


For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



iv 

Contents at a Glance 

 About the Author.................................................................................................. xiii 
 About the Technical Reviewer ............................................................................. xiv 
 Acknowledgments ................................................................................................ xv 
 Introduction ......................................................................................................... xvi 
 Chapter 1: Ruthlessly Helpful .................................................................................1 
 Chapter 2: NET Practice Areas..............................................................................15 
 Chapter 3: Achieving Desired Results...................................................................37 
 Chapter 4: Quantifying Value ................................................................................55 
 Chapter 5: Strategy...............................................................................................71 
 Chapter 6: NET Rules and Regulations..................................................................85 
 Chapter 7: Powerful C# Constructs.....................................................................107 
 Chapter 8: Automated Testing ............................................................................129 
 Chapter 9: Build Automation...............................................................................173 
 Chapter 10: Continuous Integration....................................................................201 
 Chapter 11: Code Analysis..................................................................................231 
 Chapter 12: Test Frameworks ............................................................................265 
 Chapter 13: Aversions and Biases ......................................................................313 
 Index...................................................................................................................343 



xvi 

Introduction 

Pro .NET Best Practices is a book that was primarily written for professional software developers who 
want to bring new and different .NET practices to their teams and organization. The phrase best practice 
is a handy way to describe widely-used practices and generally-accepted standards that many .NET 
developers in many organizations have found to be good and effective practices. Because best practices 
cannot work in every situation, the book encourages you to sort out what may or may not work well for 
your situation. 

The adoption of new and different practices is a central theme of this book. Consider the four 
levels at which best practices are embraced: 

• Individual: You or any individual adopts better practices to increase personal and 
professional productivity, quality, thoroughness, and overall effectiveness. 

• Group: The team adopts better practices to be more industrious together, avoid 
problems, achieve desired results, improve interpersonal relationships, and work 
more effectively with other teams. 

• Organization: Your company, agency, or firm adopts better practices to bring 
more positive outcomes to the organization, attract and retain employees, satisfy 
end-user expectations, and make stakeholders happy. 

• Profession: Better practices are widely adopted and become generally-accepted 
standards, patterns, and principles that bring alignment to software development 
and benefit to all that follow them. 

In an ideal world, best practices are quickly adopted at all four levels. However, this is not 
realistic for many of the reasons discussed in this book’s early chapters. Pragmatists know that they 
usually cannot control all four levels within their current circumstances and can only influence a few. 
And so they work within their span of control and spheres of influence. As you read this book, think 
about adopting better practices within those areas you can control and positively shaping those areas 
that you do influence. 

Pro .NET Best Practices is a practical reference on the best practices that you can apply to your 
.NET projects today. You will learn standards, techniques, and conventions that are realistic and helpful 
to achieving results. The book covers a broad range of practices and principles with an emphasis on 
tools and technologies for  

• Automated testing 

• Build automation 

• Continuous integration 

• Code analysis 



 INTRODUCTION 

 

xvii 

To get warmed up, you can turn to the sample .NET best practices scorecard in Appendix B. If 
you take the time to score your current project, what might the score tell you about where things 
currently stand? Hopefully, completing the scorecard prompts these kinds of questions: 

• What are the best practices you want to see adopted? Why are they important to 
you? Do you foresee any obstacles or barriers? 

• What practice on the scorecard should you, your team, or your organization focus 
on first? Do you prioritize practices that offer greater efficiencies or help to 
prevent problems? 

• How would you revise the scorecard to make it fully apply to your current 
situation? What practices would you add to the list? What practices would you 
remove? 

• Once you have the scorecard that is right for you, how often would you reassess it? 
Is yearly too infrequent? Is weekly too intrusive and demotivating? 

Adopting best practices is an initiative that is guided by having relevant objectives and a way to 
track progress. Put together the right scorecard, based on your situation. Track it regularly and use the 
overall score as a gauge that indicates and validates your continuous improvement. 

If I find 10,000 ways something won’t work, I haven’t failed. I am not 
discouraged, because every wrong attempt discarded is another step 
forward. 

Thomas Edison 

The complex problems in life require iterative solutions. Edison knew that patience and 
perseverance are an inventor’s competitive advantage. The same is true for best practices. It is better to 
take an iterative and incremental approach to adopting new and different practices. Be patient with it, 
stick to it, and have fun with it. 

Who This Book Is For 
This book is for anyone who has a stake in bringing better practices to software development. 

Developers 
As a developer, you have personal practices that make you an effective software developer. Are there 
new and different practices that could make you a more effective developer? This book offers realistic, 
practicable, and truly helpful best practices. The early chapters focus on the benefits, relevance, and 
purpose behind adopting best practices. The later chapters focus on technologies, tools, and techniques 
that bring greater effectiveness. The final chapter examines the influence of biases and aversions and 
how you can overcome these obstacles to adopting better practices. 



 INTRODUCTION 

xviii 

Team Leaders 
As a team leader, you see the team develop software through their current practices. Could the team 
perform better and achieve better outcomes with new and different practices? You can expect that this 
book will offer you pragmatic advice on how to implement suitable best practices likely to be followed by 
project members. You learn how to get best practices started and keep them from falling out of practice. 
You learn how to gain support for following best practices from all stakeholders by recognizing and 
overcoming biases, highlighting the gap between current results and desired results, and demonstrating 
the value of following best practices. 

How This Book Is Structured 
Pro .NET Best Practices presents the topics to provide reasonable breath and go into depth on key 
practices. For example, the chapter on code analysis looks at both static and dynamic analysis, and it 
goes into depth with FxCop and StyleCop. The goal is to strike the balance between covering all the 
topics, discussing the widely-used tools and technologies, and having a reasonable chapter length. 

Chapters 1 through 5 are focused on the context of new and different practices. Since adopting 
better practices is an initiative, it is important to know what practices to prioritize and where to uncover 
better practices within your organization and current circumstances. 

• Chapter 1 shows how to choose new and different practices that are better 
practices for you, your team, and your organization. 

• Chapter 2 draws out ways to uncover better practices in the areas of .NET and 
general software development that provide an opportunity to discover or learn 
and apply better practices. 

• Chapter 3 presents practical advice on how to get team members to collaborate 
with each other and work toward a common purpose. 

• Chapter 4 describes specific practices to help with quantifying the value of 
adopting better development practices. 

• Chapter 5 provides you with practices to help you focus on strategy and the 
strategic implications of current practices. 

Chapters 6 through 9 are focused on a developer’s individual practices. These chapters discuss 
guidelines and conventions to follow, effective approaches, and tips and tricks that are worth knowing. 
The overarching theme is that each developer helps the whole team succeed by being a more effective 
developer. 

• Chapter 6 helps sort out the generalized statements, principles, practices, and 
procedures that best serve as.NET rules and regulations that support effective and 
innovative development. 

• Chapter 7 is an informal review of the C# language’s power both to harness its own 
strengths and to recognize that effective development is a key part of following 
.NET practices. 

• Chapter 8 describes many specific practices to improve test code, consistent with 
the principles behind effective development and automated testing. 



 INTRODUCTION 

 

xix 

• Chapter 9 discusses using build automation to remove error-prone steps, to 
establish repeatability and consistency, and to improve the build and deployment 
processes. 

Chapters 10 through 12 are focused on supporting tools, products, and technologies. These 
chapters describe the purpose of various tool sets and present some recommendations on applications 
and products worth evaluating. 

• Chapter 10 presents the continuous integration lifecycle with a description of the 
steps involved within each of the processes. Through effective continuous 
integration practices, the project can save time, improve team effectiveness, and 
provide early detection of problems. 

• Chapter 11 provides an overview of many static and dynamic tools, technologies, 
and approaches with an emphasis on improvements that provide continuous, 
automated monitoring. 

• Chapter 12 is a comprehensive list of testing frameworks and tools with a blend of 
commercial and open-source alternatives. 

The final chapter, Chapter 13, is about the aversions and biases that keep many individuals, 
teams, and organizations from adopting better practices. You may face someone’s reluctance to accept 
or acknowledge a new or different practice as potentially better. You may struggle against another’s 
tendency to hold a particular view of a new or different practice that undercuts and weakens its 
potential. Many people resist change even if it is for the better. This chapter helps you understand how 
aversions and biases impact change so that you can identify them, cope with them, and hopefully 
manage them. 

Appendix A provides a list of resources organized by topic. Many of the resources are either 
referenced throughout the book or are good sources for further reading. Either way, once you are ready 
to tackle a .NET practice area, this appendix is a good way to delve into the details. 

Appendix B provides a scorecard for you to use while evaluating and tracking best practices. As 
discussed earlier in the Introduction, this scorecard is a starting point for your ongoing initiative to bring 
better practices to .NET development. 

Prerequisites 
To follow along with the examples in this book, you need the following: 

• A good working knowledge of the .NET Framework 4.0 and the C# language 

• Microsoft Visual Studio 2010. Many examples in the text refer to features of the 
Professional, Premium, or Ultimate editions of Visual Studio 2010. A few code 
samples work with Visual Studio 2010 Express.  

• Many samples use Microsoft SQL Server Express, but other versions should work 
fine. Some use the database that comes with the MVC Music Store tutorial, 
available at mvcmusicstore.codeplex.com. 

• NUnit version 2.5.10 or later, available at nunit.org. 

• Moq version 4.0.0 or later, available at code.google.com/p/moq. 



 INTRODUCTION 

xx 

• FxCop version 10.0 or later. I wrote a blog post that describes how to extract the 
FxCop 10.0 setup program from the Microsoft Windows SDK for Windows 7 and 
.NET Framework 4. With the FxCopSetup.exe file, you can run the installer on your 
development machine or build server. See 
http://ruthlesslyhelpful.net/2011/06/09/liberate-fxcop-10-0/. 

• StyleCop version 4.5.25 or later, available at stylecop.codeplex.com. 

Many other tools and technologies are presented and discussed throughout the book. 
Information on obtaining those specific applications is provided at the time the topic is discussed. 

Downloading the Code 
This book includes source code that is available for download. The source code illustrates the practices 
described in the book. It is not production code. You can download the code at www.apress.com by 
searching for and going to the detail page of Pro .NET Best Practices. On the book’s detail page is a link to 
the sample code compressed into a ZIP file. You can use a utility like 7-Zip (7-zip.org) or WinZip to 
uncompress the code. 

For more detailed information, go to http://www.apress.com/source-code/. 

Contacting the Author 
Stephen can be reached through 

• Excella Consulting: www.excella.com 

• E-mail: stephen.ritchie@excella.com 

• LinkedIn: www.linkedin.com/in/sritchie 

• Blog site: ruthlesslyhelpful.net 

http://ruthlesslyhelpful.net/2011/06/09/liberate-fxcop-10-0/
http://www.apress.com
http://www.apress.com/source-code/
http://www.excella.com
mailto:stephen.ritchie@excella.com
http://www.linkedin.com/in/sritchie


C H A P T E R  1 
 

      
 

1 

Ruthlessly Helpful 

The phrase “best practices” is sometimes difficult to accept. “Best practices” is really a concept that has 
become a part of the software development vocabulary; however, the phrase can be troublesome 
because not every best practice is clearly a better practice for all situations. In fact, a practice that 
improves one situation might worsen another situation. For that reason, this book avoids the phrase 
“best practices” and favors “ruthlessly helpful practices.” That phrase embodies the idea that a ruthlessly 
helpful practice for you might not be right for others, which is fine. It embodies an attitude of healthy 
skepticism, situational relevance, and judgment. In this chapter, you learn just what that phrase means, 
how it relates to selecting practices, and how to apply that attitude to those areas that you feel need 
improvement. 

The word ruthless serves as a contrast to the passion and bias in the word best. Best is a superlative; 
there is nothing better than the best. That word is often used to press the point that no other practice 
needs to be considered. Some use it to shut down discussion and debate. In reality, every new and 
different practice needs to be carefully considered. To be ruthless, you must discount the biased 
arguments and zealous opinions. You want to select practices that are right for you and your team. 

The word helpful tries to put the focus on results and positive outcomes. In the end, a new and 
different practice represents a change that must show results. The results could be in fewer problems or 
faster problem resolution. The results could be improvements in delivery, quality, and relationships. The 
results could be in greater job satisfaction. You want to select practices that get results for you and your 
team. 

The most important takeaway of this chapter is that this entire book is about how to choose new 
and different practices that are better practices for you, your team, and your organization. Feel free to 
call them best practices or ruthlessly helpful practices but, in the end, you ought to see them as the 
practices that are entirely appropriate to you.  

COMMENTARY 

Selecting the best practice from among the many good practices is not easy. In fact, making hard 
decisions and dealing with dilemmas is a challenge for many projects. One technique I have learned to 
avoid is listing out the pros and cons. I rarely find that this approach gets to the heart of the decision. The 
list does not present a clear choice or direction. When selecting a new or different practice I focus on two 
questions: 

• Is the practice not good enough to apply in this 
situation? 

• Is the practice too good to pass up in this situation? 



CHAPTER 1  RUTHLESSLY HELPFUL 

2 

The first question attempts to exclude the practice because the situation is not right, the risks are too 
great, or the benefits are too marginal. The second question attempts to include the practice because it 
addresses current problems, has few risks, or the likely benefits are significant. This approach seems to 
make the decision less difficult and resolves the dilemmas that many practices present. The right choice 
becomes clear and better practices are adopted. 

As a developer on a large, multiyear software development project, I observed a curious phenomenon. 
Every couple of weeks, a consultant would spend the afternoon talking to the developers about the 
problems we were experiencing. This consultant came to be known as “the professor” and the meetings 
were known as the “drive-by” meetings. Most of the professor’s advice left the team confused and 
uncertain. We were rarely able to put the advice into practice. It all seemed very theoretical and not very 
appropriate to our situation. Some of what we did try either did not work or seemed to make things worse. 
What struck me as curious was that our team was in trouble, yet we spent a lot of time listening to and 
considering these unrealistic and impractical suggestions. Today I know that better practices prove 
themselves through application and results, and I insist on seeing both. 

On an earlier project, I had a very challenging programming assignment. I was given a set of detailed 
specifications and tasked with implementing them. The document was very difficult to read and the 
information extremely complex. I went to the business analyst who wrote the specifications to see if he 
would explain them to me. That started out as a big mistake. He was arrogant, condescending, and hostile. 
At one point, he said the material was so straightforward that even a five-year-old could understand it. For 
some reason, what he said got me to thinking and I said, “I need you to explain it to me like I am a five-
year-old.” 

The analyst stopped and thought for a minute. Suddenly, his whole demeanor changed. He went to the 
board and started explaining everything from the beginning. He gave me an overview of the requirements. 
As he explained things, I took notes and asked relevant questions. Whenever he went too deep or too 
technical, I would repeat that I needed him to explain it to me like I’m a five-year-old. Today, I find it a 
ruthlessly helpful practice to ask a business analyst to explain requirements that I do not understand in the 
most simplistic terms. 

 

Practice Selection 
This book presents standards, techniques, and conventions that many professional .NET developers 
would agree are very good practices. People with different experiences or expertise might believe there 
are better practices. A ruthlessly helpful practice represents a point-of-view and an assertion that 
following the given practice is both sensible and beneficial. Common sense dictates that having a set of 
sound, helpful practices in place today is more useful than spending a lot of time researching and 
selecting the best practice. It is important to have an efficient way to select new and different practices 
that focus on improving outcomes. 

In the book Rapid Development,1 Steve McConnell provides a list of 27 best practices. In addition to 
that list, the book provides tables of many best practice candidates and a summary of best practice  

                                                 
1 Steve McConnell, Rapid Development (Redmond, WA.: Microsoft Press, 1996). 



CHAPTER 1  RUTHLESSLY HELPFUL 

3 

evaluations. This is a very comprehensive treatment of the topic of best practices. For commercial 
software development organizations looking to adopt best practices across the board this approach is a 
great way to organize the initiative. In Rapid Development, the evaluation of best practices includes five 
criteria: 

• Potential reduction from nominal schedule 

• Improvement in progress visibility 

• Effect on schedule risk 

• Chance of first-time success 

• Chance of long-term success 

Steve McConnell’s analysis is very complete and clear. However, as that book notes, you need to 
determine what practices are appropriate for your team and your organization. This is not an easy task. 

Based on the principle of triage, this section provides a way of selecting better practices for the 
individual, the team, and the organization. You are encouraged to use the following four criteria to guide 
your thinking when evaluating a practice: 

• Practicable: Is the practice realistic and feasible in your situation? 

• Generally-accepted and widely-used: Is the practice commonly used, understood, 
and documented? 

• Valuable: Is the practice expected to solve problems, improve delivery, increase 
quality, or mend relationships? 

• Archetypal: Is there a clear model with examples to follow? 

The reason these criteria are helpful is that they are each indispensable and decisive factors. A 
practice that cannot be put into practice on a project is not a better practice for that project. Think of 
these criteria as a way to triage a new and different practice. Better than a list of pros and cons, this set of 
questions helps to discard best practices that are not right for a given situation. These factors also help to 
focus your attention on those practices worth pursuing. 

Practicable 
A ruthlessly helpful practice must be realistic and feasible. One reason a new practice may not be 
realistic is that the team is not ready to adopt the new practice. For example, continuous deployment 
requires that the deployments are automated. If the team has not established the practice of automated 
deployment then advocating for continuous deployments is unrealistic. Select a new practice 
appropriate to a near-term goal that is within the team’s capabilities. Identify the obstacles to 
implementing those practices and focus the effort on addressing feasibility. In this example, once the 
practices related to automated deployments are well established then the team is open to discussing 
continuous deployments as a realistic next step. Assess every new and different practice against what is 
doable within the team and the organization. 

Pointing to a lack of practicality is one way that change is opposed. Once a better practice is seen as 
realistic and feasible it is important to take the next step and apply the practice. Practical application 
demonstrates what the new and different practice involves and gives people hands-on experience using 
the practice. For example, it is not enough to advocate or mandate that unit tests be written. Developers 



CHAPTER 1  RUTHLESSLY HELPFUL 

4 

need to be shown practical examples of how to write proper unit tests. The practical application ought to 
focus on five topics: expectations, standards, resources, acceptance, and consequences.2 Table 1-1 
provides the practical application topics and a description for each. In addition, this table provides an 
example for each topic by using the practice of unit testing as an example. 

Table 1-1. Practical Application Topics 

Topics Description Example for Unit Testing 

Expectations Specify the desired results in 
terms of objectives, timelines, 
quantity, and quality. 

Write the unit tests to ensure the code-under-test 
works as intended. Write test methods for every 
class method. Create a test case for each logic 
branch. Test the boundaries and exceptions. 

Standards Include policies, procedures, 
principles, and conventions. 
Discuss no-no’s and failure 
paths. 

Use a specific testing framework. Use a specific 
mocking framework. Follow the naming 
convention. Use a specific test method layout. Only 
have one primary assertion per test method. 

Resources Provide ways to get assistance, 
books, websites, and internal 
standards documents. 

The team leader is available to help with writing 
unit tests. Use a specific set of recommended unit 
testing books. Specific examples to follow are 
provided. 

Acceptance Provide guidelines for 
acceptable performance. 
Describe monitoring and 
metrics. Explain how reviews 
are conducted. 

Code is not complete until the tests are written. The 
test code coverage percentage must meet a 
threshold. The test code is reviewed. Retrospectives 
include talking about test code. Input on unit 
testing is provided during performance reviews. 

Consequences Describe the logical benefits. 
Explain the benefit to 
teamwork. Explain how 
appreciation and recognition 
naturally follow. 

Unit testing makes debugging easier. Potential 
problems are found earlier. Other developers can 
easily understand the code-under-test. Other 
developers see how their changes impact another 
area of the system. 

 
These five topics help eliminate vagueness and engage self-supervision. Individuals clearly see that 

the new practice is backed up by information that supports their ability and motivation to put the 
change into practice. In many situations the application of a practice falls down because of a deficiency 
in one of these subjects. Without acceptance and accountability the practice is irregular and 
inconsistent. Without resources, developers often do not know how to get started or can get stuck. 

Working through these five topics also reveals self-imposed limitations and skepticism. The hidden 
obstacles that are based on implicit assumptions are drawn out for discussion. For example, a common 
assumption is that time spent unit testing will reflect poorly on a developer’s productivity. That concern 
can be addressed directly by explaining how unit test coverage and test code review are now part of the 
change in how a developer’s productivity is measured. 

                                                
2Adapted from Stephen R. Covey, Principle Centered Leadership (New York: Summit, 1991). 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 1  RUTHLESSLY HELPFUL 

5 

Generally Accepted and Widely Used 
A ruthlessly helpful practice is based upon more than just a good idea. Adopting a better practice that is 
a good idea for one team or organization is certainly commendable. However, if a practice applies only 
to a specific set of circumstances and is counter-productive in another set of circumstances then it 
cannot become a widely accepted practice. General adoption is important. Widely used practices have 
broad application that either reveals that the practice is helpful in many circumstances or describes the 
situations where the practice is not helpful. For example, in a high-trust environment, where 
communication and cooperation are good, adopting Agile practices is often successful. In contrast, in a 
low-trust environment, where there is very little trust and a lot of finger pointing, adopting Agile 
practices can lead to missed expectations and a lot of bad outcomes. Agile is only a better way of 
developing software for teams and organizations that share the values and honor the principles outlined 
in the Agile Manifesto.3 When the preconditions exist, generally-accepted and widely-used practices are 
useful to those project teams that are ready to benefit from the improved practices. The circumstances 
and preconditions for common practices are better understood and more extensively discussed, which 
allows you to decide if the practice is appropriate and beneficial to your situation. 

The more projects that have adopted a practice the more experience there is to support the practice. 
You should get a sense of how widely a practice is adopted. The difficulties and objections that block the 
practice’s effectiveness are better understood and documented, and you can benefit from this 
experience and information. As practitioners write books and blog postings a lot of thought goes into 
how to properly apply the practice. These are often important retrospectives. Many times the practice 
starts as an experimental approach that develops into a more generalized approach with deeper 
understanding and more support.  

Take, for example, the practice of continuous integration (CI), which started with discussions about 
automated builds and a master build script.4 The automated build server brought down the latest code 
and ran a build script, making it easier to find integration problems early. Today there are many CI 
server products that are widely used to run the master build, automate tests, perform code analysis, and 
automatically deploy the software. Clearly, early adoption of CI practices was beneficial to those 
projects. The risk for other projects, however, was that early CI practices could have caused significant 
diversions and distractions. Now that CI is a generally-accepted and widely-used practice the disruption 
is minimal and the benefits are quickly realized. 

Taking a conventional approach has a few additional benefits. One such benefit is in attracting and 
hiring new developers that have experience and skill in that practice area. Another is that conventional 
approaches tend to have stronger management support and are easier to gain buy-in from the team 
members. Overall, generally-accepted and widely-used .NET practices and principles allow you to 
benefit from the knowledge and experience of others. 

Valuable 
A ruthlessly helpful practice must show value with respect to achieving desired results. Value is 
subjective. What one developer values in a given situation is not what another values in a totally 
different situation. For the developer with complete, clear, and consistent requirements the time spent 
in an exhaustive review meeting is wasted. For the developer struggling with overly complex 
requirements, adding in that review meeting to remove unnecessary or overly complex requirements is 
very valuable. In the second case, the desired result is to help the developer cope with over-specification. 
This practice helps to achieve that desired result. The key concept is to look at the results the individual, 

                                                 
3 The Manifesto for Agile Software Development: http://agilemanifesto.org/. 
4 The original CI article: http://martinfowler.com/articles/originalContinuousIntegration.html. 

http://agilemanifesto.org/
http://martinfowler.com/articles/originalContinuousIntegration.html


CHAPTER 1  RUTHLESSLY HELPFUL 

6 

the team, or the organization is currently getting. If you want better results, a change is needed. Any 
practice that provides more or better desired results is a more valuable practice. 

Take some time to consider what the team needs in order to achieve desired results. For example, a 
developer who is trying to resolve a defect might need the steps to reproduce the defect or some other 
missing information. If defects that cannot be reproduced are a systemic problem for a project, a 
valuable change in practice improves the situation. That practice might regularly provide better steps to 
reproduce a defect, or involve changing the developer’s debugging environment. You ought to value new 
and different practices by finding the important needs and addressing them. 

The gap between the current results and the desired results is another source of value. For example, 
the team leader might like it if the developers started to follow coding standards. Assuming the coding 
standards are sensible and beneficial, the team leader wants to find a way to enforce the coding 
standards. The practice of code analysis, described in Chapter 11, is helpful in this regard. Specifically, 
the StyleCop tool helps developers adhere to a coding standard and provides a way to automate 
monitoring. You ought to value new and different practices by finding ways to get the results you would 
like and wish for. 

Archetypal 
A ruthlessly helpful practice must provide clear examples that serve as a model to follow. Concepts are 
usually not enough for individuals and teams to follow. Most developers want and need examples that 
turn the concepts into real and actionable information. By providing examples, new and different 
practices communicate the specifics of how to implement the practices. As a team leader, it is important 
that you find or develop the archetype for team members to follow. The act of creating the archetype 
helps iron out and prove out the approach by narrowly focusing on any specific impediments. 

As an example, let’s once again look at the practice of continuous integration. The first step to 
creating the archetype is selecting a CI server. Chapter 10 provides a list of CI servers worth evaluating. 
The next steps might involve installing the CI server software, establishing the version control settings, 
writing the build script, and setting up the notification mechanisms. A narrowly focused test-bed project 
proves out the CI practice to establish for others a way to learn and understand how all the pieces come 
together. This project also provides a way to conduct walkthroughs and tutorials aimed at demystifying 
the continuous integration practices. 

One of the greatest benefits of an archetype is that it concentrates on isolating and removing 
obstacles. The archetype is tangible proof that skeptics cannot deny. For every raised objection or 
imagined barrier there is now a proven resolution. Because moving from the current status quo to a new 
and improved situation often requires a tangible demonstration, the archetype helps move toward 
better practices. In the example of the CI server, general questions like notification options or security or 
cost are answered with specific examples that allow people to see the new practice both modeled in the 
proper way and in terms they can appreciate. 

Before endorsing a better practice or implementing a new practice, spend some time putting 
together a prime example that demonstrates the practice. If the practice is ruthlessly helpful then you 
ought to find that the archetype is complete and clearly supports the practice. 

Target Areas for Improvement 
There are many ways to improve software development. Some managers suggest an improvement in 
development costs by having the programming done offshore. That decision can have huge negative 
implications to delivery, quality, and relationships. In fact, these three aspects are at the source of 
worsening or dysfunctional software development. A very common complaint is that projects fail to 
deliver a software product that meets the business need. Others include poor quality and late delivery.  

A ruthlessly helpful practice focuses on targeting one of three important areas for improvement: 

4



CHAPTER 1  RUTHLESSLY HELPFUL 

7 

• Delivery 

• Quality 

• Relationships 

Within each of these target areas there are two general ways by which to show improvement. One is 
by addressing and reducing problems and the other is through initiative and creativity. Solving problems 
can generally be thought to include detecting, diagnosing, addressing, and reducing problems. In most 
situations, it is a lot easier to see problems. People are aware of problems and are willing to acknowledge 
that an issue is a problem. Innovation can generally be thought to include initiative, novel approaches, 
ideas, and creativity. Innovation brings change and change is not always easy or welcomed. Consider 
new and different practices as either solving problems or bringing innovation. People find it less risky to 
adopt better practices that solve problems. Better practices that innovate frequently offer greater long-
term rewards and advantages. 

A ruthlessly helpful practice shows improvement by helping to resolve problems with less total 
effort. For example, a change in practice might help a developer debug, isolate, and diagnose a problem 
faster. Figure 1-1 is a conceptual diagram that illustrates the impact of better practices on the total effort 
spent on problems. In the early stages of the project, significant time and effort is devoted to dealing 
with questions, issues, delays, defects, and other problems. After a few sprints, better practices reduce 
the total effort devoted to dealing with problems. Later on, introducing additional better practices 
further improves the situation. Less effort dealing with problems means more time to devote to other 
important matters. This is growing capability through better problem solving. 



CHAPTER 1  RUTHLESSLY HELPFUL 

8 

 

Figure 1-1. The impact of better practices on the total effort spent on problems 

A ruthlessly helpful practice might show improvement through innovation. For example, a new 
practice helps a developer write code more efficiently. This means the developer can implement new 
features faster. Figure 1-2 is a conceptual diagram that illustrates the impact of better practices on the 
productivity in achieving desired results. In the early stages of the project, results are produced during 
each sprint. The team believes the productivity can increase with better practices. A new or different 
practice increases productivity and more is accomplished. Later on, additional changes to practices 
continue to improve productivity. This is growing capability through innovation. 



CHAPTER 1  RUTHLESSLY HELPFUL 

9 

 

Figure 1-2. The impact of better practices on productivity in achieving desired results 

Delivery 
A ruthlessly helpful practice takes the current delivery situation and improves it. Productivity and 
efficiency are improved. The ability to meet milestones and deadlines is improved. The team can 
accomplish more with the same or fewer resources. These are ways that better practices improve 
delivery, which come from better problem solving and innovation. 

One thing that often slows down delivery is the time it takes to find and fix problems. The quicker a 
problem is identified and properly resolved, the greater the capacity to deliver. For example, an 
important part of unit testing is boundary analysis. As part of unit testing a method, boundary analysis 
reviews and carefully considers the parameters of the method. A series of test cases ensures that the 
method works properly under a wide range of expected and unexpected parameter values. In addition, 
the test code arranges the class-under-test into many expected and unexpected conditions before the 
method is called. The goal of boundary analysis is to find problems as early as possible by testing the 
limits of the method-under-test. The developer anticipates potential problems as part of writing the 
code. The developer makes sure that exceptions are handled properly. This practice reveals potential 



CHAPTER 1  RUTHLESSLY HELPFUL 

10 

problems for the developer to address proactively. These are practices that improve delivery by 
identifying and addressing problems early and efficiently. 

Another way a practice can improve delivery is through innovation. Developer productivity tools are 
an excellent example of how new approaches have increased the developer’s capacity to deliver. Many 
years ago the integrated development environment (IDE) brought together the code editor, compiler, 
linker, and debugger in what was a new and innovative way of rapidly connecting the source code to the 
running code. Before the IDE, there was a significant lag time between when code was written and when 
it was executed. For most developers this delay inhibited productivity. Today the Visual Studio IDE is 
commonly used and helps developers deliver better software faster. Productivity tools, such as 
ReSharper and Visual Studio 2010 Productivity Power Tools, offer a wide array of productivity 
enhancements that further improve a developer’s capacity to deliver. 

Quality 
A ruthlessly helpful practice takes the current quality situation and improves it. The system’s fitness-of-
purpose, structural quality, or both can be improved by better practices. As with other areas of 
improvement, the change for the better comes through better problem solving, innovation, or both. 

A major quality problem is the introduction of a regression bug, which is a defect that had been 
found and fixed but is turning up again. The quality perception of the software is damaged by a 
regression bug. The trust relationship between testers and developers is also hurt. Any practice that 
prevents regression bugs from making it to the testers solves this particular problem. An example of a 
solution is the writing of an automated test that verifies that a resolved issue remains resolved. The 
practice involves writing test code for each and every defect that is reported. The developer assigned to 
fix the defect must start by writing an automated test that reproduces the defect. The defect is resolved 
by making sure that this test code passes and all other automated tests continue to pass. This new test 
now becomes part of the suite of tests that must pass during continuous integration. If the functionality 
should happen to regress then the CI server will fail the build and the developers must resolve the issue 
before the defect makes it to the testers. 

Adopting a new and different approach is another way to improve quality. The approach does not 
have to be entirely innovative; it only needs to be innovative for the team and the organization. For 
example, the practice of engineering analysis is well established, but some teams do not perform the 
basic analysis and design work before diving into coding. An indispensable step of engineering analysis 
is making sure the requirements are clearly and fully understood by the developer that has to implement 
the solution. Another important step is diagramming and describing the solution strategy so as to plan 
out the work involved. A further step is reviewing the design to make sure it is correct and appropriate. 
The practice of engineering analysis identifies gaps in requirements and weaknesses in design. In 
addition, it accelerates development since the proper solution is drawn out before coding starts. Once 
the plan-of-attack is reviewed and endorsed then the developer is able to work in a self-directed manner 
toward a quality solution. 

Relationships 
A ruthlessly helpful practice takes the current relationships and improves them. If individuals interacting 
are at the heart of software development then the condition of the relationships is a measure of the state 
of those interactions. Poor relationships lead to poor interactions and counterproductive behavior. 
Exceptionally good relationships lead to remarkably good interactions and incredibly productive 
behavior. There are team leaders who can build camaraderie within teams and excellent rapport 
between teams. These great relationships have everyone enthused and focused on project success. In 
contrast, for the teams with bad relationships, trust is all but gone and every topic and interaction is 
filled with misunderstandings and hot-button issues. 



CHAPTER 1  RUTHLESSLY HELPFUL 

11 

Coping with difficult relationships is not easy nor is it enjoyable. However, when individuals and 
teams are not interacting well, intervention is necessary if the situation is going to improve. A new and 
different practice ought to address the problem and produce a better outcome. For example, the 
relationship of the business analyst, developer, and tester is fundamental to creating great software. The 
practice of focusing on reaching a shared understanding of requirements is helpful: regardless of 
whatever other differences they might have, the features and functionality are the group’s common 
ground. In this way, the practice moves them away from formal, structured documents and toward a 
dialog that gets them doing things like diagramming on a whiteboard. This more fluid process breaks 
down the formality and makes it harder to rigidly hold a position because the members of the group are 
vigorously confronting the problem, and not each other. A deeper understanding is reached and all sides 
can collaborate when everyone is better at communicating about the features and functionality. 

There are ways to innovate when it comes to relationships. When the relationships are already good 
then the innovations work to make the relationships better. This is one of the key ideas behind Agile. 
Teams that have good interactions benefit from the short daily stand-up meetings. The information in 
these meetings is targeted at providing the minimal and essential status. The stand-up meetings strive to 
uncover obstacles and barriers to get to early problem solving. The rapid exchange of information and 
early identification of potential problems that Agile encourages is more efficient and productive. It is not 
hard to see that in team situations where problems are covered up and concerns are quickly dismissed, 
Agile is not beneficial. When the circumstances are wrong, the practice is not a helpful innovation. The 
daily scrum meeting is an innovation for teams that are comfortable talking openly about concerns, 
believe uncovering problems is a good thing, and feel free to ask for help and support. 

Overall Improvement 
Beyond any specific area of improvement, a ruthlessly helpful practice can bring overall improvement. A 
better practice can tie together many development areas. For example, more careful programming 
through unit testing reduces the system testing effort. Fewer bugs are found, written up, fixed, verified, 
and tracked. Other practices help strike the balance between spending too little or too much effort in a 
particular area of development. These practices help make sure that the necessary and sufficient time is 
spent while avoiding wasteful diversions and distractions. 

Other ways that practices provide overall improvement is through renewal and sustainability. 
Positive improvements and outcomes revitalize the spirit of the team and the organization. The overall 
atmosphere is more optimistic and engaged. In addition, the result of better practices is a project that is 
more sustainable over time. Greater productivity and efficiency encourage higher levels of involvement 
and commitment. As individuals, each team member brings more creativity and energy to the project. 
These better practices actively improve and encourage sustainable achievement. 

Balance 
A ruthlessly helpful practice brings a balanced focus on improvement to multiple areas of software 
development. Inadequate focus on a development area implies that that area does not perform 
adequately, and the purposes of that area are not achieved. In the other extreme, excessive focus on an 
area means that too much time and effort are spent, and does not provide added benefit. The balanced 
approach recognizes the need to spend the proper amount of time and effort in that development area. 
This approach recognizes the risks associated with too little and the risks associated with too much. The 
important idea is to identify the purpose and rationale of the development area to ensure that an 
appropriate amount of time and effort is spent in that area. Furthermore, these benefits are seen as 
complementary across multiple development areas and the practices bring harmony and improvement 
to the overall development effort. 



CHAPTER 1  RUTHLESSLY HELPFUL 

12 

Five software development areas are listed in Table 1-2. Next to each area are examples of the 
consequences of too little focus in that area. On the other extreme are examples of what can happen 
when there is too much focus in that area. Between these two extremes are the benefits of a balanced 
approach. The best development practices help bring better results in multiple development areas. For 
example, the practice of unit testing is helpful to requirements, design, development, quality, and 
management. As the developer writes the unit tests, the requirements are reviewed, which can reveal 
incompleteness or confusion. This work prompts questions that are brought out and discussed with the 
analyst. Unit testing can also drive design improvements as new features are added. The development of 
tests ensures that the code-under-test is correct and thoroughly implemented. The quality improves 
since potential defects are identified early by the developer writing the code. Finally, unit testing raises 
awareness as to how the code is intended to be called by other parts of the system. Writing unit tests 
helps the developer plan, coordinate, and manage the work. The practice of unit testing clearly ties 
together many development areas and strengthens the overall process by balancing the focus across 
these multiple areas. 

Table 1-2. Balancing Focus within Several Development Areas 

Area Too Little Balance Too Much 

Requirements Inc omplete, unclear, 
inconsistent, hasty 
decisions 

Shared understanding, 
fitness of purpose, 
prioritization 

Analysis paralysis, over-
specification, over -
demanding 

Design Insufficiency, 
inconsistency, 
confusion 

Fundamental structure, 
integrity, clarity, proper 
consistency 

Inflexibility, 
regulations, foolish 
consistency 

Development Inefficient, 
unproductive, 
carelessness 

Productive, purposeful, 
thoroughness, 
correctness 

Gold plating, 
perfectionism, 
postponement 

Quality Defects unnoticed, 
systemic problems 
overlooked 

Defects identified, 
issues isolated, whole-
system reliability 

Hypercritical, focus on 
unimportant detail, 
formalities 

Management Thrashing, contention, 
out of control, 
overburdened 

Planning, cooperation, 
coordination, objective 
oriented 

Methodology, risk-
anxiety, bureaucracy 

Renewal 
A ruthlessly helpful practice brings a sense of renewal to the team and the organization. For developers 
on teams that never improve, there is a spirit of hopelessness. The same problems resurface. There is no 
innovation. As individuals, each developer struggles with these problems and the day-to-day crisis. The 
team is overwhelmed and unable to implement the changes needed to affect positive change. Adopting 
new and different practices has the power to change the situation. Making even a modest change offers 
hope that the development environment is improving. This hope engages the team’s optimism. With the 
implementation of one positive change comes talk of the next practice that is worth adopting. After that 



CHAPTER 1  RUTHLESSLY HELPFUL 

13 

comes the next, and so on. Morale and productivity are greatly improved when better practices engage 
the spirit of renewal and hope. 

Many developers are anxious to learn something new. While some are resistant to change, many like 
the idea of learning a new skill, tool set, or technology. The key is to find the right person to lead the 
effort to adopt a better practice. For example, automated deployments offer the opportunity to learn 
about deployment scripts and the associated deployment tools. The developer that has to iron out the 
problems with unreliable manual deployments is motivated to prevent these problems. That motivation 
can renew that person’s desire to learn better practices. For another developer, a keen interest in doing 
something entirely new and different is the motivation. In either case, renewal comes in seeing that 
there is a better set of procedures, and that they are working. The end result is that the team has more 
reliable deployments, and the developer has a sense of accomplishment. 

Adopting better practices makes projects more fun. Any practice that reduces headaches, raises 
productivity, or brings innovation is a source of enjoyment. Any time the team has more fun, the sense 
of renewal translates into higher levels of dedication and commitment. 

Sustainability 
A ruthlessly helpful practice brings sustainability to the team and the organization. In unsustainable 
situations the result is fatigue, mistakes, burnout, and failure. A poorly-planned project has too much 
work for too few people in too short a timeframe. The pressure and haste become the driving forces that 
influence everything the team does. The architecture is driven by haste, which means the high-level 
design is ill-considered and inadequate. The developers write code under schedule pressure and the 
result is carelessness, a lack of thoroughness, and poor judgment. For any significant project this 
constant diet of pressure and haste is unsustainable. When new and different practices focus on 
problem prevention and more effective issue resolution then the team is less overwhelmed by crisis. 
Adopting better practices improves planning, coordination, and productivity. Taken together, these 
improved approaches offer a more sustainable development environment. 

For example, projects that are driven by haste often have integration problems that are deferred 
until late in the project. Some developers do not perform frequent check-ins or do not get the latest code 
since they do not want to be delayed by integration problems. Other developers push code that breaks 
the build for other developers. Often the team lead needs to straighten out the growing mess. This 
scenario is referred to as integration hell.5 This situation becomes more unsustainable as the code base 
grows bigger and bigger. One way to address this issue is to change development practices. The team 
leader insists that all developers check in their code at the end of the day. Early the next day the team 
leader gets the latest code to a new folder and rebuilds everything. If the build breaks, then the problems 
get ironed out and the developers figure out whose code needs to change to fix the build. This daily 
integration prevents the unsustainable situation from continuing, but it also creates a compelling 
argument for continuous integration. The better practice is to set up a CI server to perform all the same 
steps that the team leader is performing. Also, this practice supports what many managers value: 
automation, monitoring, control, consequences, and accountability. The practice of continuous 
integration is even more compelling if it reveals the code push that broke the build within five minutes 
of the check-in. 

Another way that better practices improve sustainability is in the careers of the developers. Learning 
better practices is an important part of career development and advancement. As an individual, 
adopting a better practice that increases productivity and effectiveness translates into better results. For 
example, purchasing development productivity tools that increase the speed and quality of the code you 
write helps you write better features faster. That greater rate of accomplishment makes you a more 
valuable member of the team. Consistently demonstrating positive outcomes for the team is a boost to 

                                                 
5 A good description of integration hell is found at this link: http://c2.com/xp/IntegrationHell.html. 

http://c2.com/xp/IntegrationHell.html


CHAPTER 1  RUTHLESSLY HELPFUL 

14 

your reputation that has a long-term benefit to your career. As a team leader, the benefit of having every 
member of the team improve likewise improves your career. 

Sustainability is about the long-term health of the individual, the team, and the organization. Better 
practices offer the prospect of reducing burnout and enhancing the overall effectiveness of everyone 
involved in the project. 

Summary 
In this chapter, you saw how selecting a new and different practice starts by understanding your current 
situation. A better practice has to be realistic and feasible within your situation. It is better if that 
practice is in common use and well documented. The practice ought to solve your current problems or 
provide innovations that improve delivery, quality, or relationships. A better practice is a model that 
others can follow with clear examples of how the practice is implemented. 

Throughout this book, you will learn about many ruthlessly helpful practices. These practices have 
application for the individual, the team, and the organization. You can expect that the suggested 
practice is focused on improving your overall development environment and is targeted toward 
important areas of improvement. Carefully consider these practices without passion or bias. Do not 
hesitate to change, adapt, or discard the practice based on your circumstances. You should expect better 
results from better practices. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



C H A P T E R  2 
 

      
 

15 

.NET Practice Areas 

This chapter is about identifying the sources of better .NET practices. The focus is on the areas of .NET 
development and general software development that provide an opportunity to discover or learn about 
better practices. Think of this chapter as providing a large-scale map that gives you the basic geography. 
Broadly speaking, the sources of better practices include: 

• Understanding problems, issues, defects, or breakdowns 

• Looking at the interconnected events and behaviors of development 

• Finding sources of appropriate patterns, conventions, and guidance 

• Applying tools and technologies 

• New ideas, innovations, and research 

There are .NET practice areas at the forefront of establishing new and widely-used tools and 
technologies for better practices. The list includes automated testing, continuous integration, and code 
analysis. These practice areas are so important that this book devotes a chapter to each topic: 

• Automated testing is covered in Chapter 8. 

• Continuous integration is covered in Chapter 10. 

• Code analysis is covered in Chapter 12. 

This chapter brings up .NET practice areas that are important and warrant further exploration. 
Hopefully, you get enough information to plan and prepare a deeper investigation into the .NET practice 
areas that are beyond the scope of this book. There are resources and references listed in Appendix A. 

There is more to selecting, implementing, and monitoring practices than can be explained in one 
chapter. In subsequent chapters, the significance of focusing on results, quantifying value, and strategy 
is discussed, as follows: 

• Delivering, accomplishing, and showing positive outcomes is covered in  
Chapter 3. 

• Quantifying the value of adopting better practices is covered in Chapter 4. 

• Appreciating the strategic implications of better practices is covered in Chapter 5. 



CHAPTER 2  .NET PRACTICE AREAS 

16 

The discussion of the areas covered in this chapter draws out ways to uncover better practices in 
these areas. In these cases, the recommended practice is highlighted and stated directly. All of the 
recommended practices in this chapter are summarized in Table 2-1. These are ruthlessly helpful 
practices that reveal new and different practices, which should uncover specific, realistic, practical, and 
helpful practices to you, your team, and your organization. 

Table 2-1. Ruthlessly Helpful Practices to Reveal Better Practices 

 Strategy 

2-1 Monitor and Track Technical Debt to Uncover Inadvertent or Reckless Flaws 

2-2 Review and Classify Defects in the Tracking System to Find Better Practices 

2-3 Conduct Retrospective Analysis to Identify New and Different Practices 

2-4 Perform Prospective Analysis to Foresee Potential Problems and Mitigate Them 

2-5 Look for Systemic Problems and Ways to Improve the Application Lifecycle 

2-6 Discover the Thinking Behind the .NET Framework in the Book Framework 
Design Guidelines 

2-7 Learn from the Offerings of the Microsoft Patterns and Practice Group 

2-8 Stay on Top of the Innovative Work of Microsoft Research 

2-9 Investigate Automated Test Generation as an Emerging .NET Practice Area 

2-10 Consider Code Contracts to Improve Testability and Software Verification 

2-11 Appreciate Secure Application Development and the Microsoft Security 
Development Lifecycle 

COMMENTARY 

Many software development projects fail to deliver. When I join a project that has missed a major deadline 
or has other serious problems, one of the first things I do is review the issues in the defect tracking 
system. By simply reading the issues, sorting them into categories, and prioritizing them, many clear 
patterns emerge. There are often major pieces of functionality that none of the developers understand. 
There are modules that are error-prone and need to be redesigned. Generally speaking, there are many 
important practices that are not in place or are not being followed. The act of analyzing the defects, issues, 
and problems suggests better practices that are appropriate and help turn the project around. 



CHAPTER 2  .NET PRACTICE AREAS 

17 

In my earliest .NET projects, while working on class libraries, I struggled to figure out the right practices to 
follow. The practices I searched for related to things like naming conventions, proper usage of the .NET 
framework, and other development patterns. At some point I came across two things that both made a 
huge difference. The first is a book that is simply known as the Framework Design Guidelines1, which is 
discussed later in this chapter. The second is a software tool called FxCop, which is presented in Chapter 
11. I read Framework Design Guidelines from cover to cover and learned a whole lot about how the .NET 
Framework was built. That book revealed the thinking of the team that designed and built the .NET 
Framework and remains an essential source of important .NET practices. The FxCop tool complements the 
guidelines by giving you the ability to inspect .NET assemblies and drill into the details behind the rule sets 
it applies. I have learned and continue to learn a lot from FxCop. These two items, taken together, are a 
great source of many of the better .NET practices that I have adopted. I often recommend both as 
important learning material and sources for developers interested in finding better .NET practices. 

Occasionally, I am asked to recommend the important .NET practice areas. Many developers are implicitly 
asking for a list of tools and technologies that they should learn. In those cases, I concentrate on tools and 
technologies within four topics: automated testing, continuous integration, code analysis, and automated 
deployments. In recent years, a lot of progress has been made in these areas. New products are coming 
out and exciting products are being improved quickly. These technologies have new and different practices 
built in as an inherent part of the tool set. For example, if you roll up your sleeves and dig into Team 
Foundation Server, you are going to learn a lot about these four .NET practice areas. My advice to those 
who are motivated by technology is to start taking a deep-dive into these products. Evaluate the products. 
Compare and contrast them. In this way, new and different .NET practice areas are going to present 
themselves. 

Internal Sources 
The problems, issues, defects, or breakdowns that your current team, project, or organization are 
experiencing are a gold mine of new and different practices. These internal sources are usually a lot 
more valuable than external sources because a suggested practice is 

• Undeniably relevant: The practice is important; it is of interest 

• Well-timed: The practice is urgently-needed because the issues are recent 

• Acceptable: The practice is fitting or home-grown because it matches the situation 

Better practices that derive from internal sources have less opposition and fewer debates because 
the need is backed-up by the value of the source itself. For example, if the source is a defect tracking 
system then the better practice is as important as reducing defects is to the organization. This 
significantly lowers the barriers to adoption. The discussion now focuses on the effectiveness of the new 
and different practice. After some time, the practice is measurable because the internal source ought to 
show the improvement that comes from the better practice. If the defect tracking system is the source 
then a better practice lowers the number of defects in some measurable way. Specific practices that 
relate to quantifying value with internal sources are presented and discussed in Chapter 4. 

                                                 
1 Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns 
for Reusable .NET Libraries, 2nd Edition (Upper Saddle River, NJ: Addison-Wesley Professional, 2008). 



CHAPTER 2  .NET PRACTICE AREAS 

18 

Technical Debt 
The “technical debt” metaphor was created by Ward Cunningham as a way to understand and track the 
intentional and unintentional design and coding shortcomings of software.2 We take on technical debt 
when we oversimplify a design or recklessly create a flawed design. We take on technical debt when we 
wisely or unwisely write code that does not work as well as it should. Taking this metaphor from the 
financial world, debt is one of the ways to finance an organization. It can provide the cash needed to 
make payroll. It provides the organization an opportunity to buy things like furniture and equipment. If 
the payments on interest and principal are well managed then the organization can properly handle the 
costs of financial debt. The same is true for technical debt. With technical debt, the “interest payments” 
are the added effort and frustration caused by the inadequacies of the current design and source code. 
In this metaphor, the “principal payments” are the effort needed to go back and remediate or improve 
the design and source code. 

Some projects take on technical debt intelligently and deliberately. On these projects the technical 
debt often serves a useful purpose, and the consequence of the debt is understood and appreciated. On 
other projects the technical debt is recklessly accumulated, usually without regard to the consequences. 
Examining how your project accumulates and deals with technical debt is an excellent way to find new 
and different practices that improve the situation. In fact, the technical debt metaphor itself is a good 
way to get the team focused on following better practices. 

Not all technical debt is created equal. There are minor design flaws that have little impact and there 
are major design flaws that require huge amounts of rework. For example, if localization is an ignored 
requirement, retrofitting tens of thousands of lines of code late in the project can be an expensive and 
error-prone effort. 

It is useful to recognize that there are two distinct types of technical debt: 

• Design debt: This can result from prudent decision-making, underappreciated 
requirements, inadequate architecture, or hurried development. Often the design 
limitations will eventually need to be addressed. 

• Code debt: This can result from demanding circumstances, temporary 
simplification, imprudence, or hastiness that finds its way into the source code. 
Often the code should be reworked and improved. 

Take some time to review the designs that you and your team create. Do the designs have flaws that 
need to be dealt with? What new and different practices should your team adopt to prevent or remediate 
these inadequate designs? Select better practices that ensure design debt is not accumulating without 
intention and that design debt is paid off before the consequences are disastrous. 

Review the source code that you or your team is writing. Does the code need to be reworked or 
improved? What new and different practices should your team adopt to write better code? Select better 
practices that help the team to produce better code. 

 Practice 2-1  Monitor and Track Technical Debt to Uncover Inadvertent or Reckless Flaws 

                                                 
2 For more information see http://c2.com/cgi/wiki?TechnicalDebt. 

http://c2.com/cgi/wiki?TechnicalDebt


CHAPTER 2  .NET PRACTICE AREAS 

19 

A specific practice that helps deal with technical debt is to capture the technical debt as it 
accumulates. This raises awareness and goes a long way toward preventing inadvertent and reckless 
debt.3 In addition, the team should use the information to make plans to pay down the technical debt as 
the project proceeds. With this information the team can take a principled stand against proceeding 
under a heavy burden of technical debt that is causing delay and jeopardizing the quality of the software. 
Monitoring and analyzing technical debt is an excellent way to find and adopt better ways of delivering 
software. 

Defect Tracking System 
In general, the defect tracking system provides feedback from testers and customers that indicates that 
there are problems. This is a rich source for improvements to the overall development process. By 
examining the defect tracking system there are a number of common problems that imply deficient 
practices: 

• Requirements that are poorly defined or understood 

• Designs that are inadequate or incomplete 

• Modules that are error-prone and need to be redesigned or rewritten 

• Source code that is difficult to understand and maintain 

• Defect reports that are incomplete or unclear 

• Customer issues that are hard to reproduce because of missing detail 

 Practice 2-2  Review and Classify Defects in the Tracking System to Find Better Practices 

It is not uncommon to find clusters of defects in the tracking system that relate to the same feature, 
module, or code file. These defects are the result of something not having been done properly. Ideas and 
support for new and different practices come from assembling those defects and making the case for a 
better practice. For example, if a large number of defects is caused by unclear or incomplete 
requirements then better requirements analysis and more design work are indicated. Improving the 
understanding and thoroughness of requirements goes a long way toward eliminating this source of 
defects. 

In some cases the issues entered in the defect tracking system are the problem. They may lack steps 
to reproduce the issue. In other cases, the customer cannot provide adequate information and the 
developers are left guessing what caused the issue. Better practices, such as having the testers write 
complete and clear defect entries, improve the situation. Better system logging and debugging 
information is another way to improve the situation. 

                                                 
3 Classify the nature of the technical debt. See 
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html. 

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html


CHAPTER 2  .NET PRACTICE AREAS 

20 

Retrospective Analysis 
A retrospective meeting is a discussion held at the end of an Agile sprint or project iteration. At the end 
of a project, a retrospective of the entire project is also held. The meeting often covers what worked well 
and what did not work well. A major goal of these meetings is to find out what could be improved and 
how to include those improvements in future iterations or projects. One technique for facilitating these 
meetings is the 4L’s Technique.4 This technique concentrates on four topics and the related questions: 

• Liked: What did we like about this iteration? 

• Learned: What did we learn during this iteration? 

• Lacked: What did we not have or require during this iteration? 

• Longed for: What did we wish we had during this iteration? 

 Practice 2-3  Conduct Retrospective Analysis to Identify New and Different Practices 

Knowing what was liked and what was learned helps identify new and different practices that 
worked during the iteration. The things that the team liked are practices worth continuing. The things 
the team learned usually suggest better practices that the team implicitly or explicitly discovered. 
Sometimes what is learned is that some practices did not work. Be sure to discontinue those practices. 
Knowing what was lacking or longed for also suggests practices. The team should work with the 
retrospective discussion and analysis to define better practices that can apply to future iterations. 

Prospective Analysis 
Prospective analysis engages the team to imagine and discuss the potential for problems, errors, or 
failures. This work is done in advance of any significant requirements, design, or testing work. The goal 
is to think through the possible failure modes and the severity of their consequences. Prospective 
analysis includes activities such as the following: 

• Evaluating requirements to minimize the likelihood of errors 

• Recognizing design characteristics that contribute to defects 

• Designing system tests that detect and isolate failures 

• Identifying, tracking, and managing potential risks throughout development 

 Practice 2-4  Perform Prospective Analysis to Foresee Potential Problems and Mitigate Them 

                                                 
4The 4L’s Technique: http://agilemaniac.com/tag/4ls/. 

http://agilemaniac.com/tag/4ls/


CHAPTER 2  .NET PRACTICE AREAS 

21 

Risk identification and risk management are forms of prospective analysis commonly practiced by 
project managers. The same type of analysis is appropriate for technical development topics like 
requirements, design, and testing. This analysis engages the imagination and creative skills of the people 
involved. The better practices are suggested by anticipating problems and the effort to prevent problems 
from occurring. 

Application Lifecycle Management 
The traditional waterfall model of software development consists of distinct and separate phases. This 
approach has shown itself to be too rigid and too formal. Software applications have characteristics that 
make them more flexible and more powerful than a purpose-built hardware solution. If, instead of 
software, the team of engineers is building an airplane, then a waterfall approach is warranted. With 
hardware development, the extremely disruptive costs of late changes imply the need for the distinct, 
formal, and separate phases of the waterfall model. The virtue of software is that it is flexible and 
adaptable, and so, the waterfall model wrecks this responsiveness to change and detracts from 
software’s primary virtue. 

 Note  The choice of life cycle, flexible or rigid, depends on the maturity and criticality of the application domain. 
Developing software to control a nuclear power plant should follow a waterfall methodology. The laws of physics 
are not going to change, and control software is a critical component. This domain has a strict set of physical 
circumstances and regulations that perfectly fits the waterfall methodology. The requirements of a social media 
site are difficult to formally specify because they are driven by a changing marketplace. An on-the-fly adaptation is 
needed, such as agile software development, to make sure the team delivers an application that serves the 
evolving social media landscape. 

Let’s consider the analogy of hiring a private jet flying from London to Miami. The passengers have 
an objective to fly to Miami safely, efficiently, and in comfort. Once hired, the charter company works 
with the passengers’ representative to discuss cost, schedule, and expectations to book the charter. Once 
booked, the pilot and crew prepare the airplane by planning and performing activities like fueling the 
plane, filing a flight plan, and stocking the plane with blankets, beverages, and meals. Once in the air the 
pilot and crew make adjustments based on new information and changing realities. If the weather is 
bad, the airplane can fly around it or above it. If the passengers are tired and want to sleep, the cabin is 
made dark and quiet. The pilot and crew have some trouble abiding fussy and selective passengers, yet 
they make every effort to provide reasonable accommodations. With a different breed of erratic and 
demanding passengers, the pilot and crew are in for trouble. These are the high-maintenance 
passengers that demand the plane turn around to pick up something they forgot in the limousine but are 
unwilling to accept any delay. Worse yet, there are passengers that demand an in-flight change of 
destination from Miami to Rio de Janeiro. Very few charter airline companies are organized to satisfy the 
fickle demands of rock stars, world leaders, and eccentric billionaires. Similarly, software applications 
should be developed in a way that is responsive to relevant adjustments and adapts quickly to new 
information and changing realities. At the same time, the changes cannot be chaotic, impulsive, 
whimsical, and unrealistic. 



CHAPTER 2  .NET PRACTICE AREAS 

22 

The application lifecycle is a broad set of connected activities that happen throughout the 
software’s lifetime. For the purposes of this discussion, the broadest phases of application lifecycle 
management (ALM) include: 

• Inception: Form the vision, objectives, and core requirements. 

• Analysis: Establish the core feature sets and desired behavior for the system. 

• Architecture: Create the high-level design and system architecture. 

• Development: Detail the functionality, low-level design, code, deploy, and test the 
system. 

• Operations: Monitor the post-delivery system, discover issues, resolve issues, and 
address system improvements. 

These five phases are illustrated in Figure 2-1.5 Do not think of these phases as discrete and 
separate. This diagram is a conceptual model that shows how the application moves from an idea and 
vision, to common understanding and primary functionality, through strategy and approach, toward 
tactics and implementation, and finally into rollout and usage. The activities of each phase do adjust, 
inform, and change the conclusions and decisions of the previous phase, but they should not render the 
prior phases entirely pointless and irrelevant. A proper project Inception phase lays the groundwork for 
an effective Analysis phase. A proper Analysis phase lays the groundwork for an effective Architecture 
phase. The Development phase proceeds to develop and deploy an effective system that goes into 
operation. What was accomplished during the Development phase is on the whole a proper solution 
that is utilized during the Operations phase. 

 

Figure 2-1. The application lifecycle management phases 

A great many projects that turn into disasters have fundamental mistakes and misunderstandings 
rooted in the Inception, Analysis, and Architecture phases. These three phases are important areas to 
look for new and different practices for overall application development improvement. It is good to 
enhance the architecture during the Development phase, but there is something wrong when the entire 

                                                 
5 Adapted from Grady Booch, Object Solutions: Managing the Object-Oriented Project (Menlo Park, CA: 
Addison-Wesley, 1996). 



CHAPTER 2  .NET PRACTICE AREAS 

23 

architecture is found to be wrong or inadequate. It is good to adapt to unforeseeable requirement 
changes during the Development phase, but there is something wrong when a vital, core feature set is 
overlooked or intentionally played down during the Analysis phase. 

 Practice 2-5  Look for Systemic Problems and Ways to Improve the Application Lifecycle 

Within the Development phase, the activities and disciplines cover many topics from change 
management to configuration management to release management. For many .NET developers, the 
important day-to-day activities are in the Development phase. When looking for new and different .NET 
practices, focus on key principles and the fundamentals of development. All the activities and disciplines 
connect to the following seven significant aspects of development: 

• Requirements 

• Design 

• Coding 

• Testing 

• Deployment 

• Maintenance 

• Project Management 

Consider Agile software development: the approach harmonizes and aligns these seven significant 
aspects of development. It promotes things like collaboration, adaptability, and teamwork across these 
seven aspects of the Development phase and throughout the application lifecycle. 

The Visual Studio product team recognizes the importance of ALM, and Microsoft is doing more to 
develop tools that support integrating team members, development activities, and operations. In fact, 
the Microsoft Visual Studio roadmap is centered on the part of the application lifecycle management 
that focuses on the Development and Operation phases.6 Microsoft calls its effort to bring better 
practices to the application lifecycle Visual Studio vNext. ALM is a .NET practice area that is important 
and is showing increasing relevance as teams and organizations continue to find ways to improve. 

Patterns and Guidance 
Today there are a lot of .NET developers who have excellent experience, good judgment, and common 
sense. Thankfully, they are writing books and posting to their blogs. Microsoft is clearly interested in 
having their best and brightest communicate through resources like the Microsoft Developer Network 
(MSDN). Microsoft has a patterns and practices group that is disseminating guidance, reusable 
components, and reference applications. There is a great number of sources of rich material available 
that points to better .NET practices. 

                                                 
6 For more information see http://www.microsoft.com/visualstudio/en-us/roadmap. 

http://www.microsoft.com/visualstudio/en-us/roadmap


CHAPTER 2  .NET PRACTICE AREAS 

24 

The goal of this section is to raise your awareness of the places to look and topics to investigate, to 
round out your .NET practice areas. The section starts with general sources that offer guideline-oriented 
information, follows into important patterns, and provides tables with some specific tools. 

Framework Design Guidelines 
There is a single book that provides so much information on good and bad .NET development practices 
that it is a must-read book. That book is Framework Design Guidelines: Conventions, Idioms, and 
Patterns for Reusable .NET Libraries (2nd Edition) by Krzysztof Cwalina and Brad Abrams. The book 
strives to teach developers the best practices for designing reusable libraries for the Microsoft .NET 
Framework. However, this book is relevant to anyone developing applications that ought to comply with 
the .NET Framework best practices. It is very helpful to developers who are new to the .NET Framework 
and to those unfamiliar with the implications of designing and building frameworks. 

 Practice 2-6  Discover the Thinking Behind the .NET Framework in the Book Framework Design Guidelines 

The guidelines in Framework Design Guidelines present many recommendations, with 
uncomplicated designations, like the following: 

• Do: Something you should always (with rare exceptions) do 

• Consider: Something you should generally do, with some justifiable exceptions 

• Do not: Something you should almost never do 

• Avoid: Something that is generally not a good idea to do 

Additionally, a great deal of what is described in Framework Design Guidelines is available online at 
MSDN, under the topic of “Design Guidelines for Developing Class Libraries.” You will also find 
additional information on MSDN blog sites of the authors, Krzysztof Cwalina and Brad Abrams.7 

Microsoft PnP Group 
The Microsoft patterns and practices (PnP) group provides guidance, tools, code, and great information 
in many forms, including the following: 

• Guides: Books that offer recommendations on how to design and develop 
applications using various Microsoft tools and technologies. 

• Enterprise library: A reusable set of components and core functionality that help 
manage important crosscutting concerns, such as caching, encryption, exception 
handling, logging, and validation. 

                                                
7 Brad Abrams has left Microsoft, but his MSDN blog remains very helpful. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 2  .NET PRACTICE AREAS 

25 

• Videos, symposiums, and hands-on labs: Many structured and unstructured ways 
to learn Microsoft technologies, guidance, and the Enterprise Library. 

• Reference applications: The Enterprise Library download includes source code and 
sample applications that demonstrate proper usage. 

Enterprise Library (EntLib) includes extremely thorough documentation and source code. It is a 
very valuable resource for learning better architectural, design, and coding practices. 

 Practice 2-7  Learn from the Offerings of the Microsoft Patterns and Practice Group 

Presentation Layer Design Patterns 
Whether you are building browser-hosted or Windows desktop applications, the presentation layer of 
the application is often a source of changing requirements and new features. The reason is that this is 
the surface of the application that the end-user sees and interacts with. It is the human-machine 
interface. 

Developers have long struggled to implement systems that enable user interface changes to be 
made relatively quickly without negatively impacting other parts of the system. The goal of the 
Presentation Layer design pattern is to more loosely couple the system, in such a way that the domain 
model and business logic are not impacted by user interface changes. A great deal of important work has 
been done to bring better patterns to.NET user interface software. Investigating and adopting these 
design patterns offers an excellent opportunity to bring better .NET practices to your software 
development. Table 2-2 provides a list of presentation layer design patterns worth investigating further. 

Table 2-2. Presentation Layer Design Patterns for .NET 

Name Description More Information 

Model-View-
Presenter 

MVP is very applicable for SharePoint applications. 
It separates presentation responsibilities. The View 
is responsible for the user interface. The Presenter is 
responsible for view and model interaction. The 
Model is responsible for business logic and 
persistence 

msdn.microsoft.com/en-
us/library/ff649571.aspx 

Model-View-
ViewModel 

MVVM is very applicable for Windows Presentation 
Foundation (WPF) and Silverlight applications. The 
View is responsible for user interface. The 
ViewModel is for data binding between the View and 
the Model. The Model is responsible for business 
logic and persistence. 

msdn.microsoft.com/en-
us/magazine/dd419663.aspx 



CHAPTER 2  .NET PRACTICE AREAS 

26 

Name Description More Information 

ASP.NET MVC MVC separates presentation layer responsibilities. 
The View is responsible for user interface. The 
Controller is responsible for responding to view 
actions. The Model is responsible for business logic 
and persistence. 

www.asp.net/mvc 

Knockout.js Knockout.js is a JavaScript library that uses 
observables and the MVVM design pattern to help 
keep the client-side user interface in sync with an 
underlying data model. This approach allows you to 
more easily create richer browser-hosted user 
interfaces with JavaScript and HTML. 

knockoutjs.com 

Object-to-Object Mapping 
An object-to-object mapping framework is responsible for mapping data from one data object to 
another. For example, a Windows Communication Foundation (WCF) service might need to map from 
database entities to data contracts to retrieve data from the database. The traditional way of mapping 
between data objects is coding up converters that copy the data between the objects. For data-intensive 
applications, a lot of tedious time and effort is spent writing a lot of code to map to and from data 
objects. There are now a number of generic mapping frameworks available for .NET development that 
virtually eliminate this effort. Some of the features to look for include 

• Simple property mapping 

• Complex type mapping 

• Bidirectional mapping 

• Implicit and explicit mapping 

• Recursive and collection mapping 

There are many object-to-object mapping tools available. Table 2-3 provides a list of a few object-
to-object mapping tools that are worth evaluating. 

Table 2-3. Object-to-Object Mapping Tools 

Name Description More Information 

AutoMapper A straightforward, convention-based object-to-
object mapping framework. Ability to specify 
custom projecting rules for flattening. 

automapper.org 

EmitMapper Perfo rmance-oriented object-to-object mapping 
framework. The tool uses a runtime code generation 
approach. 

emitmapper.codeplex.com 

http://www.asp.net/mvc


CHAPTER 2  .NET PRACTICE AREAS 

27 

Name Description More Information 

ValueInjecter Simple and very flexible object-to-object mapping 
framework. Also has support for flattening and 
unflattening. 

valueinjecter.codeplex.com 

Dependency Injection 
The Factory Method pattern is an excellent way to move the logic needed to construct an object out of 
the class that uses the object. The class calls a factory method that encapsulates any complex processes, 
restricted resources, or details required to construct the object. What if the Factory pattern could be 
even easier? The class could define what it needs as arguments of a specific type in its constructor. Then 
the class would expect the code that is instantiating the object to pass in instances of classes that 
implement that interface. In other words, the class does not instantiate its external dependencies. The 
class expects any code that needs the class to instantiate and supply the external dependencies. This is 
the concept behind dependency injection (DI), specifically constructor injection. This is useful in unit 
testing, as it is easy to inject a fake implementation of an external dependency into the class-under-test. 

Some of the benefits of DI include 

• Improved testability: Providing fake implementations, stubs and mocks, for unit 
testing in isolation and interaction testing. 

• Configuration flexibility: Providing alternative implementations through 
configuration. 

• Lifetime management: Creating dependent objects is centralized and managed. 

• Dependencies revealed: With constructor injection a class’s dependencies are 
explicitly stated as arguments to the constructor. 

 Note  Dependency injection does introduce abstraction and indirection that might be unnecessary or confusing 
to the uninitiated. Take the time to establish DI in a clear and appropriate way. 

There are different forms of DI: constructor, setter, and interface injection. The concept of inversion 
of control (IoC) is closely associated to DI as this is a common way to implement tools that provide DI 
facilities. IoC commonly refers to frameworks, or “containers”, while DI refers to the strategy. There are a 
great many IoC containers available for .NET development.8 Table 2-4 provides a list of just a few that are 
worth evaluating. 

                                                 
8 For more information see http://elegantcode.com/2009/01/07/ioc-libraries-compared/. 

http://elegantcode.com/2009/01/07/ioc-libraries-compared/


CHAPTER 2  .NET PRACTICE AREAS 

28 

Table 2-4. Dependency Injection/Inversion of Control Containers for .NET 

Name Description More Information 

Autofac Open-source, widely-used dependency injection 
container. Very straightforward and easy to use 
with support for constructor injection.  

code.google.com/p/autofac/ 

StructureMap Open-source, widely-used dependency injection 
container with support for setter and 
constructor injection. 

structuremap.net/structuremap/ 

Unity 
Application 
Block 

Unity is a lightweight extensible dependency 
injection container with support for constructor, 
setter, and method-call injection. Part of EntLib 
and supported by the MS PnP group. 

unity.codeplex.com 

Research and Development 
Since 1991 Microsoft Research has performed ground-breaking research in computer science as well as 
in software and hardware development.9 The Kinect product is a sensational example of the results of 
their work. There are many other projects with names like CHESS, Code Contracts, Cuzz, Doloto, 
Gadgeteer, Gargoyle, Pex, and Moles. Information on their work is available at the Microsoft Research 
and DevLabs websites. 10 Some of the research is targeted toward finding solutions to very specific 
problems while other work has broader applicability. Some of the results have not yet made it out of the 
lab while other work is now part of the .NET Framework. For the developer looking to apply new and 
innovative approaches to .NET development, this research work is a great source of information and 
new .NET practices. 

 Practice 2-8  Stay on Top of the Innovative Work of Microsoft Research 

In this section, the focus is on two specific .NET practice areas that have emerged from their 
research and development. There are many others and there will surely be more in the future. The 
purpose of this section is only to give you a taste of the kind of work and to show you how learning about 
research and development reveals new and different .NET practice areas. 

                                                 
9 For more information see http://research.microsoft.com. 
10 For more information see http://msdn.microsoft.com/en-us/devlabs/. 

http://research.microsoft.com
http://msdn.microsoft.com/en-us/devlabs/


CHAPTER 2  .NET PRACTICE AREAS 

29 

Automated Test Generation 
Writing test code is not easy, but it is very important. Chapter 8 of this book is dedicated to the topic of 
unit testing and writing effective test code. The challenges in writing test code come from the dilemmas 
that many projects face: 

• There is a lot of untested code and little time to write test code. 

• There are missing test cases and scenarios and few good ways to find them. 

• There are developers that write thorough test code and some that do not. 

• There is little time to spend on writing test code now and problems that could 
have been found through testing that waste time later. 

One goal of automated test generation is to address these kinds of dilemmas by creating a tool set 
that automates the process of discovering, planning, and writing test code. Some of these tools take a 
template approach, where the tool examines the source code or assemblies and uses a template to 
generate the corresponding test code.11 Another approach focuses on “exploring” the code and 
generating test code through this exploration. 

 Practice 2-9  Investigate Automated Test Generation As an Emerging .NET Practice Area  

A Microsoft Research project called Pex, which is short for parameterized exploration, takes an 
exploration approach to generating test code.12 Pex interoperates with another tool known as Moles. It is 
beyond the scope of this book to delve into the details of Pex and Moles; however, Appendix A provides 
resources for further investigation. The important idea is that Pex and Moles provide two important 
capabilities: 

• Generate automated test code 

• Perform exploratory testing to uncover test cases that reveal improper or 
unexpected behavior 

These two tools, Pex and Moles, are brought together as part of the Visual Studio Power Tools. 
MSDN subscribers can download Pex for commercial use. Pex works with Visual Studio 2008 or 2010 
Professional or higher. The sample code is provided as a high-level look at the code that Pex and Moles 
produces and how these tools are a .NET practice area worth investigating.13 

                                                 
11 I have used the NUnit Test Generator tool from Kellerman Software to generate literally hundreds of 
useful test method stubs to help write tests against legacy source code. For more information see 
http://www.kellermansoftware.com/p-30-nunit-test-generator.aspx. 
12 For more information see http://research.microsoft.com/en-us/projects/pex/downloads.aspx. 
13 Chapter 8 focuses on current automated testing practices while this section is about the emerging 
practice of automated test generation. An argument could be made that Pex and Moles belongs in 
Chapter 8. Think of this as a preview of one of the tools and technologies yet to come.  

http://www.kellermansoftware.com/p-30-nunit-test-generator.aspx
http://research.microsoft.com/en-us/projects/pex/downloads.aspx


CHAPTER 2  .NET PRACTICE AREAS 

30 

SAMPLE CODE: PEX AND MOLES 

You may want to review the book’s Introduction at this point to learn what is needed to run the sample 
code. 

For these instructions, it is assumed that the code for this chapter is found in your Samples\Ch02 folder. 
That folder is simply referred to with a dollar symbol ($). 

1. To start, open the Lender.Slos.sln file in Visual Studio under the $\2_PexAndMoles 
folder. 

2. In the Lender.Slos.Financial project there are two methods, 
ComputeRatePerPeriod and ComputePaymentPerPeriod, in the Calculator 
class. They perform very simplistic interest rate and loan payment computations. 

3. In the corresponding test project, Tests.Unit.Lender.Slos.Financial, there is a 
set of test methods that achieve 100% code coverage. 

Chapter 8 covers unit testing in-depth. The aim of this sample code is to focus on how Pex and Moles can 
add new insights to the test code that is already there. For many developers the goal of 100% code 
coverage is the ultimate metric that defines complete and comprehensive unit testing for them. With Pex 
and Moles, that illusion is broken. 

Running Pex to generate the parameterized unit tests is a straightforward process; however, it is beyond 
the scope of this book. If you would like to learn how to use Pex to create the parameterized unit tests, 
start with the files under the $\1_Start folder and the Pex documentation.14 The Parameterized Unit Testing 
with Microsoft Pex document is a detailed tutorial that covers parameterized unit testing and running Pex 
to perform exploratory testing. 

 
Running Pex to create parameterized unit tests adds a new project named 

Tests.Pex.Lender.Slos.Financial, which contains the test code that Pex generated. Once generated, the 
next thing is to select Run Pex Exploration from the project’s context menu. 

The results of the Pex exploration include three failing test cases; the output is in the Pex Explorer 
window, as shown Figure 2-2. One of the test cases is failing because the ComputePaymentPerPeriod 
method is throwing a divide by zero exception. The other two are caused by an overflow exception in 
that method. 

                                                 
14 For Pex documentation and tutorials see http://research.microsoft.com/en-
us/projects/pex/documentation.aspx. 

http://research.microsoft.com/en-us/projects/pex/documentation.aspx
http://research.microsoft.com/en-us/projects/pex/documentation.aspx
http://research.microsoft.com/en-us/projects/pex/documentation.aspx


CHAPTER 2  .NET PRACTICE AREAS 

31 

 

Figure 2-2. Output shown in the Pex Explorer window 

These three test cases are failing because the method-under-test is throwing exceptions that are not 
expected. The code is almost certainly not working as intended, which is the case in this example. There 
is code missing from ComputePaymentPerPeriod and Pex has revealed it: the method argument 
ratePerPeriod is not guarded against invalid values with if-then-throw code.  

By investigating, debugging, and analyzing the Pex tests, five new tests cases, as shown in Listing  
2-1, are added to the test code in the Tests.Unit.Lender.Slos.Financial project. With this, the Pex test 
code has done its job and revealed the unit testing oversight. The Pex generated code might or might not 
remain a project of the solution, depending on your situation. As an individual developer you could use 
Pex and Moles to enhance your unit testing, or as a team leader, you could use Pex and Moles to review 
the test code of others. The new Pex project could remain a part of the solution and pushed to the code 
repository as a permanent set of automated tests. 

In the end, the code in the method-under-test is improved with new if-then-throw statements so 
that all of these five test cases pass. 

Listing 2-1. Pex and Moles: Discovered Test Cases 

[TestCase(7499, 0.0, 113, 72.16)] 
[TestCase(7499, 0.0173, 113, 72.16)] 
[TestCase(7499, 0.7919, 113, 72.16)] 
[TestCase(7499, -0.0173, 113, 72.16)] 
[TestCase(7499, -0.7919, 113, 72.16)] 
public void ComputePayment_WithInvalidRatePerPeriod_ExpectArgumentOutOfRangeException( 
    decimal principal, 
    decimal ratePerPeriod, 



CHAPTER 2  .NET PRACTICE AREAS 

32 

    int termInPeriods, 
    decimal expectedPaymentPerPeriod) 
{ 
    // Arrange 
 
    // Act 
    TestDelegate act = () => Calculator.ComputePaymentPerPeriod( 
        principal, 
        ratePerPeriod, 
        termInPeriods); 
 
    // Assert 
    Assert.Throws<ArgumentOutOfRangeException>(act); 
} 

Through this example, it is very clear that Pex and Moles have the power to improve software. It 
revealed five test cases where invalid values of the argument ratePerPeriod were not being tested. The 
.NET practice area of automated test generation is emerging as a significant way to develop better test 
code. Microsoft Research has other projects that you can find within the general topic of Automated Test 
Generation.15 

Code Contracts 
Code Contracts is a spin-off from the Spec# project at Microsoft Research. 16 Code Contracts is available 
on DevLabs and is also a part of the .NET Framework in .NET 4.0, which is covered in Chapter 7. Code 
contracts are very relevant to code correctness and verification.17 The work is related to the programming 
concept of design-by-contract that focuses on 

• Preconditions: Conditions that the method’s caller is required to make sure are 
true when calling the method 

• Postconditions: Conditions that the method’s implementer ensures are true at all 
normal exit points of the method 

• Object Invariants: A set of conditions that must hold true for an object to be in a 
valid state  

The System.Diagnostics.CodeContract class provides methods to state preconditions, 
postconditions, and invariants. Code Contracts is then supported by two tools: Static Checker and 
Rewriter, which turns the CodeContracts method calls into compile-time and runtime checks. 

 Practice 2-10  Consider Code Contracts to Improve Testability and Software Verification 

                                                 
15 For more information see http://research.microsoft.com/en-us/projects/atg/. 
16 For more information see http://research.microsoft.com/en-us/projects/specsharp/. 
17 For a very comprehensive treatment of Code Contracts, see this 14-part series of blog postings: 
http://devjourney.com/blog/code-contracts-part-1-introduction/. 

http://research.microsoft.com/en-us/projects/atg/
http://research.microsoft.com/en-us/projects/specsharp/
http://devjourney.com/blog/code-contracts-part-1-introduction/


CHAPTER 2  .NET PRACTICE AREAS 

33 

The primary advantage of using Code Contracts is improved testability, a static checker that verifies 
contracts at compile-time, and the facility to generate runtime checking using the contracts. Code 
Contracts is a .NET practice area that is very powerful and should take off as the new features of .NET 4.0 
are more widely employed. 

Microsoft Security Development Lifecycle 
The Microsoft Security Development Lifecycle (SDL) is a secure application development program 
developed and instituted at Microsoft. Their approach to developing secure applications has been made 
available to all developers. Microsoft makes the SDL information and tools available for free. It includes 
a lot of helpful information related to security practices, guidelines, and technologies. Everything is 
grouped into seven phases: 

• Training 

• Requirements 

• Design 

• Implementation 

• Verification 

• Release 

• Response 

Based on their internal software development, the SDL techniques embraced by Microsoft resulted 
in software that is more secure. When they followed the SDL for a product, the number of security 
defects was reduced by approximately 50 to 60 percent.18 

 Practice 2-11  Appreciate Secure Application Development and the Microsoft Security Development Lifecycle 

The Microsoft SDL process lists many practice areas. For example, within the Design phase the SDL 
practice of Threat Modeling is highlighted. Threat modeling is a structured approach to identifying, 
evaluating, and mitigating risks to system security. This .NET practice area offers sensible ways to 
anticipate attacks and reveal vulnerabilities. Threat modeling helps better integrate security into your 
development efforts. 

The Verification phase points to the practice area of Fuzz Testing, commonly known as fuzzing. The 
idea behind fuzzing is straightforward:  

• Create malformed or invalid input data. 

• Force the application under test to use that data. 

• See if the application crashes, hangs, leaks memory, or otherwise behaves badly. 

                                                 
18 Source: Michael Howard, A Look Inside the Security Development Lifecycle at Microsoft available at 
http://msdn.microsoft.com/en-us/magazine/cc163705.aspx. 

http://msdn.microsoft.com/en-us/magazine/cc163705.aspx


CHAPTER 2  .NET PRACTICE AREAS 

34 

Fuzzing finds bugs and security vulnerabilities by trying to exploit problems that exist in the 
application.19 If there are potential security issues in an application, bad guys will exploit them to impact 
you and your end-users through denial of service attacks or worse. Fuzzing is a .NET practice area that 
helps find and fix problems proactively. 

It is important to know how to protect your applications from Cross Site Scripting (XSS), SQL 
Injection, and other attacks. A list of some of the key tools that the Microsoft SDL offers or is developing 
is presented in Table 2-5. These tools help in the development of more secure applications, which is an 
important .NET practice area. 

Table 2-5. Microsoft SDL Tools  

Name Description Benefits More Information 

Threat 
Modeling Tool 

Proactive approach 
to application 
security that 
diagrams, identifies, 
addresses, and 
validates threats. 

Helps to find and address security 
implications from the earliest 
design phases of a project. Moves 
development toward a “secure by 
design” attitude. Emphasizes 
threats based on component 
security and trust boundaries. 

www.microsoft.com/down
load/en/details.aspx?d
isplaylang=en&id=2955 

MiniFuzz MiniFuzz is a very 
simple file fuzzing 
tool for use during 
development. 

Fuzzing is very effective at finding 
bugs. Helps find denial of service 
and security vulnerabilities. 
Designed to ease adoption of fuzz 
testing by non-security people. 

www.microsoft.com/down
load/en/details.aspx?d
isplaylang=en&id=21769 

Code Analysis 
Tool .NET 

CAT.NET v2.0 is a set 
of rules that 
integrate with VS 
2010 and FxCop. 

Helps find potential issues and 
vulnerabilities in the software, 
related to things like: dynamic 
SQL, cross site scripting, cookies, 
and viewstate encryption. 

blogs.msdn.com/b/secur
itytools 

Windows 
Protection 
Library 

WPL combines 
defenses related to 
Anti-Cross Site 
Scripting (Anti-XSS) 
and SQL Injection. 

Helps prevent XSS attacks in 
ASP.NET applications. Uses a 
white-list of “known good 
characters”. Adds protection 
across character sets in different 
languages. 

wpl.codeplex.com 

Web 
Application 
Configuration 
Analyzer 

WACA scans an 
environment with 
respect to 
recommended .NET 
security practices. 

Helps verify and validate the 
application configuration as a part 
of testing. Examines things like 
web configuration, IIS settings, 
SQL Server, and Windows 
permissions 

www.microsoft.com/down
load/en/details.aspx?i
d=573 

                                                
19 For more information see http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-
code.aspx. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.microsoft.com/down
http://www.microsoft.com/down
http://www.microsoft.com/down
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx


CHAPTER 2  .NET PRACTICE AREAS 

35 

Summary 
In this chapter you learned about where you might find better .NET practices. Every day, new and 
different practices are being developed and adopted in areas like secure application development and 
Microsoft Research. The expertise and experience of the PnP group comes forth in guide books, the 
Enterprise Library, and the very thorough documentation and reference applications they offer. 

Most importantly, you learned that your team and organization have internal sources of better .NET 
practices. The retrospectives, technical debt, and defect tracking system are rich sources of information 
that can be turned into better practices. 

In the next chapter, you will learn the mantra of achieving desired results. Positive outcomes are the 
true aim of better practices and the yardstick with which they are measured. 



C H A P T E R  3 
 

      
 

37 

Achieving Desired Results 

All throughout a project—and in the end—results matter. Good results can build trust and poor results 
can destroy trust. Results are how you and your team are evaluated. Consider a typical project situation: 
everything is aligned to produce the results you get. The way people interact or do not interact, the 
hardware, the software, the staffing, the planning or lack of planning; these and many more influences 
yield the results. When the situation improves, there are better results. But bringing about organizational 
change is very challenging and is likely outside the influence of the team and its members. The goal of 
this chapter is to raise your awareness of specific changes you can control or influence and provide 
pragmatic and helpful techniques to realize better outcomes. 

This chapter is about being results oriented. As a developer or a team leader, positive outcomes 
come from taking practical approaches and concentrating on objectives. First, there is the planning that 
goes into making sure things start off right. You create the conditions for success by spending time 
listening and communicating about what the desired results are or should be. Achieving desired results 
is about making the effort to sort out the practical from the impractical, and about delivering, 
accomplishing, and showing positive outcomes. At the same time, a big part of achieving desired results 
is not allowing less important things or avoidable problems to divert or distract. 

Since just about every project involves people trying to work together, it goes without saying that 
people skills play a big part in what is achieved or not achieved. The Agile Manifesto recognizes the 
importance of individuals interacting by listing this as the first value.1 This chapter presents practical 
advice on how to get team members to collaborate with each other and work toward a common 
purpose. 

The practices covered in this chapter are summarized in Table 3-1. 

Table 3-1. Achieving Desired Results: Ruthlessly Helpful .NET Practices 

 Achieving Desired Results 

3-1 Make Sure That Success Conditions Exist 

3-2 Itemize All Things That Are out of Scope 

3-3 Insist on Reaching a Common Understanding 

3-4 Use Wireframes to Visually Unite Requirements, Structure, and Realism 

                                                 
1 Available at http://agilemanifesto.org. 

http://agilemanifesto.org


CHAPTER 3  ACHIEVING DESIRED RESULTS 

38 

 Achieving Desired Results 

3-5 Diagram, Document, and Communicate the System’s Architecture  

3-6 Create a Mockup for Every Report 

3-7 Keep Asking for Detailed Examples 

3-8 Establish an Archetype That Others Can Follow 

3-9 Focus on Deliverables, Not on Activities 

3-10 Compare Results to the Objectives, Metrics, and Focus Area 

3-11 Visualize Trends to Understand and Appreciate Progress over Time 

 

COMMENTARY 

Many years back, I was on a large project building my employer’s next generation of commercial financial 
software. As the project was getting off the ground it became clear that there were two significant 
differences of opinion. First was the question of whether the new application should be a port of the 
existing system or whether it should have a whole new set of features and functionality for new customers 
in a new market. Second was the question of whether the new application should be a stand-alone 
Windows desktop application or a browser-hosted, multi-tiered application. These are huge differences 
that generated a lot of conflict. Initially the decision was made to build the web application with all new 
functionality. Through planning and prototyping, it became clear that the budget and schedule were too 
small and the technical implications too big. Another round of planning and prototyping revealed that what 
would be delivered was not going to match the vision. Again and again, this project could never reconcile 
these differences. Executive management, vice presidents, product managers, developers, analysts, and 
testers each had their own opinions on these two topics. The project’s success hinged on the team lining 
up behind a fundamental vision and direction, but it never came and the project was ultimately terminated. 
Without success conditions no project can achieve desired results. 

On another project, I once sat in a requirements review meeting. The analyst who wrote the document 
guided the participants through each section, one section at a time. Every detail in the document was 
covered. As I sat there I became aware that the two people who needed to understand the requirements, 
the developer and the tester, were not engaged. These key individuals were not interacting with the 
analyst. I interrupted to ask the tester a question: “Is this what you think the users want?” The answer was 
an emphatic “no.” She then spoke about how the current system works and how the users do their job and 
how the system is tested. Soon, the developer was at the whiteboard diagramming the process. The 
analyst was helping by pointing out new features and how the process needed to change. Soon, these 
folks were really communicating. They were engaged with one another. They were arriving at a common 
understanding of the desired results and how to achieve them. 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

39 

Success Conditions 
How a project starts often makes the difference between success and failure. If the conditions are right 
from the beginning, the project often maintains favorable conditions. The team keeps coming back 
together and regrouping when problems and challenges arise. When the wrong conditions exist from the 
outset, bad things, like conflict and confusion, remain. Soon, misunderstandings lead to more 
misunderstanding. Conflicts continue. Expectations are missed. Thrashing is never-ending. 

There are projects that seem doomed to fail from the beginning, in which everyone knows that 
things are going to fail from the start and freely admits it. A different scenario is where everything starts 
off fine, and it is only in retrospect that the project seemed doomed. Sometime after the project fails to 
deliver or is cancelled, someone mentions that the project was hopeless and others join in and agree. It 
is as if everyone on the project knew that the project started out wrong and was prearranged to fail. If 
you were to interview the team and dig further you would find two things missing all along: awareness 
and acknowledgement. Either they were not aware that the project lacked the success conditions, or, if 
they were aware, they did not acknowledge the severity of the problems. Silently, the team members 
allowed the project to start off wrong and kept quiet as things continued to run badly. It was not until it 
was too late or in retrospect that failure seemed the likely outcome. 

All project team members must take an active part in the project. Every individual must work hard 
to be aware of potential problems and raise their voice when success conditions are absent. The goal is 
not to eliminate problems but to raise awareness and get everyone to acknowledge problems, risks, 
issues, and concerns. On any given project, an individual can help everyone see the hidden flaws, point 
out undue optimism, and insist on a reasonable plan of approach. 

 Practice 3-1  Make Sure That Success Conditions Exist 

Projects that have the right success conditions have few interruptions, intrusions, and interference; 
the project work is considered too important to disturb. In contrast, projects with a lot of stopping and 
starting, team members who join and leave, and external meddling and prying, are inevitably late, over 
budget, or fail. It is hard for individual team members to deal with all the task switching. Developers find 
it especially difficult owing to the nature of development work. Programming and debugging require a 
lot of concentration and a good short-term memory. A lot of task switching can destroy developer 
effectiveness. Developers need to work together to communicate and coordinate. This means they need 
to have a lot of available time to talk and work together, and to develop an understanding and a rapport. 
Everyone on the project must raise awareness and work to limit diversions, distractions, and disruptions 
that destroy project success. 

 Caution  There are many projects that have very ambitious and abstract success-conditions. This can be a 
good thing, as with NASA’s Apollo program, but usually leaves the project feeling adrift. It is important to set 
smaller objectives that can be achieved in a limited amount of time. This is the concept behind agile sprints. 
Establish the short-term success conditions early and make sure they align to the overall success conditions. 
Compare and measure progress in the micro-scale sprint to that of the macro-scale project. 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

40 

To this point the success conditions are defined by context and preconditions; it is hard to change 
or even influence the circumstances. You cannot avoid the types of problems that arise at this stage. You 
cannot stop their reoccurrences. These problems include things like team members’ aptitude, long-
standing grievances, and no training budget. The goal is to find coping strategies and ways to minimize 
the impact. Even as the project gets underway, however, there is one area that can improve: the capacity 
of the team members to deliver. This often comes in the form of on-the-job training and mentoring. In 
broader terms there are three areas to improve: knowledge, skill, and attitude. These areas of 
development are illustrated in Figure 3-1. 

 

Figure 3-1. The conditions for success: knowledge, skill, and attitude 

Knowledge is concerned with recognizing and understanding what to do. For team members, there 
is knowledge about many topics, such as project objectives, technology, reasonable plans-of-approach, 
features, coding standards, working with other teams, and many others. Clear, consistent, and complete 
communication is the way knowledge is transferred to and within the team. 

Skill is about knowing how to do something. It is about experience and training and climbing the 
learning curve. Without the right skills, knowledge cannot be turned into action. A developer that lacks a 
crucial skill can appear stuck or unmotivated. Few want to draw attention to the fact that some 
competency is lacking, but without help there is no progress. Recognize the fact that without skill-
development the results will suffer. Training, self-paced tutorials, demonstrations, and mentoring are all 
ways to develop skills within the team. 

Attitude is about knowing why to do something and wanting to do it. It is about motivation and 
interest. Without the right attitude, even if the knowledge and skill are present, results lack efficiency 
and creativity. A developer without the right attitude can be blatantly uncooperative or quietly 
unproductive. There is an important sequence here, illustrated by the arrows in Figure 3-1. First, spend 
time to figure out if there is missing knowledge and discuss that. Then, spend time working on skills and 
proficiency to figure out if there is a problem in that area. Finally, if you are sure that a problem does not 
stem from lack of knowledge or skill, then focus on attitude. Spend time listening and diagnosing the 
problem. Once you fully understand the cause of the problem, solutions will present themselves. 

For any project to be successful, the proper conditions must exist. As an individual team member 
you are able to gauge your own knowledge, skill, and attitude. Team leaders need to have a regular, open 
dialog with team members. Both one-on-one and in groups, ask team members to consider these 
questions: 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

41 

• Do I know what to do? 

• Do I know how to do it? 

• Am I motivated to do it? If not, why not? 

These questions apply to all aspects of the project, from requirements to technology to specific 
practices. These questions apply to all objectives and priorities. Table 3-2 lists a few possible priorities 
and examples of some of the knowledge, skills, and attitudes that might relate to that priority. For 
example, if correctness is a high project priority, then automated unit testing with the NUnit framework 
may be the way the team decides to address it. However, in this example, one team member does not 
know that automated testing is a serious priority, another does not have any experience with unit 
testing, and a third is skeptical of the benefits. 

Table 3-2. Examples of Priorities and How They Might Relate to Knowledge, Skill, and Attitude 

Priority Knowledge Skill Attitude 

Correctness Aut omated Testing NUnit Unconvinced 

Functionality Lo an Limits Algorithms Confused 

Schedule Plan Estimation Doubt 

Testability MVC Pattern ASP.NET MVC Excitement 

Scalability Ana lysis Profiling Overwhelmed 

 
Knowledge is improved through communication and understanding. For example, in this case, keep 

repeating again and again that automated testing is important to you. Ask team members about the 
automated testing they are doing. Measure test coverage percentages and share the results. 

 Note  The advice here is to communicate what it is that you value. The emphasis in this example is on letting 
others know that you value automated testing. Since the ultimate goal is to have everyone self-supervise, refrain 
from strangling the process by being the “supervisor.” Promote initiative, ownership, and results. Focus less on 
process and more on encouragement. 

Skill is improved through training and experience. In this case, there ought to be hands-on 
examples of how to write proper unit tests. The test code needs to be reviewed. The focus is on learning 
and improving. Talk about project prerequisites, such as formal training. Add time to the schedule for 
mentoring and on-the-job training. 

Attitude is a lot more complicated than knowledge and skills; however, it may be more important. 
There are no easy answers. Some negative concerns reflect real project dilemmas that ought to be 
addressed. The first priority is to become aware of the team member’s honest attitudes, for better or for 
worse. Build off an acknowledgement that their rationale is important to get out on the table. Dialog is 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

42 

good even if there’s no real solution. Perhaps the result is a statement of reluctant support: “I am not 
convinced automated testing is the right approach, but I will support it because I want to see the project 
succeed.” An openly supportive skeptic is a lot better than a quietly unsupportive skeptic. 

Project Inception 
Every project starts with some initial period of time when things are just getting going. On some projects 
this is just an informal kickoff period when team members begin working together. On larger projects or 
with formal processes, there is a project inception phase. The team is forming, and everyone has a 
different idea of what the project is all about. As you would expect, there are differences. Some of the 
team members are excited to be using a new tool or technology. Some are expecting to have detailed 
requirements fully written up with use cases and scenarios. One is disappointed and angry that he is not 
the team lead. Others fear that the goals are unrealistic, the deadline unachievable, and expectations are 
way too high. Excitement, anticipation, anger, and fear; there is a lot of emotion before the project has 
really started. 

First and foremost, project inception is a period of knowledge transfer. The project leaders must 
discuss and communicate with each other to ensure they are clear on what the project is all about. These 
leaders must then communicate to the team in consistent terms and expectations. The whole team must 
have an open dialog that completely covers topics and includes questions like the following: 

• What is the business justification for the project? 

• What is the project scope? What is definitely out of scope? 

• What are the key features and objectives that drive the architecture? 

• What are the candidate technologies and plans-of-approach? 

• What are the identified risks? How will they be mitigated? 

• What is the preliminary project schedule and budget? 

Too often projects get started with a lot of lingering questions. Team members should not make 
assumptions. The tough questions need to be asked. Individuals must make and test assertions that 
press these issues. 

During the inception period it is very important that everyone see the same big-picture concept. 
Everyone must know what deliverables are to be delivered. This is the time to both share the vision and 
have a meeting of the minds. As an individual team member, you must remain alert to any differences 
you are seeing and actively point them out. 

Out of Scope 
Perhaps more important than specifying the system’s requirements is deciding what is definitely out of 
scope. People are reluctant to talk about what is not going to be done. Assumptions are made, which 
lead to future misunderstandings and unmet expectations. For example, developers must not 
automatically assume that globalization is out of scope. If you think globalization is out of scope then 
make that assertion and insist that the project manager record that it is not an objective. 

 Practice 3-2  Itemize All Things That Are Out of Scope 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

43 

Take the time to list out all features and functionality that are out of scope. Be sure that the list is 
explicitly clear and completely detailed. The goal is to remove any assumptions, which lead to later 
misunderstandings.  

Diversions and Distractions 
Time is a resource you spend whether you want to or not. Any project can save money by not spending 
on servers, software, and training, but time marches forward. This is why diversions and distractions 
cause developers to fail to achieve desired results. Many interruptions and intrusions eat into precious 
development time. 

One way to limit diversions is to cap the time spent on concerns that you can neither influence nor 
control. Use those criteria to estimate the value of spending time on a specific topic. For example, if you 
feel you have no influence on a decision, but getting to a decision is important, then put your time and 
effort into setting a deadline for the decision. Avoid spending time and energy on things you have no 
influence over. 

Another way to limit diversions and distractions is by facilitating effective collaboration and 
communication that does not intrude and impose on the developer’s time. Establish a set time to hold a 
very short meeting, such as the daily standup meeting favored by agile development. Prevent 
distractions, delays, and progress blockage by using collaboration tools like discussion boards instead of 
ad-hoc disruptions and the unreliable relaying of information from one developer to the next. 

Almost by definition, something that distracts is not important to you or your team. It may be 
important to someone else, but their priorities are not your priorities. Take a moment to consider these 
questions: 

• Is this issue or interruption important to me or the project? 

• Where is the urgency of this issue or interruption coming from? 

When an issue comes up, it may only be important to one person. A production crisis is important 
because users are impacted, but addressing a technical support question that the help desk ought to 
handle is unimportant. An executive’s concerns are important because retaining that person’s support is 
important to the project, but analyzing a favorite feature that is not in scope is unimportant. Someone 
intrudes on your time because it is important to them, but you are responsible for figuring out if it is 
important to you and your team. When unimportant issues are raised by important people, an effective 
strategy is to pivot the conversation from the specifics of the issue to a discussion of competing priorities 
for time and resources. It is amazing how quickly awareness and acknowledgement of your priorities 
changes things. 

The Learning/Doing Balance 
Developing a new skill can increase efficiency. Finding a better approach can dramatically improve a 
situation. Better practices do lead to better results. There is no doubt that you must spend some time 
learning to be more effective. To be more productive you must increase your capacity to produce. 
However, if you spend too much time learning then you cannot be productive. The learning/doing 
balance is about appreciating both sides of the equilibrium. Consider these questions: 

• Will gaining new knowledge and understanding be more helpful than applying 
what I already know? 

• Is the desired result to see developers gain greater competence, capacity, and 
efficiency, or is it to see them produce immediately? 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

44 

• Will applying current know-how and practice be more useful than developing new 
understandings or better insights? 

• Is there a belief that less effective, short-term results are more important than 
improved, long-term results? 

Achieving desired results is about striking the right balance between increasing the capacity to 
accomplish and actually getting things done. There are many tasks that cannot be done properly without 
basic knowledge, yet there are some things that cannot be learned without doing. Most of what is taught 
in school and in training courses is the basic knowledge. Riding a bicycle, driving a car, and facilitating a 
meeting require experience to gain mastery. Know when to learn and when to apply what is already 
learned. 

 Note  Schedule pressure is the enemy of learning new tools and technologies. If time constraints are an issue 
then you should not be considering unfamiliar tools and technology. Time pressure is very hard to manage while 
you are learning on the job. People usually jump directly into writing production code even though they are still 
learning the technology and only have a rudimentary or naïve understanding. 

Common Understanding 
Without a common understanding there is no agreement. Any differences in understanding are sure to 
cause problems. It could be a simple difference of fact: one person thought the decision was to put the 
control on the left-hand-side of the screen while another thought it was going on the right. It could be a 
difference in opinion: one thinks it is better on the left but another thinks it is better on the right. It could 
be a difference in priority: one thinks the users find it more usable on the left while another feels it is 
more obvious on the right. Reaching a common understanding of facts, opinions, and priorities is 
important. This practice is about working to gain that common understanding. At the high level, 
frequent misunderstandings center on project objectives, success criteria, and contending values. At the 
detail level, misunderstandings are about requirements, tools, technology, patterns, approaches, 
standards, and guidelines. 

 Practice 3-3  Insist on Reaching a Common Understanding 

Watch for the warning signs of misunderstandings: unclear objectives, vague success criteria, 
dubious value. Keep the individuals interacting until the specific differences are identified. Use clear 
diagrams and drawings to pull out facts from people’s minds so that everyone can see them. As for 
opinions and values, decisions need to be made by the person or persons responsible for them. 
Discussion is a good way to reach consensus, but an authority decision may eventually be needed. 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

45 

Wireframe Diagrams 
Pictures are often a lot better than words. Many users cannot describe what it is they want, but they 
know it when they see it or when they like it. Why spend time discussing and describing what cannot be 
envisioned? Drawing at the whiteboard or creating a diagram helps everyone take their mental image 
and construct the same image. 

User interface (UI) prototyping is often seen as an effective way to show what the results will look 
like. These UI prototypes tend to have two significant drawbacks:2  

• There is some turn-around time from when the idea is discussed and the 
prototype is shown. The best UI prototyping tools still have a lag time that inhibits 
collaboration.  

• A prototype can leave the wrong impression, with respect to completion. Many 
times it is only the developer who knows the extent to which a prototype is 
incomplete or fatally flawed. The primary design-drivers behind a prototype are 
haste, shortcuts, and illusion. This is a bad foundation for further development. 
Unlike a concept car or a model of a building, most users cannot distinguish 
between the software prototype and the expected result.  

Avoid UI prototypes and favor wireframe mockups. 

 Practice 3-4  Use Wireframes to Visually Unite Requirements, Structure, and Realism 

Wireframe diagrams offer an effective way to model and visualize. They strike a balance between 
collaboration and not leaving the wrong impression of completeness. With a wireframe mockup tool 
everyone can work together to fill in gaps and reconcile differences. Figure 3-2 shows an example of a 
wireframe mockup created with Balsamiq, a wireframing tool. In this illustration, the wireframe shows 
what information needs to go on the screen and what the user is able to do on the screen. Annotations 
explain specific rules and limitations. The purpose is focused squarely on arriving at a common 
understanding. This helpful activity pictures the screen and addresses topics such as 

• Information to display 

• Features and actions available 

• Main purpose and areas of emphasis 

                                                
2 These statements are not true for proof-of-concept (PoC) prototypes. The PoC prototype is geared 
toward establishing and validating technical feasibility and design. The PoC prototype tells you what is 
flawed or what is hard to do at an early stage, which mitigates risk. The PoC prototype is a quick-and-
dirty proving out of a solution strategy; therefore, you must explicitly prohibit developers from using 
PoC prototype code as the basis for production code. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 3  ACHIEVING DESIRED RESULTS 

46 

• Rules, limitations, and options 

• Use cases and scenarios 

Time spent on wireframe mockups should focus on three topics: presentation of information, 
navigation within and between screens, and the layout and usability of a screen. 

• Presentation of information is about what needs to go on the screen and how it 
can make things easy to read and understand. 

• Navigation is about screen relationships, options to move around, and the 
workflow. 

• Layout and usability are about the user interface design, which includes graphics, 
links, buttons, select-boxes, and other common UI elements. 

 

Figure 3-2. Example wireframe mockup using Balsamiq 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

47 

Documented Architecture 
The high-level design of the system brings order to development. With a good architecture, the detailed 
design and development aligns to the decisions and direction communicated between the project 
stakeholders and the development team. This alignment is important to establish a framework and an 
outline of the hardware, software components, interfaces, and interactions. The architecture is a 
common understanding of the solution strategy for the project. 

 Practice 3-5  Diagram, Document, and Communicate the System’s Architecture 

The architecture must document, diagram, and communicate the high-level design of the system to 
include the following: 

• Software components and their interaction 

• Core technologies and toolsets 

• Driving requirements and priorities 

• Technical and non-technical constraints 

• Important principles, guidelines, and standards 

Report Mockups 
Although not every system has separate reports, many do. The reports can represent a significant 
amount of work; they imply requirements for the database and are drivers of the design. For example, 
there are the requirements for how the reports display the data. There are requirements for the data that 
needs to be queried. Unfortunately, not enough attention is paid to reports early in the project lifecycle. 
This practice is about developing a common understanding of the reporting requirements of the project 
and providing the developer with enough detail to deliver proper reports. 

Everyone ought to see the reports visually represented. Using a spreadsheet is an excellent way to 
mock reports. Real numbers with actual totals can be shown. The layout, fonts, and other visual 
elements can be shown. More importantly, a spreadsheet is something analysts can use to collaborate 
with users and keep the requirements up to date. 

 Practice 3-6  Create a Mockup for Every Report 

For each and every report use a spreadsheet, such as Excel, to create a mockup of the report. Include 
representative data and have every total and calculation accurately shown. The goal is a clear and 
complete understanding of everything that goes into making that report. Try not to short-circuit the 
process, otherwise important detail is going to be overlooked. As a developer, follow the data back to its 
source and resolve any inconsistencies or missing data in the database. 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

48 

Detailed Examples 
Too often the examples that are supplied to developers are too simplistic or incomplete. This is 
especially true for infrequent scenarios or exception cases. Initially, simple examples help to explain the 
concept and focus on the primary use cases. However, software systems are required to properly handle 
the more elaborate usage scenarios. As the requirements progress from the high level and get into the 
detail it is a lot more important to keep the detailed examples coming. A deeper common understanding 
comes from sweating the details. 

Complicated algorithms and business rules require detailed examples. To write code that 
implements these algorithms and business rules, developers need to understand the details and verify 
that the code meets all of the requirements. Trivial examples lead to trivial code. Many complete and 
detailed examples help an effective developer unit test and correctly implement the code. Detailed 
examples also help with debugging and troubleshooting. The full intention of the code is better 
understood with examples. 

 Practice 3-7  Keep Asking for Detailed Examples 

All through the project, from requirements to testing, keep asking analysts and testers to provide 
detailed examples of how the system is supposed to work. Ask that wireframes be filled in with sample 
data. Ask that report mockups show proper data. Ask that business rules be spelled out with examples 
and illustrations. Ask for data that reproduces defects and errors. Pressing for this information is 
important to properly develop, diagnose, and resolve many of the significant project issues. 

Build an Archetype 
Establishing an archetype is about creating a prime example that other developers should imitate and 
follow. An archetype is a prototype written in a specialized way; it ought to be imitated. This approach 
recognizes that many developers learn by example. If it is clear that there is an established archetype 
then their work can start by emulating a good model of the system. This practice is about creating 
models that others can and should follow. Other benefits of an archetype include 

• Proving out the architecture 

• Making abstract ideas real 

• Allowing other developers to react to and improve the design 

In addition to being a standard, the archetype helps to confirm and prove out the architecture. The 
high-level design started on a whiteboard or in the designers’ heads. The ideas and approaches need to 
be proven. Build the archetype in such a way that it contains functionality that passes through all the 
layers of the architecture. 

Many developers learn by example. Learning a new architecture involves either building something 
with it or referencing an existing model. A good archetype is like a tutorial that walks the developer 
through a modestly-sized, across-the-board application. When ASP.NET MVC first became available, 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

49 

one of the best ways to learn the concepts was to build the NerdDinner application.3 The NerdDinner 
application is an archetype, serving to communicate “what to do” and “how to do it”. 

A good archetype is a lot clearer than many explanations. Many developers can react to and 
improve upon an archetype. Their suggestions are often very helpful. Many developers are “show me the 
code” oriented and are impatient with explanations and debate. They want to see a working example of 
the architecture and development style. In fact, the archetype is effective at solving the dilemmas 
associated with sorting out knowledge, skill, and attitude. For developers who have the proper attitude, 
the archetype is all they need to become productive. For developers who have genuine concerns, the 
archetype provides a way to discuss the specifics. 

 Practice 3-8  Establish an Archetype That Others Can Follow 

Create an archetype with enough detail to serve as a model for other developers to follow. 
Sometimes called a “vertical slice,” the archetype is a top-to-bottom example of how the system is 
intended to work. It need not be a separate application. In fact, it is often better to work through a 
significant area of functionality. The important idea is to expect that other developers imitate the coding 
style, design patterns, and approaches. The archetype is the model you want others to follow, by and 
large. 

Desired Results 
The desired results of a project focus on the software that is delivered. There are many positive outcomes 
to achieve but without working software, most projects are judged to have fallen short. In general terms, 
the working software is the primary deliverable. Secondary deliverables, such as documentation, are 
important, but should not come at the expense of the primary deliverable. 

In software projects, activities are not results. All activities must serve the purposes of obtaining 
results. On a day to day basis, programmers talk about writing code, but in the final analysis delivering 
quality features and functionality is how the programmer is evaluated. It is the positive outcomes from 
writing software that the project stakeholders are looking for. There is an expectation that all activity 
leads to positive outcomes.  

Deliverables 
Every deliverable represents some tangible or intangible thing. It could be an installation package or it 
could be the ability to save a loan application. In the first case, the installation package is a tangible file 
on the network somewhere. It is either there or it is not there. It either works or it does not work. In the 
second case, the user sits down to the system to enter a loan application. Assuming the user is entering 
the application properly, the system either lets the user save or it does not. Saving the application is the 
intangible deliverable of the user accomplishing their work. 

In the final analysis, desired results are strongly tied to good deliverables. Measuring progress with 
interim results is important. Properly sized deliverables are either done or not done. 

                                                 
3 See http://www.asp.net/mvc/tutorials/introducing-the-nerddinner-tutorial. 

http://www.asp.net/mvc/tutorials/introducing-the-nerddinner-tutorial


CHAPTER 3  ACHIEVING DESIRED RESULTS 

50 

 Practice 3-9  Focus on Deliverables, Not on Activities 

A focus on deliverables should be results oriented. It can be described in objective terms, such as 
level of completeness, correctness, or consistency. Users see and experience deliverables. As a developer 
or team lead, focus on the deliverables and not the activities. Yes, the activities are important, but only 
insofar as they generate quality deliverables. 

Positive Outcomes 
One way to look at desired results is through the lens of satisfaction and quality. Customers and 
stakeholders are satisfied when the anticipated and expected features and functionality are delivered. 
Complete quality is when every requirement is met and the system serves every useful purpose. 
Consider a new car buyer. During the initial shopping period the customer focuses on the car’s styling, 
bells and whistles, and various features. There’s a lot of attention paid to a long wish list, but a car’s 
indispensable purpose is to provide transportation. That can be taken for granted. The same is true for 
the structural quality. The customer implicitly expects the car to be well-engineered and reliable. While 
shopping, many car buyers are focused on what they want and not on what they expect. However, 
during the first year of ownership customers become keenly aware about whether the car is useful or 
not. After a few years of maintenance costs and reliability issues the structural quality becomes 
important. 

Achieving long-term success depends on long-term satisfaction. For many projects the emphasis is 
always on features and functionality. In the earliest stages of the project the users and analysts focus on 
the wish list and what the current system cannot do. The minimum requirements and essential behavior 
are taken for granted. As the project continues, the quality assurance team focuses testing on the 
features and functionality of the system. This is referred to as “fitness of purpose” testing. 

The system’s end-users and customers are able to assess their satisfaction by comparing it to how 
pleased they are with what the software does or does not do. The testing team is able to gauge the quality 
of the system against the requirements. There is a favorable reception based on meeting the minimal, 
essential features and delivering wish-list items. Unfortunately, what results is a system that may be 
structurally unsound. The nonfunctional pieces are not in place and soon the initial happiness is 
replaced with dissatisfaction. Slow performance, bugs, scalability problems, and other nonfunctional 
deficiencies destroy trust. 

Figure 3-3 divides satisfaction and quality into four quadrants. In quadrant 1 are the expected 
features and functionality that define basic quality. The outcomes in quadrant 2 are about building a 
robust system with reliable and performant code. In quadrant 3 outcomes are about the satisfaction that 
comes from getting more than was expected. In quadrant 4 the system is technically elegant, well 
written, and wonderfully designed. 

For many projects the requirements are overly focused on the quadrant 3 outcomes: the wish list. As 
the project proceeds, completion is evaluated through testing that focuses on the outcomes in quadrant 
1. For some projects these are the only two focus areas. It is during acceptance testing or after 
deployment that the quadrant 2 outcomes are put to the test. If the results are unsatisfactory then 
complaints about performance, reliability, and scalability start flooding in. A system that once looked 
good starts to look bad. As for quadrant 4, when the outcomes are not achieved the problems are usually 
internal to the system, but the implications of spaghetti code and restrictive designs are very real and 
show up in maintenance and enhancement costs. 

3



CHAPTER 3  ACHIEVING DESIRED RESULTS 

51 

 

Figure 3-3. Quadrants of satisfaction and quality 

To achieve positive outcomes that hold up in the long run there needs to be a logical sequencing of 
the project focus areas. Both quadrants 1 and 2 are foundational. It is necessary to perform much of the 
work that relates to these areas. This is especially true of requirements that relate to structural quality 
and performing structural testing. However, the overall system cannot neglect any of the four quadrants. 
The highest level of satisfaction comes from delivering in quadrants 3 and 4, but never to the exclusion 
of quadrants 1 and 2. Here is more detail on what is in each quadrant: 

• Minimal, Essential: The basic features and functionality, which is the primary 
focus of the project. Working in outcomes in this quadrant is about delivering “the 
right things.” Delivering results in this area is about both meeting the expected 
requirements and making sure the system does everything it needs to do. This is 
the expected. This is the system’s capacity to serve its useful purpose. 

• Robustness: The strength of the system is the secondary focus of the project. 
Working on outcomes in this quadrant is about delivering “in the right way.” 
Delivering results in this area is about the structural soundness, performance, 
reliability, and dependability. These are the expected nonfunctional requirements. 

• Wish List: The things that are desired or wished for is the third aspect to focus on. 
Working on outcomes in this quadrant is about delivering “the desirable items.” 
Delivering results in this area is about adding functionality that users and 
customers are hoping for. These are beneficial features and functionality. 



CHAPTER 3  ACHIEVING DESIRED RESULTS 

52 

• Craftsmanship: Uncommon quality is the fourth aspect to focus on. Working on 
outcomes in this quadrant is about delivering with “superior experience and 
expertise.” Delivering results in this area is about things like technique, insight, 
anticipation, and future-proofing. This produces surprising quality. 

It is with these four quadrants in mind that the objectives, metrics, and expected value can be sorted 
out. Since all these aspects are important, objectives within each should be established. List all the 
objectives and how they relate to a focus area. Find ways to monitor or evaluate or otherwise measure 
each of them. Be sure to point out how too much focus on one quadrant reduces the focus on another. 
Short-term pressures will push out long-term value. Remember that the things customers or users value 
today are not what they value in the long term.  

 Practice 3-10  Compare Results to the Objectives, Metrics, and Focus Areas 

This practice applies to either an individual or a team. Find a way to compare your results to the 
objectives. For example, a primary objective is to make sure the feature allows users to get their job 
done. Find a way to compare results with a metric or measure. For example, all of the project’s minimal 
and recommended .NET framework guidelines are followed. Find a way to compare results to a focus 
area. For example, what has been completed so far needs to be tested under heavy use to be sure the 
system can scale properly. Positive outcomes are about more than immediate results; they are about 
achieving superior quality and exceeding expectations both in the short term and in the long term. 

Trends 
The desired results need to be viewed from more than just a single point in time. The trend over time is 
also very important. A graph that shows the trend communicates the rate of improvement. People have a 
difficult time appreciating the relationship between events that are disconnected in time. A trend graph 
can show how a better practice is slowly delivering the desired results. Conversely, it can show how the 
situation has deteriorated over time in the absence of an important practice. It is important to keep track 
of the results over time. It is important to know how the current situation relates to the past. 

Trends help identify practices that work and those that do not work. Trends identify systemic 
problems, points of variation, and leading indicators. For example, if a graph that tracks the number of 
passing automated tests unexpectedly drops then it is an indicator that something noteworthy has 
changed. It might not be terrible, but it is important and worth investigating. If it is detrimental to the 
project then the change in trend sounded the alert. The burn down chart used in agile software 
development is an example of an important trending technique.4 The burn down chart shows how 
completed work is being accomplished over the course of the sprint and compares the actual outcomes 
to sprint planning and expectations. 

 Practice 3-11  Visualize Trends to Understand and Appreciate Progress over Time 

                                                 
4 For more information see http://en.wikipedia.org/wiki/Burn_down_chart. 

http://en.wikipedia.org/wiki/Burn_down_chart


CHAPTER 3  ACHIEVING DESIRED RESULTS 

53 

Take some time to ensure that results data is collected at regular intervals. Use effective charts and 
graphs to visualize the trends. The goal is to understand how the situation is changing over time. It is 
important to create in your mind and the minds of others an appreciation for progress, abrupt change, 
or the need for improvement. 

Summary 
In this chapter you learned about achieving desired results. The first section discussed the success 
conditions and how all project participants need to take an active part in the project. The chapter also 
covered the importance of raising awareness and acknowledging gaps in knowledge, skill, and attitude. 

You learned about the importance of common understanding. This chapter covered several specific 
techniques that foster agreement and draw out differences in understanding that might exist. These 
techniques included wireframe diagramming, documenting the architecture, creating report mockups, 
insisting on detailed examples, and building an archetype. 

You learned about the importance of deliverables as opposed to activities. Special attention needs 
to be paid to both the short-term and the long-term positive outcomes of satisfaction and quality. In the 
final analysis, achieving desired results is measured against the objectives, key metrics and measures, 
and the overall value. 



C H A P T E R  4 
 

      
 

55 

Quantifying Value 

Adopting better practices is about adding value to the development process. Common sense says that 
development is more effective when you follow sound principles, good practices, established guidelines, 
and known success paths. Similarly, development is more effective when you avoid erroneous ideas, bad 
practices, mistaken techniques, and failure paths. Unfortunately, common sense is not common 
practice. Switching to a new and different practice involves a change away from current habits and 
routines. To provide motivation, it is important and often necessary to quantify the value of a better 
practice. 

This chapter presents the different stakeholder perspectives and how those perspectives influence 
the perceived benefits of changing a practice. The goal is to learn and understand what each individual 
or group values. Later, the sources of data are discussed. This includes quantitative and qualitative data, 
anecdotal evidence, and testimony. The emphasis is on how the data needs to be related back to the 
audience and their values. 

As an individual developer, quantifying the value of adopting a new or different practice is 
important to justify or explain the change. For example, if you are adopting unit testing, quantifying the 
value in terms of a lower defect count could strengthen the perceived benefits. As a team leader, 
decisions you make to adopt a better practice should result in noticeable value for the time it takes to 
implement the change. 

Although this chapter is written from the perspective of someone sitting on the outside of your 
situation, it is intended to be more than just consultative. However, without knowing your 
circumstances it is hard to connect in a way that is emotionally relevant to you. In practice, change that 
comes from inside the project and the organization is better received and longer lasting. The insider-
champion helps break the emotional barriers and implements and sustains the change from within. You 
and your team members are the insiders. Hopefully, you receive this information as a renewed call to get 
concerned about and positively influence your projects. This chapter should get you fired up and 
emotionally involved in ways that serve to gain the support of others. This chapter describes specific 
practices to help with quantifying the value of adopting better development practices. The practices 
covered in this chapter are summarized in Table 4-1. 

Table 4-1. Quantifying Value: Ruthlessly Helpful .NET Practices 

 Quantifying Value 

4-1 Learn and Understand What Different Stakeholders Value 

4-2 Identify Financial Measures and Start Tracking Them 

4-3 Connect Improved Practices to Improved Manageability 



CHAPTER 4  QUANTIFYING VALUE 

56 

 Quantifying Value 

4-4 By Definition, Better Processes Deliver Better Products 

4-5 Use Common Sense to Justify Improving Common Practice 

4-6 Collect and Track Metrics and Numbers 

4-7 Collect and Track Descriptions and Observations 

4-8 Gather and Share Stories of Success 

4-9 Pull Together Testimonials from Customers and Experts 

 

COMMENTARY 

When I first started advocating best practices I made bold assertions, such as unit testing will yield higher 
quality. What I did not realize was that if my goal was 20% fewer defects, the project manager now 
expected zero defects. In time, my bold assertion was seen as just another big promise with small results. 
Even with the same expectations, does a 30% increase in developer time justify a 20% decrease in 
defects? Today, my advocacy is stated a lot more modestly: “Let’s try unit testing and see if anything 
improves.” I have learned to avoid bold assertions like “higher quality,” “more affordable,” “more 
maintainable,” and “faster to build.” I want to underpromise on the benefits and overdeliver on the results. 
I want the change process to be incremental and iterative. Even if the improvements are modest, the 
results are concrete and tangible. Bold assertions are abstract and imagined; everyone imagines and 
expects bold results. 

Following a new practice, even if it is a better practice, requires a change from the current status quo to 
the new status quo. Introducing change is never easy. Everyone needs time to consider the impact of the 
new practice. People need to learn by experiencing the change before they agree that the change was for 
the better. The team needs to discuss the change and feel that they are involved before they commit. Get 
them involved in the discussions on potential changes. Seek agreement on a trial period that does not 
force the change down their throat. The important point is that a request to quantify the value is often 
really a diversion. What many people want is a sense of involvement before offering up their commitment. 

Recently, I asked a team leader if his team was following a particular best practice. His reply was, 
basically, “We do not follow that practice. We feel like we wouldn’t get significant value for the time it 
would take to implement.” In one sense, he is right to feel that way. If he is not convinced the practice 
returns sufficient benefit for the time invested then he should not follow it. How do you convince him? One 
approach is to convince him that the value is more significant than he perceives. Another, convince him 
that the time to implement is lower than he perceives. If you are a team lead or project manager then a 
third option is to change the expected results of the team. Certain results, such as a daily NCover report, 
can only come from following a new practice. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 4  QUANTIFYING VALUE 

57 

Most people are looking for numbers and facts. Unfortunately, there is little hard data to support the 
rewards of adopting best practices. It would be nice to be able to point to reliable sources that show things 
like adopting a particular practice has a 23% return on investment. Sorry to say, these numbers are elusive 
and often unconvincing. I believe this is because implementing a new and different practice is incremental 
and iterative. Continuous improvement is about climbing the learning curve and gaining long-term 
effectiveness. For reluctant, skeptical, or cynical folks, the lack of hard data supports their stance. Since 
actions speak louder than words, it is important to start making positive changes in areas within your 
control and influence. Next, quantify the value of those changes. You will likely find that your results 
demonstrate how the improvements are bearing fruit and showing value. 

Value 
The term value means many things to many people; managers, developers, end-users, and customers. If 
a manager wants you to quantify the value of following a best practice then it is likely the manager wants 
an estimate of the financial reward. The manager is looking for a monetary cost-benefit analysis. They 
are also looking for better ways to manage and control development projects without risking the results 
they are already getting. 

For many developers, the time and effort it takes to implement the practice is a driving cost. 
Developers want to know the benefits as they relate to getting their work done faster or easier or better. 
Customers and end-users often look at benefits in terms of more features and better quality. They fear 
that the practice comes at a cost to them or extends the delivery schedule. They need to know that you 
appreciate that a new or different practice is not a better practice if it does not fit within the current cost 
and schedule restraints. Spend the time to learn and understand the values that different stakeholders 
hold dear and the drawbacks they are concerned about. 

 Practice 4-1  Learn and Understand What Different Stakeholders Value 

In any development project there are many different stakeholders and each person may value 
different things. Let’s put the focus on the following themes: 

• Financial benefits 

• Improving manageability 

• Increasing quality attributes 

• More effectiveness 

Financial Benefits 
In general, executive and senior managers are interested in hearing about financial rewards. These are 
important to discuss as potential benefits of a sustained, continuous improvement process. They come 
from long-term investment. Here is a list of some of the bottom-line and top-line financial rewards these 
managers want to hear about: 

• Lower development costs 



CHAPTER 4  QUANTIFYING VALUE 

58 

• Cheaper to maintain, support and enhance 

• Additional products and services 

• Attract and retain customers 

• New markets and opportunities 

On the other side of the coin is financial risk. This is usually the source of an unstated objection 
holding a manager back from approving a change. The implicit assumption is that the practice puts 
productivity and efficiency at risk. Do not ignore financial risk. Address it head on. Identify potential 
risks and explain how they are going to be mitigated. Whenever possible, advocate new and different 
practices that are either no cost or low cost, carry few potential risks, or offer powerful benefits. 

Every organization is already tracking financial measures. The information may not be available to 
you, but you probably have indirect measures. The project manager or the accounting department 
tracks the total number of hours each person works on a project. Effort, measured in person-hours, is an 
indirect measure of cost. For example, attempt to find the total person-hours to find, report, fix, track, 
and verify a typical bug. You will be surprised at the total effort involved with a typical defect. As an 
individual developer, the fewer defects you create the more money you save the company. As a team 
lead, multiply that number by the size of your team. Is 20% fewer bugs worth an increase of 30% in 
development time? A compelling financial argument might be well within your reach. 

 Practice 4-2  Identify Financial Measures and Start Tracking Them 

For a small commercial software development company trying to grow, there may be many 
financial benefits that interest senior management. Table 4-2 lists a number of direct and indirect 
measures as they relate to potential financial benefits. Starting from the column on the right, identify the 
indirect measures that are relevant to your organization and start measuring them. New and better 
practices ought to improve these metrics. Over time, with better practices, the direct measures will 
probably improve. Test that hypothesis by asking about the direct measures your organization is 
tracking. If the results are showing up there, you can connect the dots—although it’s not likely you will 
need to. 

Table 4-2. Potential Financial Benefits As They Relate to Direct and Indirect Measures 

Potential Benefit Direct Measure Indirect Measure 

Lower cost of 
development 

Wages, retention rate, 
contractor invoicing 

Effort, defect count, initial 
support calls, morale 

Lower cost of 
deployed system 

Hardware costs, software 
licensing 

Performance, scalability 

Total cost of 
ownership 

Total development lifecycle 
costs 

Maintenance effort, support 
effort, enhancement effort 

Revenue Sales growth, renewal rates, End-user happiness, positive 



CHAPTER 4  QUANTIFYING VALUE 

59 

Potential Benefit Direct Measure Indirect Measure 
competitive advantage reviews, new features 

New customers Sales to new customers, 
marketing response statistics 

Better features, easier-to-
use, improved accuracy 

New markets New product offerings, new 
countries, consumer sales 

Delivering product, better 
design, globalization 

Improving Manageability 
Managers are under pressure to perform. This means that they are responsible for accomplishments 
through the efforts of others. If a change lowers their team’s performance, they can expect to be held 
accountable for the consequences. This pressure puts the focus on managing and controlling in ways 
that favor the status quo. Ironically, many new and improved practices could actually help managers 
become better able to manage and control projects. 

Project managers are usually the managers closest to the activities of developers. Functional 
managers, such as a Director of Development, are also concerned with the day-to-day work of 
developers. For these managers, important values spring from general management principles, and they 
seek improvements in the following areas: 

• Visibility and reporting 

• Control and correction 

• Efficiency and speed 

• Planning and predictability 

• Customer satisfaction 

 Practice 4-3  Connect Improved Practices to Improved Manageability 

Table 4-3 illustrates the relationship between a new development practice and the expected 
improvement in project manageability. This table is not a comprehensive list of practices and the 
manageability they offer, but it should provide you with a place to start. The important point is that 
quantifying the value to many managers is about connecting the development practice to the principles 
they value. This is especially true if the practice gives them something that they do not already have; the 
capability to manage and control projects. 



CHAPTER 4  QUANTIFYING VALUE 

60 

Table 4-3. Development Practices and Improved Manageability 

Development Practice Improved Manageability 

Continuous integration Visibility and reporting, control and correction 

Automated testing Control and correction, efficiency and speed 

Automated deployment Visibility and reporting, control and correction, efficiency and speed 

Mockups Planning and predictability, customer satisfaction 

Code analysis Control and correction, visibility and reporting 

Increasing Quality Attributes 
End-users and customers are generally interested in deliverables. When it comes to quantifying value 
they want to know how better practices produce better results for them. To articulate the benefits to 
end-users and customers, start by focusing on specific topics they value, such as 

• More functionality 

• Easier to use 

• Fewer defects 

• Faster performance 

• Better support 

The message to communicate is that by following better practices the team will produce a better 
product. That common sense message needs to be supported by enough detail to make it clear that 
customer satisfaction and quality are the team’s goal. 

 Practice 4-4  By Definition, Better Practices Deliver Better Products 

Table 4-4 shows a list of general quality attribute categories. Those in the left-most column are 
commonly referred to as FURPS: functionality, usability, reliability, performance, and supportability. 
There are certainly many more, such as localizability. (You can extend the list of categories as needed.) 
In the column just to the right of the FURPS are examples of specific components within each category. 
In the right-most column there is a list of development practices that relate to each FURPS category. By 
presenting specific details in a table, such as Table 4-4, you make it clear to end-users and customers 
how better development practices deliver better products. 



CHAPTER 4  QUANTIFYING VALUE 

61 

Table 4-4. General Quality Attributes Related to Development Practices 

FURPS Specific Components Development Practices 

Functionality Current feature set, new features, 
security, new capabilities 

Wireframe mockups, report mockups, 
continuous integration, unit testing, 
security testing 

Usability Aesthetics, consistency, ease-of-
use, tooltips 

Wireframe mockups, report mockups 

Reliability Correctness, frequency of error, 
downtime 

Code analysis, unit testing, stability 
testing, automated deployment 

Performance Speed, response time, throughput Performance testing 

Supportability Lower effort/time to extend 
features, shorter turnaround time 
for bug fixes 

Code analysis, unit testing, stability 
testing 

More Effectiveness 
Developers and team leads are generally interested in individual and team effectiveness. Quantifying the 
value of better practices to developers is a lot easier if the emphasis is on increasing effectiveness. The 
common sense argument is that by following better practices the team will be more effective. In the 
same way, by avoiding bad practices the team will be more effective. Developers are looking for things to 
run more smoothly. The list of benefits developers want to hear about includes the following: 

• Personal productivity 

• Reduced pressure 

• Greater trust 

• Fewer meetings and intrusions 

• Less conflict and confusion 

 Practice 4-5  Use Common Sense to Justify Improving Common Practice 

Common sense reasoning is certainly not the whole story. Justification has another component. 
Changing to a new or different practice involves a change in habits. At this point it comes back to 
knowledge, skill, and attitude. For example, if writing unit tests is not an established habit then getting 
into the habit takes some time and patience. The need for patience is important. Also, developers ought 
to have some time to practice and develop skills. Developers need to experience the change before they 



CHAPTER 4  QUANTIFYING VALUE 

62 

accept the benefits. Quantify the value of new and different practices by using a combination of 
common sense arguments and learning by experience. 

One very good metaphor that makes a lot of sense is the notion of technical debt (introduced in 
Chapter 2).1 The principle behind technical debt is that many development decisions have implicit or 
hidden long-term negative consequences that exceed the short-term benefits. The short-term 
convenience pushes out long-term advantage. A shortcut causes long-term detriment. There is always 
future reckoning. The consequences of all the accumulated technical debt can be very severe. Technical 
debt is often taken on without intention. Often it builds up from a lack of awareness, unwillingness to 
acknowledge the deficit, or understating the potential impact. To be more effective the development 
team must accumulate technical debt judiciously. Table 4-5 presents one way to chart technical debt as 
it accumulates. Each development practice is carefully considered, one by one. There are five shown in 
Table 4-5. 

Let’s consider the first one, continuous integration, as an example. The development team 
considers the short-term reward of not practicing continuous integration. Since there is no CI server, 
there is no time spent setting up and configuring the CI server. Developers save time by deferring and 
ignoring any potential integration issues; no time is wasted contemplating integration. However, not 
following the continuous integration practice does have long-term risks. It is likely that there will be a 
much longer integration period. The team is probably going to spend time resolving issues or 
redesigning components. The amount of time and effort is both unavoidable and unpredictable. In the 
end, integration must occur and all integration issues will have to be resolved. It is quite clear that 
continuous integration offers significant value in areas like problem prevention, better design, and 
greater predictability. 

Table 4-5. Technical Debt Accumulation Chart 

Development Practice Short-Term Reward Long-Term Risk Inevitability 

Continuous 
integration 

No CI server, no time 
spent integrating 

Much longer integration period, 
time spent resolving issues 

Must be paid in 
full 

Wireframe mockup Less dialog, shorter 
meetings 

Missed expectations, finger 
pointing 

Must be paid in 
full 

Unit testing No time spent writing test 
code, greater apparent 
productivity 

Careless mistakes, integration 
issues, regressed functionality 

Must be paid in 
full 

Code analysis No time spent analyzing Violations of guidelines, poor 
maintainability, no problem 
prevention 

Long-term debt 

Automated 
deployment 

No time spent automating Configuration headaches, 
reoccurring mistakes, 
unpredictable deployments 

Must be paid in 
full 

                                                 
1See http://www.martinfowler.com/bliki/TechnicalDebt.html. 

http://www.martinfowler.com/bliki/TechnicalDebt.html


CHAPTER 4  QUANTIFYING VALUE 

63 

Sources of Data 
To quantify something you need data. This section is about identifying and tracking down that data. 
Let’s focus on looking at the following three sources of data: 

• Hard numbers 

• Observations 

• Anecdotes and testimony 

Once the data is collected, it needs to be analyzed and understood. The goal is to find the meaning 
behind the data. Some things to consider: 

• Relevant: Is the data related to one or more development practice? 

• Correlated: If a practice is changed, is the data changing in an associated way? 

• Noticeable: Is a change in a practice going to without a doubt change the data? 

With the data and the analysis one or more conclusions are made and the results presented. It is the 
data that ultimately makes it possible to make and support conclusions that quantify the value of 
improving development practices. 

Quantitative Data 
In a broad sense, quantitative data involves numbers that can be measured. Many people feel that 
quantitative data is hard data because it is numeric and measurable. Since the numbers are collected 
and quantified, the data seems objective and rational. Quantitative data may be correct as a collection of 
measurements, but it is the interpretation that gives the data meaning. For example, a method that has a 
very high cyclomatic complexity (a code quality metric covered in Chapter 11) frequently indicates that 
the method is hard to maintain, but that is not always the case. If that method contains a very large 
switch statement then the cyclomatic complexity measure has a high numeric value, but a code review 
might decide that the method is reasonable and maintainable. The cyclomatic complexity measure 
prompting a code review is a good thing, but it should not always force a redesign or rewrite. 

 Practice 4-6  Collect and Track Metrics and Numbers 

Collecting and tracking quantitative data is valuable; facts are hard to argue with. Table 4-4 presents 
a list of the types of quantitative data to collect and some example measures. Remember, these numbers 
are facts. Collect and track this data with the intention of understanding the facts with analysis. They 
also support decisions, retrospectives, and learning. In Chapter 11 the discussion of static code analysis 
presents NDepend, which is a product that computes many quantitative measures.2 Tracking these 
metrics can support manageability. For example, the measure of non-blank, non-commented lines of 
code (NCLOC) may seem unimportant for development; however, NCLOC correlates to the overall size 

                                                 
2 Scott Hanselman provides a great overview of the NDepend metrics in a blog post at 
www.hanselman.com/blog/EducatingProgrammersWithPlacematsNDependStaticAnalysisPoster.aspx. 

http://www.hanselman.com/blog/EducatingProgrammersWithPlacematsNDependStaticAnalysisPoster.aspx


CHAPTER 4  QUANTIFYING VALUE 

64 

of the software system. In this way, tracking NCLOC helps to gauge overall progress. Using NCLOC, data 
can be normalized by calculating various relative-size ratios. It may be helpful to track the total number 
of unit tests divided by the NCLOC number for the code-under-test. Projects that write a lot of unit tests 
but only focus on the percentage coverage see a high initial test-count to NCLOC ratio if testing is 
thorough. If unit testing thoroughness drops dramatically then the ratio drops because unit tests that 
test boundary conditions and corner cases are being neglected. 

Table 4-4. Types of Quantitative Data with Examples of Numeric Measures 

Type of Data Examples of Numeric Measures 

Quantities Test count, number of developers, builds-per-day, defects-reported-
per-day, defects-fixed-per-day 

Size NCLOC, deliverablefile size, database size 

Duration Build time, deployment time, load time, project duration, time-to-code 
feature 

Effort Developer person-hours, tester person-hours, analyst person-hours, 
technical services person-hours, customer support person-hours, 
salesperson person-hours 

Cost CI server hardware, CI server software licenses, productivity tools, code 
analysis tools, code coverage tools, design analysis tools 

Code quality 
metrics 

Cyclomatic complexity, defects per NCLOC, percentage coverage, 
afferent and efferent coupling, depth of inheritance tree 

 
Just as important is how the data is presented and interpreted. Draw careful conclusions. Make sure 

those conclusions are consistent with everything you know and believe about the circumstances. Shown 
in Table 4-5 are the counts of the number of classes under six namespaces. The counts are then broken 
down by ranges of maximum cyclomatic complexity (CCMax). In this example, the guideline is that 
classes with methods where CCMax is higher than 15 are generally harder to understand and maintain. 
Classes that have methods with a CCMax higher than 30 are particularly complex and should be split in 
smaller methods or redesigned. This example data is collected from NCover output reports. 
Unfortunately, the data in the table is tedious to collect and interpret. Figure 4-1 illustrates the same 
data in Table 4-5, but it is shown as a dashboard report. 

Table 4-5. Example Data: Number of Classes and Maximum Cyclomatic Complexity 

Namespace No. of Classes CCMax < =15 CCMax <= 30 CCMax > 30 

Financial 29 15 11 3 

Data Access Object 27 27 0 0 

Model 15 13 2 0 



CHAPTER 4  QUANTIFYING VALUE 

65 

Namespace No. of Classes CCMax < =15 CCMax <= 30 CCMax > 30 

Web MVC Controllers 11 11 0 0 

Data Access Layer 9 9 0 0 

Common 10 0 5 5 

 
The dashboard report in Figure 4-1 is generated and displayed with the continuous integration 

server. An MSBuild script reads the NCover XML, processes the data using XPath, and uses XSLT to 
generate the HTML report. This approach takes the quantitative data and provides an at-a-glance 
picture, which reveals the code complexity. With this information the team leader knows the classes 
within both the Financial and Common namespaces that warrant further code review. The project 
manager has visibility into these areas of complexity and appreciates the need to review the code. 

 

Figure 4-1. Example dashboard: number of classes and maximum cyclomatic complexity 

Figure 4-2 illustrates how charting quantitative data helps coordinate between development 
objectives and management objectives. The solid line is the actual percentage coverage of the unit tests 
written to test the code developed during the Lender SLOS Upgrade project. The dashed line shows the 
trend. The developers are working to meet the following code coverage objectives: 

• Greater than 60% coverage after 30 working days 

• Greater than 75% coverage after 60 working days 



CHAPTER 4  QUANTIFYING VALUE 

66 

• Greater than 85% coverage after 90 working days 

Based on the data presented in the chart, there is now a clear retrospective story to relate. The first 
two objectives are met because of a surge in effort. Tracking the coverage percentage provides positive 
reinforcement to the developers. The project manager is looking for results and progress in this indicator 
of structural quality. 

The trendline shows three stages of interest. The first is the early stage when developers are learning 
to write effective unit tests during the first 30 days. The second stage is the leveling off in the 30 to 60 day 
period. New code and new unit tests are added with continued practice and skill development 
occurring. The third stage represents a renewed effort based on new approaches and insight into how to 
write unit test code effectively. After 70 working days the symbol coverage percentage is at 92.9%. This is 
well ahead of plan. 

The practice of code analysis, in this case measuring coverage percentage, is very useful and 
worthwhile. It is clear that the quantitative data helps explain the value of this practice. 

 

Figure 4-2. Tracking percent coverage over time 

Qualitative Data 
Qualitative data deals with descriptions that can be observed but not measured. For example, when an 
end-user looks at a new web page design and describes its appearance, it is qualitative data. The 
observations are written down and compiled into a qualitative assessment. Qualitative data is subjective. 
Surveys are an effective way to take descriptions and observations and compile the results into charts 
and statistics. In effect, the qualitative data is projected into numeric measures. Unfortunately, a good 
survey is hard to design, conduct, and compile. It is unlikely to be helpful to start a lot of surveying to 
quantify the value of adopting better practices. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 4  QUANTIFYING VALUE 

67 

Since qualitative data is useful, a good strategy is to start collecting descriptions and observations. 
The principle to follow is to ask questions that evoke far-reaching answers. For example, ask the 
developers: is the source code elegant or is it ugly? Listen to the descriptions that come back in response. 
You might hear a lot of complaints, but you ought to dig in to gather specifics. Collect and track the 
descriptions and observations. The responses and discussions are likely to center on general qualitative 
topics, such as 

• Appearance 

• Usability 

• Satisfaction 

• Uncertainty 

• Confidence 

• Expectation 

 Practice 4-7  Collect and Track Descriptions and Observations 

Table 4-6 provides examples of the kinds of evocative questions that get people relating qualitative 
descriptions and observations. The question is intended to provoke a response. Capture the response as 
feedback and qualitative data. Over time, if the better practices are adding value, the responses change. 
This is an informal survey of key individuals or a consensus opinion. It does not have to be scientific. It is 
intended to help show a trend in the subjective thinking. Over time, as people feel that they are being 
heard, the descriptions and observations get more specific and actionable. The important point is that 
you are tracking the improvements in terms that the respondent values. 

Table 4-6. Evocative Questions and Qualitative Responses over Time 

Evocative Question Today In 30 Days In 60 Days In 90 Days 

Is the software elegant or is it 
ugly? 

Ugly So mewhat better Much 
improved 

Elegant 

Is the software straightforward 
to use or is it cumbersome? 

Cumbersome A little easier Much easier Straightforward 

Does talking about the software 
bring forth bliss or upset? 

Upset Less 
disappointing 

Delighted Bliss 

Is the software being built with 
predictability or irregularity? 

Irregularity So me regularity Mostly 
predictable 

Predictability 

Are the deployments providing 
confidence or doubt? 

Doubt Significa nt 
concerns 

Few 
reservations 

Confidence 



CHAPTER 4  QUANTIFYING VALUE 

68 

Evocative Question Today In 30 Days In 60 Days In 90 Days 

Is the software acceptable or 
insufficient? 

Insufficient Basic features Many new 
features 

Acceptable 

Anecdotal Evidence 
Anecdotal evidence helps when there is not enough other information available to quantify the value of 
a practice. An anecdote is a story that describes what happened under a particular set of circumstances. 
It is a one-sided story. To be evidence, the anecdote must be both true and verifiable. To be useful, the 
anecdote must provide information that helps the reader draw a meaningful conclusion. 

There are two forms of anecdotal evidence that many find convincing: success stories and 
testimonials. The success story concentrates on the description of the experience, and the testimonial 
focuses on the credibility or the relevance of the source. Here are three examples of success stories that 
many managers find convincing: 

• Automated testing: With automated testing, a very thorny bug was detected early 
in the development process and the problem was resolved by fewer people in a 
shorter amount of time. The bug was resolved before it made it to QA. The issue 
was resolved in 1.5 hours by the developer who introduced the problem. By most 
accounts it would have taken several people, both testers and developers, days to 
reproduce, diagnose, and resolve the issue if it had made it to QA. 

• Automated deployments: The new automated deployments are much, much faster 
than the previous manual deployments. Deployment times have dropped from a 
range of 8 to 18 hours down to about 2 to 4 hours. The deployments are more 
reliable and more predictable. Because the maintenance window is shorter, 
deployments are less inconvenient to the end-user. Today, deployments are a 
great deal less stressful for the people involved. 

• Continuous integration: With unit tests running in the continuous integration 
server there is now an acknowledgement that failing tests indicate an issue that 
needs to be addressed immediately. Developers are running all the unit tests 
proactively, before pushing code changes. They are fixing the code when they 
discover an unexpected issue. They are discussing the correct long-term solution 
to integration issues and recommending design changes to the team lead. The 
whole project team is actively engaged in improving quality, not just the QA 
testers. 

Take the time to gather and compile the stories of success as new or different practices are adopted. 
Find ways to share the success stories in conversation, through a blog, or in an e-mail. The experiences 
of your own organization are naturally credible and relevant. Few people argue with success. 

 Practice 4-8  Gather and Share Stories of Success 

A good testimonial needs a credible source and a relevant circumstance. If the testimonial is from 
an outside expert then that person’s expertise and experience ought to be appreciated. If your 



CHAPTER 4  QUANTIFYING VALUE 

69 

organization is using Agile then the authors of The Agile Manifesto ought to be credible.3 In Appendix A 
there is a list of books and articles by many well-respected authors and best practices advocates. 

Testimonials from an end-user or customer are often a lot more credible and relevant than the 
opinion of an outside expert. These are stakeholders. If an end-user is happy with the results then that 
speaks very loudly. Happy customers are important because customers vote with their checkbook and 
managers never forget that fact. 

 Practice 4-9  Pull Together Testimonials from Customers and Experts 

Summary 
Quantifying value is about knowing what others value and making arguments that make rational sense 
to them. For many, hard data is crucial. Since there is such variability from situation to situation, the 
only credible numbers are the ones your organization collects and tracks. It is a good practice to start 
collecting and tracking some of those numbers and relating them to the development practices that are 
showing improvements. Beyond the number, there are many observations and descriptions that support 
the new and different practices. It is time to start describing the success stories and collecting 
testimonials. Communicate how each improvement is showing results in many positive ways. 

In this chapter, you learned about quantifying the benefits of new and different practices. You saw 
how senior managers, front-line managers, end-users, and developers often have different definitions 
for the value. Remember that what one group perceives as valuable, another might not value. You 
learned about the many sources of supporting data. You saw how indirect measures, qualitative data, 
and anecdotal evidence can blend together. You learned how to make the connections between the 
development practice, the conclusions from the data, and the values of others.  

In the next chapter, you will learn about the importance of the many aspects of strategy. Too often 
developers are focused on tactical issues and implementing solutions. Strategy is about understanding 
problems, high-level planning, setting objectives, and gaining important insights. When you truly, fully 
understand the strategic situation then the better practices present themselves. 

                                                 
3 See http://agilemanifesto.org/authors.html. 

http://agilemanifesto.org/authors.html


C H A P T E R  5 
 

      
 

71 

Strategy 

This chapter is about new and different practices that have strategic implications. The definition of 
strategy that this chapter’s title refers to is “a plan, method, or series of maneuvers or stratagems for 
obtaining a specific goal or result: a strategy for getting ahead in the world.1” And so, ironically, this 
chapter provides you with tactics to help you focus on strategy. 

In this chapter we focus on three strategic areas related to better development practices: 

• Awareness: Make changes that improve perception and consciousness. 

• Personal process: Make changes at the individual level. 

• Leverage: Make changes that produce big results. 

Even software projects that have every advantage can fail to deliver the desired results. The project 
can have the latest tools and technology. The team may be very well qualified. Everything might appear 
to be set up for success. However, the strategic questions are short-changed. In a rush to get the 
developers to the task of writing code, something important is missed. The developers do not know the 
strategy. Big questions remain in the developers’ minds, such as 

• What are the objectives we are trying to meet? 

• Why are we trying to meet those objectives? 

• Who wants us to meet those objectives? 

• How can we best meeting those objectives? 

The developers need to know the answers to these questions—clearly, correctly, and completely. 
Many projects dive quickly into the day-to-day, focus on technical minutiae, and waste time on other 
unimportant topics. Opportunities to focus on strategy are missed because they are pushed out by 
proximate, pressing issues. What is truly important, like answers to the strategic questions, is neglected. 
The practices listed in Table 5-1 are intended to move the focus back to strategy to the benefit of the 
whole project. 

                                                 
1 Source: http://dictionary.reference.com/browse/strategy. 

http://dictionary.reference.com/browse/strategy


CHAPTER 5  STRATEGY 

72 

Table 5-1. Strategy: Ruthlessly Helpful .NET Practices 

 Strategy 

5-1 Use Brainstorming to Generate Ideas and Unleash Creativity 

5-2 Planning Is Essential: Organize and Consider How to Best Meet Objectives 

5-3 Add New and Better Ways to Monitor Conditions and Events 

5-4 Communicate Repeatedly, Proactively, and Effectively 

5-5 Plan the Effort to Build Capacity and Increase Ability 

5-6 Establish Habits That Increase Teamwork and Release Creativity 

5-7 Plan Tasks to Steadily Build Capacity and Increase Ability 

5-8 Automate As Many Manual Steps As Possible 

5-9 Develop Alert Systems to Help Make Adjustments 

 

COMMENTARY 

In my early days as a software developer, there was something I could never figure out. Why is it that two 
people can see exactly the same facts and come to different conclusions? To me there seemed to be no 
rational explanation. Why was this happening? In a design meeting I would argue, “Obviously, we need to 
do it my way, not your way. Look at the facts; mine is the better way.” Then it dawned on me. Most of the 
disagreements were not about the facts. The conflict centered on differences of opinion and relative value. 
Each person had their opinions. One person valued one thing and another valued something else. Many 
developers are like this. The rationale I came to accept is that every developer arrives at a meeting with 
different experiences and knowledge. Underlying many of the strong opinions is a foundation of knowledge 
and expertise. Suddenly, my goals changed. I focused less on the facts and more on understanding the 
other developers’ experience and know-how. I gained a new awareness and began to learn a lot from 
other developers. 

While working for a commercial software company, I built a module for the mapping software. This was a 
core piece of functionality. I knew that if there was a defect in my work then it was going to be disruptive 
to other developers and hard to isolate. More importantly, QA would write bugs that would be hard to 
straighten out. My objective was to fully and completely test the module. I wrote a suite of tests that tested 
the module in every conceivable way. As I built the module, my manager seemed to think it was taking me 
too long. I planned. I wrote throwaway prototypes. I wrote a suite of tests as I wrote the code. I debugged 
the code. I built a suite of integration tests that ran every boundary condition I could imagine. In the end, I 



CHAPTER 5  STRATEGY 

73 

met the deadline and the system went to QA for system testing. In the following months there were only 
two bugs that were caused by a deficiency in that module. One was a small mistake, and the other was a 
corner-case I had not tested. Each took about 30 minutes to resolve and return to QA. During the team’s 
daily meetings the other developers had long bug queues. I was self-assured and confident in my code. I 
was not under a lot of pressure and happily fixed bugs in other areas. My commitment to quality paid off; I 
was proud of my work. Soon after, I was assigned to another project to develop the next generation 
system. 

Today, I have a somewhat regimented development style. These are habits that help me to be more 
effective. I write unit tests and step through every line of code in the debugger. Before I fix a bug I create a 
unit test that reproduces the bug. I run the entire application on my development box to make sure the 
code works as I intend it. Before pushing my changes, I get the latest code, merge changes, run a full 
rebuild, and make sure that all the unit tests pass. I do all this as part of a long-standing personal process. 
As I learn about new or better practices, I try them out and add them to my process, if the practice is 
helpful. When I find that something I am doing does not work, I improve my process. I assume that if I rush 
the process, I will make mistakes or problems will occur. I know that my personal process is not for 
everybody. That is fine. My personal process is my way of being careful and thorough. Not everyone 
appreciates it, but it keeps my defect rate low and my productivity consistent. More importantly, I have 
more fun writing software than trying to figure out why my code broke the build. 

Awareness 
The development cycle is full of opportunities to see important information as it emerges. Many of us 
miss this information, which could be a missed objective, an inadequate design, or a misunderstanding. 
This lack of awareness leads to future problems. Being able to see things clearly, especially when 
disconnected by distance or time, is strategically important. The strategy of raising awareness is about 
elevating the team’s ability to perceive and be conscious of key aspects of development, such as 

• Patterns: Things that repeat in some predictable way and present broad solutions 
to these common, reoccurring issues 

• Events: Occurrences of some significance that are worth considering with regard 
to preventing problems, resolving issues, or improving a process 

• Conditions: The state of things that point to instability, degradation, or a general 
need for improvement 

• Failure Paths: Known causes of failure or processes that are likely to lead to failure 

Perception is only one part of awareness. The other part is consciousness. You have to think about 
what it is that you see and hear. The thought process develops your reactions and choices. Information 
about code quality, for example, could be a warning sign that points to a real problem that is important 
to address immediately. On the other hand, the information could be unimportant. Both knowing there 
is an issue and knowing how to react to the issue are key elements of awareness. 

There is individual awareness—that is, those things you are aware of or another person is aware of— 
and there is the group’s awareness. Both are important. You may know there is an issue and believe it is 
significant. However, the rest of the team might not believe it is important. Generally speaking, 
communication is the way to handle differences in awareness. Through one-on-one and group dialog, 
knowledge and understanding improves for all. Perhaps each person perceives the situation differently 



CHAPTER 5  STRATEGY 

74 

because each has different experiences. You might see a pattern because you have read about the 
pattern. The important point is that effective communication is the strategic practice that raises the 
alertness of the whole team. 

Brainstorming 
There is something about the human brain that often makes it hard to do two things at one time. Talking 
and listening seems to be one of them. Understanding a significant, complex problem and solving that 
problem is another. For many tricky issues it is not until after you fully understand the problem that 
effective solutions present themselves. These problems have many variables, a lot of interrelated 
components, and hidden implications. To solve the problem, you must be aware of so many different 
things. Brainstorming opens the mind and engages the imagination. Ideas are spontaneously created 
and captured. Creativity takes over. The practice of brainstorming raises an awareness that allows 
people to see and hear new information. 

 Practice 5-1  Use Brainstorming to Generate Ideas and Unleash Creativity 

No matter how intelligent or experienced a person is, everyone benefits from collaboration. It is one 
of the principles behind code reviews, pair programming, and the Coding Dojo.2 Our ideas and thoughts 
are complemented or challenged by the ideas and thoughts of others. When you learn about the relevant 
experiences of others, the depth and quality of your thinking improves. Brainstorming is a way to 
facilitate this collaboration of ideas and experiences. Performed in a group setting, brainstorming 
techniques elicit new opinions and understandings that often help make the entire group more effective. 

Many brainstorming techniques are useful for both an individual and a group setting. Table 5-2 
contains a list of different ways to engage the imagination and generate new thoughts and opinions. On 
the Internet, there are many excellent sources of brainstorming techniques; take some time to try a few 
individually or in groups.3  

Table 5-2. Brainstorming Techniques: Ways to Unleash Creativity and Openness 

Name Application Getting Started Rationale 

Remove the 
Software 

Business process, 
Workflow analysis 

Ask how the business would 
accomplish its work without 
software or computers. 

Focus on the business problem. 
Gain an understanding of the 
problem that is independent of 
the software solution.  

                                                 
2 Developers sharpen their skills by performing a Code Kata (http://codekata.pragprog.com/) together. 
3 For a list of wide-ranging brainstorming techniques see http://celestinechua.com/blog/25-
brainstorming-techniques/. 

http://codekata.pragprog.com/
http://celestinechua.com/blog/25-brainstorming-techniques/
http://celestinechua.com/blog/25-brainstorming-techniques/


CHAPTER 5  STRATEGY 

75 

Name Application Getting Started Rationale 

Delphi Method Exchange of 
opinions, decision 
making 

Each group member submits 
written thoughts and opinions. 
A facilitator presents the ideas 
for the group to discuss and 
rank. 

People improve their thoughts 
with the opinions and ideas of 
others. Anonymous opinion is 
more spontaneous and blunt. 

Think About 
Yourself 

Improve code 
quality, clearer to 
read, easier to 
maintain 

Imagine that you just joined the 
project and now have to 
maintain the code. How 
specifically would you write the 
better code? 

Generate some empathy today 
for the maintenance developers 
of tomorrow. Focus on reducing 
complexity and obfuscation. 

Backward Pass Positive outcomes, 
preparation, 
completeness 

What needs to be ready before 
delivering or deploying? What 
ought to be rehearsed? 

Identify things that need to be 
done that might otherwise be 
forgotten or rushed. 

Planning Poker Estimation, find 
differences 

Use “voting cards” to reach a 
consensus on rough estimates 
and relative size of scope. 

Focus less on topics of 
consensus. Outlier opinion and 
reasons explained to the group. 

Planning 
The process of planning is actually a series of activities, which organize thinking about reaching a goal or 
meeting objectives. By planning things out, the team considers the mandatory or preferred sequencing 
of development activities. Thought is given to estimates of effort and timelines. Obstacles and 
dependencies are more apparent. Assumptions and preconditions can also be explored. The process of 
planning raises awareness. Everyone has a chance to see the high-level plan. The team is conscious of 
what the project is about and what needs to be done. 

A second element of planning is the plan-of-approach. For example, the architecture of the system 
is the technical plan-of-approach. It is developed through engineering analysis. The planning is about 
considering different options and making choices based on how best to meet the objectives. Take time 
to map out the approach at a high-level view of development topics, such as 

• Tools and technologies 

• Architecture and design patterns 

• Components and modules 

• Dynamics and interactions 

• Deliverables and deployment 

 Practice 5-2  Planning Is Essential; Consider and Organize Around How to Best Meet Objectives 



CHAPTER 5  STRATEGY 

76 

Sometimes overlooked, another part of planning is the idea of motivation. A project is done for 
someone or for some purpose. In the end, the project ought to serve an end-user or customer. During 
the planning process it is important to have an individual involved who can speak with the “customer 
voice.” In Agile development, that person is the product owner. Perhaps the best reason to have the 
product owner involved in planning is that that person can speak to the priorities and objectives of the 
end-user or customer. The product owner helps guide the planning toward the project’s goal. It is the 
product owner who keeps the team aware while planning. 

Planning makes everyone aware of the proper sequencing and what was considered and selected. 
By having everyone on the same page, individuals make decisions that line up with the decisions within 
the team. Through planning, different teams make decisions that line up with other teams. 

Monitoring 
In software, things are monitored by knowing conditions or events. As events occur or conditions 
change, the software reacts or responds. Monitoring is the software’s “awareness” of the state of the 
system. The same is true for the development process. With monitoring, the team is aware of conditions 
and events that improve development practices. For example, failing unit tests let the developer know 
that code is probably not working as intended. 

 Practice 5-3  Add New and Better Ways to Monitor Conditions and Events 

Many of the development practices described in this book improve monitoring. The monitoring is 
intended to alert the team to a potential problem. However, not every condition or event is a problem. 
The idea is that the monitoring is alerting you to an issue. You perceive a potential problem. You are 
conscious of where the issue is and where to start investigating. For example, a failing unit test could 
mean there is a mistake in the source code, but it could also mean that the test code is wrong. The key 
benefit is that, whatever the cause, a change or correction is needed. 

Over time monitoring becomes more and more valuable only if false alarms are rare. Each alarm 
ought to be meaningful. Initially, the automated tests that are written by the developers may generate 
false alarms. That does not mean you should stop running the tests. It means the tests need to be written 
more effectively. In Chapter 8 there are many specific practices that help improve test code. 

Review the monitoring practices from time to time. Be sure that those practices can detect the 
proper conditions and events that alert the team to problems. Find ways to reduce the noise of false 
alarms. 

Communication 
Many development team leaders lament the fact that they spend so much time communicating. 
Ironically, under-communicating is usually the problem. In the beginning, the team lead does not send 
enough e-mails. The team lead does not keep an eye on whether the team is meeting objectives. Code 
reviews do not happen. Then, suddenly, the team lead is swamped by a tidal wave of communication 
that surrounds misunderstandings and missed expectations. As a team lead, if you do not feel like you 
are over-communicating then you are probably not communicating enough. You can find different 
approaches to keep it from being repetitious, but you must get the message out and confirm that it is 
received and understood correctly. 



CHAPTER 5  STRATEGY 

77 

As a team member, there are many effective ways to ask for and get the communication you need. 
Ask the questions that need to be asked. You may be confused, so ask for an explanation. Another way is 
to send an e-mail to the team lead that both provides your status and indirectly asks an important 
question. For example, “I am almost done with the bug fixes for the Loan Payment Calculator screen. My 
bug queue is empty. Unless there is something you think I should be working on, this afternoon I will 
start helping Pat with the Quarterly Report.” This message has the virtue of explaining your status and 
making a proposal. The e-mail provides the team lead with information to act upon and lets him know 
what you plan to do next. 

 Practice 5-3  Communicate Repeatedly, Proactively, and Effectively 

The whole topic of communication is quite vast. There are many things to learn and understand 
about how people communicate, and this section cannot cover it adequately. However, one insight to 
gain is that, through communication, the thoughts that are in your mind need to make it into another 
person’s mind. To make matters worse, many fundamental assumptions are often not made explicit; 
what is in your mind is not at all what is in the other person’s mind. For example, in a discussion on 
upgrading the object-relational mapping (ORM) package, the team leader is planning to switch from 
NHibernate 2.0 to Entity Framework 4.1, but the developers are thinking about upgrading to NHibernate 
3.1. The task is always referred to as the “ORM upgrade.” The team leader never explicitly said it was a 
switch to Entity Framework. Miscommunication is amusing when caught early. Caught late, it can be 
disastrous. 

Good, effective communication is of strategic significance. It is something worth getting right. Poor 
communication leads to misunderstandings, hurt feelings, and inefficiencies. Communication is helped 
by drawing diagrams, asking questions, meeting face-to-face, listening carefully, and articulating 
concepts clearly. Much of this is common sense but not common practice. Combine many different 
techniques together and know not to short-change communication. Here are examples of how multiple 
practices combine: 

• Architecture: Communicates with visuals and diagrams, at an appropriately high 
level, to give both an overview and multiple views of the system. 

• Convention over configuration: Communicates by having the developers learn and 
follow conventions, so developers need only worry about exceptions. 

• Archetype: Communicates a model of how the architecture works and provides 
software examples to emulate.  

• Unit testing: Communicates detail design and how the code is intended to work in 
a way that can easily be run in the debugger. 

There is such a thing as unhelpful communication. Inviting individuals or groups to meetings that 
they can skip is a typical example. Their attendance at the meeting is a waste of their time, or worse, the 
meeting could needlessly alarm or alienate them. Joel Spolskey offers a good description of the various 
forms of unhelpful communication.4 To avoid unhelpful communication, sort out the boundaries for the 
communication by considering these questions: 

                                                
4 See http://www.inc.com/magazine/20100201/a-little-less-conversation.html. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.inc.com/magazine/20100201/a-little-less-conversation.html


CHAPTER 5  STRATEGY 

78 

• Who is the audience that needs to know this information? 

• What is the audience expected to understand? 

• How can the information be best conveyed? 

• Why is the information useful or needed? 

• When is the follow up going to happen? 

These types of questions start the thought process regarding different communication options. For 
example, a blog post that explains a team convention is handy to have many weeks later when a new 
developer needs to know that same information. Instead of writing an e-mail, write the blog post and 
send an e-mail containing a link to the blog post. Examples of different ways to communicate are 
provided in Table 5-3. Try to combine multiple methods to provide a richer fabric of communication. 

Table 5-3. Communication Examples: Who Needs to Know What and Why 

Audience Expectation Method Motivation Follow Up 

Developers Keep this reference, 
learn this material, 
practice this, follow 
this convention 

E-mail, stand up 
meeting, intranet 
site, blog post, wiki 

To be helpful, 
establish 
convention 

Walk around and 
check in, team 
meeting, follow up 
e-mail, nagging 

Individual Rela te decision, 
urgent information, 
change this practice 

Phone call, IM, e-
mail, one-on-one 
and face-to-face 

Get started, timely 
adjustment, 
correct behavior 

Go over and check 
in, one-on-one 
encouragement 

Project 
Manager 

Here is the status E-mail, stand up 
meeting, intranet 
site, tracking 
software 

Show progress, 
report situation, 
avoid missed 
expectations 

Ask for questions, 
dig up comments 
or concerns 

Product 
Owner 

Candid feedback Team 
walkthrough, one-
on-one 

Improvement, 
recovery, 
correctness 

Omissions, 
frankness, clarity, 
inconsistencies 

QA Team Features ready-to-
test, defects fixed 

E-mail, stand up 
meeting, defect 
tracking system 

Report situation, 
avoid missed 
expectations 

Ask for questions, 
dig up comments 
or concerns 

Personal Process 
As individuals we each have a personal process. What we do and how we do it can make us more 
effective or less effective. As part of an individual strategic practice, you should work to improve your 
personal process to see improved results. The results you can expect are in higher software quality, 
greater productivity, better communication, more enjoyment, and a more successful career. An 
improved personal process starts by making a commitment to excellence. 



CHAPTER 5  STRATEGY 

79 

The practices presented in this book align to the principle of striving toward a more disciplined 
approach. This approach centers on learning, teaching, growing, and achievement. Consider carefully 
how to follow practices that deliver results for you and for others. For example, if you are more 
productive in the mornings then arrange your schedule to get up earlier and arrive at the office earlier. 
Eliminate distractions and propose later meeting times, whenever possible. Do this to maximize your 
productive time, which will show results for you and the team. Take a disciplined approach whenever 
you can. 

The early effort you put into a project can pay huge dividends later. There are often slow periods 
before, between, or in the early stages of projects. Although tired from the last project, this is the time to 
put in the strategic effort to learn a new technology or development practice. By the same token, 
completing a successful project requires perseverance. Sticking with a difficult task may not seem worth 
the stress and strain, and in some projects it is not. However, for most projects the invaluable lessons 
come in the final push to get the project delivered. Remember that after the project is over, you get to 
keep the learning and experience. Hopefully you can apply them on your next project. What you gain 
from the effort and perseverance is of strategic benefit to you and the team. 

Commitment to Excellence 
There are many small ways to make a commitment to excellence. One way is to carefully double-check 
your code. Unit testing is a way to ensure that the code works the way you intended. Another is 
thoroughness. Take the time to consider every eventuality. Think through all the expected and 
unexpected ways your code could be called. Write unit tests to completely cover these conditions and 
scenarios. This carefulness and thoroughness has a huge benefit to you. It gives you confidence. You are 
certain that your code works the way you intend it to work. It is not false bravado; it is true confidence 
based on preparation and commitment to excellence. 

An individual commitment to excellence can extend to the whole team or the entire project. As the 
developers deliver quality work it builds trust. It is a trust based upon seeing the desired results 
delivered. There will be defects, to be sure, but they will not be defects of carelessness. If the code does 
not work properly then it is because there is confusion over requirements or some other 
misunderstanding. The team’s commitment to excellence allows the team to quickly acknowledge the 
defect and start working toward a solution. 

 Practice 5-5  Make a Commitment to Do Careful and Thorough Work 

The relationship between teams also improves. Developers get more involved in trying to read and 
understand requirements. They want to do a better job, and so they ask questions, look for 
inconsistencies, and help uncover omissions. The requirements are clarified and explained. With greater 
involvement from all teams the overall commitment grows. 

To many, all this talk of a commitment to excellence sounds overly optimistic and idealistic. In fact, 
it is optimistic, and it strives toward an ideal. Improved practices do not come from pessimistic thinking. 
New and different practices are not adopted by those who are resigned to the status quo. Optimism and 
a commitment to excellence are a strategic part of moving toward better practices. 



CHAPTER 5  STRATEGY 

80 

Virtuous Discipline 
This section is not about the harsh and severe discipline of punishment and control. Virtuous discipline 
is a valuable and beneficial discipline. It is the discipline of following conventions, improving, 
coordinating, and achieving. Notice how each of these is done best if done voluntarily. In individuals, 
this is the result of self-discipline, and for the team it is the result of leadership. In software 
development, there is a common negative reaction to the idea of team discipline. There is a fear that 
discipline limits creativity. Virtuous discipline should not limit creativity. Theatre companies and dance 
troupes have discipline, and they are creative. In fact, with many significant group activities, creativity is 
unleashed only once a fundamental discipline has been established. Teamwork, collaboration, and 
creativity are all enhanced once the standards and norms of the group are established. These are good 
development habits that are advantageous and promote project success.  

 Practice 5-6  Establish Habits That Increase Teamwork and Release Creativity 

Listed in Table 5-4 are topic areas to examine for new and different disciplines and examples for 
each. The idea is to improve the way you and your team develops software. Develop new habits that 
have benefits to you and your team. Add more and more with each new project. 

Table 5-4. Examples of Virtuous Discipline 

Topic Areas Examples 

Learning and Practicing Learn the habits and norms of role-model developers. Evaluate new tools 
and technologies. Learn and apply design patterns. Cross-train in quality 
assurance and project management. 

Teaching and Growing Present know-how within the team. Write tutorials for new developers. 
Present at a user group. Create checklists for junior developers. 

Improving and Changing Identify new practices. Stop bad practices. Adopt recommendations from 
retrospectives. 

 

Effort and Perseverance 
In difficult projects, the development team ends up exhausted, both mentally and physically. In the final 
stages, morale is low and mistakes are frequent. It is strategically important to balance the effort and 
exertion levels so you gradually build capacity and ability, but the work never destroys the developer. 
This is similar to how a marathon runner should train to run a marathon. The training is hard in the 
beginning, but once speed and endurance are built up the goal changes to remaining both injury-free 
and near peak ability. In software development, effort and exertion should increase as capacity and 
ability increase. Plan the effort curve around the goal of increasing the capacity to produce results. 

Since the effort is so often greatest near the end of a project, it is ironic that the most significant and 
intellectually challenging work is often left to the end. The developers are tired and drained, yet the next 



CHAPTER 5  STRATEGY 

81 

major feature set is bigger than the last. It is demoralizing. This is the opposite of the way things should 
be. When people are fresh and energetic, that is the time to engage the intellect. Plan the effort so that 
projects start with the intellectual and complex challenges. Save the many straightforward and 
undemanding tasks for later. Having more time to think and develop the best approach to challenges is 
important. Also, the amount of work is often greater and the exertion level higher than planned. By 
tackling all the complicated work first, a more realistic estimate of the remaining effort can be made. 
What remains may be a lot of work, but it should be uncomplicated and predictable. 

 Practice 5-7  Plan Tasks to Steadily Build Capacity and Increase Ability 

After the software is built and the project is over, many managers believe that all of the value is in 
the source code. Most of the value is actually in the minds of the developers. They retain all the learning 
and skill that was needed to build the software. Much of that learning and skill is in general 
programming, problem-solving, debugging, configuration, and technology. One way to know which 
developer learned the most is to ask: if you could write the software all over again, what would you do 
differently? The developer who answers that question thoroughly definitely learned a lot from the 
project. 

In the end, successful projects deliver. What you deliver is an important part of long-term success. 
The experience of persevering until the software is delivered makes a huge difference to knowing what it 
takes to see the next project across the goal line. Perseverance pays off for you and your team when the 
positive outcomes are finally realized. Understandably, developers are often not willing or able to see the 
project to the end. Those developers often miss out on the rich rewards of seeing a project completed 
successfully. Coping with the discouragement, opposition, and near failure is an ugly, but important part 
of software development. Increasing perseverance is a practice well worth improving, but it only seems 
to come through trial and tribulation. 

Leverage 
The strategy of leverage is about making a small investment of time and effort to yield a high return in 
increased capacity to deliver results. The practices in this book are high-leverage practices. For example, 
a small investment in setting up a continuous integration (CI) server delivers automated builds that can 
find code integration issues soon after new source code is pushed to version control. (The CI server is 
discussed in more detail in Chapter 10.) The automated build detects these problems shortly after the 
issue is first introduced, without anyone having to manually get the latest code and rebuild. 

In addition to the specific practices presented in this book, you and your team should be looking for 
new and different high-leverage practices that may be unique and helpful to your project. Some ideas 
build upon or improve existing practices, while others use special tools and scripts purpose-built for 
your project. The CI server affords the team the ability to run build scripts, unit tests, code analysis, and 
automated deployments. Most CI servers can be configured to run many automated tasks, and include 
database scripts, UI tests, and notification e-mails. The idea is to leverage automation as much as 
possible. 

With the CI server running code analysis, a lot of data about the quality of the software is generated. 
If no one regularly reads and thinks about this data, these reports are not very useful. To gain the full 
value from code analysis there needs to be an early warning system that processes the data and sends 
out an alert when important thresholds are exceeded. Building alert systems is a high-leverage practice. 
Look for issues, such as slowing progress or recurring problems, and think of ways to incorporate an 



CHAPTER 5  STRATEGY 

82 

early warning into the alert system. Search for the data and indicators that might help detect future 
issues and incorporate them into the alert system. 

Ironically, after a major issue has been resolved, that is when you read or learn about another 
project that had the exact same issue. It would be nice to never make the same mistake twice. By 
learning about the experiences of others, you can prevent issues before they happen. Seek out the advice 
and expertise of other developers. Use their experience as a high-leverage way to avoid difficult, time-
consuming problems. 

Automation 
As a general practice, convert manual processes to automated processes. For example, if after 
deployment the integration server needs to be manually configured, have the CI server make the 
configuration changes after an automated deployment. This prevents misconfigurations and eliminates 
the need to perform the manual steps. Look at every manual step and consider how that step could be 
automated. 

For individual developers, there are many steps that you might not have automated. For example, 
many developers create a local development database. With a simple batch file and MSBuild script, the 
database is created and the database scripts are run in the proper order. The sample code in Chapter 8 
provides an example of how this is accomplished. In larger projects, many developers manually create 
the database and manually run scripts to create or alter the database. Developing automated 
approaches does take time. However, when multiplied by the number of times the manual method is 
run and the cost of fixing the manual errors, automating the steps is usually worth it. 

 Practice 5-8  Automate As Many Manual Steps as Possible 

For the team leader, automation offers a lot of consistency and saves heartache. Often it is the team 
leader or a more senior developer who needs to resolve problems created by manual processes. If the 
server is misconfigured or a developer’s database is incorrect then the more experienced team member 
has to stop and resolve the problem. This reduces the team’s overall effectiveness. Instead, provide the 
team members with simple ways to automate their repetitive tasks. One idea is to have a command file 
that rebuilds, runs all the unit tests, and performs all the code analysis on the developer’s workstation. In 
this way, the developer is expected to verify that the build will not break before they push their code. The 
team leader is able to enforce a convention that limits the amount of time wasted by other team 
members dealing with broken builds and failing unit tests.  

Beyond automating the manual steps, there are other ways to automate. One of those ways is 
through code generation. Entity Framework makes heavy use of code generation.5 Microsoft is using a 
code generation strategy and T4 text templates increasingly within Visual Studio and other applications. 
More and more, the trends are to use metadata gathered through a rich user interface and turn that 
metadata into source code. If you think about it, that is the same evolution that took us from punch 
cards in the early mainframes, to console applications in DOS, to graphical user interfaces in Windows. 
Each is, in effect, using the computer’s increasing ability to automate the input/output to change the 
entire experience and level of productivity. Developers need to look at new and different practices the 
same way and find uses for automation in more of the day-to-day development work. 

                                                 
5 The EDMX file is used to generate the code. See http://msdn.microsoft.com/en-
us/library/cc982042.aspx. 

http://msdn.microsoft.com/en-us/library/cc982042.aspx
http://msdn.microsoft.com/en-us/library/cc982042.aspx
http://msdn.microsoft.com/en-us/library/cc982042.aspx


CHAPTER 5  STRATEGY 

83 

Alert System 
The project’s alert system provides an early warning for issues, problems, and the need for correction. 
The continuous integration (CI) server is a foundation upon which you can build an alert system. The CI 
server collects a lot of data from the build configurations. There are also code quality reports and metrics 
that the CI server generates. This information can be used to determine key indicators of potential 
problems. For example, if the number of passing tests drops from 1400 to below 1330 over a two-week 
period, more than a 5% drop, that drop could be a significant sign. Perhaps one developer is 
commenting out unit tests rather than fixing them. Code coverage cannot reveal if the logic is properly 
tested, but it does point to where new code is recently added without any unit tests. The alert system is 
often most useful to the team lead and the project manager. 

The alert system can also help the individual developer. When the CI server gets the latest source 
code and fails to rebuild, the developer is warned not to get the latest source code until after the build is 
fixed. Similarly, developers who run the entire suite of unit tests can find issues before pushing their 
code. This is the alert system identifying a potential problem early enough to prevent disruption and 
inconvenience to others. For the developer, the various alert systems also include code analysis, quality 
metrics, and test code coverage.  

 Practice 5-9  Develop Alert Systems to Help Make Adjustments 

Like a compass or navigation system, the alert systems help the team to stay on course by making 
the proper adjustments. Minor issues are dealt with near to when they first occur. The alert system can 
keep new problems from creeping into the software and help prevent problems from compounding and 
perpetuating. Also, the alert system helps the team establish a regular practice of following up on issues. 
By addressing integration issues and failing unit tests early, the monitoring and notification of an alert 
system improves the entire development process. 

It is important that the alert system does not generate a lot of false alarms. It is important to not 
ignore a failed build or failing unit test. It is much better to resolve the build or failing test than risk 
ignoring the alarm. Also, when it comes to code analysis metrics, the values that trigger alerts need to 
change over time. Often, as the team gets better the thresholds are set higher and higher. The alert 
system is a strategic part of making sure practices stay improved and continue to improve into the 
future. 

Experience and Expertise 
Experiential learning is the kind of understanding that comes from encountering and working through 
the material. Many things can only be understood through experience. New knowledge is gained 
through involvement in or exposure to a software technology. Skill is gained through practice with the 
technology. What is described in writing is enhanced and reinforced by the experience. This is an 
important part of any person’s process. Individual team members need time to incorporate what they 
have learned into their development practices. An effective strategy for any project is to allow time for 
new tools and technologies to be practiced. 

It is interesting to note that people’s attitude improves with experience. Initially, a new practice may 
seem awkward and unproductive. The same is true for a new software tool set. However, with practice 
and skill development the attitude starts to change. This is because most people do not like the feeling of 
incompetence they experience before gaining a comfortable level proficiency. During that early period it 



CHAPTER 5  STRATEGY 

84 

is common for people to complain and resist. That resistance does not mean the new or different 
practice is not a better practice. It means that the person is still learning. Provide enough time and space 
to allow people to try it, learn it, and develop a level of mastery. If the new practice is a better practice 
then the skeptic will likely become the advocate. 

Developers with expertise have acquired a level of technique and skill. Working with these 
developers affords you the opportunity to learn from their expertise. Look for ways to tap into that 
expertise to elevate and improve development practices. As a team leader, look for experts who can 
consult with and train team members. Propose and promote ways to bring that expertise in to work with 
the team, either through direct mentoring or training. Many projects adopt better practices once a 
credible expert takes time to share their experience and know-how. Valuing and benefiting from the 
judgment and wisdom of experts improves and informs development practices. 

Summary 
In this chapter you learned about better practices focused on strategy. You learned about the 
importance of brainstorming as a way to engage the power of imagination and new ideas. You learned 
how planning prevents significant problems and aligns teams with objectives. In addition, you learned 
about the strategic importance of building capacity and increasing ability, leveraging automation, and 
developing early warning systems. 

In the next chapter you will learn about important .NET Framework guidelines and conventions. 
These include widely-accepted standards for .NET applications, and guidelines that encourage 
developer productivity and consistency. 

 



C H A P T E R  6 
 

      
 

85 

.NET Rules and Regulations 

For some developers, the statement that there are .NET rules and regulations goes too far. But this 
chapter does not lay down the law in a series of commandments. Development is about creativity, 
imagination, passion, and inventiveness; it is not about rejecting all convention in favor of individual 
expression. There are accepted standards and guidelines that are appropriate for you, your team, and 
your organization. There are generalized statements, principles, and procedures that describe what is 
true and good in nearly all cases. It is important to sort out those practices that best serve as rules and 
regulations, as a way to establish norms and to govern behavior, which supports innovative 
development. 

As a developer, following the .NET rules and regulations helps you to remain aligned with good 
practices and avoid bad practices. As a team leader, the rules and regulations help the members of the 
team to be consistent and to align with one another. As an organization, the alignment across teams 
helps achieve compliance with accepted standards, effective development principles, and good 
practices. 

A foolish consistency is not the goal. The goal is a prudent and intentional consistency that helps 
build upon the experiences and expertise of many .NET developers. The goal is to avoid bad practices, 
known failure paths, and systemic problems. The goal is to achieve positive outcomes by avoiding the 
painful and costly mistakes of other developers. By following the advice that underlies the rules and 
regulations, you benefit from the collective wisdom of expert developers. These are ruthlessly helpful 
.NET practices for you, your team, and your organization (see Table 6-1). 

Table 6-1. Ruthlessly Helpful .NET Rules and Regulations 

 Practice 

6-1 Examine the .NET Coding Standards and Guidelines Others Have Written 

6-2 Do Not Catch General Exception Types 

6-3 Rethrow to Preserve Stack Details 

6-4 Instantiate Argument Exceptions Correctly 

6-5 Types That Own Native Resources or Disposable Fields Should Be Disposable 

6-6 Dispose an Object Before the Object Loses Scope 



CHAPTER 6  .NET RULES AND REGULATIONS 

86 

 Practice 

6-7 Do Not Dispose Objects Multiple Times 

6-8 A Constructor Should Not Call Virtual Methods 

6-9 Consider Explicitly Defining the Zero-Value Element of an Enumeration 

6-10 Prefer Returning an Empty Instance Over Null 

6-11 Avoid a Publicly Visible Constant Field 

6-12 Sort Out Comments That Do Not Add Value or That Complicate the Code 

COMMENTARY 

When I sat down to write this chapter I wavered and hesitated on the idea of establishing .NET rules and 
regulations. First, a complete set of rules and regulations that covers the entire .NET Framework would 
take an entire book. Second, there cannot be a single set of .NET rules and regulations because many 
project situations call for variances and exemptions. I came up a few thoughts that I believe are important 
for you to understand this chapter. The .NET rules and regulations that this chapter focuses on are based 
on my development experiences. They describe bad practices that caused problems on projects I have 
worked on. They describe good practices that have keep me and other developers away from trouble. I 
mention them specifically because I believe they deserve special commendation. The various sources this 
chapter provides allow you to select and adopt many more based on what you, your team, or your 
organization needs. 

There really are many excellent sources of .NET coding standards and guidelines available today. In the 
early days of .NET development there was a lot of confusion and uncertainty. Those of us who were C++ 
developers brought our own set of opinions. Those developers who wrote VB code brought another set of 
opinions. It was hard work ironing out agreement and establishing the norms. Today things are different. A 
lot is settled, although areas of disagreement remain. Microsoft provides a lot of direct and indirect 
guidance through articles, books, MSDN, and other sources. There is a lot of .NET thought leadership and a 
great deal of .NET community development. As the tools and technologies evolve the challenge will remain 
to digest and distill this information into a practical field manual of .NET rules and regulations that you can 
apply today and into the future. 

Coding Standards and Guidelines 
The Microsoft All-In-One Code Framework (AIOCF) team has established and documented the .NET 
coding standards and guidelines that that team follows. That document is broad; it covers C++, C#, and 
VB.NET. The IDesign C# Coding Standards document is specific to C#, but covers .NET Framework–
specific guidelines that include topics like ASP.NET and web services, data access, and security. The 
IDesign and AIOCF documents are different in many ways, yet similar in many others. Your team or 



CHAPTER 6  NET RULES AND REGULATIONS 

87 

organization could benefit from adopting one or the other or synergizing them together, or perhaps 
neither document suits the people and circumstances. 

This section has two purposes. First, to provide you with sources and material to develop .NET rules 
and regulations. Second, to provide specific examples of .NET rules and regulations that—in this 
author’s opinion—are widely-accepted and especially helpful practices. With this information you can 
assemble and establish the .NET rules and regulations appropriate to your circumstances. 

Sources 
There are many sources of .NET rules and regulations (see Table 6-2 for a list). Other teams have written 
coding standards documents and made them widely available. Other organizations have written and 
published coding standards documents, as well. Some of these sources are short and to the point. Others 
are very comprehensive with detailed justification and code examples. The most important thing to 
appreciate is that other experienced developers have put a great deal of thought and discussion into 
defining these coding standards and guidelines. 

 Practice 6-1  Examine the .NET Coding Standards and Guidelines Others Have Written 

The primary virtue of building upon the .NET coding standards and guidelines that others have 
written is that your rules and regulations can focus on making a statement. Your rules and regulations 
use emphatic phrases (such as, “Do,” “Do Not,” “Never,” “Avoid,” and “Always”) and let the source 
material support the assertions. Remember, the rules and regulations are a lot more likely to be accepted 
if they are succinct, plain-spoken, and backed up by credible coding standards and guidelines. 

It is important to highlight that Microsoft has established the “minimum recommended” rule set 
that focuses on what they deem the most critical coding problems. These include potential security 
holes, application crashes, and other important logic and design errors. You should review the Microsoft 
Minimum Recommended Rules rule set1 and strive to include these rules in the .NET rules and 
regulation you create for your projects. 

Table 6-2. Sources of .NET Rules and Regulations 

Name Description More Information 

AIOCF .NET 
Coding 
Standards 

The Microsoft All-In-One Code Framework2 (AIOCF) 
project provides excellent documentation on the .NET 
coding standards and guidelines that the team follows. 

1code.codeplex.com 

C# Coding 
Guidelines 

A set of coding guidelines for C# that covers 
development principles and rules. 

csharpguidelines.codeple
x.com 

CAT.NET Rules CAT.NET is a Microsoft Security tool that helps identify 
security vulnerabilities.  

www.microsoft.com/securi
ty/sdl/adopt/tools.aspx 

                                                
1 For more information see http://msdn.microsoft.com/en-us/library/dd264893.aspx. 
2 The All-In-One Code Framework is also known as CodeFx. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.microsoft.com/securi
http://msdn.microsoft.com/en-us/library/dd264893.aspx


CHAPTER 6  .NET RULES AND REGULATIONS 

88 

Name Description More Information 

Encodo C# 
Handbook—
Conventions, 
Style, and Best 
Practices 

Covers many aspects of writing C# code, including 
many widely-adopted conventions and practices. 

http://archive.msdn.micr
osoft.com/encodocsharpha
ndbook 

FxCop Rules FxCop is a Microsoft Windows SDK tool that performs 
static code analysis of .NET assemblies and provides 
many dozens of rules. 

Discussed more in this 
chapter and in Chapter 13 

Gendarme 
Rules 

Gendarme is a Mono-project tool that performs static 
code analysis of .NET assemblies and provides many 
dozens of rules. 

www.mono-
project.com/Gendarme 

IDesign C# 
Coding 
Standards 

A concise and direct document that focuses on the 
essential standards to help enforce best practices, avoid 
pitfalls, and disseminate knowledge. 

www.idesign.net 

Design 
Guidelines for 
Developing 
Class Libraries 

Microsoft guidelines intended to help designers and 
developers create good class libraries. These guidelines 
are a resource for many standards documents and are 
referenced throughout this book. 

msdn.microsoft.com/en-
us/library/ms229042.aspx 

ReSharper 
Code 
Inspections 

ReSharper can apply many hundreds of code 
inspections to provide continuous code quality analysis 
that detects issues while writing code. 

www.jetbrains.com/reshar
per/features/code_analys
is.html 

 

 Note  Much of the .NET rule and regulation verification can be automated using tools associated with some of 
these sources. Chapter 11 describes practices to automate code analysis using FxCop. 

Exceptions 
Throwing exceptions is the primary .NET mechanism for reporting errors. Every .NET method, property, 
event, or other member ought to throw an exception if it cannot successfully fulfill its purpose. In other 
words, an exception should be thrown if the code execution failed or could not complete through a 
normal exit path. Also, when there is an error, throw exceptions and do not return error codes. 

It is important to know when and how to appropriately set up a try-catch block. In general, only 
catch the specific exceptions that the code needs and knows how to handle. For example, catch a 
specific exception if necessity dictates that the code must check for a condition that is likely to occur and 
handling the exception is appropriate. This can be enforced by Code Analysis rule CA1031, which is part 
of the Microsoft Basic Design Guideline Rules rule set. 

http://archive.msdn.micr
http://www.mono-project.com/Gendarme
http://www.mono-project.com/Gendarme
http://www.mono-project.com/Gendarme
http://www.idesign.net
http://www.jetbrains.com/reshar


CHAPTER 6  NET RULES AND REGULATIONS 

89 

 Practice 6-2  Do Not Catch General Exception Types 

Do not swallow errors by writing a catch block that catches all exceptions or catches exceptions as a 
non-specific exception type, such as System.Exception. Catch only specific exceptions that the code 
knows how to handle. Do not catch all exceptions and rethrow the exception. Examples of code that 
violates this practice are illustrated in Listing 6-1. 

Listing 6-1. Swallowing Exceptions: Bad Practice 

// Do not swallow all exceptions 
try 
{ 
    return Calculator.ThrowsExceptions( 
        principal, 
        ratePerPeriod, 
        termInPeriods); 
} 
catch 
{ 
    // Unhelpful message 
    Log.WriteError( 
        "Generic message: try block did not work"); 
} 
 
// Do not catch exceptions that the code does not know how to handle 
try 
{ 
    return Calculator.ThrowsExceptions( 
        principal, 
        ratePerPeriod, 
        termInPeriods); 
} 
catch (SystemException exception) 
{ 
    // Misleading message 
    Log.WriteError( 
        "The principal amount is invalid: '{0}'", 
        exception.Message); 
} 
 
// Do not catch all exceptions and rethrow them 
try 
{ 
    return Calculator.ThrowsExceptions( 
        principal, 
        ratePerPeriod, 
        termInPeriods); 
} 



CHAPTER 6  .NET RULES AND REGULATIONS 

90 

catch 
{ 
    // try-catch block serves no useful purpose 
    throw; 
} 

For all exception types that the code expects and knows how to handle write a catch block for those 
specific exception types. If a general exception type is required to be caught, rethrow the exception as 
the last statement in the catch block. An example of properly catching general exceptions is illustrated in 
Listing 6-2. 

Listing 6-2. Catching Exceptions: Good Practice 

// Assumption: the code is required to catch and log all exceptions. 
try 
{ 
    return Calculator.ThisMethodThrowsExceptions( 
        principal, 
        ratePerPeriod, 
        termInPeriods); 
} 
catch (ArgumentException exception) 
{ 
    Log.WriteError( 
        "The parameter '{0}' is invalid: {1}", 
        exception.ParamName, 
        exception.Message); 
    throw; 
} 
catch (InvalidCastException exception) 
{ 
    Log.WriteError( 
        "Could not cast properly: {0}", 
        exception.Message); 
    throw; 
} 
catch (Exception exception) 
{ 
    Log.WriteError( 
        "Unexpected exception: {0}", exception.Message); 
    throw; 
} 

 Note  Although there are rare cases when swallowing exceptions is acceptable, such cases ought to be 
cautiously scrutinized and approved by the project’s technical leaders. 



CHAPTER 6  NET RULES AND REGULATIONS 

91 

Depending on the way .NET code rethrows exceptions, important stack information can be 
preserved or lost. It is important to understand the difference between the throw and throw exception 
statements. 

 Practice 6-3  Rethrow to Preserve Stack Details 

An example of code that catches an exception and incorrectly specifies it when rethrowing the 
exception is shown in Listing 6-3. This improper rethrow causes the stack trace to point to the throw 
exception statement, which is not where the error occurred. This can be enforced by Code Analysis rule 
CA2200, which is part of the Microsoft Minimum Recommended Rules rule set. 

Listing 6-3. Rethrowing Exceptions: Bad Practice 

try 
{ 
    return Calculator.ThrowsExceptions( 
        principal, 
        ratePerPeriod, 
        termInPeriods); 
} 
catch (ArgumentException exception) 
{ 
    Log.WriteError( 
        "The parameter '{0}' is invalid: {1}", 
        exception.ParamName, 
        exception.Message); 
 
    // Original stack trace is lost 
    throw exception; 
} 

Write an empty throw statement when catching and rethrowing an exception. This is the established 
way to preserve the call stack. The empty throw statement makes sure the stack trace points to the 
method where the exception originated to help with debugging an error. An example of properly 
rethrowing an exception is illustrated in Listing 6-4. 

Listing 6-4. Rethrowing an Exception: Good Practice 

try 
{ 
    return Calculator.ThrowsExceptions( 
        principal, 
        ratePerPeriod, 
        termInPeriods); 
} 
catch (ArgumentException exception) 
{ 
    Log.WriteError( 



CHAPTER 6  .NET RULES AND REGULATIONS 

92 

        "The parameter '{0}' is invalid: {1}", 
        exception.ParamName, 
        exception.Message); 
 
    throw; 
} 

It is important to guard a method against invalid arguments passed in from code that calls the 
method. When writing if-then-throw blocks that validate arguments, the code should throw the most 
specific exception that is sensible and appropriate. 

 Practice 6-4  Instantiate Argument Exceptions Correctly 

For example, do not throw the base type ArgumentException if a null argument is passed. Also, it is a 
bad practice not to provide the name of the parameter to the exception constructor. Both of these bad 
practices are shown in Listing 6-5. This can be enforced by Code Analysis rule CA2208, which is part of 
the Microsoft Basic Design Guideline Rules rule set. 

Listing 6-5. Argument Exceptions: Bad Practice 

if (principal == null) 
{ 
    throw new ArgumentException(); 
} 
 
decimal principalAmount; 
if (!decimal.TryParse(principal, out principalAmount)) 
{ 
    throw new ArgumentException(); 
} 

If null is passed for the principal argument then throw ArgumentNullException. Instead of calling 
the default argument exception constructor, call one of the overloads with the parameter name. 
Whenever it would be helpful, provide a message to the argument exception constructor that means 
something to the developer that calls the method. Examples of properly instantiating argument 
exceptions are shown in Listing 6-6. 

Listing 6-6. Argument Exceptions: Good Practice 

if (principal == null) 
{ 
    throw new ArgumentNullException("principal"); 
} 



CHAPTER 6  NET RULES AND REGULATIONS 

93 

decimal principalAmount; 
if (!decimal.TryParse(principal, out principalAmount)) 
{ 
    throw new ArgumentOutOfRangeException( 
        "principal",  
        string.Format("Cannot convert to decimal: '{0}'", principal)); 
} 

Disposable Pattern 
Using the disposable pattern is the primary .NET mechanism for releasing native and unmanaged 
resources. The disposable pattern is implemented by implementing the System.IDisposable interface. It 
is common to declare a separate Dispose(bool) method that encapsulates all the resource cleanup logic 
so that the logic can be reused for both the System.IDisposable.Dispose method and a finalizer method, 
if applicable. 

 Practice 6-5  Types That Own Native Resources or Disposable Fields Should Be Disposable 

If a class owns native resources or fields that are IDisposable types then the class should implement 
the IDisposable interface. If the class is not IDisposable then the native resource and fields are not 
disposed of efficiently. To free up resources, disposable types ought to be disposed of as soon as the 
class no longer uses them. Listing 6-7 shows the bad practice of declaring a class that owns fields that are 
IDisposable types, yet the class does not implement IDisposable. This can be enforced by Code Analysis 
rule CA1049, which is part of the Microsoft Minimum Recommended Rules rule set. 

Listing 6-7. Type That Owns Disposable Fields: Bad Practice 

public class OwnsDisposableFields 
{ 
    private DisposableResource disposableResourceOne; 
    private DisposableResource disposableResourceTwo; 
    // Other fields continue to be declared here. 
 
    public void OperationThatAllocatesResources() 
    { 
        disposableResourceOne = new DisposableResource(); 
        disposableResourceTwo = new DisposableResource(); 
    } 
 
    ... 
 
} 

When a .NET type owns native resources or disposable fields, that type should implement 
IDisposable. To release the unmanaged resources properly, call each of the field’s Dispose method from 
within the implementation of the Dispose method. This is illustrated in Listing 6-8. 



CHAPTER 6  .NET RULES AND REGULATIONS 

94 

Listing 6-8. Type That Owns Disposable Fields Implements IDisposable: Good Practice 

public class OwnsDisposableFields : IDisposable 
{ 
    private DisposableResource disposableResourceOne; 
    private DisposableResource disposableResourceTwo; 
    // Other fields continue to be declared here. 
 
    private bool disposed; 
 
    ~OwnsDisposableFields() 
    { 
        Dispose(false); 
    } 
 
    public void OperationThatAllocatesResources() 
    { 
        disposableResourceOne = new DisposableResource(); 
        disposableResourceTwo = new DisposableResource(); 
    } 
 
    // The System.IDisposable.Dispose method. 
    public void Dispose() 
    { 
        Dispose(true); 
 
        // Use SupressFinalize in case a subclass of this one 
        // implements a finalizer. 
        GC.SuppressFinalize(this); 
    } 
 
    protected virtual void Dispose(bool disposing) 
    { 
        // If you need thread safety, use a lock around these  
        // operations, as well as in your methods that use the resource. 
 
        // Protect from being called multiple times. 
        if (disposed) 
        { 
            return; 
        } 
 
        if (disposing) 
        { 
            // Clean up all managed resources 
            if (this.disposableResourceOne != null) 
            { 
                // Release managed resources 
                this.disposableResourceOne.Dispose(); 
 
                // Free the unmanaged resource 



CHAPTER 6  NET RULES AND REGULATIONS 

95 

                this.disposableResourceOne = null; 
            } 
 
            if (this.disposableResourceTwo != null) 
            { 
                // Release managed resources 
                this.disposableResourceTwo.Dispose(); 
 
                // Free the unmanaged resource 
                this.disposableResourceTwo = null; 
            } 
        } 
 
        disposed = true; 
    } 
} 

 Practice 6-6  Dispose an Object Before the Object Loses Scope 

It is a bad practice to instantiate a local object of an IDisposable type but not write code to ensure 
that it is disposed before the object is out of scope. Code that does not dispose an IDisposable object 
before the object loses scope is shown in Listing 6-9. Whenever possible the object should be explicitly 
disposed before the object loses scope. This issue can be identified by Code Analysis rule CA2000, which 
is part of the Microsoft Minimum Recommended Rules rule set. 

Listing 6-9. Code That Does Not Dispose an Object Before the Object Loses Scope: Bad Practice 

var tempFilename = Path.GetTempFileName(); 
 
var filestream = File.OpenWrite(tempFilename); 
 
var letters = Encoding.ASCII.GetBytes("Text to write."); 
foreach (var letter in letters) 
{ 
    filestream.WriteByte(letter); 
} 
 
return tempFilename; 

The using statement allows the code to declare when objects that implement IDisposable should be 
properly disposed. The using block wraps the object’s scope so as to automatically call the Dispose 
method after the close of the block to ensure that the object is disposed once it loses scope. This is 
illustrated in Listing 6-10. 

Listing 6-10. The Using Block Ensures That the Object Is Disposed Once It Loses Scope: Good Practice 

var tempFilename = Path.GetTempFileName(); 
 



CHAPTER 6  .NET RULES AND REGULATIONS 

96 

using (var filestream = File.OpenWrite(tempFilename)) 
{ 
    var letters = Encoding.ASCII.GetBytes("Text to write."); 
    foreach (var letter in letters) 
    { 
        filestream.WriteByte(letter); 
    } 
} 
 
return tempFilename; 

 Practice 6-7  Do Not Dispose Objects Multiple Times 

Nested using statements can cause the Dispose method of an object to be called multiple times. An 
improperly implemented Dispose method may not expect to be called multiple times, and so, the 
Dispose method responds by throwing an exception or by behaving badly. 

In the example code shown in Listing 6-11, the inner variable declared in the nested using 
statement has a field that contains a reference to the specializedResource object from the outer using 
statement. When the nested block completes, the Dispose method of inner then calls the Dispose 
method of the specializedResource object. Next, the outer using block completes and attempts to 
dispose specializedResource; this calls the object’s Dispose method for a second time. Multiple calls to 
the Dispose method are not always handled properly and should be avoided. This issue can be identified 
by Code Analysis rule CA2202, which is part of the Microsoft Minimum Recommended Rules rule set. 

Listing 6-11. Code That Calls the Dispose Method Twice: Bad Practice 

using (var specializedResource = new SpecializedResource()) 
{ 
    specializedResource.Initialize(); 
 
    using (var inner = new OperatesOnSpecializedResource(specializedResource)) 
    { 
        inner.DoSomething(); 
    } 
} 

To prevent the Dispose method from being called twice, write code that uses a try-finally block 
instead of the outer using statement, as shown in Listing 6-12. Once the inner variable is declared, the 
specializedResource variable is set to null to ensure that the Dispose method is not called on that 
variable. The finally block contains a guard that makes sure the specializedResource variable is not null 
before the code calls the Dispose method. This ensures that the Dispose method is called if an exception 
occurs before inner can take responsibility for the specializedResource object’s disposal. 



CHAPTER 6  NET RULES AND REGULATIONS 

97 

Listing 6-12. Code That Prevents Dispose from Being Called Twice: Good Practice 

SpecializedResource specializedResource = null; 
try 
{ 
    specializedResource = new SpecializedResource(); 

    specializedResource.Initialize(); 

    using (var inner = new OperatesOnSpecializedResource(specializedResource)) 
    { 
        // OperatesOnSpecializedResource takes responsibility 
        // for SpecializedResource disposal. 
        specializedResource = null; 

        inner.DoSomething(); 
    } 
} 
finally 
{ 
    if (specializedResource != null) 
    { 
        specializedResource.Dispose(); 
    } 
} 

Miscellaneous 
There are many more practices covering more topics than the ones already covered. This section brings 
together a miscellaneous set of practices covering a range of topics. 

Calling Virtual Methods in Constructors 
If an abstract or virtual method is called in the constructor of a base class then the overridden method, 
which is implemented in the derived class, is called before the derived class’s constructor is run. This 
may be unexpected and improper behavior that can be very difficult to debug. An example of calling a 
virtual method in the constructor is shown in Listing 6-13. This issue can be identified by Code Analysis 
rule CA2214, which is part of the Microsoft Minimum Recommended Rules rule set. 

Listing 6-13. Constructor Calling a Virtual Method: Bad Practice 

public class BaseClass 
{ 
    public DateTime CurrentTime { get; protected set; } 

    protected BaseClass() 
    { 
        this.InitializationSteps(); 
    } 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 6  .NET RULES AND REGULATIONS 

98 

 
    protected virtual void InitializationSteps() 
    { 
        // Base initialization code 
    } 
} 
 
public class DerivedClass : BaseClass 
{ 
    public DerivedClass() 
    { 
        this.CurrentTime = DateTime.Now; 
    } 
 
    protected override void InitializationSteps() 
    { 
        // Relies on CurrentTime having been set, 
        // but the DerivedClass constructor is not called 
        // until after the BaseClass constructor is done. 
    } 
} 

 Practice 6-8  A Constructor Should Not Call Virtual Methods 

A better implementation moves the call to the virtual method out of the base class constructor and 
into a separate Initialize method in the base class. This is shown in Listing 6-14. 

Listing 6-14. Move Virtual Method Calls out of the Base Class Constructor: Good Practice 

public class BaseClass 
{ 
    public DateTime CurrentTime { get; protected set; } 
 
    public bool Initialized { get; private set; } 
 
    protected BaseClass() 
    { 
    } 
 
    public void Initialize() 
    { 
        this.InitializationSteps(); 
        this.Initialized = true; 
    } 
 
    protected virtual void InitializationSteps() 
    { 
        // Base initialization code 



CHAPTER 6  NET RULES AND REGULATIONS 

99 

    } 
} 
 
public class DerivedClass : BaseClass 
{ 
    public DerivedClass() 
    { 
        this.CurrentTime = DateTime.Now; 
    } 
 
    protected override void InitializationSteps() 
    { 
        // The CurrentTime has been set 
        // before the Initialize method is called. 
    } 
} 

Defining a Zero-Value enum Element 
The default value of an uninitialized enumeration is zero. Often the code logic is assuming that the 
enumeration value was explicitly set when it is actually an uninitialized value. For example, the caller of 
a class did not set the enumeration value of a property, but the method’s code cannot make that 
determination because the zero-value in the enumeration is valid. In the enumeration declaration 
shown in Listing 6-15 the Beginning enumeration element has an implicit value of zero, which is the 
same as an uninitialized enumeration, and this coincidence may cause unexpected or erroneous 
behavior. 

Listing 6-15. First Enumeration Element Is Inadvertently Set to Zero: Bad Practice 

public enum WorkflowStep 
{ 
    Beginning, 
    Middle, 
    End, 
} 

 Practice 6-9  Consider Explicitly Defining the Zero-Value Element of an Enumeration 

A better practice explicitly defines the zero-value enumeration element, whenever appropriate. This 
allows methods to write code to guard against uninitialized enumeration values. It also makes it easier to 
understand the value when debugging the code. This approach is shown in Listing 6-16. 



CHAPTER 6  .NET RULES AND REGULATIONS 

100 

Listing 6-16. Enumeration Zero-Value Is Explicitly Set to ‘Unknown’: Good Practice 

public enum WorkflowStep 
{ 
    Unknown = 0, 
    Beginning, 
    Middle, 
    End, 
} 

Returning an Empty Instance 
Often the caller of a method or property does not perform a null check on the object that is returned. If 
your code returns a string or enumeration then it is likely the caller will not check for null before using 
the object. 

 Practice 6-10  Prefer Returning an Empty Instance over Null 

The better practice is to return an empty instance, such as string.Empty, whenever the empty 
instance is semantically equivalent to returning null. This is a good defensive-programming measure 
when there is a high likelihood that the caller will not perform a check for null before using the return 
value. This practice is also appropriate for methods and properties that return arrays, collections and 
many other enumerable types, where an empty instance is appropriate. 

Publicly Visible static readonly Fields 
In .NET the constant field is designed to be used for values that are never intended to change. Public 
constant field values ought to be invariable numbers, like the number of days in a week. The const 
keyword is for permanent, unchanging, and fixed values. Because of their permanence and for the sake 
of efficiency, when a client assembly uses these const fields the value is copied into the other assembly. 
As a result, a change to the const field’s value requires all assemblies that use the field to be recompiled 
to receive the updated value. Take a look at the code in Listing 6-17. The const field MaximumLoanAmount is 
the maximum loan amount for the Calculator class. If another assembly references the value of 17,500 
then that value, not a reference to the field, is provided to the client assembly. And so, if the 
MaximumLoanAmount is changed to 18,000 then the client assembly still has the value of 17,500 until the 
client assembly’s source code is recompiled. 

Listing 6-17. Publicly Visible Constant Fields That Are Changeable: Bad Practice 

public static class Calculator 
{ 
    public const int MaximumLoanAmount = 17500; 
 



CHAPTER 6  NET RULES AND REGULATIONS 

101 

... 
 
} 

 Practice 6-11  Avoid a Publicly Visible Constant Field 

A better practice is to define a publicly visible field as static readonly. Declaring the field in this 
way allows the value to change without requiring client assemblies to recompile to receive the updated 
value. This makes sense for the MaximumLoanAmount value because that amount is changeable. This better 
approach is shown in Listing 6-18. 

Listing 6-18. Changeable Constant Values Declared As Static Readonly Fields: Good Practice 

public static class Calculator 
{ 
    public static readonly int MaximumLoanAmount = 17500; 
 
... 
 
} 

Code Smells 
While reviewing source code, there are times when you sense something is not quite right. Perhaps the 
code is not clear. Perhaps the design seems overly complicated. You are not certain, but you have a 
distinct feeling that the code is suspect. Kent Beck coined the term code smell to describe when source 
code is gives you the inkling that there is a problem that can and should be improved.3 The idea is to use 
that awareness to investigate further, understand the design, and suggest improvements, if appropriate. 

Table 6-3. Sources That Describe Code Smells 

Name Description 

97 Things Every Programmer 
Should Know 

Although this book does not explicitly list code smells, many of the 
essays point to common problems and pain-points that lead to 
code smells. 

Clean Code: A Handbook of Agile 
Software Craftsmanship 

A widely-regarded book on writing good code that covers 
transforming bad code into good code. The examples are in Java, 
but the principles of writing clean code apply to .NET development. 

                                                 
3 Source: http://en.wikipedia.org/wiki/Code_smell. 

http://en.wikipedia.org/wiki/Code_smell


CHAPTER 6  .NET RULES AND REGULATIONS 

102 

Name Description 

Code Complete: A Practical 
Handbook of Software 
Construction 

Considered a must-read for professional software developers, this 
book provides practical information that is well researched and well 
considered. 

Refactoring: Improving the Design 
of Existing Code 

This book devotes an entire chapter to identifying and addressing 
bad smells in code. The discipline of refactoring is key to removing 
bad smells and improving code. 

Ward Cunningham’s wiki 
(http://c2.com/cgi/wiki) 

The Code Smell page (http://c2.com/cgi/wiki?CodeSmell) provides 
a long list of hints, clues, and symptoms that tell you something 
might be wrong. 

Comments 
Comments should only be written to explain or clarify the source code. There are good reasons to write 
comments. The comments might provide background information. The comments state important 
underpinnings, rationales and limitations. However, too often comments are written to counteract the 
odor of poorly written code. When the source code is well written, redundant comments are 
unnecessary because the source code is clear and easy to understand. In extreme cases, comments 
complicate the code because the comments are no longer true or are misleading. Comments that do not 
add value, misrepresent the code, or are superfluous need to be removed from the source code. 

 Practice 6-12  Sort Out Comments That Do Not Add Value or Complicate the Code 

An all too common code smell occurs when comments are written as a substitute for helpful 
variable names. These comments are usually seen near the variable declaration. The variable is declared 
with a vague or cryptic name and there’s a comment that describes the variable, as shown in Listing  
6-19. 

Listing 6-19. Comments Substituting for Helpful Variable Names: Bad Practice 

    string p; // principal as string 
    decimal r; // rate per month 
    int t; // term in months 

A variable’s name should speak for itself. The variable name must indicate what the variable stands 
for. The variable name must be clear, correct, and consistent. For example, if the variable is a string 
representation of a principal amount then the fact that it is not a decimal ought to be clear from the 
variable name. Better variable names are shown in Listing 6-20. 

http://c2.com/cgi/wiki
http://c2.com/cgi/wiki?CodeSmell


CHAPTER 6  NET RULES AND REGULATIONS 

103 

Listing 6-20. Clear Variable Names Instead of Comments: Good Practice 

    string principalAsString; 
    decimal ratePerMonth; 
    int termInMonths; 

A dilemma occurs when comments are wrong or misleading. Believe the code or believe the 
comment. An experienced developer who maintains source code with untrustworthy comments learns 
to ignore the misleading or wrong comments. Other developers perform double duty by maintaining 
both the code and the comments. The source code becomes littered with comments that are unhelpful 
or only serve to complicate things. In Listing 6-21 the comments directly contradict the code, which 
leaves a bad smell for future developers. 

Listing 6-21. The Comments Are Wrong or Misleading: Bad Practice 

    // Round the rate per month to 4 significant digits 
    // by rounding toward the nearest even number 
    return Math.Round(ratePerMonth, 6, MidpointRounding.AwayFromZero); 

Comments can be important reminders or messages to other developers. They ought to speak to 
intention and justification. Let the code speak for itself. Better comments clarify an important principle 
or rationale that endures over time, as shown in Listing 6-22. 

Listing 6-22. Comment to Clarify Rationale or Justification: Good Practice 

    // The rate needs to be properly rounded 
    return Math.Round(ratePerMonth, 6, MidpointRounding.AwayFromZero); 

Sometimes comments are added to describe an entire block of code within a method. The developer 
feels that it is important to explain the significance of this section of code. In fact, the comments are 
describing the need to extract the code into a new method or use an existing method. In Listing 6-23 the 
comment clearly describes where an algorithm begins and ends: however, this code really belongs in a 
separate method. 

Listing 6-23. Comments That Describe a Missing Method: Bad Practice 

... 
    // Begin: compute the rate per month from the APR 
    decimal ratePerMonth; 
 
    if (annualPercentageRate < 0.01m || 
        annualPercentageRate >= 20.0m) 
    { 
        throw new InvalidOperationException(string.Format( 
            "AnnualPercentageRate {0}% is not valid", 
            annualPercentageRate)); 
    } 
 
    ratePerMonth = (annualPercentageRate / 100m) / MonthsPerYear; 
 



CHAPTER 6  .NET RULES AND REGULATIONS 

104 

    ratePerMonth = Math.Round(ratePerMonth, 6, MidpointRounding.AwayFromZero); 
    // End 
... 

Comments that are really clues to missing methods are examples of where the code is not speaking 
for itself. By extracting the code into a separate method the complexity of the code is reduced. In Listing 
6-24 the commented section of code is extracted to the new ComputeRatePerMonth method. With a 
properly named method the comments are unnecessary. 

Listing 6-24. Extract a Method to Uncomplicate Code: Good Practice 

... 
    ratePerMonth = ComputeRatePerMonth(annualPercentageRate); 
... 
 
private static decimal ComputeRatePerMonth( 
    decimal annualPercentageRate) 
{ 
    if (annualPercentageRate < 0.01m || 
        annualPercentageRate >= 20.0m) 
    { 
        throw new InvalidOperationException(string.Format( 
            "AnnualPercentageRate {0}% is not valid", 
            annualPercentageRate)); 
    } 
 
    var ratePerMonth = (annualPercentageRate / 100m) / MonthsPerYear; 
 
    // The rate needs to be properly rounded 
    return Math.Round(ratePerMonth, 6, MidpointRounding.AwayFromZero); 
} 

There is one last point to make about comments. A lot of source code files end up with lines and 
sections of commented-out code. In extreme cases, entire classes or methods that are no longer needed 
are commented out. It seems that many of us have a hard time letting go of the code we write. However, 
leaving code commented out does a real disservice to the developers that follow. The best practice is to 
delete the unused code and let the version control system track the changes. Some developers like a two-
phase approach. First, comment out the code and check in the changes. Second, delete the commented-
out code and check in the removal as a separate change set. Whatever the approach, the end result 
ought to be that source code files do not have a lot of commented-out code. 

Way Too Complicated 
It is all too common for source code to become overly complex and downright complicated. Rarely is it 
helpful to go back and figure out why the code turned out the way it did. A much more useful endeavor is 
to regularly and consistently reduce the complexity and improve the situation. The discipline of 
refactoring is a method for improving the design of existing source code. A comprehensive discussion of 
refactoring includes both the proper diagnoses and an effective prescription. This section focuses on 
symptoms of code that is way too complicated and would probably benefit from refactoring. 



CHAPTER 6  NET RULES AND REGULATIONS 

105 

Some common symptoms of overly complicated source code include the following: 

• Long Method: A method that is hard to read and understand because it is too long. 

• Long Parameter List: A method that has so many parameters that it is too 
complicated. 

• Conditional Complexity: A method that has so much conditional branching and 
logic that it is difficult to follow. 

• Large Class: A class that is hard to read and understand because it is so large. 

• Speculative Generality: Code that is hard to read and understand because it has 
functionality based on imagined requirements or a perceived need for future 
extensibility. 

From these and many other symptoms comes the motivation to improve the code’s readability and 
maintainability. The art and practice of refactoring encompasses an entire book unto itself. Under 
Appendix A you will find resources for the effective application of refactoring. The important point here 
is that source code must not become overly complex. Establish rules and regulations appropriate to you, 
your team, and your organization to prevent code from becoming way too complicated. 

Unused, Unreachable, and Dead Code 
Enhancing or extending software that contains many lines of unused, unreachable, or dead code can get 
tricky. Sometimes the code defines private methods that are never called. Code is written within 
conditional branches that can never be reached. Other times there are intermediate values that are 
calculated but are never used. How does this unnecessary code get in there? The developer who writes 
the code may not even realize that the code is not used. Also, during maintenance a change in 
requirements can cause the code to become superfluous. 

The problem with unused, unreachable, and dead code is that the code is a diversion and a 
distraction. At some point, a developer reads the code to understand the purpose and rationale only to 
conclude that it is unimportant. That wastes time and mental energy. Developers might lose their train 
of thought or get confused by the unnecessary code. This reduces their productivity. Whether it is a 10% 
or 1% effect, the effect is still there. Establish rules and regulations to find and eliminate the unneeded 
code to keep the source code clean and clear. 

Summary 
In this chapter you learned about the sources of .NET standards and guidelines and how to integrate 
them to establish .NET rules and regulations that are right for your situation. You also learned about the 
importance of code smells and how better .NET practices are established to avoid bad code smells. 

In the next chapter, you will learn practices that relate to the C# language and its power. 



C H A P T E R  7 
 

      
 

107 

Powerful C# Constructs 

The .NET Framework has remained very vibrant since the introduction of .NET 1.0 in early 2002. Over 
the years, along with the major releases of .NET, Microsoft has added new languages, features, and 
technology sets. It is very clear that a lot of planning and consideration has gone into the .NET 
Framework. The same thoughtfulness is apparent in the evolution of the C# language. With each release, 
the C# language has added new and powerful constructs that have improved the language and the way 
developers write code in C#. 

With C# 2.0, the language designers introduced new features, such as 

• Generic types and methods 

• Nullable types 

• Simplified delegates and anonymous methods 

• Iterators and the yield statement 

• Partial classes 

With C# 3.0, the following new features were added: 

• Implicitly typed local variables 

• Anonymous types 

• Extension methods 

• Lambda expressions 

• Query syntax and LINQ 

With C# 4.0, the language brought more features: 

• Optional parameters and named arguments 

• Dynamic binding and the Dynamic Language Runtime (DLR) 

• Covariance and contravariance 

This chapter will review some of the powerful C# constructs, as they relate to following best 
practices. The most important concept is that effective C# development is a key part of following .NET 
practices. Take the time to dive into the C# language to learn how to take full advantage of the language. 
Table 7-1 lists the ruthlessly helpful practices that take advantage of some of the powerful C# constructs. 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

108 

Table 7-1. Powerful C# Constructs: Ruthlessly Helpful Practices 

 Practice 

7-1 Use Extension Methods to Add Behavior to Types That Are Closed to Modification 

7-2 U se the var Keyword to Loosely Couple Local Variables from Their Implicit Type 

7-3 Use Nullable Types to Designate Variables, Parameters, and Properties That Are Nullable 

7-4 Use the Null-Coalescing Operator (??)To Efficiently Apply Null-Value Assignment Logic 

7-5 Define a Method with Optional Parameters to Replace Overloaded Methods 

7-6 Use Generics to Help the Compiler Enforce Type Checking at Compile Time 

7-7 Develop Class Libraries That Use Generics for Type Safety and to Enforce Proper Usage 

7-8 Use LINQ to Perform Querying in a Way That Is Incorporated into the C# Language 

7-9 Attain Proficiency in Both the LINQ Query Syntax and Method Syntax 

7-10 Understand Deferred Query Execution to Use the Full Power of LINQ 

Extension Methods 
Extension methods are a special kind of static method. They allow you to write methods as if they were 
instance methods on an existing type. This approach does not involve creating a derived type, nor does it 
involve recompiling or modifying the original type. The extension method is called as if it is a method on 
the type it extends and appears (even through Visual Studio IntelliSense) as if it is actually defined as a 
method of the type. 

Let’s take a look at the power of extension methods by way of an example. In the example system 
there is different logic that is driven by the current day of the week. There is a frequent need to know if 
today’s date is a weekday or a weekend. By using the DayOfWeek property of System.DateTime it is simple 
to properly branch the logic. Listing 7-1 shows a typical section of code with logic that repeats 
throughout the codebase. 

Listing 7-1. Repeating Code That Acts on a DateTime 

DateTime importantDate = new DateTime(2011, 5, 7); 

switch (importantDate.DayOfWeek) 
{ 
    case DayOfWeek.Saturday: 
    case DayOfWeek.Sunday: 
        WeekendProcessing(); 
        break; 
    default: 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 7  POWERFUL C# CONSTRUCTS 

109 

        WeekdayProcessing(); 
        break; 
} 

For this example, the team wants to reduce the amount of repeating code. To accomplish this the 
team employs the Library pattern and writes a DateTimeHelper class.1 Notice the uses of the static 
keyword. This is a static class with a static method named IsWeekend, which is shown in Listing 7-2. 

Listing 7-2. Library Pattern Introduces the IsWeekend Helper Method 

public static class DateTimeHelper 
{ 
    using System; 
 
    public static bool IsWeekend(DateTime dateTime) 
    { 
        switch (dateTime.DayOfWeek) 
        { 
            case DayOfWeek.Saturday: 
            case DayOfWeek.Sunday: 
                return true; 
            default: 
                return false; 
        } 
    } 
} 

The helper method approach does achieve reuse. The code in Listing 7-3 performs exactly the same 
as the original code in Listing 7-1 in a lot fewer lines of code. The code in Listing 7-3 achieves all the 
desired results. It promotes reuse, and the resulting code is straightforward and readable, although the 
semantics of calling a method on a helper class is a bit awkward.  

Listing 7-3. Helper Method Approach to Calling IsWeekend 

DateTime importantDate = new DateTime(2011, 5, 7); 
 
if (DateTimeHelper.IsWeekend(importantDate)) 
    WeekendProcessing(); 
else 
    WeekdayProcessing(); 

This reuse is helpful, but it would be nice if System.DateTime actually had the IsWeekend method. 
That way any developer on the team wouldn’t need to know which methods are part of DateTime and 
which methods are in the helper class. By using an extension method, the IsWeekend method can 
effectively extend DateTime, appearing to be one of the DateTime methods. 

Writing the IsWeekend method as an extension method is shown in Listing 7-4. The only real 
difference between the helper method in Listing 7-2 and the extension method in List 7-4 is that the 
method parameter starts with the this keyword. The static keyword is applied in the same way and the 
logic is identical. 

                                                 
1 The Library pattern is described in Kent Beck, Implementation Patterns (Upper Saddle River, NJ: 
Addison-Wesley Professional, 2008). 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

110 

Listing 7-4. Declaring the IsWeekend Extension Method  

namespace Lender.Slos.Extensions 
{ 
    using System; 
 
    public static class DateTimeExtensions 
    { 
        public static bool IsWeekend(this DateTime dateTime) 
        { 
            switch (dateTime.DayOfWeek) 
            { 
                case DayOfWeek.Saturday: 
                case DayOfWeek.Sunday: 
                    return true; 
                default: 
                    return false; 
            } 
        } 
    } 
} 

Note  The naming convention for a class that contains extension methods is usually {Type 
Name}Extensions. For the namespace name there’s no clear convention. A common practice is to create a 
separate project and put all extension methods under one namespace, such as, Lender.Slos.Extensions. 

Extension methods must be defined as static methods in a static class and are identified by placing 
the this keyword in front of the first parameter in the method signature. The method extends the 
behavior of an object of the type of the first parameter. There are a few other restrictions, but they are 
rarely an issue.2 

In Listing 7-5, the IsWeekend extension method appears, for all intents and purposes, to be a method 
of System.DateTime. There is no reference to the DateTimeExtensions class; the compiler knows how to 
find the extension method without needing to specify the class. 

Listing 7-5. Extension Method Approach to Calling IsWeekend 

DateTime importantDate = new DateTime(2011, 5, 7); 
 
if (importantDate.IsWeekend()) 
    WeekendProcessing(); 
else 
    WeekdayProcessing(); 

                                                 
2 Extension methods cannot extend a static class. Also, if there is already an existing method in a type 
with the same signature as an extension method then the extension method is never called. 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

111 

In many ways this is remarkable. From the code listing and through Visual Studio IntelliSense, the 
IsWeekend method appears to be defined within System.DateTime, a .NET type that is defined in another 
assembly. The extension method approach has the following benefits:  

• Code reuse through a helper method 

• Straightforward and readable code 

• Visual Studio IntelliSense support 

• Code semantics are clear and convenient 

To continue this example, other application-specific methods could be defined as extension 
methods, such as, IsHoliday or IsWorkingDay. These extension methods can be found in the sample code 
within the Samples\Ch07\1_ExtensionMethods\Lender.Slos\DateTimeExtensions.cs file. 

In general, extension methods are an effective way to add new behavior and functionality to a type 
that is closed to modification. 

 Practice 7-1  Use Extension Methods to Add Behavior to Types That Are Closed to Modification 

Implicitly Typed Local Variables 
Should you use the var keyword to declare a local variable in C#? This question seems to come up a lot. 
Ever since implicitly typed local variables were introduced in C# there have been frequent discussions 
about whether and when it is a good idea to use implicit typing. As with so many things, there are uses 
for and misuse of implicitly typed local variables.3 This section focuses on the usefulness of declaring 
local variables using the var keyword. 

Before discussing the usefulness of implicitly typed local variables, it is important to dispel any 
misconceptions. Some common fallacies are laid out in Table 7-2. 

                                                 
3 For more information see http://blogs.msdn.com/b/ericlippert/archive/2011/04/20/uses-and-
misuses-of-implicit-typing.aspx. 

http://blogs.msdn.com/b/ericlippert/archive/2011/04/20/uses-and-misuses-of-implicit-typing.aspx
http://blogs.msdn.com/b/ericlippert/archive/2011/04/20/uses-and-misuses-of-implicit-typing.aspx
http://blogs.msdn.com/b/ericlippert/archive/2011/04/20/uses-and-misuses-of-implicit-typing.aspx


CHAPTER 7  POWERFUL C# CONSTRUCTS 

112 

Table 7-2. The var Keyword: Dispelling the Fallacies 

Fallacy Fact 

There is an erroneous belief that when a local 
variable is declared using the var keyword that 
then the variable is a variant type, similar to a 
variant in COM or VB6. 

An implicitly typed local variable is not a variant. 
The variable type must be unambiguously inferred 
by the compiler and the type can never change. 
The confusion might be because the terms var and 
variant sound similar. 

Another misconception is that the var keyword 
makes C# a weakly typed programming language. 

C# is still a strongly typed language. The difference 
is that every local variable no longer needs to be 
explicitly typed if the compiler can unambiguously 
infer the type. 

Yet another fallacy is that variables declared with 
the var keyword are dynamically typed at runtime. 

An implicitly typed local variable is statically 
typed. If the variable’s type cannot be 
unambiguously inferred by the compiler, the code 
will not compile. 

 
There are situations where the var keyword is required. For anonymous types to work, implicitly 

typed local variables are required. Since the type is anonymous, the developer cannot explicitly type the 
variable. The compiler handles all the implicit typing of anonymous types. In this code snippet, the 
compiler creates a strongly typed album variable based on the specification implicit in the anonymous 
type declaration. The compiler performs type checking of the album variable’s usage. IntelliSense lists 
the Artist and Title properties just like any other type. 

var album = new { Artist = "U2", Title = "Rattle And Hum" }; 
 
Console.WriteLine("\"{0}\", by {1}", album.Title, album.Artist); 

Beyond anonymous types and the essential need for the var keyword, implicit typing serves other 
useful purposes. An obvious reason is that by using the var keyword the code is made more readable by 
eliminating redundant type declarations. Compare the following two code fragments. Clearly, there is no 
value in writing out the explicit type when declaring the artists and albums local variables. The type of 
both artists and albums is self-evident in the Process2 method. There is no disadvantage to using the 
var keyword in this circumstance. 

private void Process1() 
{ 
    List<Artist> artists = new List<Artist>(); 
    Dictionary<Artist, Album> albums = new Dictionary<Artist, Album>(); 
... 
 
private void Process2() 
{ 
    var artists = new List<Artist>(); 
    var albums = new Dictionary<Artist, Album>(); 
... 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

113 

Perhaps the best argument for the implicit typing of local variables relates to code refactoring. For 
example, the code in Listing 7-6 explicitly types the results variable as ApplicationCollection. 
However, the code only uses the results variable’s IEnumerable<Application> interface to loop through 
the collection. In other words, the code is tightly coupled to the ApplicationCollection class for no good 
reason. 

Listing 7-6. Sample Code That Uses Explicit Typing 

ApplicationRepository repository 
    = new ApplicationRepository(); 
 
string lastNameCriteria = "P"; 
 
Controller controller = new Controller(repository); 
 
ApplicationCollection results = controller.Search(lastNameCriteria); 
 
foreach (var result in results) 
{ 
    Console.WriteLine("{0}, {1}", 
        result.LastName, 
        result.FirstName); 
} 

This is the signature of the Search method that is called by the code in Listing 7-6. The call to the 
Search method is explicitly typed to ApplicationCollection, not because the code requires that type, but 
because it is the return type of the method. 

public ApplicationCollection Search(string lastNameCriteria) 

Listing 7-7 shows this example rewritten using implicitly typed local variables. The results variable 
is declared with the var keyword to loosely couple the variable from the Search method’s return type. As 
long as the results can be iterated over in the foreach loop then the code works as intended. More 
importantly, the compiler enforces the minimum essential requirements of the results variable. 

Listing 7-7. Sample Code That Uses Implicit Typing 

var repository = new ApplicationRepository(); 
 
var lastNameCriteria = "P"; 
 
var controller = new Controller(repository); 
 
var results = controller.Search(lastNameCriteria); 
 
foreach (var result in results) 
{ 
    Console.WriteLine("{0}, {1}", 
        result.LastName, 
        result.FirstName); 
} 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

114 

At some future date, the signature of the Search method could change to return the 
IEnumerable<Application> type, as follows: 

public IEnumerable<Application> Search(string lastNameCriteria) 

This change has no impact on the code in Listing 7-7 because the compiler has implicitly typed the 
results variable. However, this change causes the code in Listing 7-6 to generate a compiler error 
something like the following: 

Error Cannot implicitly convert type 'IEnumerable< Application>' to 
'ApplicationCollection'. 

There are advantages to using implicit typing whenever the compiler permits. This is especially true 
for unit test code where implicitly typed local variables help to keep the test code loosely coupled to the 
code under test. This point is made again in Chapter 8 when better practices for automated testing are 
presented. Using implicit typing whenever the compiler permits is a more aggressive stance that 
recognizes that the compiler knows what type the variable must be without you having to explicitly type 
it out. If it is not implicitly clear then there will be a compiler error. 

 Practice 7-2  Use the var Keyword to Loosely Couple Local Variables from Their Implicit Type 

In general, refactoring is made easier with implicit typing. Between compiler checking and 
automated testing, there is virtually no semantic reason not to implicitly type local variables. There are 
other reasons to explicitly type variables. These reasons are often based on opinion, a team preference, 
or better readability. Considering your specific situation 

• If it is important that someone reading the code knows the type of the variable at a 
glance, use explicit typing. 

• Experiment writing the code both ways and adopt the style you consider more 
readable. 

Nullable Types 
In the C# language, variables of reference types (classes, interfaces, and delegates) can be assigned the 
null value. Value types (enumerations, numeric types, Booleans, and user-defined structs) cannot be 
assigned the null value. Nullable types, introduced in .NET 2.0, are used to assign the null value to a 
variable that represents an underlying value type. These nullable types are instances of the 
System.Nullable<T> struct, where the type parameter T is a value type. More common is the syntax T?, 
which is a shorthand for System.Nullable<T>, where T is a value type. 

Let’s take a look at an example of how nullable types are used. The code in Listing 7-8 defines the 
Application class. The Id property is defined with the value type of System.Guid. The logic in the Save 
method assumes that if the Id property is the default value of Guid.Empty then the proper action is to 
create the entity, otherwise the Save method updates the entity. This logic works; however, it can be 
made more explicit if the Id property is defined as a nullable type. 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

115 

Listing 7-8. The Application Class Not Using a Nullable Id Property 

public class Application 
{ 
... 
 
    public Guid Id { get; private set; } 
 
... 
 
    public void Save() 
    { 
        Validate(); 
 
        var entity = CreateEntity(); 
 
        if (Id == Guid.Empty) 
        { 
            entity.Id = _applicationRepo.Create(entity); 
        } 
        else 
        { 
            entity.Id = Id; 
            _applicationRepo.Update(entity); 
        } 
 
        Syncronize(entity); 
    } 
 
... 
} 

In Listing 7-9, the Application class is rewritten with the Id property defined as a nullable Guid. 
Now, the logic in the Save method is written with clear semantics. If the Id property does not have a 
value then the entity is created. Otherwise, the entity’s Id property is assigned the Id value and the 
record is updated. 

Listing 7-9. The Application Class with Id Defined As a Nullable Type 

public class Application 
{ 
... 
 
    public Guid? Id { get; private set; } 
 
... 
 
    public void Save() 
    { 
        Validate(); 
 
        var entity = CreateEntity(); 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

116 

        if (!Id.HasValue) 
        { 
            entity.Id = _applicationRepo.Create(entity); 
        } 
        else 
        { 
            entity.Id = Id.Value; 
            _applicationRepo.Update(entity); 
        } 
 
        Syncronize(entity); 
    } 
 
... 
} 

Any variables, parameters, or properties that are defined using a nullable type make it clear that 
null is a legitimate and anticipated value. Alternately, defining a variable, parameter, or property with a 
value type makes it clear that an explicit value assignment is expected. This helps make the method and 
class usage clearer to the consumer. 

 Practice 7-3  Use Nullable Types to Designate Variables, Parameters, and Properties That Are Nullable. 

The Null-Coalescing Operator 
The null-coalescing operator (??) is used to define a default value for both nullable types and reference 
types. In the expression count ?? -1, the null-coalescing operator returns the left-hand operand (the 
value of count) if it is not null; otherwise it returns the right operand (-1). 

Listing 7-10 shows examples of how the null-coalescing operator provides a succinct way to handle 
null values. For this example class, if the DateOfApplication property of the class is null then the 
DateOfApplication property of the returned entity is DateTime.Today. This logic is handled in one line, 
which is shown in bold in Listing 7-10, by using the null-coalescing operator. In this listing, there are 
other properties that are coalesced so as to return the proper default value. This includes the two strings 
properties, MiddleInitial and Suffix, and the three numeric values. 

Listing 7-10. Handling null Value Assignment with the Null-Coalescing Operator 

private ApplicationEntity CreateEntity() 
{ 
    return new ApplicationEntity 
        { 
            LastName = LastName, 
            FirstName = FirstName, 
            MiddleInitial = MiddleInitial ?? string.Empty, 
            Suffix = Suffix ?? string.Empty, 
            DateOfBirth = DateOfBirth, 
            DateOnApplication = DateOnApplication ?? DateTime.Today, 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

117 

            Principal = Principal ?? MaximumLoanAmount, 
            AnnualPercentageRate = AnnualPercentageRate ?? DefaultAnnualPercentageRate, 
            TotalPayments = TotalPayments ?? DefaultTotalPayments, 
        }; 
} 

 Practice 7-4  Use the Null-Coalescing Operator (??) to Efficiently Apply Null-Value Assignment Logic 

Optional Parameters 
VB.NET has had optional parameters for quite a while. In C# 4.0, optional parameters were introduced 
as a new language feature. When you specify that a method parameter is optional, no argument has to 
be supplied for that parameter when the method is called. Optional parameters are indicated by 
assigning the parameter a value in the method definition. For instance, the middleInitial parameter of a 
method written as string middleInitial = null defines it as an optional parameter. The primary 
restriction is that all optional parameters must come after required parameters of a method4. 

The code shown in Listing 7-11 defines a method that instantiates an Application class based on the 
parameter values provided. Only the first three parameters, lastName, firstName, and dateOfBirth, are 
considered required parameters. 

Listing 7-11. The CreateApplication Method with All Parameters 

public Application CreateApplication( 
    string lastName, 
    string firstName, 
    DateTime dateOfBirth, 
    string middleInitial, 
    string suffix, 
    DateTime dateOnApplication, 
    decimal principal, 
    decimal annualPercentageRate, 
    int totalPayments) 
{ 
    if (string.IsNullOrWhiteSpace(lastName)) 
    { 
        throw new ArgumentNullException("lastName"); 
    } 
 
    if (string.IsNullOrWhiteSpace(firstName)) 
    { 
        throw new ArgumentNullException("firstName"); 
    } 

                                                 
4 There are other restrictions described at http://codebetter.com/2011/01/11/c-in-depth-optional-
parameters-and-named-arguments-2. 

http://codebetter.com/2011/01/11/c-in-depth-optional-parameters-and-named-arguments-2
http://codebetter.com/2011/01/11/c-in-depth-optional-parameters-and-named-arguments-2
http://codebetter.com/2011/01/11/c-in-depth-optional-parameters-and-named-arguments-2


CHAPTER 7  POWERFUL C# CONSTRUCTS 

118 

    if (dateOfBirth < Application.MinimumDateOfBirth) 
    { 
        throw new ArgumentOutOfRangeException("dateOfBirth"); 
    } 

    return new Application(null) 
    { 
        LastName = lastName, 
        FirstName = firstName, 
        MiddleInitial = middleInitial ?? string.Empty, 
        Suffix = suffix ?? string.Empty, 
        DateOfBirth = dateOfBirth, 
        DateOnApplication = dateOnApplication, 
        Principal = principal, 
        AnnualPercentageRate = annualPercentageRate, 
        TotalPayments = totalPayments, 
    }; 
} 

Before optional parameters were introduced into C#, method overloading was the general way to 
provide method callers different calling signatures. The code in Listing 7-12 illustrates how the one 
method in Listing 7-11 is overloaded with a method that requires only the mandatory parameters. 

Listing 7-12. Method Overloads of CreateApplication with Various Parameters 

public Application CreateApplication( 
    string lastName,  
    string firstName,  
    DateTime dateOfBirth) 
{ 
    return CreateApplication( 
        lastName,  
        firstName, 
        dateOfBirth, 
        string.Empty, 
        string.Empty, 
        DateTime.Today, 
        Application.MaximumLoanAmount, 
        Application.DefaultAnnualPercentageRate, 
        Application.DefaultTotalPayments); 
} 

The method overloading concept in Listing 7-12 can be further extended to many more methods 
that simply add in the optional parameters, such as the following: 

public Application CreateApplication( 
    string lastName, 
    string firstName, 
    DateTime dateOfBirth, 
    string middleInitial) 
{ 
    ... 
} 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 7  POWERFUL C# CONSTRUCTS 

119 

public Application CreateApplication( 
    string lastName, 
    string firstName, 
    DateTime dateOfBirth, 
    string middleInitial, 
    string suffix) 
{ 
    ... 
} 

With .NET 4.0 optional parameters finally came to the C# language. Instead of writing a series of 
method overloads, it is now possible to define one method that has optional parameters. In Listing 7-13, 
the CreateApplication is rewritten using optional parameters. This one method replaces the method in 
Listing 7-11 and the six overloaded methods that might have been written. 

Listing 7-13. The CreateApplication Method with Optional Parameters 

public Application CreateApplication( 
    string lastName, 
    string firstName, 
    DateTime dateOfBirth, 
    string middleInitial = null, 
    string suffix = null, 
    DateTime? dateOnApplication = null, 
    decimal? principal = null, 
    decimal? annualPercentageRate = null, 
    int? totalPayments = null) 
{ 
    if (string.IsNullOrWhiteSpace(lastName)) 
    { 
        throw new ArgumentNullException("lastName"); 
    } 
 
    if (string.IsNullOrWhiteSpace(firstName)) 
    { 
        throw new ArgumentNullException("firstName"); 
    } 
 
    if (dateOfBirth < Application.MinimumDateOfBirth) 
    { 
        throw new ArgumentOutOfRangeException("dateOfBirth"); 
    } 
 
    return new Application(null) 
    { 
        LastName = lastName, 
        FirstName = firstName, 
        MiddleInitial = middleInitial ?? string.Empty, 
        Suffix = suffix ?? string.Empty, 
        DateOfBirth = dateOfBirth, 
        DateOnApplication = dateOnApplication ?? DateTime.Today, 
        Principal = principal ?? Application.MaximumLoanAmount, 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

120 

        AnnualPercentageRate = 
            annualPercentageRate ?? Application.DefaultAnnualPercentageRate, 
        TotalPayments = totalPayments ?? Application.DefaultTotalPayments, 
    }; 
} 

Instead of writing many method overloads to handle the various method signatures, one method 
with optional parameters can help make the code easier to maintain. 

 Practice 7-5  Define a Method with Optional Parameters to Replace Overloaded Methods 

There is an important cautionary note that relates to constant value assignment when declaring an 
optional parameter. It is probably better to describe the potential problem with an example. In the 
following code snippet, the optional loanAmount parameter is provided a constant value of 17500, if the 
parameter is not provided. 

public class LoanValidator 
{ 
    public static readonly int LoanLimit = 17500; 
 
    public int LoanCeiling(int loanAmount = 17500) 
    { 
        return loanAmount; 
    } 
} 

When the code calls the LoanCeiling method without the optional parameter, the compiler 
references the value and copies it directly into the calling code. The implications are that if you change 
the default value, such as 18000, all the code that calls the method must be recompiled to get the new 
value. The following output demonstrates the results from a test assembly that is not recompiled after 
the value changes from 17500 to 18000. The method call to the test assembly still uses the original value 
and the test fails.  

Errors and Failures: 
1) Test Failure : 
Tests.Unit.Lender.Slos.OptionalParameters.OptionalParametersTests.LoanCeiling_WithNoParamete
r_ExpectProperValue 
  Expected: 18000 
  But was:  17500 

The better practice is to use a nullable type when defining an optional parameter. In this way the 
null-coalescing operator is used to encapsulate how the code ought to properly handle the case when 
the parameter is not explicitly provided by the calling code. This is shown in the following code sample: 

public class LoanValidator 
{ 
    public static readonly int LoanLimit = 17500; 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

121 

    public int LoanCeiling(int? loanAmount = null) 
    { 
        return loanAmount ?? LoanLimit; 
    } 
} 

Generics 
Since .NET 2.0, there are two forms of generics in the C# language: 

• Generic Types: A class, structure, interface, or delegate defined with one or more 
type parameter 

• Generic Methods: A method defined with one or more type parameter 

Before .NET 2.0, the ArrayList class was in common use. This collection type can contain a list of 
any object type. Since every type is derived from the object type, the list could contain any type. There 
was no type safety and improper usages might not be found until runtime. For example, the following 
code sample has a simple mistake. The value in the names array is improperly cast into the dateOfBirth 
variable. 

var names = new ArrayList(); 
var datesOfBirth = new ArrayList(); 
 
names.Add("Public, John Q."); 
datesOfBirth.Add(new DateTime(1993, 11, 13)); 
 
for (int index = 0; index < names.Count; index++) 
{ 
    DateTime dateOfBirth = (DateTime)names[index]; 
 
    Console.WriteLine("{0}, DOB: {1}", 
        names[index], 
        dateOfBirth.ToShortDateString()); 
} 

This mistake is not found by the compiler. When the code is run the result is the following runtime 
error: 

InvalidCastException: Specified cast is not valid. 

In .NET 2.0 and beyond, the code can easily be rewritten to use generic lists. The explicit cast to 
DateTime is no longer necessary. Without the cast it is clear that the dateOfBirth variable should not be 
assigned from the names list.  

var names = new List<string>(); 
var datesOfBirth = new List<DateTime>(); 
 
names.Add("Public, John Q."); 
datesOfBirth.Add(new DateTime(1993, 11, 13)); 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

122 

for (int index = 0; index < names.Count; index++) 
{ 
    DateTime dateOfBirth = names[index]; 
 
    Console.WriteLine("{0}, DOB: {1}", 
        names[index], 
        dateOfBirth.ToShortDateString()); 
} 

The compiler finds the DateTime conversion error and the code will not compile. Even if dateOfBirth 
is defined as an implicitly typed local variable, this mistake is found by the compiler and the code will 
not compile, reporting this error: 

'string' does not contain a definition for 'ToShortDateString' and no extension method 
'ToShortDateString' accepting a first argument of type 'string' could be found (press F4 to 
add a using directive or assembly reference) 

 Practice 7-6  Use Generics to Help the Compiler Enforce Type Checking at Compile Time 

Since .NET 2.0 introduced them, the generic collection types are now widely used. These generic 
classes have gone a long way to prevent improper usage, such as calling instance methods with 
improper arguments. The compiler catches the error if the Add method is called passing the wrong type. 
This same type safety and compiler enforcement of the generic types and generic methods written by 
you and your team is very useful. 

 Practice 7-7  Develop Class Libraries That Use Generics for Type-Safety and to Enforce Proper Usage 

LINQ 
LINQ is an acronym for language-integrated query. It is a powerful .NET technology that brings querying 
capabilities directly into the C# language (and other .NET languages). With the introduction of LINQ in 
.NET 3.0, querying was brought to C# as a major language construct, as fundamental as foreach loops, 
delegates, and extension methods. It is hard to overstate the impact that LINQ has had on developing 
.NET applications that perform a lot of queries and the developers who write them. 

LINQ is a large topic. There are many relevant language features vital to LINQ, including extension 
methods, lambda expressions, anonymous data types, and partial methods. There are many keywords 
and many query constructs. Entire books are devoted to LINQ.5 For this reason, this section discusses the 

                                                 
5 An excellent book on LINQ is Joseph Rattz and Adam Freeman, Pro LINQ, Language Integrated Query in 
C# 2010 (New York: Apress, 2010). 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

123 

importance of LINQ and why it is a powerful C# construct, and provides advice to encourage new and 
different practices. 

There are two basic ways to write LINQ queries: 

• Query Syntax: A declarative syntax introduced in C# 3.0, which is translated at 
compile time to method calls understood by the .NET common language runtime 
(CLR). 

• Method Syntax: The standard query methods understood by the .NET CLR, called 
directly instead of using the query syntax. 

There is no semantic difference between query syntax and method syntax. Query syntax is often 
considered to be simpler and more readable. It is certainly analogous to the structured query language 
(SQL), which is the de facto standard way to query in database products like Microsoft SQL Server. The 
following C# statement (using the LINQ to SQL provider) queries a database in the LINQ query syntax: 

var results = from a in Albums 
 where a.Artist.Name.StartsWith("B") 
 select a; 

The statement reads like a reshuffled SQL query. In fact, it is equivalent to the following SQL statement: 

SELECT [t0].* 
FROM [Album] AS [t0] 
    INNER JOIN [Artist] AS [t1] 
    ON [t1].[ArtistId] = [t0].[ArtistId] 
WHERE [t1].[Name] LIKE 'B%' 

The power of LINQ comes from the way the query syntax is directly supported by the C# language. 
For example, the LINQ provider presents the inner join relationship between Artist and Albums as a 
property of the class. In addition, the Name property is strongly typed as a string. These relationships and 
types are checked and enforced by the compiler. With LINQ, querying is incorporated into the C# 
language in a fundamental and robust manner. 

 Practice 7-8  Use LINQ to Perform Querying in a Way That Is Incorporated into the C# Language 

The .NET common language runtime (CLR) does not directly use the query syntax. The compiler 
transparently translates the query syntax into the method syntax. The query syntax statement above is 
equivalent to the following statement written in the method syntax: 

var results = Albums 
    .Where(x => x.Artist.Name.StartsWith("B")); 

Many C# developers who are more familiar with fluent interfaces and lambda syntax prefer writing 
LINQ expressions in method syntax. It seems logical that if the team prefers one convention over 
another then the team should stick to that convention. With a little practice, it should not be hard for 
developers to adapt from one convention to the other. 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

124 

Even if you prefer the query syntax, it is important to learn the method syntax: 

• Some queries can only be expressed as method calls. 

• The MSDN reference documentation of the System.Linq namespace uses method 
syntax. 

Even if you prefer the method syntax, it is important to learn the query syntax: 

• The query syntax supports a local range variable, which represents each element 
in the source sequence. This can make complex queries a lot more readable. 

• The query syntax supports the use of a let clause, which is useful to store the result 
of a sub-expression. The let clause helps make complex queries more readable. 

Some developers seem to draw the battle lines with either LINQ query syntax or method syntax. A 
better approach is to see the need for both LINQ query syntax and method syntax. The project or the 
organization may have a preference and establish a convention, and that can be the final form written 
for the production code. However, you and your team will certainly benefit from gaining proficiency and 
fluency in both syntaxes, which will make your development more effective. 

 Practice 7-9  Attain Proficiency in Both the LINQ Query Syntax and Method Syntax 

For years, developers have been using the Microsoft SQL Server Management Studio to develop SQL 
queries. The SQL query development is effective and supported by features, such as the query analyzer 
and IntelliSense. 

When developing LINQ queries against databases it is important to find a similar way to quickly 
develop query expressions. One very effective tool for developing LINQ queries is a product called 
LINQPad.6 LINQPad is not open source, but the standard edition is free to download and use. The auto-
completion feature and the professional edition cost extra.7 

Figure 7-1 shows the main interface to LINQPad. This screenshot shows how the MvcMusicStore 
database is queried using the LINQ query syntax. In a manner similar to SQL Enterprise, LINQPad lets 
you interactively query databases, in either the LINQ query syntax or method syntax. 

 

                                                 
6 For more information see www.linqpad.net. 
7 For those addicted to IntelliSense, LINQPad auto-completion is worth the additional cost.  

http://www.linqpad.net


CHAPTER 7  POWERFUL C# CONSTRUCTS 

125 

 
Figure 7-1. Developing queries with LINQPad 4 

With the introduction of LINQ, the concept of a deferred query became important to understand and 
appreciate. Deferred query execution is often misunderstood.8 This can lead to unanticipated 
performance problems. It is important to recognize how you can make deferred queries work for you. 
Listing 7-14 shows a series of LINQ statements that query the MvcMusicStore database. Although there 
are two LINQ query statements, the query does not execute until the line with the foreach statement. 

Listing 7-14. Deferred Query Execution in LINQ 

var albums = Albums 
        .Where (x => x.Price < 9.00m); 
 
var results = albums 
        .Where (n => n.Artist.Name.StartsWith("B")) 
        .Select (n =>  
        new  

                                                 
8 For more information see http://blogs.msdn.com/b/charlie/archive/2007/12/09/deferred-
execution.aspx. 

http://blogs.msdn.com/b/charlie/archive/2007/12/09/deferred-execution.aspx
http://blogs.msdn.com/b/charlie/archive/2007/12/09/deferred-execution.aspx
http://blogs.msdn.com/b/charlie/archive/2007/12/09/deferred-execution.aspx


CHAPTER 7  POWERFUL C# CONSTRUCTS 

126 

        { 
                AlbumTitle = n.Title, 
                ArtistName = n.Artist.Name 
        }); 
 
foreach (var result in results) 
{ 
        Console.WriteLine( 
                "\"{0}\", by {1}", 
                result.AlbumTitle, 
                result.ArtistName); 
} 

Since the query execution is deferred, the LINQ provider (LINQ to SQL) combines the queries that 
underlie the two LINQ statements and executes only one query. In effect, the query combination is 
equivalent to this single SQL query, which returns 11 rows:  

SELECT [t0].[Title] AS [AlbumTitle], [t1].[Name] AS [ArtistName] 
FROM [Album] AS [t0] 
    INNER JOIN [Artist] AS [t1] 
    ON [t1].[ArtistId] = [t0].[ArtistId] 
WHERE ([t1].[Name] LIKE 'B%') 
    AND ([t0].[Price] < 9.00) 

Unfortunately, developers who do not appreciate deferred query execution might write the same 
logic, but in a way that breaks the deferred query execution, as shown in Listing 7-15. The database 
query now executes on the line with the ToList method call. 

Listing 7-15. LINQ Statements That Break Deferred Query Execution 

var albums = Albums 
        .Where (x => x.Price < 9.00m) 
        .ToList(); 
 
var results = albums 
        .Where (n => n.Artist.Name.StartsWith("B")) 
        .Select (n =>  
        new  
        { 
                AlbumTitle = n.Title, 
                ArtistName = n.Artist.Name 
        }); 
 
foreach (var result in results) 
{ 
        Console.WriteLine( 
                "\"{0}\", by {1}", 
                result.AlbumTitle, 
                result.ArtistName); 
} 

The query execution is no longer deferred. With the call to the ToList method, the LINQ provider 
queries the database with a SQL query similar to the following, which returns 246 rows: 



CHAPTER 7  POWERFUL C# CONSTRUCTS 

127 

SELECT [t0].* 
FROM [Album] AS [t0] 
WHERE [t0].[Price] < 9.00 

The remaining query logic acts upon the objects that are retrieved into memory for this first query. 
It is easy to see how by not appreciating deferred query execution code can result in database queries 
that are very inefficient. In this simple example, the database query brought back hundreds of rows, but 
less than a dozen rows met the combined criteria. There are examples of how improperly written LINQ 
statements returned tens of thousands of unnecessary rows from the database, which destroyed 
performance9.  

 Practice 7-10  Understand Deferred Query Execution to Use the Full Power of LINQ 

Database LINQ providers, including Entity Framework, NHibernate, and LINQ to SQL, support 
deferred execution. These providers do a lot of work before executing a query to create an optimized SQL 
statement to send an efficient query to the database. It is important to write LINQ queries with a full 
appreciation for how deferred query execution optimizes these queries.  

The power of LINQ is also found when working with Reactive Extensions in .NET 4.0, more 
commonly abbreviated as Rx. Rx is an innovation from Microsoft researcher Erik Meijer, who is cited by 
many as the father of LINQ. Rx brings a new “push model” to .NET for event-subscription programming, 
such as user interface and network events.10 The principal Rx types are the IObservable<T> and 
IObserver<T> interfaces, which allows the provider of data to “push” to subscribers, who react to the 
newly available data. In the pull model you enumerate available data. In the push model you subscribe 
to observable data events. LINQ is designed to be applicable for this inverse model. Basically, LINQ to Rx 
is written to use LINQ constructs that give you the ability to query Rx providers and use LINQ in reactive 
programming applications. At Microsoft Research, DryadLINQ is further demonstrating the power of 
LINQ and how it is applicable to distributed computing on thousands of servers for large-scale data 
parallel applications.11 

Summary 
In this chapter you learned about many powerful C# language constructs. These language features have 
added new and better ways to write better software. In many ways the code is easier to write, easier to 
read, and more maintainable. 

In the next chapter you will learn about automated testing and many related better practices. 

                                                 
9 Scott Hanselman describes a curious case of performance problems when the query execution was not 
deferred: 
www.hanselman.com/blog/TheWeeklySourceCode52YouKeepUsingThatLINQIDunnaThinkItMeansWhatYouThink
ItMeans.aspx 
10 For a nice introduction to LINQ to Rx see section 12.5 of Jon Skeet, C# in Depth (2nd Edition) 
(Greenwich, CT: Manning, 2011). 
11 For more information see http://research.microsoft.com/en-us/projects/dryadlinq/.  

http://www.hanselman.com/blog/TheWeeklySourceCode52YouKeepUsingThatLINQIDunnaThinkItMeansWhatYouThink
http://research.microsoft.com/en-us/projects/dryadlinq/


C H A P T E R  8 
 

      

129 

Automated Testing 

This chapter is not about automated testing in the Quality Assurance (QA) sense. This chapter is about 
the automated testing that developers perform. Throughout this book, when you see the word testing it 
refers to a developer performing intention checking. In this sense, test code checks that the code-under-
test works and continues to work as a developer deliberately planned it to work. 

The topics of test-driven development (TDD) and the red-green-refactor development methodology 
are covered well in many books, blog postings, and websites. (Appendix A provides a list of resources 
that cover TDD and how-to write tests.) This chapter is not going to describe how to write your first unit 
test. It provides practices that focus on the following objectives: 

• Readability: Writing test code that is easy to understand and communicates well 

• Maintainability: Writing tests that are robust and hold up well over time 

• Automation: Writing tests that require little setup and configuration (preferably 
none) 

As discussed in Chapter 4, quantifying the value of automated testing is very important. These 
practices produce benefits that relate to early detection of problems, reducing the risk of future changes, 
identifying how two separate components and sections of code need to work together, and making sure 
code is written correctly. 

Automated testing covers more topics than unit testing. It covers different forms of test code and 
automated test suites. The topics include forms of testing that developers find helpful and that can be 
automated: 

• Unit testing 

• Surface testing 

• Automated integration testing 

• Smoke testing 

• Stability testing 

• Performance testing 

• Database testing 

Surface testing is a specialized form of testing that is introduced later in this chapter. Some testing is 
beyond the scope of this book. There are simply too many effective applications of automated testing to 
cover them all; if you learn the principles behind them, you can apply them broadly. This chapter 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8  AUTOMATED TESTING 

130 

describes many specific practices to improve automated testing, consistent with those principles. The 
practices covered are summarized in Table 8-1. 

Table 8-1. Automated Testing: Ruthlessly Helpful .NET Practices 

 Automated Testing Practice 

8-1 Focus on Writing Maintainable Test Code 

8-2 Adopt an Effective Naming Convention 

8-3 Use the Arrange-Act-Assert (3-As) Pattern 

8-4 Prefer Many Short Tests over Few Long Tests 

8-5 Avoid More Than One Line of Action 

8-6 Avoid More Than One Primary Assertion 

8-7 Avoid Explicit Typing Variables in Test Code; Use the Var Keyword 

8-8 U se a TestsContext Class to Reduce Repetition and Manage Complexity 

8-9 Bui ld TestHelper Classes to Promote Reuse 

8-10 Data-Drive Test Methods for Multiple Test Cases  

8-11 Perform Boundary Analysis to Cover All Scenarios 

8-12 Use Stubs to Test in Isolation 

8-13 Use Only One Mock when Testing Interaction  

COMMENTARY 

I believe the word testing in “unit testing” is an unfortunate choice. A programmer is not a tester, and 
programmers rarely consider themselves testers. A primary role of QA is to independently verify and 
validate the system. Many in QA are unsettled by the idea that the person writing the code is testing the 
code. Unit tests are programmer tests, and unit testing is not independent verification and validation. The 
principle behind unit testing is that the developer confirms that the code works as intended. Instead of 
using the word testing a more accurate phrase might be intention checking. However, since unit testing is 
so widely used it is now entrenched. 



CHAPTER 8  AUTOMATED TESTING 

131 

This book owes a debt to the many books and websites that describe and explain important conventions, 
standards, principles, and practices. The code samples for this chapter use NUnit, Moq, and NDbUnit, 
which are free and open source. Without this groundbreaking work, many projects would either continue to 
roll their own frameworks or not use automated testing. The experience and expertise of these authors and 
the developers of the testing frameworks provides an excellent foundation for all developers to build well-
tested software upon. 

Metaphorically, test code is like the clothing and equipment of firefighters. If an oxygen tank, respirator, 
and protective clothing are too heavy, unwieldy, and unreliable, the firefighter is not helped. A firefighter 
might not want to wear the equipment because it is actually an impediment to fighting a fire. This is safety 
equipment and a firefighter should want to wear it and should rely on it for protection; these are life-saving 
devices that no reasonable firefighter should be without. In the same way, developers rely on test code and 
should see it as a help and not a hindrance. If it is unreliable and burdensome, then over time the tests will 
be commented out, ignored, or abandoned. 

There are a lot of examples of test code available on the Internet. Much of this test code is written to 
illustrate how to write unit tests. The problem comes when the examples do not focus on writing 
maintainable test code (although, since that is not that writer’s intent, not focusing on maintainability is 
understandable). Such examples present basic methodology; the code explicitly types variables and adds 
verbose comments throughout. There are long arrangement steps and several assertions demonstrating a 
framework’s versatility and the code sample spells out everything. Sadly, this sows the seeds of a 
maintenance burden that can cause test code to be abandoned. It can also detract from the goal of 
singularly focusing on checking just one intention. 

 
Another type of testing that must not be overlooked is security testing. This is a sizeable category 

that can be automated, yet it is often performed manually. Consider security requirements as part of the 
system requirements and do not overlook them. 

Model-based testing (MBT) is an emerging discipline for testing complex software systems. Visual 
Studio has a model checker called SpecExplorer that can be used to generate test cases for model-based 
testing. 

Microsoft’s Pex and Moles are a set of important tools and technology worth investigating, but they 
are just a little beyond the scope of this chapter. Working together, Pex and Moles can automatically 
generate test cases by performing automatic code exploration. 

Appendix A provides resources for further learning and research. 

Case Study 
Imagine you are a software developer working at Lender Inc., a fictional bank that originates student 
loans using their internally-developed Student Loan Origination System (SLOS) software. The technical 
lead has assigned you the task of guiding an effort to improve testability as part of the next release cycle. 
You will be writing automated tests and incorporating automated testing into the development process. 



CHAPTER 8  AUTOMATED TESTING 

132 

STUDENT LOAN ORIGINATION SYSTEM 

When a student needs a loan to pay for their education, Lender Inc. uses their in-house SLOS system to 
enter and process the student loan application, originate the loan, and make disbursements to the college 
or university. The system has been in use for many years and is critical to Lender’s student loan 
department. The system is thoroughly tested by QA before every release and is generally reliable and 
performs the calculations correctly. There are, however, several key functional and non-functional 
improvements planned for the next release. Development intends to use automated testing to reduce the 
number of defects found by QA during regression and system testing. 

There is a new business validation to be added to the system. For legal reasons, the student must be no 
less than 16 years of age and no more than 26 years old. 

An important enhancement is to add an Estimated Monthly Payment Calculator to allow monthly payment 
amounts to be computed during the application process. Currently, the amount is only available during the 
loan approval workflow. Customers frequently request an estimate of their monthly payment when 
applying, which is now done using a spreadsheet. SLOS needs to be enhanced to use the same loan 
calculator that is in the loan approval process, during application. The payment calculator computes a 
ballpark estimate given a principal amount, a percentage rate, and payment terms. QA will independently 
verify and validate that the monthly payment estimate shown is correct and matches the monthly payment 
calculated during loan approval. 

On the non-functional side, the system’s data access layer (DAL) needs to be upgraded. The DAL performs 
create, retrieve, update, and delete (CRUD) operations using ADO.NET calling stored procedures. The goal 
is to switch to using an object-relational mapping (ORM) package. The ORM package selected is 
NHibernate. Today, each of the database tables requires at least four stored procedures, one for each 
CRUD operation. Maintaining the DAL is expensive and a frequent source of defects discovered by QA 
during regression and system test. To limit scope and mitigate risk the non-CRUD operations will not be 
impacted during the project. The non-CRUD querying of the database, which includes various ad hoc 
queries and any query that retrieves multiple records, continues to go through the DAL. The existing DAL 
and the ORM need to work side by side. 

As part of the release cycle the QA testing team performs a full and complete regression test of SLOS. Any 
defects found during regression test are expensive: in addition to the effort to fix the issue and verify the 
fix, there is the effort to report and track the issue. The expectation has been set that Development will 
make effective use of automated testing to ensure that these enhancements work as intended and that all 
existing functionality continues to work properly in the next release. 

You plan to use automated testing to do the following: 

• Ensure that the new business-logic validations work as intended. 

• Check that the monthly payment amount calculated for an application is exactly 
the same as the monthly payment amount calculated for a loan with identical 
terms. Both amounts must compute properly. 



CHAPTER 8  AUTOMATED TESTING 

133 

• Verify that when the same CRUD operations are performed using the ORM 
package instead of the DAL, the database operation is done correctly and is 
completely consistent with the DAL. 

• Verify that data retrieved from and stored in the database for any CRUD operation 
is performed properly using either the DAL or the ORM. 

• Prove that any code modules that depend on the DAL continue to interact through 
the same interface without requiring code changes. 

 Caution  All of the financial formulas and sample code are presented for the purpose of illustrating the 
practices. They are too simplistic to use in any financial application. 

Brownfield Applications 
To understand the term brownfield, imagine an industrial site that needs repair and rehabilitation.1 It 
still serves a useful purpose, but a lot of work needs to be done to bring everything up to par. The site 
might be running, but it has the capacity to produce more. There is a waste mound and a lot of old, 
outdated equipment. The site needs more than a spring cleaning; it needs an overhaul. 

Similarly, a brownfield software application does not deserve to be abandoned, but it will take a lot 
of work to improve the situation. The code base is deemed to be worth the investment. This is in contrast 
to legacy code. By definition, a legacy application is considered not worth the cost of enhancing or 
redesigning. A legacy system is usually patched up, retired, or replaced. 

Figure 8-1 shows the architecture of the SLOS system. On the left-hand side of the diagram is the 
system’s architecture as it currently stands. On the right-hand side is the architecture after the planned 
system overhaul and redesign. In this case SLOS is a brownfield application; Lender Inc. clearly wants to 
enhance the functionality. Also, the DAL replacement requires an investment.  

                                                 
1 The origin of the term brownfield is described in Baley and Belcham, Brownfield Application 
Development in .NET (Greenwich, CT: Manning, 2010). 



CHAPTER 8  AUTOMATED TESTING 

134 

 

Figure 8-1. A brownfield application example 

Within the scope of the case study is the work to change the DAL from using ADO.NET to using 
NHibernate. Once NHibernate is fully implemented, the plan is to remove the CRUD stored procedures. 
In a future project the Web application is planned to be overhauled. 

There is risk when changing a brownfield application. First, the payment calculator must continue 
to calculate the payment amounts correctly. Second, replacing the DAL stored procedures with an ORM 
might generate many bugs. If these changes are not done properly, the project will not improve SLOS; it 
will make the system worse. To mitigate risk and increase effectiveness in an upgrade or enhancement 
project, use automated testing to your advantage. Automated testing provides continuous feedback as to 
whether the system is holding its integrity and continues to work as intended. 

Let’s take a look at refactoring the payment calculator. The automated testing and development 
strategy is to perform unit testing, as follows: 

1. Write unit tests around the ComputePayment method in the Loan class. 

2. Make sure the tests cover all possible test cases. 

3. Have all the automated unit tests run on the continuous integration (CI) server 
after every build is made. 

4. Refactor the code into a financial calculator class; the payment calculation 
method is separated from the Loan class. 

5. Verify the Loan class continues to compute the payment amount correctly 
using the Calculator class. 

6. Clone these LoanTests methods to the ApplicationTests class and repurpose 
them for the enhancement of the Application class. 



CHAPTER 8  AUTOMATED TESTING 

135 

7. Add the ComputePayment method functionality the Application class, checking 
to sure everything works properly by running the unit tests. 

8. Verify that the both the Application and the Loan classes compute payment 
amounts correctly. 

The DAL replacement effort involves replacing an entire subsystem, and so the automated testing 
strategy is not unit testing. The strategy is built upon a specialized automated integration testing 
approach called surface testing. Since it is a much bigger undertaking, let’s postpone the detailed 
discussion of the DAL replacement. Surface testing is discussed in detail in its own section later in this 
chapter. For now, it is sufficient to say the DAL replacement starts with automated testing using the DAL 
interface as the “surface” to write tests against. 

 Caution  In my experience, writing a lot of unit-specific tests against a brownfield application can be 
counterproductive during system overhaul and redesign. I prefer automated integration tests. Also, existing unit 
test suites can become very unhelpful. Unit tests are written at the unit level, but the planned work focuses on 
significantly changing the code. Code units might be relocated, combined, or dramatically altered. Since unit tests 
verify that the unit continues to work as written, the unit tests start failing as improvements are made; maintaining 
the many outmoded and failing unit tests is now burdensome and counterproductive. 

Greenfield Applications 
The word greenfield conjures up images of a site ready to receive a brand new factory. Everything will be 
shiny, innovative, and modern. Everyone mentally creates the factory of their dreams without being 
constrained by physical realities. The architect draws designs that are not limited by budget or structural 
engineering. Because project realities are not immediate, the vision does not conflict with reality. 
However, the planning and design phases gradually bring vision in line with reality. Designs must 
conform to the laws of physics. Schedule and cost control begin to tame the vision. People give up their 
passionate dreams and live within budgets and deadlines. 

Greenfield software projects ought to be in a similar situation, but often they are not. Instead, an 
elaborate planning phase is bypassed.2 The developers jump right into writing code. At the project’s 
inception everyone still has their own vision of what the system will be, unconstrained by reality. At this 
stage the customer, analyst, or developer probably does not feel pressure to compromise their vision 
because they suspect everyone is agreeing to their mental creation. There is no common understanding, 
no meeting of the minds. 

Automated testing provides a way out. The developer must be clear on what the code is intended to 
do in order to plan the tests. Conflicting requirements have to be resolved. Requirements must be 
complete enough to both write the test code and the code-under-test. In writing the tests, as each new 
scenario is explored, many questions arise: 

                                                 
2 An elaborate planning phase is not necessarily good; it can get stuck in analysis paralysis. The 
important thing is to come to a common understanding of the scope and the objectives of the project. 



CHAPTER 8  AUTOMATED TESTING 

136 

• What is the code required to do under each test case? 

• How should the code react when unanticipated situations arise? 

• Why does some new piece of code break an existing test? 

The accumulating set of tests must all continue to pass, and so, gradually, a shared understanding 
between analyst and developer evolves and is defined: complete, clear, and consistent. 

By working to understand and verify that the code-under-test works as intended, the developer 
forces a meeting of the minds. For efficiency’s sake, it would be ideal if the meeting of the minds 
happened before coding but, to the extent that a common understanding is not there, the writing of tests 
reveals gaps. Automated testing provides continuous feedback as to whether the system holds its 
integrity during development. All code written to that point has to continue to hold up under the 
scrutiny of rigorous intention checking. 

In the case of SLOS, the system is not a greenfield application. The business-logic validation is new 
development work. As tests are written for that enhancement, key questions arise that require the 
developer to go back to the analyst for clarification. 

Automated Testing Groundwork 
Automated testing is the generally-accepted way to check that code is and continues to work as 
intended. Automated tests meet very specific criteria: 

• Every developer must be able to run the combined collection of all the developer’s 
tests. 

• The CI server must be able to run the entire suite of tests without manual 
intervention. 

• The outcome of the tests must be unambiguous and repeatable. Usually, the 
standard is that if one test fails the entire test run fails. 

The automated tests allow any developer to verify that their current changes do not break existing 
code-under-test. Any developer needs to be able to run the entire automated test suite with little to no 
setup or configuration. The exception to this rule is long-running automated integration tests. The CI 
server should run these tests as part of the full and thorough build cycle, but the developers should not 
because they are time and resource intensive. Also, automated tests allow the CI server to fulfill a key 
role of efficiently verifying that the system works properly. 

Test Code Maintainability 
Perhaps the most underrated objective for test code is readability. The second most underrated 
objective is maintainability. A lot of test code is abandoned because it is too hard to understand or it 
breaks too often. For projects that invest time and money in writing test code only to find it abandoned, 
a deep cynicism grows about the value of writing test code. 

Hard-to-maintain test code is one of the reasons test code falls out of use or is simply abandoned. It 
is important to realize that test code needs to be written with maintainability in mind. Testing a single 
method can require a half dozen or more test cases to fully and completely test all of the functionality. 
The implication, even if the code-under-test is well written, is that if the test code is difficult to maintain, 
it soon becomes a chore. The value of the test code becomes lost and the effort wasted. This section 
focuses on what you can do to make your test code maintainable. 



CHAPTER 8  AUTOMATED TESTING 

137 

 Practice 8-1  Focus on Writing Maintainable Test Code 

Here is a list of ways to make sure test code is maintainable: 

• Adopt an effective naming convention for test namespaces, classes, and methods. 

• Use a pattern for the test method body. 

• Keep test methods short; strive for fewer than ten lines of code. 

• Limit the test actions to one or two lines of code. 

• Make one and only one primary assertion in the test method. 

• Use the var keyword whenever it is allowed. 

• Create a context class to encapsulate repeating arrangement code. 

• Write helper classes to hold code that is common to tests across the suite. 

• Pass data as arguments into the test method to data-drive the testing. 

 Note  Open the Visual Solution file Lender.Slos.Express.sln, which is found within the 
Samples\Ch08\6_DAL_NH folder, to see the completed sample code. The sample code serves as a model of how 
to follow the practices that are described in this chapter. When code in the text shows what not to do, it won’t be 
in the sample code. 

Naming Convention 
There are different naming conventions for test code in common use. Each has its advocates and some 
have critics. This book takes the pragmatic approach of selecting one, explaining the rationale of each 
element, and staying consistent.3 You may want to read up on alternate naming standards and select the 
one that’s right for you and your team. The most important thing is to pick a convention and stay 
consistent. 

Test code should not be written according to the same naming convention as production code. It 
serves a very different purpose and is run under different circumstance. Test code is never supposed to 
make it into production. A clear and effective naming convention should be used to meet the unique 
goals of making the test code easier to maintain and to help identify why a test is failing. 

                                                 
3 This naming convention comes from Roy Osherove, The Art of Unit Testing (Greenwich, CT: Manning, 
2009). 



CHAPTER 8  AUTOMATED TESTING 

138 

 Practice 8-2  Adopt an Effective Naming Convention  

The naming convention presented in this book is helpful in these ways: 

• The test namespace identifies both the category of the test and the assembly being 
tested. 

• The test class name identifies the class-under-test, which is the class that the tests 
are testing. 

• The test method name describes three key aspects of the test: 

• Method-under-test 

• Conditions of the test 

• Expected results of the test 

 Tip  Because test code is run from within a test runner, it is important to choose an effective naming 
convention. There are command-line runners, CI server runners, Visual Studio plug-in runners, and stand-alone 
GUI runners. Each runner may present results grouped alphabetically by project, namespace, tests class name, or 
test method name. This naming convention aligns well with common sorting and grouping options. 

An example of test code that illustrates the naming convention is shown in Listing 8-1. The 
namespace of Tests.Unit.Lender.Slos.Model indicates that the tests class contains a set of unit tests and 
that the class-under-test is declared under the Lender.Slos.Model namespace. A tests class name of 
LoanTests makes it clear that Loan is the class-under-test. 

A test method name of ComputePayment_WithProvidedLoanData_ExpectProperPaymentAmount spells 
out three things: 

1. The method-under-test is ComputePayment. 

2. It is called with loan data provided. 

3. It is expected to compute the proper payment amount. 

Listing 8-1. Example Using the Test Code Naming Convention 

namespace Tests.Unit.Lender.Slos.Model 
{ 
    using global::Lender.Slos.Model; 
 
    using NUnit.Framework; 
 
    public class LoanTests 



CHAPTER 8  AUTOMATED TESTING 

139 

    { 
        [Test] 
        public void ComputePayment_WithProvidedLoanData_ExpectProperPaymentAmount() 
        { 
            // Arrange 
            Loan loan = 
                new Loan 
                { 
                    Principal = 12000m, 
                    AnnualPercentageRate = 12m, 
                }; 

            // Act 
            decimal actual = loan.ComputePayment(300); 

            // Assert 
            Assert.AreEqual(126.39m, actual); 
        } 
... 

In Listing 8-2 the output from a failing test is shown. From the listing it is clear which test method 
failed and why. The output from a failed test is your first clue to finding and resolving the issue. For a 
large code base there will be many hundreds of test methods, so it is helpful to have a naming 
convention that points to the failing test. In this case, the ComputePayment method is not working. 

Also, the stack trace has breadcrumbs for you to track down the problem. Your choices include both 
investigating the test code and the method-under-test. Contacting the developer directly may be an 
option if you know who is working on that class. 

Listing 8-2. Output from a Failed Test 

LoanTests.ComputePayment_WithProvidedLoanData_ExpectProperPaymentAmount : Failed 
  Expected: 126.39m 
  But was:  126.32m 

at 
Tests.Unit.Lender.Slos.Model.LoanTests.ComputePayment_WithProvidedLoanData_ExpectProperPayme
ntAmount() in LoanTests.cs: line 24  

Let’s take a look at each aspect of the naming convention one by one. 

Namespaces 
The naming convention starts by using the same namespace as the class-under-test and adds a prefix. 
The prefix has two terms; the word Tests and a category for the tests. Both terms are separated by a 
period. Categories that you might use include names like Unit, Surface, or Stability. An example of the 
name of an assembly with integration tests is Tests.Integration.Lender.Slos.Dal.dll. 

Adding the word Tests to the beginning of every namespace may seem redundant; however, it is 
important for several key reasons. Test assemblies that begin with Tests.* … 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8  AUTOMATED TESTING 

140 

• Are clearly understood as being for testing use only. 

• Can easily be sorted from production assemblies, allowing you to prevent test 
assemblies from going into production. 

• Can be discovered by convention in build scripts and other CI techniques. 

• Can be excluded, through the use of wildcarding, from code coverage tools and 
other program analysis. 

The category name is also important because various testing categories have different setup and 
configuration requirements. The namespace lets everyone know what to expect: 

• Tests.Unit.* require absolutely no setup or configuration and must execute 
quickly. Unit tests must always run as automated tests. 

• Tests.Integration.* require significant setup and configuration. These tests 
should be run manually. 

• Tests.Surface.* are specialized automated integration tests, called surface tests. 
These require a one-time setup and configuration, but can be run by developers as 
automated integration tests. 

• Tests.Stability.* require setup and configuration and are normally performed 
after deployment on an integration server. These tests should run automatically 
by the CI server. 

Choose a test project and assembly name to be consistent with these namespaces to reap the 
benefits of this convention. 

Tests Classes 
The naming convention uses a <ClassUnderTest>+Tests format to name the class that contains the test 
methods. If the class-under-test is named StudentDal then the test class name is StudentDalTests. The 
test class name is distinct from the class-under-test’s name and is both short and clear. It follows the 
alphabetization rules of the class-under-test, which makes it easy to find the class-under-test using 
Visual Studio’s class or solution explorers. 

 Note  In the phrase tests class the word tests is intentionally plural. It refers to the class that contains the tests, 
which is also known as the test fixture class. 

Test Methods 
First and foremost the method name must communicate the intention of the test. Three important facts 
need to be clear from the test method’s name: 

• Method-under-test 

• Conditions under which the test is performed 



CHAPTER 8  AUTOMATED TESTING 

141 

• Expected result needed to pass the test 

The test method naming convention fits a readability pattern and clearly communicates the 
intention of the test. Also, it is not unnecessarily wordy. The convention is 
MethodUnderTest_WithSpecifiedCondition_ExpectThisResult. The following are examples of test 
methods that follow the naming convention: 

• ComputePayment_WithProvidedLoanData_ExpectProperAmount 

• ApproveLoan_WhenLoanDataIsValid_ExpectLoanSaveCalledExactlyOnce 

• ComputeBalance_ForNegativeBalanceScenarios_ExpectOutOfRangeException 

This short-and-sweet test method naming convention is used by the code samples and throughout 
the book. The important principle is to establish a naming convention that clearly states how the 
method-under-test is expected to behave under the conditions provided by the test. 

The Test Method Body 
The test method body also needs to follow a convention. All developers on the project should be able to 
find the test code and understand it right away. If all test code follows the same convention then this 
happens quickly. Going one step further, if all test code within the organization follows the same 
convention, it is easier for developers to join projects or get new projects off on a good footing. 

Arrange-Act-Assert 
There are certainly other ways to organize test methods, but the Arrange-Act-Assert (or 3-As) pattern is 
an effective standard4. The 3-As pattern is a widely-used and helpful convention. The Arrange section of 
a test method contains the steps that establish preconditions, define dependencies, create the class-
under-test, and assign needed values. The Act section contains the steps the test code executes to 
perform the test. The Assert section contains the steps needed to verify and validate the test and forces it 
to fail if expectations are not met. 

 Practice 8-3  Use the Arrange-Act-Assert (3-As) Pattern 

Referring back to Listing 8-1, that test method followed the 3-As pattern. It is customary to include 
the comments Arrange, Act, and Assert in your code to clearly show the start of each section. 

[Test] 
public void ComputePayment_WithProvidedLoanData_ExpectProperPaymentAmount() 
{ 
    // Arrange 
    Loan loan = 
        new Loan 
        { 

                                                 
4 The Ward Cunningham wiki describes the 3-As pattern at http://c2.com/cgi/wiki?ArrangeActAssert.  

http://c2.com/cgi/wiki?ArrangeActAssert


CHAPTER 8  AUTOMATED TESTING 

142 

            Principal = 12000m, 
            AnnualPercentageRate = 12m, 
        }; 
 
    // Act 
    decimal actual = loan.ComputePayment(300); 
 
    // Assert 
    Assert.AreEqual(126.39m, actual); 
} 

Keep Tests Short 
A lengthy test method is hard to read and understand. The code within the test method needs to be kept 
short to manage the test’s complexity. Dealing with a short method is especially helpful when trying to 
resolve another developer’s failing test. One of your code changes might fail another developer’s test for 
a variety of reasons: a new requirement, inconsistent behavior, or a just-made-obsolete test case. Each 
test method describes the code-under-test and how it is intended to work. 

 Practice 8-4  Prefer Many Short Tests over Few Long Tests 

Keep tests short to help focus on checking the smallest single intention. By following a one test 
method is testing one intention approach you allow the test code to have a much longer useful life. It also 
allows any developer to quickly address a failing test, instead of ignoring it. Because the test code is short 
and uncomplicated, the developer is more likely to deal with the situation. 

Limit Test Actions 
Before looking at the Arrange section let’s look at the Act section. If a test performs more than one 
action, it is probably testing too much. The test likely has a lot of arrangement code to establish the 
preconditions needed for the many actions. To keep the test method short, make every effort to keep the 
Act section to just one line of straightforward code. A big reason to avoid more than one line of action is 
that, when a test method fails, multiple action steps require investigation to sort out the line that is 
failing the test. With one action step it is clear what test code is involved. 

 Practice 8-5  Avoid More Than One Line of Action 

In Listing 8-3 there are five lines of code within the Act section. If there is an error in the Get method 
it is not immediately clear if it is caused by the first or the second call to the Get method. If the whole test 
fails, which of the many action lines caused the problem? 



CHAPTER 8  AUTOMATED TESTING 

143 

Listing 8-3. Too Many Action Steps 

[Test(Description = "Too many action steps")] 
public void Save_WhenPrincipalIsChanged_ExpectNewPrincipalValueInDatabase() 
{ 
    // Arrange 
    Application classUnderTest = new Application(); 
    classUnderTest.Principal = 999.91m; 
    classUnderTest.Save(); 
    int id = classUnderTest.Id; 
 
    // Act 
    classUnderTest.Get(id); 
    classUnderTest.Principal = 1009.81m; 
    classUnderTest.Save(); 
    classUnderTest.Get(id); 
    decimal actual = classUnderTest.Principal; 
 
    // Assert 
    Assert.AreEqual(1009.81m, actual); 
} 

In Listing 8-4 the test method has only one line of code in the Act section. From the test method 
name, calling the Save method is the action step of this test. There is more arrangement code, but let’s 
address that detail later in the chapter. 

Listing 8-4. One Action Step 

[TestCase(Description = "One action step")] 
public void Save_WhenPrincipalIsChanged_ExpectNewPrincipalValueInDatabase() 
{ 
    // Arrange 
    var expectedPrincipal = 1009.81m; 
 
    ApplicationTestsContext.SetupTestDatabase("ApplicationDalTests_Scenario01.xml"); 
 
    var classUnderTest = ApplicationTestsContext.CreateInstance(); 
    classUnderTest.Id = 97; 
    classUnderTest.Principal = expectedPrincipal; 
 
    // Act 
    classUnderTest.Save(); 
 
    // Assert 
    var actual = ApplicationTestsContext.Retrieve<decimal>( 
        "Principal", 
        "Application", 
        string.Format("[Id] = {0}", 97)); 
    Assert.AreEqual(expectedPrincipal, actual); 
} 



CHAPTER 8  AUTOMATED TESTING 

144 

To make sure test code is readable, avoid writing test methods with more than one line of code in 
the Act section. Also, did you notice that the number 97 is hard-coded in two places? Later, you will see 
how values like this one are passed in as an argument. 

Primary Assertion 
Tests should have a narrow focus. One of the best ways to keep the focus sharp is to limit the test method 
to one primary assertion. Assertions verify and validate that the test works as intended. The primary 
assertion lines up with the expectation stated in the test method’s name and needs to match with it. 

 Practice 8-6  Avoid More Than One Primary Assertion 

For example, if the expectation in a test method name is ExpectCorrectPaymentAmount then the 
primary assertion statement ought to be: 

// Assert 
var expectedPaymentAmount = 126.39m; 
Assert.AreEqual(expectedPaymentAmount, actual); 

It is unambiguous; the proper payment amount must be $126.39. If the code-under-test returns a 
value that is not that amount then the test fails. 

There are a number of ways assertions can be made. They include 

• Comparison: Compare expected value to actual value and verify that the values are 
one of the following: equal, not equal, one less than the other, one greater than the 
other, etc. 

• Expected Interaction: Verify a required dependency is one of the following: called a 
specific number of times, passed specific arguments, not called with invalid 
arguments, etc. 

• Throws: Verify an expected exception of the specific type is thrown. 

• Collection: Validate that an element exists in a collection. 

• Object Instance: Verify the actual instance is one of the following: null, not null, an 
instance of a specific type, etc. 

• Boolean: Verify that an expression is true or false. 

• Constraint-Based: Verify that an instance meets a constraint. 

 Tip  The constraint-based syntax—called using the Assert.That method in NUnit —is very powerful. In the 
NUnit framework many assert methods implement their behavior by wrapping a call to Assert.That. The 
constraint-based syntax also allows you to implement your own custom constraints. 



CHAPTER 8  AUTOMATED TESTING 

145 

The term primary assertion prompts the question: is there such a thing as a secondary assertion? 
Yes, a secondary assertion is any useful but less important assertion that helps explain why a test fails. In 
Listing 8-5 the statement in bold is the primary assertion; it is a good primary assertion. The Arrange and 
Assert sections each contain non-primary assertions. Another good practice to mention: assert only one 
condition at a time. Avoid combining multiple conditional tests in a single call with Assert.True. This 
only makes it harder later when trying to understand and debug a failing test. 

Listing 8-5. Guard and Secondary Assertions 

// Arrange 
var application = Application.GetById(73); 
var classUnderTest = application.Student; 
 
Assert.NotNull(classUnderTest); 
 
// Act 
School highSchool = classUnderTest.HighSchool; 
 
// Assert 
Assert.NotNull(highSchool); 
Assert.AreEqual(expectedState, highSchool.State); 

What happens if the highSchool variable returned by the classUnderTest.HighSchool is null? If the 
secondary assertion of Assert.NotNull(highSchool) is not there, the test method fails because the 
method-under-test throws a NullReferenceException. Here is sample output: 

StudentTests.HighSchool_WithValidSchoolInfo_ExpectProperState : Failed 
    System.NullReferenceException : Object reference not set to an instance of an object. 
 
at 
Tests.Unit.Lender.Slos.Model.StudentTests.HighSchool_WithValidSchoolInfo_ExpectProperState() 
in StudentTests.cs: line 28 

The secondary assertion makes the issue more apparent by verifying that highSchool is not null 
before the primary assertion is made. If highSchool is null the secondary assertion fails and the test 
output looks like this: 

StudentTests.HighSchool_WithValidSchoolInfo_ExpectProperState : Failed 
    Expected: not null 
    But was:  null 
 
at 
Tests.Unit.Lender.Slos.Model.StudentTests.HighSchool_WithValidSchoolInfo_ExpectProperState() 
in StudentTests.cs: line 28 

It is clear from this output why the test failed. The purpose of a secondary assertion is to turn any 
important, implicit assumptions into direct assertions. Secondary assertions are often made at the 
beginning of the Assert section. 



CHAPTER 8  AUTOMATED TESTING 

146 

In addition to secondary assertions in the Assert section there are guard assertions in the Arrange 
section. The only practical difference is that guard assertions are made before entering the Act section. 
In Listing 8-5, notice that there is a Assert.NotNull(classUnderTest.Student) statement at the end of the 
Arrange section. If the Student property returns null before the test method enters the Act section then 
the test output makes it obvious. The Arrange section adds these guard assertions to make explicit any 
vital assumptions that are a condition of the class-under-test performing properly. 

 Caution  Avoid over-specifying the test method’s expectations. Be sure that any guard and secondary 
assertions play only a supporting role. 

Any guard assertions need to support getting the test method to the Act section. Any secondary 
assertions need to help get the test method to the primary assertion. If you find yourself adding 
secondary assertions after the primary assertion then they are probably not needed. The trap to avoid is 
over-specifying the expectations, which leads to unnecessary code to maintain. 

Listing 8-6 shows an example of a test method that has over-specified the expectations. 

Listing 8-6. Over-Specified Expectations 

[Test(Description = "Over-specified expectations")] 
public void ComputePayment_WhenInvalidTermInMonthsIsZero_ExpectArgumentOutOfRangeException() 
{ 
    // Arrange 
    Loan loan = 
        new Loan 
        { 
            Principal = 7499, 
            AnnualPercentageRate = 1.79m, 
        }; 
 
    Assert.NotNull(loan); 
 
    // Act 
    TestDelegate act = () => loan.ComputePayment(0); 
 
    // Assert 
    ArgumentOutOfRangeException exception =  
        Assert.Throws<ArgumentOutOfRangeException>(act); 
    Assert.AreEqual("termInPeriods", exception.ParamName); 
    Assert.AreEqual( 
        "Specified argument was out of the range of valid values.\r\n" +  
        "Parameter name: termInPeriods",  
        exception.Message); 
} 

At the end of the Arrange section there is a guard assertion that asserts that loan is not null. There 
really is no reason to do that because .NET takes care of constructing the new Loan; the test code is in 
effect testing that the C# compiler works. 



CHAPTER 8  AUTOMATED TESTING 

147 

Now take another look at Listing 8-6; there are two secondary assertions that come after the primary 
assertion. The order here is not important. What is important is that both assertions over-specify the 
requirements of the code-under-test. Is there really a requirement that the ComputePayment method’s 
parameter is named termInPeriods? Also, the message in the exception must be exactly right or the test 
fails. By looking at the test method’s name, a better implementation is suggested as follows: 

[Test] 
public void ComputePayment_WhenInvalidTermInMonthsIsZero_ExpectArgumentOutOfRangeException () 
{ 
    // Arrange 
    Loan loan = 
        new Loan 
        { 
            Principal = 7499, 
            AnnualPercentageRate = 1.79m, 
        }; 
 
    // Act 
    TestDelegate act = () => loan.ComputePayment(0); 
 
    // Assert 
    Assert.Throws<ArgumentOutOfRangeException>(act); 
} 

So far this chapter has focused on ways to make test code clear and concise. The next sections build 
on readability with some additional practices for writing more maintainable test code. 

The var Keyword 
Since the var keyword was introduced in C# 3.0, frequent debates have arisen as to whether or not to use 
implicit typing. Let’s dispel any fear, confusion, and misconception regarding the var keyword: 

• It is not a variant type from COM or VB6. 

• It does not make C# weakly typed. 

• It is statically typed; the variable’s type is unambiguously inferred by the compiler. 

The C# compiler knows the type without you having to explicitly enter it. Stated another way, if it is 
not entirely clear to the compiler, a compilation error occurs. There are definitely recommendations on 
when and why to use the var keyword in production code.5 However, in test code the explicit type of the 
variable is usually not important; it is normally clear from the context. It is best to use implicit typing in 
test code to concentrate on the higher-level goal of maintainability. There are no practical drawbacks; 
with IntelliSense you can easily discover the variable’s type. 

 Practice 8-7  Avoid Explicit Typing Variables in Test Code; Use the var Keyword 

                                                 
5 Recommendations for implicit typing in production code are provided in Jon Skeet, C# in Depth 
(Greenwich, CT: Manning, 2008). 



CHAPTER 8  AUTOMATED TESTING 

148 

There are definite benefits to using implicit typing in test code. If a type in the code-under-test 
changes, then the test code does not change as long as it has no material impact on any test. The 
compiler makes sure of that. A corollary benefit is that if the type change does matter, then test code 
directly impacted by the change breaks. The compiler highlights the test code that needs to be 
examined. 

Test Context Classes 
Following the practices to this point, the Act section is one line and the Assert section is limited to a 
primary assertion. Test code will become more elaborate as more complicated scenarios are tested. Any 
reason the test method is long must be found in the Arrange section. The amount of repeating 
arrangement code becomes obvious. In addition, a lot of test methods basically repeat. At some point 
refactoring the test code is needed. 

 Practice 8-8  Use a Tests Context Class to Reduce Repetition and Manage Complexity 

A solution to the repeating arrangement problem is to write a TestsContext class. This uses the 
Library Class pattern.6 The approach is to create a class and add static methods to hold a small library of 
repeating arrangement code specific to a tests class. 

In Listing 8-7 the Arrange section is too long. Also, parts of the arrangement are used in other test 
methods within the same test class. It is helpful to extract the repeating code from all the test methods in 
this class and place them in an ApplicationTestsContext class. Note the bold lines in the listing, where 
the classUnderTest is created. This code repeats in other test methods in the tests class. 

Listing 8-7. Arrange Section Too Long 

namespace Tests.Unit.Lender.Slos.Model 
{ 
    public class ApplicationTests 
    { 
        [Test] 
        public void Save_WithValidNewApplication_ExpectApplicationRepoCreateCalledOnce() 
        { 
            // Arrange 
            var mockApplicationRepo =  
                new Mock<IRepository<ApplicationEntity>>(MockBehavior.Strict); 
            mockApplicationRepo 
                .Setup(e => e.Create(It.IsAny<ApplicationEntity>())) 
                .Returns(73) 
                .Verifiable(); 
 
            var stubIndividualRepo = 
                new Mock<IRepository<IndividualEntity>>(MockBehavior.Loose); 

                                                 
6 The Library Pattern is described in Kent Beck, Implementation Patterns (Upper Saddle River, NJ: 
Addison-Wesley Professional, 2008). 



CHAPTER 8  AUTOMATED TESTING 

149 

            var stubStudentRepo =  
                new Mock<IRepository<StudentEntity>>(MockBehavior.Loose); 

            var classUnderTest =  
                new Application( 
                    stubIndividualRepo.Object, 
                    stubStudentRepo.Object, 
                    mockApplicationRepo.Object) 
                    { 
                        Student = 
                            { 
                                LastName = "Smith", 
                                FirstName = "John", 
                                DateOfBirth = new DateTime(1993, 5, 7), 
                                HighSchool = 
                                    { 
                                        Name = "Our Town High School",  
                                        City = "Anytown",  
                                        State = "QQ" 
                                    } 
                            }, 
                        Principal = 7499, 
                        AnnualPercentageRate = 1.79m, 
                        TotalPayments = 113 
                    }; 

            // Act 
            classUnderTest.Save(); 

            // Assert 
            mockApplicationRepo 
                .Verify(e => e.Create(It.IsAny<ApplicationEntity>()), Times.Once()); 
        } 
... 

 Caution  For those considering using class inheritance to achieve code reuse in test code, it has more 
drawbacks than benefits. Tests class inheritance couples tests and negatively impacts maintainability. The one 
exception is using a tests base class for shared testing infrastructure, such as surface testing.  

In Listing 8-8 a new internal static class named ApplicationTestsContext is shown. Note that the 
naming convention is <Tests Class Name>+Context. We add to that class a CreateInstance method, 
which returns a valid Application instance. It is useful to bring the declaring of the stubs into the 
CreateInstance method. By using default parameters, the method instantiates stubs whenever a 
dependency override is not provided. For now, let’s leave the discussion of stubs and mocks for a later 
section. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8  AUTOMATED TESTING 

150 

 Caution  Make sure to keep the tests context class for the exclusive use of the tests class. This prevents one 
set of tests from becoming coupled to another set of tests. The naming convention helps make things obvious.  

Listing 8-8. The Tests Context Class 

namespace Tests.Unit.Lender.Slos.Model 
{ 
    internal static class ApplicationTestsContext 
    { 
        // Creates an instance of a new valid Application for use by ApplicationTests 
        public static Application CreateInstance( 
            IRepository<IndividualEntity> individualRepo = null, 
            IRepository<StudentEntity> studentRepo = null, 
            IRepository<ApplicationEntity> applicationRepo = null) 
        { 
            var stubIndividualRepo = 
                new Mock<IRepository<IndividualEntity>>(MockBehavior.Loose); 
            var stubStudentRepo = 
                new Mock<IRepository<StudentEntity>>(MockBehavior.Loose); 
            var stubApplicationRepo = 
                new Mock<IRepository<ApplicationEntity>>(MockBehavior.Loose); 
 
            return new Application( 
                individualRepo ?? stubIndividualRepo.Object, 
                studentRepo ?? stubStudentRepo.Object, 
                applicationRepo ?? stubApplicationRepo.Object) 
            { 
                Student = 
                { 
                    LastName = "Smith", 
                    FirstName = "John", 
                    DateOfBirth = new DateTime(1993, 5, 7), 
                    HighSchool = 
                    { 
                        Name = "Our Town High School", 
                        City = "Anytown", 
                        State = "QQ" 
                    } 
                }, 
                Principal = 7499, 
                AnnualPercentageRate = 1.79m, 
                TotalPayments = 113 
            }; 
        } 
... 

In Listing 8-9 the test method has a shorter Arrange section: only three lines of code. The first two 
handle the mock object and the third uses the context class to make an instance of a valid Application. 



CHAPTER 8  AUTOMATED TESTING 

151 

Listing 8-9. Now Using the Tests Context Class 

namespace Tests.Unit.Lender.Slos.Model 
{ 
    public class ApplicationTests 
    { 
        [Test] 
        public void Save_WithValidNewApplication_ExpectApplicationRepoCreateCalledOnce() 
        { 
            // Arrange 
            var mockApplicationRepo = 
                new Mock<IRepository<ApplicationEntity>>(MockBehavior.Strict); 
            mockApplicationRepo 
                .Setup(e => e.Create(It.IsAny<ApplicationEntity>())) 
                .Returns(73) 
                .Verifiable(); 
 
            var classUnderTest = ApplicationTestsContext 
                .CreateInstance( 
                    null, 
                    null, 
                    mockApplicationRepo.Object); 
 
            // Act 
            classUnderTest.Save(); 
 
            // Assert 
            mockApplicationRepo 
                .Verify(e => e.Create(It.IsAny<ApplicationEntity>()), Times.Once()); 
        } 
... 

Test Helpers 
Another way to achieve reuse is to build up helper classes. Like the TestsContext class, this technique 
uses the Library Pattern. The idea here is to put common code found across many tests classes into a 
shared location. It is important that this code relate to a common aspect or concern across many test 
methods in the tests assembly. 

 Practice 8-9  Build Test Helper Classes to Promote Reuse 

In Listing 8-10 the BuildNameString method generates a random string that is of random length. 
When a street, city, or last name is needed, this helper method can generate one. By using optional 
parameters this method can have functionality added over time, such as multiple-word names. Other 
applications of test helper methods include randomly generating a date, amount, or a percentage rate, 
each falling within a range of valid values. 



CHAPTER 8  AUTOMATED TESTING 

152 

Listing 8-10. Helper Method to Build a Random Name 

namespace Tests.Unit.Lender.Slos.Model.Helpers 
{ 
    internal static class TestDataHelper 
    { 
 
... 
 
        public static string BuildNameString( 
            int? length = null) 
        { 
            var randomizer = new Random(); 
            var generatedLength = length ?? randomizer.Next(1, DefaultMaxStringLength); 
 
            Assert.Greater(generatedLength, 0); 
 
            var stringBuilder = new StringBuilder(generatedLength); 
            stringBuilder.Append( 
                UpperCaseLetters[randomizer.Next(0, UpperCaseLetters.Length - 1)]); 
            for (var index = 1; index < generatedLength; index++) 
            { 
                stringBuilder.Append( 
                    LowerCaseLetters[randomizer.Next(0, LowerCaseLetters.Length - 1)]); 
            } 
 
            return stringBuilder.ToString(); 
        } 
... 

 Caution  Do not put any logic that is specific to the code-under-test in these helpers. Test helpers should 
remain generalized. 

Avoid making test helper methods that are specific to the application’s domain. For example, a 
method that calculates a loan payment amount to save to the database might be used by a series of test 
methods in the Arrange section. If the helper method changes for one test class, say LoanTests, then a lot 
of other arrangement code may need to change. Avoid writing test helper methods that inappropriately 
couple the tests classes. 

Data Scenarios 
As the tests are written, it becomes apparent that many of the test methods are exactly the same code, 
only using different values in the Arrange section. Several testing frameworks offer ways to call the same 
test method with different input data. For example, with NUnit the TestCase attribute does this. MbUnit 
has the RowTest attribute and xUnit.net has the Theory attribute. Features of testing frameworks are 
covered in detail in Chapter 12. 



CHAPTER 8  AUTOMATED TESTING 

153 

 Practice 8-10  Data-Drive Test Methods for Multiple Test Cases 

In the SLOS system the payment calculator guards against an invalid termInMonths argument. There 
are many invalid argument scenarios to test. In Listing 8-11 these many scenarios are combined into one 
test method using the TestCase attribute. Instead of seven test methods to maintain for each scenario, 
there is one method with seven TestCase attributes. 

Listing 8-11. Data-Driven Test Cases  

[TestCase(7499, 1.79, 0, 72.16)] 
[TestCase(7499, 1.79, -1, 72.16)] 
[TestCase(7499, 1.79, -73, 72.16)] 
[TestCase(7499, 1.79, int.MinValue, 72.16)] 
[TestCase(7499, 1.79, 361, 72.16)] 
[TestCase(7499, 1.79, 2039, 72.16)] 
[TestCase(7499, 1.79, int.MaxValue, 72.16)] 
public void ComputePayment_WithInvalidTermInMonths_ExpectArgumentOutOfRangeException( 
    decimal principal, 
    decimal annualPercentageRate, 
    int termInMonths, 
    decimal expectedPaymentPerPeriod) 
{ 
    // Arrange 
    var loan = 
        new Loan 
        { 
            Principal = principal, 
            AnnualPercentageRate = annualPercentageRate, 
        }; 
 
    // Act 
    TestDelegate act = () => loan.ComputePayment(termInMonths); 
 
    // Assert 
    Assert.Throws<ArgumentOutOfRangeException>(act); 
} 

The important point is that without using the TestCase attribute, a lot more test methods would be 
needed to completely test that one ComputePayment method. Writing maintainable test code needs to 
focus on ways to reduce the ratio of test code to code-under-test. By using data to drive a single test 
method these many cases are tested with minimal code. This achieves a significant reduction in the 
amount of test code to maintain. 



CHAPTER 8  AUTOMATED TESTING 

154 

 Tip  Use prime numbers to help avoid coincidental arithmetic issues and help make debugging easier. Also, 
avoid using hardcoded strings. Use Guid.NewGuid.ToString() or use a test helper method like 
TestHelper.BuidString() to ensure uniqueness and variability. 

Notice how the test cases use prime numbers. A common coincidental arithmetic problem occurs 
when a test uses the number 2. These three expressions: 2 + 2, 2 * 2, and System.Math.Pow(2, 2) all 
equal to four. When using the number 2 as a test value, there are many ways the test falsely passes. 
Arithmetic errors are less likely to yield an improper result when the test values are different prime 
numbers. Consider a loan that has a principal of $12,000.00, a term of 360 payments, an annual interest 
rate of 12%, and, of course, remember there are 12 months in a year. Because there is a coincidental 
factor of 12 in all these numbers, that data scenario is a very poor choice as a test case. 

Unit Testing 
A sample of test code that puts together all practices covered to this point is shown in Listing 8-12. The 
test code  

• Follows the naming convention 

• Follows the 3-As pattern 

• Keeps the arrangement code short 

• Performs only one action 

• Makes only one assertion 

• Is a single test method driven by data to cover multiple scenarios 

• Uses prime numbers to avoid coincidental arithmetic issues and to make 
debugging easier 

Listing 8-12. Example Unit Test Code 

namespace Tests.Unit.Lender.Slos.Model 
{ 
    public class LoanTests 
    { 
        [TestCase(7499, 1.79, 113, 72.16)] 
        [TestCase(8753, 6.53, 139, 89.92)] 
        [TestCase(61331, 7.09, 367, 409.5)] 
        public void ComputePayment_WithProvidedLoanData_ExpectProperMonthlyPayment( 
            decimal principal, 
            decimal annualPercentageRate, 
            int termInMonths, 
            decimal expectedPaymentPerPeriod) 
        { 
            // Arrange 
            var loan = 



CHAPTER 8  AUTOMATED TESTING 

155 

                new Loan 
                { 
                    Principal = principal, 
                    AnnualPercentageRate = annualPercentageRate, 
                }; 
 
            // Act 
            var actual = loan.ComputePayment(termInMonths); 
 
            // Assert 
            Assert.AreEqual(expectedPaymentPerPeriod, actual); 
        } 
... 

At this point, it seems that the method-under-test is fully tested. It is not. Although this test method 
is readable and maintainable, it does not fully test the method-under-test. For example, the test code 
should test how the ComputePayment method reacts when called on a Loan object that has a negative 
Principal amount. 

SAMPLE CODE: OVERVIEW 

You may want to review the book’s Introduction at this point to learn what is needed to run the sample 
code. 

For these instructions, it is assumed that the same code for this chapter is found in your Samples\Ch08 
folder. That folder is simply referred to with a dollar symbol ($). 

There are six subfolders. Each contains the code for the steps covered in this chapter: 

• Deploy: The database scripts used to create the database 

• Start: The sample code at the beginning of the SLOS upgrade project 

• Validate: After the validation requirements and test code are complete 

• Calculator: After the payment calculation code is refactored to a common library 

• DAL SP: The automated test code written against the stored-procedure DAL 

• DAL NH: The automated testing of the NHibernate DAL 

Before compiling and running the code, a Microsoft SQL Server database needs to be created. Since all 
sample connection strings assume the server instance is (local)\SQLExpress you may need to modify your 
connection strings with a different instance name. A database with the name Lender.Slos needs to be 
created. To create this database go to the $\1_Deploy\Database\Scripts folder and run the batch file 
named DbCreate.SqlExpress.Lender.Slos.bat. If you prefer to create the database manually, make sure it 
has the name Lender.Slos. 

For the sake of simplicity there are two types of batch files that use MSBuild: one type runs database 
scripts and the other builds and runs the tests. These batch files assume you defined the following 
environment variables: 



CHAPTER 8  AUTOMATED TESTING 

156 

• MSBuildRoot: The path to MSBuild.exe 
For example, C:\Windows\Microsoft.NET\Framework64\v4.0.30319 

• SqlToolsRoot: The path to sqlcmd.exe 
For example, C:\Program Files\Microsoft SQL Server\100\Tools\Binn 

• NunitRoot: The path to nunit-console.exe 
For example, C:\Tools\NUnit\v2.5.10.11092\bin\net-2.0 

With the database created and the environment variables set, run the Lender.Slos.CreateScripts.bat batch 
to execute all the SQL create scripts in the correct order. If you prefer to run the scripts manually then you 
will find them in the $\1_Deploy\Database\Scripts\Create folder. The script_run_order.txt file lists the 
proper order to run the scripts. If all the scripts run properly there will be three tables (Individual, 
Student, and Application) and twelve stored procedures (a set of four CRUD stored procedures for each 
of the tables) in the database. 

The automated tests use the MSBuild script file named runner.msbuild. Listings of output from running the 
runner.msbuild script from within Visual Studio are presented throughout this chapter. Instructions on how 
to set up and use the Visual Studio External Tools feature to run the tests are described in Chapter 12. 

For your convenience, a runner.bat file is provided to execute the MSBuild script. The script performs a 
rebuild of the solution and then runs all the tests. This approach allows any developer to perform all the 
automated steps in a way that is identical to how a CI server executes the script. 

SAMPLE CODE: UNIT TESTING 

The goal of this sample code is not to teach you how to write unit tests. The goal is to demonstrate test 
code that is readable and easy to maintain. All of the tests are automated, in the sense that any developer 
is able to run them with zero setup and configuration and the CI server is able to run all of them with 
MSBuild, using the runner.msbuild script 

In the $\2_Start folder is the code at the beginning of the SLOS project. 

The code in the $\3_Validate folder is the result of developing unit tests as part of developing the Validate 
method for the Student class. There is the new Tests.Unit.Lender.Model project, which has two unit 
tests classes, StudentTests and LoanTests. The tests in LoanTests cover the ComputePayment method 
in the Loan class. 

In the $\4_Calculator folder is the code that results from refactoring the ComputePayment method out of 
Loan and into a separate Calculator class. In the Tests.Unit.Lender.Model project, there are new unit 
tests classes to test the Estimated Monthly Payment Calculator enhancement to the Application class. 
There are two new projects, Lender.Slos.Financial and Tests.Unit.Lender.Slos.Financial. These 
contain the new Calculator and CalculatorTests classes, respectively. 



CHAPTER 8  AUTOMATED TESTING 

157 

Boundary Analysis 
For every method-under-test there is a set of valid preconditions and arguments. It is the domain of all 
possible values that allows the method to work properly. That domain defines the method’s boundaries. 
Boundary testing requires analysis to determine the valid preconditions and the valid arguments. Once 
these are established, you can develop tests to verify that the method guards against invalid 
preconditions and arguments. 

 Practice 8-11  Perform Boundary Analysis to Cover All Scenarios 

Boundary analysis is about finding the limits of acceptable values, which includes looking at the 
following: 

• All invalid values 

• Maximum values 

• Minimum values 

• Values just on a boundary 

• Values just within a boundary 

• Values just outside a boundary 

• Values that behave uniquely, such as zero or one 

All of the .NET Framework primitive data types have important limits. Boundary values for 
commonly-used .NET data types are shown in Table 8-2. 

Table 8-2. Boundaries for Some Common .NET Types 

Type Maximum Minimum Default Special Edge Cases 

String (variable) string.Empty null -- special chars 

Int32 MaxValue MinValue 0 -- -1, 0, 1 

Decimal M axValue MinValue Zero MinusOne (situational) 

Double MaxValue, 
PositiveInfinity 

MinValue, 
NegativeInfinity 

0d NaN (situational) 

DateTime Ma xValue MinValue “zero date” Now, Today (situational) 

Guid -- -- Empty -- -- 



CHAPTER 8  AUTOMATED TESTING 

158 

An example of a situational case for dates is a deadline or time window. You could imagine that for 
SLOS, a loan disbursement must occur no earlier than 30 days before or no later than 60 days after the 
first day of the semester. Another situational case might be a restriction on age, dollar amount, or 
interest rate. There are also rounding-behavior limits, like two-digits for dollar amounts and six-digits 
for interest rates. There are also physical limits to things like weight and height and age. Both zero and 
one behave uniquely in certain mathematical expressions. Time zone, language and culture, and other 
test conditions could be relevant. Analyzing all these limits helps to identify boundaries used in test 
code. 

 Note  Dealing with date arithmetic can be tricky. Boundary analysis and good test code makes sure that the 
date and time logic is correct. In this example, there is a risk of confusion when validating the upper age limit 
because the age boundary is described using the number 26 in the requirements, but an age of 27 is exactly on 
the boundary. 

Invalid Arguments 
When the test code calls a method-under-test with an invalid argument, the method should throw an 
argument exception. This is the intended behavior, but to verify it requires a negative test. A negative test 
is test code that passes if the method-under-test responds negatively; in this case, throwing an argument 
exception. 

The test code shown in Listing 8-13 fails the test because ComputePayment is provided an invalid 
termInMonths of zero. The result of the failing test is shown in Listing 8-14. 

Listing 8-13. Test Code Is Not Expecting an Exception 

[TestCase(7499, 1.79, 0, 72.16)] 
public void ComputePayment_WithProvidedLoanData_ExpectProperMonthlyPayment( 
    decimal principal, 
    decimal annualPercentageRate, 
    int termInMonths, 
    decimal expectedPaymentPerPeriod) 
{ 
    // Arrange 
    var loan = 
        new Loan 
        { 
            Principal = principal, 
            AnnualPercentageRate = annualPercentageRate, 
        }; 
 
    // Act 
    var actual = loan.ComputePayment(termInMonths); 
 
 



CHAPTER 8  AUTOMATED TESTING 

159 

    // Assert 
    Assert.AreEqual(expectedPaymentPerPeriod, actual); 
} 
... 

Listing 8-14. Output from Unexpected Exception 

LoanTests.ComputePayment_WithProvidedLoanData_ExpectInvalidArgumentException : Failed 
System.ArgumentOutOfRangeException : Specified argument was out of the range of valid 
values. 
Parameter name: termInPeriods 

at 
Tests.Unit.Lender.Slos.Model.LoanTests.ComputePayment_WithProvidedLoanData_ExpectInvalidArgu
mentException(Decimal principal, Decimal annualPercentageRate, Int32 termInMonths, Decimal 
expectedPaymentPerPeriod) in LoanTests.cs: line 25 

The challenge is to pass the test when the exception is thrown. Also, the test code should verify that 
the exception type is InvalidArgumentException. This requires the method to somehow catch the 
exception, evaluate it, and determine if the exception is expected. 

In NUnit this can be accomplished using either an attribute or a test delegate. In the case of a test 
delegate, the test method can use a lambda expression to define the action step to perform. The lambda 
is assigned to a TestDelegate variable within the Act section. In the Assert section, an assertion 
statement verifies that the proper exception is thrown when the test delegate is invoked. 

The invalid values for the termInMonths argument are found by inspecting the ComputePayment 
method’s code, reviewing the requirements, and performing boundary analysis. The following invalid 
values are discovered: 

• A term of zero months 

• Any negative term in months 

• Any term greater than 360 months (30 years) 

In Listing 8-15 the new test is written to verify that the ComputePayment method throws an 
ArgumentOutOfRangeException whenever an invalid term is passed as an argument to the method. 

Listing 8-15. Negative Test; Expected Exception 

[TestCase(7499, 1.79, 0, 72.16)] 
[TestCase(7499, 1.79, -1, 72.16)] 
[TestCase(7499, 1.79, -2, 72.16)] 
[TestCase(7499, 1.79, int.MinValue, 72.16)] 
[TestCase(7499, 1.79, 361, 72.16)] 
[TestCase(7499, 1.79, int.MaxValue, 72.16)] 
public void ComputePayment_WithInvalidTermInMonths_ExpectArgumentOutOfRangeException( 
    decimal principal, 
    decimal annualPercentageRate, 
    int termInMonths, 
    decimal expectedPaymentPerPeriod) 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8  AUTOMATED TESTING 

160 

{ 
    // Arrange 
    var loan =  
        new Loan 
            { 
                Principal = principal,  
                AnnualPercentageRate = annualPercentageRate, 
            }; 
 
    // Act 
    TestDelegate act = () => loan.ComputePayment(termInMonths); 
 
    // Assert 
    Assert.Throws<ArgumentOutOfRangeException>(act); 
} 
... 

Invalid Preconditions 
Every .NET object is in some arranged state at the time a method of that object is invoked. The state may 
be valid or it may be invalid. Whether explicit or implicit, all methods have expected preconditions. 
Since the method’s preconditions are not spelled out, one goal of good test code is to test those 
assumptions as a way of revealing the implicit expectations and turning them into explicit 
preconditions. 

For example, before calculating a payment amount, let’s say the principal must be at least $1,000 
and less than $185,000. Without knowing the code, these limits are hidden preconditions of the 
ComputePayment method. The following test code makes them explicit by arranging the classUnderTest 
with unacceptable values and calling the ComputePayment method. The test code asserts that an expected 
exception is thrown when the method’s preconditions are violated. If the exception is not thrown, the 
test fails. 

Listing 8-16. Testing Invalid Preconditions 

[TestCase(0, 1.79, 360, 72.16)] 
[TestCase(997, 1.79, 360, 72.16)] 
[TestCase(999.99, 1.79, 360, 72.16)] 
[TestCase(185000, 1.79, 360, 72.16)] 
[TestCase(185021, 1.79, 360, 72.16)] 
public void ComputePayment_WithInvalidPrincipal_ExpectInvalidOperationException( 
    decimal principal, 
    decimal annualPercentageRate, 
    int termInMonths, 
    decimal expectedPaymentPerPeriod) 
{ 
    // Arrange 
    var classUnderTest = 
        new Application(null, null, null) 
        { 
            Principal = principal, 
            AnnualPercentageRate = annualPercentageRate, 
        }; 



CHAPTER 8  AUTOMATED TESTING 

161 

 
    // Act 
    TestDelegate act = () => classUnderTest.ComputePayment(termInMonths); 
 
    // Assert 
    Assert.Throws<InvalidOperationException>(act); 
} 

Implicit preconditions should be tested and defined by a combination of exploratory testing and 
inspection of the code-under-test, whenever possible. Test the boundaries by arranging the class-under-
test in improbable scenarios, such as negative principal amounts or interest rates. 

 Tip  Testing preconditions and invalid arguments prompts a lot of questions. What is the principal limit? Is it 
$18,500 or $185,000? Does it change from year to year? Maintain an open IM window or send a daily e-mail with 
questions for the analyst. 

Microsoft’s CodeContracts are part of .NET 4 and are discussed in Chapter 2. Code contracts are 
very relevant to code correctness and verification. Unit tests ought to test that these contracts are in 
place, and that they enforce and verify at runtime that pre- and post-conditions are proper. 

Fakes, Stubs, and Mocks 
The term fake is a general term for an object that stands in for another object; both stubs and mocks are 
types of fakes.7 The purpose of a fake is to create an object that allows the method-under-test to be 
tested in isolation from its dependencies, meeting one of two objectives: 

• Stub: Prevent the dependency from obstructing the method-under-test and to 
respond in a way that helps it proceed through its logical steps. 

• Mock: Allow the test code to verify that the code-under-test’s interaction with the 
dependency is proper, valid, and expected. 

Since a fake is any object that stands in for the dependency, it is how the fake is used that 
determines if it is a stub or mock. Mocks are used only for interaction testing. If the expectation of the 
test method is not about verifying interaction with the fake then the fake must be a stub. 

                                                 
7 These terms are explained very well in The Art of Unit Testing by Roy Osherove. 



CHAPTER 8  AUTOMATED TESTING 

162 

Table 8-3. Stub vs. Mock  

Type Description Objective 

Stub Stands in for an object 
instance that the method-
under-test depends upon 
or fails without it. 

To allow the test code to continue to work isolated from its 
dependencies. The stub performs the minimum/essential 
behavior needed to allow the code-under-test to work. For 
clarity, in test code prefix stub-object variables with stub. 

Mock Provides the ability to verify 
the interactions that the 
method-under-test has 
with the object instances it 
works with. 

To verify and validate that the test method properly interacts 
with dependencies. Any expected or unexpected interaction 
can be defined and later verified. For clarity, in test code 
prefix mock-object variables with mock. 

Note: there should never be more than one mock declared 
within a test method. 

 

Isolating Code-Under-Test 
The code-under-test may not have any dependencies; this just means the code is isolated. However, 
many classes and methods collaborate with and are dependent on other objects. When writing test code, 
those dependencies and interactions can often make it difficult to test in isolation. 

The idea behind a stub is to prevent a dependency from keeping the test from accomplishing its task 
of testing the code. The stub has both default behavior and the facility to set up behavior to get the code-
under-test to work. 

 Practice 8-12  Use Stubs to Test in Isolation 

For the sake of readability, when a stub is declared in test code use a variable name prefixed with 
stub. In Listing 8-17 two stubs are declared as stubIndividualRepo and stubStudentRepo to stand in for 
the two repositories. This is done by using the Moq framework. Since the test’s primary assertion has 
nothing to do with verifying the interaction with these repositories, these fakes are not mocks. The stubs 
only need to simulate the dependencies just enough to get the method to throw the exception. This 
enables the test code to evaluate the primary assertion under these conditions. 

Listing 8-17. Isolating Test Code with Stubs 

 [Test] 
public void Save_WithAnExistingStudentImproperlyCreated_ExpectInvalidOperationException() 
{ 
    // Arrange 
    var today = new DateTime(2003, 5, 17); 
 
    const int ExpectedStudentId = 897931; 



CHAPTER 8  AUTOMATED TESTING 

163 

 
    var stubIndividualRepo = new Mock<IRepository<IndividualEntity>>(); 
    stubIndividualRepo 
        .Setup(e => e.Update(It.IsAny<IndividualEntity>())); 
 
    var stubStudentRepo = new Mock<IRepository<StudentEntity>>(); 
    stubStudentRepo 
        .Setup(e => e.Retrieve(ExpectedStudentId)) 
        .Returns(default(StudentEntity)); 
    stubStudentRepo 
        .Setup(e => e.Create(It.IsAny<StudentEntity>())) 
        .Returns(23); 
 
    var classUnderTest = 
        new Student(stubIndividualRepo.Object, stubStudentRepo.Object) 
        { 
            Id = ExpectedStudentId, 
            Today = today, 
            DateOfBirth = today.AddYears(-19), 
        }; 
 
    // Act 
    TestDelegate act = () => classUnderTest.Save(); 
 
    // Assert 
    Assert.Throws<InvalidOperationException>(act); 
} 

 

 Caution  It is not a good idea to declare a stub for a dependency when the method-under-test does not use the 
dependency. Set it to null or some invalid value, which forces the method to fail if the code-under-test interacts 
with the dependency. In Listing 8-16 the Application class is constructed with null for all dependencies 
because the ComputePayment method is never supposed to interact with the repositories. 

Testing Dependency Interaction 
When the code-under-test interacts with an object that it depends on, that interaction may be proper or 
improper. The goal of testing dependency interaction is to verify that interaction is happening correctly. 
The expected interaction with a dependency includes interactions such as the following: 

• A specific method of the dependency is called a specific number of times. 

• A specific method of the dependency is not called. 

• When a method of the dependency is called it is passed the correct arguments. 

• The property-getter of the dependency is accessed a specific number of times. 



CHAPTER 8  AUTOMATED TESTING 

164 

• A property of the dependency is set with an expected value. 

There are more, to be sure. The idea is that test code is testing an expectation concerning the proper 
interaction behavior. The mock is used to verify the primary assertion, which relates to an expected 
interaction within the code-under-test. Since there is one primary assertion, there should only be one 
mock object. 

 Practice 8-13  Use Only One Mock Object for Interaction Testing 

The essential steps in testing interaction are to declare the mock, establish the expected interaction 
as a mock-setup expression, and use the mock to verify that the interaction happened correctly. In 
Listing 8-18 there are two parts to working with the mock. This mocking functionality is provided by 
using the Moq framework. In the Arrange section, the mock is created and Setup declares the 
expectation that the Create method will be called. Later in the test method, within the Assert section, the 
mock verifies that the Create method was called exactly one time. If the Create method was not called or 
was called more than once then the mock throws an exception. 

Listing 8-18. Interaction Testing with a Mock 

 [Test] 
public void Save_WhenStudentIsValid_ExpectIndividualDalCreateIsCalledOnce() 
{ 
    // Arrange 
    var today = new DateTime(2003, 5, 17); 
 
    const int ExpectedStudentId = 897931; 
    var studentEntity = new StudentEntity { Id = ExpectedStudentId, }; 
 
    var stubStudentRepo = new Mock<IRepository<StudentEntity>>(); 
    stubStudentRepo 
        .Setup(e => e.Retrieve(ExpectedStudentId)) 
        .Returns(studentEntity); 
 
    var mockIndividualRepo = new Mock<IRepository<IndividualEntity>>(); 
    mockIndividualRepo 
        .Setup(e => e.Create(It.IsAny<IndividualEntity>())) 
        .Returns(ExpectedStudentId); 
 
    var classUnderTest = 
        new Student(mockIndividualRepo.Object, stubStudentRepo.Object) 
        { 
            Today = today, 
            DateOfBirth = today.AddYears(-19), 
        }; 
 
    // Act 
    classUnderTest.Save(); 
 



CHAPTER 8  AUTOMATED TESTING 

165 

    // Assert 
    Assert.AreEqual(ExpectedStudentId, classUnderTest.Id); 
    mockIndividualRepo 
        .Verify(e => e.Create(It.IsAny<IndividualEntity>()), Times.Once()); 
} 

In Chapter 12 more detail is provided on mocking frameworks and the interaction testing facilities 
they provide. At this point, the key concept is to use a mock to test expected interaction and to limit a 
test method to testing one dependency-interaction at a time. 

Surface Testing 
The concept behind testing a surface is to identify a set of interfaces or API of a subsystem or module.8 
That programming interface is the surface. Build a suite of automated integration tests against the 
identified surface. These tests verify and validate the subsystem works as an integrated whole. 

In general, a system surface is any part of the system where interaction or coupling occurs. It might 
be an API or user-interface. What is important is that the surface is stable. There are important reasons 
why a surface is not currently changing that might include 

• An internal interface accessible to another module or system layer; the SLOS DAL 
is an example. 

• An external interface accessible to an another system; for example, a web service 
or an API. 

• A database table, view or stored procedure accessible to reporting services, a data 
warehouse, or a legacy system. 

• User-accessible functionality, such as a user interface, web page, or report. 

In Figure 8-2 the diagram shows the layers of the SLOS system. There are three logical layers to this 
brownfield application: Web Application, Data Access Layer, and Database. The end-user accesses the 
functionality and accomplishes their work using a browser-hosted interface. The web pages are 
delivered to the browser through a combination of the aspx files in the Web Forms and the C# code in 
the Code Behind. The Code Behind uses the Data Access Layer to access data in the Database layer. 

For the SLOS project, the Data Access Layer (DAL) is being overhauled. The calls to the CRUD stored 
procedures are to be replaced with the equivalent NHibernate implementation. However, the DAL must 
continue to provide the same interface to the Code Behind layer. 

For SLOS, the surface is identified as the IRepository interface to the DAL used by the Code Behind 
layer. During the DAL overhaul project this interface must not change. Ideally, no code changes are 
needed in the Code Behind. 

Figure 8-2 shows the two conceptual steps involved with surface testing the DAL: 

1. Data Setup: Create a database with a known initial state. 

2. Run Tests: Execute the suite of automated tests. 

                                                 
8 The term surface comes from its usage in API surface analysis as it relates to system coupling. 



CHAPTER 8  AUTOMATED TESTING 

166 

 

Figure 8-2. Surface testing 

This diagram is conceptually accurate, but this model is not practicable. The obstacles include 

• Each test method likely requires a different initial data setup. 

• Tests need to return the database to the initial state so each test is isolated. 

• Any test that inserts records in a table with an identity column must reset the 
identity column. 

A lot of setup and tear-down logic is needed to return the database to the proper initial state. 
Fortunately, there are test frameworks to help perform the database setup. The database test framework 
used in the sample code is NDbUnit. This database test framework is used to put the database into a 
defined state before each test is run. With this framework, the following surface testing steps are 
straightforward to achieve: 

1. Initial Database Setup: Create the database and run scripts to create the tables, 
views, stored procedures, or other database resources. 

2. Test Fixture Setup: Use the testing framework to connect to the database. 

3. Test Setup: Perform any data cleanup or initialization common to all test 
methods in the tests class. A script removes data from all tables and resets 
identity columns. 

4. Test Arrangement: In the Arrange section, use the database testing framework 
to load up the database with data specific to the test case. 

5. Execute Test: Proceed through the remaining arrangement, perform the test 
action steps, and make the necessary assertions. 



CHAPTER 8  AUTOMATED TESTING 

167 

In the sample code, NDbUnit connects to the database and uses a DataSet that describes the 
database schema. Each test fixture setup runs a script to initialize the database. The test method 
provides the name of an xml data file that NDbUnit uses to put the correct data into each table. This sets 
up each test with a defined initial state. More detailed discussion of NDbUnit is found in Chapter 12. 

SAMPLE CODE: SURFACE TESTING 

The Surface testing sample code is in two parts. First, under the $\Ch08\5_DAL_SP folder is the 
Tests.Surface.Lender.Slos.Dal project. It has all the surface tests written against the DAL calls stored 
procedures. Second, under the $\Ch08\6_DAL_NH folder is the data access layer re-implemented to use 
NHibernate instead of calling stored procedures. 

The SurfaceTestingBase<TContext> class implements the methods that the tests classes and test 
methods in the Tests.Surface.Lender.Slos.Dal project use for database initialization and data setup. 
This surface testing base class uses NDbUnit to put the Lender.Slos database in a well-defined initial 
state before each test is run. 

In the $\Ch08\6_DAL_NH\Lender.Slos.Dal folder there are both a new and an original version of classes 
that implement the data access layer. If you want to switch implementations of the ApplicationDal, 
remove the ApplicationDal.new.cs file from the project and then add ApplicationDal.orig.cs to the project. 
Rebuild and re-run all the tests. All tests should pass. 

 
Shown in Listing 8-19 is a test method that tests ApplicationDal.Retrieve. There is one line in the 

Arrange section, a call to TestFixtureContext.SetupTestDatabase, which sets up the database using the 
provided xmlDataFilename filename. To support multiple test cases, different XML filenames are passed 
to the test method using the TestCase attribute. One test method is able to support many test cases 
having different data scenarios. 

Listing 8-19. Surface Testing: Application DAL Retrieve 

namespace Tests.Surface.Lender.Slos.Dal 
{ 
    public class ApplicationDalTests  
        : SurfaceTestingBase<ApplicationDalTestsContext> 
    { 
        [TestFixtureSetUp] 
        public void FixtureSetUp() 
        { 
            this.SetUpTestFixture(); 
        } 
 
        [TestFixtureTearDown] 
        public void FixtureTearDown() 
        { 
            Dispose(); 
        } 
 



CHAPTER 8  AUTOMATED TESTING 

168 

... 
 
        [TestCase("ApplicationDalTests_Scenario01.xml", 5)] 
        public void Retrieve_WhenEntityWithIdStoredInDatabase_ExpectEntityHavingIdIsRetrieved( 
            string xmlDataFilename, 
            int id) 
        { 
            // Arrange 
            TestFixtureContext.SetupTestDatabase(xmlDataFilename); 
 
            var classUnderTest = TestFixtureContext.CreateInstance(); 
 
            // Act 
            var actual = classUnderTest.Retrieve(id); 
 
            // Assert 
            Assert.NotNull(actual); 
            Assert.AreEqual(id, actual.Id); 
        } 
... 

The ApplicationDalTests class is dependent upon the Surface Testing framework to keep the test 
methods readable and maintainable. In order to access this testing framework ApplicationDalTests is 
derived from the SurfaceTestingBase<ApplicationDalTestsContext> class. 

Automated Integration Testing 
Many integration tests are performed manually. There is often some setup and configuration required to 
perform the tests. However, the same integration tests, if automated, would be very helpful to all 
developers. In the last section you learned about the power of surface testing as a specialized automated 
integration testing technique. When properly applied to replacing a subsystem or redesigning the 
system, surface testing is very useful. Other forms of automated integration testing are listed in Table  
8-3. 

Table 8-3. Automated Integration Testing Approaches 

Name Description 

Smoke Testing This approach involves an automated deployment followed by automated tests 
that exercise a small set of minimal, essential functionality to verify that the 
system does not blow up. 

Stability Testing This approach involves an automated deployment followed by automated tests 
that verify that the system is behaving well. 

Performance Testing This approach involves an automated deployment followed by automated tests 
that verify important non-functional requirements. 

 
Smoke testing starts with an automated deployment of the system to an integration environment, 

one that the CI server can control. For example, the CI server could deploy to a virtual machine on a 



CHAPTER 8  AUTOMATED TESTING 

169 

server after a nightly build. By using the techniques described for surface testing, the database is then set 
up and placed in a known initial condition. The CI server then initiates the running of the smoke tests. 
These tests use a narrowly focused set of automated UI tests that make sure the software does not blow 
up. These tests include simple tasks like a user logging in and viewing the main screen or a web page. 
The goal is to make sure the deployment was successful and the system carries out a set of minimal and 
essential functionality. To test through the user interface, a testing framework such as Selenium RC is 
used. Some available options for UI testing frameworks are described in Chapter 12. The CI server 
evaluates the results of the tests and determines if the tests passed or failed.  

Stability testing answers the question: Is the build stable enough to release to QA for system or 
regression testing? In other words, if the system is failing the stability tests then it would be madness to 
ask QA to test it. Stability tests are automated tests run by the CI server. The mechanics are nearly 
identical to smoke testing. The goal, however, is expanded to perform a broader set of testing of features 
and functionality. Since the build must create a system suited for its intended purpose, stability tests 
confirm it. Pick a set of features and functionality that expresses the indispensable purpose of the 
system. For example, with the SLOS system, the stability testing focuses on the lifecycle of a student 
loan, from the application, through loan approval, to cutting checks, and going into repayment. 

Performance testing focuses on the non-functional requirements of the system. Does a page load 
fast enough? Is a calculation or query too slow? Beyond the time-oriented performance tests, they might 
include scalability, resources, logging, security, audit trails, and any number of non-functional 
requirements. Some non-functional requirements are specified in the requirements, while others are 
only defined after there is an issue. The important point is to add new automated performance tests for 
each significant non-functional requirement that is discovered. If a performance problem develops, 
then these tests reveal it before it makes it to QA. The mechanics of running automated performance 
tests are the same as smoke and stability tests. 

 Tip  Building up all these automated integration tests can be a daunting task. Start by building the Smoke 
Testing suite. Focus on automating just one smoke test. Get that one test to pass by incorporating smoke testing in 
a CI server configuration. Build upon that work as your foundation. 

Database Considerations 
A database contains elements of the system such that, if the database does not work as intended, then 
the system does not work. The goal of automated testing is to ensure the system continues to work as 
intended, and so it is often necessary to write automated tests against the database. This form of 
automated testing focuses on the following aspects: 

• Tables, columns, defaults, views, referential integrity, and indices 

• Stored procedures 

• Triggers 

• Concurrency conflict and control 

For the code to work properly, the database must have all the required tables and views. The 
columns need to be properly named with the proper SQL type. If the ORM offers an effective way to 
validate the schema mapping then build a Surface Testing suite that verifies the mappings. Many 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8  AUTOMATED TESTING 

170 

databases have a programming interface for data management; for example, there is SQL Server 
Management Objects (SMO). Surface tests could use SMO to verify and validate the database. As an 
alternative, call a stored procedure that returns the tables and columns found in the system tables. Be 
careful to test whether a column has the correct type and default value. Similar approaches apply to 
testing views, referential integrity, and indices. Test to ensure the database system objects and schema 
catalog are correct for the latest build. 

When stored procedures contain a lot of query and data manipulation logic it is important that the 
stored procedure (SP) works correctly. For example, write surface tests that put the database in a known 
initial state and execute a stored procedure. Verify and validate it performs properly. Analyze the 
boundaries of the SP parameters. Inspect the SP and look for exceptions and verify that errors are raised 
under the appropriate conditions. 

In some applications, triggers provide a feature or functionality of the system. One example might 
be auditing. Write surface tests that set up the data scenario and then update the table in a way that 
should fire the trigger. Verify that the audit table now contains the expected entry. 

Concurrency conflict and control is important in many systems. As a non-functional requirement, it 
may be overlooked or underspecified. Whether it is an optimistic or pessimistic strategy, at the very 
least, the user should experience the impact of concurrency contention the way the system’s designers 
had intended. Write tests that put the database in a known initial state. In the test arrangement retrieve a 
record using the proper data access method. Use a test helper method to modify the data directly. In the 
Act section, perform the steps to update the record in the database through the system. In the Assert 
section, verify that the concurrency problem is detected or otherwise controlled. Make sure the proper 
exception is thrown. 

Since many systems depend on a database, the database must work as expected for the code to 
behave properly. Use surface testing to develop a suite of tests to verify and validate the database; 
address issues before they are found in QA testing or production. 

Summary 
In this chapter you learned about automated testing practices that developers use to effectively check 
the intention of their code and the system as a whole. This chapter presented practices focusing on three 
key areas: 

• Readability 

• Maintainability 

• Automation 

You learned many practices that help to develop and apply effective automated testing to projects. 
You learned about the different forms of automated test suites, including 

• Unit Testing 

• Surface Testing 

• Automated Integration Testing 

• Smoke Testing 

• Stability Testing 

• Performance Testing 



CHAPTER 8  AUTOMATED TESTING 

171 

• Database Testing 

In the next chapter you will learn how to use MSBuild to remove error-prone steps, establish 
repeatability and consistency, and strive to improve the build and deployment processes. 



C H A P T E R  9 
 

      
 

173 

Build Automation 

In the early days of software development the phrase build automation referred to automating the steps 
necessary to compile and link a program to create an application. Today, that phrase encompasses so 
much more. Creating an automated build refers to things that include build integration, unit testing, 
code analysis, and deployment. This book distinguishes between build automation and continuous 
integration (CI). By way of analogy, think of the build tools as musical instruments and build automation 
as the playing of those instruments. In this analogy, the practice of continuous integration is the 
orchestration, which is discussed in Chapter 10. 

This chapter covers build tools in their traditional role of compiling and integrating the application. 
In addition, this chapter delves into common build tasks and how the build tools serve as general 
scripting tools that can create folders, copy files, archive files, execute programs, and perform all manner 
of other tasks. 

This chapter also covers the next logical step in the build process: automated deployment. There are 
two distinct activities within automated deployment. They are 

• Packaging: Creating a build package that contains all the application files, 
database scripts, or anything else needed for deployment. 

• Deploying: The act of setting up the target environment. This includes installing 
files, setting the configuration, stopping and starting services, upgrading the 
database, converting the data in the database, or other tasks that put the target 
environment into a ready-for-use state. 

The key concept here is automated. Ideally, once the script starts, all the tasks should run without 
manual intervention. It should not require that the build output be manually copied to a server. There 
should not be any post-deployment configuration. Having said this, there are often obstacles between 
the vision of automation and the reality of the situation and circumstances. The goal is to use build 
automation to remove error-prone steps, establish repeatability and consistency, and strive to improve 
the build and deployment processes over time. Table 9-1 lists ruthlessly helpful build automation 
practices. 

Table 9-1. Build Automation: Ruthlessly Helpful Practices 

 Practice 

9-1 Learn the Fundamentals of Build Automation Scripting with MSBuild 

9-2 Use a Logger to Record Information That Helps Diagnose Build Script Issues 



CHAPTER 9  BUILD AUTOMATION 

174 

 Practice 

9-3 Use Parameters to Provide Script Values and Control Logic and Actions 

9-4 Extend the Power of Build Automation by Using Task Libraries 

9-5 Import Common Scripts to Promote Reuse 

9-6 Define Custom Task Logic as Inline Code to Perform Simple Tasks 

9-7 Make Effective Use of the Date, Time, and Duration Functions Within a Script 

9-8 Have the Script Tie the Assembly Version Back to the Build and Revision Number 

9-9 Read and Write XML Data from Within the Build Script 

9-10 Learn How to Create Zip File Archives from Within the Build Script 

9-11 Deploy the Same Build to Multiple Target Environments to Confirm Readiness 

9-12 Define the Packaging Approach That Works for Both the Customer and the Team 

9-13 Use a Tool That Makes Deployments Automated, Robust, and Reliable 

Build Tools 
Build tools are software programs and platforms that automate the software build processes. Generally 
speaking, build tools run a script that defines how that build process is to be carried out. Because of the 
widely-used make utility, an important scripting form is the makefile format.1 As MSBuild and NAnt have 
become popular build tools for .NET developers, the prevalent form of scripting uses XML to describe 
the build process and its dependencies. Whatever the format, the script is what the developer creates. 
The script defines the build steps and the dependencies of those steps. The script defines any actions to 
perform within each step and the order of those actions. 

It is hard to advocate for one build tool over another. Your organization may have a number of 
developers very familiar and proficient with NAnt. Since MSBuild is a part of the .NET Framework, more 
and more developers are learning how to write MSBuild scripts. Other build tools offer important 
features that make them well suited for key tasks. Table 9-2 offers a list of build tools worth evaluating. 

                                                 
1 For more information see http://en.wikipedia.org/wiki/Makefile. 

http://en.wikipedia.org/wiki/Makefile


CHAPTER 9  BUILD AUTOMATION 

175 

Table 9-2. Build Tools 

Name Description More Information 

MSBuild This Microsoft build tool comes as part of the .NET 
Framework. It is used within Visual Studio and Team 
Foundation Server for many build automation tasks. A lot of 
information is available through books, MSDN, and the web 
postings. 

msdn.microsoft.com/en-
us/library/0k6kkbsd.aspx 

NAnt A free and open-source build tool that is based on the Java 
build tool known as Ant. NAnt is popular with .NET 
developers for scripting the continuous integration process. 
Since NAnt is widely used, there is a lot of good information 
available on how to use NAnt for build automation. 

nant.sourceforge.net 

PowerShell This Microsoft shell tool supports scripting and automating 
many administrative tasks on Windows Server and most 
Microsoft server applications. 

technet.microsoft.com/en
-
us/library/bb978526.aspx 

Rake A Ruby build program with capabilities similar to make 
(rake = ruby + make). It is popular with teams familiar with 
Ruby and accustomed to using one of the make-oriented 
build tools. 

rake.rubyforge.org 

 
MSBuild has been part of the .NET Framework since version 2.0. It is heavily used within Visual 

Studio and Team Foundation Server. Today, many .NET developers are turning to MSBuild as the build 
automation tool of choice. However, it is not uncommon for continuous integration servers to use 
MSBuild only to compile the source code and to use NAnt, PowerShell, or Rake scripts to perform other 
steps. There are many good reasons to use various build tools in your development organization, and 
those reasons make tool selection important. Select the build tools appropriate to you. 

Since MSBuild is a part of the .NET Framework, and this book is targeted toward the .NET 
developer, all the samples are MSBuild scripts. This approach also eliminates the need for you to get a 
third-party build tool to run the samples. Many of the concepts presented are generally applicable to 
other build tools and scripting languages. 

MSBuild Fundamentals 
Some developers are surprised to learn that MSBuild is part of the .NET Framework and that Visual 
Studio uses MSBuild to perform many build steps. In fact, Visual Studio project files are MSBuild scripts. 
In addition, Microsoft Team Foundation Server relies very heavily on MSBuild to perform many build 
automation steps. Increasingly, knowing the fundamentals of MSBuild is important to understanding 
how .NET applications are built with the Microsoft tool set. 

 Practice 9-1  Learn the Fundamentals of Build Automation Scripting with MSBuild 



CHAPTER 9  BUILD AUTOMATION 

176 

This section is not going to teach you everything you need to know about MSBuild and how to write 
sophisticated MSBuild scripts. For tutorials and MSBuild in depth, take a look at the resources available 
in Appendix A. This chapter touches upon many of the key concepts and illustrates how to perform 
common build tasks using MSBuild. 

Tasks and Targets 
MSBuild uses a task to execute an action during the build process. The tasks are grouped under one or 
more targets. To execute an MSBuild script one or more targets are invoked. Perhaps an example would 
be helpful right now.  

The MSBuild script in the Samples\Ch09\0_General\HelloWorld\runner.msbuild file is shown in 
Listing 9-1. This is an ordinary XML file. The outermost element is the Project element. This script has a 
single Target element within the Project element. This is an MSBuild target. The target has a Name 
attribute, which is assigned a value of Hello. Within the Target element is a single Message element, 
which is an MSBuild task. This task takes two parameters, which are passed through the Text and 
Importance attributes. 

Listing 9-1. The MessageTask Called Within the Hello Target 

<?xml version="1.0" encoding="utf-8"?> 
<Project DefaultTargets="Hello" 
         xmlns="http://schemas.microsoft.com/developer/msbuild/2003" 
         ToolsVersion="4.0" 
         > 
  <Target Name="Hello"> 
    <Message Text="Hello world!" 
             Importance="high" 
             /> 
  </Target> 
</Project> 

The output from running the Samples\Ch09\0_General\HelloWorld\runner.msbuild script file is 
shown in Listing 9-2. The script is executed from the command line as follows:2 

%MSBuildRoot%\msbuild.exe "runner.msbuild" 

The output tells you when the build started and the name of the project file that MSBuild is running. 
The MSBuild engine then writes to the output log that Target Hello is executed. This target has the one 
task to execute, which is to write the message to the output. There it is. The text Hello world! is written 
to the log. 

                                                 
2 The msbuild.exe is located in the .NET Framework 4.0 installation folder, which is customarily 
C:\Windows\Microsoft.NET\Framework\v4.0.30319. Create the environment variable MSBuildRoot to 
reference the proper folder for your environment. 

http://schemas.microsoft.com/developer/msbuild/2003


CHAPTER 9  BUILD AUTOMATION 

177 

Listing 9-2. The Output from Running the HelloWorld Sample Script 

Build started 9/25/2011 3:32:45 PM. 
__________________________________________________ 
Project "C:\Samples\Ch09\0_General\HelloWorld\runner.msbuild" (default targets): 
 
Target Hello: 
    Hello world! 
 
Build succeeded. 
    0 Warning(s) 
    0 Error(s) 
 
Time Elapsed 00:00:00.13 

The next example is more involved, but the concept is pretty much the same. There is a target and 
the target has a task. The MSBuild script in the Samples\Ch09\0_General\Build\runner.msbuild file is 
shown in Listing 9-3. This script has a single Target element with a Name attribute of BuildAll. The task is 
the MSBuild task, which is the task to execute another script. In this case, the two scripts that are 
executed are both Visual Studio project files, which are defined as ProjectToBuild elements under the 
ItemGroup element. And so, when the target in this script is invoked it will invoke the Build target in two 
other scripts, both of which are Visual Studio projects. In this way, the runner.msbuild script is 
automating the build for these two projects. 

Listing 9-3. The MSBuild Task Called Within a Target Element 

<?xml version="1.0" encoding="utf-8"?> 
<Project DefaultTargets="BuildAll" 
         xmlns="http://schemas.microsoft.com/developer/msbuild/2003" 
         ToolsVersion="4.0"> 
 
  <ItemGroup> 
    <ProjectToBuild Include=".\Lender.Slos.Financial\Lender.Slos.Financial.csproj" /> 
    <ProjectToBuild  
Include=".\Tests.Unit.Lender.Slos.Financial\Tests.Unit.Lender.Slos.Financial.csproj" /> 
  </ItemGroup> 
 
  <Target Name="BuildAll"> 
    <MSBuild Projects="@(ProjectToBuild)" 
             Targets="Build" 
             Properties="Configuration=DEBUG" 
             /> 
  </Target> 
</Project> 

This is the basic idea of MSBuild scripts: invoke targets which execute tasks. A task can even invoke 
targets in another script. There is a lot more to tasks and targets—rather than delve into the details, let’s 
stay at the high level to look at other major features of an MSBuild script. 

http://schemas.microsoft.com/developer/msbuild/2003


CHAPTER 9  BUILD AUTOMATION 

178 

PropertyGroup and ItemGroup 
Properties are used in MSBuild scripts to store values and pass values to tasks. Properties are declared in 
the script file as child elements of a PropertyGroup element. The name of the child element is the name 
of the property. The content within the child element is the value of the property. 

The MSBuild script in the Samples\Ch09\0_General\Properties\runner.msbuild file is shown in 
Listing 9-4. Near the top of the script a PropertyGroup element is defined. The child element of 
GlobalProperty is a property with the value of DEBUG. The Target with the name First writes the value of 
the GlobalProperty to the log by referencing the value using the $(GlobalProperty) notation. Within this 
same target the value of LocalProperty is also written to the log. It is important to know that although 
the LocalProperty is not yet defined, MSBuild does not raise an error when the property is referenced. 

Within the Target section named Second, there is a PropertyGroup element that defines the 
LocalProperty and assigns the value of Lender.Slos to that property. The values of both the 
GlobalProperty and LocalProperty properties are written to the log. Within the Target named Third, 
there are no properties defined. In this target section, the values of both the GlobalProperty and 
LocalProperty properties are written to the log. 

Listing 9-4. Properties Declared Outside and Within a Target Section 

<?xml version="1.0" encoding="utf-8"?> 
<Project DefaultTargets="First;Second;Third" 
         xmlns="http://schemas.microsoft.com/developer/msbuild/2003" 
         ToolsVersion="4.0" 
         > 
  <PropertyGroup> 
    <GlobalProperty>DEBUG</GlobalProperty> 
  </PropertyGroup> 
 
  <Target Name="First"> 
    <Message Text="In the First target the global property is: '$(GlobalProperty)'" 
             Importance="high" 
             /> 
    <Message Text="In the First target the local property is: '$(LocalProperty)'" 
             Importance="high" 
             /> 
  </Target> 
 
  <Target Name="Second"> 
    <PropertyGroup> 
      <LocalProperty>Lender.Slos</LocalProperty> 
    </PropertyGroup> 
 
    <Message Text="In the Second target the global property is: '$(GlobalProperty)'" 
             Importance="high" 
             /> 
    <Message Text="In the Second target the local property is: '$(LocalProperty)'" 
             Importance="high" 
             /> 
  </Target> 
 

http://schemas.microsoft.com/developer/msbuild/2003


CHAPTER 9  BUILD AUTOMATION 

179 

  <Target Name="Third"> 
    <Message Text="In the Third target the global property is: '$(GlobalProperty)'" 
             Importance="high" 
             /> 
    <Message Text="In the Third target the local property is: '$(LocalProperty)'" 
             Importance="high" 
             /> 
  </Target> 
</Project> 

The output from running the Samples\Ch09\0_General\Properties\runner.msbuild script file is 
shown in Listing 9-5. The output from the First target displays the expected GlobalProperty value of 
DEBUG. The yet-to-be-declared LocalProperty value is an empty string. The output from the Second target 
displays the expected GlobalProperty and LocalProperty values. The output from the Third target 
displays the expected GlobalProperty value. The output from the LocalProperty value is not an empty 
string; it is Lender.Slos. It is helpful to know that even when a property is declared within a target, once 
the target is called and the property value is set, that is the property’s value which is set for the 
remainder of the script’s execution. 

Listing 9-5. The Output from Running the Properties Sample Script 

Build started 9/25/2011 3:32:45 PM. 
__________________________________________________ 
Project "C:\Samples\Ch09\0_General\Properties\runner.msbuild" (default targets): 
 
Target First: 
    In the First target the global property is: 'DEBUG' 
    In the First target the local property is: '' 
Target Second: 
    In the Second target the global property is: 'DEBUG' 
    In the Second target the local property is: 'Lender.Slos' 
Target Third: 
    In the Third target the global property is: 'DEBUG' 
    In the Third target the local property is: 'Lender.Slos' 
 
Build succeeded. 
    0 Warning(s) 
    0 Error(s) 
 
Time Elapsed 00:00:00.19 

Next, let’s take a look at the concept of the MSBuild Item. Items are declared in the script file as 
child elements of an ItemGroup element. The name of the child element defines the Item type. Item types 
are essentially named lists of items. Items are usually passed as parameters to tasks. 

The MSBuild script in the Samples\Ch09\0_General\Items\runner.msbuild file is shown in Listing 9-
6. Near the top of this script, there are two ItemGroup elements defined. The first ItemGroup element 
contains two ContentToInclude elements. The first ContentToInclude element defines the items to 
include in that list by assigning the Include attribute a value, which is $(SourcePath)\**\*.ico. This tells 
MSBuild to generate the item list by recursively looking for files under the $(SourcePath) folder, where 
the filename has an extension of ico. The second ContentToInclude element adds all the filenames with 
an extension of bmp to the item list with the same name. 



CHAPTER 9  BUILD AUTOMATION 

180 

The second ItemGroup element contains two ContentToExclude elements. The first ContentToExclude 
element defines the items to include in that list by assigning the Include attribute a value, which is 
$(SourcePath)\**\*.gif. This tells MSBuild to generate the item list by recursively looking for files under 
the $(SourcePath) folder, where the filename has an extension of gif. The second ContentToExclude 
element adds all the filenames that match the wildcard of Webcontrol*.bmp. 

In Listing 9-6, near the bottom of the script, there is a target named CopyToOutput. Within the target 
is an ItemGroup that contains the ContentFiles element. The way these attributes are assigned tells 
MSBuild to generate the item list by including the items from the ContentToInclude item list and to 
exclude the items from the ContentToExclude item list. The ContentFiles item list is then used in the 
parameters to the Copy task. 

The Copy task has two attributes that act as parameters for this task. The first is the SourceFiles 
attribute that has the @(ContentFiles) item list assigned to it. The second is the DestinationFiles 
attribute that has this expression assigned to it: 

@(ContentFiles->'$(OutputPath)\%(RecursiveDir)%(Filename)%(Extension)') 

This expression has special meaning. It uses the MSBuild item metadata to transform the 
ContentFiles items into a new list of items.3 The new items have the same relative path, filename, and 
extension of the ContentFiles items, but they have the base folder defined in the OutputPath property. 
The Copy task receives a transformed file as the destination file for each of the source files. 

Listing 9-6. Item Lists as Parameters to the Copy Task 

<?xml version="1.0" encoding="utf-8"?> 
<Project DefaultTargets="CopyToOutput" 
         xmlns="http://schemas.microsoft.com/developer/msbuild/2003" 
         ToolsVersion="4.0" 
         > 
  <PropertyGroup> 
    <SourcePath>.\Content</SourcePath> 
    <OutputPath>.\Output</OutputPath> 
    <DefineConstants>DEBUG;TRACE</DefineConstants> 
  </PropertyGroup> 

  <ItemGroup> 
    <ContentToInclude Include="$(SourcePath)\**\*.ico" /> 
    <ContentToInclude Include="$(SourcePath)\**\*.bmp" /> 
  </ItemGroup> 

  <ItemGroup> 
    <ContentToExclude Include="$(SourcePath)\**\*.gif" /> 
    <ContentToExclude Include="$(SourcePath)\**\Webcontrol*.bmp" /> 
  </ItemGroup> 

  <Target Name="First"> 
    <Message Text="In the DefineConstants property is: '$(DefineConstants)'" 
             Importance="high" 
             /> 

                                                
3 For more information on the MSBuild Well-known Item Metadata see http://msdn.microsoft.com/en-
us/library/ms164313(v=VS.100).aspx. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://schemas.microsoft.com/developer/msbuild/2003
http://msdn.microsoft.com/en-us/library/ms164313
http://msdn.microsoft.com/en-us/library/ms164313
http://msdn.microsoft.com/en-us/library/ms164313


CHAPTER 9  BUILD AUTOMATION 

181 

  </Target> 
 
  <Target Name="Second"> 
    <Message Text="In the ContentToInclude is: '@(ContentToInclude)'" 
             Importance="high" 
             /> 
  </Target> 
 
  <Target Name="Third"> 
    <Message Text="In the ContentToExclude is: '@(ContentToExclude)'" 
             Importance="high" 
             /> 
  </Target> 
 
  <Target Name="CopyToOutput" 
          DependsOnTargets="First;Second;Third;Clean" 
          > 
    <ItemGroup> 
      <ContentFiles Include="@(ContentToInclude)" 
                    Exclude="@(ContentToExclude)" 
                    /> 
    </ItemGroup> 
 
    <Message Text="In the ContentFiles is: '@(ContentFiles)'" 
             Importance="high" 
             /> 
 
    <Copy SourceFiles="@(ContentFiles)" 
          DestinationFiles="@(ContentFiles-> 
'$(OutputPath)\%(RecursiveDir)%(Filename)%(Extension)')" 
          /> 
  </Target> 
 
  <Target Name="Clean" > 
    <RemoveDir Condition="Exists('$(OutputPath)')"  
               Directories="$(OutputPath)" 
               /> 
  </Target> 
</Project> 

The output from running the Samples\Ch09\0_General\Items\runner.msbuild script file is shown in 
Listing 9-7. Notice that the contents of the ContentFiles item list is a semicolon-separated list of files 
that includes all the files in the ContentToInclude item list but excludes the files in the ContentToExclude 
item list. The Copy task logs a message indicating the source file path and destination file path, which 
results from the transformation expression, for each file that is copied. 

Listing 9-7. The Output from Running the Items Script 

Build started 9/25/2011 3:32:45 PM. 
__________________________________________________ 
Project "C:\Samples\Ch09\0_General\Items\runner.msbuild" (default targets): 
 



CHAPTER 9  BUILD AUTOMATION 

182 

Target First: 
    In the DefineConstants property is: 'DEBUG;TRACE' 
Target Second: 
    In the ContentToInclude is: 
'.\Content\icons\install.ico;.\Content\icons\search.ico;.\Content\icons\search4people.ico;.\Co
ntent\icons\share.ico;.\Content\images\Webcontrol_Pagecatalogpart.bmp;.\Content\images\Webcont
rol_Sqldatasrc.bmp;.\Content\images\window.bmp' 
Target Third: 
    In the ContentToExclude is: 
'.\Content\animations\download_FTP_00.gif;.\Content\animations\status_anim.gif;.\Content\image
s\Webcontrol_Pagecatalogpart.bmp;.\Content\images\Webcontrol_Sqldatasrc.bmp' 
Target Clean: 
    Removing directory ".\Output". 
Target CopyToOutput: 
    In the ContentFiles is: 
'.\Content\icons\install.ico;.\Content\icons\search.ico;.\Content\icons\search4people.ico;.\Co
ntent\icons\share.ico;.\Content\images\window.bmp' 
    Creating directory ".\Output\icons". 
    Copying file from ".\Content\icons\install.ico" to ".\Output\icons\install.ico". 
    Copying file from ".\Content\icons\search.ico" to ".\Output\icons\search.ico". 
    Copying file from ".\Content\icons\search4people.ico" to  
".\Output\icons\search4people.ico". 
    Copying file from ".\Content\icons\share.ico" to ".\Output\icons\share.ico". 
    Creating directory ".\Output\images". 
    Copying file from ".\Content\images\window.bmp" to ".\Output\images\window.bmp". 
 
Build succeeded. 
    0 Warning(s) 
    0 Error(s) 
 
Time Elapsed 00:00:00.24 

Basic Tasks 
Many tasks are included with MSBuild. The samples use a number of the MSBuild tasks throughout. 
These tasks provide for the basic functionality that MSBuild offers. As you will learn, a lot of the power of 
MSBuild comes through the third-party tasks provided in task libraries. 

Some of the commonly used basic MSBuild tasks include 

• Message: Writes a message to the log 

• Warning: Writes a warning to the log based on an evaluated condition 

• Error: Stops the build based on an evaluated condition and writes an error to the 
log 

• Exec: Runs a program or command with the specified arguments 

• CallTarget: Invokes a target in the project file 

• MSBuild: Invokes targets in another project file 

• Copy: Copies files from a source to a destination 



CHAPTER 9  BUILD AUTOMATION 

183 

• Move: Moves files to a new location 

• Delete: Deletes files 

• MakeDir: Creates a directory 

• RemoveDir: Removes a directory and all of its files and subdirectories 

• ReadLinesFromFile: Reads from a text file 

Logging 
There usually comes a time when the build script does not perform the build actions as expected. In 
order to diagnose and correct the problem a logging facility can be used to review the progress and state 
of the build script. With MSBuild the default output uses ConsoleLogger to write to the console window. 
To capture the log output to a file MSBuild provides the FileLogger facility, and the parameters for the 
logger can be passed to MSBuild using the command-line option /logger (or /l for short). It is also 
possible to write your own logger by implementing the ILogger interface directly or deriving from the 
Logger base class.4 The MSBuild log records build events, messages, warnings, and errors. Within the 
scripts that you create, writing messages to the log can help diagnose any build script issues when the 
script is being developed or running remotely on the build server. 

 Practice 9-2  Use a Logger to Record Information That Helps Diagnose Build Script Issues 

Within the MSBuild script the Error task is used to report an error to the log. If the Condition 
attribute of the Error element evaluates to true, the value of the Text attribute is logged and the build 
stops. Similarly, the Warning task is used to report a warning message based on a conditional statement, 
but the build continues. Within the MSBuild script the primary way to write an informational message to 
the log is with the Message task. The Message task has an Importance attribute that the logger interprets to 
determine if the message should be written to the log, based on the verbosity level. The Importance 
attribute can be set to high, normal, or low. In Listing 9-8 the sample runner.msbuild script file is shown. 
It has three Message tasks, each having the Importance attribute set to a different value.  

Listing 9-8. Writing Messages to the Log 

<?xml version="1.0" encoding="utf-8"?> 
<Project DefaultTargets="Default" 
         xmlns="http://schemas.microsoft.com/developer/msbuild/2003" 
         ToolsVersion="4.0"> 
 
  <Target Name="Default"> 
    <Message Text="This message is 'high' importance" 
             Importance="high" 
             /> 
    <Message Text="This message is 'normal' importance" 

                                                 
4 For more information see http://msdn.microsoft.com/en-us/library/ms171471.aspx. 

http://schemas.microsoft.com/developer/msbuild/2003
http://msdn.microsoft.com/en-us/library/ms171471.aspx


CHAPTER 9  BUILD AUTOMATION 

184 

             Importance="normal" 
             /> 
    <Message Text="This message is 'low' importance" 
             Importance="low" 
             /> 
  </Target> 
</Project> 

When the Samples\Ch09\0_General\Logging\runner.msbuild file is run through MSBuild from the 
command line, as shown in Listing 9-9, the logging option (/l) is used to provide the parameters for 
logging. In this example, the FileLogger,Microsoft.Build.Engine part indicates that the built-in file 
logger is the logger to use. The logfile=logs\normal.log part provides the relative path to the log 
filename. 

Listing 9-9. Running MSBuild with the File Logging Option 

%MSBuildRoot%\msbuild.exe "runner.msbuild" 
/l:FileLogger,Microsoft.Build.Engine;logfile=logs\normal.log 

When the script is run, MSBuild creates or overwrites the log file. The optional append parameter 
can be used to append the log file if it already exists. Since the optional verbosity parameter is not 
provided, the global verbosity setting is used for the file logger. After the command line is run the output 
is logged to the normal.log file. The output in this file is shown in Listing 9-10. 

Listing 9-10. Output in the normal.log File  

Build started 9/25/2011 3:32:45 PM. 
__________________________________________________ 
Project "C:\Samples\Ch09\0_General\Logging\runner.msbuild" (default targets): 
 
Target Default: 
    This message is 'high' importance 
    This message is 'normal' importance 
 
Build succeeded. 
    0 Warning(s) 
    0 Error(s) 
 
Time Elapsed 00:00:00.10 

To provide more detailed output in the log file, include the optional verbosity parameter and assign 
it the detailed value. Two separate command lines that set the verbosity are shown in Listing 9-11. The 
first command line includes that /v=detailed option, which sets the global verbosity level for all loggers. 
The second command line adds the verbosity level option to override the global verbosity setting for 
only that file logger. 



CHAPTER 9  BUILD AUTOMATION 

185 

Listing 9-11. Running MSBuild with the Detailed Logging Options 

%MSBuildRoot%\msbuild.exe "runner.msbuild" /v=detailed 
/l:FileLogger,Microsoft.Build.Engine;logfile=logs\detailed.log 
 
%MSBuildRoot%\msbuild.exe "runner.msbuild" 
/l:FileLogger,Microsoft.Build.Engine;logfile=logs\detailed.log;verbosity=detailed 

When the runner.msbuild script file is run with the verbosity level set to detailed, a lot more 
information is written in the log file, as shown in Listing 9-12. Notice that the low importance message is 
now written to the log file. In addition, there is now a line that indicates that a task starts executing and 
that a task is done, for each task that is executed. At the beginning of the script, there is more 
information that includes the build tool version and the Message task used in the script. 

Listing 9-12. Output in the detailed.log File 

Build started 9/25/2011 3:32:45 PM. 
__________________________________________________ 
Project "C:\Samples\Ch09\0_General\Logging\runner.msbuild" (default targets): 
 
Building with tools version "4.0". 
Target Default: 
  Using "Message" task from assembly "Microsoft.Build.Tasks.v4.0,  
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a". 
  Task "Message" 
    This message is 'high' importance 
  Done executing task "Message". 
  Task "Message" 
    This message is 'normal' importance 
  Done executing task "Message". 
  Task "Message" 
    This message is 'low' importance 
  Done executing task "Message". 
 
Done building project "runner.msbuild". 
 
Build succeeded. 
    0 Warning(s) 
    0 Error(s) 
 
Time Elapsed 00:00:00.08 

Having the ability to control the global verbosity level independently of the verbosity level of the 
logger is very helpful. The valid values for the verbosity option include 

• quiet 

• minimal 

• normal 



CHAPTER 9  BUILD AUTOMATION 

186 

• detailed 

• diagnostic 

The important point is that while writing scripts you should include many Message tasks. These 
informational messages serve to describe and record how the script is behaving as it runs. By including 
messages that have the Importance attribute set to low, the script can provide detailed output to the log 
file during development. Later, when the script is running on the build server the normal output will not 
include this verbose information unless or until the verbosity level is raised. 

Parameters and Variables 
Since the goal is to write a single build script that can perform a variety of tasks under various 
conditions, it is important to be able to provide the build script with parameters and variables. Each 
build tool has different mechanisms for passing in these parameter values. The key concept is to use 
these variables to write a single script that can perform a range of tasks under different circumstances 
and conditions. 

 Practice 9-3  Use Parameters to Provide Script Values and Control Logic and Actions 

When running MSBuild from the command line, parameters can be passed to the build script using 
the parameter option (/p). Usage of the parameter option is illustrated in Listing 9-13. The first 
parameter is named ParamOne and has the value of 42. The second parameter is separated from the first 
parameter with a semicolon. The second parameter is named ParamTwo and has the value of 
First;Second;Third. Notice how the second parameter value is enclosed in quotation marks so that the 
value can include semicolons. The third parameter is named ParamThree and has the value of C:\My 
Documents\. This third parameter uses the double backslash notation as an escape character to indicate 
that the trailing backslash is part of the ParamThree value. 

Listing 9-13. Passing MSBuild Parameters Through the Command Line 

%MSBuildRoot%\msbuild.exe "runner.msbuild"  
/p:ParamOne=42;ParamTwo="First;Second;Third";ParamThree="C:\My Documents\\" 

In Listing 9-14, the three Message tasks show how to insert the parameter values as part of the Text 
that is written to the log. The $(ParamOne) notation indicates that the value stored in the ParamOne 
property is written into the Parameter 1: '42' output line. At the bottom of Listing 9-14, the output from 
each of the three parameters is shown. These parameter values can be used in a wide variety of ways, 
which are shown over the course of this chapter. 

Listing 9-14. The Script Logging the Values from the Parameters 

... 
 
    <Message Text="Parameter 1: '$(ParamOne)'" 
             Importance="low" 
             /> 



CHAPTER 9  BUILD AUTOMATION 

187 

    <Message Text="Parameter 2: '$(ParamTwo)'" 
             Importance="low" 
             /> 
    <Message Text="Parameter 3: '$(ParamThree)'" 
             Importance="low" 
             /> 
... 
 
  Parameter 1: '42' 
  Parameter 2: 'First;Second;Third' 
  Parameter 3: 'C:\My Documents\' 
 

Providing a long list of parameters and dealing with special character escaping on the command 
line is not the only way to pass values in to an MSBuild script. Another way to pass values into the script 
is through the use of environment variables. This is a helpful technique to use when the same build 
script runs on a variety of machines with different configurations. For example, if a build script is written 
to run FxCop then an FxCopRoot environment variable can be created on each of the machines where 
the script will run. The FxCopRoot environment variable contains the path to the FxCopCmd.exe 
program that is specific to that machine. In Listing 9-15, the build script inspects the FxCopRoot property, 
which MSBuild generates and sets according to the corresponding environment variable. The logical 
condition is examined in the Condition attribute of the Error task. If the value is empty, the script throws 
an error explaining that the FxCopRoot environment variable is required. If the property value is not 
empty, the error condition is not met and the script proceeds to write out the FxCop installation folder 
as part of the message to the log. 

Listing 9-15. Script Property Values from an Environment Variable 

... 
 
    <Error Condition="'$(FxCopRoot)'==''" 
           Text="Environment variable 'FxCopRoot' must be set." 
           /> 
    <Message Text="FxCop Installation Root: '$(FxCopRoot)'" 
             Importance="low" 
             /> 
... 

A third way that an MSBuild script can set a property value from an external source is from the 
Windows registry. In Listing 9-16, there are two property values that are assigned values from the 
registry. The first is the Username property, which is set to the username of the currently logged on user. 
The second is the DotNetFxRoot property, which is set to the .NET Framework installation folder. 
Property values from the command line, environment variable, and the registry are all powerful ways to 
write one build script that performs a variety of tasks under many different circumstances. 

Listing 9-16. Script Properties Read from the Registry 

... 
 
    <PropertyGroup> 
      <Username>$(Registry:HKEY_CURRENT_USER\Volatile Environment@USERNAME)</Username> 

s



CHAPTER 9  BUILD AUTOMATION 

188 

      <DotNetFxRoot>$(Registry:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
.NETFramework@InstallRoot)</DotNetFxRoot> 
    </PropertyGroup> 
 
    <Message Text="Current user's login id: '$(Username)'" 
             Importance="low" 
             /> 
    <Message Text=".NET Framework Installation Root: '$(DotNetFxRoot)'" 
             Importance="low" 
             /> 
... 

Libraries and Extensions 
Every build tool provides a base set of features that form the foundation of the tool’s build automation 
functionality. However, there are also many common build tasks that are not included in the many build 
tools. For additional capabilities most build tools provide facilities to extend the functionality. 

For MSBuild there are libraries available that provide a broad range of additional functionality. Two 
of the commonly used libraries are 

• MSBuild Extension Pack 

• MSBuild Community Tasks 

Both of these libraries are free and open source. Information on how to obtain these libraries is 
provided in Appendix A. Both the Extension Pack and the Community Tasks include help 
documentation that is very thorough and includes many examples of how to use the tasks provided 
within the library. Both libraries are widely used to extend MSBuild scripts and there are many examples 
available in books and on the Internet that explain how to use these libraries to accomplish common 
tasks. 

 Practice 9-4  Extend the Power of Build Automation by Using Task Libraries 

In addition to using an MSBuild library that others have developed, you can create your own 
MSBuild custom tasks library. This is a straightforward process, but it is a little beyond the scope of this 
book. In Chapter 11, there is sample code that calls StyleCop from an MSBuild script by using a custom 
build task. The resources in Appendix A include books and articles on MSBuild that delve into writing 
custom MSBuild tasks. 

Import and Include 
Over time the build scripts that you write may get quite long and repeat sections and tasks across many 
build scripts. Most build tools provide a way to import and include partial scripts to promote reuse. 
Using this approach, the reused sections of the script are placed in a common script that is included 
within the main build script. 



CHAPTER 9  BUILD AUTOMATION 

189 

 Practice 9-5  Import Common Scripts to Promote Reuse 

In MSBuild the Import task is used to include one script within another build script. The Import 
element uses the Project attribute to reference the file within the calling script. For all intents and 
purposes, the Import task inserts the contents of the imported file’s Project section within the main 
script at the Import line, when the script begins to execute. In this way, the main script references targets 
and properties as if they are defined in the main script. Any MSBuild files that are intended to be 
imported are, by convention, named with the Targets file extension. 

In Listing 9-17, the entire contents of the main MSBuild script file are shown. The Import task 
provides the relative path to the Common.Targets file. The Default target references a Preconditions 
target defined in the Common.Targets file. Also, the property BinariesOutputPath can be referenced 
because it is defined in the Common.Targets file. 

Listing 9-17. Script that Imports Common.Targets File 

<?xml version="1.0" encoding="utf-8"?> 
<Project DefaultTargets="Default" 
         xmlns="http://schemas.microsoft.com/developer/msbuild/2003" 
         ToolsVersion="4.0"> 
 
  <Import Project=".\Build\ImportTargets\Common.Targets"/> 
 
  <Target Name="Default" 
          DependsOnTargets="Preconditions"> 
    <Message Condition="Exists('$(BinariesOutputPath)')" 
             Text="Yes, the '$(BinariesOutputPath)' folder exists." 
             Importance="low" 
             /> 
    <Error Condition="!Exists('$(BinariesOutputPath)')" 
             Text="No, the '$(BinariesOutputPath)' folder does NOT exist." 
             /> 
  </Target> 
</Project> 

Let’s take a look at the contents of the Common.Targets file, which is shown in Listing 9-18. There is 
a PropertyGroup section that defines two properties, ArtifactsPath and BinariesOutputPath. The values 
in these properties are accessible to any script that imports this file. Notice the Condition attribute on 
the ArtifactsPath property. This property will not be set if that property is already set in the script that 
imports this file. This technique allows you to override a property value defined in an imported targets 
file by defining it in the main script before the Import target statement. 

The Common.Targets file also defines a Target element with the name Preconditions. This target 
uses properties that are assumed to already be defined before this script is imported. It also uses the 
ArtifactsPath and BinariesOutputPath properties that are defined earlier in this file. 

Listing 9-18. Script Within the Common.Targets File 

<?xml version="1.0" encoding="utf-8" ?> 
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003" 

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003


CHAPTER 9  BUILD AUTOMATION 

190 

         ToolsVersion="4.0" 
         > 
  <PropertyGroup> 
    <ArtifactsPath Condition="'$(ArtifactsPath)'==''">
.\Artifacts</ArtifactsPath> 
    <BinariesOutputPath Condition="'$(BinariesOutputPath)'==''">
$(ArtifactsPath)\Binaries</BinariesOutputPath> 
  </PropertyGroup> 

  <Target Name="Preconditions" > 
    <Error Condition="'$(FxCopRoot)'==''" 
           Text="Environment variable 'FxCopRoot' must be set." 
           /> 
    <Message Text="FxCop root: '$(FxCopRoot)'" 
             Importance="low" 
             /> 
    <MakeDir Condition="!Exists('$(ArtifactsPath)')" 
             Directories="$(ArtifactsPath)" 
             /> 
    <MakeDir Condition="!Exists('$(BinariesOutputPath)')" 
             Directories="$(BinariesOutputPath)" 
             /> 
  </Target> 
</Project> 

Inline Tasks 
Some build tools provide the facility to define custom task logic as inline code within the build script. In 
general, because these inline-code tasks are often reused, they are commonly written in a script file that 
is imported. The purpose of these inline tasks is not to replace custom task libraries but to provide a way 
to write a short function without resorting to writing a full-blown custom task. 

 Practice 9-6  Define Custom Task Logic as Inline Code to Perform Simple Tasks 

Version 4.0 of MSBuild adds the facility to write custom tasks inline in the project file, which is 
called Inline Tasks.5 The inline code can be written in C#, VB.NET, or JavaScript. Listing 9-19 shows the 
relevant section of the runner.msbuild sample script file. The Example1 target calls the ExecuteSum task, 
which is defined as the inline task, shown in Listing 9-19. The caller provides the values from the Values 
property by assigning this property’s value to the Input attribute. The output from the ExecuteSum task is 
returned and stored in a property named SumFromTask. 

                                                
5 For more information see http://msdn.microsoft.com/en-us/library/dd722601.aspx. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://msdn.microsoft.com/en-us/library/dd722601.aspx


CHAPTER 9  BUILD AUTOMATION 

191 

Listing 9-19. Script That Calls the ExecuteSum Inline Task 

... 
 
  <PropertyGroup> 
    <Values>16.37|11.13|1129.7057|2.417|6569.1</Values> 
  </PropertyGroup> 
 
... 
 
  <Target Name="Example1"> 
    <ExecuteSum Input="$(Values)"> 
      <Output PropertyName="SumFromTask" TaskParameter="TaskMessage"/> 
    </ExecuteSum> 
 
    <Message Text="Sum from 'ExecuteSum' task: $(SumFromTask)" 
              Importance="high" 
              /> 
  </Target> 
... 

In Listing 9-20, the build script that defines the ExecuteSum inline task is shown. Some important 
features to note include the use of input and output parameters. The Input property is defined as a 
parameter of an element within the ParameterGroup. Also, the TaskMessage parameter is defined as an 
output parameter that is a decimal type. Within the Code element the inline C# code is defined. The 
Input parameter is accessed just like a property of a class. Similarly, the TaskMessage parameter is set as if 
it is a property of a class. 

Listing 9-20. Script That Defines the ExecuteSum Inline Task 

... 
 
  <UsingTask TaskName="ExecuteSum" 
              TaskFactory="CodeTaskFactory" 
              AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll" > 
    <ParameterGroup> 
      <Input Required="true"/> 
      <TaskMessage ParameterType="System.Decimal" Output="true"/> 
    </ParameterGroup> 
 
    <Task> 
      <Code Type="Fragment" Language="cs"> 
        const string Separators = ",;|"; 
        var sum = decimal.Zero; 
 
        if (!string.IsNullOrWhiteSpace(Input)) 
        { 
          foreach (var value in Input.Split(Separators.ToCharArray())) 
          { 
            decimal decimalValue; 



CHAPTER 9  BUILD AUTOMATION 

192 

            if (decimal.TryParse(value, out decimalValue)) 
            { 
              sum += decimalValue; 
            } 
          } 
        } 
 
        TaskMessage = sum; 
      </Code> 
    </Task> 
  </UsingTask> 
... 

Common Tasks 
There are common build automation tasks that come up time and time again. Many of these are made 
easier by the custom tasks available in extension libraries. It is important to review the tasks in several 
libraries to remove the need to rediscover the challenges and reimplement the solutions associated with 
these custom tasks. This section covers a handful of samples that illustrate how to perform these 
common tasks within MSBuild, using the MSBuild Extensions Pack or with the MSBuild Community 
Tasks. The larger message of this section is that it is very helpful for you to develop small, focused build 
scripts that use these libraries to accomplish tasks that are common in your situation. In practice, these 
targeted scripts isolate the techniques involved and help refine the approach before bringing them to the 
main build script. In addition, any effort to track down or isolate problems in getting the small script to 
work is a lot easier to debug. 

Date and Time 
Very common tasks involve determining today’s date, the current time, and event durations. Perhaps the 
script needs to write an informational message to log when the build begins. Other applications include 
creating folder names that include the date and time as part of the string. Whatever the need, it is helpful 
to learn how to effectively determine the date, time, or duration for use in the build script. 

 Practice 9-7  Make Effective Use of the Date, Time, and Duration Functions Within a Script 

Within an MSBuild script there are a few ways to determine the current date and time. The MSBuild 
Extension Pack provides the MSBuild.ExtensionPack.Framework.DateAndTime task to help perform a 
number of time-related operations. This task allows you to easily determine the current date and time 
and calculate elapsed time. The Samples\Ch09\1_DateAndTime\runner.msbuild script file provides 
several examples of how to use this Extensions Pack to work with time-related values. 

One of the simplest ways to determine the current date and time from within an MSBuild script is by 
using property functions. This technique is illustrated in the fragment of the build script in Listing 9-21. 
The TodaysDate property is assigned today’s date based on the property function 
$([System.DateTime]::Today.ToString("dddd, MMMM dd, yyyy")). This approach uses the syntax that 
MSBuild defines to get a value from a static class property: the Today property of the .NET 
System.DateTime class. The call to the ToString method uses the conventional .NET format string to 



CHAPTER 9  BUILD AUTOMATION 

193 

assign the value to the TodaysDate property. A similar approach assigns the current time to the 
CurrentTime property. 

Listing 9-21. Script That Assigns the Current Date and Time to Properties 

... 
 
    <Message Text="Use the MSBuild property functions to get the current date and time" 
             Importance="low" 
             /> 
    <PropertyGroup> 
      <TodaysDate>$([System.DateTime]::Today.ToString("dddd, MMMM dd, yyyy"))</TodaysDate> 
      <CurrentTime>$([System.DateTime]::Now.ToString("h:mm:ss tt"))</CurrentTime> 
    </PropertyGroup> 
 
    <Message Text="    Today's date is: $(TodaysDate)" 
             Importance="high" 
             /> 
    <Message Text="    Current time is: $(CurrentTime)" 
             Importance="high" 
             /> 
... 

When the Samples\Ch09\1_DateAndTime\runner.msbuild script file is executed the messages that 
are written out display today’s date and the current time, which is illustrated in Listing 9-22. 

Listing 9-22. Output That Displays the Current Date and Time 

... 
 
Using the MSBuild property functions to get the current date and time 
      Today's date is: Sunday, September 25, 2011 
      Current time is: 3:32:45 PM 
... 

Assembly Info 
The assemblies that are created during the build process contain properties that can help the .NET 
Framework to properly identify and reference the correct assemblies. Among these assembly properties 
is the Assembly Version property. It is very helpful to have the build server track and provide the proper 
build number to the build script to establish the correct Assembly Version property value. From the 
build server’s perspective, this is a “build number” that is defined, incremented, and passed to the build 
script when it is run. For example, it is common for a build server to maintain a build number in a 
specified format (such as, {major version}.{minor version}.{build counter}.{vcs revision number}) 
and pass the value in to the script as a “build number” property value. The trick is to write the build 
script in a way to properly receive the build number and assign it to the assemblies as their version 
number. Having a version numbering system that ties the assembly back to the build and revision 
number is very helpful when debugging and diagnosing problems. 



CHAPTER 9  BUILD AUTOMATION 

194 

 Practice 9-8  Have the Script Tie the Assembly Version Back to the Build and Revision Number 

There is an MSBuild Extension Pack task that helps deal with the assembly information for .NET 
Framework projects. The MSBuild.ExtensionPack.Framework.AssemblyInfo task is able to properly assign 
assembly information from within a build script. In Listing 9-23, this extension task is used to assign four 
assembly information values to each of the AssemblyInfo.cs files under the source folder. The ItemGroup 
element uses wildcarding to provide a recursive list of all the assembly information files. Later, this list of 
files is passed to the MSBuild.ExtensionPack.Framework.AssemblyInfo task using the AssemblyInfoFiles 
attribute. This task applies each of the property values to the assembly information files. The property 
values include the correct company name, copyright notice, assembly version, and file version. The 
result is consistent and correct assembly information assignment across the entire set of source files. 

Listing 9-23. Script That Updates the AssemblyInfo.cs Files 

... 
 
<Target Name="AssemblyInformation" > 
  <ItemGroup> 
    <AssemblyInfoFiles Include="$(SourceFolder)\**\AssemblyInfo.cs" /> 
  </ItemGroup> 
 
  <Time Format="yyyy"> 
    <Output TaskParameter="FormattedTime" PropertyName="CurrentYear" /> 
  </Time> 
 
  <PropertyGroup> 
    <AssemblyCompany>Lender Inc.</AssemblyCompany> 
    <AssemblyCopyright>Copyright © $(CurrentYear) $(AssemblyCompany)</AssemblyCopyright> 
    <AssemblyVersion>$(BUILD_NUMBER)</AssemblyVersion> 
    <AssemblyFileVersion>$(BUILD_NUMBER)</AssemblyFileVersion> 
  </PropertyGroup> 
 
  <MSBuild.ExtensionPack.Framework.AssemblyInfo 
    AssemblyInfoFiles="@(AssemblyInfoFiles)" 
    AssemblyCompany="$(AssemblyCompany)" 
    AssemblyCopyright="$(AssemblyCopyright)" 
    AssemblyVersion="$(AssemblyVersion)" 
    AssemblyFileVersion="$(AssemblyFileVersion)" 
    /> 
</Target> 
... 

XML Peek and Poke 
There are many XML files associated with a build. Some are configuration files that are part of the 
source. Others are output files and reports generated during the build. In both cases, it is helpful to have 
the build script be able to read or write to an XML file. For example, after running FxCopCmd.exe the 
build script can read the XML report to determine the number of errors that were written to the report. If 



CHAPTER 9  BUILD AUTOMATION 

195 

the number of errors and warnings that are in the report exceed defined threshold limits, the build script 
can fail the build. The Samples\Ch09\3_XmlPeekAndPoke\runner.msbuild script file demonstrates how 
to stop the build if an FxCop report contains errors or warnings that exceed the thresholds. 

 Practice 9-9  Read and Write XML Data from Within the Build Script 

There are custom task libraries that read or write to an XML file for use in MSBuild scripts. In Listing 
9-24, the MSBuild Community Tasks library is used to update the Web.config file’s connection string. 
This listing is an excerpt from the Samples\Ch09\3_XmlPeekAndPoke\runner.msbuild script file. The 
ConnectionString property contains the properly formatted connection string based on the externally 
defined parameters for the server name, database name, user id, and password. The XmlUpdate task uses 
the XPath attribute value to update the Web.config file’s connection string with the proper value. 

Listing 9-24. Script That Updates the ConnectionString Element in a config File 

... 
 
<Target Name="UpdateConnectionStrings"> 
  <PropertyGroup> 
    <ConfigFile>.\bin\Web.config</ConfigFile> 
    <ConnectionKey>Lender.Slos.Database</ConnectionKey> 
    <ConnectionString>Data Source=$(ServerName);Initial Catalog=$(DatabaseName);
User Id=$(UserId);Password=$(Password);Trusted_Connection=False;</ConnectionString> 
  </PropertyGroup> 
 
  <Error Condition="!Exists('$(ConfigFile)')" 
         Text="Config file not found '$(ConfigFile)'" 
         /> 
  <XmlUpdate ContinueOnError="False" 
             XPath="/configuration/connectionStrings/
add[@name='$(ConnectionKey)']/@connectionString" 
              XmlFileName="$(ConfigFile)" 
              Value="$(ConnectionString)" 
              /> 
  <Message Text="Connection string updated successfully in '$(ConfigFile)'" 
           Importance="low" 
           /> 
</Target> 
... 

Zip Archive 
Many build scripts are written to package the deliverables for later deployment. Ahead, the section on 
automated deployment describes several options that are applicable under different deployment 
situations. This section focuses on the common task of creating a zip archive file to store build artifacts 
or otherwise organize the build output. Some common applications of this task include packaging 



CHAPTER 9  BUILD AUTOMATION 

196 

database scripts, content files, binaries, and build reports. There are so many good reasons to compress, 
archive, and store files during the build process that this is a common task. 

 Practice 9-10  Learn How to Create Zip File Archives from Within the Build Script 

Using the MSBuild Community Tasks library to create a zip archive file is a widely-used technique. 
Let’s look at a piece of the Samples\Ch09\4_Zip\runner.msbuild build script file shown in Listing 9-25. 
Starting at the bottom of the listing, there is a Target element with the name Package. This target calls the 
Zip task, which is part of the Community Tasks library. The Zip task takes all the files defined within the 
FilesToZip item array and adds them to the archive file defined in the ZipFileName attribute. Notice that 
the ZipFileName attribute is formatted based on the project name and build number to create a unique 
zip filename. 

The earlier Target section named CopyToPreserve is responsible for copying the correct source files 
to the proper destination folder, using the Copy task. Therefore, the CopyToPreserve target needs to be 
called first. Once it copies the files, the Package target is called to create the zip archive file and add those 
files to the archive. At some later stage in the build script another target could copy all the archive files to 
a file server for storage and future use. 

Listing 9-25. Script That Creates a Zip File Archive 

... 
 
  <Target Name="CopyToPreserve" > 
    <PropertyGroup> 
      <SourceFolder>.\Lender.Slos.Financial\bin\$(Configuration)</SourceFolder> 
    </PropertyGroup> 
 
    <ItemGroup> 
      <ContentExclude Include="$(SourceFolder)\**\*.pdb" /> 
      <ContentExclude Include="$(SourceFolder)\**\*.gif" /> 
      <ContentExclude Include="$(SourceFolder)\**\Webcontrol_*.bmp" /> 
    </ItemGroup> 
 
    <ItemGroup> 
      <ContentFiles Include="$(SourceFolder)\**" 
                    Exclude="@(ContentExclude)" 
                    /> 
    </ItemGroup> 
 
    <Copy SourceFiles="@(ContentFiles)" 
          DestinationFiles=
"@(ContentFiles->'$(PreservePath)\%(RecursiveDir)%(Filename)%(Extension)')" 
          /> 
  </Target> 
 



CHAPTER 9  BUILD AUTOMATION 

197 

  <Target Name="Package"> 
    <ItemGroup> 
      <FilesToZip Include="$(PreservePath)\**\*.*" 
                  Exclude="$(ArtifactsPath)\**\*.zip" 
                  /> 
    </ItemGroup> 
 
    <Zip Files="@(FilesToZip)" 
         WorkingDirectory="$(ArtifactsPath)" 
         ZipFileName="$(ArtifactsPath)\$(ProjectName).$(Configuration).v$(BUILD_NUMBER).zip" 
         ZipLevel="9" 
         /> 
  </Target> 
... 

Automated Deployment 
Manual deployments are tedious, tiresome, and time consuming. Many times steps are missed; other 
times the steps are done improperly. People make mistakes. The bigger problem is that manual 
deployments often become an error-prone part of the project that hurts the reputation of those who 
deploy the application. Many developers feel that they are saddled with the task of deploying the 
application and that breeds apathy and carelessness. Repeatedly performing any set of tedious and 
unwelcome tasks is a recipe for problems. 

Automated deployment offers a way out of the morass of manual deployments. Consider the tasks 
associated with a typical web application deployment: 

• Take the target web site offline 

• Copy files and folders 

• Update the database schema 

• Set read/write permissions on folders 

• Assign the proper configuration settings 

• Bring the site back online 

Many of these steps can be replaced by an automated script using straightforward techniques. You 
and your team can improve the reliability of deployments by automating just a few of these steps. By 
automating the entire deployment you can expect dramatic results in shorter deployment times, fewer 
and less frequent errors, and greater confidence that the deployment is complete and correct. 

Build Once, Deploy Many 
Ideally, the build creates a set of artifacts that can be deployed to a target environment. The purpose of 
the deployment is to make the application available for evaluation and use. For example, if the build-
artifacts are deployed to a test environment, the quality assurance (QA) testers are then able to 
independently verify and validate that specific build. The trick is to be able to deploy the same build-
artifacts to all the environments. The confidence in the build increases as the same build moves from 
integration, to testing, to staging, and into production. Being able to track and confirm the stability, 



CHAPTER 9  BUILD AUTOMATION 

198 

completeness, correctness, and reliability of the same build across target environments is a valuable 
practice. 

 Practice 9-11  Deploy the Same Build to Multiple Target Environments to Confirm Readiness 

The practice of “build once, deploy many” is founded on the idea that the automated deployment is 
loosely coupled to the automated build. The automated deployment script ought to be able to take a 
build number or some other parameters that the script uses to select the proper build artifacts. This idea 
is sometimes referred to as artifact build dependency. Some common artifact dependencies include 

• Latest Successful Build: Used to deploy the latest software. This is often used for 
continuous deployment and stability testing. 

• Latest Tagged Build: Used to deploy the software based on a provisional 
designation. Designating this build is sometimes called tagging or pinning. This is 
useful for QA to select a build for deployment to system test or staging. 

• Specific Build Number: Used to deploy the software based on a fixed designation. 
This is useful for establishing a consistent deployment and redeployment of the 
same build to system test, staging, and production environments. 

To make the “build once, deploy many” strategy work well, the automated deployment script 
should be able to deploy to any of the target environments. Stated another way, the deployment script 
should be written so that it takes in parameters that control its logic and actions so as to deploy properly 
to all target environments. 

An outline of an automated deployment script’s parameters could include 

• Artifact Dependency: A parameter that controls how the script obtains the artifacts 
for the deployment. 

• Target Environment Server: A parameter that controls which server the script 
deploys the artifacts to. 

• Target Database Connection: A parameter that controls which database the script 
configures as the database for the target environment. 

• Target Configuration Settings: A parameter that controls how the deployment 
script establishes the proper configuration settings. 

With these parameters the automated deployment script retrieves the proper artifacts, properly sets 
the Web.config file or other configuration settings, and deploys to the correct server. 

Packaging Tools 
Packaging is often unappreciated until the time comes to hand the responsibility of deployment over to 
the internal IT department, the customer’s IT department, or some other person responsible for 
installing the application. In far too many cases there is a last minute rush to assemble the artifacts and 
write up instructions for others to follow. It would be so much easier to have thought through the final 
delivery beforehand. Today, many customers and IT departments simply will not accept a cobbled-



CHAPTER 9  BUILD AUTOMATION 

199 

together deliverable. It is important to take the time early in the development process to consider how 
the application needs to be packaged. Find out what is preferred and what is acceptable to the consumer 
of the package. Figure out what the development team can reasonably put together. Determine if there is 
a significant gap. Perhaps the customer expects an MSI but the developers are publishing the web 
application from Visual Studio or Team Foundation Server. Asking the right questions and developing 
the appropriate strategy for packaging the deliverables is important. It sets the stage for a smooth rollout 
and delivery, which makes everyone’s life a whole lot easier. 

 Practice 9-12  Define the Packaging Approach That Works for Both the Customer and the Team 

There are many packaging tools that offer benefits for different circumstances. Table 9-3 provides a 
list of packaging options worth considering. At Microsoft, the IIS team and the ASP.NET team worked 
hard to put together the latest Web Deployment Tool (Web Deploy 2.0). Although it is often used within 
Visual Studio to publish a web application directly, with Web Deploy you can create a deployment 
package. The package this tool creates is literally one zip archive file. It can easily be deployed on a 
remote server using the IIS Admin Tool or from the command-line. If you are deploying a web 
application to IIS then you will benefit from all the experience and expertise in Web Deploy 2.0. There 
are several resources in Appendix A that can help you get proficient at making Web Deploy packages. 

Table 9-3. Packaging Options 

Name Description More Information 

MSI 
Packages 

Create a Windows Installer package (MSI) for the 
application. Windows Installer is a base service of the 
operating system that provides a consistent and reliable 
way to customize installations, upgrade applications, and 
resolve installation problems. The Visual Studio Setup 
projects and the Windows Installer XML (WiX) Toolset are 
definitely worth evaluating. As the requirements grow, 
creating MSI packages becomes much more involved, so 
consider commercial products that help make creating MSI 
packages easier. 

msdn.microsoft.com/en-
us/library/ee721500.aspx 

and  

wix.sourceforge.net 

Web Deploy 
2.0 

Create a Web Deploy package, which allows you to package 
all the configuration and content of the Web application 
and database. This tool is for use with IIS Web servers, web 
applications and web sites. The Web Deploy packaging 
process can occur by running the command line from the 
build script. 

www.iis.net/download/web
deploy 

Zip Archive Create a compressed file archive from the build script using 
an extension library. This is a straightforward approach to 
simple application deployment needs. Also, there are many 
free and commercial products to assist in creating file 
archives.  

en.wikipedia.org/wiki/Co
mparison_of_file_archive
rs 

 

http://www.iis.net/download/web


CHAPTER 9  BUILD AUTOMATION 

200 

Deployment Tools 
Packaging and deployment go hand in hand. Often the selected packaging approach implies a 
deployment strategy. For example, using Web Deploy to create a deployment package means you will 
want to use Web Deploy to deploy to the target environment. Perhaps the most important thing to 
consider and work out is how to automate the deployment with a scripting tool. Combine the 
effectiveness of the deployment tool and the build tool in complementary ways to eliminate as many 
manual steps as possible to create an automated, flexible, reliable, and repeatable deployment process. 

 Practice 9-13  Use a Tool That Makes Deployments Automated, Robust, and Reliable 

The deployment options in Table 9-4 complement the packaging options presented in Table 9-3. 
Each of these can be automated with a build tool or through the command line. 

Table 9-4. Deployment Options 

Name Description More Information 

Msiexec.exe This is the command-line tool that installs MSI packages. 
This is a standard Windows method for installing an 
application and its components on a user’s computer or 
Windows server. 

msdn.microsoft.com/en-
us/library/aa367449(v=VS
.85).aspx 

Web Deploy 
2.0 

Web application deployment tool for IIS that has significant 
advantages over directory or file replication approaches. 

www.iis.net/download/web
deploy 

Robocopy The Robust File Copy (Robocopy) tool is a command-line 
directory replication command that supersedes the xcopy 
deployment approach. 

technet.microsoft.com/en
-
us/library/cc733145(WS.1
0).aspx 

Summary 
In this chapter you learned about build tools. More specifically, you learned practices related to using 
build tools to perform common build automation tasks. You also learned about better practices related 
to the logical next steps of packaging and deploying the build. For you, your team and your organization 
it is important to develop proficiency and mastery of build automation in order to reduce-to-practice the 
many tedious and inglorious activities of building, packaging, and deploying the application. 

In the next chapter all the build automation you learned in this chapter is orchestrated through the 
practices of continuous integration. Chapter 10 introduces the continuous integration lifecycle, which 
employs and is underpinned by build automation. In Chapter 11 you will learn about code analysis and 
see examples of how to automate analysis tools, like StyleCop and FxCop, with build automation. In 
addition, build automation provides the means to automate the unit testing frameworks and test 
runners you will learn about in Chapter 12. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.iis.net/download/web


C H A P T E R  10 
 

      
 

201 

Continuous Integration 

The practice of continuous integration (CI) has the ability to transform software development from a set 
of manual processes to a logical series of reproducible, automated processes. At the heart of continuous 
integration is the CI server, which is the fundamental tool and technology that initiates, performs, 
coordinates, and reports on the CI phases. This chapter introduces you to CI server alternatives and 
describes their basic product offerings. 

In this chapter you will learn about the CI lifecycle. This lifecycle is a conceptual model that 
describes the series of development processes that establish an effective, automated progression from 
source code to accepted deliverable. The CI lifecycle consists of the following major processes: 

• Rebuilding: Source code is integrated and compiled into binaries. 

• Unit Testing: Automated testing is performed to check the integrity of the build. 

• Analysis: Code analysis and monitoring is carried out to confirm code quality. 

• Packaging: Build artifacts are assembled and delivered as an installation package.  

• Deployment: The installation package is deployed to a target environment. 

• Stability Testing: Automated testing verifies the stability of the deployment. 

Each of these processes is described in detail with a description of the steps involved within each 
process. Along the way many specific practices for continuous integration are described, summarized in 
Table 10-1. By using these CI practices, you can expect to save time, improve team effectiveness, and 
move the focus toward early detection of problems and prevention. 

Table 10-1. Continuous Integration: Ruthlessly Helpful .NET Practices 

 Continuous Integration Practice 

10-1 Trigger a Rebuild After Every Code Push 

10-2 Start Rebuilding with a Clean Working Folder 

10-3 Organize Build Artifacts into a Single Archive File 

10-4 Run Unit Tests to Confirm That the Latest Build Works as Intended 

10-5 Perform Monitoring Analysis and Report Failure if Violations Occur 



CHAPTER 10  CONTINUOUS INTEGRATION 

202 

 Continuous Integration Practice 

10-6 Generate Complete Analysis Reports for Ongoing Review 

10-7 Package the Components and Content into One Deliverable 

10-8 Create One Script That Deploys to All Target Environments 

10-9 Smoke Test the Deployment to Find Configuration Problems 

10-10 Run Stability Tests to Verify the Deployment Is Ready for QA 

10-11 Generate Reports That Demonstrate Progress and Delivery 

COMMENTARY 

There is sometimes a little bit of confusion and debate regarding the word continuous in continuous 
integration. For developers the important idea is to have the processing happen quickly and in rapid 
succession. This makes sense. Developers need timely feedback on whether the build broke, unit tests 
failed, or code quality standards were violated. A developer’s progress depends on knowing if the latest 
code push is causing an issue. This fast-paced timeline is not appropriate for the QA team, for whom 
testing seeks to verify and validate a stable progression of builds. Each build improves and expands upon 
the capabilities of the last. The testing team tries to avoid builds that have lost functionality. 

Many people in software development have heard the construction metaphor that compares the 
predictability of scope, cost, and schedule of new-home construction to software development. But few 
non-developers understand how the equivalent of a house’s plumbing, for example, could have been 
completed one day and vanished the next. Yet in software development such dramatic changes happen 
intermittently. Developers do not seem to worry because they know that tomorrow all the plumbing will be 
back, that it was not stolen or lost to carelessness, and its disappearance was the unintended 
consequence of some action taken by, say, the master electrician. To the QA lead or the project manager, 
however, this sudden reversal of progress is shocking and troublesome. They rarely expect it and often 
imagine the worse. 

Continuous integration is actually about managing expectations. Developers expect problems and need to 
know as soon as one occurs so that priorities can shift to address the issue. The expectation is that the CI 
server is relentlessly keeping an eye on the build, the unit tests, and the source code quality. Even when all 
developers are careful and thorough, the CI server finds integration problems that are too subtle for any 
one developer to foresee. For the rest of the team the expectations are different. The QA team seeks 
stability and reliability. The QA lead is looking for CI to assure them that deployments are done properly 
and that basic stability is assured. The project manager wants insight into the development process. The 
PM needs to know that progress is not stalled and activities are producing deliverables. 



CHAPTER 10  CONTINUOUS INTEGRATION 

203 

Case Study 
You are the lead software developer working at Lender Inc., a fictional bank that originates student loans 
using their internally-developed Student Loan Origination System (SLOS) software. As the technical 
lead, you are assigned the task of improving the software development processes. Based on the 
retrospectives from past projects, you will bring about changes and improvements that address the pain 
points of previous projects. 

SLOS PROCESS IMPROVEMENT 

In the past, the SLOS development projects have experienced problems. Management and the project team 
hope to avoid these problems on the next project. For the developers, the problems included difficulty 
bringing together and aligning code changes, many failing unit tests, and poor code quality. A project 
might start off well, but the problems gradually worsened. For the QA team, the deployments to the system 
testing environment were erratic and lacked reliability. When the deployment was good, the testers were 
productive, but when the deployment was bad, basic functionality was compromised. The QA team’s 
progress was often delayed and their trust in the developers was often low. The project manager did not 
see smooth progress being made. The unpredictable delivery made it difficult to report status and forecast 
milestones and schedule. 

The code changes that each developer made were not always compatible with the changes made by other 
developers; from time to time, the lead developer had to take down the latest code and deal with these 
incompatibilities. Resolving these integration problems was challenging and frustrating. The lead developer 
often needed to spend time with the various developers sorting out how each change should integrate with 
another. One developer’s changes were causing another developer’s unit tests to fail, but this was ignored. 
A lot of thrashing took place as the interrelated code was aligned. The lead developer worked hard to make 
sure all the unit tests passed and to ensure everything worked as intended. However, it was not until the 
long-delayed code review that the lead developer found that code quality had been suffering. 

The QA team found many problems with each deployment to the system testing environment, including 
recurring configuration issues. Entire configuration sections were missing, connection strings were not 
properly set, and there were incompatible or missing components. Even after the basic configuration 
problems were ironed out and the system testing environment was ready, the testers found additional 
problems. On several occasions critical functionality and important features did not work. Some of the 
system capabilities that had worked now no longer worked. There were deployments that were completely 
unusable. The QA team lost many hours of testing time waiting for a new deployment, and the testing 
delays impacted the project schedule. 

Today, the SLOS project manager is looking for a way to better coordinate the entire project team. The 
developers need to integrate the source code early and often. The lead developer must know when unit 
tests are failing and resolve them quickly, and must monitor the code quality and address problems 
straightaway. The QA team needs to have more control over the deployments to the system test 
environment. Only after the QA lead is confident that a new build is ready to be tested should it be 
deployed to the system test environment. Throughout this entire process the project manager needs to see 
less thrashing and have more visibility into how the teams are progressing. 



CHAPTER 10  CONTINUOUS INTEGRATION 

204 

You are clearly aware that SLOS process improvements are needed and you plan to work with individual 
developers to improve their development practices. It is the systemic problems you plan to address with 
continuous integration. You intend to take the following actions to improve the situation: 

• Set up a CI server. 

• Configure the CI server to monitor the version control system for changes. 

• After each code push, have the CI server get the latest code and rebuild the 
solution. 

• Run all automated tests from the CI server. 

• Have the CI server monitor the quality of the code by running code analysis tools. 

• Perform automated deployments, which are complete, consistent, and correct, to 
the system test environment. 

• Use the CI server’s reporting capabilities to communicate progress and status to 
the entire project team. 

The CI Server 
At the heart of continuous integration is the tool and technology of the continuous integration server. 
The CI server is an application, usually running in the background as a service application, which 
initiates, executes, and reports on all the processes of the continuous integration lifecycle. The CI server 
provides key capabilities such as 

• Integrating with and monitoring the version control system 

• Triggering events, such as on source code commits, on a schedule or in sequence 

• Running build automation and deployment scripts 

• Running tests 

• Performing analysis 

• Providing notification, status messages, and build logs 

• Storing artifacts and related output 

There are many CI servers available. Table 10-2 provides a list of some widely-used CI servers, which 
are worth evaluating. 



CHAPTER 10  CONTINUOUS INTEGRATION 

205 

Table 10-2. Continuous Integration Servers 

Product Terms More Info 

CruiseControl.NET Free, open source ccnet.thoughtworks.com 

Jenkins1 Free, open source jenkins-ci.org 

TeamCity C ommercial, 
Professional Server 
is free 

www.jetbrains.com/teamcity 

Team Foundation 
Server 

Microsoft Visual 
Studio and MSDN 
licensing 

msdn.microsoft.com/en-us/vstudio/ff637362 

 
In the sections that follow, each of these four CI servers is summarized. The goal is to provide you 

with enough information to begin an evaluation of the CI server that is right for your project and 
organization. 

CruiseControl.NET 
CruiseControl.NET is the.NET version of the CruiseControl continuous integration software package. It 
is commonly abbreviated as CCNet. The primary component is the CCNet Server, which is the 
automated integration server. The CCNet Server runs as either a console application or a Windows 
service. In general, running the service is preferable so that the CCNet Server runs in the background 
and requires no user intervention. 

Another significant component of CCNet is the Web Dashboard application, which provides project 
status and reporting information. The Web Dashboard provides build progress, drill-down detail, and 
history on the CCNet projects. It is an effective way to communicate build information to all project 
stakeholders. 

A third component of CCNet is the CCTray utility. This is a client system tray application that 
provides feedback on build status and progress. This utility is especially useful to developers as build 
notifications are received through a tray application instead of by e-mail. It notifies on events such as 
whether the most recent build was successful or failed. 

There are many reasons to choose CCNet. There is a lot of information available in Internet postings 
that provide tutorials and detailed examples. Some other reasons to choose CCNet include 

• Free and open source 

• .NET-based 

• Widely-used and well documented 

• Integration with a wide variety of tools and technologies 

                                                 
1 Jenkins was previously the Hudson CI server. After Oracle’s acquisition of Sun, the source code was 
forked and Oracle continues development under the Hudson name. 

http://www.jetbrains.com/teamcity


CHAPTER 10  CONTINUOUS INTEGRATION 

206 

CCNet does have drawbacks. Perhaps the biggest drawback is that the CCNet Server is controlled 
through XML configuration files. For those familiar with CruiseControl for Java or Ruby this might be an 
advantage because the configuration blocks follow a similar model. There is a lot of documentation on 
the configuration blocks; however, the learning curve can take some time to climb. 

Jenkins 
Jenkins is a Java-based continuous integration server package. It is commonly used for Java projects but 
is suited for .NET projects because Jenkins can work with many common .NET version control systems, 
can run MSBuild scripts, and has a very active plug-in development community; much of what any CI 
server does is not .NET specific. The primary component of Jenkins is the server, which runs within a 
Java servlet container, such as Apache Tomcat. Jenkins is easy to install and use; the fact that it is Java-
based should not represent an impediment to .NET development shops. Jenkins provides an impressive 
browser-hosted project management dashboard. For those familiar with using Jenkins for Java 
development, the advantage is in using a familiar technology. Some of the reasons to evaluate and 
choose Jenkins include 

• Free and open source 

• Widely-used and well documented 

• Integration with a wide variety of tools and technologies 

• Vibrant user community 

TeamCity 
TeamCity is a Java-based continuous integration server package. The TeamCity installation and 
configuration is quick and easy. The fact that it is Java-based should not be an impediment to .NET 
development shops. The TeamCity server is a main component, but the browser-hosted interface serves 
as the primary way to administer TeamCity users, agents, projects, and build configurations. 

The TeamCity browser-hosted dashboard is superb. It provides project status and reporting 
information suitable for a broad range of users and project stakeholders. It provides build progress, drill-
down detail, and history information on the projects and configurations. 

With TeamCity there is a system tray utility to provide feedback on build status and progress. The 
tray utility is useful so build notifications are received in the tray instead of by e-mail. The TC tray 
application notifies on events such as whether the most recent build was successful or failed. 

There are a lot of good reasons to choose TeamCity. The product is very well documented and there 
are a lot of examples and tutorials available. Out on the Internet there are many postings ranging from 
setting up basic CI with TeamCity to advanced topics such as using TeamCity’s built-in NUnit test 
runner. Some other reasons to choose TeamCity include 

• Professional Server is free for up to 20 build configurations. You can run as many 
instances of Professional Edition Server as needed. Larger organizations may 
require the purchase of the Enterprise Server version. 

• Easy to set up, easy to use, and easy to configure 

• Widely-used and well documented 

• Integration with a wide variety of tools and technologies  



CHAPTER 10  CONTINUOUS INTEGRATION 

207 

In this chapter, TeamCity is the CI server used to illustrate the key concepts in the continuous 
integration lifecycle. 

Team Foundation Server 
The primary benefit of Team Foundation Server (TFS) is that it is an integrated CI environment with 
strong Visual Studio integration. It is supported by Microsoft. TFS is integrated with Visual Studio in a 
way that is geared toward developing software within the entire “enterprise” using an Application 
Lifecycle Management approach. This is an integrated-whole solution, not a best-of-breed solution. 
Some of the reasons to choose TFS include: 

• Strong IDE integration with Visual Studio 

• Metrics tracking, check-in policy enforcement, and Windows authentication 

• Widely-used and well documented 

TFS is a significant investment in budget and configuration management resources. Team 
Foundation Server is a good choice when the development team is large, the TFS/Visual Studio 
integration is important, and the Application Lifecycle Management approach is attractive. 

CI Lifecycle 
The continuous integration lifecycle (shown in Figure 10-1) is a model for how the CI server manages 
and moves through the phases. It starts with the latest code push and ends with a report on the stability 
of the deployment. All along the way, each phase provides a report on the actions performed during and 
the results from each phase. Once the CI server has successfully performed the packaging, a new 
deliverable joins the steady stream of deliverables that flows from the lifecycle. As each phase continues 
successfully, it confirms that the source code is sound and that development is progressing. 

 



CHAPTER 10  CONTINUOUS INTEGRATION 

208 

Reports

Trigger

Continuous Integration
Server

Version Control
System

RebuildingLatest
Code Push

Target
Environment

Unit
Testing

Analysis

Packaging

Deployment

Stability
Testing

Deliverables

 
Figure 10-1. The continuous integration lifecycle 

Within TeamCity the CI lifecycle is implemented through project configurations. Figure 10-2 
illustrates the TeamCity project administration interface with all six of these configurations created. 
Each configuration defines how the process is triggered, the steps taken, and how the results are 
handled. When each configuration is run, TeamCity maintains a log of activities and reports either the 
success or failure of the run. 

 



CHAPTER 10  CONTINUOUS INTEGRATION 

209 

 
Figure 10-2. The SLOS project in TeamCity 

Rebuilding 
The first phase in the continuous integration lifecycle is the Rebuilding phase. The aim of this phase is to 
carry out the build automation steps. Figure 10-3 illustrates the Rebuilding phase of the CI lifecycle. The 
goal of this phase is to provide timely feedback to all of the developers about the health of the build. In 
other word, the team is trying to avoid Integration Hell.2 The phase starts with a clean directory, gets all 
the latest source code, and rebuilds the solution from the source code. If, for many possible reasons, the 
build breaks, then the team is notified that there is an integration issue that requires urgent attention. 
Speed is very important. Ideally, the Rebuilding phase on the CI server should have a goal of less than 5 
minutes. Note: For large software development projects the goal of 5 minutes is not realistic. Builds can 
take 30 minutes or more. This is especially true when the Rebuilding phase starts with a clean folder, as 
described in Practice 10-2. These are ideals that actually present a dilemma that is often resolved by a 
compromise between getting timely builds and having “clean” build conditions. Over time, strive to use 
faster CI server hardware and incremental builds to move toward the goal of very fast builds. 

The rebuilding begins with a triggering event; typically, the CI server detects that a source code 
change was pushed to the version control system (VCS). A working directory is created or cleaned; this 
establishes a reproducible and known initial condition. The CI server then gets all the latest source code, 
content, and other input necessary to compile the source code. 

                                                 
2 Ward Cunningham describes Integration Hell in his wiki: http://c2.com/cgi/wiki?IntegrationHell. 

http://c2.com/cgi/wiki?IntegrationHell


CHAPTER 10  CONTINUOUS INTEGRATION 

210 

Reports

Continuous
Integration

Server

Trigger

Version
Control
System

RebuildingLatest
Code Push

Clean

Organize

Get Latest

Rebuild
Failure

Unit
Testing

Artifacts Success

Trigger

Figure 10-3. The Rebuilding phase in the CI lifecycle 

With a clean working folder and the latest code from VCS, all the prerequisites are in place. The CI 
server now runs the build automation script. The build automation script performs a complete rebuild. 
The rebuild is usually the automated method of performing the same build steps to generate the target 
output manually through Visual Studio. After a successful rebuild, the binaries and other output may be 
scattered under various project output directories. The next step copies and organizes these binaries, 
content, and target output into a coherent arrangement of files and folders. The CI server makes this 
output available as build artifacts. 

At any time during the Rebuilding phase, any of the steps might result in a failure. Usually, a build 
failure is the result of a compilation error; however, it could be the result of a configuration or build 
script error. Whatever the reason, the CI server reports the failure and sends out notifications. Since the 
CI server maintains a log of all output from each of the build steps, the build log is the primary way to 
understand why a build failed. 

When the Rebuilding phase results in success, the CI server sends notification of a successful build. 
There are two key results from a successful build.  

• First, the CI server publishes the build artifacts and makes them available as the 
input for many of the subsequent phases.  

• Second, the CI server triggers the next phase in the lifecycle, which is the Unit 
Testing phase. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 10  CONTINUOUS INTEGRATION 

211 

Rebuilding Trigger 
The rebuild ought to be triggered after every code push to the version control system. This provides 
timely feedback to the developer who pushed the change set, and it catches integration problems at the 
earliest point in time. The CI server vigilantly monitors the VCS and initiates the Rebuilding phase 
immediately after code is pushed. 

Practice 10-1  Trigger a Rebuild After Every Code Push 

The choice of the word immediately describes the ideal. In real-world scenarios, use a VCS setting 
delay or a schedule-based trigger to allow a window of opportunity for multistep commit operations. 
Frequent integration is the top priority and the key principle behind this practice. It makes it very clear 
that a code change broke the build. To avoid confusion, the development team must immediately stop 
all other code pushes when the build fails. Fixing the build is the team’s first priority. As long as the build 
is broken, the only code change that should happen is a change that directly relates to fixing the build. 

In order to make sure VCS triggering is effective, the entire Rebuilding phase must run quickly by 
following these guidelines: 

• Use a fast-performing CI server 

• Make sure the rebuild step runs quickly 

• Cut back the artifacts to the minimum and essential 

• Encourage code pushes that balance frequency and substance 

The TeamCity build triggering configuration is illustrated in Figure 10-4. This configuration is set to 
trigger a rebuild after a VCS change is detected. Any CI server ought to support a VCS trigger that uses 
the project’s version control settings to monitor and respond to check-in activity. 

 

Figure 10-4. The TeamCity VCS trigger 

In some large projects there are many developers pushing code changes frequently. In those 
situations it is sometimes argued that making a switch from a VCS-driven build trigger to an infrequent 
schedule-driven trigger is warranted. The thinking is that the CI lifecycle is incessantly driven by the 
frequent code pushes. Similarly, when the build phase takes a long time, a switch to a schedule-driven 
process is sought. It is better to focus the effort on speeding up the build or changing the developer 



CHAPTER 10  CONTINUOUS INTEGRATION 

212 

practices. Avoid dropping the VCS trigger because other triggers postpone the feedback and increase the 
likelihood of integration problems. 

The arrangement for VCS triggering is adjusted depending on the type of build. For very large 
software products the complete, end-to-end build can take a very long time, sometimes hours. Consider 
dividing up the build types based on concepts, such as 

• Development: VCS triggering with an incremental build, not with a clean working 
folder; since build speed is an issue the goal is to provide efficient feedback. 

• Nightly Integration: Schedule triggering with a complete build, starting with a new 
working folder and followed by full stability and integration test suites. 

Clean Working Directory 
The ability to reproduce the build is an essential characteristic of the Rebuilding phase. Given identical 
conditions, each build should be 100% reproducible. The reason this is important is that it eliminates the 
unknown variables and the sources of confusion. It verifies that the build script is able to compile the 
binaries and generate the output using only the source code in VCS. For this reason the CI server needs 
to start with an empty working folder. 

 Practice 10-2  Start Rebuilding with a Clean Working Folder 

A CI server usually offers the option of either creating a new working folder for each build or 
cleaning all the files from the working folder before the build. The advantage of a new working folder is 
that folders from prior builds are available, if the need should arise. In this case, old directories will 
eventually need to be deleted to save disk space. The alternate approach reuses the working folder, but 
the CI server cleans up before the build begins. This second approach assumes that the working folders 
from prior builds are no longer needed, which is often the case; either the build failed or, if it was 
successful, then the artifacts are already saved. 

In some large projects the source control repository is very large or the version control system is 
slow. Either starting with a new working folder or cleaning the working folder adds an unacceptably long 
delay to the build. In this case, perform an incremental build using the existing working folder, since 
build speed is important to provide timely feedback. Another approach adds a “clean up” step within the 
build script to remove all intermediate files and output folders. This “clean up” step is shown later on as 
the first step in Figure 10-6. In general, it is helpful to start with the cleanest conditions possible and 
keep the build times reasonably short. 

Get Latest Source Code 
In the next step of this phase, the CI server creates a local working copy of the files using the VCS 
settings. For TeamCity this is accomplished by configuring a VCS Root for the project, which is 
illustrated in Figure 10-5. Using the VCS settings, the CI server performs a “check-out” of the latest 
revision of the source code. Now the working folder contains the source code from the check-in that 
triggered the Rebuilding phase. 

 



CHAPTER 10  CONTINUOUS INTEGRATION 

213 

 
Figure 10-5. The TeamCity VCS Root 

Rebuild the Solution 
Once the CI server retrieves the latest source code from version control, the next stage is to rebuild the 
entire solution. Since Visual Studio works together with MSBuild, this is easily accomplished using an 
MSBuild script. Most build scripting tools make it easy to rebuild given a Visual Studio solution file name 
as input. The goal is to have the CI server be able to run a script or command-line tool to rebuild the 
necessary Visual Studio project or solution files. 

TeamCity supports more than one build step within a configuration. Figure 10-6 illustrates three 
steps in the Build phase. In this example, the second step performs the solution rebuild. It uses MSBuild 
to run the runner.msbuild script with a target name of Rebuild. 

 

Figure 10-6. The TeamCity build steps 



CHAPTER 10  CONTINUOUS INTEGRATION 

214 

In some large projects it is helpful to have multiple build steps that build the solution by calling 
various scripts or performing various actions. Either the multiple build steps are configured, as shown in 
Figure 10-6, or a primary build script encapsulates all the steps to happen in the proper sequence, 
calling secondary scripts as needed. Whatever the choice, this stage of the Rebuilding phase fully and 
completely rebuilds the entire solution from the bottom up. 

In TeamCity each MSBuild step has a number of configuration options. In Figure 10-7 the MSBuild 
step calling the Rebuild target is illustrated. Each step is configured to call an MSBuild script file, which 
in this case is named runner.msbuild. In TeamCity, the MSBuild configuration supports earlier versions 
of .NET as well as the 32-bit and 64-bit platforms. Two more important configuration settings are the 
targets and the command-line arguments. The targets allow you to specify one or more MSBuild targets 
that allow you to execute multiple targets in one step. Also, the command-line parameters to 
MSBuild.exe can be specified, which gives you full control of MSBuild execution. 

 

Figure 10-7. Defining the MSBuild configuration for a TeamCity build step 

Organize Artifacts 
In general, the artifacts are any files you want to save as the results of running a build configuration. In 
this step, files are copied from the output folders to organize the artifacts into a coherent and consistent 
layout. The goal is to arrange the files in a way that is best suited for the subsequent steps in the CI 
lifecycle. Strive to copy just the minimum files but also include all the essential files needed for any 
subsequent phases. To save space, it is often best to compress everything into one archive file. 



CHAPTER 10  CONTINUOUS INTEGRATION 

215 

Practice 10-3  Organize Build Artifacts into a Single Archive File 

An effective way to accomplish this task is with a build script. The third step shown in Figure 10-6 
performs this task. The OrganizeArtifacts target of the build script copies all the relevant files from the 
build output folders into a folder structure that supports the upcoming Unit Testing, Analysis, and 
Packaging phases. 

Unit Testing 
The next phase in the CI lifecycle is commonly referred to as the Unit Testing phase. The basic steps in 
the Unit Testing phase are shown in Figure 10-8. Customarily, this phase involves running unit tests and 
all automated tests that meet all of the following criteria: 

• Fast running tests, with no single test running longer than 10 seconds 

• Tests focused on checking that the system continues to work as intended 

• Automated tests that can run in isolation on the CI server 

Unit tests, by definition, must meet these criteria. However, other automated integration testing, 
specifically the surface tests (discussed in Chapter 8) are designed to meet all the criteria. The important 
goal is to provide immediate feedback, by reporting a failure if the system is no longer working the way 
the developers had intended it to work. 

The Unit Testing phase begins with a triggering event; usually, the CI server starts this phase right 
after a successful build completes. A working directory is created and the files are copied in from the 
latest successful build’s artifacts. With the files in place the automated testing begins. 

 



CHAPTER 10  CONTINUOUS INTEGRATION 

216 

Reports

Continuous
Integration

Server

Rebuilding

Unit
Testing

Artifacts

Analysis

Success

Trigger

Get
Artifacts

Run Unit
Tests

Run
Surface
Tests

Failure

Configure

Trigger

 
Figure 10-8. The Unit Testing phase in the CI lifecycle 

At any time during the testing, one or more tests might fail. Any failing test results in a failure of the 
current run. The CI server sends out failure notification. The primary way to understand why a test failed 
is to look at the test-results report. When the testing completes without any failed tests, the CI server 
sends notification of a successful run. 

Just like in the Rebuilding phase, speed is very important. The Unit Testing phase on the CI server 
should not take longer than 10 minutes and the ideal is well under 5 minutes. The purpose of this phase 
is to provide timely feedback to developers when the recent code push has created an issue. It is 
important that the developers address the failed tests as their top priority. Invariably, the cause of the 
failed test is found in the code that was just pushed; however, a failed test can have several causes and 
remedies: 

• The code-under-test is not working as intended; fix the code. 

• The test is incorrect or incomplete; fix the test code. 

• The test is not isolated, stable, or otherwise reliable; fix the test code. 

• The test is obsolete; remove the test code. 

The CI server publishes a report of the results from the testing. This report provides important 
measures of progress and visibility into the project. The CI server can then trigger the next phase in the 
lifecycle, which is the Analysis phase. 



CHAPTER 10  CONTINUOUS INTEGRATION 

217 

Testing Trigger 
The Unit Testing phase ought to be triggered to begin right after a successful Rebuilding phase 
completes. This sequencing provides the team with feedback that is correlated between the recent code 
change set and the failing tests. 

The TeamCity build triggering for the Unit Testing phase is illustrated in Figure 10-9. This trigger is 
set to begin this phase as soon as the last build step successfully completes in the Rebuilding phase. The 
CI server ought to support a successful-build trigger, which helps to properly sequence the phases. 

 

Figure 10-9. The TeamCity Finish Build Trigger event 

Get Artifacts 
At the end of the last successful rebuild the artifacts were organized and saved. The Unit Testing phase 
begins by retrieving the artifacts it needs to run the tests. The artifacts files are copied to this 
configuration’s current working directory.  

Run Unit Tests 
With all the necessary artifact files in the proper place the CI server is ready to run the suite of unit tests. 
Most CI servers support the common testing frameworks. In cases where the CI server does not directly 
support the testing framework, the other options include running the tests using a command-line 
runner, which is described in Chapter 12, or with a build script. 

Practice 10-4  Run Unit Tests to Confirm That the Latest Build Works as Intended 

Unit tests are the essence of test-driven development. They are the fundamental way that 
developers know that the system is working as intended. The CI server needs to run all the unit tests and 
report the failure of any unit test. If a unit test fails then the system is not working as the developers had 
intended and all development should stop unit the failing test is resolved. 



CHAPTER 10  CONTINUOUS INTEGRATION 

218 

Configure Surface Tests 
Any automated integration tests that run on the CI server might require a minimal amount of 
configuration. As an example, in order to run the Surface tests described in Chapter 8, the CI server 
needs a change to the configuration file to set the proper database connection string. In this step, the 
required configuration changes are made so that the CI server can properly run the automated 
integration tests. 

Run Surface Tests 
In a manner similar to running the unit tests, the CI server runs the surface tests. This is an optional suite 
of automated integration tests that are very useful in brownfield application development. The tests 
check that an entire integrated subsystem or module continues to work properly. Surface tests are 
important during major redesign, refactoring, or restructuring projects. 

Analysis 
The Analysis phase involves running code analysis to achieve two important purposes. One purpose is to 
monitor the system. The other purpose is to generate reports that are used for later code analysis. The 
subject of Code Analysis is presented in depth in Chapter 11. What is important to know, as it relates to 
the CI lifecycle, is that during this phase the monitoring and report generation is carried out by the CI 
server. 

The Analysis phase begins with a triggering event. A working directory is created and the files are 
copied in from the latest successful build’s artifacts. With the files in place the analysis begins (see Figure 
10-10). 



CHAPTER 10  CONTINUOUS INTEGRATION 

219 

Reports

Continuous
Integration

Server

Unit
Testing

Analysis

Rebuilding

Artifacts

Trigger

Success

Trigger

Get
Artifacts

s

Full
Analysis

Monitor
Failure

Packaging

 
Figure 10-10. The Analysis phase in the CI lifecycle 

In Figure 10-10 the Monitor and Full Analyses are shown as two distinct steps. The monitoring 
analysis is performed with a specific goal in mind; fail the build if any quality standards or other analysis 
thresholds are not met. For example, a build failure might be reported if any of the mandatory FxCop 
rules are violated. The full analysis is performed with the goal of generating reports. The reports should 
be reviewed later as part of the effort to evaluate and improve the code. These two steps are conceptually 
distinct; however, in practice they may occur together or as several separate steps in reverse order.  

If the analysis results in a failure then the CI server sends out notification and the analysis reports 
are used to resolve the failure. When the analysis successfully completes, the CI server can then trigger 
the next phase in the lifecycle, which is the Packaging phase. 

Analysis Trigger 
To this point, the trigger events have focused on putting together a sequence of build events. The 
rebuilding is triggered by a code push and the automated testing is triggered by a successful rebuild. For 
the Analysis phase, the triggering choices depend on the answers to a number of questions: 

• How quickly is the analysis performed? 

• How often are the reports from the analysis reviewed? 

• Are the monitoring analysis and full analysis performed together or separately? 



CHAPTER 10  CONTINUOUS INTEGRATION 

220 

An effective solution is to create two separate analysis configurations. One configuration is focused 
on performing the fastest-running analysis with the goal of providing developers timely feedback on 
things like violations of coding standards, FxCop rules, or code quality metrics. This configuration is 
triggered by the last successful run of unit testing. The second configuration is focused on generating 
complete and thorough analysis reports that take a long time to run. If these full reports are reviewed 
once daily then that helps determine a schedule trigger of running once a day during off-hours. A 
TeamCity schedule trigger event, running daily at 4 AM, is illustrated in Figure 10-11. 

 

Figure 10-11. The TeamCity schedule trigger event 

Monitoring Analysis 
The monitoring analysis is theoretically a separate step in the Analysis phase. The monitoring can come 
before, after, or as a part of full analysis. The idea of monitoring is to perform analysis for the purpose of 
keeping an eye on the system. It is used to verify that established thresholds continue to be met as the 
system is developed and enhanced. Examples of specific monitoring analysis steps would include 

• Running FxCop with an enforced rule set; fail the build if there are violations. 

• Running StyleCop using mandatory coding standards; fail the build if violations 
are reported. 

• Running tests under code coverage; fail the build if the percentage coverage is 
below a lower limit. 

• Running code quality metrics; fail the build if maximum cyclomatic complexity is 
above a defined threshold. 

Within a build script, for example, perform one or more automated analysis steps. Evaluate the 
results and compare them to expected results. If there are violations or the results are outside an 
acceptable range, then the CI server reports a failure. The team uses this notification to take timely and 
appropriate action to keep the system under control. 

Practice 10-5  Perform Monitoring Analysis and Report Failure if Violations Occur 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 10  CONTINUOUS INTEGRATION 

221 

In Chapter 11 the many code analysis tools, technologies, and approaches are discussed in depth. 
Ongoing monitoring with these tools and approaches is performed by the CI server in this step of the 
Analysis phase. 

Full Analysis 
As part of the ongoing effort to understand and improve the software system, a complete set of full 
analysis is performed. The output of this analysis is reviewed from time to time to find opportunities to 
improve the system. These analysis reports help the team notice trends or new circumstances that 
warrant time and attention. 

Practice 10-6  Generate Complete Analysis Reports for Ongoing Review 

Much of this analysis presents important information the team needs to know, but the pressures of 
the project schedule often keep the review from becoming a priority. As is discussed in Chapter 11, the 
full analysis is about problem detection and prevention and ongoing code improvement. For projects 
that value these analysis reports, the CI server provides a way to generate the reports on a recurring 
schedule starting early in the project. 

Packaging 
To this point, the CI lifecycle has followed from code push, to rebuilding, to unit testing and through 
analysis. Assuming a sequence of continuous, successful phases is complete, confidence that the 
artifacts are healthy will be high. This phase assembles the healthy artifacts into one or more installation 
packages and readies them for the Deployment phase. 

For commercial software applications, the Packaging phase can get somewhat involved. There 
might be installation packages for different products, target platforms, databases, and languages. In 
other situations, these artifacts might need to be combined with the latest documentation, release notes, 
or other redistributable packages. On other projects, the packaging is more about removing test 
assemblies and other files, with the goal of creating a pristine subset of the same artifacts. 

The installation packages are the project deliverables. Early in the project these deliverables are 
often called nightly builds and, as the release approaches, they are seen as release candidates. The 
important point is that after the packaging successfully completes, the deliverable is made available to 
QA or other project stakeholders. This step might be as simple as creating a properly-named folder on a 
file server and copying the packages to that folder. In another case, the packages are delivered through 
an elaborate release management system. 

Once the packaging is successfully completed and the result is made available, the CI server reports 
and notifies that a new deliverable is available. The Packaging phase is shown in Figure 10-12. 



CHAPTER 10  CONTINUOUS INTEGRATION 

222 

Reports

Continuous
Integration Server

Packaging

Unit Testing

Rebuilding

Artifacts

Analysis

Package

Trigger

Success

Trigger

Failure

Get Artifacts

Deliver

Deployment

Deliverables

 
Figure 10-12. The Packaging phase in the CI lifecycle 

Packaging Trigger 
The Packaging phase can be trigged by the successful completion of the previous phase. Generally, this 
is not the case. In projects where developers are frequently pushing code changes, a succession of 
triggered events will generate a lot of deliverables. There are many intermediate deliverables that are not 
used and take up space on the server. Also, it is confusing and difficult to sort out which deliverable has 
what functionality and fixes. 

For most projects, the Packaging phase is triggered by a nightly scheduling event. This establishes a 
daily rhythm of deliverables. The nightly deliverable has the functionality and fixes added from the 
previous day’s work. For the QA team and other project stakeholders the nightly delivery occurs at a 
manageable and predictable pace. 

Package Deliverable 
For large software applications, the packaging phase can be somewhat involved. There could be 
installation packages for different product lines, different target platforms, different databases, and 
multiple languages. In other situations, the binary artifacts might need to be combined with the latest 
documentation, release notes, and redistributable software packages. In contrast, for some projects the 
packaging simply removes test assemblies and non-redistributable components, creating a pristine 
subset of the artifacts. 



CHAPTER 10  CONTINUOUS INTEGRATION 

223 

Practice 10-7  Package the Components and Content into One Deliverable 

No matter how simple or complex the gathering and assembling is, the packaging of the deliverable 
takes place during this step. The goal is to package everything into one deliverable file. At this point, it is 
important to explicitly mention build versioning. The CI server ought to have a mechanism that helps 
assign the appropriate version number to the deliverables based on your versioning scheme. Also, for 
each “formal” build, if the source code in the source control system is tagged with that build version 
number it helps make debugging and diagnosing issues a lot more effective. A good versioning scheme 
ties each deliverable back to all the coding changes that comprise and impact the deliverable. 

Some of the most common approaches to package project deliverables include creating a zipped 
archive or building a Microsoft Windows Installer (MSI) file. 

Make Deliverable Available 
All of the individual deliverable files, in their totality, represent the intermediate deliverables of the 
project as it proceeds through the development lifecycle. It is important to keep these intermediate 
deliverables in case it is necessary to go back and install a prior version of the application. It is also 
visible evidence of ongoing progress. 

After the packaging is done, the CI server makes the deliverable available. This step can be as simple 
as creating a named folder on a file server and copying the packages to that folder. Figure 10-13 
illustrates how the deliverables are made available within folders on a shared network resource. The CI 
server runs a build script that creates the proper folder and copies the deliverable file under each folder. 

In another project situation, the packages are delivered through a more elaborate process. For 
example, the CI server might need to update a database, copy files to a website, or interface with a 
release management system. 

 

Figure 10-13. Using directory folders to distribute the packaged deliverables 

Deployment 
The Deployment phase takes the deliverable and automates the deployment to a target environment. 
The target environment might include 



CHAPTER 10  CONTINUOUS INTEGRATION 

224 

• Integration testing 

• System testing 

• User acceptance testing 

• Staging 

• Production 

The Deployment phase is not just one configuration. In fact, there should be a separate 
configuration for each target environment. The steps to deploy to each environment may be the same, 
but the parameters for each configuration are very different. 

This phase is concerned with retrieving the appropriate deliverable and performing all the 
automated deployment steps. Figure 10-14 illustrates the basic steps within the Deployment phase. 

Reports

Continuous
Integration

Server

Deployment

Deliverables

Unit Testing

Analysis

Rebuilding

Packaging

Trigger

Target
Environment

Trigger

Get
Deliverable

Stability Testing

Deploy

 

Figure 10-14. The Deployment phase in the CI lifecycle 

Deployment Trigger 
Triggering a deployment to a target environment varies widely depending on the target environment. 
For the integration environment, the deployment ought to be triggered to begin right after a successful 
Packaging phase completes. In contrast, the deployment to the production environment needs to be 
carefully controlled and should not occur until everyone has signed off on the deployment. How each 
trigger might vary depending on the target environment is presented in Table 10-3. 



CHAPTER 10  CONTINUOUS INTEGRATION 

225 

Table 10-3. Deployment Trigger by Target Environment 

Target Environment Trigger Rationale 

Integration Testing After successful packaging Provide timely feedback 

System Testing Manual trigger by QA lead Limit testing team disruption 

User Acceptance 
Testing 

Manual trigger upon 
authorization 

UAT must perform a complete test cycle 

Staging Manual trigger after 
certification 

Release candidate must be chosen 

Production Controlled release upon 
approval 

End-user expectations and production 
outage must be managed 

 

Get the Deliverable 
In the Packaging phase, the deliverable is made available. The CI server retrieves the deliverable that is 
appropriate for the target environment. For the integration testing environment, the latest deliverable is 
used. For the system testing environment, the QA lead can request a specific deliverable version. 

Deploy to Target Environment 
The next step is the automated deployment to the target environment. This step usually involves 
running an automated deployment script. This script can perform actions such as stopping the web 
server, deleting files, running database scripts, changing configuration settings, and restarting the web 
server. 

For the sake of consistency it is helpful to have one script deploy to all the target environments. This 
goes a long way toward verifying and validating the deployment script. Parameters to the build script are 
used to set target environment–specific variables. 

Practice 10-8  Create One Script that Deploys to All Target Environments 

With TeamCity, each configuration can have its own parameters. This is very useful for deployment 
configurations. As illustrated in Figure 10-15, a deployment script can use the DeploymentServerName 
parameter to target that specific server for the deployment. In this way, multiple configurations are 
created with each targeting a different server for the deployment. 

 



CHAPTER 10  CONTINUOUS INTEGRATION 

226 

 
Figure 10-15. The TeamCity configuration parameter 

Stability Testing 
The CI lifecycle progression started with the code change and built the solution. The subsequent 
processes tested, analyzed, packaged, and deployed the deliverable to the target environment. What is 
established so far is that a new deliverable is deployed and ready for independent verification and 
validation. Before anyone begins expending time and effort evaluating this new release, the CI server 
ought to make sure the deployment is ready and stable. The Stability Testing phase runs automated 
integration tests to find out if the deployment is healthy and all set for further evaluation. 

The Stability Testing phase is focused on two forms of automated integration testing: 

• Smoke Testing: Exercises a small set of minimal, essential functionality to verify 
that the system does not blow up 

• Stability Testing: Performs a broader set of tests of the features and functionality 
that characterize the entire system as well-behaved 

The Stability Testing process is illustrated in Figure 10-16. It begins with a triggering event, usually a 
successful deployment to the target environment. First, the suite of smoke tests is run against the target 
environment. The results from the smoke testing are reported. If the smoke testing is successful, then 
the suite of stability tests is run against the target environment. Again, the results are reported. As with 
any of the prior phases, if the tests fail then a failure of the Stability Testing phase is reported by the CI 
server.  



CHAPTER 10  CONTINUOUS INTEGRATION 

227 

Reports

Continuous
Integration

Server

Stability Testing

Unit Testing

Analysis

Rebuilding

Packaging

Trigger

Deployment

Run Stability
Tests

Run Smoke
Tests

DeliverablesTarget
Environment

 
Figure 10-16. The Stability Testing phase in the CI lifecycle 

The rationale behind the Stability Testing phase is to hold on to and raise the confidence level of the 
team that receives the deployment. For example, the QA team does not want to start system testing a 
deployment that is broken or has severely regressed. System stability is an important factor when QA 
decides to start testing a new release. With continuous integration, the QA team knows that if the system 
is failing the Stability Testing phase then it is senseless to begin system testing that deployment. 

Stability Testing Trigger 
The Stability Testing phase ought to be triggered after a successful Deployment phase completes. By 
running the smoke and stability tests, the CI server verifies that the latest deployment is healthy and 
stable. Even in the largest project, this is important. When the stability tests take a long time to 
completely finish, the Packaging or Deployment phases are best set to a nightly schedule. The goal is to 
trigger this phase and have all the stability tests run successfully against the latest deployment before the 
next workday begins. 

Run Smoke Tests 
There is a reason that there are two different sets of tests. Smoke tests find missing or improper 
configurations, systemic runtime issues, and failure-to-launch errors. The goal is to make sure the 
deployment was successful and the system carries out a set of indispensable functionality. Smoke tests 
reveal problems that are at the foundation of the software and its deployment.  



CHAPTER 10  CONTINUOUS INTEGRATION 

228 

Practice 10-9  Smoke Test the Deployment to Find Configuration Problems 

In the early stages of new software development, before the system is stable, start defining and 
running the smoke tests. Continue to build up the smoke tests to detect problems early and to validate 
that the deployment script is working properly. 

As development proceeds, the smoke tests represent a great opportunity to do multiplatform 
integration testing. For example, in web applications build and run your integration tests using a tool 
like Selenium to cover as many browsers and platforms as are required. The smoke tests should run for 
all “formal” builds including nightly integration, QA testing, and targeted deployments. 

Run Stability Tests 
As the software development team makes progress, the system begins to achieve stability. There is now a 
broader set of features and functionality and the system is getting bigger and more capable. Stability 
testing is the way to evaluate the new deliverable to ensure it has not regressed dramatically. These tests 
make sure that the indispensable features, functionality, and capabilities of the system work as expected 
for this newly deployed deliverable. Knowing that a deliverable is stable is important to the QA team. 

Practice 10-10  Run Stability Tests to Verify the Deployment Is Ready for QA 

The QA team should help guide the stability testing. Sitting down with the QA lead and identifying 
the most important and basic functionality establishes the baseline. As more features and functionality 
are added, the QA team should help create new stability tests.  

Generate Reports 
Each phase in the CI lifecycle generates a report. For the rebuilding, it is a build log. For unit testing and 
analysis, there are specific results reports. For stability testing, a detailed HTML report might list all the 
features and functionality that passed stability testing. 

The project manager and all the project stakeholders benefit from having visibility into the activities 
and progress underway. There is no clearer indication of progress than successful delivery. 

Practice 10-11  Generate Reports That Demonstrate Progress and Delivery 

The CI server ought to provide a lot of valuable reports and general information about the project’s 
progress. To anyone interested in gaining insight into the project, the CI server reports communicate 
that the right things are being done in the right way. 



CHAPTER 10  CONTINUOUS INTEGRATION 

229 

One particularly valuable report lists the commit numbers from the version control system that 
went into a build. This makes root cause analysis easier because builds are tied back to the change sets 
relevant to that build. Another source of reporting is that many CI servers generate reports based on 
information about the builds, such as build times, artifact size, number of passing and failing tests, total 
lines of code, and other code analysis metrics. These reports and metrics build over time to measure 
improvement and productivity for continuous integration and overall development. It is important to 
evaluate this aspect of the CI server or investigate using a tool like Sonar (http://www.sonarsource.org). 

Summary 
In this chapter you learned about the continuous integration server and lifecycle. You saw how the CI 
lifecycle begins with a source code check-in and proceeds through to deployment and stability testing. 

http://www.sonarsource.org


C H A P T E R  11 
 

      

231 

Code Analysis 

This chapter provides an overview of many static and dynamic tools, technologies, and approaches, 
introducing both general technologies and specific tools with an emphasis on improvements they can 
suggest and how they can provide continuous, automated monitoring.  

Software improvements are the result of a three-phase cycle: Analyze, Improve, and Monitor. Figure 
11-1 presents a conceptual model for this cycle. The Analyze phase is about understanding the situation. 
The Improve phase is about taking action based on the conclusions of that analysis. The Monitor phase 
involves the recurring activities that prompt further analysis. This cycle is not a rigid methodology of 
discrete phases but a framework for ongoing software improvement. 

Analyze

Monitor

Metrics,
Results

Improve

Source
Code

Static

Dynamic

 

Figure 11-1. The Analyze, Improve and Monitor phases 

The system is analyzed in two primary ways: static analysis and dynamic analysis. With static 
analysis the system is evaluated without needing to run the program. This is done by inspecting the 
source code, the assemblies, or other components of the system. Dynamic analysis requires the system 
to run while the memory usage, performance timings, executed queries, or other profile of the system is 
captured. Dynamic analysis often takes place by analyzing the data after the run or by comparing two 
previous runs that took place at different times or under different conditions. An effective Analyze phase 
points out areas for investigation and improvement. 

In the Improve phase source code changes suggested either directly or indirectly in the Analysis 
phase are made. Improvements to the architecture, design, or other aspects of the system also happen at 
this point. Tuning, refactoring, and remediation are all implemented within the Improve phase. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11  CODE ANALYSIS 

232 

The Monitor phase may consist of informal or scheduled code reviews or system testing. Monitoring 
can be either objective or highly subjective, but the usual outcome is that analysis takes place. For 
example, if system testing reveals unacceptably slow load times then, as a result, the development team 
initiates performance analysis. Ideally, there ought to be established metrics and expected results with 
deviations from the acceptable limits triggering analysis. The best monitoring involves both manual and 
exploratory review coupled with frequent, structured assessment. The Monitoring phase should use 
components that are continuous and automated. 

The concept of the application lifecycle management (ALM), as presented and discussed in Chapter 
2, covers seven important aspects of software development: requirements, design, coding, testing, 
deployment, maintenance, and project management. These aspects repeat during the stages of any 
iterative and incremental methodology. As an individual developer or team leader, you will find yourself 
playing a role, to varying degrees, in each of these aspects of the lifecycle. In this chapter, tools and 
techniques will be linked to the overall story of ALM by describing which member of the development 
team would use each tool and technique and at which stage in the lifecycle. 

This chapter will introduce and emphasize two specific tools: FxCop and StyleCop. Both of these 
tools are particularly helpful with respect to maintainability, which is an important theme in this book. 
The list of practices covered in this chapter is summarized in Table 11-1. 

Table 11-1. Code Analysis: Ruthlessly Helpful .NET Practices 

 Code Analysis Practice 

11-1 Thoroughly Analyze Assemblies Using the FxCop Application 

11-2 Fail the Build with FxCopCmd for Violations of Required Rules 

11-3 Decompile an Assembly to Analyze, Understand, and Troubleshoot 

11-4 Use StyleCop to Help Comply with Coding Standards 

11-5 Fail the Build with StyleCop for Violations of Required Coding Standards 

11-6 Use a Differencing Tool to Make File and Folder Differences Obvious 

11-7 Find and Address Any Inappropriate Duplication of Code 

11-8 Perform Architecture and Design Analysis; Comparing As-Planned to As-Built Designs 

11-9 Run Tests under Code Coverage 

11-10 Profile the System’s Performance on a Regular Basis 

11-11 Examine Database Queries with a Query Profiler 

11-12 Incorporate a Flexible Logging Solution to Monitor and Diagnose the Application 



CHAPTER 11  CODE ANALYSIS 

233 

COMMENTARY 

Establishing the Analyze, Improve, and Monitor cycle is not easy and requires time and patience. Both 
static and dynamic analysis involves knowledge about many specific tools and approaches. The analysis 
itself demands skill and judgment to separate the important and urgent symptoms from the many 
indicators of minor improvement. Also, the organization must want the analysis performed. Analysis often 
takes a back seat to delivering features and functionality—until an acute pain point threatens a delivery 
date, when there is a sudden interest in profiling, diagnosis, and root-cause analysis.1 One way to address 
this dilemma is to investigate and introduce one analysis technique at a time: slowly establish the 
monitoring of code coverage, metrics and performance numbers; gain experience applying the tools and 
approaches; communicate the implications of a high cyclomatic complexity, an FxCop error, or virtual 
memory fragmentation that you discover through ongoing code analysis. 

Let’s face it: coding style is very personal. Since coding standards are about establishing a coding style 
and writing code that adheres to a style, meetings and discussions that try to establish a coding standard 
can result in a lot of conflict. The heart of that conflict is rooted in differences of opinion, where choices are 
subjective and each has merit and value. Putting together a coding standard document as a project 
deliverable is rarely worth the investment of time and energy; even when a coding standards document is 
established, few developers read and follow it and coding standards rarely get past subjective questions. 

• What coding style is the easiest to read? 

• What coding style is the most straightforward to maintain? 

• What coding style do most developers follow? 

• What coding style is the team currently following? 

Let’s be pragmatic and avoid a whole discussion of what the C# coding standards ought to be. Since 
StyleCop defines a widely-used coding standard that many developers at Microsoft and many C# 
developers who just want a standard are happy to follow, this chapter assumes the StyleCop coding 
standard as a baseline.  

Case Study 
You are a .NET developer at Lender Inc. working on the next generation of the Student Loan Origination 
System (SLOS) software application. 

BACKGROUND 

Lender Inc. has engaged Global Contracting (GC), a contract software development company, in a firm 
fixed-price contract to port the financial module of SLOS from Java to C#; this is called the Financial 
Rewrite project. Lender Inc. has worked with GC before. GC has a reputation for poor performance, but GC 

                                                 
1 Review the metaphor and consequences of “Technical Debt” described in Chapter 2. 



CHAPTER 11  CODE ANALYSIS 

234 

is performing the work because theirs was the only bid that came in under budget. The development team 
and QA are concerned that the quality of the deliverables will be poor. To address these concerns, Lender’s 
management has insisted that GC sign a contract agreeing to meet strict acceptance criteria and code 
quality targets. GC is expected to deliver major functionality every week, with nightly code pushes. The 
source code is built into a single assembly, which is called from within SLOS. When GC pushes source 
code, Lender’s continuous integration (CI) server builds the .NET managed code assembly, 
Lender.Slos.Financial.dll. Both the source code and the assembly are the project’s deliverables. 

The contract specifies functionality, performance, and quality acceptance criteria in sufficient detail to 
satisfy the concerns of QA. The contract specifies that Microsoft’s Minimum and Recommended .NET 
Framework Guidelines must be followed and specifies the StyleCop coding standards as those that GC 
must follow. Since Lender cannot directly supervise the GC developers, the contract allows Lender to 
require GC to rework the deliverables, at no cost to Lender, if they do not meet the criteria. There is a 
catch, however: Lender is barred from using the GC deliverables in production until acceptance is signed 
off and full payment made. 

After 30 days into the 120-day project, QA is on top of the functional quality. All of the Financial Rewrite 
project features delivered to-date are working properly and as expected. However, the Lender developers 
are too busy to conduct code reviews and the quality of the source code is a big unknown. Since GC 
usually hires inexperienced software developers, there is a concern that the GC developers are writing bad 
code. Performance is also a concern. 

The SLOS project manager has made it clear: unless there is a significant problem, management is not 
going to fight with GC to improve quality. QA is not reporting functionality issues. Any delay in GC’s delivery 
is a delay in Lender delivering SLOS. As a result, the PM agrees to only confront GC if an issue relates to 
one of the following: 

• Likely to impact the end-user. 

• A code quality issue has been raised and continues to be a problem. 

• Three new violations per week. 

The technical lead wants to evaluate the GC deliverables from the perspective of code metrics, non-
functional requirements, coding standards, and following the .NET Framework Guidelines. The goal is to 
analyze the source code and the Lender.Slos.Financial.dll assembly to find specific violations to take up 
with the project manager. In addition, the analysis should find any issues likely to impact the end-user. 
Also, the approach needs to work with the CI server to monitor the deliverables; if GC violates any 
previously raised issues the build ought to break. 

 
Your plan is to use static and dynamic analysis tools to assess the situation and find issues to take to 

the project manager. You start this analysis by 

• Using FxCop to enforce the .NET Framework Guidelines 

• Using StyleCop to enforce the coding standards 

• Using Visual Studio Code Metrics to compute code metrics 

• Using Visual Studio to profile performance and memory usage 



CHAPTER 11  CODE ANALYSIS 

235 

Your plan also includes monitoring within the build process, breaking the build if there are any 
violations of already raised issues. 

Static Analysis 
Static analysis looks at the code and the assemblies while they are “at rest.” Static analysis does not 
require the program to run. For source code, static analysis is able to determine how well the code 
follows a set of coding standards. For assemblies, static analysis determines how well the assemblies 
follow accepted rules for .NET managed code. When the code or the assemblies do not meet 
expectations the result is a list of violations that reference the standard or rule that is violated. These 
rules, guidelines, recommendations, and standards come from various sources that may include the 
following: 

• Microsoft’s .NET Framework Design Guidelines 

• C# coding standards 

• Code quality formula 

• System architecture and design documents 

The purpose of static analysis is to answer important questions about how well the software is built. 
These questions may include the following: 

• Is the code easy to read and maintain? 

• Is the complexity of the code under control? 

• Do the assemblies perform well? 

• Is the code dependable and secure? 

• Are best practices and system design objectives being followed? 

• Does the system have the desired structure? 

Static analysis takes either the source code or the assemblies as input for analysis. Based on these 
inputs the tool evaluates one or more of the following aspects: 

• Adherence to library development guidelines 

• Readability, maintainability, and coding standards 

• Code quality metrics 

• As-built design, structure, and dependencies 

MSDN offers the Design Guidelines for Developing Class Libraries for development focused on 
building .NET reusable libraries.2 Frameworks and assemblies intended to reach a broad number of 
.NET developers should follow these guidelines. FxCop is a tool that performs this analysis. 

                                                 
2 The .NET Framework guidelines are presented in Krzysztof Cwalina and Brad Abrams, Framework 
Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries, Second Edition (Upper 
Saddle River, NJ: Addison-Wesley Professional, 2008). 



CHAPTER 11  CODE ANALYSIS 

236 

Coding standards are intended to improve readability, consistency, and maintainability. StyleCop 
defines a widely-used coding standard. StyleCop is a static analysis tool that provides developers an 
effective way to follow the coding standard. It also gives projects a way to customize and report 
violations of the coding standard. 

There are many tools available to calculate code metrics for your .NET code. If you have Visual 
Studio 2010 Ultimate or Premium then you already have the means to calculate code metrics. These 
tools provide a way to monitor code quality as part of the build process. 

Static analysis tools that evaluate the system architecture and design reveal the structure, design, 
and dependencies of the built system. The analysis work involves matching up the system design as it is 
built to the intended design. The individual developer uses static analysis while coding to ensure that the 
development work is consistent with the design objectives. The team leader uses static analysis to review 
and monitor the team’s development work against design objectives. Improvements come by resolving 
the differences and making decisions about whether to conform to the design or change the design to 
reflect a better choice. 

Assembly Analysis 
After the source code is built it is possible to explore and analyze compiled .NET assemblies. The 
processes of assembly inspection, disassembling, and decompiling generally describe the techniques to 
explore and analyze assemblies. It is useful to examine assemblies for the purposes of analysis to 
support the following: 

• Investigate a compiled assembly and use rules to determine if guidelines are 
violated. 

• Inspect an assembly to browse classes, methods, and properties, and decompile to 
equivalent C# code. 

One approach is to disassemble the assembly file by reading the bytes and converting the bytes into 
the Microsoft intermediate language (IL). In effect, this reverses the packaging actions of Ilasm.exe. 
Within the program database (PDB) file are mappings between IL and source code, names of local 
variables, and other source-level debugging information. Even without the PDB, a decompiler can parse 
the IL, reverse-engineering it into statements and blocks, and ultimately translating it into C#, or some 
other higher-level language.  

FxCop 
The Visual Studio Code Analysis tool, available in Ultimate and Premium editions and through Team 
Foundation Server, can reveal potential quality issues in the code.3 There are many rules organized into 
rule sets targeted to specific goals, such as enforcing best practices for maintainable code. This static 
code analysis facility is integrated into these versions of Visual Studio and Team Foundation Server. For 
those who do not use Visual Studio Ultimate or Premium then Microsoft’s FxCop application is 
available. If the build server is not Team Foundation Server then FxCopCmd can run this analysis within 
build and CI processes. Both the Visual Studio Code Analysis tool and FxCop are founded upon a body of 
guidance that is generally referred to as the .NET Framework Guidelines. 

Microsoft developed the.NET Framework Design Guidelines for Developing Class Libraries to help 
develop better .NET software internally. The guidelines were published and the Microsoft tool that 

                                                 
3 Learn more about analyzing code by using Code Analysis at MSDN: http://msdn.microsoft.com/en-
us/library/dd264939.aspx.  

http://msdn.microsoft.com/en-us/library/dd264939.aspx
http://msdn.microsoft.com/en-us/library/dd264939.aspx
http://msdn.microsoft.com/en-us/library/dd264939.aspx


CHAPTER 11  CODE ANALYSIS 

237 

checked compliance to the guidelines, FxCop, was also made available. Initially, the FxCop application 
was a stand-alone tool set. Now, available in Visual Studio 2010 Ultimate and Premium editions under 
the project Code Analysis tab, in the project’s properties. After a .NET managed code assembly is built, 
either Code Analysis or FxCop inspects the assemblies to determine if any of the configured rules are 
violated. 

The latest version of FxCop, both an application and a command-line tool, can be used for analysis 
outside Visual Studio and as part of the automated build processes. The latest version of the FxCop setup 
program is part of the Microsoft Windows SDK for Windows 7 and .NET Framework 4 version 7.1 (see 
the Introduction for details on pulling out the FxCop setup). 

This section is not intended to walk you through FxCop and explain how to use the application; 
there are books and Internet postings with good examples and walkthroughs describing how to use 
FxCop. The focus of this section is on using FxCop as part of a code analysis, improvement, and 
monitoring strategy. For example, FxCopCmd generates a report that can be used to monitor violations 
and fail the build if critical violations occur. 

 Note  If you are not familiar with the FxCop application, take some time to learn more about FxCop. Appendix A 
provides a list of resources for learning and using FxCop. 

For the SLOS project, the plan is to create two FxCop projects. One project is configured to reveal all 
violations based on the rules defined by Microsoft’s Minimum and Recommended .NET Framework 
Guidelines.4 The second targets only the Lender.Slos.Financial.dll assembly developed by GC and uses 
only the rules that have already been raised by the project manager. These raised rules are part of the 
mandatory rules that GC must follow. 

 Practice 11-1  Thoroughly Analyze Assemblies Using the FxCop Application 

The FxCop application provides a way to understand the broad condition of the managed code 
assemblies and various ways to drill into the details of each rule violation. The FxCop desktop 
application allows you to define a project and select the target assemblies to analyze. You can specify the 
rules that ought to be followed, specific to your project. You can run the analysis to reveal and explore 
the violations occurring within the project. You can evaluate the violations and report or suppress the 
violations based on their priority and significance to the project. Project priority and significance are 
important; for some projects, for example, globalization rules may be critical. On the Financial Rewrite 
project they are not. 

FxCop provides both a tool to analyze the software and detailed guidance on where and how to 
improve the source code. It provides the means to monitor the situation with reports and metrics. Many 
CI servers provide the facilities to display FxCop output as html reports. However, there are real 
challenges to using FxCop within the build process. The objective is to fail the build if the critical rules 
are violated. 

                                                 
4 MSDN provides the Microsoft Minimum Recommended Rules Code Analysis Rule Set: 
http://msdn.microsoft.com/en-us/library/dd264893.aspx. 

http://msdn.microsoft.com/en-us/library/dd264893.aspx


CHAPTER 11  CODE ANALYSIS 

238 

 Practice 11-2  Fail the Build with FxCopCmd for Violations of Required Rules 

With brownfield applications it is not realistic to fail the build when any FxCop violation occurs.5 
There are simply too many rules in which the priority and significance vary widely from rule to rule, 
from project to project. However, “mandatory” rules can be established that, if violated, ought to fail the 
build. Even early in a greenfield project, not every FxCop rule should be mandatory; some are simply not 
relevant to that project. MSDN provides guidance on various rule sets, such as basic correctness and 
extended design. It is best to take a wide-reaching set that includes all potentially relevant rules. As the 
project proceeds, specific rules will become voluntary as the priority and significance decrease. You can 
still track violations of the voluntary rules in a separate FxCop project, but only allow mandatory rule 
violations to fail the build. The mandatory rules should include 

• Rules that are critical to the project and focus on important problems 

• Rules where violations have been resolved and recurrence needs to stop 

• Relevant and significant rules that are currently not being violated 

For the SLOS project, the plan is to create an FxCop project that targets only the 
Lender.Slos.Financial.dll, which is developed by GC. The mandatory rules that the project uses are 
those rules that have been raised as an issue. This project starts with the first three rules reported to GC 
by the project manager and slowly grows, adding in new rules week-by-week as the mandatory rules that 
GC must follow are detailed. Once all the rules currently violated are configured in the FxCop project file 
then all the remaining rules in the Microsoft Minimum Recommended Rules Code Analysis Rule Set are 
added. Throughout this time, the FxCop project file is used by the command-line tool to analyze the 
targets and generate the report. 

The real trick comes in failing the build when only the mandatory rules are violated. By design, the 
command-line tool is intended to automate the analysis and reporting performed by FxCop. However, 
FxCop does not evaluate the output; it reports. FxCop cannot interpret the relevance and significance of 
the project’s rules. Thankfully, the primary FxCop output is an XML file, which the build script can 
evaluate and then fail the build if FxCop reports mandatory rule violations. 

For the remainder of this section, let’s walk through and discuss the general approach to failing the 
build when mandatory rules are violated. 

WALKTHROUGH: FAILING THE BUILD FOR FXCOP VIOLATIONS 

When FxCop is opened, the project is defined by selecting the Targets to analyze. For the Financial Rewrite 
project there is only one target assembly, Lender.Slos.Financial.dll. 

1. To begin, launch FxCop and choose Project Add Targets … 

2. Add the Lender.Slos.Financial.dll assembly by browsing to the folder 
containing the assembly. The result is shown in Figure 11-2. 

                                                 
5 Brownfield application development ought to have a “technical debt” reduction plan as described in 
Chapter 2, including arrangements to reduce FxCop violations over time. 



CHAPTER 11  CODE ANALYSIS 

239 

 
Figure 11-2. The FxCop target assembly Lender.Slos.Financial.dll added to the project 

3. To set the project options, select Project  Options ...  

4. In the first tab (General), provide a project name of Lender.Slos.Financial. Within 
the “Save messages” area uncheck the checkbox next to Active. Unchecking this 
option prevents the active violations from being saved to the project file. This is 
shown in Figure 11-3. 



CHAPTER 11  CODE ANALYSIS 

240 

 
Figure 11-3. The General options tab in FxCop Project Options dialog box 

 Note  The second tab on the Project Options dialog is Saving & Compression. No changes are needed on this 
tab. 

5. In the third tab (Spelling & Analysis), change the project options to those shown in 
Figure 11-4. 

w



CHAPTER 11  CODE ANALYSIS 

241 

Figure 11-4. The Spelling & Analysis options tab in FxCop Project Options dialog box 

6. Now that the FxCop project options are set, press the OK button. 

7. Save the FxCop project using the File   Save As ... menu. Save the FxCop project 
file in the C:\Samples\Ch11\1_FxCop\Build\FxCop folder with the filename 
Lender.Slos.Financial.Mandatory.FxCop. 

8. Run the analysis by selecting Project   Analyze from the menu. The results are 
shown in the results pane within the Active tab. 

9. Expand the Lender.Slos.Financial.dll target to reveal the class within the 
assembly. 

10. Within the Active area, scroll down the list of violations to the “Rethrow to 
preserve stack detail” violation near the bottom of the list, which is shown in 
Figure 11-5. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11  CODE ANALYSIS 

242 

 
Figure 11-5. The “Rethrow to preserve stack detail” violation in the Calculator class 

11. Double-click the “Rethrow to preserve stack detail” violation to view the Message 
Details including the violation Level and Source. The violation details are shown in 
Figure 11-6. 



CHAPTER 11  CODE ANALYSIS 

243 

 
Figure 11-6. The Message Details dialog for the “Rethrow to preserve stack detail” violation 

For the Financial Rewrite project let’s select three rules as the “mandatory” rules. These violations have 
been taken up with GC and GC must now follow these rules. The first group of three mandatory rules is 
listed in Table 11-2. 

Table 11-2. Mandatory Rules Selected for the Financial Rewrite Project 

CheckId Level Category Description 

CA1065 Error Design Do not raise exceptions in unexpected locations. 

CA1809 Warning Performance Avoid excessive locals. 

CA2200 Error Usage Rethrow to preserve stack details. 

 

Only these mandatory rules should be selected in the FxCop project’s Rules tab. Start by deselecting all the 
rules. Find the three mandatory rules—rules are sorted alphabetically within a category—and select each 
of the three rules. 

Since only these three rules are selected, they are the only active violations, as shown in Figure 11-7. 



CHAPTER 11  CODE ANALYSIS 

244 

 

 
Figure 11-7. Violations of the mandatory rules 

Save the FxCop project and exit the application. 

This new FxCop project is now narrowly focused on just the three mandatory rules. The build script is now 
able to use FxCopCmd to use this project file to analyze the Lender.Slos.Financial.dll assembly 
against the mandatory rules. 

The next thing to complete is calling FxCopCmd from within the build script. Within the sample code the 
runner.msbuild file has a target named FxCopAnalysis. This target can process the set of preferred and 
mandatory FxCop projects defined in the FxCopAttribute item group. 

<Target Name="FxCopAnalysis" DependsOnTargets="Preconditions" > 
    <Message Text="Processing FxCopXmlReport file '%(FxCopAttribute.ProjectFile)'" /> 
 
    <Exec Condition="Exists('%(FxCopAttribute.ProjectFile)')" 
          Command="&quot;$(FxCopRoot)\FxCopCmd.exe&quot; 
/project:%(FxCopAttribute.ProjectFile) /fo /out:%(FxCopAttribute.XmlOutput)" 

          WorkingDirectory="." /> 
 
</Target> 

Running the FxCopAnalysis target generates one or more XML reports. The build script can use the XML 
output to determine if any mandatory rule set violations exist. 



CHAPTER 11  CODE ANALYSIS 

245 

In the sample runner.msbuild file there is the FxCop task that inspects the XML output file specified in the 
FxCopMandatoryXmlOutput property. This technique combines the use of XPath and the XmlRead task 
from the MSBuild Community task library, which is covered in Chapter 9, to count the violations. Here is a 
snippet of the build script that inspects the mandatory XML output: 

<Target Name="FxCop"  
       DependsOnTargets="FxCopAnalysis" 
       Condition="Exists('$(FxCopMandatoryXmlOutput)')" 
       > 
    <XmlRead ContinueOnError="True" 
             XmlFileName="$(FxCopMandatoryXmlOutput)" 
             XPath="string(count(//Issue[@Level='CriticalError']))" 
             > 
        <Output TaskParameter="Value" 
                PropertyName="FxCopCriticalErrors" 
        /> 
 
    </XmlRead> 
... 
 
    <Error Text="FxCop encountered $(FxCopCriticalErrors) Critical Errors" 
           Condition="$(FxCopCriticalErrors) &gt; 0" 
           /> 
... 
 
/> 

The sample code is under the C:\Samples\Ch11\1_FxCop folder and provides a working example of using 
this approach for the Financial Rewrite project. 

 
By using the FxCop application together with FxCopCmd in the build process the complete Analyze, 

Improve, and Monitor cycle is achieved. Both monitoring goals are achieved: the CI server can report the 
FxCop violations for all relevant rule sets and the build script can fail the build when violations of 
mandatory rules occur. This is a powerful approach for brownfield application development where slow 
and steady improvement and remediation is accomplished by gradually addressing rule violations and 
building up a mandatory rule set. 

Just beyond the scope of this section, it is important to note that FxCop can be extended with 
custom rules.6 For example, a custom rule can enforce design rules, such as no source code from the 
persistence-layer assembly is allowed to directly call any method in a presentation-layer assembly. 
There are quite a few static analysis tools that look for quality- and security-related problems. Since it 
does not follow logic across method calls (intra-procedural analysis), FxCop is one of the simplest of its 
kind. For more powerful tools see Microsoft Code Analysis Tool .NET (CAT.NET), the HP Fortify tools, 
and other static analysis tools that look for quality- and security-related problems across the application. 

                                                 
6 Learn more about writing custom FxCop rules at http://www.binarycoder.net/fxcop/html/index.html. 

http://www.binarycoder.net/fxcop/html/index.html


CHAPTER 11  CODE ANALYSIS 

246 

Decompiler 
The purpose of using a .NET assembly browser and decompiler is to analyze the packaged deliverables. 
There are many reasons to use an assembly as the starting point for investigation, including 

• Debug an assembly without having the source code. 

• Understand an incomplete, unclear, or otherwise inadequately-documented API. 

• Compare changes between different versions of assemblies. 

• Recover lost source code. 

• Determine how well the code obfuscator has disguised the code. 

 Practice 11-3  Decompile an Assembly to Analyze, Understand, and Troubleshoot 

In some situations there may be two versions of an assembly. Perhaps one is exhibiting a defect and 
the other is not. In this case, a decompiler is helpful to compare and contrast the two versions of the 
assembly. This analysis can often lead to understanding the differences that cause the defect in one 
version but not the other. 

For a variety of reasons, on many brownfield enhancement and legacy maintenance projects the 
source code for an assembly is no longer available. An assembly decompiler provides the means to 
reverse-engineer the code that underlies the assembly. Also, if rewriting that assembly is the goal, then 
the assembly’s de facto requirements can be understood by browsing the assembly. 

Decompilers have broad application in many aspects of ALM. A developer can decompile a third-
party assembly that is inadequately documented during coding to properly develop a feature using that 
assembly. To resolve deployment problems, the team leader can use a decompiler to compare different 
versions of assemblies to iron out why the software is having an issue. A developer can use a decompiler 
to recover lost source code in order to write an entirely updated implementation of an important 
module, without having to start from scratch. 

The .NET managed code assemblies represent a significant part of a software system’s deliverables. 
Assembly analysis is an effective way to adopt the Analyze, Improve, and Monitor cycle with respect to 
these important deliverables. Table 11-3 provides a list of decompilers that might be worth evaluating. 

Table 11-3. Tool Choices: .NET Assembly Browsing and Decompiling 

Product Description Terms More Info 

.NET Reflector A widely-used.NET assembly 
browser and decompiler from 
Red Gate Software. It has add-ins 
and years of experience and 
expertise behind it. Note, the Diff 
add-in allows you to compare 
two assemblies. 

Commercial www.reflector.net 

http://www.reflector.net


CHAPTER 11  CODE ANALYSIS 

247 

Product Description Terms More Info 

dotPeek A new .NET assembly browser 
and decompiler from JetBrains. It 
is a free-of-charge tool from the 
makers of ReSharper and other 
popular developer productivity 
tools. 

Free www.jetbrains.com/decomp
iler 

ILSpy A new free and open-source .NET 
assembly browser and 
decompiler from SharpDevelop. 
It is promoted as a free 
alternative to .NET Reflector. 

Free, Open Source wiki.sharpdevelop.net/IL
Spy.ashx 

JustDecompile A new .NET decompiler from 
Telerik. It is a free-of-charge tool 
designed to enable easy .NET 
assembly browsing and 
decompiling. 

Free www.telerik.com/products
/decompiling.aspx 

Source Analysis 
This practice area relates to focusing on source code quality. Not code quality in the sense of how well 
the code meets functional requirements, but in the sense of non-functional quality attributes, such as 
readability, conciseness, and maintainability. Without regard for its “fitness to a purpose,” source 
analysis tries to answer the question: How well is the source code written? There are many subjective 
answers and opinions to this question. There are, however, guiding principles that are widely accepted 
and generally hold true across many software systems. Perhaps it is easier to gain buy-in to source code 
analysis by focusing on the undesirable outcomes and negative characteristics that are the alternative: 

• Inconsistently written code is harder to read and understand. 

• Dense and complex code is difficult to maintain. 

• Inappropriate dependencies violate the design objectives. 

• Copied-and-pasted code is a frequent source of bugs. 

• Spaghetti code is a nightmare for developers to enhance. 

Developers often talk of the importance of reducing technical debt and cleaning up “bad smells” in 
code. Source analysis raises the visibility of potential problems related to unintentionally incurring 
technical debt and preventing “bad smells” from lingering once they surface in source code. 

StyleCop 
There are many tools available that perform automated code review. These tools help you figure out 
where the project’s coding standards are not being followed in source code. For the purposes of this 

http://www.jetbrains.com/decomp
http://www.telerik.com/products


CHAPTER 11  CODE ANALYSIS 

248 

book and the discussion in this section the focus is on only one tool: the Microsoft-developed StyleCop. 
The power of free software and the integration with Visual Studio make StyleCop a pragmatic choice. 

StyleCop is a free source code–analysis tool for C# developers.7 Initially developed by Microsoft, the 
governance and coordination of the StyleCop project was turned over to the .NET community as a 
CodePlex project. StyleCop integrates well into Visual Studio and warns developers when coding 
standards are not followed. If you have the ReSharper productivity tool, StyleCop integrates and 
provides options for code cleanup and feedback while writing code, to further help adhere to the coding 
standard. 

StyleCop defines a widely-used coding standard that many C# developers who just want a standard 
are happy to follow.8 Since the standards enforced by StyleCop are not likely to exactly match your 
team’s style preferences, StyleCop provides an effective way to turn off, change, or customize the coding 
standards within an organization or on a project-by-project basis. 

Coding standards are about establishing a coding style and writing code that adheres to that style. 
The intention of establishing and adhering to coding standards is to make the source code 

• Easier to read 

• Straightforward to maintain 

The coding standards ought to align with the coding style that the source code is currently following 
and that most developers want to follow. However, for many organizations the coding standards vary 
from project to project and from developer to developer. A coding standard document is difficult to 
establish. Even developers with the best of intentions will not strictly follow coding standards. Coding 
habits are hard to break and differences of opinion persist. Any focus on following and enforcing coding 
standards should not come at the cost of lost productivity and delayed delivery of functionality. 

 Practice 11-4  Use StyleCop to Help Comply with Coding Standards 

Some of the rules found in the StyleCop coding standards are minor style preferences, while others 
address a significant readability or maintainability concern. On a scale of 1 to 10, you might rate one 
standard a 2 or 3 while another person would rate it a 9 or 10. In effect, the coding standards can be 
divided into non-mandatory and mandatory categories. Let’s call these non-mandatory coding 
standards the preferred or voluntary coding standards. The voluntary standards are the agreed-to coding 
standards that should be followed, but violations of voluntary coding standards should not break the 
build. By contrast, mandatory coding standards must be followed and violations need to break the build. 

 Practice 11-5  Fail the Build with StyleCop for Violations of Required Coding Standards 

                                                 
7 More information on the StyleCop project is available at http://stylecop.codeplex.com. 
8 “A Brief History of C# Style” can be found at 
http://stylecop.codeplex.com/wikipage?title=A%20Brief%20History%20of%20CSharp%20Style. 

http://stylecop.codeplex.com
http://stylecop.codeplex.com/wikipage?title=A%20Brief%20History%20of%20CSharp%20Style


CHAPTER 11  CODE ANALYSIS 

249 

Using StyleCop to check coding standards presents a dilemma. StyleCop offers the either-or option; 
either all coding standard violations are warnings or all the violations are errors. You want StyleCop to 
issue warnings when voluntary coding standards are not followed and errors when mandatory standards 
are violated. The team’s developers voluntarily heed the warnings to adhere to the non-mandatory 
coding standards. However, when a developer violates a mandatory coding standard then the build 
needs to break. In this section you learn one way to effectively resolve the dilemma.  

When working in brownfield or legacy codebase it is not practical to have StyleCop break the build 
for every violation that exists in the source code, mandatory or non-mandatory. This is also the case in 
the Financial Rewrite project. In the Financial Rewrite project, the goal is to bring a few issues to the 
project manager and let the PM raise the issues with GC. After those few coding standards are raised, 
break the build if those specific coding standards are violated again in the next code push. In effect, the 
only mandatory coding standards are those that have been raised as an issue by the PM. In this way, 
slowly and steadily, specific coding standards are raised and moved from the voluntary category to the 
mandatory category. 

WALKTHROUGH: STYLECOP CUSTOM MSBUILD TASK 

To accomplish this StyleCop is going to be called using a custom MSBuild task. This task is based on the 
code sample provide in the StyleCopSDK help file. 

1. To begin, open the Lender.Slos.Express.sln file found under the 
C:\Samples\Ch11\2_StyleCop folder. 

2. The Lender.Build.StyleCop.Tasks project contains the code for the 
StyleCopAnalysis class, a custom MSBuild task. 

The StyleCopAnalysis class is based on the custom MSBuild task described in the “Creating a Custom 
MSBuild Task for StyleCop” section of the StyleCopSDK.chm file. 

There are three additional properties added. The IgnoreVoluntaryRules property is used to determine if 
all non-mandatory (voluntary) violations should be ignored. The MandatoryRuleIds property holds a list of 
mandatory rule ids that the StyleCopAnalysis task must never ignore. The third property, 
AlwaysIgnoredRuleIds, supports a list of rule ids that are trivial and should always be ignored.  

namespace Lender.Build.StyleCop.Tasks 
{ 
 
... 
 
    public sealed class StyleCopAnalysis : Task 
    { 
 
... 
 
        public bool IgnoreVoluntaryRules { get; set; } 
 
        public string[] MandatoryRuleIds { get; set; } 
 
        public string[] AlwaysIgnoredRuleIds { get; set; } 
 



CHAPTER 11  CODE ANALYSIS 

250 

... 

There is a new method, the IsViolationIgnored method. It is called from within the 
OnViolationEncountered event to determine in any raised violation needs to be ignored. The 
IsViolationIgnored method uses the new AlwaysIgnoredRuleIds and MandatoryRuleIds properties to 
determine if the violation should or should not be ignored. 

... 
 
private void OnViolationEncountered(object sender, ViolationEventArgs e) 
{ 
    if (this.IsViolationIgnored(e)) 
    { 
        return; 
    } 
 
... 
 
} 
 
private bool IsViolationIgnored(ViolationEventArgs e) 
{ 
    if (e == null) throw new ArgumentNullException("e"); 
 
    var checkId = e.Violation.Rule.CheckId; 
 
    var alwaysIgnoredRuleIds = this.AlwaysIgnoredRuleIds ?? new string[0]; 
    var mandatoryRuleIds = this.MandatoryRuleIds ?? new string[0]; 
 
    var ignore = this.IgnoreVoluntaryRules; 
    if (!ignore) 
    { 
        if (alwaysIgnoredRuleIds.Any(c => checkId == c)) 
        { 
            ignore = true; 
        } 
    } 
 
    if (ignore) 
    { 
        // Do not ignore a mandatory rule 
        if (mandatoryRuleIds.Any(c => checkId == c)) 
        { 
            ignore = false; 
        } 
    } 
 
    return ignore; 
} 
 
... 



CHAPTER 11  CODE ANALYSIS 

251 

The result of these additions is that if the StyleCopAnalysis task is called with the proper MSBuild 
properties then only mandatory rule violations cause the build to fail. In the runner.msbuild file, the build 
target with the name StyleCop calls the StyleCopAnalysis task. 

... 

  <!-- Define Constants for StyleCop --> 
  <PropertyGroup> 
    <ProjectFullPath>.\Lender.Slos.Financial</ProjectFullPath> 
    <DefineConstants>DEBUG;TRACE</DefineConstants> 
    <ForceFullAnalysis>True</ForceFullAnalysis> 
    <TreatErrorsAsWarnings>False</TreatErrorsAsWarnings> 
    <CacheResults>False</CacheResults> 
    <OutputFile>$(AnalysisOutputPath)\Lender.Slos.Financial.StyleCop.xml</OutputFile> 
    <MaxViolationCount>0</MaxViolationCount> 
    <IgnoreVoluntaryRules>True</IgnoreVoluntaryRules> 
    <MandatoryRuleIds>SA1507;SA1107</MandatoryRuleIds> 
    <AlwaysIgnoredRuleIds>SA1201</AlwaysIgnoredRuleIds> 
     
  </PropertyGroup> 

  <ItemGroup> 
    <SourceFiles Include="**\*.cs" /> 
     
  </ItemGroup> 

  <Target Name="StyleCop"> 
    <StyleCopAnalysis ProjectFullPath="$(ProjectFullPath)" 
                      SourceFiles="@(SourceFiles)" 
                      ForceFullAnalysis="$(ForceFullAnalysis)" 
                      DefineConstants="$(DefineConstants)" 
                      TreatErrorsAsWarnings="$(TreatErrorsAsWarnings)" 
                      CacheResults="$(CacheResults)" 
                      OutputFile="$(OutputFile)" 
                      MaxViolationCount="$(MaxViolationCount)" 
                      IgnoreVoluntaryRules="$(IgnoreVoluntaryRules)" 
                      MandatoryRuleIds="$(MandatoryRuleIds)" 
                      AlwaysIgnoredRuleIds="$(AlwaysIgnoredRuleIds)" 
                      /> 
     
  </Target> 

... 

Now, when the StyleCop target is called in the build script, the StyleCopAnalysis task ignores the 
voluntary rules and throws errors if a mandatory rule is violated. This breaks the build only when a 
mandatory coding standard is violated. 

 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11  CODE ANALYSIS 

252 

StyleCop is an effective tool for analyzing the C# source code files to determine if coding standards 
are followed. In this section, you learned how a custom MSBuild task is used to break the build when 
mandatory coding standards are violated. Using StyleCop, adherence to coding standards is monitored 
in a continuous and automated way. 

Differencing Tools 
The purpose of differencing tools is to quickly compare two files or folder structures to isolate and 
understand the differences. This is an effective way to analyze a change set, and so nearly every version 
control system provides a way to work with a differencing tool to understand the changes contained in 
the change set. 

Beyond version control, differencing tools have a broader role to play in source code analysis, 
configuration management, and troubleshooting. Some of the many applications of differencing include 

• Performing code reviews 

• Comparing the files and folders between deployment environments 

• Finding differences in decompiled code between assembly versions 

• Troubleshooting configuration differences 

Many problems that are difficult to diagnose and detect are revealed by focusing on the differences. 
Differencing tools quickly and effectively make these differences explicit. A complete and clear 
understanding of differences helps to analyze the situation and point to resolutions or improvements. 

 Practice 11-6  Use a Differencing Tool to Make File and Folder Differences Obvious 

Differencing tools are commonly used in the coding, design, and maintenance aspects of ALM. 
Individual developers and team leaders can difference the source code files to review the code and find 
opportunities to comment on or improve the changes. This is especially important to team leaders 
responsible for overseeing the day-to-day work of many developers. Developers can maintain the 
software better when it is easier to isolate changes and describe the modifications in a change set. 

The important objective is to develop the habit of using a differencing tool to compare and contrast 
two files and sets of files and folders. Develop knowledge about using differencing to efficiently diagnose 
problems. Find a tool that works efficiently for you and master this skill. Table 11-4 provides a list of 
differencing tools that might be worth evaluating. 

Table 11-4. Tool Choices: Differencing 

Product Description Terms More Info 

Beyond 
Compare 

A feature-rich and modestly-priced 
commercial file and folder 
comparison tool by Scooter Software. 
It offers more than differencing, such 
as synchronize folders and FTP. 

Commercial www.scootersoftware.com 

http://www.scootersoftware.com


CHAPTER 11  CODE ANALYSIS 

253 

Product Description Terms More Info 

C# Smart 
Differencer 

A language-aware and relatively 
expensive differencing tool by 
Semantic Designs. It is a differencing 
tool that understands the C# 
language syntax. It uses a compiler 
approach, rather than a string 
matching approach, to minimize 
false positives. 

Commercial www.semanticdesigns.com 

KDiff3 An effective free and open-source 
differencing tool. It is widely-used as 
a merge tool for version control. 

Free, Open 
Source 

kdiff3.sourceforge.net 

WinMerge An effective free and open-source 
differencing tool. It is widely-used as 
a merge tool for version control. 

Free, Open 
Source 

winmerge.org 

Duplicate Code Finders 
The purpose of a duplicate finder is to find duplicate code. The challenge is to separate the coincidental 
and unimportant duplication from those candidates for refactoring or remediation. For example, most 
of the C# class files in a project might have the same dozen using statements. This duplication is fine, but 
the tool might highlight it as duplicate code. In contrast, every class might implement the same one-line 
method that validates a social security number, which is not reported because a duplication threshold is 
not met. The point is that finding duplicate code involves both an automated tool to reveal potential 
duplication and broad code review. Good judgment is needed to improve duplicate code.  

 Practice 11-7  Find and Address Any Inappropriate Duplication of Code 

Duplicate finders are especially helpful for the design and maintenance aspects of ALM. Team 
leaders can examine the source code files across the software system looking for duplication. Finding 
duplicates provides opportunities to assign classes a single responsibility by removing cross-cutting or 
redundant functionality. Similarly, during maintenance the duplicate finders can be used to focus the 
team leader on finding technical debt that ought to be addressed as part of a maintenance cycle. 

Use a duplicate code finder to analyze the source code. Review the output and draw conclusions 
about inappropriate reuse. Monitor the code base and vigilantly watch for inappropriate duplication of 
code. Table 11-5 provides a list of duplicate code finders that might be worth evaluating. 

http://www.semanticdesigns.com


CHAPTER 11  CODE ANALYSIS 

254 

Table 11-5. Tool Choices: Duplicate Code Finders 

Product Description Terms More Info 

CloneDR A language-aware and relatively 
expensive duplicate code finder by 
Semantic Designs. It is a duplicate 
code finder tool that understands the 
C# language syntax. It uses a 
compiler approach, rather than a 
string matching approach, to 
minimize false positives. 

Commercial www.semanticdesigns.com/
Products/Clone 

Simian A lightweight, command-line 
duplicate code finder that is 
moderately-priced, available from 
Simon Harris. Configured as an 
External Tool, Simian can examine 
the whole solution from within Visual 
Studio. 

Commercial www.harukizaemon.com/sim
ian 

SolidSDD A feature-rich and higher-priced 
duplicate code finder by SolidSource. 
It offers both a rich user interface and 
a command-line facility for the build 
process. 

Commercial www.solidsourceit.com/pr
oducts/SolidSDD-code-
duplication-cloning-
analysis.html 

TeamCity 
Duplicates 
Finder (.NET) 

Available as a duplicate code finder 
build configuration within JetBrains’ 
TeamCity CI server. 

Commercial confluence.jetbrains.net
/display/TCD65/Duplicate
s+Finder+%28.NET%29 

 Caution  Overzealous efforts to eliminate duplication can lead to coincidental and improper reuse. On one 
project, a loan application, which has a lot in common with an approved loan, was handled as a “virtual loan” with 
horrible results. Eliminating code duplication by creating coincidental reuse tends to make the domain model 
abstract, ill-defined, and hard to understand. 

Manual Code Reviews 
To this point, the discussion of static code analysis has focused on tools and automated techniques. It is 
important not to overlook or underestimate the power of manual code reviews. The manual code review 
engages the individual developer and team leader in ways that bring judgment, experience, and 
discernment to uncover issues and improve design. 

http://www.semanticdesigns.com/
http://www.harukizaemon.com/sim
http://www.solidsourceit.com/pr


CHAPTER 11  CODE ANALYSIS 

255 

An effective manual code review focuses on all the areas of code analysis that the automated tools 
and techniques are weak at covering. This analysis should spotlight how the source code does or does 
not meet the design. The discussion is a transfer of knowledge from the more experienced to the less 
experienced developers. The experience, expertise, and judgment informs improvements to the coding 
in ways that go beyond the ordinary and routine analysis, such as following the coding standards, and 
toward improving coding technique and better design patterns. The manual code review is a 
communication vehicle that opens up a healthy dialog on the chosen conventions and why adherence is 
important. The best techniques associated with manual code analysis bring learning and education to 
the team.  

Architecture and Design 
The architecture of a software system includes the intended static design of the system. The goals of 
developing a system’s architecture and design often focus on avoiding improper dependency 
relationships, managing complexity, and following best practices. However, over time, differences arise 
between how the software is built and how it was intended to be built. It is important to establish the 
differences and resolve them by making decisions about whether the software ought to conform to the 
design or the design ought to change because of an explicit choice. 

Static analysis tools that evaluate the system architecture and design reveal the structure, design, 
and dependencies of the built system. The analysis work involves matching up these results to the 
design principles and rules that had been defined for the software. The static design and processes of the 
software system are described by the Unified Modeling Language (UML) diagrams shown in Table 11-6. 

Table 11-6. The UML Static Design Diagrams 

UML Diagram Description 

Class Shows the classes and interfaces and the relationships between these classes and 
interfaces 

Component Depicts the static structure, with respect to how various modules couple to form the 
components that comprise the software 

Deployment Represents the physical deployment of assemblies, executables, and other essential 
parts, such as configuration and resource files 

Use Case A behavior diagram that provides a graphical overview of the functionality provided 
by the software 

Object Illustrates a snapshot of the static structure of the software at a specific point in time 

 
Both Use Case and Object diagrams are used to develop, illustrate, and define system requirements 

and detailed design. The Class, Component, and Deployment diagrams depict the static design of the 
classes, modules, components, tiers, and assemblies of the system. These diagrams often suggest design 
rules and the preferred dependency relationships that some static analysis tools can enforce. Also, when 
these diagrams are not available, then a static analysis tool can be used to evaluate the system by 
developing diagrams that depict the system’s static design as-is. These design-oriented analysis tools are 
rarely cheap, but they have powerful application for any large-scale system development. 



CHAPTER 11  CODE ANALYSIS 

256 

 Practice 11-8  Perform Architecture and Design Analysis; Comparing As-Planned to As-Built Designs 

Static analysis tools that specialize in architecture and design can evaluate the software as it is and 
develop diagrams that depict the implied static design. These static analysis tools provide useful 
information, such as listed in Table 11-7. 

Table 11-7. Static Analysis of Architecture and Design 

Information Description 

Code Quality 
Metrics 

Measures of design quality, such as complexity, coupling, maintainability, cohesion, 
and instability 

Dependency 
Graph 

Diagrams that show how one module depends upon another module and the 
relationships between modules 

Treemaps Diagrams that display a specific measure as a hierarchy of nested rectangles, with the 
rectangles inside showing the constituent measures 

 
Most static analysis tools that specialize in architecture and design are commercial products. Much 

of the output from these tools requires experience and expertise to interpret. There are gray areas that 
require you to discern and judge the appropriate choice of action. 

The architecture and design tools and techniques have great application as part of the coding, 
design, and maintenance aspect of ALM. The technical leader uses these tools and techniques primarily 
to evaluate and improve the system’s overall design and to target key areas for improvement. The team 
leader can use these tools to work with the developers, identifying technical debt and targeting 
maintenance development. Individual developers can use code quality metrics to monitor and correct 
the code they are writing while implementing features and functionality. 

Table 11-8 provides a list of design analysis tools worth evaluating. These are relatively expensive 
tools that are not intended to be used by all members of the development team. The developers involved 
in high-level design and code quality analysis ought to budget for and investigate all the available 
options. 



CHAPTER 11  CODE ANALYSIS 

257 

Table 11-8. Tool Choices: Architecture and Design 

Product Description Terms More Info 

Lattix for 
.NET 

An architecture and design analysis 
tool that includes an easy-to-
understand dependency structure 
matrix (DSM) view. Licensing and 
pricing available through Lattix’s 
website. 

Commercial www.lattix.com 

NDepend A widely-used and relatively well-
priced architecture and design 
analysis tool. It has broad application 
in understanding and improved 
architecture and in enforcing design 
rules. 

Commercial www.ndepend.com 

Structure 101 A well-regarded and relatively well-
priced architecture and design 
analysis tool. It uses cells to clearly 
present and communicate system 
architecture. 

Commercial www.structure101.com 

Visual Studio 
2010 Ultimate 

The top-of-the-line Visual Studio 
version includes architecture and 
design analysis tools as well as UML 
modeling, layering, dependency 
matrix, and code metrics tools. 

Commercial msdn.microsoft.com/en-
us/library/dd409365.aspx 

 

Code Metrics 
There are many tools available to calculate code metrics for your .NET code. If you have Visual Studio 
2010 Ultimate or Premium then you already have the means to calculate code metrics. Many of the 
architecture and design analysis tools include some ability to calculate code metrics as well. 

Although there are many specific metrics, clear-cut design decisions can be made based on the 
information from a few key indicators. 

In the Financial Rewrite project, you decide that a maximum cyclomatic complexity (CC-max) 
measure under 15 is preferred, if the code has a CC-max under 30 it requires attention but is acceptable, 
but any code with a CC-max over 30 requires urgent review. Visual Studio offers you the ability to the 
review of software with regard to CC-max and provides a way to perform this static analysis. 

Quality Assurance Metrics 
The notion of adopting practices that add to overall improvement is discussed in Chapter 1. The idea is 
that new practices in one area bring changes for the better to other areas of development. Tracking and 
analyzing quality assurance (QA) metrics is an excellent example of a practice that brings overall 

http://www.lattix.com
http://www.ndepend.com
http://www.structure101.com


CHAPTER 11  CODE ANALYSIS 

258 

improvement. For example, the number of issues opened by QA testers or by customers for a certain 
module reveals important information about that module. More often than not, if a module is 
responsible for a disproportionate number of defects then that module is an error-prone module.9 
Identification of error-prone modules provides developers with the information needed to prompt a 
code review or module redesign. 

To make QA metrics as powerful as possible, the defect tracking system should tie together as many 
aspects of application lifecycle management as possible. Specifically, every defect should relate to the 
requirements, design, coding, and deployment. During maintenance the QA metrics help developers 
and team leaders target sources of technical debt. The defect tracking system needs to include fields that 
track one or more requirements related to the defect. The defect ought to capture the logical and 
physical parts of the system related to the defect, such as screens or modules. The version control system 
needs to integrate with the defect tracking system to allow developers to connect a source code change 
set to a defect. The result is that the practice of analyzing defect tracking reports can improve overall 
development. Here are a few defect tracking reports that are particularly helpful: 

• Defects per requirement: High values for this metric often imply an overly complex 
or misunderstood requirement. 

• Defects per module: High values for this metric often imply an inadequate design, 
missed requirements, too little unit testing, or careless development. 

• Defects per source file: High values for this metric often imply an overly complex 
class, a class with too many responsibilities, or a good candidate for refactoring 
and redesign. 

• Defects per deployment: High values for a particular deployment or for 
deployments to a specific target environment provide important evidence of 
configuration, scalability, and performance issues. 

Dynamic Analysis 
Dynamic analysis involves running the program and carrying out usage scenarios, automated tests, and 
creating other interesting conditions. The purpose is to collect information about performance, memory 
usage, test coverage, or internal program state while the application is running. For example, code 
coverage could focus on your interest in understanding how much of the code-under-test is visited while 
all the tests are running. Some of the many questions that dynamic analysis attempts to answer could 
include: 

• What statements does the program spend the most time executing? 

• What is the memory usage and what are the opportunities for optimizations? 

• What code are my unit tests not testing? 

• What is the application state just before an exception is thrown? 

• What are the queries the system is sending to the database? 

Dynamic analysis gives insight into what the system is doing as it runs and interacts with other 
systems, such as the database. Dynamic analysis is also tied into the Microsoft Security Development 

                                                 
9 Hard data on the cost of error-prone modules is provided in Steve McConnell, Rapid Development 
(Redmond, WA: Microsoft Press, 1996). 



CHAPTER 11  CODE ANALYSIS 

259 

Lifecycle Process Tools. These are testing tools designed to help detect flaws that may expose security 
vulnerabilities. Just beyond the scope of this section, these verification tools use approaches like input 
fuzzing, validation, and attack surface analysis to uncover potential problems.10 

Code Coverage 
Code coverage tools measure how completely a program runs as it is running. In common practice, 
automated tests are what exercise the program so that the code coverage tool can perform its 
measurements. 

In Chapter 8 the subject of automated testing is presented from the perspective of writing effective 
tests. The tests are written to check the intention of the code. However, the question remains: what code 
is not covered by tests? This question is broadly answered with a test coverage number, which indicates 
the percentage of code that is tested when the tests are run. The principle is that a test coverage tool runs 
the test suite and monitors the code-under-test. The test coverage tool tracks each symbol within the 
code-under-test and tracks these symbols as they are executed while the code is running. A symbol can 
be thought of as any point in the code that is a valid breakpoint for the debugger. The percentage of 
symbols covered is analyzed and calculated. Various code coverage measures are listed in Table 11-9.  

Table 11-9. Measures of Code Coverage  

Coverage Description 

Class If the program-running-under-analysis (program) executes code within a class, then 
the coverage tool counts that class as visited. The coverage tool totals each visited 
class and computes a percentage of all the classes in the code that were visited during 
the run. 

Method Every time the program executes a method, the coverage tool counts that visit. The 
coverage tool computes a percentage of the methods that were visited during the run. 

File This is the percentage of source files with code that contains code executed during 
the run. 

Statement If the program executes a statement, then the visit is counted. A percentage is 
calculated representing the percentage of statements visited during the run. 

Symbol Every time the program executes a symbol in the code, the coverage tool counts that 
visit toward the percentage of the total symbols executed. 

Branch A branch is any logic-branch in the code; for example, one if statement represents 
the branching logic for a code block. Every time the test code executes code within a 
branch, it counts that visit toward the percentage of total branches executed. 

 
 

                                                 
10 To read more about the Microsoft Security Development Lifecycle Process Tools see 
http://www.microsoft.com/security/sdl/adopt/tools.aspx. 

http://www.microsoft.com/security/sdl/adopt/tools.aspx


CHAPTER 11  CODE ANALYSIS 

260 

 Practice 11-9  Run Tests under Code Coverage 

Code coverage tools are used as part of the coding, design, testing, and maintenance aspects of 
ALM. These tools provide the individual developer valuable feedback when writing automated tests. 
With code coverage, the developer finds the uncovered branches, exception scenarios, and corner-cases. 
The team leader uses these tools to gauge progress against code coverage objectives. When correctness 
is important to a critical module, the team leader can monitor and insist that code coverage reach as 
close to 100% as is practicable. Similarly, improving code coverage is a measurable maintenance goal to 
target as part of a reduction in technical debt. 

Table 11-10 provides a list of code coverage tools worth evaluating. Although there are not too many 
choices available today, more and more new CI and developer productivity tools are emphasizing code 
coverage. Take the time to research and evaluate all your options. 

Table 11-10. Tool Choices: Code Coverage 

Product Description Terms More Info 

dotCover A new and moderately priced code 
coverage tool by JetBrains. Integrates 
well into Visual Studio and works 
with the ReSharper test runner. A 
command-line utility is available and 
dotCover is built into the TeamCity CI 
server. 

Commercial www.jetbrains.com/dotcov
er 

NCover A widely-used feature-rich code 
coverage and reporting tool. It is 
relatively high-priced, but is well-
regarded, very established and 
capable. It is capable of handling 
large and challenging code coverage 
situations. 

Commercial www.ndepend.com 

OpenCover A free and open source code coverage 
tool for .NET. It is a command-line 
utility that performs statement-
coverage analysis and generates XML 
output. There is a report generator 
tool. 

Free, Open 
Source 

github.com/sawilde/openc
over/wiki 

VS 2010 
Premium and 
Ultimate 

Versions of Visual Studio that provide 
support for Visual Studio Test 
projects to run under code coverage. 
Limited information about using VS 
code coverage outside of the 
Microsoft testing framework. 

Commercial msdn.microsoft.com/en-
us/library/dd409365.aspx 

http://www.jetbrains.com/dotcov
http://www.ndepend.com


CHAPTER 11  CODE ANALYSIS 

261 

Performance Profiling 
The purpose of performance profiling is to understand the performance characteristics of the software 
while it is running. Often the performance profiling is motivated by a performance problem; for 
example, during system testing when a page is taking too long to load. Other indicators include errors 
and system failures. With a sense of urgency the performance profiler is used to diagnose and debug the 
problem. However, a lot of time is lost learning how to use the profiler and interpret the results. 

The pressure of performance profiling in a crisis situation is an all too common event. Performance 
profiling can and should be a part of ongoing monitoring activities during development. The Analyze 
phase of the cycle ought to include running the performance profiler while the system is run under 
scenarios that range from normal to heavy usage. This dynamic analysis is likely to suggest 
improvements that prevent problems. As improvements are made, performance monitoring helps 
detect new issues that prompt further analysis. 

 Practice 11-10  Profile the System’s Performance on a Regular Basis 

There are two essential ways that performance is profiled: 

• Sampling: At specified intervals the profiler looks at the top of the program’s call 
stack and determines the active method. The profiler tracks each method that is 
active and counts the number of times it is active. 

• Instrumentation: A special build of the software contains statements that help 
collect timing information at the start and finish of a method. The profiler tracks 
how long each method takes to execute. 

Sampling does not require a special build of the application but is less precise. Instrumentation 
offers more information; however, an instrumented build is needed to provide the detail. Visual Studio 
Ultimate and Premium versions include these performance profiling tools, which allow you to perform 
early and frequent performance analysis. If you have one of these versions of Visual Studio, you can 
investigate your software’s performance today. The sample code for this chapter includes the 
PeopleTrax project in the C:\Samples\Ch11\4_Performance folder. This is a sample application used in 
MSDN documentation and walkthroughs of the Visual Studio Team System 2010 Profiling Tools. Take 
some time to investigate the MSDN Walkthrough and other tutorials on profiling applications with 
Visual Studio. 

Profiling techniques are often used as part of the design, testing, and maintenance aspects of ALM. 
When requirements and expectations are clearly not being met, individual developers ought to profile 
those aspects of the system as part of coding. Technical leaders use profiling tools and techniques to 
evaluate the entire system’s performance to ensure the architecture is meeting objectives. Individual 
developers use profiling tools and techniques to properly resolve performance issues found during 
testing. Together the team leader and developers use profiling to target performance problems that can 
be addressed during maintenance.  

Like performance profiling, memory profiling is often motivated and initiated after symptoms point 
to a memory problem. Understanding and optimizing an application’s memory resource usage can 
prevent serious problems from occurring in the first place. An overview of the memory used by the 
application and regular monitoring are able to detect memory difficulties before they are found during 
system testing. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11  CODE ANALYSIS 

262 

Query Profiling 
Database tuning is too often done as a reaction to poor query performance. When a performance 
problem is likely rooted in querying the database, a profiler can help you to understand and diagnose 
the problem. Some of the symptoms that a query profiler helps to reveal include 

• Repeatedly querying the same table 

• Long-running or inefficient queries 

• Queries generated by the LINQ provider 

• The lack of appropriate indexes 

• Indexes not being used 

The Analyze phase reveals symptoms of problems with querying the database. Since the symptoms 
are revealed by the analysis, current or potential problems can be diagnosed. Improvements, such as 
caching or indexes, are prescribed to increase efficiency. Ongoing and regular monitoring prompts 
further analysis to address any new symptoms that arise. 

 Practice 11-11  Examine Database Queries with a Query Profiler 

Table 11-11 provides a list of query profilers. One of them is probably relevant to the project you are 
working on today. There are certainly other query profiling tools worth evaluating; you are encouraged 
to investigate all options. 

Table 11-11. Tool Choices: Query Profiling 

Product Description Terms More Info 

Entity 
Framework 
Profiler 

A query profiler that examines the 
interaction between the system and 
the database. 

Commercial efprof.com 

LINQPad This is a LINQ evaluation tool that 
helps to understand and develop 
LINQ queries. The LINQPad Pro and 
Premium versions require the 
purchase of a license. 

Free www.linqpad.net 

NHibernate 
Profiler 

A query profiler that examines the 
interaction between the system and 
the database. 

Commercial nhprof.com 

SQL Server 
Profiler 

A widely-used, feature-rich query 
profiling tool that is part of the 
Microsoft SQL Server Performance 
Tools. 

Microsoft SQL 
Performance 
Tools 

msdn.microsoft.com/en-
us/library/ms181091.aspx 

http://www.linqpad.net


CHAPTER 11  CODE ANALYSIS 

263 

Logging 
Logging is a very powerful way to troubleshoot difficult problems. Unfortunately, many software 
applications are built to only include error or exception logging. One of the goals of the logging approach 
ought to include support for dynamic analysis by providing the ability to capture activity and internal 
system state. In this way, logging is a form of instrumentation. 

Good logging solutions are neither heavy nor intrusive. The logging configuration needs to be 
flexible enough so that error and exception logging is configured under normal situations, but if the 
need arises then with a configuration change the logging behavior changes to write more detailed 
information into the log. Here are some specific rules to follow: 

• Do not make logging build configuration–dependent. That is, both Debug and 
Release configurations should have the logging facility so that production systems 
can perform logging. 

• Always allow the logging level to be set or overridden through configuration. 

• Carefully consider the logging level every time a logging method is called. Since 
logging has performance implications, avoid unwarranted logging with critical, 
error, and warning levels. 

 Practice 11-12  Incorporate a Flexible Logging Solution to Monitor and Diagnose the Application 

Logging tools have broad application across many aspects of ALM, including coding, testing, 
deployment, and maintenance. The individual developer uses logging while coding and debugging 
features and functionality to dynamically watch and understand the state of the system. During QA 
testing the developers are provided important problem-solving information from the logs. Otherwise, 
even if you find problems, they will be very hard to reproduce and fix. During smoke, stability, and 
performance testing this information is very useful. After deployment, the developers use the 
information in the logs to pinpoint, diagnose, reproduce, and resolve issues that are often only seen in 
the deployed system. 

There are a number of logging solutions available for .NET applications. However, there is a 
portable logging abstraction project, called Common.Logging. It allows you to perform logging to a well-
defined abstraction layer and then select a specific logging implementation at runtime. The decision on 
what logging library to use is deferred until deployment through the use of configuration and 
Common.Logging plugins. These plugins proved support for various logging facilities, such as 

• System.Console 

• System.Diagnostics.Trace 

• Log4Net 

• NLog 

• Enterprise Library Logging 

More information on Common.Logging is available at http://netcommon.sourceforge.net. The 
reference documentation is available online at http://netcommon.sourceforge.net/documentation.html. 

http://netcommon.sourceforge.net
http://netcommon.sourceforge.net/documentation.html


CHAPTER 11  CODE ANALYSIS 

264 

Somewhat related, the software system ought to incorporate a solid framework for defect reporting 
by QA testers and by customers. An effective logging solution provides a mechanism so that the defect 
reporting includes data such as the full stack trace of the exception and the list of loaded modules, 
including their version numbers, when the application crashed.  

 

Summary 
In this chapter you learned about the Analyze, Improve, and Monitor cycle of activities that form a 
conceptual model for software improvement. Also covered were the two broad areas of code analysis, 
static analysis and dynamic analysis. In the static analysis section you learned how this approach looks 
at the source code and assemblies without running the program. In the dynamic analysis section you 
learned how sampling and instrumentation allow the tool to capture information about the program 
while it runs. 

This chapter brings together many of the .NET practice areas presented and discussed in Chapter 2. 
These topics include application lifecycle management, security analysis, and recommended patterns 
and practices. In many ways, code analysis is the application of the better .NET practice areas through 
active analysis, improvement, and monitoring.  

 



C H A P T E R  12 
 

      
 

265 

Test Frameworks 

This chapter covers the topic of test frameworks. In a broad sense, a test framework is a technology or set 
of tools that supports automated software testing. Most developers are familiar with one of the code-
driven test frameworks, which are commonly referred to as unit testing frameworks. In this chapter, you 
will learn about the four most popular unit testing frameworks. Another important component to any 
test framework is the test runner. You will learn about a variety of test runners, from the minimalist 
runners to those that are well-integrated into Visual Studio. This chapter also provides an overview of 
the xUnit test pattern and explains how each of the unit testing frameworks discussed fits the pattern. 

Later in this chapter you will learn about other test frameworks. These include mock object 
frameworks, database testing with NDbUnit, user interface testing frameworks, and acceptance testing 
frameworks. Specific practices are highlighted to emphasize how test frameworks offer .NET developers 
more effective testing and better test methodologies. Table 12-1 lists the ruthlessly helpful practices 
related to test frameworks. 

Table 12-1. Test Frameworks: Ruthlessly Helpful Practices 

 Practice 

12-1 Use the Test Runner to Debug Both the Test Code and the Code-Under-Test 

12-2 Purchase a Visual Studio Add-In Test Runner to Achieve Greater Productivity 

12-3 Use a Mock Object Framework to Provide Stub and Mock Functionality 

12-4 Use an Isolator to Fake Difficult and Pernicious Dependencies 

12-5 For Database Testing, Ensure That the Database State Is Consistent Before Each Test 

12-6 Acceptance Test with Business Specifications and Behaviors, Not Test Scripts 

12-7 Develop a Purpose-Built Acceptance Testing Framework to Monitor Key Business Logic 



CHAPTER 12  TEST FRAMEWORKS 

266 

COMMENTARY 

During the course of my professional development work I have written test code using the four most 
popular unit testing frameworks: NUnit, MbUnit, MSTest, and xUnit.net. I have seen how each unit testing 
framework introduced new concepts, extensions, and provided better functionality. 

NUnit offers significant advantages in the way it is widely supported by third-party test runners, code 
coverage tools, and continuous integration servers. MbUnit brings many excellent features to unit testing 
and is well integrated with the Gallio Automation platform. MSTest and the Microsoft Visual Studio Unit 
Testing Framework offer excellent integration with both Visual Studio and Team Foundation Server, 
offering comprehensive application testing. The xUnit.net framework offers extensibility and performance 
that makes it well-suited to many automated testing applications. 

My rationale for presenting all four of these unit testing frameworks is to give you the information you need 
to appreciate each of them. I expect that this information will help you to select the one or more .NET unit 
testing frameworks that are useful to you, your team, and your organization. 

Unit Testing Frameworks 
The fundamental component of code-driven testing is the unit testing framework. Broadly speaking, 
these testing frameworks are known as xUnit1 test frameworks because they generally fit the xUnit test 
pattern. The xUnit test pattern is described a little later in this chapter. For now, the main point is that 
the purpose of these unit testing frameworks is to provide facilities that help do the following: 

• Identify the test method 

• Identify the test classes and fixtures 

• Provide constructs with the means to 

• Perform data-driven tests 

• Perform pre-test setup and arrangement 

• Perform post-test teardown and cleanup 

• Perform test-fixture setup and teardown 

• Handle tests that expect an exception 

• Provide constructs that support 

• Making assertions 

• Skipping or ignoring tests 

• Categorizing tests 

                                                 
 
1 Martin Fowler provides a nice background on xUnit at http://martinfowler.com/bliki/Xunit.html. 

http://martinfowler.com/bliki/Xunit.html


CHAPTER 12  TEST FRAMEWORKS 

267 

The unit test framework helps developers write tests that are effective and can endure as the system 
evolves. 

This chapter will focus on four unit test frameworks: NUnit, MbUnit, MSTest, and xUnit.net. These 
are the most popular unit test frameworks for .NET development. Each of these unit test frameworks 
offers a somewhat different approach and benefits to unit testing software. Table 12-2 provides a 
description of these widely-used .NET unit testing frameworks. 

Table 12-2. Popular .NET Unit Test Frameworks 

Framework Description More Information 

NUnit Free, open source xUnit-based test framework, which was 
originally ported from JUnit. It is actively enhanced, widely 
used, and supported by many testing tools and platforms. 
NUnit is so widely used it is considered the de facto 
standard unit testing framework for .NET development. 

www.nunit.org 

MbUnit Free, open source xUnit-based test framework that brings 
many great ideas to unit testing. It is closely associated with 
the Gallio test automation platform. The semantics of 
MbUnit v3 and NUnit v2.5.x are very similar and are both 
very straightforward. 

www.mbunit.com 

MSTest Part of Microsoft Visual Studio Unit Testing Framework, 
MSTest is not an xUnit-based test framework. Since the 
MSTest framework is part of the Microsoft testing toolset, it 
is widely used and supported. MSTest is well suited to 
integration testing and to use within the Visual Studio and 
Team Foundation Server product suites. 

msdn.microsoft.com/en-
us/library/dd264975.aspx 

xUnit.net Free, open source xUnit-based test framework. The 
xUnit.net test framework is well regarded as it is considered 
faster and more original than the other unit test frameworks. 
The xUnit.net developers and fans make many compelling 
arguments in favor of this framework.2 

xunit.codeplex.com 

 

Test Runners 
A test runner is an application that performs the tests. The .NET test runners typically load one or more 
test assemblies and recognize the test methods written with the unit test framework. This set of test 
methods is often referred to as the test suite. 

As the test suite runs, the runner indicates progress and status when each test method does the 
following: 

                                                 
 
2 See “Why did we build xUnit.net?” at http://xunit.codeplex.com/wikipage?title=WhyDidWeBuildXunit. 

http://www.nunit.org
http://www.mbunit.com
http://xunit.codeplex.com/wikipage?title=WhyDidWeBuildXunit


CHAPTER 12  TEST FRAMEWORKS 

268 

• Executes successfully 

• Fails to meet the constraint of an assertion 

• Fails because an error occurs 

• Is skipped, ignored, or inconclusive 

Test runners differ in that some provide a graphical user interface (GUI) while others are a console 
application. The GUI runner is intended to provide a visual interface so that the person running the test 
can see the tests execute, monitor the results, and interact with the test runner. The console runner is 
intended to provide command-line execution of the test suite with the general goal of automating the 
test run. Both types of test runners are important in the development of a complete and comprehensive 
set of automated tests.  

NUnit GUI and Console Runners 
The NUnit test framework is widely used and supported by many third-party tools, such as continuous 
integration servers, coverage tools, and Visual Studio add-ins. All of the examples in Chapter 8 were 
written using the NUnit framework. This section starts with the assumption that NUnit is the framework 
you have selected to write test code. In order to remain focused on the topic of the test runner, it also 
assumes that the test code is already written. To follow along with the sample code, open the 
Lender.Slos.sln file, found in the Samples\Ch12\1_NUnit folder, from within Visual Studio. Rebuild the 
solution to ensure that all the code builds properly. 

With the unit tests code written, the challenge is to run the test code through a test runner. NUnit 
provides a Windows graphical user interface (GUI) as a part of NUnit. This program is a Windows forms 
application named nunit.exe (or nunit-x86.exe). If NUnit is installed then it is available through a 
program or desktop shortcut. Otherwise, it can be found within the NUnit installation folder, under the 
bin folder. A screenshot of the NUnit GUI is shown in Figure 12-1. 



CHAPTER 12  TEST FRAMEWORKS 

269 

 

Figure 12-1. The NUnit graphical user interface (GUI) 

The NUnit documentation provides a complete description of how to use the NUnit GUI runner.3 To 
keep things brief, this section is limited to the essential information and a basic orientation. With the 
NUnit GUI application running, select the File  Open Project ... menu item. Navigate to the 
Samples\Ch12\1_NUnit\Tests.Unit.Lender.Slos.Financial folder and open the 
Tests.Unit.Lender.Slos.Financial.nunit project file. Press the Run button. 

Notice the tree view on the left-hand side of the screen; this is the list of tests found in the 
Tests.Unit.Lender.Slos.Financial.dll assembly. The list of tests is the test suite. There is one failing test, 
which is shown in Figure 12-1. When you select the failing test in the tree, the right-hand side of the 
screen provides detail about that failing test on the Errors and Failures tab. It is clear that the test 
expected the value of 0.005909, but since the actual value is 0.005908, the test failed. In addition, the 
Errors and Failures tab shows the stack trace, which helps reveal the line of code that caused the test to 
fail. Change the expected value for the third test case from 0.005909 to 0.005908, which is provided to the 
RatePerMonth_WithValidAnnualPercentageRate_ExpectProperRatePerPeriod method. Rebuild the 
solution and return to the NUnit GUI runner. Run the tests again and all of the tests should pass.  

The NUnit GUI runner is straightforward to run from outside of Visual Studio. However, for 
debugging in Visual Studio with the Start Debugging menu (F5 debugging), it is certainly a lot better to 
run the NUnit GUI runner as part of the debugging session. You accomplish this by changing the project 
settings for the Tests.Unit.Lender.Slos.Financial project in Visual Studio. You can follow along by 
referring to the sample code under the Samples\Ch12\1_NUnit folder. To start, open the properties 
window for the test project from Visual Studio’s Solution Explorer. Select the Debug tab. This is shown in 

                                                 
 
3 For more information see http://www.nunit.org/index.php?p=nunit-gui&r=2.5.10. 

http://www.nunit.org/index.php?p=nunit-gui&r=2.5.10


CHAPTER 12  TEST FRAMEWORKS 

270 

Figure 12-2. In the Start Action area, make the change to “Start an external program” with the nunit.exe 
program selected. Also, in the Start Options the “Command line arguments” should have the relative 
path to the Tests.Unit.Lender.Slos.Financial.nunit project file. Save the Visual Studio project. 

 

Figure 12-2. Configuring the Visual Studio debugger to run NUnit GUI 

Once Visual Studio is configured to run the NUnit GUI runner for debugging, performing F5 
debugging launches the NUnit GUI runner. While the NUnit GUI is running tests, breakpoints in the test 
code and the code-under-test are hit when they are reached. 

 Practice 12-1  Use the Test Runner to Debug Both the Test Code and the Code-Under-Test 



CHAPTER 12  TEST FRAMEWORKS 

271 

An alternative to running the NUnit GUI runner is the console runner. This is the nunit-console.exe 
program found under the NUnit bin folder. The NUnit console runner affords you the opportunity to 
automate the task of running testing and provides many command-line options.4 Within Visual Studio 
the NUnit console can be run using the External Tool feature available under the Tools menu within 
Visual Studio. Figure 12-3 illustrates how to configure the NUnit console runner as an external tool.5 

 

Figure 12-3. Configuring Visual Studio external tools to run NUnit console 

                                                

4 For more information see http://www.nunit.org/index.php?p=consoleCommandLine&r=2.5.10. 
5 This configuration assumes that you created an environment variable named NUnitRoot that points to 
the proper NUnit folder, for example, C:\Tools\NUnit\v2.5.10.11092\bin\net-2.0. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.nunit.org/index.php?p=consoleCommandLine&r=2.5.10


CHAPTER 12  TEST FRAMEWORKS 

272 

Once configured as an external tool, the NUnit console is run from Visual Studio by selecting the 
newly added Run Tests menu item under the Tools main menu. The results of the NUnit console are 
output to the Visual Studio Output window, as shown in Figure 12-4. 

 

Figure 12-4. Output from running NUnit console as an external tool 

What you have learned up to this point is the minimalist’s way to integrate test runners with Visual 
Studio. For the NUnit unit test framework, the GUI and console runners are provided for free. In the next 
section, you will look at the prospect of buying a commercial product that offers more integration with 
Visual Studio. 

ReSharper Test Runner 
This section continues with the premise that you have selected NUnit as your testing framework. Now, 
you are looking for a test runner that is well-integrated into Visual Studio to achieve greater developer 
effectiveness and productivity. The Visual Studio add-in test runners provide that boost. They make it 
very easy to run a single unit test or a subset of unit tests from a context menu, toolbar, and other places 
in Visual Studio. The results are displayed within purpose-built Visual Studio windows. Having the 
output right there helps you analyze the test results and navigate to the test code or code-under-test, 
whenever there is a failing test. This brings unit testing front and center within the Visual Studio IDE. 
This is a big help to the developer because the workflow to write test code, run test code, and resolve 
issues is more efficient and the cycle time is much shorter. 



CHAPTER 12  TEST FRAMEWORKS 

273 

For unit tests written with the MSTest framework, the Visual Studio product provides many of these 
facilities, which we will cover in the next section. This section is about commercial test runners, most of 
which are Visual Studio add-ins, that focus on both supporting multiple unit testing frameworks 
(especially NUnit, MbUnit, MSTest, and xUnit.net) and providing “right-click access” to running tests 
from within Visual Studio. Let’s take a closer look at one of these products: ReSharper. 

ReSharper is a Visual Studio extension product from JetBrains (www.jetbrains.com). In Chapter 6, 
you learned that ReSharper is a general tool that provides code inspections and refactoring functionality. 
Another major feature of ReSharper is that it provides unit testing support that is well integrated with 
Visual Studio. It directly supports the NUnit and MSTest frameworks. Plug-ins are available to support 
MbUnit and xUnit.net. 

ReSharper provides many context menus, docking windows, toolbars, sidebar marks, and more.6 To 
run unit tests, simply right-click a tests method, test class, test project, or the entire solution, and 
ReSharper will run the tests defined within that context. For example, to run all the tests within a test 
project, simply right-click the project node in the Visual Studio Solution Explorer window and the 
context menu includes the Run Unit Tests choice, as shown in Figure 12-5. ReSharper provides similar 
context menus throughout the Visual Studio IDE. ReSharper offers many ways to support unit testing 
such as helping you to debug the test code and the code-under-test by selecting the appropriate context 
menu item. 

 

Figure 12-5. ReSharper context menu for running tests 

Another significant element that ReSharper adds to the Visual Studio IDE is the Unit Test Explorer 
window, shown in Figure 12-6. This window allows you to see all the available tests within your solution. 
This is important because the solution may contain a variety of tests that include unit, integration, 
surface, performance, and the other types of tests that you learned about in Chapter 8. It is important 
that the developer run all the tests that are appropriate to the work they are currently performing; just as 
important, the developer can avoid running tests that involve setup and configuration or are not 
relevant to their current work. 

                                                 
 
6 For more information see http://www.jetbrains.com/resharper/features/unit_testing.html. 

http://www.jetbrains.com
http://www.jetbrains.com/resharper/features/unit_testing.html


CHAPTER 12  TEST FRAMEWORKS 

274 

 

Figure 12-6. ReSharper provides the Unit Test Explorer window within Visual Studio. 

When you run tests with ReSharper, a new unit test session is started. There is a Unit Test Sessions 
window within Visual Studio that allows you to see all the sessions that have run or are currently 
running. This window is shown in Figure 12-7. The tree provides an effective way to understand how the 
running test methods fit within the context provided by the test classes. In addition, when there are 
multiple test cases there is a node added to the tree for each test case. In Figure 12-7, it is clear from the 
status column that one test failed and the test case node identifies the culprit. By selecting a failed-test 
node in the tree, the Output tab below reveals the specific reason why that test failed. Notice that the 
Output tab also provides a stack trace, which is helpful when debugging exceptions thrown from deep in 
the call stack of a failing test. 

 Practice 12-2  Purchase a Visual Studio Add-In Test Runner to Achieve Greater Productivity 



CHAPTER 12  TEST FRAMEWORKS 

275 

 

Figure 12-7. ReSharper provides the Unit Test Sessions window within Visual Studio. 

As you learned in Chapter 11, JetBrains also sells a .NET code coverage tool, called dotCover. This 
product integrates well with the unit testing tools of ReSharper. As shown in Figure 12-8, the statement-
level coverage is reported within the Coverage tab of the ReSharper Unit Test Sessions window. Bringing 
code coverage results into the Visual Studio IDE is an important productivity boost for developers 
writing test code. In effect, dotCover detects when a test covers a particular statement in code and, 
equally important, identifies and highlights code that is not covered by test code. 



CHAPTER 12  TEST FRAMEWORKS 

276 

 
Figure 12-8. ReSharper and dotCover provide coverage reporting from within Visual Studio. 

 Note  If profiling performance is important to you, ReSharper can allow you to quickly profile performance using 
its unit test runner from within Visual Studio. This requires an additional purchase and installation of the dotTrace 
Performance product, which is a .NET profiling tool from JetBrains. 

Being productive within Visual Studio with a unit test framework other than Visual Studio Test 
Framework is a primary reason developers choose a commercial unit test runner that integrates with the 
Visual Studio IDE. These commercial add-in products also offer a lot more than running tests. Table 12-3 
provides a list of products worth evaluating. 



CHAPTER 12  TEST FRAMEWORKS 

277 

Table 12-3. Unit Test Runners for Visual Studio, Which Support Multiple Test Frameworks  

Product Terms More Info 

DevExpress Co mmercial www.devexpress.com/Products/Visual_Studio_Add-in 

ReSharper C ommercial www.jetbrains.com/resharper 

TestDriven.NET Com mercial www.testdriven.net 

Visual Studio Test Runner 
So far, the premise has been that you and your development team are using the NUnit test framework. 
Let’s switch gears and consider following the “Microsoft way” of developing test code. This means using 
the Visual Studio Test Framework and the integrated test runner. If you have Visual Studio 2010 
Ultimate, Premium, or Professional you can run automated tests from within Visual Studio or from the 
command line.7 

Writing tests with the Visual Studio Test Framework does open up a lot of possibilities for running 
tests from within the IDE. First, there is the Test main menu item. From there, all the tests in the solution 
can be run, as shown in Figure 12-9. 

 

Figure 12-9. Visual Studio test runner main menu 

The Visual Studio IDE also includes a Test View window, shown in Figure 12-10. This window allows 
you to see all the available tests within your solution and to group and select tests. It helps you find the 
tests that you want to run. This is important so that developers can run only the tests that are 
appropriate to their current work. 

                                                 
 
7 For running MSTest from the command line see http://msdn.microsoft.com/en-
us/library/ms182486.aspx. 

http://www.devexpress.com/Products/Visual_Studio_Add-in
http://www.jetbrains.com/resharper
http://www.testdriven.net
http://msdn.microsoft.com/en-us/library/ms182486.aspx
http://msdn.microsoft.com/en-us/library/ms182486.aspx
http://msdn.microsoft.com/en-us/library/ms182486.aspx


CHAPTER 12  TEST FRAMEWORKS 

278 

 

Figure 12-10. The Visual Studio Test View window 

After the tests are run, Visual Studio displays the results of the tests in the Test Results window, 
shown in Figure 12-11. A failing test is quickly identified and the information in the column explains why 
the test failed. There are toolbar buttons available to further run and debug the tests based on the 
results. 



CHAPTER 12  TEST FRAMEWORKS 

279 

 

Figure 12-11. The Visual Studio Test Results window 

Visual Studio test projects include test settings files and the use of diagnostic data adapters. The 
details are beyond the scope of this book;8 however it is important to know how to use Visual Studio tests 
settings to run tests under code coverage. 

Within a Visual Studio solution that has a test project there is the Local.testsettings file, which runs 
tests locally without any of the diagnostic data adapters selected. I will briefly point out the steps to add 
code coverage as a diagnostic data adapter to the sample project found in Samples\Ch12\3_VisualStudio 
folder. To start, open the Lender.Slos.sln file in Visual Studio. Within the Solution Explorer window there 
is a Local.testsettings item under the Solution Items folder. If you double-click the Local.testsettings item, 
Visual Studio opens the Test Settings window, shown in Figure 12-12. On the left-hand side, select the 
Data and Diagnostics item. For this selection, you can see that Code Coverage is a choice in the list in the 
Configure section. Check the Enabled checkbox and press the Apply button. 

                                                 
 
8 For information on diagnostic data adapters and test settings see http://msdn.microsoft.com/en-
us/library/dd286743.aspx. 

http://msdn.microsoft.com/en-us/library/dd286743.aspx
http://msdn.microsoft.com/en-us/library/dd286743.aspx
http://msdn.microsoft.com/en-us/library/dd286743.aspx


CHAPTER 12  TEST FRAMEWORKS 

280 

 

Figure 12-12. Configuring Visual Studio tests to run under code coverage 

Once the change is applied, the next thing is to double-click the Code Coverage item in the list. This 
brings up the Code Coverage Detail window, as shown in Figure 12-13. 



CHAPTER 12  TEST FRAMEWORKS 

281 

 

Figure 12-13. Configuring the settings in the Code Coverage Detail window 

Within the Code Coverage Detail window the specific configuration for the test settings file are 
established. Press the OK button to save the configuration. Close the Test Settings window. 

With the code coverage settings in place, the Visual Studio Test Runner now runs the tests under 
coverage and provides the results in the Code Coverage Results window, as shown in Figure 12-14. 

 

Figure 12-14. The Visual Studio Code Coverage Results window 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12  TEST FRAMEWORKS 

282 

Gallio Test Runner 
The Gallio Project is an effort to bring a common and consistent test platform to .NET development. The 
Gallio Automation Platform provides test runners that run tests for a number of test frameworks, 
including NUnit, MbUnit, MSTest, and xUnit.net. Gallio includes the command-line runner, called Echo, 
and a Windows GUI named Icarus. Because Gallio integrates so many testing tools and approaches it is 
definitely a platform worth considering if you want a complete and comprehensive testing platform. 
More information about Gallio and this automation platform for .NET can be found on the Gallio project 
website at www.gallio.org. 

Figure 12-15 shows the Gallio Icarus test runner interface. The list of tests is shown in a tree view on 
the left-hand side. The test results are summarized in the panel on the right-hand side. 

 

Figure 12-15. The Gallio Icarus GUI test runner 

Gallio provides a complete execution log that details the output from the test run. An example of the 
execution log is shown in Figure 12-16, with specific details about one failing test. 

http://www.gallio.org


CHAPTER 12  TEST FRAMEWORKS 

283 

 

Figure 12-16. The Gallio test runner execution log 

xUnit.net Test Runner 
The xUnit.net test framework offers a number of significant capabilities. Primary among them is 
performance. Many developers who work with xUnit.net find that it is a really good framework. It is 
sometimes referred to as a lean framework. Although xUnit.net introduces changes in terminology, it 
takes a fresh approach and is very flexible. One important virtue is that xUnit.net supports the ability to 
extend the framework. 

The commercial test runners described earlier either support xUnit.net directly or there is a plug-in 
available. If you are not using a commercial test runner, your basic options are to use the xUnit.net GUI 
runner, as shown in Figure 12-17, or to use the xUnit.net console runner. Both of these runners come 
with the framework. 



CHAPTER 12  TEST FRAMEWORKS 

284 

 

Figure 12-17. The xUnit.net GUI test runner 

The xUnit.net console runner can be set up to run as an external tool in a manner similar to how the 
NUnit console is configured, as shown in Figure 12-3. The output from the xUnit.net console runner is 
shown in Figure 12-18. 



CHAPTER 12  TEST FRAMEWORKS 

285 

 

Figure 12-18. Output from running xUnit.net console as an external tool 

To this point you have learned about the four test frameworks and various test runners. In the next 
section I will broadly compare and contrast the test frameworks by examining how they fit into the xUnit 
test pattern. 

XUnit Test Pattern 
All xUnit test frameworks share the same basic architecture, referred to as the xUnit test pattern.9 First, 
there is the execution of one or more individual unit test methods within the test class. Also, before each 
test method is executed you can define a setup method, which prepares things before the test is run. 
After each test, a teardown method serves to clean up after the test method. Another feature is that of the 
test fixture, sometimes known as a test context, which initializes, sets up preconditions, and allocates 
resources needed to run any of the test methods. The fixture creates a known-good state before the tests 
run. The fixture also cleans up and disposes of any resources to return the context back to its original 
state. Let’s look at each aspect of the xUnit test pattern in turn. 

Identifying the Test Method 
Each of the four unit test frameworks, NUnit, MbUnit, MSTest, and xUnit.net, uses an attribute to 
identify the test methods within an assembly. There is the primary attribute, which identifies a test 
method that has the basic test method signature. This signature is a public method without arguments 
that returns void. For example, using the NUnit test framework, the basic test method is defined like this: 

                                                 
 
9 For more information see http://xunitpatterns.com/XUnit%20Basics.html. 

http://xunitpatterns.com/XUnit%20Basics.html


CHAPTER 12  TEST FRAMEWORKS 

286 

[Test] 
public void BasicTestMethodSignature() 
{ 
    ... 
} 

When a secondary attribute is used, it identifies test methods that are driven by parameter values or 
some other source of data. For example, using NUnit a data-driven test is defined like this: 

[TestCase("How many roads must a man walk down?", 42] 
[TestCase("What is your favorite prime number?", 73] 
public void ParameterDrivenTestMethodSignature( 
    string ultimateQuestion, 
    int expectedAnswer) 
{ 
    ... 
} 

Table 12-3 lists the primary and secondary attributes used to identify test methods and data-driven 
tests with the four unit test frameworks. 

Table 12-3. Unit Test Frameworks: Attributes That Identify Test Methods and Data-Driven Tests 

Framework Primary Attribute Secondary Attributes 

NUnit [Test] [TestCase],[TestCaseSource],[Theory],[DataPoint] ,[DataPoints] 

MbUnit [Test] [Row],[ CsvData],[XmlData],[CombinatorialTest],[Factory] 

MSTest [TestMethod] [DataSource] 

xUnit.net [Fact] [Theory],[InlineData],[ExcelData],[PropertyData] 

Identifying the Test Class and Fixture 
The goal of unit testing is to run tests in isolation and in a fully-repeatable way. In order to accomplish 
this it is often necessary to write code that performs before-test tasks, which precede the call to the test 
method. The test framework will call your before-test method to accomplish the setup. That method 
establishes the necessary preconditions and initial state required to run one of the test methods within 
the fixture. The test class and the fixture are basically synonymous. 

The idea here is that the method that prepares the preconditions is identified, usually by an 
attribute, and the unit test framework ensures that that code is run before each test method is run. 
Similarly, the code that performs the after-test tasks is identified so that the unit test framework runs 
that method after each test is run, regardless of whether the test passes or fails. Table 12-4 provides the 
list of attributes or mechanisms of the four frameworks that identify within the test class any before-test 
or after-test methods. 



CHAPTER 12  TEST FRAMEWORKS 

287 

Table 12-4. Unit Test Frameworks: Identifying Test Class and Fixture Methods 

Framework Test Class Before-Test After-Test 

NUnit [TestFixture] [Setup] [TearDown] 

MbUnit [TestFixture] [Setup] [TearDown] 

MSTest [TestClass] [TestInitialize] [TestCleanup] 

xUnit.net n/a class constructor IDisposable.Dispose 
method 

 
Beyond the before-test and after-test methods, the fixture itself provides an environment and a 

context for the tests. The fixture setup method contains code that must be run before any of the tests in 
the test class are run. For example, the setup method could allocate resources to be used by all test 
methods within the test class. Similarly the fixture teardown method contains code that must be called 
after all the tests in the test class are run. This is important to ensure that the next test class starts with 
the test environment in a known-good state. The unit test framework supports the goal of creating and 
disposing of the test class’s context through fixture setup and teardown methods. Table 12-5 provides 
the list of attributes or mechanisms to identify the fixture setup and fixture teardown methods for the 
four frameworks. 

Table 12-5. Unit Test Frameworks: Identifing Fixture Setup and Teardown Methods 

Framework Fixture Setup Fixture Teardown 

NUnit [TestFixtureSetUp] [TestFixtureTearDown] 

MbUnit [TestFixtureSetUp] [TestFixtureTearDown] 

MSTest [ClassInitialize] [ClassCleanup] 

xUnit.net IUseFixture<T> IUseFixture<T> 

 
An example may best illustrate how a test runner might use these attributes to execute the test code. 

Listing 12-1 shows the code for a test class written to use the NUnit test framework. The test class itself is 
decorated with the TestFixture attribute. Each of these methods is decorated with one of the attributes 
defined within the NUnit.Framework namespace. These attributes allow the NUnit test runner to 
determine the methods to execute and the correct order in which to execute them. The basic idea is that 
the test runner inspects the test assembly to find the test classes and methods using the attributes of the 
framework. 



CHAPTER 12  TEST FRAMEWORKS 

288 

Listing 12-1. Unit Tests Written to Use the NUnit Test Framework 

namespace Tests.Unit.Lender.Slos.Financial 
{ 
    using System; 
 
    using NUnit.Framework; 
 
    [TestFixture] 
    public class FixtureTests 
    { 
        [TestFixtureSetUp] 
        public void FixtureSetup() 
        { 
            Console.WriteLine("Fixture setup"); 
        } 
 
        [TestFixtureTearDown] 
        public void FixtureTeardown() 
        { 
            Console.WriteLine("Fixture teardown"); 
        } 
 
        [SetUp] 
        public void TestSetup() 
        { 
            Console.WriteLine("Before-test"); 
        } 
 
        [TearDown] 
        public void TestTeardown() 
        { 
            Console.WriteLine("After-test"); 
        } 
 
        [Test] 
        public void TestMethod_NoParameters() 
        { 
            Console.WriteLine("Executing 'TestMethod_NoParameters'"); 
        } 
 
        [TestCase(0)] 
        [TestCase(1)] 
        [TestCase(2)] 
        public void TestMethod_WithParameters(int index) 
        { 
            Console.WriteLine("Executing 'TestMethod_WithParameters' {0}", index); 
        } 
    } 
} 



CHAPTER 12  TEST FRAMEWORKS 

289 

Consider how the NUnit test runner executes the test code in Listing 12-1. The first method that is 
executed is the FixtureSetup method, which has the [TestFixtureSetup] attribute. It is called before any 
of the test methods are called. 

Before each test method is called the TestSetup method is called, because the NUnit runner detects 
that it has the [Setup] attribute. 

Next, one of the designated test methods is executed. After each test method is executed, the 
TestTeardown method is called because it is attributed with [TearDown]. This cycle repeats until all the 
test methods in the fixture are done executing. 

The last thing that the NUnit runner does is execute the FixtureTeardown method because it has the 
[TestFixtureTearDown] attribute. Following is the output from running these unit tests in the NUnit test 
runner. 

Fixture setup 

***** Tests.Unit.Lender.Slos.Financial.FixtureTests.TestMethod_NoParameters 

Before-test 

Executing 'TestMethod_NoParameters' 

After-test 

***** Tests.Unit.Lender.Slos.Financial.FixtureTests.TestMethod_WithParameters(0) 

Before-test 

Executing 'TestMethod_WithParameters' 0 

After-test 

***** Tests.Unit.Lender.Slos.Financial.FixtureTests.TestMethod_WithParameters(1) 

Before-test 

Executing 'TestMethod_WithParameters' 1 

After-test 

***** Tests.Unit.Lender.Slos.Financial.FixtureTests.TestMethod_WithParameters(2) 

Before-test 

Executing 'TestMethod_WithParameters' 2 

After-test 



CHAPTER 12  TEST FRAMEWORKS 

290 

Fixture teardown 

The Visual Studio Test Framework works in much the same way as NUnit; the attributes, however, 
are named differently. Listing 12-2 shows a test class written with the Visual Studio Test Framework. The 
basic idea remains the same: the test runner inspects the test assembly to find the test classes and 
methods using the attributes of the framework. 

Listing 12-2. Unit Tests Written to Use the Visual Studio Test Framework 

namespace Tests.Unit.Lender.Slos.Financial 
{ 
    using System.Diagnostics; 
 
    using Microsoft.VisualStudio.TestTools.UnitTesting; 
 
    [TestClass] 
    public class FixtureTests 
    { 
        [AssemblyInitialize] 
        public static void AssemblyInit(TestContext context) 
        { 
            Trace.WriteLine("Test assembly initialize"); 
        } 
 
        [AssemblyCleanup] 
        public static void AssemblyCleanup() 
        { 
            Trace.WriteLine("Test assembly cleanup"); 
        } 
 
        [ClassInitialize] 
        public static void FixtureSetup(TestContext context) 
        { 
            Trace.WriteLine("Fixture setup"); 
        } 
 
        [ClassCleanup] 
        public static void FixtureTeardown() 
        { 
            Trace.WriteLine("Fixture teardown"); 
        } 
 
        [TestInitialize] 
        public void TestSetup() 
        { 
            Trace.WriteLine("Before-test"); 
        } 
 
        [TestCleanup] 
        public void TestTeardown() 



CHAPTER 12  TEST FRAMEWORKS 

291 

        { 
            Trace.WriteLine("After-test"); 
        } 

        [TestMethod] 
        public void TestMethod_NoParameters() 
        { 
            Trace.WriteLine("Executing 'TestMethod_NoParameters'"); 
        } 

        [TestMethod] 
        public void TestMethod_WithParameters_0() 
        { 
            TestMethod_WithParameters(0); 
        } 

        [TestMethod] 
        public void TestMethod_WithParameters_1() 
        { 
            TestMethod_WithParameters(1); 
        } 

        [TestMethod] 
        public void TestMethod_WithParameters_2() 
        { 
            TestMethod_WithParameters(2); 
        } 

        private void TestMethod_WithParameters(int index) 
        { 
            Trace.WriteLine(string.Format( 
                "Executing 'TestMethod_WithParameters' {0}", 
                index)); 
        } 
    } 
} 

Consider how the Visual Studio test runner executes the test code in Listing 12-2. The first method 
that is executed is the AssemblyInit method, which has the [AssemblyInitialize] attribute. Only one 
method in an assembly can have this attribute. It is called before any of the test classes are initialized. 
After this, the execution is very similar to the NUnit runner. The next method that is executed is the 
FixtureSetup method, which has the [ClassInitialize] attribute. Before each test method is called the 
TestSetup method is called, because it is decorated with the [TestInitialize] attribute. Then one of the 
test methods is executed. After each test method is executed the TestTeardown method is called, because 
it is attributed with [TestCleanup]. This cycle repeats until all the test methods in the fixture are done 
executing. After all the tests in the class are done, the Visual Studio runner executes the FixtureTeardown 
method, because it has the [ClassCleanup] attribute. After all tests in the assembly have run, the 
AssemblyCleanup method is called. Following is the output from running these unit tests in the Visual 
Studio test runner. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12  TEST FRAMEWORKS 

292 

Test assembly initialize 

Fixture setup 

Before-test 

Executing 'TestMethod_NoParameters' 

After-test 

Before-test 

Executing 'TestMethod_WithParameters' 0 

After-test 

Before-test 

Executing 'TestMethod_WithParameters' 1 

After-test 

Before-test 

Executing 'TestMethod_WithParameters' 2 

After-test 

Fixture teardown 

Test assembly cleanup 

In the sample code projects within the appropriate folder, you will find an example of the 
FixtureTests class written to use each of the four unit test frameworks. 

Assertions 
Within test code, an assertion is a statement that usually evaluates to true or false. The statement is 
written in the test method to indicate that the developer believes that the condition ought to be true at 
that point in the test. If the statement is false then the test is failing and the test framework is expected to 
record that test as a failed test. 

Assertions are the primary way that the developer makes a statement about how the code is 
intended to work. The assertion is expected to be true and the developer wants the test framework to fail 
the test when the assertion is false. In effect, this is how the developer communicates with the test 



CHAPTER 12  TEST FRAMEWORKS 

293 

framework. For example, if the developer expects that the returned result should not be null, a statement 
line Assert.IsNotNull(result) is written into the test code. 

Classic Model of Assertions 
The classic model of assertions is to use one of the helper methods of an Assert class. Most unit test 
frameworks provide an assertion helper class with straightforward methods for making assertions. 
Because the method names are so similar, once you know the method names in one framework it is not 
hard to figure out the name in another framework.10 Table 12-6 provides a list of the assertion types with 
examples from the NUnit unit test framework. 

Table 12-6. Unit Test Frameworks: Classic Assertions 

Assert Type Description Examples in NUnit 

Utility Help control the test method evaluation logic. Assert.Pass, Assert.Fail 

Conditional Determine if a test condition is or is not met. Assert.True, Assert.False, 
Assert.IsNull, 
Assert.IsNotNull 

Equality Determine whether the two arguments are equal. Assert.AreEqual 

Comparison Determine how the two arguments compare. Assert.Greater, 
Assert.GreaterOrEqual, 
Assert.Less, 
Assert.LessOrEqual 

Identity Determine if the object instances are the same or 
not the same instances. 

Assert.Same, 
Assert.AreNotSame 

Type Determine if an object is an instance of or 
assignable from a type. 

Assert.IsInstanceOfType, 
Assert.IsAssignableFrom 

 
Within the frameworks there are more helper classes that support additional test method assertions. 

In NUnit these helper classes include StringAssert, CollectionAssert, and FileAssert. 

Constraint-Based Assert Model 
The constraint-based assert model was introduced to NUnit in version 2.4. This model uses a single That 
method of the Assert helper class for all assertions.11 This one method is passed an object and a 

                                                 
 
10 Here is a comparison of the assertion method names in different frameworks: 
http://xunit.codeplex.com/wikipage?title=Comparisons#assertions. 
11 For more information see http://www.nunit.org/index.php?p=constraintModel&r=2.4.1. 

http://xunit.codeplex.com/wikipage?title=Comparisons#assertions
http://www.nunit.org/index.php?p=constraintModel&r=2.4.1


CHAPTER 12  TEST FRAMEWORKS 

294 

constraint to perform the assertion. It can use one of the NUnit “syntax helper” classes to provide the 
constraint. For example, one of the syntax helpers, Is.EqualsTo, is shown in Listing 12-3. Many 
developers prefer this style of writing assertion statements. 

Listing 12-3. Unit Test Frameworks: Constraint-Based Assertions 

    [Test] 
    public void Load_WithValidFile_ExpectProperData() 
    { 
        // Arrange 
        var expectedData = "{BEB5C694-8302-4397-990E-D1CA29C163F1}"; 
        var fileInfo = new System.IO.FileInfo("test.dat"); 
 
        var classUnderTest = new Import(); 
 
        // Act 
        classUnderTest.Load(fileInfo); 
 
        // Assert 
        Assert.That(expectedData, Is.EqualTo(classUnderTest.Data)); 
    } 

One big advantage to the constraint-based model is that you can implement custom constraints by 
writing a class that implements the IConstraint interface. Charlie Poole compares and contrasts the two 
assert models in a blog posting at http://nunit.net/blogs/?p=44. 

Mock Object Frameworks 
Chapter 8 discussed the need for fakes, stubs, and mocks. In the automated testing examples from that 
chapter the Moq framework is used to illustrate the application of a mock object framework. 

 Practice 12-3  Use a Mock Object Framework to Provide Stub and Mock Functionality 

Generally speaking, a mock object framework dynamically generates a fake object, which is either a 
stub or mock, as the test code runs. This eliminates the need for you to write a fake implementation of 
an interface or create a fake subclass. Using one of these frameworks saves a lot of time and provides 
many features that are tedious to write into handwritten fake implementations. 

Dynamic Fake Objects with Rhino Mocks 
Rhino Mocks is a dynamic mock object framework for.NET development. Rhino Mocks is a 
straightforward way to dynamically generate fake objects that implement the specified interface or are 
derived from the specified type. In this section we will look at using Rhino Mocks to dynamically create 
fake objects that implement an interface. 

It is important to know that Rhino Mocks has some limitations to what it cannot fake. Those 
limitations include the fact that it cannot 

http://nunit.net/blogs/?p=44


CHAPTER 12  TEST FRAMEWORKS 

295 

• Intercept calls to non-virtual instance properties and methods 

• Create a mock object from a private interface 

• Create a mock object from a sealed class 

The sample code for this section is found within the Samples\Ch12\5_RhinoMocks folder. The goal 
here is to test the Student class, which is found under the Lender.Slos.Model namespace. As you learned 
in Chapter 8, the internal constructor is called to create an instance of the Student in the test code. This 
constructor is shown in Listing 12-4. The Rhino Mocks framework is used to generate the fake repository 
objects that this constructor requires. 

Listing 12-4. The Student Class Constructor 

public class Student 
{ 
    private readonly IRepository<IndividualEntity> _individualRepo; 
    private readonly IRepository<StudentEntity> _studentRepo; 
 
    ... 
 
    internal Student( 
        IRepository<IndividualEntity> individualRepo, 
        IRepository<StudentEntity> studentRepo) 
    { 
        _individualRepo = individualRepo; 
        _studentRepo = studentRepo; 
        HighSchool = new School(); 
    } 
... 
 
} 

The test code that tests the Save method of the Student class is shown in Listing 12-5. Testing the 
code’s interaction with the repositories is not the goal of this test method; therefore, the Rhino Mocks 
framework is used to generate stub objects. 

Rhino Mocks provides the MockRepository static class as a primary way to write arrange-act-assert 
pattern test methods. In Listing 12-5 the call to the 
MockRepository.GenerateStub<IRepository<IndividualEntity>>() method dynamically generates an 
object that implements the IRepository<IndividualEntity> interface. This object, which is now in the 
stubIndividualRepo variable, is later passed to the Student constructor. The next line adds a stub-
expectation to this stubIndividualRepo object by providing a lambda expression to the Stub method. 
What this expression is telling the stub object is to expect a call to the Update method and the arguments 
can be any object of type IndividualEntity. In this way, the stub object is now dynamically primed to 
receive a call to the Update method. 

Listing 12-5. Using Rhino Mocks to Generate Stub Repositories 

[Test] 
public void Save_WithAnExistingStudentImproperlyCreated_ExpectInvalidOperationException() 
{ 
    // Arrange 



CHAPTER 12  TEST FRAMEWORKS 

296 

    var today = new DateTime(2003, 5, 17); 
 
    const int ExpectedStudentId = 897931; 
 
    var stubIndividualRepo = MockRepository.GenerateStub<IRepository<IndividualEntity>>(); 
    stubIndividualRepo 
        .Stub(e => e.Update(Arg<IndividualEntity>.Is.Anything)); 
 
    var stubStudentRepo = MockRepository.GenerateStub<IRepository<StudentEntity>>(); 
    stubStudentRepo 
        .Stub(e => e.Retrieve(ExpectedStudentId)) 
        .Return(null); 
    stubStudentRepo 
        .Stub(e => e.Create(Arg<StudentEntity>.Is.Anything)) 
        .Return(23); 
 
    var classUnderTest = 
        new Student(stubIndividualRepo, stubStudentRepo) 
        { 
            Id = ExpectedStudentId, 
            Today = today, 
            DateOfBirth = today.AddYears(-19), 
        }; 
 
    // Act 
    TestDelegate act = () => classUnderTest.Save(); 
 
    // Assert 
    Assert.Throws<InvalidOperationException>(act); 
} 

The next stub object that is created is the stubStudentRepo. The setup here involves two methods. 
The first is the Retrieve method, which is set up to return null. The second is the Create method, which 
is set up to return 23. Since the goal is to have the Save method throw an exception when it is called, the 
setup for the Create method returns 23. This ensures that the returned value won’t equal the 
ExpectedStudentId value of 897931. These two Rhino Mocks fake objects allow the call to the Save 
method to proceed to the point when the exception is thrown, which is exactly what you want. In effect, 
these stubs stand in for the repositories that the Student class uses so that they behave the way the test 
wants them to behave. 

Let’s switch over to interaction testing using a mock object instead of a stub. In Listing 12-6, the 
mockIndividualRepo object is generated from the call to the Rhino Mocks framework’s 
MockRepository.GenerateStrictMock<IRepository<IndividualEntity>>() method. There are two things 
to notice. First, the variable name uses the mock prefix instead of stub. This is so you remember that this 
fake object is used for interaction testing. Second, the generation method that is called is named 
GenerateStrictMock. The strict behavior means that any method calls that are not expected cause an 
exception. In effect, any unexpected interaction results in a failed test, which is what you want. The 
opposite of strict behavior is loose behavior. Generally speaking, you should use strict behavior so that 
the test method does not pass when unexpected interactions should fail the test. Loose behavior can 
hide flaws in the test code or the code-under-test. 



CHAPTER 12  TEST FRAMEWORKS 

297 

Listing 12-6. Using Rhino Mocks to Generate a Mock Repository for Interaction Testing 

[Test] 
public void Save_WithAnExistingStudent_ExpectIndividualDalUpdateIsCalledOnce() 
{ 
    // Arrange 
    var today = new DateTime(2003, 5, 17); 
 
    const int ExpectedStudentId = 897931; 
    var studentEntity = new StudentEntity { Id = ExpectedStudentId, }; 
 
    var stubStudentRepo = MockRepository.GenerateStub<IRepository<StudentEntity>>(); 
    stubStudentRepo 
        .Stub(e => e.Retrieve(ExpectedStudentId)) 
        .Return(studentEntity); 
 
    var mockIndividualRepo = MockRepository 
        .GenerateStrictMock<IRepository<IndividualEntity>>(); 
    mockIndividualRepo 
        .Expect(e => e.Update(Arg<IndividualEntity>.Is.Anything)) 
        .Repeat 
        .Once(); 
 
    var classUnderTest = 
        new Student(mockIndividualRepo, stubStudentRepo) 
        { 
            Id = ExpectedStudentId, 
            Today = today, 
            DateOfBirth = today.AddYears(-19), 
        }; 
 
    // Act 
    classUnderTest.Save(); 
 
    // Assert 
    Assert.AreEqual(ExpectedStudentId, classUnderTest.Id); 
    mockIndividualRepo.VerifyAllExpectations(); 
} 

In Listing 12-6, the line after the mockIndividualRepo object is generated sets the expectation for 
interaction with the mock. This expectation is set with a call to the Expect method, passing in a lambda 
expression. The expression conveys that the Update method is expected to be called. For this setup, the 
argument passed to the Update method can be any object. The next part is the Repeat property, which is 
set to expect that Update will be called once and only once. 

At this point, the test method proceeds as a regular test method. It is not until the last line of the test 
method that expectations are verified. When the VerifyAllExpectations method is called on the 
mockIndividualRepo object, the mock object framework verifies the interactions. If the expectations set 
during arrangement are all met, this statement does not throw an error. However, if the expectations 
were not met, the Rhino Mocks framework throws an exception and the test fails. 

Mock object frameworks are an effective way to dynamically generate stubs and mocks. These 
frameworks provide an effective mechanism to quickly establish stub object behavior that allows the test 

v



CHAPTER 12  TEST FRAMEWORKS 

298 

code to focus on creating the conditions that the test is trying to create. In addition, these frameworks 
provide mechanisms to verify that the code-under-test is interacting with dependencies in the proper 
and expected way. 

Test in Isolation with Moles 
In Chapter 2 you learned about Microsoft Research and the Pex and Moles project. The Moles 
framework allows Pex to test code in isolation so that Pex is able to automatically generate tests. The goal 
of isolation testing is to test the code-under-test in a way that is separate from dependencies and 
underlying components and subsystems. This section looks at how to use Moles to write tests in 
isolation. 

 Practice 12-4  Use an Isolator to Fake Difficult and Pernicious Dependencies 

 

 Note  This section refers to sample code in the Samples\Ch12\6_Moles folder. The sample code is based on the 
Unit Testing with Microsoft Moles tutorial that comes with the Moles documentation.12 

The Import class in Listing 12-7 depends on the FileSystem class. This FileSystem class is an external 
dependency that is difficult to fake with some of the mock object frameworks like Moq and Rhino 
Mocks. The reason is that the class-under-test is directly calling a static method named ReadAllText 
from within the Load method. The calling of a static method tightly couples the class-under-test to this 
class. 

Listing 12-7. The Import Class Is the Class-Under-Test  

public class Import 
{ 
    public string Data { get; private set; } 
 
    public void Load(System.IO.FileInfo fileInfo) 
    { 
        Data = FileSystem.ReadAllText(fileInfo); 
    } 
} 

                                                 
 
12 This tutorial is available also at http://research.microsoft.com/en-
us/projects/pex/molestutorial.pdf. 

http://research.microsoft.com/en-us/projects/pex/molestutorial.pdf
http://research.microsoft.com/en-us/projects/pex/molestutorial.pdf
http://research.microsoft.com/en-us/projects/pex/molestutorial.pdf


CHAPTER 12  TEST FRAMEWORKS 

299 

In this section, assume that you want to write a unit test for the Load method; also assume that 
rewriting the Import class is not an option. Within the FileSystem class the static method ReadAllText is 
defined, as shown in Listing 12-8. Since a static method like this one is not easy to fake with some mock 
object frameworks, the first approach might be to take an automated integration testing approach.  

Listing 12-8. The Static Method ReadAllText 

public static class FileSystem 
{ 
    public static string ReadAllText( 
        System.IO.FileInfo fileInfo) 
    { 
        if (fileInfo == null) throw new ArgumentNullException("fileInfo"); 
 
        if (fileInfo.Exists) 
        { 
            return System.IO.File.ReadAllText(fileInfo.FullName); 
        } 
 
        return null; 
    } 
 
    public static void WriteAllText( 
        System.IO.FileInfo fileInfo,  
        string contents) 
    { 
        if (fileInfo == null) throw new ArgumentNullException("fileInfo"); 
 
        System.IO.File.WriteAllText(fileInfo.FullName, contents); 
    } 
} 

The test code shown in Listing 12-9 includes a before-test and an after-test method to create the file 
and delete the file that ReadAllText needs. This allows the test code to find the file and properly perform 
the test. This approach is not isolated: if the file is not created as part of the setup it cannot work. 

Listing 12-9. Automated Integration Testing of the Import.Load Method 

public class ImportTests 
{ 
    private const string FileName = "temporary.dat"; 
 
    private const string Data = "{BEB5C694-8302-4397-990E-D1CA29C163F1}"; 
 
    [SetUp] 
    public void TestSetup() 
    { 
        System.IO.File.WriteAllText(FileName, Data); 
    } 
 
    [TearDown] 
    public void TestTeardown() 



CHAPTER 12  TEST FRAMEWORKS 

300 

    { 
        if (System.IO.File.Exists(FileName)) 
        { 
            System.IO.File.Delete(FileName); 
        } 
    } 
 
    [Test] 
    public void Load_WithValidFile_ExpectProperData() 
    { 
        // Arrange 
        var fileInfo = new System.IO.FileInfo(FileName); 
 
        var classUnderTest = new Import(); 
 
        // Act 
        classUnderTest.Load(fileInfo); 
 
        // Assert 
        Assert.AreEqual(Data, classUnderTest.Data); 
    } 
} 

It is not hard to imagine a situation where the internals of some method-under-test cannot be 
accommodated by the test or fixture setup and teardown. For example, the method-under-test might 
call a web service or interact with a temperamental or sensitive legacy system. In order to mock static 
and non-virtual methods in isolation you need a mock object framework like Moles that can create an 
object that stands in for the FileSystem class and allows the call to the WriteAllText method to be faked. 

The sample code in the Samples\Ch12\6_Moles\Begin folder contains the Lender.Slos.sln file. To 
follow along with this example, open the solution in Visual Studio. The test code is in the 
Tests.Unit.Lender.Slos.DataInterchange project. The test class ImportTests is written to perform the 
integration test shown in Listing 12-10. Rebuild the solution and the 
Load_WithValidFile_ExpectProperData test method should pass. 

Expand the References node under the Tests.Unit.Lender.Slos.DataInterchange project, within the 
Solution Explorer window. There is a reference with the name Lender.Slos.DataInterchange. Since this 
assembly contains the implementation of the FileSystem class, this is the assembly that needs to be 
moled. Right-click the Lender.Slos.DataInterchange assembly and the context menu should contain an 
option to Add Moles Assembly. Select this option and rebuild the entire solution. (See Figure 12-19.) 

 

Figure 12-19. Use Moles to create a code-generated stub type. 



CHAPTER 12  TEST FRAMEWORKS 

301 

After the rebuild is successful there will be a new assembly reference named 
Lender.Slos.DataInterchange.Moles in the References section of the 
Tests.Unit.Lender.Slos.DataInterchange project. This new assembly is the moled version of the 
Lender.Slos.DataInterchange assembly. 

By convention, the moled class name is the same name as the class it stands in for, with the letter M 
prefixed. For example, FileSystem class has a corresponding mole class name of MFileSystem. 

With the mole assembly in the test project, the test method is now written as shown in Listing 12-10. 
Be advised, there are two new namespaces needed: 

using Lender.Slos.DataInterchange.Moles; 
using Microsoft.Moles.Framework; 

The MolesContext.Create method is how the Moles framework provides the context for the test. This 
using block wraps the entire test method. In the arrangement section, the MFileSystem class includes the 
ReadAllTextFileInfo delegate, which is used to establish the expected behavior when the ReadAllText 
method is called. The completed sample code is found under the Samples\Ch12\6_Moles\End folder. 

Listing 12-10. Unit Test the Import.Load Method in Isolation with Moles 

public class ImportTests 
{ 
    [TestCase("1FBF377361CD.dat", "{BEB5C694-8302-4397-990E-D1CA29C163F1}")] 
    [TestCase("A72498755DD2.dat", "{4E9C15FD-5966-4F69-8263-16E11F239873}")] 
    public void Load_WithValidFile_ExpectProperData( 
        string filename,  
        string data) 
    { 
        using (MolesContext.Create()) 
        { 
            // Arrange 
            var expectedData = data; 
            var fileInfo = new FileInfo(filename); 

            MFileSystem.ReadAllTextFileInfo = info => 
                { 
                    Console.WriteLine("filename: {0}", info.Name); 
                    Assert.IsTrue(info.Name == filename); 
                    return data; 
                }; 

            var classUnderTest = new Import(); 

            // Act 
            classUnderTest.Load(fileInfo); 

            // Assert 
            Assert.AreEqual(expectedData, classUnderTest.Data); 
        } 
    } 
} 

The NUnit test runner cannot directly run this test. It needs to run using the moles.runner.exe, 
which provides the Moles framework context. For this sample, run the moles.runner.exe program 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12  TEST FRAMEWORKS 

302 

configured as an external tool as shown in Figure 12-20. The Command entry is 
%MolesRoot%\moles.runner.exe.13 The Arguments entry is $(BinDir)$(TargetName).dll 
/runner:"%NUnitRoot%\nunit-console.exe". 

 

Figure 12-20. Configuring the Visual Studio external tool entry to run Moles 

Make sure you are in the Tests.Unit.Lender.Slos.DataInterchange project and select Run Tests with 
Moles from the Visual Studio Tools menu. The Moles runner executes the tests and the output is written 
to the Output window, as shown in Figure 12-21.  

                                                 
 
13 This assumes that you created an environment variable named MolesRoot that points to the proper 
Moles folder; for example, C:\Program Files\Microsoft Moles\bin. 



CHAPTER 12  TEST FRAMEWORKS 

303 

 

Figure 12-21. Output from running Moles as an external tool 

In Figure 12-21, the output writes the file name as the runner executes the test. This is because the 
ReadAllText method is executing the delegate method defined in the arrangement of your test code. It is 
obvious from the output that the Moles framework uses the MFileSystem stand-in object instead of a 
FileSystem object when the test code runs. The test method is now isolated from the file system and you 
are able to write test code in your arrangement that verifies that the code-under-test works as intended. 

 Note  An excellent alternative to Moles is the Typemock Isolator mock object framework.14 Like Moles, it 
supports isolation testing of non-virtual instance methods, non-public methods, sealed classes, static classes, and 
more. Since it is a commercial product, be prepared to make the case for purchasing Typemock.15  

Database Testing Frameworks 
A database is often a major component of many software systems. To have complete confidence in the 
system, the entire data access layer (DAL) needs to be tested as an integrated whole with the database. 
This is especially true for object-relational mapping (ORM) technologies like Entity Framework and 

                                                 
 
14 For more information see http://www.typemock.com/isolator-product-page. 
15 You can read a comparison of Typemock, Moles, and Moq at http://blog.devdungeon.com/a-
business-case-for-typemock-isolator/. 

http://www.typemock.com/isolator-product-page
http://blog.devdungeon.com/a-business-case-for-typemock-isolator/
http://blog.devdungeon.com/a-business-case-for-typemock-isolator/
http://blog.devdungeon.com/a-business-case-for-typemock-isolator/


CHAPTER 12  TEST FRAMEWORKS 

304 

NHibernate. Once an integration testing database is in place, a big challenge is keeping the data in the 
database in a known-state before executing a test. A database testing framework can provide the 
capability to effectively arrange the data in the database before and after a test method runs, which 
ensures that the database’s state is consistent for the execution of each test. 

 Practice 12-5  For Database Testing, Ensure That the Database State Is Consistent Before Each Test 

This section looks at the NDbUnit database testing framework.16 This framework is based on 
DbUnit, which is used for Java development. NDbUnit is free and open source. Here are some key 
concepts and features to know about NDbUnit: 

• Relies on a .NET DataSet schema file (XSD) to govern its interaction with the 
database 

• Operates on only the subset of tables defined in the XSD schema file 

• Loads data from an XML file that adheres to the XSD constraints defined by the 
XSD schema file 

• Supports the following database servers: 

• Microsoft SQL Server 2005 and 2008, from Enterprise to CE 

• OLEDB-supported databases 

• SQLLite 

• MySQL 

• Oracle 

 Note  This section refers to sample code in the Samples\Ch12\7_NDbUnit folder. It is adapted from the NDbUnit 
web site’s step-by-step tutorial.17 

The sample code is found in the Samples\Ch12\7_NDbUnit folder. Open the Lender.Slos.sln file in 
Visual Studio to follow along with the examples. 

Before working with NDbUnit, a test database must be created and available to run the tests against. 
You should have already created the Lender.Slos database as part of running the samples for Chapter 8. If 
not, refer to the instructions on creating the database found in the Samples\Ch08 folder. 

                                                 
 
16 The NDbUnit project site is found at http://code.google.com/p/ndbunit/. 
17 For more information see http://code.google.com/p/ndbunit/wiki/QuickStartGuide. 

http://code.google.com/p/ndbunit/
http://code.google.com/p/ndbunit/wiki/QuickStartGuide


CHAPTER 12  TEST FRAMEWORKS 

305 

A crucial element to running NDbUnit is the creation of the .NET DataSet schema definition file. 
MSDN provides a walkthrough on how to create a DataSet with the Visual Studio DataSet designer at 
http://msdn.microsoft.com/en-us/library/ms171897(v=VS.100).aspx. Here is an overview of creating 
and DataSet from within Visual Studio: 

1. To start, right-click the Data folder under the Tests.Unit.Lender.Slos.Dal 
project. 

2. Select the Add   New Item … from the context menu. 

3. In the Add New Item window there is a Data template named DataSet. Provide 
the name as ExampleDataSet.xsd. Press the Add button. This adds the DataSet 
file to the project and opens the designer window. 

4. Browse to the Lender.Slos database from the Server Explorer in Visual Studio. 

5. Drag the Individual table from the Server Explorer into the DataSet designer 
surface, which adds it to the DataSet definition. 

6. Save and close the DataSet designer. 

 Note  The Visual Studio .NET DataSet designer support files, such as ExampleDataSet.xsc, ExampleDataSet.xss, 
and ExampleDataSet.designer.cs, are not used by NDbUnit. You can exclude the DataSet from the project, remove 
these files, and just include the ExampleDataSet.xsd file in the project. 

In the sample code, the DataSet schema file is named Lender.Slos.DataSet.xsd and is found under 
the Samples\Ch12\7_NDbUnit\Tests.Unit.Lender.Slos.Dal\Data folder. This schema only defines one 
table in the database, the Individual table. 

Since NDbUnit loads data from an XML file, the next step is to create the XML data file. The contents 
of the IndividualDalTests_Scenario01.xml file are shown in Listing 12-11. Each Individual element 
defines one row that NDbUnit needs to insert into the database table. Within each Individual element 
are the elements that define the data that belongs in each column.  

Listing 12-11. The XML Data Used to Populate the Individual Table 

<?xml version="1.0" standalone="yes"?> 
<Lender xmlns="http://tempuri.org/Lender.xsd"> 
  <Individual> 
    <Id>1</Id> 
    <LastName>Roosevelt</LastName> 
    <FirstName>Theodore</FirstName> 
    <MiddleName /> 
    <Suffix /> 
    <DateOfBirth>1858-10-27</DateOfBirth> 
  </Individual> 
  <Individual> 
    <Id>3</Id> 
    <LastName>Smith</LastName> 

http://msdn.microsoft.com/en-us/library/ms171897
http://tempuri.org/Lender.xsd


CHAPTER 12  TEST FRAMEWORKS 

306 

    <FirstName>John</FirstName> 
    <MiddleName>Q</MiddleName> 
    <Suffix>Sr.</Suffix> 
    <DateOfBirth>2011-01-01</DateOfBirth> 
  </Individual> 
  <Individual> 
    <Id>5</Id> 
    <LastName>Truman</LastName> 
    <FirstName>Harry</FirstName> 
    <MiddleName>S</MiddleName> 
    <Suffix /> 
    <DateOfBirth>1884-05-08</DateOfBirth> 
  </Individual> 
</Lender> 

Now turn to the test code in Listing 12-12. The IndividualDalTests class defines the test fixture. The 
first method to look at is the FixtureSetup. It is here where the SqlDbUnitTest object is instantiated 
based on the connection to the test database and stored in the _database field. As part of the fixture 
setup the XML schema file is read and the XML data file is read. Now, the NDbUnit framework is 
prepared to load the data whenever a call is made to load this data. 

With the FixtureSetup method called, the unit test framework calls the TestSetup method before 
any test method is executed. It is from the TestSetup method that the NDbUnit method is called to 
perform the database operation. This one statement clears the Individual table and reloads it with the 
XML data, resetting the identity column to match the values in the XML data: 

_database.PerformDbOperation(DbOperationFlag.CleanInsertIdentity); 

Before any and all test methods defined in the IndividualDalTests class are called, the unit test 
framework calls the TestSetup method. This method performs the database operation that clears the 
Individual table and reloads it with the XML data, resetting the identity column to match the values in 
the XML data. In this way, each of the test methods begins with the Individual table in the same known-
good state. 

Listing 12-12. The IndividualDalTests Class Working with NDbUnit to Set the Database’s State 

using NDbUnit.Core; 
using NDbUnit.Core.SqlClient; 
 
using NUnit.Framework; 
 
public class IndividualDalTests 
{ 
    private const string ConnectionString = 
    @"Data Source=(local)\SQLExpress;Initial Catalog=Lender.Slos;Integrated Security=True"; 
 
    private INDbUnitTest _database; 
 
    [TestFixtureSetUp] 
    public void FixtureSetup() 
    { 
        _database = new SqlDbUnitTest(ConnectionString); 
 
        _database.ReadXmlSchema(@"..\..\Data\Lender.Slos.DataSet.xsd"); 



CHAPTER 12  TEST FRAMEWORKS 

307 

        _database.ReadXml(@"..\..\Data\IndividualDalTests_Scenario01.xml"); 
    } 
 
    [TestFixtureTearDown] 
    public void FixtureTeardown() 
    { 
        _database.PerformDbOperation(DbOperationFlag.DeleteAll); 
    } 
 
    [SetUp] 
    public void TestSetup() 
    { 
        _database.PerformDbOperation(DbOperationFlag.CleanInsertIdentity); 
    } 
 
... 
 
} 

An example of a test method in the IndividualDalTests class is shown in Listing 12-13. Each of the 
three test cases passes because NDbUnit populated the Individual table with the records that the test 
method expects. 

Listing 12-13. Test Method That Calls the Retrieve Method 

[TestCase(1, "Roosevelt")] 
[TestCase(3, "Smith")] 
[TestCase(5, "Truman")] 
public void Retrieve_WithScenarioDataInDatabase_ExpectProperLastName( 
    int id, 
    string expectedLastName) 
{ 
    // Arrange 
    var classUnderTest = new IndividualDal(ConnectionString); 
 
    // Act 
    var actual = classUnderTest.Retrieve(id); 
 
    // Assert 
    Assert.NotNull(actual); 
    Assert.AreEqual(expectedLastName, actual.LastName); 
} 

User Interface Testing Frameworks 
As discussed in Chapter 8, the benefits of a fully automated integration testing environment for stability 
and regression testing usually outweighs the effort it takes to set everything up and get it working 
together. Many developers and testers feel, for very good reason, that user interface (UI) testing is a 



CHAPTER 12  TEST FRAMEWORKS 

308 

necessary part of fully automated integration testing. However, UI test automation requires a significant 
investment in startup costs, development, and maintenance effort.18 

Except for Windows services and embedded systems, most software systems are developed to 
interact with an end user. The user interacts with a user interface in a way that can be difficult to test. It 
is the role of a user interface testing framework to simulate and automate the user interactions with the 
application. In this way, the test code can compare the actual results to the expected results to 
determine if the software is working as intended. 

Web Application Test Frameworks 
Writing automated user interface tests for web applications presents a number of significant challenges. 
Consider the common approach of automating the hosting of the application in a web server and 
automating the testing through a web browser. To fully automate this through a continuous integration 
server requires automated deployment to the web server. The automated test framework needs to be 
able to open the browser and navigate to the landing page. There could be a login and other pages that 
need to load just to get to the page where the first test method runs. This work is the heart of the effort 
needed to establish the Smoke testing infrastructure you learned about in Chapter 8. 

At the heart of web application test frameworks is browser automation, which simulates a human 
using the browser through software. For example, you programmatically navigate to a page, enter data 
into a field, and click a button. The actions that happen through the browser are then compared to the 
expected response, which could be a validation message on the page or a new record you expect to see 
in a database. There are many choices and the tools and technologies offer a variety of supported 
browsers and different approaches. Table 12-7 provides a list of widely-used web application test 
frameworks worth evaluating. 

Table 12-7. Web Application Test Frameworks 

Framework Description More Information 

Lightweight 
Test 
Automation 
Framework 

The Lightweight Test Automation Framework is used by 
the Microsoft ASP.NET QA Team to automate browser 
testing. Tests are written in any .NET language to run tests 
in Microsoft Internet Explorer, Mozilla Firefox, Apple 
Safari, and Opera. 

aspnet.codeplex.com/wiki
page?title=ASP.NET%20QA 

Selenium Selenium is a free and open-source suite of tools that helps 
you to automate and control web browsers through a 
testing framework. Selenium supports many browsers, 
operating systems, programming languages, and testing 
frameworks. 

seleniumhq.org 

WatiN WatiN is a free and open-source suite of tools that helps 
you automate your application testing in Internet Explorer 
and Firefox. It integrates with .NET unit test frameworks, 
such as NUnit, MbUnit, and xUnit.net. 

watin.org 

                                                 
 
18 Read more about UI test automation at http://gojko.net/2010/04/13/how-to-implement-ui-testing-
without-shooting-yourself-in-the-foot-2/. 

http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/


CHAPTER 12  TEST FRAMEWORKS 

309 

Windows Forms and Other UI Test Frameworks 
Windows Forms, Windows Presentation Foundation (WPF), Flash, Silverlight, and other UI technologies 
present different challenges when testing the applications that use them. Some of the challenges of 
deploying and running the application are different than those found in browser automation. Many of 
the challenges are technical, such as having the test code select an item from a third-party dropdown 
list. Finding the right UI testing framework depends on so many factors that the only effective strategy is 
for you and your team to perform proof-of-concept prototyping and feasibility study to find an approach 
that is effective. Table 12-8 provides a list of widely-used UI test frameworks worth evaluating. 

Table 12-8. Windows Forms and Other UI Test Frameworks 

Framework Description More Information 

NUnitForms NUnitForms is a free and open-source NUnit extension 
for automating the testing of Windows Forms 
applications. 

nunitforms.sourceforge.net 

Ranorex Ranorex offers commercial testing tools for the 
automated testing of Windows and web applications. It 
supports automating tests of Windows Forms, WPF, 
Flash, and Silverlight applications. 

www.ranorex.com 

Silverlight 
Toolkit 

The Silverlight Toolkit supports automated Silverlight 
testing that allows unit tests to run in the browser. 

silverlight.codeplex.com 

White White is a free and open-source project developed to 
hide the complexity of testing with the Microsoft UI 
Automation platform. It supports automating tests of 
Windows Forms, WPF, and Silverlight applications. 

white.codeplex.com 

Acceptance Testing Frameworks 
In the broadest sense, acceptance testing is a series of tests that determine if the requirements and 
features of a software system are met. At some point in the development process a decision is made as to 
whether the software is ready. If the software does not meet the acceptance criteria then it is rarely put 
into production. The software must fulfill a set of minimum and essential requirements and must have 
all the necessary features. A formal acceptance phase methodically tests the software to determine if the 
software meets all the objectives, after which a decision is made as to whether the software is or is not 
acceptable. An informal acceptance phase relies on the decision-makers’ judgment, based on what they 
know or don’t know about the readiness of the system. Whether formal or informal, software that meets 
the acceptance criteria is the ultimate goal of the development team; it is the destination. To arrive at 
that destination the development team needs a navigation system to keep them on course. An 
acceptance test framework helps establish a navigation system to guide the team toward their ultimate 
goal: software that ships. 

The goal of an acceptance test framework is to integrate the effort of customers, analysts, 
developers, and testers. For example, the customer describes the high-level need or desire for a new 
feature. The analyst works to understand, expand, and advance that information as a set of detailed 
requirements which are complete, clear, and consistent. The developers then take the detailed 

http://www.ranorex.com


CHAPTER 12  TEST FRAMEWORKS 

310 

requirements and implement the software. The testers verify that the software meets the requirements. 
So, where does the acceptance test framework come in? The acceptance test framework is fed through 
examples and scenarios. The customer provides high-level, general examples of how the new feature is 
specified to work. These examples communicate conditions, outcomes, behaviors, and results. 

These scenarios are fed into the framework as acceptance tests. The analyst may provide more 
detailed and elaborate scenarios, especially for exception handling, which are fed into the framework. 
The developers write software that satisfies the requirements and are explicit in these scenarios. The 
testers continue to feed test cases and scenarios as special cases, exceptions, and missing requirements 
are uncovered. The acceptance test framework provides a way to evaluate the software against the 
acceptance criteria. 

The acceptance test framework ought to serve the goal of automating the acceptance testing. The 
advantages of automated acceptance testing include 

• Keeping developers focused on the entire set of features and requirements 

• Performing feature verification and regression testing 

• Collecting metrics that are used to measure progress toward the desired results 

• Providing guidance and direction based on acceptance criteria 

Testing with Specifications and Behaviors 
The primary goal of using specifications and behaviors to perform acceptance testing is to reach a 
common understanding between the analysts and the developers on the conditions and expected 
outcomes of the test cases. The key is to find a language that the analyst can use for behavior 
specifications that both the developer and the acceptance testing framework can also use to verify the 
software. It is a common language for everyone to work together and provide complete, clear, and 
consistent system behavior and requirement expectations. 

 Practice 12-6  Acceptance Test with Business Specifications and Behaviors, Not Test Scripts 

Too many people view automated testing as the execution of testing scripts. It is very important to 
understand and appreciate the difference between a test script and a specification.19 The primary 
distinction is that test scripts are instructions fed to the testing framework, while a specification is a well-
structured set of explicit statements about the requirements. A script focuses on the means and the 
methods of testing, while a specification focuses on conditions, outcomes, and results. Perhaps the 
biggest distinction is that analysts and product owners often do not take full ownership and 
responsibility for test scripts. These scripts are often tedious to read and rarely make explicit statements 
about requirements and behaviors. 

Table 12-9 provides a list of widely-used acceptance test frameworks that use specifications as the 
underlying driver of acceptance testing. 

                                                 
 
19 The Concordian site describes the differences between writing test scripts and specifications: 
http://www.concordion.org/Technique.html. 

http://www.concordion.org/Technique.html


CHAPTER 12  TEST FRAMEWORKS 

311 

Table 12-9. Acceptance Test Frameworks 

Framework Description More Information 

FitNesse Free and open-source framework that specifies 
requirements through wiki pages. The wiki markup 
describes the specification in a structured way. 

fitnesse.org 

SpecFlow Free and open-source framework that specifies behaviors 
in the Gherkin language. Gherkin uses a Given-When-Then 
sentence structure to specify behaviors. 

specflow.org 

Concordion 
.NET 

Free and open-source framework that works with the 
Gallio testing platform using a Concordion adapter plug-in. 
Specifications are written into an HTML file that matches 
to a test fixture that Gallio runs. 

code.google.com/p/concor
dion-net 

 

Business-Logic Acceptance Testing 
Often software systems are built around a set of business rules. For example, a fixed-asset accounting 
system has the depreciation calculation engine as a central component of the software. The 
requirements for this module are governed by the generally-accepted accounting principles (GAAP) and 
the tax accounting rules and regulations. The analysts work hard to write detailed requirements for the 
developers to use to build the calculation engine. Also, testers work hard to write test cases and 
scenarios to verify and validate that the calculation engine is developed properly. The correctness and 
completeness of the business logic is central to determining if the software is acceptable. The developers 
benefit when the test cases that the analysts and testers provide feed an automated acceptance testing 
framework. 

Situations like this exist in many domains, such as payroll systems, life insurance, banking, benefit 
systems, and many more. The important point is that automated acceptance testing does not have to 
involve the entire system working as an integrated whole. It can be used to continuously verify and 
validate a single business-logic module independent of the user interface, database, or any other part of 
the system. This is crucial when the acceptance of this module is at the very foundation of accepting the 
entire system. 

To continue with the fixed-asset accounting system example, the analyst could use an Excel 
spreadsheet to develop detailed test cases and scenarios. This could be one spreadsheet providing one 
scenario in a structured format that has specific values for each of the input variables and calculates the 
expected results. The acceptance test framework is built to read the spreadsheet, provide the parameters 
to the depreciation engine, and verify that the engine calculates the expected results. Over time the 
analyst and testers work together to build a complete and comprehensive set of spreadsheets that cover 
all the acceptance criteria through test cases and scenarios. The challenge is to create a purpose-built 
acceptance test framework that takes the spreadsheet as input, arranges the module properly, performs 
the calculations, and then asserts that the actual results match the expected results. 

 Practice 12-7  Develop a Purpose-Built Acceptance Testing Framework to Monitor Key Business Logic 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12  TEST FRAMEWORKS 

312 

A purpose-built acceptance testing framework can be a very effective tool for the development team 
to monitor and control the correctness and completeness of the business-logic modules. This approach 
is built upon the features provided by a unit testing framework, discussed earlier in this chapter. The 
fixture is responsible for providing the acceptance data to the test case with the test code performing the 
specific arrangement, actions, and assertions that carry out the acceptance test. 

Summary 
In this chapter you learned about the detailed features of testing frameworks, including NUnit, MbUnit, 
MSTest, and xUnit.net. You also learned about mock object frameworks, especially the stubbing and the 
interaction testing facilities they provide. This chapter included a discussion of NDbUnit and how to use 
this database testing framework to control the state of the database. You also learned about some 
available options for UI testing frameworks and acceptance testing. 

In Chapter 13 the topic of the many biases and aversions that impact the adoption of new and 
different practices is discussed. 

 



C H A P T E R  13 
 

      
 

313 

Aversions and Biases 

This chapter is about the tendencies of many people to keep better practices from being adopted. As 
human beings, we see the world, not as it is, but as we perceive it to be. If our eyes and mind could not 
deceive us then optical illusions would not work.1 To explain the success of optical illusions, there are 
two basic theories: 

• Physiological Illusions: Effects that are based on the manner by which things are 
sensed, which influences or changes our perceptions. 

• Cognitive Illusions: Effects that are based on the manner by which things are 
judged, thought about, or remembered, which influences or changes our 
perceptions. 

Although physiological illusions are interesting, it is not a topic we will cover in this chapter. It is 
unlikely that someone is opposing a better practice because they are literally seeing stars. The more 
relevant topic relates to the mental processes that influence and impact the adoption of better practices. 
More specifically, there are two ways cognitive perception often thwarts new or different practices: 

• Aversion: Reluctance of an individual or group to accept, acknowledge, or adopt a 
new or different practice as a potentially better practice. 

• Bias: Tendency or inclination of an individual or group to hold a particular view of 
a new or different practice to the detriment of its potential. 

In the case of an aversion, the developer or team is not interested in the practice. In the case of a 
bias, the developer or team does not hold a fair or complete understanding of the practice. Some would 
argue that an aversion is simply a very strong bias. However, the distinction is important in that people 
are usually more willing to talk about practices that they are biased against. If there is an unwillingness 
to consider a change in practice then it is an aversion. If it is ambivalence, skepticism, uneasiness, or 
worry then there is likely a bias that needs to be overcome. It is important to know how to approach 
either an aversion or a bias. 

Nobody wants to have food they cannot stand shoved down their throat, even if they are told it is 
“healthy.” People often have an aversion to new or different practices for some reason; ultimately the 
reason may not turn out to be a good one, but it is still a reason. With the exception of exigent 
circumstances, such as a life and death situation, the worst way to deal with an aversion is to force the 
better practice upon the individual or group. In almost all cases, it is best to start by listening. Assume 
there are good reasons that you do not know about. Focus on finding those reasons. Not surprisingly, 
many good practices are made better by information that those that oppose the change in practice. They 
cannot articulate their concerns, and so, they have an aversion. You can benefit from knowing what they 

                                                 
1 This site has a lot of great optical illusions: http://www.123opticalillusions.com/. 

http://www.123opticalillusions.com/


CHAPTER 13  AVERSIONS AND BIASES 

314 

know or what they are reluctant to tell you. Do not expect to convince them to support the change, but 
you should fully convince them that you understand and appreciate their concerns. 

In the case of a bias, the way to deal with the bias depends on the strength and nature of the bias. If 
it is a mild confusion then a brief explanation may be enough to eliminate the bias. Sometimes a little 
training is all that is needed. Other times you need to make a strong case in a group presentation. The 
goal is to make a persuasive case by cultivating a change in knowledge, skill, or attitude. 

In the broadest sense, this chapter describes cognitive biases. These are observable behaviors that 
are studied in both cognitive science and social psychology. Experiments have shown that the 
information that is actually taken in by a person depends on that person’s assumptions, aversions, 
biases, and preconceptions.2 In other words, people cannot always see the evidence that is right in front 
of them. People tend to perceive what they expect to perceive. This is a bias that impacts people 
evaluating evidence. Researchers find biases in decision-making, thinking, interacting, and 
remembering. There are many, many cognitive biases and this chapter cannot provide practices to help 
you cope with every one of them. Instead, this chapter introduces a dozen aversions and biases and 
provides practices to help cope with those twelve, which are listed in Table 13-1. The hope is that by 
understanding how cognitive bias impacts changes in practice that you can learn to identify, cope with, 
and manage those biases. 

Table 13-1. Coping with Aversions and Biases: Ruthlessly Helpful .NET Practices 

 Strategy 

13-1 Use Evidence to Support Better Practices That Reduce Undesirable Outcomes 

13-2 Keep Notes As Problems and Events Occur to Provide Perspective During Retrospectives 

13-3 Identify Specific Individuals and Approach Them About Improving Their Personal Practices 

13-4 Make Incremental Positive Changes to Improve the Status Quo 

13-5 Show the Balanced Picture of Desirable and Undesirable Qualities of Current Practices 

13-6 Do Not Assume That Everyone Has the Same Skills and Abilities 

13-7 Raise Awareness About the Negative Situations That Are Being Ignored 

13-8 Relying on Past Luck to Prevent Future Problems Is Really Pressing Your Luck 

13-9 Try Out a New or Different Practice to Clear Up Missing Information 

13-10 Point Out Multiple Aspects to Broaden the Focus During Decision Making 

13-11 Highlight Present Payoffs to Promote Incremental Improvement 

13-12 Collect Anecdotes About the Problems Others Have Experienced to Prepare for Disaster 

                                                 
2 This fascinating book covers many cognitive biases: Richards J Heuer, Psychology of Intelligence 
Analysis (Washington, DC: Center for the Study of Intelligence, Central Intelligence Agency, 1999).  



CHAPTER 13  AVERSIONS AND BIASES 

315 

Group-Serving Bias 
There is a natural tendency for people to take credit for successes and distance themselves from failures. 
For the individual this is called a self-serving bias and for a group it is group-serving bias.3 A 
development team would like to believe that what the team is doing is leading to success and that the 
problems and issues are caused by situations or circumstances beyond the control or influence of the 
team. This bias can inhibit the team from adopting better practices because they would have to first 
acknowledge that they bear some responsibility for the issues. The message they are resistant to hear is, 
“We could have done things better.” 

For example, a team of developers writes a lot of code under severe schedule pressure, and so there 
is little or no unit testing before the system is released to the quality assurance (QA) testers. The 
developers are happy to take credit for their productivity and extraordinary effort. However, the QA 
testers soon find that the system is not stable and that important functionality is incomplete or 
incorrect. The system is not working as intended. In this example, the evidence clearly shows that the 
software was deployed for QA to test before it was ready. At this point, the developers could acknowledge 
that more unit and integration testing on their part would have found these issues before QA testing 
began. 

If the entire project understood and accepted that the developers were delivering an unstable and 
incomplete system then the responsibility is shared by the entire project team. If, on the other hand, the 
developers ignored or misrepresented the situation then the developers must bear the responsibility for 
releasing the system to QA before it was ready. The reality is often somewhere between these two 
extremes. The better practice is to not release the software to QA until the developers are convinced that 
the software is stable enough to test and that there are no significant showstopper issues. 

 Practice 13-1  Use Evidence to Support Better Practices That Reduce Undesirable Outcomes 

There is often clear evidence that mistakes were or are being made and that things could be done 
better. Better practices are premised on the idea that mistakes can be avoided and that there are better 
ways to do things. Use that evidence to point to the better practices. In this section’s example, the 
developers could have insisted that they needed time to determine if the system was ready for QA 
testing. They could have established a set of unit and integration tests. They could have worked with QA 
to establish the minimum and essential criteria that determines if the software is ready to be tested. The 
important practice here is to avoid the self-serving bias and look to the evidence that a better set of 
practices can lead to better outcomes. 

Rosy Retrospection 
It is nice to look back on an issue, mistake, or event and believe that it was not as bad as it seemed. 
People are biased to have a rosy memory and regard the past as being less negative or more positive than 
it really was.4 When the problem came up, the situation may have been dire, but now that events are 
seen in retrospect, the problem is minimized. It is understandable that for unpredictable and 
uncontrollable events this helps people overcome the trauma of the event. Few people want to 

                                                 
3 For more information see http://en.wikipedia.org/wiki/Self-serving_bias. 
4 For more information see http://en.wikipedia.org/wiki/Rosy_retrospection. 

http://en.wikipedia.org/wiki/Self-serving_bias
http://en.wikipedia.org/wiki/Rosy_retrospection


CHAPTER 13  AVERSIONS AND BIASES 

316 

remember just how bad things were. However, if the event was preventable, this bias is unhelpful. The 
message is, “In retrospect, the problem was not that bad, so we can get through it if it happens again.” 

This tendency blocks many better practices from being adopted. Continuous integration is a 
practice that helps to avoid the long and difficult late-integration cycles that many development projects 
face. Too many developers forget how catastrophic late integration is. Instead of clearly remembering 
the difficulties involved, developers can rationalize the situation during a retrospective meeting. Late 
integration is described as an unavoidable obstacle that was overcome and will be overcome in the next 
iteration or a future project. 

 Practice 13-2  Keep Notes As Problems and Events Occur to Provide Perspective during Retrospectives 

Jot down short notes on the pain-points and problems that are occurring as they are occurring. 
These notes help during retrospective meetings because they recall the real and serious concerns that 
underlie the issue. They help make the problems clearer and get people to focus on avoiding the 
preventable problems of the past by adopting better practices. 

Group-Individual Appraisal 
In some organizations, a manager scolds an entire department for the action or inaction of one or two 
individuals. The classic example is an e-mail that reprimands everyone in the organization for not 
submitting their timesheets on time. Those who submit their timesheets on time ignore the e-mail 
because it does not apply to them. Ironically, the many who do not turn in their timesheets on time also 
ignore the e-mail. Individuals are likely to think that nobody in the department is turning in their 
timesheet on time, and so assume their behavior is the norm. Individuals in the department ultimately 
attribute the poor appraisal to the entire department, not to themselves. 

In the realm of software development, a team leader can gather the team and explain that the defect 
rate is unacceptably high. The team leader hopes that the one or two developers who are writing buggy 
code get the message and improve. This rarely works because those individual developers do not see 
themselves as responsible for the team’s high defect rate. 

 Practice 13-3  Identify Specific Individuals and Approach Them About Improving Their Personal Practices 

In this example, it would be better if the team leader talked to the individual developer directly 
about the unacceptably high defect rate. That developer needs to know that their individual 
performance is a problem for the team. Letting the developer know that their personal practices are 
expected to improve offers an opportunity to teach better practices. 



CHAPTER 13  AVERSIONS AND BIASES 

317 

Status Quo and System Justification 
People become comfortable with the way things are. They like the status quo. Alternative ways of doing 
things are disparaged.5 The existing state of affairs is familiar and a source of predictability. People have 
developed habits and have come to know what to do and how to do them. There is a bias toward 
justifying, defending, and supporting the status quo. Any disruption to the status quo is opposed, 
sometimes blocked. Some people cannot rationally discuss a new or different practice simply because it 
represents a change to the way things have always been done. The message is, “Do not introduce change 
because any change is disruptive and bad.” 

Some development environments have become entrenched in their practices and processes. One 
example is manual deployments. Perhaps a developer copies the files to the target server and changes 
the configuration settings. All the evidence shows that the manual deployments are error prone because 
the manual steps are regularly misapplied. Since some developers are careful and some are not, there is 
a lot of unevenness in the quality and reliability of the deployments. However, this is the way 
deployments have always been done. Nobody wants to adopt an automated deployment solution, in 
large part, because it changes the status quo. 

 Practice 13-4  Make Incremental Positive Changes to Improve the Status Quo 

People are afraid that if the status quo is destroyed they will be lost. A better message is one that 
focuses on bringing forth a slightly better status quo. The new status quo ought to keep all the benefits of 
the old status quo and introduce a few incremental improvements. In the case of the manual 
deployments, there could be a command file that copies the files to the target server. The developer still 
sees that the files go to the proper folders. That command file could also run an MSBuild script that sets 
all the configuration settings. Again, the developer reviews the values to double-check that the script 
works properly. The message is that only the tedious and error-prone parts of the task are improved 
without reducing the developer’s involvement. The results from these incrementally better practices are 
more consistent and reliable deployments. 

Illusory Superiority 
Many people like to think that the way they are doing things is just as good, if not better, than some 
other way. In other words, there is an overestimation of the desirable qualities and an underestimation 
of the undesirable qualities, referred to as illusory superiority.6 The message is, “The practice that we 
follow is superior to another new or different practice.” 

An example of this can be seen with regards to automated code analysis. Some team leaders feel 
that group code reviews are the only appropriate form of code analysis. To be sure, there are many 
desirable benefits of reviewing the source code as a group. Those benefits are undeniable. However, 
team code reviews do have undesirable qualities, as well. For one, they take up a significant amount of 
time. For another, they often do not occur frequently enough or cover enough of the source code. Most 
significantly, they can get bogged down in topics like coding standards and guidelines that the 

                                                 
5 For more information see http://en.wikipedia.org/wiki/System_justification. 
6 For more information see http://en.wikipedia.org/wiki/Illusory_superiority. 

http://en.wikipedia.org/wiki/System_justification
http://en.wikipedia.org/wiki/Illusory_superiority


CHAPTER 13  AVERSIONS AND BIASES 

318 

automated code analysis tools readily identify. In other words, the group covers matters that should 
already be settled and ends up wasting time remediating preventable problems. 

 Practice 13-5  Show the Balanced Picture of Desirable and Undesirable Qualities of Current Practices 

The goal is to always keep things in perspective. Current practices should not be justified by 
ignoring the undesirable qualities of that practice. With manual code reviews, the practice can be 
enhanced by automated code analysis. For example, prior to the team getting together to review the 
code, the developer is expected to meet all the coding standards and guidelines that the automated code 
analysis tool is configured to find. Yes, exceptions may be warranted, and they should be brought to the 
attention of the group. In this way, the code review does not focus on the mundane and settled issues, 
but remains focused on the quality of the solution and the implementation of the design. The better 
practice is to recognize that undesirable qualities of current practices can be improved by new and 
different practices. 

Dunning-Kruger Effect 
A person with a lot of experience and expertise can make the assumption that others have the same 
understanding and skills that they have. This incorrect calibration of what others know is part of the 
Dunning-Kruger effect.7 Experts can be biased to believe that if they know something then everyone else 
ought to know it as well. There is a mistaken assumption that their specialized knowledge is common 
knowledge. This can make them a weak advocate for better practices when faced with opposition or 
hesitation from others. Their bias leads them to believe that their detractors, who are assumed to be 
equally informed, have good reasons to oppose them. In many cases, this is simply not true. 

For example, a developer who has been unit testing code for ten years has acquired a lot of 
experience. If they read widely and keep on unit testing then they bring the experience and expertise of 
others. This aptitude, skill, and knowledge justifies their strongly-held position that unit testing is a 
beneficial practice. Another less experienced developer, who has limited experience unit testing, might 
view the practice as unproductive and unhelpful. The experienced advocate wrongly assumes that his or 
her colleague is equally skilled, and therefore, does not promote the practice of unit testing. An 
opportunity to benefit from the experience and expertise of the more senior developer is lost. 

 Practice 13-6  Do Not Assume That Everyone Has the Same Skills and Abilities 

Start with the premise that everyone has different experiences, skills, and abilities. Assume that, 
knowing what you know, they would be likely to support the better practices you advocate. This 
approach suggests building a proof-of-concept, having a trial period, running a pilot project, or 
designing a training exercise. The goal is to get everyone closer together on the evidence as to whether 
the practice is better or not better. The most important thing is to focus on knowledge transfer and 
better practices through experience and know-how. 

                                                 
7 For more information see http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect. 

http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect


CHAPTER 13  AVERSIONS AND BIASES 

319 

Ostrich Effect 
All too often, people ignore an obviously negative situation instead of dealing with it straight on. Like the 
proverbial ostrich, they bury their head in the sand to avoid the dire circumstances that surround them.8 
The implications of facing the situation may be too painful to deal with and sometimes they hope that by 
ignoring the situation it will improve on its own. Others may believe that by not recognizing the negative 
situation they cannot be held accountable for not resolving it. This message is, “If I do not see the 
problems, I do not have to deal with the problems.” 

An example of the ostrich effect in software development is security and threat assessment. 
Software vulnerabilities are a growing problem; however, all too many developers are not involved 
enough in dealing with security and minimizing vulnerabilities. Developing systems that are “secure by 
design” requires that those developers who design and build the software are actively assessing the 
security of the software. Ignoring security and not worrying about vulnerabilities and threats cannot lead 
to secure designs. No aspect of the software is improved by ignoring the potential or existing problems 
that lie within that aspect of software development. 

 Practice 13-7  Raise Awareness About the Negative Situations That Are Being Ignored 

The security development lifecycle is all about thinking through the security implications of 
decisions at every step of development. One example is the practice of threat modeling. Through this 
practice the design is considered from a threat vulnerability perspective so that potential negative 
situations are revealed. With the information that comes from threat modeling, designs can then be 
improved. In general, directly confronting current and potential negative situations is one of the most 
effective ways to prevent problems and adopt better practices. 

Gambler’s Fallacy 
To the person who plays the lottery with the same numbers every day there is often the mistaken 
assumption that their odds improve each time their numbers are not chosen as the winning numbers. 
The biased belief that past events influence future probabilities is the gambler’s fallacy.9 The odds of 
winning are always the same and are not influenced by past events. Similarly, past luck does not 
influence future luck. When it comes to resisting new and different practices that prevent problems 
there can be some of the gambler in all of us. The message is, “We have avoided any problems so far, so 
let’s assume we will continue to avoid problems.” 

This can be seen in software development when important practices are ignored only because 
problems have not yet occurred. For example, the uninitiated developer may not like reversion control. 
They prefer to operate on their own development environment free from the constraints of the version 
control system. They do not regularly check in their code or get the latest code from the other 
developers. They rely on the fact that, since they have always been able to manage things this way, they 
can continue to operate in this way. When their luck runs out and the problems come from late 
integration, lost changes, or worse problems, it is their unwise decision not to follow best practices that 
is to blame. 

                                                 
8 For more information see http://en.wikipedia.org/wiki/Ostrich_effect. 
9 For more information see http://en.wikipedia.org/wiki/Gambler%27s_fallacy. 

http://en.wikipedia.org/wiki/Ostrich_effect
http://en.wikipedia.org/wiki/Gambler%27s_fallacy


CHAPTER 13  AVERSIONS AND BIASES 

320 

 Practice 13-8  Relying on Past Luck to Prevent Future Problems Is Really Pressing Your Luck 

Direct and unambiguous communication is very important to adopting a better practice. It must be 
made clear that not following a practice that prevents problems is unwise and unacceptable. Any past 
luck developers have had not following the practice needs to be quickly forgotten. The project’s 
gamblers need to stop gambling to ensure that better practices are consistently followed. 

Ambiguity Effect 
When there is ambiguity or missing information there is a tendency to avoid a direction, practice, or 
option. It may be a better practice, however, simply because there is not enough information; there is a 
bias against the potentially better practice.10 People are uncomfortable with ambiguity, but that should 
not mean a new or different practice is to be avoided. It means the practice needs to be understood, 
investigated, and appreciated. Once the uncertainty is cleared up then it can be recognized as a helpful 
practice or discarded as an unhelpful practice. 

There is a lot of ambiguity that surrounds unit testing. Some developers avoid unit testing simply 
because they have more questions than answers. They avoid the practice because they do not know 
where to start or how to proceed. The same is true for other new and different practices that offer a lot of 
promise but present a lot of uncertainty as well. 

 Practice 13-9  Try Out a New or Different Practice to Clear Up Missing Information 

Often a little experience or a short tutorial on a better practice can fill in the missing information 
that is holding back adoption. Other times the team needs to try out the practice for a short period of 
time just to clear up some vagueness and doubt. This is especially true when their reluctance relates to 
feasibility and practicality. In the case of unit testing, many developers have found that unit testing is 
helpful and improves their overall productivity. This is true once they have experienced the benefits of 
problem prevention and early defect resolution. It is the simple act of trying out a potentially better 
practice that fills in the missing pieces and convinces the team to adopt the practice. 

Focusing Effect 
There is a tendency, called the focusing effect, for people to put too much emphasis on one aspect of a 
problem or event during decision making.11 Often there are many contributing factors that influence 
things; however, many people search for or focus on one in particular. Since there is a singular focus, 
this bias can lead to a situation where the important impacts of the other aspects are ignored. 

When investigating a significant problem, the focusing effect bias can lead people to search for just 
one root cause. In actual fact, there may be many contributing factors to the problem. Each of the 
contributing factors created the conditions or caused the actions that led to the problem. The problem-

                                                 
10 For more information see http://en.wikipedia.org/wiki/Ambiguity_effect. 
11 For more information see http://en.wikipedia.org/wiki/Focusing_effect. 

http://en.wikipedia.org/wiki/Ambiguity_effect
http://en.wikipedia.org/wiki/Focusing_effect


CHAPTER 13  AVERSIONS AND BIASES 

321 

solving effort ought to lead to more than one recommended change; however, only one aspect is 
seriously considered. Instead of a set of better practices being selected, only one is selected. Sometimes, 
no change in practice is recommended because the one aspect that was investigated is an unavoidable 
aspect. It is better to review all the contributing factors of a problem because a better practice can 
change the conditions and prevent the problem. 

 Practice 13-10  Point Out Multiple Aspects to Broaden the Focus During Decision Making 

It is usually better to assume that there are multiple reasons that a problem or event occurred. There 
are usually multiple conditions that existed at the time the problem occurred. There are multiple actions 
that happened or failed to happen that contributed to the problem. Expand the focus to multiple causes 
as a way to reveal many more new and different practices that can improve the situation. 

Hyperbolic Discounting 
Risk and reward are not always considered in a rational way. Add in the element of time delay and the 
tendency is to favor the immediate reward, even though the delayed reward will be greater. This is the 
cognitive bias that underlies hyperbolic discounting.12 Given two options that have the same risk, many 
people prefer a smaller reward that they can realize today rather than wait for a larger reward that comes 
later on. A payoff today is enjoyed today, but a future payoff requires the person to wait to enjoy it. 

Understanding this bias is applicable to best practices in the idea of incremental improvement. In 
software development, better practices are sometimes not adopted because there are several options, 
and no one option is a clear favorite. Some take a long time to show improvement and require 
significant effort to get started, but offer huge potential benefits. Others can show immediate results, but 
the potential benefits are modest. In these cases, the practice that shows the quickest results could be 
the one to emphasize. The relatively quick rewards that come from the payoff are very gratifying and 
support further incremental improvement. The decision-makers appreciate the immediate reward of 
supporting the change. 

 Practice 13-11  Highlight Present Payoffs to Promote Incremental Improvement 

Take time to consider the many better practices that can be implemented. Some are likely to 
produce immediate or near-term improvements. Those are the practices that have early payoffs and 
should be promoted. Adopting better practices is an initiative that is helped by incremental, not radical, 
changes. As each better practice is put into place the rewards of the previously selected practices help 
keep the initiative active. 

                                                
12 For more information see http://en.wikipedia.org/wiki/Hyperbolic_discounting. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://en.wikipedia.org/wiki/Hyperbolic_discounting


CHAPTER 13  AVERSIONS AND BIASES 

322 

Normalcy Bias 
Too often people do not plan for a problem or event simply because it has never happened to them 
before. Since they have not had the experience, they are biased against the need to plan for the problem. 
This is the normalcy bias.13 Most people plan for eventualities that are expected over the normal course 
of events. On the other hand, there are unexpected and disastrous events that are out of the ordinary, 
which many people do not prepare for. Some people refuse to plan for a disaster only because they have 
not experienced the disaster before. 

Today, many companies are experiencing problems related to cyber attacks and hacking. However, 
some development groups refuse to plan or prepare for these attacks and other threats. Unlike the 
ostrich effect, the danger is not present, and so it is hard to point to a specific problem that is or has 
happened. Today things seem normal and calm, but there is a disaster waiting to happen. The better 
practice is opposed simply because the problem has never happened to them before. 

 Practice 13-12  Collect Anecdotes About the Problems Others Have Experienced to Prepare for Disaster 

Have you read an article that describes how another organization had to cope with a denial of 
service attack? The stories range from annoying to very ugly.14 In the news recently, a major corporation 
sent e-mails to all their customers advising them that their personal information, including credit card 
information, was compromised. Consider the impact to your organization if they had to let all your users 
know that their personal data is now in the hands of an intruder. The horrible experiences of others can 
be a powerful motivator that counteracts the normalcy bias. Collect the anecdotes and experiences of 
others who have not followed best practices and use that information to support a change in practices. 

Summary 
In this chapter you learned about the influence that cognitive biases have upon following or changing 
better practices. Since software development is significantly impacted by individuals interacting, it 
stands to reason that how an individual or group perceives and thinks about a new and different practice 
is very important. Now that you have read about the gambler’s fallacy, the Dunning-Kruger effect, and 
the group-serving bias it should be clear that rational argument alone is frequently insufficient to 
advance a change in practice. You may need to understand the aversion. You may need to counteract a 
bias. 

 

                                                 
13 For more information see http://en.wikipedia.org/wiki/Normalcy_bias. 
14 Phil Haack describes his experiences at http://haacked.com/archive/2008/08/22/dealing-with-
denial-of-service-attacks.aspx. 

http://en.wikipedia.org/wiki/Normalcy_bias
http://haacked.com/archive/2008/08/22/dealing-with-denial-of-service-attacks.aspx
http://haacked.com/archive/2008/08/22/dealing-with-denial-of-service-attacks.aspx
http://haacked.com/archive/2008/08/22/dealing-with-denial-of-service-attacks.aspx


A P P E N D I X  A 
 

      
 

323 

Resources 

This appendix covers the following topics: 

• General Software Development 

• .NET Guidelines, Patterns, and Practices 

• C# Language 

• Testing and Test Frameworks 

• Debugging and Problem Solving 

• Build Automation 

• Continuous Integration 

• Static Code Analysis 

• Dynamic Code Analysis 

• Security 

• Research Areas 

• Miscellaneous 

Each topic contains the following resources: 

• Books 

• Articles 

• Guides and Tutorials 

• Tools 

General Software Development 

Books 
• Steve McConnell, Rapid Development (Redmond, WA.: Microsoft Press, 1996). 



APPENDIX A  RESOURCES 

324 

• Grady Booch, Object Solutions: Managing the Object-Oriented Project (Menlo Park, 
CA: Addison-Wesley, 1996). 

• Kyle Baley, Donald Belcham, Brownfield Application Development in .NET 
(Greenwich, CT: Manning, 2010). 

• Michael C. Feathers, Working Effectively with Legacy Code (Upper Saddle River, 
NJ: Prentice Hall Professional, 2007). 

• Joachim Rossberg, Pro Visual Studio Team System Application Lifecycle 
Management (New York: Apress, 2008) 

• Will Stott, James Newkirk, Visual Studio Team System: Better Software 
Development for Agile Teams (Upper Saddle River, NJ: Addison-Wesley, 2007) 

• Microsoft Corporation, Building Secure Microsoft ASP.NET Applications 
(Redmond, WA: Microsoft Press, 2003) 

• James Avery, Jim Holmes, Windows Developer Power Tools (Sebastopol, CA: 
O’Reilly Media, Inc., 2006) 

Articles 
• “The Manifesto for Agile Software Development,” agilemanifesto.org. 

• Martin Fowler, “Technical Debt,” 
http://www.martinfowler.com/bliki/TechnicalDebt.html. 

• Martin Fowler, “Technical Debt Quadrant,” 
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html. 

• Jeff Atwood,“Paying Down Your Technical Debt,” 
www.codinghorror.com/blog/2009/02/paying-down-your-technical-debt.html, 
February 27, 2009. 

• Construx Conversations, “Technical Debt,” 
forums.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-
2.aspx. 

• AgileManiac, “Reinvigorated Retrospectives,” agilemaniac.com/tag/4ls. 

• Microsoft web site, “Microsoft Visual Studio Roadmap,” 
www.microsoft.com/visualstudio/en-us/roadmap. 

Guides 
• Available at agilemanifesto.org. 

• Code Kata: codekata.pragprog.com. 

• For a list of wide-ranging brainstorming techniques see 
celestinechua.com/blog/25-brainstorming-techniques. 

• Ward Cunningham Wiki: c2.com/cgi/wiki. 

http://www.martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.codinghorror.com/blog/2009/02/paying-down-your-technical-debt.html
http://www.microsoft.com/visualstudio/en-us/roadmap


APPENDIX A  RESOURCES 

325 

.NET Guidelines, Patterns and Practices 

Books 
• Krzysztof Cwalina, Brad Abrams, Framework Design Guidelines: Conventions, 

Idioms, and Patterns for Reusable .NET Libraries, 2nd Edition (Upper Saddle River, 
NJ: Addison-Wesley Professional, 2008). This book contains many best practices 
for designing reusable libraries for the Microsoft .NET Framework. 

• Steve McConnell, Code Complete (Redmond, WA: Microsoft Press, 2004). 

• Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship 
(Upper Saddle River, NJ: Prentice Hall, 2008). 

• Kevlin Henney, 97 Things Every Programmer Should Know: Collective Wisdom 
from the Experts (Sebastopol, CA: O’Reilly Media, Inc., 2010). 

• Martin Fowler, Kent Beck, Refactoring: Improving the Design of Existing Code 
(Reading, MA: Addison-Wesley Professional, 1999). 

• Kent Beck, Implementation Patterns (Upper Saddle River, NJ: Addison-Wesley 
Professional, 2008). 

• Adam Freeman, Steven Sanderson, Pro ASP.NET MVC 3 Framework, Third Edition 
(New York: Apress, 2011). 

• Books from Microsoft patterns & practices: 
msdn.microsoft.com/en-us/practices/hh124092. 

Articles 
• Michael Howard, “8 Simple Rules For Developing More Secure Code,” 

msdn.microsoft.com/en-us/magazine/cc163518.aspx, MSDN Magazine, November 
2006.  

• John Robbins, “Bad Code? FxCop to the Rescue,” 
msdn.microsoft.com/en-us/magazine/cc188721.aspx, MSDN Magazine, June 2004.  

• Niraj Bhatt, “MVC vs. MVP vs. MVVM,” 
nirajrules.wordpress.com/2009/07/18/mvc-vs-mvp-vs-mvvm, 2011. 

• Martin Fowler, “Inversion of Control Containers and the Dependency Injection 
pattern,” martinfowler.com/articles/injection.html, 2004. 

• Elegant Code, “IoC Libraries Compared,” 
elegantcode.com/2009/01/07/ioc-libraries-compared, 2009. 

• MSDN Library, “Managed Extensibility Framework (MEF) Overview,” 
msdn.microsoft.com/en-us/library/dd460648.aspx, 2010. 

• Ayende@Rahien, “The Managed Extensibility Framework,” 
ayende.com/blog/3611/the-managed-extensibility-framework, 2008. 



APPENDIX A  RESOURCES 

326 

Guides and Tutorials 
• MSDN Library, “Design Guidelines for Developing Class Libraries,” 

msdn.microsoft.com/en-us/library/ms229042.aspx. 

• Gendarme Rules: www.mono-project.com/Gendarme. 

• StyleCop documentation: stylecop.codeplex.com/documentation. 

• Microsoft patterns & practices Developer’s Guide: 
msdn.microsoft.com/en-us/library/ff953181(v=PandP.50).aspx. 

• Encodo C# Handbook: archive.msdn.microsoft.com/encodocsharphandbook. 

• Microsoft All-In-One Code Framework: 1code.codeplex.com. 

• Idesign C# Coding Standards: www.idesign.net. 

• CAT.NET Rules: www.microsoft.com/security/sdl/adopt/tools.aspx. 

C# Language 

Books 
• Joseph Albahari, Ben Albahari, C# 4.0 in a Nutshell (Sebastopol, CA: O’Reilly 

Media, Inc., 2010). 

• Jon Skeet, C# in Depth, 2nd Edition (Greenwich, CT: Manning, 2008). 

• Andrew Troelsen, Pro C# 2010 and the .NET 4 Platform, 5th Edition (New York: 
Apress, 2010). 

Articles 
• Developer Journey, “Code Contracts,” 

http://devjourney.com/blog/code-contracts-part-1-introduction. A very 
comprehensive treatment of Code Contracts in this 14-part series of blog postings, 
2010. 

Testing and Test Frameworks 

Books 
• Roy Osherove, The Art of Unit Testing (Greenwich, CT: Manning, 2009). 

• Andy Hunt, Dave Thomas, Matt Hargett, Pragmatic Unit Testing in C# with NUnit 
(Raleigh, NC: Pragmatic Bookshelf, 2007). 

• Cem Kaner, James Bach, Bret Pettichord, Lessons Learned in Software Testing: a 
Context-Driven Approach (New York: Wiley, 2002). 

http://www.mono-project.com/Gendarme
http://www.idesign.net
http://www.microsoft.com/security/sdl/adopt/tools.aspx
http://devjourney.com/blog/code-contracts-part-1-introduction


APPENDIX A  RESOURCES 

327 

• James Avery, Jim Holmes, Windows Developer Power Tools, (Sebastopol, CA: 
O’Reilly Media, Inc., 2007) 

• Steve Freeman, Nat Pryce, Growing Object-Oriented Software, Guided by Tests 
(Upper Saddle River, NJ: Addison-Wesley Professional, 2009) 

• David Astels, Test-Driven Development: a Practical Guide (Prentice Hall PTR, 
2003). 

• Automation 

• James D. McCaffrey, .NET Test Automation Recipes: a Problem-Solution 
Approach (New York: Apress, 2006). 

• Daniel J. Mosley, Bruce A. Posey, Just Enough Software Test Automation 
(Upper Saddle River, NJ: Prentice Hall Professional, 2002). 

• Web Testing 

• Jeff McWherter, Ben Hall, Testing ASP.NET Web Applications (Indianapolis: 
John Wiley & Sons, 2011). 

• Alan John Richardson, Selenium Simplified (Compendium Developments, 
2010). 

• Gojko Adzic, Test Driven .NET Development with FitNesse, (London: Neuri, 
2008). 

Articles 
• Agile Data, “Introduction to Test Driven Design (TDD),” 

www.agiledata.org/essays/tdd.html. 

• “Arrange Act Assert (3-As) pattern,” c2.com/cgi/wiki?ArrangeActAssert. 

• Will Stott and James Newkirk, MSDN Magazine, “Improve the Design and 
Flexibility of Your Project with Extreme Programming Techniques,” 
msdn.microsoft.com/en-us/magazine/cc163982.aspx, April 2004. 

• Codevanced, “Mocking Frameworks Comparison,” 
codevanced.net/post/Mocking-frameworks-comparison.aspx. 

Guides and Tutorials 
• MSDN Library, “Guidelines for Test-Driven Development,” 

msdn.microsoft.com/en-us/library/aa730844(v=vs.80).aspx 

• Open Source C# Testing Tools: csharpopensource.com/csharptesting.aspx 

• Open Source Web Testing Tools: csharpopensource.com/webtesting.aspx 

http://www.agiledata.org/essays/tdd.html


APPENDIX A  RESOURCES 

328 

Tools 
• Test Runner: 

• Visual Studio Unit Testing Framework (MSTest): 
msdn.microsoft.com/en-us/library/ms243147.aspx 

• NUnit: www.nunit.org 

• xUnit.net: xunit.codeplex.com 

• MbUnit: mbunit.com 

• Mock Object Framework: 

• Moq: code.google.com/p/moq 

• TypeMock: www.typemock.com 

• NMock 2: sourceforge.net/projects/nmock2 

• Rhino-Mocks: github.com/ayende/rhino-mocks 

• Browser Automation 

• Coded UI Test (Visual Studio UI Automation Testing): 
msdn.microsoft.com/en-us/library/dd286681.aspx 

• Lightweight Test Automation Framework: aspnet.codeplex.com 

• Selenium: seleniumhq.org 

• WatiN: watin.org 

• NUnit Test Generator: 
www.kellermansoftware.com/p-30-nunit-test-generator.aspx 

• Pex and Moles: research.microsoft.com/en-us/projects/pex/downloads.aspx 

• NDbUnit: code.google.com/p/ndbunit 

• MvcIntegrationTestFramework: 
blog.stevensanderson.com/2009/06/11/integration-testing-your-aspnet-mvc-
application 

• SMTP Server Emulation for Developers: 
antix.co.uk/Projects/SMTP-Impostor-an-SMTP-server-for-developers 

Debugging and Problem Solving 

Books 
• Darin Dillon, Debugging Strategies For .NET Developers (Berkeley, CA: Apress, 

2003). 

http://www.nunit.org
http://www.typemock.com
http://www.kellermansoftware.com/p-30-nunit-test-generator.aspx


APPENDIX A  RESOURCES 

329 

• Mario Hewardt, Advanced .NET Debugging (Upper Saddle River, NJ: Addison-
Wesley Professional, 2010). 

• John Robbins, Debugging Microsoft .Net 2.0 Applications (Redmond, WA: 
Microsoft Press, 2007). 

• Dean L. Gano, Apollo Root Cause Analysis: A New Way of Thinking (Richland, WA: 
Apollonian Publications, 2008). 

Articles 
• Dean Gano, “Effective Solutions vs the Root Cause Myth,” 

www.apollorca.com/_public/site/files/Effective%20Solutions%20vs%20Root%20C
ause%20Myth.pdf. 

Tools 
• Debugging Tools Download: 

www.microsoft.com/download/en/details.aspx?id=10640 

Build Automation 

Books 
• Sayed Ibrahim Hashimi, William Bartholomew, Inside the Microsoft Build Engine: 

Using MSBuild and Team Foundation Build, (Redmond, WA: Microsoft Press, 
2011). 

• Sayed Ibrahim Hashimi, Deploying .NET Applications: Learning MSBuild and 
ClickOnce, (Berkeley, CA: Apress 2006). 

• Mike Clark, Pragmatic Project Automation: How to Build, Deploy, and Monitor 
Java Applications (Raleigh, NC: Pragmatic Bookshelf, 2004). 

Articles 
• MSDN, “Logging in MSBuild,” msdn.microsoft.com/en-us/library/bb651789.aspx. 

• MSDN, “Well-known Item Metadata,” 
msdn.microsoft.com/en-us/library/ms164313(v=VS.100).aspx. 

• MSDN, “MSBuild Inline Tasks,” 
msdn.microsoft.com/en-us/library/dd722601.aspx. 

• Vishal Joshi, “Web Packaging: Creating web packages using MSBuild,” 
vishaljoshi.blogspot.com/2009/02/web-packaging-creating-web-packages.html, 
2009. 

http://www.apollorca.com/_public/site/files/Effective%20Solutions%20vs%20Root%20C
http://www.microsoft.com/download/en/details.aspx?id=10640


APPENDIX A  RESOURCES 

330 

• Andrei Volkov, “How to ‘Package/Publish’ Web Site project using VS2010 and 
MSBuild,” zvolkov.com/blog/post/2010/05/18/How-to-Publish-Web-Site-
project-using-VS2010-and-MsBuild.aspx, 2010. 

• MSDN, “How to: Transform Web.config When Deploying a Web Application 
Project,” msdn.microsoft.com/en-us/library/dd465318.aspx. 

• Scott Hanselman, “Web Deployment Made Awesome: If You're Using XCopy, 
You’re Doing It Wrong,” 
www.hanselman.com/blog/WebDeploymentMadeAwesomeIfYoureUsingXCopyYoureDoing
ItWrong.aspx, 2010. 

•  “Troubleshooting Common MSDeploy Issues,” 
blogs.iis.net/kateroh/archive/2009/06/05/troubleshooting-common-msdeploy-
issues.aspx, June 5, 2009. 

• Kristina Olson, “Code Download and the Web Deployment Tool (MSDeploy) - 
Remote Management options,”blogs.iis.net/krolson/archive/2010/01/27/code-
download-and-the-web-deployment-tool-msdeploy-remote-management-
options.aspx, January 27, 2010. 

• Sourceforge, “NAnt Fundamentals,” 
nant.sourceforge.net/release/latest/help/fundamentals. 

• Davesquared.net,“Basic .NET builds using Rake,” 
www.davesquared.net/2009/04/basic-net-builds-using-rake.html. 

Guides and Tutorials 
• MSBuild team blog: blogs.msdn.com/b/msbuild 

• Visual Studio blog: blogs.msdn.com/b/visualstudio/archive/tags/msbuild 

• Sayed Ibrahim Hashimi blog: sedodream.com 

• Mike Fourie blog: mikefourie.wordpress.com 

• MSBuild: By Example: en.csharp-online.net/MSBuild:_By_Example 

• 7 Steps to MSBuild: brennan.offwhite.net/blog/2006/11/30/7-steps-to-msbuild 

• Buck Hodges blog: blogs.msdn.com/b/buckh 

Tools 
• Build Tools: see Table 10-2 

• MSBuild Extension Pack: msbuildextensionpack.codeplex.com 

• Community TFS Build Extensions: tfsbuildextensions.codeplex.com 

• MSBuild Community Tasks Project: msbuildtasks.tigris.org 

• Web Deploy 2.0: www.iis.net/download/webdeploy 

http://www.hanselman.com/blog/WebDeploymentMadeAwesomeIfYoureUsingXCopyYoureDoing
http://www.davesquared.net/2009/04/basic-net-builds-using-rake.html
http://www.iis.net/download/webdeploy


APPENDIX A  RESOURCES 

331 

• Windows Installer XML (WiX) Toolset: wix.sourceforge.net 

Continuous Integration 

Books 
• Marcin Kawalerowicz, Craig Berntson,Continuous Integration in .NET (Greenwich, 

CT: Manning Publications, 2011). 

• Paul M. Duvall, Steve Matyas, Andrew Glover, Continuous Integration: Improving 
Software Quality and Reducing Risk, (Upper Saddle River, NJ: Addison-Wesley, 
2007). 

• John Ferguson Smart, Jenkins: The Definitive Guide (Sebastopol, CA: O’Reilly 
Media, Inc., 2011). 

Articles 
• The original CI article: 

http://martinfowler.com/articles/originalContinuousIntegration.html. 

• Ward Cunningham describes Integration Hell in his wiki: 
c2.com/cgi/wiki?IntegrationHell. 

Guides and Tutorials 
• JetBrains provides a getting started guide for TeamCity: 

http://confluence.jetbrains.net/display/TCD65/Getting+Started. 

• CruiseControl.NET provides installation and getting started guides on their 
project website: http://www.cruisecontrolnet.org/projects/ccnet. 

• David Veksler provides a jumpstart for CI with TFS 2010: 
http://dotmac.rationalmind.net/2011/03/continuous-integration-with-tfs/. 

• Patrick Weibel provides a Jenkins jumpstart for .NET development: 
http://blog.eweibel.net/?p=982. 

Tools 
• TFS 2010 Power Tools: http://msdn.microsoft.com/en-us/vstudio/bb980963. 

• CCNetConfig is a GUI tool to manage CC.NET configuration files: 
http://ccnetconfig.codeplex.com/. 

• Continuous Integration servers: see Table 11-2 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://martinfowler.com/articles/originalContinuousIntegration.html
http://confluence.jetbrains.net/display/TCD65/Getting+Started
http://www.cruisecontrolnet.org/projects/ccnet
http://dotmac.rationalmind.net/2011/03/continuous-integration-with-tfs/
http://blog.eweibel.net/?p=982
http://msdn.microsoft.com/en-us/vstudio/bb980963
http://ccnetconfig.codeplex.com/


APPENDIX A  RESOURCES 

332 

Static Code Analysis 

Books 
• Brian Chess, Jacob West, Secure Programming with Static Analysis (Upper Saddle 

River, NJ: Addison-Wesley, 2007). 

• Donis Marshall, John Bruno, Solid Code: Optimizing the Software Development 
Life Cycle (Redmond, WA: Microsoft Press, 2009). Chapter 10 provides an overview 
of code analysis and quality metrics. 

Articles 
• Scott Hanselman, “Educating Programmers with Placemats - NDepend Static 

Analysis Poster,” 
www.hanselman.com/blog/EducatingProgrammersWithPlacematsNDependStaticAnaly
sisPoster.aspx, June 2, 2007. Scott Hanselman provides a great overview of the 
NDepend metrics in this blog post. 

• MSDN, “Analyzing Managed Code Quality by Using Code Analysis,” 
msdn.microsoft.com/en-us/library/dd264939.aspx. 

• CodePlex, “A Brief History of C# Style,” 
stylecop.codeplex.com/wikipage?title=A%20Brief%20History%20of%20CSharp%20S
tyle. 

• John Robbins, “Bad Code? FxCop to the Rescue,”  
msdn.microsoft.com/en-us/magazine/cc188721.aspx, MSDN Magazine, June 2004. 

• Anoop Madhusudanan, “Top 5 Common programming mistakes .NET developers 
must avoid !!” www.amazedsaint.com/2010/02/top-5-common-programming-
mistakes-net.html, February 8, 2010. 

• Jeff Atwood, “Code Smells,” www.codinghorror.com/blog/2006/05/code-
smells.html, May 18, 2006. 

Guides and Tutorials 
• Visual Studio 2010 Code Analysis Rule Set Reference for Managed Code: 

msdn.microsoft.com/en-us/library/dd264925.aspx 

• StyleCop documentation: stylecop.codeplex.com/documentation 

• JetBrains Code Inspection wiki: 
confluence.jetbrains.net/display/ReSharper/Code+Inspection+Wiki 

Tools 
• StyleCop: stylecop.codeplex.com. 

http://www.hanselman.com/blog/EducatingProgrammersWithPlacematsNDependStaticAnaly
http://www.amazedsaint.com/2010/02/top-5-common-programming-mistakes-net.html
http://www.amazedsaint.com/2010/02/top-5-common-programming-mistakes-net.html
http://www.amazedsaint.com/2010/02/top-5-common-programming-mistakes-net.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html


APPENDIX A  RESOURCES 

333 

• Gendarme: www.mono-project.com/Gendarme. Gendarme is a rule-based tool to find 
problems in .NET applications and libraries. 

• ReSharper: www.jetbrains.com/resharper/. 

• . NET Assembly Browsing and Decompiling (see Table 12-3). 

• Differencing: see Table 12-4. 

• Duplicate Code Finders: see Table 12-5. 

• Architecture and Design: see Table 12-8. 

Dynamic Code Analysis 

Books 
• Michael Sutton, Adam Greene, Pedram Amini, Fuzzing: Brute Force Vulnerability 

Discovery (Upper Saddle River, NJ: Addison-Wesley, 2007). 

• Ian Molyneaux, The Art of Application Performance Testing (Sebastopol, CA: 
O’Reilly Media, Inc., 2009). Effective automated performance testing is a big part 
of dynamic code analysis. 

• Microsoft Corporation, J. Meier, Performance Testing Guidance for Web 
Applications (Redmond, WA: Microsoft Press, 2007). This book is available in PDF 
from Microsoft patterns & practices: 
http://www.codeplex.com/PerfTestingGuide/Release/ProjectReleases.aspx?Rele
aseId=6690. 

Articles 
• Rahul V. Patil, Boby George, “Tools And Techniques to Identify Concurrency 

Issues,” http://msdn.microsoft.com/en-us/magazine/cc546569.aspx, MSDN 
Magazine, June 2008 . 

Guides and Tutorials 
• Terrence Dorsey, “Tools and Techniques for .NET Code Profiling,” 

http://msdn.microsoft.com/en-us/magazine/hh288073.aspx, MSDN Magazine, 
July 2011. 

• Visual Studio 2010 Ultimate, “Testing Application Performance and Stress,” 
http://msdn.microsoft.com/en-us/library/dd293540.aspx. 

• Visual Studio 2010 Ultimate, “Creating and Editing Load and Web Performance 
Tests,” http://msdn.microsoft.com/en-us/library/ee923687.aspx 

•  “Visual Studio 2010 Walkthrough: Run Tests and View Code Coverage,” 
http://msdn.microsoft.com/en-us/library/ms182534.aspx. 

http://www.mono-project.com/Gendarme
http://www.jetbrains.com/resharper/
http://www.codeplex.com/PerfTestingGuide/Release/ProjectReleases.aspx?Rele
http://msdn.microsoft.com/en-us/magazine/cc546569.aspx
http://msdn.microsoft.com/en-us/magazine/hh288073.aspx
http://msdn.microsoft.com/en-us/library/dd293540.aspx
http://msdn.microsoft.com/en-us/library/ee923687.aspx
http://msdn.microsoft.com/en-us/library/ms182534.aspx


APPENDIX A  RESOURCES 

334 

Tools 
• Performance 

• Microsoft Visual Studio Ultimate and Premium: 
www.microsoft.com/visualstudio/en-us/products 

• JetBrains dotTrace: www.jetbrains.com/profiler 

• Red Gate Software ANTS Performance Profiler: www.red-
gate.com/products/dotnet-development/ants-performance-profiler 

• EQATEC Profiler: eqatec.com/Profiler/Home.aspx 

• Code Coverage: see Table 12-10 

• Query Profiling: see Table 12-11 

Security 

Books 
• J. D. Meier, Improving Web application security: threats and countermeasures, 

(Redmond, WA: Microsoft, 2003). 

• Frank Swiderski, Window Snyder, Threat Modeling (Redmond, WA: Microsoft 
Press, 2004.) 

Articles 
• Michael Howard, “A Look Inside the Security Development Lifecycle at 

Microsoft,” msdn.microsoft.com/en-us/magazine/cc163705.aspx. 

• Microsoft Security Development Lifecycle, “Writing Fuzzable Code,” 
blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx. 

• Microsoft Security Development Lifecycle, “Microsoft Security Development 
Lifecycle Process Tools,” www.microsoft.com/security/sdl/adopt/tools.aspx. 

• Michael Howard, “8 Simple Rules For Developing More Secure Code,” 
msdn.microsoft.com/en-us/magazine/cc163518.aspx, MSDN Magazine, November 
2006, 

• MSDN, “Security in the .NET Framework,” msdn.microsoft.com/en-
us/library/fkytk30f.aspx. 

• Michael Howard, “Threat Models Improve Your Security Process,” 
msdn.microsoft.com/en-us/magazine/dd148644.aspx, MSDN Magazine, November 
2008. 

• Marcus Ranum, Fred Avolio, “Seven Tenets of Good Security,” 
www.avolio.com/papers/7tenets.html. 

http://www.microsoft.com/visualstudio/en-us/products
http://www.jetbrains.com/profiler
http://www.red-gate.com/products/dotnet-development/ants-performance-profiler
http://www.red-gate.com/products/dotnet-development/ants-performance-profiler
http://www.red-gate.com/products/dotnet-development/ants-performance-profiler
http://www.microsoft.com/security/sdl/adopt/tools.aspx
http://www.avolio.com/papers/7tenets.html


APPENDIX A  RESOURCES 

335 

• Peter Torr, MSDN Blogs, “High-Level Threat Modelling Process,” 
blogs.msdn.com/b/ptorr/archive/2005/02/08/368881.aspx, February 8, 2005. 

• Peter Torr, MSDN Blogs, “Guerrilla Threat Modeling,” 
blogs.msdn.com/b/ptorr/archive/2005/02/22/guerillathreatmodelling.aspx, 
February 22, 2005. 

• MSDN, “ASP.NET Security,” msdn.microsoft.com/en-us/library/91f66yxt.aspx. 

Guides and Tutorials 
• Security and Identity: 

msdn.microsoft.com/en-us/library/ee663293(v=VS.85).aspx 

• Secure Coding Guidelines: msdn.microsoft.com/en-us/library/8a3x2b7f.aspx 

• MSDN Blogs, Security Tools: blogs.msdn.com/b/securitytools 

• Microsoft Security Development Lifecycle Core Training classes: 
www.microsoft.com/download/en/details.aspx?displaylang=en&id=16420. 
Microsoft made its four core SDL Training classes available to the public. 

• Security How-to Topics: msdn.microsoft.com/en-us/library/ms172378.aspx 

• Microsoft Security Development Lifecycle (SDL) – Process Guidance: 
msdn.microsoft.com/en-us/library/cc307891.aspx 

Tools 
• Microsoft Web Protection Library: wpl.codeplex.com 

Microsoft Research 
• Microsoft Research: research.microsoft.com. 

• DevLabs: msdn.microsoft.com/en-us/devlabs. 

• Spec#: research.microsoft.com/en-us/projects/specsharp 

• Automated Test Generation: research.microsoft.com/en-us/projects/atg 

• Pex and Moles - Isolation and White box Unit Testing for .NET: 
research.microsoft.com/en-us/projects/pex 

• Holmes: Automated Statistical Debugging for .NET: 
research.microsoft.com/en-us/projects/holmes 

• Code Contracts: research.microsoft.com/en-us/projects/contracts 

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=16420


APPENDIX A  RESOURCES 

336 

Miscellaneous 

Books 
• Stephen R. Covey, Principle Centered Leadership (New York: Summit, 1991). 

• Richards J Heuer, Psychology of Intelligence Analysis (Washington, DC: Center for 
the Study of Intelligence, Central Intelligence Agency, 1999). 

• Richard Marcinko, Leadership Secrets of the Rogue Warrior: A Commando's Guide 
to Success (New York: Simon and Schuster, 2000). 

• Stephen M. R. Covey, Rebecca R. Merrill, Stephen R. Covey, The Speed of Trust: 
The One Thing That Changes Everything (New York, Simon and Schuster, 2008) 

• Fergus O’Connell, How to Run Successful Projects III: the Silver Bullet (New York: 
Addison Wesley, 2001). 

• Fergus O’Connell, The Competitive Advantage of Common Sense: Using the Power 
You Already Have (FT Press, 2003). 

Articles 
• Joel Spolsky, “A Little Less Conversation,” www.inc.com/magazine/20100201/a-

little-less-conversation.html, Inc. Magazine, Feb 2010. 

• Wikipedia, “Cognitive bias,” en.wikipedia.org/wiki/Cognitive_bias. 

• Wikipedia, “List of cognitive biases,” 
en.wikipedia.org/wiki/List_of_cognitive_biases. 

 

http://www.inc.com/magazine/20100201/a-little-less-conversation.html
http://www.inc.com/magazine/20100201/a-little-less-conversation.html
http://www.inc.com/magazine/20100201/a-little-less-conversation.html


A P P E N D I X  B 
 

      
 

337 

Scorecard 

A scorecard is any structured report that helps guide and monitor the activities and actions that relate to 
an initiative. Steve McConnell created the Software Project Survival Test as a way to score software 
project management.1 His test is a scorecard that helps estimate a project’s risks and identifies areas for 
improvement. 

In this book, the entire thrust and theme is that you, your team, or your organization is undertaking 
an initiative to adopt new or different .NET practices. The goal is to achieve positive outcomes through 
better practices. Having the right scorecard helps in the following ways: 

• Establishes a list of valued and relevant practices 

• Shows off the practices that are being followed 

• Identifies practices that are not being followed 

• Helps track and monitor progress 

As mentioned in Chapter 1, any choice of a new or different practice ought to be a better practice 
that is entirely appropriate to your situation. The scorecard presented in this appendix is based on many 
practices described in the book. The goal is to provide you with an example that is a starting point. Feel 
free to expand and adapt the scorecard, as appropriate, to suit your circumstances. Certainly cross out 
any practices that do not make sense or are not applicable. The Excel spreadsheet file 
Samples\AppB\DotNetBestPracticesScorecard.xls is a simple way to track and compute the overall score. 
To keep things uncomplicated, the scorecard only includes the following practice areas: 

• Automated Testing 

• Build Automation 

• Continuous Integration 

• Code Analysis 

Within the sections that follow, there are questions that assess the degree to which practices are 
being followed. Consider each question and provide a score for the answer: 

• 5 – Yes, we are completely there. 

                                                 
 
1 For more information see Steve McConnell, Software Project Survival Guide (Redmond, WA: Microsoft 
Press, 1998). 



APPENDIX B  SCORECARD 

338 

• 4 – Probably, we are mostly there, or it is almost done. 

• 3 – Somewhat, we are making good progress, or there is more to be done. 

• 2 – Kind of, we have just started, or there is quite a lot to be done. 

• 1 – Planning, we want to start, or it is under investigation. 

• 0 – No, not at all. 

The section at the end of this appendix explains how to interpret the score. 

Automated Testing 
To score this practice area, provide a numeric score to the questions in Tables B-1. The numeric score 
ranges from 0 through 5, as described at the beginning of this appendix.  

Table B-1. Scorecard for Automated Testing Practices 

Practice Assessment Score 

Is the team focused on writing maintainable test code?  

Has the team adopted an effective naming convention for test code?  

Does the team use the Arrange-Act-Assert (3-As) pattern, or any other effective pattern?  

Does the team write test code as short test methods?  

Does the team avoid writing more than one line of “test action” in the test method?  

Does the team avoid writing more than one “primary assertion” in the test method?  

Does the team avoid explicit typing of local variables in test code?  

Does the team use a “tests context” class to reduce repetition and manage test code 
complexity? 

 

Does the team write “test helper” classes to promote reuse?  

Does the team “data drive” the test methods when there are multiple test cases?  

Does the team perform boundary analysis to ensure that tests cover all scenarios?  

Does the team use stub objects to test in isolation?  

Does the team use only one mock object within a test method when testing interaction?  

 



APPENDIX B  SCORECARD 

339 

Add up the scores in Table B-1 and enter the section score in the formula below. There are 13 
questions in this section. Take the section score, divide it by 65, and multiply the result by 100 to 
compute a percentage. 

 
( ______________ / 65) * 100 = ____________ % 
    section score 

Build Automation 
To score this practice area, provide a numeric score to the questions in Tables B-2. The numeric score 
ranges from 0 through 5, as described at the beginning of this appendix.  

Table B-2. Scorecard for Build Automation Practices 

Practice Assessment Score 

Has the team learned the fundamentals of build automation scripting?  

Is the team able to use logging to diagnose build script issues?  

Are the scripts written to use parameters to provide variables and control logic?  

Is the team able to extend the build automation scripts by using task libraries?  

Does the team’s build script import common script to promote reuse across projects?  

Does the build script make effective use of the date, time, and duration functions?  

Does the build script update the assembly version to tie it back to the build and revision 
number? 

 

Is the build script able to read and write XML data?  

Is the build script able to archive build artifacts?  

Is the build script able to deploy the one set of build artifacts to multiple target environments?  

Does the build script package deliverables using an approach that works for both the team and 
the customer? 

 

Does the build script use an approach that makes deployments automated, robust, and 
reliable? 

 

 
Add up the scores in Table B-2 and enter the section score in the formula below. There are 12 

questions in this section. Take the section score, divide it by 60, and multiply the result by 100 to 
compute a percentage. 

 



APPENDIX B  SCORECARD 

340 

( ______________ / 60) * 100 = ____________ % 
    section score 

Continuous Integration 
To score this practice area, provide a numeric score to the questions in Tables B-3. The numeric score 
ranges from 0 through 5, as described at the beginning of this appendix.  

Table B-3. Scorecard for Continuous Integration Practices 

Practice Assessment Score 

Does the team use a continuous integration (CI) server?  

Is a rebuild triggered after every source code push?  

Does the CI server start rebuilding with a clean working folder?  

Are the build artifacts organized in an effective manner?  

Does the CI server run all automated tests to confirm that the latest build works as intended?  

Does the CI server perform code analysis monitoring and report failures if violations occur?  

Does the CI server generate full and complete analysis reports for ongoing review?  

Does the CI server package the components and content into one deliverable?  

Is the CI server able to use one script to deploy to any of the target environments?  

Is the CI server able to run automated smoke tests to verify that a deployment is deployed 
properly? 

 

Is the CI server able to run stability tests to verify that the deployment is ready for quality 
assurance testers? 

 

Is the CI server able to generate reports and keep metrics that demonstrate progress and 
delivery? 

 

 
Add up the scores in Table B-3 and enter the section score in the formula below. There are 12 

questions in this section. Take the section score, divide it by 60, and multiply the result by 100 to 
compute a percentage. 

 
( ______________ / 60) * 100 = ____________ % 
    section score 



APPENDIX B  SCORECARD 

341 

Code Analysis 
To score this practice area, provide a numeric score to the questions in Tables B-4. The numeric score 
ranges from 0 through 5, as described at the beginning of this appendix.  

Table B-4. Scorecard for Code Analysis Practices 

Practice Assessment Score 

Is the team thoroughly analyzing assemblies using one or more static code analysis tools?  

Does the build fail when there are violations of required static code analysis rules?  

Is the team able to decompile an assembly if there is a need to analyze, understand, or 
troubleshoot an issue? 

 

Does the team use a tool to help everyone comply with coding standards?  

Does the build fail when there are violations of mandatory coding standards?  

Is the team able to use a thorough differencing tool to analyze, understand, and troubleshoot 
an issue? 

 

Is the team able to find and address all inappropriate duplication of source code?  

Does the team perform architecture and design analysis to compare as-planned to as-built 
designs? 

 

Is the team able to run the automated tests with a code coverage analysis tool?  

Does the build run automated tests with a code coverage analysis tool?  

Is the team able to profile the system’s performance?  

Does the team profile the system’s performance on a regular basis?  

Is the team able to examine database queries with a query profiler?  

Does the system incorporate a flexible logging solution to monitor and diagnose the system?  

 
Add up the scores in Table B-4 and enter the section score in the formula below. There are 14 

questions in this section. Take the section score, divide it by 70, and multiply the result by 100 to 
compute a percentage. 

 
( ______________ / 70) * 100 = ____________ % 
    section score 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



APPENDIX B  SCORECARD 

342 

Calculating the Overall Score 
To interpret the results you must calculate an overall score. The result is a high-level number that can be 
used to report and track overall progress. If tracked over the course of a “best practices initiative” this 
overall score can help management and others quickly see the strides the team is making toward 
following better practices. 

Add up the section scores and enter the total score in the formula below. There are 51 questions in 
all. Take the total score, divide it by 255, and multiply the result by 100 to compute a percentage. 

 
( ______________ / 255) * 100 = ____________ % 
    total score 
 
Depending on the overall score, there are some comments that can be made. If the team’s score is at 

80% or above then congratulations are in order. If the team’s score is at or above 60% but is below 80% 
then that is good, although there are improvements to be made. If the score is below 60%, there is much 
work to do. The good news is that you are motivated to learn and adopt better practices. Further 
comments are in the breakdown shown in Table B-5. 

Table B-5. Score Comments 

Overall Score Comments 

90% or above Excellent. Outstanding achievement. The team has mastered the objectives and is 
exceeding expectations in all practice areas. 

80 - 89% Very good. Above average achievement. The team has mastered most of the objectives 
and is meeting expectations in most practice areas. Consider new and different 
practices that help target areas to improve efficiency and effectiveness. 

60-79% Good. Satisfactory achievement. The team has mastered the basic objectives in the 
practice areas. Consider new and different practices that are designed to improve 
those practice areas that need improvement. 

40-59% Needs improvement. This is typical for those just starting to adopt better practices. 
Focus on understanding the basic objectives the team needs to master in each practice 
area. Consider new and different practices that help to improve overall efficiency and 
effectiveness. 

Less than 40% At risk. The team recognizes that there are significant weaknesses in major practice 
areas. Focus on understanding how not following better practices creates problems 
and pain points. Consider new and different practices that help with problem 
prevention. 

 

 



 

343 

Index

 A 
Acceptance testing frameworks 

automated, 310 
business-logic acceptance testing, 311–312 
exception handling, 310 
formal acceptance phase, 309 
goal, 309 
informal acceptance phase, 309 
testing with specifications and behaviors, 

310 
Concordion .NET, 311 
FitNesse, 311 
SpecFlow, 311 
test scripts vs. specification, 310 

Achieving desired results 
common understanding, 44 

archetype, 48–49 
detailed examples, 48 
documented architecture, 47 
report mockups, 47 
wireframe diagrams, 45–46 

deliverables, 49–50 
positive outcomes, 50–52 
ruthlessly helpful practices, 37 
success conditions, 39 

attitude, 40, 41 
awareness and acknowledgement, 39 
context and preconditions, 40 
developers, 39 
diversions and distractions, 43 
knowledge, 40, 41 
learning/doing balance, 43–44 
out of scope, 42–43 
priorities, 41 
project inception, 42 
skill, 40, 41 
team leaders, 40 

trends, 52–53 
Application lifecycle management (ALM) 

agile software development, 23 

analogy, 21 
analysis phase, 22 
architecture phase, 22 
development phase, 22, 23 
inception phase, 22 
operations phase, 22 

Archetype, 6 
benefits, 48 
NerDinner application, 49 
vertical slice, 49 

Arrange-Act-Assert (3-As) pattern, 141–142 
Assembly analysis, 236 

FxCop (see FxCop) 
program database, 236 

Assertions 
classic model, 293 

comparison, 293 
conditional, 293 
equality, 293 
identity, 293 
type, 293 
utility, 293 

constraint-based assert model, 293, 294 
Automated integration testing 

performance testing, 169 
smoke testing, 168 
stability testing, 169 

Automated testing 
automated integration testing, 168 

performance testing, 169 
smoke testing, 168 
stability testing, 169 

Brownfield applications, 133–135 
database considerations, 169–170 
fake, stubs and mocks, 161–165 
greenfield applications, 135–136 
model-based testing (MBT), 131 
ruthlessly helpful practices, 130 
security testing, 131 
SLOS software, 131 
surface testing, 129, 165–168 



 INDEX 

344 

Automated testing (cont.) 
test code maintainability, 136 

naming conventions, 137 
test method body, 141 

unit testing (see Unit testing) 
Aversions and biases 

ambiguity effect, 320 
cognitive illusions, 313 
Dunning-Kruger effect, 318 
focusing effect, 320–321 
gambler’s fallacy, 319–320 
group-individual appraisal, 316 
group-serving bias, 315 
hyperbolic discounting, 321 
illusory superiority, 317–318 
normalcy bias, 322 
Ostrich effect, 319 
physiological illusions, 313 
Rosy retrospection, 315–316 
ruthlessly helpful practices, 314 
status quo, 317 
system justification, 317 

 B 
Build automation 

assembly information, 193–194 
automated deployment, 197 

build once, deploy many, 197– 
198 

deployment tools, 200 
packaging tools, 198–199 

build tools, 174–175 
date and time functions, 192–193 
deploying, 173 
import and include tasks, 188–190 
inline tasks, 190–192 
libraries and extensions, 188 
logging, 183 

detailed logging option, 184 
file logging option, 184 
FileLogger facility, 183 
runner.msbuild script file, 183 
verbosity options, 185 

MSBuild fundamentals, 175 
basic tasks, 182–183 
PropertyGroup and ItemGroup, 178– 

182 
tasks and targets, 176–177 

packaging, 173 

parameters and variables, 186–188 
ruthlessly helpful practices, 173 
XML Peek and Poke, 194–195 
Zip archive, 195–197 

 C 
CI lifecycle 

analysis phase, 218 
full analysis, 221 
goals, 219 
monitoring analysis, 220–221 
trigger events, 219 

deployment phase, 223 
deliverables, 225 
schematic representation, 224 
target environments, 225–226 
triggering event, 224 

packaging phase, 221 
deliverables, 222 
schematic representation, 222 
triggering event, 222 

rebuilding phase 
artifacts, 214–215 
clean working folder, 212 
goals, 209 
latest source code, 212–213 
MSBuild configuration, 213–214 
schematic representation, 210 
successful build, 210 
triggers, 211–212 

stability phase, 226 
automated integration testing, 226 
report generation, 228 
run stability test, 228 
schematic representation, 227 
smoke tests, 227 
triggering event, 227 

TeamCity project administration, 208, 209 
unit testing phase, 215 

artifacts, 217 
failed test, 216 
goals, 215 
run unit tests, 217 
schematic representation, 216 
surface tests, 218 
triggering event, 217 

CI servers, 204–205 
CruiseControl.NET, 205–206 
Jenkins, 206 



  INDEX 

345 

Team foundation server (TFS), 207 
TeamCity, 206 
widely-used servers, 204 

Classic assertion model, 293 
Code analysis 

analysis phase, 231 
analyze phase, 231 
architecture and design, 255–257 
assembly analysis (see Assembly analysis) 
code metrics, 257 
dynamic analysis, 231, 258 

code coverage, 259–260 
logging, 263–264 
performance profiling, 261 
query profiling, 262 

improve phase, 231 
monitor phase, 231, 232 
quality assurance metrics, 257–258 
ruthlessly helpful practices, 232 
SLOS software application, 233 
static analysis, 231, 235 

coding standards, 236 
decompiler, 246–247 
differencing tools, 252–253 
duplicate code finders, 253–254 
manual code review, 254 
MSDN, 235 
purposes, 235 
source analysis, 247 
source code/assemblies, 235 
StyleCop (see StyleCop) 

Code Analysis Tool .NET, 34 
Code smells, 97–99 

comments, 102–104 
complicated source code, 104–105 
unused, unreachable, and dead code,  

105 
Code–driven testing. See Unit testing frame- 

works 
Command-line runner. See Echo 
Comparison, classic assertion, 293 
Concordion .NET, 311 
Conditional, classic assertion, 293 
Constraint-based assert model, 293, 294 
Continuous integration (CI) 

lifecycle, 207–209 
ruthlessly helpful practices, 201 
servers, 81, 204–205 

CruiseControl.NET, 205–206 
Jenkins, 206 
Team Foundation Server (TFS), 207 

TeamCity, 206 
widely-used servers, 204 

SLOS software, 203 
Cyclomatic complexity (CCMax), 64 

 D 
Database testing frameworks, NDbUnit, 303 

calling retrieve method, 307 
creation of .NET DataSet schema definition 

file, 305 
database servers, 304 
features, 304 
setting database state, 306–307 
XML data, 305, 306 

Defect tracking system, 19 
DotCover, 275 
.NET code coverage tool. See DotCover 
.NET coding standards and guidelines 

calling virtual methods in constructors, 97–
99 

disposable pattern 
nested using statements, 96–97 
object loses scope, 95–96 
owns native resources and fields, 93–95 

exceptions 
argument exceptions, 92–93 
catching exceptions, 90 
rethrowing exceptions, 91–92 
swallowing exceptions, 89–90 
throwing exceptions, 88 

publicly visible constant fields, 100–101 
return an empty instance, 100 
sources, 87 

AIOCF .NET coding standards, 87 
C# coding guidelines, 87 
CAT.NET rules, 87 
class libraries, 88 
conventions and practices, 88 
FxCop rules, 88 
Gendarme rules, 88 
IDesign C# coding standards, 88 
ReSharper code inspections, 88 

zero-value enum element, 99–100 
.NET Practices 

application lifecycle management (see 
Application lifecycle management 
(ALM)) 

automated testing,15 (see also Automated 
testing) 



 INDEX 

346 

.NET Practices (cont.) 
code analysis, 15 (see also Code analysis) 
continuous integration, 15 (see also 

Continuous integration (CI)) 
internal sources, 17 

defect tracking system, 19 
prospective analysis, 20–21 
retrospective analysis, 20 
technical debt, 18–19 

Microsoft SDL (see Microsoft Security 
Development Security (SDL)) 

patterns and guidance, 23 
dependency injection, 27–28 
framework design guidelines, 24 
Microsoft PnP group, 24–25 
object-to-object mapping, 26–27 
presentation layer design patterns, 25–

26 
research and development, 28 

automated test generation, 29–32 
code contracts, 32–33 

ruthlessly helpful practices, 16 
.NET rules and regulations 

code smells, 97–99 
comments, 102–104 
complicated source code, 104–105 
unused, unreachable, and dead code, 

105 
coding standards and guidelines, 86 

calling virtual methods in constructors, 
97–99 

disposable pattern, 93–97 
exceptions, 88–93 
publicly visible constant fields, 100–101 
return an empty instance, 100 
sources, 87–88 
zero-value enum element, 99–100 

goals, 85 
ruthlessly helpful practices, 85 

Dunning-Kruger effect, 318 

 E 
Echo, 282 
Equality, classic assertion, 293 

 F 
FitNesse, 311 
Flash, 309 

Fuzzing, 33 
FxCop, 235, 236 

application and command-line tool, 237 
brownfield applications, 238 
desktop application, 237 
.NET framework guidelines, 236 
Financial Rewrite project, 243 
FxCopCmd, 245 
general options tab, 240 
Lender.Slos.Financial.dll, 238–242 
mandatory rules, 238 
mandatory rules, violations, 244 
Rethrow to preserve stack detail, 242 
SLOS project, 237 
spelling and analysis options tab, 241 

 G, H 
Gallio test runner, 282 

Echo, 282 
execution log, 282, 283 
Icarus, 282 
Icarus interface, 282 

Gambler’s fallacy, 319–320 

 I, J, K 
Icarus, 282 
Identity, classic assertion, 293 

 L 
Language-integrated query (LINQ), 122 

deferred query, 125–126 
method syntax, 123, 124 
query syntax, 123 
reactive extensions, 127 

 M 
MbUnit testing framework:, 266, 267 
Microsoft All-In-One Code Framework (AIOCF), 

86, 87 
Microsoft patterns and practices (PnP) group, 24 
Microsoft Security Development Lifecycle (SDL) 

CAT.NET, 34 
fuzzing, 33 
MiniFuzz, 34 
phases, 33 



  INDEX 

347 

threat modeling, 33, 34 
WACA, 34 
Windows protection library, 34 

MiniFuzz, 34 
Mock object frameworks 

moles framework, isolation testing, 298 
automated integration testing of 

Import.Load method, 299–300 
Class-Under-Test, Import class, 298 
code-generated stub type, 300 
configuring Visual Studio external tool, 

302 
FileSystem class, external dependency, 

298 
ReadAllText static method, 299 
test run output, 303 
unit testing of Import.Load method, 301 

Rhino Mocks with dynamic fake objects, 
294 

Arrange-Act-Assert pattern test 
methods, 295 

generating stub repositories, 295–296 
interaction testing, 296–297 
limitations, 294 
student class constructor, 295 

stub/mock, 294 
Moles framework, isolation testing 

automated integration testing of 
Import.Load method, 299–300 

Class-Under-Test, Import class, 298 
code-generated stub type, 300 
configuring Visual Studio external tool,  

302 
FileSystem class, external dependency,  

298 
ReadAllText static method, 299 
test run output, 303 
unit testing of Import.Load method,  

301 
MSTest unit testing framework, 266, 267 

 N 
Naming conventions, 137 

namespaces, 139–140 
Test Code, 138 
test methods, 140–141 
tests class, 140 

NerdDinner application, 49 

Non-commented lines of code (NCLOC), 63 
Nullable types, 114–116 
Null-coalescing operator, 116–117 
NUnit console runner, 268 

configuring Visual Studio external tools, 271 
nunit-console.exe program, 271 
test run output, 272 

NUnit GUI runner, 268 
configuring Visual Studio debugger, 270 
documentation, 269 
nunit.exe/nunit-x86.exe, 268 
tree view, 269 

NUnit testing framework:, 266, 267 
NUnitForms, 309 

 O 
Ostrich effect, 319 

 P 
Performance profiling, 276 
Pex and Moles tools 

capabilities, 29 
parameterized unit tests, 30 
sample code, 30 
test cases, 31 

Powerful C# Constructs, 107 
extension methods, 108 

benefits, 111 
helper method approach, 109 
IsWeekend Extension Method, 110 
IsWeekend helper method, 109 
naming conventions, 110 
repeating code, 108 

generics, 121–122 
implicitly typed local variables, 111 

advantages, 114 
anonymous type declaration, 112 
ApplicationCollection class, 113 
fallacies, 112 
Process2 method, 112 
Search method, 113 
var keyword, 112 

LINQ (see LINQ) 
nullable types, 114–116 
null-coalesing operator, 116–117 
optional parameters, 117–121 
ruthlessly helpful practices, 108 



 INDEX 

348 

 Q 
Quantifying value, 55, 57 

anecdotal evidence 
automated deployments, 68 
automated testing, 68 
continuous integration, 68 
end-users testimonials, 69 

ruthlessly helpful practices, 55 
sources of data, 63 

qualitative data, 66, 67 
quantitative data, 63, 65, 66 

stakeholders value, 57 
financial benefits, 57, 58 
individual and team effectiveness, 61, 62 
manageability, 59 
quality attributes, 60 

 R 
Ranorex, 309 
ReSharper test runner, 272 

add-in, 274 
and dotCover, 275, 276 
code inspection, 273 
context menu, 273 
performance profiling, 276 
refactoring functionality, 273 
Unit Test Explorer window, 273, 274 
Unit Test Sessions window, 274, 275 

Retrospective meeting, 20 
Rhino Mocks, 294 

Arrange-Act-Assert pattern test methods, 
295 

generating stub repositories, 295–296 
interaction testing, 296–297 
limitations, 294 
student class constructor, 295 

Ruthlessly helpful practices 
achieving desired results (see Achieving 

desired results) 
archetype, 6 
aversion and biases, 314 
build automation, 173 
code analysis, 232 
continuous integration, 201 
definition, 1 
.Net practices (see .Net practices) 
generally-accepted and widely-used 

practices, 5 

improvement 
balanced approach, 11–12 
delivery, 9–10 
impacts, 8, 9 
improvement, 10–11 
quality, 10 
renewal, 12–13 
sustainability, 13–14 
target areas, 6 

point-of-view and assertion, 2 
powerful C# constructs, 108 
practical application, 3–4 
rapid development, 2 
Steve McConnell’s analysis, 3 
triage principle, 3 
valuable change, 5–6 

 S 
Silverlight, 309 
Silverlight Toolkit, 309 
SpecFlow, 311 
Strategy 

awareness, 73 
Brainstorming techniques, 74–75 
communication, 74, 76–78 
conditions, 73 
events, 73 
failure paths, 73 
monitoring, 76 
patterns, 73 
perception, 73 
planning process, 75–76 

definition, 71 
leverage 

alert system, 83 
automation, 82 
CI server, 81 
experience and expertise, 83–84 

personal process, 78 
commitment to excellence, 79 
effort and perseverance, 80–81 
virtuous discipline, 80 

ruthlessly helpful practices, 72 
Student Loan Origination System (SLOS) software, 

131, 203, 233 
StyleCop, 236, 247 

code cleanup and feedback, 248 
coding standards, 248 
custom MSBuild task, 249–251 



  INDEX 

349 

Financial Rewrite project, 249 
source code-analysis tool, 248 

Surface testing, 165–168 

 T 
Team Foundation Server (TFS), 207 
Teardown method, 285 
Test fixture/context, 285 
Test frameworks 

acceptance testing frameworks, 309 
automated, 310 
business-logic acceptance testing, 311–

312 
exception handling, 310 
formal acceptance phase, 309 
goal, 309 
informal acceptance phase, 309 
testing with specifications and 

behaviors, 310 
best practices, 265 
mock object frameworks, 294 

Moles framework, isolation testing, 298–
303 

Rhino Mocks with dynamic fake objects, 
294–298 

stub/mock, 294 
NDbUnit database testing frameworks, 303 

calling retrieve method, 307 
creation of .NET DataSet schema 

definition file, 305 
database servers, 304 
features, 304 
setting database state, 306–307 
XML data, 305, 306 

test runners, 267 
Gallio test runner, 282–283 
NUnit console runner, 271–272 
NUnit GUI runner, 268–270 
ReSharper test runner, 272–277 
test suite, 267 
Visual Studio test runner, 277–281 
xUnit.net test runner, 283–285 

unit testing frameworks, 266 
MbUnit, 266, 267 
MSTest, 266, 267 
NUnit, 266, 267 
xUnit.net, 266, 267 

user interface testing frameworks, 307 
Flash, 309 

NUnitForms, 309 
Ranorex, 309 
Silverlight, 309 
Silverlight Toolkit, 309 
web application test frameworks, 308 
White, 309 
Windows Forms, 309 
Windows Presentation Foundation 

(WPF), 309 
XUnit test pattern, 285–294 

Test method body, 141 
action steps, 142–144 
Arrange-Act-Assert pattern, 141–142 
helper methods, 151–152 
primary assertion, 144–145 
secondary assertions, 145–147 
short method, 142 
TestCase attributes, 152–154 
Tests Context Class, 148–151 
var keyword, 147–148 

Test runners, 267 
Gallio test runner, 282–283 
NUnit console runner, 271–272 
NUnit GUI runner, 268–270 
ReSharper test runner, 272–277 
test suite, 267 
Visual Studio test runner, 277–281 
xUnit.net test runner, 283–285 

Test suite, 267 
Type, classic assertion, 293 
Typemock Isolator mock object framework, 303 

 U 
Unit test runners 

multiple test frameworks 
DevExpress, 277 
ReSharper, 277 
TestDriven.NET, 277 

performance profiling, 276 
Unit testing 

boundary analysis, 157–158 
explicit preconditions, 160–161 
invalid arguments, 158–160 
Test Code, 154 

Unit testing frameworks, 266 
MbUnit, 267 
MSTest, 267 
NUnit, 267 
xUnit.net, 267 



 INDEX 

350 

User interface (UI) prototypes, 45 
User interface (UI) testing frameworks 

Flash, 309 
NUnitForms, 309 
Ranorex, 309 
Silverlight, 309 
Silverlight Toolkit, 309 
web application test frameworks, 308 

automated, 308 
browser automation, 308 
Lightweight Test Automation 

Framework, 308 
Selenium, 308 
WatiN, 308 

White, 309 
Windows Forms, 309 
Windows Presentation Foundation (WPF), 

309 
Utility, classic assertion, 293 

 V 
Visual Studio test runner, 277 

code coverage, 280 
Code Coverage Detail window, 281 
Code Coverage Results window, 281 
main menu, 277 
Test Results window, 278, 279 
Test View window, 278 

 W 
Web Application Configuration Analyzer, 34 
Web application test frameworks, 308 

automated, 308 

browser automation, 308 
Lightweight Test Automation Framework, 

308 
Selenium, 308 
WatiN, 308 

White, 309 
Windows Forms, 309 
Windows GUI. See Icarus 
Windows Presentation Foundation (WPF), 309 

 X, Y, Z 
xUnit test frameworks. See Unit testing 

frameworks 
XUnit test pattern 

assertions, 292 
classic model, 293 
constraint-based assert model, 293, 294 

FixtureSetup method, 289 
FixtureTeardown method, 289 
identifying fixture setup and teardown 

methods, 287 
identifying test class and fixture, 286, 287 
identifying test method, 285, 286 
teardown method, 285 
test fixture/context, 285 
using NUnit test framework, 287–288 
using Visual Studio test framework, 290–292 

XUnit.net test runner, 283 
console runner, 284 
GUI, 284 
lean framework, 283 
test run output, 285 

xUnit.net unit testing framework, 266, 267 

 



Pro .NET Best Practices 
 

 

 

 

 

 

 

 

 

 

 

 

   

Stephen D. Ritchie 

                                               

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



Pro .NET Best Practices 

Copyright © 2011 by Stephen D. Ritchie 

This work is subject to copyright. All rights are res erved by the Publisher, whether the whole or part of  the material is  
concerned, specifically th e rights of  translati on, repr inting, reuse o f illus trations, recitation, broadcasti ng, 
reproduction on microf ilms or i n any other physical way , an d t ransmission or i nformation stor age an d re trieval, 
electronic adaptation, computer sof tware, or by si milar or d issimilar methodology now known or hereaf ter 
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or 
material supplied specifically for the purpose of being entered and executed on a computer system, for ex clusive use 
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of 
the Copyright Law of the Publisher's location, in i ts current version, and permission for use must always be obtained  
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations 
are liable to prosecution under the respective Copyright Law. 

ISBN-13 (pbk): 978-1-4302-4023-5 

ISBN-13 (electronic): 978-1-4302-4024-2 

Trademarked n ames, logos, an d images may app ear in  this  book. Rather than us e a trademark s ymbol with every 
occurrence of a trademarked name, logo, or ima ge we use the names, logos, and images only in a n editorial f ashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark. 

The use in this  publication of  trade names, tr ademarks, service ma rks, a nd s imilar terms, ev en if th ey a re not 
identified as such, is not to be ta ken as an expres sion of opinion as to whethe r or not they are subject to proprietary  
rights. 

While the advice and inf ormation in this book are believed to be true and accurate at the date of  publication, neither 
the authors nor the editors nor th e publisher can accept any legal responsibility for any errors or o missions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. 

President and Publisher: Paul Manning 
Lead Editor: Jonathan Hassell 
Technical Reviewer: Paul Apostolescu 
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Corne ll, Morgan Ertel, Jonathan Gennick,  

Jonathan Hasse ll, Robe rt Hutchin son, Mich elle Lowman, Jame s Markham,  Mat thew Moodie , Je ff O lson, 
Jeffrey P epper, Douglas Pu ndick, Be n R enow-Clarke, D ominic Shakeshaft, G wenan Sp earing, Matt Wa de, 
Tom Welsh 

Coordinating Editor: Annie Beck 
Copy Editor: Elizabeth Berry 
Compositor: Bytheway Publishing Services 
Indexer: SPI Global 
Artist: SPI Global 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Scie nce+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone  1-800-SPRINGER, f ax (20 1) 348 -4505, e-mail orders-ny@springer-sbm.com, or v isit 
www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED book s may be purchased in bulk f or academic, corporate, or promo tional use. eBoo k 
versions and licenses are also available for most ti tles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales. 

Any source code or other supplementary materials ref erenced by the author  in this te xt is available to readers at 
www.apress.com. For detailed information about how to locate our book’s source code go to  
http://www.apress.com/source-code/. 

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/


This book is dedicated to my family. 

To my wife, Robin 

To my daughters, Dianna and Jessica 

To my stepsons, Devin and Wyatt 

 

Thank you for all your love, support, and encouragement. 

 

 

 
 



v 

Contents 

 About the Author.................................................................................................. xiii 

 About the Technical Reviewer ............................................................................. xiv 

 Acknowledgments ................................................................................................ xv 

 Introduction ......................................................................................................... xvi 

 Chapter 1: Ruthlessly Helpful .................................................................................1 

Practice Selection..............................................................................................................2 
Practicable................................................................................................................................................ 3 
Generally Accepted and Widely Used ....................................................................................................... 5 
Valuable.................................................................................................................................................... 5 
Archetypal ................................................................................................................................................ 6 

Target Areas for Improvement...........................................................................................6 
Delivery..................................................................................................................................................... 9 
Quality .................................................................................................................................................... 10 
Relationships .......................................................................................................................................... 10 

Overall Improvement .......................................................................................................11 
Balance................................................................................................................................................... 11 
Renewal.................................................................................................................................................. 12 
Sustainability .......................................................................................................................................... 13 

Summary .........................................................................................................................14 

 Chapter 2: NET Practice Areas..............................................................................15 

Internal Sources...............................................................................................................17 



 CONTENTS 

vi 

Technical Debt........................................................................................................................................ 18 
Defect Tracking System ......................................................................................................................... 19 
Retrospective Analysis ........................................................................................................................... 20 
Prospective Analysis............................................................................................................................... 20 

Application Lifecycle Management..................................................................................21 
Patterns and Guidance.....................................................................................................23 

Framework Design Guidelines................................................................................................................ 24 
Microsoft PnP Group............................................................................................................................... 24 
Presentation Layer Design Patterns ....................................................................................................... 25 
Object-to-Object Mapping ...................................................................................................................... 26 
Dependency Injection ............................................................................................................................. 27 

Research and Development.............................................................................................28 
Automated Test Generation .................................................................................................................... 29 
Code Contracts ....................................................................................................................................... 32 

Microsoft Security Development Lifecycle ......................................................................33 
Summary .........................................................................................................................35 

 Chapter 3: Achieving Desired Results...................................................................37 

Success Conditions..........................................................................................................39 
Project Inception..................................................................................................................................... 42 
Out of Scope ........................................................................................................................................... 42 
Diversions and Distractions.................................................................................................................... 43 
The Learning/Doing Balance .................................................................................................................. 43 

Common Understanding ..................................................................................................44 
Wireframe Diagrams............................................................................................................................... 45 
Documented Architecture....................................................................................................................... 47 
Report Mockups ..................................................................................................................................... 47 
Detailed Examples .................................................................................................................................. 48 
Build an Archetype ................................................................................................................................. 48 



 CONTENTS 

vii 

Desired Results................................................................................................................49 
Deliverables............................................................................................................................................ 49 
Positive Outcomes.................................................................................................................................. 50 
Trends..................................................................................................................................................... 52 

Summary .........................................................................................................................53 

 Chapter 4: Quantifying Value ................................................................................55 

Value................................................................................................................................57 
Financial Benefits ................................................................................................................................... 57 
Improving Manageability ........................................................................................................................ 59 
Increasing Quality Attributes .................................................................................................................. 60 
More Effectiveness ................................................................................................................................. 61 

Sources of Data ...............................................................................................................63 
Quantitative Data .................................................................................................................................... 63 
Qualitative Data ...................................................................................................................................... 66 
Anecdotal Evidence ................................................................................................................................ 68 

Summary .........................................................................................................................69 

 Chapter 5: Strategy...............................................................................................71 

Awareness .......................................................................................................................73 
Brainstorming......................................................................................................................................... 74 
Planning.................................................................................................................................................. 75 
Monitoring .............................................................................................................................................. 76 
Communication....................................................................................................................................... 76 

Personal Process .............................................................................................................78 
Commitment to Excellence..................................................................................................................... 79 
Virtuous Discipline.................................................................................................................................. 80 
Effort and Perseverance ......................................................................................................................... 80 

Leverage ..........................................................................................................................81 



 CONTENTS 

viii 

Automation ............................................................................................................................................. 82 
Alert System ........................................................................................................................................... 83 
Experience and Expertise ....................................................................................................................... 83 

Summary .........................................................................................................................84 

 Chapter 6: NET Rules and Regulations..................................................................85 

Coding Standards and Guidelines....................................................................................86 
Sources................................................................................................................................................... 87 
Exceptions .............................................................................................................................................. 88 
Disposable Pattern ................................................................................................................................. 93 
Miscellaneous......................................................................................................................................... 97 

Code Smells...................................................................................................................101 
Comments ............................................................................................................................................ 102 
Way Too Complicated ........................................................................................................................... 104 
Unused, Unreachable, and Dead Code ................................................................................................. 105 

Summary .......................................................................................................................105 

 Chapter 7: Powerful C# Constructs.....................................................................107 

Extension Methods ........................................................................................................108 
Implicitly Typed Local Variables ....................................................................................111 
Nullable Types ...............................................................................................................114 

The Null-Coalescing Operator........................................................................................116 
Optional Parameters ......................................................................................................117 

Generics.........................................................................................................................121 
LINQ ...............................................................................................................................122 
Summary .......................................................................................................................127 

 Chapter 8: Automated Testing ............................................................................129 

Case Study.....................................................................................................................131 



 CONTENTS 

ix 

Brownfield Applications.................................................................................................133 
Greenfield Applications..................................................................................................135 

Automated Testing Groundwork ....................................................................................136 
Test Code Maintainability ..............................................................................................136 

Naming Convention .............................................................................................................................. 137 
The Test Method Body.......................................................................................................................... 141 

Unit Testing....................................................................................................................154 
Boundary Analysis ................................................................................................................................ 157 
Invalid Arguments................................................................................................................................. 158 
Invalid Preconditions ............................................................................................................................ 160 

Fakes, Stubs, and Mocks...............................................................................................161 
Isolating Code-Under-Test.................................................................................................................... 162 
Testing Dependency Interaction........................................................................................................... 163 

Surface Testing..............................................................................................................165 
Automated Integration Testing ......................................................................................168 

Database Considerations ...............................................................................................169 
Summary .......................................................................................................................170 

 Chapter 9: Build Automation...............................................................................173 

Build Tools .....................................................................................................................174 
MSBuild Fundamentals..................................................................................................175 

Tasks and Targets ................................................................................................................................ 176 
PropertyGroup and ItemGroup .............................................................................................................. 178 
Basic Tasks .......................................................................................................................................... 182 

Logging ..........................................................................................................................183 
Parameters and Variables..............................................................................................186 

Libraries and Extensions................................................................................................188 



 CONTENTS 

x 

Import and Include.........................................................................................................188 
Inline Tasks....................................................................................................................190 

Common Tasks ..............................................................................................................192 
Date and Time ...................................................................................................................................... 192 
Assembly Info ....................................................................................................................................... 193 
XML Peek and Poke.............................................................................................................................. 194 
Zip Archive............................................................................................................................................ 195 

Automated Deployment .................................................................................................197 
Build Once, Deploy Many...................................................................................................................... 197 
Packaging Tools ................................................................................................................................... 198 
Deployment Tools ................................................................................................................................. 200 

Summary .......................................................................................................................200 

 Chapter 10: Continuous Integration....................................................................201 

Case Study.....................................................................................................................203 
The CI Server .................................................................................................................204 

CruiseControl.NET................................................................................................................................. 205 
Jenkins ................................................................................................................................................. 206 
TeamCity............................................................................................................................................... 206 
Team Foundation Server ...................................................................................................................... 207 

CI Lifecycle ....................................................................................................................207 
Rebuilding............................................................................................................................................. 209 
Unit Testing .......................................................................................................................................... 215 
Analysis ................................................................................................................................................ 218 
Packaging............................................................................................................................................. 221 
Deployment .......................................................................................................................................... 223 
Stability Testing.................................................................................................................................... 226 
Generate Reports.................................................................................................................................. 228 



 CONTENTS 

xi 

Summary .......................................................................................................................229 

 Chapter 11: Code Analysis ..................................................................................231 

Case Study.....................................................................................................................233 

Static Analysis ...............................................................................................................235 
Assembly Analysis................................................................................................................................ 236 
Source Analysis .................................................................................................................................... 247 
Architecture and Design ....................................................................................................................... 255 
Code Metrics......................................................................................................................................... 257 
Quality Assurance Metrics.................................................................................................................... 257 

Dynamic Analysis...........................................................................................................258 
Code Coverage...................................................................................................................................... 259 
Performance Profiling........................................................................................................................... 261 
Query Profiling...................................................................................................................................... 262 
Logging................................................................................................................................................. 263 

Summary .......................................................................................................................264 

 Chapter 12: Test Frameworks.............................................................................265 

Unit Testing Frameworks...............................................................................................266 

Test Runners..................................................................................................................267 
NUnit GUI and Console Runners............................................................................................................ 268 
ReSharper Test Runner ........................................................................................................................ 272 
Visual Studio Test Runner .................................................................................................................... 277 
Gallio Test Runner ................................................................................................................................ 282 
xUnit.net Test Runner ........................................................................................................................... 283 

XUnit Test Pattern..........................................................................................................285 
Identifying the Test Method.................................................................................................................. 285 
Identifying the Test Class and Fixture .................................................................................................. 286 
Assertions............................................................................................................................................. 292 



 CONTENTS 

xii 

Mock Object Frameworks..............................................................................................294 
Dynamic Fake Objects with Rhino Mocks . .......................................................................................... 294 
Test in Isolation with Moles. ................................................................................................................ 298 

Database Testing Frameworks ......................................................................................303 

User Interface Testing Frameworks...............................................................................307 
Web Application Test Frameworks. ..................................................................................................... 308 
Windows Forms and Other UI Test Frameworks . ................................................................................ 309 

Acceptance Testing Frameworks ..................................................................................309 
Testing with Specifications and Behaviors. ......................................................................................... 310 
Business-Logic Acceptance Testing. ................................................................................................... 311 

Summary .......................................................................................................................312 

 Chapter 13: Aversions and Biases ......................................................................313 

Group-Serving Bias........................................................................................................315 

Rosy Retrospection........................................................................................................315 

Group-Individual Appraisal . ...........................................................................................316 

Status Quo and System Justification. ............................................................................317 

Illusory Superiority. ........................................................................................................317 

Dunning-Kruger Effect . ..................................................................................................318 

Ostrich Effect . ................................................................................................................319 

Gambler’s Fallacy ..........................................................................................................319 

Ambiguity Effect . ...........................................................................................................320 

Focusing Effect . .............................................................................................................320 

Hyperbolic Discounting..................................................................................................321 

Normalcy Bias................................................................................................................322 

Summary .......................................................................................................................322 

 Index ...................................................................................................................343 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



xiii 

About the Author 

 

 Stephen Ritchie has been writing software professionally for over 20 years. 
He works as a software development consultant at Excella Consulting in the 
Washington, D.C. area. His passion for following best practices goes back to 
the college chemistry lab and an almost fanatical devotion to getting things 
absolutely, precisely correct. The intervening years of developing software 
professionally have taught him to appreciate the value of experience, 
practical know-how, and continuous learning. Today, Stephen is the .NET 
best practices steward at Excella Consulting, working with .NET project 
teams to facilitate and sort out the helpful practices from the unhelpful ones, 
the practicable from the impracticable, and the sounds-good from the it-
really-is-good practices and principles. 
 



xiv 

About the Technical Reviewer 

 

 Paul Apostolescu has worked for over a decade in the computer and software security industry and 
architected products ranging from kernel-level security to applications for enterprise security 
continuous monitoring. He is a Microsoft Certified Solutions Developer and holds various other security 
certifications. 

 
 



 

xv 

Acknowledgments 

I want to thank my family, Robin, Dianna, Jessica, Devin, and Wyatt. They have been very supportive 
and have encouraged me to write this book. I want to thank my parents for all that they have done to 
raise and support me. 

I want to thank the team at Apress for all their excellent work. I want to thank Jonathan Hassell, 
my acquisitions editor, for helping to get this book started and encouraging its success. Thank you to 
Matthew Moodie, the developmental editor, for your guidance and support. Thank you to Annie Beck, 
the coordinating editor, for your hard work and for keeping the whole project moving forward. Thank 
you to the copyeditor, Elizabeth Berry, who improved the quality and readability of the text. Thank you 
to all the other people who worked behind the scenes to make this book possible. I especially want to 
thank Paul Apostolescu for his insightful and helpful technical review; it is very much appreciated. 

Thanks to my colleagues at Excella Consulting for their help and support. Through my work 
with the Excella Centers of Excellence and as a .NET best practices steward for the firm, I know that I 
work with some of the finest consultants and developers. I appreciate all that I have learned and will 
continue to learn through our combined efforts, shared knowledge, and continued collaboration. 

I want to acknowledge the developers, bloggers, writers, and mentors who teach and 
communicate to other .NET developers. Their experience and expertise is an invaluable resource for the 
whole .NET community. Many professional developers, like me, benefit greatly from your efforts. Thank 
you. 


	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	Developers
	Team Leaders

	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Contacting the Author


	Ruthlessly Helpful
	Practice Selection
	Practicable
	Generally Accepted and Widely Used
	Valuable
	Archetypal

	Target Areas for Improvement
	Delivery
	Quality
	Relationships

	Overall Improvement
	Balance
	Renewal
	Sustainability

	Summary

	.NET Practice Areas
	Internal Sources
	Technical Debt
	Defect Tracking System
	Retrospective Analysis
	Prospective Analysis

	Application Lifecycle Management
	Patterns and Guidance
	Framework Design Guidelines
	Microsoft PnP Group
	Presentation Layer Design Patterns
	Object-to-Object Mapping
	Dependency Injection

	Research and Development
	Automated Test Generation
	Code Contracts

	Microsoft Security Development Lifecycle
	Summary

	Achieving Desired Results
	Success Conditions
	Project Inception
	Out of Scope
	Diversions and Distractions
	The Learning/Doing Balance

	Common Understanding
	Wireframe Diagrams
	Documented Architecture
	Report Mockups
	Detailed Examples
	Build an Archetype

	Desired Results
	Deliverables
	Positive Outcomes
	Trends

	Summary

	Quantifying Value
	Value
	Financial Benefits
	Improving Manageability
	Increasing Quality Attributes
	More Effectiveness

	Sources of Data
	Quantitative Data
	Qualitative Data
	Anecdotal Evidence

	Summary

	Strategy
	Awareness
	Brainstorming
	Planning
	Monitoring
	Communication

	Personal Process
	Commitment to Excellence
	Virtuous Discipline
	Effort and Perseverance

	Leverage
	Automation
	Alert System
	Experience and Expertise

	Summary

	.NET Rules and Regulations
	Coding Standards and Guidelines
	Sources
	Exceptions
	Disposable Pattern
	Miscellaneous

	Code Smells
	Comments
	Way Too Complicated
	Unused, Unreachable, and Dead Code

	Summary

	Powerful C# Constructs
	Extension Methods
	Implicitly Typed Local Variables
	Nullable Types
	The Null-Coalescing Operator
	Optional Parameters
	Generics
	LINQ
	Summary

	Automated Testing
	Case Study
	Brownfield Applications
	Greenfield Applications
	Automated Testing Groundwork
	Test Code Maintainability
	Naming Convention
	The Test Method Body

	Unit Testing
	Boundary Analysis
	Invalid Arguments
	Invalid Preconditions

	Fakes, Stubs, and Mocks
	Isolating Code-Under-Test
	Testing Dependency Interaction

	Surface Testing
	Automated Integration Testing
	Database Considerations
	Summary

	Build Automation
	Build Tools
	MSBuild Fundamentals
	Tasks and Targets
	PropertyGroup and ItemGroup
	Basic Tasks

	Logging
	Parameters and Variables
	Libraries and Extensions
	Import and Include
	Inline Tasks
	Common Tasks
	Date and Time
	Assembly Info
	XML Peek and Poke
	Zip Archive

	Automated Deployment
	Build Once, Deploy Many
	Packaging Tools
	Deployment Tools

	Summary

	Continuous Integration
	Case Study
	The CI Server
	CruiseControl.NET
	Jenkins
	TeamCity
	Team Foundation Server

	CI Lifecycle
	Rebuilding
	Unit Testing
	Analysis
	Packaging
	Deployment
	Stability Testing
	Generate Reports

	Summary

	Code Analysis
	Case Study
	Static Analysis
	Assembly Analysis
	Source Analysis
	Architecture and Design
	Code Metrics
	Quality Assurance Metrics

	Dynamic Analysis
	Code Coverage
	Performance Profiling
	Query Profiling
	Logging

	Summary

	Test Frameworks
	Unit Testing Frameworks
	Test Runners
	NUnit GUI and Console Runners
	ReSharper Test Runner
	Visual Studio Test Runner
	Gallio Test Runner
	xUnit.net Test Runner

	XUnit Test Pattern
	Identifying the Test Method
	Identifying the Test Class and Fixture
	Assertions

	Mock Object Frameworks
	Dynamic Fake Objects with Rhino Mocks
	Test in Isolation with Moles

	Database Testing Frameworks
	User Interface Testing Frameworks
	Web Application Test Frameworks
	Windows Forms and Other UI Test Frameworks

	Acceptance Testing Frameworks
	Testing with Specifications and Behaviors
	Business-Logic Acceptance Testing

	Summary

	Aversions and Biases
	Group-Serving Bias
	Rosy Retrospection
	Group-Individual Appraisal
	Status Quo and System Justification
	Illusory Superiority
	Dunning-Kruger Effect
	Ostrich Effect
	Gambler’s Fallacy
	Ambiguity Effect
	Focusing Effect
	Hyperbolic Discounting
	Normalcy Bias
	Summary

	Resources
	General Software Development
	Books
	Articles
	Guides

	.NET Guidelines, Patterns and Practices
	Books
	Articles
	Guides and Tutorials

	C# Language
	Books
	Articles

	Testing and Test Frameworks
	Books
	Articles
	Guides and Tutorials
	Tools

	Debugging and Problem Solving
	Books
	Articles
	Tools

	Build Automation
	Books
	Articles
	Guides and Tutorials
	Tools

	Continuous Integration
	Books
	Articles
	Guides and Tutorials
	Tools

	Static Code Analysis
	Books
	Articles
	Guides and Tutorials
	Tools

	Dynamic Code Analysis
	Books
	Articles
	Guides and Tutorials
	Tools

	Security
	Books
	Articles
	Guides and Tutorials
	Tools

	Microsoft Research
	Miscellaneous
	Books
	Articles


	Scorecard
	Automated Testing
	Build Automation
	Continuous Integration
	Code Analysis
	Calculating the Overall Score

	Index
	A
	B
	C
	D
	E
	F
	G, H
	I, J, K
	L
	M
	N
	O
	P
	Q
	R S
	T
	U
	V
	W
	X, Y, Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice




