

 [image: First Edition]

 Node: Up and Running

Tom Hughes-Croucher

Mike Wilson

Editor
Simon St. Laurent

Copyright © 2012 Tom Hughes-Croucher, Mike Wilson

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Node: Up and
 Running, the image of a common tree shrew, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Foreword by Ryan Dahl

Ryan Dahl, creator of Node.js

In 2008 I was searching for a new programming platform for making
 websites. This was more than wanting a new language; indeed, the details of
 the language mattered very little to me. Rather, I was concerned about the
 ability to program advanced push features into the website like I had seen
 in Gmail—the ability for the server to push data to the user instead of
 having to constantly poll. The existing platforms were tightly coupled to
 the idea of the server as something that receives a request and issues a
 response sequentially. To push events to the browser, the platform needed to
 be able to constantly handle a number of open and mostly idle
 connections.
I knew how to make this work at the system call layer, in C. If I used
 only nonblocking sockets, the overhead per connection was very small. In
 small tests, I could demonstrate a server that could handle thousands of
 idle connections or pretty massive throughput. I knew that this was the
 optimal way for a user-space Unix server to be implemented. However, I
 didn’t want to work in C; I wanted the beautiful fluidness of a dynamic
 language. Although it was possible to issue the exact system calls I wanted
 in every programming language, it was very ugly and was always the
 “alternative” method of socket programming. My theory was that nonblocking
 sockets were not actually difficult at all, as long as everything was
 nonblocking.
Google announced Chrome and its new JavaScript engine V8 in late 2008.
 A faster JavaScript engine made for a faster Web—and V8 made the Web
 a lot faster. Suddenly there was this idea of a
 JavaScript arms race between Google, Apple, Mozilla, and Microsoft. This,
 combined with Doug Crockford’s book JavaScript:
 The Good Parts (O’Reilly), shifted JavaScript from the
 language everyone despised to an important language.
I had an idea: nonblocking sockets in JavaScript! Because JavaScript
 has no existing socket libraries, I could be the first to introduce this new
 and hopefully better interface. Just take V8 and glue it to my nonblocking C
 code, and I should be done. I quit my contracting job and began working on
 this idea full time. Once I made the very first version available, I
 immediately had users who reported bugs; I started fixing those bugs, and
 then three years passed.
It turns out that JavaScript jibes extremely well with nonblocking
 sockets. This was not clear from the start. The closures made everything
 possible. People were able to build very complex nonblocking servers in just
 a couple of lines of JavaScript. My initial fear that the system would be
 unusably niche was quickly alleviated as hackers from all over the world
 began to build libraries for it. The single event loop and pure nonblocking
 interface allowed libraries to add more and more complexity without
 introducing expensive threads.
In Node, users find a system that scales well by default. Because of
 the choices made in the core system, nothing in the system is allowed to do
 anything too terrible (such as block the current thread), and thus
 performance never degrades horribly. It is an order of magnitude better than
 the traditional blocking approach, where “better” is defined as the amount
 of traffic it can handle.
These days, Node is being used by a large number of startups and
 established companies around the world, from Voxer and Uber to Walmart and
 Microsoft. It’s safe to say that billions of requests are passing through
 Node every day. As more and more people come to the project, the available
 third-party modules and extensions grow and increase in quality. Although I
 was once reserved about recommending it for mission-critical applications, I
 now heartily recommend Node for even the most demanding server
 systems.
This book gracefully takes the reader through a discussion of and
 guided exercises for Node and many third-party modules. By learning the
 material covered here, you go from basic familiarity with JavaScript to
 building complex, interactive websites. If you’ve used other server-side web
 frameworks in the past, you’ll be shocked at how easy it is to build a
 server in Node.

Foreword by Brendan Eich

Brendan Eich, creator of JavaScript

In April 1995 I joined Netscape in order to “add Scheme to the
 browser.” That recruiting bait from a month or two earlier immediately
 morphed into “do a scripting language that looks like Java.” Worse, because
 the negotiation to put Java in Netscape was underway, some at Netscape
 doubted that a “second language” was necessary. Others wanted to build
 something like PHP, an HTML templating language for a planned server-side
 offering called LiveWire.
So in 10 days in May 1995, I prototyped “Mocha,” the code name Marc
 Andreessen had chosen. Marc, Rick
 Schell (vice president of engineering at Netscape), and Bill Joy of Sun were
 the upper-management sponsors who supported my work against doubts about a
 “second language” after Java. (This is ironic since Java has all but
 disappeared in browsers, while JavaScript is dominant on the client
 side.)
To overcome all doubts, I needed a demo in 10 days. I worked day and
 night, and consequently made a few language-design mistakes (some
 recapitulating bad design paths in the evolution of LISP), but I met the
 deadline and did the demo.
People were amazed that I’d created a language compiler and runtime in
 less than two weeks, but I’d had a lot of practice over the decade since
 switching from a physics major in my third year to math/computer science. I
 had always loved formal language and automata theory. I’d built my own
 parsers and parser generators for fun. At Silicon Graphics, I built
 network-monitoring tools that included packet-header matching and protocol
 description languages and compilers. I was a huge fan of C and Unix. So
 knocking out “Mocha” was really a matter of sustained application and
 concentration.
Sometime in the fall of 1995, Netscape marketing renamed Mocha
 “LiveScript,” to match the LiveWire server-side product name. Finally, in
 early December 1995, Netscape and Sun concluded a trademark license, signed
 by “Bill Joy, Founder” on behalf of Sun, and LiveScript was renamed
 JavaScript (JS).
Because of the LiveWire server plans, in the first 10 days I
 implemented a bytecode compiler and interpreter as well as a decompiler and
 runtime (the built-in JS objects and functions we know today: Object, Array,
 Function, etc.). For small client-side scripts, bytecode was overkill, but
 the LiveWire product included the feature of saving compiled bytecode for
 faster server-app startup.
Of course, Netscape’s server-side JavaScript offering failed along
 with most of the rest of Netscape’s business, as Microsoft tied Internet
 Explorer (IE) into Windows and entered the server markets into which
 Netscape was trying to diversify from its browser market, where commercial
 users who had once bought browser licenses no longer paid since IE was being
 bundled with Windows for free.
So in spite of LiveWire’s failure, even in 1995 we could see the
 appeal of end-to-end JavaScript programming. Users saw it too, but this
 history is known only to a relative few today. And LiveWire made a fatal
 error that Node.js avoided: it embraced blocking input/output and a
 process-mob model on the server side…so it did not scale well.
Fast forward to the 2009’s JSConf EU, where Ryan presented Node.js. I
 was gratified to learn of Node and to see how well it realized the
 end-to-end JavaScript vision, especially how it wisely built in nonblocking
 I/O from the roots up. Ryan and core folks have done a great job keeping the
 core small. Isaac and all the module owners have built an excellent module
 system to relieve pressure on the core, so it doesn’t grow too large. And
 the Node community that has evolved around the code is excellent,
 too.
The result is a really productive, fun system for building servers, to
 complement the increasingly productive, fun JavaScript client side and to
 facilitate code reuse and coevolution. Without Node, JavaScript would be
 still associated with its birthplace, the overconstrained client side of the
 Web, with the much-maligned Document Object Model and other historical
 accidents looming too large. Node helps JavaScript by freeing it from its
 limiting client-side patrimony.
This book nicely conveys the spirit of Node and the knowledge of how
 to use it well to build interactive web apps and sites. Node is a blast, and
 Node: Up and Running is a fitting guide for it.
 Enjoy!

Preface

Introduction

Node.js is quickly becoming one of the most influential technologies
 in the Web development community. This book aims to give programmers the
 information they need to effectively learn how to get started with
 Node.
This book expects you to have some understanding of JavaScript and
 programming in general, but we take the time to introduce you to the
 concepts that are important in event-driven programming on the server,
 rather than just focusing on the APIs that Node provides.
By reading this book you'll learn not just about Node, the platform,
 but also about some of the most important modules for Node that will let
 you quickly and effectively build highly scalable websites and
 services.

Conventions Used in This Book

The following typographical conventions are
 used in this book:
	Italic
	Indicates new terms, URLs, email
 addresses, filenames, and file extensions.

	Constant width
	Used for program listings, as well as
 within paragraphs to refer to program elements such as variable or
 function names, databases, data types, environment variables,
 statements, and keywords.

	Constant width
 bold
	Shows commands or other text that should
 be typed literally by the user.

	Constant width italic
	Shows text that should be replaced with
 user-supplied values or by values determined by context.

Tip
This icon signifies a tip, suggestion, or
 general note.

Caution
This icon indicates a warning or
 caution.

Using Code Examples

This book is here to help you get your job
 done. In general, you may use the code in this book in your programs and
 documentation. You do not need to contact us for permission unless you’re
 reproducing a significant portion of the code. For example, writing a
 program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require,
 attribution. An attribution usually includes the title, author, publisher,
 and ISBN. For example: “Node: Up and Running by Tom
 Hughes-Croucher and Mike Wilson (O’Reilly). Copyright 2012 Tom
 Hughes-Croucher and Mike Wilson, 978-1-449-39858-3.”
If you feel your use of code examples falls
 outside fair use or the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions
 concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or
 Canada)
	707-829-0515 (international or
 local)
	707-829-0104 (fax)

We have a web page for this book, where we
 list errata, examples, and any additional information. You can access this
 page at:
	http://oreil.ly/node_upandrunning

To comment or ask technical questions about
 this book, send email to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Tom’s Thanks

To my editors. Simon, it has been a long
 project, but you’ve been with me week after week. Andy, your eye for
 detail never fails to impress.
To Carlos. Your drive and talent make you
 the writer I would like to be. You are an inspiration.
To Nicole and Sean, for keeping me on
 track.
To Ryan and Isaac, who have put up with my
 endless stupid questions with the quiet patience of someone teaching a
 child.
To Rosemarie. Without you, I would never be
 where I am today.
To my friends, who have listened to my
 bitching (especially Yta, Emily, Eric, Gris, Sarah, Allan, Harold and
 Daniella, and Hipster Ariel). To the countless people who have given me
 encouragement, suggestions, and feedback. I couldn’t have done it
 without you.
To the readers of this tome, thank you for
 trusting me with your learning.

Part I. Up and Running

Chapter 1. A Very Brief Introduction to Node.js

Node.js is many things, but mostly it’s a way of running JavaScript outside
 the web browser. This book will cover why that’s important and the benefits
 that Node.js provides. This introduction attempts to sum up that explanation
 in a few paragraphs, rather than a few hundred pages.
Many people use the JavaScript programming language extensively for programming
 the interfaces of websites. Node.js allows this popular programming language
 to be applied in many more contexts, in particular on web servers. There are
 several notable features about Node.js that make it worthy of
 interest.
Node is a wrapper around the high-performance
 V8 JavaScript runtime from the Google Chrome browser. Node
 tunes V8 to work better in contexts other than the browser, mostly by
 providing additional APIs that are optimized for specific use cases. For
 example, in a server context, manipulation of binary data is often
 necessary. This is poorly supported by the JavaScript language and, as a
 result, V8. Node’s Buffer class
 provides easy manipulation of binary data. Thus, Node doesn’t
 just provide direct access to the V8 JavaScript runtime. It also makes
 JavaScript more useful for the contexts in which people use Node.
V8 itself uses some of the newest techniques in
 compiler technology. This often allows code written in a high-level language
 such as JavaScript to perform similarly to code written in a lower-level
 language, such as C, with a fraction of the development cost. This focus on
 performance is a key aspect of Node.
JavaScript is an event-driven language, and Node
 uses this to its advantage to produce highly scalable servers. Using an
 architecture called an event loop, Node makes
 programming highly scalable servers both easy and safe. There are various
 strategies that are used to make servers performant. Node has chosen an
 architecture that performs very well but also reduces the complexity for the
 application developer. This is an extremely important feature. Programming
 concurrency is hard and fraught with danger. Node sidesteps this challenge
 while still offering impressive performance. As always, any approach still
 has trade-offs, and these are discussed in detail later in the book.
To support the event-loop approach, Node
 supplies a set of “nonblocking” libraries. In essence, these are interfaces
 to things such as the filesystem or databases, which operate in an
 event-driven way. When you make a request to the filesystem, rather than
 requiring Node to wait for the hard drive to spin up and retrieve the file,
 the nonblocking interface simply notifies Node when it has access, in the
 same way that web browsers notify your code about an onclick event. This
 model simplifies access to slow resources in a scalable way that is
 intuitive to JavaScript programmers and easy to learn for everyone
 else.
Although not unique to Node, supporting
 JavaScript on the server is also a powerful feature. Whether we like it or
 not, the browser environment gives us little choice of programming
 languages. Certainly, JavaScript is the only choice if we would like our
 code to work in any reasonable percentage of browsers. To achieve any
 aspirations of sharing code between the server and the browser, we must use
 JavaScript. Due to the increasing complexity of client applications that we
 are building in the browser using JavaScript (such as Gmail), the more code
 we can share between the browser and the server, the more we can reduce the
 cost of creating rich web applications. Because we must rely on JavaScript
 in the browser, having a server-side environment that uses JavaScript opens
 the door to code sharing in a way that is not possible with other
 server-side languages, such as PHP, Java, Ruby, or Python. Although there
 are other platforms that support programming web servers with JavaScript,
 Node is quickly becoming the dominant platform in the space.
Aside from what you can build
 with Node, one extremely pleasing aspect is how much
 you can build for Node. Node is extremely extensible,
 with a large volume of community modules that have been built in the
 relatively short time since the project’s release. Many of these are drivers
 to connect with databases or other software, but many are also useful
 software applications in their own right.
The last reason to celebrate Node, but certainly
 not the least important, is its community. The Node project is still very
 young, and yet rarely have we seen such fervor around a project. Both
 novices and experts have coalesced around the project to use and contribute
 to Node, making it both a pleasure to explore and a supportive place to
 share and get advice.
Installing Node.js

Installing Node.js is extremely simple. Node runs on Windows, Linux,
 Mac, and other POSIX OSes (such as Solaris and BSD). Node.js is available
 from two primary locations: the project’s
 website or the GitHub
 repository. You’re probably better off with the Node website
 because it contains the stable releases. The latest cutting-edge features
 are hosted on GitHub for the core development team and anyone else who
 wants a copy. Although these features are new and often intriguing, they
 are also less reliable than those in a stable release.
Let’s get started by installing Node.js. The
 first thing to do is download Node.js from the website, so let’s go there
 and find the latest release. From the Node home page, find the download
 link. The current release at the time of print is 0.6.13, which is a
 stable release. The Node website provides installers for Windows and Mac
 as well as the stable source code. If you are on Linux, you can either do
 a source install or use your usual package manager (apt-get,
 yum, etc.).
Note
Node.js version
 numbers follow the C convention of
 major.minor.patch. Stable versions of Node.js
 have an even minor version number, and development versions have an odd
 minor version number. It’s unclear when Node will become version 1, but
 it’s a fair assumption that it will only be when the Windows and Unix
 combined release is considered mature.

If you used an installer, you can skip to
 First Steps in Code. Otherwise (i.e., if you are doing a
 source install), once you have the code, you’ll need to unpack it. The
 tar command does this using the flags xzf. The x
 stands for extract (rather than compress), z tells tar to also
 decompress using the GZIP algorithm, and f
 indicates we are unpacking the filename given as the final argument (see
 Example 1-1).
Example 1-1. Unpacking the code
enki:Downloads $ tar xzf node-v0.6.6.tar.gz
enki:Downloads $ cd node-v0.6.6
enki:node-v0.6.6 $ ls
AUTHORS Makefile common.gypi doc test
BSDmakefile Makefile-gyp configure lib tools
ChangeLog README.md configure-gyp node.gyp vcbuild.bat
LICENSE benchmark deps src wscript
enki:node-v0.6.6 $

The next step is to configure the code for
 your system. Node.js uses the configure/make system for its installation.
 The configure script
 looks at your system and finds the paths Node needs to use for the
 dependencies it needs. Node generally has very few dependencies. The
 installer requires Python 2.4 or greater, and if you wish to use TLS or
 cryptology (such as SHA1), Node needs the OpenSSL development
 libraries. Running configure will let you know
 whether any of these dependencies are missing (see Example 1-2).
Example 1-2. Configuring the Node install
enki:node-v0.6.6 $./configure
Checking for program g++ or c++ : /usr/bin/g++
Checking for program cpp : /usr/bin/cpp
Checking for program ar : /usr/bin/ar
Checking for program ranlib : /usr/bin/ranlib
Checking for g++ : ok
Checking for program gcc or cc : /usr/bin/gcc
Checking for gcc : ok
Checking for library dl : yes
Checking for openssl : not found
Checking for function SSL_library_init : yes
Checking for header openssl/crypto.h : yes
Checking for library util : yes
Checking for library rt : not found
Checking for fdatasync(2) with c++ : no
'configure' finished successfully (0.991s)
enki:node-v0.6.6 $

The next installation step is to make the project (Example 1-3). This compiles Node and builds the binary
 version that you will use into a build subdirectory of the source
 directory we’ve been using. Node numbers each of the build steps it needs
 to complete so you can follow the progress it makes during the
 compile.
Example 1-3. Compiling Node with the make command
enki:node-v0.6.6 $ make
Waf: Entering directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
DEST_OS: darwin
DEST_CPU: x64
Parallel Jobs: 1
Product type: program
[1/35] copy: src/node_config.h.in -> out/Release/src/node_config.h
[2/35] cc: deps/http_parser/http_parser.c -> out/Release/deps/http_parser/http_parser_3.o
/usr/bin/gcc -rdynamic -pthread -arch x86_64 -g -O3 -DHAVE_OPENSSL=1 -D_LARGEFILE_SOURCE ...
[3/35] src/node_natives.h: src/node.js lib/dgram.js lib/console.js lib/buffer.js ...
[4/35] uv: deps/uv/include/uv.h -> out/Release/deps/uv/uv.a

...

f: Leaving directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
'build' finished successfully (2m53.573s)
-rwxr-xr-x 1 sh1mmer staff 6.8M Jan 3 21:56 out/Release/node
enki:node-v0.6.6 $

The final step is to use make to install Node. First, Example 1-4 shows how to install Node globally for the
 whole system. This requires you to have either access to the root user or sudo privileges that let you act as root.
Example 1-4. Installing Node for the whole system
enki:node-v0.6.6 $ sudo make install
Password:
Waf: Entering directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
DEST_OS: darwin
DEST_CPU: x64
Parallel Jobs: 1
Product type: program
* installing deps/uv/include/ares.h as /usr/local/include/node/ares.h
* installing deps/uv/include/ares_version.h as /usr/local/include/node/ares_version.h
* installing deps/uv/include/uv.h as /usr/local/include/node/uv.h

...

* installing out/Release/src/node_config.h as /usr/local/include/node/node_config.h
Waf: Leaving directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
'install' finished successfully (0.915s)
enki:node-v0.6.6 $

If you want to install only for the local user
 and avoid using the sudo command, you
 need to run the configure script with
 the --prefix argument to tell Node to
 install somewhere other than the default (Example 1-5).
Example 1-5. Installing Node for a local user
enki:node-v0.6.6 $ mkdir ~/local
enki:node-v0.6.6 $./configure --prefix=~/local
Checking for program g++ or c++ : /usr/bin/g++
Checking for program cpp : /usr/bin/cpp

...

'configure' finished successfully (0.501s)
enki:node-v0.6.6 $ make && make install
Waf: Entering directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
DEST_OS: darwin
DEST_CPU: x64

...

* installing out/Release/node as /Users/sh1mmer/local/bin/node
* installing out/Release/src/node_config.h as /Users/sh1mmer/local/include/node/...
Waf: Leaving directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
'install' finished successfully (0.747s)
enki:node-v0.6.6 $

First Steps in Code

This section will take you through a basic Node program before we
 move on to more in-depth programs.
Node REPL

One of the things that’s often hard to understand about Node.js is that, in
 addition to being a server, it’s also a runtime environment in the same
 way that Perl, Python, and Ruby are. So, even though we often refer to
 Node.js as “server-side JavaScript,” that doesn’t really accurately
 describe what Node.js does. One of the best ways to come to grips with
 Node.js is to use Node REPL (“Read-Evaluate-Print-Loop”), an interactive
 Node.js programming environment. It’s great for testing out and learning
 about Node.js. You can try out any of the snippets in this book using
 Node REPL. In addition, because Node is a wrapper around V8, Node REPL is an ideal place to easily try out
 JavaScript. However, when you want to run a Node program, you can use
 your favorite text editor, save it in a file, and simply run node filename.js. REPL is a great learning and
 exploration tool, but we don’t use it for production code.
Let’s launch Node REPL and try out a few
 bits of JavaScript to warm up (Example 1-6).
 Open up a console on your system. I’m using a Mac with a custom command
 prompt, so your system might look a little different, but the commands
 should be the same.
Example 1-6. Starting Node REPL and trying some JavaScript
$Enki:~ $ node
> 3 > 2 > 1
false
> true == 1
true
> true === 1
false

Note
The first line, which evaluates to
 false, is from http://wtfjs.com, a collection of weird and amusing
 things about JavaScript.

Having a live programming environment is a really great learning tool, but you
 should know a few helpful features of Node REPL to make the most of it.
 It offers meta-commands, which all start with a period (.). Thus,
 .help shows the help menu, .clear
 clears the current context, and .exit quits Node REPL (see Example 1-7).
 The most useful command is .clear,
 which wipes out any variables or closures you have in memory without the
 need to restart REPL.
Example 1-7. Using the metafeatures in Node REPL
> console.log('Hello World');
Hello World
> .help
.clear Break, and also clear the local context.
.exit Exit the prompt
.help Show repl options
> .clear
Clearing context...
> .exit
Enki:~ $

When using REPL, simply typing the name of a
 variable will enumerate it in the shell. Node tries to do this
 intelligently so a complex object won’t just be represented as a
 simple Object, but
 through a description that reflects what’s in the object (Example 1-8). The main exception to this involves
 functions. It’s not that REPL doesn’t have a way to
 enumerate functions; it’s that functions have the tendency to be very
 large. If REPL enumerated functions, a lot of output could scroll by.
Example 1-8. Setting and enumerating objects with REPL
Enki:~ $ node
> myObj = {};
{}
> myObj.list = ["a", "b", "c"];
['a', 'b', 'c']
> myObj.doThat = function(first, second, third) { console.log(first); };
[Function]
> myObj
{ list: ['a', 'b', 'c']
, doThat: [Function]
}
>

A First Server

REPL gives us a great tool for learning and experimentation, but the main
 application of Node.js is as a server. One of the specific design goals
 of Node.js is to provide a highly scalable server environment. This is
 an area where Node differs from V8, which was described at the beginning of
 this chapter. Although the V8 runtime is used in Node.js to interpret
 the JavaScript, Node.js also uses a number of highly optimized libraries
 to make the server efficient. In particular, the HTTP module was written
 from scratch in C to provide a very fast nonblocking implementation of
 HTTP. Let’s take a look at the canonical Node “Hello World” example using an HTTP server (Example 1-9).
Example 1-9. A Hello World Node.js web server
var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8124, "127.0.0.1");
console.log('Server running at http://127.0.0.1:8124/');

The first thing that this code does is
 use require to include the
 HTTP library into the program. This concept is used in
 many languages, but Node uses the CommonJS module format, which we’ll talk about more in
 Chapter 8. The main thing to know at this point is
 that the functionality in the HTTP library is now assigned to the
 http object.
Next, we need an HTTP server. Unlike some
 languages, such as PHP, that run inside a server such as Apache, Node
 itself acts as the web server. However, that also means we have to
 create it. The next line calls a factory method from the HTTP module
 that creates new HTTP servers. The new HTTP server isn’t assigned to a
 variable; it’s simply going to be an anonymous object in the global
 scope. Instead, we use chaining to initialize the server and tell it to
 listen on port 8124.
When calling createServer, we passed an anonymous function as an argument. This function
 is attached to the new server’s event listener for the request event. Events
 are central to both JavaScript and Node. In this case, whenever there is
 a new request to the web server, it will call the method we’ve passed to
 deal with the request. We call these kinds of methods
 callbacks because whenever an event happens, we “call back” all the
 methods listening for that event.
Perhaps a good analogy would be ordering a
 book from a bookshop. When your book is in stock, they call
 back to let you know you can come and collect it. This
 specific callback takes the arguments req for the request object and res for the response object.
Inside the function we created for the
 callback, we call a couple of methods on the res object. These calls modify the response.
 Example 1-9 doesn’t use the request, but
 typically you would use both the request and response objects.
The first thing we must
 do is set the HTTP response header. We can’t send any actual response to the client without
 it. The res.writeHead method does
 this. We set the value to 200 (for
 the HTTP status code “200 OK”) and pass a list of HTTP headers. In this
 case, the only header we specify is Content-type.
After we’ve written the HTTP header to the
 client, we can write the HTTP body. In this case, we use a single method
 to both write the body and close the connection. The end method closes the HTTP connection, but since we also passed it a
 string, it will send that to the client before it closes the
 connection.
Finally, the last line of our example uses
 the console.log. This simply prints information to stdout, much like the browser counterpart
 supported by Firebug and Web Inspector.
Let’s run this with Node.js on the console
 and see what we get (Example 1-10).
Example 1-10. Running the Hello World example
Enki:~ $ node
> var http = require('http');
> http.createServer(function (req, res) {
... res.writeHead(200, {'Content-Type': 'text/plain'});
... res.end('Hello World\n');
... }).listen(8124, "127.0.0.1");
> console.log('Server running at http://127.0.0.1:8124/');
Server running at http://127.0.0.1:8124/
node>

Here we start a Node REPL and type in the
 code from the sample (we’ll forgive you for pasting it from the
 website). Node REPL accepts the code, using ... to indicate that you haven’t completed the
 statement and should continue entering it. When we run the console.log line, Node REPL prints
 out Server running at
 http://127.0.0.1:8124/. Now we are ready to call our Hello
 World example in a web browser (Figure 1-1).
[image: Viewing the Hello World web server from a browser]

Figure 1-1. Viewing the Hello World web server from a browser

It works! Although this isn’t exactly a
 stunning demo, it is notable that we got Hello World working in six
 lines of code. Not that we would recommend that style of coding, but we
 are starting to get somewhere. In the next chapter, we’ll look at a lot
 more code, but first let’s think about why Node is how it is.

Why Node?

In writing this book, we’ve been acutely aware of how new Node.js is. Many
 platforms take years to find adoption, and yet there’s a level of
 excitement around Node.js that we’ve never seen before in such a young
 platform. We hope that by looking at the reasons other people are getting
 so excited about Node.js, you will find features that also resonate with
 you. By looking at Node.js’s strengths, we can find the places where it is
 most applicable. This section looks at the factors that have come together
 to create a space for Node.js and discusses the reasons why it’s become so
 popular in such a short time.
High-Performance Web Servers

When we first started writing web applications more than 10 years ago, the Web was much
 smaller. Sure, we had the dot-com bubble, but the sheer volume of people
 on the Internet was considerably lower, and the sites we made were much
 less ambitious. Fast-forward to today, and we have the advent of Web 2.0
 and widely available Internet connections on cell phones. So much more
 is expected of us as developers. Not only are the features we need to
 deliver more complex, more interactive, and more real, but there are
 also many more people using them more often and from more devices than
 ever before. This is a pretty steep challenge. While hardware continues
 to improve, we also need to make improvements to our software
 development practices to support such demands. If we kept just buying
 hardware to support ever-increasing features or users, it wouldn’t be
 very cost-effective.
Node is an attempt to solve this problem by introducing the
 architecture called event-driven computing to the
 programming space for web servers. As it turns out, Node isn’t the first
 platform to do this, but it is by far the most successful, and we would
 argue that it is the easiest to use. We are going to talk about
 event-driven programming in a lot more detail later in this book, but
 let’s go through a quick intro here. Imagine you connect to a web server
 to get a web page. The time to reach that web server is probably 100ms
 or so over a reasonable DSL connection. When you connect to a typical
 web server, it creates a new instance of a program on the server that
 represents your request. That program runs from the top to the bottom
 (following all of the function calls) to provide your web page. This
 means that the server has to allocate a fixed amount of memory to that
 request until it is totally finished, including the 100ms+ to send the
 data back to you. Node doesn’t work that way. Instead, Node keeps all
 users in a single program. Whenever Node has to do something slow, like
 wait for a confirmation that you got your data (so it can mark your
 request as finished), it simply moves on to another user. We’re glossing
 over the details a bit, but this means Node is much more efficient with
 memory than traditional servers and can keep providing a very fast
 response time with lots and lots of concurrent users. This is a huge
 win. This approach is one of the main reasons people like Node.

Professionalism in JavaScript

Another reason people like Node is JavaScript. JavaScript was created by Brendan Eich in 1995 to be a simple scripting language for
 use in web pages on the Netscape browser platform. Surprisingly, almost
 since its inception JavaScript has been used in nonbrowser settings.
 Some of the early Netscape server products supported JavaScript (known
 then as LiveScript) as a server-side scripting language. Although
 server-side JavaScript didn’t really catch on then, that certainly
 wasn’t true for the exploding browser market. On the Web, JavaScript
 competed with Microsoft’s VBScript to provide programming functionality
 in web pages. It’s hard to say why JavaScript won, but perhaps Microsoft allowing
 JavaScript in Internet Explorer did it,[1] or perhaps it was the JavaScript language itself, but win
 it did. This meant by the early 2000s, JavaScript had emerged as
 the web language—not just the first choice, but the
 only choice for programming with HTML in
 browsers.
What does this have to do with Node.js?
 Well, the important thing to remember is that when the AJAX revolution
 happened and the Web became big business (think Yahoo!, Amazon, Google,
 etc.), the only choice for the “J” in AJAX was JavaScript. There simply
 wasn’t an alternative. As a result, a whole industry needed an awful lot
 of JavaScript programmers, and really good ones at that, rather fast.
 The emergence of the Web as a serious platform and JavaScript as its
 programming language meant that we, as JavaScript programmers, needed to
 shape up. We can equate the change in JavaScript as the second or third
 programming language of a programmer to the change in perception of its
 importance. We started to get emerging experts who led the charge in
 making JavaScript respectable.
Arguably at the head of this movement was
 Douglas Crockford. His popular articles and videos on
 JavaScript have helped many programmers discover that inside this
 much-maligned language there is a lot of beauty. Most programmers
 working with JavaScript spent the majority of their time working with
 the browser implementation of the W3C DOM API for manipulating HTML or
 XML documents. Unfortunately, the DOM is probably not the prettiest API
 ever conceived, but worse, its various implementations in the browsers
 are inconsistent and incomplete. No wonder that for a decade after its
 release JavaScript was not thought of as a “proper” language by so many
 programmers. More recently, Douglas’s work on “the good parts” of
 JavaScript have helped create a movement of advocates of the language
 who recognize that it has a lot going for it, despite the warts.
In 2012, we now have a proliferation of
 JavaScript experts advocating well-written, performant, maintainable
 JavaScript code. People such as Douglas Crockford, Dion Almaer, Peter Paul Koch (PPK), John Resig, Alex Russell, Thomas Fuchs, and many more have provided research,
 advice, tools, and primarily libraries that have allowed thousands of
 professional JavaScript programmers worldwide to practice their trade
 with a spirit of excellence. Libraries such as jQuery, YUI, Dojo,
 Prototype, Mootools, Sencha, and many others are now used daily by
 thousands of people and deployed on millions of websites. It is in this
 environment—where JavaScript is not only accepted, but widely used and
 celebrated—that a platform larger than the Web makes sense. When so many
 programmers know JavaScript, its ubiquity is a distinct
 advantage.
When a roomful of web programmers is asked
 what languages they use, Java and PHP are very popular, Ruby is probably
 the next most popular these days (or at least closely tied with Python),
 and Perl still has a huge following. However, almost without exception,
 anyone who does any programming for the Web has programmed in JavaScript. Although backend languages are
 fractured in-browser, programming is united by the necessities of
 deployment. Various browsers and browser plug-ins allow the use of other
 languages, but they simply aren’t universal enough for the Web. So here
 we are with a single, universal web language. How can we get it on the
 server?

Browser Wars 2.0

Fairly early in the days of the Web, we had the infamous browser
 wars. Internet Explorer and Netscape competed viciously on
 web features, adding various incompatible programmatic features to their
 own browser and not supporting the features in the other browser. For
 those of us who programmed for the Web, this was the cause of much
 anguish because it made web programming really tiresome. Internet
 Explorer more or less emerged as the winner of that round and became the
 dominant browser. Fast-forward a
 few years, and Internet Explorer has been languishing at version 6, and
 a new contender, Firefox, emerges from the remnants of Netscape. Firefox
 kicks off a resurgence in browsers, followed by WebKit (Safari) and then
 Chrome. Most interesting about this current trend is the resurgence of
 competition in the browser market.
Unlike the first iteration of the browser
 wars, today’s browsers compete on two fronts: adhering to the standards
 that emerged after the previous browser war, and performance. As
 websites have become more complex, users want the fastest experience
 possible. This has meant that browsers not only need to support the web
 standards well, allowing developers to optimize, but also to do a little
 optimization of their own. With JavaScript as a core component of Web
 2.0, AJAX websites have become part of the battleground.
Each browser has its own JavaScript runtime:
 Spider Monkey for Firefox, Squirrel Fish Extreme for Safari, Karakan for
 Opera, and finally V8 for Chrome. As these runtimes compete on
 performance, it creates an environment of innovation for JavaScript. And
 in order to differentiate their browsers, vendors are going to great
 lengths to make them as fast as possible.

[1] Internet Explorer doesn’t actually support JavaScript or
 ECMAScript; it supports a language variety called JScript. In recent
 years, JScript has fully supported the ECMAScript 3 standard and has
 some ECMAScript 5 support. However, JScript also implements
 proprietary extensions in the same way that Mozilla JavaScript does
 and has features that ECMAScript does not.

Chapter 2. Doing Interesting Things

The programming trends of the last few years have made it
 progressively easier to write more complex applications with ease. It’s
 important that we don’t lose that, but Node is specifically focused on
 solving the problem of building network
 applications—that is, applications that do a lot of input/output (I/O).
 Let’s build a few I/O-type apps and see how easy it is to do this with Node
 in a way that really scales.
Building a Chat Server

In a world that’s increasingly real-time, what is more real-time than chat? So
 where should we begin? Let’s start with a TCP-based chat server we can
 connect to with Telnet. Not only is it a simple place to start, but it’s
 also something we can write 100% in Node.
The first thing we need to do is include the TCP libraries from Node and create a new TCP server (see Example 2-1).
Example 2-1. Creating a new TCP server
var net = require('net')

var chatServer = net.createServer()

chatServer.on('connection', function(client) {
 client.write('Hi!\n');
 client.write('Bye!\n');

 client.end()
})

chatServer.listen(9000)

First, we include the net module.
 This contains all the TCP stuff for Node. From that, we can
 create a TCP server by calling the net.createServer() method. Now that we have a server, we want it to do stuff.
 So we add an event listener by using the on() method. Whenever the connection event happens, the event listener will call the function we gave
 it. A connection event happens when a new client connects to the server.
The connection event passes us a reference to the TCP socket for our
 new client when it calls our callback function. We named this reference
 client. By calling client.write(), we can send messages to the newly connected client. To start
 with, we just say “Hi!” and then “Bye!”, and we call the client.end() method, which closes the
 connection. It’s simple, but it’s a starting point for our chat server.
 Finally, we need to call listen() so
 Node knows which port to listen on. Let’s test it.
We can test our new server by connecting to it with the Telnet
 program, which is installed on most operating systems.[2] First, we need to start our server by calling node
 with the filename. Then we can connect by opening a Telnet connection to
 localhost on port 9000, as we
 specified in our Node program. See Example 2-2.
Example 2-2. Connecting to a Node TCP server with Telnet
Console Window 1

Enki:~ $ node chat.js
Chat server started

Console Window 2

Last login: Tue Jun 7 20:35:14 on ttys000
Enki:~ $ telnet 127.0.0.1 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi!
Bye!
Connection closed by foreign host.
Enki:~ $

So far we’ve made a server that clients can connect to, and we’ve
 sent them a message before kicking them out, but it’s hardly a chat
 server. Let’s add a few more things. First, we should make sure we can get messages from the clients, as
 shown in Example 2-3.
Example 2-3. Listening to each connection
var net = require('net')

var chatServer = net.createServer()

chatServer.on('connection', function(client) {
 client.write('Hi!\n');

 client.on('data', function(data) {
 console.log(data)
 })

})

chatServer.listen(9000)

Here we’ve added another event listener, and this time it’s client.on(). Notice how we’ve added the event
 listener in the scope of the connection
 callback function. Doing this means we have access to the client that is passed to that event. The
 listener we’ve added is for an event called data. This is the event that is called each time
 client sends some data to the server.
 We’ve had to lose the client.end(),
 though. If we closed the connection to the client, how could we listen for
 new data? Now whenever we send data to the server, it will be outputted to
 the console. Let’s try that in Example 2-4.
Example 2-4. Sending data to the server from Telnet
Console 1

Enki:~ $ node chat.js
Chat server started
<Buffer 48 65 6c 6c 6f 2c 20 79 6f 75 72 73 65 6c 66 0d 0a>

Console 2

Enki:~ $ telnet 127.0.0.1 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi!
Hello, yourself

What has happened here? We ran the server and connected to it with
 Telnet. The server said “Hi!” and we responded with “Hello, yourself”. At
 this point, Node spat out a bunch of seeming gibberish in a data type
 you’ve never seen before. Because JavaScript doesn’t have a good way to
 deal with binary data, Node added one. It’s called Buffer, and it lets the
 server represent binary data. Node doesn’t know what kind of data Telnet
 sent, so Node simply stores the data as binary until we ask for it in some
 other kind of encoding. The sequence of letters and numbers is actually
 bytes in hex (see Buffers in Chapter 4 for more on this). Each byte represents one of the
 letters or characters in the string “Hello, yourself”. We can use the
 toString() method to translate Buffer data into a regular string again if we
 want, or we can just pass it around as it is because TCP and Telnet
 understand the binary, too.
Now that we can get messages from each client, we should let them
 send each other messages. To do this, we need a way of letting them
 communicate with each other. It’s great that we can call client.write(), but that works on only one
 client at a time. What we need is a way to reference other clients. We can
 do this by creating a list of clients that we want to write data to.
 Whenever we get a new client, we’ll add it to our list and use the list to
 communicate between the clients (see Example 2-5).
Example 2-5. Communicating between clients
var net = require('net')

var chatServer = net.createServer(),
 clientList = []

chatServer.on('connection', function(client) {
 client.write('Hi!\n');

 clientList.push(client)

 client.on('data', function(data) {
 for(var i=0;i<clientList.length;i+=1) {
 //write this data to all clients
 clientList[i].write(data)
 }
 })

})

chatServer.listen(9000)

Now when we run it in Example 2-6, we can connect
 multiple clients to the server to see them sending messages to each
 other.
Example 2-6. Sending messages between clients
Console 1

Enki:~ $ node chat.js

Console 2

Enki:~ $ telnet 127.0.0.1 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi!
Hello, yourself
Hello, yourself

Console 3

Enki:~ $ telnet 127.0.0.1 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi!
Hello, yourself

This time, the server isn’t logging any messages it receives, and
 instead we loop through the array and send them back to the clients.
 Notice that when the Telnet client in terminal 2 sends a message, it gets
 sent to the Telnet client in terminal 3, but it also gets sent back to
 Telnet in terminal 2 as well. This is because when we send the message, we
 aren’t checking who the sender was; we just send to our entire array of
 clients. It’s also not clear just by looking at Telnet which messages were
 things we sent and which were things we received. We can improve on this.
 In Example 2-7, let’s create a function to send messages to all the clients, and use it to tidy up some
 of these issues.
Example 2-7. Improving the sending of messages
var net = require('net')

var chatServer = net.createServer(),
 clientList = []

chatServer.on('connection', function(client) {
 client.name = client.remoteAddress + ':' + client.remotePort
 client.write('Hi ' + client.name + '!\n');

 clientList.push(client)

 client.on('data', function(data) {
 broadcast(data, client)
 })

})

function broadcast(message, client) {
 for(var i=0;i<clientList.length;i+=1) {
 if(client !== clientList[i]) {
 clientList[i].write(client.name + " says " + message)
 }
 }
}

chatServer.listen(9000)

The first thing we’ve added to the connection event listener is a command to add a
 name property to each client. Note how
 we are able to decorate the client
 object with additional properties. This is because the closure binds each
 client object to a specific request.
 The existing properties of the client
 are used to create the name, and the client.remoteAddress is the IP address the client is connecting from. The client.remotePort is the TCP port that the client
 asked the server to send data back to. When multiple clients connect from
 the same IP, they will each have a unique remotePort. When we issue a greeting to the
 client, we can now do it using a unique
 name for that client.
We also extracted the client write loop from the data event listener. We now have a function
 called broadcast and, using it, we can
 send a message to all the connected clients. However, this time we pass
 the client that is sending the message
 (data) so we can exclude it from
 getting the message. We also include the sending client name (now that it
 has one) when sending the message to the other clients. This is a much
 better version of the server, as shown in Example 2-8.
Example 2-8. Running the improved chat server
Console 1

Enki:~ $ node chat.js

Console 2

Enki:~ $ telnet 127.0.0.1 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi 127.0.0.1:56022!
Hello
127.0.0.1:56018 says Back atcha

Console 3

Enki:~ $ telnet 127.0.0.1 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi 127.0.0.1:56018!
127.0.0.1:56022 says Hello
Back atcha

This is a much friendlier and more useful service. It’s still not
 perfect, but we are making progress. Note that the exact port numbers used
 in the names will almost certainly vary for you when you run this example.
 Different operating systems allow different port ranges, and the
 assignment will also depend on which ones you are already using, as well
 as a random factor. You may have already encountered this, but our server
 has a fatal flaw! If one of the clients disconnects, the server will fail horribly, as demonstrated in Example 2-9.
Example 2-9. Causing the server to fail by disconnecting a client
Console 1

Enki:~ $ node book-chat.js [image: 1]

net.js:392 [image: 2]
 throw new Error('Socket is not writable');
 ^
Error: Socket is not writable
 at Socket._writeOut (net.js:392:11)
 at Socket.write (net.js:378:17)
 at broadcast (/Users/sh1mmer/book-chat.js:21:21)
 at Socket.<anonymous> (/Users/sh1mmer/book-chat.js:13:5)
 at Socket.emit (events.js:64:17)
 at Socket._onReadable (net.js:679:14)
 at IOWatcher.onReadable [as callback] (net.js:177:10)
Enki:~ $

Console 2

Enki:~ $ telnet 127.0.0.1 9000 [image: 3]
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi 127.0.0.1:56910!
^]
telnet> quit [image: 4]
Connection closed.
Enki:~ $

Console 3

Enki:~ $ telnet 127.0.0.1 9000 [image: 5]
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi 127.0.0.1:56911!
You still there? [image: 6]
Connection closed by foreign host. [image: 7]
Enki:~ $

We start the server as normal [image: 1] and connect
 some clients [image: 3][image: 5], but
 when the client in Console 2 disconnects [image: 4], we
 have a bit of a problem. The next time we use broadcast(), in this case when Console 3 sends a
 message [image: 6], the server tries to write to a
 disconnected client [image: 2]. When the client from
 Console 2 disconnected [image: 4], its socket stopped
 being writable or readable. When we try to call write() on a socket that is closed, we get an
 exception in the Node process. This also causes the disconnection of all
 the remaining clients [image: 7]. Obviously, this is
 extremely brittle and not acceptable for a server.
We should fix this in two ways. First, we should make sure that when
 a client disconnects, we remove it from the clients array so it stops getting write() method calls. This will also allow V8 to
 garbage-collect the socket object and reclaim that memory. Second, we
 should be a bit more defensive when we write to a socket. We want to make
 sure that between the last time the socket was written and the current
 pass, nothing has stopped us from being able to call write(). Happily, Node has easy ways to achieve both of these things. The
 first is shown in Example 2-10.
Example 2-10. Making the chat server more robust
chatServer.on('connection', function(client) {
 client.name = client.remoteAddress + ':' + client.remotePort
 client.write('Hi ' + client.name + '!\n');

 clientList.push(client)

 client.on('data', function(data) {
 broadcast(data, client)
 })

 client.on('end', function() {
 clientList.splice(clientList.indexOf(client), 1)
 })
})

First, let’s deal with those disconnecting clients. When a client
 disconnects, we want to be able to remove it from the list of clients.
 This is easy to achieve with the end
 event. When a socket disconnects, it fires the end event to indicate that it’s about to close.
 We can call Array.splice() when this
 happens to remove the client from the clientList array. Using Array.indexOf(), we are able to find the
 position of this client. splice() then removes from the array one item,
 which is the client. Now when the next
 client uses the
 broadcast call, the disconnected client will no longer be in the
 list.
We can still be a bit more defensive, though, as demonstrated in Example 2-11.
Example 2-11. Checking the write status of sockets
function broadcast(message, client) {
 var cleanup = []
 for(var i=0;i<clientList.length;i+=1) {
 if(client !== clientList[i]) {

 if(clientList[i].writable) {
 clientList[i].write(client.name + " says " + message)
 } else {
 cleanup.push(clientList[i])
 clientList[i].destroy()
 }

 }
 } //Remove dead Nodes out of write loop to avoid trashing loop index
 for(i=0;i<cleanup.length;i+=1) {
 clientList.splice(clientList.indexOf(cleanup[i]), 1)
 }
}

By adding a check for the write status of the socket during the
 broadcast call, we can make sure that any sockets that are not available
 to be written don’t cause an exception. Moreover, we can make sure that
 any sockets that can’t be written to are closed (using Socket.destroy()) and then removed from the clientList. Note that we don’t remove the
 sockets from the clientList while we
 are looping through it, because we don’t want to cause side effects on the
 current loop we are in. Our server is now much more robust. There is one
 more thing we should do before we are really ready to deploy it: log the errors (Example 2-12).
Example 2-12. Logging errors
chatServer.on('connection', function(client) {
 client.name = client.remoteAddress + ':' + client.remotePort
 client.write('Hi ' + client.name + '!\n');
 console.log(client.name + ' joined')

 clientList.push(client)

 client.on('data', function(data) {
 broadcast(data, client)
 })

 client.on('end', function() {
 console.log(client.name + ' quit')
 clientList.splice(clientList.indexOf(client), 1)
 })

 client.on('error', function(e) {
 console.log(e)
 })
})

By adding a console.log() call to
 the error event for the client objects,
 we can ensure that any errors that occur to clients are logged, even as
 our previous code makes sure that clients throwing errors are not able to
 cause the server to abort with an exception.

[2] If you are on Windows, we recommend using the free Putty program
 as a Telnet client.

Let’s Build Twitter

The previous example shows how easy it is to write something extremely
 real-time with Node, but often you just want to write a web application.
 Let’s try to create something similar to Twitter with Node so we can see
 what it’s like to make a web application. The first thing we should do is
 install the Express module (Example 2-13). This web
 framework for Node makes it much easier to create web applications by
 adding support for common tasks, such as MVC, to the existing http
 server.
Example 2-13. Installing the Express module
Enki:~ $ npm install express
express@2.3.12 ./node_modules/express
├── mime@1.2.2
├── connect@1.5.1
└── qs@0.1.0
Enki:~ $

Installing Express is easy using the Node Package Manager
 (npm). Once we have the framework installed, we can make a
 basic web application (Example 2-14). This
 looks a lot like the application we built in Chapter 1.
Note
You can read more about npm in Chapters 6 and 7.

Example 2-14. A basic web server with Express
var express = require('express')

var app = express.createServer()

app.get('/', function(req, res) {
 res.send('Welcome to Node Twitter')
})

app.listen(8000)

This code looks pretty similar to the basic web server code from
 Chapter 1. Instead of including the http module, however, we include express. Express is actually getting http behind the scenes, but we don’t have to get
 that ourselves, because Node will automatically resolve the dependencies.
 Like with http and net, we call createServer() to make a
 server and call listen() to make it listen to a specific port. Instead of attaching
 an event listener to the request event
 with Express, we can call methods matching the HTTP verbs. In this case,
 when we call get(), we can create a
 callback function that will match GET requests only to a URL that matches
 the first argument of the call. This has immediately added two things that
 the http server didn’t have: the
 ability to filter based on HTTP verbs, and the ability to filter based on
 specific URLs.
When we get the callback, it looks a lot like the one from the
 http server—because it is. However,
 Express has added some extra methods. With the http server, we needed to create the HTTP
 headers and send them to the client before sending the body of the
 request. Express provides a convenience method on the res (http.response) object call named send(), and this method issues both the HTTP
 headers as well as a response.end()
 call. So far, we haven’t done much more than the original Hello World
 server from Chapter 1. However, this server will
 respond only to a GET request to /
 without throwing an error. This is in contrast to the previous example,
 which would respond to any request with any path.
Let’s start adding some features to this server in order to provide
 some of the Twitter functionality (Example 2-15). At
 least to start with, we aren’t going to worry about making it super-robust
 or scalable. We are going to make a few assumptions so you can see how to
 create applications.
Example 2-15. Adding a basic API
var express = require('express')

var app = express.createServer()
app.listen(8000)

var tweets = []

app.get('/', function(req, res) {
 res.send('Welcome to Node Twitter')
})

app.post('/send', express.bodyParser(), function(req, res) {
 if (req.body && req.body.tweet) {
 tweets.push(req.body.tweet)
 res.send({status:"ok", message:"Tweet received"})
 } else {
 //no tweet?
 res.send({status:"nok", message:"No tweet received"})
 }
})

app.get('/tweets', function(req,res) {
 res.send(tweets)
})

Building on the basic Express app, we’ve added a couple of functions
 to provide an extremely basic API. But first let’s talk about another
 change we made. We moved the app.listen() call to the top of the file. It’s
 important to understand why this doesn’t cause a race condition for the
 functions that respond to requests. You might imagine that when we call
 app.listen(), any requests that happen
 between the app.listen() call and the
 time it takes to run those functions will be ignored. This is incorrect
 for two reasons. The first is that in JavaScript everything happens in an
 event loop. That means new events don’t get called until we’ve finished
 evaluating the code of the existing loop pass. In this case, no request events will be called (and thus our
 request-based functions) until we’ve
 evaluated all the initialization code in the file. The other reason is
 that the app.listen() call is actually
 asynchronous because binding to a TCP port takes time. The addition of
 event listeners (via app.get() and
 app.post()), on the other hand, is
 synchronous.
To get some very basic tweeting action going, we’ve added a POST
 “route” for /send using the app.post() call. This call is a little bit
 different from the previous example. Obviously, it’s an app.post() rather than an app.get() request. This simply means it accepts
 HTTP POST requests instead of HTTP GET requests. The significant
 difference is that we’ve passed an extra argument to the function. You
 don’t need to do this on all app.post()
 calls, or any, in fact. The extra argument after the url is a middleware.
A middleware is a small piece of code that sits in between the original
 request event and the route we defined
 with app.post(). We use middleware to
 reuse code for common tasks such as authentication or logging. In this
 case the middleware’s job is to stream the POST data from the client and
 then turn it into a JavaScript object that we can use. This middleware is
 one that is included in Express itself, called bodyParser. We simply include it by specifying
 it in the arguments we give to the app.post() route. Notice that we call express.bodyParser(). This function call actually returns another function. We use
 this standard style for middleware to allow you to pass configuration to
 the middleware if you want to.
If we didn’t include the middleware, we would have to manually write
 code to accept the data event provided
 by the request (req) object. Only after we had streamed in all
 the POST data could we call the code in the app.post() route. Using the middleware not only
 helps with code reuse but also with clarity.
The express.bodyParser adds a
 property to req called req.body. This property (if it exists) contains
 an object representing the POST data. The express.bodyParser middleware will work only for
 POST requests with the content-type
 HTTP header of application/x-www-form-urlencoded or application/json. Both of these are easy to
 parse into key/value pairs as properties of the req.body object.
This means that in the app.post()
 route we made, the first thing we do is check whether express.bodyParser found any data. We can simply
 check to see whether req.body was
 created. If it was, we look for a property called req.body.tweet to represent the tweet. If we
 find a tweet, we stash it in a global array called tweets and send a JSON string back to the client
 noting success. If we couldn’t find req.body or req.body.tweet, we send JSON back to the client,
 noting the failure. Notice how we didn’t serialize the data in the
 res.send() calls. If we give res.send() an object, it automatically
 serializes it as JSON and sends the correct HTTP headers.
Finally, to make our basic API complete, we create an app.get() route that listens to /tweets. This route simply
 sends back JSON for the tweets
 array.
We can write a few tests for our simple API to make sure it’s
 working (Example 2-16). This is a good habit to get into, even if you don’t do full
 test-driven development (TDD).
Example 2-16. A test for the POST API
var http = require('http'),
 assert = require('assert')

var opts = {
 host: 'localhost',
 port: 8000,
 path: '/send',
 method: 'POST',
 headers: {'content-type':'application/x-www-form-urlencoded'}
}

var req = http.request(opts, function(res) {
 res.setEncoding('utf8')

 var data = ""
 res.on('data', function(d) {
 data += d
 })

 res.on('end', function() {
 assert.strictEqual(data, '{"status":"ok","message":"Tweet received"}')
 })
})

req.write('tweet=test')
req.end()

We need the http and assert[3] modules in order to send HTTP requests and then test the values returned.
 assert is a core module in Node that lets us test
 return values in various ways. When a value doesn’t match the expected
 criteria, an exception is thrown. By making test scripts that check an
 expected behavior of our program, we can ensure that it is doing what it
 should be.
The http library doesn’t just contain objects to serve HTTP; it also provides
 a client. In this test program, we use the http.request() factory method to create a new
 http.Request object. To create an
 http.Request, we need an
 options object. This is a configuration object we
 pass that has a list of properties defining the functionality we want the
 http.Request to exhibit. You’ll see
 config objects used for constructing other Node objects. In this case, we
 include the hostname (which will be
 resolved by dns), the port, URL path,
 HTTP method, and some HTTP headers. Here the settings of the config object
 reflect what we used when creating our Express server.
The http.request() constructor takes two arguments: the first is the config
 object, and the second is a callback. The callback is attached to the
 response event for the http.Request. It’s similar to an http.Server, except we have only one object in
 the response.
The first thing we do with the response is call setEncoding(). This
 allows us to define the encoding of all the received data. By setting this
 to utf8, we ensure that any data we
 receive will be treated as the right kind of string. Next, we define a
 variable, data, which we are going to
 use to stream all the responses from the server. In Express, we can use express.bodyDecoder to catch all the data in a request and stream it, but we
 don’t have the same luxury in the client, so we’ll do it by hand. It’s
 really easy. We simply attach a function to the data event on response. Whenever data
 happens, we append it to our data
 variable. We can listen for the end
 event of the response and then take
 further action on all of the data. The API is set up this way because
 there are many applications in which it is possible to stream data. In
 these cases, we can do all of the work in the data event listener rather than aggregating
 first.
When we get the end event on
 response, it’s because we have all the
 data from the server. Now we can run our test on whatever the server sent.
 Our test in this case is to check whether the data variable has received what we expected from
 the server. If the server is acting
 correctly, it should send us back a piece of JSON. By using assert.strictEqual, we are checking that data matches
 the expected data using ===. If it
 doesn’t, an assert exception is thrown.
 We are using the x-www-form-urlencoded
 format because that’s what a web page form would send.
Now that we’ve set up the request
 and the event handlers for it, we need to write some data to the server.
 Calling write() on
 request lets us send data (since this is a POST
 request). We send some test data to ensure that the server will respond
 correctly. Finally, we call end() to
 indicate that we are finished sending data with the request object.
When we call this script, it will access the server we set up (if it
 is running) and send a POST request. If it gets back the correct data, it
 will finish without output. If it can’t connect to the server or if the
 server responds with the wrong output, it will throw an exception. The
 goal is to have a set of scripts we can run to check that the server is
 behaving correctly as we build it.
Now that we have an API, we can start adding a web interface so that
 people can use our app. Right now, it’s basic, but the API allows people
 to send messages that everyone can receive. Let’s make an interface to
 that.
Express supports an MVC (model, view, controller) approach oriented
 around the routing of requests. The routes act like controllers, providing
 a way to join the data model with a view. We’ve already used a route
 (app.get('/', function)). In the folder
 structure shown in Example 2-17, we can see where we
 host the different parts of the views. By convention, the
 views folder holds the view templates, and within it
 a partials folder contains the “partial views” (we’ll
 discuss these more later). For applications that don’t use a content
 delivery network (CDN), the public folder is used to
 store static files, such as CSS and JavaScript.
Example 2-17. The basic folder structure of an Express app
.
├── app.js
├── public
└── views
 └── partials

To start connecting our very simple model (var tweets = []) with a view, we need to create
 some views first. We are going to create some basic view files and put
 them in the views folder. Express offers a few
 different templating languages and is extensible to allow the addition of
 more. We are going to start with EJS.[4] EJS simply embeds JavaScript into the templates with a few
 simple tags to define how the JavaScript is interpreted. Let’s take a look
 at an example of EJS, starting with the layout file in Example 2-18.
Example 2-18. EJS layout file
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <%- partial('partials/stylesheet', stylesheets) %>
 <title><%= title %></title>
 </head>
 <body>
 <h1><%= header %></h1>
 <%- body %>
 </body>
</html>

The layout file in Express defines a skeleton to use for your site. It’s some basic
 view boilerplate you will use almost everywhere. In this case, we’ve used
 a very simple HTML5 page. It has a head with some stylesheet definitions
 and a body. The body consists of an h1
 header element and some content. Notice the <% tags. These are the places in which we are
 going to insert JavaScript variables. The JavaScript to be evaluated is
 between the <% and %> tags. The tags can also start with
 = or -, which we will discuss in more detail shortly.
 Mostly you’ll just reference a piece of data. You can simply list the
 variable or reference you wish to include in the page. For example,
 <h1><%= header %></h1> includes the
 variable header into the h1 element.
There are two special things used in this template. The first is the
 call to partial(). Partials are
 mini-templates for code that is expected to repeat again and again with
 different data. For example, you can imagine the comments on a blog post
 are the same snippet of HTML repeating many times, but with different
 pieces of information for each commenter and the comment she made. The
 actual HTML template doesn’t change. Partials are a way to represent and
 store those small pieces of code that repeat often, independently of the
 pages that include them, to make it easy to update the code on all the
 pages at once. The other special thing in this layout template is the
 body variable. Because we use the
 layout template on all the pages on the site (unless we turn it off), we
 need some way to say where the specific template being rendered goes.
 Express provides the body variable for this task. This variable will
 contain the rendered contents of the specific template we load.
Let’s make a render call from a route to see what that looks
 like before we explore the other templates we’ll need (Example 2-19).
Example 2-19. Rendering the index template from the '/' route
app.get('/', function(req, res) {
 var title = 'Chirpie',
 header = 'Welcome to Chirpie'

 res.render('index', {
 locals: {
 'title': title,
 'header': header,
 'tweets': tweets,
 stylesheets: ['/public/style.css']
 }
 })
})

The route code looks like the other route code we’ve used. However,
 instead of calling res.send(), we use
 res.render() as the call to render a
 template. The first argument is the name of the specific template we want
 to render. Remember that whatever is in the index template will be
 rendered into the layout template where the body variable was. The second argument we pass
 to res.render() is a configuration
 object. In this case, we haven’t done any configuration, except providing
 some local variables. The locals
 property of the config object contains the data used to render this
 template. We’ve passed in a title, a header, the array of tweets, and an
 array of stylesheets. All of these variables will be available to both the
 layout template and the index template.
We want to define an index template that is going to take the list
 of tweets and render them so that everyone can see the messages being
 posted (Example 2-20). We aren’t going to do individual
 tweet streams just yet, but we can make a page in which everyone can see
 all the messages being posted and post their own messages using the API.
Example 2-20. An index template to show tweets and let people post new
 tweets
<form action="/send" method="POST">
 <input type="text" length="140" name="tweet">
 <input type="submit" value="Tweet">
</form>
<%- partial('partials/chirp', tweets) %>

This index template is really simple. We have a small form to
 provide an input method for new tweets. That’s just regular HTML, but we
 can make it more AJAX-y later. We also have a partial for the tweets.
 Because they are all the same, we don’t want to put in an ugly loop with
 some markup embedded in the index template. By using a partial, we can
 make one smaller template to represent tweets in those templates in which
 we want to include them. This keeps the code nice and DRY.[5] We can add more stuff later, but this gives us the basic
 functionality we need. We’ll still need to define the partial templates we
 use in the layout template and the index template (Examples 2-21 and 2-22).
Example 2-21. A partial template for rendering chirps
<p><%= chirp %></p>

Example 2-22. A partial template for rendering stylesheets
<link rel="stylesheet" type="text/css" href="<%- stylesheet %>">

Both of these templates are really simple as well. They take some data and insert it into the
 markup. Because they get passed an array, they will repeat for each item
 in the array; however, neither of them is doing anything complex with the
 items of data. The variable each partial is using to access the array is
 the same as the name of the template. The template called chirp accesses its data in a variable of the
 same name. In this case, the data is simple
 strings, but if we passed in an array of objects, we could do chirp.property or chirp['property'] to access the properties of
 the objects. Of course, you can also call methods, such as chirp.method().
Now we have an application that allows us to post tweets. It’s very
 basic, and there are some things that are pretty suboptimal. Let’s correct
 a few of those things. The first obvious problem is that when we post a
 new tweet, it takes us to the “send JSON” endpoint. It’s not bad that we
 are accessing /send, but rather that it
 treats all clients the same. The tweets are also coming out in
 chronological order and we haven’t been saving a timestamp, so we don’t
 know how fresh they are. We’ll fix that too.
Fixing the /send endpoint is
 pretty simple. When HTTP clients send a request, they can specify the kind
 of response they want in order of preference. Typical browsers request
 text/html first and then various other
 formats. When performing API requests, however, the client can specify
 application/json in order to get the
 correct output. By checking for the accept HTTP header, we can make sure we send
 browsers back to the home page but simply return JSON to API
 clients.
The accept HTTP header might look
 like text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8.
 That header is from the Chrome browser, and it contains a number of MIME
 types separated by commas. First, we need a small function to figure out
 whether text/html is in the accept header (Example 2-23),
 and then we can use that to test the header and do some logic in the
 route.
Example 2-23. A small function to check for text/html in an accept
 header
function acceptsHtml(header) {
 var accepts = header.split(',')
 for(i=0;i<accepts.length;i+=0) {
 if (accepts[i] === 'text/html') { return true }
 }

 return false
}

This function splits the header across the commas. Then we iterate
 over that array and simply return true if any of them
 match text/html; otherwise, we’ll
 return false if none of them matched. We can use this
 in our route function to check whether it is a request from a web browser
 or an API request (Example 2-24).
Example 2-24. Redirect web browsers from the /send endpoint
app.post('/send', express.bodyParser(), function(req, res) {
 if (req.body && req.body.tweet) {

 tweets.push(req.body.tweet)

 if(acceptsHtml(req.headers['accept'])) {
 res.redirect('/', 302)
 } else {
 res.send({status:"ok", message:"Tweet received"})
 }

 } else {
 //no tweet?
 res.send({status:"nok", message:"No tweet received"})
 }
})

Much of this code is the same as Example 2-10, but
 now we have a check for whether the accept header asks for text/html. If it does, we redirect back to
 / using the res.redirect command. We use a 302 status code
 because this isn’t a permanent move. Instead, we want the browser to still
 go to /send each time before redirecting.

[3] You can read more about assert in Chapter 5.

[4] More of Express’s view languages are covered in Chapter 7.

[5] Don’t repeat yourself.

Chapter 3. Building Robust Node Applications

To make the most of the server-side JavaScript
 environment, it’s important to understand some core concepts behind the
 design choices that were made for Node.js and JavaScript in general. Understanding the decisions
 and trade-offs will make it easier for you to write great code and architect
 your systems. It will also help you explain to other people why Node.js is
 different from other systems they’ve used and where the performance gains
 come from. No engineer likes unknowns in her system. “Magic” is not an
 acceptable answer, so it helps to be able to explain why a particular
 architecture is beneficial and under what circumstances.
This chapter will cover the coding styles, design patterns, and
 production know-how you need to write good, robust Node code.
The Event Loop

A fundamental part of Node is the event loop, a concept underlying the
 behavior of JavaScript as well as most other interactive systems. In many
 languages, event models are bolted onto the side, but JavaScript events
 have always been a core part of the language. This is because JavaScript
 has always dealt with user interaction. Anyone who has used a modern web
 browser is accustomed to web pages that do things “onclick,”
 “onmouseover,” etc. These events are so common that we hardly think about
 them when writing web page interaction, but having this event support in
 the language is incredibly powerful. On the server, instead of the limited
 set of events based on the user-driven interaction with the web page’s
 DOM, we have an infinite variety of events based on what’s happening in
 the server software we use. For example, the HTTP server module provides
 an event called “request,” emitted when a user sends the web server a
 request.
The event loop is the system that JavaScript
 uses to deal with these incoming requests from various parts of the system
 in a sane manner. There are a number of ways people deal with “real-time”
 or “parallel” issues in computing. Most of them are fairly complex and,
 frankly, make our brains hurt. JavaScript takes a simple approach that
 makes the process much more understandable, but it does introduce a few
 constraints. By having a grasp of how the event loop works, you’ll be able
 to use it to its full advantage and avoid the pitfalls of this
 approach.
Node takes the approach that all I/O activities should be nonblocking (for reasons we’ll
 explain more later). This means that HTTP requests, database queries, file
 I/O, and other things that require the program to wait do not halt
 execution until they return data. Instead, they run independently, and
 then emit an event when their data is available. This means that
 programming in Node.js has lots of callbacks dealing with all kinds of
 I/O. Callbacks often initiate other callbacks in a cascading fashion, which is
 very different from browser programming. There is still a certain amount
 of linear setup, but the bulk of the code involves dealing with
 callbacks.
Because of this somewhat unfamiliar
 programming style, we need to look for patterns to help us effectively program on the server. That
 starts with the event loop. We think that most people intuitively
 understand event-driven programming because it is like everyday life.
 Imagine you are cooking. You are chopping a bell pepper and a pot starts
 to boil over (Figure 3-1). You finish the slice
 you are working on, and then turn down the stove. Rather than trying to
 chop and turn down the stove at the same time, you achieve the same result
 in a much safer manner by rapidly switching contexts. Event-driven programming does the same thing. By allowing
 the programmer to write code that only ever works on one callback at a
 time, the program is both understandable and also able to quickly perform
 many tasks efficiently.
[image: Event-driven people]

Figure 3-1. Event-driven people

In everyday life, we are used to having all
 sorts of internal callbacks for dealing with events, and yet, like
 JavaScript, we always do just one thing at once. Yes, yes, we can see that
 you are rubbing your tummy and patting your head at the same time—well
 done. But if you try to do any serious activities at the same time, it
 goes wrong pretty quickly. This is like JavaScript. It’s great at letting
 events drive the action, but it’s “single-threaded” so that only one thing
 happens at once.
This single-threaded concept is really important. One of the
 criticisms leveled at Node.js fairly often is its lack of “concurrency.”
 That is, it doesn’t use all of the CPUs on a machine to run the
 JavaScript. The problem with running code on multiple CPUs at once is that
 it requires coordination between multiple “threads” of execution. In order
 for multiple CPUs to effectively split up work, they would have to talk to
 each other about the current state of the program, what work they’d each
 done, etc. Although this is possible, it’s a more complex model that
 requires more effort from both the programmer and the system. JavaScript’s
 approach is simple: there is only one thing happening at once. Everything
 that Node does is nonblocking, so the time between an event being emitted
 and Node being able to act on that event is very short because it’s not
 waiting on things such as disk I/O.
Another way to think about the event loop is to compare it to a postman (or mailman). To
 our event-loop postman, each letter is an event. He has a stack of events
 to deliver in order. For each letter (event) the postman gets, he walks to
 the route to deliver the letter (Figure 3-2). The
 route is the callback function assigned to that event (sometimes more than
 one). Critically, however, because our postman has only a single set of
 legs, he can walk only a single code path at a time.
[image: The event-loop postman]

Figure 3-2. The event-loop postman

Sometimes, while the postman is walking a code
 route, someone will give him another letter. This is the callback function
 he is visiting at the moment. In this case, the postman delivers the new
 message immediately (after all, someone gave it to him directly instead of
 going via the post office, so it must be urgent). The postman will diverge
 from his current code path and walk the proper code path to deliver the
 new event. He then carries on walking the original code path emitted by
 the previous event.
Let’s look at the behavior of our postman in a
 typical program by picking something simple. Suppose we have a web (HTTP)
 server that gets requests, retrieves some data from a database, and
 returns it to the user. In this scenario, we have a few events to deal
 with. First (as in most cases) comes the request event from the
 user asking the web server for a web page. The callback that deals with
 the initial request (let’s call it callback A) looks at the request object
 and figures out what data it needs from the database. It then makes a
 request to the database for that data, passing another function, callback
 B, to be called on the response event. Having
 handled the request, callback A
 returns. When the database has found the data, it issues the response event. The event loop then calls
 callback B, which sends the data back to the user.
This seems fairly straightforward. The obvious
 thing to note here is the “break” in the code, which you wouldn’t get in a
 procedural system. Because Node.js is a nonblocking system, when we get to
 the database call that would make us wait, we instead issue a callback.
 This means that different functions must start handling the request and
 finish handling it when the data is ready to return. So we need to make
 sure that we either pass any state we need to the callback or make it
 available in some other way. JavaScript programming typically does it
 through closures. We’ll discuss that in more detail later.
Why does this make Node more efficient? Imagine ordering food at a
 fast food restaurant. When you get in line at the counter, the server
 taking your order can behave in two ways. One of them is event-driven, and
 one of them isn’t. Let’s start with the typical approach taken by PHP and
 many other web platforms. When you ask the server for your order, he takes
 it but won’t serve any other customers until he has completed your order.
 There are a few things he can do after he’s typed in your order: process
 your payment, pour your drink, and so on. However, the server is still
 going to have to wait an unknown amount of time for the kitchen to make
 your burger (one of us is vegetarian, and orders always seem to take
 ages). If, as in the traditional approach of web application frameworks,
 each server (thread) is allocated to just one request at a time, the only
 way to scale up is to add more threads. However, it’s also very obvious
 that our server isn’t being very efficient. He’s spending a lot of time
 waiting for the kitchen to cook the food.
Obviously, real-life restaurants use a much more efficient model.
 When a server has finished taking your order, you receive a number that he
 can use to call you back. You could say this is a callback number. This is
 how Node works. When slow things such as I/O start, Node simply gives them a callback
 reference and then gets on with other work that is ready now, like the
 next customer (or event, in Node’s case). It’s important to note that as
 we saw in the example of the postman, at no time do restaurant servers
 ever deal with two customers at the same time. When they are calling
 someone back to collect an order, they are not taking a new one, and vice
 versa. By acting in an event-driven way, the servers are able to maximize
 their throughput.
This analogy also illustrates the cases where Node fits well and
 those where it doesn’t. In a small restaurant where the kitchen staff and
 the wait staff are the same people, no improvement can be made by becoming
 event-driven. Because all the work is being done by the same people,
 event-driven architectures don’t add anything. If all (or most) of the
 work your server does is computation, Node might not be the ideal
 model.
However, we can also see when the architecture fits. Imagine there
 are two servers and four customers in a restaurant (Figure 3-3). If the servers serve only one customer at a
 time, the first two customers will get the fastest possible order, but the
 third and fourth customers will get a terrible experience. The first two
 customers will get their food as soon as it is ready because the servers
 have dedicated their whole attention to fulfilling their orders. That
 comes at the cost of the other two customers. In an event-driven model,
 the first two customers might have to wait a short amount of time for the
 servers to finish taking the orders of the third and fourth customers
 before they get their food, but the average wait time (latency) of the
 system will be much, much lower.
[image: Fast food, fast code]

Figure 3-3. Fast food, fast code

Let’s look at another example. We’ve given the
 event-loop postman a letter to deliver that requires a gate to be opened.
 He gets there and the gate is closed, so he simply waits and tries again
 and again. He’s trapped in an endless loop waiting for the gate to open
 (Figure 3-4). Perhaps there is a letter on the
 stack that will ask someone to open the gate so the postman can get
 through. Surely that will solve things, right? Unfortunately, this will
 only help if the postman gets to deliver the letter, and currently he’s
 stuck waiting endlessly for the gate to open. This is because the event
 that opens the gate is external to the current event callback. If we emit
 the event from within a callback, we already know our postman will go and
 deliver that letter before carrying on, but when events are emitted
 outside the currently executing piece of code, they will not be called
 until that piece of code has been fully evaluated to its
 conclusion.
[image: Blocking the event loop]

Figure 3-4. Blocking the event loop

As an illustration, the code in Example 3-1 creates a loop that Node.js (or a browser)
 will never break out of.
Example 3-1. Event-loop blocking code
EE = require('events').EventEmitter;
ee = new EE();

die = false;

ee.on('die', function() {
 die = true;
});

setTimeout(function() {
 ee.emit('die');
}, 100);

while(!die) {
}

console.log('done');

In this example, console.log will never be called, because the
 while loop stops Node from ever getting a chance to
 call back the timeout and emit the die event. Although
 it’s unlikely we’d program a loop like this that relies on an external
 condition to exit, it illustrates how Node.js can do only one thing at
 once, and getting a fly in the ointment can really screw up the whole
 server. This is why nonblocking I/O is an essential part of event-driven
 programming.
Let’s consider some numbers. When we run an operation in the CPU
 (not a line of JavaScript, but a single machine code operation), it takes
 about one-third of a nanosecond (ns). A 3Ghz processor runs
 3×109 instructions a second, so each
 instruction takes 10-9/3 seconds each. There
 are typically two types of memory in a CPU, L1 and L2 cache, each of which
 takes approximately 2–5ns to access. If we get data from memory (RAM), it
 takes about 80ns, which is about two orders of magnitude slower than
 running an instruction. However, all of these things are in the same
 ballpark. Getting things from slower forms of I/O is not quite so good.
 Imagine that getting data from RAM is equivalent to the weight of a cat.
 Retrieving data from the hard drive, then, could be considered to be the
 weight of a whale. Getting things from the network is like 100 whales.
 Think about how running var foo = "bar"
 versus a database query is a single cat versus 100 blue whales. Blocking
 I/O doesn’t put an actual gate in front of the event-loop postman, but it
 does send him via Timbuktu when he is delivering his events.
Given a basic understanding of the event loop,
 let’s look at the standard Node.js code for creating an HTTP server, shown in Example 3-2.
Example 3-2. A basic HTTP server
var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8124, "127.0.0.1");
console.log('Server running at http://127.0.0.1:8124/');

This code is the most basic example from the
 Node.js website (but as we’ll see soon, it’s not the ideal way to code).
 The example creates an HTTP server using a factory method in the http library. The factory method creates a new
 HTTP server and attaches a callback to the request event. The callback is specified as the
 argument to the createServer method.
 What’s interesting here is what happens when this code is run. The first
 thing Node.js does is run the code in the example from top to bottom. This
 can be considered the “setup” phase of Node programming. Because we
 attached some event listeners, Node.js doesn’t exit, but instead waits for
 an event to be fired. If we didn’t attach any events, Node.js would exit
 as soon as it had run the code.
So what happens when the server gets an HTTP
 request? Node.js emits the request
 event, which causes the callbacks attached to that event to be run in
 order. In this case, there is only one callback, the anonymous function we
 passed as an argument to createServer.
 Let’s assume it’s the first request the server has had since setup.
 Because there is no other code running, the request event is handled immediately and the
 callback is run. It’s a very simple callback, and it runs pretty
 fast.
Let’s assume that our site gets really popular
 and we get lots of requests. If, for the sake of argument, our callback
 takes 1 second and we get a second request shortly after the first one,
 the second request isn’t going to be acted on for another second or so.
 Obviously, a second is a really long time, and as we look at the
 requirements of real-world applications, the problem of blocking the event
 loop becomes more damaging to the user experience. The operating system
 kernel actually handles the TCP connections to clients for the HTTP
 server, so there isn’t a risk of rejecting new connections, but there is a
 real danger of not acting on them. The upshot of this is that we want to
 keep Node.js as event-driven and nonblocking as possible. In the same way
 that a slow I/O event should use callbacks to indicate the presence of
 data that Node.js can act on, the Node.js program itself should be written
 in such a way that no single callback ties up the event loop for extended
 periods of time.
This means that you should follow two
 strategies when writing a Node.js server:
	Once setup has been completed, make all
 actions event-driven.

	If Node.js is required to process
 something that will take a long time, consider delegating it to web
 workers.

Taking the event-driven approach works
 effectively with the event loop (the name is a hint that it would), but
 it’s also important to write event-driven code in a way that is easy to
 read and understand. In the previous example, we used an anonymous
 function as the event callback, which makes things hard in a couple of
 ways. First, we have no control over where the code is used. An anonymous
 function’s call stack starts from when it is used, rather than when the
 callback is attached to an event. This affects debugging. If everything is
 an anonymous event, it can be hard to distinguish similar callbacks when
 an exception occurs.

Patterns

Event-driven programming is different from procedural programming. The
 easiest way to learn it is to practice routine patterns that have been
 discovered by previous generations of programmers. That is the purpose of
 this section.
Before we launch into patterns, we’ll take a look at what is really
 happening behind various programming styles to give the patterns some
 context. Most of this section will focus on I/O, because, as discussed in
 the previous section, event-driven programming is focused on solving
 problems with I/O. When it is working with data in memory that doesn’t
 require I/O, Node can be completely procedural.
The I/O Problem Space

We’ll start by looking at the types of I/O required in efficient systems.
 These will be the basis of our patterns.
The first obvious distinction to look at is serial versus parallel
 I/O. Serial is obvious: do this I/O, and after it
 is finished, do that I/O. Parallel is more
 complicated to implement but also easy to understand: do
 this I/O and that I/O at the
 same time. The important point here is that ordering is normally
 considered implicit in serial tasks, but parallel tasks could return in
 any order.
Groups of serial and parallel work can also be combined. For example, two
 groups of parallel requests could execute serially: do
 this and that together, then
 do other and another
 together.
In Node, we assume that all I/O has unbounded latency. This means that any I/O tasks
 could take from 0 to infinite time. We don’t know, and can’t assume, how
 long these tasks take. So instead of waiting for them, we use
 placeholders (events), which then fire callbacks when the I/O happens.
 Because we have assumed unbounded latency, it’s easy to perform parallel
 tasks. You simply make a number of calls for various I/O tasks. They
 will return whenever they are ready, in whatever order that happens to
 be. Ordered serial requests are also easy to make by nesting or
 referencing callbacks together so that the first callback will initiate
 the second I/O request, the second callback will initiate the third, and
 so on. Even though each request is asynchronous and doesn’t block the event loop, the requests are made in
 serial. This pattern of ordered requests is useful when the results of
 one I/O operation have to inform the details of the next I/O request.
So far, we have two ways to do I/O: ordered serial requests and
 unordered parallel requests. Ordered parallel requests are also a useful
 pattern; they happen when we allow the I/O to take place in parallel,
 but we deal with the results in a particular sequence. Unordered serial
 I/O offers no particular benefits, so we won’t consider it as a
 pattern.
Unordered parallel I/O

Let’s start with unordered parallel I/O (Example 3-3) because it’s by far the easiest to do in
 Node. In fact, all I/O in Node is unordered parallel by default. This
 is because all I/O in Node is asynchronous and nonblocking. When we do
 any I/O, we simply throw the request out there and see what happens.
 It’s possible that all the requests will happen in the order we made
 them, but maybe they won’t. When we talk about unordered, we don’t
 mean randomized, but simply that there is no guaranteed order.
Example 3-3. Unordered parallel I/O in Node
fs.readFile('foo.txt', 'utf8', function(err, data) {
 console.log(data);
};
fs.readFile('bar.txt', 'utf8', function(err, data) {
 console.log(data);
};

Simply making I/O requests with callbacks will create unordered parallel I/O. At some
 point in the future, both of these callbacks will fire. Which happens
 first is unknown, and either one could return an error rather than
 data without affecting the other request.

Ordered serial I/O

In this pattern, we want to do some I/O (unbounded latency) tasks in
 sequence. Each previous task must be completed before the next task is
 started. In Node, this means nesting callbacks so that the callback from each task starts the
 next task, as shown in Example 3-4.
Example 3-4. Nesting callbacks to produce serial requests
server.on('request', function(req, res) {
 //get session information from memcached
 memcached.getSession(req, function(session) {
 //get information from db
 db.get(session.user, function(userData) {
 //some other web service call
 ws.get(req, function(wsData) {
 //render page
 page = pageRender(req, session, userData, wsData);
 //output the response
 res.write(page);
 });
 });
 });
});

Although nesting callbacks allows easy creation of ordered
 serial I/O, it also creates so-called “pyramid” code.[6] This code can be hard to read and understand, and as a
 consequence, hard to maintain. For instance, a glance at Example 3-4 doesn’t reveal that the completion of the
 memcached.getSession request
 launches the db.get request, that
 the completion of the db.get
 request launches the ws.get
 request, and so on. There are a few ways to make this code more
 readable without breaking the fundamental ordered serial
 pattern.
First, we can continue to use inline function declarations, but
 we can name them, as in Example 3-5. This makes
 debugging a lot easier as well as giving an indication of what the
 callback is going to do.
Example 3-5. Naming function calls in callbacks
server.on('request', getMemCached(req, res) {
 memcached.getSession(req, getDbInfo(session) {
 db.get(session.user, getWsInfo(userData) {
 ws.get(req, render(wsData) {
 //render page
 page = pageRender(req, session, userData, wsData);
 //output the response
 res.write(page);
 });
 });
 });
});

Another approach that changes the style of code is to use
 declared functions instead of just anonymous or named ones. This
 removes the natural pyramid seen in the other approaches, which shows
 the order of execution, but it also breaks the code out into more
 manageable chunks (see Example 3-6).
Example 3-6. Using declared functions to separate out code
var render = function(wsData) {
 page = pageRender(req, session, userData, wsData);
};

var getWsInfo = function(userData) {
 ws.get(req, render);
};

var getDbInfo = function(session) {
 db.get(session.user, getWsInfo);
};

var getMemCached = function(req, res) {
 memcached.getSession(req, getDbInfo);
};

The code shown in this example won’t actually work. The original
 nested code used closures to encapsulate some variables and make them
 available to subsequent functions. Hence, declared functions can be
 good when state doesn’t need to be maintained across three or more
 callbacks. If you need only the information from the last callback in
 order to do the next one, it works well. It can be a lot more readable
 (especially with documentation) than a huge lump of nested
 functions.
There are, of course, ways of passing data around between
 functions. Mostly it comes down to using the features of the
 JavaScript language itself. JavaScript has functional scope,
 which means that when you declare var within a function, the variable becomes local to that function.
 However, simply having { and
 } does not limit the scope of a
 variable. This allows us to define variables in the outer callback
 that can be accessed by the inner callbacks even when the outer
 callbacks have “closed” by returning. When we nest callbacks, we are
 implicitly binding the variables from all the previous callbacks into
 the most recently defined callback. It just turns out that lots of
 nesting isn’t very easy to work with.
We can still perform the flattening refactoring we did, but we
 should do it within the shared scope of the original request, to form
 a closure environment around all the callbacks we want to do. This
 way, all the callbacks relating to that initial request can be
 encapsulated and can share state via variables in the encapsulating
 callback (Example 3-7).
Example 3-7. Encapsulating within a callback
 server.on('request', function(req, res) {

 var render = function(wsData) {
 page = pageRender(req, session, userData, wsData);
 };

 var getWsInfo = function(userData) {
 ws.get(req, render);
 };

 var getDbInfo = function(session) {
 db.get(session.user, getWsInfo);
 };

 var getMemCached = function(req, res) {
 memcached.getSession(req, getDbInfo);
 };

}

Not only does this approach organize code in a logical way, but
 it also allows you to flatten a lot of the callback hell.
Other organizational innovations are also possible. Sometimes
 there is code you want to reuse across many functions. This is the
 province of middleware. There are many ways to
 do middleware. One of the most popular in Node is the model
 used by the Connect framework, which could be said to be based on
 Rack from the Ruby world. The general idea behind its implementation
 is that we pass around some variables that represent not only the
 state but also the methods of interacting with that state.
In JavaScript, objects are
 passed by reference. That means when you call myFunction(someObject), any changes you
 make to someObject will affect all
 copies of someObject in your
 current functional scope. This is potentially tricky, but gives you
 some great powers if you are careful about any side effects created.
 Side effects are largely dangerous in asynchronous code. When something modifies an object
 used by a callback, it can often be very difficult to figure out
 when that change happened because it happens in a nonlinear order. If
 you use the ability to change objects passed by arguments, be
 considerate of where those objects are going to be used.
The basic idea is to take something that represents the state
 and pass it between all functions that need to act on that state. This
 means that all the things acting on the state need to have the same
 interface so they can pass between themselves. This is why Connect
 (and therefore Express) middleware all takes the form function(req, res, next). We discuss
 Connect/Express middleware in more detail in Chapter 7.
In the meantime, let’s look at the basic approach, shown in
 Example 3-8. When we share objects between
 functions, earlier functions in the call stack can
 affect the state of those objects such that the later objects utilize
 the changes.
Example 3-8. Passing changes between functions
 var AwesomeClass = function() {
 this.awesomeProp = 'awesome!'
 this.awesomeFunc = function(text) {
 console.log(text + ' is awesome!')
 }
}

var awesomeObject = new AwesomeClass()

function middleware(func) {
 oldFunc = func.awesomeFunc
 func.awesomeFunc = function(text) {
 text = text + ' really'
 oldFunc(text)
 }
}

function anotherMiddleware(func) {
 func.anotherProp = 'super duper'
}

function caller(input) {
 input.awesomeFunc(input.anotherProp)
}

middleware(awesomeObject)
anotherMiddleware(awesomeObject)
caller(awesomeObject)

[6] This term was coined by Tim Caswell.

Writing Code for Production

One of the challenges of writing a book is trying to explain things in the
 simplest way possible. That runs counter to showing techniques and
 functional code that you’d want to deploy. Although we should always
 strive to have the simplest, most understandable code possible, sometimes
 you need to do things that make code more robust or faster at the cost of
 making it less simple. This section provides guidance about how to harden
 the applications you deploy, which you can take with you as you explore
 upcoming chapters. This section is about writing code with maturity that
 will keep your application running long into the future. It’s not
 exhaustive, but if you write robust code, you won’t have to deal with so
 many maintenance issues. One of the trade-offs of Node’s single-threaded
 approach is a tendency to be brittle. These techniques help mitigate this
 risk.
Deploying a production application is not the same as running test
 programs on your laptop. Servers can have a wide variety of resource
 constraints, but they tend to have a lot more resources than the typical
 machine you would develop on. Typically, frontend servers have many more
 cores (CPUs) than laptop or desktop machines, but less hard drive space.
 They also have a lot of RAM. Node currently has some constraints, such as
 a maximum JavaScript heap size. This affects the way you deploy
 because you want to maximize the use of the CPUs and memory on the machine
 while using Node’s easy-to-program single-threaded approach.
Error Handling

As we saw earlier in this chapter, you can split I/O activities from other things in Node, and error
 handling is one of those things. JavaScript includes try/catch functionality, but it’s appropriate only for
 errors that happen inline. When you do nonblocking I/O in Node, you pass a callback to the
 function. This means the callback is going to run when the event happens
 outside of the try/catch block. We need to be able to provide error
 handling that works in asynchronous situations. Consider the code in Example 3-9.
Example 3-9. Trying to catch an error in a callback and failing
var http = require('http')

var opts = {
 host: 'sfnsdkfjdsnk.com',
 port: 80,
 path: '/'
}

try {
 http.get(opts, function(res) {
 console.log('Will this get called?')
 })
}
catch (e) {
 console.log('Will we catch an error?')
}

When you call http.get(),
 what is actually happening? We pass some parameters
 specifying the I/O we want to happen and a callback function. When the
 I/O completes, the callback function will be fired. However, the
 http.get() call will succeed simply
 by issuing the callback. An error during the GET cannot be caught by a
 try/catch block.
The disconnect from I/O errors is even more obvious in Node REPL.
 Because the REPL shell prints out any return values that are not
 assigned, we can see that the return value of calling http.get() is the http.ClientRequest object that is created.
 This means that the try/catch did its job by making sure the specified
 code returned without errors. However, because the hostname is nonsense,
 a problem will occur within this I/O request. This means the callback
 can’t be completed successfully. A try/catch can’t help with this,
 because the error has happened outside the JavaScript, and when Node is
 ready to report it, we are not in that call stack any more. We’ve moved
 on to dealing with another event.
We deal with this in Node by using the error event. This is a
 special event that is fired when an error occurs. It allows a module
 engaging in I/O to fire an alternative event to the one the callback was
 listening for to deal with the error. The error event allows us to deal
 with any errors that might occur in any of the callbacks that happen in
 any modules we use. Let’s write the previous example correctly, as shown
 in Example 3-10.
Example 3-10. Catching an I/O error with the error event
var http = require('http')

var opts = {
 host: 'dskjvnfskcsjsdkcds.net',
 port: 80,
 path: '/'
}

var req = http.get(opts, function(res) {
 console.log('This will never get called')
})

req.on('error', function(e) {
 console.log('Got that pesky error trapped')
})

By using the error event, we
 got to deal with the error (in this case by ignoring it). However, our
 program survived, which is the main thing. Like try/catch in JavaScript,
 the error event catches all kinds of
 exceptions. A good general approach to exception handling is to set up
 conditionals to check for known error conditions and deal with them if
 possible. Otherwise, catching any remaining errors, logging them, and
 keeping your server running is probably the best approach.

Using Multiple Processors

As we’ve mentioned, Node is single-threaded. This means Node is using only one
 processor to do its work. However, most servers have several “multicore”
 processors, and a single multicore processor has many processors. A
 server with two physical CPU sockets might have “24 logical cores”—that
 is, 24 processors exposed to the operating system. To make the best use
 of Node, we should use those too. So if we don’t have threads, how do we
 do that?
Node provides a module called cluster that allows you to delegate work to child processes. This means
 that Node creates a copy of its current program in another process (on
 Windows, it is actually another thread). Each child process has some
 special abilities, such as the ability to share a socket with other
 children. This allows us to write Node programs that start many other
 Node programs and then delegate work to them.
It is important to understand that when you use cluster to share work between a number of
 copies of a Node program, the master process isn’t involved in every transaction. The
 master process manages the child processes, but when the children interact with I/O
 they do it directly, not through the master. This means that if you set
 up a web server using cluster,
 requests don’t go through your master process, but directly to the
 children. Hence, dispatching requests does not create a bottleneck in
 the system.
By using the cluster API, you
 can distribute work to a Node process on every available core
 of your server. This makes the best use of the resource. Let’s look at a
 simple cluster
 script in Example 3-11.
Example 3-11. Using cluster to distribute work
var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;

if (cluster.isMaster) {
 // Fork workers.
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }

 cluster.on('death', function(worker) {
 console.log('worker ' + worker.pid + ' died');
 });
} else {
 // Worker processes have a http server.
 http.Server(function(req, res) {
 res.writeHead(200);
 res.end("hello world\n");
 }).listen(8000);
}

In this example, we use a few parts of Node core to evenly
 distribute the work across all of the CPUs available: the cluster module, the http module, and the os module. From the
 latter, we simply get the number of CPUs on the system.
The way cluster works is that
 each Node process becomes either a “master” or a “worker” process. When
 a master process calls the cluster.fork() method, it creates a child process that is identical to the
 master, except for two attributes that each process can check to see
 whether it is a master or child. In the master process—the one in which
 the script has been directly invoked by calling it with Node—cluster.isMaster returns true, whereas cluster.isWorker returns false. cluster.isMaster returns false on the
 child, whereas cluster.isWorker
 returns true.
The example shows a master script that invokes a worker for each
 CPU. Each child starts an HTTP server, which is another unique aspect of
 cluster. When you listen() to a socket where cluster is in use, many processes can listen
 to the same socket. If you simply started serveral Node processes with
 node myscript.js, this wouldn’t be
 possible, because the second process to start would throw the EADDRINUSE exception.
 cluster provides a cross-platform way
 to invoke several processes that share a socket. And even when the
 children all share a connection to a port, if one of them is jammed, it
 doesn’t stop the other workers from getting connections.
We can do more with cluster than simply share
 sockets, because it is based on the child_process
 module. This gives us a number of attributes, and some of the most
 useful ones relate to the health of the child processes. In the previous
 example, when a child dies, the master process uses console.log() to print
 out a death notification. However, a more useful script would cluster.fork() a new child, as shown in Example 3-12.
Example 3-12. Forking a new worker when a death occurs
 if (cluster.isMaster) {
 //Fork workers.
 for (var i=0; i<numCPUs; i++) {
 cluster.fork();
 }

 cluster.on('death', function(worker) {
 console.log('worker ' + worker.pid + ' died');
 cluster.fork();
 });
}

This simple change means that our master process can keep
 restarting dying processes to keep our server firing on all CPUs.
 However, this is just a basic check for running processes. We can also
 do some more fancy tricks. Because workers can pass messages to the
 master, we can have each worker report some stats, such as memory usage,
 to the master. This will allow the master to determine when workers are
 becoming unruly or to confirm that workers are not freezing or getting
 stuck in long-running events (see Example 3-13).
Example 3-13. Monitoring worker health using message passing
var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;

var rssWarn = (12 * 1024 * 1024)
 , heapWarn = (10 * 1024 * 1024)

if(cluster.isMaster) {
 for(var i=0; i<numCPUs; i++) {
 var worker = cluster.fork();
 worker.on('message', function(m) {
 if (m.memory) {
 if(m.memory.rss > rssWarn) {
 console.log('Worker ' + m.process + ' using too much memory.')
 }
 }
 })
 }
} else {
 //Server
 http.Server(function(req,res) {
 res.writeHead(200);
 res.end('hello world\n')
 }).listen(8000)
 //Report stats once a second
 setInterval(function report(){
 process.send({memory: process.memoryUsage(), process: process.pid});
 }, 1000)
}

In this example, workers report on their memory usage, and the
 master sends an alert to the log when a process uses too much memory.
 This replicates the functionality of many health reporting systems that
 operations teams already use. It gives control to the master Node
 process, however, which has some benefits. This message-passing
 interface allows the master process to send messages back to the workers
 too. This means you can treat a master process as a lightly loaded admin
 interface to your workers.
There are other things we can do with message passing that we
 can’t do from the outside of Node. Because Node relies on an event loop
 to do its work, there is the danger that the callback of an event in the
 loop could run for a long time. This means that other users of the
 process are not going to get their requests met until that long-running
 event’s callback has concluded. The master process has a connection to
 each worker, so we can tell it to expect an “all OK” notification
 periodically. This means we can validate that the event loop has the
 appropriate amount of turnover and that it hasn’t become stuck on one
 callback. Sadly, identifying a long-running callback doesn’t allow us to
 make a callback for termination. Because any notification we could send
 to the process will get added to the event queue, it would have to wait
 for the long-running callback to finish. Consequently, although using
 the master process allows us to identify zombie workers, our only remedy
 is to kill the worker and lose all the tasks it was doing.
Some preparation can give you the capability to kill an individual
 worker that threatens to take over its processor; see Example 3-14.
Example 3-14. Killing zombie workers
var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;

var rssWarn = (50 * 1024 * 1024)
 , heapWarn = (50 * 1024 * 1024)

var workers = {}

if(cluster.isMaster) {
 for(var i=0; i<numCPUs; i++) {
 createWorker()
 }

 setInterval(function() {
 var time = new Date().getTime()
 for(pid in workers) {
 if(workers.hasOwnProperty(pid) &&
 workers[pid].lastCb + 5000 < time) {

 console.log('Long running worker ' + pid + ' killed')
 workers[pid].worker.kill()
 delete workers[pid]
 createWorker()
 }
 }
 }, 1000)
} else {
 //Server
 http.Server(function(req,res) {
 //mess up 1 in 200 reqs
 if (Math.floor(Math.random() * 200) === 4) {
 console.log('Stopped ' + process.pid + ' from ever finishing')
 while(true) { continue }
 }
 res.writeHead(200);
 res.end('hello world from ' + process.pid + '\n')
 }).listen(8000)
 //Report stats once a second
 setInterval(function report(){
 process.send({cmd: "reportMem", memory: process.memoryUsage(), process: process.pid})
 }, 1000)
}

function createWorker() {
 var worker = cluster.fork()
 console.log('Created worker: ' + worker.pid)
 //allow boot time
 workers[worker.pid] = {worker:worker, lastCb: new Date().getTime()-1000}
 worker.on('message', function(m) {
 if(m.cmd === "reportMem") {
 workers[m.process].lastCb = new Date().getTime()
 if(m.memory.rss > rssWarn) {
 console.log('Worker ' + m.process + ' using too much memory.')
 }
 }
 })
}

In this script, we’ve added an interval to the master as well as
 the workers. Now whenever a worker sends a report to the master process,
 the master stores the time of the report. Every second or so, the master
 process looks at all its workers to check whether any of them haven’t
 responded in longer than 5 seconds (using >
 5000 because timeouts are in milliseconds). If that is the
 case, it kills the stuck worker and restarts it. To make this process
 effective, we moved the creation of workers into a small function. This
 allows us to do the various pieces of setup in a single place,
 regardless of whether we are creating a new worker or restarting a dead
 one.
We also made a small change to the HTTP server in order to give
 each request a 1 in 200 chance of failing, so you can run the script and
 see what it’s like to get failures. If you do a bunch of parallel
 requests from several sources, you’ll see the way this works. These are
 all entirely separate Node programs that interact via message passing,
 which means that no matter what happens, the master process can check on
 the other processes because the master is a small program that won’t get
 jammed.

Part II. Deep Dive and API Reference

Chapter 4. Core APIs

There are a lot of APIs in Node, but some of them are more important than others. These core
 APIs will form the backbone of any Node app, and you’ll find yourself using
 them again and again.
Events

The first API we are going to look at is
 the Events API. This is
 because, while abstract, it is a fundamental piece of making every other
 API work. By having a good grip on this API, you’ll be able to use all the
 other APIs effectively.
If you’ve ever programmed JavaScript in the
 browser, you’ll have used events before. However, the event model used in
 the browser comes from the DOM rather than JavaScript itself, and a lot of
 the concepts in the DOM don’t necessarily make sense out of that context.
 Let’s look at the DOM model of events and compare it to the implementation
 in Node.
The DOM has a user-driven event model based on
 user interaction, with a set of interface elements arranged in a tree
 structure (HTML, XML, etc.). This means that when a user interacts with a
 particular part of the interface, there is an event and a context, which
 is the HTML/XML element on which the click or other activity took place.
 That context has a parent and potentially children. Because the context is
 within a tree, the model includes the concepts of bubbling and capturing,
 which allow elements either up or down the tree to receive the event that
 was called.
For example, in an HTML list, a click event on
 an can be captured by a
 listener on the that is its
 parent. Conversely, a click on the can be bubbled down to a listener on
 the . Because JavaScript
 objects don’t have this kind of tree structure, the model in Node is much
 simpler.
EventEmitter

Because the
 event model is tied to the DOM in browsers, Node created the EventEmitter class to provide
 some basic event functionality. All event functionality in Node revolves
 around EventEmitter because it is
 also designed to be an interface class for other classes to extend. It
 would be unusual to call an EventEmitter instance directly.
EventEmitter has a handful of methods, the
 main two being on and emit. The class provides these methods for use
 by other classes. The on
 method creates an event listener for an event, as shown in Example 4-1.
Example 4-1. Listening for an event with the on method
server.on('event', function(a, b, c) {
 //do things
});

The on
 method takes two parameters: the name of the event to listen for and the
 function to call when that event is emitted. Because
 EventEmitter is an interface pseudoclass, the class
 that inherits from EventEmitter is
 expected to be invoked with the new keyword.
 Let’s look at Example 4-2 to see how we create a
 new class as a listener.
Example 4-2. Creating a new class that supports events with
 EventEmitter
var utils = require('utils'),
 EventEmitter = require('events').EventEmitter;

var Server = function() {
 console.log('init');
};

utils.inherits(Server, EventEmitter);

var s = new Server();

s.on('abc', function() {
 console.log('abc');
});

We begin this example by including the
 utils module so we can use the inherits method.
 inherits provides a way for the
 EventEmitter class to add its methods to the Server class we created. This
 means all new instances of Server can be used as
 EventEmitters.
We then include the events module. However, we want to access just
 the specific EventEmitter class
 inside that module. Note how EventEmitter is capitalized to show it is a
 class. We didn’t use a createEventEmitter method, because we aren’t
 planning to use an EventEmitter directly. We simply
 want to attach its methods to the Server class we are going to make.
Once we have included the modules we need,
 the next step is to create our basic Server class. This offers just one simple
 function, which logs a message when it is initialized. In a real
 implementation, we would decorate the Server class prototype with the functions that
 the class would use. For the sake of simplicity, we’ve skipped that. The
 important step is to use sys.inherits
 to add EventEmitter as a superclass
 of our Server class.
When we want to use the Server class, we instantiate it with new Server(). This instance of Server will have access to the methods in the
 superclass (EventEmitter), which
 means we can add a listener to our instance using the on method.
Right now, however, the event listener we
 added will never be called, because the abc event isn’t fired. We can fix this by
 adding the code in Example 4-3 to emit the event.
Example 4-3. Emitting an event
s.emit('abc');

Firing the event listener is as simple as calling the emit method that the Server instance inherited from EventEmitter. It’s important to note that
 these events are instance-based. There are no
 global events. When you call the on method, you attach to a specific EventEmitter-based object. Even the various
 instances of the Server class don’t
 share events. s from the code in
 Example 4-3 will not share the same events as
 another Server instance, such as one
 created by var z = new
 Server();.

Callback Syntax

An important part of using events is dealing with callbacks. Chapter 3 looks at best
 practices in much more depth, but we’ll look here at the mechanics of
 callbacks in Node. They use a few standard patterns, but first let’s discuss what is possible.
When calling emit, in
 addition to the event name, you can also pass an arbitrary list of
 parameters. Example 4-4 includes three such
 parameters. These will be passed to the function listening to the event.
 When you receive a request event from
 the http server, for example, you
 receive two parameters: req and
 res. When the request event was
 emitted, those parameters were passed as the second and third arguments
 to the emit.
Example 4-4. Passing parameters when emitting an event
s.emit('abc', a, b, c);

It is important to understand how Node calls
 the event listeners because it will affect your programming style. When
 emit() is called with arguments, the
 code in Example 4-5 is used to call each
 event listener.
Example 4-5. Calling event listeners from emit
if (arguments.length <= 3) {
 // fast case
 handler.call(this, arguments[1], arguments[2]);
} else {
 // slower
 var args = Array.prototype.slice.call(arguments, 1);
 handler.apply(this, args);
}

This code uses both of the JavaScript
 methods for calling a function from code. If emit() is passed with three or fewer
 arguments, the method takes a shortcut and uses call. Otherwise, it uses the slower apply to pass all the arguments as an array. The important thing to recognize here,
 though, is that Node makes both of these calls using the this argument directly. This means that the
 context in which the event listeners are called is the context of
 EventEmitter—not
 their original context. Using Node REPL, you can see what is happening
 when things get called by EventEmitter (Example 4-6).
Example 4-6. The changes in context caused by EventEmitter
> var EventEmitter = require('events').EventEmitter,
... util = require('util');
>
> var Server = function() {};
> util.inherits(Server, EventEmitter);
> Server.prototype.outputThis= function(output) {
... console.log(this);
... console.log(output);
... };
[Function]
>
> Server.prototype.emitOutput = function(input) {
... this.emit('output', input);
... };
[Function]
>
> Server.prototype.callEmitOutput = function() {
... this.emitOutput('innerEmitOutput');
... };
[Function]
>
> var s = new Server();
> s.on('output', s.outputThis);
{ _events: { output: [Function] } }
> s.emitOutput('outerEmitOutput');
{ _events: { output: [Function] } }
outerEmitOutput
> s.callEmitOutput();
{ _events: { output: [Function] } }
innerEmitOutput
> s.emit('output', 'Direct');
{ _events: { output: [Function] } }
Direct
true
>

The sample output first sets up a Server class. It includes functions to
 emit the output event. The outputThis method is attached to the output event as an event listener. When we
 emit the output event from various contexts, we stay
 within the scope of the EventEmitter
 object, so the value of this that
 s.outputThis has access to is the one
 belonging to the EventEmitter. Consequently, the
 this variable must be passed in as a
 parameter and assigned to a variable if we wish to make use of it in
 event callback functions.

HTTP

One of the core tasks of Node.js is to act as
 a web server. This is such a key part of the system that when
 Ryan Dahl started the project, he rewrote the HTTP stack for
 V8 to make it nonblocking. Although both the API and the internals for the
 original HTTP implementation have morphed a lot since it was created, the
 core activities are still the same. The Node implementation of HTTP is
 nonblocking and fast. Much of the code has moved from C into
 JavaScript.
HTTP uses a pattern that is common in Node.
 Pseudoclass factories provide an easy way to create a new server.[7] The http.createServer()
 method provides us with a new instance of the HTTP
 Server class, which is the class we use to define the
 actions taken when Node receives incoming HTTP requests. There are a few
 other main pieces of the HTTP module and other Node modules in general.
 These are the events the Server class
 fires and the data structures that are passed to the callbacks. Knowing
 about these three types of class allows you to use the HTTP module
 well.
HTTP Servers

Acting as an HTTP server is probably the most common current use case
 for Node. In Chapter 1, we set up an HTTP
 server and used it to serve a very simple request. However, HTTP is a
 lot more multifaceted than that. The server component of the HTTP module
 provides the raw tools to build complex and comprehensive web servers.
 In this chapter, we are going to explore the mechanics of dealing with
 requests and issuing responses. Even if you end up using a higher-level
 server such as Express, many of the concepts it uses are extensions of
 those defined here.
As we’ve already seen, the first step in
 using HTTP servers is to create a new server using the http.createServer() method. This returns a new instance of the Server class, which
 has only a few methods because most of the functionality is going to be
 provided through using events. The http server class has six events and three
 methods. The other thing to notice is how most of the methods are used
 to initialize the server, whereas events are used during its
 operation.
Let’s start by creating the smallest basic
 HTTP server code we can in Example 4-7.
Example 4-7. A simple, and very short, HTTP server
require('http').createServer(function(req,res){res.writeHead(200, {});
res.end('hello world');}).listen(8125);

This example is not
 good code. However, it illustrates some important points. We’ll fix the
 style shortly. The first thing we do is require the http module. Notice how we can chain methods
 to access the module without first assigning it to a variable. Many
 things in Node return a function,[8] which allows us to invoke those functions immediately.
 From the included http module, we
 call createServer. This doesn’t have
 to take any arguments, but we pass it a function to attach to the
 request event. Finally, we tell the
 server created with createServer to
 listen on port 8125.
We hope you never write code like this in
 real situations, but it does show the flexibility of the syntax and the
 potential brevity of the language. Let’s be a lot more explicit about
 our code. The rewrite in Example 4-8 should make
 it a lot easier to understand and maintain.
Example 4-8. A simple, but more descriptive, HTTP server
var http = require('http');
var server = http.createServer();
var handleReq = function(req,res){
 res.writeHead(200, {});
 res.end('hello world');
};
server.on('request', handleReq);
server.listen(8125);

This example implements the minimal web
 server again. However, we’ve started assigning things to named
 variables. This not only makes the code easier to read than when it’s
 chained, but also means you can reuse it. For example, it’s not uncommon
 to use http more than once in a file.
 You want to have both an HTTP server and an HTTP client, so reusing the
 module object is really helpful. Even though JavaScript doesn’t force
 you to think about memory, that doesn’t mean you should thoughtlessly
 litter unnecessary objects everywhere. So rather than use an anonymous
 callback, we’ve named the function that handles the request event. This is less about memory usage
 and more about readability. We’re not saying you shouldn’t use anonymous
 functions, but if you can lay out your code so it’s easy to find, that
 helps a lot when maintaining it.
Note
Remember to look at Part I of the book for more help with
 programming style. Chapters 1 and 2 deal with programming style in
 particular.

Because we didn’t pass the request event listener as part of the factory
 method for the http Server object, we
 need to add an event listener explicitly. Calling the on method from EventEmitter does this. Finally, as with the
 previous example, we call the listen method with the port we want to
 listen on. The http class provides
 other functions, but this example illustrates the most important
 ones.
The http
 server supports a number of events, which are associated with either the
 TCP or HTTP connection to the client. The connection and close events indicate the buildup or teardown of a TCP connection to a
 client. It’s important to remember that some clients will be using HTTP
 1.1, which supports keepalive. This means that their TCP connections may
 remain open across multiple HTTP requests.
The request, checkContinue, upgrade, and clientError events are associated with HTTP requests. We’ve already used the
 request event, which signals a new
 HTTP request.
The checkContinue event indicates a special event.
 It allows you to take more direct control of an HTTP request in which
 the client streams chunks of data to the server. As the client sends
 data to the server, it will check whether it can continue, at which
 point this event will fire. If an event handler is created for this
 event, the request event will
 not be emitted.
The upgrade event is emitted when a client asks
 for a protocol upgrade. The http
 server will deny HTTP upgrade requests unless there is an event handler
 for this event.
Finally, the clientError event passes on any error events
 sent by the client.
The HTTP server can throw a few events. The
 most common one is request, but you
 can also get events associated with the TCP connection for the request as well as
 other parts of the request life cycle.
When a new TCP stream is created for a
 request, a connection event is
 emitted. This event passes the TCP stream for the request as a
 parameter. The stream is also available as a request.connection variable for each request
 that happens through it. However, only one connection event will be emitted for each
 stream. This means that many requests
 can happen from a client with only one connection
 event.

HTTP Clients

Node is also great when you want to make
 outgoing HTTP connections. This is useful in many contexts, such as
 using web services, connecting to document store databases, or just
 scraping websites. You can use the same http module when doing HTTP requests, but
 should use the http.ClientRequest
 class. There are two factory methods for this class: a
 general-purpose one and a convenience method. Let’s take a look at the
 general-purpose case in Example 4-9.
Example 4-9. Creating an HTTP request
var http = require('http');

var opts = {
 host: 'www.google.com'
 port: 80,
 path: '/',
 method: 'GET'
};

var req = http.request(opts, function(res) {
 console.log(res);
 res.on('data', function(data) {
 console.log(data);
 });
});

req.end();

The first thing you can see is that an
 options object defines a lot of the
 functionality of the request. We must provide the host name (although an IP address is also
 acceptable), the port, and the
 path. The method is optional and defaults to a value of
 GET if none is specified. In essence,
 the example is specifying that the request should be an HTTP GET request to http://www.google.com/ on port 80.
The next thing
 we do is use the options object to
 construct an instance of http.ClientRequest using
 the factory method http.request().
 This method takes an options
 object and an optional callback argument. The passed callback listens to
 the response event, and when a response
 event is received, we can process the results of the request. In the
 previous example, we simply output the response object to the console.
 However, it’s important to notice that the body of the HTTP request is
 actually received via a stream in the response object. Thus, you can subscribe to
 the data event of the response object to get the data as it becomes
 available (see the section Readable streams for more
 information).
The final important point to notice is that
 we had to end() the request. Because this was a GET request, we didn’t write any data to the
 server, but for other HTTP methods,
 such as PUT or POST, you may need to. Until we call the
 end() method, request won’t initiate the HTTP request, because it doesn’t know whether
 it should still be waiting for us to send data.
Making HTTP GET requests

Since GET is such a common HTTP use case, there is a special factory method to support it in
 a more convenient way, as shown in Example 4-10.
Example 4-10. Simple HTTP GET requests
var http = require('http');

var opts = {
 host: 'www.google.com'
 port: 80,
 path: '/',
};

var req = http.get(opts, function(res) {
 console.log(res);
 res.on('data', function(data) {
 console.log(data);
 });
});

This example of http.get() does exactly the same thing as
 the previous example, but it’s slightly more concise. We’ve lost the
 method attribute of the config
 object, and left out the call request.end() because it’s implied.
If you run the previous two examples, you
 are going to get back raw Buffer
 objects. As described later in this chapter, a Buffer is a special
 class defined in Node to support the storage of arbitrary, binary
 data. Although it’s certainly possible to work with these, you often
 want a specific encoding, such as UTF-8 (an encoding for Unicode
 characters). You can specify this with the response.setEncoding() method (see Example 4-11).
Example 4-11. Comparing raw Buffer output to output with a specified
 encoding
> var http = require('http');
> var req = http.get({host:'www.google.com', port:80, path:'/'}, function(res) {
... console.log(res);
... res.on('data', function(c) { console.log(c); });
... });
> <Buffer 3c 21 64 6f 63 74 79 70

...

65 2e 73 74>
<Buffer 61 72 74 54 69

...

69 70 74 3e>

>
> var req = http.get({host:'www.google.com', port:80, path:'/'}, function(res) {
... res.setEncoding('utf8');
... res.on('data', function(c) { console.log(c); });
... });
> <!doctype html><html><head><meta http-equiv="content-type

...

load.t.prt=(f=(new Date).getTime());
})();
</script>

>

In the first case, we do not pass ClientResponse.setEncoding(), and we get
 chunks of data in Buffers. Although
 the output is abridged in the printout, you can see that it isn’t just
 a single Buffer, but that several
 Buffers have been returned with
 data. In the second example, the data is returned as UTF-8 because we
 specified res.setEncoding('utf8').
 The chunks of data returned from the server are still the same, but
 are given to the program as strings
 in the correct encoding rather than as raw Buffers. Although the printout may not make
 this clear, there is one string for
 each of the original Buffers.

Uploading data for HTTP POST and PUT

Not all HTTP is GET. You might also need to call POST,
 PUT, and other HTTP methods that alter data on the other
 end. This is functionally the same as making a GET request, except you are going to write
 some data upstream, as shown in Example 4-12.
Example 4-12. Writing data to an upstream service
var options = {
 host: 'www.example.com',
 port: 80,
 path: '/submit',
 method: 'POST'
};

var req = http.request(options, function(res) {
 res.setEncoding('utf8');
 res.on('data', function (chunk) {
 console.log('BODY: ' + chunk);
 });
});

req.write("my data");
req.write("more of my data");

req.end();

This example
 is very similar to Example 4-10, but uses
 the http.ClientRequest.write() method. This
 method allows you to send data upstream, and as explained earlier, it
 requires you to explicitly call http.ClientRequest.end() to indicate
 you’re finished sending data. Whenever ClientRequest.write() is called, the data is
 sent upstream (it isn’t buffered), but the server will not respond
 until ClientRequest.end() is
 called.
You can stream data to a server using
 ClientRequest.write() by coupling
 the writes to the data event of a
 Stream. This is ideal if you need
 to, for example, send a file from disk to a remote server over
 HTTP.

The ClientResponse object

The ClientResponse object stores a variety of information about the request. In general,
 it is pretty intuitive. Some of its obvious properties that are often
 useful include statusCode (which contains the HTTP
 status) and header (which is
 the response header object). Also hung off of ClientResponse are various streams and
 properties that you may or may not want to interact with directly.

URL

The URL
 module provides tools for easily parsing and dealing with URL
 strings. It’s extremely useful when you have to deal with URLs. The
 module offers three methods: parse,
 format, and resolve. Let’s start by looking at Example 4-13,
 which demonstrates parse
 using Node REPL.
Example 4-13. Parsing a URL using the URL module
> var URL = require('url');
> var myUrl = "http://www.nodejs.org/some/url/?with=query¶m=that&are=awesome
#alsoahash";
> myUrl
'http://www.nodejs.org/some/url/?with=query¶m=that&are=awesome#alsoahash'
> parsedUrl = URL.parse(myUrl);
{ href: 'http://www.nodejs.org/some/url/?with=query¶m=that&are=awesome#alsoahash'
, protocol: 'http:'
, slashes: true
, host: 'www.nodejs.org'
, hostname: 'www.nodejs.org'
, hash: '#alsoahash'
, search: '?with=query¶m=that&are=awesome'
, query: 'with=query¶m=that&are=awesome'
, pathname: '/some/url/'
}
> parsedUrl = URL.parse(myUrl, true);
{ href: 'http://www.nodejs.org/some/url/?with=query¶m=that&are=awesome#alsoahash'
, protocol: 'http:'
, slashes: true
, host: 'www.nodejs.org'
, hostname: 'www.nodejs.org'
, hash: '#alsoahash'
, search: '?with=query¶m=that&are=awesome'
, query:
 { with: 'query'
 , param: 'that'
 , are: 'awesome'
 }, pathname: '/some/url/'
}
>

The first thing we do, of course, is require
 the URL module. Note that the names
 of modules are always lowercase. We’ve created a url as a string containing all the parts that
 will be parsed out. Parsing is really easy: we just call the parse method from the URL module on the string. It returns a data
 structure representing the parts of the parsed URL. The components it
 produces are:
	href

	protocol

	host

	auth

	hostname

	port

	pathname

	search

	query

	hash

The href
 is the full URL that was originally
 passed to parse. The protocol is the
 protocol used in the URL (e.g.,
 http://, https://, ftp://, etc.). host is the fully qualified hostname of the
 URL. This could be as simple as the
 hostname for a local server, such as print
 server, or a fully qualified domain name such as www.google.com. It might also include a port
 number, such as 8080, or username and
 password credentials like un:pw@ftpserver.com. The various parts of the
 hostname are broken down further into auth, containing just the user credentials;
 port, containing just the port; and
 hostname, containing the hostname
 portion of the URL. An important
 thing to know about hostname is that
 it is still the full hostname, including the top-level domain (TLD;
 e.g., .com, .net, etc.) and the specific server. If the
 URL were http://sport.yahoo.com/nhl, hostname would not give you just the TLD
 (yahoo.com) or just the host
 (sport), but the entire hostname
 (sport.yahoo.com). The URL module doesn’t have the capability to
 split the hostname down into its components, such as domain or
 TLD.
The next set of components of the URL
 relates to everything after the host.
 The pathname is the entire filepath
 after the host. In http://sports.yahoo.com/nhl, it is /nhl. The next component is the search component, which stores the HTTP GET parameters in the URL. For example,
 if the URL were http://mydomain.com/?foo=bar&baz=qux, the
 search component would be ?foo=bar&baz=qux. Note the inclusion of
 the ?. The query parameter is similar to the search component. It contains one of two
 things, depending on how parse was
 called.
parse
 takes two arguments: the url string
 and an optional Boolean that determines whether the queryString should be parsed using the
 querystring module, discussed in the
 next section. If the second argument is false, query will just contain a string similar to
 that of search but without the
 leading ?. If you don’t pass anything
 for the second argument, it defaults to false.
The final component is the fragment portion of the URL. This is the part
 of the URL after the #. Commonly,
 this is used to refer to named anchors in HTML pages. For instance, http://abook.com/#chapter2 might refer to the
 second chapter on a web page hosting a whole book. The hash component in this case would contain
 #chapter2. Again, note the included
 # in the string. Some sites, such as
 http://twitter.com, use more complex
 fragments for AJAX applications, but the same rules apply. So the URL
 for the Twitter mentions account, http://twitter.com/#!/mentions, would have a
 pathname of / but a hash of #!/mentions.

querystring

The querystring module is a very simple helper module to deal with query strings.
 As discussed in the previous section, query strings are the parameters
 encoded at the end of a URL. However, when reported back as just a
 JavaScript string, the parameters are fiddly to deal with. The querystring module provides an easy way to
 create objects from the query strings. The main methods it offers are parse and
 decode, but some internal helper
 functions, —such as escape,
 unescape, unescapeBuffer, encode, and stringify, are also exposed. If you have a
 query string, you can use parse to
 turn it into an object, as shown in Example 4-14.
Example 4-14. Parsing a query string with the querystring module in Node
 REPL
> var qs = require('querystring');
> qs.parse('a=1&b=2&c=d');
{ a: '1', b: '2', c: 'd' }
>

Here, the class’s parse function turns the query string into an
 object in which the properties are the keys and the values correspond to
 the ones in the query string. You should notice a few things, though.
 First, the numbers are returned as strings, not numbers. Because
 JavaScript is loosely typed and will coerce a string into a number in a
 numerical operation, this works pretty well. However, it’s worth bearing
 in mind for those times when that coercion doesn’t work.
Additionally, it’s important to note that
 you must pass the query string without the leading ? that demarks it in the URL. A typical URL
 might look like http://www.bobsdiscount.com/?item=304&location=san+francisco.
 The query string starts with a ? to
 indicate where the filepath ends, but if you include the ? in the string you pass to parse, the first key will start with a
 ?, which is almost certainly not what
 you want.
This library is really useful in a bunch of
 contexts because query strings are used in situations other than URLs.
 When you get content from an HTTP
 POST that is x-form-encoded, it
 will also be in query string form. All the browser manufacturers have
 standardized around this approach. By default, forms in HTML will send
 data to the server in this way also.
The querystring module is also used as a helper
 module to the URL module.
 Specifically, when decoding URLs, you can ask URL to turn the query string into an object
 for you rather than just a string. That’s described in more detail in
 the previous section, but the parsing that is done uses the parse method from querystring.
Another important part of querystring is encode (Example 4-15).
 This function takes a query string’s key-value pair object and
 stringifies it. This is really useful when you’re working with HTTP requests, especially POST data. It makes it easy to work with a
 JavaScript object until you need to send the data over the wire and then
 simply encode it at that point. Any JavaScript object can be used, but
 ideally you should use an object that has only the data that you want in
 it because the encode method will add
 all properties of the object. However, if the property value isn’t a
 string, Boolean, or number, it won’t be serialized and the key will just
 be included with an empty value.
Example 4-15. Encoding an object into a query string
> var myObj = {'a':1, 'b':5, 'c':'cats', 'func': function(){console.log('dogs')}}
> qs.encode(myObj);
'a=1&b=5&c=cats&func='
>

[7] When we talk about a pseudoclass, we are
 referring to the definition found in Douglas Crockford’s
 JavaScript: The
 Good Parts (O’Reilly). From now on, we will use
 “class” to refer to a “pseudoclass.”

[8] This works in JavaScript because it supports first-class
 functions.

I/O

I/O is one of the core pieces that makes Node different from other frameworks. This
 section explores the APIs that provide nonblocking I/O in Node.
Streams

Many components in Node provide continuous
 output or can process continuous input. To make these components act in
 a consistent way, the stream API
 provides an abstract interface for them. This API provides common
 methods and properties that are available in specific implementations of
 streams. Streams can be readable, writable, or both. All streams
 are EventEmitter
 instances, allowing them to emit events.
Readable streams

The readable stream API is a set of methods and events that provides
 access to chunks of data as they are sent by an underlying data
 source. Fundamentally, readable streams are about emitting data events. These events represent the
 stream of data as a stream of events. To make this manageable, streams
 have a number of features that allow you to configure how much data
 you get and how fast.
The basic stream in Example 4-16 simply reads data from a file in chunks.
 Every time a new chunk is made available, it is exposed to a callback
 in the variable called data. In
 this example, we simply log the data to the console. However, in real
 use cases, you might either stream the data somewhere else or spool it
 into bigger pieces before you work on it. In essence, the data event simply
 provides access to the data, and you have to figure out what to do
 with each chunk.
Example 4-16. Creating a readable file stream
var fs = require('fs');
var filehandle = fs.readFile('data.txt', function(err, data) {
 console.log(data)
});

Let’s look in more detail at one of the
 common patterns used in dealing with streams. The spooling
 pattern is used when we need an entire resource available before we
 deal with it. We know it’s important not to block the event loop for
 Node to perform well, so even though we don’t want to perform the next
 action on this data until we’ve received all of it, we don’t want to
 block the event loop. In this scenario (Example 4-17), we use a stream to
 get the data, but use the
 data only when enough is available. Typically this means when the
 stream ends, but it could be another event or condition.
Example 4-17. Using the spooling pattern to read a complete stream
 //abstract stream
var spool = "";
stream.on('data', function(data) {
 spool += data;
});
stream.on('end', function() {
 console.log(spool);
});

Filesystem

The filesystem module is obviously very helpful because you need it in order to
 access files on disk. It closely mimics the POSIX style of file I/O. It
 is a somewhat unique module in that all of the methods have both
 asynchronous and synchronous versions. However, we strongly recommend
 that you use the asynchronous methods, unless you are building
 command-line scripts with Node. Even then, it is often much better to
 use the async versions, even though doing so adds a little extra code,
 so that you can access multiple files in parallel and reduce the running
 time of your script.
The main issue that people face while
 dealing with asynchronous calls is ordering, and this is especially
 true with file I/O. It’s common to want to do a number of moves,
 renames, copies, reads, or writes at one time. However, if one of the
 operations depends on another, this can create issues because return
 order is not guaranteed. This means that the first operation in the code
 could happen after the second operation in the code. Patterns exist to make ordering easy. We talked about them in
 detail in Chapter 3, but we’ll provide a recap
 here.
Consider the case of reading and then
 deleting a file (Example 4-18). If
 the delete (unlink) happens before the read, it will be impossible to
 read the contents of the file.
Example 4-18. Reading and deleting a file asynchronously—but all
 wrong
var fs = require('fs');

fs.readFile('warandpeace.txt', function(e, data) {
 console.log('War and Peace: ' + data);
});

fs.unlink('warandpeace.txt');

Notice that we are using the asynchronous
 methods, and although we have created callbacks, we haven’t written any
 code that defines in which order they get called. This often becomes a
 problem for programmers who are not used to programming in event loops.
 This code looks OK on the surface and sometimes it will work at runtime,
 but sometimes it won’t. Instead, we need to use a pattern in which we
 specify the ordering we want for the calls. There are a few approaches.
 One common approach is to use nested callbacks. In Example 4-19,
 the asynchronous call to delete the file is nested within the callback
 to the asynchronous function that reads the file.
Example 4-19. Reading and deleting a file asynchronously using nested
 callbacks
var fs = require('fs');

fs.readFile('warandpeace.txt', function(e, data) {
 console.log('War and Peace: ' + data);
 fs.unlink('warandpeace.txt');
});

This approach is often very effective for
 discrete sets of operations. In our example with just two operations,
 it’s easy to read and understand, but this pattern can potentially get
 out of control.

Buffers

Although Node is JavaScript, it is
 JavaScript out of its usual environment. For instance, the browser
 requires JavaScript to perform many functions, but manipulating binary
 data is rarely one of them. Although JavaScript does support bitwise
 operations, it doesn’t have a native representation of binary data. This
 is especially troublesome when you also consider the limitations of the
 number type system in JavaScript, which might otherwise lend itself to
 binary representation. Node introduces the Buffer class to make
 up for this shortfall when you’re working with binary data.
Buffers are an extension to the V8 engine,
 which means that they have their own set of pitfalls. Buffers are
 actually a direct allocation of memory, which may mean a little or a
 lot, depending on your experience with lower-level computer languages.
 Unlike the data types in JavaScript, which abstract some of the ugliness
 of storing data, Buffer provides
 direct memory access, warts and all. Once a Buffer is created, it is a fixed size.
 If you want to add more data, you must clone the Buffer into a larger
 Buffer. Although some of these features may seem
 frustrating, they allow Buffer to
 perform at the speed necessary for many data operations on the server.
 It was a conscious design choice to trade off some programmer
 convenience for performance.
A quick primer on binary

We thought it was important to include this quick primer on working with
 binary data for those who haven’t done much of it, or as a refresher
 for those of us who haven’t in a long time (which was true for us when
 we started working with Node). Computers, as almost everyone knows,
 work by manipulating states of “on” and “off.” We call this a
 binary state because there are only two
 possibilities. Everything in computers is built on top of this, which
 means that working directly with binary can often be the fastest
 method on the computer. To do more complex things, we collect “bits”
 (each representing a single binary state) into groups of eights, often
 called an octet or, more commonly, a
 byte.[9] This allows us to represent bigger numbers than just 0
 or 1.
By creating sets of 8 bits, we are able to
 represent any number from 0 to 255. The rightmost bit represents 1,
 but then we double the value of the number represented by each bit as
 we move left. To find out what number it represents, we simply sum the
 numbers in column headers (Example 4-20).
Example 4-20. Representing 0 through 255 in a byte
128 64 32 16 8 4 2 1
--- -- -- -- - - - -
0 0 0 0 0 0 0 0 = 0

128 64 32 16 8 4 2 1
--- -- -- -- - - - -
1 1 1 1 1 1 1 1 = 255

128 64 32 16 8 4 2 1
--- -- -- -- - - - -
1 0 0 1 0 1 0 1 = 149

You’ll also see the use of hexadecimal notation, or “hex,” a lot. Because bytes
 need to be easily described and a string of eight 0s and 1s isn’t very
 convenient, hex notation has become popular. Binary notation is base
 2, in that there are only two possible states per digit (0 or 1). Hex
 uses base 16, and each digit in hex can have a value from 0 to F,
 where the letters A through F (or their lowercase equivalents) stand
 for 10 through 15, respectively. What’s very convenient about hex is
 that with two digits we can represent a whole byte. The right digit
 represents 1s, and the left digit represents 16s. If we wanted to
 represent decimal 149, it is (16 x 9) + (5 x
 1), or the hex value 95.
Example 4-21. Representing 0 through 255 with hex notation
Hex to Decimal:

0 1 2 3 4 5 6 7 8 9 A B C D E F
- - - - - - - - - - -- -- -- -- -- --
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Counting in hex:

16 1
-- -
0 0 = 0

16 1
-- -
F F = 255

16 1
-- -
9 5 = 149

In JavaScript, you can create a number from a hex value using the
 notation 0x in front of the hex
 value. For instance, 0x95 is
 decimal 149. In Node, you’ll commonly see Buffers represented by hex values in console.log()
 output or Node REPL. Example 4-22 shows how you
 could store 3-octet values (such as an RGB color value) as a
 Buffer.
Example 4-22. Creating a 3-byte Buffer from an array of octets
> new Buffer([255,0,149]);
<Buffer ff 00 95>
>

So how does binary relate to other kinds
 of data? Well, we’ve seen how binary can represent numbers. In network
 protocols, it’s common to specify a certain number of bytes to convey
 some information, using particular bits in fixed places to indicate
 specific things. For example, in a DNS request, the first two bytes are used as a number
 for a transaction ID, whereas the next byte is treated as individual
 bits, each used to indicate whether a specific feature of DNS is being
 used in this request.
The other extremely common use of binary
 is to represent strings. The two most common “encoding” formats for
 strings are ASCII and UTF (typically UTF-8). These encodings define how the
 bits should be converted into characters. We’re not going to go into
 too much of the gory detail, but essentially, encodings work by having
 a lookup table that maps the character to a specific number
 represented in bytes. To convert the encoding, the computer has to
 simply convert from the number to the character by looking it up in a
 conversion table.
ASCII characters (some of which are nonvisible “control characters,”
 such as Return) are always exactly 7 bits each, so they can be
 represented by values from 0 to 127. The eighth bit in a byte is often
 used to extend the character set to represent various choices of
 international characters (such as ȳ or ȱ).
UTF is a little more complex. Its
 character set has a lot more characters, including many international
 ones. Each character in UTF-8 is represented by at least 1 byte, but
 sometimes up to 4. Essentially, the first 128 values are good old
 ASCII, whereas the others are pushed further down in the map and
 represented by higher numbers. When a less common character is
 referenced, the first byte uses a number that tells the computer to
 check out the next byte to find the real address of the character
 starting on the second sheet of its map. If the character isn’t on the
 second sheet of the map, the second byte tells the computer to look at
 the third, and so on. This means that in UTF-8, the length of a string
 measured in characters isn’t necessarily the same as its length in
 bytes, as is always true with ASCII.

Binary and strings

It is important to remember is that once you copy things to a Buffer, they will be stored as their binary
 representations. You can always convert the binary representation in
 the buffer back into other things, such as strings, later. So a
 Buffer is defined only by its size,
 not by the encoding or any other indication of its meaning.
Given that Buffer is opaque, how big does it need to be
 in order to store a particular string of input? As we’ve said, a UTF
 character can occupy up to 4 bytes, so to be safe, you should define a
 Buffer to be four times the size of
 the largest input you can accept, measured in UTF characters. There
 may be ways you can reduce this burden; for instance, if you limit
 your input to European languages, you’ll know there will be at most 2
 bytes per character.

Using Buffers

Buffers
 can be created using three possible parameters: the length of
 the Buffer in bytes, an array of bytes to copy into
 the Buffer, or a string to copy into the
 Buffer. The first and last methods are by far the
 most common. There aren’t too many instances where you are likely to
 have a JavaScript array of bytes.[10]
Creating a Buffer of a particular size is a very common scenario and easy to deal with.
 Simply put, you specify the number of bytes as your argument when
 creating the Buffer (Example 4-23).
Example 4-23. Creating a Buffer using byte length
> new Buffer(10);
<Buffer e1 43 17 05 01 00 00 00 41 90>
>

As you can see from the previous example,
 when we create a Buffer we get a
 matching number of bytes. However, because the Buffer is just getting an allocation of
 memory directly, it is uninitialized and the
 contents are left over from whatever happened to occupy them before.
 This is unlike all the native JavaScript types, which initialize all
 memory so that when you create a new primitive or object, it doesn’t
 assign whatever was already in the memory space to the primitive or
 object you just created. Here is a good way to think about it. If you
 go to a busy cafe and you want a table, the fastest way to get one is
 to sit down as soon as some other people vacate one. However, although
 it’s fast, you are left with all their dirty dishes and the detritus
 from their meals. You might prefer to wait for one of the staff to
 clear the table and wipe it down before you sit. This is a lot like
 Buffers versus native types.
 Buffers do very little to make
 things easy for you, but they do give you direct and fast access to
 memory. If you want to have a nicely zeroed set of bits, you’ll need
 to do it yourself (or find a helper library).
Creating a Buffer using byte length is most common when
 you are working with things such as network transport protocols that
 have very specifically defined structures. When you know exactly how
 big the data is going to be (or you know exactly how big it could be)
 and you want to allocate and reuse a Buffer for performance reasons, this is the
 way to go.
Probably the most common way to use a
 Buffer is to create it with a
 string of either ASCII or UTF-8 characters. Although a Buffer can hold any data, it is particularly
 useful for I/O with character data because the constraints we’ve
 already seen on Buffer can make
 their operations much faster than operations on regular strings. So
 when you are building really highly scalable apps, it’s often worth
 using Buffers to hold strings. This
 is especially true if you are just shunting the strings around the
 application without modifying them. Therefore, even though strings
 exist as primitives in JavaScript, it’s still very common to keep
 strings in Buffers in Node.
When we create a Buffer with a string, as shown in Example 4-24, it defaults to UTF-8. That is, if you
 don’t specify an encoding, it will be considered a UTF-8 string. That
 is not to say that Buffer pads the
 string to fit any Unicode character (blindly allocating 4 bytes per
 character), but rather that it will not truncate characters. In this
 example, we can see that when taking a string with just lowercase
 alpha characters, the Buffer uses
 the same byte structure, whatever the encoding, because they all fall
 in the same range. However, when we have an “é,” it’s encoded as 2
 bytes in the default UTF-8 case or when we specify UTF-8 explicitly.
 If we specify ASCII, the character is truncated to a single byte.
Example 4-24. Creating Buffers using strings
> new Buffer('foobarbaz');
<Buffer 66 6f 6f 62 61 72 62 61 7a>
> new Buffer('foobarbaz', 'ascii');
<Buffer 66 6f 6f 62 61 72 62 61 7a>
> new Buffer('foobarbaz', 'utf8');
<Buffer 66 6f 6f 62 61 72 62 61 7a>
> new Buffer('é');
<Buffer c3 a9>
> new Buffer('é', 'utf8');
<Buffer c3 a9>
> new Buffer('é', 'ascii');
<Buffer e9>
>

Working with strings

Node offers a number of operations to simplify working with strings and Buffers. First, you don’t need to compute
 the length of a string before creating a Buffer to hold it; just assign the string as
 the argument when creating the Buffer. Alternatively, you can use the Buffer.byteLength() method. This method
 takes a string and an encoding and returns the string’s length in
 bytes, rather than in characters as String.length does.
You can also write a string to an existing
 Buffer. The Buffer.write() method writes a string to a specific index of a Buffer. If there is room in the Buffer starting from the specified offset,
 the entire string will be written. Otherwise, characters are truncated
 from the end of the string to fit the Buffer. In either case, Buffer.write() will return the number of
 bytes that were written. In the case of UTF-8 strings, if a whole
 character can’t be written to the Buffer, none of the bytes for that character
 will be written. In Example 4-25, because the
 Buffer is too small for even one
 non-ASCII character, it ends up empty.
Example 4-25. Buffer.write() and partial characters
> var b = new Buffer(1);
> b
<Buffer 00>
> b.write('a');
1
> b
<Buffer 61>
> b.write('é');
0
> b
<Buffer 61>
>

In a single-byte
 Buffer, it’s possible to write an “a” character,
 and doing so returns 1, indicating
 that 1 byte was written. However, trying to write a “é” character
 fails because it requires 2 bytes, and the method returns
 0 because nothing was written.
There is a little more complexity to
 Buffer.write(), though. If
 possible, when writing UTF-8, Buffer.write() will terminate the character
 string with a NUL character.[11] This is much more significant when writing into the
 middle of a larger Buffer.
In Example 4-26,
 after creating a Buffer that is 5
 bytes long (which could have been done directly using the string), we
 write the character f to the entire
 Buffer. f is the character code 0x66 (102 in
 decimal). This makes it easy to see what happens when we write the
 characters “ab” to the Buffer
 starting with an offset of 1. The zeroth character is left as f. At positions 1 and 2, the characters
 themselves are written, 61 followed by 62. Then Buffer.write() inserts a terminator, in this
 case a null character of 0x00.
Example 4-26. Writing a string into a Buffer including a terminator
> var b = new Buffer(5);
> b.write('fffff');
5
> b
<Buffer 66 66 66 66 66>
> b.write('ab', 1);
2
> b
<Buffer 66 61 62 00 66>
>

console.log

Borrowed from the Firebug debugger in
 Firefox, the simple console.log command allows you
 to easily output to stdout without using any modules (Example 4-27). It also offers some pretty-printing
 functionality to help enumerate objects.
Example 4-27. Outputting with console.log
> foo = {};
{}
> foo.bar = function() {1+1};
[Function]
> console.log(foo);
{ bar: [Function] }
>

[9] There is no “standard” size of byte, but the de facto size
 that virtually everyone uses nowadays is 8 bits. Therefore, octets
 and bytes are equivalent, and we’ll be using the more common term
 byte to mean specifically an octet.

[10] It’s very memory-inefficient, for one thing. If you store
 each byte as a number, for instance, you are using a 64-bit memory
 space to represent 8 bits.

[11] This generally just means a binary 0.

Chapter 5. Helper APIs

This chapter covers a number of APIs that you’ll almost certainly use regularly but aren’t
 used as much as those discussed in Chapter 4.
DNS

Programmers, like end users, normally want to
 refer to things by their domain names instead of their IP addresses. The
 DNS module provides this lookup facility to you, but it is also used under
 the hood whenever you are able to use a domain name—for example, in
 HTTP clients.
The dns
 module consists of two main methods and a number of convenience
 methods. The two main methods are resolve(), which turns a domain name into a DNS
 record, and reverse(), which turns an IP address into a domain. All of the other methods
 in the dns module are more specialized
 forms of these methods.
dns.resolve() takes three arguments:
	A string containing the domain to be resolved
	This can include subdomains, such as
 www.yahoo.com. The www is technically a hostname, but the
 system will resolve it for you.

	A string containing the types of records being requested
	This requires a little more
 understanding of DNS. Most people are familiar with the “address” or
 A record type. This type of record maps an IPv4 domain to a domain
 name (as defined in the previous item). The “canonical name,” or
 CNAME, records allow you to create an alias of an A
 record or another CNAME. For example, www.example.com might be a CNAME of the A
 record at example.com. MX records
 point to the mail server for a domain for the use of
 SMTP. When you email person@domain.com, the MX record for
 domain.com tells your email
 server where to send their mail. Text records, or TXT, are notes attached to a domain. They have been
 used for all kinds of functions. The final type supported by this
 library is service, or SRV, records, which provide information on the services
 available at a particular domain.

	A callback
	This returns the response from the DNS server. The prototype will be
 shown in Example 5-2.

As shown in Example 5-1, calling dns.resolve() is easy, although the callback may
 be slightly different from other callbacks you’ve used so far.
Example 5-1. Calling dns.resolve()
dns.resolve('yahoo.com', 'A', function(e,r) {
 if (e) {
 console.log(e);
 }
 console.log(r);
});

We called dns.resolve() with the domain and a record type
 of A, along with a trivial callback
 that prints results. The first argument of the callback is an error
 object. If an error occurs, the object will be non-null, and we can
 consult it to see what went wrong. The second argument is a list of the
 records returned by the query.
There are convenience methods for all the
 types of records listed earlier. For example, rather than calling resolve('example.com', 'MX',
 callback), you can
 call resolveMx('example.com',
 callback) instead (see Example 5-2). The
 API also provides resolve4() and
 resolve6() methods, which resolve
 IPv4 and IPv6 address records, respectively.
Example 5-2. Using resolve() versus resolveMx()
var dns = require('dns');

dns.resolve('example.com', 'MX', function(e, r) {
 if (e) {
 console.log(e);
 }
 console.log(r);
});

dns.resolveMx('example.com', function(e, r) {
 if (e) {
 console.log(e);
 }
 console.log(r);
});

Because resolve() usually returns a list containing many
 IP addresses, there is also a convenience method called dns.lookup() that
 returns just one IP address from an A record query (see Example 5-3). The method takes a domain, an IP family
 (4 or 6), and a callback. However,
 unlike .dns.resolve(), it always
 returns a single address. If you don’t pass an address, it defaults to the
 network interface’s current setting.
Example 5-3. Looking up a single A record with lookup()
var dns = require('dns');

dns.lookup('google.com', 4, function(e, a) {
 console.log(a);
});

Crypto

Cryptography is used in lots of places for a variety of tasks. Node uses the
 OpenSSL library as the basis of its cryptography. This is because OpenSSL is
 already a well-tested, hardened implementation of cryptographic
 algorithms. But you have to compile Node with OpenSSL support in order to
 use the methods in this section.
The cryptograph module enables a number of different tasks.
 First, it powers the SSL/TLS parts of Node. Second, it contains hashing algorithms such as MD5 or SHA-1 that you might want
 to use in your application. Third, it allows you to use HMAC.[12] There are some encryption methods to cipher the data with to
 ensure it is encrypted. Finally, HMAC contains other public key
 cryptographic functions to sign data and verify signatures.
Each of the functions that cryptography does
 is contained within a class (or classes), which we’ll look at in the
 following sections.
Hashing

Hashes are used for a few important functions, such as obfuscating data in a way
 that allows it to be validated or providing a small checksum for a much
 larger piece of data. To use hashes in Node, you should create a
 Hash object using the factory method
 crypto.createHash(). This returns a new Hash
 instance using a specified hashing algorithm. Most popular algorithms
 are available. The exact ones depend on your version of OpenSSL, but
 common ones are:
	md5

	sha1

	sha256

	sha512

	ripemd160

These algorithms all have different
 advantages and disadvantages. MD5, for example, is used in many
 applications but has a number of known flaws, including collision
 issues.[13] Depending on your application, you can pick either a
 widely deployed algorithm such as MD5 or (preferably) the newer
 SHA1, or a less universal but more hardened algorithm such
 as RIPEMD, SHA256, or SHA512.
Once you have data in the hash, you can use
 it to create a digest by calling hash.update() with
 the hash data (Example 5-4). You can keep
 updating a Hash with more data until
 you want to output it; the data you add to the hash is simply
 concatenated to the data passed in previous calls. To output the hash,
 call the hash.digest()
 method. This will output the digest of the data that was input into the
 hash with hash.update(). No
 more data can be added after you call hash.digest().
Example 5-4. Creating a digest using Hash
> var crypto = require('crypto');
> var md5 = crypto.createHash('md5');
> md5.update('foo');
{}
> md5.digest();
'¬½\u0018ÛLÂø\\íïeOÌÄ¤Ø'
>

Notice that the output of the digest is a
 bit weird. That’s because it’s the binary representation. More commonly,
 a digest is printed in hex. We can do that by adding 'hex' as a parameter to hash.digest, as in
 Example 5-5.
Example 5-5. The lifespan of hashes and getting hex output
> var md5 = crypto.createHash('md5');
> md5.update('foo');
{}
> md5.digest();
'¬½\u0018ÛLÂø\\íïeOÌÄ¤Ø'
> md5.digest('hex');
Error: Not initialized
 at [object Context]:1:5
 at Interface.<anonymous> (repl.js:147:22)
 at Interface.emit (events.js:42:17)
 at Interface._onLine (readline.js:132:10)
 at Interface._line (readline.js:387:8)
 at Interface._ttyWrite (readline.js:564:14)
 at ReadStream.<anonymous> (readline.js:52:12)
 at ReadStream.emit (events.js:59:20)
 at ReadStream._emitKey (tty_posix.js:280:10)
 at ReadStream.onData (tty_posix.js:43:12)
> var md5 = crypto.createHash('md5');
> md5.update('foo');
{}
> md5.digest('hex');
'acbd18db4cc2f85cedef654fccc4a4d8'
>

When we call hash.digest()
 again, we get an error. This is because once hash.digest() is
 called, the Hash object is finalized
 and cannot be reused. We need to create a new instance of Hash and use that instead. This time we get
 the hex output that is often more useful. The options for hash.digest()
 output are binary (default), hex, and base64.
Because data in hash.update() calls
 is concatenated, the code samples in Example 5-6
 are identical.
Example 5-6. Looking at how hash.update() concatenates input
> var sha1 = crypto.createHash('sha1');
> sha1.update('foo');
{}
> sha1.update('bar');
{}
> sha1.digest('hex');
'8843d7f92416211de9ebb963ff4ce28125932878'
> var sha1 = crypto.createHash('sha1');
> sha1.update('foobar');
{}
> sha1.digest('hex');
'8843d7f92416211de9ebb963ff4ce28125932878'
>

It is also important to know that although
 hash.update() looks
 a lot like a stream, it isn’t really. You can easily hook a stream to
 hash.update(), but
 you can’t use stream.pipe().

HMAC

HMAC combines the hashing algorithms with a cryptographic key in order
 to stop a number of attacks on the integrity of the signature. This
 means that HMAC uses both a hashing algorithm (such as the ones
 discussed in the previous section) and an encryption key. The HMAC API
 in Node is virtually identical to the Hash API. The only difference is that the
 creation of an hmac object requires a
 key as well as a hash algorithm.
crypto.createHmac() returns an instance of Hmac,
 which offers update() and
 digest() methods that work
 identically to the Hash methods we
 saw in the previous section.
The key required to create an Hmac object is a PEM-encoded key, passed as a string. As shown in Example 5-7, it is easy to create a key on the command
 line using OpenSSL.
Example 5-7. Creating a PEM-encoded key
Enki:~ $ openssl genrsa -out key.pem 1024
Generating RSA private key, 1024 bit long modulus
...++++++
............................++++++
e is 65537 (0x10001)
Enki:~ $

This example creates an RSA in PEM format
 and puts it into a file, in this case called key.pem. We also could have called the same
 functionality directly from Node using the process module (discussed later in this chapter) if we omitted the
 -out key.pem option; with this
 approach, we would get the results on an stdout stream. Instead we are
 going to import the key from the file and use it to create an Hmac object and a
 digest (Example 5-8).
Example 5-8. Creating an Hmac digest
> var crypto = require('crypto');
> var fs = require('fs');
>
> var pem = fs.readFileSync('key.pem');
> var key = pem.toString('ascii');
>
> var hmac = crypto.createHmac('sha1', key);
>
> hmac.update('foo');
{}
> hmac.digest('hex');
'7b058f2f33ca28da3ff3c6506c978825718c7d42'
>

This example uses fs.readFileSync()
 because a lot of the time, loading keys will be a server setup task. As
 such, it’s fine to load the keys synchronously (which might slow down
 server startup time) because you aren’t serving clients yet, so blocking
 the event loop is OK. In general, other than the use of the encryption
 key, using an Hmac example is exactly
 like using a Hash.

Public Key Cryptography

The public key cryptography functions are split into four classes: Cipher, Decipher, Sign, and Verify. Like all the other classes in crypto, they have factory methods. Cipher encrypts data, Decipher
 decrypts data, Sign creates
 a cryptographic signature for data, and Verify validates cryptographic signatures.
For the HMAC operations, we used a private
 key. For the operations in this section, we are going to use both the
 public and private keys. Public key cryptography has matched sets of
 keys. One, the private key, is kept by the owner and is used to decrypt
 and sign data. The other, the public key, is made available to other
 parties. The public key can be used to encrypt data that only the
 private key owner can read, or to verify the signature of data signed
 with the private key.
Let’s extract the public key of the private
 key we generated to do the HMAC digests (Example 5-9). Node expects public keys in certificate
 format, which requires you to input additional “information.” But you
 can leave all the information blank if you like.
Example 5-9. Extracting a public key certificate from a private key
Enki:~ $ openssl req -key key.pem -new -x509 -out cert.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgets Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:
Email Address []:
Enki:~ $ ls cert.pem
cert.pem
Enki:~ $

We simply ask OpenSSL to read in the private key, and then output the public key
 into a new file called cert.pem in
 X509 certificate format. All of the operations in crypto expect keys in PEM format.
Encrypting with Cipher

The Cipher class provides a wrapper for encrypting data using a private
 key. The factory method to create a cipher takes an algorithm and the
 private key. The algorithms supported come from those compiled into
 your OpenSSL implementation:
	blowfish

	aes192

Many modern cryptographic algorithms use
 block ciphers. This means that the output is always in
 standard-size “blocks.” The block sizes vary between algorithms:
 blowfish, for example, uses
 40-byte blocks. This is significant when you are using the Cipher API because the API will always
 output fixed-size blocks. This helps prevent information from being
 leaked to an attacker about the data being encrypted or the specific
 key being used to do the encryption.
Like Hash and Hmac, the Cipher API also uses the update() method to input data. However, update()
 works differently when used in a cipher. First, cipher.update() returns a block of encrypted
 data if it can. This is where block size becomes important. If the
 amount of data in the cipher plus the amount of data passed to
 cipher.update() is enough to create
 one or more blocks, the encrypted data will be returned. If there
 isn’t enough to form a block, the input will be stored in the cipher.
 Cipher also has a new method,
 cipher.final(), which replaces the digest()
 method. When cipher.final() is
 called, any remaining data in the cipher will be returned encrypted,
 but with enough padding to make sure the block size is reached (see
 Example 5-10).
Example 5-10. Ciphers and block size
> var crypto = require('crypto');
> var fs = require('fs');
>
> var pem = fs.readFileSync('key.pem');
> var key = pem.toString('ascii');
>
> var cipher = crypto.createCipher('blowfish', key);
>
> cipher.update(new Buffer(4), 'binary', 'hex');
''
> cipher.update(new Buffer(4), 'binary', 'hex');
'ff57e5f742689c85'
> cipher.update(new Buffer(4), 'binary', 'hex');
''
> cipher.final('hex')
'96576b47fe130547'
>

To make the example easier to read, we
 specified the input and output formats. The input and output formats
 are both optional and will be assumed to be binary unless specified.
 For this example, we specified a binary input format because we’re
 passing a new Buffer (containing whatever random
 junk was in memory), along with hex output to produce something easier
 to read. You can see that the first time we call cipher.update(), with 4 bytes of data, we
 get back an empty string. The second time, because we have enough data
 to generate a block, we get the encrypted data back as hex. When we
 call cipher.final(), there isn’t
 enough data to create a full block, so the output is padded and a full
 (and final) block is returned. If we sent more data than would fit in
 a single block, cipher.final()
 would output as many blocks as it could before padding. Because
 cipher.final() is just for
 outputting existing data, it doesn’t accept an input format.

Decrypting with Decipher

The Decipher class is almost the exact inverse of the Cipher class. You can pass encrypted data to
 a Decipher object using decipher.update(), and it will stream the data into blocks until it can
 output the unencrypted data. You might think that since cipher.update() and cipher.final() always give fixed-length
 blocks, you would have to give perfect blocks to Decipher, but luckily it will buffer the
 data. Thus, you can pass it data you got off some other I/O transport,
 such as the disk or network, even though this might give you block
 sizes different from those used by the encryption algorithm.
Let’s take a look at Example 5-11, which demonstrates encrypting data and
 then decrypting it.
Example 5-11. Encrypting and decrypting text
> var crypto = require('crypto');
> var fs = require('fs');
>
> var pem = fs.readFileSync('key.pem');
> var key = pem.toString('ascii');
>
> var plaintext = new Buffer('abcdefghijklmnopqrstuv');
> var encrypted = "";
> var cipher = crypto.createCipher('blowfish', key);
> ..
> encrypted += cipher.update(plaintext, 'binary', 'hex');
> encrypted += cipher.final('hex');
>
> var decrypted = "";
> var decipher = crypto.createDecipher('blowfish', key);
> decrypted += decipher.update(encrypted, 'hex', 'binary');
> decrypted += decipher.final('binary');
>
> var output = new Buffer(decrypted);
>
> output
<Buffer 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76>
> plaintext
<Buffer 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76>
>

It is important to make sure both the
 input and output formats match up for both the plain text and the
 encrypted data. It’s also worth noting that in order to get a
 Buffer, you’ll have to make one from the strings
 returned by Cipher and Decipher.

Creating signatures using Sign

Signatures verify that some data has been authenticated by the signer
 using the private key. However, unlike with HMAC, the public key can
 be used to authenticate the signature. The API for Sign is nearly identical to that for HMAC
 (see Example 5-12). crypto.createSign() is used to make a sign
 object. createSign() takes only the signing
 algorithm. sign.update() allows
 you to add data to the sign object.
 When you want to create the signature, call sign.sign() with a private key to sign the data.
Example 5-12. Signing data with Sign
> var sign = crypto.createSign('RSA-SHA256');
> sign.update('abcdef');
{}
> sig = sign.sign(key, 'hex');
'35eb47af5260a00c7bad26edfbe7732a897a3a03290963e3d17f48331a42...aa81b'
>

Verifying signatures with Verify

The Verify API uses a method like the ones we’ve just discussed (see Example 5-13), verify.update(), to add data—and when you have added all the data to be
 verified against the signature, verify.verify() validates the signature. It takes the cert (the public key), the signature, and
 the format of the signature.
Example 5-13. Verifying signatures
> var crypto = require('crypto');
> var fs = require('fs');
>
> var privatePem = fs.readFileSync('key.pem');
> var publicPem = fs.readFileSync('cert.pem');
> var key = privatePem.toString();
> var pubkey = publicPem.toString();
>
> var data = "abcdef"
>
> var sign = crypto.createSign('RSA-SHA256');
> sign.update(data);
{}
> var sig = sign.sign(key, 'hex');
>
> var verify = crypto.createVerify('RSA-SHA256');
> verify.update(data);
{}
> verify.verify(pubkey, sig, 'hex');
1

[12] Hash-based Message Authentication Code (HMAC) is a crytographic
 way of verifying data. It is often used like hashing algorithms to
 verify that two pieces of data match, but it also verifies that the
 data hasn’t been tampered with.

[13] It’s possible to deliberately make two pieces of data with the
 same MD5 checksum, which for some purposes can make the algorithm
 less desirable. More modern algorithms are less prone to this,
 although people are finding similar problems with SHA1 now.

Processes

Although Node abstracts a lot of things from
 the operating system, you are still running in an operating system and may
 want to interact more directly with it. Node allows you to interact with
 system processes that already exist, as well as create new child processes
 to do work of various kinds. Although Node itself is generally a “fat”
 thread with a single event loop, you are free to start other processes
 (threads) to do work outside of the event loop.
process Module

The process module enables you to get information about and change the
 settings of the current Node process. Unlike most modules, the process module is global and is always
 available as the variable process.
process events

process
 is an instance of EventEmitter,
 so it provides events based on systems calls to the Node
 process. The exit event provides a final hook before the Node process exits (see
 Example 5-14). Importantly, the event loop will
 not run after the exit event, so
 only code without callbacks will be executed.
Example 5-14. Calling code when Node is exiting
process.on('exit', function () {
 setTimeout(function () {
 console.log('This will not run');
 }, 100);
 console.log('Bye.');
});

Because the loop isn’t going to run again,
 the setTimeout() code will never be
 evaluated.
An extremely useful event provided by process
 is uncaughtException (Example 5-15). After you’ve spent any time with Node,
 you’ll find that exceptions that hit the main event loop will kill
 your Node process. In many use cases, especially servers that are
 expected to never be down, this is unacceptable. The uncaughtException event provides an
 extremely brute-force way of catching these exceptions. It’s really a
 last line of defense, but it’s extremely useful for that
 purpose.
Example 5-15. Trapping an exception with the uncaughtException
 event
process.on('uncaughtException', function (err) {
 console.log('Caught exception: ' + err);
});

setTimeout(function () {
 console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');

Let’s break
 down what’s happening. First, we create an event listener for uncaughtException. This is not a smart handler;
 it simply outputs the exception to stdout. If this Node script were
 running as a server, stdout could easily be used to save the log into
 a file and capture these errors. However, because it captures the
 event for a nonexistent function, Node will not exit, but the standard
 flow is still disrupted. We know that all the JavaScript runs once,
 and then any callbacks will be run each time their event listener
 emits an event. In this scenario, because nonexistentFunc() will throw an exception,
 no code following it will be called. However, any code that has
 already been run will continue to run. This means that setTimeout() will still call. This is
 significant when you’re writing servers. Let’s consider some more code
 in this area, shown in Example 5-16.
Example 5-16. The effect on callbacks of catching exceptions
var http = require('http');
var server = http.createServer(function(req,res) {
 res.writeHead(200, {});
 res.end('response');
 badLoggingCall('sent response');
 console.log('sent response');
});

process.on('uncaughtException', function(e) {
 console.log(e);
});

server.listen(8080);

This code creates a simple HTTP server and
 then listens for any uncaught exceptions at the process level. In our
 HTTP server, the callback deliberately calls a bad function after
 we’ve sent the HTTP response. Example 5-17
 shows the console output for this script.
Example 5-17. Output of Example 5-16
Enki:~ $ node ex-test.js
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }

When we start the example script, the
 server is available, and we have made a number of HTTP requests to it.
 Notice that the server doesn’t shut down at any point. Instead, the
 errors are logged using the function attached to the uncaughtException
 event. However, we are still serving complete HTTP requests. Why? Node
 deliberately prevented the callback in process from proceeding and calling console.log(). The error affected only the
 process we spawned and the server kept running, so any other code was
 unaffected by the exception encapsulated in one specific code
 path.
It’s important to understand the way that
 listeners are implemented in Node. Let’s take a look at Example 5-18.
Example 5-18. The abbreviated listener code for EventEmitter
EventEmitter.prototype.emit = function(type) {

...

 var handler = this._events[type];

...

 } else if (isArray(handler)) {
 var args = Array.prototype.slice.call(arguments, 1);

 var listeners = handler.slice();
 for (var i = 0, l = listeners.length; i < l; i++) {
 listeners[i].apply(this, args);
 }
 return true;

...

};

After an event is emitted, one of the
 checks in the runtime handler is to see whether there is an array of
 listeners. If there is more than one listener, the runtime calls the
 listeners by looping through the array in order. This means that the
 first attached listener will be called first with apply(), then the second, and so on. What’s
 important to note here is that all listeners on
 the same event are part of the same code path. So an uncaught
 exception in one callback will stop execution for all other callbacks
 on the same event. However, an uncaught exception in one instance of
 an event won’t affect other events.
We also get access to a number of system
 events through process. When the
 process gets a signal, it is exposed to Node via events emitted by
 process. An operating system can
 generate a lot of POSIX system events, which can be found in the
 sigaction(2) manpage. Really common ones
 include SIGINT, the interrupt signal. Typically, a SIGINT is what happens when you press
 Ctrl-C in the terminal on a running process. Unless you handle the
 signal events via process, Node
 will just perform the default action; in the case of a SIGINT, the
 default is to immediately kill the process. You can change default
 behavior (except for a couple of signals that can never get caught)
 through the process.on() method
 (Example 5-19).
Example 5-19. Catching signals to the Node process
// Start reading from stdin so we don't exit.
process.stdin.resume();

process.on('SIGINT', function () {
 console.log('Got SIGINT. Press Control-D to exit.');
});

To make sure Node doesn’t exit on its own,
 we read from stdin (described in Operating system input/output)
 so the Node process continues to run. If you Ctrl-C the program while
 it’s running, the operating system (OS) will send a SIGINT to Node,
 which will be caught by the SIGINT event handler. Here, instead of
 exiting, we log to the console instead.

Interacting with the current Node process

Process contains a lot
 of meta-information about the Node process. This can be very helpful
 when you need to manage your Node environment from within the process.
 There are a number of properties that contain immutable (read-only)
 information about Node, such as:
	process.version
	Contains the version number of the
 instance of Node you are running.

	process.installPrefix
	Contains the install path (/usr/local,
 ~/local, etc.) used during
 installation.

	process.platform
	Lists the platform on which
 Node is currently running. The output will specify
 the kernel (linux2, darwin, etc.) rather than “Redhat
 ES3,” “Windows 7,” “OSX 10.7,” etc.

	process.uptime()
	Contains the number of seconds
 the process has been running.

There are also a number of things that you
 can get and set about the Node process. When the process runs, it does
 so with a particular user and group. You can get these and set them with process.getgid(), process.setgid(), process.getuid(), and process.setuid(). These can be very useful for making sure
 that Node is running in a secure way. It’s worth noting that the set
 methods take either the numerical ID of the group or username or the
 group/username itself. However, if you pass the group or username, the
 methods do a blocking lookup to turn the group/username into an ID,
 which takes a little time.
The process
 ID, or PID, of the running Node instance is also available as
 the process.pid property. You can set the title that
 Node displays to the system using the process.title property. Whatever is set
 in this property will be displayed in the ps command. This
 can be extremely useful when you are running multiple Node processes
 in a production environment. Instead of having a lot of processes
 called node, or possibly node app.js, you can set names intelligently
 for easy reference. When one process is hogging CPU or RAM, it’s great
 to have a quick idea of which one is doing so.
Other available information includes process.execPath, which shows the execution
 path of the current Node binary (e.g., /usr/local/bin/node). The current working
 directory (to which all files opened will be relative) is accessible
 with process.cwd(). The working directory is the directory you were in when Node
 was started. You can change it using process.chdir() (this will throw an exception if the directory is unreadable
 or doesn’t exist). You can also get the memory usage of the current
 Node process using process.memoryUsage(). This returns an object specifying the size of the memory
 usage in a couple of ways: rss
 shows how much RAM is being used, and vsize shows the total memory used, including
 both RAM and swap. You’ll also get some V8 stats: heapTotal and heapUsed show how much memory V8 has
 allocated and how much it is actively using.

Operating system input/output

There are a number of places where you can
 interact with the OS (besides making changes to the Node process in
 which the program is running) from process. One of the main ones is having
 access to the standard OS I/O streams. stdin is the default input stream to the process, stdout is the
 process’s output stream, and stderr is its error stream. These are exposed with process.stdin,
 process.stdout, and process.stderr, respectively. process.stdin is a readable stream, whereas
 process.stdout and process.stderr are writable streams.
process.stdin

stdin is a really useful device for interprocess communication. It’s
 used to facilitate things such as piping in the shell. When we type
 cat file.txt | node program.js,
 it will be the stdin stream that receives the data from the cat command.
Because process is always available, the process.stdin stream is always initialized
 in any Node process. But it starts out in a paused state, where Node
 can write to it but you can’t read from it. Before attempting to
 read from stdin, call its resume() method (see Example 5-20). Until then, Node will just fill the
 read buffer for the stream and then stop until you are ready to deal
 with it. This approach avoids data loss.
Example 5-20. Writing stdin to stdout
process.stdin.resume();
process.stdin.setEncoding('utf8');

process.stdin.on('data', function (chunk) {
 process.stdout.write('data: ' + chunk);
});

process.stdin.on('end', function () {
 process.stdout.write('end');
});

We ask process.stdin to resume(), set the encoding to UTF-8, and
 then set a listener to push any data sent to process.stdout. When the process.stdin sends the end event, we pass that on to the process.stdout stream. We could also
 easily do this with the stream pipe()
 method, as in Example 5-21, because stdin and
 stdout are both real streams.
Example 5-21. Writing stdin to stdout using pipe
process.stdin.resume();
process.stdin.pipe(process.stdout);

This is the most elegant way of
 connecting two streams.

process.stderr

stderr is used to output exceptions and problems with program execution.
 In POSIX systems, because it is a separate stream, output logs and
 error logs can be easily redirected to different destinations. This
 can be very desirable, but in Node it comes with a couple of
 caveats. When you write to stderr, Node guarantees that the write
 will happen. However, unlike a regular stream, this is done as a
 blocking call. Typically, calls to Steam.write()
 return a Boolean value indicating whether Node was able to write to
 the kernel buffer. With process.stderr this will always be true,
 but it might take a while to return, unlike the regular write(). Typically, it will be very fast,
 but the kernel buffer may sometimes be full and hold up your
 program. This means that it is generally inadvisable to write a lot
 to stderr in a production system, because it may block real
 work.
One final thing to note is that process.stderr is always a UTF-8 stream.
 Any data you write to process.stderr will be interpreted as
 UTF-8 without you having to set an encoding. Moreover, you are not
 able to change the encoding here.
Another place where Node programmers
 often touch the operating system is to retrieve the arguments passed
 when their program is started. argv is an array containing the
 command-line arguments, starting with the node command itself (see Examples 5-22 and 5-23).
Example 5-22. A simple script outputting argv
console.log(process.argv);

Example 5-23. Running Example 5-22
Enki:~ $ node argv.js -t 3 -c "abc def" -erf foo.js
['node',
 '/Users/croucher/argv.js',
 '-t',
 '3',
 '-c',
 'abc def',
 '-erf',
 'foo.js']
Enki:~ $

There are few things to notice here.
 First, the process.argv array
 is simply a split of the command line based on
 whitespace. If there are many characters of whitespace between two
 arguments, they count as only a single split. The check for
 whitespace is written as \s+ in a
 regular expression (regex). This doesn’t count for whitespace in
 quotes, however. Quotes can be used to keep tokens together. Also,
 notice how the first file argument is expanded. This means you can
 pass a relative file argument on the command line, and it will appear as
 its absolute pathname in argv.
 This is also true for special characters, such as using ~ to refer to the home directory. Only the
 first argument is expanded this way.
argv
 is extremely helpful for writing command-line scripts, but it’s
 pretty raw. There are a number of community projects that extend its
 support to help you easily write command-line applications,
 including support for automatically enabling features, writing
 inline help systems, and other more advanced features.

Event loop and tickers

If you’ve done work with JavaScript in browsers, you’ll be familiar
 with setTimeout(). In Node, we have
 a much more direct way to access the event loop and defer work that is
 extremely useful. process.nextTick() creates a callback to be executed on the next “tick,” or
 iteration of the event loop. While it is implemented as a queue, it
 will supersede other events. Let’s explore that a little bit in Example 5-24.
Example 5-24. Using process.nextTick() to insert callbacks into the event
 loop
> var http = require('http');
> var s = http.createServer(function(req, res) {
... res.writeHead(200, {});
... res.end('foo');
... console.log('http response');
... process.nextTick(function(){console.log('tick')});
... });
> s.listen(8000);
>
> http response
tick
http response
tick

This example creates an HTTP server. The
 request event listener on the server creates a
 callback using process.nextTick().
 No matter how many requests we make to the HTTP server, the “tick”
 will always occur on the next pass of the event loop. Unlike other
 callbacks, nextTick() callbacks are
 not a single event and thus are not subject to the usual callback
 exception brittleness, as shown in Examples 5-25 and 5-26.
Example 5-25. nextTick() continues after other code’s exceptions
process.on('uncaughtException', function(e) {
 console.log(e);
});

process.nextTick(function() {
 console.log('tick');
});
process.nextTick(function() {
 iAmAMistake();
 console.log('tock');
});
process.nextTick(function() {
 console.log('tick tock');
});
console.log('End of 1st loop');

Example 5-26. Results of Example 5-25
Enki:~ $ node process-next-tick.js
End of 1st loop
tick
{ stack: [Getter/Setter],
 arguments: ['iAmAMistake'],
 type: 'not_defined',
 message: [Getter/Setter] }
tick tock
Enki:~ $

Despite the deliberate error, unlike other
 event callbacks on a single event, each of the ticks is isolated.
 Let’s walk through the code. First, we set an exception handler to
 catch any exceptions. Next, we set a number of callbacks on process.nextTick(). Each of these callbacks
 outputs to the console; however, the second has a deliberate error.
 Finally, we log a message to the console. When Node runs the program,
 it evaluates all the code, which includes outputting 'End of
 1st loop'. Then it calls the callbacks on nextTick() in order. First
 'tick' is outputted, and then we throw an error.
 This is because we hit our deliberate mistake on the next tick. The
 error causes process to emit() an uncaughtException event, which runs our function to output the error to the
 console. Because we threw an error, 'tock' was not
 outputted to the console. However, 'tick tock'
 still is. This is because every time nextTick() is called, each callback is
 created in isolation. You could consider the execution of events to be
 emit(), which is called inline in
 the current pass of event loop; nextTick(), which is called at the beginning
 of the event loop in preference to other events; and finally, other
 events in order at the beginning of the event loop.

Child Process

The child_process module allows you to create child processes of your main Node
 process. Because Node has only one event loop in a single process,
 sometimes it is helpful to create child processes. For example, you
 might do this to make use of more cores of your CPU, because a single
 Node process can use only one of the cores. Or, you could use child_process to launch other programs and let
 Node interact with them. This is extremely helpful when you’re writing
 command-line scripts.
There are two main methods in child_process. spawn() creates a child process with its own stdin, stdout, and stderr
 file descriptors. exec() creates
 a child process and returns the result as a callback when
 the process is complete. This is an extremely versatile way to create
 child processes, a way that is still nonblocking but doesn’t require you
 to write extra code in order to steam forward.
All child processes have some common
 properties. They each contain properties for stdin, stdout, and stderr,
 which we discussed in Operating system input/output. There is
 also a pid property that contains the OS process ID of the child. Children
 emit the exit event when they exit.
 Other data events are available via the stream
 methods of child_process.stdin,
 child_process.stdout, and child_process.stderr.
child_process.exec()

Let’s start with exec() as the most straightforward use case.
 Using exec(), you can create a
 process that will run some program (possibly another Node program) and
 then return the results for you in a callback (Example 5-27).
Example 5-27. Calling ls with exec()
var cp = require('child_process');

cp.exec('ls -l', function(e, stdout, stderr) {
 if(!e) {
 console.log(stdout);
 console.log(stderr);
 }
});

When you call exec(), you can pass a shell command for the
 new process to run. Note that the entire command is a string. If you
 need to pass arguments to the shell command, they should be
 constructed into the string. In the example, we passed ls the -l
 argument to get the long form of the output. You can also include
 complicated shell features, such as | to pipe commands. Node will return the
 results of the final command in the pipeline.
The callback function receives three
 arguments: an error object, the result of stdout, and the result of
 stderr. Notice that just calling ls
 will run it in the current working directory of Node, which you can
 retrieve by running process.cwd().
It’s important to understand the
 difference between the first and third arguments. The error object
 returned will be null unless an
 error status code is returned from the child process or there was
 another exception. When the child process exits, it passes a status up
 to the parent process. In Unix, for example, this is 0 for success and
 an 8-bit number greater than 0 for an error. The error object is also
 used when the command called doesn’t meet the constraints that Node
 places on it. When an error code is returned from the child process,
 the error object will contain the error code and stderr. However, when
 a process is successful, there may still be data on stderr.
exec()
 takes an optional second argument with an options
 object. By default, this object contains the properties shown in Example 5-28.
Example 5-28. Default options object for child_process.exec()
var options = { encoding: 'utf8',
 timeout: 0,
 maxBuffer: 200 * 1024,
 killSignal: 'SIGTERM',
 setsid: false,
 cwd: null,
 env: null };

The properties are:
	encoding
	The encoding for passing characters
 on the I/O streams.

	timeout
	The number of milliseconds the
 process can run before Node kills it.

	killSignal
	The signal to use to terminate the
 process in case of a time or Buffer size
 overrun.

	maxBuffer
	The maximum number of kilobytes that
 stdout or stderr each may grow to.

	setsid
	Whether to create a new session
 inside Node for the process.

	cwd
	The initial working directory for
 the process (where null uses Node’s current
 working directory).

	env
	The process’s environment variables.
 All environment variables are also inherited from the
 parent.

Let’s set some of the options to put
 constraints on a process. First, let’s try restricting the
 Buffer size of the response, as demonstrated in
 Example 5-29.
Example 5-29. Restricting the Buffer size on child_process.exec()
 calls
> var child = cp.exec('ls', {maxBuffer:1}, function(e, stdout, stderr) {
... console.log(e);
... }
...);
> { stack: [Getter/Setter],
 arguments: undefined,
 type: undefined,
 message: 'maxBuffer exceeded.' }

In this example, you can see that when we
 set a tiny maxBuffer (just 1
 kilobyte), running ls quickly
 exhausted the available space and threw an error. It’s important to
 check for errors so that you can deal with them in a sensible way. You
 don’t want to cause an actual exception by trying to access resources
 that are unavailable because you’ve restricted the child_process. If the child_process returns with an error, its
 stdin and stdout properties will be unavailable and attempts to access them will
 throw an exception.
It’s also possible to stop a Child after a set amount of time, as shown
 in Example 5-30.
Example 5-30. Setting a timeout on process.exec() calls
> var child = cp.exec('for i in {1..100000};do echo $i;done',
... {timeout:500, killSignal:'SIGKILL'},
... function(e, stdout, stderr) {
... console.log(e);
... });
> { stack: [Getter/Setter], arguments: undefined, type: undefined, message: ... }

This example defines a deliberately
 long-running process (counting from 1 to 100,000 in a shell script),
 but we also set a short timeout.
 Notice that we also specified a killSignal. By default, the kill signal
 is SIGTERM, but we used SIGKILL to show the feature.[14] When we get the error back, notice there is a killed property that tells us that Node
 killed the process and that it didn’t exit voluntarily. This is also
 true for the previous example. Because it didn’t exit on its own,
 there isn’t a code property or some
 of the other properties of a system error.

child_process.spawn()

spawn()
 is very similar to exec().
 However, it is a more general-purpose method that
 requires you to deal with streams and their callbacks yourself. This
 makes it a lot more powerful and flexible, but it also means that more
 code is required to do the kind of one-shot system calls we
 accomplished with exec(). This
 means that spawn() is most often
 used in server contexts to create subcomponents of a server and is the
 most common way people make Node work with multiple cores on a single
 machine.
Although it performs the same function as
 exec(), the API for spawn() is slightly different (see Examples
 5-31
 and 5-32). The first argument is still the
 command to start the process with, but unlike exec(), it is not a command string; it’s
 just the executable. The process’s arguments are passed in an array as
 the (optional) second argument to spawn(). It’s like an inverse of process.argv: instead of the command being split() across spaces, you provide an array
 to be join()ed with spaces.
Finally, spawn() also takes an options array as the
 final argument. Some of these options are the same as exec(), but we’ll cover that in more detail
 shortly.
Example 5-31. Starting child processes using spawn()
var cp = require('child_process');

var cat = cp.spawn('cat');

cat.stdout.on('data', function(d) {
 console.log(d.toString());
});
cat.on('exit', function() {
 console.log('kthxbai');
});

cat.stdin.write('meow');
cat.stdin.end();

Example 5-32. Results of previous example
Enki:~ $ node cat.js
meow
kthxbai
Enki:~ $

In this example, we’re using the Unix
 program cat, which simply echoes
 back whatever input it gets. You can see that, unlike exec(), we don’t issue a callback to
 spawn() directly. That’s because we
 are expecting to use the Streams
 provided by the Child class to get
 and send data. We named the variable with the instance of Child “cat,” and so we can access cat.stdout to set events on the stdout
 stream of the child process. We set a listener on cat.stdout to watch for any data events, and
 we set a listener on the child
 itself in order to watch for the exit event. We can send our new child data using stdin by accessing its
 child.stdin stream. This is just a regular writable stream. However,
 as a behavior of the cat program,
 when we close stdin, the process exits. This might not be true for all
 processes, but it is true for cat,
 which exists only to echo back data.
The options that can be passed to spawn() aren’t exactly the same as exec(). This is because you are expected to
 manage more things by hand with spawn(). The env, setsid, and cwd properties are all options for spawn(), as are uid and gid, which set the user ID and the group ID,
 respectively. Like process, setting
 the uid or the gid to a username or a group name will block
 briefly while the user or group is looked up. There is one more option
 for spawn() that doesn’t exist for
 exec(): you can set custom file
 descriptors that will be given to the new child process. Let’s take
 some time to cover this topic because it’s a little complex.
A file descriptor in Unix is a way of keeping track of
 which programs are doing what with which files. Because Unix lets many
 programs run at the same time, there needs to be a way to make sure
 that when they interact with the filesystem they don’t accidentally
 overwrite someone else’s changes. The file descriptor table keeps
 track of all the files that a process wants to access. The kernel
 might lock a particular file to stop two programs from writing to the
 file at the same time, as well as other management functions. A
 process will look at its file descriptor table to find the file
 descriptor representing a particular file and pass that to the kernel
 to access the file. The file descriptor is simply an integer.
The important thing is that the name
 “file descriptor” is a little deceptive because it doesn’t represent
 only pure files; network and other sockets are also allocated file
 descriptors. Unix has interprocess communications (IPC) sockets that
 let processes talk to each other. We’ve been calling them stdin,
 stdout, and stderr. This is interesting because spawn() lets us specify file descriptors
 when starting a new child process. This means that instead of the OS
 assigning a new file descriptor, we can ask child processes to share
 an existing file descriptor with the parent process. That file
 descriptor might be a network socket to the Internet or just the
 parent’s stdin, but the point is that we have a powerful way of
 delegating work to child processes.
How does this work in practice? When
 passing the options object to spawn(), we can specify customFds to pass our own three file
 descriptors to the child instead of
 them creating a stdin, stdout, and stderr file descriptor (Examples 5-33 and
 5-34).
Example 5-33. Passing stdin, stdout, and stderr to a child process
var cp = require('child_process');

var child = cp.spawn('cat', [], {customFds:[0, 1, 2]});

Example 5-34. Running the previous example and piping in data to
 stdin
Enki:~ $ echo "foo"
foo
Enki:~ $ echo "foo" | node

readline.js:80
 tty.setRawMode(true);
 ^
Error: ENOTTY, Inappropriate ioctl for device
 at new Interface (readline.js:80:9)
 at Object.createInterface (readline.js:38:10)
 at new REPLServer (repl.js:102:16)
 at Object.start (repl.js:218:10)
 at Function.runRepl (node.js:365:26)
 at startup (node.js:61:13)
 at node.js:443:3
Enki:~ $ echo "foo" | cat
foo
Enki:~ $ echo "foo" | node fds.js
foo
Enki:~ $

The file descriptors 0, 1, and
 2 represent stdin, stdout, and
 stderr, respectively. In this example, we create a child and pass it stdin, stdout, and stderr
 from the parent Node process. We can test this wiring using the
 command line. The echo command
 outputs a string “foo.” If we pass that directly to node with a pipe (stdout to stdin), we get
 an error. We can, however, pass it to the cat command, which echoes it back. Also, if
 we pipe to the Node process running our script, it echoes back. This
 is because we’ve hooked up the stdin, stdout, and stderr of the Node
 process directly to the cat command
 in our child process. When the main Node process gets data on stdin,
 it gets passed to the cat child
 process, which echoes it back on the shared stdout. One thing to note
 is that once you wire up the Node process this way, the child process
 loses its child.stdin, child.stdout, and child.stderr file descriptor references.
 This is because once you pass the file descriptors to the process,
 they are duplicated and the kernel handles the data passing.
 Consequently, Node isn’t in between the process and the file
 descriptors (FDs), so you cannot add events to those streams (see
 Examples 5-35 and 5-36).
Example 5-35. Trying to access file descriptor streams fails when custom
 FDs are passed
var cp = require('child_process');
var child = cp.spawn('cat', [], {customFds:[0, 1, 2]});
child.stdout.on('data', function(d) {
 console.log('data out');
});

Example 5-36. Results of the test
Enki:~ $ echo "foo" | node fds.js

node.js:134
 throw e; // process.nextTick error, or 'error' event on first tick
 foo
 ^
TypeError: Cannot call method 'on' of null
 at Object.<anonymous> (/Users/croucher/fds.js:3:14)
 at Module._compile (module.js:404:26)
 at Object..js (module.js:410:10)
 at Module.load (module.js:336:31)
 at Function._load (module.js:297:12)
 at Array.<anonymous> (module.js:423:10)
 at EventEmitter._tickCallback (node.js:126:26)
Enki:~ $

When custom file descriptors are
 specified, the streams are literally set to null and are completely inaccessible from
 the parent. It is still preferable in many cases, though, because
 routing through the kernel is much faster than using something like
 stream.pipe() with Node to connect
 the streams together. However, stdin, stdout, and stderr aren’t the
 only file descriptors worth connecting to child processes. A very
 common use case is connecting network sockets to a number of children,
 which allows for multicore utilization.
Say we are creating a website, a game
 server, or anything that has to deal with a bunch of traffic. We have
 this great server that has a bunch of processors, each of which has
 two or four cores. If we simply started a Node process running our
 code, we’d have just one core being used. Although CPU isn’t always
 the critical factor for Node, we want to make sure we get as close to
 the CPU bound as we can. We could start a bunch of Node processes with
 different ports and load-balance them with Nginx or Apache Traffic
 Server. However, that’s inelegant and requires us to use more
 software. We could create a Node process that creates a bunch of child
 processes and routes all the requests to them. This is a bit closer to
 our optimal solution, but with this approach we just created a single
 point of failure because only one Node process routes all the traffic.
 This isn’t ideal. This is where passing custom FDs comes into its own.
 In the same way that we can pass the stdin, stdout, and stderr of a
 master process, we can create other sockets and pass those in to child
 processes. However, because we are passing file descriptors instead of
 messages, the kernel will deal with the routing. This means that
 although the master Node process is still required, it isn’t bearing
 the load for all the traffic.

[14] SIGKILL can be invoked in the shell through kill
 -9.

Testing Through assert

assert is a core library that provides the basis for testing code. Node’s
 assertions works pretty much like the same feature in other languages and
 environments: they allow you to make claims about objects and function
 calls and send out messages when the assertions are violated. These
 methods are really easy to get started with and provide a great way to
 unit test your code’s features. Node’s own tests are written with assert.
Most assert
 methods come in pairs: one method providing the positive test and the
 other providing the negative one. For
 instance, Example 5-37 shows equal() and notEqual(). The methods take two arguments: the first is the expected
 value, and the second is the actual value.
Example 5-37. Basic assertions
> var assert = require('assert');
> assert.equal(1, true, 'Truthy');
> assert.notEqual(1, true, 'Truthy');
AssertionError: Truthy
 at [object Context]:1:8
 at Interface.<anonymous> (repl.js:171:22)
 at Interface.emit (events.js:64:17)
 at Interface._onLine (readline.js:153:10)
 at Interface._line (readline.js:408:8)
 at Interface._ttyWrite (readline.js:585:14)
 at ReadStream.<anonymous> (readline.js:73:12)
 at ReadStream.emit (events.js:81:20)
 at ReadStream._emitKey (tty_posix.js:307:10)
 at ReadStream.onData (tty_posix.js:70:12)
>

The most obvious thing here is that when an
 assert method doesn’t pass, it throws
 an exception. This is a fundamental principle in the test suites. When a
 test suite runs, it should just run, without throwing an exception. If
 that is the case, the test is successful.
There are just a few assertions. equal() and notEqual() check for the == equality
 and != inequality
 operators. This means they test weakly for truthy and
 falsy values, as Crockford termed them. In brief,
 when tested as a Boolean, falsy values consist of false, 0, empty strings (i.e., ""), null,
 undefined, and NaN. All other values are truthy. A string such
 as "false" is truthy. A string
 containing "0" is also truthy. As such,
 equal() and notEqual() are fine to compare simple values
 (strings, numbers, etc.) with each other, but you should be careful
 checking against Booleans to ensure you got the result you wanted.
The stringEqual() and notStrictEqual() methods test equality with ===
 and !==, which will ensure that only
 actual values of true and false are treated as true and false,
 respectively. The ok() method, shown in
 Example 5-38, is a shorthand for testing whether
 something is truthy, by comparing the value with true using ==.
Example 5-38. Testing whether something is truthy with assert.ok()
> assert.ok('This is a string', 'Strings that are not empty are truthy');
> assert.ok(0, 'Zero is not truthy');
AssertionError: Zero is not truthy
 at [object Context]:1:8
 at Interface.<anonymous> (repl.js:171:22)
 at Interface.emit (events.js:64:17)
 at Interface._onLine (readline.js:153:10)
 at Interface._line (readline.js:408:8)
 at Interface._ttyWrite (readline.js:585:14)
 at ReadStream.<anonymous> (readline.js:73:12)
 at ReadStream.emit (events.js:81:20)
 at ReadStream._emitKey (tty_posix.js:307:10)
 at ReadStream.onData (tty_posix.js:70:12)
>

Often the things you want to compare aren’t
 simple values, but objects. JavaScript doesn’t have a way to let objects
 define equality operators on themselves, and even if it did, people often wouldn’t define the operators.
 So the deepEqual() and
 notDeepEqual() methods provide a
 way of deeply comparing object values. Without going into too many of the
 gory details, these methods perform a few checks. If any check fails, the
 test throws an exception. The first test checks whether the values simply
 match with the === operator. Next, the
 values are checked to see whether they are Buffers and, if so, they are checked for their
 length, and then checked byte by byte. Next, if the object types don’t
 match with the == operator, they can’t
 be equal. Finally, if the arguments are objects, more extensive tests are
 done, comparing the prototypes of the two objects and the number of
 properties, and then recursively performing deepEqual() on each property.
The important point here is that deepEqual() and notDeepEqual() are extremely helpful and
 thorough, but also potentially expensive. You should try to use them only
 when needed. Although these methods will attempt to do the most efficient
 tests first, it can still take a bit longer to find an inequality. If you
 can provide a more specific reference, such as the property of an object
 rather than the whole object, you can significantly improve the
 performance of your tests.
The next assert methods are throws() and doesNotThrow(). These check whether a particular block of code does or
 doesn’t throw an exception. You can check for a specific exception or just
 whether any exception is thrown. The methods are pretty straightforward,
 but have a few options that are worth reviewing.
It might be easy to overlook these tests, but handling exceptions is
 an essential part of writing robust JavaScript code, so you should use the
 tests to make sure the code you write throws exceptions in all the correct
 places. Chapter 3 offers more information on how to deal
 with exceptions well.
To pass blocks of code to throws() and doesNotThrow(), wrap them in functions that take
 no arguments (see Example 5-39). The exception
 being tested for is optional. If one isn’t passed, throws() will just check whether any exception
 happened, and doesNotThrow() will
 ensure that an exception hasn’t been thrown. If a specific error is
 passed, throws() will check that the
 specified exception and only that exception was thrown. If any other
 exceptions are thrown or the exception isn’t thrown, the test will not
 pass. For doesNotThrow(), when an error
 is specified, it will continue without error if any exception other than
 the one specified in the argument is thrown. If an exception matching the
 specified error is thrown, it will cause the test to fail.
Example 5-39. Using assert.throws() and assert.doesNotThrow() to check for
 exception handling
> assert.throws(
... function() {
... throw new Error("Seven Fingers. Ten is too mainstream.");
... });
> assert.doesNotThrow(
... function() {
... throw new Error("I lived in the ocean way before Nemo");
... });
AssertionError: "Got unwanted exception (Error).."
 at Object._throws (assert.js:281:5)
 at Object.doesNotThrow (assert.js:299:11)
 at [object Context]:1:8
 at Interface.<anonymous> (repl.js:171:22)
 at Interface.emit (events.js:64:17)
 at Interface._onLine (readline.js:153:10)
 at Interface._line (readline.js:408:8)
 at Interface._ttyWrite (readline.js:585:14)
 at ReadStream.<anonymous> (readline.js:73:12)
 at ReadStream.emit (events.js:81:20)
>

There are four ways to specify the type of
 error to look for or avoid. Pass one of the following:
	Comparison function
	The function should take the exception error as its single
 argument. In the function, compare the exception actually thrown to
 the one you expect to find out whether there is a match. Return
 true if there is a match and
 false otherwise.

	Regular expression
	The library will compare the regex to the error message to
 find a match using the regex.test()
 method in JavaScript.

	String
	The library will directly compare the string to the error
 message.

	Object constructor
	The library will perform a typeof test on the exception. If this test
 throws an error with the typeof
 constructor, then the exception matches. This can be used to make
 throws() and doesNotThrow() very flexible.

VM

The vm, or
 Virtual Machine, module allows you to run arbitrary chunks of code and get a
 result back. It has a number of features that allow you to change the
 context in which the code runs. This can be useful to act as a kind of
 faux sandbox. However, the code is still running in the same Node process,
 so you should be cautious. vm is
 similar to eval(), but offers some more
 features and a better API for managing code. It doesn’t have the ability
 to interact with the local scope in the way that eval() does,
 however.
There are two ways to run code with vm. Running the code “inline” is similar to
 using eval(). The second way is to
 precompile the code into a vm.Script
 object. Let’s have a look at Example 5-40, which demonstrates running code inline
 using vm.
Example 5-40. Using vm to run code
> var vm = require('vm');
> vm.runInThisContext("1+1");
2

So far, vm
 looks a lot like eval(). We pass some
 code to it, and we get a result back. However, vm doesn’t interact with local scope in the same
 way that eval() does. Code run with
 eval() will behave as if it were truly
 inline and replaces the eval() method
 call. But calls to vm methods will not
 interact with the local scope. So eval() can change the surrounding context,
 whereas vm cannot, as shown in Example 5-41.
Example 5-41. Accessing the local scope to show the differences between vm and
 eval()
> var vm = require('vm'),
... e = 0,
... v = 0;
> eval(e=e+1);
1
> e
1
> vm.runInThisContext('v=v+1');
ReferenceError: v is not defined
 at evalmachine.<anonymous>:1:1
 at [object Context]:1:4
 at Interface.<anonymous> (repl.js:171:22)
 at Interface.emit (events.js:64:17)
 at Interface._onLine (readline.js:153:10)
 at Interface._line (readline.js:408:8)
 at Interface._ttyWrite (readline.js:585:14)
 at ReadStream.<anonymous> (readline.js:73:12)
 at ReadStream.emit (events.js:81:20)
 at ReadStream._emitKey (tty_posix.js:307:10)
>
> vm.runInThisContext('v=0');
0
> vm.runInThisContext('v=v+1');
1
>
0

We’ve created two variables, e and v. When
 we use the e variable with eval(), the end result of the statement applies
 back to the main context. However, when we try the same thing with
 v and vm.runInThisContext(), we get an exception
 because we refer to v on the right side
 of the equals sign, and that variable is not defined. Whereas eval() runs in the local scope, vm does not.
The vm subsystem actually
 maintains its own local context that persists from one invocation of
 vm to another. Thus, if we create
 v within the scope of the vm, the variable subsequently is available to
 later vm invocations, maintaining the
 state in which the first vm left it.
 However, the variable from the vm has
 no impact on v in the local scope of
 the main event loop.
It’s also possible to pass a preexisting
 context to vm. This context will be
 used in place of the default context.
Example 5-42 uses
 vm.runInNewContext(), which takes a context object as a second argument. The scope
 of that object becomes the context for the code we run with vm. If we continue to pass it from object to
 object, the context will be modified. However, the context is also
 available to the global scope.
Example 5-42. Passing a context in to vm
> var vm = require('vm');
> var context = { alphabet:"" };
> vm.runInNewContext("alphabet+='a'", context);
'a'
> vm.runInNewContext("alphabet+='b'", context);
'ab'
> context
{ alphabet: 'ab' }
>

You can also compile vm.Script objects (Example 5-43). These save a
 piece of code that you can then run repeatedly. At runtime, you can choose
 the context to be applied. This is helpful when you are repeatedly running
 the same code against multiple contexts.
Example 5-43. Compiling code into a script with vm
> var vm = require('vm');
> var fs = require('fs');
>
> var code = fs.readFileSync('example.js');
> code.toString();
'console.log(output);\n'
>
> var script = vm.createScript(code);
> script.runInNewContext({output:"Kick Ass"});
ReferenceError: console is not defined
 at undefined:1:1
 at [object Context]:1:8
 at Interface.<anonymous> (repl.js:171:22)
 at Interface.emit (events.js:64:17)
 at Interface._onLine (readline.js:153:10)
 at Interface._line (readline.js:408:8)
 at Interface._ttyWrite (readline.js:585:14)
 at ReadStream.<anonymous> (readline.js:73:12)
 at ReadStream.emit (events.js:81:20)
 at ReadStream._emitKey (tty_posix.js:307:10)
> script.runInNewContext({"console":console,"output":"Kick Ass"});
Kick Ass

This example reads in a JavaScript file that
 contains the simple command console.log(output);. we compile this into a
 script object, which means we can then
 run script.runInNewContext() on the script and pass in a context. We deliberately
 triggered an error to show that, just as when running vm.runInNewContext(), you need to pass in the
 objects to which you refer (such as the console object); otherwise, even basic global
 functions are not available. It’s also worth noting that the exception is
 thrown from undefined:1:1.
All the vm run commands take a
 filename as an optional final argument. It doesn’t change the
 functionality, but allows you to set the name of the file that appears in
 a message when an error is thrown. This is useful if you load a lot of
 files from disk and run them because it tells you which piece of code
 threw an error. The parameter is totally arbitrary, so you could use
 whatever string is meaningful to help you debug the code.

Chapter 6. Data Access

Like any web server, Node needs access to data stores for persistent storage; without
 persistence, all you have is a brochure website, which would make using Node
 pointless. In this chapter, we’ll run through the basic ways to connect to
 common open source database choices and to store and retrieve data.
NoSQL and Document Stores

The following NoSQL and document stores are increasingly popular for
 web-facing applications and are easy to use with Node.
CouchDB

CouchDB provides MVCC-based[15] document storage in a JavaScript environment. When
 documents (records) are added or updated in CouchDB, the entire dataset
 is saved to storage and older versions of that data marked obsolete.
 Older versions of the record can still be merged into the newest
 version, but in every case a whole new version is created and written to
 contiguous memory for faster read times. CouchDB is said to be
 “eventually consistent.” In a large, scalable deployment, multiple
 instances can sometimes serve older, unsynced versions of records to
 clients with the expectation that any changes to those records will
 eventually be merged into the master.
Installation

Specific CouchDB libraries are not required to access the database, but
 they are useful for providing a high level of abstraction and making
 code easier to work with. A CouchDB server is needed to test any
 examples, but it does not require a lot of work to get it
 running.
Installing CouchDB

The most recent version of CouchDB can be installed from the
 Apache project
 page. Installation instructions for a wide array of
 platforms can be found on the wiki.
If you’re running Windows, you will find a number of binary
 installers as well as instructions for building from source. As with
 many of the NoSQL options, installation is easiest and best
 supported on a Linux-based system, but don’t be dissuaded.

Installing CouchDB’s Node module

Additional modules are not strictly necessary, because CouchDB exposes
 all of its services through REST, as described in more detail
 later.

Using CouchDB over HTTP

One of the nice things about CouchDB is that its API is actually
 all just HTTP. Because Node is great at interacting with HTTP,
 this means it is really easy to work with CouchDB. Exploiting this
 fact, it is possible to perform database operations directly without any additional client libraries.
Example 6-1 shows how to generate a list of
 databases in the current CouchDB installation. In this case, there is
 no authentication or administrative permission on the CouchDB server—a
 decidedly bad idea for a database connected to the Internet, but
 suitable for demonstration purposes.
Example 6-1. Retrieving a list of CouchDB stores via HTTP
var http = require('http');

http.createServer(function (req, res) {
 var client = http.createClient(5984, "127.0.0.1");
 var request = client.request("GET", "/_all_dbs");
 request.end();

 request.on("response", function(response) {
 var responseBody = "";

 response.on("data", function(chunk) {
 responseBody += chunk;
 });

 response.on("end", function() {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.write(responseBody);
 res.end();
 });
 });
}).listen(8080);

A client connection is created with the http library. Nothing distinguishes this
 connection from any other http
 connection; because CouchDB is RESTful, no additional
 communication protocol is needed. Of special note is the request.end() line inside the createServer method. If this line is
 omitted, the request will hang.
As mentioned earlier, all CouchDB methods are exposed in HTTP
 calls. Creating and deleting databases, therefore, involves making the
 appropriate PUT and DELETE statements against the server, as
 demonstrated in Example 6-2.
Example 6-2. Creating a CouchDB database
 var client = http.createClient(5984, "127.0.0.1")
 var request = client.request("PUT", "/dbname");
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 201) {
 console.log("Database successfully created.");
 } else {
 console.log("Could not create database.");
 }
 });
 });

Here, /dbname refers to the
 resource being accessed. Combined with a PUT command, CouchDB is
 instructed to create a new database called dbname. An HTTP response code of 201
 confirms that the database was created.
As shown in Example 6-3, deleting the resource
 is the reverse of a PUT: the DELETE command. An HTTP response code of
 200 confirms the request was completed successfully.
Example 6-3. Deleting a CouchDB database
 var client = http.createClient(5984, "127.0.0.1")
 var request = client.request("DELETE", "/dbname");
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 200) {
 console.log("Deleted database.");
 } else {
 console.log("Could not delete database.");
 }
 });
 });

These elements aren’t very useful on their own, but they can be
 put together to form a very basic (if unfriendly) database manager
 using the methods shown in Example 6-4.
Example 6-4. A simple CouchDB database creation form
var http = require('http');
var qs = require('querystring');
var url = require('url');

var dbHost = "127.0.0.1";
var dbPort = 5984;

deleteDb = function(res, dbpath) {
 var client = http.createClient(dbPort, dbHost)
 var request = client.request("DELETE", dbpath);
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 200) {
 showDbs(res, "Deleted database.");
 } else {
 showDbs(res, "Could not delete database.");
 }
 });
 });
}

createDb = function(res, dbname) {
 var client = http.createClient(dbPort, dbHost)
 var request = client.request("PUT", "/" + dbname);
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 201) {
 showDbs(res, dbname + " created.");
 } else {
 showDbs(res, "Could not create " + dbname);
 }
 });
 });
}

showDbs = function(res, message) {
 var client = http.createClient(dbPort, dbHost);
 var request = client.request("GET", "/_all_dbs");
 request.end();

 request.on("response", function(response) {
 var responseBody = "";

 response.on("data", function(chunk) {
 responseBody += chunk;
 });

 response.on("end", function() {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.write("<form method='post'>");
 res.write("New Database Name: <input type='text' name='dbname' />");
 res.write("<input type='submit' />");
 res.write("</form>");
 if (null != message) res.write("<h1>" + message + "</h1>");

 res.write("<h1>Active databases:</h1>");
 res.write("");
 var dblist = JSON.parse(responseBody);
 for (i = 0; i < dblist.length; i++) {
 var dbname = dblist[i];
 res.write(""+dbname+"");
 }
 res.write("");
 res.end();
 });
 });
};

http.createServer(function (req, res) {
 if (req.method == 'POST') {
 // Parse the request
 var body = '';
 req.on('data', function (data) {
 body += data;
 });
 req.on('end', function () {
 var POST = qs.parse(body);
 var dbname = POST['dbname'];
 if (null != dbname) {
 // Create the DB
 createDb(res,dbname);
 } else {
 showDbs(res, "Bad DB name, cannot create database.");
 }
 });
 } else {
 var path = url.parse(req.url).pathname;
 if (path != "/") {
 deleteDb(res,path);
 } else {
 showDbs(res);
 }
 }
}).listen(8080);

Using node-couchdb

Knowing how to work with CouchDB over HTTP is useful, but this approach is
 verbose. Although it has the advantage of not needing external
 libraries, most developers opt for higher-level abstraction layers,
 regardless of how simple their database’s native driver implementation
 is. In this section, we look at the node-couchdb package, which
 simplifies the interface between Node and CouchDB.
You can install the drivers for CouchDB using
 npm:
npm install felix-couchdb
Working with databases

The module’s first obvious benefit is succinct program code, as demonstrated in
 Example 6-5.
Example 6-5. Creating a table in CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);
var db = client.db(dbName);

db.exists(function(err, exists) {
 if (!exists) {
 db.create();
 console.log('Database ' + dbName + ' created.');
 } else {
 console.log('Database ' + dbName + ' exists.');
 }
});

This example checks for a database called users, creating one if it doesn’t already
 exist. Notice the similarities between the createClient function call here and the one from the http module demonstrated earlier. This is
 no accident; even though the module makes CouchDB’s interfaces
 easier to work with, in the end you are using HTTP to transmit
 data.

Creating documents

In Example 6-6, we’ll save a document into the CouchDB database created in
 the previous example.
Example 6-6. Creating a document in CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var user = {
 name: {
 first: 'John',
 last: 'Doe'
 }
}

var db = client.db(dbName);

db.saveDoc('jdoe', user, function(err, doc) {
 if(err) {
 console.log(JSON.stringify(err));
 } else {
 console.log('Saved user.');
 }
});

This example creates a user named John Doe in the database
 with the username jdoe as its identity. Notice
 the user is created as a JSON object and passed directly into the
 client. No more work is needed to parse the information.
After running this example, the user can be accessed in the
 web browser at
 http://127.0.0.1:5984/users/jdoe.

Reading documents

Once documents are stored in CouchDB, they can be retrieved again as
 objects, as shown in Example 6-7.
Example 6-7. Retrieving a record from CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var db = client.db(dbName);

db.getDoc('jdoe', function(err,doc) {
 console.log(doc);
});

The output from this query is:
{ _id: 'jdoe',
 _rev: '3-67a7414d073c9ebce3d4af0a0e49691d',
 name: { first: 'John', last: 'Doe' }
}
There are three steps happening here:
	Connect to the database server using createClient.

	Select the document store using the client’s db command.

	Get the document using the database’s getDoc command.

In this case, the record with ID jdoe—created in the previous example—is
 retrieved from the database. If the record did not exist (because it
 was deleted or not yet inserted), the callback’s error parameter
 would contain data about the error.

Updating documents

Updating documents uses the same saveDoc command as creating documents. If CouchDB detects an existing
 record with the same ID, it will overwrite the old one.
Example 6-8 demonstrates how to update a
 document after reading it from the data store.
Example 6-8. Updating a record in CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var db = client.db(dbName);

db.getDoc('jdoe', function(err,doc) {
 doc.name.first = 'Johnny';
 doc.email = 'jdoe@johndoe.com';

 db.saveDoc('jdoe', doc);

 db.getDoc('jdoe', function(err,revisedUser) {
 console.log(revisedUser);
 });
});

The output from this operation is:
{ _id: 'jdoe',
 _rev: '7-1fb9a3bb6db27cbbbf1c74b2d601ccaa',
 name: { first: 'Johnny', last: 'Doe' },
 email: 'jdoe@johndoe.com'
}
This example reads information about the
 jdoe user from the data store, gives it an
 email address and a new first name, and saves it back into
 CouchDB.
Notice that saveDoc and
 getDoc follow the initial read,
 instead of putting getDoc inside
 saveDoc’s callback. The CouchDB
 drivers queue commands and execute them sequentially, so this
 example will not result in a race condition where the document read
 completes before the updates are saved.

Deleting documents

To delete a document from CouchDB, you need to supply both an ID and a revision number.
 Fortunately, this is easy after a read, as shown in Example 6-9.
Example 6-9. Deleting from CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var db = client.db(dbName);

db.getDoc('jdoe', function(err,doc) {
 db.removeDoc(doc._id, doc._rev);
});

After connecting to the CouchDB datastore, a getDoc command is issued here to get the
 internal ID (the _id field) and
 revision number (_rev field) for
 that document. Once this information has been obtained, a removeDoc command
 is issued, which sends a DELETE
 request to the database.

Redis

Redis is a memory-centric key-value store with persistence that will
 feel very familiar if you have experience with key-value caches such as
 Memcache. Redis is used when performance and scaling are important; in
 many cases, developers choose to use it as a cache for data retrieved
 from a relational database such as MySQL, although it is capable of much
 more.
Beyond its key-value storage capabilities, Redis provides
 network-accessible shared memory, is a nonblocking event bus, and
 exposes subscription and publishing capabilities.
Installation

As with many of the rest of the database engines, using Redis requires
 installing the database application as well as the Node drivers to
 communicate with it.
Installing Redis

Redis is available in source form. There isn’t
 anything to do in the way of configuration; just download and
 compile per the instructions on the website.
If you are using Windows, you are on your own at the time of
 this writing because Redis is not supported on Windows. Fortunately,
 there is a passionate community behind Redis development, and
 several ports have been made available for both Cygwin and native
 compilation. The port at https://github.com/dmajkic/redis compiles to a native
 Windows binary using MinGW.

Installing Redis’s Node module

The redis module is available from GitHub, but can
 be installed using npm:
npm install redis
Optionally, you may install the mimimalist hiredis library along with Node’s
 redis module.

Basic usage

Example 6-10 demonstrates a basic set and get operation against Redis by
 Node.
Example 6-10. A basic get and set operation against Redis
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

console.log("Setting key1");
client.set("key1", "My string!", redis.print);
console.log("Getting key1");
client.get("key1", function (err, reply) {
 console.log("Results for key1:");
 console.log(reply);
 client.end();
});

This example begins by creating a connection to the Redis
 database and setting a callback to handle errors. If you are not
 running an instance of the Redis server, you will receive an error
 like this:
Error Error: Redis connection to 127.0.0.1:6379 failed - ECONNREFUSED,
Connection refused
Tip
Note the lack of callbacks in this example. If you need to
 perform database reads immediately after writing, it is safer to use
 a callback, to ensure your code is executed in the correct
 sequence.

After the connection is opened, the client sets basic data for a
 string key and hash key, and then reads those values back from the
 store. Library calls have the same names as basic Redis commands (set,
 hset, get). Redis treats data
 coming through the set command as strings, and
 allows for values up to 512 MB in size.

Hashes

Hashes are objects that contain multiple keys. Example 6-11 sets a single key at a time.
Example 6-11. Setting hash values one key at a time
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

console.log("Setting user hash");
client.hset("user", "username", "johndoe");
client.hset("user", "firstname", "john");
client.hset("user", "lastname", "doe");

client.hkeys("user", function(err,replies) {
 console.log("Results for user:");
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(i + ": " + reply);
 });
 client.end();
});

Example 6-12 shows how to set multiple
 keys at the same time.
Example 6-12. Setting multiple hash values simultaneously
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

console.log("Setting user hash");
client.hmset("user", "username", "johndoe", "firstname", "john", "lastname", "doe");

client.hkeys("user", function(err,replies) {
 console.log("Results for user:");
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(i + ": " + reply);
 });
 client.end();
});

We could accomplish the same thing by providing a more
 developer-friendly object, rather than breaking it out into a list, as
 shown in Example 6-13.
Example 6-13. Setting multiple hash values using an object
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

var user = {
 username: 'johndoe',
 firstname: 'John',
 lastname: 'Doe',
 email: 'john@johndoe.com',
 website: 'http://www.johndoe.com'
}

console.log("Setting user hash");
client.hmset("user", user);

client.hkeys("user", function(err,replies) {
 console.log("Results for user:");
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(i + ": " + reply);
 });
 client.end();
});

Instead of manually supplying each field to Redis, you can pass
 an entire object into hmset, which
 will parse the fields and send the correct information to Redis.
Warning
Be careful to use hmset and
 not hset when adding multiple
 objects. Forgetting that a single object contains multiple values is
 a common pitfall.

Lists

The list type can be thought of as multiple values inside one key (see Example 6-14). Because it’s possible to push content to
 the beginning or end of a list, these collections are ideal for
 showing ordered events, such as lists of users who have recently
 received an honor.
Example 6-14. Using a list in Redis
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

client.lpush("pendingusers", "user1");
client.lpush("pendingusers", "user2");
client.lpush("pendingusers", "user3");
client.lpush("pendingusers", "user4");

client.rpop("pendingusers", function(err,username) {
 if(!err) {
 console.log("Processing " + username);
 }
 client.end();
});

The output from this example is:
Processing user1
This example demonstrates a first-in-first-out (FIFO)
 queue using Redis’s list commands. A real-world use for FIFO
 is in registration systems: the quantity of incoming registration
 requests is too great to handle in real time, so registration data is
 hived off to a queue for processing outside the main application.
 Registrations will be processed in the order they were received, but
 the primary application is not slowed down by handling the actual
 record creation and introductory tasks such as welcome emails.

Sets

Sets are used in situations where it is desirable to have
 lists of nonrepeated items, as in Example 6-15.
Example 6-15. Using Redis’s set commands
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

client.sadd("myteam", "Neil");
client.sadd("myteam", "Peter");
client.sadd("myteam", "Brian");
client.sadd("myteam", "Scott");
client.sadd("myteam", "Brian");

client.smembers("myteam", function(err, members) {
 console.log(members);
 client.end();
});

The output is:
['Brian', 'Scott', 'Neil', 'Peter']
Even though “Brian” was given to the list twice, he was added
 only once. In a real-world situation, it would be entirely possible to
 have two team members named Brian; this highlights the importance of
 ensuring that your values are unique when they need to be. Otherwise,
 the set can cause unintended behavior when you expect more elements
 than are actually present due to the removal of repeated items.

Sorted sets

Like regular sets, sorted sets do not allow duplicate members. Sorted sets
 add the concept of weighting, enabling
 score-based operations on data such as leaderboards, top scores, and
 content tables.
The producers of the American weight-loss reality show
 The Biggest Loser are real-world fans of sorted
 sets. In the 11th season of the series, the contestants were split
 into three groups based upon their age. On air, they had to perform a
 crude sorting operation by checking a number printed on everyone’s
 shirts and then line up in ascending order under the hot sun. If one
 of the contestants had brought her Node- and Redis-equipped laptop to the competition, she
 might have made a small program to do the work for them, such as the
 one in Example 6-16.
Example 6-16. Ranking a sorted list using Redis
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

client.zadd("contestants", 60, "Deborah");
client.zadd("contestants", 65, "John");
client.zadd("contestants", 26, "Patrick");
client.zadd("contestants", 62, "Mike");
client.zadd("contestants", 24, "Courtney");
client.zadd("contestants", 39, "Jennifer");
client.zadd("contestants", 26, "Jessica");
client.zadd("contestants", 46, "Joe");
client.zadd("contestants", 63, "Bonnie");
client.zadd("contestants", 27, "Vinny");
client.zadd("contestants", 27, "Ramon");
client.zadd("contestants", 51, "Becky");
client.zadd("contestants", 41, "Sunny");
client.zadd("contestants", 47, "Antone");
client.zadd("contestants", 40, "John");

client.zcard("contestants", function(err, length) {
 if(!err) {
 var contestantCount = length;
 var membersPerTeam = Math.ceil(contestantCount / 3);
 client.zrange("contestants", membersPerTeam * 0, membersPerTeam * 1 - 1,
 function(err, values) {
 console.log('Young team: ' + values);
 });
 client.zrange("contestants", membersPerTeam * 1, membersPerTeam * 2 - 1,
 function(err, values) {
 console.log('Middle team: ' + values);
 });
 client.zrange("contestants", membersPerTeam * 2, contestantCount,
 function(err, values) {
 console.log('Elder team: ' + values);
 client.end();
 });
 }
});

The output is:
Young team: Courtney,Jessica,Patrick,Ramon,Vinny
Middle team: Jennifer,John,Sunny,Joe,Antone
Elder team: Becky,Deborah,Mike,Bonnie
Adding members to a sorted set follows a pattern similar to the
 one for adding members to a normal set, with the addition of a rank.
 This allows for interesting slicing and dicing, as in this example.
 Knowing that each team consists of similarly aged individuals, getting
 three teams from a sorted list is a matter of pulling three equal
 groups straight out of the set. The number of contestants (14) is not
 perfectly divisible by 3, so the final group has only 4
 members.

Subscriptions

Redis supports the publish-subscribe (or pub-sub) messaging pattern,
 allowing senders (publishers) to issue messages into channels for use
 by receivers (subscribers) whom they know nothing about (see Example 6-17). Subscribers register their areas of
 interests (channels), and Redis pushes all relevant messages to them.
 Publishers do not need to be registered to specific channels, nor do
 subscribers need to be listening when messages are sent. Redis takes
 care of the brokering, which allows for a great deal of flexibility,
 as neither the publisher nor the subscriber needs to be aware of the
 other.
Example 6-17. Subscribing and publishing with Redis
var redis = require("redis"),
 talkativeClient = redis.createClient(),
 pensiveClient = redis.createClient();

pensiveClient.on("subscribe", function (channel, count) {
 talkativeClient.publish(channel, "Welcome to " + channel);
 talkativeClient.publish(channel, "You subscribed to " + count + " channels!");
});

pensiveClient.on("unsubscribe", function(channel, count) {
 if (count === 0) {
 talkativeClient.end();
 pensiveClient.end();
 }
});

pensiveClient.on("message", function (channel, message) {
 console.log(channel + ': ' + message);
});

pensiveClient.on("ready", function() {
 pensiveClient.subscribe("quiet channel", "peaceful channel", "noisy channel");
 setTimeout(function() {
 pensiveClient.unsubscribe("quiet channel", "peaceful channel", "noisy channel");
 }, 1000);
});

The output is:
quiet channel: Welcome to quiet channel
quiet channel: You subscribed to 1 channels!
peaceful channel: Welcome to peaceful channel
peaceful channel: You subscribed to 2 channels!
noisy channel: Welcome to noisy channel
noisy channel: You subscribed to 3 channels!
This example tells the story of two clients. One is quiet and
 thoughtful, while the other broadcasts inane details about its
 surroundings to anyone who will listen. The pensive client subscribes
 to three channels: quiet, peaceful, and noisy. The talkative client
 responds to each subscription by welcoming the newcomer to the channel
 and counting the number of active subscriptions.
About one second after subscribing, the pensive client
 unsubscribes from all three channels. When the unsubscribe command
 detects no more active subscriptions, both clients end their
 connection to Redis, and the program execution stops.

Securing Redis

Redis supports password authentication. To add a password, edit Redis’s
 configuration file and include a line for requirepass, as shown in Example 6-18.
Example 6-18. Snippet from Redis password configuration
################################## SECURITY ###################################

Require clients to issue AUTH <PASSWORD> before processing any other
commands. This might be useful in environments in which you do not trust
others with access to the host running redis-server.
#
This should stay commented out for backward compatibility and because most
people do not need auth (e.g., they run their own servers).
#
requirepass hidengoseke

Once Redis is restarted, it will perform commands only for
 clients who authenticate using “hidengoseke” as their password (Example 6-19).
Example 6-19. Authenticating Redis
var redis = require('redis'),
 client = redis.createClient();

client.auth("hidengoseke");

The auth command must occur before any other queries are issued. The
 client will store the password and use it on reconnection
 attempts.
Notice the lack of usernames and multiple passwords. Redis does
 not include user management functionality, because of the overhead it
 would incur. Instead, system administrators are expected to secure
 their servers using other means, such as port-blocking Redis from the
 outside world so that only internal, trusted users may access
 it.
Some “dangerous” commands can be renamed or removed entirely.
 For example, you may never need to use the CONFIG command. In that case, you
 can update the configuration file to either change its name to
 something obscure, or you can fully disable it to protect against
 unwanted access; both options are shown in Example 6-20.
Example 6-20. Renaming Redis commands
Change CONFIG command to something obscure
rename-command CONFIG 923jfiosflkja98rufadskjgfwefu89awtsga09nbhsdalkjf3p49

Clear CONFIG command, so no one can use it
rename-command CONFIG ""

MongoDB

Because Mongo supplies a JavaScript environment with BSON object storage (a binary adaption of JSON), reading
 and writing data from Node is extremely efficient. Mongo stores incoming
 records in memory, so it is ideal in high-write situations. Each new
 version adds improved clustering, replication, and sharding.
Because incoming records are stored in memory, inserting data into
 Mongo is nonblocking, making it ideal for logging operations and
 telemetry data. Mongo supports JavaScript functions inside queries,
 making it very powerful in read situations, including MapReduce
 queries.
Using MongoDB’s document-based storage allows you to store child
 records inside parent records. For example, a blog article and all of
 its associated comments can be stored inside a single record, allowing
 for incredibly fast retrieval.
MongoDB native driver

The native MongoDB
 driver by Christian Kvaleim provides nonblocking access to
 MongoDB. Previous versions of the module included a C/C++ BSON
 parser/serializer, which has been deprecated due to improvements in
 the JavaScript parser/serializer.
The native MongoDB driver is a good choice when you need precise
 control over your MongoDB connection.
Installation

To install the driver, run the following command:
npm install mongodb
Warning
“mongodb” is not to be confused with “mongo,” discussed
 later in this chapter.

Data types

Node’s MongoDB driver supports the data types listed in Table 6-1.
Table 6-1. Data types supported for MongoDB
	Type	Description	Example
	Array	A list of items	cardsInHand: [9,4,3]
	Boolean	A true/false condition	hasBeenRead: false
	Code	Represents a block of JavaScript code that is
 runnable inside the database	new BSON.Code('function quotient(dividend,
 divisor) { return divisor == 0 ? 0 : divident / divisor;
 }');
	Date	Represents the current date and time	lastUpdated: new Date()
	DBRef	Database reference[a]	bestFriendId: new
 BSON.DBRef('users', friendObjectId)
	Integer	An integer (nondecimal) number	pageViews: 50
	Long	A long integer value	starsInUniverse = new
 BSON.Long("10000000000000000000000000");
	Hash	A key-value dictionary	userName: {'first': 'Sam', 'last':
 'Smith'}
	Null	A null value	bestFriend: null
	Object ID	A 12-byte code used by MongoDB to index objects, represented as
 24-digit hexadecimal
 strings	myRecordId: new
 BSON.ObjectId()
	String	A JavaScript string	fullName: 'Sam Smith'
	[a] Because MongoDB is a nonrelational database, it
 does not support joins. The data type DBRef is used by
 client libraries to implement logical relational
 joins.

Writing records

As mentioned, writing records to a MongoDB collection involves creating a
 JSON object inside Node and printing it directly into Mongo. Example 6-21 demonstrates building a user object and
 saving it into MongoDB.
Example 6-21. Connecting to a MongoDB database and writing a
 record
var mongo = require('mongodb');
var host = "localhost";
var port = mongo.Connection.DEFAULT_PORT;
var db = new mongo.Db('node-mongo-examples', new mongo.Server(host, port, {}), {});

db.open(function(err,db) {
 db.collection('users', function(err,collection) {
 collection.insert({username:'Bilbo',firstname:'Shilbo'}, function(err, docs) {
 console.log(docs);
 db.close();
 });
 });
});

The output is:
[{ username: 'Bilbo',
 firstname: 'Shilbo',
 _id: 4e9cd8204276d9f91a000001 }]

Mongoose

Node has a tremendous base of support for Mongo through its
 Mongoose library. Compared to the native drivers, Mongoose is an
 expressive environment that makes models and schemas more
 intuitive.
Installation

The fastest way to get up and running with Mongoose is by installing it with
 npm:
npm install mongo
Alternatively, you can download the most recent version from
 source and compile it yourself using instructions from the Mongoose
 project’s home page at http://mongoosejs.com.

Defining schemas

When you use MongoDB, you don’t need to define a data schema as you would
 with a relational database. Whenever requirements change or you need
 to store a new piece of information, you just save a new record
 containing the information you need, and you can query against it
 immediately. You can transform old data to include default or empty
 values for the new field, but MongoDB does not require that
 step.
Even though schemas aren’t important to MongoDB, they are
 useful because they help humans understand the contents of the
 database and implicit rules for working with domain data. Mongoose
 is useful because it works using human-readable schemas, providing a
 clean interface to communicate with the database.
What is a schema? Many programmers tend to think in terms of
 models that define data structures, but don’t think much about the
 underlying databases those models represent. A table inside an SQL
 database needs to be created before you can write data to it, and
 the fields inside that table probably closely match the fields in
 your model. The schema—that is, the definition of the model inside
 the database—is created separately from your program; therefore, the
 schema predates your data.
MongoDB—as well as the other NoSQL datastores—is often said to
 be schemaless because it doesn’t require explicitly defined
 structure for stored data. In reality, MongoDB does have a schema, but it is
 defined by the data as it gets stored. You may add a new property to
 your model months after you begin work on your application, but you
 don’t have to redefine the schema of previously entered information
 in order to search against the new field.
Example 6-22 illustrates how to define a
 sample schema for an article database and what information should be
 stored in each type of model. Once again, Mongo does not enforce
 schemas, but programmers need to define consistent access patterns
 in their own programs.
Example 6-22. Defining schemas with Mongoose
var mongoose = require('mongoose')

var Schema = mongoose.Schema,
 ObjectId = Schema.ObjectId

var AuthorSchema = new Schema({
 name: {
 first : String,
 last : String,
 full : String
 },
 contact: {
 email : String,
 twitter : String,
 google : String
 },
 photo : String
});

var CommentSchema = new Schema({
 commenter : String,
 body : String,
 posted : Date
});

var ArticleSchema = new Schema({
 author : ObjectId,
 title : String,
 contents : String,
 published : Date,
 comments : [CommentSchema]
});

var Author = mongoose.model('Author', AuthorSchema);
var Article = mongoose.model('Article', ArticleSchema);

Manipulating collections

Mongoose allows direct manipulation of object collections, as
 illustrated in Example 6-23.
Example 6-23. Reading and writing records using Mongoose
mongoose.connect('mongodb://localhost:27017/upandrunning', function(err){
 if (err) {
 console.log('Could not connect to mongo');
 }
});

newAuthor.save(function(err) {
 if (err) {
 console.log('Could not save author');
 } else {
 console.log('Author saved');
 }
});

Author.find(function(err,doc){
 console.log(doc);
});

This example saves an author into the database and logs all
 authors to the screen.

Performance

When you work with Mongoose, you don’t need to maintain a connection
 to MongoDB, because all of your schema definitions and queries are
 buffered until you connect. This is a big deal, and an important way
 Mongoose serves Node’s methodology. By issuing all of the “live”
 commands at once against Mongo, you limit the amount of time and the
 number of callbacks to work with your data and greatly increase the
 number of operations your application is able to perform.

[15] MVCC stands for multi-version concurrency control.

Relational Databases

There are still many good reasons to use a traditional database with
 SQL, and Node interfaces with popular open source choices.
MySQL

MySQL has become the workhorse of the open source world for good
 reason: it provides many of the same capabilities as larger commercial
 databases for free. In its current form, MySQL is performant and
 feature-rich.
Using NodeDB

The node-db module provides a native code interface to popular database
 systems, including MySQL, using a common API that the module exposes
 to Node. Although node-db supports more than just MySQL, this section
 focuses on using MySQL in your application code. Since Oracle’s
 purchase of Sun Microsystems, the future of MySQL and its community
 has come under much speculation. Some groups advocate moving to a
 drop-in replacement such as MariaDB or switching to a different
 relational database management system (RDBMS) entirely. Although MySQL
 isn’t going away anytime soon, you need to decide for yourself whether
 it will be the right choice of software for your work.
Installation

The MySQL client development libraries are a prerequisite for the Node
 database module. On Ubuntu, you can install the libraries using apt:
sudo apt-get install libmysqlclient-dev
Using npm, install a package named db-mysql:
npm install -g db-mysql
To run the examples in this
 section, you will need to have a database called
 upandrunning with a user
 dev who has the password
 dev. The following script will create the
 database table and basic schema:
DROP DATABASE IF EXISTS upandrunning;

CREATE DATABASE upandrunning;

GRANT ALL PRIVILEGES ON upandrunning.* TO 'dev'@'%' IDENTIFIED BY 'dev';

USE upandrunning;

CREATE TABLE users(
 id int auto_increment primary key,
 user_login varchar(25),
 user_nicename varchar(75)
);

Selection

Example 6-24 selects all ID and user_name columns from a WordPress user
 table.
Example 6-24. Selecting from MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev',
 'password': 'dev',
 'database': 'upandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .select(['id', 'user_login'])
 .from('users')
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 } else {
 console.log(rows);
 }
 });
});

As you can probably guess, this executes the equivalent of the
 SQL command SELECT id, user_login FROM
 users. The output is:
{ id: 1, user_login: 'mwilson' }

Insertion

Inserting data is very similar to selection because commands are chained in the same
 way. Example 6-25 shows how to generate the
 equivalent to INSERT INTO users (
 user_login) VALUES ('newbie');.
Example 6-25. Inserting into MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev',
 'password': 'dev',
 'database': 'upandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .insert('users', ['user_login'], ['newbie'])
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 console.log(error);
 }
 else console.log(rows);
 });
});

The output is:
{ id: 2, affected: 1, warning: 0 }
The .insert command takes three parameters:
	The table name

	The column names being inserted

	The values to insert in each column

The database drivers take care of escaping and converting the
 data types in your column values, so you don’t have to worry about
 SQL injection attacks from code passing through this module.

Updating

Like selection and insertion, updates rely on chained functions to
 generate equivalent SQL queries. Example 6-26
 demonstrates the use of a query parameter to filter the update,
 rather than performing it across all records in the database
 table.
Example 6-26. Updating data in MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev',
 'password': 'dev',
 'database': 'unandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .update('users')
 .set({'user_nicename': 'New User' })
 .where('user_login = ?', ['newbie'])
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 console.log(error);
 }
 else console.log(rows);
 });
});

The output is:
{ id: 0, affected: 1, warning: 0 }
Updating a row consists of three parts:
	The .update command,
 which takes the table name (users, in this case) as a
 parameter

	The .set command, which
 uses a key-value object pair to identify the
 column names to update and their values

	The .where command,
 which tells MySQL how to filter the rows that will
 be updated

Deletion

As shown in Example 6-27, deletion
 is very similar to updates, except that in the case of
 a delete, there are no columns to update. If no where conditions are specified, all
 records in the table will be deleted.
Example 6-27. Deleting data in MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev', 'password': 'dev',
 'database': 'upandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .delete()
 .from('users')
 .where('user_login = ?', ['newbie'])
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 console.log(error);
 }
 else console.log(rows);
 });
});

The output is:
{ id: 0, affected: 1, warning: 0 }
The .delete command is
 similar to the .update command, except it does not take
 any column names or data values. In this example, wildcard
 parameters are demonstrated in the “where” clause: 'user_login = ?'. The question mark is
 replaced by the user_login
 parameter in this code before execution. The second parameter is an
 array, because if multiple question marks are used, the database
 driver will take the values in order from this parameter.

Sequelize

Sequelize is an object relational mapper (ORM) that takes much of the
 repetition out of the tasks performed in the preceding sections. You
 can use Sequelize to define objects shared between the database and
 your program, then pass data to and from the database using those
 objects rather than writing a query for every operation. This becomes
 a major time-saver when you need to perform maintenance or add a new
 column, and makes overall data management less error-prone. Sequelize
 supports installation using npm:
npm install sequelize
As the database and example user were already created for the
 examples in the previous section, it’s time to create an
 Author entity inside the database (Example 6-28). Sequelize handles the creation for you, so
 you don’t have to take care of any manual SQL at this point.
Example 6-28. Creating an entity using Sequelize
var Sequelize = require('sequelize');

var db = new Sequelize('upandrunning', 'dev', 'dev', {
 host: 'localhost'
});

var Author = db.define('Author', {
 name: Sequelize.STRING,
 biography: Sequelize.TEXT
});

Author.sync().on('success', function() {
 console.log('Author table was created.');
}).on('failure', function(error) {
 console.log('Unable to create author table');
});

The output is:
Executing: CREATE TABLE IF NOT EXISTS `Authors` (`name` VARCHAR(255), `biography`
TEXT, `id` INT NOT NULL auto_increment , `createdAt` DATETIME NOT NULL, `updatedAt`
DATETIME NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB;
Author table was created.
In this example, an Author was defined as an
 entity containing a name field and a biography field. As you can see in the
 output, Sequelize added an autoincremented primary key column, a
 createdAt column, and an updatedAt column. This is typical of many
 ORM solutions, and provides standard hooks by which Sequelize is able
 to reference and interact with your data.
Sequelize differs from the other libraries shown in this chapter
 in that it is based on a listener-driven architecture, rather than the
 callback-driven architecture used elsewhere. This means that you have
 to listen for both success and failure events after each operation,
 rather than having errors and success indicators returned with the
 operation’s results.
Example 6-29 creates two tables with a
 many-to-many relationship. The order of operation
 is:
	Set up the entity schemas.

	Synchronize the schemas with the actual database.

	Create and save a Book object.

	Create and save an Author object.

	Establish a relationship between the author and the
 book.

Example 6-29. Saving records and associations using Sequelize
var Sequelize = require('sequelize');

var db = new Sequelize('upandrunning', 'dev', 'dev', {
 host: 'localhost'
});

var Author = db.define('Author', {
 name: Sequelize.STRING,
 biography: Sequelize.TEXT
});

var Book = db.define('Book', {
 name: Sequelize.STRING
});

Author.hasMany(Book);
Book.hasMany(Author);

db.sync().on('success', function() {
 Book.build({
 name: 'Through the Storm'
 }).save().on('success', function(book) {
 console.log('Book saved');
 Author.build({
 name: 'Lynne Spears',
 biography: 'Author and mother of Britney'
 }).save().on('success', function(record) {
 console.log('Author saved.');
 record.setBooks([book]);
 record.save().on('success', function() {
 console.log('Author & Book Relation created');
 });
 });
 }).on('failure', function(error) {
 console.log('Could not save book');
 });
}).on('failure', function(error) {
 console.log('Failed to sync database');
});
To ensure that the entities are set up correctly, we do not
 create the author until after the book is successfully saved into
 the database. Likewise, the book is not added to the author until
 after the author has been successfully saved into the database. This
 ensures that both the author’s ID and the book’s ID are available
 for Sequelize to establish the association. The output is:
Executing: CREATE TABLE IF NOT EXISTS `AuthorsBooks`
 (`BookId` INT , `AuthorId` INT , `createdAt` DATETIME NOT NULL,
 `updatedAt` DATETIME NOT NULL,
 PRIMARY KEY (`BookId`, `AuthorId`)) ENGINE=InnoDB;
Executing: CREATE TABLE IF NOT EXISTS `Authors`
 (`name` VARCHAR(255), `biography` TEXT,
 `id` INT NOT NULL auto_increment , `createdAt` DATETIME NOT NULL,
 `updatedAt` DATETIME NOT NULL, PRIMARY KEY (`id`))
 ENGINE=InnoDB;
Executing: CREATE TABLE IF NOT EXISTS `Books`
 (`name` VARCHAR(255), `id` INT NOT NULL auto_increment ,
 `createdAt` DATETIME NOT NULL, `updatedAt` DATETIME NOT NULL,
 PRIMARY KEY (`id`)) ENGINE=InnoDB;
Executing: CREATE TABLE IF NOT EXISTS `AuthorsBooks`
 (`BookId` INT , `AuthorId` INT , `createdAt` DATETIME NOT NULL,
 `updatedAt` DATETIME NOT NULL,
 PRIMARY KEY (`BookId`, `AuthorId`)) ENGINE=InnoDB;
Executing: INSERT INTO `Books` (`name`,`id`,`createdAt`,`updatedAt`)
 VALUES ('Through the Storm',NULL,'2011-12-01 20:51:59',
 '2011-12-01 20:51:59');
Book saved
Executing: INSERT INTO `Authors` (`name`,`biography`,`id`,`createdAt`,`updatedAt`)
 VALUES ('Lynne Spears','Author and mother of Britney',
 NULL,'2011-12-01 20:51:59','2011-12-01 20:51:59');
Author saved.
Executing: UPDATE `Authors` SET `name`='Lynne Spears',
 `biography`='Author and mother of Britney',`id`=3,
 `createdAt`='2011-12-01 20:51:59',
 `updatedAt`='2011-12-01 20:51:59' WHERE `id`=3
Author & Book Relation created
Executing: SELECT * FROM `AuthorsBooks` WHERE `AuthorId`=3;
Executing: INSERT INTO `AuthorsBooks` (`AuthorId`,`BookId`,`createdAt`,`updatedAt`)
 VALUES (3,3,'2011-12-01 20:51:59','2011-12-01 20:51:59');

PostgreSQL

PostgreSQL is an object-oriented RDBMS originating from the University of
 California, Berkeley. The project was started by professor and project
 leader Michael Stonebraker as a successor to his earlier Ingres database system, and from 1985 to 1993 the Postgres
 team released four versions of the software. By the end of the project,
 the team was overwhelmed by support and feature requests from its
 growing number of users. After the Berkeley run, open source developers
 took over the project, replacing the original QUEL language interpreter
 with an SQL language interpreter and renaming the project to PostgreSQL.
 Since the first release of PostgreSQL 6.0 in 1997, the database system
 has gained a reputation as a feature-rich distribution that is
 especially friendly to users coming from an Oracle background.
Installation

A production-ready client for PostgreSQL, used by large sites such as
 Yammer.com, can be downloaded from the npm
 repository, as shown here:
npm install pg
pg_config is required. It can be found in
 the libpq-dev package.

Selection

Example 6-30 assumes you have created a database called upandrunning and granted permission to user
 dev with password dev.
Example 6-30. Selecting data with PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "SELECT username, firstname, lastname FROM users";
 client.query(sqlStmt, null, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

The output is:
{ rows:
 [{ username: 'bshilbo',
 firstname: 'Bilbo',
 lastname: 'Shilbo' }] }
This is a big difference from the chainable methods used by the
 MySQL driver. When you’re working with PostgreSQL, it will be up to
 you to write your own SQL queries directly.
As in previous examples, calling the end() function closes the connection and
 allows Node’s event loop to end.

Insertion, updates, and deletion

When typing the SQL queries by hand, as we have seen, you might find it
 tempting to throw data values directly into the code through string
 concatenation, but wise programmers seek out methods that protect
 against SQL injection attacks. The pg library
 accepts parameterized queries, which should be leveraged everywhere
 that you use values taken from external sources (such as forms on
 websites). Example 6-31 demonstrates an insertion, and Examples
 6-32 and
 6-33 show
 updates and deletes, respectively.
Example 6-31. Inserting into PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "INSERT INTO users(username, firstname, lastname) ";
 sqlStmt += "VALUES ($1, $2, $3)";
 var sqlParams = ['jdoe', 'John', 'Doe'];
 var query = client.query(sqlStmt, sqlParams, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

The output is:
{ rows: [], command: 'INSERT', rowCount: 1, oid: 0 }
The query command accepts the SQL statement in the first
 parameter, and an array of values in the second parameter. Whereas the
 MySQL driver used question marks for the parameter values, PostgreSQL
 uses numbered parameters. Numbering the parameters gives you a lot of
 control over how variables are constructed.
Example 6-32. Updating data in PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "UPDATE users "
 + "SET firstname = $1 "
 + "WHERE username = $2";
 var sqlParams = ['jane', 'jdoe'];
 var query = client.query(sqlStmt, sqlParams, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

Example 6-33. Deleting from PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "DELETE FROM users WHERE username = $1";
 var sqlParams = ['jdoe'];
 var query = client.query(sqlStmt, sqlParams, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

Connection Pooling

Production environments are often composed of multiple resources: web servers,
 caching servers, and database servers. The database is typically hosted on
 a separate machine from the web server, allowing horizontal growth of the
 public-facing website without the need for setting up and configuring
 complex database clusters. Application developers must therefore be aware
 of the performance implications in accessing resources and how those
 access costs affect their site’s performance.
Connection pooling is an important concept in
 web development because the performance cost of establishing a database
 connection is relatively high; creating one or more new connections for
 every request creates an unnecessary burden on a heavily trafficked site
 and will contribute to weaker performance. The solution is to maintain
 database connections inside a cache pool after they are no longer needed,
 so they can be used immediately by the next incoming request.
Many database drivers provide pooling functionality, but that
 pattern goes against Node’s “one module, one purpose” philosophy. Instead,
 Node developers should use the generic-pool module
 in front of their data layer to serve new database connections (see Example 6-34). generic-pool
 will reuse connections where possible to prevent the overhead of creating
 new database connections, and the module can be used with any data library.
Example 6-34. Using the connection pool with node-db
var mysql = require('db-mysql');
var poolModule = require('generic-pool');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev',
 'password': 'dev',
 'database': 'zborowski'
}

var pool = poolModule.Pool({
 name : 'mysql',
 create : function(callback) {
 var db = new mysql.Database(connectParams);
 db.connect(function(error) {
 callback(error, db);
 });
 },
 destroy : function(client) { client.disconnect(); },
 max : 10,
 idleTimeoutMillis : 3000,
 log : true
});

pool.acquire(function(error, client) {
 if (error) return console.log("Failed to connect");

 client.query()
 .select(['id', 'user_login'])
 .from('wp_users')
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 } else {
 console.log(rows);
 }
 pool.release(client);
 });
});

The output is:
pool mysql - dispense() clients=1 available=0
pool mysql - dispense() - creating obj - count=1
[{ id: 1, user_login: 'mwilson' }]
pool mysql - timeout: 1319413992199
pool mysql - dispense() clients=0 available=1
pool mysql - availableObjects.length=1
pool mysql - availableObjects.length=1
pool mysql - removeIdle() destroying obj - now:1319413992211 timeout:1319413992199
pool mysql - removeIdle() all objects removed
The pool works through the magic of the create and destroy functions. When a consumer attempts to
 acquire a connection, the pool will call the create function if no connections have already
 been opened. If the connection sits idle for too long (an interval
 indicated in milliseconds by the idleTimeoutMillis attribute), it is destroyed
 and its memory resources freed.
The beauty of Node’s pool is that any persistent resource can be
 represented. Databases are a natural fit, but you can just as easily write
 commands to maintain connections to an outside session cache, or even to
 hardware interfaces.

MQ Protocols

We used a mailman analogy earlier to describe Node’s event loop. If the
 mailman were to arrive at a closed gate, he would be unable to deliver his
 message; but imagine an elderly and kind groundskeeper was in the process
 of opening the gate so the mailman could pass through. Being elderly and
 somewhat frail from his years of service, it takes the groundskeeper some
 time to clear the way—time during which the mailman is unable to deliver
 any messages.
This situation is a blocking process, but it is not a permanent
 state. Evenually the groundskeeper will manage to get the gate open, and
 the mailman will go about his business. Every house the mailman reaches
 with a similar gate-opening process will slow down the overall route. In
 the context of a Node application, this type of block will seriously
 degrade performance.
In the computer realm, similar situations may be caused by sending a
 user email during a registration process, by lots of math that needs to be
 done as a result of user input, or by any situation in which the time it
 takes to complete a task exceeds a user’s normally expected wait times.
 Node’s event-driven design handles the majority of these situations for
 you by using asynchronous functions and callbacks, but when an event is
 particularly “heavy” to process, it doesn’t make sense to process it
 inside Node. Node should only take care of handling results and fast
 operations.
By way of example, consider a generic user registration process.
 When a user registers herself, the application saves a new record in the
 database, sends an email to that user, and perhaps records some statistics
 about the registration process, such as the number of steps completed or
 amount of time taken. It probably doesn’t make sense to perform all of
 those actions right away when the user hits the Submit button on your web
 page. For one thing, the email process could take several seconds (or if
 you’re unlucky, minutes) to complete, the database call may not need to
 finish before the user is welcomed, and the statistics are probably
 separate from your main application flow. In this case, you might choose
 to generate a message that notifies other parts of your application
 instead—perhaps running on a different machine entirely—that a user has
 registered. This is known as a publish-subscribe
 pattern.
Another example: suppose you have a cluster of machines running
 Node.js. When a new machine is added to the cluster, it issues a message
 requesting configuration information. A configuration server responds to
 the message with a list of configuration information the new machine needs
 to integrate into the cluster. This is known as a request-reply
 pattern.
Message queues allow programmers to publish events and move on,
 enabling improved performance through parallel processing and higher
 levels of scalability through inter-process communication channels.
RabbitMQ

RabbitMQ is a message broker that supports the advanced message queueing protocol (AMQP). It is useful in
 situations where data needs to be communicated between different
 servers, or between different processes on the same server. Written in
 Erlang, RabbitMQ is capable of clustering for high availability, and is
 fairly straightforward to install and begin using.
Installing RabbitMQ

If you’re using Linux, RabbitMQ is available in package form for most
 distributions. Anyone can download the software from http://www.rabbitmq.com and compile it from
 source.
Once RabbitMQ has been installed and is running, use
 npm to retrieve Node’s AMQP drivers:
npm install amqp

Publish and subscribe

RabbitMQ communicates using the standardized protocol AMQP. AMQP comes from
 the financial services industry, where reliable messaging is a matter
 of life or death. It provides a vendor-neutral and abstract
 specification for generic (not just financial) middleware messaging
 and is intended to solve the problem of communicating between
 different types of systems. AMQP is conceptually similar to email:
 email messages have specifications for headers and format, but their
 contents can be anything from text to photos and video. Just as two
 companies don’t need to run the same email server software to
 communicate, AMQP allows messaging between different platforms. For
 example, a publisher written in PHP can send a message to a consumer
 written in JavaScript.
Example 6-35 shows the most basic elements of
 RabbitMQ programming.
Example 6-35. AMQP/RabbitMQ usage
var connection = require('amqp').createConnection();

connection.on('ready', function() {
 console.log('Connected to ' + connection.serverProperties.product);
 var e = connection.exchange('up-and-running');

 var q = connection.queue('up-and-running-queue');

 q.on('queueDeclareOk', function(args) {
 console.log('Queue opened');
 q.bind(e, '#');

 q.on('queueBindOk', function() {
 console.log('Queue bound');

 q.on('basicConsumeOk', function() {
 console.log("Consumer has subscribed, publishing message.");
 e.publish('routingKey', {hello:'world'});
 });
 });

 q.subscribe(function(msg) {
 console.log('Message received:');
 console.log(msg);
 connection.end();
 });
 });
});

The output is:
Connected to RabbitMQ
Queue opened
Queue bound
Consumer has subscribed, publishing message.
Message received:
{ hello: 'world' }
The createConnection command
 opens a connection to the RabbitMQ message broker, which
 in this case defaults (as per AMQP) to localhost on port 5672. If
 necessary, this command can be overloaded; for example:
createConnection({host: 'dev.mycompany.com', port: 5555})
Next, a queue and exchange are defined. This step is not
 strictly required, because AMQP brokers are required to provide a
 default exchange, but by specifying up-and-running as the exchange name, you
 insulate your application from other exchanges that could be running
 on the server. An exchange is an entity that receives messages and
 passes them forward to attached queues.
The queue doesn’t do anything by itself; it must be bound to an
 exchange before it will do anything. The command q.bind(e, '#') instructs AMQP to attach the
 queue named up-and-running-queue to the exchange
 named up-and-running, and to listen for all
 messages passed to the exchange (the '#' parameter). You could easily change the
 # to some specific key to filter
 out messages.
Once the queue and exchange have
 been declared, an event is set up for basicConsumeOk, which is an event generated by the AMQP
 library when a client subscribes to a queue. When that happens, Node
 will publish a “hello world” message to the exchange under a filtering
 key of routingKey. In this example,
 the filter key doesn’t matter, because the queue is bound to all keys
 (via the bind('#') command), but a
 central tenet of AMQP is that the publisher is never aware of which
 subscribers (if any) are connected, so a routing key is supplied in
 any case.
Finally, the subscribe
 command is issued. The callback function that is passed as its
 argument is called every time an eligible message is received by the
 exchange and passed through to the queue. In this case, the callback
 causes the program to end, which is good for demonstration purposes,
 but in “real” applications it’s unlikely you would do this. When the subscribe command is successful,
 AMQP dispatches the basicConsumeOk event, which triggers the publishing of
 the “hello world” message and subsequently ends the demonstration
 program.

Work queues

Queues are useful when long-running tasks take longer than is acceptable to the
 user (such as during a web page load) or when the task would otherwise
 block the application. Using RabbitMQ, is it possible to split tasks
 among multiple workers and ensure that tasks are completed even if the
 first worker that handles them dies mid-process (Example 6-36).
Example 6-36. Publishing long jobs with AMQP
var connection = require('amqp').createConnection();
var count = 0;

connection.on('ready', function() {
 console.log('Connected to ' + connection.serverProperties.product);
 var e = connection.exchange('up-and-running');

 var q = connection.queue('up-and-running-queue');

 q.on('queueDeclareOk', function(args) {
 console.log('Queue opened');
 q.bind(e, '#');

 q.on('queueBindOk', function() {
 console.log('Queue bound');

 setInterval(function(){
 console.log('Publishing message #' + ++count);
 e.publish('routingKey', {count:count});
 }, 1000);
 });
 });
});

This example is a modified version of the straight
 publish-subscribe example from the previous section, but it is just a
 publisher, so the event listener for subscribing is gone. In its place
 is an interval timer that publishes a message to the queue every 1,000
 milliseconds (that is, every second). The message contains a count variable that is incremented during
 each publish. This code can be used to implement a simple worker
 application. Example 6-37 shows the corresponding
 client.
Example 6-37. Processing long jobs with AMQP
var connection = require('amqp').createConnection();

function sleep(milliseconds)
{
 var start = new Date().getTime();
 while (new Date().getTime() < start + milliseconds);
}

connection.on('ready', function() {
 console.log('Connected to ' + connection.serverProperties.product);

 var e = connection.exchange('up-and-running');
 var q = connection.queue('up-and-running-queue');

 q.on('queueDeclareOk', function(args) {
 q.bind(e,'#');

 q.subscribe({ack:true},function(msg) {
 console.log('Message received:');
 console.log(msg.count);
 sleep(5000);
 console.log('Processed. Waiting for next message.');
 q.shift();
 });
 });
});

The client works by taking a message from the queue, processing
 it (in this example, sleeping for 5 seconds), and then taking the next
 message from the queue and repeating. Although there is no “sleep”
 function in Node, you can fake it with a blocking loop, as done
 here.
There is a problem. Recall that the publisher posts a message to
 the queue every second. Because the client takes 5 seconds to process
 each message, it will very quickly get far behind the publisher. The
 solution? Open another window and run a second client, and now the
 messages are processed twice as fast. It’s still not quick enough to
 handle the volume produced by the publisher, but adding more clients
 can further spread the load and keep the unprocessed messages from
 falling behind. This setup is referred to as worker
 queues.
Worker queues function by round-robining the message publishing
 between clients connected to a named queue. The {ack:true} parameter to the subscribe
 command instructs AMQP to wait for the user to acknowledge that the
 processing has been completed for a message. The shift method provides that acknowledgment by shifting the message off
 the queue and removing it from service. This way, if the worker
 happens to die while processing a message, the RabbitMQ broker will
 send the message to the next available client. There is no timeout; as
 long as the client is connected, the message will be removed from
 play. Only when the client disconnects without acknowledging a message
 will it be sent to the next client.
Warning
A common “gotcha” occurs when developers forget to use the
 q.shift() command. If you forget
 it, your program will continue to function as normal, but as soon as
 your client disconnects, the server will place all of the messages
 the client processed back onto the queue.
Another side effect is that the memory usage by RabbitMQ will
 gradually rise. This is because, although the messages are removed
 from active duty on the queue, they are kept in memory until they
 are acknowledged and deleted by the client.

Chapter 7. Important External Modules

Although the Node core is extremely useful, many of its abstractions
 are very low-level. So a lot of development in Node is done using higher
 abstraction libraries built by the community, similar to how Ruby-based
 websites use Rails or Sinatra rather than custom-written Ruby code. Although these
 modules aren’t technically Node itself, they are extremely important for
 getting things done, and many of them are mature projects in themselves.
 This chapter explores some of the most popular and useful community modules
 for Node.
Express

Express, an MVC framework for Node, is probably the most widely used
 Node module. It was inspired by the Sinatra framework for Ruby and enables
 a lot of features that make it very easy to throw together a website with
 Node.
A Basic Express App

Express works by defining page handlers for
 routes. The routes can be as simple as a path, or
 much more complex. The handlers could be as simple as emitting “Hello,
 world” or as complex as a whole page-rendering system that interacts
 with a database. You’ll need to install Express using npm install express before you can start using it. Example 7-1
 shows how to create a simple application with Express.
Example 7-1. Creating a simple Express app
var express = require('express');

var app = express.createServer();

app.get('/', function(req, res) {
 res.send('hello world');
});

app.listen(9001);

This code is obviously pretty similar to http in terms of creating a server. However, a few things are a
 lot more straightforward. First, app.get() is creating a response to a specific
 route—in this case, '/'. Unlike a
 regular http server, which provides a
 listener for generic requests, Express offers a listener for specific
 HTTP verbs. So get() will answer only
 GET requests, put()
 will answer only PUT requests, etc. Combine that with the route we
 specified, and you immediately have some powerful functionality. A
 typical Express program specifies a series of expressions, and Express
 matches the route in each incoming request against each expression in
 turn, executing the code associated with the first expression that
 matches.
Note
It is possible to have Express skip over expressions under
 certain conditions, using the next() function discussed later in this
 section.

The next thing to notice in the example is how we responded. We
 still use the response object as in
 http, but Express has provided a
 send() method. We didn’t need to provide any HTTP headers or call
 end(). The send() method figures out things such as the
 HTTP headers that should be sent and includes end() automatically.
The point here is that Express takes the basic structure laid out
 by http and enriches it significantly
 with a lot of functionality to create real applications quickly. You
 shouldn’t have to create routing code every time you want to deal with
 HTTP requests, so Express takes care of that stuff.

Setting Up Routes in Express

Routes are one of the core concepts in Express, and one of the things that make
 it really useful. As mentioned in the previous section, routes are
 applied to an HTTP verb via a method with the same name, such as
 get() or post(). The routes consist of a simple string
 or a regex and can contain variable declarations, wildcards, and
 optional key flags. Let’s take a look at some examples, starting with
 Example 7-2.
Example 7-2. Route with variable and optional flag
var express = require('express');
var app = express.createServer();

app.get('/:id?', function(req, res) {
 if(req.params.id) {
 res.send(req.params.id);
 } else {
 res.send('oh hai');
 }
});

app.listen(9001);

This example shows a route that includes an optional variable
 called id. The variable name does not
 have any special meaning to Express, but it will be available to use
 inside the callback function. In Express routes, you use a preceding
 colon (:) to mark a variable you want
 preserved. The string passed in the URL will be captured into the
 variable. All routes in Express are actually turned into regular
 expressions (more on this later) and tokenized[16] for use by application code.[17] The regex used will match up to the next known token in
 your route. Notice that this variable is also optional. If you run this
 program and go to http://localhost:9001, you’ll
 just get “oh hai” back because you did not put a slash after the port,
 and the variable part of the route was optional. If you append anything
 else (so long as you don’t include another /), you’ll get it back as your response body;
 matching the id token, it will be
 stored in req.params.id.
Express routes will always treat / as a token, but they will also treat it as
 optional if it terminates the request. So our route /:id? will match localhost, localhost/ localhost/tom, and localhost/tom/, but not
 localhost/tom/tom.
Routes can also use wildcards, as shown in Example 7-3. (*) will
 match anything except the token following it (nongreedy regex
 matching).
Example 7-3. Using wildcards in routes
app.get('/a*', function(req,res) {
 res.send('a');
 //matches /afoo /a.bar /a/qux etc.
});

app.get('/b*/c*d', function(req,res) {
 res.send('b');
 //matches /b/cd /b/cfood /b//c/d/ etc.
 //does not match /b/c/d/foo
});

app.get('*', function(req, res) {
 res.send('*');
 //matches /a /c /b/cd /b/c/d /b/c/d/foo
 //does not match /afoo /bfoo/cbard
});

When you use a wildcard to make routes, any tokens between the
 wildcards must match, unless they are optional. Wildcards are often used
 for things such as filenames containing periods (.). It’s also important to notice that unlike
 in many regular expression languages, * does not mean zero or more characters; it
 means one or more characters. A forward slash (/) can be considered a character when matching
 with wildcards.
Another important thing to note is that routes are ordered.
 Multiple routes can match a given URL, but only the first one that
 matches will trigger the associated activity. This means that the order
 in which routes are defined is very significant. In the previous
 example, the general wildcard will catch everything that wasn’t already
 caught by a previous route, even though it matches all of them.
You can also use regexes to define routes (Example 7-4).
 If you do this, router won’t process
 the regex any further. Because you still might want to get variables out
 of the URL, you can use captures to define them.
Example 7-4. Using a regex to define a route
var express = require('express');
var app = express.createServer();

app.get(/\/(\d+)/, function(req, res) {
 res.send(req.params[0]);
});

app.listen(9001);

In this example, the regex will match only URLs that start with a
 number (\d matches any digit, and the
 + allows one or more to match). This
 means that / will not match, but
 /12 will. However, the regex checking
 uses RegExp.match(), which
 finds a regex inside a larger string. This means that /12abc will also match. If you want to make
 sure that a regex represents the complete route, use the $ token at the end of the regex, such as
 /\/(\d+)$/. $ checks for the end of the line, so the regex
 will match only if it terminates. You probably want to keep the default
 Express behavior of loosely matching a / at the end of URLs, though. Do this with
 \/?$ instead of just $, to allow an optional / at the end of the string.
Notice how we accessed the capture in our regex in Example 7-4. If you use a regex for your route, you can use
 req.params as an array to access the
 captures as variables. This also works when router converts your route to a regex, but you
 probably want to use the variable names in that case, as we showed
 earlier. You can also use regex to make better-named variables in routes
 by constraining what will match that variable, as in Example 7-5.
Example 7-5. Use regex to be more specific about variable types
var express = require('express');
var app = express.createServer();

app.get('/:id(\\d+)', function(req, res) {
 res.send(req.params[0]);
});

app.listen(9001);

This example constrains the id
 parameter to numbers by asking route
 to match only numbers with the regex \d+. The capture will still be exposed as
 req.params.id, but it will match only
 if the regex matched. Because the regex is highly flexible, you can use
 this technique to capture or restrict URL matching to pretty much
 anything while still getting named variables to use. Remember to escape
 any backslash (\) you use in
 JavaScript strings. (This was not necessary in Example 7-4, because it used a regular expression directly
 rather than inside a string.)
Sometimes there are multiple routes that match a URL that you want
 to use in various circumstances. We’ve already seen that the order in
 which routes are defined is significant in determining which will be
 selected. However, it is possible to pass control back to the next route
 if some criteria isn’t met (Example 7-6). This is a
 great option for a number of scenarios.
Example 7-6. Passing control to another route
app.get('/users/:id', function(req, res, next){
 var id = req.params.id;

 if (checkPermission(id)) {
 // show private page
 } else {
 next();
 }
});

app.get('/users/:id', function(req, res){
 // show public user page
});

We’ve added another argument to the function that handles the
 routes. The next argument tells the
 router middleware (we’ll discuss
 middleware shortly in more depth) to call the next route. The argument is always passed to
 the callback, but this example is the first where we choose to name and
 use it. In this case, we can check the id to see whether the user has permission to
 view the private version of this page, and if not, send her to the next
 route, which has the public version.
This combines really well with app.all(), the method that describes all HTTP
 verbs. As Example 7-7 demonstrates, we can capture
 across a range of HTTP verbs and routes, apply some logic, and then pass
 control onto more specific routes.
Example 7-7. Using app.all() to select multiple HTTP verbs and routes and
 then pass control back
var express = require('express');

var app = express.createServer();

var users = [{ name: 'tj' }, { name: tom }];

app.all('/user/:id/:op?', function(req, res, next){
 req.user = users[req.params.id];

 if (req.user) {
 next();
 } else {
 next(new Error('Cannot find user with ID: ' + req.params.id));
 }
});

app.get('/user/:id', function(req, res){
 res.send('Viewing ' + req.user.name);
});

app.get('/user/:id/edit', function(req, res){
 res.send('Editing ' + req.user.name);
});

app.put('/user/:id', function(req, res){
 res.send('Updating ' + req.user.name);
});

app.get('*', function(req, res){
 res.send('Danger, Will Robinson!', 404);
});

app.listen(3000);

This example is similar to Example 7-6, in that
 we are validating whether a user exists before passing on control.
 However, we are not doing this only for all the subsequent routes; we
 are also doing it across all HTTP verbs. Normally when only one route
 matches, this doesn’t make any difference, but it’s important to note
 how you can pass state between routes.
When the req.user attribute is
 added in the app.all() method, it is
 available in all the subsequent methods because the middleware owns the
 request object. When each callback is fired, the variable .req is really a pointer to the request object
 owned by the middleware, and any changes to the request object are
 visible to every other function and route using the middleware.
Example 7-8 shows how a file extension can be
 made either optional or mandatory within a specific range. In the first
 get(), the :format parameter is optional (as denoted by
 the question mark), so Express will respond to requests for a user by
 ID, regardless of which format has been requested. It is up to the
 programmer to capture the formats (JSON, XML, text, etc.) via a switch
 statement in order to do special processing.
In the second example, the :format parameter
 looks for json or xml as predefined file types. If those are not
 found, the book request will not be processed, regardless of whether the
 :id parameter is valid. This gives us
 greater control over which requests are responded to and ensures that
 only formats for which a view can be generated are available to
 respond.
Example 7-8. Optional and required route extensions
var express = require('express');
var app = express.createServer();

app.get('/users/:id.:format?', function(req, res) {
 res.send(req.params.id + "
" + req.params.format);
 // Responds to:
 // /users/15
 // /users/15.xml
 // /users/15.json
});

app.get('/books/:id.:format((json|xml))', function(req, res) {
 res.send(req.params.id + "
" + req.params.format);
 // Responds to:
 // /books/7.json
 // /books/7.xml
 // But NOT to:
 // /books/7
 // /books/7.txt
});

app.listen(8080);

Handling Form Data

Most examples have demonstrated the GET verb, but Express is built to support
 RESTful architecture in the style of Ruby on Rails. Using hidden fields
 inside web forms, you can indicate whether a form’s intention is to PUT (replace data), POST (create data), DELETE (remove data) or GET (retrieve data). See Example 7-9.
Example 7-9. Handling forms using Express
var express = require('express');
var app = express.createServer();

app.use(express.limit('1mb'));
app.use(express.bodyParser());
app.use(express.methodOverride());

app.get('/', function(req, res) {
 res.send('<form method="post" action="/">' +
 '<input type="hidden" name="_method" value="put" />' +
 'Your Name: <input type="text" name="username" />' +
 '<input type="submit" />' +
 '</form>');
});

app.put('/', function(req, res) {
 res.send('Welcome, ' + req.body.username);
});

app.listen(8080);

This simple application demonstrates the use of a form. First, an
 Express application is created and configured to use the bodyParser() and methodOverride() functions. The bodyParser() function parses the request body sent by the web browser and
 translates form variables into objects usable by Express. The methodOverride() function allows the hidden
 _method variable in form posts to
 override the GET method in favor of the RESTful method types.
The express.limit() function instructs Express to limit the length of request
 bodies to 1 MB. This is an important security consideration because
 otherwise it would be possible to send a large post to the application
 to be processed by bodyParser(),
 making it very easy to launch a denial-of-service (DoS) attack.
Note
Be sure to call methodOverride() after bodyParser(). Otherwise, the form variables
 will not be processed when Express checks to see whether it should be
 responding to a GET or some other command.

Template Engines

Clearly, it isn’t practical to continue writing HTML directly in application
 code. For starters, it is unreadable and unmaintainable; but more
 importantly, it is bad form to mix application logic with presentation
 markup. Template engines allow developers space to focus on how to
 present information to the user—often in different formats, such as
 screen or mobile—and inject specific data separately from
 processing.
Express is minimalist and does not come with built-in template
 engines, opting instead for community-supported modules. Some of the
 more popular engines are Haml, Jade, Embedded Javascript (EJ), CoffeeKup (a
 CoffeeScript-based engine), and jQuery templates.
In Example 7-10, an application is set up to
 render a simple Jade template.
Example 7-10. Using a basic Jade template in Express
var express = require('express');
var app = express.createServer();

app.get('/', function(req, res) {
 res.render('index.jade', { pageTitle: 'Jade Example', layout: false });
});

app.listen(8080);

To run this example, you will need to install the Jade template
 engine:
npm install jade
The first thing to notice is the lack of any reference to the Jade
 library. Express parses the view template’s filename and uses the
 extension (in this case, the jade
 from index.jade) to determine which
 view engine should be used. Therefore, it is possible to
 mix and match different view engines into the same project. You are not
 limited to using only Jade or only CoffeeKup, for example; you can use
 both.
This example passes two arguments into the render function. The
 first is the name of the view to display, and the second contains
 options and variables needed for the rendering. We’ll come back to the
 filename in a minute. There are two variables passed into the view in
 this example: pageTitle and layout. The layout variable
 is interesting in this case because it is set to false, which instructs the Jade view engine to
 render the contents of index.jade
 without first going through a master layout file (more on this
 later).
pageTitle is a local variable
 that will be consumed by the contents of the view. It represents the
 point of templating: whereas the HTML is specified mostly in index.jade file, that file has a placeholder
 named pageTitle where Jade will plug
 in the value we provide.
The file (index.jade) from
 the first parameter needs to be placed in the views folder (/views/index.jade) and looks like Example 7-11.
Example 7-11. A basic Jade file for Express
!!! 5
html(lang="en")
 head
 title =pageTitle
 body
 h1 Hello, World
 p This is an example of Jade.
After Jade plugs in the value for pageTitle that we supplied, the page renders
 as:
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Jade Example</title>
 </head>

 <body>
 <h1>Hello, World</h1>
 <p>This is an example of Jade.</p>
 </body>
</html>

The Jade template aims to make the page more succinct by paring
 down the markup to the bare minimum. Instead of the closing tags you may
 be accustomed to in HTML, Jade uses indentation to communicate position
 within the page’s hierarchy, resulting in a clean and generally
 easy-to-read file.
The very first line, "!!! 5",
 identifies the content type as HTML5, manifesting as an HTML5 doctype in
 the resulting output. The default document types supported by Jade are
 5, xml, default (which is XHTML 1.0 Transitional),
 transitional (the default), strict, frameset, 1.1, basic,
 and mobile. You can supply your own,
 though, such as doctype html PUBLIC
 "-//W3C//DATA XHTML Custom 1.10a//DE".
Look in the title tag on the
 fourth line of the Jade input. The string =pageTitle is interpreted by Jade as “insert
 the contents of the variable named pageTitle here.” In the resulting output, this
 becomes Jade Example, the value
 provided by the previous application code.
As we mentioned, there are many other templating options, each of
 which does essentially what Jade does, but with different syntax
 and conventions.
Layouts and partial views

Layouts allow views to share common structural elements in your site, providing an
 even greater separation of content and data. By standardizing parts of
 the layout, such as navigation, header, and footer, you can focus your
 development efforts on the actual content for each view.
Example 7-12 takes the view engine concept already discussed and turns it into
 a “real” website.
Example 7-12. Defining global template engines in Express
var express = require('express');
var app = express.createServer();

app.set('view engine', 'jade');

app.get('/', function(req, res) {
 res.render('battlestar')
});

New to this example is the set command on the “view engine” parameter.
 The Jade view engine will now be considered the default by Express,
 although it is still possible to override it in the render
 method.
The render function is markedly different. Because the Jade
 engine has been set as the default view engine, this example does not
 need to specify the full filename, so battlestar actually refers to /views/battlestar.jade. The layout: false parameter from Example 7-10 is no longer needed, because this time
 Express will be making use of this layout file located at views/layout.jade, shown in Example 7-13.
Example 7-13. A Jade layout file in Express
html
 body
 h1 Battlestar Galactica Fan Page
 != body

The layout file is very similar to the view file created
 earlier, but in this case there is a special body variable. We’re talking here about the
 != body line; please don’t
 confuse that with the body keyword
 near the top of the file. The second body is not the name of a variable passed in
 through the application code, so where does it come from?
When the layout option is set
 to true (the default) in Express,
 the render method works by parsing
 the contents of the first parameter and passing the rendered output to
 the layout as a variable called body. The battlestar.jade file looks like Example 7-14.
Example 7-14. A Jade partial view in Express
p Welcome to the fan page.

This is called a partial view because it does not contain the
 full content needed to generate a page, and it needs to be combined
 with a layout to become useful output. The final web browser output
 for all this work looks like this:
<html>
 <body>
 <h1>Battlestar Galactica Fan Page</h1>
 <p>Welcome to the fan page.</p>
 </body>
</html>
Partial views are powerful because they allow developers to
 focus on the specific content being displayed, rather than the web
 page as a whole. This means the contents don’t have to be tied to a
 web page and can be output to mobile web pages, AJAX requests (for
 in-place page refreshes), and more.
Warning
Be careful not to confuse the variable named body, which contains the actual content of
 your view, with the keyword body,
 which is an HTML tag used by the web browser.

Middleware

Some of the examples up to this point have included a rather
 innocuous-looking function: app.use(). This function
 invokes the Connect library and exposes many powerful tools that make it simple to add
 functionality. Now it's time to take a step back and examine what all
 this glue—known as middleware—is, and why it is so important to developing with
 Express.
Although it might sound like one of those obscure buzzwords that
 programmers like to use when they want to appear “in the know,”
 middleware—as we’ve mentioned in previous chapters—refers to a piece of
 software that acts as a link between two other programs, typically
 between a higher-level application and a wider network. In the real
 world, middleware is analogous to the telephone lines you might find in
 your home or office building. All telephones (applications) connect to
 the same telephone lines (middleware), which in turn broker
 communication from the application to the underlying network.
Your phone may or may not support call waiting or voicemail, but
 the line behaves the same, regardless of which features are available to
 you. You may have voicemail built into your phone, or it may be provided
 by your telco (network); in either case, the line itself is happy to
 support your usage.
Connect provides the middleware functionality used by Express (see
 Table 7-1). As shown in Figure 7-1, Connect extends Node’s base http module, giving it all of the
 base capabilities provided by http, upon which it
 adds its own functionality. Express in turn inherits from Connect,
 gaining its abilities and, by extension, http’s as
 well. Any module plugged into
 Connect is automatically made available to Express. Connect is the
 middle layer between Express and the network, and as such exposes and
 uses a myriad of features that may not be used directly by Express, but
 are available all the same. Finally, because Express derives itself from
 Connect, most of Connect’s functionality is available directly from
 Express, allowing you to issue commands such as
 app.bodyParser() rather than
 connect.bodyParser().
[image: Express’s middleware stack]

Figure 7-1. Express’s middleware stack

Table 7-1. Middleware bundled with Connect
	Name	Description
	basicAuth	Accepts a callback function that accepts username and
 password parameters, then returns true if the credentials are
 permitted access to the site.
	bodyParser	Parses the contents of the request body.
	compiler	Compiles .sass and
 .less files to CSS and CoffeeScript files to JavaScript.
	.cookieParser	Parses the contents of cookies sent by the web browser in the
 request headers.
	csrf	Provides cross-site request forgery (CSRF) protection by mutating the request through an
 additional form variable. Requires session
 and bodyParser middleware.
	directory	Prints directory listings inside a root path, with
 options to display hidden files and icons.
	errorHandler	Traps errors encountered by the application and provides
 options to log errors to stderr or request output in multiple
 formats (JSON, plain text, or HTML).
	favicon	Serves favicon files from memory, with cache
 control.
	limit	Limits the size of requests accepted by the server to
 protect against DoS attacks.
	logger	Logs requests to output or a file, in multiple formats,
 either on response (default) or on request. Optional buffer size
 controls how many requests are collected before writing to
 disk.
	methodOverride	Combine with bodyParser to provide
 DELETE and PUT methods along with POST. Allows for more explicit
 route definitions; for example, use app.put()
 rather than detecting the user’s intention from
 app.post(). This technique enables RESTful
 application design.
	profiler	Typically placed before all other middleware,
 profiler records the response time and memory
 statistics for requests.
	query	Parses query strings and populates the
 req.query parameter.
	responseTime	Populates the X-Response-Time header with the time (in milliseconds) to generate a
 response.
	router	Provides advanced routing (discussed in Setting Up Routes in Express)
	session	The session manager for persisting user data across
 requests.
	static	Enables streaming of static files from a root directory.
 Allows for partial downloads and custom expiry aging.
	staticCache	Adds a caching layer to the static middleware, keeping
 the most popular downloaded files in memory for greatly improved
 response times.
	vhost	Enables multiple sites for different vhosts on a single machine.

Middleware factories

By now you may have noticed that middleware consists of little more
 than functions that are executed sequentially by Express. JavaScript
 closures give us a lot of power to implement the factory
 pattern[18] inside Node, which can be exploited to provide
 contextual functionality to your web routes.
Express’s routing functions use internal middleware during their
 processing cycle, which you can override to add extra
 functionality—for example, to add custom headers to your HTML output.
 Let’s look at Example 7-15 and see how we can use a
 middleware factory to intercept a page request and enforce role-based
 authentication.
Example 7-15. Middleware factories in Express
var express = require('express');
var app = express.createServer(
 express.cookieParser(),
 express.session({ secret: 'secret key' })
);

var roleFactory = function(role) {
 return function(req, res, next) {
 if (req.session.role && req.session.role.indexOf(role) != -1) {
 next(); } else {
 res.send('You are not authenticated.');
 }
 }
};

app.get('/', roleFactory('admin'), function(req, res) {
 res.send('Welcome to Express!');
});

app.get('/auth', function(req, res) {
 req.session.role = 'admin';
 res.send('You have been authenticated.');
});

app.listen(8080);

Right off the bat, if you visit
 http://localhost:8080/ you will receive the
 message “You are not authenticated.” However, if you look at the
 contents of the route for '/', you will notice that
 the actual page contents are 'Welcome to Express!'.
 The second parameter, roleFactory('admin'), launched before the
 page was displayed and detected that there was no role property in your session, so it output
 its own message and stopped the page execution.
If you visit http://localhost:8080/auth
 followed by http://localhost:8080/ you will
 receive the “Welcome to Express!” message. In this circumstance, the
 /auth URL attached the 'admin'
 variable to your session’s role property, so when
 roleFactory was executed it passed the execution
 control to next(), which is the
 app.get('/') function.
Therefore, it could be said that by using internal middleware,
 we changed the order of execution to:
	roleFactory('admin')

	app.get('/')

What if we wanted to authenticate based on more than one role?
 In that case, we could change the route to:
var powerUsers = [roleFactory('admin'),roleFactory('client')];
app.get('/', powerUsers, function(req, res) {
 res.send('Welcome to Express!');
});
Because we passed an array as the middleware, we have limited
 the page execution to users belonging to the “admin” and “client”
 roles, and changed the order of execution to:
	roleFactory('admin')

	roleFactory('client')

	app.get('/')

Because each roleFactory demands that the
 role be present in the session, the user must be both a “client” and
 an “admin” in order to access the page.

[16] Tokenized refers to the process of
 breaking apart a string of text into chunks (or words) called
 tokens.

[17] This functionality is actually part of a submodule of Express
 called router. You can look at
 the source code of router to see
 the details of routing regexes.

[18] A factory is an object that creates
 other objects with specific parameters, whereas creating those
 objects manually would involve a lot of repetitive or complex
 program code.

Socket.IO

Socket.IO is a simple little library that’s a lot like Node’s core net library. Socket.IO allows you to send
 messages back and forth with browser clients that connect with your Node
 server, using an efficient, low-level socket mechanism. One of the nice
 things about the module is that it provides a shared interface between the
 browser and the server. That is, you can write the same JavaScript on both
 in order to do messaging work once you have a connection
 established.
Socket.IO is so named because it supports the HTML5 WebSockets
 standard on browsers that support it (and have it enabled). Fortunately,
 the library also supports a number of fallbacks:
	WebSocket

	WebSocket over Flash

	XHR Polling

	XHR Multipart Streaming

	Forever Iframe

	JSONP Polling

These options ensure that you’ll be able to have some kind of
 persistent connection to the browser in almost any environment. The
 Socket.IO module includes the code to power these connection paths on both
 the browser and the server side with the same API.
Instantiating Socket.IO is as simple as including the module and
 creating a server. One of the things that’s a little different about
 Socket.IO is that it requires an HTTP server as well; see Example 7-16.
Example 7-16. Creating a Socket.IO server
 var http = require('http'),
 io = require('socket.io');

server = http.createServer();
server.on('request', function(req, res){
 //Typical HTTP server stuff
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World');
});

server.listen(80);

var socket = io.listen(server);

socket.on('connection', function(client){
 console.log('Client connected');
});

The HTTP server in this example could do anything. In this case,
 we simply return “Hello World.” However, Socket.IO doesn’t care what the
 HTTP server will do; it simply wraps its own event listener around all
 requests to your server. This listener will look for any requests for
 Socket.IO’s client libraries and service these requests. It passes on all
 others to be handled by the HTTP server, which will function as
 usual.
The example creates a socket.io
 server by calling io.listen(),
 which is a factory method for the Listener
 class. listen() takes a function as an
 argument, which it uses as a callback when a client connects to the
 server. Because the sockets are persistent connections, you aren’t dealing
 with a req and res object as you do with an HTTP server. As
 with net, you need to use the passed
 client object to communicate with each
 browser. Of course, it’s also important to have some code in the browser
 (Example 7-17) to interact with the
 server.
Example 7-17. A small web page to interact with a Socket.IO server
<!DOCTYPE html>
<html>
 <body>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 var socket = io.connect('http://localhost:8080');
 socket.on('message', function(data){ console.log(data) })
 </script>
 </body>
</html>

This simple page starts by loading the necessary Socket.IO client
 library directly from the Node server, which is localhost on port 8080 in
 this case.
Note
Although port 80 is the standard HTTP port, port 8080 is more
 convenient during development because many developers run web servers
 locally for testing that would interfere with Node’s work. In addition,
 many Linux systems have built-in security policies preventing
 nonadministrator users from using port 80, so it is more convenient to
 use a higher number.

Next, we create a new Socket
 object with the hostname of the Socket.IO server we are connecting to. We
 ask the Socket to connect with socket.connect(). Then we add a listener for the message event. Notice how the API is like a Node
 API. Whenever the server sends this client a message, the client will
 output it to the browser’s console window.
Now let’s modify our server to send this page to clients so we can
 test it (Example 7-18).
Example 7-18. A simple Socket.IO server
 var http = require('http'),
 io = require('socket.io'),
 fs = require('fs');

var sockFile = fs.readFileSync('socket.html');

server = http.createServer();
server.on('request', function(req, res){
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(sockFile);
});

server.listen(8080);

var socket = io.listen(server);

socket.on('connection', function(client){
 console.log('Client connected');
 client.send('Welcome client ' + client.sessionId);
});

The most striking change in this example is the addition of the
 fs.readFileSync function, which brings
 the web page’s external file into the socket server. Now instead of
 responding to web browser requests with “Hello World,” the Node server
 will respond with the contents of socket.html.
 Because readFileSync is a
 synchronous function, it will block Node’s event loop until the file is
 read, ensuring that the file is ready to be delivered to clients
 immediately when the server becomes available for connections.
Now whenever anyone requests anything from the server, unless it is
 a request to the Socket.IO client library, he will get a copy of
 socket.html (which might be the code in Example 7-17). The callback for connections has been
 extended to send a welcome message to clients, and a client running the
 code from Example 7-18 might get a message in its
 console like Welcome client
 17844937089830637. Each client gets its own sessionId. Currently, the ID is an integer
 generated using Math.random().
Namespaces

Creating websockets as shown is fine when you are in full control of your
 application and architecture, but this will quickly lead to conflicts
 when you are attaching them to an existing application that uses sockets
 or when you are writing a service to be plugged into someone else’s
 project. Example 7-19 demonstrates how namespaces
 avoid this problem by effectively dividing Socket.IO’s listeners into
 channels.
Example 7-19. A modified web page to interact with Socket.IO
 namespaces
<!DOCTYPE html>
<html>
 <body>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 var upandrunning = io.connect('http://localhost:8080/upandrunning');
 var weather = io.connect('http://localhost:8080/weather');
 upandrunning.on('message', function(data){
 document.write('

Node: Up and Running Update
');
 document.write(data);
 });
 weather.on('message', function(data){
 document.write('

Weather Update
');
 document.write(data);
 });
 </script>
 </body>
</html>

This updated socket.html makes two Socket.IO
 connections, one to
 http://localhost:8080/upandrunning and the other to
 http://localhost:8080/weather. Each connection has
 its own variable and its own .on()
 event listener. Apart from these differences, working with Socket.IO
 remains the same. Instead of logging to the console, Example 7-20 displays its message results within the web
 browser window.
Example 7-20. A namespace-enabled Socket.IO server
var sockFile = fs.readFileSync('socket.html');

server = http.createServer();
server.on('request', function(req, res){
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(sockFile);
});

server.listen(8080);

var socket = io.listen(server);

socket.of('/upandrunning')
 .on('connection', function(client){
 console.log('Client connected to Up and Running namespace.');
 client.send("Welcome to 'Up and Running'");
});

socket.of('/weather')
 .on('connection', function(client){
 console.log('Client connected to Weather namespace.');
 client.send("Welcome to 'Weather Updates'");
});

The function socket.of splits
 the socket object into multiple unique namespaces, each with its own
 rules for handling connections. If a client were to connect to
 http://localhost:8080/weather and issue an emit() command, its results would be processed
 only within that namespace, and not within the
 /upandrunning namespace.

Using Socket.IO with Express

There are many cases where you would want to use Socket.IO by itself
 within Node as its own application or as a component of a larger website
 architecture that includes non-Node components. However, when it’s used
 as part of a full Node application using Express, you can gain an
 enormous amount of efficiency by writing the entire software
 stack—including the client-facing views—in the same language
 (JavaScript).
Save Example 7-21 as socket_express.html.
Example 7-21. Attaching Socket.IO to an Express application: client
 code
<script src="/socket.io/socket.io.js"></script>
<script>
var socket = io.connect('http://localhost:8080');
socket.on('news', function(data) {
 document.write('<h1>' + data.title + '</h1>');
 document.write('<p>' + data.contents + '</p>');
 if (data.allowResponse) {
 socket.emit('scoop', { contents: 'News data received by client.' });
 }
});
</script>

This example starts by connecting to the Socket.IO on port 8080.
 Whenever the Socket.IO server sends a “news” event, the client writes
 the new item’s title and contents to the browser page. If the news item
 allows a response, the client socket emits a “scoop” event. The scoop
 wouldn’t be very interesting to a real reporter; it only contains an
 acknowledgment that the client received the original news.
This being an example press, the news server responds to the
 “scoop” event by emitting another news story. The client will receive
 this new story and print it to the screen also. To prevent this cycle
 from continuing out of control, an allowResponse parameter is sent with the news
 story. If it is false or not present at all (see Example 7-22), the client will not send a scoop.
Example 7-22 shows the Express server.
Example 7-22. Attaching Socket.IO to an Express application: server
 code
var app = require('express').createServer(),
 io = require('socket.io').listen(app);

app.listen(8080);

app.get('/', function(req,res) {
 res.sendfile(__dirname + '/socket_express.html');
});

io.sockets.on('connection', function(socket) {
 socket.emit('news', {
 title: 'Welcome to World News', contents: 'This news flash was sent from Node.js!',
 allowResponse: true
 });
 socket.on('scoop', function(data) {
 socket.emit('news', {
 title: 'Circular Emissions Worked',
 contents: 'Received this content: ' + data.contents
 });
 });
});

The Express server is created first and then passed into Socket.IO
 as a parameter. When the Express application is started with the
 listen() function, both the web
 server and socket server are activated. Next, a route for the base path
 (/) is defined as a pass-through for sending the
 client-side file created in Example 7-21.
The server-side code for the news broadcaster looks very similar
 to the client-side code for good reason. The same events (emit, on
 message, connection) behave similarly in Node and in the web browser,
 making connectivity straightforward. Because data is passed as
 JavaScript objects between both endpoints, no additional parsing or
 serialization is needed.
Clearly, we can very quickly gain a lot of power by plugging
 Socket.IO into Express, but astute programmers will realize that this is
 one-way communication of limited value, unless the connection initiated
 by the user’s web browser is represented in the socket stream. Any
 changes (logout, profile settings, etc.) should be reflected in any
 socket actions, and vice versa. How to accomplish that? Sessions.
To illustrate the use of a session for authentication, let’s look
 first at the client-side code, views/socket.html, shown in Example 7-23.
Example 7-23. Client HTML (Jade template): Socket.IO sessions
!!! 5
html(lang='en')
 head
 script(type='text/javascript', src='/socket.io/socket.io.js')
 script(type='text/javascript')
 var socket = io.connect('http://localhost:8080');
 socket.on('emailchanged', function(data) {
 document.getElementById('email').value = data.email;
 });
 var submitEmail = function(form) {
 socket.emit('emailupdate', {email: form.email.value});
 return false;
 };
 body
 h1 Welcome!

 form(onsubmit='return submitEmail(this);')
 input(id='email', name='email', type='text', value=locals.email)
 input(type='submit', value='Change Email')

When rendered in a web browser, this page will display a form text
 box with a “Change Email” call to action whose default value comes from
 Express’s session data through the locals.email variable. Upon user input, the
 application performs these actions:
	Create a Socket.IO connection and send all of the user’s email
 updates as an emailupdate event.

	Listen for emailchanged
 events and replace the contents of the text box with the new
 email from the server (more on this soon).

Next, have a look at the Node.js portion of Example 7-24.
Example 7-24. Sharing session data between Express and Socket.IO
var io = require('socket.io');
var express = require('express');
var app = express.createServer();
var store = new express.session.MemoryStore;
var utils = require('connect').utils;
var Session = require('connect').middleware.session.Session;

app.configure(function() {
 app.use(express.cookieParser());
 app.use(express.session({secret: 'secretKey', key: 'express.sid', store: store}));
 app.use(function(req, res) {
 var sess = req.session;
 res.render('socket.jade', {
 email: sess.email || ''
 });
 });
});

// Start the app
app.listen(8080);

var sio = io.listen(app);

sio.configure(function() {
 sio.set('authorization', function (data, accept) {
 var cookies = utils.parseCookie(data.headers.cookie);
 data.sessionID = cookies['express.sid'];
 data.sessionStore = store;
 store.get(data.sessionID, function(err, session) {
 if (err || !session) {
 return accept("Invalid session", false);
 }
 data.session = new Session(data, session);
 accept(null,true);
 });
 });

 sio.sockets.on('connection', function(socket) {
 var session = socket.handshake.session;
 socket.join(socket.handshake.sessionId);
 socket.on('emailupdate', function(data) {
 session.email = data.email;
 session.save();
 sio.sockets.in(socket.handshake.sessionId).emit('emailchanged', {
 email: data.email
 });
 });
 });
});

This example uses Connect, a middleware framework that simplifies
 common tasks such as session management, working with cookies,
 authentication, caching, performance metrics, and more. In this example,
 the cookie and session tools are used to manipulate user data. Socket.IO
 is not aware of Express and vice versa, so Socket.IO is not aware of
 sessions when the user connects. However, both components need to
 use the Session object to share data.
 This is an excellent demonstration of the Separation of Concerns (SoC) programming
 paradigm.[19]
This example demonstrates using Socket.IO’s authorization, even
 after connection, to parse the user’s headers. Because the session ID is
 passed to the server as a cookie, you can use this value to read
 Express’s session ID.
This time, the Express setup includes a line for session
 management. The arguments used to build the session manager are a secret
 key (used to prevent session tampering), the session key (used to store
 the session ID in the web browser’s cookie), and a store object (used to
 store session data for later retrieval). The store object is the most
 important. Instead of letting Express create and manage the memory
 store, this example creates a variable and passes it into Express. Now
 the session store is available to the entire application, not just
 Express.
Next, a route is created for the default (/)
 web page. In previous Socket.IO examples, this function was used to
 output HTML directly to the web browser. This time, Express will render
 the contents of views/socket.jade
 to the web browser. The second variable in render() is the email address stored in the
 session, which is interpreted and used as the default text field value
 in Example 7-23.
The real action happens in Socket.IO’s 'authorization' event. When the web browser
 connects to the server, Socket.IO performs an authentication routine to
 determine whether the connection should proceed. The criteria in this
 case is a valid session, which was provided by Express when the user
 loaded the web page. Socket.IO reads the session ID from the request
 headers using parseCookie (part of
 the Connect framework), loads the session from the memory store, and
 creates a Session object with the
 information it receives.
The data passed to the authorization event is stored in
 the socket’s handshake
 property. Therefore, saving the session object into the data object
 makes it available later in the socket’s lifecycle. When creating the
 Session object, use the memory store
 that was created and passed into Express; now both Express and Socket.IO
 are able to access the same session data—Express by manipulating the
 req.session object, and sockets by
 manipulating the socket.handshake.session object.
Assuming all goes well, calling accept()
 authenticates the socket and allows the connection to continue.
Now suppose the user accesses your site from more than one tab in
 his web browser. There would be two connections from the same session
 created, so how would you handle events that need to update connected
 sockets? Socket.IO provides support for rooms, or
 channels if you prefer. By initiating a join() command with sessionId as the argument in Example 7-24, the socket transparently created a dedicated
 channel you can use to send messages to all connections currently in use
 by that user. Logging out is an obvious use for this technique: when the
 user logs out from one tab, the logout command will instantly transmit
 to all the others, leaving all of the user’s views of the application in
 a consistent state.
Warning
Always remember to execute session.save() after changing session data.
 Otherwise, the changes will not be reflected on subsequent requests.

[19] SoC refers to the practice of breaking down software into
 smaller single-purpose parts (concerns) that have as little
 overlapping functionality as possible. Middleware enables this style
 of design by allowing totally separate modules to interact in a
 common environment without needing to be aware of each other.
 Although, as we have seen with modules such as
 bodyParser(), it remains up to the programmer to
 understand how the concerns ultimately interact and use them in the
 appropriate order and context.

Chapter 8. Extending Node

Modules

The module system in Node makes it easy to create extensions to the platform. It
 is simple to learn and enables us to easily share reusable library code.
 The Node module system is based on the commonJS module specification. We’ve already used lots of modules in the
 previous chapters, but here we’ll study how to create our own modules.
 Example 8-1 shows one simple implementation.
Example 8-1. A simple module
exports.myMethod = function() { console.log('Method output') };
exports.property = "blue";

As you can see, writing a module is as simple as attaching
 properties to the exports global
 variable. Any script that is included with require() will return its exports object. This means that everything
 returned from require() is in a
 closure, so you can use private variables in a module that are not exposed
 to the main scope of the program.
Node developers have created a few conventions around modules.
 First, it’s typical to create factory methods for a class. Although you
 might also expose the class itself, factory methods give us a clean way to
 instantiate objects. For I/O-related classes, one of the arguments is
 normally a callback for either the I/O being done or one of its most
 common aspects. For example, http.Server has a factory method called http.createServer() that takes a callback
 function for the request event, the
 most commonly used http.Server
 event.

Package Manager

Being able to make modules is great, but ultimately having a good way to
 distribute them and share them with the rest of your team or the community
 is essential. The package manager for Node, npm,
 provides a way of distributing code, either locally or via a global
 repository of Node modules. npm helps you manage code
 dependencies, installation, and other things associated with distributing
 code. Best of all, npm is all JavaScript and Node. So
 if you are already using Node, you are ready to use
 npm, too. npm provides both the
 installation tools for developers and the distribution tools for package
 maintainers.
Most developers will start by using npm to
 install packages using the simple npm
 install command. You can install packages you have locally, but
 you’ll probably want to use npm to install remote
 packages from the npm registry. The registry stores
 packages that other Node developers make available to you to use. There
 are many packages in the registry: everything from database drivers to
 flow control libraries to math libraries. Most things you’ll install with
 npm are 100% JavaScript, but a few of them require
 compilation. Luckily, npm will do that for you. You can
 see what’s in the registry at http://search.npmjs.org.
Searching Packages

The search command lists all packages in the global npm
 registry and filters for a package name:
npm search packagename
If you don’t supply a package name, all of the available packages
 will be displayed.
If the package list is out of date (because you added or removed a
 package, or you know the package you want should be available but it
 isn’t), you can instruct npm to clean the cache using
 the following command:
npm cache clean
The next time you ask npm for a list of
 packages, the command will take longer because it will need to rebuild
 its cache.

Creating Packages

Although most of the packages you get using the npm install command are available
 to anyone who uses Node, writing a package does not require publishing
 it to the world. Consolidating your own code into module packages makes
 it easy to reuse your work across multiple projects, share it with other
 developers, or make it available to staging or production servers
 running your application.
Packages do not have to be limited to modules or extensions; in
 many cases, packages contain full applications intended for deployment.
 Package files make deployment easy by declaring dependencies,
 eliminating the library-labyrinth guesswork that was traditionally
 required when moving from development to production environments.
Creating a package doesn’t require much more work than creating a
 package.json file with some basic
 definitions about your module—its name and version number being the most
 critical components. To quickly generate a valid package file, run the
 command npm init from your module’s directory.
 You will be prompted to enter descriptive information about your module.
 Then the command will emit a packages.json file into the
 directory. If a package file already exists, its attributes will be used
 as the default values and you will be given a chance to overwrite them
 with new information.
To use your package, install it using npm
 install /path/to/yourpackage. The
 path may be a directory on your filesystem or an external URL (such as
 GitHub).

Publishing Packages

If your module is useful to a broader audience and ready for prime time, you can release
 it to the world using npm’s
 publish command. To publish the contents of your
 package:
	Create a user with the adduser command:
npm adduser
Follow the instructions that appear. You will be prompted for
 a username, password, and email address.

	Publish your package with the publish
 command:
npm publish

That’s all there is to the process. At present, no registration or
 validation is needed.
Warning
This raises an interesting point about npm:
 because anyone can publish a package without any prefiltering or
 oversight, the quality of the libraries you install using
 npm is uncertain. So “buyer beware.”

If you decide later to unpublish your package, you may do so with
 the npm unpublish command. Note that
 you will need to clear your package list cache.

Linking

Although npm excels at publishing and deploying, it was designed primarily as a
 tool for managing dependencies during development. The npm
 link command creates a symbolic link between your project and
 its dependencies, so any changes in the dependencies are available to
 you as you work on your project.
There are two major reasons you would want to do this:
	You want to use requires()
 to access one of your projects from another one of your
 projects.

	You want to use the same package in multiple projects, without
 needing to maintain its version in each of your projects.

Typing npm link with no arguments creates a
 symbolic link for the current project inside the global packages path,
 making it available to npm in all other projects on
 your system. To use this feature, you need to have a packages.json file, described earlier. Using
 npm init is the fastest way to generate a barebones
 version of this file.
Typing npm link
 packagename creates a symbolic link
 from the project’s working directory to the global modules path for that
 package. For example, typing npm link express will
 install the Express framework in the global packages directory and
 include it in your project. Whenever Express is updated, your project
 will automatically use the latest version from the global packages
 directory. If you have linked Express in more than one project, all of
 those projects will be synchronized to the most recent version, freeing
 you from having to update every one of them whenever Express is
 updated.

Add-ons

Whereas modules are the JavaScript extensions for Node,
 add-ons are the C/C++ extensions. Add-ons
 frequently wrap existing system libraries and expose their functionality
 to Node. They can, of course, create new functionality too, although most
 people choose to do that in JavaScript for obvious reasons. Add-ons are
 dynamically linked shared objects.
To create an add-on, you’ll need at least two sets of files: the
 add-on code and the build files. Node uses the waf build system written in Python. Let’s start
 with a “Hello World” example. Example 8-2 is equivalent
 to exports.hello = "world"; in
 JavaScript.
Example 8-2. A simple add-on for Node
#include <v8.h>

using namespace v8;

extern "C" void init (Handle<Object> target) {
 HandleScope scope;
 target->Set(String::New("hello"), String::New("world"));
}

The first thing this code needs to do is include the v8 header file because Node is built on top of
 V8. This provides a lot of standard objects that we will use. Next, we
 declare the namespace. Then we create the wrapper,
 which is required by all add-ons. The wrapper functions like the exports global variable for JavaScript modules.
 We’ll hang everything we expose from the add-on off a function with the signature extern
 'C' void init (Handle<Object> target).

Glossary

	Blocking operation
	A blocking operation requires the program to halt while it
 is waiting for a slow resource.
Typically, this is either a hardware resource (such as a disk
 drive), or a network resource (such as an HTTP request). Because the
 request cannot require a result from a slow resource, it blocks subsequent operation
 until it is complete, even if the computer or program still has
 available resources such as CPU or memory available.

	Callback
	A callback is a function that is “called back” to after a
 blocking operation. Typically, this is an I/O operation such as disk
 access. Callbacks can take parameters.

	Class
	See Pseudoclass

	Function
	A unit of code that can be invoked with a set of variable
 parameters. It may pass a single return. In JavaScript, functions also
 have a context, which defines the value of the
 reserved this variable. Functions in
 JavaScript are considered first class in that they
 can also be treated as variables or properties of objects.

	Method
	A function that is a property of an object.
See Also Function

	Nonblocking operation
	A nonblocking operation is one that does not block.
See Also Blocking operation

	Pseudoclass
	A pseudoclass is a way of creating an abtract object in
 JavaScript that is intended to be initialized into an object.
 Pseudoclasses should be turned into objects using the new keyword. Pseudoclass names start with a
 leading capital by convention to differentiate them from other kinds of
 objects. For example, Server would be
 a pseudoclass, and server might be an
 instance of that pseudoclass.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	. (period), Node REPL

A
	A (address) records, DNS
	accept HTTP header, Let’s Build Twitter
	add-ons, Add-ons
	address (A) records, DNS
	advanced message queueing protocol (AMQP), RabbitMQ, Work queues
	aes192 algorithm, Encrypting with Cipher
	Almaer, Dion, Professionalism in JavaScript
	AMQP (advanced message queueing protocol), RabbitMQ, Work queues
	APIs, Let’s Build Twitter, Let’s Build Twitter, Core APIs, console.log, Core APIs, Helper APIs, VM
		(see also specific APIs)
	adding, Let’s Build Twitter
	core, Core APIs, console.log
	helper, Helper APIs, VM
	testing, Let’s Build Twitter

	applications, Building a Chat Server (see web applications)
	apt command, Installation
	ASCII encoding format, A quick primer on binary, Using Buffers
	assert module, Let’s Build Twitter, Let’s Build Twitter, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert, Testing Through assert
		about, Let’s Build Twitter, Testing Through assert, Testing Through assert
	deepEqual() method, Testing Through assert
	doesNotThrow() method, Testing Through assert
	equal() method, Testing Through assert, Testing Through assert
	notDeepEqual() method, Testing Through assert
	notEqual() method, Testing Through assert, Testing Through assert
	notStringEqual() method, Testing Through assert
	strictEqual() method, Let’s Build Twitter
	stringEqual() method, Testing Through assert
	throws() method, Testing Through assert

	asynchronous communications, The I/O Problem Space, Ordered serial I/O, Error Handling, Filesystem
		callbacks and modified objects, Ordered serial I/O
	error handling in, Error Handling
	fs module and, Filesystem
	I/O activities and, The I/O Problem Space

	auth command (Redis), Securing Redis
	authentication, password (Redis), Securing Redis

B
	basicAuth middleware, Middleware
	binary data, A quick primer on binary, A quick primer on binary, Binary and strings
		about, A quick primer on binary, A quick primer on binary
	strings and, Binary and strings

	block ciphers, Encrypting with Cipher
	blocking operations, Glossary
	blowfish algorithm, Encrypting with Cipher
	bodyParser middleware, Let’s Build Twitter, Handling Form Data, Middleware
	browsers, Browser Wars 2.0 (see web browsers)
	BSON object storage, MongoDB
	Buffer class, A Very Brief Introduction to Node.js, Building a Chat Server, Building a Chat Server, Making HTTP GET requests, Buffers, Buffers, A quick primer on binary, A quick primer on binary, Binary and strings, Using Buffers, Using Buffers, Using Buffers, Working with strings, Working with strings, Working with strings, Working with strings
		about, A Very Brief Introduction to Node.js, Building a Chat Server, Making HTTP GET requests, Buffers
	binary data and, A quick primer on binary, A quick primer on binary
	binary data and strings, Binary and strings
	byteLength() method, Working with strings
	size considerations, Buffers, Using Buffers
	toString() method, Building a Chat Server
	usage considerations, Using Buffers, Using Buffers
	working with strings, Working with strings, Working with strings
	write() method, Working with strings

C
	callbacks, A First Server, The Event Loop, The Event Loop, Unordered parallel I/O, Ordered serial I/O, Ordered serial I/O, Callback Syntax, Callback Syntax, Filesystem, DNS, Glossary
		dealing with events, Callback Syntax, Callback Syntax
	defined, A First Server, Glossary
	DNS module and, DNS
	event-driven programming and, The Event Loop, The Event Loop
	modified objects and, Ordered serial I/O
	nesting, Ordered serial I/O, Filesystem
	unordered parallel I/O and, Unordered parallel I/O

	canonical name (CNAME) records, DNS
	Caswell, Tim, Ordered serial I/O
	chat server application, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server
		about, Building a Chat Server
	causing server failure, Building a Chat Server
	checking write status of sockets, Building a Chat Server
	communicating between clients, Building a Chat Server
	connecting to TCP server, Building a Chat Server
	creating TCP server, Building a Chat Server
	disconnecting clients, Building a Chat Server
	improving chat server, Building a Chat Server
	improving message sending, Building a Chat Server
	listening to each connection, Building a Chat Server
	logging errors, Building a Chat Server
	running improved chat server, Building a Chat Server
	sending data to servers, Building a Chat Server
	sending messages between clients, Building a Chat Server

	checkContinue event, HTTP Servers
	child processes, Using Multiple Processors, Using Multiple Processors, Child Process, child_process.spawn()
	child_process module, Using Multiple Processors, Child Process, Child Process, Child Process, child_process.exec(), Child Process, Child Process, Child Process, Child Process, child_process.exec(), child_process.exec(), child_process.spawn(), child_process.spawn(), child_process.spawn(), child_process.spawn(), child_process.spawn()
		about, Using Multiple Processors, Child Process
	exec() method, Child Process, child_process.exec()
	pid property, Child Process
	spawn() method, Child Process, child_process.spawn(), child_process.spawn()
	stderr property, Child Process, child_process.spawn()
	stdin property, Child Process, child_process.exec(), child_process.spawn()
	stdout property, Child Process, child_process.exec(), child_process.spawn()

	Cipher class, Public Key Cryptography, Encrypting with Cipher, Encrypting with Cipher, Encrypting with Cipher
		about, Public Key Cryptography, Encrypting with Cipher
	final() method, Encrypting with Cipher
	update() method, Encrypting with Cipher

	.clear meta-command, Node REPL
	clientError event, HTTP Servers
	ClientRequest class, HTTP Clients, Uploading data for HTTP POST and PUT, HTTP Clients, Uploading data for HTTP POST and PUT, Uploading data for HTTP POST and PUT
		about, HTTP Clients, Uploading data for HTTP POST and PUT
	end() method, HTTP Clients, Uploading data for HTTP POST and PUT
	write() method, Uploading data for HTTP POST and PUT

	ClientResponse class, Let’s Build Twitter, Making HTTP GET requests, The ClientResponse object, The ClientResponse object, The ClientResponse object
		about, The ClientResponse object
	header property, The ClientResponse object
	setEncoding() method, Let’s Build Twitter, Making HTTP GET requests
	statusCode property, The ClientResponse object

	close event, HTTP Servers
	cluster module, Using Multiple Processors, Using Multiple Processors, Using Multiple Processors, Using Multiple Processors, Using Multiple Processors
		about, Using Multiple Processors, Using Multiple Processors
	fork() method, Using Multiple Processors
	isMaster property, Using Multiple Processors
	isWorker property, Using Multiple Processors

	CNAME (canonical name) records, DNS
	code, writing, Writing Code for Production (see writing code for production)
	CoffeeKup template engine, Template Engines
	commonJS module format, A First Server, Modules
	compiler middleware, Middleware
	CONFIG command, Securing Redis
	configure script, Installing Node.js, Installing Node.js
		about, Installing Node.js
	--prefix argument, Installing Node.js

	Connect library, Ordered serial I/O, Middleware, Middleware
	connection event, Building a Chat Server, HTTP Servers
	connection pooling, Connection Pooling, Connection Pooling
	console.log command, A First Server, Building a Chat Server, Using Multiple Processors, A quick primer on binary, console.log
		about, console.log
	error event and, Building a Chat Server
	hex values in, A quick primer on binary
	printing information with, A First Server, Using Multiple Processors

	.cookieParser
 middleware, Middleware
	CouchDB database, CouchDB, Installation, Installing CouchDB’s Node module, Using CouchDB over HTTP, Using node-couchdb, Using node-couchdb, Deleting documents, Using node-couchdb, Working with databases, Working with databases, Creating documents, Reading documents, Reading documents, Updating documents, Updating documents, Deleting documents, Deleting documents
		about, CouchDB
	createClient() function, Working with databases
	creating documents in, Creating documents
	creating tables in, Working with databases
	deleting documents from, Deleting documents
	getDoc command, Reading documents
	installing, Installation
	Node module, Installing CouchDB’s Node module, Using node-couchdb
	node-couchdb package, Using node-couchdb, Deleting documents
	over HTTP, Using CouchDB over HTTP, Using node-couchdb
	reading documents, Reading documents
	removeDoc command, Deleting documents
	saveDoc command, Updating documents
	updating records in, Updating documents

	createConnection command, Publish and subscribe
	Crockford, Douglas, Professionalism in JavaScript, HTTP
	cross-site request forgery (CSRF)
 protection, Middleware
	crypto module, Crypto, Hashing, Hashing, Hashing, HMAC, HMAC, HMAC, HMAC, Public Key Cryptography, Public Key Cryptography, Public Key Cryptography, Public Key Cryptography, Encrypting with Cipher, Decrypting with Decipher, Creating signatures using Sign, Creating signatures using Sign, Verifying signatures with Verify
		about, Crypto
	Cipher class, Public Key Cryptography, Encrypting with Cipher
	createHash() method, Hashing
	createHmac() method, HMAC
	createSign() method, Creating signatures using Sign
	Decipher class, Public Key Cryptography, Decrypting with Decipher
	Hash class, Hashing, Hashing
	Hmac class, HMAC, HMAC, HMAC
	Sign class, Public Key Cryptography, Creating signatures using Sign
	Verify class, Public Key Cryptography, Verifying signatures with Verify

	cryptography, Installing Node.js, Crypto, Crypto, Hashing, Crypto, HMAC, HMAC, HMAC, Public Key Cryptography, Verifying signatures with Verify
		hashing and, Crypto, Hashing
	HMAC and, Crypto, HMAC, HMAC
	OpenSSL and, Installing Node.js, HMAC
	public key, Public Key Cryptography, Verifying signatures with Verify
	usage considerations, Crypto

	CSRF (cross-site request forgery)
 protection, Middleware
	csrf middleware, Middleware

D
	Dahl, Ryan, HTTP
	data access, Data Access, CouchDB, Deleting documents, Redis, Securing Redis, MongoDB, Performance, MySQL, Sequelize, PostgreSQL, Insertion, updates, and deletion, Connection Pooling, Connection Pooling, MQ Protocols, Work queues
		about, Data Access
	connection pooling, Connection Pooling, Connection Pooling
	CouchDB database, CouchDB, Deleting documents
	MongoDB database, MongoDB, Performance
	MQ protocols, MQ Protocols, Work queues
	MySQL database system, MySQL, Sequelize
	PostgreSQL database system, PostgreSQL, Insertion, updates, and deletion
	Redis key-value store, Redis, Securing Redis

	data event, Readable streams
	db-mysql package, Installation
	Decipher class, Public Key Cryptography, Decrypting with Decipher, Decrypting with Decipher
		about, Public Key Cryptography, Decrypting with Decipher
	update() method, Decrypting with Decipher

	.delete command
 (MySQL), Deletion
	DELETE verb (HTTP), Using CouchDB over HTTP, Handling Form Data
	deleting, Filesystem, Deleting documents, Deletion, Insertion, updates, and deletion
		data in MySQL, Deletion
	data in PostgreSQL, Insertion, updates, and deletion
	documents from CouchDB, Deleting documents
	files, Filesystem

	denial-of-service (DoS) attack, Handling Form Data
	die event, The Event Loop
	directory middleware, Middleware
	distributing work example, Using Multiple Processors, Using Multiple Processors
	dns module, DNS, DNS, DNS, DNS, DNS, DNS, DNS, DNS
		about, DNS
	lookup() method, DNS
	resolve() method, DNS, DNS
	resolve4() method, DNS
	resolve6() method, DNS
	resolveMX() method, DNS
	reverse() method, DNS

	DNS requests, A quick primer on binary
	document stores, Using CouchDB over HTTP, Using node-couchdb, Reading documents, Redis, Securing Redis
		CouchDB over HTTP, Using CouchDB over HTTP, Using node-couchdb
	reading documents, Reading documents
	Redis key-value store, Redis, Securing Redis

	DOS (denial-of-service) attack, Handling Form Data

E
	EADDRINUSE exception, Using Multiple Processors
	Eich, Brendan, Professionalism in JavaScript
	EJ (Embedded JavaScript) template engine, Template Engines
	EJS layout file, Let’s Build Twitter
	emailchanged event, Using Socket.IO with Express
	emailupdate event, Using Socket.IO with Express
	Embedded JavaScript (EJ) template engine, Template Engines
	encoding formats, A quick primer on binary, Using Buffers
	end event, process.stdin
	error event, Building a Chat Server, Error Handling
	error handling, Error Handling
	errorHandler middleware, Middleware
	eval() method call, VM
	event listeners, EventEmitter, EventEmitter, Callback Syntax, process events
		about, process events
	calling, Callback Syntax
	creating for events, EventEmitter
	firing, EventEmitter

	event loop, The Event Loop, The Event Loop, The Event Loop, The Event Loop, The Event Loop, The Event Loop, Event loop and tickers, Event loop and tickers
		about, The Event Loop, The Event Loop
	callbacks and, The Event Loop, The Event Loop
	patterns and, The Event Loop
	process module and, Event loop and tickers, Event loop and tickers
	single-threaded concept, The Event Loop

	event-driven programming, The Event Loop, The Event Loop, The Event Loop, The Event Loop, The Event Loop, Patterns, Ordered serial I/O
		about, The Event Loop
	callbacks and, The Event Loop, The Event Loop
	nonblocking operations and, The Event Loop
	patterns and, Patterns, Ordered serial I/O
	single-threaded concept, The Event Loop

	EventEmitter class, EventEmitter, EventEmitter, EventEmitter, Callback Syntax, Streams, process events
		about, EventEmitter
	emit() method, EventEmitter, Callback Syntax
	on() method, EventEmitter
	process module and, process events
	stream support, Streams

	events, EventEmitter, EventEmitter, EventEmitter, EventEmitter, Callback Syntax, Callback Syntax, Callback Syntax
		(see also specific events)
	callback syntax, Callback Syntax, Callback Syntax
	creating event listeners for, EventEmitter
	emitting, EventEmitter
	listening for, EventEmitter
	passing parameters when emitting, Callback Syntax

	Events API, Events, EventEmitter, Callback Syntax, Callback Syntax, Callback Syntax, Streams, process events
		about, Events
	callback syntax, Callback Syntax, Callback Syntax
	EventEmitter class, EventEmitter, Callback Syntax, Streams, process events

	exit event, process events
	.exit meta-command, Node REPL
	Express module, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Express, A Basic Express App, A Basic Express App, A Basic Express App, A Basic Express App, Setting Up Routes in Express, Setting Up Routes in Express, Handling Form Data, Handling Form Data, Handling Form Data, Handling Form Data, Template Engines, Layouts and partial views, Middleware, Middleware factories, Middleware factories, Using Socket.IO with Express, Using Socket.IO with Express
		about, Let’s Build Twitter, Express, A Basic Express App
	app folder structure, Let’s Build Twitter
	bodyDecoder() method, Let’s Build Twitter
	bodyParser() function, Let’s Build Twitter, Handling Form Data
	createServer() method, Let’s Build Twitter
	handling form data, Handling Form Data
	http module and, A Basic Express App
	installing, Let’s Build Twitter, Let’s Build Twitter, A Basic Express App
	layout file in, Let’s Build Twitter
	limit() method, Handling Form Data
	listen() method, Let’s Build Twitter
	methodOverride() function, Handling Form Data
	middleware and, Middleware, Middleware factories
	send() method, A Basic Express App
	setting up routing in, Setting Up Routes in Express, Setting Up Routes in Express, Middleware factories
	Socket.IO library and, Using Socket.IO with Express, Using Socket.IO with Express
	template engines, Template Engines, Layouts and partial views

F
	factory pattern, Middleware factories, Middleware factories
	favicon middleware, Middleware
	FIFO (first-in-first-out) queue, Lists
	file descriptors, child_process.spawn()
	files, Filesystem, Filesystem
		deleting, Filesystem
	reading, Filesystem

	filesystem module, Filesystem (see fs module)
	first-in-first-out (FIFO) queue, Lists
	fs module, Filesystem, Filesystem, Filesystem, HMAC, Socket.IO
		about, Filesystem
	readFile() method, Filesystem
	readFileSync() method, HMAC, Socket.IO
	unlink() method, Filesystem

	Fuchs, Thomas, Professionalism in JavaScript
	functional scope in JavaScript, Ordered serial I/O
	functions, Node REPL, Ordered serial I/O, Ordered serial I/O, Hashing, Glossary
		defined, Glossary
	functional scope and, Ordered serial I/O
	hashing and, Hashing
	Node REPL and, Node REPL
	passing changes between, Ordered serial I/O

G
	generic-pool module, Connection Pooling
	get command (Redis), Basic usage
	GET verb (HTTP), Making HTTP GET requests, Making HTTP GET requests, A Basic Express App, Handling Form Data
	getDoc command, Reading documents
	GZIP algorithm, Installing Node.js

H
	Haml template engine, Template Engines
	Hash class, Hashing, Hashing, Hashing, Hashing
		digest() method, Hashing, Hashing
	update() method, Hashing, Hashing

	Hash-based Message Authentication Code (HMAC), Crypto, HMAC, HMAC
	hashes and hashing algorithms, Crypto, Hashing, Crypto, HMAC, HMAC, Hashes, Hashes, Data types
		about, Crypto, Hashing
	HMAC and, Crypto, HMAC, HMAC
	native MongoDB driver support, Data types
	Redis key-value store and, Hashes, Hashes

	“Hello World”
 example, A First Server
	.help meta-command, Node REPL
	hexadecimal notation, A quick primer on binary
	HMAC (Hash-based Message Authentication Code), Crypto, HMAC, HMAC
	Hmac class, HMAC, HMAC, HMAC
		creating object, HMAC
	digest() method, HMAC
	update() method, HMAC

	hmset command (Redis), Hashes
	hset command (Redis), Basic usage, Hashes
	HTML5 WebSockets standard, Socket.IO
	HTTP clients, Let’s Build Twitter, HTTP Clients, The ClientResponse object
	http module, A First Server, A First Server, A First Server, A First Server, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, The Event Loop, The Event Loop, Error Handling, Using Multiple Processors, HTTP, HTTP, HTTP Servers, HTTP Servers, HTTP Servers, HTTP Servers, HTTP Servers, HTTP Clients, The ClientResponse object, HTTP Clients, Uploading data for HTTP POST and PUT, HTTP Clients, Making HTTP GET requests, Making HTTP GET requests, Making HTTP GET requests, The ClientResponse object, Using CouchDB over HTTP, A Basic Express App, Middleware, Socket.IO
		about, Let’s Build Twitter, HTTP
	ClientRequest class, HTTP Clients, Uploading data for HTTP POST and PUT
	ClientResponse class, Let’s Build Twitter, Making HTTP GET requests, The ClientResponse object
	Connect library and, Middleware
	createServer() method, A First Server, The Event Loop, HTTP, HTTP Servers, Using CouchDB over HTTP
	Express module and, A Basic Express App
	get() method, Error Handling, Making HTTP GET requests, Making HTTP GET requests
	HTTP clients, Let’s Build Twitter, HTTP Clients, The ClientResponse object
	HTTP servers, The Event Loop, HTTP Servers, HTTP Servers, Socket.IO
	including in code, A First Server
	request() method, A First Server, Let’s Build Twitter, HTTP Clients
	Server class, HTTP Servers, HTTP Servers
	ServerResponse class, A First Server
	work distribution example, Using Multiple Processors

	HTTP servers, The Event Loop, HTTP Servers, HTTP Servers, Socket.IO
		about, HTTP Servers, HTTP Servers
	creating, The Event Loop
	Socket.IO library and, Socket.IO

	HTTP, CouchDB over, Using CouchDB over HTTP, Using node-couchdb

I
	I/O activities, The Event Loop, The I/O Problem Space, The I/O Problem Space, The I/O Problem Space, Unordered parallel I/O, Ordered serial I/O, Ordered serial I/O, Error Handling, I/O, console.log
		(see also nonblocking operations)
	API support, I/O, console.log
	Node approach, The Event Loop, The I/O Problem Space
	ordered serial I/O, Ordered serial I/O, Ordered serial I/O
	splitting out, Error Handling
	unbounded latency, The I/O Problem Space
	unordered parallel I/O, Unordered parallel I/O

	Ingres database system, PostgreSQL, PostgreSQL
		(see also PostgreSQL database system)

	.insert command
 (MySQL), Insertion
	installing, Installing Node.js, Installing Node.js, Let’s Build Twitter, Let’s Build Twitter, Installation, Installing CouchDB’s Node module, Installation, Installing Redis’s Node module, Installation, Installation, Installation, Installation, Installation, Installing RabbitMQ, A Basic Express App
		CouchDB database, Installation
	CouchDB Node module, Installing CouchDB’s Node module
	db-mysql package, Installation
	Express module, Let’s Build Twitter, Let’s Build Twitter, A Basic Express App
	Mongoose library, Installation
	native MongoDB driver, Installation
	node-db module, Installation
	Node.js, Installing Node.js, Installing Node.js
	PostgreSQL database system, Installation
	RabbitMQ message broker, Installing RabbitMQ
	Redis key-value store, Installation
	Redis Node module, Installing Redis’s Node module

	IPv4 address records, DNS
	IPv6 address records, DNS

J
	Jade template engine, Template Engines, Template Engines
	JavaScript, A Very Brief Introduction to Node.js, A Very Brief Introduction to Node.js, Node REPL, Professionalism in JavaScript, Professionalism in JavaScript, Ordered serial I/O, Writing Code for Production, Error Handling, A quick primer on binary
		about, A Very Brief Introduction to Node.js, A Very Brief Introduction to Node.js, Professionalism in JavaScript
	browser support, Professionalism in JavaScript
	functional scope, Ordered serial I/O
	hexadecimal notation and, A quick primer on binary
	maximum heap size, Writing Code for Production
	trycatch functionality, Error Handling
	weird and amusing things about, Node REPL

	jQuery template engine, Template Engines

K
	keys, HMAC, Public Key Cryptography, Verifying signatures with Verify, Public Key Cryptography, Public Key Cryptography, Hashes
		PEM-encoded, HMAC, Public Key Cryptography
	private, Public Key Cryptography
	public, Public Key Cryptography, Verifying signatures with Verify
	setting, Hashes

	kill command, child_process.exec()
	Koch, Peter Paul, Professionalism in JavaScript
	Kvaleim, Christian, MongoDB native driver

L
	layouts and partial views, Layouts and partial views, Layouts and partial views
	.less files, Middleware
	libpq-dev package, Installation
	limit middleware, Middleware
	list commands in Redis, Lists
	Listener class, Socket.IO
	logger middleware, Middleware
	lpush command (Redis), Lists

M
	mail exchanger (MX) records, DNS
	make command, Installing Node.js
	master processes, Using Multiple Processors, Using Multiple Processors
	MD5 hashing algorithm, Crypto, Hashing
	methodOverride middleware, Handling Form Data, Middleware
	methods (term), Glossary
	middleware, Let’s Build Twitter, Ordered serial I/O, Setting Up Routes in Express, Middleware, Middleware, Middleware, Middleware factories, Middleware factories
		about, Let’s Build Twitter, Middleware, Middleware
	Connect library and, Ordered serial I/O, Middleware
	factory pattern, Middleware factories, Middleware factories
	route, Setting Up Routes in Express

	MongoDB database, MongoDB, MongoDB native driver, Writing records, Mongoose, Performance, Defining schemas, Defining schemas
		about, MongoDB
	defining schemas, Defining schemas, Defining schemas
	Mongoose library, Mongoose, Performance
	native MongoDB driver, MongoDB native driver
	writing records, Writing records

	Mongoose library, Mongoose, Installation, Defining schemas, Defining schemas, Manipulating collections, Performance
		about, Mongoose
	defining schemas, Defining schemas, Defining schemas
	installing, Installation
	manipulating collections, Manipulating collections
	performance considerations, Performance

	MQ protocols, MQ Protocols, RabbitMQ, Work queues
		about, MQ Protocols
	RabbitMQ, RabbitMQ, Work queues

	multicore processors, Using Multiple Processors, Using Multiple Processors
	MVCC (multi-version concurrency control), CouchDB
	MX (mail exchanger) records, DNS
	MySQL database system, MySQL, Using NodeDB, Deletion, Sequelize, PostgreSQL
		about, MySQL
	node-db module, Using NodeDB, Deletion
	Sequelize ORM, Sequelize, PostgreSQL

N
	namespaces, Socket.IO library, Namespaces, Namespaces
	nesting callbacks, Ordered serial I/O, Filesystem
	net module, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server
		about, Building a Chat Server
	createServer() method, Building a Chat Server
	Server class, Building a Chat Server
	Socket class, Building a Chat Server, Building a Chat Server, Building a Chat Server

	new keyword, EventEmitter
	Node module, Installing CouchDB’s Node module, Using node-couchdb, Installing Redis’s Node module
		CouchDB database, Installing CouchDB’s Node module, Using node-couchdb
	Redis key-value store, Installing Redis’s Node module

	Node Package Manager, Let’s Build Twitter (see npm)
	Node REPL, Node REPL, Node REPL
	node-couchdb package, Using node-couchdb, Working with databases, Creating documents, Reading documents, Updating documents, Deleting documents
		about, Using node-couchdb
	creating documents, Creating documents
	deleting documents, Deleting documents
	reading documents, Reading documents
	updating documents, Updating documents
	working with databases, Working with databases

	node-db module, Using NodeDB, Installation, Selection, Insertion, Updating, Deletion, Connection Pooling
		about, Using NodeDB
	connection pooling and, Connection Pooling
	deleting data, Deletion
	inserting data, Insertion
	installing, Installation
	selecting data, Selection
	updating data, Updating

	Node.js, A Very Brief Introduction to Node.js, A Very Brief Introduction to Node.js, Installing Node.js, Installing Node.js, Installing Node.js, Node REPL, Node REPL, A First Server, A First Server, Why Node?, Browser Wars 2.0, High-Performance Web Servers, Building a Chat Server, Building a Chat Server, Let’s Build Twitter, Let’s Build Twitter, Building Robust Node Applications, Using Multiple Processors, Core APIs, console.log, Modules, Add-ons
		about, A Very Brief Introduction to Node.js, A Very Brief Introduction to Node.js
	building chat server, Building a Chat Server, Building a Chat Server
	building robust applications, Building Robust Node Applications, Using Multiple Processors
	building Twitter-like application, Let’s Build Twitter, Let’s Build Twitter
	core APIs, Core APIs, console.log
	extending, Modules, Add-ons
	installing, Installing Node.js, Installing Node.js
	as runtime
 environment, Node REPL, Node REPL
	strengths of, Why Node?, Browser Wars 2.0
	version numbers, Installing Node.js
	as web servers, A First Server, A First Server, High-Performance Web Servers

	nonblocking operations, The Event Loop, The Event Loop, Error Handling, I/O, console.log, Glossary
		API support, I/O, console.log
	defined, Glossary
	error handling and, Error Handling
	event-driven programming and, The Event Loop
	Node approach, The Event Loop

	NoSQL systems, CouchDB, Deleting documents, Redis, Securing Redis, MongoDB, Performance
		CouchDB database, CouchDB, Deleting documents
	MongoDB database, MongoDB, Performance
	Redis key-value store, Redis, Securing Redis

	npm (Node Package Manager), Let’s Build Twitter, Installation, Installation, Package Manager, Searching Packages, Searching Packages, Creating Packages, Creating Packages, Creating Packages, Publishing Packages, Publishing Packages, Publishing Packages, Publishing Packages, Linking, Linking
		about, Package Manager
	adduser command, Publishing Packages
	creating packages, Creating Packages
	init command, Creating Packages
	install command, Creating Packages
	installing db-mysql package, Installation
	installing Express module, Let’s Build Twitter
	installing Mongoose library, Installation
	link command, Linking
	linking dependencies, Linking
	publish command, Publishing Packages
	publishing packages, Publishing Packages
	search command, Searching Packages
	searching packages, Searching Packages
	unpublish command, Publishing Packages

O
	object relational mapper (ORM), Sequelize, PostgreSQL
	objects, Node REPL, Ordered serial I/O, Hashes
		passing by reference, Ordered serial I/O
	setting and enumerating, Node REPL
	setting multiple hash values, Hashes

	onclick event, A Very Brief Introduction to Node.js
	OpenSSL, Installing Node.js, Crypto, HMAC, Public Key Cryptography
		cryptography and, Installing Node.js, Crypto
	PEM-encoded keys, HMAC, Public Key Cryptography

	ordered serial I/O, Ordered serial I/O, Ordered serial I/O
	ORM (object relational mapper), Sequelize, PostgreSQL
	os module, Using Multiple Processors

P
	parallel I/O, The I/O Problem Space, Unordered parallel I/O
		combining work groups, The I/O Problem Space
	unordered, Unordered parallel I/O

	passing objects by reference, Ordered serial I/O
	password authentication (Redis), Securing Redis
	patterns, The Event Loop, The I/O Problem Space, Ordered serial I/O, Readable streams, Filesystem, Middleware factories, Middleware factories
		about, Filesystem
	event loop and, The Event Loop
	I/O considerations, The I/O Problem Space, Ordered serial I/O
	middleware factories, Middleware factories, Middleware factories
	spooling, Readable streams

	PEM-encoded keys, HMAC, Public Key Cryptography
	period (.), Node REPL
	pg_config utility, Installation
	POST verb (HTTP), Uploading data for HTTP POST and PUT, querystring, Handling Form Data
	PostgreSQL database system, PostgreSQL, Installation, Selection, Insertion, updates, and deletion, Insertion, updates, and deletion, Insertion, updates, and deletion
		about, PostgreSQL
	deleting data, Insertion, updates, and deletion
	inserting data, Insertion, updates, and deletion
	installing, Installation
	selecting data, Selection
	updating data, Insertion, updates, and deletion

	private keys, Public Key Cryptography
	process module, HMAC, process Module, process events, process events, process events, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Interacting with the current Node process, Operating system input/output, Operating system input/output, Operating system input/output, process.stdin, process.stdin, process.stderr, process.stderr, Event loop and tickers, Event loop and tickers, Event loop and tickers, Event loop and tickers, Event loop and tickers, child_process.exec(), child_process.spawn()
		about, process Module
	argv property, process.stderr, child_process.spawn()
	chdir() method, Interacting with the current Node process
	cwd() method, Interacting with the current Node process, child_process.exec()
	event loop and tickers, Event loop and tickers, Event loop and tickers
	execPath property, Interacting with the current Node process
	exit event, process events
	getgid() method, Interacting with the current Node process
	installPrefix property, Interacting with the current Node process
	memoryUsage() method, Interacting with the current Node process
	nextTick() method, Event loop and tickers, Event loop and tickers
	PEM-encoded keys and, HMAC
	pid property, Interacting with the current Node process
	platform property, Interacting with the current Node process
	setgid() method, Interacting with the current Node process, Interacting with the current Node process
	setuid() method, Interacting with the current Node process
	stderr property, Operating system input/output, process.stderr
	stdin property, Operating system input/output, process.stdin
	stdout property, Operating system input/output, process.stdin
	title property, Interacting with the current Node process
	uncaughtException event, process events, process events, Event loop and tickers
	uptime() method, Interacting with the current Node process
	version property, Interacting with the current Node process

	profiler middleware, Middleware
	ps command, Interacting with the current Node process
	pseudoclasses (term), HTTP, Glossary
	public key cryptography, Public Key Cryptography, Encrypting with Cipher, Decrypting with Decipher, Creating signatures using Sign, Verifying signatures with Verify
		about, Public Key Cryptography
	creating signatures using Sign class, Creating signatures using Sign
	decrypting with Decipher class, Decrypting with Decipher
	encrypting with Cipher class, Encrypting with Cipher
	verifying signatures with Verify class, Verifying signatures with Verify

	publishing, Subscriptions, Publish and subscribe, Publish and subscribe, Publishing Packages
		packages, Publishing Packages
	RabbitMQ message broker, Publish and subscribe, Publish and subscribe
	Redis key-value store and, Subscriptions

	PUT verb (HTTP), Uploading data for HTTP POST and PUT, Using CouchDB over HTTP, Handling Form Data
	pyramid code, Ordered serial I/O

Q
	q.shift() command, Work queues
	query middleware, Middleware
	querystring module, querystring, querystring, querystring, querystring, querystring, querystring, querystring, querystring, querystring, querystring, querystring
		about, querystring, querystring
	decode() method, querystring
	encode() method, querystring, querystring
	escape() method, querystring
	parse() method, querystring, querystring
	stringify() method, querystring
	unescape() method, querystring
	unescapeBuffer() method, querystring

	queues, RabbitMQ message broker and, Work queues, Work queues

R
	RabbitMQ message broker, RabbitMQ, Installing RabbitMQ, Publish and subscribe, Publish and subscribe, Publish and subscribe, Publish and subscribe, Work queues, Work queues
		about, RabbitMQ
	createConnection command, Publish and subscribe
	installing, Installing RabbitMQ
	publishing and subscribing, Publish and subscribe, Publish and subscribe
	subscribe command, Publish and subscribe
	work queues, Work queues, Work queues

	Read-Evaluate-Print-Loop (REPL), Node REPL, Node REPL
	ReadableStream class, Readable streams, process.stdin
		about, Readable streams
	pipe() method, process.stdin

	Redis key-value store, Redis, Installation, Basic usage, Basic usage, Basic usage, Basic usage, Hashes, Hashes, Hashes, Hashes, Lists, Lists, Lists, Sets, Sets, Sorted sets, Sorted sets, Sorted sets, Subscriptions, Securing Redis, Securing Redis
		about, Redis
	auth command, Securing Redis
	basic usage, Basic usage
	get command, Basic usage
	hashes and, Hashes, Hashes
	hmset command, Hashes
	hset command, Basic usage, Hashes
	installing, Installation
	list commands, Lists
	lpush command, Lists
	password authentication, Securing Redis
	rpop command, Lists
	sadd command, Sets
	set command, Basic usage
	smembers command, Sets
	subscribe command, Subscriptions
	zadd command, Sorted sets
	zcard command, Sorted sets
	zrange command, Sorted sets

	reference, passing by, Ordered serial I/O
	RegExp class, Testing Through assert, Setting Up Routes in Express
		match() method, Setting Up Routes in Express
	test() method, Testing Through assert

	regular expressions, Testing Through assert, Setting Up Routes in Express
		defining routes, Setting Up Routes in Express
	testing through assert, Testing Through assert

	relational databases, MySQL, Sequelize, PostgreSQL, Insertion, updates, and deletion
		MySQL, MySQL, Sequelize
	PostgreSQL, PostgreSQL, Insertion, updates, and deletion

	removeDoc command, Deleting documents
	REPL (Read-Evaluate-Print-Loop), Node REPL, Node REPL
	request event, The Event Loop, Callback Syntax, Callback Syntax
	require() function, A First Server, HTTP Servers
	Resig, John, Professionalism in JavaScript
	response event, The Event Loop, HTTP Clients
	responseTime middleware, Middleware
	RIPEMD160 hashing algorithm, Hashing
	root user, Installing Node.js
	router middleware, Middleware
	routes, Setting Up Routes in Express, Setting Up Routes in Express, Setting Up Routes in Express, Setting Up Routes in Express, Middleware factories
		Express module and, Setting Up Routes in Express, Setting Up Routes in Express, Middleware factories
	passing control to, Setting Up Routes in Express
	wildcards in, Setting Up Routes in Express

	rpop command (Redis), Lists
	runtime environment, Node REPL, Node REPL
	Russell, Alex, Professionalism in JavaScript

S
	sadd command (Redis), Sets
	.sass files, Middleware
	saveDoc command, Updating documents
	schemas, Defining schemas, Defining schemas, Sequelize
		MongoDB and, Defining schemas, Defining schemas
	Sequelize and, Sequelize

	Script class, VM, VM, VM
		about, VM, VM
	runInNewContext() method, VM

	Separation of Concerns (SoC) paradigm, Using Socket.IO with Express
	Sequelize object relational mapper, Sequelize, PostgreSQL
	serial I/O, The I/O Problem Space, Ordered serial I/O, Ordered serial I/O
		combining work groups, The I/O Problem Space
	ordered, Ordered serial I/O, Ordered serial I/O

	Server class (http module), HTTP Servers, HTTP Servers, HTTP Servers, HTTP Servers, HTTP Servers, HTTP Servers, HTTP Servers
		about, HTTP Servers
	checkContinue event, HTTP Servers
	clientError event, HTTP Servers
	close event, HTTP Servers
	connection event, HTTP Servers
	listen() method, HTTP Servers
	upgrade event, HTTP Servers

	Server class (net module), Building a Chat Server, Building a Chat Server
		connection event, Building a Chat Server
	listen() method, Building a Chat Server

	ServerResponse class, A First Server, A First Server
		end() method, A First Server
	writeHead() method, A First Server

	service (SRV) records, DNS
	session middleware, Middleware, Using Socket.IO with Express, Using Socket.IO with Express
		about, Middleware, Using Socket.IO with Express
	save() method, Using Socket.IO with Express

	.set command
 (MySQL), Updating
	set command (Redis), Basic usage
	SHA1 hashing algorithm, Crypto, Hashing
	SHA256 hashing algorithm, Hashing
	SHA512 hashing algorithm, Hashing
	SIGINT interrupt signal, process events
	SIGKILL interrupt signal, child_process.exec()
	Sign class, Public Key Cryptography, Creating signatures using Sign, Creating signatures using Sign, Creating signatures using Sign
		about, Public Key Cryptography, Creating signatures using Sign
	sign() method, Creating signatures using Sign
	update() method, Creating signatures using Sign

	SIGTERM interrupt signal, child_process.exec()
	single-threaded concept, The Event Loop, Writing Code for Production, Using Multiple Processors, Using Multiple Processors
		about, The Event Loop
	multiple processor usage and, Using Multiple Processors, Using Multiple Processors
	writing code for production, Writing Code for Production

	smembers command (Redis), Sets
	SoC (Separation of Concerns) paradigm, Using Socket.IO with Express
	Socket class, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Socket.IO, Socket.IO, Using Socket.IO with Express, Using Socket.IO with Express
		accept() method, Using Socket.IO with Express
	connect() method, Socket.IO
	destroy() method, Building a Chat Server
	end() method, Building a Chat Server
	handshake property, Using Socket.IO with Express
	listen() method, Socket.IO
	remoteAddress property, Building a Chat Server
	remotePort property, Building a Chat Server
	write() method, Building a Chat Server

	Socket.IO library, Socket.IO, Socket.IO, Namespaces, Namespaces, Using Socket.IO with Express, Using Socket.IO with Express
		about, Socket.IO, Socket.IO
	Express module and, Using Socket.IO with Express, Using Socket.IO with Express
	namespaces and, Namespaces, Namespaces

	sorted sets, Sorted sets
	spooling pattern, Readable streams
	SRV (service) records, DNS
	static middleware, Middleware
	staticCache middleware, Middleware
	STDERR error stream, Operating system input/output, process.stderr, Child Process, child_process.spawn()
		child_process module and, Child Process, child_process.spawn()
	process module and, Operating system input/output, process.stderr

	STDIN input stream, Operating system input/output, process.stdin, Child Process, child_process.exec(), child_process.spawn()
		child_process module and, Child Process, child_process.exec(), child_process.spawn()
	process module and, Operating system input/output, process.stdin

	STDOUT output stream, Operating system input/output, process.stdin, Child Process, child_process.exec(), child_process.spawn()
		child_process module and, Child Process, child_process.exec(), child_process.spawn()
	process module and, Operating system input/output, process.stdin

	Stonebraker, Michael, PostgreSQL
	stream API, Streams, Readable streams, process.stdin, process.stderr
		about, Streams
	ReadableStream class, Readable streams, process.stdin
	WritableStream class, process.stderr

	strings, Binary and strings, Working with strings, Working with strings
		binary data and, Binary and strings
	working with, Working with strings, Working with strings

	subscribe command, Subscriptions, Publish and subscribe
		RabbitMQ message broker, Publish and subscribe
	Redis key-value store, Subscriptions

	subscribing, Subscriptions, Publish and subscribe, Publish and subscribe
		RabbitMQ message broker, Publish and subscribe, Publish and subscribe
	Redis key-value store, Subscriptions

	sudo command, Installing Node.js

T
	tables, creating in CouchDB, Working with databases
	tar command, Installing Node.js, Installing Node.js, Installing Node.js
		f flag, Installing Node.js
	x flag, Installing Node.js
	z flag, Installing Node.js

	TCP servers, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server, Building a Chat Server
		causing failure by disconnecting clients, Building a Chat Server
	checking writing status of sockets, Building a Chat Server
	communicating between clients, Building a Chat Server
	connecting to, Building a Chat Server
	creating, Building a Chat Server
	improving message sending, Building a Chat Server
	listening to connections, Building a Chat Server
	logging errors, Building a Chat Server
	making more robust, Building a Chat Server
	running improved, Building a Chat Server
	sending data from Telnet, Building a Chat Server
	sending messages between clients, Building a Chat Server

	Telnet, Building a Chat Server, Building a Chat Server
		connecting TCP servers with, Building a Chat Server
	sending data to servers, Building a Chat Server

	template engines, Template Engines, Template Engines, Layouts and partial views, Layouts and partial views
		about, Template Engines, Template Engines
	layouts and partial views, Layouts and partial views, Layouts and partial views

	testing APIs, Let’s Build Twitter
	text (TXT) records, DNS
	try/catch block, Error Handling
	Twitter-like application, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter, Let’s Build Twitter
		about, Let’s Build Twitter
	adding basic API, Let’s Build Twitter
	basic web server in, Let’s Build Twitter
	checking accept header, Let’s Build Twitter
	EJS layout file, Let’s Build Twitter
	folder structure, Let’s Build Twitter
	installing Express module, Let’s Build Twitter
	redirecting browsers, Let’s Build Twitter
	rendering chirps, Let’s Build Twitter
	rendering index template, Let’s Build Twitter
	rendering stylesheets, Let’s Build Twitter
	showing tweets, Let’s Build Twitter
	testing APIs, Let’s Build Twitter

	TXT (text) records, DNS

U
	uncaughtException event, process events, process events, Event loop and tickers
	unordered parallel I/O, Unordered parallel I/O
	.update command
 (MySQL), Updating, Deletion
	upgrade event, HTTP Servers
	URL module, URL, URL, URL, URL, URL, querystring
		about, URL
	format() method, URL
	parse() method, URL, URL
	querystring module and, querystring
	resolve() method, URL

	UTF-8 encoding format, A quick primer on binary, Using Buffers
	util module, EventEmitter, EventEmitter
		about, EventEmitter
	inherits() method, EventEmitter

V
	V8 JavaScript runtime, A Very Brief Introduction to Node.js, Node REPL, A First Server
		about, A Very Brief Introduction to Node.js, A First Server
	Node REPL and, Node REPL

	Verify class, Public Key Cryptography, Verifying signatures with Verify, Verifying signatures with Verify, Verifying signatures with Verify
		about, Public Key Cryptography, Verifying signatures with Verify
	update() method, Verifying signatures with Verify
	verify() method, Verifying signatures with Verify

	version numbers (Node.js), Installing Node.js
	vhost middleware, Middleware
	view engines, Template Engines, Layouts and partial views
		mixing and matching, Template Engines
	turning into real websites, Layouts and partial views

	vm module, VM, VM, VM, VM, VM, VM, VM
		about, VM, VM
	runInNewContext() method, VM, VM
	runInThisContext() method, VM
	Script class, VM, VM

W
	web applications, Building a Chat Server, Building a Chat Server, Let’s Build Twitter, Let’s Build Twitter, The Event Loop, The Event Loop, Patterns, Ordered serial I/O, Writing Code for Production, Using Multiple Processors
		building chat server, Building a Chat Server, Building a Chat Server
	building Twitter-like app, Let’s Build Twitter, Let’s Build Twitter
	event loop, The Event Loop, The Event Loop
	patterns, Patterns, Ordered serial I/O
	writing code for production, Writing Code for Production, Using Multiple Processors

	web browsers, Professionalism in JavaScript, Browser Wars 2.0, Let’s Build Twitter, Socket.IO
		browser wars, Browser Wars 2.0
	HTML5 WebSockets standard, Socket.IO
	JavaScript support, Professionalism in JavaScript
	redirecting from endpoint, Let’s Build Twitter

	web servers, A First Server, A First Server, High-Performance Web Servers, Let’s Build Twitter, HTTP
		about, A First Server, A First Server, HTTP
	Express module support, Let’s Build Twitter
	high-performance, High-Performance Web Servers

	.where command
 (MySQL), Updating
	wildcard in routes, Setting Up Routes in Express
	work distribution example, Using Multiple Processors, Using Multiple Processors
	work queues, RabbitMQ, Work queues, Work queues
	WritableStream.write() method, process.stderr
	writing code for production, Writing Code for Production, Error Handling, Using Multiple Processors, Using Multiple Processors
		about, Writing Code for Production
	error handling, Error Handling
	multiple processor usage, Using Multiple Processors, Using Multiple Processors

X
	X-Response-Time header, Middleware

Z
	zadd command (Redis), Sorted sets
	zcard command (Redis), Sorted sets
	zombie workers, killing, Using Multiple Processors
	zrange command (Redis), Sorted sets

About the Authors
Tom Hughes-Croucher is a developer and technology evangelist. He’s worked for and with numerous well known brands, including Yahoo!, NASA, Tesco, Three Telecom, and UK Channel 4. Tom has contributed to a number of web standards for the World Wide Web Consortium (W3C) and the British Standards Institute (BSI).
Mike has had the privilege of working with some of the largest and most influential brands in the world, including Disney, Microsoft and McDonalds. He has years of web development experience, designing and building everything from small business sites to large MMO server clusters hosting millions of players.In his free time Mike maintains his personal blog (http://www.alwaysgetbetter.com) and contributes to forums and experiments with emerging frameworks and software. Mike lives in Vancouver with his wife and their three children.

Colophon
The animal on the cover of Node: Up and Running
 is a common tree shrew (Tupaia glis). These arboreal
 mammals are found in the southern parts of Southeast Asia. Common tree
 shrews live in forests, though they are also found in orchards and gardens.
 They are good climbers and can jump up to two feet between trees. They are
 active during the day, feeding on plants, seeds, and fruit, as well as ants,
 spiders, and small lizards.
Common tree shrews are 6–8 inches long, with a thick bushy tail as
 long as their bodies. They have pointed snouts and five-toed clawed feet.
 Their fur is black, gray, or reddish, with white on the belly. The genus
 name Tupaia comes from the Malay for “squirrel,” which
 the creatures somewhat resemble. Tree shrews were also thought for some time
 to be closely related to the primates, but they now have their own order,
 Scandentia.
Common tree shrews are sexually mature at a few months old, and they
 mate monogamously. The male constructs two separate nests—one for the
 parents and one for the young. Parental care is scant; the female visits the
 offspring to nurse them for a few minutes every two days.
The cover image is from Lydekker’s Natural
 History. The cover font is Adobe ITC Garamond. The text font is
 Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
 font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages1137977.png

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages1137983.png

OEBPS/callouts/1.png

OEBPS/callouts/2.png

OEBPS/orm_front_cover.jpg
R R RRRRRRERREEEEESSEEEERERREERERRRA Y
Scalable Server-Side Code with JavaScript

Up and Running

O'REILLY® Tom Hughes-Croucher

OEBPS/httpatomoreillycomsourceoreillyimages1137985.png

OEBPS/httpatomoreillycomsourceoreillyimages1137981.png

OEBPS/callouts/9.png

OEBPS/callouts/7.png

OEBPS/callouts/8.png

OEBPS/callouts/5.png

OEBPS/callouts/6.png

OEBPS/callouts/3.png

OEBPS/callouts/4.png

OEBPS/httpatomoreillycomsourceoreillyimages1137975.png.jpg
® localhost:8124

Bello World

OEBPS/httpatomoreillycomsourceoreillyimages1137979.png
LA

Dy 14
=3

OEBPS/callouts/12.png

OEBPS/callouts/13.png

OEBPS/callouts/14.png

OEBPS/callouts/15.png

OEBPS/callouts/10.png

OEBPS/callouts/11.png

