
[1]

May - June 2010
$5.99

un
it

y c
re

at
iv

e

INTERSTELLAR
MARINES

Interview with the creators of
Interstellar Marines. Get to
know the people behind the
game and the company!
Get insight into their pipeline.

SPACE SHOOTOUT
Upcoming Space Shooter
created by a 3 man team
coming your way. Read what
this game is all about and why
it is di!erent.

EFFECTIVE MARKETING
Indie developers are often
dumbfounded as to when and
how to start marketing. Learn
what to do, how and when!

A 3D ATTACK PUBLICATION

[2]

Issue One

4-7 Interview with Interstellar Marines creator Kim Jørgensen

9-10 How to get started in the game industry

11-14 Space Shootout Game - Overview and insight

unitycreative

in
de

x
16-19 Beginning C# - Introduction to C# Programming

20-21 Optimize, always! - Quick steps to optimize your work

22-24 Collaboration using Unity - Options and alternatives

25-28 E!ective Marketing - How to advertise your games

30-33 Unity and Facebook - Problems and solutions

34/34 Game Review - Fowlplay for iPhone

35-38 Introductions - How to introduce players to your game

39-42 Constant Interruptions - How to deal with game interruptions

[3]

unitycreative

Dear Readers,

Hello and welcome to the launch of Unity
Creative Magazine. We at 3D Attack are so
excited to bring to you our electronic publication
dedicated to game artists and programmers
using Unity to create their games. In this first
issue you will find helpful, educational and
informative articles, tutorials and reviews.

Our goal is to continue on this path bi-monthly.
Thatʼs right, every two months we will bring you
the best we have to give. Together with
professionals throughout the Unity and Game
Design and Development Communities, we are
delighted to deliver this resource directly to
your e-mail in-box.

As this is our first issue, you may see design
and content change slightly with future
releases. Other than that, we are ready to go!

If you have any questions, concerns, ideas or
general feedback, feel free to drop us a line at
3dattack@3dattack.us

Hereʼs to the start of something beautiful!

Tavy Pasieka
3D Attack
www.3dattack.us

CONTENT

Are you interested in contributing material for
futures issue of Unity Creative? Does your
company have something special to offer and
you want to let the community know about it?
Are you currently developing a game and want
to share a bit about it? How about sharing what
you know in a tutorial? Contact us with your
ideas at 3dattack@3dattack.us

ADVERTISING

If you are interested in placing an ad in Unity
Creative Magazine, we are happy to serve.
Feel free to contact us a 3dattack@3dattack.us
for pricing information and more.

COPYRIGHT INFORMATION

Unity Creative Magazine and all material
contained therein are copyright protected. You
may not disassemble or distribute any part of
this publication without prior written consent
from 3D Attack directly. any attempts to do so
will be prosecuted to the fullest extent of the law
as it applies in Michigan, USA. This applies for
both 3D Attack material as well as any named
artists material contained in 3D Attack
publications. Although we read through all the
tutorials and articles, and have proofread them
for errors, we cannot guarantee that they are
100% error free and therefore cannot issue
refunds based on those errors.

3D Attack
158 S. Saginaw St.
Chesaning, Michigan - USA
48616ed
it

or
ia

l

mailto:3dattack@3dattack.us
mailto:3dattack@3dattack.us
http://www.3dattack.us
http://www.3dattack.us
mailto:3dattack@3dattack.us
mailto:3dattack@3dattack.us
mailto:3dattack@3dattack.us
mailto:3dattack@3dattack.us

[4]

Interstellar Marines Facts:
Interstellar Marines is a trilogy of
three games, a high quality first
person shooter experienced in a
realistic and unpredictable future
where first contact with another
s e n t i e n t s p e c i e s i s s l o w l y
becoming reality. The games
balance the military realism and
cooperative action from tactical
shooters with the character
development and narrative depth
from Role Playing Games.

Interview with Kim Haar
Jørgensen, Game Director
Thomas P.: When did you decide to make this
game and whose idea was it?

Kim Jørgensen.: The basic vision for
"Interstellar Marines" came back in

1994, when Nicolai (Friend /
Partner / Audio Composer) and

I played an old Amiga
game called "Hired Guns"

from Psygnosis. "Hired
Guns" featured a FPS-like click

to move POV and offered two player
cooperative split-screen at a time when most
other shooters were desperately trying to

clone "Wolfenstein 3D" from ID Soft. Back then
we also watched way too much "Discovery
Channel" and "X-Files" resulting in many long
nights of talks about our ideas for "Interstellar
Marines".

Several years later, Irrational Games released
"System Shock 2", which featured two player
cooperative multiplayer out of the box,
something we have looked for in games ever
since playing "Hired Guns". "System Shock 2"
totally blew us away by shear Sci-Fi / FPS /
RPG / Coop awesomeness and gave us
additional ambitions for integrating simple

RPG elements into the design of "Interstellar
Marines". In 2003, Nicolai and I started looking
into ways to bring our vision to life and the
journey realizing "Interstellar Marines" began.

Thomas P.: What is your responsibility on this
project?

Kim Jørgensen.: Being the Game Director on
"Interstellar Marines", basically means that I'm
the primary person responsible for both vision
and ambition, and it should come as no surprise
that "Interstellar Marines" has caused many
years of sleepless nights where I'm kept awake
in a kind of extreme creative intoxication of
having this science fiction adventure so clear on
the retina.

I am the guy everybody on the team can go to
in the day or call at night. If they need general
inspiration or detailed descriptions of the things
that matter in "Interstellar Marines", like e.g.
why a fork is a fork in our future and why audio
counts for at least 50% of the experience, or
why we rather have six hours of fun than twelve
hours of boredom, or simply because they need
to share creative ideas and feedback which can
make "Interstellar Marines" an even better
experience.

INTERVIEW
INTERSTELLAR MARINES

unitycreative

[5]

INTERSTELLAR MARINES BULLSEYE PUBLISHED BY THE
COMMUNITY

PRE-ORDER NOW

Bullseye is one of many
upcoming preview slices
released as we develop
the game. Check out the
Game section for more
info.

Means we are not funded
by a traditional publisher.
With your support we
WILL make this happen.
Read about our AAA-
indie strategy.

With your support we will
make the game bigger,
better and sooner. Check
out our shop for details.

Thomas P.: When did actual development of
the game begin?

Kim Jørgensen: In January 2004, Zero Point
Software was founded by Gert Haar-Jørgensen,
N i co la i F. G rønbo rg and myse l f . We
immediately started developing ways to inspire
people with the ideas and concepts envisioned
for "Interstellar Marines" and to see if we could
spawn some awareness of the concept. In May
2006 we released a pre-rendered game trailer
presenting the game as if it were already made.
Days after the trailer was launched on a few big
gaming websites, hundreds of thousands of
gamers started responding positively towards
the concept and game publishers started calling
us to setup meetings. This "proof of concept"
phase helped us secure a few private investors
and work building actual gameplay envisioned
for our publisher demo began early 2007.

Thomas P.: How many people are currently
working on this title?

Kim Jørgensen: Right now our 9 man strong
development team at Zero Point Software

counts the bare minimum core team for building
"Interstellar Marines" one feature at the time; 1
Lead Artist, 1 Level Designer, 1 Animator,
1 Lead Programmer, 2 Game Programmers, 1
Sound Designer, 1 Composer and 1 hopefully
very visionary Game Director.

Thomas P.: Are you funded by a sponsor?
What's the financial situation like?

Kim Jørgensen.: To be honest we are still a
few thousand Spearheads and Front-liners
(Members purchasing premium account
upgrades) away from being completely funded
by crowd-sourcing, which is our ultimate dream.
This means that we are still relying on our
investors to pay the bills. They fortunately
understand and believe completely in the
potential of "Interstellar Marines" and our
alternative business strategy called AAA Indie.
We went bankrupt once (May 2009) and almost
lost everything, this will never happen again.
The journey forward is still up and down but one
thing is absolutely sure, we will never give up
before we have delivered our epic sci-fi trilogy
to the world.

Thomas P.: Let's talk about the game. What's
the story behind it? What's the players role?

Kim Jørgensen.: "Interstellar Marines" is a first
person shooter that is constantly moved forward
by a credible story and a realistic vision of first
contact with another sent ient species.
Gameplay is inspired by the military realism and
cooperative elements from tactical shooters.
Gameplay that dares introduce the players to
simple role-playing elements and thereby
provide them with personal and meaningful
choices for training their weapons and
character skills. Gameplay which allows
each member of the team in coop the
opportunity to choose exactly the type of skills
that he or she believes can help to create the
strongest team possible.

Absolute FPS immersion, meets cooperative
gameplay, in a disturbing and realistic sci-fi
universe, continuously driven forward by a
captivating storyline and the reward of
developing your character.

Thomas P.: I was a bit freaked out when I saw
sharks in your FPS. Now I find it to be different
and cool. Who came up with the design/idea?

Kim Jørgensen.: I have always been
absolutely terrified of Great White Sharks, I
respect them and I love them, but it would scare
me to death to be forced to swim with them.
We've had Great White Sharks and their

unitycreative

http://www.interstellarmarines.com/game/
http://www.interstellarmarines.com/game/
http://www.interstellarmarines.com/indie/
http://www.interstellarmarines.com/indie/
http://www.interstellarmarines.com/accounts/upgrade/
http://www.interstellarmarines.com/accounts/upgrade/

[6]

genetic counterparts (Shark Creatures) in parts
of our story from day one, as one of the early
missions in the game is on-board a orbital
research s ta t ion where sc ient is ts are
developing creatures for planetary warfare.
Here we get a chance to play with what has to
be one of the most frightening experiences in
the world; being eaten alive! Watching "Alien
Resurrection" back in 1997, presenting
extremely cool underwater scenarios, kind of
confirmed just how cool swimming with deadly
creatures in space can be! :)

Thomas P.: The quality of the game, so far,
looks AAA. How do you assure it stays that
way?

Kim Jørgensen.: Part of our AAA commitment
is ensuring that the features and technologies
integrated in "Interstellar Marines" can compete
with the quality of competitive games, but this is
really only what is expected if you use the AAA
quality mark. A bigger part of our AAA
commitment is much more about changing
people's expectation of sci-fi in games!

Weʼre focusing on making the most believable
and immersive sci-fi shooter youʼll ever play. No
laser weapons, no needle guns, etc. Our goal is
that when you play "Interstellar Marines", youʼll
feel like youʼre in the Matrix and when you
“unplug”, youʼll be wiping the blood from your
mouth. Every detail from weapon feedback to
communication with your friends is being
focused on to archive this commitment.

Thomas P.: On your website you state
"Published By The Community". Does it
work well for you?

Kim Jørgensen.: Without our beloved
community, and their support, we wouldnʼt be
where we are today. Weʼve been completely
blown away by the commitment to and trust
they have shown to us. It also pushes us to go
that little bit further. And although those that
have purchased upgrades to their accounts will
always hold a special place in our hearts, itʼs
not just they that are helping us out. Itʼs every
user and every visitor that helps give credibility
to us and "Interstellar Marines". Thank you,
all of you!

The financial support from the growing
community is currently primarily used to show
our potential investors that people from all over
the wor ld a re w i l l i ng to suppor t th is
development strategy, with more and more

people joining with each released
playable preview.

It's important to the investors that our 'Sales
Projections' calculated is proved, because it's a
huge part of their decision to invest in
"Interstellar Marines".

Thomas P.: You state that your game will have
"Roleplaying Elements" - Can you tell us more
about that?

Kim Jørgensen.: The RPG mechanics in
"Interstellar Marines" is designed to achieve
better character immersion and upgrade
opportunities to both your character and your
weapons, allowing the gameplay to be much
more nuanced and varied than the typically
“Gun and run” shooter.

Upgrades to e.g. your characters strength skills
provide more inventory capacity; it increases
the lethality of your melee attacks and allows
you to throw grenades farther etc. That said,
"Interstellar Marines" is really a hard core
shooter at heart (FEAR, Half-life and Far Cry)
controlled and defined by a few simple RPG
mechanics balanced together for maximal
replay value and better FPS immersion.

Thomas P.: You're using the "Unity Game
Engine", care to share some thoughts on the
engine itself? What do you like/dislike about it?
What would you like to see in the future from
Unity Technologies?

Kim Jørgensen.: Unity's power to deliver high
quality game content on a web page, its
PC & Mac platform compatibility, the fact that
the technology will be available for consoles in
the future, and their more liberal license pricing,
all make Unity an obvious choice as technology
platform for "Interstellar Marines". Utilizing the
in-browser capabilities allows us to sell
"Interstellar Marines" the exact same place
people play it, online in their browsers at
InterstellarMarines.com.

We absolutely love the Unity engine for its fast
and iterative work flow, enabling developers to
prototype fast and creative and with each
engine update Unity move closer and closer to
the best AAA game engines on the market.
Unity allows everyone to test and play with
the technology. This is what really drives the
potential of Unity becoming a very exciting
game engine alternative for many smaller game
developers, even the ones developing bigger
AAA quality games like we are trying to do.

Thomas P.: Will you make use of the features
listed of Unity 3.0, or will you finish the game
using 2.x?

Kim Jørgensen.: Our next playable preview
slice called "Running Man" will obviously be
released on 2.6, but we are already looking
very much forward to the release of 3.0 which
allows us to go crazy with deferred lighting, all
the new FMOD audio features, as well as built
in Beast global illumination baking for more
advanced lightmaps etc.

CONCEPT ART

unitycreative

http://InterstellarMarines.com/
http://InterstellarMarines.com/

[7]

We simply can't wait.. uhh and did I mention
that we have already played around with a build
of "Bullseye" on Xbox 360! Awesome stuff.

Thomas P.: When is the game supposed to be
"finished"? Any estimates?

Kim Jørgensen.: We are currently focused on
delivering small playable preview slices from
"Interstellar Marines" as we develop the game,
all designed to take us to competit ive
multiplayer, our big release for 2010. "First
Contact" the first game in the trilogy is however
still a few years away from the hands of
gamers.

Thomas P.: Do you have any words of wisdom
for the individual or small indie developer?

Kim Jørgensen.: Take bullshit from no one and
always follow your own dreams, even if it
means going where no one has gone before.
Embrace failure and mistakes, because they
will help you make better decisions in the
future.

Thomas P.: Thank you for the interview Kim!
Any last words?

Kim Jørgensen.:"I say we take off and nuke
the entire site from orbit. It's the only way to be
sure!"

unitycreative

[8]

[9]

Nobody starts off as a pro game developer with
a team of ten+ people and a budget that spans a
million or two. More likely the reality is that you
either spend years working your way towards the
top in a respectable game company, or you start
with bootstrapping ʻthe Indie wayʼ.

Unity Technologies itself was struggling to
survive in the early days of existence. And so
were we. Many people in the Unity Communities
know us as the ʻTornadoTwinsʼ, but very few
know our story. We started developing games at
age 12 (many moons ago) and had gathered
quite some knowledge on the subject half way
through college. We wanted to be in professional
game development pretty bad, but there were
little opportunities to go around at the time.

Thousands of people stand in line to work at
companies like Activision, Electronic Arts and
Ubisoft, but very few people make it. A known
game developer once said ʻFrom the million
people that want to make games, only two
actually make itʼ. Our addition to that is: if you do
happen to be one of the lucky ones, youʼll be
sure to start at the very bottom...

Surely, there has to be another way?

We had to come up with some type of plan.
Half-way through college, we decided to take a
crazy jump off into the deep end - turning the
ʻsystem ̓ upside down. Instead of applying for a
gamedev job, we registered our first company
and made up our minds to shoot big. We had
nothing much to show for, other than our high-
school game projects.
We decided to set two rules from the get-go:
1. We go where the money is
2. We go where no game company has gone
before

After a lot of brainstorming, we decided the
perfect corporation to ʻhire us ̓would be a bank:
Banks have money, they have boring marketing
teams, they need the creativity of game
developers. All we needed was a way in...
An internship sounded like the way to go, plus
the last year of college required us to complete
one- so we killed two birds with one stone. Next,
we networked our butts off. Trust me, itʼs not
hard to find recruiters at all, but itʼs impossible to
find the right ones.

Only days before our internship should officially
start, we found a good recruiter that worked at
ʻING bankʼ, the 7th largest company in the world.
He let us know though, that they “...only hired
interns with a masters degree, no BAs”.
Bummer, but not a reason to give up. We let him
know that we were okay with that, as long as he
agreed to just meet us once. Days went by and
we contacted him every other day. We must
have driven him crazy. Finally he let us know
there was an opening, but only for one person,
not two.

It was time for another sneaky strategy. We
quickly crafted ONE resume for the BOTH of us.
When the interview was scheduled we both
showed up! The recruiter was startled and said
ʻwe only have room for one, but... come on inʼ.
We replied: ʻThatʼs okay, one of us will just wait
outside your officeʼ. In the elevator up the
skyscraper, we tried to keep a straight face and
talk about anything other than the awkward
situation we created. The excitement was
incredible!

Once arrived at his office, there was no space for
anyone to wait outside after all, so he agreed to
interview us both at the same time. A typical ʻtwin
momentʼ weʼll never forget.

This was our only chance to blow him
away, so we gave it all we had. Firm
handshakes, well-tailored suits, witty
answers and lots of laughs.
It worked. We were both hired.

The job description didnʼt have to do
anything with games at all, but our
plan was to just work hard to impress
people and when the opportunity
arose we would strike. Meanwhile
we networked like crazy with the
marketing people.

It paid off. All the reports we created
were heavily designed and stood out way
above the work of others (in terms of creativity,
that is). We were noticed by one of the
marketing guys that was over the new accounts
for youth. Exactly the guy we needed!

Around the time the internship was over and we
were graduating, this guy contacted us. He
wanted our opinion on one of their online
experiences, targeted to kids. Bingo!

At the meeting we came prepared with a well
thought-through plan that exposed the
weaknesses of their marketing efforts and
proposed a solution in terms of a game. Half the
game concept was already done for them, they
ʻjustʼ needed to hire us to finish the rest.

Everybody loved it.

I guess this is where you expect the ʻhappily
every afterʼ part. Unfortunately: not really.
At this very point in time, the economy had
started to go down and budgets were cut. Again,
again, and again. An official job offer therefore
never came and many people we knew at the
bank were laid off.

TORNADO TWINS
The Netherlands has more to offer than cheese and happy cows. Let’s see what the “Tornado Twins” are up to...
How did the Tornado Twins get started in the game business?

Tornado Twins
The TornadoTwins just launched 'UnityPrefabs.com', a website that hosts a professional library
of pre-scripted Unity content. From waterfalls, characters to entire Facebook implementation
scripts, it's there. Check out UnityPrefabs.com today!

unitycreative

http://www.tornadotwins.com/unityprefabs/index.html
http://www.tornadotwins.com/unityprefabs/index.html

[10]

It looked like everything was just a bad idea in
the first place: the presentations at the head
quarters, the networking, it all seemed to have
been a blurry dream.
Slowly we started to recognize the ʻING jobʼ
wasnʼt going to happen at all.

Did we shoot too high? Did we push it too far?
Were we just no good at all? Should we just
have settled with trying to get a job somewhere
instead... like everyone else does?

But times change and so do opportunities.
After a couple of days of trying to get our ducks
back in a row, we started looking back. First off,
we were considered indies by one of the largest
corporations in the world. If they think so, than
now we are.

Second, what would keep us from doing it
again? Enough corporations out there to give
another go.

We decided to shoot even higher and aim
international. We got hired by some of the most
influential non-profits in the US and moved there.
The fact that we worked with and for ING opened
doors everywhere. The lessons we learned from
our internship (such as “how to not come across
as ʻtoo creativeʼ”) turned out invaluable. And as a
result, we now get to do what we love doing
most!

If thereʼs any advice I can give to Indies and
people thinking about a game-dev startup, it
would be this:

- Donʼt quit your day job: Work hard in the
evenings and weekends, but if you have a shot
at a steady income, donʼt let it go unless if
thereʼs another income ready to take over.

- Never give up: A dream will always stay a
dream unless itʼs a reality. Simple, huh?

- Feel like youʼre aiming too high? Aim higher.
Even if you canʼt make it to the moon after all,
at least youʼve climbed the building.

- Plan. Those who fail to plan, plan to fail. And
even if the plan still fails, you got further than
without one.

- Gain multiple skills: Developing the actual
games is only 10% of starting a game-dev
company. You need to get marketing skills and
most importantly: learn how to get sales!

- Donʼt believe the first bump: When you
launch, sales are always higher than a couple
months later. There will be a dip. A big one.
Plan ahead for that and have a plan for what
comes next.

- Ideas arenʼt great until they sell: Everyone
can love your idea, but if there are no sales,
donʼt infuse more cash into it. Let it go before it
ruins you. Seriously.

- Watch the TVshowʻShark Tank ̓ (Europe:

Dragonʼs Den): It helps you think like an
investor. Would you invest in your own idea?

- Outsource: You can outsource even on a
zero-budget. Thereʼs no need to do what
youʼre not good at, even on little resources.
W e ʼ v e w r i t t e n a l i t t l e b o o k o n i t
(www.tinyurl.com/theunplugged).

We hope that sharing part of our story has been
an encouragement to you. If thereʼs anything
else youʼd like us to write on next time, drop us a
line on Twitter (@TornadoTwins). Weʼre very
interested in your projects and would love to
connect with you!

Efraim & Ruben (a.k.a. TornadoTwins)

VIDEO TUTORIALS

unitycreative

http://www.tinyurl.com/theunplugged
http://www.tinyurl.com/theunplugged

[11]

SPACE SHOOTOUT

TARGET LOCKED...
Get ready for a space shooter of the next generation.

Hello everyone. In this article you get an overview of the features and
working processes of our upcoming space combat game “Space
Shootout”. But before we begin with the more interesting part, we shortly
want to introduce ourselves:

We are “Designation41”, a small software development company founded
in february 2010 with its base in Münster, Germany. Currently the core
team consists of 3 members: Chris B. (Concept/Author), Frank G.
(Graphics) and David K. (Coding).

Working on our first official project we are aided by some freelancers and
friends who provide us with additional stuff, mostly sound, music and
additional graphics. At the moment, most of the work happens during our
spare time, but we are ambitiously targeting the game market with the

goal to upgrade our hobby to a more professional level. Well, that
will do for now. Let´s start with the more interesting things. In

“Space Shootout” you and your friends team up as
members of mercenary star fighter squadrons and
engage other teams in fast-paced dogfights, set in a
distant future. The game is an action oriented, tactical

third-person space shooter with easy accessible game controls.
It is clearly not a sci-fi flight simulator, where you have to press many
buttons to simply get out of the hangar. The game is solely designed as a
multiplayer game, for up to 16 players connected via LAN or Internet. A
single-player campaign is definitely not planned.

"Space Shootout" comes with a set of maps, missions and playing modes.
The last can be anything from basic “Free-for-all”-sessions to more
complex scenarios with several mission objectives. In fact, the game is
more laid out for tactical and mission-oriented team play than for simply
“frag´em all up” scenarios. So many of the missions and maps will have
special – sometimes unique – features, which also accounts for the maps.
Some of them are vital for accomplishing mission objectives, others you
can use as a tactical edge or just to pull a stunt to assure your position as
the best hot-shot pilot.

Space is not only big, but also far from empty. During your missions you
will encounter many things and objects, from ordinary space debris and
asteroids to ship wreckage, lost cargo, satellites and even minefields. This
includes even larger space ships, like civilian transports and freighters.

unitycreative

[12]

Such ships will be AI-controlled, but in some
cases you can indirectly set and alter their
actions via radio commands.
Coming to space ships, there are several
different types of spacecrafts available for
players: single-manned, small and medium sized
fighters, as well as some „special craft“. The last
category can be anything from heavy fighters
and bombers to support craft like tech-shuttles
and minesweepers. It will require a flight team of
two or even more players, who take over
positions as gunners, pilots, tech operators and
the like, to actually use these ships to full
capacity (The “Raptor” of the 2003 - 2009
Battlestar Galactica-Series makes a good
example).

Depending on the fighter model you gain access
to a selection of different weapon systems, from
which you can choose the most suitable for the
next upcoming mission or your preferred fighting
stile. The arsenal includes guided and unguided
missiles, torpedoes, mines and some classical
energy weapons like laser guns, among other
things. Every weapon has its own advantages
and weaknesses and can even be designed for a
very specific use. So even if you gain access to
new weapon technology, your old armament will
not become obsolete.

Beyond that, players also will be able to
customize the appearances of their fighters for a
more personal look. The game´s “Hangar”-
section will provide a selection of skins and
patterns, from which you can choose. This also
includes unit and personal insignia and even
some kind of “warpaint” as well.
Other gimmicks cover radio-voice sets and a
squadron profile designer for example.
Currently we think about pilot-kits for another
tactical note. These kits should give you some
minor advantages, but they will absolutely NOT
do the work for you!

Some additional background and flavor is
provided by our own “home-made” sci-fi
universe, which we designed as a neutral
framework for all kinds of space adventures. It
can be described as a “moderate” far future /
space opera-setting, with versions of many
classical topics and new innovative stuff as well.
It is already full of background material right now,
but will dynamically grow and evolve further with
our forthcoming game projects.

In fact, for us, everything started with this long-
term project, which originally was intended to be

some kind of digital supported role playing
campaign setting. But we soon realized that the
whole thing was too much fun to restrict it only to
that and over the next years the universe grew
while the role playing part declined. The project
became a setting for multi-media-use, be it short
stories, audio books, artwork, music and sound
and all kind of games, including computer
games. The last part was only wishful thinking
for years, but finally Frank came up with some
serious plans to realize one of our favorite long-
term goals: a tactical multiplayer first-person
shooter, featuring – surprise - the UNITY engine.
Although we had far enough ideas and concepts
for artwork, design and gameplay, we knew that
we lacked experience in other fields of work, e.g.
animation. Nevertheless Frank put together
some basic levels (very TRON-esque at first).
The experience from these first steps was vital,
showing us, that the amount of problems and
necessary skills, basic and en detail, exceeded
our expectations by far.
So we set up some kind of testing ground to
avoid, that the game became some jury-rigged
patchwork product, full of bugs and lose
ends. Working with it proved so
successful that the testing ground
itself became actually a game
project of its own. And so
“Space Shootout” was
born. [Chris]

Creating Assets for the
Space Shootout proofs to
be qu i te a hard task,
besides all the fun we have.
For one we want a precise
audiovisual presentation, and
second a guarantee, that the
game will work proper on mid- and
even some low-end systems.
To achieve that, we go through a strict
design process, starting with shape
studies and concept sketches.

When the design is completed, we build a
very basic 3D model, to see, how the shape
behaves in 3D. Usually some form tweaking
takes place during this process. We mainly use
MAXONʼs CINEMA 4D to create our models.
Additional modeling work is done in Cheetah 3D
and Pixologics ZBrush. In these early stages of
the modeling process, add-ons like changeable
engines, positioning of weapon load outs and
other features of the model are planned and
roughly designed.

The Designation41 Team

We are “Designation41”, a small
software development company
founded in february 2010 with its base
in Münster, Germany. Currently the
core team consists of 3 members:
Chris B. (Concept/Author), Frank G.
(Graphics) and David K. (Coding).

unitycreative

[13]

Once the basic model is completed with all its
animation- and customization-features, we add
details and the movable parts, such like landing
gear, cockpit canopy and stuff. We decided to
keep the player- and prop-models at around 3.5
to 5k polygons, so they won´t take up too much
render-performance. There are at max 16
fighter models in the game, along with up to 8
larger vessels and the surrounding level. This
puts us at around 300k polygons in a full
scenario. Of course we use LoD systems and
culling to keep the on-screen-polycount much
lower.

We also try to keep the draw calls as low as
possible. Currently we are around a value of
200, but in the final game, this value may reach
up to 350 to 400 DC´s in a full 16 player match.
First tests even worked (at around 35 fps) on an
G4 iMac. Target system, however, is any INTEL
based Mac and standard Windows PCs, so we
will not promise, that the final game will work on
the G-Series of Macs anymore. 400 Draw Calls
could be hard for such an old system. And yes,
if it makes sense at all, we will release a ppc
based version of the game, but my guess would
be, that it will need at least any former high end
G5 system.

Back to modeling: Personally i find it very
important to already have a nice clean shading
on the bare model itself. So, at this raw stage i
import the model to UNITY, set the the import
settings to the desired shading angle and check
the model fo r shad ing issues. When
encountering ugly triangles or broken shading, it
can be easily fixed, by pulling some verts in
your 3D App and check again. It also helps, to
triangulate some parts of the model by hand. By
doing so, you will get a smooth and great
looking shading, that will support your model´s
form and not only making it look round. I usually
spend a handful of hours to get this part right.
And it always pays off.

U V L a y o u t i s d o n e m o s t l y i n
MAXONʼSʼBodyPaint, however since Pixologic
released the new UV Master a few weeks ago,
we plan to switch to ZBrush, for its ease of use
and excellent results in the final UV Set.
Painting is done in Photoshop, after exporting
the UV Set to a .psd file. The .psd UV Texture
with all the mesh info is placed on the model to
check for texture distortions and then imported
into UNITY. It really helps during the painting, to
have 2 Monitors, one for Photoshop and one for

unitycreative

[14]

UNITY. UNITYs excellent import features display changes to the
textures on the model, as soon as you save in Photoshop, so changes
can be viewed almost immediately. This makes it easy to place even the
smallest details on your texture fast, efficient and with proper fit. To give
your model a stronger appearance, we render ambient occlusion maps
from C4D into the main texture. This gives the final appearance of the
model a much more defined look with a lot of depth.

While painting in Photoshop, keeping a clean and sorted layer structure
is very important. We use specific layers of the diffuse map to create the
bump- and specular maps, which are mostly tweaked greyscale copies
of the diffuse map with some specific changes for the best effect. When
keeping the layer structures from your diffuse textures for bump- and
specular texture creation, you have optimum control over the surface
effects you want to create (such like differing raw metal from painted
surfaces and so on). I usually have layers for basic structure, seems /
bolts, paint (at best one for each color of paint), dirt, rust / damage,
signs / logos and some special layers depending on the designated look
i want to create. Using layer masks to create corrosion effects and
scratches leaves the option, to create a brand new looking version of the
model in no-time by just deleting the mask. I found this technique very
helpful.

When everything looks ok, we create copies of the diffuse, bump,
specular and transparency textures and combine them, using alpha
channels, so you end up with a maximum of 2 textures for an object at
best. We chose to create textures at 1024 by 1024 max to keep the
RAM usage low, while still having a nice look. We also use mirrored UVs
on our models, so we have the double amount of pixels displayed on our
models for an even more detailed look.

The finished combined textures are copied into the UNITY project asset
folder and are assigned to the according shaders. When putting
everything together, it is usually the part, where you notice all those little
mistakes you made, during the paint process, so after "finishing" i
usually spend about 2 to 4 hours to finalize everything.

I am not the right man to ask, when it comes to coding, but i will also
drop some words on that topic here. We use a modular framework as
basic code structure, which allows us, to change, add or delete game
features at ease, without distorting the rest of the game or the need to
rewrite large parts of code. We also created an "in game database"
which gives us access to lots of important variables while playing the
game. By using this database, we are able to change flight
characteristics, weapon damage and all other kind of variables in the
mid of a running multiplayer game, with additional options to send these
changes to all players or keep them on one player only for proper
evaluation. This helps a lot, to create the right feeling for each game
feature.

Well, thats it for the technical part of the game for now. I hope you
enjoyed the infos and screens and we are looking forward to present a
cool game to you in the not so far future. As a little eye candy we have
enclosed a web based UNITY Player with one of our fighter models (pre-
alpha stage). Have fun! [Frank]

According to schedule the „Space Shootout Lite“-version will be
available about the end of 2010 as a free download. There will be no
other limitations, no like online-registration, no additional game that
incurs a fee. Just download the game and start blasting your friends into
pieces.

The "Lite" version will include about three fighter models, one type of
larger spacecraft, about three or four maps and a handful of mission
types. In the near future, say 2011, there will be a commercial pro-
version with MORE features and stuff in every aspect of the game.

Our new website at http://www.designation41.com is currently under
construction and will be coming up soon. See you on the UNITY /
THEUNITYARTIST forums soon and stay tuned for any info updates on
our game there. [Frank/Chris]

unitycreative

http://www.designation41.com
http://www.designation41.com

[15]

[16]

Beginning C#

Starting a new language can sometimes feel like a daunting task. This includes both foreign languages as well as
programming languages. The important thing to remember is it takes time and perseverance and in the end it can be
one of the most rewarding experiences. Every couple of years I try to learn a new programming language, because I
feel each language has a unique expressiveness of its own that challenges me critically and allows me to approach
problems in different ways. Over the years I have found the quickest way to learn anything is with hands on
experience with it.

Some things to keep in mind when learning a new language include:

1. Start small – Start with basic constructs and don’t worry if you don’t understand terms such as object-
oriented, concurrent, dynamic. These concepts with come with time and practice and we will help you get
there.

2. Take the time – Problem solving takes many hours of practice and patience, but if you are serious about
learning a new language you will need to put in the time.

3. Build a Library – Find a selection of books for the language you are trying to learn. Take time to review the
books to make sure they are compatible with your reading style.

4. Demos – Working with demos and discovering how other applications are put together is a valuable skill
and one you will use often.

5. Don’t give up – At times programming can become frustrating and you may feel like giving up. Some
problems may seem impossible to solve. When you find yourself feeling this way take a break and let your
nerves and brain relax.

The purpose of this series is to introduce the readers to the language and expressiveness of C#. From the beginning
C# was designed from the ground up to support component concepts including events, properties and methods.
Developers today do not develop the monolithic programs or class libraries of the yesteryear; instead they are
developing self-contained components or classes that expose themselves through properties, events and methods.
Keep in mind as we go through examples that C# is case sensitive, which is to say that “MyClass” is not the same as
it’s lower-case spelling “myclass”.

What defines a component?

1. Properties, methods and events
2. Design-time and run time attributes
3. Integrated documentation using Xml

Language Features

• Namespaces
o Contains types and other namespaces

• Type declarations
o Classes, structs, interfaces, enums and delegates

• Members
o Constants, fields, methods, properties, indexers, events, operators, constructors, destructors

• Organization
o No header files, code written (in-line)
o No declaration order dependence

be
gi

nn
in

g
C#

part 1

unitycreative

[17]

The following program when executed will
display a line of text in the console. This is your
typical “Hello World” application, which every
introductory article is obliged to recreate.

 1: //Our first program, printing a line of text
 2:
 3: using System;
 4:
 5: namespace UnityCreative
 6: {
 7: class Welcome
 8: {
 9: static void Main(string[] args)
 10: {
 11: Console.WriteLine("Welcome to Unity
Creative!");
 12: }
 13: }
 14: }

Line 1: This line begins with //, indicating that
this line (and remainder of the line) is a
comment. Comments are used to document and
increase the readability of the code. These
comments help others (and sometimes even the
author) understand the program. There is
syntax for multi-line comments, however C#
programmers typically use the single line style:
 1: /* This is a multi-line
 2: comment */
The compiler ignores comments; and as such
they do not cause the program to execute any
action. It is considered good programming
practice to comment your program.

Line 2: The using statement allows you to
reference another namespace and use those
types within your program. This allows the types
within System to be used without pre-pending
System to every reference (System.Int32).
Namespaces group features into categories.
The Console static class for example is
contained within the System namespace, which
contains code that you the programmer can re-
use within your own program.

Line 3: The blank line and whitespace (spaces,
tabs, new lines) add readability to the program.
The compiler ignores these whitespace elements
used to separate language elements.

Line 5: A namespace is a logical grouping of
names/identifiers used within a program. Using
namespaces you can logically group related
features so they can easily be used within your
program or other programs.

Line 6 and 14: The left brace “{“ begins the body
of the namespace declaration, and the
corresponding right brace “}” ends the body of
the namespace declaration.

Line 7 - 13: The programmer defined class
definition. The class keyword begins the class
definition and is followed by the class name.
By convention class names begin with an
uppercase letter, and each word in the class
name is also capitalized. This class name can
contain letters, digits, underscores, and @.
Identifiers (Class names) cannot begin with a
number and cannot contain spaces.

Line 8 and 13: The left brace “{“ begins the body
of the class definition, and the corresponding
right brace “}” ends the body of the class
definition.

Line 9: This represents the entry point in a
console application. Console applications begin
by executing at Main. The parentheses are an
indication that this is a method, and in this case
takes an array of strings. In a console
application these parameters are passed on the
command line and passed into this Main method.

Line 10 and 12: The left brace “{“ begins the
body of the method definition, and the
corresponding right brace “}” ends the body of
the method definition.

Line 11: This is the line that instructs the
computer to execute the action (print a string to
the console). The Console class contained
within the System namespace enables programs
to output text to the standard output.
Console.WriteLine outputs the text followed by a
newline character. Every statement must end
with a semi colon (;) which is called the
statement terminator.

Escape Characters
To represent some characters in a string, they
must first be escaped. Consider the double
quote character. Since a string literal is defined
beginning with a double quote and ending with a
double quote, how can you represent the double
quote within the string?

Strings Literals
C# supports both regular string literals and
verbatim string literals. A regular string literal is
the most common and consists of zero or more
characters enclosed in double quotes, and may
include single escape sequences as well as
hexadecimal and Unicode escape sequences.

1: "Welcome to \nUnity Creative"

A verbatim string literal starts with the @
character followed by a double-quote, zero or
more characters, and a closing double-quote. In
a verbatim string literal, all the characters
between the delimiters are interpreted verbatim,
(with the exception of the quote-escape-
sequence). The same string represented in the
regular string literal can be represented as a
verbatim string in the following example.

1: @"Welcome to
2: Unity Creative";

Here the newline character is interpreted
verbatim. To escape a double-quote you use
two double-quotes (“”), which will result in one
double-quote within the string.

Data Types
In order to program in C# it is important to
understand the types that the language supports
and how to use them in program.

unitycreative

[18]

Type System
The type system in C# contains the following two
basic types:

• Value types
o Directly contain data and

holds the data on the stack
o Cannot be null

• Reference Types
o Contain references to

object, where the reference
is stored on the stack, but
memory is allocated on the
heap

o Can be null

Type Conversion
Think of type conversions as allowing you to
copy a value into a variable or method of
another type. For example you may have an
integral type and want to pass it into a method
that accepts double parameters. C# supports
the following types of conversions:

• Implicit conversions – Implicit
conversions are converted without
explicitly defining the conversion. No
special syntax is required because the
operation is type safe and no data loss
occurs. Usually these are widening
operations, that is to say you are
converting from a smaller integral the
to a larger integral type (short to
integer for example).

• Explicit conversions (Cast) - Explicit
conversions include the type cast
operator. In this case the source and
destination are compatible types, but
there is the potential for data loss to
occur if the destination is a smaller
size or is a base class of the source.

• User defined – (Conversion
Operators) User-defied conversions
are performed by special methods that
you can define to enable either implicit
or explicit conversions

• Conversion with helper classes –
There are helper classes built into the
framework for converting between
different types. For example the
System.BitConverter can be used to
convert from integral types to byte
arrays or even DateTime objects.
Furthermore the System.Convert
class or Parse method for built-in
numeric classes can be used to
convert strings into the numeric
equivalent.

Allowed Implicit Type Conversions (Numeric
Types)

The following table shows examples of the type
and the allowed implicit type conversions. In
other cases an explicit cast is required using
(type) or one of the other conversion methods.
The conversion from an integral type (int, uint,
long) to float, or from long to double may cause
loss of precision, but not a loss of magnitude.
Also a constant expression of type int can be
converted to smaller type (short for example) as
long as that constant value falls into the range of
the destination type.

1: // Implicit conversion from an integer to a long
 2: int num = 123457;
 3: long lNum = num;

Line 3: Here the implicit conversion from an
integer to a long (a widening operation) is safe.

Allowed Explicit type Conversions (Numeric
Types)
The following table shows examples of the type
and the allowed explicit type conversions. The
cast is used in instances where an implicit cast
is not available. Also in an explicit cast may
result in data loss or loss of precision.

• Decimals to integral types round
towards the nearest integral. If the
resulting value is outside the range of
allowed value an error will be raised
(overflow)

• Double or float values converted to
integral types are truncated. If the
resulting value (in a checked context)
is outside the range of allowed value
an error will be raised (overflow)

• Converting from a double to float, the
value is rounded to the nearest float
value. If the result is too big or small
to fix into the destination the result is 0
or Infinity.

• Converting a decimal to a float or
double, the value is rounded to the
nearest float or double value.

• Float or double to decimal are
converted to decimal representation
and rounded to the nearest number
after the 28th decimal place (if
required). Numbers too small to be
represented by a decimal will result in
0, if the number is too large to be
represented by a decimal an error will
be raised (overflow).

 1: // Explicit conversion from an double to a int
 2: double dValue = 1234.5;
 3: int iValue;
 4: // Cast double to int.
 5: iValue = (int)dValue; //the value here is 1234

Line 5: The type operator (int) is used to
explicitly convert the double value (1234.5) to an
integer value store in iValue. For this conversion
type the double value is truncated. Since 1234
can be represented in an integer no error is
raised.

Historical Perspective
All this talk of numerical data types reminds me
the first programming language I was introduced
to (circa 1984). The language was Quick Basic
and I was a 10-year-old set upon the task of
writing a program that could do simple math
calculations. The computer was an Osborne
with a 10-meg hard drive and a 1200-baud
modem. Bulletin Board Systems (BBS) were the
“rage” back then and operated completely over
modem (1 user at time, and busy signals). The
first language was Quick Basic, Letʼs take a look
at a simple program that can add two numbers
together and output the result (next page).

$

unitycreative

[19]

1: //--
 2: // Program 2: This program accepts two values from the console,
 3: // converts the values to integer, adds them together
 4: // and outputs the result
 5: //--
 6: using System;
 7:
 8: namespace UnityCreative
 9: {
 10: class AddTwoNumbers
 11: {
 12: static void Main(string[] args)
 13: {
 14: //local string to store first number
 15: string numOne;
 16: //local string to store second number
 17: string numTwo;
 18:
 19: //Output to the console "Enter first number:"
 20: Console.Write("Enter first number: ");
 21: //Read the input from the console
 22: numOne = Console.ReadLine();
 23:
 24: //Output to the console "Enter second number:"
 25: Console.Write("Enter second number: ");
 26: //Read the input from the console
 27: numTwo = Console.ReadLine();
 28:
 29: //Parse the string stored in numOne into an integer
 30: int num1 = int.Parse(numOne);
 31:
 32: //Parse the string stored in numOne into an integer
 33: int num2 = int.Parse(numTwo);
 34:
 35: //add the numbers
 36: int sum = num1 + num2;
 37:
 38: //output numOne + numTwo = sum
 39: Console.WriteLine("{0} + {1} = {3}",
 40: numOne,
 41: numTwo,
 42: sum);
 43: }
 44: }
 45: }

Next Issue
In the next issue our journey will take us from arithmetic and decision
making operators through programming control structures. It has been
both an honor and privilege to share this part of the voyage with you. If
you have any suggestions or questions please feel free to contact me.

Shawn McCarthy is an experienced Business Systems Architect at First
Data. Shawn graduated top of his class with a Masterʼs in Computer
Science and Engineering with an emphasis on Artificial Intelligence on May
16th, 2009. Shawn is also the Technology Lead and co-founder of an
independent game development team (Six Times Nothing). You can reach
Shawn at (shawn@sixtimesnothing.com) and follow the teamsʼ projects at
www.sixtimesnothing.com.

You can reach Shawn at (shawn@sixtimesnothing.com) and follow the
teamsʼ projects at www.sixtimesnothing.com. at

te
nt

io
n!

GOT GAME?
Have you developed a
game using Unity? If
so, WE WANT IT!

Whether it be, Windows,
Mac, iPhone, iPad,
Browser-Based, Stand-
Alone, etc. we are very
interested in testing
and reviewing your game
for our magazine.

Contact us at
3dattack@3dattack.us

unitycreative

mailto:shawn@sixtimesnothing.com
mailto:shawn@sixtimesnothing.com
http://www.sixtimesnothing.com/
http://www.sixtimesnothing.com/
mailto:shawn@sixtimesnothing.com
mailto:shawn@sixtimesnothing.com
http://www.sixtimesnothing.com
http://www.sixtimesnothing.com
mailto:3dattack@3dattack.us
mailto:3dattack@3dattack.us

[20]

“A game artist should always try to optimize and think economically.”
If you read this article, chances are youʼre a game artist just like I am.

However, I wasnʼt always a game artist, I started out doing “regular” 3D
work. For example, Before I got into Game Art I had been doing a lot of
product visualizations, exhibition layouts and Architectural work for many
years. Back in the days I didnʼt have to think a lot about optimizing my
meshes or textures/uvʼs since there simply was no reason for me to do so.
My models and scenes were never intended for “realtime” purposes. So, in
essence, my workflow had to change dramatically.

I have to admit, it wasnʼt easy in the beginning. I visited many forums
and websites, and gathered tips and tricks from wherever I could and
made them “law”. A few years later I can honestly say that I love doing
what I do as a Game Artist. Nowadays, I get hired to help optimize models,
workflows/pipelines and also to “train/teach” people to think “green” in
terms of resources and the likes.

Ok, enough of my past. Letʼs focus on your future. If you want to be a
game artist you need to be aware of all the things mentioned above.
Therefore, I will give some examples of what to do, and what not to do. If
you have a look at the images above you will see 3 pipes on an orange
ground. I rendered that image in wireframe so you can see the differences.

Clearly, the pipe labeled (1) has way too many polygons. This is what
you get if you let your software package handle it for you. Way too many
rotation segments and, overall, just not very “game friendly”.

The pipe with the label (2) is looking better and has about half the
amount of polygons compared to Pipe (1). Already much better, but still not
perfect.

Now letʼs check pipe (3). This pipe segment has about half the
amount of polygons of pipe (2). The object is still clearly recognizable as a
“pipe” and itʼs shape is still readable. Pay attention to the outline of the
object. The outline is the important part actually. You have to optimize your
object, but try to maintain itʼs shape! Donʼt go overboard as seen below!

Always optimize
Every artist should make
it a good habit to
optimize game models,
textures and UV’s, even
when it’s not necessary.
This “habit” will be most
valuable when you really
need to depend on it.
Your clients will thank
you!

Optimize, always!

unitycreative

1

2

3

This is no longer a sphere!

[21]

Now, some folks may say that more modern
computers and consoles can easily handle
higher polygon counts. This is of course true, but
that is still no free ticket to go insane on
polycount. In the end it all adds up and, before
you know it, your machine will drop frames.

Polygon count, however, is not the one and
only performance killer in games. There are
many other factors. For instance, letʼs talk about
“Drawcalls” . The scene on the right shows a few
cubes and two directional lights. Each directional
light causes one additional drawcall per object/
cube. We have 12 cubes, so that sums up to a
total of 36 drawcalls! Drawcalls will affect your
performance, and even more so on your not so
powerful devices as iPhone, iPod Touch or iPad.

By using a script cal led “Combine
Children” (found within the standard assets) you
can drastically reduce drawcalls in this scene. I
created an empty game object and made all
cubes a child of this object. I then applied
(drag&drop) the script (Combine Children) onto
the empty game object. This greatly reduces the
drawcalls in my scene down to 3!

But wait, there is more! As the artist you
should also be aware of “texture compression
methods” and sizes/dimensions. Luckily, Unity
makes that part very easy for us. Once imported,
you can set things like “Max Texture Size” and
“Texture Format (Compression Methods), as well
as several other features.

In case I need to get up close to textures
inside the game, I usually keep my textures fairly
high. I test them by using different max texture
sizes in the Unity editor.

Everything mentioned above should
become “second nature” to you as “Game Artist”.
Make yourself familiar with these matters. Learn
from other artists and ask questions on the
various forums. There is of course more to learn,
but I hope this well help you on your way to
becoming an efficient artist.

Thomas Pasieka

• Combine Meshes if possible
• Change texture size and compression
method inside Unity game engine
• Don't model what you don't see. For
instance, don't model an engine of a car if
you never open the hood.
• Keep your meshes in "Quads" if
possible. Triangulated meshes are messy
and hard to fix/clean if you ever need to
change something. Secondly, Unity
converts the mesh to triangles during
import so there is no reason you would
triangulate it by hand.

unitycreative

[22]

An article on “Collaboration Options” by Erik Harg - Terra Vision

As a versatile game development platform, Unity has been adopted by
both individuals and organizations of varying sizes. Working together with
others on a game comes with its own set of challenges, that do not
necessarily stem from the creative or technological development itself, but
from the process of putting the teamʼs efforts together. This is true, even
when using a tool like Unity, which excels at being accessible for almost all
professions involved in game making.

In this article, we will discuss some of the problems your team may face
when using Unity for collaborative game development. While we give a
brief outline of the general and basic issues of collaboration, we will mainly
focus on Unity-specific pitfalls, challenges, and solutions.

Collaboration Conundrum
Collaborating with others on your game project is rewarding: You can
harvest the creative power of more people. You will not be the only one to
test your game. You get someone to discuss important issues with, such as
gameplay, mechanics, art direction, and the size of the drop shadow on the
headlines of your menu.

All this is fine, until you start actually working on the same project, the
same files. It is likely it will take less than a day before you figure out you
will need a better way of sharing the project than taking turns sending the
latest version back and forth. For your first project, you will now probably
try to all work directly on the same files on a FTP-server, shared Drop-box
account or something similar. It will not work.

Even if you manage to avoid overwriting each otherʼs work, you are at
some point almost certain to at least overwrite your own, wishing you could
turn back the time, and get some previous version of the file. If you have
ever felt this, or the need for multiple people to edit the same files, you are
in the market for a version control system (see sidebar). This will give you
some protection (please do back up your files anyway), but it will also give
you a neat and accessible history of who did what when. Starting to use
version control systems does not have to be a pain, and as a Unity user
you have a few options, which hurt just a little, but in different ways.

Version control for Unity users
Since version 2.0 of Unity 3D was released, those who pay up have had
the option to use Unityʼs own Asset Server for version control purposes.
Version 2.6 also gave us support for using external version control
systems. So, which should you use, and what should you be aware of?

Unity Asset Server
Using the Asset Server is easy. The server does not require much setup,
and the client is right there, built into Unity. It is tightly integrated with Unity
itself, so for the most part it means that it has a better idea of what is going
on with your project than most external tools will. However, using a custom,
proprietary system like the Asset Server means you will have very limited
availability of third party software. If you rely on any existing project
management systems, bug-tracking databases or other software that
integrates tightly with a version control system, you will almost certainly be
out of luck with the Asset Server. You will either have to write your own
software (see Fig. 1) to do the integration, or rely on the Unity community
to support your needs.

Looking at the Asset Server as a pure version control system also shows it
is lacking in places. There is currently no support for standard features
such as branching or merging of branches. This is not much of a problem
for those having a few disjointed projects.

For those having dozens of projects, and where each reuses substantial
pieces of code, which are subsequently refined and retuned, branching
and merging is really useful. This would enable you to start one project as
a copy of another, while keeping the history of the older into the new one.
Letʼs face it, we all make bugs, so when you fix a bug you found in the
inherited code, you would like to back-port that to the older project as well.
Using the Asset Server, there is no way of doing this besides copying the
files directly, which will make it lose its version control history.

The Asset Server also has a few quirks that you should be aware of. Many
Unity developers rely on AssetPostProcessor scripts to add setup scripts or
colliders on certain named objects in your models. If you do, you should

collaboration using unity

Erling Skakkes gate 49B
7012 Trondheim

post@terravision.no
www.terravision.no

+47 4000 3836
org.no 989 199 064 mva:

SCM/VCS
A version control system (VCS) or a source code management (SCM), or even a software configuration management
(also SCM) system, is a piece of software that keeps track of who changed what in source code, assets, and/or other
files in a project.

e common functions of an SCM can be summarized like this: Each user has a local working copy of the project.
Changes are shared with other users. Each user can get one or more changes from other users at a time. e SCM
helps in merging differences when two or more users have changed a file.

Common VSC/SCM systems include: CVS, Subversion (SVN), Perforce, git, Mercurial, BitKeeper.

unitycreative

[23]

know that changes made by the post-processing
script are not recognized by the Asset Server
client. Each team member will have to reimport
the model themselves to have the changes
applied. When using native 3D model formats,
this requires the modeling package to be
installed on all machines, which is usually not the
case when you have dedicated programmers
and artists on a project.

This can be alleviated by sticking to FBX as your
3D model format. You can also trick the Asset
Server into accepting a new version of the
model, by making a small adjustment to the
import settings, commit and have all team
members update. You can then reset the import
setting and repeat.

External version control
Since version 2.6, it has been possible to have
Unity Pro set up special .meta files for each
asset in the project. This enables standard,
external version control systems to pick up
almost all changes that happen inside Unity, by
saving import settings and other meta-data to
text files which can be committed, updated and
diff-ed (see Fig. 2). Using an external SCM
means you will have to rely on other tools than
the internal Server panel to get updates, commit
changes or view diffs and conflicts, but for many
the benefits will be greater than the perceived
cost.

Support for external version control systems
means Unity users can now use industry
standard SCMs like Subversion or Perforce,
and perhaps even more importantly, the third-
party tools that these systems can be integrated
with. A Unity-using organization can choose to
keep its existing SCM, or decide to pick a new
one which has desirable features, and use it for
both Unity- and non-Unity related work.

This simplifies introduction of Unity in
e s t a b l i s h e d s o f t w a r e d e v e l o p m e n t
organizations. It also gives added value to
developers using Unity, through the use of third
party tools for project management, bug
tracking and SCM administration.

The most common version control systems
used with Unity are probably Subversion (SVN),
Perforce and distributed systems like git. These
all have different strengths and weaknesses,
which are mostly unrelated to Unity, but for the
sake of completeness, we will have a brief look
at their main differentiation points.

Subversion or SVN is one of the most widely
used version control systems, and is a free and
open source software from CollabNet and the
Apache Software Foundation. The open source
community has long been supporting SVN, so a
long range of mostly free utilities exist that
integrate with SVN server repositories.

This includes popular tools such as Apache web
server access, Trac bug-tracking and web
interface and most software project management
systems. SVN also has full support for branching
and merging, and both well-designed graphical
user interfaces and powerful command line tools
are available. While free for open source use,
and commercial teams with up to two members,
Perforce is almost as pricey as Unity itself for
larger teams.

However, it has become the standard SCM in
many parts of the games industry. As Unity has
gained traction with existing game development
studios, the use of Perforce with Unity is also
increasing. As a commercial product, Perforce
has a very high level of support and
maintenance of its software, and takes pride in
being both flexible, very scalable and having the
best tools. It has better cross-platform visual
tools for repository administration than most
systems, and it integrates directly with virtually
all project management, bug tracking, build
support, and testing tools. Perforce naturally has
all the functionality you can expect from a
modern, server-based SCM.

Both SVN and Perforce are based on a client-
server model, which means each user updates
from, and commits to, a single central repository.

Fig. 1 – Unitrac, an internally developed web interface for the Asset Server

Fig. 2 – Example of a .meta file for an
FBX model asset

unitycreative

[24]

This usually works great, but in some cases you
want each developer to have more control over
the version control process, and even the ability
to have versioning of local work, or when not
connected to a network. In recent years then,
there has been a small surge of new SCM
systems that are based on the idea of distributed
version control, among these are git, Bazaar,
Mercurial and BitKeeper. These generally give
each user a local SCM system which keeps track
of commits on the userʼs own file system.

They also enable the user to connect their local
system to other usersʼ systems, or even a central
repository, and if permitted, be able to push their
local updates to these other systems. These
systems generally are more lightweight than
SVN or Perforce, but still have much less
support for third party tools and management
systems. There is also a general lack of cross-
platform, user-friendly interfaces for these SCMs,
so you will most likely have to familiarize yourself
with the command line syntax, to use these tools
effectively.

Problems, pitfalls, and pains
Whether you choose the comfort of the Unity
Asset Server or the flexibility of an external
version control system, you are likely to meet
some puzzling and potentially headache-
inducing issues. We do not want you to have
unnecessary headaches, so we will try to
describe some of the more common and painful
pitfalls you are likely to encounter, and give you
some hints on how not to hurt yourself.

The first, and most common, issue when
collaborating using Unity, is conflicts in scenes,
prefabs, and other internal data files. Since these
files are stored in a proprietary, binary format, no
SCM (not even Asset Server) is able to handle
these files properly. They cannot show the
differences between two versions of a scene file,
or merge your changes with mine, when you
update to my latest commit. You are then left
with the option of keeping my version or your
own, modified version, of the scene file in its
entirety.

Most smaller teams solve this by either just
shouting out in the office “the level3 scene is
mine now”, or use built-in file locking in most
SCMs. Some teams go so far as to deny all but
one or a few people the right to commit scene
files altogether. This can get quite complex when
you have larger projects with more people,
especially considering that prefabs suffer from
exactly the same problems as scenes.

A somewhat better solution, is to ensure that
your scenes are actually very minimal, to avoid
frequent updates. You would rather maximize the
use of post-processing and scene setup scripts
that instantiate prefabs, add scripts and colliders
to models, and set up the scene as needed. The
setup scripts are stored as text, and are thus diff-
able and merge-able for the SCM. This can

however lead to depreciation of the built-in
editor functionality of Unity. To still use the
visual editor, you will need scripts to convert in-
editor transforms and setup to snippets that can
go into your scripts, or you will have to rely on
setting up everything in script alone.

Even braver Unity users can take this idea one
step further, and make your own, text-based
scene and prefab file format. This requires all
team members to stop using the ordinary scene
format, and rather build the scenes procedurally
from editor scripts. A starting point for such a
system was recently released by TerraVision as
an open source project at GitHub
(http://github.com/terravision/UnityTextScene).

Pain can also come from using application-native
model formats. As we noted in the section on the
Unity Asset Server above, you can easily end up
with local changes that are not detected by the
version control system, and are thus not
committed. For projects where some users do
not have the modeling package installed, and
you expect to have a certain amount of
AssetPostProcessor scripts, it is probably
recommended to stick with FBX model files.

While the support for saving .max, .ma,
and .blend files directly in the project is one of
Unityʼs party pieces, the ease of working with
universally acceptable files such as FBX often
outweighs the troubles of manual export. When
using external version control, each Unity client
is itself responsible for importing the native
model files, since the imported models are not
committed. This means all team members will
need to have the modeling package installed, if
you use anything but FBX files.

Likewise, and this goes for FBX files as well, if
you make changes to materials generated by
model import, these changes do not propagate
to other users. That is, unless you explicitly
make an editor script that checks for and prefers
existing material files upon import.

A special case of puzzling behavior can come
from using external version control systems and
updating a project that is currently open in Unity.
Seemingly because of the order updates are
processed in, instance prefabs which contain
references to new texture assets will likely lose
the texture reference. If the Unity editor is closed
while updating, all files will be available when the
prefab is processed, and the references will
remain intact.

The Unity editor brings with it another potential
pitfall, when using external version control
systems. If you rename or move any asset in the
Project pane, your version control system will
most likely fail to recognize this. You will be left
with one file marked as deleted, and another as
being brand new, and the history of the former
file will be gone. Therefore, you should always
move or rename files using the version control
system, and not the Unity editor.

A l l in a l l , the more
complex needs you have, and
the more you want to use the finer
features of especially external SCM systems,
the more likely you are to be wanting more
a d v a n c e d e d i t o r s c r i p t s , s p e c i a l
AssetPostProcessors and customized tools. This
will require a bit more from the programmers to
set up, and some more considerations from all
users, but is well worth the efforts, to get the
most out of Unity as a collaborative tool.

Conclusions
We have seen how a team working on a Unity
project will benefit from using a software
configuration management (SCM) system for
version control. As a Unity Pro user, you can
choose between using the integrated Unity Asset
Server, and various standard, external systems,
such as Subversion, Perforce or git.

The Asset Server is great for simpler use, but
lacks in support for third party tools. External
systems require user interfaces outside Unity,
but are much more powerful, flexible and
integrate with a range of tools for bug tracking,
project management, build support and test
administration. Regardless of your choice in
SCM system, you will have to tackle problems
such as diff-ing and merging Unity scene files
and prefabs. With the right system for your
organization, and perhaps some custom scripts
to make your workflow a little easier, you can get
Unity to work pretty well in even quite complex,
collaborative projects.

unitycreative

http://github.com/terravision/UnityTextScene
http://github.com/terravision/UnityTextScene

[25]

e!ective

As Indie developers, we are often dumbfounded as to when and how to start marketing. Starting too early
doesn’t seem to make sense, because when a game is in its infant stages as an idea, there is not much to
market.

Furthermore, once it is time to market- what do we do then? What's the
approach? How do we make the sale? How do we keep an audience
interested and in the long run, provide value and nurture a mutually
beneficial relationship?

In order to effectively market our games, indie developers must rely on
techniques that have proven to produce greater return on investment.
Techniques such as Inbound Marketing, Buzz Marketing, and Guerrilla
Marketing focus on out-thinking the competition instead of outspending
them. Inbound Marketing, as described by Hubspot founders Brian
Halligan and Darmesh Shah, focuses on creating a Hub for your industry
or desired niche.

By providing resources and building a community that comes to you, you
are much more effective than the more time-consuming hunting, which
inevitably leads to the prey fleeing. Guerrilla marketing emphasizes eye-
popping, unconventional methods of promotion like running naked through
the street with a logo sign covering your privates." Buzz Marketing, as
described by VP of Half.com Marketing, Mark Hughes, derives its strength
by getting people to do the talking for you by giving them something
remarkable to talk about.

These the and associated emerging marketing philosophies can not only
increase your support base and brand equity but also transform
communities into social movements.

Market your brand - not just a single game
There are numerous advantages to marketing your brand rather than
marketing a single game. First, your first game is likely to be only a ghost
of the products that you develop later when you have mastered the craft.
If you're great now, imagine how much better your 30th game will be. To
quote Picasso, "It might've only taken me 30 seconds to draw this
masterful sketch but it took 30 years to get to where I can do this in 30
seconds." Second , by marketing your brand, you begin to grow a
relationship with your potential buyer and hopefully invited them to join in
the benefits of your community.

Third, you are better able to quickly exchange information feedback on
your next games and products. Last, you're also able to help others who
are offering entertainment products by leveraging your credibility and
endorsing them. This approach will provide longevity and allow your most
recent success to be a catalyst to boost its co-brand members.

Be different
We've covered what to market, but not necessarily how to go about doing
so, nor what your message should be. One of the first steps is to ask
yourself: what's going to generate the most interest? What is unique with
my game? What would make someone tell another person about my
game? Start early, the marketing process should begin the moment you
start designing your game. Determine what is actually going to pique
people's curiosity. These things will be what you should focus on in your

marketing
By Manuel Saint-Victor, M.D.

unitycreative

[26]

design. Once you've nailed what makes your
game standout, you can begin driving that
message home. The imminent release of Star
Wars Trench Run 2.0 by Infrared5 is a great
example of this.

They've created a way to control the Unity Web
Player game (which wil l be hosted on
starwars.com) via the iPhone version of their
game. The technology they've created to do this
is called Brass Monkey. Using a mobile phone as
a controller for a web game is not something
anyone has seen before, and this has already
started a buzz before the game has been
released.

While Star Wars Trench Run 2.0 also includes
other features like new levels, better effects and
the ability to switch to different ships, Infrared5 is
focusing on the Brass Monkey feature of the
game. They are pushing the message that the
future of the web and mobile is combining them
in unique and compelling ways.

Figure out what's different in your game, and
begin focusing in on that message in your own
marketing.

Of course this same "stand out from the crowd"
concept applies to your brand as well. Make sure
that you get the message out there as to what
makes your overall brand unique. Hone in on just
those things, and you will see results.

Start marketing immediately
Start right now. Drop this article and get to it!
Seriously, you might want to finish the article, but
keep that type of urgency about marketing. You
don't want your business to die a silent death.

Since we've already established that you're
going to market your brand, we no longer have
the issue of not having anything to market.During
the months that you are working on your game,
consider sharing your characters, settings, and
so on. Don't worry about people stealing your
prized idea because by virtue of putting a little bit
out there, you've already taken the first steps to
owning and generating your buzz!

As you build a game or two and get some
visibility, it becomes easier to create a sense of
anticipation for your next game. Visualize
working the audience into such a frenzy that at
midnight when you open the gates they melt
your server. This requires that you've teased
them with screenshots, character backgrounds
and other tidbits to get them attached to and
discovering the characters. Since you've grown
enough brand awareness that they know what
kind of product to expect from you, they'll want
you to hurry up and deliver the goods.

Prepare for Success
As suggested in a discussion with Yilmaz Kiymaz
(@VoxelBoy on Twitter), "consider having an
active blog & forum for your game" where the
community that forms around your game can

obtain new information and also discuss the
game amongst themselves. Update with relevant
content and share your experiences building
your game. Wolfire games is an example of a
project that found success with this approach.
They have a rigorously updated blog about their
upcoming game, full of development-related
information and articles regarding different
aspects of game development (story, characters,
gameplay mechanics etc).

Share notes and tips that may help others avoid
your pitfalls. Another thing that comes to mind is
to develop a relationship with popular games
bloggers or people from game portals and have
them post news about your game as
development progresses.

Also take the time to get to know how you're
valuable by helping share awareness of your
favorite content on their site or event they are
planning. Have stats software in place so that
you can understand which articles resonate well
with your audience. Have your Twitter account
set up and begin finding and listening to your
target audience.

Build your games with marketing in mind
Use social media libraries like dimeRocker as a
means of helping your users engage their own
friends across multiple social platforms to get
them more immersed in your game.

Be sure to do this intelligently - when everyone
goes for the same models, they become
background noise. Users ignore them, or worse,
they negatively impact your brand and
subsequent products. Make it a win-win for the
invited friends. Have both parties involved
benefit with a micro-reward. Consider coming up
with a way that enables invitations to have
slightly different benefits based on the rank of
the players involved.

This allows for subtle bragging to their friends
every time they advance and invite them from a
higher tier with more fringe benefits. The idea is
to come up with approaches that don't sound like
every other invite and both capture and sustain
the invited parties' attention.

Manage relationships across all interaction
platforms.
To maximize the audience that you are
attracting, you need to cover Facebook, Twitter,
YouTube, Linked in, Digg, Reddit, and Delicious -
and that's just naming a few. Build your pages
early. Take the time to learn how each
community operates and find your friends in
those communities. Don't be the sleazy sales
guy.

Maintain your integrity at all times. Despite the
appearance of these being separate systems,
news of the smarmy salesman knows no
boundaries and will . Grow your relationships by
getting to know people in those networks. Carry
them even further by inviting folks to stop by and

unitycreative

[27]

continue a conversation in another network if it's
a better medium. If you're in the middle of a good
talk with someone and you need to show them a
video, send them a link to your YouTube channel
with that video. Subscribe to their feeds during
the talk and get to know their work. Vote up
some of the stuff that you like and favorite some.

This should be done tastefully. Nobody likes a
kiss-ass! Take the time to get to know their work
well enough to be able to send others when
interest and goals match.

Allow your users to enhance the games.
Share these free enhancements.
Just about every game nowadays allows the
user to put her touches on the game and then
(here comes the important part) share it with
friends. Not the game, but her customization.
The need to share their creation can be the fuel
behind her action. Let your game come along for
the ride.

Action in this way creates chatter. Chatter
creates traffic, and traffic creates interest. By
"interest," I mean that Uncle Google gets a
sense of what people are interested in, including
you. Many fishermen stopping by or discussing
your site clues Google in that you might have
something to do with fishing.

This gives you a boost when the hardcore
fisherman decides he wants an iPhone game or
Facebook game.

Get to know and understand your target
audience. Immerse yourself in their
world. If you anticipate selling games to
fishermen or to skateboarding fans, then go to
their most active sites and become an interested
and involved participant. Make sure your interest
is genuine and be sure to learn the culture of the
environment before you post anything -- the only
way to get street creed is to know the streets!
Make sure that you are engaged and helpful for

several months before the topic of selling your
goods comes up and that you remain as involved
in the community as long as you want to
maintain your brand - which is forever! As Tadej
Gregorcic, Co-founder of Motiviti Games pointed
out to me, this also requires choosing a narrow
enough segment so that you can become
knowledgable in its thinking. Use demographics,
theme, geographic location, and any other
means to attract a small niche community that
will be able to grow interest in your game into the
general population. Think Guitar Hero, Band
Hero, Lego Rock Band, etc.

Make your characters deep and with a
rich enough history for folks to actually
care. Create characters that people actually
care about. Even if caring means they hate their
guts! Take a hint from soap operas: It's the same
story told over and over...and over.

It lasts for decades, but you can count on the
characters to remain just as despicable no
matter how many chances you give them. They'll
keep making the same mistakes. As Calypso
said in Pirates of the Caribbean, "Would you love
me if I were any other way?"

How do you know people care about your
characters? Well, that's one of the benefits of
giving them a taste trough social media and the
blog.

Muse Games put out some sneak peeks of their
characters from upcoming games. Come up with
a sideline story that involves the characters and
see how people react.

Do your own background research -- growing up
which characters caught your imagination? Why
did they catch your imagination? Also, remember
that everyone likes characters that aren't as
"real" as those you may meet in every-day life.
Have some fun by exaggerating some traits.

Market in real life and where there's less
noise. Give away T shirts with an attractive
screen capture of your game, featuring the
game's name in a prominent position, to friends.
Encourage these friends to wear these T shirts
to places where people outside your circle
interact casually such as at the mall.

Take it further and have enough friends who
don't know each other wearing the shirts in one
area. Coordinate so that their traffic patterns
create the appearance of increased popularity of
the game instead of 2 guys from Marketing
walking together.

Repeat this exercise with different people in your
local community. This increased awareness,
paired with the correctly targeted Facebook ad,
is a much more powerful combination than either
alone. Also keep in mind that as applications
start to use more location-aware features that
you'll have have advantages in searches and in
visibility as users limit search to nearby areas. As
Google hi-lights social search the size of your
network will influence the likelihood that people
will see your content. These are small, discrete
factors that can combine to make a larger
impact.

Get famous!
I'm being dead serious - yes I am. Grow a fan
base and become a local celebrity. Help with
community events and grow your audience that
you can use as currency added to that of
someone who may have a larger audience to
share with you. Many people call it building a
community, a tribe, or something else. When you
move from site to site, it's vital that you don't
have to recreate and regrow your support. The
Internet enables you to have a portable team
and make multiple arenas. By finding your group
in each network you're ready to gain visibility
when it's time. Your videos are in place on
YouTube, there's mention of you at various sites
and you're placing searches. As more people get

unitycreative

[28]

to know you from your game, you can move to
someone else's home base and bring your
community. This translates to more business and
visibility for their game or product. That's why
celebrities get free stuff - so that they can
mention it and the company can get much more
visibility. And as we all know, visibility translates
to sales.

Participate heavily in panels that can showcase
your work and your expertise. Make sure to give
credit to the tools that you have used to get
where you are with your product. If you
prototyped with Protopack and it saved you
hours, let folks know. This is how endorsements
happen, and you help other Indies rise along the
way. I think of it as a social responsibility.

Consider speaking at conferences and sharing
your expertise as a means of nurturing your
connection with your audience while growing
your audience. This is a perfect time
to hear what they actually want you to share. You
also gain the benefit of having several others
with large audiences and instant cross-exposure.

Recycle!
When one of your games gains some visibility,
you might want to consider boosting its sales by
throwing in a free copy of another game. This
game may have had some success in the past
but not gotten the visibility it needed. If one of
your games has some success, use the
character in a new, similar game and increase
sales of the previous game while giving the new
game a boost. Lucas and their Star Wars brand
have been doing this for over 25 years. How
about Final Fantasy? They have like 13 releases
at this point. Rock Band is another great
example.

Network
Get to know others who are "coming up" just like
you and put everything that you can into helping
them get there. This requires that you find
products that you like as well as people you
enjoy hanging out with and nurturing those
relationships. Certain things (like true interest
and integrity) you can't fake and the second that
people sense betrayal, the damage is hard to
repair. Think about Tiger Woods or Toyota.
Provide feedback, exchange resources, and
refer talent.

Attend events like the Game Developers
Conferences and SIEGEcon so that you can go
from being a virtual friend to a real friend. There
is a lot to be said about a real phone
conversation and even more about a single face-
to-face meeting. Indie game developer, Elliott
Mitchell, known to many on Twitter as @MrT3D,
has the following advice:
"Go to Events like GDC and PAX East to
network, learn about marketing and show off
your game on the expo floor. A group of game
developers affiliated with the Boston Indies
(Macguffin Games, Fire Hose Games and
Dejobaan Games) made huge gains by

effectively advertising / marketing their games at
PAX East. They allowed the 60K attendees to
play their games and networked with them in the
expo hall. The Boston Indies also spoke on
panels as often as possible to become the
charismatic faces of their indie brands. Join and
attend IGDA or similar industry networking
events as well. In Boston we have an IGDA
Chapter known as the Boston Post Mortem.
I G D A b o a r d m e m b e r, D a r i u s K a z e m i
(@tinysubversions), organizes the Post Mortem
along with a few others including Scott
Macmillan (@mrmacguffin). Scott is also the
primary organizer of Boston Indies group. Itʼs
largely through these groups I've gained
knowledge and advice on making and marketing
games to consumers and publishers."

Rinse and repeat
According to Buzz Marketing, by Mark Hughes,
people see 1 in 3 of your "messages" and the
average individual needs 9 exposures to your
product before they actually move to make a
purchase. That's 27 times that you have to be in
a person's face before they'll buy in. Learn from
your errors instead of considering them failures.
Remind yourself that success might be just one
attempt away but if you give up it's right here-
right now. One of our greatest sales-persons, Zig
Ziglar said "Remember that failure is an event,
not a person".

These tips barely scratch the surface of what it'll
take to launch and maintain an effective
marketing campaign, but I hope they've sparked
some ideas. What's important is to understand
that if you're picking up some marketing skills as
you develop your game, you can give your
games a much better chance of being
successful. We don't have to start from scratch
when trying to figure out how to increase the
spread of our games. Marketing is being done
every day right in front of your eyes. Look closely
and take time every day to pay attention to how
it's taking place. You'll be able to use these
techniques for your own benefit and for those in
your community.

I also want to thank the team of folks that took
the time to read this and help me think through it
including Alex Shwartz (@gtjuggler) who has had
to sit through several revisions of the site as well.
Dr Akua G Asare and J Shakir Ramsey, and
Claudia Vance from Gamr7, makers of Urban
PAD, for grammar and style feedback. Elliott
Mitchell and Yilmaz Kiymaz for letting me steal
their words and wrap quotes around them. Tadej
of Motiviti Games and Mike Derbyshire from
dimeRocker their feedback and many others for
the feedback.$ Most importantly, thanks to the
Unity community for your support.

unitycreative

[29]

[30]

Unity and Facebook: Problems and Solutions
This article will discuss solving the most common problems that Unity
developers can run into when tying their games into Facebook. When
setting up a Facebook app to run a Unity game, there are a few pitfalls that
seem like a deal breaker to most. These are the problems that weʼll be
addressing and discussing the best implementation for overcoming. I will
be breaking these sections off into titled parts.

We will assume that youʼre already familiar with basic Unity scripting, basic
Javascript, and that you are also familiar with Facebook programming on
no more than a beginner level. Iʼm not going to get into the specifics of
Facebook programming since there are many approaches and
programming language preferences, and I want to keep this article
applicable to them all. If you can do as much as pull a userʼs ID or name, it
will suffice for this article. If youʼre not familiar with this process you should
find and take a quick tutorial and come back. Iʼll wait. The main aspect
that Iʼll be focusing on is setting up a solid method of communication
between Unity and your HTML Facebook application page. Once that
framework is down, your possibilities are endless.

A little about my experience with Unity and Facebook:

Crash Derby is a demolition derby game I developed under Eek! LLC
(www.eekllc.com) with Ben Hanken.

It is in Beta right now on Facebook, and will eventually be released for
iPhone. Some of the features (so far) include syncing with your Facebook
account and keeping track of your progress and development over time.
You can earn “Crash Cash”, experience, and levels that help you unlock
new arenas to play in, and also to buy new parts for your car to enhance
performance. Your friends names are brought into the game as other
drivers that you compete against, and quirky comments are produced by
them depending on game play. We have a leader board and stats profiles
for all of our players as well. The game has the ability to post on players
walls and they are able to invite friends to play the game and hire them as
pit crew members for in-game bonuses.

When I created Crash Derby, I ran into a lot of problems with Facebook
integration, and finding help or documentation on how to go about dealing
with them was really difficult. This is why I thought that addressing those
really annoying snags that can make or break a project was a good way to
start off writing about Facebook and Unity integration.

Letʼs get started, shall we?

Facebook Facts

★More than 400 million active
users

★50% of our active users log on to
Facebook in any given day

★Average user has 130 friends
★People spend over 500 billion

minutes per month on Facebook
★ More than 70 translations
available on the site
★ About 70% of Facebook users are
outside the United States
★ Over 300,000 users helped
translate the site through the
translations applicationfBy Bob Ricci (Programmer of Crash Derby)

http://apps.facebook.com/crashderby

unitycreative

http://www.eekllc.com
http://www.eekllc.com
http://apps.facebook.com/crashderby
http://apps.facebook.com/crashderby

[31]

Part I: Displaying a Unity Player on Your
Facebook Application Page (FBML vs
XFBML)

The first and most apparent problem is the
player itself. Facebook has its own markup
language called FBML. FBML is a great way to
utilize the tools Facebook offers, and if youʼve
ever worked with Facebook applications before,
the preferred method. Unfortunately, FBML
doesnʼt support embedding a Unity player.
There are two ways to approach this. The
easiest solution is to simply convert your
application to a Frame canvas in your Facebook
app settings. In doing so, youʼve now lost
access to all of your FBML functions throughout
your entire app, and youʼll have to use XFBML (a
version of FBML built to operate in frames or in
applications) to do anything on your page.
Unfortunately, thereʼs no good way to avoid
using XFBML when you want to have Unity
interacting with Facebook (as weʼll get into later)
but that doesnʼt mean you have to sacrifice using
FBML on other pages of your application that
donʼt have the player on it. Or maybe you just
want to host your game on your Facebook page
as is without any in-game Facebook integration.
In this case, a better way to deal with this would
be to use Facebookʼs little known iframe object:
“<fb:iframe>”. By simply placing an iframe object
on the page with the src property set to the url of
your Unity Web Player page, you can render
your Unity web player on the page in a frame
and still keep your surrounding FBML objects
intact.

In Crash Derby, I actually ended up going with
the iFrame canvas method. I did this because
my game has in-game interaction with
Facebook, and uses the playerʼs friends ̓ names
as well as posts high scores and level
achievements to the userʼs wall. However,
Crash Derby is a multi-paged app. We have
user profiles and pages where users can invite
other users, and itʼs very beneficial for us to use
FBML on some of these pages. The way I
accomplished this was another little known trick.
By adding “?fb_force_mode=fbml” to the end of
your url on any of your iFrame canvas Facebook
pages, you can force the page to use FBML
instead of XFBML. So any other pages youʼd
like to add to your application in which youʼd like
to use FBML, you can do so.

Part II: Sending Messages to Your HTML
Page from Unity

Assuming youʼre going to be sending information
back and forth, youʼll need a way to send
messages from Unity to your HTML page.
Fortunately, Unity has a solution for that built
r ight in. Unity has a function called
Application.ExternalCall(), which allows you to
send a message from the Unity Web Player to
the browser document itʼs contained in. The
function will run the Javascript function named
the same as the argument you provide to the
function. For example, if you want to run a
Javascript function on the page called
“GetUserName”, you would simply call that from
your Unity code like this: Application.ExternalCall
(“GetUserName”). Say itʼs a particular userʼs
name youʼre interested in. No problem. This
Unity function supports parameters as well.
Application.ExternalCall(“GetUserID”, “13”) will
call the Javascript function GetUserName, and
also pass the function the argument “13”. This
could be a user ID, or literally any other data that
the function might need from Unity to operate
correctly. Your function on your html page might
look something like this:

<script language="javascript1.1" type="text/
javascript">

 function GetUserName () {
 GetUnity().SendMessage("CallReceiver",
"GotUserInfo", userName);
 }

</script>

Weʼll come back to this code later since this is
also the way weʼll be sending messages back to
Unity. But the main thing Iʼd like you to note here
is that the function name is “GetUserName”.
Calling Application.ExternalCall(“GetUserName”)
from Unity will execute this function.

CRASH DERBY

Demolition Derby game
coming soon from Eek! LLC.
Play the BETA today!

unitycreative

[32]

Part III: Sending Messages to Unity From
Your HTML Page

Letʼs take a look at the code we just saw and
specifically look at what the function actually
does.

GetUnity().SendMessage("CallReceiver",
"GotUserInfo", userName);

GetUnity, a Javascript function thatʼs included in
your HTML page, is generated with your
compiled Web Player build from Unity. Youʼll
want to make sure you leave this function in
your HTML page when you publish the page
and Web Player. After the GetUnity function
does its magic and retrieves the unity player
object for us, we simply use the SendMessage
function to send a message back to Unity. In
this case, weʼre sending a message to the
GameObject named “CallReceiver”, and weʼre
telling it to run the “GotUserInfo” function, and
passing it a variable called “userName”. I
usua l l y c rea te a GameOb jec t ca l l ed
“CallReceiver” in my main scene, and call the
DontDestroyOnLoad(this) function in the Awake
method to keep the object alive throughout the
course of the game so my communication
channel to Facebook stays open at all times.
userName, of course, contains the name of the
user that we request from Facebook. You
should be starting to see now how all of this all
works together. By sending messages back
and forth, we can start to communicate with our
unity project and load information to and from
our Unity game back to our page.

Part IV: Putting it Together

Letʼs stop for a minute and put everything weʼve
learned to practical use. Letʼs say we want to
display a Facebook userʼs name on the screen.
Set up a new Unity project, and create a
GameObject. Name it “CallReceiver” and add a
C# script to it.

Add the following to your script:

string userName = "";

public void GotUserName(string data)
{
 userName = data;
}

void Start()
{

 Application.SendMessage(“GetUserName”);
}

void OnGUI()
{
 GUI.Label(new Rect(Screen.width / 2 - 250,
Screen.height / 2, 500, 50), userName);
}

Thatʼs all weʼll need on the Unity end. Now letʼs
set up your HTML page. Create a new HTML
page and use the tutorial you picked earlier to
get the Facebook app usersʼs name. What
weʼre going to do is write this name to a variable
called userName. If you want to skip the
Facebook programming for now, or you didnʼt
take that turorial yet, you can simple assign a
value to the variable yourself with the following
code:

 var userName = “Bob”;

Of course this is cheating. Because essentially
what youʼd want to do is use your Facebook
code to grab the userʼs name from the
Facebook API and then assign that to
userName, or simply write out the Javascript to
the page dynamically, but I figured Iʼd cut you a
little slack in case youʼre lazy. Since our goal
here is communicating between Unity and the
Browser, whether or not we have the actual
data is irrelevant. Regardless, for those of you
who are actually taking the time to get the user
name from Facebook, youʼll want to either
assign that to your userName variable in
Javascript, or if youʼre using PHP or .NET, you
can simple create this whole block of code with
your script and print it out to the page source.

Once thatʼs finished, our entire code block on
our HTML page should look like this:

<script language="javascript1.1" type="text/
javascript">

 var userName = “Bob”;

 function GetUserName () {
 GetUnity().SendMessage
("CallReceiver", "GotUserName", userName);
 }

</script>

The next step would be to compile your game
and then upload it to your web server. Youʼll
notice if you play the project in the editor,
nothing will display on the screen since Unity is
not able to communicate with your HTML page
when itʼs not being cased in a web player.
Youʼre going to want to build your game and

target it for Web Player or
Web Player Streamed.
When unity creates your
gameʼs unity3d file, you will
also see itʼs created an
index.html file for you. This is
the file that contains the code to
display the player and also the GetUnity
function I just mentioned. Note, that if you do
not include this function, this example will not
work!

The next step is to upload your unity3d file and
your html file to your webserver. Navigate to
your apps.facebook.com url that you set up for
your game, and you should in fact see your
facebook display name show up in the middle of
the screen. Pretty cool, huh? Now this is a
simple example, but from what weʼve learned so
far we can essentially extract names and other
information, bring them into our Unity game,
and then while theyʼre playing we can hand that
information back to Facebook to either edit
components of the page or to display end
results of the game, etc. We can also do things
like import names of friends or any other
information we might want to use from
Facebook to personalize the game more.

There are definitely more advanced ways to
communicate with Facebook, and my favorite
would be using web services to send and
receive information directly to Unity from your
Facebook app. This is a more advanced
tutorial however, and would probably require an
article all in itself. Crash Derby actually uses a
combination of the methods youʼve learned
here, web services, and also has a database
back end where it keeps all of the individual
user stats. I would certianly love to get more
into how I developed the game, but as I
mentioned before, itʼs way above the scope of
this article. Maybe next time?

Until then though, thereʼs one more thing Iʼd like
to touch on that is a standard element of most
Facebook games, but not so obvious to
implement seamlessly with Unity. You might get
a little lost at this part if youʼre not as familiar
with Facebook programming. So now would be
a good time to dig a little deeper into those
tutorials and learn how to post on user walls
using Facebook Connect.

unitycreative

[33]

Part V: Writing to the Wall

Iʼve seen a lot of people throw their hands up in
the air as far as figuring out a solution to this
one. The problem is not that itʼs a difficult thing
to do, but in fact has to do more with the nature
of how Unity works.

Normally in a web environment, we can layer
elements over each other with a simple setting of
the z-index CSS property. So popping up a wall
post prompt over the Unity player with a higher
z-index setting should do the trick, right? Wrong!

The problem is that Unity is rendering 3D directly
to the window. The Unity Web Player defines a
box that Unity is instructed to render to. This
means that every time Unity calls a frameloop,
itʼs going to fight with that prompt you popped
up, and in most cases lose and wind up with
your wall post dialog behind the Unity player.

Now, we could always show the prompt below
the Unity player or above it, but thatʼs kind of
tacky, and we want to give the impression that
itʼs happening as seamlessly as possible within
the flow of our game.

The solution is rather simple. Remember that
GetUnity function we have available to us?

That gives us access to the designated area in
which Unity is allowed to render its content. So
what if we were to temporarily tell Unity that itʼs
render area was incredibly small? So much in
fact that the user canʼt see it. Letʼs give it a shot.

First we need to write our functions to make
Unity invisible and make it visible again. Here
are the simple functions to do that:

 function ShrinkUnity() {
 GetUnity().width = 1;
 GetUnity().height = 1;
 }

 function ExpandUnity() {
 GetUnity().width = 720;
 GetUnity().height = 480;
 }

This is pretty self explanitory. Weʼre simply
setting the boundaries of the player to 1 pixel in
the Shrink function, and then setting it back to its
original value again in the Expand function.
Note, that when expanding, youʼll want to set the
width and height to what your original values
were. In Crash Derby, our game window is
720x480.

Now, letʼs look at the code to show a wall post
prompt in XFBML. Hereʼs the actual code I use
in Crash Derby:

function WallPost(postText) {
$ ShrinkUnity();

FB.Connect.streamPublish(postText,
attachment, actionLinks, targetID,
messageToUser, postComplete,
autoPublish, actorID);

}

Notice that we first call ShrinkUnity, and then we
execute our streamPublish function which tells
Facebook to display the wall post dialog. Most
of these arguments Iʼve given the function are
irrelevant. They will be set according to what
you want to display to the user.

The one of interest to us is the one that says,
postComplete. That particular parameter of the
streamPublish function tells Facebook what
Javascript function to call when the user is
finished with the prompt.

This is important to us because if weʼre going to
make our Unity window invisible, we need to
know when to restore it. So letʼs set up that
function:

 function postComplete() {
 ExpandUnity();
 }

Pretty simple, right? Weʼre telling Unity to
expand when postComplete is called, which is
called by Facebook when it detects the user is
done with the wall post dialog.

The only thing left to do is to call the WallPost
function and pass it the postText string. Weʼll do
this from Unity using Application.ExternalCall
(“WallPost”, postText). Itʼs also recommended
that you pause the game by sending another
message to Unity while youʼre waiting for the
user to decide what to do and then resume it
when youʼre done. Iʼve already given you all of
the tools you need to figure that one out yourself,
so Iʼll leave you to it.

I hope this has been an informative article, and
Iʼd love to write some more in-depth and
advanced articles in the future about Unity and
Facebook integration. Please check out Crash
Derby when you get a chance, and watch for our
iPhone release later this year!

unitycreative

[34]

Have you ever been walking about, minding your own business, when
all of a sudden a bird swoops by and uses you as target practice? You curse the
bird, why would it do that on your new jacket? The answer, because itʼs just too
fun to pass up.

While a pigeon is not technically considered “Fowl”, it matters little
because the game more than makes up for the slight grammatical error. “Tilt to
steer, Tap to poop” Is it really that simple? Of course it is, and that simplicity is
where the game really shines. As a spiteful pigeon (for reasons unknown) you will
reign your white terror on the unsuspecting park patrons. Your objective is to
dodge the trees and rack up the highest combo you can, using only your reflexes
and the power-ups that are scattered about the map. Powers such as a Taco that
allows you to fire your droppings in a more spread out radius. Not only effecting
more than one target, but hitting the targets multiple times allowing that combo
number to skyrocket. While using power-ups your combo will never decrease if
you miss a target, so this gives you the opportunity to rapidly fire your death
dukey as much as you like.

Another useful power-up is the football helmet. This allows you to
charge the trees head-on and take no damage. Not only are you invincible in this
state, but you also get points and increase your combo for every tree you destroy.
Mind you, these are just temporary and wear off rather quickly. The icon will flash,
warning you that the power is almost gone. You have three chances to prove your
worth. For every target you hit you will increase your combo, but if you miss even
one your combo will restart at zero. This also occurs when you hit a tree. Hit three
trees and itʼs game over. As your combo increases so will the speed of the game
and the arrangement of the trees, making it more difficult to steer the pigeon.

The presentation of the game stays true to the game-play. Graphically
it is simplistically unique and fun to look at. The block headed people roaming the
park are humorous to watch and even more so when they become victims of the
pigeon. The grass floor is bland, but you will pay little attention to it as your soar
through the air. Trees are delightfully square from leaf to trunk. Menus are vibrant
and colorful and easy to navigate. Submit your scores online using the feint
option. This opens your game-play to more options like, chatting, achievements,
challenging friends, and much more.

Musically the game can be a little redundant like most iPod titles. The
same upbeat cartoony track you have heard a thousand times. This would not be
that big of a deal if you could simply listen to your preferred music on your iPod
as you play, but the game does not support this feature. If you choose to, you
may also mute the game.

Content wise you donʼt really get a lot, but hey itʼs only a buck to
purchase and the one game mode you do get is extremely addicting; a great time
waster. It would be nice to have a bit more variety though. I hope the developers
release some updates!

Some people will get bored of this game quickly and others will fit it into
their free time as much as possible. In the end youʼre buying an attractive and
addictive title for the bargain price of 1 dollar. So, if you ever wondered what itʼs
like to poop and fly at the same time, this game is for you. If youʼre looking for a
solid time waster than you cant go wrong. I'm going to give this one…4 out of 5
ATTACK POINTS!

Dylan Hillaker - Freelance Writer and Avid Gamer Ga
m

e
R

ev
ie

w

Game: Fowlplay
Developer: Happynin Games
Platform: iPhone
Genre: Adventure
No. of Players: 1
Price: $1.99

blablablablalblblb
lblblblblblblblblb
lblblblblblblblblb

Rating (4 of 5):

http://itunes.apple.com/us/app/fowlplay/id354641980?mt=8
http://itunes.apple.com/us/app/fowlplay/id354641980?mt=8
http://itunes.apple.com/us/app/fowlplay/id354641980?mt=8
http://itunes.apple.com/us/app/fowlplay/id354641980?mt=8
http://itunes.apple.com/us/app/fowlplay/id354641980?mt=8
http://itunes.apple.com/us/app/fowlplay/id354641980?mt=8

[35]

One of the toughest things for us to do as Game
Designers, is deciding on how to begin our players
adventure.

Do we thrust the player into the firefight, giving clues
as to whats going on throughout the battle? Do we
simply have them living comfortably in there two room
flat, ready for a days work, not knowing that they
would be the unwilling victim of a heist!

What do know to be a cliche intro? Is it alright to use
them, and if not, when do we avoid them?

Lets start with tackling the idea of cliches.

Cliches are plot devices that we've seen used over
and over again. The orphaned child who grows to
become the avenging knight. The surviving member
of a squad of space marines fighting his way out from
the depths of the enemy base . These and much more
are an example of what we've come to know and call
cliches. They are the cookie cutter plot devices that
drives a story along. For writers, especially game
designers, it makes story telling tough on us. We
know how our players react to a situation. We also
know that players have dealt with many similar plots
before and after awhile, they can sense a cliche plot
device being used.

How do we get the player to follow the same plot
device, without alerting them to the story hooks and
seeing it as a boring cliche? What can we do to make
a cliche interesting again.

As Game Designers, we have a multitude of tools at
our disposal to make the story progress without the
player identifying obvious cliches. We have our world,
the NPCs that live in it, and its history. With these
tools we can then adapt a simple story to better
immerse the player into the game.

Lets actually go over a few examples of story
introductions, you may recognize a few of them.

-1-

If you can imagine the movie announcer describing
the world, you've hit upon a known style of
introduction. In a galaxy far far away, in a land ruled
by an evil overlord, these should sound fairly familiar.

How is this beneficial to the player?

Not to long ago, all the history about the players
current situation, could be gleamed from the
instruction manual. As time went on, many noticed
that gamers didn't really read the instruction manual, IN

TR
O

D
U

CT
IO

N
S By Robert Morris aka Nightfox

unitycreative

[36]

most people would rather play the game, than
suffer a few minutes reading paperback.

So by utilizing this style of cinematic introduction,
it allows us as the game designer, to introduce
and explain the world to the player. The players
would then be able to see the world in an
opening cut scene, which for all intents and
purposes, sounds a lot more inviting than
opening book and reading a few pages of
history.

-2-

Dropping the player right into the middle of it all.

Jameson finds himself amidst heavy crossfire,
his squad dead. Caught deep behind enemy
lines, where heavy artillery from his own allies
begins pounding the area.

This style of introduction is very common to a
majority of action games. Sticking the player
right into the action. By using the environment
and npc dialogue such as radio chatter or other
forms of communication, we can introduce our
player to the world and why it is in its current
state.

It doesn't even have to be a war zone, the player
could be a new visitor to a town, when suddenly
they are ambushed by a number of bandits.
Once defeated, a guard comes out, and is glad
to see the player is alive and well, telling them of
the dangers of traveling through town at knight.
Thus not only has the player been introduced to
the world, but they are also introduced to their
first possible mission which could be to destroy
the bandits.

-3-

Intro via character building. This style of
character introduction is a bit of a hybrid. the
player doesn't start with a prefabricated avatar,
rather they themselves get to affect what the
character will be. Some games even allow you to
change both the sex and the looks of the
character as well as being able to modify the
characters intro history. Where were they raised,
their race, their mentor, are they magical,
technological, and other traits.

This effectively allows our players to not only
develop their characters history, but to also learn
about the world or universe that the player will
take part in.

Players can be offered a wide variety of options
to create their player, thus making them

generally unique in the fact that with so many
options, no two players should technically have
the exact same character.

How can we expand upon this?

Player traits and skills can be affected from the
very start of character generation. As they learn
the history via building their character, different
skills and abilities are rewarded accordingly. A
character born upon an industrial world would
probably have a great understanding of business
if they were part of the upper class, or an
understanding of mechanics and engineering if
they were part of the workers class.

With their characters generated, they would then
be put into the characters daily routine in life,
from here we can feed in the story, thrusting
them into major conflict which would then move
the player from the comfort of their virtual home,
and force them to take necessary action to see
the story to the end.

-4-

The tragic hero, he who has a moral reason for
doing what must be done.

Jadeline, the daughter of an established family,
watches in horror as her parents are brutally
slaughtered by a rival lord. Her baby brother
kidnapped and taken away.

Here our players character has already had
tragedy hit them. The player can learn this
through external dialogue, either from the
character herself, a journal, or gossip that can be
heard amongst the NPCs that the player comes
across, throwing the character into the terrible
experience also helps them see it first hand and
lets them understand the motivation behind it.

The tragic hero is a well loved and probably
overused storyline. So many of us connect to a
character who had it good in life, and then found
themselves trampled into the dirt, only to rise
slowly back to their feet and avenge themselves,
their honor, or the people they lost.

Whether any of us have actually had an evil dark
lord come in and destroy our family, I don't know,
but it is a story we all like to take part in, nothing
feels better then righting the wrong that was
done to us.

These are but a few intros that we commonly
see.

unitycreative

[37]

What is an example of an intro that we don't
normally see?

A simple intro that establishes a foundation for
our character in the world. Unlike the character
generated storyline, this style of story telling
takes place with an already known avatar which
our players live through. They begin life doing
what they do.

Here's an example

Jace, a mechanic for an auto company wakes up
to the sound of his alarm clock. The player taking
control from here on out, can see this avatars life
through his own eyes, noting a family photo,,
even seeing your characters children running
about outside.

Now lets add a bit more to the into, perhaps
integrate a tutorial.

Jace goes out, and mutters about his car not
running properly, being a mechanic he has an
idea of what maybe wrong. Thus starts the
tutorial, the player is introduced to the problem,
they are told via dialogue from the avatar, what
skills and traits the avatar may have. After
solving the puzzle they feel more connected to
the player.

This would give a reasonable understanding of
why the character can do what they can do. It
doesn't take them out of the experience to do it.

Whats an intro, without a little foreshadowing.
Foreshadowing merely helps us prepare the
player for future events, we don't always need to
use it, depending on the style of game were
developing and how much we want to surprise
our characters. Tutorials can be considered a
tool for foreshadowing.

So lets add a little foreshadowing to Jace's story,
to make it interesting it'll be used within a tutorial.

Jace finishes the car repairs just in time to hear
his son call out for him, to play a simple game of
hide and seek. The player is introduced to the
hide and seek mechanic via a tutorial. Utilizing
simple clues to determine where your son is
hiding.

Once the story progresses, your looking for your
son who is missing. You use the same clues that
you were taught to use during the tutorial. Thus
finding your son.

This style of introduction utilizes foreshadowing
mixed with tutorials. It allows the player to learn

the basic rules of the world which they then
implement later on in the story. It helps to hide
the obvious tutorial from the player, making the
game feel more immersive.

This is a style of story progression that keeps the
player well embedded into the story without
breaking it.

What are other elements that make up an intro?

Atmosphere and Ambiance

-Atmosphere-

It is not just the weather, atmosphere can be
static and or responsive.

A static intro, everything is predefined, and
players are merely there for the ride until we
finally give them control of the character. Best
examples can usually be found in RPGs, were
introduced to the world, the characters, and the
possibly the antagonist through a CG intro. It can
also be done via game play, where no matter
what our decisions are, the same exact outcome
will always happen.

Static- Jace goes to converse with his son, his
son asks "Daddy will you play hide and seek with
me?" your character then has an automatic
response.

A responsive intro, is one where our players
have a little more control over what the outcome
of the intro is. Such as choosing sides in a war.

Responsive- You learn who your character is,
why they are going on a mission, and they obtain
the means to save the world. Right at the get go,
you are given the choice to continue and help
the good guys, or help the people you were
fighting against just moments ago. This can still
be considered the intro phase,, your still learning
about the war, and the world, and now you have
just initiated the beginning of the story.

-Ambiance-

Ambiance is the surrounding, from lighting, to
sound itself.

The tone of the game sets the ambiance. It
effects the mood of the player, and there isn't a
right way, but there are wrong ways to implement
ambiance. Ambiance should be constant.
Ambiance in most games is static. A busy city
will not only look, but it will sound busy.

unitycreative

[38]

Just as a lone haunted castle can feel deserted
and sound deserted, not that it couldn't change,
with a lot of games today, the world is becoming
more and more adaptable to the players actions,
whether the city suddenly goes quiet after a
devastating aftermath, or police officers arriving
to investigate the scream at the haunted house,
their lights and sirens can be seen and heard.

(I would like to offer challenges, which would
involve our readers participation, maybe the
ideas offered by the readers can be posted in the
forums, or the best idea being printed into the
magazine along with the writers information
giving them a little spotlight to shine in)

Here is the challenge, create an intro, use
darkness to create a happy introduction.

How would you use both the atmosphere of the
game, and the ambiance, to enhance the
elements of this intro? Keeping it within the T for
Teens game requirement.

Robert Morris aka Nightfox

unitycreative

Advertising

w
an
te
d!

WE WANT YOU!

- If you are currently developing a
game or application, we want to know
about it.

- If you are a Game Artist, Developer
or Programmer with an outstanding
portfolio, we want to know about it.

- If you have an idea for a tutorial,
article or review, we want to know
about.

If you are interested in contributing
to Unity Creative with your
knowledge, talent and/or ideas, feel
free to contact us today.

3dattack@3dattack.us

mailto:3dattack@3dattack.us
mailto:3dattack@3dattack.us

[39]

Constant

Gaming and gamers have changed dramatically since personal computers
first crept into the average household. In my memories of playing the
original Quake, sitting alone in the dark with my headphones on getting
scared out of my wits, having a 'powerful' computer was a real novelty.
Relatively few people had computers, let alone 3d games. The whole
gaming experience was quite different, too, since most of the best selling
titles were aimed squarely at what would be regarded today as 'hardcore'
gamers.

With instant messaging, social networking and an almost constant flow of
email, if you want to keep your players playing, you need to allow for your
players to stop your game in mid-flow and to go off and do something else
once in a while.

Most older games have some obvious differences to their modern day
counterparts. There are no achievements in Quake, no combo bonuses
and no support for task switching. As far as I remember, you couldn't even
ALT+TAB out. The idea, back then, was that you loaded the game, you
played it and you played it until either you completed it or your eyes fell
out. Whilst not always a design choice and often due to technical
limitations, there was little or no support for users leaving the game with a
view to return.

The explosion in the popularity of casual games and social networking in
the last 5-10 years has strongly influenced the way we play games today.
In 2010, it is completely acceptable behavior to make calls or check email
in the middle of a game. Incoming phone calls, emails, Facebook
notifications, IM conversations… there are many reasons for taking a
break. There are always exceptions to the rule, but try to understand your
audience and the gaming experiences they may have become accustomed
to. Playing games is about overcoming unnecessary obstacles to reach
unnecessary goals, so we don't need to make it any more difficult for them
to do what they don't have to!

Large-scale immersive experiences are generally played in longer chunks
than their smaller counterparts, though this may well be on its way to
changing. For example, almost all games purchased through the Steam
network now have Steam's own social networking system built-in. You can,
literally, chat to your friends through Steam in the middle of a fire fight in
Call Of Duty. Whether or not you die is up to you, of course!

The current trends suggest that computers are being used for more than
just concentrated game play, with unprecedented growth of social media
channels and social gaming. Since it shows no signs of slowing, it's

important to try and look after your players and their constant interruptions
– I don't mean to labour the point here, but most of your players need their
freedom.

As long as you are aware of the issues and you are aware of the fact that
players may often be forced to leave your game behind, you should be
able to find a strategy that suits your project. Try to think of what might
happen at key points in your game if the player needed to take an
important phone call, or if an instant messenger program popped up an
alert window. Try to think of ways to make it easy for your players to drop in
and out of the game world or give them regular breaks of easy gameplay to
provide the opportunity for your players to wander temporarily. Modern
gamers expect to be allowed to do what they want and it is our job to do
our best in making them feel right at home.

Strategies to deal with interruptions

1. Make sure you can task switch without your game exploding.

It seems obvious, but there are still games that do not let you task switch.
The last time I used a game engine that didn't have support for task
switching built-in, for a casual game I was working on, it ended up costing
a lot more time than it should have. Dealing with the game states and
trapping window focus across different platforms and operating systems
can be a pain to code and something that can trip you up because it seems
deceptively trivial. Since you are using Unity, however, you made the right
choice of engine for this. Your players are free to play the game and switch
between their world and your world as many times as they like. The engine
will just handle it. Join me in saying thanks for this little feature that will
often go completely unnoticed by everyone!

2. Give players the option to play your game in a window or in full
screen.

Talking of features that most people won't notice, Unity gives you full
support for both full screen and windowed mode at just about any
resolution a system's graphics card is capable of handling. It is a feature
that may be taken for granted, but when you have to code this for yourself,
across platforms and across the many different types of graphics cards,
can be nothing short of a nightmare.

by Jeff Murray
Interruptions!

unitycreative

[40]

Thankfully, for Unity developers, including the option to play fullscreen or in
a window may be nothing more complex than building extra UI to provide a
checkbox. For your players, it may be invaluable and could mean the
difference between them choosing to play your game as they chat to their
friends, or choosing someone else's.

If you intend to take your game to any of the casual gaming portals,
windowed and fullscreen support is a must, along with the ability to switch
between windowed and fullscreen modes at any time during the game.
With download games in particular, many game portals will demand both
windowed and full screen capability because they know that most of their
users prefer to have the option to do other things as they play. For the
casual audience, this feature is a must.

Of course, switching between full screen and windowed mode can affect
your UI and perhaps your games dynamic. For example, in a full screen
game perhaps you don't need to display the mouse cursor whereas in a
window it may make sense for the cursor to be on display. Unity helps you
out by providing functions to deal with this. It's as simple as:

 HYPERLINK "http://Screen-showCursor.html/"Screen.showCursor = false;

or

 HYPERLINK "http://Screen-showCursor.html/"Screen.showCursor = true;

The screen class contains other useful variables and functions for dealing
with resolution. Screen covers:

resolutions – returns a list of all fullscreen resolutions supported by the
monitor
currentResolution – returns the current screen resolution
width – returns the current width of the screen window in pixels
height – returns the current height of the screen window in pixels
fullscreen – returns whether or not the game is running in full screen

This doesn't solve what to do with your GUI when the screen gets resized,
though. When you change the resolution, your nice GUI could quite easily
end up not fitting right and not filling the window anymore. That's why Unity
have provided scaling for GUI elements using the Matrix4x4:

You use Matrix4x4.TRS(t, r, s) to create your matrix, where:

t is a translation vector value, move along x and y, but not z
r is a quaternion rotation value, rotate on z, but not on x and y
s is a scale vector value, scale on x and y, but not z

Here is a UnityScript example:

function OnGUI () {
$ var tOffset $ = Vector3 (0.0, 0.0, 0.0);
$ var tRotation $ = Quaternion.Euler(0, 0, 0);
$ var tScale $ $ = Vector3(2.0, 2.0, 1.0);
$ var tMatrix $ = Matrix4x4.TRS(tOffset, tRotation, tScale);
$ GUI.matrix $ $ = tMatrix;
}

And in C#:

void OnGUI()
{
$ Vector3 tOffset$ $ =$ new Vector3(0, 0, 0);
$ Vector3 tScale$ $ = $ new Vector3(2.0f, 2.0f, 1.0f);
$ Quaternion tRotation$ = $ Quaternion.Euler(0, 0, 0);
$ Matrix4x4 tMatrix $ =$ Matrix4x4.TRS(tOffset, tRotation,
tScale);
$
$ GUI.matrix = tMatrix;
}

By setting this up, the GUI can scale to fit all resolutions. I tend to use it by
building the UI in a default resolution first (below is an example of setting
the GUI.Matrix up to work with iPhone sizes - since we used GUI.Matrix it
will scale my UI at different resolutions, such as the iPad's 1024x768, to fill
the screen).

GUI.matrix = Matrix4x4.TRS (Vector3.zero, Quaternion.identity, Vector3
(Screen.width / 480.0, Screen.height / 320.0, 1));

Once you have your default set up, you can arrange your GUI items with
coordinates within that space (for the example here, to fill the window we
could create a UI element 480x320 pixels).

With a little tweaking, you can easily make your game look great in both
windowed and fullscreen modes at several different resolutions. Although
there are other approaches, using GUI.matrix appears to be the most
straightforward.

3. Try, as much as possible, to match the play lengths of your levels to the
best and least noticeable amount of time.

Have you ever played a game where you didn't feel as though it was taking
over your life, though somehow you could easily while away hour after
hour? One of those 'just one more level' or 'just one more checkpoint' type
games? It doesn't happen by accident!

Timing levels to 'just that right length' is an art that can make or break your
game. For better or worse, the casual game explosion has helped to create
a science of gameplay where the objective is to keep you playing, without
letting you know about it.

Hardcore gamers often complain about the intrusion of casual game
behaviors in the domain of 'serious' gaming; There is a whole argument
against the 'watering down' of the hardcore gaming experience, though in
order for modern titles to be successful with as many different types of
gamers as possible, large scale game directors and designers have to
work harder to try and deliver the benefits of a more casual game structure
without dissolving the more 'hardcore' experience for the core market.

A great example of this, Call of Duty, is a highly successful first person
shooter published by Activision. At first glance, there is a temptation to
classify this a hardcore gamer's game. Though it may look and feel like a
more hardcore game than, say PopCap's Bejeweled, there are an
increasing number of traits that are shared between them. The evolution of

unitycreative

http://Screen-showCursor.html
http://Screen-showCursor.html
http://Screen-showCursor.html
http://Screen-showCursor.html

[41]

the Call of Duty series has been an interesting guide in ideal play lengths
and of highly immersive linear game structures catering to both casual and
hardcore gamers. The key to that success lies in carefully controlled
lengths of intense, mild and low action sequences – in effect, giving
players just enough of a dose of action to make them feel like there is time
to play 'one more round' without making them feel like they didn't have
their significant portion.

The break between rounds may serve as both a breather for the fatigued
player or a chance to go and do something else before returning to the
fight. There are many advantages to keeping your play in chunks, not least
temping players to come back for one more round. For the developers,
these play lengths allow the splitting up of the game into more manageable
chunks both technically (making memory management, loading times,
streaming etc. manageable) and in terms of allowing greater control over
the game pace and flow and perhaps pace changes between areas.

Increasingly, in linear level designs such as the Call of Duty series, you can
play for a short length of time, reach a checkpoint and choose to stop or
continue. The game makes a point of telling you when you reach a
checkpoint both as a reward and as an important signifier that they don't
have to continue if they don't want to.

Players can go off to do something else, take a quick break and return, or
try to reach 'one more checkpoint' before quitting for the night without it
affecting their schedule (since it's only another 5 minutes, right?). Once
you get into that 'one more checkpoint' cycle, it is easy to end up doing one
more, then another then another until it's 5am and you have to be up for
work in two hours. Not that I would ever do that, of course!

For a full breakdown (and some incredible advice on pacing) of Call of
Duty and the pacing behind the level design, Gamasutra has a great article
HYPERLINK "h t tp : / /www.gamasut ra .com/v iew/ fea ture /3863/
gameplay_fundamentals_revisited_.php"http://www.gamasutra.com/view/
feature/3863/gameplay_fundamentals_revisited_.php

Allowing for short bursts of play or safe, quiet periods in-game also gives
players the opportunity to take a deep breathe or do what they need to do
outside of the game world. This is particularly important in multiplayer
games.

In multiplayer games, the most expected 'out of the game' activity is
communication with other players. Of course, no-one stops to chat in the
middle of a melee attack. Slowing down the action at key points, safe
areas or providing certain breaks in play helps players to have the chance
to communicate with each other.

Timing is everything. When testing your game, pay particular attention to
play lengths and how players feel about them. If at all possible, try different
play lengths of the same levels on different people and gauge their
reactions.

4. Store game state regularly, or if you can trap focus loss make sure you
store it quickly!

Save points may be points at which you allow the user to save their game,
or checkpoints at which you automatically save the game for them. Save
point restrictions (such as distance between checkpoints) are a game
designer's choice and should not be dictated by the technology. It is a
game designer's job to take target player preference into account and
design the game with any restrictions or possibilities in mind.

Making save points too far apart will frustrate players and making them too
close will make the game too easy.

If you're working with Unity iPhone, this is something you really need to
pay attention to. On mobile devices, players may be forced to leave the

game for any number of reasons such as a dead battery, an important
phone call or perhaps another program popping up with some kind of
notification. If at all possible, players need to be able to quit out on demand
and return to the last point without losing much of their hard work.
Thankfully Unity provides everything you need to do that without too much
work on your part.

Unity's PlayerPrefs system is a great option for saving data, though a quick
search on the Unity forum may lead you to some alternatives that go
beyond the scope of this article, such as writing to a text file or XML
serialization (for more on XML serialization, there is an extensive post on
the Unity Answers site http://answers.unity3d.com/questions/971/how-to-
scrip-a-save-load-game- option).

If you don't fancy writing your own state saving code, there is also a
straightforward third-party solution available for purchase called EZ Game
Server. It is a turnkey solution for tackling data saving – HYPERLINK
"http://www.anbsoft.com/middleware/ezs/"http://www.anbsoft.com/
middleware/ezs/. You don't need a paid solution like this, of course, since
Unity is capable of what you need right out of the box, but having a solution
already built like this may end up saving development time and helping out
your project. One of the great things about EZ Game Server is that it is so
extensive.

As with just about everything, it depends on your exact requirements and
there really is no right or wrong way just as long as it works for your
project.

Here is a basic example of using PlayerPrefs, which will work in both C#
and UnityScript:

Storing the player's position:

PlayerPrefs.SetFloat("Player_PosX", player.transform.position.x);
PlayerPrefs.SetFloat("Player_PosY", player.transform.position.y);
PlayerPrefs.SetFloat("Player_PosZ", player.transform.position.z);

Loading the player's position back again:

player.transform.position.x = PlayerPrefs.GetFloat("Player_PosX");
player.transform.position.y = PlayerPrefs.GetFloat("Player_PosY");
player.transform.position.z = PlayerPrefs.GetFloat("Player_PosZ");

unitycreative

http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://www.gamasutra.com/view/feature/3863/gameplay_fundamentals_revisited_.php
http://answers.unity3d.com/questions/971/how-to-scrip-a-save-load-game-
http://answers.unity3d.com/questions/971/how-to-scrip-a-save-load-game-
http://answers.unity3d.com/questions/971/how-to-scrip-a-save-load-game-
http://answers.unity3d.com/questions/971/how-to-scrip-a-save-load-game-
http://www.anbsoft.com/middleware/ezs/
http://www.anbsoft.com/middleware/ezs/
http://www.anbsoft.com/middleware/ezs/
http://www.anbsoft.com/middleware/ezs/
http://www.anbsoft.com/middleware/ezs/
http://www.anbsoft.com/middleware/ezs/

[42]

Checking to see if this is the first time your game
has been played (great for one-time tutorials or
intro videos that you don't want to play over and
over):

if (!PlayerPrefs.hasKey("init_prefs")){ //Is this first
time?
 PlayerPrefs.SetInt("init_prefs", 1); //set 'did init'
key.
 Debug.Log(“This is the first time that the game
has been run”);
}

Checking to see if a high score has been beaten:

highScore=PlayerPrefs.GetInt("High score");
if (totalScore > highScore)
 {
$ PlayerPrefs.SetInt("High score",
totalScore);
$ Debug.Log("NEW HIGH SCORE!");
 }

Note: In Unity 2.x, it is very important that you
remember to read the prefs exactly as you wrote
them. Trying to use PlayerPrefs.GetInt when you
originally used PlayerPrefs.SetFloat will not
work. Often, it will fail silently, meaning that you
will have no indication of why your code isn't
working properly and no error will appear about
it. Check and double check that your get and set
calls match exactly!

You may also want to look at a fantastic little
chunk of free code from the Unity forums called
'Keys', written by Nick Breslin. It allows you to
watch PlayerPrefs changes live (Nick calls it a
'PlayerPrefs Runtime Monitor').

http://forum.unity3d.com/viewtopic.php?t=26247

You can trap when the user quits out of the
game (or when they are forced out) by using
Unity's OnApplicationQuit function. On the
iphone specifically, when an incoming call takes
over the game this function will get fired and you
can hook into it, to save your data.

Keeping game state and restoring it at the right
times is key to saving your players from feeling
like they lose out when they purposefully or
accidentally destroy or postpone your game.

Players should be allowed to concentrate on
playing the game and not concerned with the
technicalities surrounding it. When they step out
to post their latest cat video on YouTube, the key
to a good player/game relationship is that they
should not be penalized for daring to step away
from it every once in a while.

Profile:

Jeff Murray is a freelance game designer and
developer living in Ottawa, Canada. He has
worked on just under 50 games including
downloadable, browser-based and console titles.
Jeff has worn many different hats, taking on the
roles of Lead Programmer, Game Designer and
Director on projects for companies like Microsoft,
RealArcade, Hasbro and SpinMaster. Jeff is also
an IGDA contributor and member with a real
passion for good gameplay and tasty beer.

For more information, visit Jeff's blog at
http://www.psychicparrotgames.com

unitycreative

Advertising

blaaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa

http://forum.unity3d.com/viewtopic.php?t=26247
http://forum.unity3d.com/viewtopic.php?t=26247
http://www.psychicparrotgames.com
http://www.psychicparrotgames.com
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no
http://www.terravision.no

