
www.idesign.net June 2010

- 1 -

©2010 IDesign Inc. All rights reserved

The IDesign Method
Capturing Critical Design Aspects

Version 2.5

Author: Juval Lowy
www.idesign.net

www.idesign.net
www.idesign.net

www.idesign.net June 2010

- 2 -

©2010 IDesign Inc. All rights reserved

Table of Content

What is the IDesign Method™ .. 3

IDesign Method™ Notations Example .. 4

Assembly Allocation.. 7

Run-Time Processes Allocation... 8

Identity Management ... 9

Call Authentication and Authorization .. 10

Transactions Flow.. 12

Resources ... 13

www.idesign.net

www.idesign.net June 2010

- 3 -

©2010 IDesign Inc. All rights reserved

What is the IDesign Method™
IDesign specializes in helping companies design robust, maintainable and scalable
enterprise applications based on the .NET platform, and doing so in a fraction of the time
it takes normally to design and prototype such systems. To that end, we have crafted a
simple yet effective analysis and design technique, called the IDesign Method™. The
IDesign Method™ is unmatched in its focus on the required run-time behavior of the
application. The IDesign Method™ helps us analyze the requirements, suggest
alternatives, discuss tradeoffs, and yield a design that achieves the quality, scalability,
security, availability, schedule and throughput goals. In just 3-5 days we typically deliver
not only the system architecture (and some 40-60 diagrams) but also a vertical slice
implementation of the architecture and even a simple stress tester. WCF is a core part of
any service-oriented system based on .NET, and is thus used extensively in the vertical
slice. Since developers spend up to 95% of the development time on the run-time aspects
of the application (from hosting to transactions to security), having the design done and
prototyped in a few days is a huge productivity and quality boost, as well as training the
developers on the ins and outs of WCF along with practical application of system
features.

We have applied the IDesign Method™ techniques at companies large and small, from
the Fortune 100 to the startup. For example, the architecture work performed for HP is
now part of an official Microsoft case study on .NET architecture and design.

IDesign Method™ Notations
While providing the architecture, we share best practices, guidelines and pitfalls. In
particular, we share more than anything the thought process used to approach a design
task. But designing a solution is only the first step. Often developers have the most
trouble with ways of capturing design decisions beyond mere logical tiers. In particular,
how to capture dynamic behavior and aspects such as allocation of services to assemblies,
allocation of services to run-time hosting processes, identity management, authorization
and authentication boundaries, code-access security policies, transaction boundaries, and
logical threads of execution. Formal notations like UML offer no way of representing
these important run-time aspects. To address that, the IDesign Method™ relies on simple
diagrams where the boundary or the aspect is clearly marked out, using simple symbols,
such as a box or a bar. What the box or the bar represent is simply the context of the
diagram. This document describes only some of the notations used by the IDesign
Method™, and not the actual analysis process leading to them. We teach that in our
world-acclaimed Architect's Master Class. Some notations such as queued calls, security
policies and logical threads are not covered in this document. The purpose of this
document is merely to introduce the basic notations used by the IDesign Method™.

www.idesign.net
http://www.microsoft.com/resources/casestudies/casestudy.asp?CaseStudyID=15149

www.idesign.net June 2010

- 4 -

©2010 IDesign Inc. All rights reserved

IDesign Method™ Notations Example
Consider the classic multi-tier architecture in Figure 1. The manager components
encapsulate the use cases or the execution sequence, and the engine components
encapsulate some business rules. Clients may call the manager components directly or in
some cases use an ASP.NET or WCF web service to wrap them.

Figure 1: A static architecture view.

However, in a service-oriented approach, it is better to factor such architecture to a set of
independent services. This roughly involves refactoring vertical slices of calls through the
middle tiers into services. You can use WCF to expose the managers as services directly,
or introduce a logical service layer between the client applications and the middle tier.
Which option you choose typically depends on how extensively you would use WCF:
would you use it only as the gateway into a service, or would you use WCF vertically
across all logical components. All things being equal (especially throughput and
performance), IDesign recommends the latter, to maximize the internal decoupling that
WCF and SOA provide. The refactored architecture is shown in Figure 2.

www.idesign.net

www.idesign.net June 2010

- 5 -

©2010 IDesign Inc. All rights reserved

Figure 2: The logical services.

The architecture manages a few services, each with its own client, business logic and data
access. These components in turn can be WCF services as well. The architecture follows
a closed architecture pattern, where each component or service is allowed to call only
components or services in the tier immediately underneath it. In addition, there are
separate utilities such as hosting, logging or security services that all components and
services can use. You can superimpose on the static view from Figure 2 the call chains of
each use case, as shown in Figure 3.

www.idesign.net

www.idesign.net June 2010

- 6 -

©2010 IDesign Inc. All rights reserved

Figure 3: A call chain through the architecture.

www.idesign.net

www.idesign.net June 2010

- 7 -

©2010 IDesign Inc. All rights reserved

Assembly Allocation
After deciding which clients, components and services go to which assembly, capture that
in a separate diagram, as shown in Figure 4. In general, client applications reside in
application assemblies and everything else in class libraries (you can always expose
services a process using a host later on). When not using the WAS for hosting, you will
also need a host application assembly that can host the various services.

Figure 4: Allocation to assemblies.

www.idesign.net

www.idesign.net June 2010

- 8 -

©2010 IDesign Inc. All rights reserved

Run-Time Processes Allocation
Next, decide on allocation of services to run-time processes based on the need of the
application for fault isolation or security isolation. Your WCF services can be either in a
separate process from the client (using IIS6, WAS, or self-hosted), or they can be loaded
in-proc. Group all assemblies that share the same process and enclose them in a box, as
shown in Figure 5. If you are using IIS6 or the WAS for hosting, show those processes as
well. For example, in Figure 5, services A, B, and C are self-hosted but service D uses the
WAS (it also has a web client, which is irrelevant to the hosting decision).

Figure 5: Allocation to processes.

www.idesign.net

www.idesign.net June 2010

- 9 -

©2010 IDesign Inc. All rights reserved

Identity Management
Having a process boundary enables you to have an identity boundary, meaning, having
the client and the service in different processes run under different identities, but you can
still have both client and server run under the same identity. After deciding on the
identities based on the credentials required to perform the operations as well as whether
or not the services impersonate the callers, mark identity boundary using a box, as shown
in Figure 6. Remember, the further from the client, the less relevant its identity is.

Figure 6: Identity boundaries.

www.idesign.net

www.idesign.net June 2010

- 10 -

©2010 IDesign Inc. All rights reserved

Call Authentication and Authorization
As a design guideline, always perform authentication and authorization at every crossing
of service boundaries. Mark authentication using a solid bar, and authorization using a
patterned bar as shown in Figures 7 and 8. Note that authorization does not necessarily
occur exactly where authentication does. For example, there is no point for an in-proc
service to authenticate its intra-process callers, but it can still authorize them. In addition,
authorization is meaningless without authentication. Each tier should only authenticate its
immediate callers, and implicitly trust its caller to authenticate its up stream caller.

Figure 7: Authentication.

www.idesign.net

www.idesign.net June 2010

- 11 -

©2010 IDesign Inc. All rights reserved

Figure 8: Authorization.

www.idesign.net

www.idesign.net June 2010

- 12 -

©2010 IDesign Inc. All rights reserved

Transactions Flow
After designing your transactions, the transaction roots, participating services and
resources, mark the transactions using a box as shown in Figure 8.

Figure 8: Transactions.

www.idesign.net

www.idesign.net June 2010

- 13 -

©2010 IDesign Inc. All rights reserved

Resources
The Architect’s Master Class
The Architect’s Master Class is a five days training, and is the ultimate resource for the
professional architect. The class is conducted in the style of a Master Class, where a
Master architect shares his experience and perspective, and interacts with the students.
The class has three parts, on process, technology and SOA, and the IDesign method.
While the class shows how to design modern systems, it sets the focus on the ‘why’ and
the rationale behind particular design decisions, often shedding light on poorly
understood aspects. You will see relevant design guidelines, best practices, and pitfalls,
and the crucial process skill required of today’s architects. Don’t miss on this unique
opportunity to learn and improve your architecture skills with IDesign, and share our
passion for architecture and software engineering.

More at www.idesign.net

The WCF Master Class
The world’s best, most intense WCF training starts by explaining the motivation for
service-orientation, and then continues to discuss in depth how to develop service-
oriented applications using WCF. You will see how to take advatandge of built-in
features such as service hosting, instance management, asynchronous calls,
synchronization, reliability, transaction management, disconnected queued calls and
security. While the class shows how to use these features, it set the focus on the ‘why’
and the rationale behind particular design decisions, often shedding light on poorly-
documented and understood aspects. You will learn not only WCF programming but also
relevant design guidelines, best practices, and pitfalls. The material presented includes
IDesign's original techniques and utilities and goes well beyond anything you can find in
conventional sources. Don’t miss on this unique opportunity to learn WCF from the
IDesign architects who have been part of the strategic design effort for WCF from the
beginning, and who offer a profound insight on the technology and its applications. Any
.NET developer or architect would benefit greatly from the class.

More at www.idesign.net

Programming WCF Services 3rd Edition
By Juval Lowy, O'Reilly 2010

Learning WCF 2nd Edition
By Michele Leroux Bustamante, Mark Michaelis, O'Reilly 2010

www.idesign.net
www.idesign.net
www.idesign.net

