Objective-C Quick Reference
Defining a Class

Classes are defined in two parts that are typically split between two files:

· An interface that declares the methods and instance variables of the class and names the superclass

· An implementation that actually defines the class and contains the code that implements its methods

The interface and implementation files are typically named after the class. The interface file usually has a .h extension. The name of the implementation file has a .m extension, indicating it contains Objective-C code.
For example, the following code found in an mmMaps.h file declares the interface:

#import <Foundation/Foundation.h>

@interface mmMaps : NSObject {

}

- (bool)openURL:(NSString *) url;

@end

And the following code found in an mmMaps.m file implements the interface and defines the class:

#import "mmMaps.h"

@implementation mmMaps

- (bool)openURL:(NSString *)url {

// URL encode the string (removes spaces and other non-URL friendly character

url = [url stringByAddingPercentEscapesUsingEncoding: NSUTF8StringEncoding];

// Create the URL string

url = [NSString stringWithFormat:@"http://maps.google.com/maps?q=%@", url];

bool result = [[UIApplication sharedApplication] openURL:[NSURL URLWithString:url]];

return result;

}
@end
Class Interface

The purpose of the interface file is to declare the new class to other source modules and to other programmers. It contains all the information they need to work with the class. It also:

· Tells users how the class is connected into the inheritance hierarchy and what other classes (inherited and referenced) are needed.

· What instance variables an object contains

· What messages can be sent to the class object and instances of the class. Methods internal to the class can be omitted.

The declaration of a class interface begins with the compiler directive @interface and ends with the directive @end. For example:

#import “ItsSuperclass.h”

@interface ClassName : ItsSuperClass < protocol list>
{

//Instance variable declarations

float width;

float height;

BOOL filled;

NSColor *fillColor;

}

//Method declarations- Class methods are preceded by a plus sign,
// instance methods by a minus sign

+ alloc;

- (bool)openURL:(NSString *) url;
@end

If a superclass is not specified, the class is declared a root class, a rival to NSObject.

Methods

· Class methods are preceded by a “+” sign

· Instance methods are preceded by a “-“ sign.

· Method return types are declared using the standard C syntax for casting one type to another:

- (float) radius;

· Method arguments are declared in the same way:

- (void) setRadius:(float)aRadius;

· When there’s more than one argument, the arguments are declared within the method name after the colons:

- (bool) openURL:(NSString *)emailAddress subject:(NSString *)subject;
· Methods that take a variable number of arguments declare them using a comma and ellipses points:

- makeGroup:group, ...;

· Methods with no other valid return type should return void
· If a return type isn’t specified, it’s assumed to be the default method return type—id.

· A method name includes all keywords, including colons, but does not include return type or parameter types. Method names should interleave the name with the arguments so the method’s name naturally describes the arguments. In this example, the method name is this object message is SetOriginX:y:
[myRectangle setOriginX: 30.0 y: 50.0]

· Each method implementation is passed two hidden arguments:

· The receiving object (self)
· The selector for the method (_cmd)

Within the implementation, both self and super refer to the receiving object. super replaces self as the receiver of the message to indicate that only methods inherited by the implementation should be performed in response to the message

Class Implementation

Every implementation file must import its own interface. When doing so, it can omit the name of the superclass and declaration of instance variables. This simplifies the implementation and makes it mainly devoted to method definitions. The definition of a class begins with the @implementation directive and ends with the @end directive:

#import “ClassName.h”

@implementation ClassName
 method definitions
@end

Class Methods

Class methods are defined within a pair of braces. They’re declared the same way as in the interface, but without the semicolon:

+ (id)alloc
{

...
}

- (BOOL)isFilled
{

...
}

Methods that take a variable number of arguments use the comma and ellipses notation:

#import <stdarg.h>
...
- getGroup:group, ...
{

va_list ap;

va_start (ap, group);

...
}

Instance Variables

You can explicitly set the scope of instance variables at four different levels:

	Directive
	Meaning

	@private
	The instance variable is accessible only within the class that declares it

	@protected
	(default if not specified) The instance variable is accessible within the class that declares it and within classes that inherit it

	@public
	The instance variable is accessible everywhere

	@package
	On 64-bit, an @package instance variable acts like @public inside the image that implements the class, but @private outside

A scope directive applies to all instance variables listed after it, up to the next directive or the end of the list:

@interface Worker : NSObject
{

char *name;

@private

int age;

char *evaluation

@protected

id job;

float wage;

@public

id boss;
}

Messages to self and super

You can use self and super to refer to an object that performs a method:

· self – searches for the method implementation starting in the receiving object’s class

[self setOrigin:someX :someY];

· super – starts the search in the superclass of the class that defines the method where super appears:

[super setOrigin:someX :someY];

Inside an instance method, self refers to the instance, but inside a class method, self refers to the class object. To avoid confusion, it’s best to use a variable other than self to refer to an instance inside a class method. Rather than sending the alloc message to the class in a class method, it’s better to send alloc to self. That way, if the class is subclassed, and the rectangleOfColor: message is received by a subclass, the instance returned will be of the same type as the subclass:

+ (id)rectangleOfColor(NSColor *)color
{

id newInstance [[self alloc] init];
}
Constructors

Objective-C has alloc-init method pairs, designed to be called in a chain, or class convenience methods for doing both and returning an auto-released object for you. You are responsible for returning the object self. You are also responsible for calling the appropriate superclass methods.

Default Method Return Values

For Object-C object-oriented constructs such as method return values, the default data type is id. For strictly C constructs, such as function return values, int is the default data type.
Importing the Interface

The interface file must be included in any source module that depends on the class interface—that includes creating an instance of the class, invoking a method of the class, or referencing an instance variable declared in the class. The interface is included with the #import directive:

#import “Rectangle.h”

An interface file begins by importing the interface for its superclass:

#import “ItsSuperclass.h”

@interface ClassName : ItsSuperClass
{

instance variable declaration
}
method declaration
@end

Referencing Other Classes

If an interface references a class not in its own hierarchy as a type (but doesn’t reference its interface by creating an instance or sending messages) you can use the @class directive which minimizes the amount of code seen by the compiler and liner:

@class Rectangle, Circle;

Typically, an interface file uses @class to declare classes and the corresponding implementation file imports their interfaces.

Testing Class Equality

You can test two class objects for equality by comparing the values returned by the class method:

if ([objectA class] == [object class])

Class Names in Source Code

In source code, class names can be used in two very different contexts:

· As a type name for a kind of object

· As the receiver in a message expression where the class name refers to the class object
Classes

Objective-C has bona-fide class methods, eligible for specification in Objective-C protocols (similar to interfaces). Objective-C doesn’t have class variables, but it does have static variables which works almost the same. You can only assign literal values to static variables on declaration.

In Objective-C, no instance variable can be assigned immediately on declaration, but must be set in the init instance method.

By default, Objective-C class methods are overridable.

You can only have one superclass, but can implement any number of protocols (interfaces)

Root Classes

NSObject is a root class, so it doesn’t have a superclass. It defines the basic framework for Objevtive-C objects and objet interactions. It imparts to it subclasses the ability to behave as objects, introspect about their abilities, report their place in the inheritance hierarchy and interface with the runtime system.

Objective-C allows defining new root classes and provides the id keyword – in actuality, the runtime’s data structure of an object – to specify ‘any object whatsoever’.

Class Objects

The compiler creates just one accessible object for each class, a class object (or factory object) that knows how to build new objects belonging to the class. The class object is the compiled version of the class; the objects it builds are instances of the class. Class object are full-fledged objects that can be dynamically typed, receive messages, and inherit methods from other classes. They’re special in that they’re created by the compiler, lack data structures (instance variables) of their own other than those built from the class definition, and are the agents for producing instances at runtime. A class object has no access to the instance variables of any instances.
All instances of a class have the same set of methods, but each object gets its own instance variable.

Class objects inherit from the classes above them in the hierarchy, but because they don’t have instance variables, they inherit only methods.

A class definition can include methods intended specifically for the class object—class methods as opposed to instance methods.

In source code, the class object is represented by the class name. In the following example, the Rectangle class returns the class version number using a method inherited from NSObject:

int VersionNumber = [Rectangle version];

For all instances of a class to share data, you must define an external variable of some sort. The simplest way to do this is to declare a variable in the class implementation file:

@implementation MyClass

// implementation continues

Initializing a Class Object

If the class uses static or global variables, the initialize method is a good place to set their initial value. The runtime system sends an initialize message to every class object before the class receives any messages.
Note: Because of inheritance, an initialize message sent to a class that doesn’t implement the initialize method is forwarded to the superclass, even though the superclass has already received the initialize message. Therefore, the class should ensure its initialization logic is performed only once, and for the appropriate class. For example:

+ (void) initialize
{

If (self == [ThisClass class])

{

// perform initialization here

}
Static Variables

You can declare a variable to be static, and provide class methods to manage it. Declaring a variable static limits its scope to the class—and to just the part of the class that’s implemented in the file. Thus, unlike instance variables, static variables cannot be inherited by, or directly manipulated by, subclasses.

In the case where you need only one object of a particular class, you can put all the object’s state into static variables and use only class methods.
Class Objects and Root Classes

Class objects are given special dispensation to perform instance methods defined in the root class. When a class object receives a message it can’t respond to with a class method, the runtime system determines if there is a root instance method that can respond. The only instance methods a class object can perform are those defined in the root class, and only if there’s no class method that can do the job.

Naming Conventions

· The names of files that contain Objective-C source code have the .m extension

· Files that declare class and category interfaces or that declare protocols have the .h extension typical of header files.

· Class, category, ad protocol names generally begin with an uppercase letter;

· The names of methods and instance variables typically begin with a lowercase letter

· The names of variables that hold instances usually also begin with lowercase letters

· In Objective-C, identical names that server different purposes don’t clash. Within a class, names can be freely assigned:

· A class can declare methods with the same names as the methods in other classes

· A class can declare instance variables with the same names as variables in other classes

· An instance method can have the same name as a class method

· A method can have the same name as an instance variable

· Likewise, protocols and categories of the same class have protected name spaces:

· A protocol can have the same name as a class, a category, or anything else

· A category of one class can have the same name as a category of another class

· Class names are in the same name space as global variables and defined types. A program can’t have a global variable with the same name as a class
Defined Types

The principal types used in Objective-C are defined in objc/objc.h. They are:

	Type
	Definition

	id
	An object (a pointer to its data structure)

	Class
	A class object (a pointer to the class data structure)

	SEL
	A selector, a compiler-assigned code that identifies a method name

	IMP
	A pointer to a method implementation that returns an id

	BOOL
	A Boolean value, either YES or NO. Note that the type of BOOL is char

id can be used to type any kind of object, class, or instance. In addition, class names can be used as type names to statically type instances of a class. A statically typed instance is declared to be a pointer to its class or to any class it inherits from.

The objc.h header file also defines these useful terms:

	Type
	Definition

	nil
	A null object pointer (id)0

	Nil
	A null class pointer (Class)0

	NO
	A Boolean false value, (BOOL)0

	YES
	A Boolean true value, (BOOL)1

Preprocessor Directives

The preprocessor understands these special notations:

	Notation
	Definition

	#import
	Imports a header file. This directive is identical to #include, except it doesn’t include the same file more than once

	//
	Begins a comment that continues to the end of the line

Compiler Directives

Directives to the compiler begin with “@”. The following directives are used to declare and define classes, categories, and protocols:

	Directive
	Definition

	@interface
	Begins the declaration of a class or category interface

	@implementation
	Begins the definition of a class or category

	@protocol
	Begins the declaration of a formal protocol

	@end
	Ends the declaration/definition of a class, category, or protocol

The following mutually exclusive directives specify the visibility of instance variables:

	Directive
	Definition

	@private
	Limits the scope of an instance variable to the class that declares it

	@protected
	(default) Limits instance variable scope to declaring and inheriting class

	@public
	Removes restrictions on the scope of instance variables

These directives support exception handling:

	Directive
	Definition

	@try
	Defines a block within which exceptions can be thrown

	@throw
	Throws an exception object

	@catch
	Catches an exception thrown within the preceding @try block

	@finally
	Defines a block of code that is executed whether exceptions were thrown or not in a preceding @try block

The following directives support the declared properties feature:

	Directive
	Definition

	@property
	Begins the declaration of a declared property

	@synthesize
	Requests that, for the properties whose names follow, the compiler generate accessor methods associated with the properties whose names follow

	@dynamic
	Instructs the compiler, not to generate a warning if it cannot find the implementation of accessor methods with the properties whose names follow (they are supplied dynamically)

In addition, there are directives for these particular purposes:

	Directive
	Definition

	@class
	Declares the name of classes defined elsewhere

	@selector (method_name)
	Returns the compiled selector that identifies method_name

	@protocol (protocol_name)
	Returns the protocol_name protocol (an instance of the Protocol class). @protocol is also valid without (protocol_name) for forward declarations)

	@encode(type_spec)
	Yields a character string that encodes that type structure of type_spec

	@*string*
	Defines a constant NSString object in the current module and initializes the object with the specified string.

On Mac OS X v10.5 you can use either 7-bit ASCII-encoded or UTF-16 encoded strings.

	@”string1” @”string2” … @stringN*
	Defines a constant NSString object in the current module. The string created is the result of concatenating the strings specified in the two directives

	@synchronized()
	Defines a block of code that must be executed only by one thread at a time

Interfaces / Protocols

Interfaces are referred to as protocols. You specify a protocol this way:

ObjectClass<Interface>;

Objects
Object Identifiers

In Objective-C, object identifiers are a distinct data type: id. This type is defined as a pointer to an object—in reality, a pointer to the instance variables of the object. All objects are of type id:

id anObject;

The id type yields no information about an object, except that it is an object.
Dynamic Typing

Every object has an isa instance variable that identifies the object’s class—what kind of object it is. Objects are dynamically typed at runtime.
Creating Instances

A principle function of a class object is to create new instances. It takes two steps to create an object in Objective-C:

· Dynamically allocate memory for the new object

· Initialize the newly allocated memory to appropriate values

Allocation

Here is an example of allocating memory for a new object:
id myRectangle;

myRectangle = [Rectangle alloc]
NSObject defines two principle methods for allocating memory for new objects—alloc and allocWithZone. The alloc method dynamically allocates memory for the new object’s instance variable and initializes them all to 0—except the isa variable that connects the new instance to its class.

Initialization

For an object to be useful, it usually needs to be more completely initialized. That’s the function of an init method. Every class that declares instance variables must provide an init method to initialize them.

Initialization typically follows immediately after allocation:

myRectangle = [[Rectangle alloc] init];

In the above code, the alloc method returns a new instance and the instance returned from alloc performs an init method to set its initial state. By convention, if the method takes no arguments, the method name is init. If the initialization method takes arguments, labels for the arguments follow the “init” prefix. , but they all begin with “init”. For example:

initWithPosition:size:

An init method normally initializes the instance variables of the receiver, then returns it. If the method cannot successfully return an object, it can return nil, or at times, an object of another type. If there is a chance the value returned is nil, you should check for the return value before proceeding:

id anObject = [[SomeClass alloc] init];

if (anObject)

[anObject someOtherMessage];

else

Here is a list of initialize constraints and conventions:

· The name of the custom initializer starts with init
· The return type of an initializer should be id
· You must invoke the superclass’s designated initializer (usually init)

· You should assign self to the value returned by the designated initalizer

· When setting the value of instance variables, do so using direct assignment rather than using an accessor method to avoid unwanted side effects

· At the end of the initializer, return self, unless the initialize fails, then you should return nil
Here is an initialize example:

- (id)init {

// Assign self to value returned by super’s designated initializer

// NSObject’s designated initialize is init

if (self = [super init]) {

creationDte = [[NsDate alloc] init];

}

return self;
}

Here is an initialize with argument example:

// This class inherits from NSView

- (id)initWithImage:(NSImage *)anImage {

// Find the size for the new instance from the image

NSSize size = anImage.size;

NSRect frame = NSRectMake(0.0, 0.0, size.width, size.height);

if (self = [super initWithFramew:frame]) {

image = [anImage retain];

}

return self;
}

Here is an initialize example for handling invalid parameters:

- (id)initWithImage:(NSImage *)anImage {

if (anImage == nil) {

[self release];

return nil;

}

// Find the size for the new instance from the image

NSSize size = anImage.size;

NSRect frame = NSRectMake(0.0, 0.0, size.width, size.height);

if (self = [super initWithFramew:frame]) {

image = [anImage retain];

}

return self;

Testing Class Equality

You can test two class objects for equality using a direct pointer comparison:

if ([objectA class] == [object class])
Null Objects

The keyword nil is defined as a null object with an id value of zero (0)

Object Messaging Syntax

In Objective-C, message calls are enclosed in brackets. The receiver is an object, and the message is the method name and any parameters:
[receiver message];

The receiver can be:

· A variable or expression that evaluates to an object (including the variable self)

· A class name (indicating the class object)

· Super (indicating an alternative search for the method implementation

The message is the name of a method plus any arguments passed to it
For example, this message tells the myRectangle object to execute its display method:

[myRectangle display];

One message expression can be nested inside another. Here, the color of one rectangle is set to the color of another:

[myRectangle setPrimaryColor:[otherRect primaryColor]];

Here is an example that uses multiple parameters:

[mail openURL:emailAddress subject:@"This is the subject" body:@"This is the body"];
Object-C also provides a dot (.) operator that offers a compact and convenient syntax for invoking an object’s accessor methods:

BOOL isFilled;

isFilled = [myRectangle.isFilled];

A class must make sure all inherited initialization methods work. For example, if class A defines an init method and its subclass B defines an initWithName method, subclass B must also make sure that an init message successfully initializes B instances. The easiest way to do that is to replace the inherited init method with a version that invokes initWithName:

- init
{

return [self initWithName:”default”];
}

The designated initialize is the method in each class that guarantees inherited instance variables are initialized (by sending a message to super to perform an inherited method). It’s also the method that does most of the work and the one that other initialization methods in the same class invoke. It’s a Cocoa convention that the designated initialize is always the method that allows the most freedom to determine the character of a new instance (usually the one with the most arguments).

In Cocoa, some classes define creation methods that combine the two steps of allocating and initializing to return new, initialized instances of the class. These methods are referred to as convenience constructors and typically take the form + className… where className is the name of the class. For example, NSArray has the following methods:

+ (id)array;
+ (id)arrayWithObject:(id)anObject;
+ (id)arraWithObjects:(id)firstObj, ...;
Parameters

Methods can accept parameters. A message with a single parameter adds a colon to the method name and puts the argument right after the colon. For example:

[myRectangle setWidth:20.0];

This construct is called a keyword. A keyword ends with a colon, and an argument follows the colon.

Method parameters declared with colons are not optional and their order cannot be varied. Optional arguments are separated by commas after the end of the method name, and unlike colons, commas aren’t considered part of the name. In this example, the makeGroup: method is passed one required and three optional arguments:

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

The method name in a message servers to “select” a method implementation. For this reason, method names in messages are often referred to as selectors.

Method Return Values

Methods can return values. The following example sets the variable isFilled to YES if myRectangle is drawn as a solid rectangle, or NO otherwise:

BOOL isFilled;

isFilled – [myRectangle isFilled];
Properties

Declared Properties

You typically access an object’s properties through a pair of accessor (getter/setter) methods. A declared property is a shorthand way of declaring accessor methods. The following code demonstrates one way to declare a property.

// MyClass.h

@interface MyClass : NSObject
{

float value;
}
@property float value;
@end

@implementation MyClass
@synthesize value;
@end

There are two parts to a declared property—its declaration and its implementation. A property declaration begins with the keyword @property. The property declaration can appear anywhere in the method declaration list found in the @interface of a class. You can think of a property declaration as equivalent to declaring two accessor methods.

@synthesize

You use the @synthesize keyword to tell the compiler it should synthesize the setter and/or getter methods of the property if you do not supply them in the implementation block.
self

If you want to access a property of self using accessor methods, you must explicitly call out self:

self.age = 10;

If you do not use self, you access the instance variable directly. In this example, the set accessor method for the age property is not invoked:

age = 10;

Accessor Method Names
The default names for the getter and setter methods associated with a property are propertyName and setPropertyName. The following attributes allow you to specify custom names instead:

· getter-getterName – specifies the name of the get accessor. The getter must return a type matching the property’s type and take no arguments.

· setter-setterName – specifies the name of the set accessor for the property. The setter method must take a single argument of a type matching the property’s type and must return void

You can use the form property-ivar to indicate a particular instance variable should be used for a property. For example, the following code specifies the property age uses the instance variable yearsOld:

@synthesize firstName, lastName, age = yearsOld;

If an instance variable of the same name already exists, it is used.
Writability

These attributes specify whether a property has an associated set accessor.

· readwrite – (default) indicates the property should be treated as read/write. If you synthesize the property, both getter and setter methods are synthesized
· readonly – Indicates the property is read-only. Only a getter method is required in the implementation. If you synthesize the property, only the getter method is synthesized

Setter Semantics
These mutually exclusive attributes specify setter semantics:

· assign – (default) specifies the setter uses simple assignment

· retain – specifies that retain should be invoked on the object upon assignment. The previous value is sent a release message. This is only valid for Objective-C types. You can’t specify retain for Core Foundation objects

· copy – Specifies a copy of the object should be used for assignment. The previous value is sent a release message. The copy is made by invoking the copy method. This attribute is only valid for object types

If you do not use garbage collection (the iPhone doesn’t), you must explicitly specify assign, retain, or copy for object properties or you will get a compiler warning.

Atomicity

The nonatomic attribute specifies that an accessor method is not atomic. By default, accessor are atomic, so synthesized accessor provide robust access to properties in a multi-threaded environment—the value returned from the getter or set via the setter is always fully retrieved or set regardless of what other threads are executing concurrently.
If you do not specify nonatomic, then a synthesized get accessor for an object uses a lock and retains and auto-releases the returned value.
A class can’t redefine a property defined by its superclass, except a property declared as read-only may be declared as read-write.

Markup and Deprecation

Properties support the full range of C-style decorators. Properties can be deprecated and they support the _attribute_style markup:

@interface SomeClass
-method _attribute_((deprecated));
@end

Or:

#include <AvailabilityMacros.h>
@interface SomeClass
-method DEPRECATED_ATTRIBUTE;
// or some other deployment-target-specific macro
@end

If you want to specify that a property is an interface Builder outlet, you can use the IBOutlet identifier:

@property (nonatomic, retain) IBOutlet NSButton *myButton;

@dynamic

The @dynamic keyword tells the compiler you will fulfill the API contract implied by a property either by providing method implementations directly or at runtime using other mechanisms such as dynamic loading of code or dynamic method resolution.
copy Attribute

If you use the copy attribute, you specify that a value is copied during assignment. If you synthesize the corresponding accessor, the synthesized method uses the copy method. This is useful for attributes such as string objects where there is a possibility that the new value passed in a setter may be mutable (for example, an instance of NSMutableString) and you want to ensure your object has its own private immutable copy.
For example, if you declare a property as follows:
@property (nonatomic, copy) NSString *string;

then the synthesized setter method is similar to this:

- (void)setString:(NSString *)newString {

if (string != newString {

[string release];

string = [newString copy];
}

This works well for strings, but it may present a problem if the attribute is a collection such as an array or set. Typically, you want such collections to be mutable, but the copy method returns an immutable version of the collection. In this case, you need to provide your own implementation of the setter:

@interface MyClass : NSObject {

NSMutableArray *myArray;
}

@implementation MyClass

@synthesize myArray;

- (void)setMyArray:(NSMutableArray *)newArray {

if (myArray != newArray)
[myArray release];
myArray = [newArray mutableCopy];

}
}
@end

Property Re-declaration

You can re-declare a property in a subclass, but (with the exception of readonly vs readwrite) you must repeat all of its attributes in the subclass.
dealloc

Declared properties provide a useful way to cross-check the implementation of your dealloc method. You can look for all the property declarations in your header file and make sure the object properties not marked assign are released, and those marked assign are not released.

Typically, in a dealloc method you should release object instance variables directly as shown here (rather than invoking a set accessor and passing nil):

- (void)dealloc {

[property release];

[super dealloc]:
}

If you are using the modern runtime and synthesizing the instance variable, you cannot access the instance variable directly, so you must invoke the accessor method:

- (void)dealloc {

[self setProperty:nil];

[super dealloc];
}

Categories and Extensions

Categories

A category allows you to add methods to an existing class—even to one for which you do not have the source code. This allows you to extend the functionality of a class without subclassing. Using categories, you can also split the implementation of your classes between several files.

You can add methods to a class by declaring them in an interface file under a category name and defining them in an implementation file under the same name. The category name indicates that the methods are additions to a class declared elsewhere, not a new class. You cannot use a category to add additional variables to a class, but they can be used to add properties.

The declaration of a category interface looks much like a class interface declaration, except the category name is listed within parentheses after the class name and the superclass isn’t mentioned. Unless its methods don’t access any instance variables of the class, the category must import the interface file for the class it extends:

#import “ClassName.h”

@interface ClassName (CategoryName)
// method declarations
@end

A common naming convention is that the base file name of the category is the name of the class the category extends followed by “+” followed by the name of the category. A category implementation (in a file named ClassName+CategoryName.m) might look like this:
#import “ClassName+CategoryName.h”

@implementation ClassName (CategoryName)
// method declarations
@end

Extensions

Class extensions are like anonymous categories that the methods they declare must be implemented in the main @implementation block for the corresponding class.

Class extensions allow you to declare additional required API for a class in locations other than within the primary class @interface block. For example:

@interface MyObject : NSObject
{

NSNumber *number;
}
- (NSNumber *)number;
@end

@implementation MyObject
- (NSNumber *)number
{

return number;
}
- (void)setNumber:(NSNumber *)newNumber
{

number = newNumber;
}
@end
Type Introspection

Instances can reveal their types at runtime. The isMemberOfClass: method defined in NSObject checks whether the receiver is an instance of a particular class:

If ([anObject isMemberOfgClass:someClass])

The isKindOfClass method, also defined in NSObject, checks more generally if the object has a particular class in its inheritance path:

if ([anObject isKindOfClass:someClass])
Boxing

In Objective-C the boxing process is entirely manual. For example:

NSNumber *integer = [NSNumber numberWithInt:8];
int x = [integer intValue];
Declaring Arrays

There are two types of arrays—mutable or immutable (the default). The Objective-C code for storing a specific type in an array (such as String, or int), makes it impossible to know when you’re passing in non-strings without doing type checks manually beforehand, or creating tuned methods that only accept the given type in order to generate the standard compiler error:

NSMutableArray * strings = [[NSArray array] mutableCopy];

[strings addObject:@"xyz"];

[strings removeObjectAtIndex:0];

Declaring Enumerations

Note that placement of commas is critical:
typedef enum {

kLineShape = 0

,kRectShape

,kEllipseShape

,kImageShape
} ShapeType;
Object-Orientation

Static Typing

You can use a class name in place of id to designate an object’s type:

Rectangle *myRectangle;

This is known as static typing because it gives the compiler information about the kind of object it is. Static typing permits the compiler to do type checking. An object can be statically typed to its own class or to any class from which it inherits.
Overriding Methods

Although overriding a method blocks the original version from being inherited, other methods defined in the new class can skip over the redefined method and find the original method by means of the super keyword. A redefined method can also incorporate the method it overrides.

Overriding Instance Variables

A subclass can’t override instance variable since an object has memory allocated for every instance variable it inherits.
Polymorphism

Polymorphism allows related objects to have methods with the same name, but different content. This allows a class to take many forms (the literal meaning of polymorphism).

Abstract Classes

Objective-C doesn’t have syntax to mark classes as abstract, and it doesn’t prevent you from creating an instance of an abstract class.

Protocols

Protocols declare methods that can be implemented by a class . They can be used to:

· Declare methods that others are expected to implement

· Declare the interface to an object while concealing its class

· Capture similarities among classes that are not hierarchically related

A protocol is simply a list of method and property declarations unattached to a class definition. A formal protocol is declared with the @protocol directive. For example:

@protocol ProtocolName
- initFromXMLRepresentation:(NSXMLElement *)XMLElement;
@property (nonatomic, readonly) (NSXMLElement *)XMLRepresentation;
@end

Unlike class names, protocol names don’t have global visibility. They live in their own namespace.

Protocol methods are required by default, but can be marked as optional using the @optional keyword . There is a @required keyword to formally denote the semantics of the default behavior:

@protocol ProtocolName

- (void) requiredMethod;

@optional
- (void)anOptionalMethod;
- (void)anotherOptionalMethod;

@required
- (void)anotherRequiredMethod;

@end

Adopting a protocol is similar in some ways to declaring a superclass. The protocol assigns methods in the protocol list:

@interface ClassName : ItsSuperClass < protocol list >

Categories adopt protocols in much the same way:

@interface ClassName (CategoryName) < protocol list >

A class can adopt more than one protocol:

@interface Formatter : NSObject < Formatting, Prettifying >

A class or category that adopts a protocol must implement all required methods the protocol declares, otherwise the compiler issues a warning. A class or category that adopts a protocol must import the header file where the protocol is declared. The methods declared in the adopted protocol are not declared elsewhere in the class or category interface. It’s possible for a class to simply adopt protocols and declare no methods.

You can check if an object conforms to a protocol by sending it a conformsToProtocol: message:

if (! [receiver conformsTProtocol:@protocol(MyXMLSupport)]) [

// Object does not conform to MyXMLSupport protocol

}

In a type declaration, protocol names are listed between angle brackets after the type name:

- (id <Formatting>)formattingService;
id <MyXMLSupport> anObject;

One protocol can incorporate other protocols using the same syntax used by classes:

@protocol ProtocolName < protocol list >

Dynamic Language Features

Class Names

If you don’t know the class name at compile time, you can specify it as a string at runtime using the NSClassFromString method to return the class object. For example:

NSString *className;

if ([anObject isKindOfClass:NSClassFromString(className)])

Dot Syntax and Key-Value Coding

Key-value coding (KVC) defines the following generic property accessor methods which identifies property names with string-based keys:

· valueForKey:

· setValue:forKey

KVC is not meant as an alternative to using accessor methods. It is for use by code that has no other option, when the code cannot know the names of the properties at compile time.

This code has the same result:

MyClass *anotherInstance = [[MyClass alloc] init];

myInstance.linkedInstance = anotherInstance;

myInstance.linkedInstance.integerProperty = 2;

As this:

MyClass *anotherInstance = [[MyClass alloc] init];

myInstance.linkedInstance = anotherInstance;

[mvInstance setValue:[NsNumber numberWithInt2:2]

 forKeyPath:@”linkedInstance.integerProperty”];

Memory Management
In Objective-C, it’s important to deallocate objects when they are no longer needed. There are two environments for memory management:

1. Reference counting –You are responsible for determining the object lifetime

2. Garbage Collection – You give responsibility of object lifetime to an automatic collector (not available on the iPhone)

Language Features

Fast Enumeration

for…in is a language feature that allows you to enumerate over the contents of a collection:

for (Type newVariable in expression) { statements }

or

Type existingItem;
for (existingItem in expression) { statements }
In both cases, expression yields an object that conforms to the NSFastEnumeration protocol. The iterating variable is set to each item in the returned object in turn, and the statements are executed. The iterating variable is set to nil when the loop ends. If the loop is terminated early, the iterating variable is left pointing to the last iteration item.

The following code illustrates using fast enumeration with NSArray and NSDictionary objects:
NSArray *array = [NSArray arrayWithObjects:

@”One”, @”Two”, @”Three”, @”Four”, nil];

for (NSString *element in array {

NSLog(@”element: %@”, element };

NSDictionary *dictionary = [NSDictionary dictObjKeys:

@”quattor”, @”four”, @”quinque”, @”five”, nil];

NSString *key
for (key in dictionary) {

NSLog(@”English: %@, Latin: %@”, key, [dictionary valueForKey:key]);
}

You can use NSEnumerator objects with fast enumeration:

NSArray *array = [NSArray arrayWithObjects:

@”One”, @”Two”, @”Three”, @”Four”, nil];

NSEnumerator *enumerator = [array reverseObjectEnumerator];
for (NSString *element in enumerator) {

if ([element isEqualToString:@”Three”]) {

break;

}
}

NSString *next = [enumerator nextObject];
// next = “Two”

For collections or enumerations with a well-defined order—such as NSArray or NSEnumerator instance derived from an array—the enumeration proceeds in that order, so simply counting iterations gives you the proper index into the collection:

NSArray *array = /* assume this exists */;
NSInteger index = 0;

for (id element in array) {

NSLog(@”Element at index %u is: ^%@”, element);

index++;
}

Working with Strings

Concatenating Strings

You can concatenate strings using the stringByAppendingString: method of the NSString class. For example:

c = [a stringByAppendingString: b];

String Constants

You specify a string constant by using the @ sign before a string contained in double quotes. For example:

NSString * string = @”Hello iPhone World!”;

Evaluating Strings

The following determines if a string starts with certain characters:

- (BOOL) hasPrefix: (NSString *) aString;

This code determines if a string ends with certain characters:

- (BOOL) hasSuffix: (NSString *) aString;

To see if a string contains another string:

- (NSRange) rangeOfString: (NSString *) aString;

When you send rangeOfString to an NSString object, you pass it the string to look for and it returns an NSRange struct to show you where the matching part of the string is and how large the match is. So for example:

NSRange range = [filename rangeOfString: @”chapter”];

Comes back with range.start set to 6 and range.length set to 7. If the argument isn’t found in the receiver, range.start is equal to NSNotFound.
Frequently Asked Questions

Why do I get the compiler error “invalid initializer” and/or “statically allocated instance of Objective-C class <class name>”?
You usually get this error because you have forgotten to include an asterisk in the data type when declaring a variable that will hold an instance of your Objective-C class.

This code:

NSString myString;

Should be declared as:

NSString *mystring;

Why do I get the compiler error “.objc_class_name_<class name> referenced from:” with a “Line Location Tool:0”

You will often get this error if you have not included a class source code file (.m) in the project’s Compile Sources. To do this:

1. In Xcode, expand the Targets node

2. Expand the target you are compiling to

3. Expand Compile Sources
4. If your class implementation file (.m) is not listed there, drag ad drop it into the Compile Sources node

Why do I get the compiler message “Unsupported URL” when trying to programmatically launch the iPhone Mail application?
If you are running in the iPhone simulator, this is because the mail application is not available on the simulator.

Why do I get the compiler error ‘class name’ not declared (first use in this function)

This error usually occurs when you forget to import the specified class’s header file. Just add the import statement to the top of the source code file where the compiler error occurred.
