
Library tutorials & articles

ASP.NET Patterns every developer should know

Introduction

For the past year or so, I've been involved in documentation of frameworks that help developers to write better code,
and to create applications that are more efficient and easier to test, debug, maintain, and extend. During that time, it
has been interesting to see the continuing development of best practice techniques and tools at one of the leading
software companies in our industry. Most of the work was outside my usual sphere of ASP.NET and Web
development, concentrating mainly on Windows Forms applications built using .NET 2.0. This is an area where the
standard design patterns that have evolved over many years are increasingly being refined and put into practice.

However, I regularly found myself wondering just how many of these patterns are equally applicable and
advantageous within ASP.NET applications, where we now have the ability to write "real code" in .NET languages
such as Visual Basic .NET and C# - rather than the awkward mix of script and COM components upon which classic
ASP depended. Surely, out of the 250+ patterns listed on sites such as the PatternShare Community, some must be
useful in ASP.NET applications. Yet a search of the Web revealed that - while there is plenty of material out there on
design patterns in general, and their use in executable and Windows Forms applications - there is little that
concentrates directly on the use of standard design patterns within ASP.NET.

One very useful document that is available is "Enterprise Solution Patterns Using Microsoft .NET". This discusses
what design patterns are, how they are documented, and their usage in .NET Enterprise applications. It does not aim
solely at ASP.NET, but has plenty of ASP.NET coverage.

About Design Patterns

Because there is so much general material available on the aims and the documentation of design patterns for
executable applications, I will restrict this discussion to a few basic points before moving on to look at the patterns I
find most useful in ASP.NET. The References section at the end of Part 3 of this series of articles contains links to
many useful resources and Web sites related to design patterns in general.

While many people (myself included) find the term "design patterns" just a little scary - due not least to the way that
they are usually described and documented - most developers use informal patterns every day when writing code.
Constructs such as try...catch, using, and switch (Select Case) statements all follow standard patterns that
developers have learned over time. In fact, patterns can be:

● Informal Design Patterns - such as the use of standard code constructs, best practice, well structured code,
common sense, the accepted approach, and evolution over time

● Formal Design Patterns - documented with sections such as "Context", "Problem", "Solution", and a UML
diagram

Formal patterns usually have specific aims and solve specific issues, whereas informal patterns tend to provide
guidance that is more general. Formal patterns usually have specific aims and solve specific issues, whereas
informal patterns tend to provide guidance that is more general. Brad Appleton, author of the book "Software
Configuration Management Patterns: Effective Teamwork, Practical Integration", describes design patterns, pattern
languages, and the need for them in software engineering and development, like this:

"Fundamental to any science or engineering discipline is a common vocabulary for expressing its concepts, and a
language for relating them together."

"... a body of literature to help software developers resolve recurring problems encountered throughout all of
software development."

"... a shared language for communicating insight and experience about these problems and their solutions."

"A pattern is a named nugget of insight that conveys the essence of a proven solution to a recurring problem within
a certain context amidst competing concerns."

(from "Patterns and Software: Essential Concepts and Terminology")

The following sections of this article and the following two articles aim to demonstrate how you can use some of the
common formal patterns (some with minor adaptations to suit ASP.NET requirements) in your Web applications to
achieve the aims set out so succinctly by the Hillside Group. You can download the reasonably simple example
application and open it in Visual Studio 2005, or install it to run under Internet Information Services (IIS). The
download file includes a ~readme.txt file that describes the setup requirements.

Basic Design Patterns and Groups

Design patterns fall into groups, based on the type and aims of the pattern. For example, some patterns provide
presentation logic for displaying specific views that make up the user interface. Others control the way that the
application behaves as the user interacts with it. There are also groups of patterns that specify techniques for
persisting data, define best practices for data access, and indicate optimum approaches for creating instances of
objects that the application uses. The following list shows some of the most common design patterns within these
groups:

● Presentation Logic
● Model-View-Controller (MVC)
● Model-View-Presenter (MVP)
● Use Case Controller

● Host or Behavioral
● Command
● Publish-Subscribe / Observer

By Alex Homer, published on 17 Oct 2008 Comments (0) PDF

http://www.developerfusion.com/
http://www.developerfusion.com/library/
http://www.developerfusion.com/library/articles/
http://www.developerfusion.com/library/print/?contentid=8307#comments
http://www.developerfusion.com/library/print/?contentid=8307#comments
http://www.developerfusion.com/library/pdf/8307/
http://www.developerfusion.com/library/pdf/8307/
http://www.developerfusion.com/profile/alexhomer/
http://www.patternshare.org/
http://www.microsoft.com/downloads/details.aspx?familyid=3C81C38E-ABFC-484F-A076-CF99B3485754
http://www.scmpatterns.com/
http://www.scmpatterns.com/
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html#Intro
http://www.developerfusion.com/res/download/8307/ASPNETDesignPatternsSampleApp/
http://www.developerfusion.com/res/download/8307/ASPNETDesignPatternsSampleApp/

● Plug-in / Module / Intercepting Filter

● Structural
● Service Agent / Proxy / Broker
● Provider / Adapter

● Creational
● Factory / Builder / Injection
● Singleton

● Persistence
● Repository

The remaining sections of this and the two following articles discuss the patterns that are most suitable for use in
ASP.NET, or which ASP.NET implements automatically and allows you to extend to adapt the behavior to suit your
own requirements. See the index at the start of each article for a list of the patterns described.

The Model-View-Controller and Model-View-Presenter Patterns

The Model-View-Controller (MVC) and Model-View-Presenter (MVP) Patterns improve reusability of business logic by
separating the three components required to generate and manage a specific user interface (such as a single Web
page). The Model contains the data that the View (the Web page) will display and allow the user to manipulate. The
Controller or Presenter links the Model and the View, and manages all interaction and processing of the data in the
Model (see Figure 1).

Figure 1 - The Model-View-Controller and Model-View-Presenter Patterns

In the MVC pattern, user interaction with the View raises events in the Controller, which updates the Model. The Model
then raises events to update the View. However, this introduces a dependency between the Model and the View. To
avoid this, the MVP pattern uses a Presenter that both updates the Model and receives update events from it, using
these updates to update the View. The MVP pattern improves testability, as all the logic and processing occurs within
the Presenter, but it does add some complexity to the implementation because updates must pass from the
Presenter to the View.

The Provider and Adapter Patterns

The Provider and Adapter patterns allows otherwise incompatible classes to work together by converting the interface
of one class into an interface expected by the other. In more practical terms, these patterns provide separation
between components that allows behavioral changes to occur without prior knowledge of requirements. The
application and any data sources it uses, outputs it generates, or classes it must interact with, can be created
independently yet still work together (see Figure 2).

Figure 2 - The Provider and Adapter Patterns

The Provider pattern separates the data processing objects, and the application, from the source data. It allows the
code in the application to be independent of the type of data source and the format of the data. A Provider component
or service exposes standard methods that the application can call to read and write data. Internally, it converts these
calls to the equivalents that match the data source. This means that the application can work with any source data
type (such as any kind of database, XML document, disk file, or data repository) for which a suitable provider is
available.

The Adapter pattern has the same advantages, and works in a similar way. Often, the target of an Adapter is some
kind of output. For example, a printer driver is an example of an Adapter. ASP.NET itself, and other frameworks such
as Enterprise Library, make widespread use of the Provider and Adapter patterns.

The Service Agent, Proxy, and Broker Patterns

Various patterns exist that remove dependencies between a client and a service by using intermediate brokers. There
are many different implementations of the basic pattern, some of which use an extra service-agent logic component
to connect the client with the local proxy or gateway interface (see Figure 3).

Figure 3 - The Service Agent, Proxy, and Broker Patterns

The aim of all these patterns is to allow remote connection to, and use of, a service without the client having to know
how the service works. The service exposes a Contract that defines its interface, such as the Web Service Description
Language (WSDL) document for a Web Service. A client-side proxy or gateway interface uses the Contract to create a
suitably formatted request, and passes this to the service interface. The service sends the formatted response back
through its gateway interface to the client proxy, which exposes it to the client. In effect, the client just calls the service
methods on the client proxy, which returns the results just as if the service itself was a local component.

In the Service Agent pattern, an extra component on the client can perform additional processing and logic operations
to further separate the client from the remote service. For example, the Service Agent may perform service address
lookup, manipulate or format the client data to match the proxy requirements, or carry out any other kind of processing
requirements common to different clients that use the service.

The Repository Pattern

The Repository pattern virtualizes storage of entities in a persistent medium, such as a database or as XML. For
example, a repository may expose data held in the tables of a database as strongly typed Customer and Order
objects rather than data sets or data rows. It effectively hides the storage implementation from the application code,
and allows the use of a common set of methods in the application without requiring knowledge of the storage
mechanism or format. Often, the repository uses a series of providers to connect to the source data (see Figure 4).

Figure 4 - The Repository Pattern

The Singleton Pattern

The Singleton pattern defines the creation of a class for which only a single instance can exist. It is useful for
exposing read-only data, and static methods that do not rely on instance data. Rather than creating an instance of the
class each time, the application obtains a reference to an existing instance using a static method of the class that
implements the Singleton pattern.

If this is the first call to the method that returns the instance, the Singleton creates an instance, populates it with any
required data, and returns that instance. Subsequent calls to the method simply return this instance. The instance
lifetime is that of the application domain - in ASP.NET this is usually the lifetime of the domain Application object.

Implementing the Basic Patterns in ASP.NET

The previous sections briefly describe five common and simple types of design pattern. These are all applicable to
ASP.NET, and reasonably easy to implement. In fact, ASP.NET and the .NET Framework automatically implement
several of them. Figure 5 shows schematically how these patterns relate to ASP.NET applications; you will see
descriptions of their implementation or use in the subsequent sections of this article.

Figure 5 - How ASP.NET implements some basic design patterns

Implementation of the Model-View-Presenter Pattern

The ASP.NET code-behind technology, which uses partial classes, provides a natural implementation of the MVP
pattern. The code-behind file (the Presenter) contains all the logic and processing code, and populates the page (the
View). Event handlers within the code-behind file handle events raised by controls, or by the page itself, to perform
actions when a postback to the server occurs. To complete this pattern, the code-behind file can use a separate data
access layer or component (the Model) to read from, write to, and expose the source data - usually accessed through
built-in providers that are part of the .NET Framework.

For example, a page might use a separate class that exposes methods to read and update a database table. This
class can use the SqlClient, OleDb, or another data provider to connect to the database, and execute SELECT and
UPDATE queries or stored procedures. The code in the code-behind file uses this class to retrieve the data, and
populates the controls defined in the ASPX file that generates the user interface. When the user interacts with controls
in the page, perhaps changing values in the data, code in the code-behind file executes during the postback and
uses the data access class to push the changes back into the database.

The sample application uses the code-behind model throughout, thereby implementing the MVP pattern on each
page. The default page (Default.aspx) demonstrates the ASP.NET application of the MVP pattern by displaying a View
that contains a series of controls that allow users to execute any of a range of functions that fetch and display data
(see Figure 6).

Figure 6 - Finding a customer name in the Default page of the sample application

Clicking one of the buttons causes a postback to the server and raises the event that corresponds to that button. For
example, the interface component for the second button shown in Figure 6 is an ASP.NET Button control, declared
within the View (the ASPX page), which initiates an event handler named btnCustModelClick in the Presenter (the
code-behind file) to handle the Click event:

Get name for customer

In the Presenter (the code-behind file) is the declaration of the btnCustModelClick method, which creates an instance
of the Model (a class named CustomerModel.cs in the App_Code folder) and calls one of its methods to get the name
of the customer identified by the customer ID in the text box next to that button:

<asp:Button ID="btn_CustModel" runat="server" Text=" "
 OnClick="btn_CustModel_Click" />

<asp:Button ID="btn_CustModel" runat="server" Text=" "
 OnClick="btn_CustModel_Click" />
Get name for customer
<asp:TextBox ID="txtID_CustModel" runat="server" Text="ALFKI" Columns="3" />
from CustomerModel

protected void btn_CustModel_Click(object sender, EventArgs e)
// display the name of the specified customer
{
 try
 {
 // use method of the CustomerModel class
 CustomerModel customers = new CustomerModel();
 Label1.Text += "Customer Name from CustomerModel class: ";
 Label1.Text += customers.GetCustomerName(txtID_CustModel.Text);
 }
 catch (Exception ex)
 {
 Label1.Text += "PAGE ERROR: " + ex.Message;
 }
 Label1.Text += "<p />";

You can view the contents of the files Default.aspx (the View), Default.aspx.cs (the Presenter), and CustomerModel.cs
(the Model) that implement the MVP pattern in this example to see all of the UI control declarations and code they
contain. As you saw in Figure 6, there are buttons to execute a range of methods of the CustomerModel class, as well
as methods of the Repository, Web Reference, and Service Agent implementations discussed in the following
sections.

Notice that the Default.aspx page (in Figure 6) contains a drop-down list where you can select a page or view you
want to see, loaded using an implementation of the Front Controller pattern. You will see details of this in the section
"Implementation of the Front Controller Pattern" later in the next article. You can use this drop-down list to navigate to
other pages to see the examples, for example the Use Case Controller example page or the Publish-Subscribe
example page.

Implementation of the Provider Pattern

ASP.NET uses the Provider pattern in a number of places. These include providers for the Membership and Role
Management system (such as the SqlMembershipProvider and SqlRoleProvider), the Site Navigation system (the
XmlSiteMapProvider), and the user profile management system (such as the SqlProfileProvider). The data access
components in ASP.NET, such as SqlDataSource, also rely on providers. These providers are part of the .NET
Framework data-access namespaces, including SqlClient, OleDb, Odbc, and OracleClient. Each provider is
configured in the Web.config file, with the default settings configured in the server's root Web.config file. Developers
can create their own providers based on an interface that defines the requirements, or by inheriting from a base class
containing common functionality for that type of provider. For example, developers can extend the DataSourceControl
class to create their own data source controls that interface with a non-supported or custom data store.

Implementation of the Adapter Pattern

ASP.NET uses adapters to generate the output from server controls. By default, server controls use adapters such as
the WebControlAdapter or DataBoundControlAdapter to generate the markup (such as HTML) and other content
output by the control. Each adapter provides methods such as Render and CreateChildControls that the server
controls call to create the appropriate output. Alternative adapters are available, for example the CSS Friendly Control
Adapters that provide more flexibility for customizing the rendered HTML. Developers can also create their own
adapters to provide custom output from the built-in controls, and from their own custom controls.

Implementation of the Service Agent and Proxy Patterns

The Proxy and Broker patterns provide a natural technique for connecting to and using remote services without forcing
the use of O/S or application-specific protocols such as DCOM. In particular, they are ideal for use with Web Services.
In Visual Studio, developers add a Web Reference to a project, which automatically collects the web service
description (including a WSDL contract file). This lets the code generate a suitable proxy class that exposes the
methods of the remote service to code in the application.

Code in the application can then use the remote service by creating an instance of the proxy class and calling the
exposed methods defined in the contract. This is the code used in the sample application to call the CustomerName
method of the DemoService service:

One issue with using a Web Service is the difficulty in raising exceptions that the client can handle. The usual
approach is to return a specific value that indicates the occurrence of an exception or failure. Therefore, one useful
feature that a Service Agent, which wraps the Web Reference to add extra functionality, can offer is detecting
exceptions by examining the returned value and raising a local exception to the calling code.

The following code, from the ServiceAgent.cs class in the sample application, contains a constructor that instantiates
the local proxy for the service and stores a reference to it. Then the GetCustomerName method can call the
CustomerName method of the Web Service and examine the returned value. If it starts with the text "ERROR:" the
code raises an exception that the calling routine can handle.

The GetCustomerName method also performs additional processing on the value submitted to it. The Web Service
only matches on a complete customer ID (five characters in the example), and does not automatically support partial
matches. The GetCustomerName method in the Service Agent checks for partial customer ID values and adds the
wildcard character so that the service will return a match on this partial value:

}

protected void btn_WSProxy_Click(object sender, EventArgs e)
// display name of specified customer using the Web Service
{
 try
 {
 // get details from Web Service
 // use 'using' construct to ensure disposal after use
 using (LocalDemoService.Service svc = new LocalDemoService.Service())
 {
 Label1.Text += "Customer name from Web Service: "
 + svc.CustomerName(txtID_WSProxy.Text);
 }
 }
 catch (Exception ex)
 {
 Label1.Text += "PAGE ERROR: " + ex.Message;
 }
 Label1.Text += "<p />";
}

// wraps the Web Reference and calls to Web Service
// to perform auxiliary processing
public class ServiceAgent
{

http://www.asp.net/cssadapters/
http://www.asp.net/cssadapters/

To use this simple example of a Service Agent, code in the Default.aspx page of the sample application instantiates
the Service Agent class and calls the GetCustomerName method. It also traps any exception that the Service Agent
might generate, displaying the message from the InnerException generated by the agent.

Implementation of the Repository Pattern

A data repository that implements the Repository pattern can provide dependency-free access to data of any type. For
example, developers might create a class that reads user information from Active Directory, and exposes it as a
series of User objects - each having properties such as Alias, EmailAddress, and PhoneNumber. The repository may
also provide features to iterate over the contents, find individual users, and manipulate the contents.

Third-party tools are available to help developers build repositories, such as the CodeSmith tools library (see
http://www.codesmithtools.com/). Visual Studio includes the tools to generate a typed DataSet that can expose values
as properties, rather than as data rows, and this can form the basis for building a repository.

As a simple example, the sample application uses a typed DataSet (CustomerRepository.xsd in the App_Code
folder), which is populated from the Customers table in the Northwind database. The DataSet Designer in Visual
Studio automatically implements the Fill and GetData methods within the class, and exposes objects for each
customer (CustomersRow) and for the whole set of customers (CustomersDataTable).

The class CustomerRepositoryModel.cs in the App_Code folder exposes data from the typed DataSet, such as the
GetCustomerList method that returns a populated CustomersDataTable instance, and the GetCustomerName
method that takes a customer ID and returns that customer's name as a String:

 LocalDemoService.Service svc = null;

 public ServiceAgent()
 {
 // create instance of remote Web service
 try
 {
 svc = new LocalDemoService.Service();
 }
 catch (Exception ex)
 {
 throw new Exception("Cannot create instance of remote service", ex);
 }
 }

 public String GetCustomerName(String custID)
 {
 // add '*' to customer ID if required
 if (custID.Length < 5)
 {
 custID = String.Concat(custID, "*");
 }
 // call Web Service and raise a local exception
 // if an error occurs (i.e. when the returned
 // value string starts with "ERROR:")
 String custName = svc.CustomerName(custID);
 if (custName.Substring(0,6) == "ERROR:")
 {
 throw new Exception("Cannot retrieve customer name - " + custName);
 }
 return custName;
 }
}

protected void btn_WSAgent_Click(object sender, EventArgs e)
// display name of specified customer using the Service Agent
// extra processing in Agent allows for match on partial ID
{
 try
 {
 // get details from Service Agent
 ServiceAgent agent = new ServiceAgent();
 Label1.Text += "Customer name from Service Agent: "
 + agent.GetCustomerName(txtID_WSAgent.Text);
 }
 catch (Exception ex)
 {
 Label1.Text += "PAGE ERROR: " + ex.Message + "
";
 if (ex.InnerException != null)
 {
 Label1.Text += "INNER EXCEPTION: " + ex.InnerException.Message;
 }
 }
 Label1.Text += "<p />";
}

public class CustomerRepositoryModel
{

Implementation of the Singleton Pattern

The sample application uses the Front Controller pattern to allow users to specify the required View using a short and
memorable name. The Front Controller, described in detail in a later section, relies on an XML file that contains the
mappings between the memorable name and the actual URL for this view. To expose this XML document content to
the Front Controller code, the application uses a Singleton instance of the class named TransferUrlList.cs (in the
App_Code folder).

This approach provides good performance, because the class is loaded at all times and the Front Controller just has
to call a static method to get a reference to the single instance, and call the method that translates the memorable
name into a URL.

To implement the Singleton pattern, the class contains a private default constructor (a constructor that takes no
parameters), which prevents the compiler from adding a default public constructor. This also prevents any classes or
code from calling the constructor to create an instance.

The TransferUrlList class also contains a static method that returns the single instance, creating and populating it
from the XML file if there is no current instance. The class uses static local variables to store a reference to the
instance, and - in this example - to hold a StringDictionary containing the list of URLs loaded from the XML file:

 public CustomerRepository.CustomersDataTable GetCustomerList()
 {
 // get details from CustomerRepository typed DataSet
 try
 {
 CustomersTableAdapter adapter = new CustomersTableAdapter();
 return adapter.GetData();
 }
 catch (Exception ex)
 {
 throw new Exception("ERROR: Cannot access typed DataSet", ex);
 }
 }

 public String GetCustomerName(String custID)
 {
 // get details from CustomerRepository typed DataSet
 try
 {
 if (custID.Length < 5)
 {
 custID = String.Concat(custID, "*");
 }
 CustomerRepository.CustomersDataTable customers = GetCustomerList();
 // select row(s) for this customer ID
 CustomerRepository.CustomersRow[] rows
 = (CustomerRepository.CustomersRow[])customers.Select(
 "CustomerID LIKE '" + custID + "'");
 // return the value of the CompanyName property
 return rows[0].CompanyName;
 }
 catch (Exception ex)
 {
 throw new Exception("ERROR: Cannot access typed DataSet", ex);
 }
 }
}

// Singleton class to expose a list of URLs for
// Front Controller to use to transfer to when
// special strings occur in requested URL
public class TransferUrlList
{
 private static TransferUrlList instance = null;
 private static StringDictionary urls;

 private TransferUrlList()
 // prevent code using the default constructor by making it private
 { }

 public static TransferUrlList GetInstance()
 // public static method to return single instance of class
 {
 // see if instance already created
 if (instance == null)
 {
 // create the instance
 instance = new TransferUrlList();
 urls = new StringDictionary();
 String xmlFilePath = HttpContext.Current.Request.MapPath(
 @"~/xmldata/TransferURLs.xml");
 // read list of transfer URLs from XML file
 try

Languages

C# Programming
VB.NET
Java
C++

Web Development

ASP.NET (Quickstart)
PHP
JavaScript
CSS

Frameworks & Architecture

.NET Framework
Java
Patterns
Test Driven Development

Other major sections

.NET Forum
Developer Jobs
Podcasts
Software books

© 1999-2008 Developer Fusion Ltd Web hosting by UKFast

Related tags

.net, adapter, asp.net, broker, c#, mvc, mvp, patterns, provider, proxy, repository, singleton

A StringDictionary provides good performance, as the method that searches for a matching name and URL in the list
can use the ContainsKey method, and then access the matching value using an indexer. If there is no match, the
code returns the original value without translating it. This listing shows the GetTransferUrl method that performs the
URL translation:

To use the TransferUrlList Singleton class, code in the Front Controller just has to get a reference to the instance, and
then call the GetTransferUrl method with the URL to translate as the value of the single parameter:

 {
 using (XmlReader reader = XmlReader.Create(xmlFilePath))
 {
 while (reader.Read())
 {
 if (reader.LocalName == "item")
 {
 // populate StringDictionary
 urls.Add(reader.GetAttribute("name"), reader.GetAttribute("url"));
 }
 }
 }
 }
 catch (Exception ex)
 {
 throw new Exception("Cannot load URL transfer list", ex);
 }
 }
 return instance;
 }
 ...
}

public String GetTransferUrl(String urlPathName)
// public method to return URL for a specified name
// returns original URL if not found
{
 if (urls.ContainsKey(urlPathName))
 {
 return urls[urlPathName];
 }
 else
 {
 return urlPathName;
 }
}

...
// get Singleton list of transfer URLs
TransferUrlList urlList = TransferUrlList.GetInstance();
// see if target value matches a transfer URL
// by querying the list of transfer URLs
// method returns the original value if no match
String transferTo = urlList.GetTransferUrl(reqTarget);
...

http://www.addthis.com/bookmark.php
http://www.developerfusion.com/library/tag/.net/
http://www.developerfusion.com/library/tag/adapter/
http://www.developerfusion.com/library/tag/asp.net/
http://www.developerfusion.com/library/tag/broker/
http://www.developerfusion.com/library/tag/csharp/
http://www.developerfusion.com/library/tag/mvc/
http://www.developerfusion.com/library/tag/mvp/
http://www.developerfusion.com/library/tag/patterns/
http://www.developerfusion.com/library/tag/provider/
http://www.developerfusion.com/library/tag/proxy/
http://www.developerfusion.com/library/tag/repository/
http://www.developerfusion.com/library/tag/singleton/
http://www.developerfusion.com/tag/csharp/
http://www.developerfusion.com/tag/vb.net/
http://www.developerfusion.com/tag/java/
http://www.developerfusion.com/tag/cpp/
http://www.developerfusion.com/tag/asp.net/
http://quickstart.developerfusion.co.uk/quickstart/
http://www.developerfusion.com/tag/php/
http://www.developerfusion.com/tag/javascript/
http://www.developerfusion.com/tag/css/
http://www.developerfusion.com/tag/.net/
http://www.developerfusion.com/tag/java/
http://www.developerfusion.com/tag/patterns/
http://www.developerfusion.com/tag/tdd/
http://www.developerfusion.com/forum/
http://www.developerfusion.com/jobs/
http://www.developerfusion.com/library/media/
http://www.developerfusion.com/marketplace/books/
http://www.developerfusion.com/info/legal/
http://uk.sitestat.com/netcommunities/itproportal/s?UK_fast_DevFusion&ns_type=clickout

