Regex Recipes

V1.0

By Steven R. Brandt

Cooking up code with regular expressions

All rights reserved

Regular Expressionsin Java
http://www.javaregex.com

Copyright © 2004 by Steven Brandt
Published in the United States of America

Java®is a registered trademark of the Sun Corporation.

Table of Contents

o [o SRS 5
LI Lo = SRR 5
BaSiC TEXE MAICIING.......eiiiiieieiteeie ettt st sre e b et e nte s e e s seenseentesneesseensens 5
[ONOMING CBSE.......eiieeeetie ettt e e b e bt eae e b e r e sheeb e e e e e e renbeenenne e 6
(O T = o L= O =S SRR 8
FUN With SQUAre BraCKeLS..........coouiiiiiiieistesiee e 8
RANQGES Of CRAIaCIENS.......eiiiie et e e e e e e sbe e e be e ene e 9
N0 = o] S 10

S 0= 0SSR 11
SNOTTCULS..... ettt b et e e e sse e b e e b e snneseeeeeeneens 13

LI L= 5 o | PSSP 15
Excessively fancy stuff: Unions and INterseCtions............ccoveveeeenieieesceeseese e e e 15

(@ U= 01 1) 1= £SO 17
Greedy QUANTITIENS.oiii ettt sttt st a b e e 17
REUCIANT QUANTITIEIS. .. .ecuvie ettt s e s esar e s beesabeesreeesnreenbeeebeeeneeens 19
POSSESSIVE QUANTITIEIS. ...ttt ettt e sae e e s e e s e e s be e s reesnbeesareeanseaeas 20
€70 T USSR 21
(0= 101 LU X] (01U 0SSOSR 21
BaACKIEf EIEINCES.......ceeecieeie ettt et e e aeeneesreesne e teenaeaneeeneenreenes 23
NON CAPLUIE GIOUPS.......c.eeitieteesiee sttt ettt b e bbb n e e e s e ssnesre e sre e neenre e 24
[0 T0] 1= T 25
[0 T0] o= 1 0 -SSR 26
[NAEPENAENT GIOUPS. ... coueeueeriieiiee ettt ettt sttt e e st et e b e s et e b e sneene e e e nee e e 26
FIAgS N0 GIOUPSeoiiieiiieiete ettt ettt n et nb et nennenne e nre s 29
BOUNTArY MEECNES.......c.eitiieieiieet bbbttt se e eae e e nne e 30
The End Of @LiN€ OF SIHNG...ccciiiiiieiiie ettt anes 30
The Start of @LIiNE OF SEING.......ooiiiiiee e 32

AT oo = Lo TN gl = T =SS 32
(LS 0172 1= 0 [1Y/ ok 1T oo TP TR 33
[T USSR 34
S0 LU o PP 36
SUBSEITULING SEHNQS. ..eveeiteeieeie e sieeste e e e eee st e e st e st e e seesseesseesseessesneesseensesnaesseensennnens 37
MatChiNg ON @BYLE AITAYeiiiie ettt ettt e b e e e be e sareesseeesnneens 39
= o T g To T o 1= 1 1 =SSR 40

= e g To T o] g I T 1 = ST 42

TRE RECIPES. ...ttt b bt e bbb e e e et Rt e bt b e b e e e e e b e eaeebeber e e e 43
Matching @ QUOLE SEITNQeeveeieeiieeitie ittt sttt snae et e e e beeeeene e 43
Matching a Floating POINt NUMDETcocuiiiiiicieesesee e s e 45
= 65 110 141 SRS 47
Parsing @ Java SOUICE FIlE........cceciiiieceecieese ettt ettt ne e s e nne e 52
A SIMPIE CAlCUIALONeee ittt e b e e b e e b e ebeeesbeeenbeeereeans 55
[S T ol WOV A T =SSR 56
NN FE T =e I (01U o1 S 58

A Regular EXPreSSiON GaIME..........cciveieeieeieerieaeeseesreesseesseessesessaeesseesseesseessesssesssessesssesssesssesees 59

(@0 0! 111 Lo o O STPRT 60

Introduction

Y ou may have noticed that this book has no ISBN number. That is because, at least for
now, it isvery much awork in progress. For that reason it will be versioned, like software, and
will be updated as new sections are added.

The current version will always be available at http://www.javaregex.com. Both
electronic and print-on-demand versions will be available from that site.

The cover is apicture of my son and me, playing in the kitchen. Remember,
programming is supposed to be fun. So play with your regular expressions — there's even a
regular expression game to help you do that. It isdiscussed at the end of this book.

My son's still alittle too young to understand regular expressions right now. That
adventureis still in his future.

Tutorial
This tutorial makes heavy use of example code snippets. These code blocks will
generally all compile and run if they are just inserted into the main block of ajavaclass, and the
packages java.util, and java.util.regex are included.
It ismy hope that you will run some of these code snippets yourself, and modify them.
Thisisthe best way to learn what they really do. [The best way to learn what these code
snippets really do isto run some yourself and modify them.]

Basic Text Matching
Regular expressions are a valuable tool by which one can process text. The most basic
regular expression is aliteral text string (all the alphabetic and numeric characters that are not
preceded by a“\” will beinterpreted literally). We can find the word "shells" in a String, as
well as where in the string the pattern was, as follows:

/]l create a Pattern object
Pattern p = Pattern. conpile("shells");

/] search for a match within a string

String txt = "She sells sea shells by the sea shore.™
Mat cher m = p. mat cher (txt);

bool ean found = mfind();

System out. printl n(found);
[l Prints "true" — the find() nmethod returns a bool ean t hat
/1 tells us whether the match succeeded.

Systemout. println(mgroup());
/[l Prints "14" — the starting position of the match

Systemout. println(txt.substring(0, mstart()));
/[l Prints "She sells sea " -- the part of the string before
/1 the match.

Systemout. println(mend());
/1 Prints "20" — the ending position of the match

System out. println(txt.substring(mend()));
/1 Prints “ by the sea shore.” The text follow ng the match.

Ignoring Case
The above bit of code does not match if we encounter the substring "SHELLS" rather
than "shells".

Pattern p = Pattern.conpile("shells");

String txt = "SHE SELLS SEA SHELLS BY THE SEA SHORE.";
Mat cher m = p. mat cher (txt);

bool ean found = mfind();

System out. printl n(found);
/1 Prints "fal se"

We can fix this by changing our pattern.

Pattern p = Pattern.conpile("(?i)shells");

String txt = "SHE SELLS SEA SHELLS BY THE SEA SHORE. ";
Mat cher m = p. mat cher (txt);
bool ean found = mfind();

System out . printl n(found);
/[l Prints "true"

The"(?)" tells the pattern to ignore the case of all letters.

What if you don't want to ignore the case of all parts of your pattern? The ignore text
flag does not take effect until after it appears in the pattern. Also, you can turn off the ignore
case flag with “ (?-i)”.

Pattern p = Pattern. conpil e("appl e(?i)bug(?-i)apple");
String txt = "APPLEBUGAPPLE appl eBUGAPPLE appl eBUGappl e";
Mat cher m = p. matcher (txt);

m find();

Systemout.println(mgroup()); // prints "appl eBUGppl e"

The pattern matcher will only ignore case for the word “bug” . The case of the word
“apple”, both the instance before and after “bug” must be matched. Therefore the pattern
matcher must skip “APPLEBUGAPPLE” and “appleBUGAPPLE” and match on
“appleBUGapple’. That isthe only place where the case matches everywhere but the word
“bug”.

But there is some funny business here in the ignore case world — the full set of unicode
casesis not matched using “(?1)”. If you want that to happen, you have to include the“u” flag.
The ability to leave the“u” flag off isfor optimization and compatibility with other regular
expression compilers.

Pattern p = Pattern.conpile("(?i)\u00e0"); // This is an a
String txt = "\u00c0"; // this is an A

Mat cher m = p. matcher (txt);

Systemout.printin(mfind()); // prints false

Pattern p2 = Pattern. conpile("(?i u)\u00e0");
Mat cher n2 = p2.nmatcher(txt);
Systemout.println(n2.find()); // prints true

In this example I've chosen asimple letter “ A” (note the accent). The “u” flagis
required here to get the case insensitive matching to work. Incidentally, | could have written
“(2u)” or “(?1)(?u)” or even “(?u)(?)” toturn on both the“u” and “i” flagsinside the
regular expression.

Character Classes
Fun with Square Brackets
Let's get back to the original example. What if you just want to ignore case on one | etter,
the first one? “(?i)s(?-i)hells” seemslike alot of typing.

Pattern p = Pattern.conpile("[Ss]hells");

String txt = "SHELLS Shells shells";
Mat cher m = p. mat cher (txt);
bool ean found = mfind();

System out. println(mgroup());
Il Prints "Shells"

When the regular expression engine sees square brackets, it understands that you want to
match one of the charactersinside them. Thus, "[Ss]" matches either "S" or "s". Thistype of
pattern, however, has more uses than simply matching two cases of aletter. Y ou can, for
example, use it to match a digit. The pattern "[0123456789]" does this.

Note also that the pattern matcher matches the first thing it can. If our pattern were still
“(?i)shells” then it would have matched on “SHELLS”. If our pattern had been smply
“shells” it would have matched on the last “ shells” in the string.

Pattern p = Pattern.conpil e("[012345678]");

String txt = "How old are you? 1'm 35.";
Mat cher m = p. mat cher (txt);
bool ean found = mfind();

Systemout. println(mgroup());
Il Prints "3"

Ranges of Characters

It may have occurred to you that typing out the sequence of digits "[012345789]" isa
little awkward. Imagine if we wanted to match al the letters of the alphabet, we would have to
type arather long string indeed. Fortunately, there is a shorter way to write this. We can specify
ranges of letters and numbers. Thus "[0-9]" matches any digit; it matches all the charactersin
the range from 0 to 9. We can use "[a-Z]" to match any lower case |etter. We can use "[A-Z]" to
match any upper case letter, or we can use "[A-Za-z0-9]" to match a character that is either an
upper case letter, alower case letter, or adigit.

Pattern p =
Pattern.conpile("[A-Z][a-z][a-z][a-2]");

/1 Matches an upper case letter,

/1 followed by three | ower case letters

String txt =
"What is your name? M nane is Fred.";

Mat cher m = p. matcher (txt);
bool ean found = mfind();
Systemout.println(mgroup());
/1 Prints "Wat"

Hmm. | was really hoping to match "Fred" not "What". So, | will just rewrite my pattern.

Pattern p =

Pattern.conpile("[A-VX-Z][a-z][a-z][a-2z]");
/1 Matches an upper case letter (excluding W,
/1 followed by three | ower case |letters.

String txt =
"What is your name? M nane is Fred.";

Mat cher m = p. mat cher (txt);
bool ean found = mfind();
System out. println(mgroup());
/[l Prints "Fred"

Negation
We could also have matched using a hegated character class:

Pattern p =
Pattern.conmpile("[A-VX-Z] [~ 1[~ 1[™*1");

/'l Matches an upper case letter (excluding W,

/1 followed three non-space characters.

String txt =
"What is your name? M nane is Fred.";

Mat cher m = p. matcher (txt);
bool ean found = mfind();
Systemout. println(mgroup());
/1 Prints "Fred"

When a """ appears as the first character inside []'s it negates the pattern. Thus "[*]"
matches any character other than a space (" "), and "[*0-9]" matches any character that isnot a
digit.

There are some special character classes, shortcuts if you will, to typing out long
sequences of ranges and literals inside the square brackets. For numbers we have these:

Regular Expression Text Meaning
\p{ Digit} Anything recognized as adigit by Unicode.
\d [0-9]
\D [~0-9]

With this little bit of knowledge we could re-write our previous example like this:

-10 -

Pattern p = Pattern.conpile("\\d");
/1 could have used "\\p{Digit}" — it would have
/1 been the sane.

String txt = "How old are you? 1'm 35.";
Mat cher m = p. mat cher (txt);
bool ean found = mfind();

Systemout. println(mgroup());
Il Prints "3"

Escapes
Notice that | had to put the backslash in twice. The reason for thisisthat the regul ar
expression needs to see one backslash, but the java compiler will turn “\\” into “\”. Worse (or
maybe it's “ better”), it won't even compile if you had just typed: “\d”.
Y ou can see thisif you run the following program which gets the patten by prompting
the user rather than from a hard-coded string:

-11 -

inport java.io.*;
import java.util.regex.*;

public class ReadPatternFrom nput {

public static void main(String[] args)
throws Exception {

/1 Pronpt the user for input. Wen you
/1l see it, type "\d" and hit carriage return.
Systemout.println("Enter pattern:");

Il Get a buffered reader
| nput St reanReader isr =
new | nput StreanReader (System i n);
Buf f er edReader br = new Buff eredReader (i sr);

/1 Read and conpile the pattern
Pattern p = Pattern. conpil e(br.readLine());

String txt = "How old are you? 1'm 35.";
Mat cher m = p. matcher (txt);
bool ean found = mfind();

Systemout. println(mgroup());
[l Prints "3" if you chose "\d"

The“\” issometimes caled an “escape.” And it can be useful in avariety of ways
inside aregular expression. It can be used, for example, to make characterslike “[* match
literally.

Pattern p = Pattern.conpile("\\[[a-z]\\]");
String txt = "What's in the box? [q]";

Mat cher m = p. mat cher (txt);

bool ean found = mfind();

System out. println(mgroup());

/[l Prints "[q]"

But what if you want to match on an actual backslash? Then, of course, you must escape

-12 -

the backslash. However, you must actually do it four times. Why? Each pair of backslashes
gets turned into a single backslash by the java compiler — and in the end you need to have a pair
of backslashes.

Pattern p = Pattern.conpile("-\\\\-");
/1 This string actually contains two backsl ashes

String txt = "Where's the backslash? -\\-";
/1 This string actually contains one backsl ash

Mat cher m = p. matcher (txt);
bool ean found = mfind();

System out. println(mgroup());
Il Prints "-\-"

So, again, to match a single backsash you need four backslashes.

Note that if a backslash precedes an aphanumeric character it has a special meaning. If it
precedes any other kind of character it merely makesit literal. Thus “\\[” literally matches an
open square bracket, while “\\Q” does not literally match an Q. In fact, what it doesis signify
the beginning of aliteral match.

If you want a whole sequence of literal characters, one way to do it isto begin the
sequence with “\\Q” and end it with “\\E”.

Pattern p = Pattern.conpile("\\Q@ not a class]\\E");

String txt = "==>[not a class] <==";
Mat cher m = p. matcher (txt);
m find();

Systemout.printin(mgroup()); // "[not a class]"

Shortcuts
Here are some other examples of character classes/ shorthand notations. | have restricted
it to the set | find most useful:

Regular Expression Text Meaning
\w A shorthand for [a-zA-Z0-9]

-13-

Regular Expression Text

Meaning

\W A shorthand for [*a-zA-Z0-9]

\d A shorthand for [0-9]

\D A shorthand for [*0-9]

\s A shorthand for [\t\n\xOB\f\r]

\S A shorthand for [\t\n\xOB\f\r]

\p{ Lower} Any lower case character.

\p{ Upper} Any upper case character.

\p{ ASCII} Any character with a numeric val ue between
\0Ox00 and \Ox7F.

\p{ Alpha} The union of \p{ Lower} and \p{ Upper}

\p{ Alnum} The union of \p{ Alpha} and \p{Digit}

\p{ Punct} Any of these characters: !"#$%&'()* +,-./:;
<=>2@\"_{}~

\p{ Print} The union of \p{ Alnum} and \p{ Punct}

\p{ Blank} A space or tab

\p{ Space} Shorthand for: [\t\n\xOB\f\r]

Y ou can read more about these in the documentation page for java.util.regex.Pattern.
Actually, that doc page isagood brief reference to the entire pattern matching syntax. As of

this writing you can find it at:

http://java.sun.com/j2se/1.5.0/docs/api/javalutil/regex/Pattern.html

-14 -

The Dot

Pattern pl=
Pattern.conpile(".");
/1 matches anything except a "line termnator."

/1 Effectively a shortcut for "[”\n\r\u0085\u2028\u2029]".
/1 In nost cases, this serves the purpose

/1 of matching any character.

[l The pattern ".*" is a popul ar way

/1 to match arbitrary regions of text.

What's a“line terminator?” It can be one of several things — any of the set of characters
\n (line feed, the unix line terminator), \r (carriage return), \uo0085 (next line), \u2028 (line
separator), \u2029 (paragraph separator), or the sequence \r\n. However, when considering the
“.” pattern, the sequence “\r\n” for end of line is not really relevant. It would match the same
way whether we include it in our end-of-line definition or not.

So you should just think of a“.” as being the same as the pattern:
"[A\ n\ r\ u0085\ u2028\ u2029] " — except that we can use flags to change the meaning of “.”

Many times you just want a character that just matches anything. Since"." doesn't match
anything, what does? Well, "." can match anything if the“s” flagisenabled. To enable the“s”
flag, include the string "(?s)" in the front of your pattern.

Pattern p2=
Pattern.conpile("(?s).");

/1 will match any character

Pattern p3=
Pattern.conpile("(?s)foo:.");

/1 matches on the string "foo:"

/] followed by any character.

You can also usethe“d” flag to signify a“Unix line terminator.” In other words, if you
set the“d” flag then“.” will bethe sameas“["\n]”. Y ou might want to prepend “(?d)” to
your pattern if you are using a pattern developed in Perl to Java.

Excessively fancy stuff: Unions and Inter sections
It is possible to combine the various character classes to make a more accurate

-15 -

specification of the character class you are most interested in. Here is an example of how to
combine two character classes, “\\d” and “\\D” to make a character class that matches

anything.

Pattern p4=
Pattern.conpile("[\\d\\D]");

/1 will a digit character or non-digit

/1 character — in short, it wll

/1l match any character!

Y ou could also match aregion of punctuation and space characters

Pattern p5=
Pattern. conpil e("[\\p{Punct}\\p{Space}]");
/1 matches on any punctuation or space character

These combinations of character classes are unions. That is, the enclosing “[]” combines
the adjacent character classes that it contains, matching on alarger set of characters.

It isalso possible to get an intersection, and match on a smaller range of characters.

Here is a complete program that you can use to help you experiment with matching on a
range of characters and to get a better feel for unions and intersections.

import java.util.regex.*;

public class Conbine {
public static void main(String[] args) throws Exception {

/1 Insert your own pattern here

String pstr = "[[a-n] &&[d-z]]";

Pattern p = Pattern. conpile(pstr);
for(int i=0;i<256;i++) {
String s = Character.toString((char)i);
Mat cher m = p. mat cher (s);
if(mfind()) {
System out. print(mgroup());
Systemout.print(" ');
}
}
System out. println();
}
}
If you run this program without modifications, it will produce the following output:

-16 -

“def ghi j k1 mn”.Onlythecharactersthat are in the character class
“[a- n] " and the character class“ [d- z] " will print. Thiswill be the same as the character
class“[d-n] ™.

To try other patterns, just edit the value of pst r and run.

Quantifiers
Greedy Quantifiers
In some of our examples above we re-typed character classes in order to get repeated
matches. Thatis, weused “[A-VX-Z] [][~][~]” tomatch an upper case letter
(excluding W) followed by 3 characters which were not a space. We a so used
“[0123456789] [0123456789] " to match two digits. Asyou doubtless suspected, there's
a better way.
Pattern p = Pattern.conpile("\\d{1,4}");

String txt = "How old are you? I"'monly 8.";

Mat cher m = p. mat cher (txt);
bool ean found = mfind();
System out. println(mgroup());
// Prints "8"

m = p.matcher("How old are you? 1'm35");
found = mfind();

Systemout. println(mgroup());

/1 Prints "35"

m = p. matcher (" When were you born? |In 1963");
found = mfind();

Systemout. println(mgroup());

Il Prints "1963"

The“{1,4}” means match at least one and at most four of the preceding pattern element.
“N\d” is, aswe remember, a shorthand for “[0-9]” or adigit. Thus “\\d{ 1,4} " matches from
one to four digits.

It isimportant to notice that "{1,4}" isgreedy. That is, it matches as many times as it
can.

It may be that we don't want to specify a maximum number of characters to match.
Perhaps we just want to match one or more digits. We can do this by not supplying the second

-17 -

digittothe“{}” pattern element.

Pattern p = Pattern.conpile("\\d{1,}");
String txt = "The SN is 18547-2993576";

Mat cher m = p. matcher (txt);
bool ean found = mfind();
Systemout. println(mgroup());
/1 Prints "18547"

Notice that the pattern matcher matches on the first thing it can. In this case it is the
string 18547. Even though the string “2993576” islonger, it matches on “18547” becauseitis
first.

There are some popular shorthands that apply to quantifiers.

Regular Expression Text Meaning
* A shorthand for {0,}
+ A shorthand for {1,}
A shorthand for {0,1}

Generdly | advise you to avoid “*” and use“+” if possible. A more (but not overly)
restrictive pattern is more likely to be faster (since the pattern matcher will generally need to
check fewer possible matches) and more likely to give you what you actually want (since your
search was more specific). Consider this:

Pattern p = Pattern.conpile("\\d*");

String txt = "The SNX i s 18547-2993576- 99-8";
Mat cher m = p. mat cher (txt);

bool ean found = mfind();

System out. println(mgroup());
/1 Prints nothing

What happened? Why did it match on ablank? Isn't the pattern supposed to be greedy
and match the longest thing it can?

-18 -

The problem is that the pattern matching engine will match on the first thing it can, and
the quantifier will only be greedy within that context.

Thesearchwas“\\ d*” , whichisthesameas“\\ d{ 0, }”. Thereisazero length
string of digits right at the start of the string. If | had searched for “\ \ d*- " | would found
“18547-" because the pattern matcher would be forced to find a string where the sequence of
digitswasfollowed by a“ - ” . Thiswould have taken it all the way to the numeric sequence
before it tried to match with the“\ \ d*” and then it would have hungrily matched the 5 digit
string.

Reluctant Quantifiers

Does matching always have to be greedy? The answer isno. By following the pattern
with a“?” we can make the matcher match on the shortest thing it can. If we use the pattern
“N\d*?-" in our last example, what do we get?

Pattern p = Pattern.conpile("\\d*?-");
String txt = "The SNX i s 18547-2993576-99-8";

Mat cher m = p. matcher (txt);
bool ean found = mfind();
System out. println(mgroup());
[/ Prints "18547-"

So what happened? Why did it match on exactly the same thing? Shouldn't it have
matched on just “7-"? Again, the reason is that the pattern matcher takes the first valid match
first, the desires of the quantifier come second. To see the difference, try this:

Pattern p = Pattern.conpile("-[\\d-]*-");
String txt = "The SNX is 18547-2993576-99-8";

Mat cher m = p. mat cher (txt);
bool ean found = mfind();
System out. println(mgroup());
[/ Prints "-2993576-99-"

p = Pattern.compile("-[\\d-]1*2-");
m = p. matcher (txt);

found = mfind();

System out. println(mgroup());

/[l Prints "-2993576-"

-19-

The pattern element “[\\d-]” matches on a digit or the“-”. Normally, the“-” hasa
special meaning inside square brackets, it delimits two ends of arange of values like “[0-9]".
However, in this case, when the “-” isjust beforethe“]” itisclearly not part of arange and
the pattern matcher interpretsit asaliteral. But that's a digression.

So “-[\\d-]*-" matches the most things it can. In this case, it will match everything from
thefirst “-” tothelast “-”. That meansit gets the whole string *-2993576-99-". With the “*?”
guantifier, however, it isless greedy. It will match the shortest thing it can, and this means that
it can leave off the “-99-" and match just “-2993576-".

So we have seen greedy and non-greedy quantifiers. There isyet athird category of
guantifiers in the java pattern matcher. The difference here is rather subtle.

Possessive Quantifiers

Thisthird quantifier seeks to match as many characters asit can, so it islike the greedy
guantifier, but if it can't match as much everything it fails. What does this mean? It means, for
example, that the pattern “\\d++\\d” will always fail to match. The “\\d++” will match an
entire group of integers, but the next “\\d” asks to match for one more and the possessive will
not part with it. The greedy will.

Pattern p = Pattern.conpile("(\\d++)\\d");
String txt = "The SNX is 18547-2993576-99-8";

Mat cher m = p. matcher (txt);
bool ean found = mfind();
i f(found)

System out. println(mgroup());
el se

Systemout. println("not found");
/1 Prints "not found"

Pattern. conpile("(\\d+)\\d");
p. matcher (txt);
found = mfind();
i f(found)

Systemout. println(mgroup());
el se

Systemout.println("not found");
/1 Prints "18547"

One key to understanding the possessive quantifier isto see that the piece of text it will

-20 -

match on is context independent.

What do | mean by that?

I mean that you can tell which piece of text it will match on without considering what the
rest of the pattern will do. In the example above, in the pattern “ (\\d+)\\d”, the “(\\d+)” had to
limit its greediness in order to let the finally “\\d” match on something. The set of digitsit
matched on depended on its context, on the pattern element that followed.

When considering what the possessive quantifier doesit is not necessary to look at this
context. “\\d++” matches on awhole sequence of digits, or the whole pattern fails.

Grouping
Capture Groups
What if you want to match on one of a set of words?

Pattern p = Pattern. conpile("(?i)(appl e|] orange| banana)");
String txt = "List some fruits: apple, orange, banana";

Mat cher m = p. matcher (txt);
bool ean found = mfind();
System out . println(mgroup());
/1 Prints "apple"

txt = "What's left? Orange and banana";
m = p. mat cher (txt);

found = mfind();

Systemout. println(mgroup());

[l Prints "Orange"

What's going on here? Y ou may remember the “(?7i)” pattern element which turns on
the ignore case flag. We do this because we wish to match fruit names regardless of their
capitalization.

When | want to match on one of a set of alternatives | can use parenthesis, and separate
the alternatives with the “|” character. In thiscase | make alist of all fruits (well, okay, just
three) so that | can match on any one of them.

Actually, the group was not strictly necessary here. If | had used " (?i) appl e| or ange|
banana" asmy pattern | would have gotten the same result above. The“|” pattern doesn't
need to be in agroup.

One of the other cool things about groups, however, is that you can find out what part of
the sub-pattern the group matched on.

-21 -

Pattern p = Pattern.compile("(\\w)+");
String txt = "List some fruits: apple, orange, banana";

Mat cher m = p. mat cher (txt);
bool ean found = mfind();
System out. println(mgroup());
/[l Prints "List"

System out. println(mgroup(1));
/[l Prints "t"

p Pattern. conpile("(\\w+)");

m = p. matcher (txt);

found = mfind();

System out . println(mgroup());
/!l Prints "List"

Systemout. println(mgroup(1));
[l Prints "List"

Notice that the difference in the patterns above. In the first pattern, the group ison a
single letter, and the group can match 1 or more times. When we go to print out what the group
matched we see the last thing it matched, the “t”. Going from left to right, the pattern matched
firstonthe“L”, thenthe“a”, thenthe“s”, and finally the “t”, and that's the substring we get
back from m group(1).

In the second case, the quantifier isinside the group and so all the characters matched get
returned by m group(1).

Now let's combine what we have learned with quantifiers. We are going to match alist
of fruits.

-22 -

Pattern p = Pattern. conpil e(
"(?i)((appl e] orange| banana) [\\s,]*)+");

String txt = "List sonme fruits: apple, orange, banana";

Mat cher m = p. matcher (txt);

bool ean found = mfind();
Systemout. println(mgroup());

/1 Prints "apple, orange, banana"

Systemout.println(mgroup(l));
/!l Prints "banana"

Systemout. println(mgroup(2));
/1 Prints "banana"

So what happened here? We used two layers of groups, and we used them for different
reasons. The inner grouping (group 2) isjust our list of fruits. The outer grouping (group 1)
contains the pattern “ (appl elorangelbanana)[\\s,]*”, which matches on a fruit followed by
spaces and commas. The final quantifier “+” applies to the whole thing, allowing the whole
inner pattern to repeat.

Groups are numbered according to the order their left parentheses appear in the pattern.
That'swhy m group(1) above isthe outer group, and m gr oup(2) isthe inner one.

The pattern inside the outer group matches three times. Going from left to right, the inner
group first takes on the value “ apple”, the outer group takes on the value “ apple” plus the
following comma and spaces. The inner value next takes on the value of “orange”, and the
outer group takes on the value of “orange” plus the spaces and comma. Finally, both inner and
outer groupings take on the value of “banana”. At this point the quantifier's greedinessis
satisfied.

Backreferences

Thereisaneat trick you can do if you want to match a captured group, a backreference,

to another part of the string.

-23-

String s = "Hello, you big beautiful world!";
Pattern p = Pattern. conpile("([aeiou]).*\\1");
Mat cher m = p. mat cher (s);

m find();

Systemout. println(mgroup());

[l prints "ello, you big be"

s = "Lots of people like regex!";
m = p. mat cher (s);
m find();

System out. println(mgroup());
[l prints "ots of peo”

In this case our pattern finds the first vowel, then matches the entire string up to and
including the next occurrence of the same vowel. In the first string above the vowel that is used
is“e”, inthesecond itis“o”.

Theideaisthat the “\\1” refersto what you would get from “m.group(1)”. You could
also use “\\2” to refer to what you'd get from “m.group(2)” and so on.

Non Capture Groups

What if you don't want to capture text? Why wouldn't you?
Suppose | had a pattern like

Pattern p = Pattern. conpil e(
“([abe]) [xy]*([def])");

String txt = "bxxyyd, axyyyf, cxyyxyye";

Mat cher m = p. mat cher (txt);

if(mfind()) {
Systemout.printin(mgroup(1)); // prints “b”
Systemout.println(mgroup(2)); // prints “d”

And | wanted to modify it, changing the “[xy]*” part into something more complicated.
| want to match on repeated sequences of “xyy”. In doing this| cause the capture group for
“([def])” to change from being group 2 to group 3.

=24 -

Pattern p = Pattern. conpil e(

"([abc]) (xyy)*([def])");
String txt = “bxxyyd, axyyyf, cxyyxyye”;
Mat cher m = p. mat cher (txt);
if(mfind()) {
Systemout.println(mgroup(1)); // prints “c”

Systemout.println(mgroup(2)); // prints “xyy”

If | use a non-capture group | can avoid shifting the group count.

Pattern p = Pattern. conpil e(
"([abe]) (?:xyy)*([def])");

String txt = “bxxyyd, axyyyf, cxyyxyye”;

Mat cher m = p. matcher (txt);

if(mfind()) {
Systemout. printin(mgroup(1)); // prints “c”
Systemout.println(mgroup(2)); // prints “e”

Asyou can see, anon capture group looks likethis: “(?: ...)" whereanormal capture

group looks like this: “(...)".
L ookaheads

The“(?” sequence was invented as away to make all kinds of new extensions to the

pattern list of regular expressions.
The lookahead pattern “(?= ...)" isazero width assertion about what follows. What

does that mean?

Pattern p = Pattern. conpil e(
"foo(?=bar)([a-2])");

String txt = "foocat foodog foobar";

Mat cher m = p. matcher (txt);

if(mfind()) {
Systemout. println(mgroup()); // prints "foob"
Systemout.println(mgroup(1)); // prints "b"

Soin this case the pattern is saying that “foo” must be followed by “bar”, but “bar” is
not part of the match. That isto say, “(?=bar)” does not match a sequence of characters, it only
places arestriction on what must match from this point forward.

-25-

Logically, then, capture group 1 comes right after “foo”, so it will awaysreturna“b” if
the match succeeds.
Alternatively, you can use a negative lookahead.

Pattern p = Pattern.conpile("foo(?!'bar)");
String txt = "foobar";

Mat cher m = p. mat cher (txt);
Systemout.printin(mfind()); // prints "fal se"

L ookbehinds
And if you can look ahead, you can aso ook behind.

/1 a | ookbehind
Pattern p = Pattern.conpile("(?<=(a+))foo(.)");
String txt = "aaaaf oobar foocat";
Mat cher m = p. mat cher (txt);
if(mfind()) {
Systemout.println(mgroup(l)); // prints "a"
Systemout.printin(mgroup(2)); // prints "b"
}

/1 and a negative | ookbehi nd
p = Pattern.conpile("(?<ta+)foo(.)");
m = p. mat cher (txt);
if(mfind()) {
Systemout.println(mgroup(1)); // prints "¢"
}

Notice that the lookbehind for “a+” was not greedy. The quantifier isonly greedy in the
forward direction. So when the lookbehind operator asked how to match starting from one
character before the “foo” it greedily gobbled up the one“a” that wasin front of it. In short,
greediness does not work as you might expect in alookbehind.

The next thing to notice isthat | don't put capture groups inside negative lookbehinds or
negative lookaheads in my examples. Y ou might want to try it as an experiment. It givesyou a
rather strange result that you should not rely on.

Independent Groups

Remember possessive quantifiers? Y ou could understand how they would match
without considering the rest of the pattern.

The way in which a greedy quantifier matched depended on its context within a pattern.
Thus when you apply the pattern “[abc]+[a-d]” to thetext “abc” the pattern element “[abc]+”

- 26 -

will match “ab” and the final pattern element, “[a-d]” will match the“c”. If the second
pattern element “[a-d]” had not been present, if “[abc]+” had been the whole pattern, then it
would have been allowed to greedily match the whole sequence “abc”. But because of its
context in the whole pattern it could not be as greedy as that.

The possessive quantifier was context independent, however. It would greedily match as
many characters asit could, independent of the context. If it could not match as much asiit
wanted, it would alow the whole match to fail. Thus, the pattern “[abc]++[a-d]” when applied
to the text “abc” would fail. The “[abc]++” would match the whole sequence, there would be
nothing left for “[a-d]” to match on.

The independent group is like the possessive quantifier, it ignores its context. In fact, the
pattern “(?>[abc]+)” does exactly the same thing as “[abc]++".

Perhaps “ independent quantifier” would have been a better name than “ possessive”
quantifier for this pattern element, so that the connection to independent group would have
been more clear.

/1 greedy quantifier is context dependent
Pattern p = Pattern.conpile("[abc]+[a-d]");
String txt = "abc";

Mat cher m = p. matcher (txt);
Systemout.printin(mfind()); // prints "true"

/]l possessive quantifier is context independent
p = Pattern.conpile("[abc]++a-d]");

m = p. mat cher (txt);
Systemout.printin(mfind()); // prints "false"

/] this pattern does exactly the sane thing as the
/'l preceedi ng one.

p = Pattern.conpile("(?>[abc]+)[a-d]");

m = p. mat cher (txt);

Systemout.printin(mfind()); // prints "fal se"

Note also that the independent group is a“non-capturing” group. That isto say, we can't
extract its contents using m.group(1).

The non-capturing group alows you to do more than write possessive quantifiersin a
different way.

-27 -

Pattern p = Pattern.conpil e("(?>ablalc)b");
String txt = "ab abb";

Mat cher m = p. matcher (txt);

m find();

Systemout.println(mgroup()); // prints "abb"

p = Pattern.conpile("(?:ablalc)b");

m = p. mat cher (txt);

m find();

Systemout.println(mgroup()); // prints "ab"

In the first match above, we have an independent group. When it encounters the
substring “ab”, we get the first match in the group. That means there's nothing for the “b”
following the group to match on. It then continues looking through the string for other matches.
Eventually, it finds “abb” and is satisfied.

In the second match we don't use an independent group, so the matcher tries to use the
“ab” fird, failsto get a match, then tries the second option in the group. This means the b can
match.

Let'stry one more example. Suppose you are looking through your source code for an
integer declaration that follows acomment. Y ou might be tempted to use “/* .* A*/” with the
“s” flag to match the comment. Unfortunately, it may not work.

String code =

"I*\n"+

" * coment 1\n"+

"R f\n"+

"double d = 1.8;\n"+

"IFAn" o+

" * coment 2\n"+

"R f\n"+

"int foo = 3;"
Pattern p =

Pattern.conpile("(?s)/*. *2A*/\\s+int\\s+(\\w+)");

Mat cher m = p. mat cher (code);
m find();
System out . println(mgroup());

Try compiling and running it. It actually will print out both comments in a single match.

Thereason isthat the*.*?” does not really match the minimum, but the minimum for the
pattern as awhole to succeed. So if it has to reach ahead through the next comment to do it, it

- 28 -

will. An independent group can come to your rescue here. The following matches only
comment 2.

String code =

"/*\n"+

" * comrent 1\n"+

" */\n"+

"double d = 1.8;\n"+

"IFAn"+" o+

' * coment 2\n"+

R f\n"+

"int foo = 3;";
Pattern p = Pattern.conpile("(?s)(?>/*.*2A*/)\\s+int\\s+(\\w+t)
")
Mat cher m = p. mat cher (code);
m find();
System out. println(mgroup());
System out. println(mgroup());

Flags and Groups
We've touched on flags in several places in thistutorial. Flags change the way the pattern
elements work or the way the pattern is parsed. For example, the “i” flag tells us to ignore case.
We saw before that we can turn it on with “(?)”, or off with “ (?-i)”.
But you can a'so use a non-capturing group to turn flags on or off.

-29-

Pattern p = Pattern. conpil e("apple(?i)bug(?-i)apple");
String txt = "APPLEBUG appl eBUGAPPLE appl eBUGappl e";

Mat cher m = p. matcher (txt);

m find();

Systemout.println(mgroup()); // prints "appl eBUGappl e"

p = Pattern. conpil e("appl e(?i:bug)apple");

m = p. mat cher (txt);

m find();

Systemout.printin(mgroup()); // same as above

p = Pattern. conpil e("appl e(?:(?i)bug)apple");
m = p. mat cher (txt);

m find();

Systemout.println(mgroup()); // same as above

p = Pattern.conpile("(?i)apple(?-i:bug)apple");

txt = " APPLEBUGAPPLE APPLEbugAPPLE";

m = p. matcher (txt);

m find();

Systemout.println(mgroup()); // prints "APPLEbugAPPLE"

In both of the first three patterns, only the pattern “bug” matches regardless of case, and
the two occurrences of apple match only lower case. In fact, the first three patterns are
identical.

The second pattern creates a non-capture group that turns off the ignore case flag, and
this only applies to the pattern “bug”. The second uses the fact that when | change aflag's
state, that change only remains in effect aslong as I'm in the current group.

So, if you want a capturing group that ignores case you could just write “ ((?) ...)”".

Boundary Matches
TheEnd of aLineor String
If you are looking for aword at the end of a string or aline you can use a boundary
matching pattern. The “$” matches a boundary at the end of a string.

-30 -

Pattern p = Pattern.conpile("(?i)be$");

String txt = "To BE or not to be";
Mat cher m = p. matcher (txt);
m find();

Systemout.println(mgroup()); // prints "be"

txt = "To BE or not to be\n"+

"That is the question”;
m = p. mat cher (txt);
Systemout.printin(mfind()); // prints "fal se"

p = Pattern.conpile("(?i mbe$");

m = p. mat cher (txt);

m find();

Systemout.println(mgroup()); // prints "be"

I know the text looks odd, but | used to different capitalizations of “be” so that we could
more easily see which one we matched.

In the first match attempt we succeed, because “be” occursright at the end of the string
and “$” matches end of string. In the second attempt we fail. Even though “be” is at the end of
the line (it occursjust before “\n”), “$” wants to match only on the end of the string.

In the last pattern match attempt the “$” matches the end of aline. Why? Because the
“m” flag was turned on by the pattern “ (?im)”. When the “m” flag isturned on the meaning
of athe“$” changes. It will then match on either end of string or end of line. Note that instead
of “(?im)” we could have written “(?)(?m)” or “(?mi)” and it would all have been the same.

The end of alineisone of the characters “\n” (Linux/Unix line ending), “\r”

(Macintosh line ending), “\u0085” (next line), “\u2028” (line separator), “\u2029” (paragraph
separator), or the character sequence “\r\n” (Windows line ending).

If you just want the end of line to just be the Unix line ending, you can get this behavior
using the“d” flag. Why did Sun choose to single out the Unix mode ending? Why not a“w”
for awindows ending?

The reason is probably to make things more compatible with Perl, which understands
only “\n” asthe line ending when the “m” flag is enabled.

There are two other ways to match the end of the string, “\\z” and “\\Z”. These patterns
do not change their behavior in response to the “m” flag. They always match end of input. The
“N\Z”, however, will not match the final line terminator.

-31-

The Start of aLineor String
The start of astring is matched by “~”. Aswiththe“$” pattern, the“m” flag can be
used to make it match the start of aline instead.

Pattern p = Pattern.conpile("(?i)"that");
String txt = "To BE or not to be\n"+

"That is the question”;
Mat cher m = p. matcher (txt);
Systemout.printin(mfind()); // prints "fal se"

p = Pattern.conpile("(?m)~ that");

m = p. mat cher (txt);

m find();

Systemout.printin(mgroup()); // prints "That"

The“\\A” matchesjust like “*" with the“m” flag turned off.

Word Boundaries
Another sort of boundary you can match on isaword boundary — the beginning or end
of aword. A word boundary can be either the beginning/end of aline, string, or the place where
aword character (includes upper and lower case letters, digits, and the® " character) and anon
word character meet.
We can match on aword boundary by using the pattern “\\b”.
Pattern p = Pattern.conpile("(?i)be");

String txt = "Beethoven nmay be the greatest”;
Mat cher m = p. mat cher (txt);
m find();

Systemout.println(mgroup()); // prints "Be"
p = Pattern.conpile("(?i)\\bbe\\b");

m = p. mat cher (txt);

m find();

Systemout.printin(mgroup()); // prints "be"

The first attempt matches on the start of the name “ Beethoven”. Because the first pattern
does not specify word boundaries, there is no reason to exclude the match.
The second attempt requires a boundary both at the beginning and the end of the word.

-32-

So the second attempt matches on “be” not the “Be” in “Beethoven”.
Y ou can also match on the absence of aword boundary using “\\B”.

Pattern p = Pattern.conpile("(?i)be");

String txt = "Beware of the bunbl ebee”;
Mat cher m = p. mat cher (txt);
m find();

Systemout.println(mgroup()); // prints "Be"

p = Pattern.conpile("(?i)\\bbe\\b");

m = p. mat cher (txt);
Systemout.printin(mfind()); // prints "fal se"
p = Pattern.conpile("(?i)\\Bbe\\B");

m = p. mat cher (txt);

m find();

Systemout.println(mgroup()); // prints "be"

In this case, the final match finds the “be” in the middle of “ bumblebee” .

Repeated Matching
So far I've just looked at what happens if you want to match just one time. It may be that
you want to find all the matches of a pattern in astring. Y ou can do that by smply calling “find
()" repeatedly.

Pattern p = Pattern.conpile("(?i)a");
String txt = "How many A's are there in this string?";
Mat cher m = p. mat cher (txt);
int count = O;
while(mfind()) {
System out . printl n(
"an \"A\" was found at position: "+mstart());
/Il finds 5, 9, 13
count ++;

}

Systemout.println("count = "+count); // prints "3"

There isaspecial pattern element, akind of boundary match, that applies to repeated
matching. It isthe “\\G” pattern which matches on the end of the previous match. If thisthe
first call to “find()” then “\\G” matches on the beginning of the string.

-33-

Pattern p = Pattern.conmpile("(?i)\\&");

String txt = "Aaa, quadruple: Aaaa";
Mat cher m = p. mat cher (txt);
int count = O;
while(mfind()) {
System out. printl n(

"an \"A\" was found at position:

// finds 0, 1, 2

"+mstart());

count ++;

}

System out. printl n("count

"+count); // prints "3"

We only find 3 occurrences of the letter “a”, not 8 (as we would without the “\\G”),
because the “\\G” requires the next match to begin where the previous one left off.

Flags

Y ou have encountered a number of flags as you have read through thistext. Hereisa

brief summary.

Flag

Meaning

Ignore case mode: do not take case into
account when matching.

u Unicode: combine with “i” to take unicode
case mappings into account.

d Unix mode: sets“\n” astheline ending

m Multi line mode: alow “$” (“~”) to match on
line ending (beginning)

S Dot al mode: alow the“.” to match any

character.

There are, however, afew other flags, and afew other ways of setting them.
The “comments” flag, represented by the “x”, allows one to embed white space and

comments within aregular expression.

Thus:

Pattern p = Pattern.conpile("(?x)a b # white space in
pattern\n"+
"# as well as anything from# to end of line\n"+
"# does not count as part of the pattern.\n"+
"c d# so this should match 'abcd' ");
String txt = "abcd";
Mat cher m = p. mat cher (txt);
Systemout.printin(mfind()); // prints "true"

p = Pattern.conpile("(?x)a b\\ ¢ d # the escaped white space does
count as part of the pattern");

m = p. mat cher (txt);

Systemout.printin(mfind()); // prints "false" -- txt contains
no white space character

m = p.matcher("ab cd");
Systemout.printin(mfind());

[l prints "true"

// W match on the white space character correctly

Thereisan additiona flag “CANON_EQ”. Thisflag cannot be turned on and off within
apattern. It isenabled, instead, using a second method argument to “ Pattern.compile()”.

Pattern p Pattern. conpil e("mary", Pattern. CASE | NSENSI TI VE) ;
Mat cher m = p. matcher("My nane is Mary");
Systemout.printin(mfind()); // prints "true"

p Pattern. conpil e("n\u0303", Pattern. CANON EQ) ;
m = p.matcher ("\u00f1"); // this is the "A"

Systemout.printin(mfind()); // prints "true"

p Pattern. conpil e("\u00Of 1", Patt ern. CANON_EQ ;
m = p. mat cher ("n\u0303");
Systemout.printin(mfind()); // prints "true"

p = Pattern. conpile("\u00f 1", Pattern. CASE | NSENSI Tl VE) ;
m = p. mat cher ("a\ u0303");
Systemout.printin(mfind()); // prints "fal se"

You can see here what “CANON_EQ” does. It recognizesthat “ n\ u0303” and “ i”
mean the same thing according to unicode — that they are canonically equivalent.

-35-

Splitting
One of the handy uses of regular expressions is the ability to split a String.

String s = "Hello, you big beautiful world!'";

String patternStr = "[\\p{Punct}\\p{Space}]+";
Systemout.println(Arrays. asList(s.split(patternStr)));
I/l Prints "[Hello, you, big, beautiful, world]"

Here we have used a pattern matching one or more space or punctuation characters to
split up the string. In other words, we give the regular expression for the pieces we do not want
in the string array. When split is called in thisway, you can't get blank strings at the end of the
array.

The array was converted to aList using the “ Arrays.asList()” function in order gain
access to the print formatting ability of the ArrayList object.

Optionally you can give split a second argument, the “limit,” which is the maximum
size of the array that split will return. Here are some examples

String s = "Hello, you big beautiful world!";
String patternStr = "[\\p{Punct}\\p{Space}]+";

Systemout. printl n(Arrays. asList(s.split(patternStr,0)));
// Prints "[Hello, you, big, beautiful, world]"

Systemout.println(Arrays. asList(s.split(patternStr,3)));
[l Prints "[Hello, you, big beautiful world!']"

Systemout. println(Arrays. asList(s.split(patternStr,200)));
/1 Prints "[Hello, you, big, beautiful, world,]"

Systemout.println(Arrays. asList(s.split(patternStr,-1)));
/[l Prints "[Hello, you, big, beautiful, world,]"

For alimit of zero, we get the same result as we had originally — apply the pattern as
many times as possible in order to split up the string, and discard trailing empty strings.

For alimit of 3, we get back an array with a maximum size of 3. This means that our
pattern can be applied at most 2 times within the string, and that isthe size of the array we get
back.

For alimit of 200, we get back an array of a maximum size of 200. This means that our
pattern can be applied at most 199 times. However, the array we actually get back is of size 6.

For alimit of -1, the pattern is applied as many times as possible and trailing blank

-36 -

strings are kept. This works out to be the same as our choice of 200 — except that we didn't have
to guess what our biggest possible array would be.
If you wanted to, you could easily write your own split function.

public static List nySplit(String patternStr, String s) {

Pattern p = Pattern. conpile(patternStr);
Mat cher m = p. mat cher (s);
List list = new ArrayList();

int lastEnd = O;

while(mfind()) {
|'ist.add(s.substring(lasteEnd, mstart()));
lastEnd = mend();

}
l'ist.add(s.substring(lastEnd,s.length()));

return |ist;

Thislist function isjust the same as “ String.split(String str,int limit)” wherea®-1" was
supplied for the limit. It also differsin that it returns a List rather than a String array.

Substituting Strings

Now that you know how to build patternsit's time to use them to make substitutions in
strings. There are two ways to do this, the quick and simple way, and the more complex and
flexible way. The quick and simple way first:

String s = "Hello, world!";

Systemout.println(s.replaceFirst("[aeiou]l”,"[V]"));
[l prints "HV]Ilo, world!"

Systemout.println(s.replaceAll ("[aeiou]l","[V]"));
[l prints "HV]II[V], WfV]rid!'"

The “ String.replaceFirst()” and “ String.replaceAll()” methods allow usto do just what
their names imply — replace either the first occurrence or al occurrences of a pattern with a
given string. In this example we replaced individual vowels with the string “[V]”.

But what if we wanted to do something more complex? What if we wanted to replace
lower case vowels with upper?

-37 -

String s = "Hello, world!";
Pattern p = Pattern.conpile("[aeiou]");
Mat cher m = p. mat cher (s);

StringBuffer sb = new StringBuffer();
while(mfind()) {

m appendRepl acenent (sb, m group() .t oUpper Case());
}

m appendTai | (sb);

Systemout.println(sb.toString());
[l prints "HElI O, wOrld!"

So the only thing we need to learn in order to make more complex substitutions is the
two methods -- “ M atcher.appendReplacement()” and “ Matcher.appendTail()”.

So far, these two methods don't seem to be doing much at al. In fact, you could easily do
without them if you wanted to...

String s = "Hello, world!";
Pattern p = Pattern.conpile("[aeiou]");
Mat cher m = p. mat cher (s);

StringBuffer sb = new StringBuffer();

int lastEnd = O;

while(mfind()) {
sh. append(s. substring(lastEnd, mstart()));
sb. append(m group() .t oUpperCase());
lastEnd = mend();

sb. append(s. substring(lastEnd,s.length()));

Systemout.println(sb.toString());
[l prints "HElI O, wOrld!"

It cost usjust two extralines of code. But there is more trickiness here.

- 38 -

Pattern

p = Pattern.conpile("([aeiou])");
Mat cher m =

p. mat cher (s);

StringBuffer sb = new StringBuffer();
while(mfind()) {
m appendRepl acenent (sb, "<$1>");

m appendTai | (sh);

Systemout.println(sb.toString());
/'l H<e>l| <o0>, w<o>rld!

When the replacer on the matcher isused, “$n” gets replaced by the contents of
“m.group(n)”. Thismeansthat if you want to actually get a“$” to appear in your replacement
text you have to precede it with abackslash. This, in turn, means that if you want to see a
backslash in your replacement text you have to have two backslashes — except that the compiler
turns “\\” into a single backslash, so you need to use “\\\\" to get a single backslash in your
replacement.

While this trickiness may be useful, you may aso find it confusing and wish to use the
“roll your own replacement” | provided in the last example.

Matching on a Byte Array

One of the cool things about the pattern matcher in javaisthat it is not restricted to
matching on character arrays. You can also use it to match on a StringBuffer, a
java.nio.CharBuffer, or aclass of your own invention. The reason isthat, deep down, the
pattern matcher works on a CharSequence. Thisis an interface which String merely
implements.

-39 -

i mport java.util.regex.?*;

/** Basic inplenentati on of a Char Sequence */
public class ByteString inplements Char Sequence {
byte[] bytes;
public ByteString(byte[] sourceBytes) {
t hi s(sourceBytes, 0, sourceBytes. | ength);

public ByteString(byte[] sourceBytes,int start,int end) {
this.bytes = new byte[end-start];
int n=0;
for(int i=start;i<end;i++) {
this. bytes[n++] = sourceBytes[i];
}

}

/** Required by CharSequence interface */
public int length() {

return bytes. | ength;
}

/** Required by Char Sequence interface */
public char charAt(int index) {

return (char)bytes[index];
}

/** Required by Char Sequence interface */

publ i ¢ Char Sequence subSequence(int start, int end) {
return new ByteString(bytes, start, end);

}

[** for testing */
public static void main(String[] args) throws Exception {
ByteString bs =
new ByteString("l like jello".getBytes("US-ASCI1"));
Pattern p =
Pattern. conpil e("JELLO', Pattern. CASE_| NSENSI Tl VE) ;
Mat cher m = p. mat cher (bs);
if(mfind()) {
System out. println(m group());
}

Matching on a File
The fact that a CharBuffer object is also a CharSequence makes this task relatively
straightforward. This little recipe shows you how it can be done. You'll need to import some
stuff from java.io, and java.nio to make it work, however.

- 40 -

/]l Get a ByteBuffer froma file
FilelnputStream fin = new Fil el nput Stream("/etc/passwd");
Fi | eChannel fc = fin.getChannel ();
MappedByt eBuf fer nmbb =
fc. map(Fi | eChannel . MapMode. READ_ONLY, O, fc. si ze());

/1l Get a CharBuffer froma ByteBuffer using an encodi ng
Charset cs = Charset.forName("UTF-8");
CharBuffer cb = cs. decode(nbb);

Pattern p Pattern.conpile("root.*");

Mat cher m = p. mat cher (cb);

if(mfind()) {
System out. println(mgroup());
[l prints "root:x:0:0:root:/root:/bin/bash"
/1 on ny |inux box

One of the key things to notice here is the use of the Charset object to decode your file.
Unless your fileiswritten in ASCI|, its physical length will not necessarily be the same as the
number of charactersit contains. Since the CharSequence interface on which the matcher is
based needs to know the character length, use of Charsets is very important.

-4] -

Matching on a Stream
The problem with matching on a stream is that you don't know its physical length. This
means that you can't smply match on it — you have to break it into chunks and match on the
chunks. The must convenient chunk you can use for your input is probably the line.

/] Get a stream
URL url = new URL("http://]avaregex.com');
InputStreamin = url.openStream);

/'l Create a reader that decodes the stream
Charset cs = Charset.forName("UTF-8");
I nput St reanReader isr = new | nput StreanReader (in, cs);

/1l Read the streamand match line by |ine
Pattern p = Pattern. conpil e("web\\w+");
Buf f er edReader br = new BufferedReader (isr);
for(String chunk=br.readLi ne();
chunk! =nul | ; chunk=br . readLi ne()) {
Mat cher m = p. mat cher (chunk) ;
if(mfind()) {
System out. println(mgroup());
/] prints "website" as of today

-42 -

The Recipes
From this point on we assume that you have afair idea of how to do regular expressions,
that you have reasonably digested the material in the tutorial. However, you may not yet feel
confident with regular expressions. To get to this point you need to do alittle practice in more
practical ways.

Matching a Quoted String

There are certain pitfalls you can run into quite easily. One place to see them iswhen
attempting to match on a quoted string.

When | say “quoted string” | am thinking of the sort you might find in java source
code. That is, you might find a quote character, preceded by a backslash, embedded in the
string. Y ou might aso find two strings on the same line.

Y ou might think, naively, that it's as ssimple as putting a“.*” pattern between two quote
characters. Maybe you can see right away why this doesn't work.

Pattern p = Pattern.conpile("\".*\"");
Mat cher nml = p.matcher("This string has a \"quote\"");
ml. find();
System out. println(ml. group());
[l prints: "quote"

Mat cher n2 = p.matcher("\"This string has a \\\"quote\\\"\"");
nR2. find();
System out. println(nR. group());

[l prints: "This string has a \"quote\""

Mat cher nB8 = p.matcher("This \"string\" has two \"quotes\".");
nB8. find();
System out. println(n8.group());

[l prints: "string" has two "quotes"

The problem comes when we have two strings. We wanted to get just one of the quoted
strings at atime. The most obvious thing to try next isto use “.*?”, and this does get the third
matcher to work correctly — but at the expense of making the second one fail.

The second matcher gets confused by the embedded quote character.

-43-

Pattern p = Pattern.conpile("\".*?2\"");
Mat cher ml = p.matcher("This string has a \"quote\"");
mL. find();
System out. println(ml. group());
[l prints: "quote"

Mat cher n2 = p.matcher("\"This string has a \\\"quote\\\"\"");
m2. find();
System out. println(nR. group());

[l prints: "This string has a \"

Mat cher nB = p.matcher("This \"string\" has two \"quotes\".");
nB. find();
System out. println(nB. group());

[l prints: "string"

The thing that's actually going to work is a bit more complex.

Pattern p = Pattern.conpile("\"(2:\\\\ L[[AV AN]) *\v" ")
Mat cher nl = p.matcher("This string has a \"quote\"");
ni. find();
System out. println(nl. group());

/] prints: "quote"

Mat cher n2 = p.matcher("\"This string has a \\\"quote\\\"\"");
n2. find();
System out. println(nR. group());

[l prints: "This string has a \"quote\""

Mat cher nB = p.matcher("This \"string\" has two \"quotes\".");
nB. find();
System out. println(nB.group());

[l prints: "string"

What isthis magic?

Remember that four backslashes in arow match asingle literal backslash. So “\\\\.”
matches a backslash followed by a character that is not used for a line terminator.

This pattern isinside a non-capture group “(?: ...)" along with the pattern “["\"\\\\]”,
which matches a non-quote non-backslash character.

Thus, the group matches either a pair of characters the first of which is abackslash, or a
single character that isn't a quote or backd ash.

-44 -

So this pattern matches a quote, followed by any number of escaped characters or
characters that are not a backslash or quote, and ends with another quote.

But there's another wrinkle to the story. Very often there's more than one way to write
the pattern that you want, and this last way isjust a bit more concise:

Pattern p = Pattern.conpile("\"(?>\\\\.|.)*?2\"");
Mat cher ml = p.matcher (" This string has a \"quote\"");
ml. find();
System out. println(nl. group());
[l prints: "quote"

Mat cher n2 = p.matcher("\"This string has a \\\"quote\\\"\"");
n2. find();
System out. println(n2. group());

[l prints: "This string has a \"quote\""

Mat cher nB = p.matcher("This \"string\" has two \"quotes\".");
nB. find();
System out. println(nB. group());

[l prints: "string"

In this pattern we use a capture group and the minimal match to allow usto use“.”
instead of “[™”\\\\]”. The capture group assures us that if we can match atwo character
element that starts with a backslash we will.

Matching a Floating Point Number

When matching afloating point number | am thinking about the sort of thing you might
encounter in java source code. What you want to match is something that either has a decimal
point or an exponent. If you have an exponent you may have digits leading it or trailing it or
both.

What followsis our first attempt. A simple grouping of four basic patterns that could
describe matches of floating point numbers in alanguage like java. Of course, asyou've
learned by now, our first tries never work :)

- 45 -

String ptxt =
"(?)(? "+
"\NdR VAN d¥ (2 e[+]ANNdH])[R ?]"+ /] ex: 34., 3.E2
"\NdR\V AN dH(e[-] ANdH) [FR?]"+ /] ex: .2, .994e+4
"\\d+e[+-]A\d+[fF]?|"+ /] ex: le-15
"\\d+[fF]"+ /] ex: 22f
")LEF?Y

Pattern p = Pattern. conpil e(ptxt);

doubl e a%e = 1.
/!l n8 is a class, e2 is a static nenber variabl e
doubl e d = 34. +3. E2+. 2+. 994e+4+1e- 15+a%9e+15. +n8. e2+1f;
String txt =
"doubl e d = 34. +3. E2+. 2+. 994e+4f +1e- 15+a9e+15. +n8. e2+1f ; ";

Mat cher m = p. mat cher (txt);
while(mfind()) {

Systemout.print(" ["+mgroup()+"]");
}

Systemout.println();
/] prints " [34.] [3.E2] [.2] [.994e+4f] [le-15] [9e+15] [8.e2]
[1f]"

Just in front of the text string | intend to use for matching | have placed an actual
computation using double precision numbers. Thisisto show that it isavalid example.

The result that you seeisabit mixed up. For example, “9e+15” isavalid double
precision number, however “a9e” is a variable name and should not be counted as part of the
number.

A similar problem occurs alittle later -- “8.e2” isavalidly formatted number, but in this
case“n8” isaclassnameand “e2” isasdtatic floating point variable name. These two
problems are readily fixable if you just add some “\\b”'s. Our “\\d+” patterns should never be
preceded by letters.

- 46 -

String ptxt =
"(?)(? "+
"\Ab\\dR\ N NN dF (2 e[+] AN+) [FFR]?|"+// ex: 34., 3.E2
"\NdR\V AN dH(e[-] ANdH) [FR?]"+ /] ex: .2, .994e+4
"\\b\\d+e[+-]A\d+[fF] ?|"+ // ex: 1le-15
"\\b\\d+[fF]"+ /] ex: 22f
")LEF?Y

Pattern p = Pattern. conpil e(ptxt);

doubl e a%e = 1.

doubl e d = 34. +3. E2+. 2+. 994e+4+1e- 15+a9e+15. +n8. e2+1f;
String txt = "double d = 34. +3. E2+. 2+. 994e+4f +1e-
15+a9e+15. +n8. e2+1f; ";

Mat cher m = p. matcher (txt);
while(mfind()) {

Systemout.print(" ["+mgroup()+"]");
}

Systemout.println();
[/ prints " [34.] [3.E2] [.2] [.994e+4f] [1e-15] [15.] [1f]"

Parsing XML

The thing to remember when using aregex to parse alarge document isthat “|” isyour
friend. It can be used to separate different kinds of elements fairly easily.

At each point in the parsed string our parser asks, can | find acomplete directive here?
Can | find a complete comment here? Can | find a complete cdata section? Our parser really
consists of aset of patterns for each of these joined by “|”.

Our parser will be an event based parser, simliar to the sax parser. In other words, as we
parse we will call methods when we encounter certain events: i.e. “startElement()” when we
encounter the start of an xml element. To use an event based parser, simply over-ride the event
methods.

We are not claiming that thisis the best or most efficient way of doing xml parsing,
however it does illustrate the convenience and simplicity of regular expressions for parsing.

-47 -

i mport
i mport
i nport
i nport
i mport
i nport
i mport
i nport
i mport
i mport

/**

j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava
j ava.
j ava.

io.File;

i 0. FilelnputStream

ni o. Byt eBuf fer;

ni o. CharBuffer;

ni 0. channel s. Fi | eChannel ;
ni 0. charset. Char set ;
util.HashMap;

.util. Map;

util.regex. Mat cher;
util.regex. Pattern;

* @ut hor Steven R Brandt

*/

public class Xm Parse {
static String mainPatternSrc = "(?s)\\@ ?:" + // dot any flag

"<l *2-->|" + /] coment

"<MN?(L*?2)\N\N?>| " + /] directive
"<INV[CDATAW[(L *2)\\J\\]>|" + // cdata

<) (NNWN ANN-TH([A>]*2) (/)= " + /] el ement
"([r<>]4))"; 1 text

static Pattern nainPattern = Pattern.conpil e(minPatternSrc);

private Char Sequence segq;
private Matcher m

publ i c Xm Par se(Char Sequence seq) {
this.seq = seq;

}

Our parser isinitialized, now lets ook at the main body of our code. Note that because
we have used capture groups in the various sections we can use them to test which pattern sub
element we've matched. If group 1 isnon-null, we have adirective, if group 2 is non-null we

have a cdata section and so on. Everything falls out rather naturally.

- 48 -

publ i c bool ean parseNext () {

if (m==null) {
m = mai nPatt ern. mat cher (seq);
docunent Start();
return true;

} elseif (mfind()) {
if (mgroup(l) !'=null) { // directive

directive(magroup());

} elseif (mgroup(2) !'=null) { // cdata
text(mgroup(2));
} elseif (mgroup(4) !=null) { // elenent

if ("/".equals(mgroup(3))) { // closing el ement
endEl ement (m group(4));
} else {
startEl enment (m group(4));
if ("/". equals(mgroup(6))) { // enpty element
endEl ement (m group(4));

}
}
} elseif(mgroup(7) !'=null) { // text
text(translate(mgroup(7)));
}
return true;
} else {

docunent End() ;
return fal se;

Our next task isto process entity definitions. We will use this for text areas, and for the
values of attributes as we shall seein alittle bit.

- 49 -

static Map entityDefs = new HashMap();
static {
entityDefs.put("It","
entityDefs.put("gt"," ;
entityDefs. put("am","&");
entityDefs.put("quot","\"");
entityDefs. put("apos","'");
}

static String entityPatternSrc = "&¢#(\\d+); | & \\w+);";
static Pattern entityPattern = Pattern.conpile(entityPatternSrc);

private String translate(String s) {
Mat cher m = entityPattern. matcher(s);
StringBuffer sb = null;
while(mfind()) {
if(sb == null) sb = new StringBuffer();
if(mgroup(l) '=null) { // nuneric entity
int i = Integer.parselnt(mgroup(1l));
m appendRepl acemnent (sb,
Character.toString((char) i));
} else { // naned entity
String entityStr = mgroup(2);
String entityVal = (String) entityDefs.get(entityStr);

if(entityval !'= null) {
m appendRepl acenent (sb, entityVal);
} else {

throw new Error("Unkown entity: "+entityStr);

}
}

}
if(sb !'=null) {
m appendTai | (sb);
return sh.toString();
} else {
return s;
}

Here we distinguish whether we have a named or numeric entity and return the
appropriate character in either case. We use a hash map to help us look up the named entities.
We use the check for null group values trick again.

We have also included a small optimization. We don't allocate the string buffer unless
we find a match.

-50 -

static String attributePatternSrc =
DN w) =(200 ([]9 V([N TN
static Pattern attributePattern = Pattern.conpile(attributePatternSrc);

/**
* Call this fromw thin startElement if you want to parse out
* the attributes of an elenent.
*/
public Map getAttributes() {
Map map = new HashMap();
String attrString = mgroup(5);
Mat cher mattr = attributePattern. matcher(attrString);
while(mattr.find()) {
String attrVal =
mattr.group(2) == null ? mattr.group(3) : mattr.group(2);
map. put (mattr.group(1),
translate(attrVval));

}

return nap;

This section simply parses out attribute value pairs on demand. You must call this
method from within “ startElement()” or the value of “m.group(5)” will not be available. This
section isactually abit oversimplified. It ispossible to have comments, etc. inside the element
tag itself.

Our final task isto provide basic methods to be over-ridden by the parsing program. In
this example we're just going to print most of this stuff.

-51 -

/1 Events

public void endEl ement(String s) {
Systemout.printin("end el ement: "+s);

}

public void startElement(String s) {
Systemout.printin("start element: "+s+" "+getAttributes());
}

public void text(String s) {}

private void directive(String s) { Systemout.printin("directive: "+s); }
public void docunent End() { Systemout.println("end docunent"); }

public void docunentStart() { Systemout.println("start docunent"); }

/1 Test method
public static void main(String[] args) throws Exception {
System out. println(mainPatternSrc);
File f = new File(args[0]); // file fromcommand |ine
FilelnputStreamfis = new Fil el nput Strean(f);
ByteBuffer bb =
fis.getChannel (). map(Fil eChannel . MapMode. READ_ONLY, O, f. I ength());
CharBuffer cb = Charset.forNanme("UTF-8"). decode(bb);
Xm Parse xp = new Xml Parse(cb);
whi | e(xp. parseNext ()) {

}

Notice that to process afile we need to repeatedly call parse next. Calling parse next
will cause one (or possibly two) events to be delivered.

This parser has certain limitations — it cannot detect errors. It won't notice if the
encoding doesn't match the xml directive. It won't notice if we have more than one top level
node, or if our document is not well-formed. It does not understand namespaces. However, the
purpose of this recipe was to show you how much you could do with just afew little regular
expressions, not to provide an enterprise-grade parser.

Parsing a Java Sour ce File

One of the interesting things you can do with regular expressions is make a simple parser
of java source files. This parser will easily separate tokens like comments, strings, and variable
names from one another.

We will use the same sort of tricks that we used in the xml parser section, but we will

-52 -

also use our recipes for floating point number and string matching.

i nport java.io.*;

i mport java. ni o. ByteBuffer;

i nport java. ni o. channel s. Fi | eChannel ;
i nport java. ni o.charset. Charset;
import java.util.regex.?*;

public class ParseCode {

public static void main(String[] args) throws Exception {
String floatStr = "(?2:" +
"\\b\\dH N\ \Nd* (2 e[+]2\\d+|)[fF]?|"+//ex: 34., 3.E2
"\NNd A\ \NNdH(?re[+-] ANdH) [FRI?21" + /] ex: .2, .994e+4

"\\b\\d+e[+] A\ d+[fF] 2] " + Il ex: le-15
"\\b\\d+[fF]" + Il ex: 22f
1A

String codeStr = "(?:" +
COC2ANNFANNAND *AN*)) | "+ /* a comment */
(R o+ /1 a comrent
SOV AN RN+ /) "quoted string”
TCCZPANNN ATV R T+ /1 'quoted char’
"("+floatStr + ")|" + // floating point nunber

Pattern codePattern = Pattern.conpil e(codeStr);

File f = new File(args[O0]);
FilelnputStreamfin = new Fil el nput Strean(f);
Fi | eChannel fc = fin.getChannel ();
Byt eBuffer bb =
fc. map(Fil eChannel . MapMbde. READ ONLY, O, f.l ength());
Charset cs = Charset.forName("UTF-8");
Mat cher mat = codePattern. mat cher (cs. decode(bb));
while (mat.find()) {
if(mat.group(l) !'= null) {
System out. println("coment 1<"+mat. group(1)+">");
} else if(mat.group(2) !'=null) {
System out. println("coment 2<"+mat. group(2)+">");
} elseif(mat.group(3) !'=null) {
System out. println("dquot e<"+nmat. group(3)+">");

} else if(mat.group(4) !'= null) {
System out. println("squot e<"+mat. group(4)+">");
} else if(mat.group(5) !'= null) {

System out. println("float<"+mat.group(5)+">");

}

Notice we've also used our independent capture group on the comment (not really
necessary in this case). Try running this program on some of your code and watch as it finds
comments, strings, and floating point numbers. Perhaps you can re-write it to list your methods

-B53 -

and fields — simpilar to javap but operating on source code.

A Simple Calculator

Thiswill not be the most sophisticated calculator in the world, but it will, like a good
student, show all its work.

import java.util.*;
import java.util.regex.?*;
i nport java.text.Nunber Fornat;

public class Calc {

10, * 1/

static String calcStrl = (
"\\(num\)|"+
"num\ *num "+

“num nunt') . repl aceAl | ("nund', " (\\AVd+H(2: VNNV A+))
static Pattern calcPatternl = Pattern.conpile(calcStrl);

I+, -
static String calcStr2 = (

"num\ +nun " +

"num num') . replaceAl | ("nund', " (\\\\d+(2: \ AN+) ")
static Pattern calcPattern2 = Pattern.conpile(calcStr2);

static NunberFormat nf = Nunber Format. getlnstance();
static { nf.setMaxi munfractionDigits(5); }

private static double d(Matcher mint group) {
return Doubl e. par seDoubl e(m gr oup(group));
}

Hereisthe intialization of our calculator. We've used alittle shorthand to initialize our
pattern. We've used String's “replaceAll()” to insert what we mean by “num” into our pattern
string. Building the pattern string in thisway, | think, adds alittle clarity to what we want to
say. | think “num\\+num” isabit easier to understand than “ (\\d+(?:\\.\\d+))\\+(\\d+(?:\\.\\d+))

Notice we've gotten a number formatter and set it to precision of 5. Maybe you want
more precision — but for this example | think 20 looks ugly.

-B5 -

public static double eval (String s) {
s = s.replaceAl | ("\\s+",""); [/ strip out all white space
whil e(true) {
Systemout.printlin(" => "+s); // show our work
Mat cher nl = cal cPatternl. mat cher(s);
if(m.find()) { // (), *, [/
StringBuffer sb = new StringBuffer();
if(ml.group(l) !'= null) {
ml. appendRepl acenent (sh, nl. group(1));
} else if(m.group(2) !'=null) {
nl. appendRepl acenent (sb, nf. format (d(nt, 2) *d(nt, 3)));
} else if(ml.group(4) !'= null) {
nml. appendRepl acenent (sb, nf. format (d(nt, 4)/d(nl, 5)));
}
nil. appendTai | (sb);
s = sh.toString();
continue;
} else {
Mat cher n2 = cal cPattern2. mat cher(s);
if(m2.find()) { // + -
StringBuffer sb = new StringBuffer();
if(n2.group(l) '= null) {
nR2. appendRepl acenent (sb, nf. for mat (d(n2, 1) +d(n2, 2)));
} else if(nm.group(3) !'=null) {
nR2. appendRepl acenent (sb, nf. format (d(n2, 3)-d(n2,4)));

}

nR2. appendTai | (sb);
s = sh.toString();
continue;

}
return Doubl e. par seDoubl e(s);
}
}
public static void nmain(String[] args) throws Exception {
System out. println(eval ("3.2*(1+9)-2.345/1.97"));
}

We first do replacement for the operators * and /, and for parenthesis, because that will
give us the proper order of operations. “1+2*3” should be“7” not “9”.

Parsinga CSV File
One of the standard things you might want to do in lifeis parse aCSV file. Y ou might
naively want to just call String.split(“,”) -- but this would not do what you want if the fields of

the CSV contain commas, new lines, etc.
If the first character in aCSV cell is aquote, then we have a quoted cell. Quoted cells

-56 -

start with a quote and end with a quote, and may contain pairs of quotesin the middle. This
pair of quotes in the middle is an encoding for asingle quote. Confusing?

Pattern p = Pattern.conmpile("(?M\\Gr*(\n)?2(?2:7,)(?:" +
TN I NN AN) [+ /1 quoted cel |
"([*\n]*)" + [/ unquoted cell

)"

/1 Match on whole file at once -- newines can be in a quoted cell
Mat cher m = p. mat cher (

"a, b, \"c\",,\"d,e\",\" S\"\"< \"\n" +

"X, y,\"zZ\nm ", p,\"u\" frog");

int col Nun¥l,
while(mfind()) {
if(mgroup(l) !'= null) col Num= 1; // new row detected
if (mgroup(4) !'=null) { // unquoted cell
Systemout. println((col Num-+)+"] "+m group(4));
} else { // quoted cell, replace "" with ""
String inQuote = mgroup(2).replaceAll ("\"\"", "\"");
String afterQuote = mgroup(3);
System out. println((col Num-+)+"] "+i nQuot e+afterQuote);

frog

Column 1 of row lisjust “a”, and column 2 isjust “b”, these are plain old unquoted
cells. Column 3isalso considered an unquoted cell because itsfirst character is not a quote.
Thus, the quote marks are part of the text of the cell. Column 4 is an unquoted empty cell.
Column 5 isaquoted cell, and actually contains acomma. Column 6 isaquoted cell and uses
the double quote to encode a single quote.

Then we have anew row. Note that in column 3 of row 2 we have aline feed inside the
quoted cell.

-57 -

Ever get tired of counting your parenthesis to figure out what group number you are in?
Ever get annoyed at the fact that inserting a new group into your pattern throws off your pattern
count? Then maybe you want “named groups.” Unfortunately, regular expressions don't offer

Named Groups

you such athing off the shelf, but it's amazingly easy to add that feature.

You do it by parsing regular expression text with a simple regular expression.

i mport
i mport
i mport
i mport
i nport

public

static Pattern p = Pattern.conpile("(2<!\\\\)\\(\\ 2 ([~]4H)'(2'\\2)");

java.util.regex. Pattern;
java. util.regex. Matcher;
java. util. Map;

java. util . Hashtabl e;
java.util.HashMap;

cl ass NanedG oup {

/** G ve names to group nunbers in the pattern string --

*

*

*/
public static Pattern conpile(String patternStr, Map nameMap) {

}

(?"a'foo) gets translated into (foo) and the nameMap
will map "a" to 1.

Mat cher m = p. matcher (patternStr);
StringBuffer sb = new StringBuffer(patternStr.length());
int groupNum = 1;
while(mfind()) {
nameMap. put (m group(1), new | nt eger (groupNumt+));
m appendRepl acenent (sb, " (");
}
m appendTai | (sb);
Systemout.println(patternStr+" -> "+sb);
return Pattern.conpile(sb.toString());

/** A quick exanple/test */
public static void main(String[] args) throws Exception {

Map m = new HashMap();

Pattern p = NamedG oup. conpile("(?' a' [a-z]+(?'b'[0-9]+))",

String txt = "look at this: abcl23";
Mat cher ¢ = p. matcher (txt);
/1 1ook up group nunber by name
int a = ((Integer)mget("a")).intValue();
int b= ((Integer)mget("b")).intValue();
while(c.find()) {
System out. println("a="+c.group(a));
System out. println("b="+c.group(b));

- 58 -

The syntax of the named group follows the convention, established in perl, of extending
the pattern matching syntax through the use of the character sequence “(?”. We will extend it
to “(?name” thiswill identify a capture group named “name”.

Notice that in the pattern we used to identify this we were careful to exclude parenthesis
that were preceded by a backslash, and we also excluded the possibility of naming any other
kind of grouping with the negative lookahead “ (?!'\\?)”. We only want capture groups here.

Because we cannot override Pattern or Matcher, we can't make the use of this class as
transparent as we might like. However, it is still fairly straightforward. We use the compile
method on NamedGroup rather than Pattern. It isthe same, except that it understands our new
pattern syntax and takes a Map as a second argument. The map will hold a mapping of name to
group number.

Later, when we want to access a capture group we first look up the group number for
that name using our map.

A Regular Expression Game

Finally, I've cooked up a Java WebStart application to help you practice your regular
expressions. You can find it at http://javaregex.com/game. This game works by showing you
three pieces of text, and how aregular expression matched against it.

When the game starts you see how the pattern matched. Against the text “that's life” the
pattern string matched the “a” in*“that's”. In other words, “a” iswhat was returned by
“m.group()”.

But that's not the whole story of the match. There was a group in the pattern, group 1,
and it returned the second “t” in “that's”.

Y ou type the pattern you think will match this text in the blank at the top left. When you
hit enter, you'll see how your pattern matched — you'll also see your answer and your score so
far.

If your pattern matches the same as the secret _ -
answer yOU'“ gEt 10 pOI nts per text el ement It Worked ‘8 This must match an even number of characters

against. If your pattern is shorter than the answer, you get R e
ort match, 12 pts

12 points for the match. If your pattern works, but is Match failed, 0 pts
longer than the answer you get 5 points per match. Score: 72180 =
After you have seen the answer, the “ Next =

aaaaaaaaaaaaaaaaaaaaa

Question” button becomes enabled. No further questions,
answers, or scoring will occur until you pressit. The game will till allow you to experiment

-59 -

r—————rr AN enter new patterns and apply them to the text, however, until
Score: 72/90 Next Question you dO SO.

But there are more things you can do with the regular
expression game — you can also design your own questions, as
- o — well as save and load question files. Of course you can also cheat
==>|ab|cdefg<== |==>|abed|efg<==
(1] [abjcdefg [[1] abjed]efg by using the game editor to look at al the questions.

The editor allows you to AT e
select apattern by name. You can |Re-Game Editor Questions

Pattern (ab|cd)| Pattern |(ablcd)*

Text 1 |abcdefg [Text1 jabcdefg

Text 2 ‘abc defg [Text 2 ‘abc defg

==>|ab|c defg<==|==>|ab|c defg<==

[1]]ablc defg [[1] |ablc defg provide each of the three text o el Add

Text 3)xyz abed [Text 3)xyz abed Samp| €S, and a descri ptl on that will Text1 |bandab (E;‘::;)*

—=-xyz [abjcd===|-==|jxyz abed<==| €& Shown along with the score. =band alble== o

[11xyz |ablcd Buttons for add and delete are L . (20)(.). "\

. ext 2 ustab a(?=())
supplied. . Match failed a*
When you are done editing, e

press the done button and you will be taken back to the main Text3 pbcabc |apjcd)
menu. From there you can save or load your game file. Thefile [=>alblcabc<== Remove
isstored in xml format as generated by the bean encoding kisea lookuehind
mechanism Done Editing

Conclusion

I hope you have benefited from the tutorial and the recipes, and | hope you have enjoyed
the game. Please send new game questions and other regular expression questions/ideas to me

through the email page on my website: http://javaregex.com/support.html
Happy programming!

-60 -

