you must add the supporting infrastructure code.

Setting Up the Supporting Infrastructure
Before you begin working on the solution for Agatha’s store, it makes sense to set up your supporting
infrastructure so that you can then fully concentrate on meeting each of the business requirements.

You will be using StructureMap as your Inversion of Control (IoC) container. Chapter 8 covered
StructureMap and Inversion Control in detail. To get a copy of StructureMap, navigate to http://
sourceforge.net/projects/structuremap and download the latest version. Extract all files into
a new folder named Lib that you can create at the root of your solution via Windows Explorer.
After you have downloaded StructureMap, switch back to the Visual Studio solution and add a
StructureMap.dll reference to the Controllers, Infrastructure, and Web.MVC projects.

As mentioned before, you will be using the NHibernate ORM framework for your data persis-
tence and retrieval requirements. NHibernate and patterns for the data access layer were covered
in detail in Chapter 7. To work with NHibernate, you first need the framework, so navigate to www​
.nhibernate.org and click on the latest release; at the time of writing, this was version 2.0.1.GA.
You will be redirected to SourceForge. Once there, click Download to display all the downloads for
this release. Select the project named; at the time of this writing, it was NHibernate-2.1.0.Beta2​
-bin.zip. When the download has completed, extract all the containing folders and files into the
folder named Lib that you created earlier within the root of the solution folder. When all files
have been extracted, switch back to Visual Studio and from the NHibernate project add a refer-
ence to the following files from the Lib folder:

Iesi.Collections➤➤

LinFu.DynamicProxy➤➤

log4net➤➤

NHibernate➤➤

NHibernate.ByteCode.LinFu➤➤

log4net is an open source logging framework that ships with NHibernate, so it makes sense to use
it for your logging requirements. Add a log4net.dll reference to the Infrastructure project.

The last open source framework you will use is AutoMapper. AutoMapper is a domain model to
view the model mapping framework that removes the need to write repetitive left-to-right code
when you are converting your domain objects into view model objects. For a more detailed discus-
sion on AutoMapper, refer to Chapter 8. To get the framework, navigate to the project’s home page
at http://automapper.codeplex.com/ and click the Download link. AutoMapper is just a single
dll. Save it to the Lib folder at the root of your solution, and then add a reference to it from the
Services and the Controller projects.

With the third-party assemblies in place, you now need to set up your Infrastructure project. Create
a series of new folders within the Infrastructure project that match the folders in Figure 10-14.

432 ❘ chaPTer 10 requiremenTS anD infraSTrucTure

All of the code that you will create within the Infrastructure project is not
specifi c to the Agatha’s store application. This means that the Infrastructure
project is reusable for any other solution you may have. Outside of the scope of
this case study it makes sense to rename the project to something like Agathas
.Core and have it as a separate dependency that you import to all new solutions.

You will now add the functionality for the following:

Domain Layer supertype➤➤

Unit of Work pattern➤➤

Query Object pattern➤➤

Application confi guration settings➤➤

Logging➤➤

E-mail service➤➤

Helper classes➤➤

Domain layer supertype
To the Domain folder, add an interface named IAggregateRoot
that will identify domain entities that will act as an aggregate root:

namespace Agathas.Storefront.Infrastructure.Domain
{
 public interface IAggregateRoot
 {
 }
}

The aggregate root is a term used in domain-driven design (DDD) to defi ne the entry point into a
logical aggregation of related domain entities. The job of the aggregate root is to ensure that the
aggregation remains in a consistent and valid state. The entity acting as the aggregate root will also
have a corresponding repository to enable data persistence and retrieval. Aggregate roots and DDD
are covered in more detail in Chapter 4.

To check the validity of a domain entity prior to persistence, you will create a simple business rule
class to store a rule and related entity property. The class will populate a collection of broken rules
before saving an entity. Name the new class BusinessRule and update it so that it matches the fol-
lowing code listing:

namespace Agathas.Storefront.Infrastructure.Domain
{
 public class BusinessRule
 {
 private string _property;

figure 10-14

Architecture  ❘  433

 private string _rule;

 public BusinessRule(string property, string rule)
 {
 this._property = property;
 this._rule = rule;
 }

 public string Property
 {
 get { return _property; }
 set { _property = value; }
 }

 public string Rule
 {
 get { return _rule; }
 set { _rule = value; }
 }
 }
}

Because all entities will share the same validation mechanism, you will create a Layer Supertype
(as discussed in Chapter 5) that all your domain entities will inherit from and that will provide the
infrastructure for checking domain validity. You can see the code for the EntityBase class that will
contain the logic for validating an entity in the following listing:

namespace Agathas.Storefront.Infrastructure.Domain
{
 public abstract class EntityBase<TId>
 {
 private List<BusinessRule> _brokenRules = new List<BusinessRule>();

 public TId Id { get; set; }

 protected abstract void Validate();

 public IEnumerable<BusinessRule> GetBrokenRules()
 {
 _brokenRules.Clear();
 Validate();
 return _brokenRules;
 }

 protected void AddBrokenRule(BusinessRule businessRule)
 {
 _brokenRules.Add(businessRule);
 }

 public override bool Equals(object entity)
 {
 return entity != null
 && entity is EntityBase<TId>
 && this == (EntityBase<TId>)entity;

434  ❘  Chapter 10   Requirements and Infrastructure

 }

 public override int GetHashCode()
 {
 return this.Id.GetHashCode();
 }

 public static bool operator ==(EntityBase<TId> entity1,
 EntityBase<TId> entity2)
 {
 if ((object)entity1 == null && (object)entity2 == null)
 {
 return true;
 }

 if ((object)entity1 == null || (object)entity2 == null)
 {
 return false;
 }

 if (entity1.Id.ToString() == entity2.Id.ToString())
 {
 return true;
 }

 return false;
 }

 public static bool operator !=(EntityBase<TId> entity1,
 EntityBase<TId> entity2)
 {
 return (!(entity1 == entity2));
 }
 }
}

Before persisting an entity, you will call its GetBrokenRules method and check for a count of 0. The
GetBrokenRules method clears the last collection of BusinessRules before calling the Validate
method, which the business entity will implement. The Validate method adds BusinessRules to
the inner collection using the AddBrokenRule helper method.

Not all objects in the domain model will be modeled as entities. As discussed in Chapter 4, value
objects are objects that do not have an identity and should be immutable. Value objects will
inherit from a separate base type named ValueObjectBase. Because value objects are immutable
and cannot be changed, they will need to be created in a valid state. If a value object is not cre-
ated in a valid state, an exception will be thrown. Add a new class to the Domain folder named
ValueObjectIsInvalidException with the following code listing:

using System;

namespace Agathas.Storefront.Infrastructure.Domain
{

Architecture  ❘  435

 public class ValueObjectIsInvalidException : Exception
 {
 public ValueObjectIsInvalidException(string message)
 : base(message)
 {

 }
 }
}

The ValueObjectBase class, as shown in the following listing, is very similar to the EntityBase
class; expect that an exception will be thrown if it is invalid. The ThrowExceptionIfInvalid will
be called from the subclasses constructor.

using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Agathas.Storefront.Infrastructure.Domain
{
 public abstract class ValueObjectBase
 {
 private List<BusinessRule> _brokenRules = new List<BusinessRule>();

 public ValueObjectBase()
 {
 }

 protected abstract void Validate();

 public void ThrowExceptionIfInvalid()
 {
 _brokenRules.Clear();
 Validate();
 if (_brokenRules.Count() > 0)
 {
 StringBuilder issues = new StringBuilder();
 foreach (BusinessRule businessRule in _brokenRules)
 issues.AppendLine(businessRule.Rule);

 throw new ValueObjectIsInvalidException(issues.ToString());
 }
 }

 protected void AddBrokenRule(BusinessRule businessRule)
 {
 _brokenRules.Add(businessRule);
 }
 }
}

There will be two sets of aggregations in Agatha’s store: namely, groups of entities that can be retrieved
and persisted and groups of entities that can be retrieved only. To support this behavior, you will create

436  ❘  Chapter 10   Requirements and Infrastructure

two base interfaces that will define the interface for the repositories. Refer back to Chapter 7 for a more
in depth look at the repository pattern.

Create two new interfaces in the Domain folder named IReadOnlyRepository and IRepository,
with the following contracts:

using System.Collections.Generic;
using Agathas.Storefront.Infrastructure.Querying;

namespace Agathas.Storefront.Infrastructure.Domain
{
 public interface IReadOnlyRepository<T, TId> where T : IAggregateRoot
 {
 T FindBy(TId id);
 IEnumerable<T> FindAll();
 IEnumerable<T> FindBy(Query query);
 IEnumerable<T> FindBy(Query query, int index, int count);
 }
}

namespace Agathas.Storefront.Infrastructure.Domain
{
 public interface IRepository<T, TId> : IReadOnlyRepository<T, TId>
 where T : IAggregateRoot
 {
 void Save(T entity);
 void Add(T entity);
 void Remove(T entity);
 }
}

All the repository implementations in the domain model will use these two repository contracts. Notice
that there is a clause for the repository stating that a repository can be defined only for an aggregate
root, reinforcing the concepts of DDD that you looked at in Chapter 4. Note that the IRepository
interface inherits from the IReadOnlyRepository, giving it a contract that supports both read and
write methods.

The next infrastructure section you will work on is the code to provide a contract for the unit of work
pattern.

Unit of Work Pattern
The Unit of Work pattern (covered in Chapter 7) enables the change tracking of multiple aggre-
gations of domain entities and the persistence of them in one atomic operation, ensuring a valid
business domain. Each repository within the solution is required to implement the IUnitOfWork​
Repository, as shown in the listing that follows:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Infrastructure.UnitOfWork
{
 public interface IUnitOfWorkRepository

Architecture  ❘  437

 {
 void PersistCreationOf(IAggregateRoot entity);
 void PersistUpdateOf(IAggregateRoot entity);
 void PersistDeletionOf(IAggregateRoot entity);
 }
}

The Unit of Work contract is kept outside the repository project because the concrete implementa-
tion is of no concern to the domain services that will use it. It will be trivial to change data layer
implementations at a later date; stub implementations of the Unit of Work pattern can be created for
your unit tests. The contract for the Unit of Work pattern is shown in the following code listing:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Infrastructure.UnitOfWork
{
 public interface IUnitOfWork
 {
 void RegisterAmended(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository);
 void RegisterNew(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository);
 void RegisterRemoved(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository);
 void Commit();
 }
}

The next piece of infrastructure code supports the querying of the repository from the server layer.

Query Object Pattern
Chapter 7 introduced the query object pattern. A query object represents a query written in the lan-
guage of the domain. The query can be constructed within the domain service layer and then passed
to the repository to be satisfied, with some kind of query translator to convert the object query into
a query that the underlying database persistence framework understands. The query object you will
create for this project needs to deal with subqueries, so it will build upon your knowledge gained
from Chapter 7. Figure 10-15 shows the class diagram for the Query Object pattern you will create.

Add a new enumeration named CriteriaOperator to the Querying folder. The enumeration class
is shown here:

namespace Agathas.Storefront.Infrastructure.Querying
{
 public enum CriteriaOperator
 {
 Equal,
 LesserThanOrEqual,
 NotApplicable
 }
}

438  ❘  Chapter 10   Requirements and Infrastructure

Figure 10-15

In this case study, you require only the three criteria operations shown in the preceding listing. As
the solution grows, you would add the other operators as necessary, or better still, you would create
a separate project with a full query object pattern solution and simply include it whenever you start
a new project.

Next, add a class to represent the criterion named Criterion. The Criterion represents part of
the filter that forms the query, specifying an entity’s property value to compare it to and the way it
should be compared. The code for the Criterion class is displayed here:

namespace Agathas.Storefront.Infrastructure.Querying
{
 public class Criterion
 {
 private string _propertyName;
 private object _value;
 private CriteriaOperator _criteriaOperator;

 public Criterion(string propertyName, object value,
 CriteriaOperator criteriaOperator)
 {
 _propertyName = propertyName;
 _value = value;
 _criteriaOperator = criteriaOperator;
 }

 public string PropertyName
 {
 get { return _propertyName; }
 }

 public object Value
 {
 get { return _value; }

Architecture  ❘  439

 }

 public CriteriaOperator criteriaOperator
 {
 get { return _criteriaOperator; }
 }
 }
}

The next class to create represents the ordering property to be used on the query. Create a new class
named OrderByClause with the following code listing:

namespace Agathas.Storefront.Infrastructure.Querying
{
 public class OrderByClause
 {
 public string PropertyName { get; set; }
 public bool Desc { get; set; }
 }
}

A second enumeration determines how the Criterion objects will be evaluated together. Add a new
enumeration named QueryOperator with the following syntax:

namespace Agathas.Storefront.Infrastructure.Querying
{
 public enum QueryOperator
 {
 And,
 Or
 }
}

The class that brings the Query Object pattern together is Query. Add a new class to the project
named Query, and update it with the following code definition:

using System.Collections.Generic;

namespace Agathas.Storefront.Infrastructure.Querying
{
 public class Query
 {
 private IList<Query> _subQueries = new List<Query>();
 private IList<Criterion> _criteria = new List<Criterion>();

 public IEnumerable<Criterion> Criteria
 {
 get {return _criteria ;}
 }

 public IEnumerable<Query> SubQueries
 {
 get { return _subQueries;}

440  ❘  Chapter 10   Requirements and Infrastructure

 }

 public void AddSubQuery(Query subQuery)
 {
 _subQueries.Add(subQuery);
 }

 public void Add(Criterion criterion)
 {
 _criteria.Add(criterion);
 }

 public QueryOperator QueryOperator { get; set; }

 public OrderByClause OrderByProperty { get; set; }
 }
}

The class contains a collection of Criterion objects, an OrderByClause, a QueryOperator value,
and a collection of sub queries. Later, you will create an NHibernate query translator to convert the
Query object into a language it can understand.

To avoid the dreaded magic strings when building queries, you will create a helper method that
allows you to use an expression parameter. This means your properties will be type safe and can be
renamed via a refactoring tool:

using System;
using System.Linq.Expressions;

namespace Agathas.Storefront.Infrastructure.Querying
{
 public static class PropertyNameHelper
 {
 public static string ResolvePropertyName<T>(
 Expression<Func<T, object>> expression)
 {
 var expr = expression.Body as MemberExpression;
 if (expr == null)
 {
 var u = expression.Body as UnaryExpression;
 expr = u.Operand as MemberExpression;
 }
 return expr.ToString().Substring(expr.ToString().IndexOf(“.”) + 1);
 }
 }
}

This allows you to add a new criterion to a query, like so

aQuery.Add(new Criterion(PropertyNameHelper
 .ResolvePropertyName<Product>(p => p.Colour.Id), id, CriteriaOperator.Equal));

instead of using magic strings, as shown in the code snippet that follows:

aQuery.Add(new Criterion(“Colour.Id”, id, CriteriaOperator.Equal));

Architecture  ❘  441

However, that’s still a bit of a mouthful, so to make it even easier to create Criterion objects,
update the Criterion class to include a helper method as shown in bold in the following listing:

using System;
using System.Linq.Expressions;

namespace Agathas.Storefront.Infrastructure.Querying
{
 public class Criterion
 {
 private string _propertyName;
 private object _value;
 private CriteriaOperator _criteriaOperator;

 public Criterion(string propertyName, object value,
 CriteriaOperator criteriaOperator)
 {
 _propertyName = propertyName;
 _value = value;
 _criteriaOperator = criteriaOperator;
 }

 public string PropertyName
 {
 get { return _propertyName; }
 }

 public object Value
 {
 get { return _value; }
 }

 public CriteriaOperator criteriaOperator
 {
 get { return _criteriaOperator; }
 }

 public static Criterion Create<T>(Expression<Func<T, object>> expression,
 object value,
 CriteriaOperator criteriaOperator)
 {
 string propertyName = PropertyNameHelper
 .ResolvePropertyName<T>(expression);
 Criterion myCriterion = new Criterion(propertyName, value,
 criteriaOperator);
 return myCriterion;
 }
 }
}

This helper method will allow users to create Criterion objects like so:

aQuery.Add(Criterion.Create<Product>(p => p.Colour.Id, id,
 CriteriaOperator.Equal));

442  ❘  Chapter 10   Requirements and Infrastructure

The next piece of functionality that you will add to the Infrastructure project is the ability to
obtain configuration settings, such as the number of products to appear on a page or the details
used for a payment merchant.

Application Configuration Settings
The store that you will be building will use various configuration settings. These will initially be
stored in the Web.config of the Web.MVC project but could change, so create a component that
abstracts away from the actual implementation of where configuration settings are placed.

Add a new interface to the Configuration folder named IApplicationSettings:

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public interface IApplicationSettings
 {
 string LoggerName { get; }
 }
}

The interface contains a single property getter named LoggerName that will be used for the logging
mechanism you will create next. As you progress through this chapter and the next, you will add
more settings to the interface.

Create a factory class that will be used to obtain a logger named ApplicationSettingsFactory:

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public class ApplicationSettingsFactory
 {
 private static IApplicationSettings _applicationSettings;

 public static void InitializeApplicationSettingsFactory(
 IApplicationSettings applicationSettings)
 {
 _applicationSettings = applicationSettings;
 }

 public static IApplicationSettings GetApplicationSettings()
 {
 return _applicationSettings;
 }
 }
}

This class uses method injection to inject a valid IApplicationSettings instance and has a single
static GetApplicationSettings. The reason for the static method and the method injection over
constructor injection is to allow your services and other classes to use the ApplicationSettings​
Factory without having to add it to the class’s constructor. This keeps the infrastructure concerns
out of your service layer.

Architecture  ❘  443

The implementation of the IApplicationSettings will be a class that uses the Web.config to store
application settings. Add a new class to the Configuration folder named WebConfigApplication​
Settings, with the following code listing:

using System.Configuration;

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public class WebConfigApplicationSettings : IApplicationSettings
 {
 public string LoggerName
 {
 get { return ConfigurationManager.AppSettings[“LoggerName”]; }
 }

 }
}

Switch to the Web.config within the Web.MVC project, and add the AppSetting key as shown here:

 <appSettings>
 <add key=”LoggerName” value=”AgathaLogger”/>
 </appSettings >

You will now add logging concerns to the Infrastructure project.

Logging
The logging mechanism works in the exact same way as the application setting functionality. Start
by adding an interface named ILogger to the Logging folder:

namespace Agathas.Storefront.Infrastructure.Logging
{
 public interface ILogger
 {
 void Log(string message);
 }
}

Then, as with the application settings code, add a LoggingFactory class, as shown in the following
code definition:

namespace Agathas.Storefront.Infrastructure.Logging
{
 public class LoggingFactory
 {
 private static ILogger _logger;

 public static void InitializeLogFactory(ILogger logger)
 {
 _logger = logger;
 }

 public static ILogger GetLogger()

444  ❘  Chapter 10   Requirements and Infrastructure

 {
 return _logger;
 }
 }
}

Next, add an implementation of the ILogger named Log4NetAdapter that will use log4net to log
events:

using Agathas.Storefront.Infrastructure.Configuration;
using log4net;
using log4net.Config;

namespace Agathas.Storefront.Infrastructure.Logging
{
 public class Log4NetAdapter : ILogger
 {
 private readonly log4net.ILog _log;

 public Log4NetAdapter()
 {
 XmlConfigurator.Configure();
 _log = LogManager
 .GetLogger(ApplicationSettingsFactory.GetApplicationSettings()
 .LoggerName);
 }

 public void Log(string message)
 {
 _log.Info(message);
 }
 }
}

The Log4NetAdapter is an implementation of the Adapter pattern. Refer Chapter 2 for a full expla-
nation of the Adapter pattern.

As you can see, the Log4NetAdapter class uses the ApplicationSettingsFactory to obtain the
logger name, which determines the logging strategy that log4net will use.

The logging strategy itself is configured in the Web.config of the Web.MVC project, as can be seen in
the following code snippet:

<configuration>
 <configSections>
 <section name=”log4net”
 type=”log4net.Config.Log4NetConfigurationSectionHandler,log4net”/>
 …

 </configSections>

 <log4net>
 <logger name=”AgathaLogger”>
 <level value=”INFO”/>

Architecture  ❘  445

 <appender-ref ref=”RollingLogFileAppender” />
 </logger>

 <appender name=”RollingLogFileAppender”
 type=”log4net.Appender.RollingFileAppender”>
 <file value=”C:/logs.txt” />
 <appendToFile value=”true” />
 <rollingStyle value=”Size” />
 <maxSizeRollBackups value=”10” />
 <maximumFileSize value=”10MB” />
 <staticLogFileName value=”true” />
 <layout type=”log4net.Layout.PatternLayout”>
 <conversionPattern value=”%-5p %d %5rms %-22.22c{1} %-18.18M - %m%n” />
 </layout>
 </appender>
 </log4net>

 …

</configuration>

The configuration is set to log files into a text file named Logs.txt, located at the root of the C drive.
For more information on configuring log4net, check out its project home page at http://logging​
.apache.org/log4net/.

The next infrastructure concern you will deal with will be the e‑mail service.

E-Mail Service
The e‑mail service functionality will be delivered in the same manner as the logging and application
settings implementations. Add a new interface named IEmailService to the Email folder:

namespace Agathas.Storefront.Infrastructure.Email
{
 public interface IEmailService
 {
 void SendMail(string from, string to, string subject, string body);
 }
}

Create a factory class named EmailServiceFactory with a static method to retrieve an implemen-
tation of the IEmailService:

namespace Agathas.Storefront.Infrastructure.Email
{
 public class EmailServiceFactory
 {
 private static IEmailService _emailService;

 public static void InitializeEmailServiceFactory(
 IEmailService emailService)
 {
 _emailService = emailService;

446  ❘  Chapter 10   Requirements and Infrastructure

 }

 public static IEmailService GetEmailService()
 {
 return _emailService;
 }
 }
}

The .NET framework has a built-in e‑mail support within the System.Net.Mail code namespace.
Create a new class named SMTPService that utilizes this to send e‑mails:

using System.Net.Mail;

namespace Agathas.Storefront.Infrastructure.Email
{
 public class SMTPService : IEmailService
 {
 public void SendMail(string from, string to, string subject, string body)
 {
 MailMessage message = new MailMessage();

 message.Subject = subject;
 message.Body = body;

 SmtpClient smtp = new SmtpClient();

 smtp.Send(message);
 }
 }
}

A corresponding Web.config application setting is needed to give details of your SMTP server:

 <system.net>
 <mailSettings>
 <smtp>
 <network host=”yoursmtpserver” port=”25”
 userName=”username” password=”password”
 defaultCredentials=”true” />
 </smtp>
 </mailSettings>
 </system.net>

If you don’t have an SMTP server and you don’t like a local one in IIS, you can always create an
implementation of the IEmailService to save the contents of the e‑mail to send it to a text file. To
accomplish this, create a new class named TextLoggingEmailService with the following code:

using System;
using System.Text;
using Agathas.Storefront.Infrastructure.Logging;

namespace Agathas.Storefront.Infrastructure.Email
{

Architecture  ❘  447

 public class TextLoggingEmailService : IEmailService
 {
 public void SendMail(string from, string to, string subject, string body)
 {
 StringBuilder email = new StringBuilder();

 email.AppendLine(String.Format(“To: {0}”, to));
 email.AppendLine(String.Format(“From: {0}”, from));
 email.AppendLine(String.Format(“Subject: {0}”, subject));
 email.AppendLine(String.Format(“Body: {0}”, body));

 LoggingFactory.GetLogger().Log(email.ToString());
 }
 }
}

Better yet, you can configure system.net to drop the complete e‑mails as text messages on disk, as
shown in the following snippet from the web.config:

 <system.net>
 <mailSettings>
 <smtp deliveryMethod=”SpecifiedPickupDirectory” >
 <network host=”yoursmtpserver” port=”25”
 userName=”username” password=”password”
 defaultCredentials=”true” />
 <specifiedPickupDirectory pickupDirectoryLocation=”C:\MyEmails”/>
 </smtp>
 </mailSettings>
 </system.net>

Next, you will create helper classes that will be used to format money variables and resolve URLs.

Helper Classes
All product, order, and basket prices will be displayed in U.S. dollars and will be formatted in the
same manner. To accomplish this, add a new class named PriceHelper to the Helpers folder with
the following code definition:

namespace Agathas.Storefront.Infrastructure.Helpers
{
 public static class PriceHelper
 {
 public static string FormatMoney(this decimal price)
 {
 return String.Format(“${0}”, price);
 }
 }
}

The FormatMoney method is an extension method to a decimal variable, meaning that any variable
of type decimal will have access to this method and will be able to generate a string with the U.S.
dollar currency symbol.

448  ❘  Chapter 10   Requirements and Infrastructure

The second helper class you will create is named UrlHelper, and its role is to produce a fully resolved
URL for a resource. You can see the code for this class in the following listing:

using System.Web;

namespace Agathas.Storefront.Infrastructure.Helpers
{
 public static class UrlHelper
 {
 public static string Resolve(string resource)
 {
 return string.Format(“{0}://{1}{2}{3}”,
 HttpContext.Current.Request.Url.Scheme,
 HttpContext.Current.Request.ServerVariables[“HTTP_HOST”],
 (HttpContext.Current.Request.ApplicationPath.Equals(“/”)) ?
 string.Empty : HttpContext.Current.Request.ApplicationPath,
 resource);
 }
 }
}

This completes the initial requirements for the Infrastructure project, but as you work through
the features of the case study, you will return to this project and add supporting frameworks for
payment services, authentication, and cookie storage.

Summary

In the first of five chapters in which you will create an e-commerce store, you looked at the requirements
for Agatha’s store and were taken through each of the sections you will create. You then created a solu-
tion for and built the infrastructure to support the site in a loosely coupled fashion, allowing any module
to be updated without affecting the site. This included an e‑mail service, logging mechanism, application
setting functionality, and a querying engine.

In the next chapter, you tackle the requirement of displaying the store’s product catalog, and allowing
customers to filter categories of products.

Creating The Product Catalog

whaT’s in This chaPTer?

Requirements for the product catalog browsing experience➤➤

Creating the product domain model➤➤

Building the repository infrastructure with NHibernate➤➤

Using AutoMapper to provide object-to-object mapping in the service ➤➤

layer to create view models

Utilizing JavaScript Object Notation (JSON) to communicate between ➤➤

the controllers and the ASPX views to provide Asynchronous
JavaScript and XML (AJAX) functionality

In the previous chapter, you were introduced to the requirements for Agatha’s store, and you
built the project structure for the solution. You also began to lay the foundations of the infra-
structure that will support the site’s development. In this chapter, you will build the product
catalog browsing functionality that will enable customers to browse for products while utiliz-
ing AJAX and adopting a web 2.0 feel throughout.

creaTing The ProDucT caTalog

Figure 11-1 shows the pages involved in displaying the product catalog for customers to browse.
In this section, you will build all the code to enable customers to browse for products, and in
the next section, you will build the basket functionality.

11

450  ❘  Chapter 11   Creating The Product Catalog

Product Category Product Detail

Home

Product Catalog

Basket

Figure 11 -1

Product Catalog Model
Figure 11-2 shows the classes that form the product catalog model. The product catalog part of the domain
model is fairly anemic, with little business logic. A ProductTitle represents the name of a product, and a
product has a number of attributes, such as a Brand, ProductColor, and Category. A Product represents
the physical Product a user can add to her basket and includes a ProductSize as well as a reference to its
ProductTitle and some helper methods to quickly obtain access to the other attributes.

Figure 11 -2

You will start to create the product catalog model by adding the following folders to the Model project
to help organize the aggregates:

Categories➤➤

Products➤➤

Creating The Product Catalog  ❘  451

Because the user will be able to refine a list of categories by attributes, you will create an
IProductAttribute interface for all product attributes to implement:

namespace Agathas.Storefront.Model.Products
{
 public interface IProductAttribute
 {
 int Id { get; set; }
 string Name { get; set; }
 }
}

The first attribute of a product is a brand. Add a new class named Brand to the Products folder
within the Model project:

namespace Agathas.Storefront.Model.Products
{
 public class Brand : EntityBase<int>, IProductAttribute
 {
 public string Name { get; set; }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }
 }
}

In the context of this application, you will not be including an administration section to edit, add,
and remove products, brands, and categories, so you will not implement the Validate method.

The second attribute is a products category. Add a new class named Category to the Categories
folder with the following code definition:

using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Model.Categories
{
 public class Category : EntityBase<int>, IAggregateRoot, IProductAttribute
 {
 public string Name { get; set; }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }
 }
}

Because Category is an aggregate root and you need to obtain a list of all categories for navigation
outside the Product aggregate, you will create an ICategoryRepository interface:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Categories

452  ❘  Chapter 11   Creating The Product Catalog

{
 public interface ICategoryRepository : IReadOnlyRepository<Category,int>
 {
 }
}

You didn’t create a repository interface for the Brand entity simply because there is no requirement
to obtain a Brand entity outside of a Product, unlike the Category entity. If you were looking at a
Brand entity from a different context, such as a product merchandiser whose job it was to add prod-
uct brands to the site, then the Brand would become an aggregate root, but in this context, you have
no need to obtain Brands independently of Products.

The next attribute is size; create a new class within the Products folder named ProductSize. As
with the Brand, this entity has not been marked as its own aggregate root because product sizes in
this context cannot be obtained outside the product aggregation.

using Agathas.Storefront.Infrastructure.Domain;
using System;
namespace Agathas.Storefront.Model.Products
{
 public class ProductSize : EntityBase<int>, IProductAttribute
 {
 public string Name { get; set; }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }
 }
}

The last attribute is the product’s color. Create a new class named ProductColor within the Products
folder, with the following code definition. Again, regarding the aggregate root, the same reasons apply
as with the ProductColor class:

using System;
using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Products
{
 public class ProductColor : EntityBase<int>, IProductAttribute
 {
 public string Name { get; set; }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }
 }
}

Creating The Product Catalog  ❘  453

The next class to create is the Product entity. Add a new class to the Products folder named Product,
with the following listing:

using System;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Model.Brands;
using Agathas.Storefront.Model.Categories;

namespace Agathas.Storefront.Model.Products
{
 public class Product : EntityBase<int>, IAggregateRoot
 {
 public ProductSize Size { get; set; }

 public ProductTitle Title { get; set; }

 public string Name
 {
 get { return Title.Name; }
 }

 public Decimal Price
 {
 get { return Title.Price; }
 }

 public Brand Brand
 {
 get { return Title.Brand; }
 }

 public ProductColor Color
 {
 get { return Title.Color; }
 }

 public Category Category
 {
 get { return Title.Category; }
 }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }
 }
}

The last class to create is the ProductTitle entity, shown next. This class again resides within the
Products folder:

using System;
using Agathas.Storefront.Infrastructure.Domain;

454  ❘  Chapter 11   Creating The Product Catalog

using Agathas.Storefront.Model.Brands;
using Agathas.Storefront.Model.Categories;

namespace Agathas.Storefront.Model.Products
{
 public class ProductTitle : EntityBase<int>, IAggregateRoot
 {
 public string Name { get; set; }
 public decimal Price { get; set; }
 public Brand Brand { get; set; }
 public Category Category { get; set; }
 public ProductColor Color { get; set; }
 public IEnumerable<Product> Products { get; set; }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }

 }
}

Both the Product and ProductTitle classes require a read-only repository, so create a repository
interface for each entity named IProductTitleRepository and IProductRepository respectively
in the Products folder with the following code definition:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Products
{
 public interface IProductTitleRepository :
 IReadOnlyRepository<ProductTitle, int>
 {
 }
}

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Products
{
 public interface IProductRepository : IReadOnlyRepository<Product, int>
 {
 }
}

This completes the simple product catalog model. You will now create the database tables to store
instances of products and their attributes.

Product Catalog Data Tables
Within the Web.MVC project, create a new database within the App_Data folder named Shop.mdf.
Once you’ve done that, add the tables shown in Figure 11-3. Ensure that you set all the primary key
fields as identity fields; this will mean that the database is in charge of creating the entity’s identity.

Creating The Product Catalog ❘ 455

figure 11 -3

After the data model is created, you need to set up the mapping fi les so NHibernate can retrieve the
products.

Product catalog repositories
With the data model and the business model built, you can build the repositories that enable you
to retrieve products to display to the customers. You will be using NHibernate, an object relational
mapper (ORM) that has many enterprise patterns built in. The fi rst task to set up the repositories is
to create fi les that map the database tables and columns to your domain entities and properties, as
defi ned in the Model project.

Refer to Chapter 7 for more detail data access the patterns and the NHibernate
framework.

Add a new folder named Mapping to the NHibernate project, and to it add a new XML fi le named
Brand.hbm.xml. The XML fi le is metadata that enables the NHibernate framework to know how
your business entity within the domain model and the data table within the data model relate to
each other.

The listing that follows shows the metadata for the Brand.hbm.xml fi le:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Products”
 assembly=”Agathas.Storefront.Model”>

 <class name=”Brand” table=”Brands” lazy=”false” >

 <id name=”Id” column=”BrandId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property name=”Name”>

456  ❘  Chapter 11   Creating The Product Catalog

 <column name=”Name” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 </class>

</hibernate-mapping>

After you have updated the Brand.hbm.xml file to match the preceding listing, you need to change
the build action for the file. Right-click on the XML file and bring up its properties from the con-
text-sensitive menu. Once the properties dialog is displayed, change the build action to Embedded
Resource. This ensures that the XML data is embedded when the assembly is built. All the mapping
files need to have their build actions changed to Embedded Resource.

The next mapping file is for the Category entity. Add a new XML file to the Mapping folder named
Category.hbm.xml, and update it with the following markup. Again, change the build action prop-
erty of the XML file to Embedded Resource.

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Categories”
 assembly=”Agathas.Storefront.Model”>

 <class name=”Category” table=”Categories” lazy=”false” >

 <id name=”Id” column=”CategoryId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property name=”Name”>
 <column name=”Name” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 </class>

</hibernate-mapping>

Add a third XML file for the Product entity named Product.hbm.xml, with the markup displayed here:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Products”
 assembly=”Agathas.Storefront.Model”>

 <class name=”Product” table=”Products” lazy=”false” >

 <id name=”Id” column=”ProductId” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <many-to-one name=”Size”
 class=”ProductSize”
 column=”SizeId”

Creating The Product Catalog  ❘  457

 not-null=”true”/>

 <many-to-one name=”Title”
 class=”ProductTitle”
 column=”ProductTitleId”
 not-null=”true”
 lazy=”false”/>
 </class>

</hibernate-mapping>

Add the mapping files in the same manner for the ProductColor, ProductSize, and ProductTitle
entities.

The following listing is the mapping file for the ProductColor named ProductColor.hbm.xml.

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Products”
 assembly=”Agathas.Storefront.Model”>

 <class name=”ProductColor” table=”Colors” lazy=”false” >

 <id name=”Id” column=”ColorId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property name=”Name”>
 <column name=”Name” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 </class>

</hibernate-mapping>

The following listing is the mapping file for the ProductSize class named ProductSize.hbm.xml.

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Products”
 assembly=”Agathas.Storefront.Model”>

 <class name=”ProductSize” table=”Sizes” lazy=”false” >

 <id name=”Id” column=”SizeId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property name=”Name”>
 <column name=”Name” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 </class>

</hibernate-mapping>

458  ❘  Chapter 11   Creating The Product Catalog

The following listing is for the ProductTitle class named ProductTitle.hbm.xml.

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Products”
 assembly=”Agathas.Storefront.Model”>

 <class name=”ProductTitle” table=”ProductTitles” lazy=”false” >

 <id name=”Id” column=”ProductTitleId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property name=”Price”>
 <column name=”Price” sql-type=”decimal(18, 2)” not-null=”true” />
 </property>

 <property name=”Name”>
 <column name=”ProductName” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <many-to-one name=”Color”
 class=”ProductColor”
 column=”ColorId”
 not-null=”true”/>

 <many-to-one name=”Brand”
 class=”Brand”
 column=”BrandId”
 not-null=”true”/>

 <many-to-one name=”Category”
 class=”Agathas.Storefront.Model.Categories.Category”
 column=”CategoryId”
 not-null=”true”
 lazy=”false”/>

 <bag name=”Products” inverse=”true” cascade=”all” lazy=”false” fetch=”join” >
 <key column=”ProductTitleId”/>
 <one-to-many class=”Product”></one-to-many>
 </bag>

 </class>

</hibernate-mapping>

Again, ensure that you have changed each of the file’s build actions to Embedded Resource so that
the NHibernate framework can find the mapping metadata.

Now that you have configured how your business entities map to your data tables, you can begin
programming the NHibernate Repository. Create a folder within the root of the NHibernate proj-
ect named SessionStorage. This will contain all the code necessary to store a unit of work, also
known as a session in NHibernate. You will typically store instances of a session differently depending

Creating The Product Catalog  ❘  459

on whether you are working within a web application or a Windows smart client. For this reason,
you will create an interface to communicate with a session container. Create a new interface named
ISession​StorageContainer with the following contract:

using NHibernate;

namespace Agathas.Storefront.Repository.NHibernate.SessionStorage
{
 public interface ISessionStorageContainer
 {
 ISession GetCurrentSession();
 void Store(ISession session);
 }
}

Because you will be working within a web environment that has an HTTP context, you need a ses-
sion container that utilizes the HTTP items collection to store sessions. Add a new class that imple-
ments the ISessionStorageContainer interface named HttpSessionContainer with the following
code listing. Note that you have to make a reference to the System.Web assembly in the NHibernate
project:

using NHibernate;
using System.Web;

namespace Agathas.Storefront.Repository.NHibernate.SessionStorage
{
 public class HttpSessionContainer : ISessionStorageContainer
 {
 private string _sessionKey = “NHSession”;

 public ISession GetCurrentSession()
 {
 ISession nhSession = null;

 if (HttpContext.Current.Items.Contains(_sessionKey))
 nhSession = (ISession)HttpContext.Current.Items[_sessionKey];

 return nhSession;
 }

 public void Store(ISession session)
 {
 if (HttpContext.Current.Items.Contains(_sessionKey))
 HttpContext.Current.Items[_sessionKey] = session;
 else
 HttpContext.Current.Items.Add(_sessionKey, session);
 }
 }
}

This class simply stores and retrieves NHibernate sessions from the HTTP items collection. For
completeness, you can create a smart client version for use in nonweb scenarios. Add a new class

460  ❘  Chapter 11   Creating The Product Catalog

to the SessionStorage folder named ThreadSessionStorageContainer that also implements the
ISessionStorageContainer. The code for this class is shown here:

using global::NHibernate;
using System.Collections;
using System.Threading;

namespace Agathas.Storefront.Repository.NHibernate.SessionStorage
{
 public class ThreadSessionStorageContainer : ISessionStorageContainer
 {
 private static readonly Hashtable _nhSessions = new Hashtable();

 public ISession GetCurrentSession()
 {
 ISession nhSession = null;

 if (_nhSessions.Contains(GetThreadName()))
 nhSession = (ISession)_nhSessions[GetThreadName()];

 return nhSession;
 }

 public void Store(ISession session)
 {
 if (_nhSessions.Contains(GetThreadName()))
 _nhSessions[GetThreadName()] = session;
 else
 _nhSessions.Add(GetThreadName(), session);
 }

 private static string GetThreadName()
 {
 return Thread.CurrentThread.Name;
 }
 }
}

This class simply retains sessions within a hash table using the current thread name as a key.

To obtain the best session container for your application, add a factory class that will be responsible
for creating and supplying a valid session container. Add a new class to the SessionStorage folder
named SessionStorageFactory with the following listing:

using System.Web;

namespace Agathas.Storefront.Repository.NHibernate.SessionStorage
{
 public static class SessionStorageFactory
 {
 private static ISessionStorageContainer _nhSessionStorageContainer;

 public static ISessionStorageContainer GetStorageContainer()
 {
 if (_nhSessionStorageContainer == null)

Creating The Product Catalog  ❘  461

 {
 if (HttpContext.Current == null)
 _nhSessionStorageContainer =
 new ThreadSessionStorageContainer();
 else
 _nhSessionStorageContainer = new HttpSessionContainer();
 }

 return _nhSessionStorageContainer;
 }
 }
}

This SessionStorageFactory determines whether an HTTP context exists. If it does, an HttpSession​
Container is created; otherwise, a ThreadSessionStorageContainer is used. Once the concrete imple-
mentation of the ISessionStorageContainer interface is created, it is stored in a static variable.

With the ability to store sessions taken care of, you need a way to create them so that you can use
NHibernate to persist and retrieve your business entities. Add a new class to the root of the NHibernate
project, and name it SessionFactory. The code for this class follows:

using NHibernate;
using NHibernate.Cfg;
using System.Web;
using Agathas.Storefront.Repository.NHibernate.SessionStorage;

namespace Agathas.Storefront.Repository.NHibernate
{
 public class SessionFactory
 {
 private static ISessionFactory _sessionFactory;

 private static void Init()
 {
 Configuration config = new Configuration();
 config.AddAssembly(“Agathas.Storefront.Repository.NHibernate”);

 log4net.Config.XmlConfigurator.Configure();

 config.Configure();

 _sessionFactory = config.BuildSessionFactory();
 }

 private static ISessionFactory GetSessionFactory()
 {
 if (_sessionFactory == null)
 Init();

 return _sessionFactory;
 }

 private static ISession GetNewSession()
 {

462 ❘ chaPTer 11 creaTing The ProDucT caTalog

 return GetSessionFactory().OpenSession();
 }

 public static ISession GetCurrentSession()
 {
 ISessionStorageContainer sessionStorageContainer =
 SessionStorageFactory.GetStorageContainer();

 ISession currentSession = sessionStorageContainer.GetCurrentSession();

 if (currentSession == null)
 {
 currentSession = GetNewSession();
 sessionStorageContainer.Store(currentSession);
 }

 return currentSession;
 }
 }
}

Please refer to Chapter 7 for a detailed discussion on the SessionFactory class.

Now that you have confi gured NHibernate, you can start to use it. Add a new class to the root of
the NHibernate project named NHUnitOfWork. This will be NHibernate’s implementation of the
Unit of Work pattern that you defi ned in the infrastructure project. The code for this class follows:

using System;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Repository.NHibernate.SessionStorage;
using NHibernate;

namespace Agathas.Storefront.Repository.NHibernate
{
 public class NHUnitOfWork : IUnitOfWork
 {
 public void RegisterAmended(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 SessionFactory.GetCurrentSession().SaveOrUpdate(entity);
 }

 public void RegisterNew(IAggregateRoot entity,
 IUnitOfWorkRepository unitofWorkRepository)
 {
 SessionFactory.GetCurrentSession().Save(entity);
 }

 public void RegisterRemoved(IAggregateRoot entity,

Creating The Product Catalog  ❘  463

 IUnitOfWorkRepository unitofWorkRepository)
 {
 SessionFactory.GetCurrentSession().Delete(entity);
 }

 public void Commit()
 {
 using (ITransaction transaction =
 SessionFactory.GetCurrentSession().BeginTransaction())
 {
 try
 { transaction.Commit(); }
 catch (Exception ex)
 {
 transaction.Rollback();
 throw;
 }
 }
 }
 }
}

Because the ISession interface implements the Unit of Work pattern discussed earlier in this chap-
ter, no changes will occur until a transaction is committed. Another pattern built into NHibernate
is Identity Map (see Chapter 7), which maintains a single instance of a business entity in the
ISession no matter how many times you retrieve it.

The repository implementations are easy to create thanks to generics. You can create a base repository
class using generics to provide all the functionality for all the repositories. Create a new folder named
Repositories, and add a new class to it named Repository, with the code listing shown here:

using System.Collections.Generic;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Infrastructure.Querying;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Repository.NHibernate.SessionStorage;
using NHibernate;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public abstract class Repository<T, TEntityKey> where T : IAggregateRoot
 {
 private IUnitOfWork _uow;

 public Repository(IUnitOfWork uow)
 {
 _uow = uow;
 }

 public void Add(T entity)
 {
 SessionFactory.GetCurrentSession().Save(entity);
 }

464  ❘  Chapter 11   Creating The Product Catalog

 public void Remove(T entity)
 {
 SessionFactory.GetCurrentSession().Delete(entity);
 }

 public void Save(T entity)
 {
 SessionFactory.GetCurrentSession().SaveOrUpdate(entity);
 }

 public T FindBy(TEntityKey id)
 {
 return SessionFactory.GetCurrentSession().Get<T>(id);
 }

 public IEnumerable<T> FindAll()
 {
 ICriteria criteriaQuery =
 SessionFactory.GetCurrentSession().CreateCriteria(typeof(T));

 return (List<T>)criteriaQuery.List<T>();
 }

 public IEnumerable<T> FindAll(int index, int count)
 {
 ICriteria criteriaQuery =
 SessionFactory.GetCurrentSession().CreateCriteria(typeof(T));

 return (List<T>)criteriaQuery.SetFetchSize(count)
 .SetFirstResult(index).List<T>();
 }

 public IEnumerable<T> FindBy(Query query)
 {
 ICriteria criteriaQuery =
 SessionFactory.GetCurrentSession().CreateCriteria(typeof(T));

 AppendCriteria(criteriaQuery);

 query.TranslateIntoNHQuery<T>(criteriaQuery);

 return criteriaQuery.List<T>();
 }

 public IEnumerable<T> FindBy(Query query, int index, int count)
 {
 ICriteria criteriaQuery =
 SessionFactory.GetCurrentSession().CreateCriteria(typeof(T));

 AppendCriteria(criteriaQuery);

 query.TranslateIntoNHQuery<T>(criteriaQuery);

 return criteriaQuery.SetFetchSize(count)

Creating The Product Catalog  ❘  465

 .SetFirstResult(index).List<T>();
 }

 public virtual void AppendCriteria(ICriteria criteria)
 {

 }
 }
}

Code snippet Repository.cs in project Agathas.Storefront.Repository.NHibernate

After you have created the Repository class, you will get a compile time error due to the nonexis-
tent TranslateIntoNHQuery extension method. However, you can fix this by creating the class now.
Add a new class named QueryTranslator to the Repositories folder with the following code list-
ing. This class simply converts the data access technology agnostic query object that you created in
the Infrastructure project into a query that NHibernate understands:

using System;
using System.Collections.Generic;
using Agathas.Storefront.Infrastructure.Querying;
using NHibernate;
using NHibernate.Criterion;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public static class QueryTranslator
 {
 public static ICriteria TranslateIntoNHQuery<T>(this Query query,
 ICriteria criteria)
 {
 BuildQueryFrom(query, criteria);

 if(query.OrderByProperty != null)
 criteria.AddOrder(new Order(query.OrderByProperty.PropertyName,
 !query.OrderByProperty.Desc));

 return criteria;
 }

 private static void BuildQueryFrom(Query query, ICriteria criteria)
 {
 IList<ICriterion> criterions = new List<ICriterion>();

 if (query.Criteria != null)
 {
 foreach (Criterion c in query.Criteria)
 {
 ICriterion criterion;

 switch (c.criteriaOperator)
 {
 case CriteriaOperator.Equal:
 criterion = Expression.Eq(c.PropertyName, c.Value);

466  ❘  Chapter 11   Creating The Product Catalog

 break;
 case CriteriaOperator.LesserThanOrEqual:
 criterion = Expression.Le(c.PropertyName, c.Value);
 break;
 default:
 throw new ApplicationException(“No operator defined”);
 }

 criterions.Add(criterion);
 }

 if (query.QueryOperator == QueryOperator.And)
 {
 Conjunction andSubQuery = Expression.Conjunction();
 foreach (ICriterion criterion in criterions)
 {
 andSubQuery.Add(criterion);
 }

 criteria.Add(andSubQuery);
 }
 else
 {
 Disjunction orSubQuery = Expression.Disjunction();
 foreach (ICriterion criterion in criterions)
 {
 orSubQuery.Add(criterion);
 }
 criteria.Add(orSubQuery);
 }

 foreach (Query sub in query.SubQueries)
 {
 BuildQueryFrom(sub, criteria);
 }
 }

 }
 }
}

Code snippet QueryTranslator.cs in project Agathas.Storefront.Repository.NHibernate

All the repository implementations for the product catalog are similar, so create three repository
implements named CategoryRepository, ProductTitleRepository, and ProductRepository
with the following code definition:

using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Categories;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public class CategoryRepository : Repository<Category, int>,
 ICategoryRepository
 {

Creating The Product Catalog  ❘  467

 public CategoryRepository(IUnitOfWork uow) : base(uow)
 {
 }
 }
}

using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public class ProductTitleRepository : Repository<ProductTitle, int>,
 IProductTitleRepository
 {
 public ProductTitleRepository(IUnitOfWork uow) : base(uow)
 {
 }
 }
}

using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Products;
using NHibernate;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public class ProductRepository : Repository<Product, int>, IProductRepository
 {
 public ProductRepository(IUnitOfWork uow)
 : base(uow)
 {
 }

 public override void AppendCriteria(ICriteria criteria)
 {
 criteria.CreateAlias(“Title”, “ProductTitle”);
 criteria.CreateAlias(“ProductTitle.Category”, “Category”);
 criteria.CreateAlias(“ProductTitle.Brand”, “Brand”);
 criteria.CreateAlias(“ProductTitle.Color”, “Color”);
 }
 }
}

Notice that the ProductRepository implementation is slightly different because there is a need to
create some aliases. An alias helps NHibernate resolve relationships. Without an alias, NHibernate
wouldn’t be able to resolve “Category.Id” or “Brand.Id” as a query from the Product entity
because NHibernate would assume that you’re referring to an explicit property name and would be
unclear about how the object model should be traversed. Using CreateAlias lets NHibernate know
how to resolve the relationship; this way when you are building a query in the service, you can hap-
pily refer to the Product properties.

468 ❘ chaPTer 11 creaTing The ProDucT caTalog

The last task to complete the repository implementation is to add the following code to the Web.
config in the Web.MVC fi le, which confi gures NHibernate:

<configuration>

 <configSections>
 <section name=”hibernate-configuration”
 type=”NHibernate.Cfg.ConfigurationSectionHandler, NHibernate”/>
 …
 </configSections>

 …

 <hibernate-configuration xmlns=”urn:nhibernate-configuration-2.2”>
 <session-factory name=”NHibernate.Test”>
 <property name=”connection.driver_class”>
 NHibernate.Driver.SqlClientDriver</property>
 <property name=”connection.connection_string”>
 Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|Shop.mdf;
 Integrated Security=True;User Instance=True
 </property>
 <property name=”adonet.batch_size”>10</property>
 <property name=”show_sql”>true</property>
 <property name=”dialect”>NHibernate.Dialect.MsSql2005Dialect</property>
 <property name=”use_outer_join”>true</property>
 <property name=”command_timeout”>60</property>
 <property name=”query.substitutions”>
 true 1, false 0, yes ‘Y’, no ‘N’</property>
 <property name=”proxyfactory.factory_class”>
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory, NHibernate.ByteCode.LinFu
 </property>
 </session-factory>
 </hibernate-configuration>
…
</configuration>

With the model and repositories now built, you can turn your attention to the service layer, the API
for the application.

Product services
The role of the service layer in the Agatha solution is to coordinate the retrieval and persistence of
business entities. A service receives requests from the controllers for updates to the domain model as
well as a specifi c view of the domain. All the views (ASPX pages) are based on a strongly typed view
model. Figure 11-4 shows the fl ow of data after a controller handles a request.

Refer to Chapter 8 for a detailed description of view models.

Creating The Product Catalog  ❘  469

Domain Model
Agathas.Storefront.Model

Presentation / UX
Agathas.Storefront.UI.Web.MVC

Index_ASPX (Home)

HomePageView

Controllers (MVC)
Agathas.Storefront.Controllers

Application Service
Agathas.Storefront.Services

Repository
Agathas.Storefront.Repository.NHibernate

Product
ViewModel

Category
ViewModel

ProductTileRepository

ProductCatalogServiceProductController

Initial Request

Domain
Model

Database

Figure 11 -4

The controller receives the initial request and calls the appropriate service method(s). In this example,
the request is for the site’s homepage. The service in turn contacts the repository to obtain a collec-
tion of Product domain entities. It then converts them into a collection of ProductViews, which it
returns to the controller. The controller receives the collection of ProductViews and any other neces-
sary information to be displayed on the web page, such as a basket summary or customer name. It
does this before creating a HomePageView, which is strongly typed to the .ASPX view, and sending
it to the view for display. All the views in the solution have a dedicated view model for displaying
purposes.

You will now create all the views required for the product catalog functionality before creating the
service methods. The views are simple data transfer objects that represent a view of the domain
model from a particular context.

Product Views
Figure 11-5 shows all the product views that will be created in this section.

Create a new folder in the Services project named ViewModels, and add to it a new class named
ProductSizeOption with the following code listing:

namespace Agathas.Storefront.Services.ViewModels
{
 public class ProductSizeOption
 {
 public int Id { get; set; }
 public string SizeName { get; set; }
 }
}

470  ❘  Chapter 11   Creating The Product Catalog

Figure 11 -5

This view represents the physical product that you can buy. The next view to create is ProductView,
which has a collection of ProductSizeOptions that which will be used to display the details of a
product:

using System.Collections.Generic;

namespace Agathas.Storefront.Services.ViewModels
{
 public class ProductView
 {
 public int Id { get; set; }
 public string BrandName { get; set; }
 public string Name { get; set; }
 public string Price { get; set; }
 public IEnumerable<ProductSizeOption> Products { get; set; }
 }
}

The ProductSummaryView is used when listing groups of products:

namespace Agathas.Storefront.Services.ViewModels
{
 public class ProductSummaryView
 {
 public int Id { get; set; }
 public string BrandName { get; set; }
 public string Name { get; set; }
 public string Price { get; set; }
 }
}

The CategoryView is responsible for representing a view of all Product Category objects and is
used for the category navigation:

namespace Agathas.Storefront.Services.ViewModels
{

Creating The Product Catalog  ❘  471

 public class CategoryView
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }
}

The next three views — ​RefinementGroupings, Refinement, and RefinementGroup — ​are utilized
in the product category refinement function, which allows customers to refine the results of viewing
all products within a particular category:

namespace Agathas.Storefront.Services.ViewModels
{
 public enum RefinementGroupings
 {
 brand = 1,
 size = 2,
 color = 3
 }
}

namespace Agathas.Storefront.Services.ViewModels
{
 public class Refinement
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }
}

using System.Collections.Generic;

namespace Agathas.Storefront.Services.ViewModels
{
 public class RefinementGroup
 {
 public string Name { get; set; }
 public int GroupId { get; set; }
 public IEnumerable<Refinement> Refinements { get; set; }
 }
}

That completes the view models that are required for the product catalog pages. You will now create
the ProductCatalogService class that the controllers will use to obtain the view models to power
the product catalog browsing experience.

ProductCatalogService
The ProductCatalogService forms the facade or entry point into the application for matters pertain-
ing to the displaying of products. The ProductCatalogService includes methods to perform the fol-
lowing operations:

Retrieve a collection of products for a given category and a given set of refinement criteria that ➤➤

the customer supplies

472  ❘  Chapter 11   Creating The Product Catalog

Retrieve a selection of products for display on the site’s homepage➤➤

Retrieve a product and all its detail➤➤

Retrieve all product categories➤➤

The controllers will communicate with the service layer using the Request and Reply message pat-
tern, as discussed in Chapter 6. You’ll start with the method that allows customers to refine a collec-
tion of products within a category. As part of the refinement process, customers can sort products
within a category by descending and ascending price. A message is sent to the service, which includes
an enumeration defining how the customer wants matching product records to be ordered. Add a
new folder to the Services project named Messaging, and then add another folder inside it named
ProductCatalogService. After that, add a new enumeration named ProductsSortBy, as shown in
the following listing:

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public enum ProductsSortBy
 {
 PriceHighToLow = 1,
 PriceLowToHigh = 2
 }
}

The message that will be sent to the service with the full set of customer refinement criteria is
ProductSearchRequest, which is shown here:

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetProductsByCategoryRequest
 {
 public GetProductsByCategoryRequest()
 {
 ColorIds = new int[0];
 BrandIds = new int[0];
 SizeIds = new int[0];
 }
 public int CategoryId { get; set; }

 public int[] ColorIds { get; set; }
 public int[] BrandIds { get; set; }
 public int[] SizeIds { get; set; }

 public ProductsSortBy SortBy { get; set; }
 public int Index { get; set; }
 public int NumberOfResultsPerPage { get; set; }
 }
}

This class contains integer arrays for color, brand, and size IDs. The idea is that customers should be
able to refine their search for a product by filtering for products in specific colors, brands, and sizes.
The ProductSearchRequest also contains properties named Index and NumberOfResultsPerPage
to assist with the paging of data.

Creating The Product Catalog  ❘  473

The response that the service class returns is the GetProductsByCategoryResponse class shown next,
which gives details on the refinements available to the resulting product collection result:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetProductsByCategoryResponse
 {
 public string SelectedCategoryName { get; set; }
 public int SelectedCategory { get; set; }

 public IEnumerable<RefinementGroup> RefinementGroups { get; set; }

 public int NumberOfTitlesFound { get; set; }
 public int TotalNumberOfPages { get; set; }
 public int CurrentPage { get; set; }

 public IEnumerable<ProductSummaryView> Products { get; set; }
 }
}

For the controller to obtain the detail for a specific product, two more classes are required. GetProduct​
Request is sent to the service layer, and GetProductResponse is the response:

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetProductRequest
 {
 public int ProductId { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetProductResponse
 {
 public ProductView Product { get; set; }
 }
}

To obtain the featured set of products that appear on the front page, no request object is necessary
because no information is required to retrieve the collection of featured products. You need to create
only the GetFeaturedProductsResponse class:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetFeaturedProductsResponse

474  ❘  Chapter 11   Creating The Product Catalog

 {
 public IEnumerable<ProductSummaryView> Products { get; set; }
 }
}

As with retrieving products for the front page, the category listing service function requires no request
object — ​only the GetAllCategoriesResponse, as shown in the following listing:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetAllCategoriesResponse
 {
 public IEnumerable<CategoryView> Categories { get; set; }
 }
}

With the messaging objects complete, you can now create the service contract and then create an imple-
mentation. You can see the interface for the ProductCatalogService next. Create a new folder named
Interfaces within the Service project, and add a new interface named IProductCatalogService
with the code listing that follows:

using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Services.Interfaces
{
 public interface IProductCatalogService
 {
 GetFeaturedProductsResponse GetFeaturedProducts();
 GetProductsByCategoryResponse GetProductsByCategory(
 GetProductsByCategoryRequest request);
 GetProductResponse GetProduct(GetProductRequest request);

 GetAllCategoriesResponse GetAllCategories();
 }
}

All the service methods return response objects that contain view models. To automate the process
of mapping domain entities into view models, use AutoMapper.

Create a new class named AutoMapperBootStrapper at the root of the Services project. This class
defines the mapping between the domain entities and the view models that you created earlier. Also
contained within this class is an implementation of AutoMapper’s IValueFormatter that will be
used when mapping properties. If a property of type decimal is found, the call to the extension
method formats the value to include the U.S. dollar currency symbol. This helper method was cre-
ated in the previous chapter and resides in the Infrastructure project:

…
using AutoMapper;
using Agathas.Storefront.Model.Brands;
using Agathas.Storefront.Model.Categories;

Creating The Product Catalog  ❘  475

using Agathas.Storefront.Model.Products;
using Agathas.Storefront.Services.ViewModels;
using Agathas.Storefront.Infrastructure.Helpers;

namespace Agathas.Storefront.Services
{
 public class AutoMapperBootStrapper
 {
 public static void ConfigureAutoMapper()
 {
 // Product Title and Product
 Mapper.CreateMap<ProductTitle, ProductSummaryView>();
 Mapper.CreateMap<ProductTitle, ProductView>();
 Mapper.CreateMap<Product, ProductSummaryView>();
 Mapper.CreateMap<Product, ProductSizeOption>();

 // Category
 Mapper.CreateMap<Category, CategoryView>();

 // IProductAttribute
 Mapper.CreateMap<IProductAttribute, Refinement>();

 // Global Money Formatter
 Mapper.AddFormatter<MoneyFormatter>();

 }
 }

 public class MoneyFormatter : IValueFormatter
 {
 public string FormatValue(ResolutionContext context)
 {
 if (context.SourceValue is decimal)
 {
 decimal money = (decimal)context.SourceValue;

 return money.FormatMoney();
 }

 return context.SourceValue.ToString();
 }
 }
}

The ConfigureAutoMapper method is called from within the Web.MVC project’s Global.asax
Application_Start event, which you will configure a little later.

For the mapping between the domain entities and the view models to take place, create a series of
domain entity extension methods that call into AutoMapper to perform the conversion. Create a
new folder within the Services project named Mapping, and add the first mapping class named
ProductTitleMapper:

using System.Collections.Generic;
using Agathas.Storefront.Model.Products;

476  ❘  Chapter 11   Creating The Product Catalog

using Agathas.Storefront.Services.ViewModels;
using AutoMapper;

namespace Agathas.Storefront.Services.Mapping
{
 public static class ProductTitleMapper
 {
 public static IEnumerable<ProductSummaryView> ConvertToProductViews(
 this IEnumerable<ProductTitle> products)
 {
 return Mapper.Map<IEnumerable<ProductTitle>,
 IEnumerable<ProductSummaryView>>(products);
 }

 public static ProductView ConvertToProductDetailView
 (this ProductTitle product)
 {
 return Mapper.Map<ProductTitle, ProductView>(product);
 }
 }
}

The ProductTitleMapper class is simply an extension method of the ProductTitle domain entity. It
enables easy conversion from the entity into the view model, which you will see used in the IProduct​
CatalogService in just a moment.

The next mapper class is IProductAttributeMapper, shown next. This class does a little bit extra
and takes RefinementGrouping’s enumeration type to add to the RefinementGroup generated from
the IProductAttribute:

using Agathas.Storefront.Model.Products;
using AutoMapper;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Mapping
{
 public static class IProductAttributeMapper
 {
 public static RefinementGroup ConvertToRefinementGroup(
 this IEnumerable<IProductAttribute> productAttributes,
 RefinementGroupings refinementGroupType)
 {
 RefinementGroup refinementGroup = new RefinementGroup()
 { Name = refinementGroupType.ToString(),
 GroupId = (int)refinementGroupType };

 refinementGroup.Refinements =
 Mapper.Map<IEnumerable<IProductAttribute>,
 IEnumerable<Refinement>> (productAttributes);

 return refinementGroup;
 }
 }
}

Creating The Product Catalog  ❘  477

The CategoryMapper shown in the following listing generates CategoryView objects from Category
domain entities:

using System.Collections.Generic;
using Agathas.Storefront.Model.Categories;
using Agathas.Storefront.Services.ViewModels;
using AutoMapper;

namespace Agathas.Storefront.Services.Mapping
{
 public static class CategoryMapper
 {
 public static IEnumerable<CategoryView> ConvertToCategoryViews(
 this IEnumerable<Category> categories)
 {
 return Mapper.Map<IEnumerable<Category>,
 IEnumerable<CategoryView>>(categories);
 }
 }
}

The final mapping extension class that you will create is a little more complex than the previous
ones. This extension method takes GetProductsByCategoryRequest and a collection of products
that match the request and converts it into a GetProductsByCategoryResponse. You can view the
code for the ProductMapper class here:

using System.Collections.Generic;
using System.Linq;
using Agathas.Storefront.Model.Products;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Mapping
{
 public static class ProductMapper
 {
 public static GetProductsByCategoryResponse CreateProductSearchResultFrom(
 this IEnumerable<Product> productsMatchingRefinement,
 GetProductsByCategoryRequest request)
 {
 GetProductsByCategoryResponse productSearchResultView =
 new GetProductsByCategoryResponse();

 IEnumerable<ProductTitle> productsFound =
 productsMatchingRefinement.Select(p => p.Title).Distinct();

 productSearchResultView.SelectedCategory = request.CategoryId;

 productSearchResultView.NumberOfTitlesFound = productsFound.Count();

 productSearchResultView.TotalNumberOfPages =
 NoOfResultPagesGiven(request.NumberOfResultsPerPage,
 productSearchResultView.NumberOfTitlesFound);

 productSearchResultView.RefinementGroups =

478  ❘  Chapter 11   Creating The Product Catalog

 GenerateAvailableProductRefinementsFrom(productsFound);

 productSearchResultView.Products =
 CropProductListToSatisfyGivenIndex(request.Index,
 request.NumberOfResultsPerPage, productsFound);

 return productSearchResultView;
 }

 private static IEnumerable<ProductSummaryView>
 CropProductListToSatisfyGivenIndex(int pageIndex,
 int numberOfResultsPerPage,
 IEnumerable<ProductTitle> productsFound)
 {
 if (pageIndex > 1)
 {
 int numToSkip = (pageIndex - 1) * numberOfResultsPerPage;
 return productsFound.Skip(numToSkip)
 .Take(numberOfResultsPerPage).ConvertToProductViews();
 }
 else
 return productsFound
 .Take(numberOfResultsPerPage).ConvertToProductViews();
 }

 private static int NoOfResultPagesGiven(int numberOfResultsPerPage,
 int numberOfTitlesFound)
 {
 if (numberOfTitlesFound < numberOfResultsPerPage)
 return 1;
 else
 {
 return (numberOfTitlesFound / numberOfResultsPerPage) +
 (numberOfTitlesFound % numberOfResultsPerPage);
 }
 }

 private static IList<RefinementGroup>
 GenerateAvailableProductRefinementsFrom(
 IEnumerable<ProductTitle> productsFound)
 {
 var brandsRefinementGroup = productsFound
 .Select(p => p.Brand).Distinct().ToList()
 .ConvertAll<IProductAttribute>(b => (IProductAttribute)b)
 .ConvertToRefinementGroup(RefinementGroupings.brand);

 var colorsRefinementGroup = productsFound
 .Select(p => p.Color).Distinct().ToList()
 .ConvertAll<IProductAttribute>(c => (IProductAttribute)c)
 .ConvertToRefinementGroup(RefinementGroupings.color);

 var sizesRefinementGroup = (from p in productsFound
 from si in p.Products
 select si.Size).Distinct().ToList()
 .ConvertAll<IProductAttribute>(s => (IProductAttribute)s)

Creating The Product Catalog  ❘  479

 .ConvertToRefinementGroup(RefinementGroupings.size);

 IList<RefinementGroup> refinementGroups = new List<RefinementGroup>();

 refinementGroups.Add(brandsRefinementGroup);
 refinementGroups.Add(colorsRefinementGroup);
 refinementGroups.Add(sizesRefinementGroup);
 return refinementGroups;
 }
 }
}

Code snippet ProductMapper.cs in project Agathas.Storefront.Services

The method takes a GetProductsByCategoryRequest and an IEnumerable<Product>, which contains
all products matching the search. A distinct collection of ProductTitles is generated from the found
Products. From this collection, the detail needed to set the properties used for paging is completed via a
call to the NoOfResultPagesGiven method. Next, the refinement groups are generated via the Generate​
AvailableProductRefinementsFrom method and then appended to the ProductSearchResultView.
Finally, the ProductTitles are added to the GetProductsBy​Category​Response based on the page
index that the user is viewing, which is the responsibility of the CropProductListToSatisfyGiven​
Index method.

To convert the GetProductsByCategoryRequest into a query, you need to create a query generator
class. Add a new folder named Implementations, and add to it a new class named ProductSearch​
RequestQueryGenerator with the following definition:

using System.Linq;
using Agathas.Storefront.Infrastructure.Querying;
using Agathas.Storefront.Model.Products;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Services.Implementations
{
 public class ProductSearchRequestQueryGenerator
 {
 public static Query CreateQueryFor(
 GetProductsByCategoryRequest getProductsByCategoryRequest)
 {
 Query productQuery = new Query();
 Query colorQuery = new Query();
 Query brandQuery = new Query();
 Query sizeQuery = new Query();

 colorQuery.QueryOperator = QueryOperator.Or;
 foreach (int id in getProductsByCategoryRequest.ColorIds)
 colorQuery.Add(Criterion.Create<Product>(p => p.Color.Id, id,
 CriteriaOperator.Equal));

 if (colorQuery.Criteria.Count() > 0)
 productQuery.AddSubQuery(colorQuery);

 brandQuery.QueryOperator = QueryOperator.Or;

480  ❘  Chapter 11   Creating The Product Catalog

 foreach (int id in getProductsByCategoryRequest.BrandIds)
 brandQuery.Add(Criterion.Create<Product>(p => p.Brand.Id, id,
 CriteriaOperator.Equal));

 if (brandQuery.Criteria.Count() > 0)
 productQuery.AddSubQuery(brandQuery);

 sizeQuery.QueryOperator = QueryOperator.Or;
 foreach (int id in getProductsByCategoryRequest.SizeIds)
 sizeQuery.Add(Criterion.Create<Product>(p => p.Size.Id, id,
 CriteriaOperator.Equal));

 if (sizeQuery.Criteria.Count() > 0)
 productQuery.AddSubQuery(sizeQuery);

 productQuery.Add(Criterion.Create<Product>(p => p.Category.Id,
 getProductsByCategoryRequest.CategoryId, CriteriaOperator.Equal));

 return productQuery;
 }
 }
}

The role of the ProductSearchRequestQueryGenerator class is to convert the GetProductsBy​
CategoryRequest into a Query object so that the repository can satisfy it. Each of the filtering crite-
ria the customer selects is turned into a subquery and then added to the main query, which contains
a Category equality Criterion.

The implementation of the IProductCatalogService is named ProductCatalogService and can
be seen in the following code listing. A description of the code follows the listing:

using System.Collections.Generic;
using System.Linq;
using Agathas.Storefront.Infrastructure.Querying;
using Agathas.Storefront.Model.Categories;
using Agathas.Storefront.Model.Products;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Mapping;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Services.Implementations
{
 public class ProductCatalogService : IProductCatalogService
 {
 private readonly IProductTitleRepository _productTitleRepository;
 private readonly IProductRepository _productRepository;
 private readonly ICategoryRepository _categoryRepository;

 public ProductCatalogService(IProductTitleRepository productTitleRepository,
 IProductRepository productRepository,
 ICategoryRepository categoryRepository)
 {
 _productTitleRepository = productTitleRepository;
 _productRepository = productRepository;
 _categoryRepository = categoryRepository;

Creating The Product Catalog  ❘  481

 }

 private IEnumerable<Product> GetAllProductsMatchingQueryAndSort(
 GetProductsByCategoryRequest request,
 Query productQuery)
 {
 IEnumerable<Product> productsMatchingRefinement =
 _productRepository.FindBy(productQuery);

 switch (request.SortBy)
 {
 case ProductsSortBy.PriceLowToHigh:
 productsMatchingRefinement = productsMatchingRefinement
 .OrderBy(p => p.Price);
 break;
 case ProductsSortBy.PriceHighToLow:
 productsMatchingRefinement = productsMatchingRefinement
 .OrderByDescending(p => p.Price);
 break;
 }
 return productsMatchingRefinement;
 }

 public GetFeaturedProductsResponse GetFeaturedProducts()
 {
 GetFeaturedProductsResponse response =
 new GetFeaturedProductsResponse();

 Query productQuery = new Query();

 productQuery.OrderByProperty = new OrderByClause()
 { Desc = true,
 PropertyName = PropertyNameHelper
 .ResolvePropertyName<ProductTitle>(pt => pt.Price) };

 response.Products = _productTitleRepository
 .FindBy(productQuery, 0, 6).ConvertToProductViews();

 return response;
 }

 public GetProductsByCategoryResponse GetProductsByCategory(
 GetProductsByCategoryRequest request)
 {
 GetProductsByCategoryResponse response;

 Query productQuery =
 ProductSearchRequestQueryGenerator.CreateQueryFor(request);

 IEnumerable<Product> productsMatchingRefinement =
 GetAllProductsMatchingQueryAndSort(request, productQuery);

 response = productsMatchingRefinement
 .CreateProductSearchResultFrom(request);

 response.SelectedCategoryName =

482  ❘  Chapter 11   Creating The Product Catalog

 _categoryRepository.FindBy(request.CategoryId).Name;

 return response;
 }

 public GetProductResponse GetProduct(GetProductRequest request)
 {
 GetProductResponse response = new GetProductResponse();

 ProductTitle productTitle =
 _productTitleRepository.FindBy(request.ProductId);

 response.Product = productTitle.ConvertToProductDetailView();

 return response;
 }

 public GetAllCategoriesResponse GetAllCategories()
 {
 GetAllCategoriesResponse response = new GetAllCategoriesResponse();
 IEnumerable<Category> categories = _categoryRepository.FindAll();
 response.Categories = categories.ConvertToCategoryViews();

 return response;
 }
 }
}

Code snippet ProductCatalogService.cs in project Agathas.Storefront.Services

The ProductCatalogService class uses constructor injection to obtain a reference to the necessary
repositories that it requires. The GetFeaturedProducts method in lieu of any real business logic
simply creates a query that obtains six products in order of price, descending. This method is used
to obtain products for display on the site’s homepage.

The GetProductsByCategory method takes a GetProductsByCategoryRequest and retrieves prod-
ucts that satisfy the customers’ filter criteria by delegating the responsibility of creating a Query to
the ProductSearchRequestQueryGenerator. When the Query is generated, it is sent to the GetAll​
ProductsMatchingQueryAndSort private method to be satisfied by the ProductRepository. When
the matching products are returned, the resulting collection is ordered by the sorting enumeration
the customer chooses. The GetProductsByCategory method then coordinates the collection of prod-
ucts being turned into a GetProductsByCategoryResponse by using the CreateProductSearch​
ResultFrom extension method. Finally, the name of the selected category is retrieved and added to
the GetProductsByCategoryResponse before being returned to the caller.

The GetProduct method is straightforward. It obtains a ProductTitle by ID and then converts it
to a ProductDetailView before wrapping it in a response object.

The last method on the ProductCatalogService class is another straightforward method named
GetAllCategories. It simply returns a list of all product categories.

You have now completed the product service layer that will fulfill the needs of the MVC controllers
when customers are browsing the products available on the site. In the next section, you build the
controllers that use the service, along with the views that display the view models.

Creating The Product Catalog  ❘  483

Controllers
Figure 11-6 shows all the view models that are strongly typed to the corresponding .ASPX views.

Figure 11 -6

All the view models inherit from a common BaseProductCatalogPageView because all the views
related to the product catalog also display a full list of categories.

Create a new folder within the Controllers project named ViewModels, and add another folder
within it named ProductCatalog.

The BaseProductCatalogPageView is an abstract class that contains a single property exposing a
full list of product categories:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.ProductCatalog
{
 public abstract class BaseProductCatalogPageView
 {
 public IEnumerable<CategoryView> Categories { get; set;}
 }
}

The HomePageView that is strongly typed to the site’s homepage .ASPX view displays a list of top
products for sale along with a full list of categories and a summary of the customer’s basket:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.ProductCatalog

484  ❘  Chapter 11   Creating The Product Catalog

{
 public class HomePageView : BaseProductCatalogPageView
 {
 public IEnumerable<ProductSummaryView> Products { get; set;}
 }
}

The product detail .ASPX view that you create later in this section is strongly typed to the Product​
DetailView view model to display the details of a product. ProductDetailView inherits from
BaseProductCatalogPageView because the product detail page also displays the full list of product
categories available in the store:

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.ProductCatalog
{
 public class ProductDetailView : BaseProductCatalogPageView
 {
 public ProductView Product { get; set; }
 }
}

The ProductSearchResultView also inherits from the BaseProductCatalogPageView and is strongly
typed to the ProductSearchResultView.ASPX view:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.ProductCatalog
{
 public class ProductSearchResultView : BaseProductCatalogPageView
 {
 public ProductSearchResultView()
 {
 RefinementGroups = new List<RefinementGroup>();
 }

 public string SelectedCategoryName { get; set; }
 public int SelectedCategory { get; set; }

 public IEnumerable<RefinementGroup> RefinementGroups { get; set; }

 public int NumberOfTitlesFound { get; set; }
 public int TotalNumberOfPages { get; set; }
 public int CurrentPage { get; set; }

 public IEnumerable<ProductSummaryView> Products { get; set; }
 }
}

This completes the view models. You can now start to work on the controllers.

The two controllers responsible for displaying the product catalog inherit from a base Product​
CatalogBaseController, as shown in Figure 11-7.

Creating The Product Catalog  ❘  485

Figure 11 -7

The services that the controllers use are referenced by interfaces and injected via the controllers’ con-
structors. Because a controller is automatically selected for a URL from the controller factory, you need
to create your own controller factory to replace the default one, which uses StructureMap to resolve
the dependencies. Add a new class to the Controllers project named IoCControllerFactory with the
following code definition:

Using System;
using System.Web.Mvc;
using StructureMap;
using System.Web.Routing;

namespace Agathas.Storefront.Controllers
{
 public class IoCControllerFactory : DefaultControllerFactory
 {
 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {
 return ObjectFactory.GetInstance(controllerType) as IController;
 }
 }
}

If you’re using the MVC 1.0 framework, you will need to change the signature of the
GetControllerInstance method as shown in bold in the following code listing:

using System;
using System.Web.Mvc;

486  ❘  Chapter 11   Creating The Product Catalog

using StructureMap;

namespace Agathas.Storefront.Controllers
{
 public class IoCControllerFactory : DefaultControllerFactory
 {
 protected override IController GetControllerInstance(Type controllerType)
 {
 return ObjectFactory.GetInstance(controllerType) as IController;
 }
 }
}

You can now create the base controller. Add a new folder named Controllers, and add to it a new
class named ProductCatalogBaseController with the following definition. This base controller
contains the GetCategories method, which is required for all product view models and is used to
display the full list of product categories for the left-side navigation:

using System.Collections.Generic;
using System.Web.Mvc;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class ProductCatalogBaseController : Controller
 {
 private readonly IProductCatalogService _productCatalogService;

 public ProductCatalogBaseController(
 IProductCatalogService productCatalogService)
 {
 _productCatalogService = productCatalogService;
 }

 public IEnumerable<CategoryView> GetCategories()
 {
 GetAllCategoriesResponse response =
 _productCatalogService.GetAllCategories();

 return response.Categories;
 }
 }
}

The HomeController inherits from the ProductCatalogBaseController class and has a single
method to handle the homepage request:

using System.Web.Mvc;
using Agathas.Storefront.Controllers.ViewModels.ProductCatalog;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Controllers.Controllers

Creating The Product Catalog  ❘  487

{
 public class HomeController : ProductCatalogBaseController
 {
 private readonly IProductCatalogService _productCatalogService;

 public HomeController(IProductCatalogService productCatalogService)
 : base(productCatalogService)
 {
 _productCatalogService = productCatalogService;
 }

 public ActionResult Index()
 {
 HomePageView homePageView = new HomePageView();
 homePageView.Categories = base.GetCategories();

 GetFeaturedProductsResponse response =
 _productCatalogService.GetFeaturedProducts();
 homePageView.Products = response.Products;

 return View(homePageView);
 }
 }
}

A customer wanting to refine product category pages using AJAX needs to send requests with com-
plex data containing the refinement filters. You use JSON objects to accomplish this requirement. To
enable the JSON objects to be converted automatically into .NET objects, you need an implementa-
tion of the MVC ModelBinder.

The default ModelBinder maps HTTP parameters to action method parameters. To work with JSON
objects, you need to create your own JsonModelBinder. Add a new folder named JsonDTOs to the
Controllers project, and add a new class named JsonModelBinder to it, with the following code
listing:

using System.IO;
using System.Linq;
using System.Text;
using System.Runtime.Serialization.Json;
using System.Web.Mvc;
using System.Web.Script.Serialization;

namespace Agathas.Storefront.Controllers.JsonDTOs
{
 public class JsonModelBinder : IModelBinder
 {
 public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 if (controllerContext == null)
 throw new ArgumentNullException(“controllerContext”);
 if (bindingContext == null)
 throw new ArgumentNullException(“bindingContext”);

 var serializer = new DataContractJsonSerializer(

488  ❘  Chapter 11   Creating The Product Catalog

 bindingContext.ModelType);
 return serializer
 .ReadObject(controllerContext.HttpContext.Request.InputStream);
 }
 }
}

The classes that the JSON objects are converted to are JsonRefinementGroup and JsonProduct​
SearchRequest. Create these two classes within the JsonDTOs folder with the following code listings:

using System.Runtime.Serialization;
using System.Web.Mvc;

namespace Agathas.Storefront.Controllers.JsonDTOs
{
 [DataContract]
 [ModelBinder(typeof(JsonModelBinder))]
 public class JsonRefinementGroup
 {
 [DataMember]
 public int GroupId { get; set; }

 [DataMember]
 public int[] SelectedRefinements { get; set; }
 }
}

using System.Collections.Generic;
using System.Runtime.Serialization;
using System.Web.Mvc;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Controllers.JsonDTOs
{
 [DataContract]
 [ModelBinder(typeof(JsonModelBinder))]
 public class JsonProductSearchRequest
 {
 [DataMember]
 public int CategoryId { get; set; }
 [DataMember]
 public int[] ColorIds { get; set; }
 [DataMember]
 public int[] SizeIds { get; set; }
 [DataMember]
 public int[] BrandIds { get; set; }
 [DataMember]
 public ProductsSortBy SortBy { get; set; }
 [DataMember]
 public IEnumerable<JsonRefinementGroup> RefinementGroups { get; set; }
 [DataMember]
 public int Index { get; set; }
 }
}

Creating The Product Catalog  ❘  489

As you can see, each of the classes is decorated with a ModelBinder attribute to indicate that the
JsonModelBinder should deserialize it

The last class to create is ProductController. This class uses the IApplicationSettings instance
that you created in the infrastructure project to obtain the number of products to display on a page.

Switch back to the IApplicationSettings interface in the Configuration folder of
the Infrastructure project, and update the interface to include a new property named
NumberOfResultsPerPage, as shown here:

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public interface IApplicationSettings
 {
 string LoggerName { get; }
 string NumberOfResultsPerPage { get; }

 }
}

You also need to update the WebConfigApplicationSettings implementation:

using System.Configuration;

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public class WebConfigApplicationSettings : IApplicationSettings
 {
 public string LoggerName
 {
 get { return ConfigurationManager.AppSettings[“LoggerName”]; }
 }

 public string NumberOfResultsPerPage
 {
 get { return ConfigurationManager
 .AppSettings[“NumberOfResultsPerPage”]; }
 }
 }
}

Lastly, you need to add the application setting key and value to the Web.Config that lives within the
Web.MVC project.

 <appSettings>
 <add key=”LoggerName” value=”AgathaLogger”/>
 <add key=”NumberOfResultsPerPage” value=”6”/>
 </appSettings >

With the application settings updated, you can create the ProductController class. This class is
large, so add it first. Then I will walk you through the methods:

using System.Collections.Generic;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.JsonDTOs;

490  ❘  Chapter 11   Creating The Product Catalog

using Agathas.Storefront.Controllers.ViewModels.ProductCatalog;
using Agathas.Storefront.Infrastructure.Configuration;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class ProductController : ProductCatalogBaseController
 {
 private readonly IProductCatalogService _productService;

 public ProductController(IProductCatalogService productService)
 : base(productService)
 {
 _productService = productService;
 }

 public ActionResult GetProductsByCategory(int categoryId)
 {
 GetProductsByCategoryRequest productSearchRequest =
 GenerateInitialProductSearchRequestFrom(categoryId);

 GetProductsByCategoryResponse response =
 _productService.GetProductsByCategory(productSearchRequest);

 ProductSearchResultView productSearchResultView =
 GetProductSearchResultViewFrom(response);

 return View(“ProductSearchResults”, productSearchResultView);
 }

 private ProductSearchResultView GetProductSearchResultViewFrom(
 GetProductsByCategoryResponse response)
 {
 ProductSearchResultView productSearchResultView =
 new ProductSearchResultView();

 productSearchResultView.Categories = base.GetCategories();
 productSearchResultView.CurrentPage = response.CurrentPage;
 productSearchResultView.NumberOfTitlesFound =
 response.NumberOfTitlesFound;
 productSearchResultView.Products = response.Products;
 productSearchResultView.RefinementGroups = response.RefinementGroups;
 productSearchResultView.SelectedCategory = response.SelectedCategory;
 productSearchResultView.SelectedCategoryName =
 response.SelectedCategoryName;
 productSearchResultView.TotalNumberOfPages =
 response.TotalNumberOfPages;
 return productSearchResultView;
 }

 private static GetProductsByCategoryRequest
 GenerateInitialProductSearchRequestFrom(int categoryId)
 {

Creating The Product Catalog  ❘  491

 GetProductsByCategoryRequest productSearchRequest =
 new GetProductsByCategoryRequest();

 productSearchRequest.NumberOfResultsPerPage = int.Parse(
 ApplicationSettingsFactory
 .GetApplicationSettings().NumberOfResultsPerPage);

 productSearchRequest.CategoryId = categoryId;
 productSearchRequest.Index = 1;
 productSearchRequest.SortBy = ProductsSortBy.PriceHighToLow;
 return productSearchRequest;
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public JsonResult GetProductsByAjax(
 JsonProductSearchRequest jsonProductSearchRequest)
 {
 GetProductsByCategoryRequest productSearchRequest =
 GenerateProductSearchRequestFrom(jsonProductSearchRequest);
 GetProductsByCategoryResponse response =
 _productService.GetProductsByCategory(productSearchRequest);

 ProductSearchResultView productSearchResultView =
 GetProductSearchResultViewFrom(response);

 return Json(productSearchResultView);
 }

 private static GetProductsByCategoryRequest
 GenerateProductSearchRequestFrom(
 JsonProductSearchRequest jsonProductSearchRequest)
 {
 GetProductsByCategoryRequest productSearchRequest =
 new GetProductsByCategoryRequest();

 productSearchRequest.NumberOfResultsPerPage = int.Parse(
 ApplicationSettingsFactory
 .GetApplicationSettings().NumberOfResultsPerPage);

 productSearchRequest.Index = jsonProductSearchRequest.Index;
 productSearchRequest.CategoryId = jsonProductSearchRequest.CategoryId;
 productSearchRequest.SortBy = jsonProductSearchRequest.SortBy;

 List<RefinementGroup> refinementGroups = new List<RefinementGroup>();
 RefinementGroup refinementGroup;

 foreach (JsonRefinementGroup jsonRefinementGroup in
 jsonProductSearchRequest.RefinementGroups)
 {
 switch ((RefinementGroupings)jsonRefinementGroup.GroupId)
 {
 case RefinementGroupings.brand:
 productSearchRequest.BrandIds =
 jsonRefinementGroup.SelectedRefinements;
 break;

492  ❘  Chapter 11   Creating The Product Catalog

 case RefinementGroupings.color:
 productSearchRequest.ColorIds =
 jsonRefinementGroup.SelectedRefinements;
 break;
 case RefinementGroupings.size:
 productSearchRequest.SizeIds =
 jsonRefinementGroup.SelectedRefinements;
 break;
 default:
 break;
 }
 }
 return productSearchRequest;
 }

 public ActionResult Detail(int id)
 {
 ProductDetailView productDetailView = new ProductDetailView();
 GetProductRequest request = new GetProductRequest() {ProductId = id};
 GetProductResponse response = _productService.GetProduct(request);

 ProductView productView = response.Product;

 productDetailView.Product = productView;
 productDetailView.Categories = base.GetCategories();

 return View(productDetailView);
 }
 }
}

Code snippet ProductController.cs in project Agathas.Storefront.Controllers

The GetProductsByCategory method handles the request for the product category view with no refine-
ments set by the customer. The method creates a GetProductsByCategoryRequest by delegating the
work to the GenerateInitialProductSearchRequestFrom method and supplying the categoryId of
the chosen category. The method then sends the request to the product service, where a GetProducts​
ByCategoryResponse is returned. The GetProductsByCategory method then calls the internal method
GetProductSearchResultViewFrom to convert the GetProductsByCategory​Response into a Product​
SearchResultView, which is passed to the view.

The GetProductsByAjax method is similar to GetProductsByCategory. However, GetProducts​
ByAjax takes a JsonProductSearchRequest converted from a JSON object, which contains the refine-
ments the customer made. The GetProductsByAjax method delegates the work of converting the Json​
ProductSearchRequest into a GetProductsByCategoryRequest using the GenerateProductSearch​
RequestFrom and sends it to the product service. The returned GetProductsByCategoryResponse is
converted into a ProductSearchResultView and then returned to the caller as JSON.

The last method on the controller is Detail. This method is simple and returns a ProductDetailView
for the corresponding given product ID.

With the controllers created, you can work on the views that will display the data.

Creating The Product Catalog  ❘  493

Product Catalog Views
Each of the views in the product catalog browsing collection is strongly typed to a view model
class. Each of the views also has a common master page, which in turn has its own site layout mas-
ter page. Figure 11-8 shows the relationships between the views and the view models.

Site.Master

SiteFooter.ascx

Index.aspx

HomePageView

Detail.aspx

ProductDetailView

ProductCatalog.master

Categories
.ascx

BaseProductCatalogPageView

Checkout.master CustomerAccount
.master

ProductSearchResults
.aspx

ProductSearchResultView

View.aspx

BasketDetailView

Figure 11 -8

Before you start to create the views to support browsing the product catalog, you need to tidy up the
MVC project that Visual Studio auto-generated for you. Delete the following files and folders from
the Web.MVC project:

Controllers➤➤ folder

Models➤➤ folder

Content/Site.css➤➤ file

Views/Account/ChangePassword.aspx➤➤ file

Views/Account/ChangePasswordSuccess.aspx➤➤ file

Views/Home/About.aspx➤➤ file

Views/Shared/LogOnUserControl.ascx➤➤ file

Before you create your first view, add a new folder to the Web.MVC project named Helpers. Then
add a new class to the folder named AgathaHtmlHelper. This class provides a couple of extension

494  ❘  Chapter 11   Creating The Product Catalog

methods to the MVC HtmlHelper class that enable you to build a list of pages for paging product
results and fully resolve a resource:

using System;
using System.Text;
using System.Web.Mvc;
namespace Agathas.Storefront.UI.Web.MVC.Helpers
{
 public static class AgathaHtmlHelper
 {
 public static string BuildPageLinksFrom(this HtmlHelper html,
 int currentPage,
 int totalPages,
 Func<int, string> pageUrl)
 {
 StringBuilder result = new StringBuilder();
 for (int i = 1; i <= totalPages; i++)
 {
 TagBuilder tag = new TagBuilder(“a”);
 tag.MergeAttribute(“href”, pageUrl(i));
 tag.InnerHtml = i.ToString();
 if (i == currentPage)
 tag.AddCssClass(“selected”);
 else
 tag.AddCssClass(“notselected”);
 result.AppendLine(tag.ToString());
 }

 return result.ToString();
 }

 public static string Resolve(this HtmlHelper html, string resource)
 {
 return Agathas.Storefront.Infrastructure.Helpers
 .UrlHelper.Resolve(resource);
 }
 }
}

Notice that the Resolve method calls into the Infrastructure project’s UrlHelper class that you
created earlier in the chapter. This method is in the Infrastructure project because it will be used
elsewhere in the solution in the next chapter.

You can now finally start to create the views. Add an MVC user control named SiteFooter.ascx
to the Views/Shared folder with the following markup:

<%@ Control Language=”C#” Inherits=”System.Web.Mvc.ViewUserControl” %>
<%@ Import Namespace=”Agathas.Storefront.UI.Web.MVC.Helpers” %>

<div id=”prefooter”>

 <table>
 <tr>
 <td>

Creating The Product Catalog  ❘  495

 <li class=”footer-list-header”>Help:
 Neque porro quisquam est
 ipsum quia dolor sit amet

 </td>
 <td>

 <li class=”footer-list-header”>About:
 quisquam Nequeporro est
 dolor sit amet ipsum quia

 </td>
 <td>

 <li class=”footer-list-header”>Social:
 porro Neque quisquam est
 sit amet ipsum quia dolor

 </td>
 </tr>
 </table>

 <a href=”<%=Html.Resolve(“”) %>”>
 <img alt=”Agatha’s Clothing Store”
 src=”<%=Html.Resolve(“/Content/Images/Structure/sm_logo.png”)%>”
 border=”0” />

</div>
<div id=”footer”>

</div>

The SiteFooter.ascx control is used on the site’s master page and does little more than help with
layout. At the moment, it is more of a placeholder, but this is where you would add link information
on the sites, such as contact forms and return information.

Next, open the Site.Master file, found within the Views/Shared folder, and update the markup to
match the markup that follows:

<%@ Master Language=”C#” Inherits=”System.Web.Mvc.ViewMasterPage” %>
<%@ Import Namespace=”Agathas.Storefront.UI.Web.MVC.Helpers” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head id=”Head1” runat=”server”>
 <title><asp:ContentPlaceHolder ID=”TitleContent” runat=”server” /></title>
 <link href=”<%=Html.Resolve(“/Content/Site.css”) %>”
 rel=”stylesheet” type=”text/css” />
 <script type=”text/javascript”
 src=”<%=Html.Resolve(“/Scripts/jquery-1.4.2.min.js”) %>”></script>
 <script type=”text/javascript”

496 ❘ chaPTer 11 creaTing The ProDucT caTalog

 src=”<%=Html.Resolve(“/Scripts/jquery-ui-1.8.1.custom.min.js”) %>”>
 </script>
 <script type=”text/javascript”
 src=”<%=Html.Resolve(“/Scripts/jquery-jtemplates.js”) %>”></script>
 <script type=”text/javascript”
 src=”<%=Html.Resolve(“/Scripts/json2.js”) %>”></script>
 <script type=”text/javascript”
 src=”<%=Html.Resolve(“/Scripts/agatha-common-scripts.js”) %>”></script>
</head>

<body>
<div id=”main”>
 <div id=”header”>
 <a href=”<%=Html.Resolve(“”) %>”>
 <img alt=”Agatha’s Clothing Store”
 src=”<%=Html.Resolve(“/Content/Images/Structure/lg_logo.png”) %>”
 border=”0” />
 </div>

 <div id=”headerSummary”>
 <asp:ContentPlaceHolder ID=”headerBasketSummary” runat=”server”>
 </asp:ContentPlaceHolder>
 </div>
 <div class=”topBarContainer”>
 <div id=”background”>
 <div id=”navigation”>
 <asp:ContentPlaceHolder ID=”MenuContent” runat=”server”>
 </asp:ContentPlaceHolder>
 </div>
 <div id=”content”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server” />
 </div>
 <div style=”clear: both;” />
 </div>
 </div>
 <% Html.RenderPartial(“~/Views/Shared/SiteFooter.ascx”); %>
</div>
</body>
</html>

The Site.Master fi le defi nes the store’s layout and serves as the base master page for the more spe-
cifi c master pages. Notice that the Site.Master references numerous CSS and JavaScript fi les.

Create the following folder structure within the Content folder to store the images used on the site:

Content\Images\Products➤➤

Content\Images\Structure➤➤

You can fi nd all the images used within the case study contained within the
Agathas.Storefront solution, downloadable from Wrox.com.

Creating The Product Catalog  ❘  497

Create a new file named Site.css within the Content folder with the following style rules. This is
a long listing, so it may be worth downloading the project and copying the Site.css file. Site.css is
listed for completeness:

/* Site Layout */
html { height: 100%; margin-bottom: 1px; }

body {
 background:url(“images/Structure/retro_background.gif”)
 repeat fixed 50% 0 #EFEFEF;
 height: 100%; margin: 0 auto; color:#333333;
 font-family:Georgia,”Times New Roman”,Times,serif; font-size:70%; }

#main { margin: 0px auto; padding: 0px; border:0; width: 840px; }
#background { background-position: left top;
 background: url(images/Structure/background.gif) repeat left top; }
#header { margin-top : 10px; height: 60px; }

#headerSummary{
 background:none repeat scroll 0 0 #EEEEEE;
 border-bottom:1px solid #CCCCCC; clear:both; display:block; margin:auto;
 overflow:auto; width:840px; height: 30px; }

#navigation {
 float: left; width: 158px; margin-left:5px; padding-top:1em;
 margin-bottom:50px;
 height : 100%;}

#content {
 margin: 0; float: left; width: 665px; margin-left:5px; margin-right:5px;
 padding-top:1em;}

.navigation-items{ padding:10px; margin:10px; }

#basketSummary{ width: 300px; float: right; }

#footer {
 clear: both; text-align : center; background:none repeat scroll 0 0 #FFF2D9;
 padding: 20px 0 0px 0px; height: 50px; margin:auto; width:840px;
 font-family:Georgia,”Times New Roman”,Times,serif; font-size:1.4em; }

#prefooter {
 height: 90px; width: 840px; float: right;
 background:none repeat scroll 0 0 #EEEEEE;
 border-top:1px solid #CCCCCC; border-bottom:1px solid #CCCCCC;}

.footer-list-header {list-style-type: none; font-weight : bold;
 font-size:1.2em; }

/* Loading Overlay */
#overlay {
 background: #ccc url(images/Structure/ajax-loader.gif) no-repeat 50% 50%;
 display: none; position: absolute; text-align: center; z-index:1;

498  ❘  Chapter 11   Creating The Product Catalog

 border:1px dashed #CCC;}

#smoverlay {
 background: #ccc url(images/Structure/sm-ajax-loader.gif) no-repeat 50% 50%;
 display: none; position: absolute; text-align: center; z-index:1;
 border:1px dashed #CCC; }

 /* Model Popup Dialog */
.ui-widget-overlay {
 background:url(“images/Structure/modal-background.png”) repeat #AAAAAA;
 opacity: 0.5; left:0; position:absolute; top:0; }

.ui-widget-content { background: #F4F0EC; border:1px solid #E0CFC2;
 color:#1E1B1D; }

/* Category Refinement */
.refine-attributes { list-style-type: none; padding:0px; margin:0px; }

.refinement-box{
 border:1px solid #CCCCCC; height: 100px; overflow: auto; margin-right : 10px; }

li { background-repeat: no-repeat; background-position: 0px 0px;
 padding-bottom: 2px; }

li a.selectedItem {
 background-image: url(images/Structure/refinement-selected.gif);
 background-repeat: no-repeat; background-position: 2px 2px; padding-left: 16px;
 cursor: pointer; }

li a.selecteddisabledItem {
 background-image: url(images/Structure/refinement-selecteddisabled.gif);
 background-repeat: no-repeat; background-position: 2px 2px; padding-left: 16px;
 cursor: pointer; color:#DDDDDD; }

li a.disabledItem {
 background-image: url(images/Structure/refinement-disabled.gif);
 background-repeat: no-repeat; background-position: 2px 2px;
 padding-left: 16px; cursor:default; color:#DDDDDD; }

li a.availableItem {
 background-image: url(images/Structure/refinement-available.gif);
 background-repeat: no-repeat; background-position: 2px 2px;
 padding-left: 16px; cursor: pointer; }

/* Product Listing */
ul li.item-detail { float: left; width: 17em;
 border:1px solid #D1D1D1;
 margin-right : 2em; margin-bottom : 2em; }
ul.items-list { width: 60em;list-style-type: none; padding:0px; margin:0px; }
.item-productimage { border: medium none; height: 230px; width: 180px;
 text-decoration: none; }
.item-productimage-link { border-style: none; text-decoration: none;
 width: 180px; }
.item-productname { text-align:center; width: 180px; }
.item-price {text-align:center; width: 180px; }

Creating The Product Catalog  ❘  499

.item-sortdropdown { font-size:1em; height:17px; margin:0 0 0 10px; }

.item-displayoptions-sort { float:left; font-size:0.9em; position:relative; }

.item-displayoptions-pages { float:right; font-size:0.9em; position:relative; }

a.selected { background-color:#EDEDED; border:1px solid #666666; padding:2px 5px; }
a.notselected { background-color:#FFFFFF; border:1px solid #666666;
 padding:2px 5px; }

/* Basket Display */
.basket-details { margin-top : 10px; margin-right : 20px; float: right;
 text-align :right; }
.itemQtyBox { font-size:0.9em; height:12px; width:25px; }

/* Product Detail */
.productsTitle {border-bottom:1px solid #D1D1D1; margin-bottom : 10px; }

Code snippet Site.css in project Agathas.Storefront.UI.Web.MVC

The other files that are included with the Site.Master page are:

json2.js➤➤

jquery-1.4.2.min.js➤➤

jquery-ui-1.8.1.custom.min.js➤➤

jquery-jtemplates.js➤➤

You can download the json2.js file from http://www.json.org/json2.js and save it to the Scripts
folder within the Web.MVC project. The json2.js file is used to parse JSON-formatted data before send-
ing it to the service for AJAX-related functionality. After you have downloaded json2.js, ensure that
you remove the dialog box, which is the first line in the script library. The jquery-1.4.2.min.js is
the latest version of the core jQuery library, which you can obtain from http://jquery.com/. The
jquery-ui-1.8.1.custom.min.js file is a subset of the jQuery UI library, which includes the scripts
necessary to provide the jQuery model dialog functionality used later in this chapter. The file is available
from http://jqueryui.com/download. At the download page, deselect all components and scroll to
the Widgets section. Check the dialog box, click Download, extract the contents of the zipped archive,
and copy the jquery-ui-1.8.1.custom.min.js file into the Scripts folder. Finally, you can down-
load the JTemplates.js library from http://jtemplates.tpython.com. All the JavaScript library
versions were correct at the time of writing. If the versions are different, you can either download the
JavaScript files from the solution from www.wrox.com or use the new files and update the Site.Master’s
include files to reflect the updated version names.

The next control to add is responsible for displaying all the product categories available on the site.
Add a new MVC user control named Categories.ascx to the Views/Shared folder with the follow-
ing markup:

<%@ Control Language=”C#”
 Inherits=”System.Web.Mvc.ViewUserControl<IEnumerable<CategoryView>>” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>

<h2>Categories</h2>

500  ❘  Chapter 11   Creating The Product Catalog

<ul class=”refine-attributes”>
<% foreach (CategoryView categoryView in Model)
 { %>
 <%= Html.ActionLink(categoryView.Name, “GetProductsByCategory”, “Product”,
 new { categoryId = categoryView.Id }, null)%>
<% } %>

Next, create the ProductCatalog.Master page that handles the layout of all pages within the product
catalog:

<%@ Master Language=”C#” MasterPageFile=”Site.Master”
 Inherits=”System.Web.Mvc.ViewMasterPage<BaseProductCatalogPageView>” %>
<%@ Import
 Namespace=”Agathas.Storefront.Controllers.ViewModels.ProductCatalog” %>

<asp:Content ID=”TitleContent” ContentPlaceHolderID=”TitleContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”TitleContent” runat=”server”>
 </asp:ContentPlaceHolder>
</asp:Content>

<asp:Content ID=”MainContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server”>

 </asp:ContentPlaceHolder>
</asp:Content>

<asp:Content ID=”headerBasketSummary”
 ContentPlaceHolderID=”headerBasketSummary” runat=”server”>
</asp:Content>

<asp:Content ID=”MenuContent” ContentPlaceHolderID=”MenuContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”MenuContent” runat=”server”>
 <% Html.RenderPartial(“~/Views/Shared/Categories.ascx”,
 ((BaseProductCatalogPageView)Model).Categories); %>
 </asp:ContentPlaceHolder>
</asp:Content>

Within the folder Views/Home, update the Index.aspx view with the following markup:

<%@ Page Language=”C#” MasterPageFile=”~/Views/Shared/ProductCatalog.Master”
 Inherits=”System.Web.Mvc.ViewPage<HomePageView>” %>

<%@ Import
 Namespace=”Agathas.Storefront.Controllers.ViewModels.ProductCatalog” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.UI.Web.MVC.Helpers” %>

<asp:Content ID=”indexTitle” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Home Page
</asp:Content>
<asp:Content ID=”indexContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <img width=”559” height=”297”
 src=”<%=Html.Resolve(“/Content/Images/Products/product-lifestyle.jpg”)%>”
 style=”border-width: 0px; padding: 0px; margin: 0px” />

Creating The Product Catalog  ❘  501

 <div style=”clear: both;”></div>
 <h2>Top Products</h2>
 <div id=”items” style=”border-width: 1px; padding: 0px; margin: 0px”>
 <ul class=”items-list”>
 <% foreach (ProductSummaryView product in Model.Products)
 {%>
 <li class=”item-detail”>
 <a class=”item-productimage-link”
 href=”<%=Url.Action(“Detail”, “Product”,
 new { id = product.Id }, null) %>”>
 <img class=”item-productimage”
 src=”<%=Html.Resolve(“/Content/Images/Products/” +
 product.Id.ToString() +”.jpg”)%>” />
 <div class=”item-productname”>
 <%= Html.ActionLink(product.BrandName + “ “ + product.Name,
 “Detail”, “Product”, new { id = product.Id }, null)%>
 </div>
 <div class=”item-price”>
 <%= Html.Encode(product.Price)%></div>

 <%}%>

 </div>
</asp:Content>

Note in the bolded section of the Index.aspx markup that products’ images are named by the prod-
uct ID and stored in the Content/Images/Products folder for simplicity.

Create a new folder in Views named Product, and add the next view for the product catalog brows-
ing functionality named Detail.aspx with the following markup:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/ProductCatalog.Master”
 Inherits=”System.Web.Mvc.ViewPage<ProductDetailView>” %>

<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.ProductCatalog” %>
<%@ Import Namespace=”Agathas.Storefront.UI.Web.MVC.Helpers” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 <%=Model.Product.BrandName %> <%=Model.Product.Name %>
 for only <%=Model.Product.Price %>
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2><%=Model.Product.BrandName %> <%=Model.Product.Name %></h2>

 <div>

 <img src=”<%=Html.Resolve(“/Content/Images/Products/”
 + Model.Product.Id.ToString() + “.jpg”) %>” />

 <div>
 <%=Model.Product.Price %>

502  ❘  Chapter 11   Creating The Product Catalog

 <%=Model.Product.BrandName %> <%=Model.Product.Name %>

 <p>

 <select id=”productsizes”>
 <% foreach (ProductSizeOption option in Model.Product.Products)
 {%>
 <option value=”<%=option.Id %>”><%=option.SizeName %></option>
 <%
 }%>
 </select>
 <input type=”button” value=”+ Add to cart” />
 </p>
 <p>
 * - Rutrum mattis nulla sodales

 * - Duis sodales tempor felis ac

 * - Ut porta metus a metus

 </p>
 </div>
 </div>
 <div style=”clear: both;” />

 <h3>Returns / Delivery / Info</h3>
 <p>Pellentesque magna lorem, faucibus quis feugiat non, aliquet in libero.
 Integer sit amet gravida erat. Duis sodales tempor felis ac adipiscing.
 Suspendisse nonlectus enim.
 Vestibulum aliquet imperdiet posuere. Suspendisse ac diam odio.
 Ut porta metus a
 metus rutrum mattis. Nulla sodales, arcu ut mollis vehicula, tellus ante
 ultricies mauris, ultricies porttitor nunc purus a nisi.</p>
 <p>
 Nulla ipsum urna, cursus sed consectetur nec, varius quis diam.
 Morbi consequat sapien ut leo placerat ornare.</p>

</asp:Content>

The last view that will complete the product browsing experience requires JavaScript and will be used
by other views within the site. To this end, create a new JavaScript file within the Scripts folder
named agatha-common-scripts.js.

function hideOverlay(overlayId) {

 $(“#” + overlayId).animate({ opacity: “hide” });
}

function showOverlay(overlayId, idOfDivToOverlay) {

 heightAdditionOfOverlay = 0;

 var pos = $(“#” + idOfDivToOverlay).offset();
 var width = $(“#” + idOfDivToOverlay).width();
 var height = $(“#” + idOfDivToOverlay).height();
 $(“#” + overlayId).css({ “width”: width + “px”,
 “left”: pos.left + “px”,
 “top”: pos.top + “px”,

Creating The Product Catalog  ❘  503

 “height”: height + heightAdditionOfOverlay + “px” });
 $(“#” + overlayId).show();

 $(“#” + overlayId).animate
 (
 { opacity: 0.7 },
 1,
 function() { }
);
}

This JavaScript file allows an overlay and loading GIF to appear when the page is updating via an
AJAX request.

The ProductSearchResults.aspx that should be created within the Views/Product folder has the
following markup defined for the MenuContent placeholder, which is defined in the ProductCatalog​
.Master page:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/ProductCatalog.Master”
 Inherits=”System.Web.Mvc.ViewPage<ProductSearchResultView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.ProductCatalog” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.UI.Web.MVC.Helpers” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Products
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MenuContent” runat=”server”>

 <div class=”productsTitle”>
 <h2>Refine By</h2>
 </div>
 <% foreach (RefinementGroup refinementGroup in Model.RefinementGroups)
 {
 <h3><%=Html.Encode(refinementGroup.Name) %></h3>
 <div class=”refinement-box”>
 <ul class=”refine-attributes”>
 <% foreach (Refinement refinement in refinementGroup.Refinements)
 { %>

 <a class=”availableItem”
 id=”RefGrp-<%=Html.Encode(
 refinementGroup.GroupId.ToString() + ‘-’ +
 refinement.Id.ToString())%>”
 href=”JavaScript:refineSearch(
 <%=Html.Encode(refinementGroup.GroupId)%>,
 <%=Html.Encode(refinement.Id.ToString())%>)”>
 <%=Html.Encode(refinement.Name)%>

 <% }%>

 </div>

504  ❘  Chapter 11   Creating The Product Catalog

 <% } %>

</asp:Content>

<asp:Content ID=”Content3” ContentPlaceHolderID=”MainContent” runat=”server”>

…

</asp:Content>

This section of the page displays all the refinement groups that are available to be filtered within the
collection of products in a given category.

The next part of the ProductSearchResults.aspx markup is views main contents, as can be seen
in the following listing:

<asp:Content ID=”Content3” ContentPlaceHolderID=”MainContent” runat=”server”>

<script type=”text/javascript”>

 …

</script>

<div id=”productResults”>
<div class=”productsTitle”>
<h2><%= Html.ActionLink(“Home”, “Index”, “Home”)%> >
 <%=Html.Encode(Model.SelectedCategoryName) %></h2>
</div>

<div style=”margin-bottom: 41px;”>
 Sort by
 <select class=”item-sortdropdown” id=”ddlSortBy”>
 <option value=”1”>Price - High to Low</option>
 <option value=”2”>Price - Low to High</option>
 </select>

 products found
 <%=Html.Encode(Model.NumberOfTitlesFound) %>

 <%=Html.BuildPageLinksFrom(Model.CurrentPage,
 Model.TotalNumberOfPages,
 x => “JavaScript:displayPage(“+ x +”)”)%>

</div>

<div style=”clear: both;”></div>

<div id=”overlay” class=”overlay”></div>
<div id=”items”>
 <ul class=”items-list”>
 <% foreach (ProductSummaryView product in Model.Products){ %>
 <li class=”item-detail”>
 <a class=”item-productimage-link”
 href=”<%=Url.Action(“Detail”, “Product”,

Creating The Product Catalog  ❘  505

 new { id = product.Id }, null) %>”>
 <img class=”item-productimage”
 src=”<%=Html.Resolve(“/Content/images/Products/” +
 product.Id.ToString() + “.jpg”) %>” />
 <div class=”item-productname”>
 <%= Html.ActionLink(Html.Encode(product.BrandName) + “ “ +
 Html.Encode(product.Name), “Detail”,
 “Product”,
 new { id = product.Id }, null)%></div>
 <div class=”item-price”><%=product.Price %></div>

 <% } %>

</div>

<div style=”clear: both;”></div>

 <%=Html.BuildPageLinksFrom(Model.CurrentPage,
 Model.TotalNumberOfPages,
 x => “JavaScript:displayPage(“+ x +”)”)%>

<p> </p>

<script type=”text/html” id=”productItemTemplate”>
 <ul class=”items-list”>
 {#foreach $T.items as record}
 <li class=”item-detail”>
 <a class=”item-productimage-link”
 href=”<%=Html.Resolve(“/Product/Detail/”) %>{$T.record.Id}”>
 <img class=”item-productimage”
 src=”<%=Html.Resolve(“/Content/images/Products/{$T.record.Id}.jpg”) %>”
 />

 <div class=”item-productname”>
 <a href=”<%=Html.Resolve(“/Product/Detail/”) %>
 {$T.record.Id}”>{$T.record.BrandName} {$T.record.Name}
 </div>

 <div class=”item-price”>{$T.record.Price}</div>

 {#/for}

</script>

<%=Html.Hidden(“categoryId”, Html.Encode(Model.SelectedCategory.ToString()))%>
</div>

<div id=”dialog-noproducts” title=”No products found matching your refinement”>
 <p>Your selection caused no results to be returned -
 please widen your search criteria.</p>
</div>
</asp:Content>

Code snippet ProductSearchResults.aspx in project Agathas.Storefront.UI.Web.MVC

506  ❘  Chapter 11   Creating The Product Catalog

Bolded in the listing are calls to the BuildPageLinksFrom
helper method that you created earlier in the section to produce
the paging links. The second highlighted section simply gener-
ates the list of products on the page. The third highlighted sec-
tion uses the JTemplate library, as discussed in Chapter 9, to
data bind a JSON array. The fourth highlight is the modal dia-
log box, which is displayed if a customer refines her selections
and no results are produced.

To get a better idea of how the refinements behave, look at
Figure 11-9.

Figure 11-9 shows that a customer has selected the Trousers
category and then refined the results to only display black Levi’s
trousers. All other selections have been disabled that don’t cor-
respond to the first two criteria that the customer has specified.
Figures 11-10 through 11-13 show all the states of the filter
criteria that are achieved by changing the CSS class associated
with the element.

Figure 11-10 shows what is available for selection.

Figure 11-11 shows the color black selected.

Figure 11-12 shows some filter criteria disabled.

Figure 11-13 shows selected criteria that are now disabled.

Figure 11-9

Figure 11 -10 Figure 11 -11 Figure 11 -12 Figure 11 -13

There is a lot of JavaScript code to support the product attribute refinements’ functionality, so I will
present the entire JavaScript code that sits on the ProductSearchResults.aspx page before discuss-
ing what is happening:

<asp:Content ID=”Content3” ContentPlaceHolderID=”MainContent” runat=”server”>

<script type=”text/javascript”>

 // Array to store the refinement selections made by a user.
 var refinementSelections = [];
 // Flag to stop user who is selecting from doing anything while the page
 // is being reloaded.
 var disallowUpdates = false;
 // Vars to store data on the last refinement selection.
 var lastSelectedRefinementItemId;
 var lastSelectedRefinementGroupId;

Creating The Product Catalog  ❘  507

 // Flag to show if last action was a narrowing or criteria widening selection.
 var lastActionWasToNarrowProductRefinement = false;

 // OnPage Load function; run when DOM is fully loaded.
 // ===
 $().ready(function() {

 $(‘#ddlSortBy’).change(function() {
 if (disallowUpdates == false)
 displayPage(1);
 });

 jQuery(“#dialog-noproducts”).dialog({
 bgiframe: true, autoOpen: false, height: 100, modal: true
 });

 });

 // Method called to determine the sort ordering and the current category.
 // ==
 function displayPage(index) {

 if (disallowUpdates == false) {

 var categoryId = $(‘#categoryId’).val();
 var sortBy = $(‘#ddlSortBy’).val();

 getProducts(index, categoryId, sortBy);
 }
 }

 // Method called when a refinement is clicked; this changes the image displayed
 // and stores the selection before calling displayPage to update the view.
 // ===
 function refineSearch(refinementGroupId, refinementItemId) {

 if (disallowUpdates == false) {
 itemRefinementElementId =
 buildRefinementItemElementIdForm(refinementGroupId,
 refinementItemId);

 lastSelectedRefinementItemId = refinementItemId;
 lastSelectedRefinementGroupId = refinementGroupId;

 if (!isDisabled(itemRefinementElementId)) {
 if (isAvailable(itemRefinementElementId)) {
 setAsSelected(itemRefinementElementId);
 saveRefinementToFilterSelection(refinementGroupId,
 refinementItemId);
 lastActionWasToNarrowProductRefinement = true;
 displayPage(1);
 }
 else if (isSelectedButDisabled(itemRefinementElementId)) {
 setAsDisabled(itemRefinementElementId);
 removeRefinementFromFilterSelection(refinementGroupId,

508  ❘  Chapter 11   Creating The Product Catalog

 refinementItemId);
 }
 else {
 setAsAvailable(itemRefinementElementId);
 removeRefinementFromFilterSelection(refinementGroupId,
 refinementItemId);
 lastActionWasToNarrowProductRefinement = false;
 displayPage(1);
 }
 }
 }
 }

 // This function sends a post request to obtain the new view model after a
 // customer has changed his refinement criteria, changed page,
 // or changed the product result ordering.
 // ===
 function getProducts(index, categoryId, sortBy) {

 if (disallowUpdates == false) {
 disallowUpdates = true;

 showOverlay(“overlay”, “main”, 10);

 var jsonData = JSON.stringify(
 { “CategoryId”: categoryId,
 “Index”: index,
 “SortBy”: sortBy,
 “RefinementGroups”: refinementSelections
 });

 $.ajax({
 url: ‘<%=Html.Resolve(“/Product/GetProductsByAjax”) %>’,
 type: ‘POST’,
 dataType: ‘json’,
 data: jsonData,
 contentType: ‘application/json; charset=utf-8’,
 success: function(data) {

 var mydata = { items: data.Products };

 if (data.Products.length == 0) {

 showNoProductsFoundDialogBoxAndRevertSelection();
 }
 else {

 $(“#items”).setTemplate(
 $(“#productItemTemplate”).html());
 $(“#items”).processTemplate(mydata);

 $(‘#numberOfProductsFound’).text(
 data.NumberOfTitlesFound);

 buildPageLinksFor(“#pageLinksTop”,

Creating The Product Catalog  ❘  509

 data.CurrentPage, data.TotalNumberOfPages);
 buildPageLinksFor(“#pageLinksBottom”,
 data.CurrentPage, data.TotalNumberOfPages);

 for (var i = data.RefinementGroups.length - 1;
 i >= 0;  -- ​i) {
 filterOutRefinements(
 data.RefinementGroups[i].GroupId,
 data.RefinementGroups[i].Refinements);
 }
 }

 hideOverlay(“overlay”);

 disallowUpdates = false;
 }
 });
 }
 }

 // Method used to work out which refinements to mark as
 // available/disabled/selected based on the list of products that matched the
 // customer’s last selection.
 // ===
 function filterOutRefinements(refinementGroupId, availableProductRefinements) {

 $(“[id^=’” + buildGroupRefinementElementIdForm(refinementGroupId) +
 “‘]”).each(function() {

 itemRefinementElementId = $(this).attr(‘id’);

 var refinementItemId = findRefinementItemIdFrom(
 itemRefinementElementId);

 var refinementItemIdMatched =
 refinementItemIdIsInProductAvailableRefinements
 (availableProductRefinements, refinementItemId);

 if (!lastSelectionWasMadeIn(refinementGroupId)) {

 if (lastActionWasToNarrowProductRefinement == true) {

 if ((isSelected(itemRefinementElementId) ||
 isSelectedButDisabled(itemRefinementElementId)) &&
 !refinementItemIdMatched) {
 setAsSelectedButDisabled(itemRefinementElementId);
 }
 else if (!refinementItemIdMatched) {
 setAsDisabled(itemRefinementElementId);
 }
 else if (isDisabled(itemRefinementElementId) &&
 refinementItemIdMatched) {
 setAsAvailable(itemRefinementElementId);
 }
 else if (isSelectedButDisabled(itemRefinementElementId) &&

510  ❘  Chapter 11   Creating The Product Catalog

 refinementItemIdMatched) {
 setAsSelected(itemRefinementElementId);
 }
 }
 else {

 if ((isSelected(itemRefinementElementId) ||
 isSelectedButDisabled(itemRefinementElementId)) &&
 !refinementItemIdMatched) {
 setAsSelectedButDisabled(itemRefinementElementId);
 }
 else if ((isSelected(itemRefinementElementId) ||
 isSelectedButDisabled(itemRefinementElementId)) &&
 refinementItemIdMatched) {
 setAsSelected(itemRefinementElementId);
 }
 else if (isDisabled(itemRefinementElementId) &&
 refinementItemIdMatched) {
 setAsAvailable(itemRefinementElementId);
 }
 else if (isDisabled(itemRefinementElementId) &&
 !refinementItemIdMatched &&
 !otherRefinementSelectionsExistApartFrom(refinementGroupId))
 {
 setAsAvailable(itemRefinementElementId);
 }
 else if (isAvailable(itemRefinementElementId) &&
 !refinementItemIdMatched) {
 setAsDisabled(itemRefinementElementId);
 }
 }
 }
 else if (lastActionWasToNarrowProductRefinement == false) {

 if (isSelected(itemRefinementElementId)) {
 setAsSelected(itemRefinementElementId);
 }
 else if (!otherRefinementSelectionsExistApartFrom(
 refinementGroupId)) {
 setAsAvailable(itemRefinementElementId);
 }
 }
 else if (isDisabled(itemRefinementElementId) &&
 refinementItemIdMatched) {
 setAsAvailable(itemRefinementElementId);
 }
 });
 }

 // Method called to show a dialog box and revert selection if
 // a customer makes a selection that produces no results.
 // ===
 function showNoProductsFoundDialogBoxAndRevertSelection() {

 itemRefinementElementId = buildRefinementItemElementIdForm

Creating The Product Catalog  ❘  511

 (lastSelectedRefinementGroupId, lastSelectedRefinementItemId);

 setAsSelected(itemRefinementElementId);

 saveRefinementToFilterSelection(lastSelectedRefinementGroupId,
 lastSelectedRefinementItemId);

 $(“#dialog-noproducts”).dialog(‘open’);
 }

 // Method used to get the refinement item ID from the element name.
 // ===
 function findRefinementItemIdFrom(itemRefinementElementId) {

 var refinementItemId = 0;

 refinementItemId = itemRefinementElementId.substring
 (itemRefinementElementId.lastIndexOf(“-”)+1,
 itemRefinementElementId.length);

 return refinementItemId;
 }

 // Method used to determine if the given refinement group ID is of the same
 // group that the last selection was made.
 // ===
 function lastSelectionWasMadeIn(refinementGroupId)
 {
 return lastSelectedRefinementGroupId == refinementGroupId;
 }

 // Method used to determine if the user has selected other refinements in other
 // groups than the given refinement group ID.
 // ===
 function otherRefinementSelectionsExistApartFrom(refinementGroupId) {

 var refinementSelectionsCount = 0;

 for (var i = refinementSelections.length - 1; i >= 0;  -- ​i) {

 if (refinementSelections[i].GroupId != refinementGroupId) {
 refinementSelectionsCount +=
 refinementSelections[i].SelectedRefinements.length;
 }
 }

 return refinementSelectionsCount > 0;
 }

 // Method to determine if the given refinement item is in the list of matches
 // for the last
 // ===
 function refinementItemIdIsInProductAvailableRefinements(
 availableProductRefinements,refinementItemId) {

 for (var i = availableProductRefinements.length - 1; i >= 0;  -- ​i) {

512  ❘  Chapter 11   Creating The Product Catalog

 if (availableProductRefinements[i].Id == refinementItemId)
 return true;
 }
 return false;
 }

 // Helper methods
 // ===
 function buildGroupRefinementElementIdForm(refinementGroupId) {
 return ‘RefGrp-’ + refinementGroupId;
 }

 function buildRefinementItemElementIdForm(refinementGroupId,
 refinementItemId) {
 return ‘RefGrp-’ + refinementGroupId + ‘-’ + refinementItemId;
 }

 function serviceFailed(result) {
 alert(‘Service call failed: ‘ + result.status + ‘’ + result.statusText);
 }

 // Methods to store, retrieve, and update the refinement selections
 // ===
 function removeRefinementFromFilterSelection(refinementGroupId,
 refinementItemId) {

 var refinementSelectionGroup;

 for (var i = refinementSelections.length - 1; i >= 0;  -- ​i) {

 if (refinementSelections[i].GroupId == refinementGroupId) {
 refinementSelectionGroup = refinementSelections[i];
 }
 }

 refinementSelectionGroup.SelectedRefinements.splice(
 findIndexOf(refinementSelectionGroup.SelectedRefinements,
 refinementItemId), 1);

 }

 function findIndexOf(refinementGroupId, refinementItemId) {

 for (var i = refinementGroupId.length - 1; i >= 0;  -- ​i) {
 if (refinementGroupId[i] == refinementItemId)
 return i;
 }
 return -1;
 }

 function saveRefinementToFilterSelection(refinementGroupId, refinementItemId) {

 var refinementSelectionGroup = new Object();
 var foundExistingGroup = false;

 if (refinementSelections.length == 0) {

Creating The Product Catalog  ❘  513

 refinementSelectionGroup.GroupId = refinementGroupId;
 refinementSelections[0] = refinementSelectionGroup;
 refinementSelectionGroup.SelectedRefinements = [];
 }
 else {

 for (var i = refinementSelections.length - 1; i >= 0;  -- ​i) {

 if (refinementSelections[i].GroupId == refinementGroupId) {
 refinementSelectionGroup = refinementSelections[i];
 foundExistingGroup = true;
 }

 }
 if (foundExistingGroup == false) {
 refinementSelectionGroup.GroupId = refinementGroupId;
 refinementSelections[refinementSelections.length] =
 refinementSelectionGroup;
 refinementSelectionGroup.SelectedRefinements = [];
 }
 }

 refinementSelectionGroup.
 SelectedRefinements[refinementSelectionGroup.SelectedRefinements.length] =
 refinementItemId
 }

 // Method to build the paging links after a refine selection.
 // ===
 function buildPageLinksFor(spanId, index, totalPages) {

 var i = 1;
 var html = ‘’;
 for (i = 1; i <= totalPages; i++) {

 if (i == index)
 html = html + “<a class=’selected’
 href=’JavaScript:displayPage(“ + i +
 “)’>” + i + “ ”;
 else
 html = html + “<a class=’notselected’
 href=’JavaScript:displayPage(“ + i
 + “)’>” + i + “ ”;
 }

 $(spanId).html(html);
 }

 // Helper methods to determine the state of a refinement.
 // ===
 function setAsSelectedButDisabled(elementName) {
 $(‘#’ + elementName).removeClass().addClass(‘selecteddisabledItem’);
 }

 function setAsSelected(elementName) {

514  ❘  Chapter 11   Creating The Product Catalog

 $(‘#’ + elementName).removeClass().addClass(‘selectedItem’);
 }

 function setAsAvailable(elementName) {
 $(‘#’ + elementName).removeClass().addClass(‘availableItem’);
 }

 function setAsDisabled(elementName) {
 $(‘#’ + elementName).removeClass().addClass(‘disabledItem’);
 }

 function isSelected(elementName) {
 return ($(‘#’ + elementName).attr(“class”) == “selectedItem”);
 }

 function isAvailable(elementName) {
 return ($(‘#’ + elementName).attr(“class”) == “availableItem”);
 }

 function isDisabled(elementName) {
 return ($(‘#’ + elementName).attr(“class”) == “disabledItem”);
 }

 function isSelectedButDisabled(elementName) {
 return ($(‘#’ + elementName).attr(“class”) == “selecteddisabledItem”);
 }

</script>
…

</asp:Content>

Code snippet ProductSearchResults.aspx in project Agathas.Storefront.UI.Web.MVC

When you click a refinement, a call to refineSearch(refinementGroupId, refinementItemId)
is made, and the following steps occur:

	 1.	 A check is made to determine if a refinement can take — ​that is, if it’s not partway through
handling the last refinement.

	 2.	 The class of the refinement is changed to reflect the change in state.

	 3.	 The selection is added or removed to an internal array to register what was selected or dese-
lected. The saveRefinementToFilterSelection method handles this.

	 4.	 A call to displayPage is made.

The displayPage method then obtains the order to sort the results and the category that this page
refers to before calling getProducts, which is the method that makes the AJAX call.

The getProducts method performs several steps:

	 1.	 The overlay div is shown to display a loading GIF to the customer via the showOverlay method.

	 2.	 The customer’s selections held within the internal array are turned into a JSON array, and an
HTTP POST is made to the controller.

Creating The Product Catalog  ❘  515

	 3.	 If no products are returned, the modal box is shown via the showNoProductsFoundDialog​
BoxAndRevertSelection method.

	 4.	 If products are found, the collection is data bound using the jTemplate library, and then
each of the refinement groups is updated using the filterOutRefinements method.

This gives a high-level overview of what the JavaScript code is doing. I highly recommend downloading
the source code for this case study and studying it from within Visual Studio for a better understanding
of the logic.

The product functionality is now complete. Your last task is to wire up all the loosely coupled code.

Setting Up IoC
Switch to the Web.MVC project and add a new class named BootStrapper, which uses StructureMap
to configure your dependencies:

using Agathas.Storefront.Infrastructure.Logging;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Infrastructure.Configuration;
using Agathas.Storefront.Model.Categories;
using Agathas.Storefront.Model.Products;
using Agathas.Storefront.Services.Implementations;
using Agathas.Storefront.Services.Interfaces;
using StructureMap;
using StructureMap.Configuration.DSL;
using Agathas.Storefront.Infrastructure.Email;

namespace Agathas.Storefront.UI.Web.MVC
{
 public class BootStrapper
 {
 public static void ConfigureDependencies()
 {
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ControllerRegistry>();

 });
 }

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 // Repositories
 ForRequestedType<ICategoryRepository>()
 .TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories.CategoryRepository>();
 ForRequestedType<IProductTitleRepository>()
 .TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories.ProductTitleRepository>();
 ForRequestedType<IProductRepository>().TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories.ProductRepository>();

516  ❘  Chapter 11   Creating The Product Catalog

 ForRequestedType<IUnitOfWork>().TheDefault.Is.OfConcreteType
 <Repository.NHibernate.NHUnitOfWork>();

 // Product Catalogue
 ForRequestedType<IProductCatalogService>()
 .TheDefault.Is.OfConcreteType
 <ProductCatalogService>();

 // Application Settings
 ForRequestedType<IApplicationSettings>()
 .TheDefault.Is.OfConcreteType
 <WebConfigApplicationSettings>();

 // Logger
 ForRequestedType<ILogger>().TheDefault.Is.OfConcreteType
 <Log4NetAdapter>();

 // E-Mail Service
 ForRequestedType<IEmailService>().TheDefault.Is.OfConcreteType
 <TextLoggingEmailService>();
 }
 }
 }
}

Refer to Chapter 8 for the details of wiring up dependencies with StructureMap.

Switch to the code view of Global.asax, and update it so that the StructureMap BootStrapper and
AutoMapperBootStrapper are called and the ApplicationSettingsFactory, LoggingFactory,
and EmailServiceFactory are initialized.

Also add a second route to ignore browsers that request a favorite icon for the website:

using System.Web.Mvc;
using System.Web.Routing;
using Agathas.Storefront.Controllers;
using Agathas.Storefront.Infrastructure.Configuration;
using Agathas.Storefront.Infrastructure.Email;
using Agathas.Storefront.Infrastructure.Logging;
using StructureMap;

namespace Agathas.Storefront.UI.Web.MVC
{

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);
 routes.IgnoreRoute(“{*favicon}”,
 new { favicon = @”(.*/)?favicon.ico(/.*)?”});

 …

 }

 protected void Application_Start()

Creating The Product Catalog  ❘  517

 {
 RegisterRoutes(RouteTable.Routes);

 BootStrapper.ConfigureDependencies();

 Services.AutoMapperBootStrapper.ConfigureAutoMapper();

 ApplicationSettingsFactory.InitializeApplicationSettingsFactory
 (ObjectFactory.GetInstance<IApplicationSettings>());

 LoggingFactory.InitializeLogFactory(ObjectFactory.GetInstance<ILogger>());

 EmailServiceFactory.InitializeEmailServiceFactory
 (ObjectFactory.GetInstance<IEmailService>());

 ControllerBuilder.Current
 .SetControllerFactory(new IoCControllerFactory());

 LoggingFactory.GetLogger().Log(“Application Started”);
 }
 }
}

If you add some product information to the database, or if you download the code for this chapter
from www.wrox.com and copy the Shop.mdf database, you will be able to browse the product cata-
log, as can be seen in Figure 11-14. Just set Web.MVC as the start-up project, select Default.aspx as
the start-up page, and press F5 or run the debugger.

Figure 11 -14

518  ❘  Chapter 11   Creating The Product Catalog

Summary

This was a lengthy chapter that achieved a lot. Here’s a recap:

You started by designing a domain model for the product catalog. The model was fairly ane-➤➤

mic because it contained no behavior. After building the domain model, you created a data-
base and built the data model that would store the state of the product catalogue.

To retrieve the product catalog entities, you utilized NHibernate as your data access strat-➤➤

egy. Your first job was to map the product catalog domain model to the data model via the
XML mapping files. Your second job was to build the repository structure to retrieve the
entities. The base repository structure you build will be used throughout the rest of the site
construction.

To expose the entities to a consumer, you built a service layer. You started by creating view ➤➤

models that reflected a view on the domain model and utilized AutoMapper for the object-
to-object mapping requirements. You then created the services and used the Request Reply
Messaging pattern for communication.

The consumer of the service layer was the controllers project. Within the controllers product, ➤➤

you added the actions of the site that would communicate with the service layer to obtain the
product catalog views. You also enabled Ajax communication from the UX layer by exposing
JSON actions for which you had to add a model binder that would enable JSON objects to
be mapped to .NET data transfer objects.

Lastly, you built the views of the product catalog. You built these views on a consistent lay-➤➤

out that will be used for the entire site and were strongly typed to view models supplied by
the controllers containing view models supplied by the service layer. The product category
.ASPX view contained a large amount of JavaScript to perform Ajax filtering of products.

In the next chapter, you will build the basket functionality for the store.

implementing the shopping
Basket

whaT’s in This chaPTer?

Adding products to a basket via AJAX➤➤

Using the client’s cookie to store a summary of the basket contents➤➤

Utilizing AJAX for the basket detail page when modifying the basket ➤➤

or shipping options

In Chapter 11, you enabled a customer to browse for products; this chapter addresses the needs
of a customer to store the items they would like to order in a basket.

imPlemenTing The baskeT

The basket implementation should use AJAX in all of its functionality, in keeping with the rich
web 2.0 theme of the product browsing pages. Therefore, you will use AJAX to add, amend,
and remove items from a basket, as well as select the dispatch options. A summary of the bas-
ket will appear on all product browsing pages, which will be stored in the client’s cookie to
enable faster page generation

basket Domain model
Figure 12-1 shows the domain model of the entities involved with the basket functionality.

12

520  ❘  Chapter 12   Implementing the Shopping Basket

Figure 12-1

Create a new folder within the Model project named Shipping, and add to it a new class named
Courier that inherits from the EntityBase class that you created in the Infrastructure project.

using System.Collections.Generic;
using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Shipping
{
 public class Courier : EntityBase<int>
 {
 private readonly string _name;
 private readonly IEnumerable<ShippingService> _services;

 public Courier()
 {
 }

 public Courier(string name, IEnumerable<ShippingService> services)
 {
 _name = name;
 _services = services;
 }

 public string Name
 {

Implementing the Basket  ❘  521

 get { return _name; }
 }

 public IEnumerable<ShippingService> Services
 {
 get { return _services; }
 }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }
 }
}

The Courier class represents the shipping courier that will deliver the customer’s order. A courier has
a collection of shipping services that it can provide, so create a new class named ShippingService
within the Shipping folder:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Shipping
{
 public class ShippingService : EntityBase<int>
 {
 private readonly string _code;
 private readonly string _description;
 private readonly Courier _courier;

 public ShippingService()
 { }

 public ShippingService(string code, string description, Courier courier)
 {
 _code = code;
 _description = description;
 _courier = courier;
 }

 public string Code
 {
 get { return _code;}
 }

 public string Description
 {
 get { return _description; }
 }

 public Courier Courier
 {
 get { return _courier; }
 }

 protected override void Validate()

522  ❘  Chapter 12   Implementing the Shopping Basket

 {
 throw new NotImplementedException();
 }
 }
}

A customer can select a delivery option from her basket. A delivery option consists of a shipping
service and a delivery charge to the customer. A delivery option also contains a free delivery thresh-
old that allows the customer to receive free delivery if her basket total exceeds a given amount.

Create an interface contract in the Shipping folder for the delivery option named IDeliveryOption
matching the following code listing:

namespace Agathas.Storefront.Model.Shipping
{
 public interface IDeliveryOption
 {
 int Id { get; set; }
 decimal FreeDeliveryThreshold { get; }
 decimal Cost { get; }
 ShippingService ShippingService { get;}
 decimal GetDeliveryChargeForBasketTotalOf(decimal total);
 }
}

Next, create a default implementation of the IDeliveryOption named DeliveryOption, as shown
in the following listing:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Shipping
{
 public class DeliveryOption : EntityBase<int>, IAggregateRoot, IDeliveryOption
 {
 private readonly decimal _freeDeliveryThreshold;
 private readonly decimal _cost;
 private readonly ShippingService _shippingService;

 public DeliveryOption()
 {
 }

 public DeliveryOption(decimal freeDeliveryThreshold, decimal cost,
 ShippingService shippingService)
 {
 _freeDeliveryThreshold = freeDeliveryThreshold;
 _cost = cost;
 _shippingService = shippingService;
 }

 public decimal GetDeliveryChargeForBasketTotalOf(decimal total)
 {
 if (total > FreeDeliveryThreshold)

Implementing the Basket  ❘  523

 return 0;

 return Cost;
 }

 public decimal FreeDeliveryThreshold
 {
 get { return _freeDeliveryThreshold; }
 }

 public decimal Cost
 {
 get { return _cost;}
 }

 public ShippingService ShippingService
 {
 get { return _shippingService; }
 }

 protected override void Validate()
 {
 throw new NotImplementedException();
 }
 }
}

Before a customer has selected a delivery option, a NullDeliveryOption is used to calculate the
basket costs. More information on the Null Object pattern can be found in Chapter 2. Add the new
NullDeliveryOption class to the Shipping folder matching the code definition that follows:

using System;

namespace Agathas.Storefront.Model.Shipping
{
 public class NullDeliveryOption : IDeliveryOption
 {
 public int Id { get; set; }

 public decimal FreeDeliveryThreshold
 {
 get { return 0; }
 }

 public decimal Cost
 {
 get { return 0; }
 }

 public ShippingService ShippingService
 {
 get { throw new NotImplementedException(); }
 set { throw new NotImplementedException(); }

524  ❘  Chapter 12   Implementing the Shopping Basket

 }

 public decimal GetDeliveryChargeForBasketTotalOf(decimal total)
 {
 return 0;
 }
 }
}

In the context of the store, there is no requirement to obtain the courier or the shipping service
outside of a delivery option. With this in mind, you need only to create an interface for the delivery
options repository named IDeliveryOptionRepository:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Shipping
{
 public interface IDeliveryOptionRepository :
 IReadOnlyRepository<DeliveryOption, int>
 {
 }
}

With the courier and delivery options sorted, you can turn your attention to the basket domain.

Unlike the product entities, baskets are created and not just retrieved from the database; therefore,
validation must occur before you try to persist a transient basket. Create a folder within the Models
project named Basket. Add two new classes named BasketBusinessRules and BasketItem​
BusinessRules, which will contain all the business rules that relate to a customer’s basket:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Basket
{
 public class BasketBusinessRules
 {
 public static readonly BusinessRule DeliveryOptionRequired =
 new BusinessRule(“DeliveryOption”,
 “A basket must have a valid delivery option.”);
 public static readonly BusinessRule ItemInvalid =
 new BusinessRule(“Item”,
 “A basket cannot have any invalid items.”);
 }
}

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Basket
{
 public class BasketItemBusinessRules
 {
 public static readonly BusinessRule BasketRequired =
 new BusinessRule(“Basket”,
 “A basket item must be related to a basket.”);

Implementing the Basket  ❘  525

 public static readonly BusinessRule ProductRequired =
 new BusinessRule(“Product”,
 “A basket item must be related to a product.”);
 public static readonly BusinessRule QtyInvalid =
 new BusinessRule(“Qty”,
 “The quantity of a basket item cannot be negative.”);
 }
}

Add a class named BasketItem to the Basket folder with the following code listing:

using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Model.Basket
{
 public class BasketItem : EntityBase<int>
 {
 private int _qty;
 private Product _product;
 private Basket _basket;

 public BasketItem()
 {
 }

 public BasketItem(Product product, Basket basket, int qty)
 {
 _product = product;
 _basket = basket;
 _qty = qty;
 }

 public decimal LineTotal()
 {
 return Product.Price*Qty;
 }

 public int Qty { get { return _qty; } }

 public Product Product { get { return _product; } }

 public Basket Basket { get { return _basket; } }

 public bool Contains(Product product)
 {
 return Product == product;
 }

 public void IncreaseItemQtyBy(int qty)
 {
 _qty += qty;
 }

 public void ChangeItemQtyTo(int qty)

526  ❘  Chapter 12   Implementing the Shopping Basket

 {
 _qty = qty;
 }

 protected override void Validate()
 {
 if (Qty < 0)
 base.AddBrokenRule(BasketItemBusinessRules.QtyInvalid);

 if (Product == null)
 base.AddBrokenRule(BasketItemBusinessRules.ProductRequired);

 if (Basket == null)
 base.AddBrokenRule(BasketItemBusinessRules.BasketRequired);
 }
 }
}

The BasketItem class simply represents each item in a customer’s basket. To create a basket item,
add a BasketItemFactory, as shown in the following listing:

using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Model.Basket
{
 public static class BasketItemFactory
 {
 public static BasketItem CreateItemFor(Product product, Basket basket)
 {
 return new BasketItem(product, basket, 1);
 }
 }
}

With the business rules and basket items created, you can create the Basket entity:

using System;
using System.Collections.Generic;
using System.Linq;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Model.Shipping;
using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Model.Basket
{
 public class Basket : EntityBase<Guid>, IAggregateRoot
 {
 private IList<BasketItem> _items;
 private IDeliveryOption _deliveryOption;

 public Basket()
 {
 _items = new List<BasketItem>();
 _deliveryOption = new NullDeliveryOption();

Implementing the Basket  ❘  527

 }

 public Guid Id { get; set; }

 public int NumberOfItems
 {
 get { return _items.Sum(i => i.Qty); }
 }

 public decimal BasketTotal
 {
 get { return ItemsTotal + DeliveryCost(); }
 }

 public decimal ItemsTotal
 {
 get { return _items.Sum(i => i.Qty * i.Product.Price); }
 }

 public void Add(Product product)
 {
 if (BasketContainsAnItemFor(product))
 GetItemFor(product).IncreaseItemQtyBy(1);
 else
 _items.Add(BasketItemFactory.CreateItemFor(product, this));
 }

 public BasketItem GetItemFor(Product product)
 {
 return _items.Where(i => i.Contains(product)).FirstOrDefault();
 }

 private bool BasketContainsAnItemFor(Product product)
 {
 return _items.Any(i => i.Contains(product));
 }

 public void Remove(Product product)
 {
 if (BasketContainsAnItemFor(product))
 {
 _items.Remove(GetItemFor(product));
 }
 }

 public void ChangeQtyOfProduct(int qty, Product product)
 {
 if (BasketContainsAnItemFor(product))
 {
 GetItemFor(product).ChangeItemQtyTo(qty);
 }
 }

 public int NumberOfItemsInBasket()

528  ❘  Chapter 12   Implementing the Shopping Basket

 {
 return _items.Sum(i => i.Qty);
 }

 public IEnumerable<BasketItem> Items()
 {
 return _items;
 }

 public decimal DeliveryCost()
 {
 return DeliveryOption.GetDeliveryChargeForBasketTotalOf(ItemsTotal);
 }

 public IDeliveryOption DeliveryOption
 {
 get { return _deliveryOption; }
 }

 public void SetDeliveryOption(IDeliveryOption deliveryOption)
 {
 _deliveryOption = deliveryOption;
 }

 protected override void Validate()
 {
 if (DeliveryOption == null)
 base.AddBrokenRule(BasketBusinessRules.DeliveryOptionRequired);

 foreach (BasketItem item in this.Items())
 {
 if (item.GetBrokenRules().Count() > 0)
 base.AddBrokenRule(BasketBusinessRules.ItemInvalid);
 }
 }
 }
}

The Basket class consists of methods to add, remove, and modify the items in its collection as well
as the ability to set a DeliveryOption.

To retrieve and persist baskets, you need to define a contract for a basket repository. Add a new
interface named IBasketRepository to the Basket folder with the following listing:

using System;
using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Basket
{
 public interface IBasketRepository : IRepository<Basket, Guid>
 {
 }
}

Implementing the Basket  ❘  529

Now that the basket model is complete, you can update the database to add the new tables required
to hold the state of the basket aggregation as well as information pertaining to shipping and delivery
options.

Create the Basket Tables
You will now create the data tables to store the basket and shipping details. Open the Shop.mdf data-
base within the Web.MVC project and add the following tables, as shown in Figure 12-2. (The Products
table already exists, because you created this in Chapter 11.) Ensure that you set all the primary key
fields as identity fields. Apart from the Baskets table, this means that the database is in charge of creat-
ing the entity’s identity.

Figure 12-2

After the data model is created, you need to set up the mapping files so that NHibernate can retrieve
and persist customers’ baskets.

NHibernate Mapping
As with the Product entities, you will create a set of mapping files so that NHibernate knows how to
map between the data model and the domain model.

530  ❘  Chapter 12   Implementing the Shopping Basket

The mapping file for the Courier class is Courier.hbm.xml, and the markup follows. Add the XML
file to the NHibernate Mapping folder:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Shipping”
 assembly=”Agathas.Storefront.Model”>

 <class name=”Courier” table=”Couriers” lazy=”false” >

 <id name=”Id” column=”CourierId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property access=”field.camelcase-underscore” name=”Name”>
 <column name=”Name” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 </class>
</hibernate-mapping>

Remember that you need to change the build action for the Courier.hbm.xml file. Right-click on
the Courier.hbm.xml XML file and bring up its properties from the context-sensitive menu. Once
the Properties dialog is displayed, change the build action to Embedded Resource. Doing so ensures
that the XML data is embedded when the assembly is built. All the mapping files need to have their
build actions changed to Embedded Resource.

The mapping file for the ShippingService class is ShippingService.hbm.xml and is shown next:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Shipping”
 assembly=”Agathas.Storefront.Model”>

 <class name=”ShippingService” table=”CourierServices” lazy=”false” >

 <id name=”Id” column=”CourierServiceId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property access=”field.camelcase-underscore” name=”Code”>
 <column name=”ServiceCode” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property access=”field.camelcase-underscore” name=”Description”>
 <column name=”ServiceDescription” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <many-to-one access=”field.camelcase-underscore” name=”Courier”
 class=”Courier”
 column=”CourierId”
 not-null=”true”
 lazy=”false”/>
 </class>
</hibernate-mapping>

Implementing the Basket  ❘  531

The mapping file for the Basket entity is Basket.hbm.xml:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Basket”
 assembly=”Agathas.Storefront.Model”>

 <class name=”Basket” table=”Baskets” lazy=”false” >

 <id name=”Id” column=”BasketId” type=”guid”>
 <generator class=”guid” />
 </id>

 <bag name=”Items” access=”field.camelcase-underscore” inverse=”true”
 cascade=”all-delete-orphan” lazy=”true” >
 <key column=”BasketId”/>
 <one-to-many class=”BasketItem”></one-to-many>
 </bag>

 <many-to-one access=”field.camelcase-underscore” name=”DeliveryOption”
 class=”Agathas.Storefront.Model.Shipping.DeliveryOption”
 column=”DeliveryOptionId”
 not-null=”true”/>
 </class>

</hibernate-mapping>

The mapping file for the BasketItem entity is BasketItem.hbm.xml:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Basket”
 assembly=”Agathas.Storefront.Model”>

 <class name=”BasketItem” table=”BasketItems” lazy=”false” >

 <id name=”Id” column=”BasketItemId” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property access=”field.camelcase-underscore” name=”Qty”>
 <column name=”Qty” sql-type=”int” not-null=”true” />
 </property>

 <many-to-one access=”field.camelcase-underscore” name=”Product”
 class=”Agathas.Storefront.Model.Products.Product”
 column=”ProductId”
 cascade=”none”
 not-null=”true”/>

 <many-to-one access=”field.camelcase-underscore” name=”Basket”
 class=”Basket”
 column=”BasketId”
 not-null=”true”/>
 </class>
</hibernate-mapping>

532  ❘  Chapter 12   Implementing the Shopping Basket

The mapping file for the DeliveryOption entity is DeliveryOption.hbm.xml:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Shipping”
 assembly=”Agathas.Storefront.Model”>

 <class name=”DeliveryOption” table=”DeliveryOptions” lazy=”false” >

 <id name=”Id” column=”DeliveryOptionId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property access=”field.camelcase-underscore” name=”FreeDeliveryThreshold”>
 <column name=”FreeDeliveryThreshold”
 sql-type=”decimal(18, 2)”
 not-null=”true” />
 </property>

 <property access=”field.camelcase-underscore” name=”Cost”>
 <column name=”Cost” sql-type=”decimal(18, 2))” not-null=”true” />
 </property>

 <many-to-one access=”field.camelcase-underscore” name=”ShippingService”
 class=”ShippingService”
 column=”ServiceId”
 not-null=”true”
 lazy=”false”/>
 </class>
</hibernate-mapping>

Because the framework for the NHibernate repository was built in the previous chapter, there is
nothing else to do other than add a concrete implementation of the BasketRepository and the
DeliveryOptionRepository to the Repositories folder and let the NHibernate base repository
handle retrieval and persistence ofBaskets and DeliveryOptions:

using System;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Basket;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public class BasketRepository : Repository<Basket, Guid>, IBasketRepository
 {
 public BasketRepository(IUnitOfWork uow)
 : base(uow)
 {
 }
 }

using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Shipping;

namespace Agathas.Storefront.Repository.NHibernate.Repositories

Implementing the Basket  ❘  533

{
 public class DeliveryOptionRepository : Repository<DeliveryOption, int>,
 IDeliveryOptionRepository
 {
 public DeliveryOptionRepository(IUnitOfWork uow)
 : base(uow)
 {
 }
 }
}

With the data access layer taken care of, you will now look at creating the service layer to allow clients
to use the basket logic.

Basket Service
Figure 12-3 shows the views that are required for the BasketService.

Figure 12-3

The DeliveryOptionView is a simple summary of the delivery options available to the customer.
Create the DeliveryOptionView class in the ViewModels folder of the Service project:

namespace Agathas.Storefront.Services.ViewModels
{
 public class DeliveryOptionView
 {
 public int Id { get; set; }
 public string ShippingServiceDescription { get; set; }
 }
}

534  ❘  Chapter 12   Implementing the Shopping Basket

The BasketItemView is a flattened view of the BasketItem entity and is used to display items in a
basket:

namespace Agathas.Storefront.Services.ViewModels
{
 public class BasketItemView
 {
 public int Id { get; set; }
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public string ProductSizeName { get; set; }
 public int ProductTitleId { get; set; }
 public int Qty { get; set; }
 public string ProductPrice { get; set; }
 public string LineTotal { get; set; }
 }
}

The BasketView is a flattened view of the Basket entity:

using System;
using System.Collections.Generic;

namespace Agathas.Storefront.Services.ViewModels
{
 public class BasketView
 {
 public BasketView()
 {
 Items = new List<BasketItemView>();
 }
 public Guid Id { get; set; }
 public string ItemsTotal { get; set; }
 public int NumberOfItems { get; set; }
 public IEnumerable<BasketItemView> Items { get; set; }
 public string BasketTotal { get; set; }
 public string DeliveryCost { get; set; }
 public string ShippingServiceDescription { get; set; }
 public int DeliveryOptionId { get; set; }
 }
}

For the BasketService to convert the Basket entity into a BasketView, you need to wire up
AutoMappper, as you did in the previous chapter for the Product entities and view models.

Open the AutoMapperBootStrapper class within the root of the Service project, and amend it to
include mapping configuration for the Basket and DeliveryOption entities, as highlighted next:

…
using Agathas.Storefront.Model.Basket;
using Agathas.Storefront.Model.Shipping;

namespace Agathas.Storefront.Services
{
 public class AutoMapperBootStrapper
 {

Implementing the Basket  ❘  535

 public static void ConfigureAutoMapper()
 {
 …

 // Basket
 Mapper.CreateMap<DeliveryOption, DeliveryOptionView>();
 Mapper.CreateMap<BasketItem, BasketItemView>();
 Mapper.CreateMap<Basket, BasketView>();

 …

 }
 }

 …
}

For a Basket entity to be converted to a view model, you will add an extension method that returns a
BasketView. Add a new class named BasketMapper to the Mapping folder of the Services project:

using Agathas.Storefront.Model.Basket;
using Agathas.Storefront.Services.ViewModels;
using AutoMapper;

namespace Agathas.Storefront.Services.Mapping
{
 public static class BasketMapper
 {
 public static BasketView ConvertToBasketView(this Basket basket)
 {
 return Mapper.Map<Basket, BasketView>(basket);
 }
 }
}

You need to create a similar extension class for the DeliveryOption entities. Add a new class to the
Mapping folder of the Services project named DeliveryOptionMapper with the following code
definition:

using System.Collections.Generic;
using Agathas.Storefront.Model.Shipping;
using Agathas.Storefront.Services.ViewModels;
using AutoMapper;

namespace Agathas.Storefront.Services.Mapping
{
 public static class DeliveryOptionMapper
 {
 public static IEnumerable<DeliveryOptionView> ConvertToDeliveryOptionViews
 (this IEnumerable<DeliveryOption> deliveryOptions)
 {
 return Mapper.Map<IEnumerable<DeliveryOption>,
 IEnumerable<DeliveryOptionView>>(deliveryOptions);
 }
 }
}

536  ❘  Chapter 12   Implementing the Shopping Basket

To communicate with the BasketService, you will be using the request and reply messaging pat-
tern. More details of this pattern can be found in Chapter 6. To create a Basket, add a pair of request
and reply classes within the folder Messaging/ProductCatalogService named CreateBasket​
Request and CreateBasketResponse:

using System.Collections.Generic;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class CreateBasketRequest
 {
 public CreateBasketRequest()
 {
 ProductsToAdd = new List<int>();
 }
 public IList<int> ProductsToAdd { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class CreateBasketResponse
 {
 public BasketView Basket { get; set; }
 }
}

Note that the CreateBasketRequest can be given a list of product IDs to add to the newly created
Basket, alleviating the need for a separate call.

Create a pair of request and reply classes for the task of retrieving a Basket. Name these classes
GetBasketRequest and GetBasketResponse.

using System;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetBasketRequest
 {
 public Guid BasketId { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class GetBasketResponse
 {
 public BasketView Basket { get; set; }
 }
}

Implementing the Basket  ❘  537

For a customer to update the quantities of products ordered, she has to submit a ModifyBasketRequest,
which contains a collection of ProductQtyUpdateRequests containing information on the changes to
the BasketItems:

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class ProductQtyUpdateRequest
 {
 public int ProductId { get; set; }
 public int NewQty { get; set; }
 }
}

The ModifyBasketRequest contains a collection of BasketItemUpdateRequests, a list of items
to remove and products to add, as well as a way to update the shipping service. The ModifyBasket​
Request and ModifyBasketResponse classes are shown in the following listings:

using System;
using System.Collections.Generic;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class ModifyBasketRequest
 {
 public ModifyBasketRequest()
 {
 ItemsToRemove = new List<int>();
 ProductsToAdd = new List<int>();
 ItemsToUpdate = new List<ProductQtyUpdateRequest>();
 }

 public Guid BasketId { get; set; }
 public IList<int> ItemsToRemove { get; set; }
 public IList<ProductQtyUpdateRequest> ItemsToUpdate { get; set; }
 public int SetShippingServiceIdTo {get; set;}
 public IList<int> ProductsToAdd { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService
{
 public class ModifyBasketResponse
 {
 public BasketView Basket { get; set; }
 }
}

No request object is required to retrieve a collection of DeliveryOptionViews — ​only a GetAllDispatch​
OptionsResponse as shown here:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.ProductCatalogService

538  ❘  Chapter 12   Implementing the Shopping Basket

{
 public class GetAllDispatchOptionsResponse
 {
 public IEnumerable<DeliveryOptionView> DeliveryOptions { get; set; }
 }
}

With all the messaging and view models in place, you can work on the BasketService. Define the
BasketService contract by adding a new interface named IBasketService to the Interfaces
folder of the Services project:

using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Services.Interfaces
{
 public interface IBasketService
 {
 GetBasketResponse GetBasket(GetBasketRequest basketRequest);
 CreateBasketResponse CreateBasket(CreateBasketRequest basketRequest);
 ModifyBasketResponse ModifyBasket(ModifyBasketRequest request);
 GetAllDispatchOptionsResponse GetAllDispatchOptions();
 }
}

If a request is sent to retrieve or modify a basket that does not exist, an exception of type
BasketDoesNotExistException is thrown, as can be seen next. The controller can then catch this
exception and call the BasketService to create a new basket:

using System;

namespace Agathas.Storefront.Services.Implementations
{
 public class BasketDoesNotExistException : Exception
 {
 }
}

The concrete implementation of the IBasketService is BasketService, and should be created
within the Implementations folder of the Services project:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Basket;
using Agathas.Storefront.Model.Shipping;
using Agathas.Storefront.Model.Products;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Mapping;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Implementations

Implementing the Basket  ❘  539

{
 public class BasketService : IBasketService
 {
 private readonly IBasketRepository _basketRepository;
 private readonly IProductRepository _productRepository;
 private readonly IDeliveryOptionRepository _deliveryOptionRepository;
 private readonly IUnitOfWork _uow;

 public BasketService(IBasketRepository basketRepository,
 IProductRepository productRepository,
 IDeliveryOptionRepository deliveryOptionRepository,
 IUnitOfWork uow)
 {
 _basketRepository = basketRepository;
 _productRepository = productRepository;
 _deliveryOptionRepository = deliveryOptionRepository;
 _uow = uow;
 }

 public GetBasketResponse GetBasket(GetBasketRequest request)
 {
 GetBasketResponse response = new GetBasketResponse();

 Basket basket = _basketRepository.FindBy(request.BasketId);
 BasketView basketView;

 if (basket != null)
 basketView = basket.ConvertToBasketView();
 else
 basketView = new BasketView();

 response.Basket = basketView;

 return response;
 }

 public CreateBasketResponse CreateBasket(CreateBasketRequest request)
 {
 CreateBasketResponse response = new CreateBasketResponse();

 Basket basket = new Basket();

 basket.SetDeliveryOption(GetCheapestDeliveryOption());

 AddProductsToBasket(request.ProductsToAdd, basket);

 ThrowExceptionIfBasketIsInvalid(basket);

 _basketRepository.Save(basket);
 _uow.Commit();

 response.Basket = basket.ConvertToBasketView();

 return response;

540  ❘  Chapter 12   Implementing the Shopping Basket

 }

 private DeliveryOption GetCheapestDeliveryOption()
 {
 return _deliveryOptionRepository.FindAll()
 .OrderBy(d => d.Cost).FirstOrDefault();
 }

 private void ThrowExceptionIfBasketIsInvalid(Basket basket)
 {
 if (basket.GetBrokenRules().Count() > 0)
 {
 StringBuilder brokenRules = new StringBuilder();
 brokenRules.AppendLine(“There were problems saving the Basket:”);
 foreach (BusinessRule businessRule in basket.GetBrokenRules())
 {
 brokenRules.AppendLine(businessRule.Rule);
 }

 throw new ApplicationException(brokenRules.ToString());

 }
 }

 public ModifyBasketResponse ModifyBasket(ModifyBasketRequest request)
 {
 ModifyBasketResponse response = new ModifyBasketResponse();
 Basket basket = _basketRepository.FindBy(request.BasketId);

 if (basket == null)
 throw new BasketDoesNotExistException();

 AddProductsToBasket(request.ProductsToAdd, basket);

 UpdateLineQtys(request.ItemsToUpdate, basket);

 RemoveItemsFromBasket(request.ItemsToRemove, basket);

 if (request.SetShippingServiceIdTo != 0)
 {
 DeliveryOption deliveryOption =
 _deliveryOptionRepository.FindBy(request.SetShippingServiceIdTo);
 basket.SetDeliveryOption(deliveryOption);
 }

 ThrowExceptionIfBasketIsInvalid(basket);

 _basketRepository.Save(basket);
 _uow.Commit();

 response.Basket = basket.ConvertToBasketView();

 return response;
 }

 private void RemoveItemsFromBasket(IList<int> productsToRemove,

Implementing the Basket  ❘  541

 Basket basket)
 {
 foreach (int productId in productsToRemove)
 {
 Product product = _productRepository.FindBy(productId);
 if (product != null)
 basket.Remove(product);
 }
 }

 private void UpdateLineQtys(
 IList<ProductQtyUpdateRequest> productQtyUpdateRequests,
 Basket basket)
 {
 foreach (ProductQtyUpdateRequest productQtyUpdateRequest in
 productQtyUpdateRequests)
 {
 Product product = _productRepository
 .FindBy(productQtyUpdateRequest.ProductId);

 if (product != null)
 basket.ChangeQtyOfProduct(productQtyUpdateRequest.NewQty,
 product);
 }
 }

 private void AddProductsToBasket(IList<int> productsToAdd, Basket basket)
 {
 Product product;

 if (productsToAdd.Count() > 0)
 foreach (int productId in productsToAdd)
 {
 product = _productRepository.FindBy(productId);
 basket.Add(product);
 }
 }

 public GetAllDispatchOptionsResponse GetAllDispatchOptions()
 {
 GetAllDispatchOptionsResponse response =
 new GetAllDispatchOptionsResponse();
 response.DeliveryOptions = _deliveryOptionRepository.FindAll()
 .OrderBy(d => d.Cost).ConvertToDeliveryOptionViews();

 return response;
 }
 }
}

Code snippet BasketService.cs in project Agathas.Storefront.Services

The BasketService class is straightforward and simply handles requests for obtaining, creating, or
modifying a basket. A check is made to the basket prior to its being saved. If the basket has more
than zero broken business rules, an exception is thrown detailing the issues.

542  ❘  Chapter 12   Implementing the Shopping Basket

With the BasketService in place, you can construct the basket controller that will consume the
BasketService layer.

Basket Controller and Basket Views
Figure 12-4 shows how the BasketSummary.ascx control fits into the ProductCatalog.Master
control.

Site.Master

SiteFooter.ascx

View.aspx
(Basket)

BasketDetailView

ProductCatalog.master

BasketSummary
.ascx

Categories
.ascx

BaseProductCatalogPageView

Checkout.master CustomerAccount
.master

Figure 12-4

All product catalog views must supply a basket summary. Figure 12-5 shows the updated view model
inheritance tree to include the BasketSummary class, which is used on the BasketSummary.ascx
control.

Create a new view named BasketSummaryView at the root of the ViewModels folder in the
Controllers project:

namespace Agathas.Storefront.Controllers.ViewModels
{
 public class BasketSummaryView
 {
 public int NumberOfItems { get; set; }
 public string BasketTotal { get; set; }
 }
}

Implementing the Basket  ❘  543

Figure 12-5

Create another view named BasketDetailView within the ViewModels/ProductCatalog folder
that will be strongly typed to the basket .ASPX view:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.ProductCatalog
{
 public class BasketDetailView : BaseProductCatalogPageView
 {
 public BasketView Basket { get; set; }
 public IEnumerable<DeliveryOptionView> DeliveryOptions { get; set; }
 }
}

Next, create the BasePageView class in the root of the ViewModels folder. The BaseProductCatalog​
PageView created in the previous chapter now inherits from the BasePageView class to provide access to
the BasketSummaryView:

namespace Agathas.Storefront.Controllers.ViewModels
{
 public abstract class BasePageView
 {
 public BasketSummaryView BasketSummary { get; set; }
 }
}

544  ❘  Chapter 12   Implementing the Shopping Basket

Now that you have a new base class, you need to update some existing classes. Modify the BaseProduct​
CatalogPageView that lives in the ViewModels/ProductCatalog folder so that it inherits from the
BasePageView, as highlighted in the following listing:

namespace Agathas.Storefront.Controllers.ViewModels.ProductCatalog
{
 public abstract class BaseProductCatalogPageView : BasePageView
 {
 public IEnumerable<CategoryView> Categories { get; set;}
 }
}

The controllers also inherit from a new BaseController, as shown in Figure 12-6.

Figure 12-6

The BaseController exposes methods to obtain a BasketSummary object based on data from a cookie
as well as a basket ID from the cookie. To work with cookie storage in a loosely coupled manner, first

Implementing the Basket  ❘  545

define an ICookieStorageService. Add the new interface to the folder named CookieStorage, found
within the Infrastructure project:

using System;

namespace Agathas.Storefront.Infrastructure.CookieStorage
{
 public interface ICookieStorageService
 {
 void Save(string key, string value, DateTime expires);
 string Retrieve(string key);
 }
}

The next class to create again within the CookieStorage folder of the Infrastructure project is
the implementation of the ICookieStorageService, named CookieStorageService:

using System;
using System.Web;

namespace Agathas.Storefront.Infrastructure.CookieStorage
{
 public class CookieStorageService : ICookieStorageService
 {
 public void Save(string key, string value, DateTime expires)
 {
 HttpContext.Current.Response.Cookies[key].Value = value;
 HttpContext.Current.Response.Cookies[key].Expires = expires;
 }

 public string Retrieve(string key)
 {
 HttpCookie cookie = HttpContext.Current.Request.Cookies[key];
 if (cookie != null)
 return cookie.Value;
 return “”;
 }
 }
}

To obtain and set specific keys, define an enumeration to avoid any magic strings. Create a new enu-
meration named CookieDataKeys in the root of the Controllers projects:

namespace Agathas.Storefront.Controllers
{
 public enum CookieDataKeys
 {
 BasketItems,
 BasketTotal,
 BasketId
 }
}

546  ❘  Chapter 12   Implementing the Shopping Basket

With the mechanism to set and retrieve cookies in place, you can create the BaseController. Add
a new class named BaseController within the Controllers folder of the Controllers project, as
shown in the listing that follows:

using System;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.ViewModels;
using Agathas.Storefront.Infrastructure.CookieStorage;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class BaseController : Controller
 {
 private readonly ICookieStorageService _cookieStorageService;

 public BaseController(ICookieStorageService cookieStorageService)
 {
 _cookieStorageService = cookieStorageService;
 }

 public BasketSummaryView GetBasketSummaryView()
 {
 string basketTotal = “”;
 int numberOfItems = 0;

 if (!string.IsNullOrEmpty(_cookieStorageService.Retrieve(
 CookieDataKeys.BasketTotal.ToString())))
 basketTotal = _cookieStorageService.Retrieve(
 CookieDataKeys.BasketTotal.ToString());

 if (!string.IsNullOrEmpty(_cookieStorageService.Retrieve(
 CookieDataKeys.BasketItems.ToString())))
 numberOfItems = int.Parse(_cookieStorageService.Retrieve(
 CookieDataKeys.BasketItems.ToString()));

 return new BasketSummaryView
 {
 BasketTotal = basketTotal,
 NumberOfItems = numberOfItems
 };
 }

 public Guid GetBasketId()
 {
 string sBasketId = _cookieStorageService
 .Retrieve(CookieDataKeys.BasketId.ToString());
 Guid basketId = Guid.Empty;

 if (!string.IsNullOrEmpty(sBasketId))
 {
 basketId = new Guid(sBasketId);
 }

 return basketId;
 }
 }
}

Implementing the Basket  ❘  547

You can now update the controllers that handle the product browsing functionality so that they imple-
ment the correct base constructor call to provide an instance of the ICookieStorageService. Update
the existing ProductCatalogBaseController controller to inherit from the new BaseController
class:

using Agathas.Storefront.Infrastructure.CookieStorage;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class ProductCatalogBaseController : BaseController
 {
 private readonly IProductCatalogService _productCatalogService;

 public ProductCatalogBaseController(
 ICookieStorageService cookieStorageService,
 IProductCatalogService productCatalogService)
 : base(cookieStorageService)
 {
 _productCatalogService = productCatalogService;
 }

 …

 }
}

This change causes the HomeController and the ProductController to break. Therefore, update
the constructors of both of these classes, as shown in the following code listing:

using Agathas.Storefront.Infrastructure.CookieStorage;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class HomeController : ProductCatalogBaseController
 {
 private readonly IProductCatalogService _productCatalogService;

 public HomeController(IProductCatalogService productCatalogService,
 ICookieStorageService cookieStorageService)
 : base(cookieStorageService, productCatalogService)
 {
 _productCatalogService = productCatalogService;
 }

 public ActionResult Index()
 {
 HomePageView homePageView = new HomePageView();
 homePageView.Categories = base.GetCategories();
 homePageView.BasketSummary = base.GetBasketSummaryView();

 GetFeaturedProductsResponse response =
 _productCatalogService.GetFeaturedProducts();
 homePageView.Products = response.Products;

 return View(homePageView);
 }
 }

548  ❘  Chapter 12   Implementing the Shopping Basket

}

using Agathas.Storefront.Infrastructure.CookieStorage;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class ProductController : ProductCatalogBaseController
 {
 private readonly IProductCatalogService _productService;

 public ProductController(IProductCatalogService productService,
 ICookieStorageService cookieStorageService)
 : base(cookieStorageService, productService)
 {
 _productService = productService;
 }

 …

 private ProductSearchResultView GetProductSearchResultViewFrom(
 GetProductsByCategoryResponse response)
 {
 ProductSearchResultView productSearchResultView =
 new ProductSearchResultView();

 productSearchResultView.BasketSummary = base.GetBasketSummaryView();
 productSearchResultView.Categories = base.GetCategories();
 productSearchResultView.CurrentPage = response.CurrentPage;
 productSearchResultView.NumberOfTitlesFound =
 response.NumberOfTitlesFound;
 productSearchResultView.Products = response.Products;
 productSearchResultView.RefinementGroups = response.RefinementGroups;
 productSearchResultView.SelectedCategory = response.SelectedCategory;
 productSearchResultView.SelectedCategoryName =
 response.SelectedCategoryName;
 productSearchResultView.TotalNumberOfPages =
 response.TotalNumberOfPages;
 return productSearchResultView;
 }

 …

 public ActionResult Detail(int id)
 {
 ProductDetailView productDetailView = new ProductDetailView();
 GetProductRequest request = new GetProductRequest() {ProductId = id};
 GetProductResponse response = _productService.GetProduct(request);

 ProductView productView = response.Product;

 productDetailView.Product = productView;
 productDetailView.BasketSummary = base.GetBasketSummaryView();
 productDetailView.Categories = base.GetCategories();

 return View(productDetailView);
 }
 }
}

Implementing the Basket  ❘  549

To obtain a BasketSummary from a BasketView, add a new class named BasketMapper to the root
of the Controllers project. The BasketController uses this mapping class to persist details of a
Basket to a cookie:

using Agathas.Storefront.Controllers.ViewModels;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers
{
 public static class BasketMapper
 {
 public static BasketSummaryView ConvertToSummary(this BasketView basket)
 {
 return new BasketSummaryView()
 {
 BasketTotal = basket.BasketTotal,
 NumberOfItems = basket.NumberOfItems
 };
 }
 }
}

As mentioned at the start of this section, interaction between the customer and the web service in
terms of basket actions is conducted via Ajax. To pass complex information on the basket from the cli-
ent to the server, you utilize JavaScript Object Notation (JSON) objects. As with the ProductSearch​
Results view that you worked on earlier, you use the JsonModelBinder to convert JSON arrays into
.NET objects. The .NET objects that you will be working with are JsonBasketItemUpdateRequest
and JsonBasketQtyUpdateRequest. Create both of these classes within the JsonDTOs folder of the
Controllers project:

using System.Runtime.Serialization;
using System.Web.Mvc;

namespace Agathas.Storefront.Controllers.JsonDTOs
{
 [DataContract]
 [ModelBinder(typeof(JsonModelBinder))]
 public class JsonBasketItemUpdateRequest
 {
 [DataMember]
 public int ProductId { get; set; }
 [DataMember]
 public int Qty { get; set; }
 }
}

using System.Runtime.Serialization;
using System.Web.Mvc;

namespace Agathas.Storefront.Controllers.JsonDTOs
{
 [DataContract]
 [ModelBinder(typeof(JsonModelBinder))]

550  ❘  Chapter 12   Implementing the Shopping Basket

 public class JsonBasketQtyUpdateRequest
 {
 [DataMember]
 public JsonBasketItemUpdateRequest[] Items { get; set; }
 }
}

You use these JSON objects when a customer is updating the quantity of ordered products in a
basket line. To simplify the conversion of a collection of JsonBasketItemUpdateRequest to a
BasketItemUpdateRequest, add a JsonDtoMapper mapping class to the JsonDTOs folder, which
provides conversion method extensions:

using System.Collections.Generic;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Controllers.JsonDTOs
{
 public static class JsonDtoMapper
 {
 public static IList<ProductQtyUpdateRequest>
 ConvertToBasketItemUpdateRequests(
 this JsonBasketQtyUpdateRequest jsonBasketQtyUpdateRequest)
 {
 return jsonBasketQtyUpdateRequest.Items
 .ConvertToBasketItemUpdateRequests();
 }

 public static IList<ProductQtyUpdateRequest>
 ConvertToBasketItemUpdateRequests(
 this JsonBasketItemUpdateRequest[] jsonBasketItemUpdateRequests)
 {
 int i = 0;
 IList<ProductQtyUpdateRequest> basketItemUpdateRequests =
 new List<ProductQtyUpdateRequest>();

 for (i = 0; i < jsonBasketItemUpdateRequests.Length; i++)
 {
 basketItemUpdateRequests.Add(
 jsonBasketItemUpdateRequests[i]
 .ConvertToBasketItemUpdateRequest());
 }

 return basketItemUpdateRequests;
 }

 public static ProductQtyUpdateRequest ConvertToBasketItemUpdateRequest(
 this JsonBasketItemUpdateRequest jsonBasketItemUpdateRequest)
 {
 return new ProductQtyUpdateRequest
 {
 ProductId = jsonBasketItemUpdateRequest.ProductId,
 NewQty = jsonBasketItemUpdateRequest.Qty
 };
 }
 }
}

Implementing the Basket  ❘  551

You can now finally create the BasketController. Again, this is a fairly lengthy class, but it is simple:

using System;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.JsonDTOs;
using Agathas.Storefront.Controllers.ViewModels;
using Agathas.Storefront.Controllers.ViewModels.ProductCatalog;
using Agathas.Storefront.Infrastructure.CookieStorage;
using Agathas.Storefront.Services.Implementations;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.ProductCatalogService;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class BasketController : ProductCatalogBaseController
 {
 private readonly IBasketService _basketService;
 private readonly ICookieStorageService _cookieStorageService;

 public BasketController(IProductCatalogService productCatalogService,
 IBasketService basketService,
 ICookieStorageService cookieStorageService)
 : base(cookieStorageService, productCatalogService)
 {
 _basketService = basketService;
 _cookieStorageService = cookieStorageService;
 }

 public ActionResult Detail()
 {
 BasketDetailView basketView = new BasketDetailView();
 Guid basketId = base.GetBasketId();

 GetBasketRequest basketRequest = new GetBasketRequest()
 {BasketId = basketId};
 GetBasketResponse basketResponse =
 _basketService.GetBasket(basketRequest);

 GetAllDispatchOptionsResponse dispatchOptionsResponse =
 _basketService.GetAllDispatchOptions();

 basketView.Basket = basketResponse.Basket;
 basketView.Categories = base.GetCategories();
 basketView.BasketSummary = base.GetBasketSummaryView();
 basketView.DeliveryOptions = dispatchOptionsResponse.DeliveryOptions;

 return View(“View”, basketView);
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public JsonResult RemoveItem(int productId)
 {
 ModifyBasketRequest request = new ModifyBasketRequest();
 request.ItemsToRemove.Add(productId);

552  ❘  Chapter 12   Implementing the Shopping Basket

 request.BasketId = base.GetBasketId();

 ModifyBasketResponse response = _basketService.ModifyBasket(request);

 SaveBasketSummaryToCookie(response.Basket.NumberOfItems,
 response.Basket.BasketTotal);

 BasketDetailView basketDetailView = new BasketDetailView();

 basketDetailView.BasketSummary = new BasketSummaryView()
 {
 BasketTotal = response.Basket.BasketTotal,
 NumberOfItems = response.Basket.NumberOfItems
 };

 basketDetailView.Basket = response.Basket;
 basketDetailView.DeliveryOptions =
 _basketService.GetAllDispatchOptions().DeliveryOptions;

 return Json(basketDetailView);
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public JsonResult UpdateShipping(int shippingServiceId)
 {
 ModifyBasketRequest request = new ModifyBasketRequest();
 request.SetShippingServiceIdTo = shippingServiceId;
 request.BasketId = base.GetBasketId();

 BasketDetailView basketDetailView = new BasketDetailView();

 ModifyBasketResponse response = _basketService.ModifyBasket(request);

 SaveBasketSummaryToCookie(response.Basket.NumberOfItems,
 response.Basket.BasketTotal);

 basketDetailView.BasketSummary = new BasketSummaryView()
 {
 BasketTotal = response.Basket.BasketTotal,
 NumberOfItems = response.Basket.NumberOfItems
 };

 basketDetailView.Basket = response.Basket;
 basketDetailView.DeliveryOptions =
 _basketService.GetAllDispatchOptions().DeliveryOptions;

 return Json(basketDetailView);
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public JsonResult UpdateItems(
 JsonBasketQtyUpdateRequest jsonBasketQtyUpdateRequest)
 {
 ModifyBasketRequest request = new ModifyBasketRequest();

Implementing the Basket  ❘  553

 request.BasketId = base.GetBasketId();
 request.ItemsToUpdate = jsonBasketQtyUpdateRequest
 .ConvertToBasketItemUpdateRequests(); ;

 BasketDetailView basketDetailView = new BasketDetailView();
 ModifyBasketResponse response = _basketService.ModifyBasket(request);

 SaveBasketSummaryToCookie(response.Basket.NumberOfItems,
 response.Basket.BasketTotal);

 basketDetailView.BasketSummary = new BasketSummaryView()
 {
 BasketTotal = response.Basket.BasketTotal,
 NumberOfItems = response.Basket.NumberOfItems
 };

 basketDetailView.Basket = response.Basket;

 basketDetailView.DeliveryOptions = _basketService
 .GetAllDispatchOptions().DeliveryOptions;

 return Json(basketDetailView);
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public JsonResult AddToBasket(int productId)
 {
 BasketSummaryView basketSummaryView = new BasketSummaryView();
 Guid basketId = base.GetBasketId();
 bool createNewBasket = basketId == Guid.Empty;

 if (createNewBasket == false)
 {
 ModifyBasketRequest modifyBasketRequest =
 new ModifyBasketRequest();

 modifyBasketRequest.ProductsToAdd.Add(productId);
 modifyBasketRequest.BasketId = basketId;

 try
 {
 ModifyBasketResponse response = _basketService
 .ModifyBasket(modifyBasketRequest);
 basketSummaryView = response.Basket.ConvertToSummary();
 SaveBasketSummaryToCookie(basketSummaryView.NumberOfItems,
 basketSummaryView.BasketTotal);
 }
 catch (BasketDoesNotExistException ex)
 {
 createNewBasket = true;
 }
 }

 if (createNewBasket)

554  ❘  Chapter 12   Implementing the Shopping Basket

 {
 CreateBasketRequest createBasketRequest =
 new CreateBasketRequest();

 createBasketRequest.ProductsToAdd.Add(productId);

 CreateBasketResponse response = _basketService
 .CreateBasket(createBasketRequest);

 SaveBasketIdToCookie(response.Basket.Id);
 basketSummaryView = response.Basket.ConvertToSummary();
 SaveBasketSummaryToCookie(basketSummaryView.NumberOfItems,
 basketSummaryView.BasketTotal);
 }

 return Json(basketSummaryView);
 }

 private void SaveBasketIdToCookie(Guid basketId)
 {
 _cookieStorageService.Save(CookieDataKeys.BasketId.ToString(),
 basketId.ToString(), DateTime.Now.AddDays(1));
 }

 private void SaveBasketSummaryToCookie(int numberOfItems,
 string basketTotal)
 {
 _cookieStorageService.Save(CookieDataKeys.BasketItems.ToString(),
 numberOfItems.ToString(), DateTime.Now.AddDays(1));
 _cookieStorageService.Save(CookieDataKeys.BasketTotal.ToString(),
 basketTotal.ToString(), DateTime.Now.AddDays(1));
 }
 }
}

Code snippet BasketController in project Agathas.Storefront.Controllers

You can now turn your attention to the .ASPX views of the basket. Create a new MVC User Control
named BasketSummary.ascx in the folder Views/Shared of the Web.MVC project with the following
markup:

<%@ Control Language=”C#”
 Inherits=”System.Web.Mvc.ViewUserControl<BasketSummaryView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels” %>

<div id=”smoverlay” class=”smoverlay”></div>
<div id=”basketSummary”>

 <%=Html.ActionLink(“Your Basket”, “Detail”, “Basket”)%>

 <% if(Model.NumberOfItems == 0) { %>
 is empty
 <% }
 else { %>

Implementing the Basket  ❘  555

 <%=Model.NumberOfItems%> Item(s) at <%=Model.BasketTotal%>
 <% }%>

</div>

With the BasketSummary.ascx control built, you can include it within the ProductCatalog.master
file, as shown in the highlighted section that follows:

<%@ Master Language=”C#” MasterPageFile=”Site.Master”
 Inherits=”System.Web.Mvc.ViewMasterPage<BaseProductCatalogPageView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.ProductCatalog” %>

<asp:Content ID=”TitleContent” ContentPlaceHolderID=”TitleContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”TitleContent” runat=”server”>

 </asp:ContentPlaceHolder>
</asp:Content>

<asp:Content ID=”MainContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server”>

 </asp:ContentPlaceHolder>
</asp:Content>

<asp:Content ID=”headerBasketSummary”
 ContentPlaceHolderID=”headerBasketSummary”
 runat=”server”>
 <% Html.RenderPartial(“~/Views/Shared/BasketSummary.ascx”,
 ((BaseProductCatalogPageView)Model).BasketSummary); %>
</asp:Content>

<asp:Content ID=”MenuContent” ContentPlaceHolderID=”MenuContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”MenuContent” runat=”server”>
 <% Html.RenderPartial(“~/Views/Shared/Categories.ascx”,
 ((BaseProductCatalogPageView)Model).Categories); %>
 </asp:ContentPlaceHolder>
</asp:Content>

Add the following JavaScript to the agatha-common-scripts.js file within the Scripts folder. This
piece of JavaScript will be used on the Product detail view as well as the Basket detail view to refresh
the basket summary:

function updateBasketSummary(basketSummary) {

 if (basketSummary.NumberOfItems == 0) {
 $(‘#basket-summary-text’).text(‘empty’);
 }
 else {
 $(‘#basket-summary-text’).text(basketSummary.NumberOfItems
 + ‘ Item(s) at ‘ +
 basketSummary.BasketTotal);
 }
}

556  ❘  Chapter 12   Implementing the Shopping Basket

Add a new folder within the Views folder of the Web.MVC project named Basket, and then add a new
view to the Basket folder named View.aspx. This lengthy page contains all the functions for a cus-
tomer to update his basket. All the operations happen via Ajax calls, so the JTemplate library is used
again to data-bind the resulting Ajax callback JSON object to the markup:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/ProductCatalog.Master”
 Inherits=”System.Web.Mvc.ViewPage<BasketDetailView>” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.UI.Web.MVC.Helpers” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.ProductCatalog” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent”
 runat=”server”> Your Basket
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <script type=”text/javascript”>

 function removeItem(productId) {

 var postData = { productId: productId };

 showOverlay(“overlay”, “main”);
 showOverlay(“smoverlay”, “basketSummary”);

 $.post(‘<%=Html.Resolve(“/Basket/RemoveItem”) %>’, postData,
 updateBasket, “json”);
 }

 function updateItemQtys() {

 showOverlay(“overlay”, “main”);
 showOverlay(“smoverlay”, “basketSummary”);

 var postData;
 var postArr = [];
 var index = 0;

 $(“[id^=’Qty-’]”).each(function() {

 itemElementId = $(this).attr(‘id’);
 var productId = 0;
 productId = itemElementId.replace(“Qty-”, “”);

 postArr[index] = { ProductId: productId, Qty: $(this).val() }
 index++;
 });

 postData = { Items: postArr };

 var jsonData = JSON.stringify(postData);

 $.post(‘<%=Html.Resolve(“/Basket/UpdateItems”) %>’, jsonData,

Implementing the Basket  ❘  557

 updateBasket, “json”);
 }

 function updateShippingService(ddlShippingService) {

 var postData = { shippingServiceId: $(ddlShippingService).val() };

 showOverlay(“overlay”, “main”);
 showOverlay(“smoverlay”, “basketSummary”);

 $.post(‘<%=Html.Resolve(“/Basket/UpdateShipping”) %>’,
 postData, updateBasket, “json”);
 }

 function updateBasket(basketDetailView) {

 if (basketDetailView.BasketSummary.NumberOfItems == 0) {
 $(“#basketDisplay”).text(“You have no items in your basket.”);
 }
 else {
 $(“#basketDisplay”).setTemplate($(“#basketTemplate”).html());
 $(“#basketDisplay”).processTemplate(basketDetailView);
 }

 updateBasketSummary(basketDetailView.BasketSummary);

 hideOverlay(“overlay”);
 hideOverlay(“smoverlay”);
 }
 </script>

 <h2>Your Basket</h2>

 <% if (Model.Basket.Items.Count() > 0)
 {%>
 <div id=”overlay” class=”overlay”></div>
 <div id=”basketDisplay”>
 <table width=”100%”>
 <tr>
 <td>Product</td>
 <td>Qty</td>
 <td align=”right”>Price</td>
 <td align=”right”>Total</td>
 </tr>
 <tr>
 <td colspan=”4”><hr /></td>
 </tr>
 <% foreach (BasketItemView item in Model.Basket.Items) { %>
 <tr>
 <td><%=Html.Encode(item.ProductName) %> -
 <%=Html.Encode(item.ProductSizeName) %>

 <a href=”JavaScript:removeItem(<%=Html.Encode(item.ProductId) %>)”>
 remove this item
 </td>

558  ❘  Chapter 12   Implementing the Shopping Basket

 <td><%=Html.TextBox(“Qty-” + item.ProductId.ToString(), item.Qty,
 new { @class = “itemQtyBox” })%></td>
 <td align=”right”><%=Html.Encode(item.ProductPrice) %></td>
 <td align=”right”><%=Html.Encode(item.LineTotal) %></td>
 </tr>
 <% } %>
 <tr>
 <td></td>
 <td>update</td>
 <td></td>
 <td></td>
 </tr>
 <tr>
 <td colspan=”4”><hr /></td>
 </tr>
 <tr>
 <td align=”right” colspan=”3”>Basket: </td>
 <td align=”right”><%=Html.Encode(Model.Basket.ItemsTotal) %></td>
 </tr>
 <tr>
 <td align=”right” colspan=”3”>Shipping:
 <select class=”item-sortdropdown” name=”ddlShippingService”
 onchange=”JavaScript:updateShippingService(this);”
 id=”ddlShippingService”>
 <% foreach (DeliveryOptionView deliveryOption in
 Model.DeliveryOptions){%>
 <option value=”<%=Html.Encode(deliveryOption.Id) %>”
 <% if (Model.Basket.DeliveryOptionId == deliveryOption.Id) { %>
 selected
 <%}%>>
 <%=Html.Encode(deliveryOption.ShippingServiceDescription) %>
 </option>
 <%}%>
 </select>
 </td>
 <td align=”right”><%=Html.Encode(Model.Basket.DeliveryCost) %></td>
 </tr>
 <tr>
 <td align=”right” colspan=”3”> Total: </td>
 <td align=”right”><%=Html.Encode(Model.Basket.BasketTotal) %></td>
 </tr>
 <tr>
 <td colspan=”3”></td>
 <td align=”right”>
 <%=Html.ActionLink(“Check Out”, “Checkout”, “Checkout”)%></td>
 </tr>
 </table>
 </div>
 <p></p>
 <%
 }
 else
 {
 %>
 You have no items in your basket.

Implementing the Basket  ❘  559

 <%
 }%>

 <script type=”text/html” id=”basketTemplate”>
 <table width=”100%”>
 <tr>
 <td>Product</td>
 <td>Qty</td>
 <td align=”right”>Price</td>
 <td align=”right”>Total</td>
 </tr>
 <tr>
 <td colspan=”4”><hr /></td>
 </tr>
 {#foreach $T.Basket.Items as record}
 <tr>
 <td>{$T.record.ProductName} - {$T.record.ProductSizeName}

 remove this item
 </td>
 <td><input class=”itemQtyBox” id=”Qty-{$T.record.ProductId}”
 type=”text” value=”{$T.record.Qty}” /></td>
 <td align=”right”>{$T.record.ProductPrice}</td>
 <td align=”right”>{$T.record.LineTotal}</td>
 </tr>
 {#/for}
 <tr>
 <td></td>
 <td>update</td>
 <td></td>
 <td></td>
 </tr>
 <tr>
 <td colspan=”4”><hr /></td>
 </tr>
 <tr>
 <td align=”right” colspan=”3”>Basket: </td>
 <td align=”right”>{$T.Basket.ItemsTotal}</td>
 </tr>
 <tr>
 <td align=”right” colspan=”3”>Shipping:
 <select class=”item-sortdropdown” name=”ddlShippingService”
 onchange=”JavaScript:updateShippingService(this);”
 id=”ddlShippingService”>
 {#foreach $T.DeliveryOptions as deliveryOption}
 <option value=”{$T.deliveryOption.Id}”
 {#if $T.deliveryOption.Id ==
 $T.Basket.DeliveryOptionId} selected{#/if}
 >{$T.deliveryOption.ShippingServiceDescription}</option>
 {#/for}
 </select>
 </td>
 <td align=”right”>{$T.Basket.DeliveryCost}</td>
 </tr>

560  ❘  Chapter 12   Implementing the Shopping Basket

 <tr>
 <td align=”right” colspan=”3”> Total: </td>
 <td align=”right”>{$T.Basket.BasketTotal}</td>
 </tr>
 <tr>
 <td colspan=”3”></td>
 <td align=”right”>
 <%=Html.ActionLink(“Check Out”, “Checkout”, “Checkout”)%></td>
 </tr>
 </table>
 </script>

</asp:Content>

Code snippet View.aspx in project Agathas.Storefront.UI.Web.MVC

Next, update the Product detail view named Detail.aspx, which you can find within the Views/
Product folder. Update the markup to include the JavaScript highlighted next, along with the
onclick handler of the Add to Basket button.

…

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <script type=”text/javascript”>
 function addProductToBasket() {

 showOverlay(“smoverlay”, “basketSummary”, 5);

 var postData = { productId: $(“#productsizes”).val() };

 $.post(‘<%=Html.Resolve(“/Basket/AddToBasket”) %>’,
 postData, updateBasket, “json”);
 }

 function updateBasket(basketSummaryView) {
 updateBasketSummary(basketSummaryView);
 hideOverlay(“smoverlay”);
 }
 </script>

 <h2><%=Model.Product.BrandName%> <%=Model.Product.Name%></h2>

 <div>

 <img src=”<%=Html.Resolve(“/Content/Images/Products/” +
 Model.Product.Id.ToString() + “.jpg”) %>” />

 <div>
 <%=Model.Product.Price%>

 <%=Model.Product.BrandName%> <%=Model.Product.Name%>

 <p>

 <select id=”productsizes”>
 <% foreach (ProductSizeOption option in Model.Product.Products)

Implementing the Basket  ❘  561

 {%>
 <option value=”<%=option.Id %>”><%=option.SizeName %></option>
 <%
 }%>
 </select>

 <input type=”button”
 onclick=”JavaScript:addProductToBasket();”
 value=”+ Add to cart” />
 </p>
 <p>
 * - Rutrum mattis nulla sodales

 * - Duis sodales tempor felis ac

 * - Ut porta metus a metus

 </p>
 </div>
 </div>

 …

Lastly, you need to wire up the new classes with the BootStrapper class found at the root of the
Web.MVC project. Amend the class, as shown in the following listing:

…
using Agathas.Storefront.Model.Basket;
using Agathas.Storefront.Model.Shipping;
using Agathas.Storefront.Infrastructure.CookieStorage;

namespace Agathas.Storefront.UI.Web.MVC
{
 public class BootStrapper
 {
 …

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 // Repositories
 ForRequestedType<IBasketRepository>().TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories.BasketRepository>();
 ForRequestedType<IDeliveryOptionRepository>()
 .TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories
 .DeliveryOptionRepository>();
 ForRequestedType<ICategoryRepository>().TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories.CategoryRepository>();
 ForRequestedType<IProductTitleRepository>()
 .TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories
 .ProductTitleRepository>();
 ForRequestedType<IProductRepository>().TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories.ProductRepository>();
 ForRequestedType<IUnitOfWork>().TheDefault.Is.OfConcreteType

562  ❘  Chapter 12   Implementing the Shopping Basket

 <Repository.NHibernate.NHUnitOfWork>();

 // Product Catalog
 ForRequestedType<IProductCatalogService>()
 .TheDefault.Is.OfConcreteType
 <ProductCatalogService>();

 ForRequestedType<IBasketService>().TheDefault.Is.OfConcreteType
 <BasketService>();
 ForRequestedType<ICookieStorageService>()
 .TheDefault.Is.OfConcreteType
 <CookieStorageService >();

 // Application Settings
 ForRequestedType<IApplicationSettings>()
 .TheDefault.Is.OfConcreteType
 <WebConfigApplicationSettings>();

 // Logger
 ForRequestedType<ILogger>().TheDefault.Is.OfConcreteType
 <Log4NetAdapter>();

 // E-Mail Service
 ForRequestedType<IEmailService>().TheDefault.Is.OfConcreteType
 <TextLoggingEmailService>();
 }
 }
 }
}

Before you can run the solution, you need to enter some data into the database for the Couriers,
CourierServices, and DeliveryOptions tables. When this is complete, you can to build the solu-
tion and browse the site. When you land on a product detail page, you can add products to the bas-
ket and then amend your products at the Basket Detail page, as can be seen in Figure 12-7.

Figure 12-7

Summary  ❘  563

Summary

You now have a site where customers can browse products and add them to their basket. In this
chapter, you accomplished the following:

You built the Basket domain model and the shipping delivery options aggregation to enable ➤➤

customers to select a delivery service.

You updated the controllers and view models to inherit from new abstract base classes that ➤➤

gave functionality to retrieve and display a basket summary.

You created an interface for the client-side storage service and applied the adapter pattern to ➤➤

adapt the HttpContext interface to that of the ICookieStorageService.

You used AJAX to add a product to the basket and modify the actual basket.➤➤

The more eagle-eyed among you may have noticed the link to the checkout controller action that
was placed on the Basket detail page. You will build the checkout and ordering facility in Chapter
14, but the next chapter focuses on the customer membership requirements.

Customer Membership

whaT’s in This chaPTer?

You will build the customer domain model and customer account ➤➤

section

You will use the ASP .NET membership API to off er a local authentica-➤➤

tion service

You will use a web-based authentication service provided by Janrain ➤➤

to allow customers to authenticate themselves on the site using exist-
ing accounts such as Google and Facebook

This chapter builds upon the solution from Chapter 12 by adding customer membership func-
tionality. In this chapter, you tackle the requirements of customer membership, registration,
and authentication.

cusTomer membershiP

Figure 13-1 shows the site map for customer membership.

You will focus on the login and registration functionality as well as the customer and delivery
address book management. The next chapter deals with the customer’s order history.

customer model
The domain model for customer aggregation is simple and consists of only two classes: the
Customer and the DeliveryAddress, as shown in Figure 13-2.

13

566  ❘  Chapter 13   Customer Membership

Address Book

Customer Details

Customer Account

Order History

Address Detail Order Detail

Login/Register

Product Catalog

Checkout and Payment

Figure 13-1

Figure 13-2

Address has been defined as a separate base class because it will be used with the order aggregation
to represent the order dispatch address. Because customers and addresses can be created, it’s impor-
tant that they are created in a valid state. With this in mind, add a new class to the root of the Model
project named AddressBusinessRules:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model
{
 public class AddressBusinessRules

Customer Membership  ❘  567

 {
 public static readonly BusinessRule AddressLine1Required = new
 BusinessRule(“AddressLine1”,
 “The 1st line of an Address is required.”);
 public static readonly BusinessRule CityRequired = new
 BusinessRule(“City”, “An address must have a city.”);
 public static readonly BusinessRule StateRequired = new
 BusinessRule(“State”, “An address must have a state.”);
 public static readonly BusinessRule CountryRequired = new
 BusinessRule(“Country”, “An address must have a country.”);
 public static readonly BusinessRule ZipCodeRequired = new
 BusinessRule(“ZipCode”, “An address must have a zip code.”);

 }
}

Next, create the Address class in the root of the Model project. This is a simple class that contains
validation logic to ensure that an address adheres to the store’s business rules:

using System;
using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model
{
 public class Address : EntityBase<int>
 {
 public string AddressLine1 { get; set; }
 public string AddressLine2 { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string ZipCode { get; set; }

 protected override void Validate()
 {
 if (String.IsNullOrEmpty(AddressLine1))
 base.AddBrokenRule(AddressBusinessRules.AddressLine1Required);

 if (String.IsNullOrEmpty(City))
 base.AddBrokenRule(AddressBusinessRules.CityRequired);

 if (String.IsNullOrEmpty(State))
 base.AddBrokenRule(AddressBusinessRules.StateRequired);

 if (String.IsNullOrEmpty(Country))
 base.AddBrokenRule(AddressBusinessRules.CountryRequired);

 if (String.IsNullOrEmpty(ZipCode))
 base.AddBrokenRule(AddressBusinessRules.ZipCodeRequired);
 }
 }
}

With the base Address class created, you can create the customer’s DeliveryAddress class that will
inherit from it. However, before you create the class, you need to add some more business rules to

568  ❘  Chapter 13   Customer Membership

validate the extra information contained within a DeliveryAddress. Create a new folder within the
Model project named Customers, and add a new class named DeliveryAddressBusinessRules:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Customers
{
 public class DeliveryAddressBusinessRules
 {
 public static readonly BusinessRule NameRequired = new
 BusinessRule(“Name”, “A delivery address must have a name.”);
 public static readonly BusinessRule CustomerRequired = new
 BusinessRule(“Customer”,
 “A delivery address must be associated with a customer.”);
 }
}

With the business rules defined, you can add the DeliveryAddress that inherits from Address. Add
the new class to the Customers folder that you just created:

namespace Agathas.Storefront.Model.Customers
{
 public class DeliveryAddress : Address
 {
 public string Name { get; set; }
 public Customer Customer { get; set; }

 protected override void Validate()
 {
 base.Validate();

 if (String.IsNullOrEmpty(Name))
 base.AddBrokenRule(DeliveryAddressBusinessRules.NameRequired);

 if (Customer == null)
 base.AddBrokenRule(DeliveryAddressBusinessRules.CustomerRequired);
 }
 }
}

Visual Studio complains because you haven’t defined a Customer class as yet. Fear not; you will see
to this in just a second. Before you do, however, you must define the business rules for a Customer. A
Customer will have an e‑mail address. The address needs to be valid, so you will add a new specifica-
tion for checking its validity, named EmailValidationSpecification, with the following listing:

using System.Text.RegularExpressions;

namespace Agathas.Storefront.Model.Customers
{
 public class EmailValidationSpecification
 {
 private static Regex _emailregex
 = new Regex(@”\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”);

 public bool IsSatisfiedBy(string email)

Customer Membership  ❘  569

 {
 return _emailregex.IsMatch(email);
 }
 }
}

You can now define the set of rules pertaining to a customer in a class named CustomerBusinessRules:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Customers
{
 public class CustomerBusinessRules
 {
 public static readonly BusinessRule FirstNameRequired = new BusinessRule(
 “FirstName”, “A customer must have a first name.”);
 public static readonly BusinessRule SecondNameRequired = new BusinessRule(
 “SecondName”, “A customer must have a second name.”);
 public static readonly BusinessRule EmailRequired = new BusinessRule(
 “Email”, “A customer must have a valid email address.”);
 public static readonly BusinessRule IdentityTokenRequired = new
 BusinessRule(“IdentityToken”,
 “A customer must have an identity token.”);
 }
}

When a delivery address is added to a customer’s delivery address book, it needs to be in a valid
state. If it is not, an exception is thrown. The InvalidAddressException class is used when an
invalid DeliveryAddress is added:

using System;

namespace Agathas.Storefront.Model.Customers
{
 public class InvalidAddressException : Exception
 {
 public InvalidAddressException(string message)
 : base(message)
 {
 }
 }
}

With the business rules defined, you can complete the model by adding the Customer class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Model.Orders;

namespace Agathas.Storefront.Model.Customers
{
 public class Customer : EntityBase<int>, IAggregateRoot

570  ❘  Chapter 13   Customer Membership

 {
 private IList<DeliveryAddress> _deliveryAddressBook =
 new List<DeliveryAddress>();
 public string IdentityToken { get; set; }
 public string FirstName { get; set; }
 public string SecondName { get; set; }
 public string Email { get; set; }

 public void AddAddress(DeliveryAddress deliveryAddress)
 {
 ThrowExceptionIfAddressIsInvalid(deliveryAddress);

 _deliveryAddressBook.Add(deliveryAddress);
 }

 private void ThrowExceptionIfAddressIsInvalid(
 DeliveryAddress deliveryAddress)
 {
 if (deliveryAddress.GetBrokenRules().Count() > 0)
 {
 StringBuilder deliveryAddressIssues = new StringBuilder();
 deliveryAddressIssues.AppendLine(
 “There were some issues with the address you are adding.”);

 foreach (BusinessRule rule in deliveryAddress.GetBrokenRules())
 deliveryAddressIssues.AppendLine(rule.Rule);

 throw new InvalidAddressException(
 deliveryAddressIssues.ToString());
 }
 }

 public IEnumerable<DeliveryAddress> DeliveryAddressBook
 {
 get { return _deliveryAddressBook; }
 }

 protected override void Validate()
 {
 if (String.IsNullOrEmpty(FirstName))
 base.AddBrokenRule(CustomerBusinessRules.FirstNameRequired);

 if (String.IsNullOrEmpty(SecondName))
 base.AddBrokenRule(CustomerBusinessRules.SecondNameRequired);

 if (!new EmailValidationSpecification().IsSatisfiedBy(Email))
 base.AddBrokenRule(CustomerBusinessRules.EmailRequired);

 if (String.IsNullOrEmpty(IdentityToken))
 base.AddBrokenRule(CustomerBusinessRules.IdentityTokenRequired);
 }
 }
}

Customer Membership  ❘  571

To retrieve and persist Customer entities, you need a customer repository. Define a new
ICustomerRepository interface that matches the following definition:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Customers
{
 public interface ICustomerRepository : IRepository<Customer, int>
 {
 Customer FindBy(string identityToken);
 }
}

Notice that the ICustomerRepository contains an extra method to find Customers by their
IdentityToken. The authentication service that you will create later in this chapter provides
the IdentityToken.

That completes the customers domain model; next, you will create the data model.

Customer Data Tables
You will now update the database by adding data tables to store the customer and delivery address
details. Within the Web.MVC project, open the database Shop.mdf database and add the following
tables, as shown in Figure 13-3. Ensure that you set all the primary key fields as identity fields. This
will mean that the database is in charge of creating the entity’s identity.

Figure 13-3

After the data model is created, you need to set up the mapping files so that NHibernate can retrieve
and persist the customer and his delivery addresses.

Customer NHibernate Mappings
There are two mapping files for the customer aggregation to match the two entities. The mapping
files are similar to what you have seen before. The first mapping file to create is DeliveryAddress​
.hbm.xml, which maps delivery address data rows to delivery address entities:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Customers”

572  ❘  Chapter 13   Customer Membership

 assembly=”Agathas.Storefront.Model”>

 <class name=”DeliveryAddress” table=”CustomerDeliveryAddresses” lazy=”false” >

 <id name=”Id” column=”DeliveryId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property name=”Name”>
 <column name=”Name” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property name=”AddressLine1”>
 <column name=”AddressLine1” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property name=”AddressLine2”>
 <column name=”AddressLine2” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property name=”City”>
 <column name=”City” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property name=”State”>
 <column name=”State” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property name=”ZipCode”>
 <column name=”ZipCode” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <property name=”Country”>
 <column name=”Country” sql-type=”nvarchar(50)” not-null=”true” />
 </property>

 <many-to-one name=”Customer”
 class=”Customer”
 column=”CustomerId”
 not-null=”true”
 lazy=”false” />

 </class>
</hibernate-mapping>

Remember that you need to change the build action for the DeliveryAddress.hbm.xml file. Right-click
on the DeliveryAddress.hbm.xml XML file and bring up its properties from the context-sensitive
menu. Once the Properties dialog is displayed, change the build action to Embedded Resource. This
ensures that the XML data is embedded when the assembly is built. Ensure that you do the same for
the Customer.hbm.xml file that follows:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Customers”

Customer Membership  ❘  573

 assembly=”Agathas.Storefront.Model”>

 <class name=”Customer” table=”Customers” lazy=”false” >

 <id name=”Id” column=”CustomerId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property name=”IdentityToken”>
 <column name=”AuthenticationToken” sql-type=”nvarchar(250)”
 not-null=”true” />
 </property>

 <property name=”FirstName”>
 <column name=”FirstName” sql-type=”nvarchar(100)” not-null=”true” />
 </property>

 <property name=”SecondName”>
 <column name=”SecondName” sql-type=”nvarchar(100)” not-null=”true” />
 </property>

 <property name=”Email”>
 <column name=”Email” sql-type=”nvarchar(100)” not-null=”true” />
 </property>

 <bag name=”DeliveryAddressBook” access=”field.camelcase-underscore”
 inverse=”true” cascade=”all” lazy=”true” >
 <key column=”CustomerId”/>
 <one-to-many class=”DeliveryAddress”></one-to-many>
 </bag>

 </class>

</hibernate-mapping>

After you have mapped both of the entities that form the Customer aggregation, you need to imple-
ment the ICustomerRepository. Create a new CustomerRepository within the Repositories
folder of the NHibernate project, as shown in the following listing:

using System.Collections.Generic;
using System.Linq;
using Agathas.Storefront.Infrastructure.Querying;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Customers;
using NHibernate;
using NHibernate.Criterion;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public class CustomerRepository : Repository<Customer, int>,
 ICustomerRepository
 {
 public CustomerRepository(IUnitOfWork uow)
 : base(uow)

574  ❘  Chapter 13   Customer Membership

 {
 }

 public Customer FindBy(string identityToken)
 {
 ICriteria criteriaQuery = SessionFactory.GetCurrentSession()
 .CreateCriteria(typeof(Customer))
 .Add(Expression.Eq(PropertyNameHelper
 .ResolvePropertyName<Customer>
 (c => c.IdentityToken), identityToken));

 IList<Customer> customers = criteriaQuery.List<Customer>();

 Customer customer = customers.FirstOrDefault();
 return customer;
 }
 }
}

The base repository that you developed in Chapter 11 can take care of most of the requirements of the
ICustomerRepository interface, apart from the extra method you added that retrieved a customer via
his IdentityToken. For this method, you had to define a new criteria object, because it’s not the default
identity property of the Customer entity. As mentioned before, the need for retrieving the Customer
entity via the IdentityToken will become apparent when you look at implementing the Authentication
mechanism a little later.

Customer Service
Customerservice returns a view of the customer aggregation, as displayed in Figure 13-4.

Figure 13-4

Create a new class within the ViewModels of the Services project with the following definition:

namespace Agathas.Storefront.Services.ViewModels
{
 public class DeliveryAddressView
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string AddressLine1 { get; set; }
 public string AddressLine2 { get; set; }

Customer Membership  ❘  575

 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string ZipCode { get; set; }
 }
}

Next, add a class named CustomerView to represent the default view of a customer:

using System.Collections.Generic;

namespace Agathas.Storefront.Services.ViewModels
{
 public class CustomerView
 {
 public string IdentityToken { get; set; }
 public string FirstName { get; set; }
 public string SecondName { get; set; }
 public string Email { get; set; }
 public IEnumerable<DeliveryAddressView> DeliveryAddressBook { get; set; }
 }
}

To convert a Customer entity into a CustomerView, you will again use AutoMapper. Open the
AutoMapperBootStrapper class found at the root of the Services project, and update it to include
the extra maps bolded in the following code snippet:

…

using Agathas.Storefront.Model.Customers;

namespace Agathas.Storefront.Services
{
 public class AutoMapperBootStrapper
 {
 public static void ConfigureAutoMapper()
 {
 …

 // Customer
 Mapper.CreateMap<Customer, CustomerView>();
 Mapper.CreateMap<DeliveryAddress, DeliveryAddressView>();
 …

 }
 }

 …
}

The process of converting a customer entity into a CustomerView is performed in an extension
method contained in a class named CustomerMapper that you can place in the Mapping folder:

using Agathas.Storefront.Model.Customers;
using Agathas.Storefront.Services.ViewModels;

576  ❘  Chapter 13   Customer Membership

using AutoMapper;

namespace Agathas.Storefront.Services.Mapping
{
 public static class CustomerMapper
 {
 public static CustomerView ConvertToCustomerDetailView(
 this Customer customer)
 {
 return Mapper.Map<Customer, CustomerView>(customer);
 }
 }
}

Similarly, the DeliveryAddress has a corresponding DeliveryAddressMapper class to provide a
method extension that is responsible for the conversion:

using Agathas.Storefront.Model.Customers;
using Agathas.Storefront.Services.ViewModels;
using AutoMapper;

namespace Agathas.Storefront.Services.Mapping
{
 public static class DeliveryAddressMapper
 {
 public static DeliveryAddressView ConvertToDeliveryAddressView(
 this DeliveryAddress deliveryAddress)
 {
 return Mapper.Map<DeliveryAddress,
 DeliveryAddressView>(deliveryAddress);
 }
 }
}

As with the IProductCatalogService and IBasketService service contracts, you communicate
via the request-response messaging pattern. The creation of a customer requires a request-response
pair named CreateCustomerRequest and CreateCustomerResponse, as shown in the following
listing. Create both of these classes and all the other customer messaging classes in a new folder
named CustomerService that sits under the Messaging folder:

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class CreateCustomerRequest
 {
 public string CustomerIdentityToken { get; set; }
 public string Email { get; set; }
 public string FirstName { get; set; }
 public string SecondName { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService

Customer Membership  ❘  577

{
 public class CreateCustomerResponse
 {
 public CustomerView Customer { get; set; }
 }
}

To obtain a view of the customer aggregation from the service layer, create a request-response pair
named GetCustomerRequest and GetCustomerResponse, as shown in the following listing:

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class GetCustomerRequest
 {
 public string CustomerIdentityToken { get; set; }
 }
}

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class GetCustomerResponse
 {
 public bool CustomerFound { get; set; }
 public CustomerView Customer { get; set; }
 }
}

The classes ModifyCustomerRequest and ModifyCustomerResponse communicate modifications to
a customer’s details:

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class ModifyCustomerRequest
 {
 public string CustomerIdentityToken { get; set; }
 public string FirstName { get; set; }
 public string SecondName { get; set; }
 public string Email { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class ModifyCustomerResponse
 {
 public CustomerView Customer { get; set; }
 }
}

578  ❘  Chapter 13   Customer Membership

To add a new DeliveryAddress to a customer’s DeliveryAddressBook collection, use the classes
DeliveryAddressAddRequest and DeliveryAddressAddResponse:

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class DeliveryAddressAddRequest
 {
 public string CustomerIdentityToken { get; set; }
 public DeliveryAddressView Address { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class DeliveryAddressAddResponse
 {
 public DeliveryAddressView DeliveryAddress { get; set; }
 }
}

DeliveryAddressModifyRequest and DeliveryAddressModifyResponse communicate the modi-
fication of an existing DeliveryAddress:

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class DeliveryAddressModifyRequest
 {
 public string CustomerIdentityToken { get; set; }
 public DeliveryAddressView Address { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class DeliveryAddressModifyResponse
 {
 public DeliveryAddressView DeliveryAddress { get; set; }
 }
}

Create the contract for CustomerService in the Interfaces folder of the Services project, and
name it ICustomerService:

using Agathas.Storefront.Services.Messaging.CustomerService;

namespace Agathas.Storefront.Services.Interfaces
{

Customer Membership  ❘  579

 public interface ICustomerService
 {
 CreateCustomerResponse CreateCustomer(CreateCustomerRequest request);
 GetCustomerResponse GetCustomer(GetCustomerRequest request);
 ModifyCustomerResponse ModifyCustomer(ModifyCustomerRequest request);

 DeliveryAddressModifyResponse ModifyDeliveryAddress(
 DeliveryAddressModifyRequest request);
 DeliveryAddressAddResponse AddDeliveryAddress(
 DeliveryAddressAddRequest request);
 }
}

The ICustomerService interface defines a simple create, read, update, and delete (CRUD)-like API
for working with the customer aggregation.

Before you create the implementation of the ICustomerService interface, define a new exception
named CustomerInvalidException. The CustomerInvalidException is thrown if an attempt is
made to save or add a customer who is not valid:

using System;

namespace Agathas.Storefront.Services.Implementations
{
 public class CustomerInvalidException : Exception
 {
 public CustomerInvalidException(string message) : base (message)
 {
 }
 }
}

With the supporting code in place, you can now create the implementation of ICustomerService
named CustomerService. Create the CustomerService class in the Implementations folder with
the following listing:

using System.Linq;
using System.Text;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Customers;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Mapping;
using Agathas.Storefront.Services.Messaging.CustomerService;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Implementations
{
 public class CustomerService : ICustomerService
 {
 private readonly ICustomerRepository _customerRepository;
 private readonly IUnitOfWork _uow;

 public CustomerService(ICustomerRepository customerRepository,

580  ❘  Chapter 13   Customer Membership

 IUnitOfWork uow)
 {
 _customerRepository = customerRepository;
 _uow = uow;
 }

 public CreateCustomerResponse CreateCustomer(CreateCustomerRequest request)
 {
 CreateCustomerResponse response = new CreateCustomerResponse();
 Customer customer = new Customer();
 customer.IdentityToken = request.CustomerIdentityToken;
 customer.Email = request.Email;
 customer.FirstName = request.FirstName;
 customer.SecondName = request.SecondName;

 ThrowExceptionIfCustomerIsInvalid(customer);

 _customerRepository.Add(customer);
 _uow.Commit();

 response.Customer = customer.ConvertToCustomerDetailView();

 return response;
 }

 private void ThrowExceptionIfCustomerIsInvalid(Customer customer)
 {
 if (customer.GetBrokenRules().Count() > 0)
 {
 StringBuilder brokenRules = new StringBuilder();
 brokenRules.AppendLine(“There were problems saving the Customer:”);
 foreach (BusinessRule businessRule in customer.GetBrokenRules())
 {
 brokenRules.AppendLine(businessRule.Rule);
 }

 throw new CustomerInvalidException(brokenRules.ToString());

 }
 }

 public GetCustomerResponse GetCustomer(GetCustomerRequest request)
 {
 GetCustomerResponse response = new GetCustomerResponse();

 Customer customer = _customerRepository
 .FindBy(request.CustomerIdentityToken);

 if (customer != null)
 {
 response.CustomerFound = true;
 response.Customer = customer.ConvertToCustomerDetailView();

 }
 else

Customer Membership  ❘  581

 response.CustomerFound = false;

 return response;
 }

 public ModifyCustomerResponse ModifyCustomer(ModifyCustomerRequest request)
 {
 ModifyCustomerResponse response = new ModifyCustomerResponse();

 Customer customer = _customerRepository
 .FindBy(request.CustomerIdentityToken);

 customer.FirstName = request.FirstName;
 customer.SecondName = request.SecondName;
 customer.Email = request.Email;

 ThrowExceptionIfCustomerIsInvalid(customer);

 _customerRepository.Save(customer);
 _uow.Commit();

 response.Customer = customer.ConvertToCustomerDetailView();

 return response;
 }

 public DeliveryAddressModifyResponse ModifyDeliveryAddress(
 DeliveryAddressModifyRequest request)
 {
 DeliveryAddressModifyResponse response =
 new DeliveryAddressModifyResponse();

 Customer customer = _customerRepository
 .FindBy(request.CustomerIdentityToken);

 DeliveryAddress deliveryAddress = customer.DeliveryAddressBook
 .Where(d => d.Id == request.Address.Id)
 .FirstOrDefault();

 if (deliveryAddress != null)
 {
 UpdateDeliveryAddressFrom(request.Address, deliveryAddress);

 _customerRepository.Save(customer);
 _uow.Commit();
 }

 response.DeliveryAddress = deliveryAddress
 .ConvertToDeliveryAddressView();

 return response;
 }

 public DeliveryAddressAddResponse AddDeliveryAddress(

582  ❘  Chapter 13   Customer Membership

 DeliveryAddressAddRequest request)
 {
 DeliveryAddressAddResponse response = new DeliveryAddressAddResponse();
 Customer customer = _customerRepository
 .FindBy(request.CustomerIdentityToken);

 DeliveryAddress deliveryAddress = new DeliveryAddress();

 deliveryAddress.Customer = customer;
 UpdateDeliveryAddressFrom(request.Address, deliveryAddress);

 customer.AddAddress(deliveryAddress);

 _customerRepository.Save(customer);
 _uow.Commit();

 response.DeliveryAddress = deliveryAddress
 .ConvertToDeliveryAddressView();

 return response;
 }

 private void UpdateDeliveryAddressFrom(
 DeliveryAddressView deliveryAddressSource,
 DeliveryAddress deliveryAddressToUpdate)
 {
 deliveryAddressToUpdate.Name = deliveryAddressSource.Name;
 deliveryAddressToUpdate.AddressLine1 =
 deliveryAddressSource.AddressLine1;
 deliveryAddressToUpdate.AddressLine2 =
 deliveryAddressSource.AddressLine2;
 deliveryAddressToUpdate.City = deliveryAddressSource.City;
 deliveryAddressToUpdate.State = deliveryAddressSource.State;
 deliveryAddressToUpdate.Country = deliveryAddressSource.Country;
 deliveryAddressToUpdate.ZipCode = deliveryAddressSource.ZipCode;
 }
 }
}

Code snippet CustomerService.cs in project Agathas.Storefront.Services

The CustomerService class is straightforward and simply updates the customer aggregation based
on requests from the client.

With the customer membership taken care of, you will now look at how you can authenticate users
on the site.

Authentication Service
The requirements for authentication state that there should be two forms of authentication avail-
able for customers. Customers who already have web-based accounts at sites such as Facebook or
Google should be able to use these accounts when registering or signing on to the site so that there
is no need for them to have to remember another username and password combination. Customers
without or who do not want to use an existing web-based account can use a local authentication

Customer Membership  ❘  583

service that the site supplies. In this section, you create the local authentication service before imple-
menting a web-based authentication service.

Both of the authentication types supply a User object after verifying a user’s profile. Create a new class
named User within the Authentication folder of the Infrastructure project with the following code
listing:

namespace Agathas.Storefront.Infrastructure.Authentication
{
 public class User
 {
 public string AuthenticationToken { get; set; }
 public string Email { get; set; }
 public bool IsAuthenticated { get; set; }
 }
}

Local Authentication with ASP.NET Membership
The local authentication method uses the built-in ASP.NET membership provider to register and
verify users. To make the membership API testable and to keep your code loosely coupled, define an
interface for the membership API to implement via an adapter.

Create a new interface named ILocalAuthenticationService with the following contract:

namespace Agathas.Storefront.Infrastructure.Authentication
{
 public interface ILocalAuthenticationService
 {
 User Login(string email, string password);
 User RegisterUser(string email, string password);
 }
}

Next, add an adapter class named AspMembershipAuthentication that adapts the membership API
to your interface:

using System;
using System.Web.Security;

namespace Agathas.Storefront.Infrastructure.Authentication
{
 public class AspMembershipAuthentication : ILocalAuthenticationService
 {
 public User Login(string email, string password)
 {
 User user = new User();
 user.IsAuthenticated = false;

 if (Membership.ValidateUser(email, password))
 {
 MembershipUser validatedUser = Membership.GetUser(email);
 user.AuthenticationToken = validatedUser
 .ProviderUserKey.ToString();
 user.Email = email;

584  ❘  Chapter 13   Customer Membership

 user.IsAuthenticated = true;
 }

 return user;
 }

 public User RegisterUser(string email, string password)
 {
 MembershipCreateStatus status;
 User user = new User();
 user.IsAuthenticated = false;

 Membership.CreateUser(email, password, email,
 Guid.NewGuid().ToString(),
 Guid.NewGuid().ToString(),
 true, out status);

 if (status == MembershipCreateStatus.Success)
 {
 MembershipUser newlyCreatedUser = Membership.GetUser(email);
 user.AuthenticationToken = newlyCreatedUser
 .ProviderUserKey.ToString();
 user.Email = email;
 user.IsAuthenticated = true;
 }
 else
 {
 switch (status)
 {
 case MembershipCreateStatus.DuplicateEmail:
 throw new InvalidOperationException(
 “There is already a user with this email address.”);
 case MembershipCreateStatus.DuplicateUserName:
 throw new InvalidOperationException(
 “There is already a user with this email address.”);
 case MembershipCreateStatus.InvalidEmail:
 throw new InvalidOperationException(
 “Your email address is invalid”);
 default:
 throw new InvalidOperationException(
 “There was a problem creating your account. “ +
 “Please try again.”);
 }
 }

 return user;
 }
 }
}

You will build the .ASPX views later, but that’s all there is to creating the local authentication ser-
vice. The built-in membership API creates a local ASPNETDB.MDF database the first time it is used.
The ASP.NET membership API is out of the scope of this book, but for a good resource on this
feature of ASP.NET, check out the Wrox book Beginning ASP.NET Security by Barry Dorrans.

Customer Membership  ❘  585

Web-Based Authentication with Janrain
To authenticate customers using existing web-based accounts, you will use a third party service from
www.janrain.com/. Figure 13-5 shows the flow of using the Janrain service.

Browser redirects via an HTTP post
passing a callback URL to Janrain

API call to validate token and obtain user profile

Customer selects the web-based account
from the embedded Janrain HTML

Agatha’s Store
Login View Janrain

Google, Facebook,
Twitter,

and so on

Customer logs
into web account

Browser redirects via an HTTP post
containing user token

Figure 13-5

The Janrain service acts as a proxy to a host of third-party sites. An iframe is embedded on Agatha’s
sign-in and registration page, allowing a customer to select a web-based account to authenticate.
Upon selecting a provider, the customer is asked to log in to that site. The response is then redirected
via Janrain, and an authentication token is supplied to Agatha’s callback page. Lastly, a check is made
to validate the token and obtain the user profile before authentication is set and the user is allowed to
check out or manage her account.

To start working with Janrain, you need to create an account. Navigate to www.janrain.com/, and
create a free basic account. After you have created an account, Janrain asks you to create a new appli-
cation, as shown in Figure 13-6. Add ASPDesignPatterns_<YourName> for the name of the account,
and click Next.

Figure 13-6

586  ❘  Chapter 13   Customer Membership

After creating an application, you are taken to the homepage for that application, as can be seen in
Figure 13-7.

Figure 13-7

Make a note of your API key, which can be obtained by clicking on the API Key (shown) link in the
top-right corner of the page, as shown in Figure 13-7.

To work with a web-based authentication service, first define an interface to work against. Add a
new interface named IExternalAuthenticationService to the Authentication folder of the
Infrastructure project:

namespace Agathas.Storefront.Infrastructure.Authentication
{
 public interface IExternalAuthenticationService
 {
 User GetUserDetailsFrom(string token);
 }
}

The IExternalAuthenticationService service obtains a user’s profile from the token that you
receive from the Janrain HTTP Post callback, as detailed in Figure 13-5. To communicate with the
Janrain service, you need to pass the API key that you obtained after creating a new application, as
shown in Figure 13-7. The key is stored in the web.config of the Web.MVC project. To retrieve it,
you must add a new property to the IApplicationSettings interface, which you can find within
the Configuration folder of the Infrastructure project, as shown in bold next:

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public interface IApplicationSettings
 {

Customer Membership  ❘  587

 int NumberOfResultsPerPage {get; }

 string LoggerName { get; }

 string JanrainApiKey { get; }
 }
}

With the IApplicationSettings interface updated, you need to update the WebConfigApplication​
Settings implementation, as bolded in the following code listing:

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public class WebConfigApplicationSettings : IApplicationSettings
 {
 public string LoggerName
 {
 get { return ConfigurationManager.AppSettings[“LoggerName”]; }
 }

 public string NumberOfResultsPerPage
 {
 get { return ConfigurationManager
 .AppSettings[“NumberOfResultsPerPage”]; }
 }

 public string JanrainApiKey
 {
 get { return ConfigurationManager
 .AppSettings[“JanrainApiKey”]; }
 }
 }
}

Finally, add an entry into the web.config of the Web.MVC project, replacing the XXXs with your
Janrain API key:

 <appSettings>
 <add key=”NumberOfResultsPerPage” value=”9”/>
 <add key=”JanrainApiKey” value=”xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx” />
 <add key=”LoggerName” value=”AgathaLogger”/>
 </appSettings >

With the Janrain API key in the configuration data, you can create an implementation of the
IExternalAuthenticationService interface. Add a new class named JanrainAuthentication​
Service with the following listing:

using System;
using System.Linq;
using System.Net;
using System.Xml.Linq;
using Agathas.Storefront.Infrastructure.Configuration;

namespace Agathas.Storefront.Infrastructure.Authentication

588  ❘  Chapter 13   Customer Membership

{
 public class JanrainAuthenticationService : IExternalAuthenticationService
 {
 public User GetUserDetailsFrom(string token)
 {
 User user = new User();

 string parameters = String.Format(“apiKey={0}&token={1}&format=xml”,
 ApplicationSettingsFactory.GetApplicationSettings()
 .JanrainApiKey,token);
 string response;
 using (var w = new WebClient())
 {
 response = w.UploadString(“https://rpxnow.com/api/v2/auth_info”,
 parameters);
 }
 var xmlResponse = XDocument.Parse(response);
 var userProfile = (from x in xmlResponse.Descendants(“profile”)
 select new
 {
 id = x.Element(“identifier”).Value,
 email = (string)x.Element(“email”) ?? “No Email”
 }).SingleOrDefault();

 if (userProfile != null)
 {
 user.AuthenticationToken = userProfile.id;
 user.Email = userProfile.email;
 user.IsAuthenticated = true;
 }
 else
 user.IsAuthenticated = false;

 return user;
 }
 }
}

As mentioned before, this GetUserDetailsFrom method takes a token supplied via the callback
HTTP Post, which occurs after the customer has signed in to a web-based account. The token is
then used with the Janrain API key to retrieve an XML file with details on the user’s profile. The
GetUserDetailsFrom method uses LinqToXML to pull the user’s e‑mail and ID from the XML
response before populating the User object that you defined earlier. The code snippet that follows
shows the XML response from the Janrain call:

<?xml version=’1.0’ encoding=’UTF-8’?>
<rsp stat=’ok’>
<profile>
 <displayName>JohnSmith</displayName>
 <email>JohnSmith@googlemail.com</email>
 <identifier>https://www.google.com/accounts/o8/idid=XXXXXXX</identifier>
 <name>

Customer Membership  ❘  589

 <givenName>John</givenName>
 <familyName>Smith</familyName>
 <formatted>John Smith</formatted>
 </name>
 <preferredUsername>JohnSmith</preferredUsername>
 <providerName>Google</providerName>
 <verifiedEmail>JohnSmith@googlemail.com </verifiedEmail>
 <googleUserId>00000000000000000</googleUserId>
</profile>
</rsp>

This is all the work you need to do for the web-based authentication service for the moment. You will
return to the Janrain service when you implement the .ASPX views later in this chapter.

Authentication Cookie
For the site to know that a user has logged in and verified his membership, you need some kind of flag
to tell the site that this user has been authenticated. To meet this requirement, you use the ASP.NET
forms-based authentication. To make the forms-based authentication testable and loosely coupled,
you again create an interface and add an adapter. Start by adding a new interface named IForms​
Authentication to the Authentication folder of the Infrastructure project:

namespace Agathas.Storefront.Infrastructure.Authentication
{
 public interface IFormsAuthentication
 {
 void SetAuthenticationToken(string token);
 string GetAuthenticationToken();
 void SignOut();
 }
}

Next, add an implementation of this interface named AspFormsAuthentication to the same folder:

using System.Web;
using System.Web.Security;

namespace Agathas.Storefront.Infrastructure.Authentication
{
 public class AspFormsAuthentication : IFormsAuthentication
 {
 public void SetAuthenticationToken(string token)
 {
 FormsAuthentication.SetAuthCookie(token, false);
 }

 public string GetAuthenticationToken()
 {
 return HttpContext.Current.User.Identity.Name;
 }

 public void SignOut()

590  ❘  Chapter 13   Customer Membership

 {
 FormsAuthentication.SignOut();
 }
 }
}

And that’s all there is to do to for the authentication functionality at this point. Next, you turn your
attention to the customer and account controllers.

Customer Controller
You can see the .ASPX views and view models that make up the Customer Account section in
Figure 13-8.

You will now create the two strongly typed views for the .ASPX views for the Customers section.
Both of the views inherit from a common base class named BaseCustomerAccountView. Create this
class within a new folder named CustomerAccount, which you can create within the ViewModels
folder of the Controllers project:

namespace Agathas.Storefront.Controllers.ViewModels.CustomerAccount
{
 public abstract class BaseCustomerAccountView
 {
 public BasketSummaryView BasketSummary { get; set; }
 }
}

The CustomerDeliveryAddressView that also lives within the CustomerAccount folder is strongly
typed to an .ASPX view that displays a customer’s list of delivery addresses:

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.CustomerAccount
{
 public class CustomerDeliveryAddressView : BaseCustomerAccountView
 {
 public CustomerView CustomerView { get; set; }
 public DeliveryAddressView Address { get; set; }
 }
}

The CustomerDetailView is strongly typed to a view that displays details about a customer:

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.CustomerAccount
{
 public class CustomerDetailView : BaseCustomerAccountView
 {
 public CustomerView Customer { get; set; }
 }
}

Customer Membership  ❘  591

Site.Master

SiteFooter.ascx

DeliveryAddresses
.aspx

CustomerDetailView CustomerDeliveryAddressView

CustomerAccount.master

BasketSummary
.ascx

CustomerMenu
.ascx

BaseCustomerAccountView

Checkout.masterProductCatalog.master

Detail.aspx

CustomerDetailView CustomerDeliveryAddressView

AddDeliveryAddresses
.aspx

AddressEdit.ascx

EditDeliveryAddresses
.aspx

AddressEdit.ascx

Figure 13-8

With the views in place, you can create the customer’s controller. Add a new class to the Controllers
folder of the Controllers project named CustomersController with the following listing:

using System.Linq;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.ViewModels.CustomerAccount;
using Agathas.Storefront.Infrastructure.Authentication;
using Agathas.Storefront.Infrastructure.CookieStorage;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.CustomerService;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.Controllers
{
 [Authorize]
 public class CustomerController : BaseController
 {
 private readonly ICustomerService _customerService;
 private readonly IFormsAuthentication _formsAuthentication;

 public CustomerController(ICookieStorageService cookieStorageService,
 ICustomerService customerService,
 IFormsAuthentication formsAuthentication)

592  ❘  Chapter 13   Customer Membership

 : base(cookieStorageService)
 {
 _customerService = customerService;
 _formsAuthentication = formsAuthentication;
 }

 [Authorize]
 public ActionResult Detail()
 {
 GetCustomerRequest customerRequest = new GetCustomerRequest();
 customerRequest.CustomerIdentityToken =
 _formsAuthentication.GetAuthenticationToken();

 GetCustomerResponse response =
 _customerService.GetCustomer(customerRequest);

 CustomerDetailView customerDetailView = new CustomerDetailView();
 customerDetailView.Customer = response.Customer;
 customerDetailView.BasketSummary = base.GetBasketSummaryView();

 return View(customerDetailView);
 }

 [Authorize]
 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Detail(CustomerView customerView)
 {
 ModifyCustomerRequest request = new ModifyCustomerRequest();

 request.CustomerIdentityToken =
 _formsAuthentication.GetAuthenticationToken();
 request.Email = customerView.Email;
 request.FirstName = customerView.FirstName;
 request.SecondName = customerView.SecondName;

 ModifyCustomerResponse response =
 _customerService.ModifyCustomer(request);

 CustomerDetailView customerDetailView = new CustomerDetailView();

 customerDetailView.Customer = response.Customer;
 customerDetailView.BasketSummary = base.GetBasketSummaryView();

 return View(customerDetailView);
 }

 [Authorize]
 public ActionResult DeliveryAddresses()
 {
 GetCustomerRequest customerRequest = new GetCustomerRequest();
 customerRequest.CustomerIdentityToken =
 _formsAuthentication.GetAuthenticationToken();

Customer Membership  ❘  593

 GetCustomerResponse response =
 _customerService.GetCustomer(customerRequest);

 CustomerDetailView customerDetailView = new CustomerDetailView();

 customerDetailView.Customer = response.Customer;
 customerDetailView.BasketSummary = base.GetBasketSummaryView();

 return View(“DeliveryAddresses”, customerDetailView);
 }

 [Authorize]
 public ActionResult EditDeliveryAddress(int deliveryAddressId)
 {
 GetCustomerRequest customerRequest = new GetCustomerRequest();
 customerRequest.CustomerIdentityToken =
 _formsAuthentication.GetAuthenticationToken();

 GetCustomerResponse response = _customerService
 .GetCustomer(customerRequest);

 CustomerDeliveryAddressView deliveryAddressView =
 new CustomerDeliveryAddressView();

 deliveryAddressView.CustomerView = response.Customer;
 deliveryAddressView.Address =
 response.Customer.DeliveryAddressBook
 .Where(d => d.Id == deliveryAddressId)
 .FirstOrDefault();
 deliveryAddressView.BasketSummary = base.GetBasketSummaryView();

 return View(deliveryAddressView);
 }

 [Authorize]
 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult EditDeliveryAddress(
 DeliveryAddressView deliveryAddressView)
 {
 DeliveryAddressModifyRequest request =
 new DeliveryAddressModifyRequest();
 request.Address = deliveryAddressView;
 request.CustomerIdentityToken =
 _formsAuthentication.GetAuthenticationToken();

 _customerService.ModifyDeliveryAddress(request);

 return DeliveryAddresses();
 }

 [Authorize]
 public ActionResult AddDeliveryAddress()
 {

594  ❘  Chapter 13   Customer Membership

 CustomerDeliveryAddressView customerDeliveryAddressView =
 new CustomerDeliveryAddressView();

 customerDeliveryAddressView.Address = new DeliveryAddressView();
 customerDeliveryAddressView.BasketSummary =
 base.GetBasketSummaryView();

 return View(customerDeliveryAddressView);
 }

 [Authorize]
 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult AddDeliveryAddress(
 DeliveryAddressView deliveryAddressView)
 {
 DeliveryAddressAddRequest request = new DeliveryAddressAddRequest();
 request.Address = deliveryAddressView;
 request.CustomerIdentityToken =
 _formsAuthentication.GetAuthenticationToken();

 _customerService.AddDeliveryAddress(request);

 return DeliveryAddresses();
 }
 }
}

Code snippet CustomerController in project Agathas.Storefront.Controllers

Notice how each of the methods of the CustomerController is decorated with the Authorize
attribute, meaning that a customer can only access this URL if he has been authenticated. Note also
that the CustomerController uses the IFormsAuthentication to retrieve the token that identifies
the customer when talking to the CustomerService — ​hence the need for the extra method of the
ICustomerRepository contract.

You will now create the account controller to handle user registration and verification.

Account Controllers
Figure 13-9 shows the two .ASPX views that you will be creating later in the chapter. Both of the
views are strongly typed to a AccountView and have an JanrainLogin.ascx partial view embedded,
which in turn is strongly typed to the CallBackSettings view. The JanrainLogin.ascx partial view
corresponds to the Internet-based authentication that you created an account for earlier in the chapter.

Before you create the view models and the controllers, you need some supporting classes to keep the
system loosely coupled. When using forms-based authentication, you need to retrieve and work with
query string parameters. To keep the controllers clean from calls, you will wrap the query string
parameters in an action arguments class.

Create a new folder named ActionArguments within the Controllers project, and add a new enu-
meration to the folder named ActionArgumentKey:

namespace Agathas.Storefront.Controllers.ActionArguments
{

Customer Membership  ❘  595

 public enum ActionArgumentKey
 {
 ReturnUrl
 }
}

Site.Master

SiteFooter.ascx

LogOn.aspx

AccountView

JanrainLogin.ascx

CallBackSettings

CustomerAccount.master

ProductCatalog.master

Checkout.master Register.aspx

AccountView

JanrainLogin.ascx

CallBackSettings

Figure 13-9

Forms authentication uses the ReturnUrl to instruct the authentication service to navigate the user
to that location after a successful login.

To retrieve query string parameters, define an IActionArguments interface that has a single method
that resolves an ActionArgumentKey enumeration value:

namespace Agathas.Storefront.Controllers.ActionArguments
{
 public interface IActionArguments
 {
 string GetValueForArgument(ActionArgumentKey key);
 }
}

The implementation for the IActionArguments interface uses the HttpContext to return the value
for the given key from the query string dictionary:

using System.Web;

namespace Agathas.Storefront.Controllers.ActionArguments
{
 public class HttpRequestActionArguments : IActionArguments
 {

596  ❘  Chapter 13   Customer Membership

 public string GetValueForArgument(ActionArgumentKey key)
 {
 return HttpContext.Current.Request.QueryString[key.ToString()];
 }
 }
}

This enables the code to be tested, because there is no reliance on the HttpContext run time.

You will now create the strongly typed view that the account logon and account register .ASPX views
will be bound to. Add a new folder named Account to the ViewModels folder of the Controllers
project.

The first view model to create is the CallBackSettings view, which will be bound to the Janrain​
Login.ascx partial view. This view tells the Janrain authentication service which URL to return to
after a customer has logged into his web-based account:

namespace Agathas.Storefront.Controllers.ViewModels.Account
{
 public class CallBackSettings
 {
 public string ReturnUrl { get; set; }
 public string Controller { get; set; }
 public string Action { get; set; }
 }
}

The view that the account .ASPX views will be bound to is represented by the AccountView. The
view will be used mainly to provide information on an unsuccessful login or a failed attempt to reg-
ister a new customer account:

namespace Agathas.Storefront.Controllers.ViewModels.Account
{
 public class AccountView
 {
 public AccountView()
 {
 CallBackSettings = new CallBackSettings ();
 }
 public CallBackSettings CallBackSettings { get; set; }
 public bool HasIssue { get; set; }
 public string Message { get; set; }
 }
}

When registering customers, you require some details that will be posted to an action on a controller.
To retrieve the values from the forms dictionary collection, use an enumeration so you don’t rely on
magic strings.

Create a new enumeration at the root of the Controllers project named FormDataKeys, with the
following definition:

namespace Agathas.Storefront.Controllers
{

Customer Membership  ❘  597

 public enum FormDataKeys
 {
 Password,
 Email,
 FirstName,
 SecondName,
 }
}

Again, to remove the need for magic strings, update the ActionArgumentKey enumeration to
include two new values. These values will determine where to send a customer after a successful
login/registration:

namespace Agathas.Storefront.Controllers.ActionArguments
{
 public enum ActionArgumentKey
 {
 ReturnUrl,
 GoToAccount,
 GoToCheckout
 }
}

With the supporting classes created, you can now add the account controllers. Figure 13-10 shows
the two account controllers: AccountLogOnController and AccountRegisterController. Both of
the controllers inherit from a common BaseAccountController class.

Figure 13-10

598  ❘  Chapter 13   Customer Membership

Add a new class to the Controllers folder named BaseAccountController with the following listing:

using System;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.ActionArguments;
using Agathas.Storefront.Infrastructure.Authentication;
using Agathas.Storefront.Services.Interfaces;

namespace Agathas.Storefront.Controllers.Controllers
{
 public abstract class BaseAccountController : Controller
 {
 protected readonly ILocalAuthenticationService _authenticationService;
 protected readonly ICustomerService _customerService;
 protected readonly IExternalAuthenticationService
 _externalAuthenticationService;
 protected readonly IFormsAuthentication _formsAuthentication;
 protected readonly IActionArguments _actionArguments;

 public BaseAccountController(
 ILocalAuthenticationService authenticationService,
 ICustomerService customerService,
 IExternalAuthenticationService
 externalAuthenticationService,
 IFormsAuthentication formsAuthentication,
 IActionArguments actionArguments)
 {
 _authenticationService = authenticationService;
 _customerService = customerService;
 _externalAuthenticationService = externalAuthenticationService;
 _formsAuthentication = formsAuthentication;
 _actionArguments = actionArguments;
 }

 public ActionResult RedirectBasedOn(string returnUrl)
 {
 if (returnUrl == ActionArgumentKey.GoToCheckout.ToString())
 return RedirectToAction(“Checkout”, “Checkout”);
 else
 return RedirectToAction(“Index”, “Home”);
 }

 public ActionArgumentKey GetReturnActionFrom(string returnUrl)
 {
 if (!String.IsNullOrEmpty(returnUrl) &&
 returnUrl.ToLower().Contains(“checkout”))
 return ActionArgumentKey.GoToCheckout;
 else
 return ActionArgumentKey.GoToAccount;
 }
 }
}

Customer Membership  ❘  599

With the base controller added, you can now inherit from it and create the AccountLogOnController,
which handles all functionality related to logging in and logging out:

using System;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.ActionArguments;
using Agathas.Storefront.Controllers.ViewModels.Account;
using Agathas.Storefront.Infrastructure.Authentication;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.CustomerService;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class AccountLogOnController : BaseAccountController
 {
 public AccountLogOnController(
 ILocalAuthenticationService authenticationService,
 ICustomerService customerService,
 IExternalAuthenticationService
 externalAuthenticationService,
 IFormsAuthentication formsAuthentication,
 IActionArguments actionArguments)
 : base(authenticationService, customerService,
 externalAuthenticationService,
 formsAuthentication, actionArguments)
 {
 }

 public ActionResult LogOn()
 {
 AccountView accountView = InitializeAccountViewWithIssue(false, “”);

 return View(accountView);
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult LogOn(string email, string password, string returnUrl)
 {
 User user = _authenticationService.Login(email, password);

 if (user.IsAuthenticated)
 {
 _formsAuthentication.SetAuthenticationToken(
 user.AuthenticationToken);

 if (!String.IsNullOrEmpty(returnUrl))
 return Redirect(returnUrl);
 else
 return RedirectToAction(“Index”, “Home”);
 }
 else
 {
 AccountView accountView = InitializeAccountViewWithIssue(true,
 “Sorry we could not log you in. “ +

600  ❘  Chapter 13   Customer Membership

 “Please try again.”);
 accountView.CallBackSettings.ReturnUrl =
 GetReturnActionFrom(returnUrl).ToString();

 return View(“LogOn”, accountView);
 }
 }

 public ActionResult ReceiveTokenAndLogon(string token, string returnUrl)
 {
 User user = _externalAuthenticationService.GetUserDetailsFrom(token);

 if (user.IsAuthenticated)
 {
 _formsAuthentication.SetAuthenticationToken(
 user.AuthenticationToken);

 GetCustomerRequest getCustomerRequest = new GetCustomerRequest();
 getCustomerRequest.CustomerIdentityToken =
 user.AuthenticationToken;

 GetCustomerResponse getCustomerResponse =
 _customerService.GetCustomer(getCustomerRequest);

 if (getCustomerResponse.CustomerFound)
 {
 return RedirectBasedOn(returnUrl);
 }
 else
 {
 AccountView accountView = InitializeAccountViewWithIssue(true,
 “Sorry we could not find your customer account. “ +
 “If you don’t have an account with us “ +
 “please register.”);
 accountView.CallBackSettings.ReturnUrl = returnUrl;

 return View(“LogOn”, accountView);
 }
 }
 else
 {
 AccountView accountView = InitializeAccountViewWithIssue(true,
 “Sorry we could not log you in.” +
 “ Please try again.”);
 accountView.CallBackSettings
 .ReturnUrl = returnUrl;

 return View(“LogOn”, accountView);
 }
 }

 public ActionResult SignOut()
 {
 _formsAuthentication.SignOut();
 return RedirectToAction(“Index”, “Home”);

Customer Membership  ❘  601

 }

 private AccountView InitializeAccountViewWithIssue(bool hasIssue,
 string message)
 {
 AccountView accountView = new AccountView();
 accountView.CallBackSettings.Action = “ReceiveTokenAndLogon”;
 accountView.CallBackSettings.Controller = “AccountLogOn”;
 accountView.HasIssue = hasIssue;
 accountView.Message = message;

 string returnUrl = _actionArguments
 .GetValueForArgument(ActionArgumentKey.ReturnUrl);
 accountView.CallBackSettings.ReturnUrl =
 GetReturnActionFrom(returnUrl).ToString();

 return accountView;
 }
 }
}

Finally, add the AccountRegisterController, which handles new customer registrations:

using System;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.ActionArguments;
using Agathas.Storefront.Controllers.ViewModels.Account;
using Agathas.Storefront.Infrastructure.Authentication;
using Agathas.Storefront.Services.Implementations;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.CustomerService;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class AccountRegisterController : BaseAccountController
 {
 public AccountRegisterController(
 ILocalAuthenticationService authenticationService,
 ICustomerService customerService,
 IExternalAuthenticationService
 externalAuthenticationService,
 IFormsAuthentication formsAuthentication,
 IActionArguments actionArguments)
 : base(authenticationService, customerService,
 externalAuthenticationService,
 formsAuthentication, actionArguments)
 {
 }

 public ActionResult Register()
 {
 AccountView accountView = InitializeAccountViewWithIssue(false,
 string.Empty);

 return View(accountView);

602  ❘  Chapter 13   Customer Membership

 }

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Register(FormCollection collection)
 {
 User user;

 string password = collection[FormDataKeys.Password.ToString()];
 string email = collection[FormDataKeys.Email.ToString()];
 string firstName = collection[FormDataKeys.FirstName.ToString()];
 string secondName = collection[FormDataKeys.SecondName.ToString()];

 try
 {
 user = _authenticationService.RegisterUser(email, password);
 }
 catch (InvalidOperationException ex)
 {
 AccountView accountView = InitializeAccountViewWithIssue(
 true, ex.Message);

 return View(accountView);
 }

 if (user.IsAuthenticated)
 {
 try
 {
 CreateCustomerRequest createCustomerRequest =
 new CreateCustomerRequest();
 createCustomerRequest.CustomerIdentityToken =
 user.AuthenticationToken;
 createCustomerRequest.Email = email;
 createCustomerRequest.FirstName = firstName;
 createCustomerRequest.SecondName = secondName;

 _formsAuthentication.SetAuthenticationToken(
 user.AuthenticationToken);
 _customerService.CreateCustomer(createCustomerRequest);

 return RedirectToAction(“Detail”, “Customer”);
 }
 catch (CustomerInvalidException ex)
 {
 AccountView accountView = InitializeAccountViewWithIssue(
 true, ex.Message);

 return View(accountView);
 }
 }
 else
 {
 AccountView accountView = InitializeAccountViewWithIssue(true,
 “Sorry we could not authenticate you. “ +
 “Please try again.”);

 return View(accountView);

Customer Membership  ❘  603

 }
 }

 public ActionResult ReceiveTokenAndRegister(string token, string returnUrl)
 {
 User user = _externalAuthenticationService.GetUserDetailsFrom(token);

 if (user.IsAuthenticated)
 {
 _formsAuthentication.SetAuthenticationToken(
 user.AuthenticationToken);

 // Register user
 CreateCustomerRequest createCustomerRequest =
 new CreateCustomerRequest();
 createCustomerRequest.CustomerIdentityToken =
 user.AuthenticationToken;
 createCustomerRequest.Email = user.Email;
 createCustomerRequest.FirstName = “[Please Enter]”;
 createCustomerRequest.SecondName = “[Please Enter]”;

 _customerService.CreateCustomer(createCustomerRequest);

 return RedirectBasedOn(returnUrl);
 }
 else
 {
 AccountView accountView = InitializeAccountViewWithIssue(true,
 “Sorry we could not authenticate you.”);
 accountView.CallBackSettings.ReturnUrl =
 GetReturnActionFrom(returnUrl)
 .ToString(); ;

 return View(“Register”, accountView);
 }
 }

 private AccountView InitializeAccountViewWithIssue(bool hasIssue,
 string message)
 {
 AccountView accountView = new AccountView();
 accountView.CallBackSettings.Action = “ReceiveTokenAndRegister”;
 accountView.CallBackSettings.Controller = “AccountRegister”;
 accountView.HasIssue = hasIssue;
 accountView.Message = message;

 string returnUrl = _actionArguments
 .GetValueForArgument(ActionArgumentKey.ReturnUrl);
 accountView.CallBackSettings.ReturnUrl =
 GetReturnActionFrom(returnUrl).ToString();

 return accountView;
 }
 }
}

Code snippet AccountRegisterController.cs in project Agathas.Storefront.Controllers

604  ❘  Chapter 13   Customer Membership

You will now finish the chapter by creating the .ASPX views for the Customer Membership and
Account Login and Register sections.

Customer Membership Views
The views for the Customer Membership pages are fairly straightforward. To enable customers to
navigate their account, first create a new partial view named CustomerMenu.ascx that contains
links to the various sections within a customer’s account. Create the CustomerMenu.ascx within
the Views/Shared folder:

<%@ Control Language=”C#” Inherits=”System.Web.Mvc.ViewUserControl” %>

<h2>Menu</h2>
 <ul class=”refine-attributes”>
 <%=Html.ActionLink(“Your Details”, “Detail”, “Customer”) %>
 <%=Html.ActionLink(“Delivery Address Book”, “DeliveryAddresses”,
 “Customer”)%>

Next, create a new master page that uses the existing Site.Master as its master page. Name the
new master page CustomerAccount.Master, and again create it within the Views/Shared folder:

<%@ Master Language=”C#” MasterPageFile=”Site.Master”
 Inherits=”System.Web.Mvc.ViewMasterPage<BaseCustomerAccountView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.CustomerAccount” %>

<asp:Content ID=”TitleContent” ContentPlaceHolderID=”TitleContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”TitleContent” runat=”server”>

 </asp:ContentPlaceHolder>
</asp:Content>

<asp:Content ID=”headerBasketSummary” ContentPlaceHolderID=”headerBasketSummary”
 runat=”server”>
 <% Html.RenderPartial(“~/Views/Shared/BasketSummary.ascx”,
 ((BaseCustomerAccountView)Model).BasketSummary); %>
</asp:Content>

<asp:Content runat=”server” ID=”Content1” ContentPlaceHolderID=”MenuContent”>
<% Html.RenderPartial(“~/Views/Shared/CustomerMenu.ascx”); %>
</asp:Content>

<asp:Content ID=”MainContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server”>

 </asp:ContentPlaceHolder>
</asp:Content>

Both editing and adding an address require a set of text boxes matching the properties of an
address, so create a partial view that displays this markup named AddressEdit.ascx. Once more,
create this within the Views/Shared folder:

<%@ Control Language=”C#”
 Inherits=”System.Web.Mvc.ViewUserControl<DeliveryAddressView>” %>

Customer Membership  ❘  605

<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>

 <%= Html.Hidden(“Id”, Model.Id) %>
 <p>
 <label for=”Name”>Name:</label>

 <%= Html.TextBox(“Name”, Model.Name) %>
 </p>
 <p>
 <label for=”AddressLine1”>AddressLine1:</label>

 <%= Html.TextBox(“AddressLine1”, Model.AddressLine1) %>
 </p>
 <p>
 <label for=”AddressLine2”>AddressLine2:</label>

 <%= Html.TextBox(“AddressLine2”, Model.AddressLine2) %>
 </p>
 <p>
 <label for=”City”>City:</label>

 <%= Html.TextBox(“City”, Model.City) %>
 </p>
 <p>
 <label for=”State”>State:</label>

 <%= Html.TextBox(“State”, Model.State) %>
 </p>
 <p>
 <label for=”Country”>Country:</label>

 <%= Html.TextBox(“Country”, Model.Country) %>
 </p>
 <p>
 <label for=”ZipCode”>ZipCode:</label>

 <%= Html.TextBox(“ZipCode”, Model.ZipCode) %>
 </p>

With the partial views and master pages created, you can add the four views of the customer
account. Add a new folder within the Views folder named Customer, and add to it a new view
named Detail.aspx with the following markup:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/CustomerAccount.Master”
 Inherits=”System.Web.Mvc.ViewPage<CustomerDetailView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.CustomerAccount” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Customer Details
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Your Details</h2>

 <% using (Html.BeginForm()) {%>
 <p>
 <label for=”FirstName”>FirstName:</label>

 <%= Html.TextBox(“FirstName”, Model.Customer.FirstName) %>
 </p>
 <p>

606  ❘  Chapter 13   Customer Membership

 <label for=”SecondName”>SecondName:</label>

 <%= Html.TextBox(“SecondName”, Model.Customer.SecondName)%>
 </p>
 <p>
 <label for=”Email”>Email:</label>

 <%= Html.TextBox(“Email”, Model.Customer.Email)%>
 </p>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 <% } %>
</asp:Content>

The Detail.aspx displays the customer’s name and e‑mail and enables this information to be
updated. Next, add a view that displays the list of delivery addresses a customer has. Name this
view DeliveryAddresses.aspx, and update it to match the following markup:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/CustomerAccount.Master”
 Inherits=”System.Web.Mvc.ViewPage<CustomerDetailView>” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.CustomerAccount” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Customer Delivery Address Book
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Delivery Addresses</h2>

 <%=Html.ActionLink(“Add new address”, “AddDeliveryAddress”, “Customer”)%>

 <% foreach (DeliveryAddressView deliveryAddress in
 Model.Customer.DeliveryAddressBook)
 {
 %>
 <%=Html.ActionLink(deliveryAddress.Name, “EditDeliveryAddress”,
 “Customer”,
 new { deliveryAddressId = deliveryAddress.Id }, null)%>

 <% }%>

</asp:Content>

The AddDeliveryAddress.aspx view adds a new address and uses the AddressEdit.ascx partial
view that you created earlier within the shared folder:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/CustomerAccount.Master”

Customer Membership  ❘  607

 Inherits=”System.Web.Mvc.ViewPage<CustomerDeliveryAddressView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.CustomerAccount” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Add Delivery Address
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>AddDeliveryAddress</h2>

 <% using (Html.BeginForm()) {%>

 <% Html.RenderPartial(“~/Views/Shared/AddressEdit.ascx”, Model.Address); %>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 <% } %>

</asp:Content>

Lastly, add an EditDeliveryAddress.aspx view, which enables a customer to modify an existing
delivery address:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/CustomerAccount.Master”
 Inherits=”System.Web.Mvc.ViewPage<CustomerDeliveryAddressView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.CustomerAccount” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Edit Address
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Address Detail</h2>

 <% using (Html.BeginForm()) {%>

 <% Html.RenderPartial(“~/Views/Shared/AddressEdit.ascx”,
 Model.Address); %>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 <% } %>

</asp:Content>

You will now build the views that enable customers to authenticate themselves and gain access to
the customer account area and later the checkout.

608  ❘  Chapter 13   Customer Membership

Authentication Views
Before you can create the LogOn and Register views, you need to log back into www.janrain.com/
using the account you created earlier. When you have logged back in, click on the Sign-In Setup link.
Then on the next screen, click on the Get the Widget link to bring up the screen shown in Figure 13-11.

Figure 13-11

Choose Embedded from the drop-down list for the Widget Style, and enter localhost for the token
URL, because you will be changing this later. After you have entered the token URL, click the Generate
Code button. You then see a section of code that matches the following listing:

<iframe
 src=”http://aspdesignpatterns-scott.rpxnow.com
 /openid/embed?token_url=http%3A%2F%2Flocalhost”
 scrolling=”no” frameBorder=”no” allowtransparency=”true”
 style=”width:400px;height:240px”></iframe>

The bolded sections are replaced with the name that you gave for the application. Save the code to your
Clipboard, and flip back to Visual Studio and create a new partial view within the Views/Shared folder
named JanrainLogin.ascx with the following listing, copying the Janrain iframe into the new partial
view as shown here:

<%@ Control Language=”C#” Inherits=”System.Web.Mvc.ViewUserControl<CallBackSettings>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.Account” %>
<%@ Import Namespace=”Agathas.Storefront.UI.Web.MVC.Helpers” %>

<iframe
 src=”http://XXXXXXXXXXXX.rpxnow.com/
 openid/embed?token_url=

Customer Membership  ❘  609

 <%=Server.UrlEncode(
 Html.Resolve(“/” + Model.Controller +”/” + Model.Action + “/?returnUrl=” +
 Model.ReturnUrl))%>”
scrolling=”no” frameBorder=”no” allowtransparency=”true”
style=”width:400px;height:240px”></iframe>

You can now create the LogOn and Register views. Add a new folder named AccountLogOn within
the Views folder, and add a new view named LogOn.aspx with the following markup:

<%@ Page Language=”C#”
 MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage<AccountView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.Account” %>

<asp:Content ID=”loginTitle” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Log On
</asp:Content>

<asp:Content ID=”loginContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2>Log On</h2>
 <% if (Model.HasIssue) { %>
 <p>
 <div style=”color: #D63301; background-color: #FFCCBA;
 padding:15px 10px 15px 50px;” >
 <%=Html.Encode(Model.Message)%>
 </div>
 </p>
 <% } %>
 <p>
 Please enter your username and password.
 <%= Html.ActionLink(“Register”, “Register”, “AccountRegister”) %>
 if you don’t have an account.
 </p>

 <h2>Login with your existing account associated with this site</h2>
 <% Html.RenderPartial(“~/Views/Shared/JanrainLogin.ascx”,
 Model.CallBackSettings); %>

 <h2>Login with an account created with us</h2>
 <% using (Html.BeginForm()) { %>
 <div>
 <p>
 <label for=”username”>Email:</label>

 <%= Html.TextBox(“email”) %>
 </p>
 <p>
 <label for=”password”>Password:</label>

 <%= Html.Password(“password”) %>
 </p>
 <p>
 <input type=”submit” value=”Log On” />
 </p>
 </div>
 <% } %>
</asp:Content>

610  ❘  Chapter 13   Customer Membership

Add a second new folder within the Views folder named AccountRegister, and add to it a new view
named Register.aspx with the following markup:

<%@ Page Language=”C#”
 MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage<AccountView>” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.Account” %>

<asp:Content ID=”registerTitle” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Register
</asp:Content>

<asp:Content ID=”registerContent” ContentPlaceHolderID=”MainContent”
 runat=”server”>
 <% if (Model.HasIssue) { %>
 <p>
 <div style=”color: #D63301; background-color: #FFCCBA;
 padding:15px 10px 15px 50px;” >
 <%=Html.Encode(Model.Message)%>
 </div>
 </p>
 <% } %>

 <h2>Associate an existing account with us</h2>
 <% Html.RenderPartial(“~/Views/Shared/JanrainLogin.ascx”,
 Model.CallBackSettings); %>

 <h2>Don’t have an internet account? Create an account with us</h2>

 <% using (Html.BeginForm()) { %>
 <div>
 <p>
 <label for=”email”>Email:</label>

 <%= Html.TextBox(“email”) %>
 </p>
 <p>
 <label for=”password”>Password:</label>

 <%= Html.Password(“password”) %>
 </p>
 <p>
 <label for=”confirmPassword”>Confirm password:</label>

 <%= Html.Password(“confirmPassword”) %>
 </p>
 <p>
 <label for=”email”>First Name:</label>

 <%= Html.TextBox(“FirstName”)%>
 </p>
 <p>
 <label for=”email”>Second Name:</label>

 <%= Html.TextBox(“SecondName”)%>
 </p>
 <p>
 <input type=”submit” value=”Register” />
 </p>
 </div>
 <% } %>
</asp:Content>

Customer Membership  ❘  611

To complete the views, you need to update the Site.Master page to include some markup to show
whether the customer has been authenticated. Add the bolded markup in the following listing to the
Site.Master page:

<div id=”headerSummary”>

 <% if (Request.IsAuthenticated) {%>
 <%= Html.ActionLink(“Your Account”, “Detail”, “Customer”) %> /
 <%=Html.ActionLink(“Log Off”, “SignOut”, “AccountLogOn”)%>
 <% }
 else { %>
 <%= Html.ActionLink(“Create Account”, “Register”,
 “AccountRegister”)%> /
 <%=Html.ActionLink(“Log On”, “LogOn”, “AccountLogOn”)%>

 <% } %>

 <asp:ContentPlaceHolder ID=”headerBasketSummary” runat=”server”>
 </asp:ContentPlaceHolder>
 </div>

The last step before you can run your solution is to wire up the dependencies within the BootStrapper
class that can be found in the Web.MVC project. Update the BootStrapper class with the bolded code
shown in the following listing:

using Agathas.Storefront.Controllers.ActionArguments;
using Agathas.Storefront.Infrastructure.Authentication;
using Agathas.Storefront.Model.Customers;

namespace Agathas.Storefront.UI.Web.MVC
{
 public class BootStrapper
 {
 …

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 // Repositories
 ForRequestedType<ICustomerRepository>()
 .TheDefault.Is.OfConcreteType
 <Repository.NHibernate.Repositories.CustomerRepository>();

 …

 // Services
 ForRequestedType<ICustomerService>().TheDefault.Is.OfConcreteType
 <CustomerService>();

 // Authentication
 ForRequestedType<IExternalAuthenticationService>().TheDefault.Is
 .OfConcreteType<JanrainAuthenticationService>();
 ForRequestedType<IFormsAuthentication>().TheDefault.Is
 .OfConcreteType<AspFormsAuthentication>();

612  ❘  Chapter 13   Customer Membership

 ForRequestedType<ILocalAuthenticationService>().TheDefault.Is
 .OfConcreteType<AspMembershipAuthentication>();

 // Controller Helpers
 ForRequestedType<IActionArguments>().TheDefault.Is.OfConcreteType
 <HttpRequestActionArguments>();
 …

 }
 }
 }
}

The customer membership and authentication functionality is now complete. You can fire up a browser
from within Visual Studio and see a Create Account / Log On link on the homepage. Click on the Create
Account link to be taken to insert the Register view, as shown in Figure 13-12.

If you register with a web-based account such as Google, a pop-up box appears, as shown in
Figure 13-13.

After you log in to the web-based account, your account is created and you are redirected to the home
page. The links on the top of the homepage are changed to Your Account / Log Off. Click on the Your
Account link to be taken to the Customer Detail page, as shown in Figure 13-14.

From here, you can update your details and navigate to your address book. Click on the Address
book link and create a new address. Your address book should now look similar to Figure 13-15.

Figure 13-12

Customer Membership  ❘  613

Figure 13-13

Figure 13-14

Figure 13-15

614  ❘  Chapter 13   Customer Membership

Summary

In this chapter, you tackled the customer membership and authentication requirements of the site.
The customer membership involved creating a domain model of a customer with a delivery address
book. This was simple and had a standard set of views, service layer, and controller similar to what
you have seen up until this point.

The authentication service was a lot more interesting. The first authentication method utilized the
built-in ASP.NET membership API. You first created an interface for a local authentication service
and implemented an ASP.NET membership adapter to adhere to the contract.

You then implemented a web-based authentication service using a Janrain service that enables cus-
tomers to use existing Internet accounts to authenticate themselves with the site.

You applied the forms authentication method for establishing that a customer is authenticated after
a successful login or register. Again, you created an interface and then implemented an ASP.NET
forms-based adapter to keep the code loosely coupled and highly testable.

In the final chapter of this case study, you will implement the checkout using PayPal and the order
history views within the customer account.

ordering and Payment

whaT’s in This chaPTer?

Creating the checkout and using PayPal as the payment merchant➤➤

Creating an order history section within the customer account➤➤

Using domain events to trigger workfl ow➤➤

In this fi nal case study chapter, you will complete Agatha’s online store by adding the facility
for customers to place an order and pay for it using PayPal. You will also add screens to the
customer account area to enable customers to view their order history.

checkouT

Figure 14-1 shows the screens you will be creating in this chapter. The Customer Account sec-
tion will include new screens for customers to view their order history. The checkout section
will enable customers to order products placed in their basket. The payment merchant you will
be using is PayPal, but the system will be designed to allow any payment merchant who uses
the post callback method to take payments.

As with the previous three chapters, you will begin by designing the domain model of the
order aggregation.

order model
Figure 14-2 shows the domain model for the order aggregation. As you can see, an order
contains a collection of order items. It also contains a payment object that represents details
of the transaction made to pay for the order. The order also contains a property of type
IOrderState, which defi nes the order’s state. The states of an order are open and submitted.
An order in the open state has been created but not paid for. When an order is paid, it changes
to the state of submitted.

14

616  ❘  Chapter 14   Ordering and Payment

Address Book

Customer Details Confirm Order

Order Placed

Customer Account

Order History

Address Detail Order Detail

Login/Register

Product Catalog

Checkout and Payment

Payment
Merchant

Figure 14-1

Figure 14-2

Figure 14-3 shows the classes that are required for the order state framework. The order state classes
follow the State Design Pattern. Refer to Chapter 5 for more details on this pattern.

Checkout  ❘  617

Figure 14-3

Before you start work on creating the order entities, you need to build a framework for handling
events that occur within the domain model, known as domain events. Domain events are events
that occur in your model that can be published for other services inside and outside the model to
respond to. The domain event that you will be modeling in the order aggregation is that of an order
changing state from open to submitted after a successful payment is made. When the change in state
occurs, a domain event is fired. A handler in the service layer responds by sending the customer an
e‑mail informing him that his order has been paid for and therefore will be processed.

The domain events framework you will create is based on the framework designed by Udi Dahan
(www.udidahan.com), who is a great domain-driven design (DDD) evangelist with a blog that is well
worth reading. Create a new folder within the Domain folder of the Infrastructure project named
Events, and add to it a simple interface named IDomainEvent that will identify domain events
within the model:

namespace Agathas.Storefront.Infrastructure.Domain.Events
{
 public interface IDomainEvent
 {
 }
}

Create a second interface named IDomainEventHandler. This is the interface that handlers of the
events must implement:

namespace Agathas.Storefront.Infrastructure.Domain.Events
{

618  ❘  Chapter 14   Ordering and Payment

 public interface IDomainEventHandler<T> where T : IDomainEvent
 {
 void Handle(T domainEvent);
 }
}

Next, add a third interface named IDomainEventHandlerFactory. You will use this to obtain the
collection of domain event handlers for a given domain event:

using System.Collections.Generic;

namespace Agathas.Storefront.Infrastructure.Domain.Events
{
 public interface IDomainEventHandlerFactory
 {
 IEnumerable<IDomainEventHandler<T>> GetDomainEventHandlersFor<T>(T domainEvent)
 where T : IDomainEvent;
 }
}

Add an implementation of the IDomainEventHandlerFactory named StructureMapDomainEvent​
HandlerFactory, as shown in the following listing. The StructureMapDomainEventHandlerFactory
provides the list of IDomainEventHandlers for a given domain event:

using System.Collections.Generic;
using StructureMap;

namespace Agathas.Storefront.Infrastructure.Domain.Events
{
 public class StructureMapDomainEventHandlerFactory : IDomainEventHandlerFactory
 {
 public IEnumerable<IDomainEventHandler<T>> GetDomainEventHandlersFor<T>
 (T domainEvent) where T : IDomainEvent
 {
 return ObjectFactory.GetAllInstances<IDomainEventHandler<T>>();
 }
 }
}

After you obtain the collection of IDomainEventHandlers, their handle method is called and given the
domain event as an argument to action. To keep the code fluid, add a new extension method to handle
the invocation of the IDomainEventHandlers. Add a new class named IEnumerableExtensions to the
Events folder with the following listing:

using System;
using System.Collections.Generic;

namespace Agathas.Storefront.Infrastructure.Domain.Events
{
 public static class IEnumerableExtensions
 {
 public static void ForEach<T>(this IEnumerable<T> source, Action<T> action)
 {

Checkout  ❘  619

 foreach (T item in source)
 action(item);
 }
 }
}

To raise an event, you will create a static DomainEvents class that is called by the domain entities
from within the Model project. The code for this class is shown in the following listing:

namespace Agathas.Storefront.Infrastructure.Domain.Events
{
 public static class DomainEvents
 {
 public static IDomainEventHandlerFactory DomainEventHandlerFactory { get; set; }

 public static void Raise<T>(T domainEvent) where T : IDomainEvent
 {
 DomainEventHandlerFactory.GetDomainEventHandlersFor(domainEvent)
 .ForEach(h => h.Handle(domainEvent));
 }
 }
}

This completes the framework to support domain events. You will now build the order aggregation
model.

The first class you will create is the Payment value object. Create a new folder within the Model
project named Orders, and add a class that contains the rules of a Payment value object named
PaymentBusinessRules:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Orders
{
 public class PaymentBusinessRules
 {
 public static readonly BusinessRule TransactionIdRequired =
 new BusinessRule(“TransactionId”, “A payment must have a transaction id.”);
 public static readonly BusinessRule MerchantRequired =
 new BusinessRule(“Merchant”, “A payment must have a Merchant.”);
 public static readonly BusinessRule AmountValid =
 new BusinessRule(“Amount”, “A payment must be for a non negative amount.”);
 }
}

Next, add the Payment value object, ensuring that you inherit from the ValueObjectBase that you
created within the Infrastructure project in Chapter 10.

using System;
using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Orders
{

620  ❘  Chapter 14   Ordering and Payment

 public class Payment : ValueObjectBase
 {
 private readonly DateTime _datePaid;
 private readonly string _transactionId;
 private readonly string _merchant;
 private readonly decimal _amount;

 public Payment()
 {
 }

 public Payment(DateTime datePaid, string transactionId,
 string merchant, decimal amount)
 {
 _datePaid = datePaid;
 _transactionId = transactionId;
 _merchant = merchant;
 _amount = amount;

 base.ThrowExceptionIfInvalid();
 }

 public DateTime DatePaid
 {
 get { return _datePaid; }
 }
 public string TransactionId
 {
 get { return _transactionId; }
 }
 public string Merchant
 {
 get { return _merchant; }
 }
 public decimal Amount
 {
 get { return _amount; }
 }

 protected override void Validate()
 {
 if (string.IsNullOrEmpty(_transactionId))
 base.AddBrokenRule(PaymentBusinessRules.TransactionIdRequired);

 if (string.IsNullOrEmpty(_merchant))
 base.AddBrokenRule(PaymentBusinessRules.MerchantRequired);

 if (_amount < 0)
 base.AddBrokenRule(PaymentBusinessRules.AmountValid);
 }
 }
}

Checkout  ❘  621

To make it easier to create payments, you will add a PaymentFactory class, as shown in the follow-
ing listing:

using System;

namespace Agathas.Storefront.Model.Orders
{
 public class PaymentFactory
 {
 public static Payment CreatePayment(string paymentToken,
 decimal amount, string paymentMerchant)
 {
 return new Payment(DateTime.Now, paymentToken, paymentMerchant, amount);
 }
 }
}

The next class to create defines the business rules that govern OrderItem entities. Add a new class
named OrderItemBusinessRules with the following listing:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Orders
{
 public class OrderItemBusinessRules
 {
 public static readonly BusinessRule OrderRequired =
 new BusinessRule(“OrderRequired”,
 “An order item must be associated with an order.”);
 public static readonly BusinessRule PriceNonNegative =
 new BusinessRule(“Price”,
 “An order item must have a non negative price value.”);
 public static readonly BusinessRule QtyNonNegative =
 new BusinessRule(“Qty”, “An order item must have a positive qty value.”);
 public static readonly BusinessRule ProductRequired =
 new BusinessRule(“Product”,
 “An order item must be associated with a valid product.”);
 }
}

With the business rules for the OrderItem defined, you can create the class. Add a new class named
OrderItem with the following listing. You will receive a complier warning because you have not cre-
ated the Order object yet. Don’t worry; you will create this class shortly:

using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Model.Orders
{
 public class OrderItem : EntityBase<int>
 {
 private readonly Product _product;
 private readonly Order _order;

622  ❘  Chapter 14   Ordering and Payment

 private readonly int _qty;
 private readonly decimal _price;

 public OrderItem()
 {
 }

 public OrderItem(Product product, Order order, int qty)
 {
 _product = product;
 _order = order;
 _price = product.Price;
 _qty = qty;
 }

 public Product Product
 {
 get { return _product; }
 }

 public int Qty
 {
 get { return _qty; }
 }

 public decimal Price
 {
 get { return _price; }
 }

 public Order Order
 {
 get { return _order;}
 }

 public decimal LineTotal()
 {
 return Qty*Price;
 }

 protected override void Validate()
 {
 if (Order == null)
 base.AddBrokenRule(OrderItemBusinessRules.OrderRequired);

 if (Product == null)
 base.AddBrokenRule(OrderItemBusinessRules.ProductRequired);

 if (Price < 0)
 base.AddBrokenRule(OrderItemBusinessRules.PriceNonNegative);

 if (Qty < 0)
 base.AddBrokenRule(OrderItemBusinessRules.QtyNonNegative);

Checkout  ❘  623

 }

 public bool Contains(Product product)
 {
 return Product == product;
 }
 }
}

Again, you will create a factory class to take responsibility for creating valid instances of an OrderItem.
Name this class OrderItemFactory, and update it to match the following listing:

using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Model.Orders
{
 public static class OrderItemFactory
 {
 public static OrderItem CreateItemFor(Product product, Order order, int qty)
 {
 return new OrderItem(product, order, qty);
 }
 }
}

Before you create the Order class, you will define the business rules and some custom exceptions
that it will use when attempts are made to put it into an invalid state. Add a new class named Order​
BusinessRules, as shown in the following listing:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Orders
{
 public class OrderBusinessRules
 {
 public static readonly BusinessRule CreatedDateRequired =
 new BusinessRule(“CreatedDate”, “An order must have a created date.”);
 public static readonly BusinessRule PaymentTransactionIdRequired =
 new BusinessRule(“PaymentTransactionId”, “If an order is set as paid “ +
 “it must have a corresponding payment transaction id.”);
 public static readonly BusinessRule CustomerRequired =
 new BusinessRule(“Customer”, “An order must be associated with a customer.”);
 public static readonly BusinessRule DeliveryAddressRequired =
 new BusinessRule(“DeliveryAddress”, “An order must have a valid “ +
 “delivery address.”);
 public static readonly BusinessRule ItemsRequired =
 new BusinessRule(“Items”, “An order must contain at least one order item.”);
 public static readonly BusinessRule ShippingServiceRequired =
 new BusinessRule(“ShippingService”,
 “An order must have a shipping service set.”);
 }
}

624  ❘  Chapter 14   Ordering and Payment

Next, add three custom exceptions — ​PaymentAmountDoesNotEqualOrderTotalException,
CannotAmendOrderException, and OrderAlreadyPaidForException — ​that will be used if an
action on an order breaks some business logic:

using System;

namespace Agathas.Storefront.Model.Orders
{
 public class PaymentAmountDoesNotEqualOrderTotalException : Exception
 {
 public PaymentAmountDoesNotEqualOrderTotalException(string message)
 : base(message)
 {
 }
 }
}

using System;

namespace Agathas.Storefront.Model.Orders
{
 public class OrderAlreadyPaidForException : Exception
 {
 public OrderAlreadyPaidForException(string message) : base (message)
 {
 }
 }
}
using System;

namespace Agathas.Storefront.Model.Orders
{
 public class CannotAmendOrderException : Exception
 {
 public CannotAmendOrderException(string message) : base(message)
 {

 }
 }
}

You can finally add the Order class. As with the OrderItem class, you will receive some compiler errors
because of the nonexistence of the IOrderState interface. Don’t worry; you will create this next:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agathas.Storefront.Infrastructure.Domain;
using Agathas.Storefront.Model.Customers;
using Agathas.Storefront.Model.Orders.States;
using Agathas.Storefront.Model.Shipping;
using Agathas.Storefront.Model.Products;

namespace Agathas.Storefront.Model.Orders

Checkout  ❘  625

{
 public class Order : EntityBase<int>, IAggregateRoot
 {
 private IList<OrderItem> _items;
 private DateTime _created;
 private Payment _payment;
 private IOrderState _state;

 public Order()
 {
 _created = DateTime.Now;
 _items = new List<OrderItem>();
 _state = OrderStates.Open;
 }

 public DateTime Created
 {
 get { return _created; }
 }

 public decimal ShippingCharge { get; set; }

 public ShippingService ShippingService { get; set; }

 public decimal ItemTotal()
 {
 return Items.Sum(i => i.LineTotal());
 }

 public decimal Total()
 {
 return Items.Sum(i => i.LineTotal()) + ShippingCharge;
 }

 public Payment Payment
 {
 get { return _payment; }
 }

 public void SetPayment(Payment payment)
 {
 if (OrderHasBeenPaidFor())
 throw new OrderAlreadyPaidForException(
 GetDetailsOnExisitingPayment());

 if (OrderTotalMatches(payment))
 _payment = payment;
 else
 throw new PaymentAmountDoesNotEqualOrderTotalException(
 GetDetailsOnIssueWith(payment));

 _state.Submit(this);
 }

 private string GetDetailsOnExisitingPayment()

626  ❘  Chapter 14   Ordering and Payment

 {
 return String.Format(“Order has already been paid for. “+
 “{0} was paid on {1}. Payment token ‘{2}’”,
 Payment.Amount, Payment.DatePaid,
 Payment.TransactionId);
 }

 private string GetDetailsOnIssueWith(Payment payment)
 {
 return String.Format(“Payment amount is invalid. “ +
 “Order total is {0} but payment for {1}.” +
 “ Payment token ‘{2}’”,
 this.Total(), payment.Amount, payment.TransactionId);
 }

 public bool OrderHasBeenPaidFor()
 {
 return Payment != null && OrderTotalMatches(Payment);
 }

 private bool OrderTotalMatches(Payment payment)
 {
 return Total() == payment.Amount;
 }

 public Customer Customer { get; set; }

 public Address DeliveryAddress { get; set; }

 public IEnumerable<OrderItem> Items
 {
 get { return _items; }
 }

 public OrderStatus Status
 {
 get { return _state.Status; }
 }

 public void AddItem(Product product, int qty)
 {
 if (_state.CanAddProduct())
 {
 if (!OrderContains(product))
 _items.Add(OrderItemFactory.CreateItemFor(product, this, qty));
 }
 else
 throw new CannotAmendOrderException(String.Format(
 “You cannot add an item to an order with the status of ‘{0}’.”,
 Status.ToString()));
 }

 private bool OrderContains(Product product)
 {
 return _items.Any(i => i.Contains(product));

Checkout  ❘  627

 }

 protected override void Validate()
 {
 if (Created == DateTime.MinValue)
 base.AddBrokenRule(OrderBusinessRules.CreatedDateRequired);

 if (Customer == null)
 base.AddBrokenRule(OrderBusinessRules.CustomerRequired);

 if (DeliveryAddress == null)
 base.AddBrokenRule(OrderBusinessRules.DeliveryAddressRequired);

 if (Items == null || Items.Count() == 0)
 base.AddBrokenRule(OrderBusinessRules.ItemsRequired);

 if (Items == null || Items.Count() == 0)
 base.AddBrokenRule(OrderBusinessRules.ItemsRequired);

 if (ShippingService == null)
 base.AddBrokenRule(OrderBusinessRules.ShippingServiceRequired);

 }

 internal void SetStateTo(IOrderState state)
 {
 this._state = state;
 }

 public override string ToString()
 {
 StringBuilder orderInfo = new StringBuilder();

 foreach (OrderItem item in _items)
 {
 orderInfo.AppendLine(String.Format(“{0} of {1} “,
 item.Qty, item.Product.Name));
 }

 orderInfo.AppendLine(String.Format(“Shipping: {0}”, this.ShippingCharge));
 orderInfo.AppendLine(String.Format(“Total: {0}”, this.Total()));

 return orderInfo.ToString();

 }
 }
}

Code snippet Order.cs in project Agathas.Storefront.Model

The logic contained within the Order class is straightforward. In most cases, any business rules are
delegated to the order’s IOrderState instance, which you will create now.

628  ❘  Chapter 14   Ordering and Payment

Because the IOrderState implementation raises a domain event, it makes sense to create this now. Add
a new folder within the Orders folder named Events, and add a new class named OrderSubmitted​
Event that will contain a property holding the Order instance that has just been submitted:

using Agathas.Storefront.Infrastructure.Domain.Events;

namespace Agathas.Storefront.Model.Orders.Events
{
 public class OrderSubmittedEvent : IDomainEvent
 {
 public Order Order { get; set; }
 }
}

Now you can tackle the IOrderState implementation. Add a new folder within the Orders folder
named States, and to this folder add a new interface named IOrderState with the following code
listing:

namespace Agathas.Storefront.Model.Orders.States
{
 public interface IOrderState
 {
 int Id { get; set; }
 OrderStatus Status { get; }
 bool CanAddProductTo(Order order);
 void Submit(Order order);
 }
}

The IOrderState interface references an enumeration named OrderStatus. Add this to the States
folder as well:

namespace Agathas.Storefront.Model.Orders.States
{
 public enum OrderStatus
 {
 Open = 1,
 Submitted = 2
 }
}

To provide a base class for all the states of an order, create an OrderState abstract class. Add this
with the following listing to the States folder:

namespace Agathas.Storefront.Model.Orders.States
{
 public abstract class OrderState : IOrderState
 {
 public virtual int Id { get; set; }
 public abstract OrderStatus Status { get; }
 public abstract bool CanAddProduct();
 public abstract void Submit(Order order);
 }
}

Checkout  ❘  629

The initial state of an order will be OpenOrderState, as displayed in the following listing. Note that
when the Submit method is called and if an order has been paid, the OrderSubmittedEvent that you
created earlier will be raised. Later in the chapter, you will create a handler for this event that sends
an e‑mail to customers letting them know that their order has now been submitted:

using Agathas.Storefront.Infrastructure.Domain.Events;
using Agathas.Storefront.Model.Orders.Events;

namespace Agathas.Storefront.Model.Orders.States
{
 public class OpenOrderState : OrderState
 {
 public override OrderStatus Status
 {
 get { return OrderStatus.Open; }
 }

 public override bool CanAddProduct()
 {
 return true;
 }

 public override void Submit(Order order)
 {
 if (order.OrderHasBeenPaidFor())
 order.SetStateTo(OrderStates.Submitted);

 DomainEvents.Raise(new OrderSubmittedEvent() {Order = order});
 }
 }
}

You will receive a compiler error due to the missing OrderStates class. Don’t worry; you will add
this shortly.

The second state an order can be in is SubmittedOrderState. Once an order is in this state, you
cannot modify it:

using System;

namespace Agathas.Storefront.Model.Orders.States
{
 public class SubmittedOrderState : OrderState
 {
 public override OrderStatus Status
 {
 get { return OrderStatus.Submitted; }
 }

 public override bool CanAddProduct()
 {
 return false;
 }

 public override void Submit(Order order)

630  ❘  Chapter 14   Ordering and Payment

 {
 throw new InvalidOperationException(
 “You cannot submit this order as it has already been submitted.”);
 }
 }
}

To change state efficiently, you will use the Singleton pattern. Because an instance of the IOrderState
interface contains no state, it’s safe to use the Singleton pattern. Create the OrderStates helper class
with the following listing:

namespace Agathas.Storefront.Model.Orders.States
{
 public class OrderStates
 {
 public static readonly IOrderState Open =
 new OpenOrderState() {Id = 1};
 public static readonly IOrderState Submitted =
 new SubmittedOrderState() {Id = 2};
 }
}

Now that you have the order aggregation complete, you can update the Customer entity to include
a property that exposes its order history. Open the Customer entity and add the Orders property,
which is bolded in the following listing:

using Agathas.Storefront.Model.Orders;

namespace Agathas.Storefront.Model.Customers
{
 public class Customer : EntityBase<int>, IAggregateRoot
 {
 …

 public IList<Order> Orders { get; set; }

 …
 }
}

The final act of creating the Order aggregation is to define an IOrderRepository, which will be used
to retrieve and persist Orders:

using Agathas.Storefront.Infrastructure.Domain;

namespace Agathas.Storefront.Model.Orders
{
 public interface IOrderRepository : IRepository<Order, int>
 {
 }
}

With the domain model complete, you can now create the data model that will be used to save the
state of the order aggregation.

Checkout  ❘  631

Order Data Tables
Within the Web.MVC project, open the Shop.mdf database and add the following tables, as shown in
Figure 14-4, except the CourierServices table, which you created in Chapter 12. Ensure that you
set all the primary key fields as identity fields apart from the OrderStates table. This will mean
that the database is in charge of creating the entity’s identity.

Figure 14-4

Once the data model is created, enter the data as shown in
Figure 14-5 into the OrderStates table.

With the data model in place, you can now turn your attention to
mapping the domain model to the data model via the NHibernate
mapping files.

Order NHibernate Mappings
Three mapping files for the Order aggregation map to the Order, OrderItem, and IOrderState classes.
The IOrderState.hbm.xml mapping file, as shown in the following listing, uses NHibernate’s inheri-
tance mechanism and discriminator column to hydrate the correct instance of the IOrderState:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Orders.States”
 assembly=”Agathas.Storefront.Model”>

 <class name=”IOrderState” table=”OrderStates” lazy=”false” >

 <id name=”Id” column=”OrderStateId” >
 <generator class=”native” />

Figure 14-5

632  ❘  Chapter 14   Ordering and Payment

 </id>

 <discriminator column=”StateName” type=”string” />
 <subclass name=”OpenOrderState” discriminator-value=”Open” />
 <subclass name=”SubmittedOrderState” discriminator-value=”Submitted” />
 </class>
</hibernate-mapping>

Remember that you need to change the build action for the IOrderState.hbm.xml file. Right-click
on the IOrderState.hbm.xml XML file, and bring up its properties from the context-sensitive menu.
Once the Properties dialog is displayed, change the build action to Embedded Resource. This ensures
that the XML data is embedded when the assembly is built. Do the same for the rest of the mapping
files in this section.

The remaining mapping files are straightforward and similar to what you have already seen in previ-
ous chapters.

Create a new mapping file named Order.hbm.xml for the Order entity with the following definition:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Orders”
 assembly=”Agathas.Storefront.Model”>

 <class name=”Order” table=”Orders” lazy=”false” >

 <id name=”Id” column=”OrderId” type=”int” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property access=”field.camelcase-underscore” name=”Created”>
 <column name=”OrderDate” sql-type=”datetime” not-null=”true” />
 </property>

 <property name=”ShippingCharge”>
 <column name=”ShippingCharge” sql-type=”decimal” not-null=”true” />
 </property>

 <many-to-one cascade=”all” not-null=”true” lazy=”false”
 fetch=”join” name=”State” column=”StateId”
 access=”field.camelcase-underscore” />

 <many-to-one name=”ShippingService”
 class=”Agathas.Storefront.Model.Shipping.ShippingService”
 column=”ShippingServiceId”
 not-null=”true” />

 <component access=”field.camelcase-underscore” name=”Payment” class=”Payment”>
 <property access=”field.camelcase-underscore”
 column=”PaymentDate” name=”DatePaid”/>
 <property access=”field.camelcase-underscore”
 column=”PaymentTransactionId” name=”TransactionId”/>
 <property access=”field.camelcase-underscore”

Checkout  ❘  633

 column=”PaymentMerchant” name=”Merchant”/>
 <property access=”field.camelcase-underscore”
 column=”PaymentAmount” name=”Amount”/>
 </component>

 <component name=”DeliveryAddress” class=”Agathas.Storefront.Model.Address”>
 <property column=”DeliveryAddressLine1” name=”AddressLine1”/>
 <property column=”DeliveryAddressLine2” name=”AddressLine2”/>
 <property column=”DeliveryCity” name=”City”/>
 <property column=”DeliveryState” name=”State”/>
 <property column=”DeliveryCountry” name=”Country”/>
 <property column=”DeliveryZipCode” name=”ZipCode”/>
 </component>

 <many-to-one name=”Customer”
 class=”Agathas.Storefront.Model.Customers.Customer”
 column=”CustomerId”
 not-null=”true”/>

 <bag name=”Items” access=”field.camelcase-underscore”
 inverse=”true” cascade=”all-delete-orphan” lazy=”true” >
 <key column=”OrderId”/>
 <one-to-many class=”OrderItem”></one-to-many>
 </bag>
 </class>
</hibernate-mapping>

Create a new mapping file named OrderItem.hbm.xml for the OrderItem entity with the following
definition:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Orders”
 assembly=”Agathas.Storefront.Model”>

 <class name=”OrderItem” table=”OrderItems” lazy=”false” >

 <id name=”Id” column=”OrderItemId” unsaved-value=”0”>
 <generator class=”native” />
 </id>

 <property access=”field.camelcase-underscore” name=”Qty”>
 <column name=”Qty” sql-type=”int” not-null=”true” />
 </property>

 <property access=”field.camelcase-underscore” name=”Price”>
 <column name=”Price” sql-type=”decimal” not-null=”true” />
 </property>

 <many-to-one access=”field.camelcase-underscore” name=”Product”
 class=”Agathas.Storefront.Model.Products.Product”
 column=”ProductId”
 cascade=”none”

634  ❘  Chapter 14   Ordering and Payment

 not-null=”true”/>

 <many-to-one access=”field.camelcase-underscore” name=”Order”
 class=”Order”
 column=”OrderId”
 not-null=”true”/>

 </class>

</hibernate-mapping>

Because you updated the Customer entity class within the Model project, you must now update the
Customer mapping file to include information on the Customer order history. Open the Customer​
.hbm.xml file, and update it to include the bolded section shown in the following code listing:

<?xml version=”1.0” encoding=”utf-8” ?>
<hibernate-mapping xmlns=”urn:nhibernate-mapping-2.2”
 namespace=”Agathas.Storefront.Model.Customers”
 assembly=”Agathas.Storefront.Model”>

 <class name=”Customer” table=”Customers” lazy=”false” >

 …

 <bag name=”Orders” inverse=”false” cascade=”all-delete-orphan” lazy=”true” >
 <key column=”CustomerId”/>
 <one-to-many class=”Agathas.Storefront.Model.Orders.Order”></one-to-many>
 </bag>

 </class>

</hibernate-mapping>

The final act in allowing the Order aggregation to be persisted and retrieved is to create an implemen-
tation of the IOrderRepository. As with previous chapters, this is trivial due to the work you did in
Chapter 11 with the NHibernate base repository class:

using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Orders;

namespace Agathas.Storefront.Repository.NHibernate.Repositories
{
 public class OrderRepository : Repository<Order, int>, IOrderRepository
 {
 public OrderRepository(IUnitOfWork uow)
 : base(uow)
 {
 }
 }
}

With the domain model and the repository constructed, it’s time to turn your attention to the classes
that will make up the service layer.

Checkout  ❘  635

Order Service
Figure 14-6 shows the view models that the order service implementation will return. The Order​
SummaryView gives a history of a collection of orders that a customer places, whereas the OrderView
and OrderItemView are used to view the details of an Order.

Figure 14-6

Create a new class named OrderSummaryView within the ViewModels folder of the Services project:

using System;

namespace Agathas.Storefront.Services.ViewModels
{
 public class OrderSummaryView
 {
 public int Id { get; set; }
 public DateTime Created { get; set; }
 public bool IsSubmitted { get; set; }
 }
}

To represent an OrderItem, create a class named OrderItemView with the following listing:

namespace Agathas.Storefront.Services.ViewModels
{
 public class OrderItemView
 {
 public string ProductName { get; set; }
 public string ProductSizeName { get; set; }
 public int Id { get; set; }
 public int Qty { get; set; }
 public string Price { get; set; }
 }
}

636  ❘  Chapter 14   Ordering and Payment

To represent an Order, create a class named OrderView again with the following listing:

using System;
using System.Collections.Generic;

namespace Agathas.Storefront.Services.ViewModels
{
 public class OrderView
 {
 public DateTime PaymentDatePaid { get; set; }
 public string PaymentTransactionId { get; set; }
 public bool OrderHasBeenPaidFor { get; set; }
 public IEnumerable<OrderItemView> Items { get; set; }
 public DateTime Created { get; set; }
 public string ShippingCharge { get; set; }
 public string ShippingServiceCourierName { get; set; }
 public string ShippingServiceDescription { get; set; }
 public string Total { get; set; }
 public int Id { get; set; }
 public DeliveryAddressView DeliveryAddress { get; set; }
 public string CustomerFirstName { get; set; }
 public string CustomerSecondName { get; set; } }
}

With the views defined that the order service will return, you can now work on the messaging objects
using the Request-Response pattern as detailed in Chapter 6.

Create a new folder named OrderService within the Messaging folder of the Services project. Add
a pair of classes that will be used to create an order from a Basket named CreateOrderRequest and
CreateOrderResponse:

using System;

namespace Agathas.Storefront.Services.Messaging.OrderService
{
 public class CreateOrderRequest
 {
 public int DeliveryId { get; set; }
 public Guid BasketId { get; set; }
 public string CustomerIdentityToken { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.OrderService
{
 public class CreateOrderResponse
 {
 public OrderView Order { get; set; }
 }
}

Checkout  ❘  637

To retrieve an order, the pair of classes named GetOrderRequest and GetOrderResponse are used:

namespace Agathas.Storefront.Services.Messaging.OrderService
{
 public class GetOrderRequest
 {
 public int OrderId { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.OrderService
{
 public class GetOrderResponse
 {
 public OrderView Order { get; set; }
 }
}

For a customer to pay for an order, the classes SetOrderPaymentRequest and SetOrderPayment​
Response are required:

namespace Agathas.Storefront.Services.Messaging.OrderService
{
 public class SetOrderPaymentRequest
 {
 public string PaymentToken { get; set; }
 public decimal Amount { get; set; }
 public string PaymentMerchant { get; set; }
 public int OrderId { get; set; }
 }
}

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.OrderService
{
 public class SetOrderPaymentResponse
 {
 public OrderView Order { get; set; }
 }
}

Now that a Customer is related to her Orders, the Request-Response class pair needs to be modified
to allow the client to specify if this information is loaded when a customer is retrieved. Amend the
classes GetCustomerRequest and GetCustomerResponse found within the Messaging/Customer​
Service folder, as shown in the bolded sections of the following code listing.

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class GetCustomerRequest
 {

638  ❘  Chapter 14   Ordering and Payment

 public string CustomerIdentityToken { get; set; }
 public bool LoadOrderSummary { get; set; }
 }
}

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Services.Messaging.CustomerService
{
 public class GetCustomerResponse
 {
 public bool CustomerFound { get; set; }
 public CustomerView Customer { get; set; }
 public IEnumerable<OrderSummaryView> Orders { get; set; }
 }
}

You will also need to update the CustomerService implementation to include the new LoadOrder​
Summary flag, as shown in bold in the following code listing:

namespace Agathas.Storefront.Services.Implementations
{
 public class CustomerService : ICustomerService
 {
 …

 public GetCustomerResponse GetCustomer(GetCustomerRequest request)
 {
 GetCustomerResponse response = new GetCustomerResponse();

 Customer customer =
 _customerRepository.FindBy(request.CustomerIdentityToken);

 if (customer != null)
 {
 response.CustomerFound = true;
 response.Customer = customer.ConvertToCustomerDetailView();
 if (request.LoadOrderSummary)
 response.Orders = customer.Orders
 .OrderByDescending(o => o.Created).ConvertToOrderSummaryViews();
 }
 else
 response.CustomerFound = false;

 return response;
 }

 …
 }
}

Checkout  ❘  639

Because you set the customer’s orders to be lazy loading in the NHibernate mapping file, there is no
overhead in retrieving a customer without his orders. For a more detailed view of the Lazy Loading
pattern, take a look at Chapter 7.

You will receive a compiler error because currently there is no ConvertToOrderSummaryViews
extension method, so let’s fix that.

To convert Order entities into ViewModels, you need to configure the AutoMapperBootStrapper class
located at the root of the Services project. Update the AutoMapperBootStrapper class so that it
includes the bolded lines, as shown in the following listing:

…
using Agathas.Storefront.Model.Orders.States;
using Agathas.Storefront.Model.Orders;
using Agathas.Storefront.Model;

namespace Agathas.Storefront.Services
{
 public class AutoMapperBootStrapper
 {
 public static void ConfigureAutoMapper()
 {

 …

 // Orders
 Mapper.CreateMap<Order, OrderView>();
 Mapper.CreateMap<OrderItem, OrderItemView>();
 Mapper.CreateMap<Address, DeliveryAddressView>();
 Mapper.CreateMap<Order, OrderSummaryView>()
 .ForMember(o => o.IsSubmitted,
 ov => ov.ResolveUsing<OrderStatusResolver>());

 }
 }

 public class OrderStatusResolver : ValueResolver<Order, bool>
 {
 protected override bool ResolveCore(Order source)
 {
 if (source.Status == OrderStatus.Submitted)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 }

 …
}

640  ❘  Chapter 14   Ordering and Payment

The actual action of converting Orders is the responsibility of a mapper class. Add a new class
named OrderMapper to the Mapping folder of the Services project:

using System.Collections.Generic;
using Agathas.Storefront.Model.Orders;
using Agathas.Storefront.Services.ViewModels;
using AutoMapper;

namespace Agathas.Storefront.Services.Mapping
{
 public static class OrderMapper
 {
 public static OrderView ConvertToOrderView(this Order order)
 {
 return Mapper.Map<Order, OrderView>(order);
 }

 public static IEnumerable<OrderSummaryView> ConvertToOrderSummaryViews(
 this IEnumerable<Order> orders)
 {
 return Mapper.Map<IEnumerable<Order>,
 IEnumerable<OrderSummaryView>>(orders);
 }
 }
}

To create an Order from a Basket, you need to amend the BasketMapper class, as shown in the
bolded code in the following listing:

using Agathas.Storefront.Model.Orders;

namespace Agathas.Storefront.Services.Mapping
{
 public static class BasketMapper
 {
 public static BasketView ConvertToBasketView(this Basket basket)
 {
 return Mapper.Map<Basket, BasketView>(basket);
 }

 public static Order ConvertToOrder(this Basket basket)
 {
 Order order = new Order();

 order.ShippingCharge = basket.DeliveryCost();
 order.ShippingService = basket.DeliveryOption.ShippingService;

 foreach(BasketItem item in basket.Items()) {
 order.AddItem(item.Product, item.Qty);
 }
 return order;
 }
 }
}

Checkout  ❘  641

Next, add a contract for the order service in the Interfaces folder named IOrderService, as
shown in the following code listing:

using Agathas.Storefront.Services.Messaging.OrderService;

namespace Agathas.Storefront.Services.Interfaces
{
 public interface IOrderService
 {
 CreateOrderResponse CreateOrder(CreateOrderRequest request);

 SetOrderPaymentResponse SetOrderPayment(SetOrderPaymentRequest paymentRequest);

 GetOrderResponse GetOrder(GetOrderRequest request);
 }
}

The implementation of the IOrderService that should be created within the Implementations
folder is shown in the following listing. Again, this class is similar to what you have seen before in
previous chapters:

using System.Linq;
using Agathas.Storefront.Infrastructure.Logging;
using Agathas.Storefront.Infrastructure.UnitOfWork;
using Agathas.Storefront.Model.Basket;
using Agathas.Storefront.Model.Customers;
using Agathas.Storefront.Model.Orders;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Mapping;
using Agathas.Storefront.Services.Messaging.OrderService;

namespace Agathas.Storefront.Services.Implementations
{
 public class OrderService : IOrderService
 {
 private readonly ICustomerRepository _customerRepository;
 private readonly IOrderRepository _orderRepository;
 private readonly IBasketRepository _basketRepository;
 private readonly IUnitOfWork _uow;

 public OrderService(IOrderRepository orderRepository,
 IBasketRepository basketRepository,
 ICustomerRepository customerRepository,
 IUnitOfWork uow)
 {
 _customerRepository = customerRepository;
 _orderRepository = orderRepository;
 _basketRepository = basketRepository;
 _uow = uow;
 }

 public CreateOrderResponse CreateOrder(CreateOrderRequest request)
 {
 CreateOrderResponse response = new CreateOrderResponse();
 Customer customer = _customerRepository

642  ❘  Chapter 14   Ordering and Payment

 .FindBy(request.CustomerIdentityToken);
 Basket basket = _basketRepository.FindBy(request.BasketId);

 DeliveryAddress deliveryAddress = customer.DeliveryAddressBook
 .Where(d => d.Id == request.DeliveryId).FirstOrDefault();

 Order order = basket.ConvertToOrder();

 order.Customer = customer;
 order.DeliveryAddress = deliveryAddress;

 _orderRepository.Save(order);
 _basketRepository.Remove(basket);
 _uow.Commit();

 response.Order = order.ConvertToOrderView();

 return response;
 }

 public SetOrderPaymentResponse SetOrderPayment(
 SetOrderPaymentRequest paymentRequest)
 {
 SetOrderPaymentResponse paymentResponse = new SetOrderPaymentResponse();

 Order order = _orderRepository.FindBy(paymentRequest.OrderId);

 try
 {
 order.SetPayment(
 PaymentFactory.CreatePayment(paymentRequest.PaymentToken,
 paymentRequest.Amount,
 paymentRequest.PaymentMerchant));

 _orderRepository.Save(order);
 _uow.Commit();
 }
 catch (OrderAlreadyPaidForException ex)
 {
 // Out of scope of case study:
 // Refund the payment using the payment service.

 LoggingFactory.GetLogger().Log(ex.Message);
 }
 catch (PaymentAmountDoesNotEqualOrderTotalException ex)
 {
 // Out of scope of case study:
 // Refund the payment using the payment service.

 LoggingFactory.GetLogger().Log(ex.Message);
 }

 paymentResponse.Order = order.ConvertToOrderView();

 return paymentResponse;

Checkout  ❘  643

 }

 public GetOrderResponse GetOrder(GetOrderRequest request)
 {
 GetOrderResponse response = new GetOrderResponse();

 Order order = _orderRepository.FindBy(request.OrderId);

 response.Order = order.ConvertToOrderView();

 return response;
 }
 }
}

Code snippet OrderService.cs in project Agathas.Storefront.Services

The final class for the Services project is required to handle the OrderSubmittedEvent that you
defined in the Model project. Create a new folder named DomainEventHandlers, and add a new class
named OrderSubmittedHandler, as shown in the following listing. You will use this class to send
e‑mails to customers informing them that their order has been submitted:

using System;
using System.Text;
using Agathas.Storefront.Infrastructure.Domain.Events;
using Agathas.Storefront.Infrastructure.Email;
using Agathas.Storefront.Model.Orders.Events;

namespace Agathas.Storefront.Services.DomainEventHandlers
{
 public class OrderSubmittedHandler : IDomainEventHandler<OrderSubmittedEvent>
 {
 public void Handle(OrderSubmittedEvent domainEvent)
 {
 StringBuilder emailBody = new StringBuilder();
 string emailAddress = domainEvent.Order.Customer.Email;
 string emailSubject = String.Format(“Agatha Order #{0}”,
 domainEvent.Order.Id);

 emailBody.AppendLine(String.Format(“Hello {0},”,
 domainEvent.Order.Customer.FirstName));
 emailBody.AppendLine();
 emailBody.AppendLine(
 “The following order will be packed and dispatched as soon as possible.”);
 emailBody.AppendLine(domainEvent.Order.ToString());
 emailBody.AppendLine();
 emailBody.AppendLine(“Thank you for your custom.”);
 emailBody.AppendLine(“Agatha’s”);

 EmailServiceFactory.GetEmailService()
 .SendMail(“orders@Agatha.com”,emailAddress,
 emailSubject, emailBody.ToString());
 }
 }
}

644  ❘  Chapter 14   Ordering and Payment

In a full production system it makes sense to store the e‑mail template in a database or XML file. A
great template engine is NVelocity, found at www.castleproject.org/others/nvelocity/index.html.

With the ability to create and retrieve orders taken care of, you now need to be able to obtain payment.
That’s what you will look at next.

Taking Payment with PayPal
To get started with PayPal, you need to create a PayPal sandbox account at https://developer​
.paypal.com/, as shown in Figure 14-7.

Figure 14-7

Once your account is created, log in and create a test buyer and seller account by clicking on the
Create a Preconfigured Buyer or Seller Account, as shown in Figure 14-8.

Figure 14-8

Checkout  ❘  645

Make a note of the password and e‑mail addresses of both of these accounts, because you will need
them later. Figure 14-9 shows an account with a buyer and seller profile created.

Figure 14-9

PayPal has numerous products and ways to work with them. You will be using the express checkout
and the Name-Value Pair API. Figure 14-10 shows the journey a customer will take when check-
ing out and paying for an order.

Order is created but not
paid for. The order is in

the open state.

After the customer
completes the payment

information she is
returned to the site.

Agatha’s Store
Order Confirmation Page Agatha’s Store

Order Thank You Page
PayPal

Figure 14-10

When the customer wants to place an order, she is presented with a confirmation screen on Agatha’s
site. When the customer clicks to confirm, data is posted to the PayPal site, where the customer fills
out her payment information. Once the information is complete, the customer returns to Agatha’s
storefront.

646  ❘  Chapter 14   Ordering and Payment

In a separate action displayed in Figure 14-11, PayPal sends an Instant Payment Notification (IPN)
detailing the transaction via an HTTP Post. Agatha’s site uses this notification to verify the details
of the transaction the customer made.

PayPal makes an HTTP
Post call back with

details on the
transaction

Agatha’s Store
PayPal Callback

Agatha’s store verifies
the call back from

PayPal

If the response is Okay
from PayPal, the order is
changed from an Open

to a Submitted state

PayPal PayPal

Figure 14-11

To work with any payment merchant, abstract away the details of the PayPal implementation.
Figure 14-12 shows the data transfer objects you will create to communicate with the payment
service.

Figure 14-12

Create a new class named OrderItemPaymentRequest within the Payments folder of the
Infrastructure project:

namespace Agathas.Storefront.Infrastructure.Payments
{

Checkout  ❘  647

 public class OrderItemPaymentRequest
 {
 public int Id { get; set;}
 public string ProductName { get; set;}
 public decimal Price { get; set;}
 public int Qty { get; set; }
 }
}

Next, create a class named OrderPaymentRequest with the following code listing:

namespace Agathas.Storefront.Infrastructure.Payments
{
 public class OrderPaymentRequest
 {
 public decimal Total { get; set;}
 public string CustomerFirstName { get; set; }
 public string CustomerSecondName { get; set; }
 public decimal ShippingCharge { get; set; }
 public string DeliveryAddressAddressLine1 { get; set; }
 public string DeliveryAddressAddressLine2 { get; set; }
 public string DeliveryAddressCity { get; set; }
 public string DeliveryAddressState { get; set; }
 public string DeliveryAddressCountry { get; set; }
 public string DeliveryAddressZipCode { get; set; }
 public int Id { get; set; }
 public IEnumerable<OrderItemPaymentRequest> Items { get; set; }
 }
}

The data that will be posted to PayPal after the customer confirms her order will be supplied by
the payment service in the form of a NameValueCollection collection. Create a new class with the
Payments folder named PaymentPostData that will contain this information and a URL on where
to post it:

using System.Collections.Specialized;

namespace Agathas.Storefront.Infrastructure.Payments
{
 public class PaymentPostData
 {
 public string PaymentPostToUrl { get; set;}
 public NameValueCollection PostDataAndValue { get; set; }
 }
}

The result that the payment service returns after verifying a notification callback is returned as a
TransactionResult:

namespace Agathas.Storefront.Infrastructure.Payments
{
 public class TransactionResult
 {
 public string PaymentMerchant { get; set; }

648  ❘  Chapter 14   Ordering and Payment

 public bool PaymentOk { get; set; }
 public string PaymentToken { get; set; }
 public decimal Amount { get; set; }
 }
}

The contract for the payment service, IPaymentService, as can be seen in the following listing,
deliberately abstracts away any implementation-specific details relating to PayPal. This allows it to
be reused with other payment merchants:

using System.Web.Mvc;

namespace Agathas.Storefront.Infrastructure.Payments
{
 public interface IPaymentService
 {
 PaymentPostData GeneratePostDataFor(OrderPaymentRequest orderRequest);
 TransactionResult HandleCallBack(OrderPaymentRequest orderRequest,
 FormCollection collection);
 int GetOrderIdFor(FormCollection collection);
 }
}

Before you create a PayPal implementation of the IPaymentService, you need to modify
the IApplicationSettings interface that can be found in the Configuration folder of the
Infrastructure project to expose two new properties, as shown in bold in the following code
listing:

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public interface IApplicationSettings
 {
 …

 string PayPalBusinessEmail { get; }
 string PayPalPaymentPostToUrl { get; }
 }
}

You now need to modify the WebConfigApplicationSettings implementation to include the two
new properties, as can be seen in the following listing:

using System.Configuration;

namespace Agathas.Storefront.Infrastructure.Configuration
{
 public class WebConfigApplicationSettings : IApplicationSettings
 {
 …

 public string PayPalBusinessEmail
 {
 get { return ConfigurationManager.AppSettings[“PayPalBusinessEmail”]; }

Checkout  ❘  649

 }

 public string PayPalPaymentPostToUrl
 {
 get { return ConfigurationManager.AppSettings[“PayPalPaymentPostToUrl”]; }
 }
 }
}

Finally, update the web.config file in the Web.MVC project as illustrated in bold in the following
listing to include your PayPal seller account e‑mail that you generated when creating a seller and
buyer PayPal account. The other property is used when you are ready to go live. Here you substitute
the real PayPal checkout from the sandbox checkout:

 <appSettings>

 …

 <add key=”PayPalBusinessEmail”
 value=”XXXXX@XXXXXX.XXXX”/>
 <add key=”PayPalPaymentPostToUrl”
 value=”https://www.sandbox.paypal.com/cgi-bin/webscr”/>

 </appSettings >

You can now create the PayPal implementation of the IPaymentService. The workings of PayPal
are out of scope for this book, but I have commented all methods to give you an idea of what’s going
on. Please look at the PayPal developer documentation for more information:

using System;
using System.Collections.Specialized;
using System.IO;
using System.Net;
using System.Text;
using System.Web.Mvc;
using System.Web;
using Agathas.Storefront.Infrastructure.Configuration;

namespace Agathas.Storefront.Infrastructure.Payments
{
 public class PayPalPaymentService : IPaymentService
 {
 public PaymentPostData GeneratePostDataFor(OrderPaymentRequest orderRequest)
 {
 PaymentPostData paymentPostData = new PaymentPostData();
 NameValueCollection postDataAndValue = new NameValueCollection();

 paymentPostData.PostDataAndValue = postDataAndValue;

 // When a real PayPal account is used, the form should be sent to
 // https://www.paypal.com/cgi-bin/webscr.
 // For testing use “https://www.sandbox.paypal.com/cgi-bin/webscr”
 paymentPostData.PaymentPostToUrl = ApplicationSettingsFactory

650  ❘  Chapter 14   Ordering and Payment

 .GetApplicationSettings().PayPalPaymentPostToUrl;

 // For shopping cart purchases.
 postDataAndValue.Add(“cmd”, “_cart”);
 // Indicates the use of third-party shopping cart.
 postDataAndValue.Add(“upload”, “1”);

 // This is the seller’s e‑mail address.
 // You must supply your own address here!!!
 postDataAndValue.Add(“business”, ApplicationSettingsFactory
 .GetApplicationSettings().PayPalBusinessEmail);

 // This field does not take part in the shopping process.
 // It simply will be passed to the IPN script at the time
 // of transaction confirmation.
 postDataAndValue.Add(“custom”, orderRequest.Id.ToString());

 // This parameter represents a currency code.
 postDataAndValue.Add(“currency_code”, “GBP”);

 postDataAndValue.Add(“first_name”, orderRequest.CustomerFirstName);
 postDataAndValue.Add(“last_name”, orderRequest.CustomerSecondName);

 postDataAndValue.Add(“address1”, orderRequest.DeliveryAddressAddressLine1);
 postDataAndValue.Add(“address2”, orderRequest.DeliveryAddressAddressLine2);
 postDataAndValue.Add(“city”, orderRequest.DeliveryAddressCity);
 postDataAndValue.Add(“state”, orderRequest.DeliveryAddressState);
 postDataAndValue.Add(“country”, orderRequest.DeliveryAddressCountry);
 postDataAndValue.Add(“zip”, orderRequest.DeliveryAddressZipCode);

 // This parameter determines whether the delivery
 // address should be requested.
 // “1” means that the address will be requested; “0” means
 // that it will be not.
 //postDataAndValue.Add(“no_shipping”, “0”);

 // This is the URL where the user will be redirected after the payment
 // is successfully performed. If this parameter is not passed, the buyer
 // remains on the PayPal site.
 postDataAndValue.Add(“return”,
 Helpers.UrlHelper.Resolve(“/Payment/PaymentComplete”));

 // This is the URL where the user will be redirected when
 // he cancels the payment.
 // If the parameter is not passed, the buyer remains on the PayPal site.
 postDataAndValue.Add(“cancel_return”,
 Helpers.UrlHelper.Resolve(“/Payment/PaymentCancel”));

 // This is the URL where PayPal will pass information about the
 // transaction (IPN). If the parameter is not passed, the value from
 // the account settings will be used. If this value is not defined in
 // the account settings, IPN will not be used.
 postDataAndValue.Add(“notify_url”,
 Helpers.UrlHelper.Resolve(“/Payment/PaymentCallBack”));

 int itemIndex = 1;

Checkout  ❘  651

 foreach(OrderItemPaymentRequest item in orderRequest.Items)
 {
 postDataAndValue.Add(“item_name_” + itemIndex.ToString(),
 item.ProductName);
 postDataAndValue.Add(“amount_” + itemIndex.ToString(),
 item.Price.ToString());
 postDataAndValue.Add(“item_number_” + itemIndex.ToString(),
 item.Id.ToString());
 postDataAndValue.Add(“quantity_” + itemIndex.ToString(),
 item.Qty.ToString());

 itemIndex++;
 }

 postDataAndValue.Add(“shipping”, orderRequest.ShippingCharge.ToString());

 return paymentPostData;
 }

 public TransactionResult HandleCallBack(OrderPaymentRequest orderRequest,
 FormCollection collection)
 {
 TransactionResult transactionResult = new TransactionResult();

 string response = ValidatePaymentNotification(collection);

 if (response == “VERIFIED”)
 {
 string sAmountPaid = collection[“mc_gross”];
 string transactionId = collection[“txn_id”];

 Decimal amountPaid = 0;
 Decimal.TryParse(sAmountPaid, out amountPaid);

 if (orderRequest.Total == amountPaid)
 {
 transactionResult.PaymentToken = transactionId;
 transactionResult.Amount = amountPaid;
 transactionResult.PaymentMerchant = “PayPal”;
 transactionResult.PaymentOk = true;
 }
 else
 {
 transactionResult.PaymentToken = transactionId;
 transactionResult.Amount = amountPaid;
 transactionResult.PaymentMerchant = “PayPal”;
 transactionResult.PaymentOk = false;
 }
 }

 return transactionResult;
 }

 private string ValidatePaymentNotification(FormCollection formCollection)

652  ❘  Chapter 14   Ordering and Payment

 {
 formCollection[“cmd”] = “_notify-validate”;

 string paypalUrl = ApplicationSettingsFactory
 .GetApplicationSettings().PayPalPaymentPostToUrl;

 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(paypalUrl);

 // Set values for the request back
 req.Method = “POST”;
 req.ContentType = “application/x-www-form-urlencoded”;

 byte[] param = HttpContext.Current.Request
 .BinaryRead(HttpContext.Current.Request.ContentLength);
 string strRequest = Encoding.ASCII.GetString(param);

 StringBuilder postFormData = new StringBuilder();

 foreach (string key in formCollection.Keys)
 {
 postFormData.AppendFormat(“&{0}={1}”, key, formCollection[key]);
 }

 strRequest = postFormData.ToString();
 req.ContentLength = strRequest.Length;

 string response = “”;
 using (StreamWriter streamOut = new StreamWriter(req.GetRequestStream(),
 System.Text.Encoding.ASCII))
 {

 streamOut.Write(strRequest);
 streamOut.Close();
 using (StreamReader streamIn =
 new StreamReader(req.GetResponse().GetResponseStream()))
 {
 response = streamIn.ReadToEnd();
 }
 }

 return response;
 }

 public int GetOrderIdFor(FormCollection collection)
 {
 return int.Parse(collection[“custom”]);
 }
 }
}

Code snippet PayPalPaymentService.cs in project Agathas.Storefront.Infrastructure

Checkout  ❘  653

The PayPal payment service is now complete, so you can turn your attention to the Controllers
project that will coordinate the checkout, payment, and customer order history actions.

Order, Payment, and Checkout Controllers
Figure 14-13 shows the views and view models that you will be using in this section.

Create a new folder within the ViewModels folder of the Controllers project, and name it
Checkout. Add a new class to this folder named OrderConfirmationView. This view is tied to the
order confirmation .ASPX view:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.Checkout
{
 public class OrderConfirmationView
 {
 public BasketView Basket { get; set; }
 public IEnumerable<DeliveryAddressView> DeliveryAddresses { get; set; }
 }
}

Next, add a view within the CustomerAccount folder. This folder is in the ViewModels folder of
the Controllers project named CustomersOrderSummaryView, which will be strongly typed to the
.ASPX view that shows a customer’s order history:

using System.Collections.Generic;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.CustomerAccount
{
 public class CustomersOrderSummaryView : BaseCustomerAccountView
 {
 public IEnumerable<OrderSummaryView> Orders { get; set; }
 }
}

The CustomerOrderView view is strongly typed to the .ASPX order detail view, which will be found
within the customer account section:

using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.ViewModels.CustomerAccount
{
 public class CustomerOrderView : BaseCustomerAccountView
 {
 public OrderView Order { get; set; }
 }
}

Figure 14-14 shows the three controllers that coordinate the logic for the customer account order
history, payment, and checkout sections of the site.

S
ite

.M
as

te
r

S
ite

Fo
ot

er
.a

sc
x

O
rd

er
/L

is
t.a

sp
x

Cu
st

om
er

sO
rd

er
Su

m
m

ar
yV

ie
w

C
us

to
m

er
O

rd
er

V
ie

w

C
he

ck
ou

t.m
as

te
r

C
us

to
m

er
A

cc
ou

nt
.m

as
te

r

B
as

eC
us

to
m

er
A

cc
ou

nt
V

ie
w

P
ro

du
ct

C
at

al
og

.m
as

te
r

A
dd

D
el

iv
er

yA
dd

re
ss

.a
sp

x

D
el

iv
er

yA
dd

re
ss

V
ie

w

C
on

fir
m

O
rd

er
.a

sp
x

O
rd

er
C

on
fir

m
at

io
nV

ie
w

Pa
ym

en
tP

os
tD

at
a

O
rd

er
/D

et
ai

l.a
sp

x
Pa

ym
en

tP
os

t.a
sp

x

Pa
ym

en
tC

om
pl

et
e

.a
sp

x
Pa

ym
en

tC
an

ce
l.a

sp
x

Figure 14-13

Checkout  ❘  655

Figure 14-14

Add a new class to the Controllers folder of the Controllers project named OrderController with
the following listing. The OrderController is simple and just retrieves lists of order summaries or an
order’s detail:

using System.Web.Mvc;
using Agathas.Storefront.Controllers.ViewModels.CustomerAccount;
using Agathas.Storefront.Infrastructure.Authentication;
using Agathas.Storefront.Infrastructure.CookieStorage;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.CustomerService;
using Agathas.Storefront.Services.Messaging.OrderService;

namespace Agathas.Storefront.Controllers.Controllers
{
 [Authorize]
 public class OrderController : BaseController
 {
 private readonly ICustomerService _customerService;
 private readonly IOrderService _orderService;
 private readonly IFormsAuthentication _formsAuthentication;

 public OrderController(ICustomerService customerService,
 IOrderService orderService,
 IFormsAuthentication formsAuthentication,
 ICookieStorageService cookieStorageService)
 : base(cookieStorageService)
 {

656  ❘  Chapter 14   Ordering and Payment

 _customerService = customerService;
 _orderService = orderService;
 _formsAuthentication = formsAuthentication;
 }

 [Authorize]
 public ActionResult List()
 {
 GetCustomerRequest request = new GetCustomerRequest(){
 CustomerIdentityToken = _formsAuthentication.Get AuthenticationToken(),

 LoadOrderSummary = true};

 GetCustomerResponse response = _customerService.GetCustomer(request);

 CustomersOrderSummaryView customersOrderSummaryView =
 new CustomersOrderSummaryView();
 customersOrderSummaryView.Orders = response.Orders;
 customersOrderSummaryView.BasketSummary = base.GetBasketSummaryView();

 return View(customersOrderSummaryView);
 }

 [Authorize]
 public ActionResult Detail(int orderId)
 {
 GetOrderRequest request = new GetOrderRequest() {OrderId = orderId};
 GetOrderResponse response = _orderService.GetOrder(request);

 CustomerOrderView orderView = new CustomerOrderView();
 orderView.BasketSummary = base.GetBasketSummaryView();
 orderView.Order = response.Order;

 return View(orderView);
 }
 }
}

The next controller you will create is the CheckoutController. Part of the checkout process is to select
a delivery address for an order. If one does not exist, the customer is redirected to enter one before con-
tinuing the checkout. To facilitate this and update an order with the correct delivery address, you need
to add a new value to the FormDataKeys enumeration, as shown in bold in the following listing:

namespace Agathas.Storefront.Controllers
{
 public enum FormDataKeys
 {
 DeliveryAddress,
 Password,
 Email,
 FirstName,
 SecondName,
 }
}

Checkout  ❘  657

Create the CheckoutController with the following code definition:

using System;
using System.Linq;
using System.Web.Mvc;
using Agathas.Storefront.Controllers.ViewModels.Checkout;
using Agathas.Storefront.Infrastructure.Authentication;
using Agathas.Storefront.Infrastructure.CookieStorage;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.CustomerService;
using Agathas.Storefront.Services.Messaging.OrderService;
using Agathas.Storefront.Services.Messaging.ProductCatalogueService;
using Agathas.Storefront.Services.ViewModels;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class CheckoutController : BaseController
 {
 private readonly ICookieStorageService _cookieStorageService;
 private readonly IBasketService _basketService;
 private readonly ICustomerService _customerService;
 private readonly IOrderService _orderService;
 private readonly IFormsAuthentication _formsAuthentication;

 public CheckoutController(ICookieStorageService cookieStorageService,
 IBasketService basketService,
 ICustomerService customerService,
 IOrderService orderService,
 IFormsAuthentication formsAuthentication)
 : base(cookieStorageService)
 {
 _cookieStorageService = cookieStorageService;
 _basketService = basketService;
 _customerService = customerService;
 _orderService = orderService;
 _formsAuthentication = formsAuthentication;
 }

 [Authorize]
 public ActionResult Checkout()
 {
 GetCustomerRequest customerRequest = new GetCustomerRequest(){
 CustomerIdentityToken = _formsAuthentication.Get AuthenticationToken()};

 GetCustomerResponse customerResponse =
 _customerService.GetCustomer(customerRequest);
 CustomerView customerView = customerResponse.Customer;

 if (customerView.DeliveryAddressBook.Count() > 0)
 {
 OrderConfirmationView orderConfirmationView =
 new OrderConfirmationView();
 GetBasketRequest getBasketRequest = new GetBasketRequest() {

658  ❘  Chapter 14   Ordering and Payment

 BasketId = base.GetBasketId()};

 GetBasketResponse basketResponse =
 _basketService.GetBasket(getBasketRequest);

 orderConfirmationView.Basket = basketResponse.Basket;
 orderConfirmationView.DeliveryAddresses =
 customerView.DeliveryAddressBook;

 return View(“ConfirmOrder”, orderConfirmationView);
 }

 return AddDeliveryAddress();
 }

 [Authorize]
 public ActionResult AddDeliveryAddress()
 {
 DeliveryAddressView deliveryAddressView = new DeliveryAddressView();
 return View(“AddDeliveryAddress”, deliveryAddressView);
 }

 [Authorize]
 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult AddDeliveryAddress(DeliveryAddressView deliveryAddressView)
 {
 DeliveryAddressAddRequest request = new DeliveryAddressAddRequest();
 request.Address = deliveryAddressView;
 request.CustomerIdentityToken =
 _formsAuthentication.Get AuthenticationToken();

 _customerService.AddDeliveryAddress(request);

 return Checkout();
 }

 [Authorize]
 public ActionResult PlaceOrder(FormCollection collection)
 {
 CreateOrderRequest request = new CreateOrderRequest();
 request.BasketId = base.GetBasketId();
 request.CustomerIdentityToken =
 _formsAuthentication.Get AuthenticationToken();
 request.DeliveryId =
 int.Parse(collection[FormDataKeys.DeliveryAddress.ToString()]);

 CreateOrderResponse response = _orderService.CreateOrder(request);

 _cookieStorageService.Save(CookieDataKeys.BasketItems.ToString(),
 “0”, DateTime.Now.AddDays(1));
 _cookieStorageService.Save(CookieDataKeys.BasketTotal.ToString(),
 “0”, DateTime.Now.AddDays(1));

 return RedirectToAction(“CreatePaymentFor”, “Payment”,

Checkout  ❘  659

 new { orderId = response.Order.Id});
 }
 }
}

To work with the payment service, you must convert an order to an OrderPaymentRequest. You
achieve this by using AutoMapper. Create a new class named AutoMapperBootStrapper in the root
of the Controllers project with the following listing:

using AutoMapper;
using Agathas.Storefront.Services.ViewModels;
using Agathas.Storefront.Infrastructure.Payments;

namespace Agathas.Storefront.Controllers
{
 public class AutoMapperBootStrapper
 {
 public static void ConfigureAutoMapper()
 {
 Mapper.CreateMap<OrderView, OrderPaymentRequest>()
 .ForMember(o => o.Total,
 ov => ov.ResolveUsing<OrderTotalResolver>())
 .ForMember(o => o.ShippingCharge,
 ov => ov.ResolveUsing<ShippingChargeResolver>());

 Mapper.CreateMap<OrderItemView, OrderItemPaymentRequest>()
 .ForMember(o => o.Price, ov => ov.ResolveUsing<ItemPriceResolver>());
 }
 }

 public class OrderTotalResolver : ValueResolver<OrderView, decimal>
 {
 protected override decimal ResolveCore(OrderView source)
 {
 return decimal.Parse(source.Total.Substring(1, source.Total.Length -1));
 }
 }

 public class ShippingChargeResolver : ValueResolver<OrderView, decimal>
 {
 protected override decimal ResolveCore(OrderView source)
 {
 return decimal.Parse(source.ShippingCharge
 .Substring(1, source.ShippingCharge.Length - 1));
 }
 }

 public class ItemPriceResolver : ValueResolver<OrderItemView, decimal>
 {
 protected override decimal ResolveCore(OrderItemView source)
 {
 return decimal.Parse(source.Price.Substring(1, source.Price.Length - 1));
 }
 }
}

660  ❘  Chapter 14   Ordering and Payment

The AutoMapperBootStrapper simply defines how to convert the OrderView to an OrderPayment​
Request object. To make this conversion, create a new class named OrderMapper to provide an
extension method:

using Agathas.Storefront.Infrastructure.Payments;
using Agathas.Storefront.Services.ViewModels;
using AutoMapper;

namespace Agathas.Storefront.Controllers
{
 public static class OrderMapper
 {
 public static OrderPaymentRequest ConvertToOrderPaymentRequest(
 this OrderView order)
 {
 return Mapper.Map<OrderView, OrderPaymentRequest>(order);
 }
 }
}

You can now create the PaymentController that coordinates the taking workflow with the IPayment​
Service. Notice that there are no specific details relating to PayPal; this is intentional so that a new
payment merchant can be swapped in for PayPal at a later date if necessary:

using System;
using System.Web.Mvc;
using Agathas.Storefront.Infrastructure.Logging;
using Agathas.Storefront.Infrastructure.Payments;
using Agathas.Storefront.Services.Interfaces;
using Agathas.Storefront.Services.Messaging.OrderService;

namespace Agathas.Storefront.Controllers.Controllers
{
 public class PaymentController : Controller
 {
 private readonly IPaymentService _paymentService;
 private readonly IOrderService _orderService;

 public PaymentController(IPaymentService paymentService,
 IOrderService orderService)
 {
 _paymentService = paymentService;
 _orderService = orderService;
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public void PaymentCallBack(FormCollection collection)
 {
 int orderId = _paymentService.GetOrderIdFor(collection);
 GetOrderRequest request = new GetOrderRequest() {OrderId = orderId};

 GetOrderResponse response = _orderService.GetOrder(request);

 OrderPaymentRequest orderPaymentRequest =

Checkout  ❘  661

 response.Order.ConvertToOrderPaymentRequest();

 TransactionResult transactionResult =
 _paymentService.HandleCallBack(orderPaymentRequest, collection);

 if (transactionResult.PaymentOk)
 {
 SetOrderPaymentRequest paymentRequest =
 new SetOrderPaymentRequest();
 paymentRequest.Amount = transactionResult.Amount;
 paymentRequest.PaymentToken = transactionResult.PaymentToken;
 paymentRequest.PaymentMerchant = transactionResult.PaymentMerchant;
 paymentRequest.OrderId = orderId;

 _orderService.SetOrderPayment(paymentRequest);
 }
 else
 {
 LoggingFactory.GetLogger().Log(String.Format(
 “Payment not ok for order id {0}, payment token {1}”,
 orderId, transactionResult.PaymentToken));
 }
 }

 public ActionResult CreatePaymentFor(int orderId)
 {
 GetOrderRequest request = new GetOrderRequest() {OrderId = orderId};

 GetOrderResponse response = _orderService.GetOrder(request);
 OrderPaymentRequest orderPaymentRequest =
 response.Order.ConvertToOrderPaymentRequest();

 PaymentPostData paymentPostData =
 _paymentService.GeneratePostDataFor(orderPaymentRequest);

 return View(“PaymentPost”, paymentPostData);
 }

 public ActionResult PaymentComplete()
 {
 return View();
 }

 public ActionResult PaymentCancel()
 {
 return View();
 }
 }
}

The last thing you need to do is add an entry in the Web.config file found within the Web.MVC proj-
ect as shown next, so that when a customer who is not logged in tries to check out they will be redi-
rected to the login page:

…
<authentication mode=”Forms”>

662  ❘  Chapter 14   Ordering and Payment

 <forms loginUrl=”~/AccountLogOn/LogOn” timeout=”2880”/>
</authentication>
…

With the model, services, and controllers in place, you are left only with the task of creating the
.ASPX views.

Order and Checkout Views
Create a master view named Checkout.master that inherits from the Site.Master and provides
the layout for the checkout views:

<%@ Master Language=”C#” MasterPageFile=”Site.Master” %>

<asp:Content ID=”TitleContent” ContentPlaceHolderID=”TitleContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”TitleContent” runat=”server”>

 </asp:ContentPlaceHolder>
</asp:Content>

<asp:Content ID=”headerBasketSummary” ContentPlaceHolderID=”headerBasketSummary”
 runat=”server”>

</asp:Content>

<asp:Content runat=”server” ID=”Content1” ContentPlaceHolderID=”MenuContent”>

</asp:Content>

<asp:Content ID=”MainContent” ContentPlaceHolderID=”MainContent” runat=”server”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server”>

 </asp:ContentPlaceHolder>
</asp:Content>

Create a new folder within the Views folder named Checkout. The first view you will create within the
Checkout folder is ConfirmOrder.aspx. The markup for this view is shown in the following listing:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/Checkout.Master”
 Inherits=”System.Web.Mvc.ViewPage<OrderConfirmationView>” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.Checkout” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 ConfirmOrder
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Confirm Order</h2>

 <%using (Html.BeginForm(“PlaceOrder”, “Checkout”)) {%>

 Delivery Address

Checkout  ❘  663

 <select id=”DeliveryAddress” name=”DeliveryAddress”>
 <%
 foreach (DeliveryAddressView deliveryAddress in Model.DeliveryAddresses)
 {
 %>
 <option value=”<%=Html.Encode(deliveryAddress.Id)%>”>
 <%=Html.Encode(deliveryAddress.Name)%></option>
 <%
 }%>
 </select>

 - <%=Html.ActionLink(“Create new address”, “AddDeliveryAddress”, “Checkout”)%>

 <% foreach(BasketItemView item in Model.Basket.Items) {%>
 <%=Html.Encode(item.Qty) %> of <%=Html.Encode(item.ProductName) %> at
 <%=Html.Encode(String.Format(“{0:F}”, item.ProductPrice))%>
 <% }%>

 <p>Total: <%= Html.Encode(String.Format(“{0:F}”, Model.Basket.ItemsTotal)) %>
 </p>

 <p>DeliveryCharge: <%= Html.Encode(String.Format(“{0:F}”,
 Model.Basket.DeliveryCost)) %></p>

 <p>Total: <%= Html.Encode(String.Format(“{0:F}”,
 Model.Basket.BasketTotal)) %></p>

 <input id=”Submit” type=”submit” value=”Place Order” />
 <% }%>
</asp:Content>

If a customer wants to create a new delivery address or does not have a delivery address at checkout,
he is presented with the AddDeliveryAddress.aspx view whose markup can be seen in the follow-
ing listing:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Checkout.Master”
 Inherits=”System.Web.Mvc.ViewPage<DeliveryAddressView>” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Add Delivery Address
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Add DeliveryAddress</h2>

 <% using (Html.BeginForm(“AddDeliveryAddress”, “Checkout”)) {%>

 <% Html.RenderPartial(“~/Views/Shared/AddressEdit.ascx”, Model); %>
 <p>
 <input type=”submit” value=”Create Address and Checkout” />

664  ❘  Chapter 14   Ordering and Payment

 </p>
 <% } %>

 <div>
 <%=Html.ActionLink(“Check Out”, “Checkout”, “Checkout”)%>
 </div>

</asp:Content>

Create a new folder within the Views folder named Order. This folder contains the two views to dis-
play a customer’s order history. Add the first List.aspx to the folder with the following markup:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/CustomerAccount.Master”
 Inherits=”System.Web.Mvc.ViewPage<CustomersOrderSummaryView>” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.CustomerAccount” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Your Order History
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Your Orders</h2>

 <% foreach(OrderSummaryView order in Model.Orders)
 {
 %>
 <%=Html.Encode(order.Created.ToLongDateString()) %>
 <% if (order.IsSubmitted == false){ %>
 <%=Html.ActionLink(“Pay”, “CreatePaymentFor”, “Payment”,
 new { orderId = order.Id}, null)%>
 <% } %>
 <%=Html.ActionLink(“View Detail”, “Detail”, “Order”,
 new { orderId = order .Id}, null)%>

 <% }%>

</asp:Content>

Add the Detail.aspx view, which displays the full detail of an order:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/CustomerAccount.Master”
 Inherits=”System.Web.Mvc.ViewPage<CustomerOrderView>” %>
<%@ Import Namespace=”Agathas.Storefront.Services.ViewModels” %>
<%@ Import Namespace=”Agathas.Storefront.Controllers.ViewModels.CustomerAccount” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Your Order Detail

Checkout  ❘  665

</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Order #<%= Html.Encode(Model.Order.Id)%> placed on
 <%=Html.Encode(Model.Order.Created.ToLongDateString()) %> at
 <%=Html.Encode(Model.Order.Created.ToShortTimeString())%></h2>

 <% if (Model.Order.OrderHasBeenPaidFor == false) {%>
 <p>This order has not been paid.
 <%=Html.ActionLink(“Pay”, “CreatePaymentFor”, “Payment”,
 new { orderId = Model.Order.Id }, null)%> </p>
 <% }
 else
 {
 %>
 <p>Paid on <%=Html.Encode(Model.Order.PaymentDatePaid)%>.
 Payment ref <%=Html.Encode(Model.Order.PaymentTransactionId)%></p>
 <%
 }%>

 <% foreach (OrderItemView item in Model.Order.Items)
 {%>
 <%=Html.Encode(item.Qty) %> of <%=Html.Encode(item.ProductName) %>
 (<%=Html.Encode(item.ProductSizeName)%>) at
 <%=Html.Encode(String.Format(“{0:F}”, item.Price))%>
 <% }%>

 <p>Shipping Charge: <%= Html.Encode(String.Format(“{0:F}”,
 Model.Order.ShippingCharge))%></p>
 <p>Shipping Via: <%=Html.Encode(Model.Order.ShippingServiceCourierName)%> -
 <%=Html.Encode(Model.Order.ShippingServiceDescription)%></p>
 <p>Total: <%= Html.Encode(String.Format(“{0:F}”, Model.Order.Total))%></p>

 <p>Delivery Address</p>

 <%=Html.Encode(Model.Order.DeliveryAddress.AddressLine1)%>

 <%=Html.Encode(Model.Order.DeliveryAddress.AddressLine2)%>

 <%=Html.Encode(Model.Order.DeliveryAddress.City)%>

 <%=Html.Encode(Model.Order.DeliveryAddress.State)%>

 <%=Html.Encode(Model.Order.DeliveryAddress.ZipCode)%>

 <%=Html.Encode(Model.Order.DeliveryAddress.Country)%>

</asp:Content>

For a customer to navigate to his order history, you need to update the CustomerMenu.ascx partial
view that can be found in the Views/Shared folder:

<%@ Control Language=”C#” Inherits=”System.Web.Mvc.ViewUserControl” %>

<h2>Menu</h2>

666  ❘  Chapter 14   Ordering and Payment

 <ul class=”refine-attributes”>
 <%=Html.ActionLink(“Your Details”, “Detail”, “Customer”) %>
 <%=Html.ActionLink(“Delivery Address Book”,
 “DeliveryAddresses”, “Customer”)%>
 <%=Html.ActionLink(“Your Orders”, “List”, “Order”)%>

Create another new folder named Payment within the Views folder to hold all the views related to
payments. The first is PaymentPost.aspx, which posts the values defined by the PaymentService to
the payment merchant’s website:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/Checkout.Master”
 Inherits=”System.Web.Mvc.ViewPage<PaymentPostData>” %>
<%@ Import Namespace=”Agathas.Storefront.Infrastructure.Payments” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Payment Post
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Payment Post</h2>

 <script type=”text/javascript”>

 $(document).ready(function() {

 $(‘#paymentForm’).submit();

 });
 </script>

 <form id=”paymentForm” name=”paymentForm”
 action=”<%=Html.Encode(Model.PaymentPostToUrl) %>” method=”post”>

 <% foreach (String postDataKey in Model.PostDataAndValue.AllKeys) {%>
 <%=Html.Hidden(postDataKey, Model.PostDataAndValue[postDataKey])%>
 <% } %>

 <input id=”Submit” type=”submit”
 value=”Click here if the page doesn’t auto redirect in 5 seconds” />

 </form>

</asp:Content>

The final two views to create within the Payment folder are static views that confirm the placement
of an order or the cancellation of a payment transaction.

Add the first view named PaymentComplete.aspx with the following markup:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/Checkout.Master”

Checkout  ❘  667

 Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Payment Complete
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Payment Complete</h2>

 Thank you, please allow up to 10 minutes for the payment
 to be confirmed before your order becomes active.

</asp:Content>

Add the second view named PaymentCancel.aspx with the following markup:

<%@ Page Title=”” Language=”C#”
 MasterPageFile=”~/Views/Shared/Checkout.Master”
 Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Payment Cancel
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Payment Cancel</h2>

 You cancelled your payment. You can always
 <%=Html.ActionLink(“pay for you order at a later date”, “List”, “Order”)%>.

</asp:Content>

With all the views complete, you need only to configure the new services and repository in the
BootStrapper class and amend the Global.asax file to configure the new AutoMapper code in
the service layer. Open the BootStrapper class found at the root of the Web.MVC with the new code
bolded here:

using Agathas.Storefront.Infrastructure.Payments;
using Agathas.Storefront.Model.Orders;
using Agathas.Storefront.Model.Orders.Events;
using Agathas.Storefront.Services.DomainEventHandlers;

namespace Agathas.Storefront.UI.Web.MVC
{
 public class BootStrapper
 {
 …

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 // Repositories
 ForRequestedType<IOrderRepository>().TheDefault.Is.OfConcreteType

668  ❘  Chapter 14   Ordering and Payment

 <Repository.NHibernate.Repositories.OrderRepository>();

 …

 // Order Service
 ForRequestedType<IOrderService>().TheDefault.Is.OfConcreteType
 <OrderService>();

 // Payment
 ForRequestedType<IPaymentService>().TheDefault.Is.OfConcreteType
 <PayPalPaymentService>();

 // Handlers for Domain Events
 ForRequestedType<IDomainEventHandlerFactory>().TheDefault
 .Is.OfConcreteType<StructureMapDomainEventHandlerFactory>();
 ForRequestedType<IDomainEventHandler<OrderSubmittedEvent>>()
 .AddConcreteType<OrderSubmittedHandler>();
 }
 }
 }
}

Finally, amend the Global.asax file to include the call to configure the AutoMapperBootStrapper
of the Controllers project, as shown in the following listing:

namespace Agathas.Storefront.UI.Web.MVC
{

 public class MvcApplication : System.Web.HttpApplication
 {
 …

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);

 BootStrapper.ConfigureDependencies();

 Controllers.AutoMapperBootStrapper.ConfigureAutoMapper();
 Services.AutoMapperBootStrapper.ConfigureAutoMapper();

 ApplicationSettingsFactory.InitializeApplicationSettingsFactory
 (ObjectFactory.GetInstance<IApplicationSettings>());

 LoggingFactory.InitializeLogFactory(ObjectFactory.GetInstance<ILogger>());

 EmailServiceFactory.InitializeEmailServiceFactory
 (ObjectFactory.GetInstance<IEmailService>());

 ControllerBuilder.Current.SetControllerFactory(new IoCControllerFactory());

 LoggingFactory.GetLogger().Log(“Application Started”);

 }
 }
}

Checkout  ❘  669

With the solution complete, you can run the site and view your latest additions. Figure 14-15 shows
the order confirmation view.

Figure 14-15

Figure 14-16 shows the login screen at PayPal.

Figure 14-16

Figure 14-17 shows the payment review after logging in to PayPal.

670  ❘  Chapter 14   Ordering and Payment

Figure 14-17

Figure 14-18 shows the confirmation of the payment transaction.

Figure 14-18

Figure 14-19 shows the payment complete confirmation view after returning to Agatha’s site from
PayPal.

Checkout  ❘  671

Figure 14-19

Figure 14-20 shows the order history for a customer.

Figure 14-20

Figure 14-21 shows the detail of a customer’s order.

Figure 14-21

672 ❘ chaPTer 14 orDering anD PaymenT

You can fi nd the product caching layer in the project named Agathas.Storefront
.Services.Cache in the download available from www.wrox.com that accompanies
this book.

summary

In this chapter, you fi nished Agatha’s e-commerce store. You added the checkout and payment sec-
tions using PayPal as the payment merchant. However, the PayPal implementation was abstracted
away so that no service or controller directly referenced PayPal; this means it will be easier to change
payment merchants and to test the logic of the site.

You also added to the Customers section by including the customer’s order history. You utilized the
Domain Events pattern to raise an event that signifi ed that an order had changed state, which was
handled by the service layer, which in turn sent an email to the customer informing him of the sub-
mitted order.

In all, you have created a fully functioning e-commerce site using well-known design patterns and
principles, you have kept the code base loosely coupled and highly cohesive, for a more maintainable
and testable application.

There is a project homepage for Agatha’s store available from codeplex at http://aspnetdesign
patterns.codeplex.com/ that will be used to extend the case study and to show you how more pat-
terns and principles can be used in an enterprise-level site. These extensions include the following:

Product Catalog Management➤➤

Content Management System➤➤

Order Processing ➤➤

Order Management➤➤

Customer Vouchers➤➤

If you want to see more features in the future, please stop by and add a suggestion.

673

A

abstract steps, 104
AbstractClass class, 104
abstractions

dependencies, 128
DIP and, 128

account controllers, Agatha’s Clothing Store,
590–600

AccountActive property, 122
AccountService class, 201
ActionCommands, 322–326
ActionResult base class, 350
Active Record pattern, 8

auto-generating business model, 58
business objects, 58
Castle ActiveRecord project, 58
one-to-one mapping, 58
Ruby on Rails framework, 58

adapter patterns, refactoring to, 22–25
Add method, 206
Address class, 95, 562
AdjustPriceWith method, 129
ADO.NET

commands, populating with queries, 221
Entity Model, creating, 257
raw repository, 283

AgathaHtmlHelper class, 489–490
Agatha’s Clothing Store

account controllers, 590–600
architecture, 424–427

application configuration settings, 438–439
domain layer supertype, 428–432
e‑mail service, 441–443
helper classes, 443–444

infrastructure, 427–444
logging, 439–441
query object pattern, 433–438

authentication views, 604–609
AutoMapper, 427
basket

controller, 538–558
creating, 520
delivery options, 518
domain model, 515–525
JSON, 545–546
persisting, 524–525
retrieving, 524–525
tables, 525
validation, 520
views, 538–558

Basket screen, 418–420
BasketService, 529–538
caching, 424
checkout, order model, 611–626
Checkout screen, 418, 423–424
controllers

checkout, 649–658
customer, 586–590
order, 649–658
payment, 649–658

Customer Account screen, 418, 421–423
customer membership

authentication service, 578–586
customer model, 561–567
customer service, 570–578
data tables, 567
NHibernate mappings, 567–570
views, 600–603

Delivery Address Management page, 422

Index

674

Agatha’s Clothing Store – base classes

NHibernate, 427
mapping, 525–529

order data tables, 627
Order Detail page, 422
order NHibernate mappings, 627–630
order service, 631–640
orders placed, 422
payment, PayPal, 640–648
Payment screen, 418
Product Catalog, product catalog model,

446–450
Product Catalog screen, 417, 418–420
Product Detail page, 420
requirements, 417–418
Unit of Work pattern, 432–433
User Details Management page, 421
views

checkout, 658–668
order, 658–668

aggregate root, 90, 428
aggregates, 90
AJAX (Asynchronous JavaScript and XML)

Firefox browser, 388–390
overview, 371
patterns, 372

Periodic Refresh, 372–390
Timeout, 374

URLs, unique, 390
AJAX JavaScript library, 372
Alexander, Christopher, 4
algorithms

boolean, business logic, 118
encapsulating at objects, 113–114
skeleton structure, 103
swapping dynamically at run time, 113–114

aliases, NHibernate, 463
AmountToRefund property, 106
AndSpecification class, 122–123
Anemic Domain Model, 86–88
antipatterns, Smart UI, 29, 30–35
API key, 582
APIs (application programming interfaces), Facade

pattern and, 155

application configuration settings, 438–439
Application service, 90
ApplyExtraDiscountsTo method, 33
architecure

Agatha’s Clothing Store, 424–427
application configuration settings, 438–439
domain layer supertype, 428–432
e‑mail service, 441–443
helper classes, 443–444
logging, 439–441
query object pattern, 433–438

infrastructure, 427–444
planning, 29

ASP.NET
membership, local authentication, 579–580
Web forms, MVP pattern, 293–315

ASP.NET MVC framework, 345–361
asynchronous client callbacks, 371
atomic transactions, persistence, 200
authentication

cookies, 585–586
forms, 578
Janrain, 581–585
local, ASP.NET membership, 579–580
views, Agatha’s Clothing Store, 604–609
web-based, 581–585

AutoMapper, 345
ViewModels, 356–361

AutoMapper, Agatha’s Clothing Store, 427
autonomy of service methods, 155

B

BankAccountView, 79
base, behaviorial, and structural patterns

Gateway, 10
Null Object, 10, 25–26
Separated Interface, 10

base classes
ActionResult, 350
Address, 562
controller, 350
downcasting, 144
inheriting from, 171

Agatha’s Clothing Store (continued)

675

base controller – CategoryView

Layer Supertype pattern, 125–128
LSP and, 139
ViewResult, 350

base controller, creating, 482
base types, substituting subtypes, 144
BaseAccountController class, 594
BaseController class, 542–543
BasePageView class, 539–540
BasePrice class, 100
BaseProductCatalogPageView class, 479
BaseView class, 346–347
Basket class, 114

creating orders, 636–637
mapping, 527
updating, 117

Basket folder, 299
basket view, implementing, 310
BasketController class, 547–550
BasketDiscountFactory class, 117
BasketDiscountMoneyOff class, 115
BasketItem class, 521–522

mapping, 527
BasketMapper class, 531, 545
BasketPresenter class, 303
BasketService class, 529–538, 537–538
BasketSummary.ascx, 551
BDD (Behavior-driven Design), 12
behavioral patterns, 4, 16–17
Bibeault, Bear, 372
Boodhoo, J.P., 317
bookmarks, user, 405
BookRepository class, 254–255
BookTitleRepository class, 254–255
boolean algorithms, business logic and, 118
BootStrapper class, 48, 331, 352–353
Brand class, 447
Brinkman, Joe, 372
browsers, favorite icon, 512–513
btnReserveTickets click event, 188
business entities

creating, 39
Entity Framework, 262
pending changes, 200
persistence, 194
retrieval, 194

business layer, 36–42
business logic and, 55
queries, Repository pattern, 194

business logic
boolean algorithms, 118
DAL, 194
UI and, 32

business objects, Unit of Work pattern, 196
business organizational patterns

Active Record pattern, 58–68
auto-generating business model, 58
business objects, 58
Castle ActiveRecord project, 58
one-to-one mapping, 58
Ruby on Rails framework, 58

Anemic Domain Model, 86–88
DDD (Domain-Driven Design), 88–91
Domain Model pattern, 68–86
Transaction Script pattern, 56–58

problems with, 56
small applications, 56
understandibility, 56

business requirements, adding, 32
business rules, OrderItem entities, 617
business use cases, 237–240

C

C#, Class Library, adding, 18
caching, Agatha’s Clothing Store, 424
CalculateRefundFor method, 106
canceled orders, 111
CancelOrderState class, 111
case statements, State pattern and, 108
case study. See Agatha’s Clothing Store
Castle ActiveRecord project, 58
Castle MonoRail, 361–368
Castle MonoRail framework, downloading, 362
CatalogBaseController, 480–481
CategoryBrandView class, 397–398
CategoryList.ascx user control, 304
CategoryMapperExtensionMethods class, 348
CategoryProductPresenter class, 298–299
CategoryProductsPageHandler class, 338
CategoryView, 346

676

CategoryView product view – classes

CategoryView product view, 466–467
centralization, Layer Supertype pattern and, 125
Certification property, 137
Chain of Responsibility pattern, 337–344

UML representation, 337
chaining objects, 337
checkout, order model, 611–626
Checkout class, 649
checkout controllers, 649–658
checkout view, 658–668
CheckoutController class, 652–655
Checkout.master view, 658
Class Library (C#), adding, 18
classes

AbstractClass, 104
AccountService, 201
Address, 95
AgathaHtmlHelper, 489–490
AndSpecification, 122–123
BaseAccountController, 594
BaseController, 542–543
BasePageView, 539–540
BasePrice, 100
BaseProductCatalogPageView, 479
BaseView, 346–347
Basket, 114
BasketController, 547–550
BasketDiscountFactory, 117
BasketDiscountMoneyOff, 115
BasketItem, 521–522
BasketMapper, 531, 545
BasketPresenter, 303
BasketService, 529–538, 537–538
BookRepository, 254–255
BookTitleRepository, 254–255
BootStrapper, 48, 331, 352–353
Brand, 447
CancelOrderState, 111
CategoryBrandView, 397–398
CategoryMapperExtensionMethods, 348
CategoryProductPresenter, 298–299
CategoryProductsPageHandler, 338
Checkout, 649
Client, 120
Comment, 408

Component, 120
Composite, 120
CompositeSpecification, 124
ConcreteClassA, 104
ConcreteClassB, 104
ConcreteDecoratorA, 98
ConcreteStateA, 109
ConcreteStateB, 109
ConcreteStrategy, 114
Context, 108, 114
ControllerFactory, 352
CookieStorageService, 541
Courier, 516–517
Criterion, 215
CurrencyPriceDecorator, 101
Customer, 561–567
CustomerAccount, 119, 120
CustomerBusinessRules, 565
CustomerProxy, 209–210
CustomerRepository, 210
CustomerType, 40
CustomerView, 345
CustomHttpHandler, 330
DefaultProduct, 98
DeliveryAddress, 561–567
DeliveryAddressMapper, 572
dependent, creation, 94
DiscountType, 116–117
Display404PageCommand, 329
domain service class, 218
DomainEvents, 615
EFUnitOfWork, 265–266
EmployeeRepository, 212
EntityBase, 126, 516
ErrorLog, 175
Event, 161, 375
EventRepository, 178, 375–376, 377
Factory, 94
Factory Method pattern, 95
FaultyReturnProcess, 106
FrontController, 330
GetCategoryCommand, 323–324
GetCategoryProductsCommand, 324–325
GetFeaturedProducsResponse, 469–470
GetOrderRequest, 633

677

classes

GetOrderResponse, 633
GetProductDetailCommand, 325
GetTopSellingProductsCommand, 323
HandlerFactory, 342
HasReachedRentalThresholdSpecification, 119
helper classes, 443–444
HomeController, 350
HomePagePresenter, 297–298
HtmlHelper, 490
IdentityMap, 212
InvalidAddressException, 565
ITicketService, 173
JsonModelBinder, 483–484
JsonProduct, 484
JsonRefinementGroup, 484
Leaf, 120
library domain model, 227
LibraryService, 240–243
Loan, 229
Member, 228
MemberRepository, 254–255
ModelRegistry, 291
ModifyBasketRequest, 533
ModifyBasketResponse, 533
NoBasketDiscount, 116
NotSpecification, 122–123
NullDeliveryOption, 519
NullDiscountStrategy, 38
NullObjectCache, 25–26
NWUnitOfWork, 252–253, 458
Order, 110–111, 620–621
OrderByClause, 215
OrderController, 651
OrderItem, 617
OrderItemView, 631
OrderNewState, 112
OrderQueryTranslator, 219
OrderRepository, 209
OrderService, 95
OrderServiceFactory, 286
OrderShippedState, 112
OrderState, 624–625
OrderSummaryView, 631
PaymentController, 656–657
PaymentFactory, 617

PaymentServiceBase, 141
Presentation models, 184–186
presenter, 47
Price, 36
Product, 36
ProductCollectionExtensionMethods, 101–102
ProductColor, 448
ProductController, 351, 363–364, 485–488
ProductDecorator, 98
ProductListExtensionMethods, 41
ProductListPresenter, 47
ProductListRequest, 43
ProductMapperExtensionMethods, 43
ProductRepository, 18, 45
ProductService, 18, 41, 44, 99, 102–103, 129–130
ProductSize, 448
ProductTitle, 449–450
ProductViewModel, 42
Query, 216
QueryName, 216
QueryTranslator, 254, 255–256
RefundRequest, 140
RefundResponse, 140
RefundService, 139
reply, 532
Repository, 253–254, 461
request, 532
RequestHandler, 337, 338
ResponseBase, 237
ReturnAction, 104–105
ReturnOrder, 105
ReturnProcessFactory, 107
ReturnProcessTemplate, 105–106
Route, 322
Service, 104, 107
SessionFactory, 250–252, 457–458
SetOrderPaymentRequest, 633
SetOrderPaymentResponse, 633
ShippingService, 517–518
ShopService, 349–350
State, 109
Strategy, 114
SubSystemA, 156
SubSystemB, 156
TicketReservation, 161

678

classes – customer controllers

TicketService, 175
TradeDiscountPriceDecorator, 100–101
TradeDiscountStrategy, 37–38
TransactionScope, 200
UKShippingCourierFactory, 97
UnitOfWork, 200
ValueObjectBase, 431
ViewStorage, 318
ViewStorageFactory, 318, 333
WebBasket, 300
WebCommand, 326–327
WebRequest, 320

Client class, 120
client proxy, 182–186
clients

asynchronous client callbacks, 371
SOA example, 186–190

code-behind files, 30
Command pattern

parts, 315
requests, 315
UML representation, 316

command registry, WebCommands list, 327
Comment class, 408
Commit method, 200
compile-time error, 162
Component class, 120
Composite class, 120
Composite pattern, 119–125

UML representation, 120
CompositeSpecification class, inheriting from, 124
ConcreteClassA class, 104
ConcreteClassB class, 104
ConcreteDecoratorA class, 98
ConcreteStateA class, 109
ConcreteStateB class, 109
ConcreteStrategy class, 114
concurrency control

optimistic, 203
pessimistic, 203

ConfigureAutoMapper method, 359, 471
ConfigureStructureMap method, 49
ConfirmOrder.aspx view, 658–659
constructor injection, ProductCatalogService class, 478

containers, IoC, 288–292
Context class, 108, 114
controller base class, 350
controller factories, creating, 481
ControllerFactory class, 352
controllers

account controllers, Agatha’s Clothing Store,
590–600

Agatha’s Clothing Store
checkout, 649–658
order, 649–658
payment, 649–658

base controllers, creating, 482
basket (Agatha’s), 538–558
CatalogBaseController, 480–481
CheckoutController, 652–655
constructors, services, 481
customer controllers, Agatha’s Clothing Store,

586–590
inheritance, 540
instantiation, 352
Product Catalog (Agatha’s), 479–488
routes, mapping to, 356
services, 481

CookieDataKeys enumeration, 541–542
cookies

authentication, 585–586
storage, 540–541

CookieStorageService class, 541
correlation ID, 160, 175

service response messages, 177
Courier class, 516–517

mapping, 526
CreateQueryAndObjectParameters method, 269
CreateShippingCourier method, 97
creational patterns, 4, 15
CriteriaOperator enumeration, 214
Criterion class, 215
CRUD (create, read, update, delete) methods, 193
CSDL (Conceptual Schema Definition Language), 262
CurrencyPriceDecorator class, 101
Customer class, 561–567

business rules, 564–565
inheriting from, 209

customer controllers, 586–590

classes (continued)

679

Customer entity – design patterns

Customer entity, converting to CustomerView, 571
customer membership

authentication service, 578–586
cookies, 585–586
Janrain, 581–585

customer model, 561–567
customer service, 570–578
data tables, 567
NHibernate mappings, 567–570
views, 600–603

CustomerAccount class, 119
properties, 120–121

CustomerBusinessRules class, 565
CustomerProxy class, 209–210
CustomerRepository class, 210
CustomerType class, 40
CustomerType enumeration, 43
CustomerView class, 345
CustomHttpHandler class, 330

D

Dahan, Udi, 613
DAL (data access layer), 45–46

business logic, 194
Data Concurrency Control, 203–206
description, 193
Entity Framework, 224–225
Identity Map, 211–213
Lazy Loading pattern, 206–211
Linq to SQL, 45
ORM (object relational mapper), 223

code example, 225–283
Proxy pattern, 206–211
Query Object pattern, 213–223
Unit of Work pattern, 196–203
XML files, 193

DAO (Data Access Objects) pattern, 195
Active Record pattern, 195
IProductDAO interface, 195
Transaction Script Business pattern, 195

data access strategies
DAO (Data Access Objects) pattern, 195
Repository pattern, 194–195

Data Concurrency Control, 203–206

data integrity, Unit of Work pattern, 196
Data Mapper pattern, 9
data sharing, Messaging patterns, 157
data store, 193
data tables

customer membership, 567
order data tables, 627
Product Catalog (Agatha’s), 450–451

databinding, jTemplates, 390–408
DDD (Domain-driven Design), 11, 88–89, 428

aggregate roots, 90
aggregates, 90
Application service, 90
domain services, 90
entities, 89
layering, 90
repositories and, 194
Repository pattern, 90
ubiquitous language, 89
value objects, 89

Decorator pattern, 98–103
classes extending state, 98
UML representation, 98–99

DefaultProduct class, 98
delivery options, 518, 529–530
DeliveryAddress class, 561–567
DeliveryAddressMapper class, 572
DeliveryOption class, mapping, 528
dependencies

applying, 188
BootStrapper class, 331
configuration, 291
Facade pattern, 156
IoC containers, 178
presenters, registering, 311–312
ProductService, resolving, 307
Repositories, 243
StructureMap, 511–513
Unit of Work implementation, 243

Dependency Injection principle, 22
discount strategy and, 39

Dependency Inversion principle, 20–22
dependent classes, creation, 94
design patterns

Alexander, Christopher, 4

680

design patterns – DOM

applying, 17–18
behavioral patterns, 4, 16–17

Chain of Responsibility, 16
Command, 16
Interpreter, 16
Iterator, 16
Mediator, 16
Memento, 16
Observer, 16
State, 16
Strategy, 16
Template Method, 16
Visitor, 16

blueprints for solutions, 4
Chain of Responsibility, 337–344
creational patterns, 4, 15
Decorator, 98–103
enterprise (Fowler)

base, behaviorial, and structural, 10
domain logic patterns, 8–9
layering, 8
object relational mapping, 9–10
web presentation, 10

Facade pattern, 155–156
Factory Design pattern, 286–287
Factory Method, 94–98
language agnostic, 5
limitations, 5
MVP (Model-View-Presenter), 292–315
necessity, 4–5
origins, 4
reading, 13–15
selecting, 17–18
Singleton, 626
solutions, 5

reuse, 5
State pattern, 108–113, 612
Strategy, 113–118
structural patterns, 4, 15–16

adapter, 16
bridge, 16
composite, 16
decorator, 16
facade, 16

flyweight, 16
proxy, 16

Template method, 103–108
usefulness, 5

design principles
DI (Dependency Injection), 128
DIP (Dependency Inversion Principle), 128
DRY (Don’t Repeat Yourself), 6
Interface Segregation, 135–139
KISS (Keep It Simple Stupid), 6
LSP (Liskov Substitution principle), 139–148
SoC (Separation of Concerns), 6–7
S.O.L.I.D.

DI (Dependency Injection), 8
DIP (Dependency Inversion Principle), 7
IoC (Inversion of Control), 8
ISP (Interface Segregation Principle), 7
LSP (Liskov Substitution Principle), 7
OCP (Open-Closed Principle), 7
SRP (Single Responsibility Principle), 7

Tell, Don’t Ask, 6
YAGNI (You Ain’t Gonna Need It), 6

Detail method, 488
DI (Dependency Injection), 8, 128

Constructor Injection, 129, 133
Method Injection, 129, 134
Setter Injection, 129

dictionaries, UnitOfWork class, 200
DIP (Dependency Inversion Principle), 7, 128

definition, 128
dependent classes and, 94

discount strategies, 115
DiscountType class, 116–117
Dispatch method, 95
Display method, 302, 307
displayComments method, 412
DisplayDiscount method, 32
displayEvents method, 384
displayPage method, 510
Display404PageCommand class, 329
DisplaySavings method, 32
Document Message pattern, 157–158

service methods, 157
Dojo Toolkit, 372
DOM (Document Object Model), data retrieval,

XMLHttpRequest object, 371

design patterns (continued)

681

domain entities – ExtractFrom method

domain entities
converting to ViewModels, 347–348
mapping to view models, 470

domain events, 613–615
domain logic patterns

Active Record, 8
Domain Model, 9
Transaction Script, 8

domain model, SOA example, 161–169
Domain Model pattern, 9, 36, 68–86

PI (persistent ignorance), 69
POCO (plain old common runtime object), 69

domain service class, 218
domain services, 90
DomainEvents class, 615
Dorrans, Barry, 580
downcasting, base classes, 144
drop-down list, 32–33
DRY (Don’t Repeat Yourself), 6
duplication, Layer Supertype pattern and, 125

E

e‑mail service, Agatha’s Clothing Store, 441–443
EFUnitOfWork class, 265–266
Embedded Resource, 246

Product Catalog (Agatha’s), 452
EmployeeRepository class, 212
enterprise design patterns (Fowler)

base, behaviorial, and structural
Gateway, 10
Null Object, 10, 25–26
Separated Interface, 10

Composite Design pattern, 119–125
domain logic

Active Record, 8
Domain Model, 9
Transaction Script, 8

Layer Supertype pattern, 125–128
layering, 8
leveraging, 25–26
object relational mapping

Data Mapper, 9
Identity Map, 9
Lazy loading, 9
Query Object, 9–10

Repository, 9
Unit of Work, 9

Specification pattern, 118–119
Web presentation patterns, 10

entities, 89
Linq to SQL, creating, 45

entity classes, Layer Supertype pattern, 127
Entity Data Model Wizard, 257–260
Entity Framework, 224–225

business entities, 262
CSDL (Conceptual Schema Definition

Language), 262
DAL automation, 223
DataContext, 263

current, 265
EFUnitOfWork class, 265–266
MSL (Mapping Specification Language), 262
presentation layer, 274
querying, 266–267
repository, 257–274

building, 262–263
SSDL (Store Schema Definition Language), 262
storage containers, 264–265

Entity SQL String builder, 266–267
EntityBase class, 126

inheritance, 516
EntityModelCodeGenerator, 260
ErrorLog class, 175
Evans, Eric, 91
Event class, 161, 375

mehods, 165
EventRepository class, 178, 375–376, 377
events

checking for, 376
click, btnReserveTickets, 188
domain events, 613–615
Page_Init, 307
raising, 615

exceptions, custom, 620
expiration date, state, 158
expression of intent, 4
extension methods, 41

converting domain entities, 234
ProductService class, 102

ExtractFrom method, 320

682

Facade pattern – Hibernate framework

F

Facade pattern, 155–156
SOA, 156
UML representation, 156

Factory class, 94
couriers and, 97
Strategy pattern, 117

Factory Design pattern, 286–287
Factory Method pattern

classes, 95
code centralization, 94
Factory class, 94
UML representation, 94–95

FaultyReturnProcess class, 106
favorite icon requests, 512–513
fetching, scrolling-based, 408
filterProductsBy method, 404
FindAll method, 46, 102, 130
FindAllSince method, 376
FindBy method, 206, 211
Firebug, 388–390

AJAX call, 413
Firefox browser

AJAX and, 388–390
Firebug, 388–390

Four Tenets of SOA, 154–155
Fowler, Martin, 3, 206
Fowler’s enterprise patterns, 13
Front Controller pattern, 10

Chain of Responsibility pattern, 337–344
Command pattern, 315–336
passivity, 315
requests, 315

FrontController class, 316, 330

G

Gang of Four, 4
Gateway pattern, 10
GenerateReturnTransactionFor method, 107
GetAllProductsIn method, 18
GetBrokenRules method, 430
GetCategories method, 482
GetCategoryBrandViews method, 398

GetCategoryCommand class, 323–324
GetCategoryProductsCommand class, 324–325
getComments methods, 412
GetControllerInstance method, 481
GetFeaturedProducsResponse class, 469–470
GetHandlers method, 343
getLatestEvents method, 383
GetOrder method, 360
GetOrderRequest class, 633
GetOrderResponse class, 633
GetProductDetailCommand class, 325
GetProducts method, 134
getProducts method, 510
GetTopSellingProductsCommand class, 323
Global.asax file, 336
GoF pattern template, 13

Also Known As, 14
Applicability, 14
Classification, 14
Collaborations, 14
Consequences, 14
Implementations, 14
Intent, 14
Known Uses, 14
Motivation, 14
Participants, 14
Pattern Name, 14
Related Patterns, 14
Sample Code, 14
Structure, 14

GoF patterns, 13
Google Web Toolkit, 372
GridView1_RowDataBound method, 32

H

Handle method, 337
HandlerFactory class, 342
handlers, ordering, 343
Handlers folder, 338
hash tables, sessions, 250
HasReachedRentalThresholdSpecification class, 119
Helm, Richard, 4
helper classes, Agatha’s Clothing Store, 443–444
Hibernate framework, 223

683

hideOverlay method – interfaces

hideOverlay method, 404
Hohpe, Gregor, 159
HomeController, inheritance, 482
HomeController class, 350

inheritance, 363
HomePagePresenter class, 297–298
HomePageView, 479
HQL (NHibernate), 256
HtmlHelper class, 490
HTTP, items collection, 455
HTTP Context Cache API, 23

I

IAccountRepository interface, 201
IActionCommand interface, 322
IAggregateRoot interface, 198
IBankAccount Repository, 75–79
IBasket interface, 299
IBasketDiscountStrategy interface, 115, 117
IBasketRepository interface, 524–525
IBasketView interface, 302–303, 310–311
ICacheStorage interface, 23
ICategoryProductView interface, 307
ICriteria interface, 256
ICustomerRepository interface, 210, 569
ICustomerService interface, 574–576
IDeliveryOption interface, 518
Idempotent Messaging pattern, 159–160

correlation ID, 180
idempotent operations, 159
Identity Map pattern, 9, 211–213

NHibernate, 459
unit tests, 213
versions, 211

IdentityMap class, 212
IDiscountStrategy interface, 37
IDomainEventHandlerFactory interface, 614
IEmployeeRepository interface, 212
IEventRepository interface, 165, 375
IHandlerFactory interface, 342
IHomePagePresenter interface, 298
IHomeView interface, 306–307
IHttpHandler interface, 330
impedance mismatch, 223

Index method, 350
indexOfEventToAdd parameter, 384
inheritance

controllers, 540
EntityBase class, 516
HomeController, 482
HomeController class, 363
Layer Supertype pattern, 125–128
persistance ignorance, 223
response messages, 237
response objects, 171

Inherits keyword, 353
intent, expression, 4
Interface Segregation principle, 135–139, 198
interfaces

controller services, 481
IAccountRepository, 201
IActionCommand, 322
IAggregateRoot, 198
IBasket, 299
IBasketDiscountStrategy, 115, 117
IBasketRepository, 524–525
IBasketView, 302–303, 310–311
ICacheStorage, 23
ICategoryProductView, 307
ICriteria, 256
ICustomerRepository, 210, 569
ICustomerService, 574–576
IDeliveryOption, 518
IDiscountStrategy, 37
IDomainEventHandlerFactory, 614
IEmployeeRepository, 212
IEventRepository, 165, 375
IHandlerFactory, 342
IHomePagePresenter, 298
IHomeView, 306–307
IHttpHandler, 330
IOrderRepository, 358, 626
IOrderService, 637
IOrderState, 111, 624
IPageNavigator, 300–301, 319
IPaymentService, 644–645
IPrice, 100
IProduct, 95, 98
IProductAttribute, 447

684

interfaces – Kuate

IProductCatalogService, 470
IProductDetailView, 301, 309–310
IProductDiscountStrategy, 131
IProductListView, 46–47
IProductRepository, 40–41, 48, 102
IQuery, 256
IRepository, 194
IShippingCourier, 96
ISpecification, 118–119
IUnitOfWork, 198
IUnitOfWorkRepository, 198
IViewStorage, 317
IWebCommand, 316
repositories, 230–231
translating, 22–23

internal state, State pattern, 108
interoperability, SOA and, 155
InvalidAddressException class, 565
IoC (Inversion of Control), 8

containers, 288
dependencies, 178
StructureMap, 288–292

Factory Design pattern, 286–287
Service Locator, 287–288
setup, 511–513
StructureMap, 427

IoCControllerFactory, configuration, 355
IOrderRepository interface, 358, 626
IOrderService interface, 637
IOrderState interface, 111, 624
IPageNavigator interface, 300–301, 319
IPaymentService interface, 644–645
IPN (Instant Payment Notification), 642
IPrice interface, 100
IProduct interface, 95, 98

implementing, 136
IProductAttribute interface, 447
IProductCatalogService interface, 470
IProductDAO interface, 195
IProductDetailView interface, 301, 309–310
IProductDiscountStrategy interface, 131
IProductListView interface, 46–47
IProductRepository interface, 40–41, 48, 102

IQuery interface, 256
IRepository interface, 194
IShippingCourier interface, 96
IsNameQuery method, 217
ISP (Interface Segregation Principle), 7
ISpecification interface, 118–119
IsSatisfied method, 124
ITicketService class, 173
IUnitOfWork interface, 198
IUnitOfWorkRepository interface, 198
IViewStorage interface, 317
IWebCommand interface, 316

J

Janrain, 581–585
JavaScript

Dojo Toolkit, 372
Google Web Toolkit, 372
jTemplates, databinding, 390–408
libraries, 372

jQuery, 372
Script.aculo.us, 372

Johnson, Ralph, 4
jQuery, 372

Scripts folder, 378
JQuery, visual Studio 2010, 372
JSON (JavaScript Object Notation)

AJAX and, 371
events, 384

json2.js file, 495
JsonModelBinder classes, 483–484
JsonProduct class, 484
JsonRefinementGroup class, 484
jTemplates, databinding, 390–408

K

Katz, Yehunda, 372
keywords

Inherits, 353
this, 307

KISS (Keep It Simple, Stupid), 6
Kuate, Pierre, 224

interfaces (continued)

685

LateFees property – methods

L

LateFees property, 122
Layer Supertype pattern, 125–128

entity classes, 127
inheritance, 125

layering applications
business layer, 36–42
data access layer, 45–46
presentation layer, 46–47
Service layer, 42–45
SoC principles, 30
user experience layer, 48–51

layering design patterns, 8
DDD (Domain-driven Design), 90

Lazy Loading pattern, 9, 206–211
Proxy pattern and, 208–210

Leaf class, 120
Lerman, Julia, 225
leveraging enterprise patterns, 25–26
libraries

Facade pattern, 156
JavaScript, 372

jQuery, 372
library database schema, 244–245
library domain model

business rules, 230
classes, 227
validation checking, 230

LibraryService class, 240–243
LINQ (Language Integrated Query), repositories

and, 194
Linq to SQL, 45

DAL automation, 223
entities, creating, 45

LinqProductRepository, 129, 132–133
loading, objects, Identity Map pattern, 211
Loan class, 229
local authentication, ASP.NET membership, 579–580
logging mechanism, Agatha’s Clothing Store, 439–441
LSP (Liskov Substitution Principle), 7, 139–148

base classes and, 139
subclasses and, 139

M

magic strings, avoiding, 541
Mappers folder, 234
mapping

AutoMapper, 345
domain entities to view models, 470
Entity Framework, 224–225
NHibernate

Agatha’s, 525–529
order mappings, 627–630

Product Catalog (Agatha’s), 453–454
routes to controllers, 356
ViewModels with AutoMapper, 356–361

Mapping folder, 346
MappingFiles folder, 245
master pages, 305–306

customer membership views, 600
MasterPage, display controls, populating, 307
McCarthy, Tim, 196
Member class, 228

methods, 229
MemberRepository class, 254–255
message objects, 237
Message property, 43, 237
messages, service interfaces, 155
Messages folder, 237
Messaging patterns, 157

data sharing, 157
Document Message pattern, 157–158
Idempotent Messaging pattern, 159–160
Request-Response pattern, 157–158
Reservation Messaging pattern, 158–159

method, getComments, 412
methods

Add, 206
AdjustPriceWith, 129
ApplyExtraDiscountsTo, 33
CalculateRefundFor, 106
Commit, 200
ConfigureAutoMapper, 359, 471
ConfigureStructureMap, 49
CreateQueryAndObjectParameters, 269
CreateShippingCourier, 97
Detail, 488

686

methods – NHibernate

Dispatch, 95
Display, 302, 307
displayComments, 412
DisplayDiscount, 32
displayEvents, 384
displayPage, 510
DisplaySavings, 32
Event class, 165
extension, 41
ExtractFrom, 320
filterProductsBy, 404
FindAll, 46, 102, 130
FindAllSince, 376
FindBy, 206, 211
GenerateReturnTransactionFor, 107
GetAllProductsIn, 18
GetBrokenRules, 430
GetCategories, 482
GetCategoryBrandViews, 398
GetControllerInstance, 481
GetHandlers, 343
getLatestEvents, 383
GetOrder, 360
GetProducts, 134
getProducts, 510
GridView1_RowDataBound, 32
Handle, 337
hideOverlay, 404
Index, 350
IsNameQuery, 217
IsSatisfied, 124
Member class, 229
OrderExtensionMethods, 359
pauseUpdates, 386
ProcessRequest, 330
refineSearch, 510
Resolve, 287
Resolve, 490
serviceSuccessful, 384
SessionFactory class, 251–252
SetNextHandler, 337
showOverlay, 404
storeComments, 412
Submit, 625

ToString, 290
TranslateInto, 221

Model-View-Controller pattern, 10
Model-View-Presenter pattern, 10

presentation logic and, 46
ModelBinder, 483
ModelRegistry class, 291
ModifyBasketRequest class, 533
ModifyBasketResponse class, 533
modules, dependencies, 128
MonoRail framework, 361–368
MSL (Mapping Specification Language), 262
multiple users, Identity Map pattern, 211
MVC (Model-View-Controller) pattern, 344–345

ASP.NET MVC framework, 345–361
HomeController, 398
ModelBinder, 483
ProductController, 401
ViewModel pattern, 345

MVP (Model-View-Presenter) pattern, 292–293
ASP.NET Web forms, 293–315
classes, 314
updated diagram, 314

N

named queries, Query Object, creating, 217
namespaces, SoC and, 35
NameValueCollection, query arguments, 321
Navigator, 316
.NET Framework, patterns, identifying, 17
NHibernate, 223–224

Agatha’s Clothing Store, 427
aliases, 463
HQL, 256
Identity Map pattern, 459
interfaces

ICriteria, 256
IQuery, 256

mapping
Agatha’s, 525–529
customer membership, 567–570

order mappings, 627–630
persistance ignorance, 223
presentation layer, 274

methods (continued)

687

NHibernate framework – patterns

Product Catalog repositories, 451–464
repository, 245–257
sessions, 248–250, 454
Unit of Work pattern, 252–253, 458–459
XML configuration file, 223–224, 451

NHibernate framework, XML files, 245
NHibernate Repository, programming, 454–462
Nilsson, Jimmy, 91
NoBasketDiscount class, 116
NotSpecification class, 122–123
Null Object pattern, 10, 25–26, 519

NullDiscountStrategy class, 38
Strategy pattern and, 116

NullDeliveryOption class, 519
NullDiscountStrategy class, 38
NullObjectCache class, 25–26
NVelocity, 361–362
NWUnitOfWork class, 252–253, 458

O

object-oriented programming, design patterns and, 4
object relational mapping patterns

Data Mapper, 9
Identity Map, 9
Lazy Loading, 9
Query Object, 9–10
Repository, 9
Unit of Work, 9

objects
chaining, 337
as single object, 119–125

OCP (Open-Closed Principle), 7
online chat, Periodic Refresh pattern, 374
optimistic concurrency, 203
Order Class, 620–621
Order class, 110–111
order controllers, 649–658
order data tables, 627
order model, 611–626
order NHibernate mappings, 627–630
order service, 631–640
order view, 658–668
OrderByClause class, 215
OrderController class, 651
OrderExtensionMethods method, 359

OrderItem class, 617
OrderItemView class, 631
OrderNewState class, 112
OrderQueryTranslator class, 219
OrderRepository, 358
OrderRepository class, 209
orders, canceled, 111
OrderService class, 95

queries, 219
OrderServiceFactory class, 286
OrderShippedState class, 112
OrderState class, 624–625
OrderStatus enumeration, 110
OrderSummaryView class, 631
ORM (object relational mapper), 223

code example
database, 244–245
Entity Framework repository, 257–274
library domain model, 225–233
NHibernate repository, 245–257
presentation layer, 274–283
raw ADO.NET repository, 283
service layer, 233–244

impedance mismatch, 223

P

Page Controller pattern, 10, 368
page layout, master pages, 305–306
Page_Init event, 307
partial views, 353

Shared folder, 365
pattern, request-response messaging, 572
pattern templates, 13
patterns. See also specific pattern types

AJAX, 372
Periodic Refresh, 372–390
Timeout, 374

Messaging patterns, 157
MVC (Model-View-Controller), 344–368
Predictive Fetch, 408–413
Request/Response messaging pattern, 43
studying, 17
UML diagrams, 15
ViewModel, 345

688

pauseUpdates method – properties

pauseUpdates method, 386
payment

controllers, 649–658
merchant, 611
PayPal, 640–648

PaymentController class, 656–657
PaymentFactory class, 617
PaymentServiceBase class, 141
PaymentType enumeration, 140
PayPal, 611, 640–648
Periodic Refresh pattern, 372–390

implementing, 377–378, 383
script, 383–386

Timeout pattern, 374
persistence

atomic transactions, 200
enabling, IAccountRepository interface, 201
ignorance, 223
Unit of Work pattern, 196

Person repository, 204
pessimistic concurrency, 203
PI (persistent ignorance), 69

objects, 194
POCO (plain old common runtime object), 69, 194
Predictive Fetch pattern, 408–413
presentation layer, 46–47

Entity Framework, 274
NHibernate, 274

Presentation models, 42
classes, 184–186

presenter class, responsibilities, 47
presenters, dependencies, registering, 311–312
Price class, 36
principles

Dependency Injection, 22
Dependency Inversion, 20–22
refactoring to, 20–22

ProcessRequest method, 330
Product Catalog (Agatha’s)

categories, 447–448
controllers, 479–488
data tables, 450–451
product catalog model, 446–450
product detail, 480

product services, 464–478
product views, 465–467
ProductCatalogService, 467–478

repositories, 451–464
Embedded Resource, 452
mapping files, 453–454

views, 489–511
Product class, 36

decorating behavior, 101
Product entity, converting to

ProductViewModel, 43
ViewModels, 348

product retrieval, 40
ProductCatalogService, operations, 467–468
ProductCatalogService class, constructor injection, 478
ProductCollectionExtensionMethods class, 101–102
ProductColor class, 448
ProductController class, 351, 363–364, 401, 485–488
ProductDecorator class, 98
ProductDetailView, 346
ProductList.ascx user control, 304–305
ProductListExtensionMethods class, 41
ProductListPresenter class, 47
ProductListRequest class, 43
ProductMapperExtensionMethods class, 43
ProductRepository class, 18, 45
ProductService class, 18, 41, 44, 102–103, 129–130

dependencies, resolving, 307
ProductSize class, 448
ProductSummaryView product view, 466
ProductTitle class, 449–450
ProductView, 346
ProductView product view, 466
ProductViewModel class, 42

converting Product entity, 43
properties

AccountActive, 122
AmountToRefund, 106
Certification, 137
CustomerAccount class, 120
LateFees, 122
Message, 43, 237
Response object, 43
RunningTime, 137

689

proxies – ReturnAction class

proxies
client proxy, 182–186
remote proxy, 207
virtual proxy, 207

Proxy pattern, 206–211
UML representation, 207

Q

queries
Entity Framework, 266–267
generating, 478
NameValueCollection, 321
OrderService class, 219
Query Object pattern, 213

named queries, 217
Query class, 216
Query Object pattern, 9–10

converting to SQL command, 219
model, 214
queries, named, 217
repositories, 194

query object pattern, 433–438
query objects, 433
QueryName class, 216
QueryOperator enumeration, 215
QueryTranslator, 214, 217
QueryTranslator class, 254, 255–256

R

raw ADO.NET repository, 283
reading design patterns, 13–15
red-green-refactor, 11
refactoring

to adapter pattern, 22–25
design patterns and, 4
to principles, 20–22

references
services, remote proxy, 207
StructureMap.dll, 290–291

refinements, 510
refineSearch method, 510
RefundRequest class, 140
RefundResponse class, 140

RefundService class, 139
registering dependencies, presenters, 311–312
registering services, 287
remote proxy, 207
reply classes, 532
repositories

DDD, 194
Entity Framework, 257–274

building, 262–263
implementations, 209
in-memory collection, 194
interfaces, 194, 230–231
LinqProductRepository, 129, 132–133
NHibernate, 245–257
Person, 204
Product Catalog (Agatha’s), 451–464
Query Object pattern, 194
querying, 213
raw ADO.NET, 283

Repository class, 253–254, 461
repository implements, 462
Repository pattern, 9, 40–41, 194–195

DDD (Domain-driven Design), 90
implementations, 253–254

request classes, 532
request messages, 243
Request-Response Messaging pattern, 43, 157–158,

572, 633–634
RequestHandler class, 337, 338
requests

Command pattern, 315
Front Controller, 315

Reservation Messaging pattern, 158–159
Resolve method, 287, 490
resource-intensive objects, 207
response messages, inheritance, 237
response objects

inheritance, 171
properties, 43

ResponseBase class, 237
retrieving customers

deferring execution, 206–211
Repository contract, 209

retrieving products, 40
ReturnAction class, 104–105

690

ReturnOrder class – Specification pattern

ReturnOrder class, 105
ReturnProcessFactory class, 107
ReturnProcessTemplate class, 105–106
Route class, 322

WebRequest, 339
routes, mapping to controllers, 356
Ruby on Rails framework, 58
RunningTime property, 137

S

Script.aculo.us, 372
Scripts folder, jQuery, 378
scrolling-based fetching, 408
selection criteria logic, sharing, 118
Separated Interface pattern, 10
separating concerns, 29
serialization, enabling, 172
Service Bus, 153
Service class, 104, 107
service compatibility, 155
service facade, building, 184
service interfaces, messages and, 155
service layer, 42–45

database, 181
description, 151
facade, 42
Facade pattern, 156
granularity, 151
ORM (object relational mapper), 233–244
presentation model, 42
SOA example, projects, 170
Transcaction Script and, 151

Service Locator, 287–288
service methods

autonomy, 155
Document Message pattern, 157
state, 155

service response messages, correlation identifiers, 177
services

references, remote proxy, 207
registering, 287

Services project, ProductMapperExtensionMethods
class, 43

serviceSuccessful method, 384

session containers, 456
SessionFactory class, 250–252, 457–458

methods, 251–252
sessions

HTTP items collection, 455
NHibernate, 248–250, 454

SetNextHandler method, 337
SetOrderPaymentRequest class, 633
SetOrderPaymentResponse class, 633
Shared folder, partial view, 353
shipping courier, 517
ShippingService class, 517–518

mapping, 526
ShopService class, 349–350
showOverlay method, 404
simplified template

code example, 15
Name and Intent section, 14
UML diagram, 15

Singleton pattern, 626
Site.Master file, 492–495
skeleton process workflow, 104
skeleton template method, 104
Smart UI antipattern, 29, 30–35
Smart UI applications, benefits, 30
SOA (service oriented architecture), 152–154

applying, example, 152–154
benefits, 153–154
example, 160–161

client, 186–190
client proxy, 182–186
domain model, 161–169
service layer, 169–182

Facade pattern, 156
Four Tenets, 154–155
interoperability and, 155
services, 152

SoC (Separation of Concerns), 6–7
layering and, 30, 35
namespaces and, 35

social networking, Periodic Refresh pattern, 374
S.O.L.I.D. design principles, 13
solutions, design patterns, 5
Special Case pattern, 25–26
Specification pattern, 118–119

691

SQL – Unit of Work pattern

SQL, commands, Query Object pattern, 219
SQL (Structured Query Language), HQL

(NHibernate), 256
SRP (Single Responsibility Principle), 7
SSDL (Store Schema Definition Language), 262
state

expiration date, 158
service methods, 155

state-altering requests, Idempotent Messaging
pattern, 159–160

State class, 109
State pattern, 108–113, 612

case statements, 108
classes, 109
internal state, 108
UML representation, 108–109

storeComments method, 412
Strategy class, 114
Strategy pattern, 37, 113–118

Factory class, 117
UML representation, 114

structural patterns, 4, 15–16
StructureMap, 288–292, 427

configuration, 331
dependencies, 511–513
downloading, 48

studying patterns, 17
subclasses

Interface Segregation, 135
LSP and, 139
Template method pattern, 103

Submit method, 625
SubSystemA class, 156
SubSystemB class, 156
subtypes, substituting base types, 144
System.Transactions, 200

T

TDD (Test-driven Development), 11
Tell, Don’t Ask design principle, 6
Template Method pattern, 103–108

abstract, 105
algorithm skeleton structure, 103
creating, 105–106

skeleton, 104
subclasses, 103, 104, 106
UML representation, 103–104

templates
pattern templates, 13
simplified, 14–15

this keyword, 307
TicketReservation class, 161
TicketService class, 175
Timeout pattern, 374

implementing, 377–378, 383
script, 386–388

ToString method, 290
TradeDiscountPriceDecorator class, 100–101
TradeDiscountStrategy class, 37–38
Transaction Script pattern, 8

problems with, 56
small applications, 56
understandability, 56

transactions, Identity Map pattern, 211
TransactionScope class, 200
TransactionView, 79
TranslateInto method, 221

U

ubiquitous language, 89
UI (user interface), business logic, 32
UKShippingCourierFactory class, 97
UML diagram, 15

Chain of Responsibility pattern, 337
Command pattern, 316
Composite pattern, 120
Decorator pattern, 98–99
Facade pattern, 156
Factory Method pattern, 94–95
Proxy pattern, 207
State pattern, 108–109
Strategy pattern, 114
Template method pattern, 103–104

Unit of Work pattern, 9, 196–203
Agatha’s Clothing Store, 432–433
data integrity and, 196
delegating to, 202
IAggregateRoot interface, 198

692

Unit of Work pattern – YAGNI

NHibernate, 252–253, 458–459
persistence, 196

UnitOfWork class, dictionaries, 200
URLs (Uniform Resource Locators), unique, AJAX

and, 390
user controls

CategoryList.ascx, 304
ProductList.ascx, 304–305

user experience layer, 48–51
user inactivity, 387
users

bookmarks, 405
multiple, Identity Map pattern, 211

V

validation, baskets, 520
value objects, 89
ValueObjectBase class, 431
versions

concurrency checking, 204–206
Identity Map pattern, 211

view classes, inheriting from, 346–347
view model, 42
ViewDataDictionary, 351
ViewModel pattern, 345

converting domain entities, 347–348
mapping, AutoMapper, 356–361

ViewResult base class, 350
views

authentication, Agatha’s Clothing Store, 604–609
basket (Agatha’s), 538–558
CategoryView, 346
checkout, 658–668
Checkout.master, 658
ConfirmOrder.aspx, 658–659
creating, 353–355
customer membership, 600–603
order, 658–668
partial, 353, 365
Product Catalog (Agatha’s), 489–511
ProductDetailView, 346
ProductView, 346

Views folder, 346
ViewStorage, populating, 323
ViewStorage class, 318
ViewStorageFactory class, 318, 333
ViewStorageKeys enumeration, 318
virtual proxy, 207
Visual Studio 2010, jQuery, 372
Vlissides, John, 4

W

WCF Service application, projects, 181
web-based authentication, 581–585
Web forms, MVP pattern and, 293–315
Web presentation patterns, 10
web services, creating, 376–377
WebBasket class, 300
WebCommand class, 316, 326–327

route, 327
WebCommandRegistry, 316, 327–329

actions, 329
WebRequest class, 320
WebUI project, BootStrapper class, 48
wizards, Entity Data Model, 257–260
Woolf, Bobby, 159
workflow, skeleton process, 104
WS-Policy, specifications, 155
wsHttpBinding, 181

X

XML configuration file, NHibernate and, 223–224
XML (eXtensible Markup Language)

AJAX and, 371
NHibernate and, 451

XML files
DAL and, 193
NHibernate framework, 245

XMLHttpRequest object, 371

Y

YAGNI (You Ain’t Gonna Need It), 6

Unit of Work pattern (continued)

	WroxBooks
	Professional ASP.NET Design Patterns
	About the Author
	Acknowledgments
	Contents
	Introduction
	Part I: Introducing Patterns and Principles
	Chapter 1: The Pattern for Successful Applications
	Design Patterns Explained
	Design Principles
	Fowler’s Enterprise Design Patterns
	Other Design Practices of Note
	Summary

	Chapter 2: Dissecting the Pattern’s Pattern
	How to Read Design Patterns
	Design Pattern Groups
	How to Choose and Apply a Design Pattern
	A Quick Pattern Example
	Summary

	Part II: The Anatomy of an ASP.NET Application: Learning and Applying Patterns
	Chapter 3: Layering Your Application and Separating Your Concerns
	Application Architecture and Design
	Summary

	Chapter 4: The Business Logic Layer: Organization
	Understanding Business Organizational Patterns
	Summary

	Chapter 5: The Business Logic Layer: Patterns
	Leveraging Design Patterns
	Leveraging Enterprise Patterns
	Applying Design Principles
	Summary

	Chapter 6: The Service Layer
	Describing the Service Layer
	Leveraging Messaging Patterns
	An SOA Example
	Summary

	Chapter 7: The Data Access Layer
	Describing the DAL
	Data Access Strategies
	Patterns in Data Access
	Using an Object Relational Mapper
	Summary

	Chapter 8: The Presentation Layer
	Inversion of Control
	Model-View-Presenter
	Front Controller
	Model-View-Controller
	Page Controller
	Summary

	Chapter 9: The User Experience Layer
	What Is AJAX?
	Using JavaScript Libraries
	Understanding AJAX Patterns
	Summary

	Part III: Case Study: The Online E-Commerce Store
	Chapter 10: Requirements and Infrastructure
	Agatha’s Clothing Store Requirements
	Architecture
	Summary

	Chapter 11: Creating The Product Catalog
	Creating The Product Catalog
	Summary

	Chapter 12: Implementing the Shopping Basket
	Implementing the Basket
	Summary

	Chapter 13: Customer Membership
	Customer Membership
	Summary

	Chapter 14: Ordering and Payment
	Checkout
	Summary

	Index

