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• Master more advanced programming tools like recursion
and dynamic memory

• Organize your thoughts and develop strategies to tackle
particular types of problems

Although the book’s examples are written in C++, the
creative problem-solving concepts they illustrate go beyond
any particular language; in fact, they often reach outside the 
realm of computer science. As the most skillful programmers 
know, writing great code is a creative art—and the first
step in creating your masterpiece is learning to Think Like 
a Programmer.

distillation of the techniques he has used and honed over

A B O U T  T H E  A U T H O R

V. Anton Spraul has taught introductory programming and
computer science for more than 15 years. This book is a

many one-on-one sessions with struggling programmers.
He is also the author of Computer Science Made Simple.

The real challenge of programming isn’t learning a
language’s syntax—it’s learning to creatively solve 
problems so you can build something great.

In this one-of-a-kind text, author V. Anton Spraul breaks 
down the ways that programmers solve problems and
teaches you what other introductory books often ignore:
how to Think Like a Programmer. Each chapter tackles

and recursion, and open-ended exercises throughout
a single programming concept, like classes, pointers,

challenge you to apply your knowledge.

You’ll also learn how to:

them easier to solve
• Split problems into discrete components to make 

• Make the most of code reuse with functions, classes,
and libraries

• Pick the perfect data structure for a particular job
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I N T R O D U C T I O N

Do you struggle to write programs, even 
though you think you understand program-

ming languages? Are you able to read through 
a chapter in a programming book, nodding 

your head the whole way, but unable to apply what 
you’ve read to your own programs? Are you able to
comprehend a program example you’ve read online, even to the point where 
you could explain to someone else what each line of the code is doing, 
yet you feel your brain seize up when faced with a programming task and a 
blank screen in your text editor?

You’re not alone. I have taught programming for over 15 years, and most 
of my students would have fit this description at some point in their instruc-
tion. We will call the missing skill problem solving, the ability to take a given 
problem description and write an original program to solve it. Not all pro-
gramming requires extensive problem solving. If you’re just making minor 
modifications to an existing program, debugging, or adding testing code, the 
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programming may be so mechanical in nature that your creativity is never 
tested. But all programs require problem solving at some point, and all good 
programmers can solve problems.

Problem solving is hard. It’s true that a few people make it look easy—
the “naturals,” the programming world’s equivalent of a gifted athlete, like 
Michael Jordan. For these select few, high-level ideas are effortlessly translated 
into source code. To make a Java metaphor, it’s as if their brains execute Java 
natively, while the rest of us have to run a virtual machine, interpreting as we go.

Not being a natural isn’t fatal to becoming a programmer—if it were, the 
world would have few programmers. Yet I’ve seen too many worthy learners 
struggle too long in frustration. In the worst cases, they give up programming 
entirely, convinced that they can never be programmers, that the only good 
programmers are those born with an innate gift. 

Why is learning to solve programming problems so hard? 
In part, it’s because problem solving is a different activity from learning 

programming syntax and therefore uses a different set of mental “muscles.” 
Learning programming syntax, reading programs, memorizing elements of 
an application programming interface—these are mostly analytical “left brain” 
activities. Writing an original program using previously learned tools and 
skills is a creative “right brain” activity. 

Suppose you need to remove a branch that has fallen into one of the rain 
gutters on your house, but your ladder isn’t quite long enough for you to 
reach the branch. You head into your garage and look for something, or a 
combination of things, that will enable you to remove the branch from the 
gutter. Is there some way to extend the ladder? Is there something you can 
hold at the top of the ladder to grab or dislodge the branch? Maybe you could 
just get on the roof from another place and get the branch from above. That’s 
problem solving, and it’s a creative activity. Believe it or not, when you design 
an original program, your mental process is quite similar to that of the person 
figuring out how to remove the branch from the gutter and quite different 
from that of a person debugging an existing for loop.

Most programming books, though, focus their attention on syntax and 
semantics. Learning the syntax and semantics of a programming language is 
essential, but it’s only the first step in learning how to program in that lan-
guage. In essence, most programming books for beginners teach how to read 
a program, not how to write one. Books that do focus on writing are often 
effectively “cookbooks” in that they teach specific “recipes” for use in particu-
lar situations. Such books can be quite valuable as time savers, but not as a 
path toward learning to write original code. Think about cookbooks in the 
original sense. Although great cooks own cookbooks, no one who relies upon 
cookbooks can be a great cook. A great cook understands ingredients, prepa-
ration methods, and cooking methods and knows how they can be combined 
to make great meals. All a great cook needs to produce a tasty meal is a fully 
stocked kitchen. In the same way, a great programmer understands language 
syntax, application frameworks, algorithms, and software engineering princi-
ples and knows how they can be combined to make great programs. Give a 
great programmer a list of specifications, turn him loose with a fully stocked 
programming environment, and great things will happen.
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In general, current programming education doesn’t offer much guidance 
in the area of problem solving. Instead, it’s assumed that if programmers are 
given access to all of the tools of programming and requested to write enough 
programs, eventually they will learn to write such programs and write them 
well. There is truth in this, but “eventually” can be a long time. The journey 
from initiation to enlightenment can be filled with frustration, and too many 
who start the journey never reach the destination.

Instead of learning by trial and error, you can learn problem solving in a 
systematic way. That’s what this book is all about. You can learn techniques to 
organize your thoughts, procedures to discover solutions, and strategies to 
apply to certain classes of problems. By studying these approaches, you can 
unlock your creativity. Make no mistake: Programming, and especially prob-
lem solving, is a creative activity. Creativity is mysterious, and no one can say 
exactly how the creative mind functions. Yet, if we can learn music composi-
tion, take advice on creative writing, or be shown how to paint, then we can 
learn to creatively solve programming problems, too. This book isn’t going 
to tell you precisely what to do; it’s going to help you develop your latent 
problem-solving abilities so that you will know what you should do. This book 
is about helping you become the programmer you are meant to be. 

My goal is for you and every other reader of this book to learn to system-
atically approach every programming task and to have the confidence that 
you will ultimately solve a given problem. When you complete this book, I 
want you to think like a programmer and to believe that you are a programmer.

About This Book

Having explained the necessity of this book, I need to make a few comments 
about what this book is and what it is not.

Prerequisites
This book assumes you are already familiar with the basic syntax and seman-
tics of the C++ language and that you have begun writing programs. Most of 
the chapters will expect you to know specific C++ fundamentals; these chap-
ters will begin with a review of those fundamentals. If you are still absorbing 
language basics, don’t worry. There are plenty of great books on C++ syntax, 
and you can learn problem solving in parallel to learning syntax. Just make 
sure you have studied the relevant syntax before attempting to tackle a chap-
ter’s problems.

Chosen Topics
The topics covered in this book represent areas in which I have most often 
seen new programmers struggle. They also present a broad cross-section of 
different areas in early and intermediate programming.

I should emphasize, however, that this is not a “cookbook” of algorithms 
or patterns for solving specific problems. Although later chapters discuss 
how to employ well-known algorithms or patterns, you should not use this 
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book as a “crib sheet” to get you past particular problems or focus on just the 
chapters that directly relate to your current struggles. Instead, I would work 
through the entire book, skipping material only if you lack the prerequisites 
needed to follow the discussion.

Programming Style
A quick note here about the programming style employed in this book: This 
book is not about high-performance programming or running the most com-
pact, efficient code. The style I have chosen for the source code examples is 
intended to be readable above all other considerations. In some cases, I take 
multiple steps to accomplish something that could be done in one step, just so 
the principle I’m trying to demonstrate is made clear.

Some aspects of programming style will be covered in this book—but 
larger issues, like what should or should not be included in a class, not small 
issues, like how code should be indented. As a developing programmer, you 
will of course want to employ a consistent, readable style in all of the work 
you do.

Exercises
The book includes a number of programming exercises. This is not a text-
book, and you won’t find answers to any of the exercises in the back. The 
exercises provide opportunities for you to apply the concepts described in 
the chapters. Whether you choose to try any of the exercises is, of course, up 
to you, but it is essential that you put these concepts into practice. Simply 
reading through the book will accomplish nothing. Remember that this book 
is not going to tell you exactly what to do in each situation. In applying the 
techniques shown in this book, you will develop your own ability to discover 
what to do. Furthermore, growing your confidence, another primary goal of 
this book, requires success. In fact, that’s a good way to know when you have 
worked through enough exercises in a given problem area: when you are con-
fident that you can tackle other problems in the area. Lastly, programming 
exercises should be fun. While there may be moments where you’d rather be 
doing something else, working out a programming problem should be a 
rewarding challenge.

You should think of this book as an obstacle course for your brain. Obstacle 
courses build strength, stamina, and agility and give the trainer confidence. 
By reading through the chapters and applying the concepts to as many exer-
cises as you can, you’re going to build confidence and develop problem-solving 
skills that can be used in any programming situation. In the future, when you 
are faced with a difficult problem, you’ll know whether you should try going 
over, under, or through it.
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Why C++?
The programming examples in this text are coded using C++. Having said 
that, this book is about solving problems with programs, not specifically 
about C++. You won’t find many tips and tricks specific to C++ here, and the 
general concepts taught throughout this book can be employed in any pro-
gramming language. Nevertheless, you can’t discuss programming without 
discussing programs, and a specific language had to be chosen.

C++ was selected for a number of reasons. First, it’s popular in a variety 
of problem areas. Second, because of its origins in the strictly procedural C 
language, C++ code can be written using both the procedural and object-
oriented paradigms. Object-oriented programming is so common now that it 
could not be omitted from a discussion on problem solving, but many funda-
mental problem-solving concepts can be discussed in strictly procedural 
programming terms, and doing so simplifies both the code and the discus-
sion. Third, as a low-level language with high-level libraries, C++ allows us to 
discuss both levels of programming. The best programmers can “hand-wire” 
solutions when required and make use of high-level libraries and application 
programming interfaces to reduce development time. Lastly, and partly as a 
function of the other reasons listed, C++ is a great choice because once you 
have learned to solve problems in C++, you have learned to solve problems in 
any programming language. Many programmers have discovered how the 
skills learned in one language easily apply to other languages, but this is espe-
cially true for C++ because of its cross-paradigm approach and, frankly, because 
of its difficulty. C++ is the real deal—it’s programming without training wheels. 
This is daunting at first, but once you start succeeding in C++, you’ll know 
that you’re not going to be someone who can do a little coding—you’re going 
to be a programmer. 
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S T R A T E G I E S  F O R  
P R O B L E M S O L V I N G

This book is about problem solving, but 
what is problem solving, exactly? When 

people use the term in ordinary conversation, 
they often mean something very different from 

what we mean here. If your 1997 Honda Civic has blue 
smoke coming from the tailpipe, is idling roughly, and
has lost fuel efficiency, this is a problem that can be solved with automotive 
knowledge, diagnosis, replacement equipment, and common shop tools. If 
you tell your friends about your problem, though, one of them might say, 
“Hey, you should trade that old Honda in for something new. Problem solved.” 
But your friend’s suggestion wouldn’t really be a solution to the problem—it 
would be a way to avoid the problem.

Problems include constraints, unbreakable rules about the problem or 
the way in which the problem must be solved. With the broken-down Civic, 
one of the constraints is that you want to fix the current car, not purchase a 
new car. The constraints might also include the overall cost of the repairs, 
how long the repair will take, or a requirement that no new tools can be pur-
chased just for this repair.



2 Chapter 1

When solving a problem with a program, you also have constraints. Com-
mon constraints include the programming language, platform (does it run 
on a PC, or an iPhone, or what?), performance (a game program may require 
graphics to be updated at least 30 times a second, a business application 
might have a maximum time response to user input), or memory footprint. 
Sometimes the constraint involves what other code you can reference: Maybe 
the program can’t include certain open-source code, or maybe the opposite—
maybe it can use only open source.

For programmers, then, we can define problem solving as writing an original 
program that performs a particular set of tasks and meets all stated constraints.

Beginning programmers are often so eager to accomplish the first part 
of that definition—writing a program to perform a certain task—that they 
fail on the second part of the definition, meeting the stated constraints. I call 
a program like that, one that appears to produce correct results but breaks 
one or more of the stated rules, a Kobayashi Maru. If that name is unfamiliar 
to you, it means you are insufficiently familiar with one of the touchstones of 
geek culture, the film Star Trek II: The Wrath of Khan. The film contains a sub-
plot about an exercise for aspiring officers at Starfleet Academy. The cadets 
are put aboard a simulated starship bridge and made to act as captain on a 
mission that involves an impossible choice. Innocent people will die on a 
wounded ship, the Kobayashi Maru, but to reach them requires starting a 
battle with the Klingons, a battle that can only end in the destruction of the 
captain’s ship. The exercise is intended to test a cadet’s courage under fire. 
There’s no way to win, and all choices lead to bad outcomes. Toward the end 
of the film, we discover that Captain Kirk modified the simulation to make it 
actually winnable. Kirk was clever, but he did not solve the dilemma of the 
Kobayashi Maru; he avoided it.

Fortunately, the problems you will face as a programmer are solvable, 
but many programmers still resort to Kirk’s approach. In some cases, they do 
so accidentally. (“Oh, shoot! My solution only works if there are a hundred 
data items or fewer. It’s supposed to work for an unlimited data set. I’ll have 
to rethink this.”) In other cases, the removal of constraints is deliberate, a 
ploy to meet a deadline imposed by a boss or an instructor. In still other 
cases, the programmer just doesn’t know how to meet all of the constraints. 
In the worst cases I have seen, the programming student has paid someone 
else to write the program. Regardless of the motivations, we must always be 
diligent to avoid the Kobayashi Maru. 

Classic Puzzles

As you progress through this book, you will notice that although the particu-
lars of the source code change from one problem area to the next, certain 
patterns will emerge in the approaches we take. This is great news because 
this is what eventually allows us to confidently approach any problem, whether 
we have extensive experience in that problem area or not. Expert problem 
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solvers are quick to recognize an analogy, an exploitable similarity between 
a solved problem and an unsolved problem. If we recognize that a feature 
of problem A is analogous to a feature of problem B and we have already 
solved problem B, we have a valuable insight into solving problem A.

In this section, we’ll discuss classic problems from outside the world of 
programming that have lessons we can apply to programming problems.

The Fox, the Goose, and the Corn 
The first classic problem we will discuss is a riddle about a farmer who needs 
to cross a river. You have probably encountered it previously in one form or 
another.

P R O B L E M :  H O W  T O  C R O S S  T H E  R I V E R ?

A farmer with a fox, a goose, and a sack of corn needs to cross a river. The farmer 
has a rowboat, but there is room for only the farmer and one of his three items. Unfor-
tunately, both the fox and the goose are hungry. The fox cannot be left alone with the 
goose, or the fox will eat the goose. Likewise, the goose cannot be left alone with the 
sack of corn, or the goose will eat the corn. How does the farmer get everything 
across the river?

The setup for this problem is shown in Figure 1-1. If you have never 
encountered this problem before, stop here and spend a few minutes trying 
to solve it. If you have heard this riddle before, try to remember the solution 
and whether you were able to solve the riddle on your own. 

Figure 1-1: The fox, the goose, and the sack of corn. The boat can 
carry one item at a time. The fox cannot be left on the same shore as 
the goose, and the goose cannot be left on the same shore as the sack 
of corn.

Near Shore

Far Shore

SACK 
O’ 

CORN
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Few people are able to solve this riddle, at least without a hint. I know I 
wasn’t. Here’s how the reasoning usually goes. Since the farmer can take only 
one thing at a time, he’ll need multiple trips to take everything to the far 
shore. On the first trip, if the farmer takes the fox, the goose would be left 
with the sack of corn, and the goose would eat the corn. Likewise, if the farmer 
took the sack of corn on the first trip, the fox would be left with the goose, 
and the fox would eat the goose. Therefore, the farmer must take the goose 
on the first trip, resulting in the configuration shown in Figure 1-2.

Figure 1-2: The required first step for solving the problem of the fox, the 
goose, and the sack of corn. From this step, however, all further steps 
appear to end in failure.

So far, so good. But on the second trip, the farmer must take the fox or 
the corn. Whatever the farmer takes, however, must be left on the far shore 
with the goose while the farmer returns to the near shore for the remaining 
item. This means that either the fox and goose will be left together or the 
goose and corn will be left together. Because neither of these situations is 
acceptable, the problem appears unsolvable.

Again, if you have seen this problem before, you probably remember the 
key element of the solution. The farmer has to take the goose on the first 
trip, as explained before. On the second trip, let’s suppose the farmer takes 
the fox. Instead of leaving the fox with the goose, though, the farmer takes the 
goose back to the near shore. Then the farmer takes the sack of corn across, 
leaving the fox and the corn on the far shore, while returning for a fourth 
trip with the goose. The complete solution is shown in Figure 1-3.

This puzzle is difficult because most people never consider taking one of 
the items back from the far shore to the near shore. Some people will even 
suggest that the problem is unfair, saying something like, “You didn’t say I 
could take something back!” This is true, but it’s also true that nothing in the 
problem description suggests that taking something back is prohibited.
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Figure 1-3: Step-by-step solution to the fox, goose, and corn puzzle

Think about how much easier the puzzle would be to solve if the possi-
bility of taking one of the items back to the near shore was made explicit: 
The farmer has a rowboat that can be used to transfer items in either direction, but 
there is room only for the farmer and one of his three items. With that suggestion in 
plain sight, more people would figure out the problem. This illustrates an 
important principle of problem solving: If you are unaware of all possible 
actions you could take, you may be unable to solve the problem. We can 
refer to these actions as operations. By enumerating all the possible opera-
tions, we can solve many problems by testing every combination of opera-
tions until we find one that works. More generally, by restating a problem 
in more formal terms, we can often uncover solutions that would have other-
wise eluded us.

1 2 3

4 5

6 7 8

The “Trick” Step
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Let’s forget that we already know the solution and try stating this particu-
lar puzzle more formally. First, we’ll list our constraints. The key constraints 
here are:

1. The farmer can take only one item at a time in the boat.

2. The fox and goose cannot be left alone on the same shore.

3. The goose and corn cannot be left alone on the same shore.

This problem is a good example of the importance of constraints. If we 
remove any of these constraints, the puzzle is easy. If we remove the first con-
straint, we can simply take all three items across in one trip. Even if we can 
take only two items in the boat, we can take the fox and corn across and then 
go back for the goose. If we remove the second constraint (but leave the other 
constraints in place), we just have to be careful, taking the goose across first, 
then the fox, and finally the corn. Therefore, if we forget or ignore any of the 
constraints, we will end up with a Kobayashi Maru.

Next, let’s list the operations. There are various ways of stating the oper-
ations for this puzzle. We could make a specific list of the actions we think we 
can take:

1. Operation: Carry the fox to the far side of the river.

2. Operation: Carry the goose to the far side of the river.

3. Operation: Carry the corn to the far side of the river.

Remember, though, that the goal of formally restating the problem is to 
gain insight for a solution. Unless we have already solved the problem and 
discovered the “hidden” possible operation, taking the goose back to the 
near side of the river, we’re not going to discover it in making our list of 
actions. Instead, we should try to make operations generic, or parameterized.

1. Operation: Row the boat from one shore to the other.

2. Operation: If the boat is empty, load an item from the shore.

3. Operation: If the boat is not empty, unload the item to the shore.

By thinking about the problem in the most general terms, this second list of 
operations will allow us to solve the problem without the need for an “ah-hah!” 
moment regarding the trip back to the near shore with the goose. If we gen-
erate all possible sequences of moves, ending each sequence once it violates 
one of our constraints or reaches a configuration we’ve seen before, we will 
eventually hit upon the sequence of Figure 1-3 and solve the puzzle. The 
inherent difficulty of the puzzle will have been sidestepped through the 
formal restatement of constraints and operations.
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Lessons Learned

What can we learn from the fox, the goose, and the corn?
Restating the problem in a more formal manner is a great technique for 

gaining insight into a problem. Many programmers seek out other program-
mers to discuss a problem, not just because other programmers may have the 
answer but also because articulating the problem out loud often triggers new 
and useful thoughts. Restating a problem is like having that discussion with 
another programmer, except that you are playing both parts. 

The broader lesson is that thinking about the problem may be as produc-
tive, or in some cases more productive, than thinking about the solution. In 
many cases, the correct approach to the solution is the solution. 

Sliding Tile Puzzles
The sliding tile puzzle comes in different sizes, which, as we’ll see later, offers 
a particular solving mechanism. The following description is for a 3×3 version 
of the puzzle.

P R O B L E M :  T H E  S L I D I N G  E I G H T

A 3×3 grid is filled with eight tiles, numbered 1 through 8, and one empty space. Ini-
tially, the grid is in a jumbled configuration. A tile can be slid into an adjacent empty 
space, leaving the tile’s previous location empty. The goal is to slide the tiles to place 
the grid in an ordered configuration, from tile 1 in the upper left.

The goal of this problem is shown in Figure 1-4. If you’ve never tried a 
puzzle like this before, take the time to do so now. Plenty of sliding puzzle 
simulators can be found on the Web, but for our purposes it’s better if you 
use playing cards or index cards to make your own game on a tabletop. A 
suggested starting configuration is shown in Figure 1-5.

Figure 1-4: The goal con-
figuration in the eight-tile 
version of the sliding tile 
puzzle. The empty square 
represents the empty space 
into which an adjacent tile 
may slide.

Figure 1-5: A particular 
starting configuration for 
the sliding tile puzzle

1 2 3
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7 8
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This puzzle is quite different from the farmer with his fox, goose, and 
corn. The difficulty in that problem came from overlooking one of the possible 
operations. In this problem, that doesn’t happen. From any given configura-
tion, up to four tiles may be adjacent to the empty space, and any of those tiles 
can be slid into the empty space. That fully enumerates all possible operations.

The difficulty in this problem arises instead from the long chain of oper-
ations required by the solution. A series of sliding operations may move some 
tiles to their correct final positions while moving other tiles out of position, 
or it may move some tiles closer to their correct positions while moving oth-
ers farther away. Because of this, it’s difficult to tell whether any particular 
operation would make progress toward the ultimate goal. Without being able 
to measure progress, it’s difficult to formulate a strategy. Many people who 
attempt a sliding tile puzzle simply move the tiles around randomly, hoping 
to hit upon a configuration from which a path to the goal configuration can 
be seen.

Nevertheless, there are strategies for sliding tile puzzles. To illustrate one 
approach, let’s consider the puzzle for a smaller grid that is rectangular but 
not square.

P R O B L E M :  T H E  S L I D I N G  F I V E

A 2×3 grid is filled with five tiles, numbered 4 through 8, and one empty space. Ini-
tially, the grid is in a jumbled configuration. A tile can be slid into an adjacent empty 
space, leaving the tile’s previous location empty. The goal is to slide the tiles to place 
the grid in an ordered configuration, from tile 4 in the upper left.

You may have noticed that our five tiles are numbered 4 through 8 instead 
of 1 through 5. The reason for this will become clear shortly. 

Although this is the same basic problem as the sliding eight, it is much 
easier with only five tiles. Try the configuration shown in Figure 1-6.

If you play around with these tiles for just a few 
minutes, you will probably hit upon a solution. From 
playing around with small-count tile puzzles, I have 
developed a particular skill. It is this one skill, cou-
pled with an observation we will discuss shortly, that 
I use to solve all sliding tile puzzles.

I call my technique the train. It’s based on 
the observation that a circuit of tile positions that 
includes the empty space forms a train of tiles that 
can be rotated anywhere along the circuit while pre-
serving the relative ordering of the tiles. Figure 1-7 
illustrates the smallest possible train of four positions. From the first config-
uration, the 1 can slide into the empty square, the 2 can slide into the space 
vacated by the 1, and finally the 3 can slide into the space vacated by the 2. 
This leaves the empty space adjacent to the 1, which allows the train to 
continue and, thus, the tiles to be effectively rotated anywhere along the 
train path.

6 8

5 4 7
Figure 1-6: A particu-
lar starting configura-
tion for a reduced, 
2×3 sliding tile puzzle
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Figure 1-7: A “train,” a path of tiles that begins adjacent to the empty square 
and can slide like a train of cars through the puzzle

Using a train, we can move a series of tiles while maintaining their rela-
tive relationship. Now let’s return to the previous 2×3 grid configuration. 
Although none of the tiles in this grid is in its correct final position, some 
tiles are adjacent to the tiles they need to border in the final configuration. 
For example, in the final configuration, the 4 will be above the 7, and currently 
those tiles are adjacent. As shown in Figure 1-8, we can use a six-position train 
to bring the 4 and 7 to their correct final positions. When we do that, the 
remaining tiles are nearly correct; we just need to slide the 8 over.

Figure 1-8: From configuration 1, two rotations along the outlined “train” bring us 
to configuration 2. From there, a single tile slide results in the goal, configuration 3.

So how does this one technique allow us to solve any sliding tile puzzle? 
Consider our original 3×3 configuration. We can use a six-position train to 
move the adjacent 1 and 2 tiles so that the 2 and 3 are adjacent, as shown in 
Figure 1-9.

Figure 1-9: From configuration 1, tiles are rotated 
along the outlined “train” to reach configuration 2. 

This puts 1, 2, and 3 in adjacent squares. With an eight-position train, 
we can shift the 1, 2, and 3 tiles to their correct final positions, as shown in 
Figure 1-10.
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Figure 1-10: From configuration 1, tiles are rotated to 
reach configuration 2, in which tiles 1, 2, and 3 are in 
their correct final positions.

Notice the positions of tiles 4–8. The tiles are in the configuration I gave 
for the 2×3 grid. This is the key observation. Having placed tiles 1–3 in their 
correct positions, we can solve the rest of the grid as a separate, smaller, and 
easier puzzle. Note that we have to solve an entire row or column for this 
method to work; if we put tiles 1 and 2 in the correct positions but tile 3 is 
still out of place, there is no way to move something into the upper-right cor-
ner without moving one or both of the other upper-row tiles out of place.

This same technique can be used to solve even larger sliding tile puzzles. 
The largest common size is a 15-tile puzzle, a 4×4 grid. This can be solved 
piecemeal by first moving tiles 1–4 to their correct position, leaving a 3×4 
grid, and then moving the tiles of the leftmost column, leaving a 3×3 grid. At 
that point, the problem has been reduced to an 8-tile puzzle.

Lessons Learned

What lessons can we learn from the sliding tile puzzles?
The number of tile movements is large enough that it is difficult or 

impossible to plan out a complete solution for a sliding tile puzzle from the 
initial configuration. However, our inability to plan a complete solution does 
not prevent us from making strategies or employing techniques to systemati-
cally solve the puzzle. In solving programming problems, we are sometimes 
faced with situations where we can’t see a clear path to code the solution, but 
we must never allow this to be an excuse to forgo planning and systematic 
approaches. It’s better to develop a strategy than to attack the problem through 
trial and error.

I developed my “train” technique from fiddling around with a small 
puzzle. Often, I use a similar technique in programming. When faced with 
an onerous problem, I experiment with a reduced version of the problem. 
These experiments frequently produce valuable insights.

The other lesson is that sometimes problems are divisible in ways that are 
not immediately obvious. Because moving a tile affects not only that tile but 
also the possible moves that can be made next, one might think that a sliding 
tile puzzle must be solved all in one step, not in stages. Looking for a way to 
divide a problem is usually time well spent. Even if you are unable to find a 

4 6

8 1

3 2 7

5 1 2 3

6 8

5 4 7
1 2
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clean division, you may learn something about the problem that helps you to 
solve it. When solving problems, working with a specific goal in mind is always 
better than random effort, whether you achieve that specific goal or not. 

Sudoku
The sudoku game has become enormously popular through appearances in 
newspapers and magazines and also as a web-based and phone-based game. 
Variations exist, but we will briefly discuss the traditional version.

P R O B L E M :  C O M P L E T I N G  A  S U D O K U  S Q U A R E

A 9×9 grid is partially filled with single digits (from 1–9), and the player must fill in 
the empty squares while meeting certain constraints: In each row and column, each 
digit must appear exactly once, and further, in each marked 3×3 area, each digit 
must appear exactly once.

If you have played this game before, you probably already have a set of 
strategies for completing a square in the minimum time. Let’s focus on the 
key starting strategy by looking at the sample square shown in Figure 1-11.

Figure 1-11: An easy sudoku square puzzle

Sudoku puzzles vary in difficulty, their difficulty determined by the 
number of squares left to be filled. By this measure, this is a very easy puzzle. 
As 36 squares are already numbered, there are just 45 that must be filled to 
complete the puzzle. The question is, which squares should we attempt to fill 
in first?
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Remember the puzzle constraints. Each of the nine digits must appear 
once in every row, in every column, and in every 3×3 area marked by the 
heavy borders. These rules dictate where we should begin our efforts. The 
3×3 area in the middle of the puzzle already has numbers in eight of its nine 
squares. Therefore, the square in the very center can have only one possible 
value, the one value not already represented in another square in that 3×3 area. 
That’s where we should start solving this puzzle. The missing number in that 
area is 7, so we would place that in the middle square.

With that value in place, note that the centermost column now has values 
in seven of its nine squares, which leaves only two squares remaining, each of 
which has to have a value not already in the column: The two missing num-
bers are 3 and 9. The constraint on this column would allow us to put either 
number in either place, but notice that 3 is already present in the third row 
and 9 is already present in the seventh row. Therefore, the row constraints 
dictate that 9 go in the third row of the middle column and 3 go in the sev-
enth row of the middle column. These steps are summarized in Figure 1-12.

Figure 1-12: The first steps in solving the sample sudoku puzzle

We won’t solve the entire puzzle here, but these first steps make the 
important point that we search for squares that have the lowest number of 
possible values—ideally, just one.

Lessons Learned

The main lesson from sudoku is that we should look for the most constrained 
part of the problem. While constraints are often what make a problem diffi-
cult to begin with (remember the fox, the goose, and the corn), they may 
also simplify our thinking about the solution because they eliminate choices.

Although we will not discuss artificial intelligence specifically in this book, 
there is a rule for solving certain types of problems in artificial intelligence 
called the “most constrained variable.” It means that in a problem where you 
are trying to assign different values to different variables to meet constraints, 
you should start with the variable that has the most constraints, or put another 
way, the variable that has the lowest number of possible values. 
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Here’s an example of this sort of thinking. Suppose a group of coworkers 
wants to go to lunch together, and they’ve asked you to find a restaurant that 
everyone will like. The problem is, each of the coworkers imposes some kind 
of constraint on the group decision: Pam is a vegetarian, Todd doesn’t like 
Chinese food, and so on. If your goal is to minimize the amount of time it 
takes to find a restaurant, you should start by talking to the coworker with the 
most onerous restrictions. If Bob has a number of broad food allergies, for 
example, it would make sense to start by finding a list of restaurants where he 
knows he can eat, rather than starting with Todd, whose dislike of Chinese 
food can be easily mitigated.

The same technique can often be applied to programming problems. If 
one part of the problem is heavily constrained, that’s a great place to start 
because you can make progress without worrying that you are spending time 
on work that will later be undone. A related corollary is that you should start 
with the part that’s obvious. If you can solve part of the problem, go ahead 
and do what you can. You may learn something from seeing your own code 
that will stimulate your imagination to solve the rest. 

The Quarrasi Lock
You may have seen each of the previous puzzles before, but you should not 
have seen the last one in this chapter unless you have read this book previ-
ously, because I’ve made this one up myself. Read carefully because the wording 
of this problem is a little complicated.

P R O B L E M :  O P E N I N G  T H E  A L I E N  L O C K

A hostile alien race, the Quarrasi, has landed on Earth, and you’ve been captured. 
You’ve managed to overpower your guards, even though they are enormous and ten-
tacled, but to escape the (still grounded) spaceship, you have to open the massive 
door. The instructions for opening the door are, oddly enough, printed in English, but 
it’s still no piece of cake. To open the door, you have to slide the three bar-shaped 
Kratzz along tracks that lead from the right receptor to the left receptor, which lies at 
the end of the door, 10 feet away. 

That’s easy enough, but you have to avoid setting off the alarms, which work as 
follows. On each Kratzz are one or more star-shaped crystal power gems known as 
Quinicrys. Each receptor has four sensors that light up if the number of Quinicrys in 
the column above is even. An alarm goes off if the number of lit sensors is ever exactly 
one. Note that each receptor’s alarm is separate: You can’t ever have exactly one 
sensor lit for the left receptor or for the right receptor. The good news is that each 
alarm is equipped with a suppressor, which keeps the alarm from sounding as long as 
the button is pressed. If you could press both suppressors at once, the problem would 
be easy, but you can’t since you have short human arms rather than long Quarassi 
tentacles. 

Given all of this, how do you slide the Kratzz to open the door without activating 
either alarm?
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The starting configuration is shown in Figure 1-13, with all three Kratzz in 
the right receptor. For clarity, Figure 1-14 shows a bad idea: Sliding the upper-
most Kratzz to the left receptor causes an alarm state in the right receptor. 
You might think that we could avoid the alarm with the suppressor, but 
remember that we just moved the upper Kratzz to the left receptor, so we’re 
10 feet away from the right receptor’s suppressor.

Figure 1-13: Starting configuration for the Quarrasi lock problem. You must slide the three 
Kratzz bars, currently in the right receptor, to the left receptor without setting off either 
alarm. A sensor is lit when an even number of star-shaped Quinicrys appear in the column 
above, and an alarm sounds if exactly one connected sensor lights up. Suppressors can 
keep an alarm from sounding, but only for the receptor where you are standing.

Figure 1-14: The Quarrasi lock in an alarm state. You just slid the upper Kratzz to the left 
receptor, so the right receptor is out of reach. The second sensor for the right alarm is lit 
because an even number of Quinicrys appears in the column above, and an alarm sounds 
when exactly one of its sensors is lit.

Before moving on, take some time to study this problem, and try to develop 
a solution. Depending on your point of view, this problem is not as hard as it 
looks. Seriously, think about it before moving on!
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Have you thought about it? Were you able to come up with a solution? 
There are two possible paths to an answer here. The first path is trial and 
error: attempting various Kratzz moves in a methodical way and backing up 
to previous steps when you reach an alarm state until you find a series of 
moves that succeeds.

The second path is realizing that the puzzle is a trick. If you haven’t seen 
the trick yet, here it is: This is just the fox, goose, and corn problem in an 
elaborate disguise. Although the rules for the alarm are written generally, 
there are only so many combinations for this specific lock. With only three 
Kratzz, we just have to know which combinations of Kratzz in a receptor are 
acceptable. If we label the three Kratzz top, middle, and bottom, then the com-
binations that create alarms are “top and middle” and “middle and bottom.” 
If we rename top as fox, middle as goose, and bottom as corn, then the trouble-
some combinations are the same as in the other problem, “fox and goose” 
and “goose and corn.”

This problem is therefore solved in the same way as the fox, goose, and 
corn problem. We slide the middle Kratzz (goose) over to the left receptacle. 
Then, we slide the top (fox) to the left, holding the left alarm’s suppressor as 
we put the top (fox) into place. Next, we start sliding the middle (goose) back 
to the right receptacle. Then, we slide the bottom (corn) to the left, and 
finally, we slide the middle (goose) to the left once again, opening the lock.

Lessons Learned

The chief lesson here is the importance of recognizing analogies. Here, we 
can see that the Quarrasi lock problem is analogous to the fox, goose, and 
corn problem. If we discover that analogy early enough, we can avoid most of 
the work of the problem by translating our solution from the first problem 
rather than creating a new solution. Most analogies in problem solving won’t 
be so direct, but they will happen with increasing frequency. 

If you had trouble seeing the connection between this problem and the 
fox, goose, and corn problem, that’s because I deliberately included as much 
extraneous detail as possible. The story that sets up the Quarrasi problem is 
irrelevant, as are the names for all of the alien technology, which serve to 
heighten the sense of unfamiliarity. Furthermore, the odd/even mechanism 
of the alarm makes the problem seem more complicated than it is. If you look 
at the actual positioning of the Quinicrys, you can see that the top Kratzz and 
the bottom Kratzz are opposites, so they don’t interact in the alarm system. 
The middle Kratzz, however, interacts with the other two. 

Again, if you didn’t see the analogy, don’t worry. You’ll start to recognize 
them more after you put yourself on alert for them.

General Problem-Solving Techniques

The examples we have discussed demonstrate many of the key techniques 
that are employed in problem solving. In the rest of this book, we’ll look at 
specific programming problems and figure out ways to solve them, but first 
we need a general set of techniques and principles. Some problem areas 
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have specific techniques, as we’ll see, but the rules below apply to almost any 
situation. If you make these a regular part of your problem-solving approach, 
you’ll always have a method to attack a problem.

Always Have a Plan
This is perhaps the most important rule. You must always have a plan, rather 
than engaging in directionless activity. 

By this point, you should understand that having a plan is always possible. 
It’s true that if you haven’t already solved the problem in your head, then 
you can’t have a plan for implementing a solution in code. That will come 
later. Even at the beginning, though, you should have a plan for how you are 
going to find the solution. 

To be fair, the plan may require alteration somewhere along the journey, 
or you may have to abandon your original plan and concoct another. Why, 
then, is this rule so important? General Dwight D. Eisenhower was famous 
for saying, “I have always found that plans are useless, but planning is indis-
pensable.” He meant that battles are so chaotic that it is impossible to predict 
everything that could happen and have a predetermined response for every 
outcome. In that sense, then, plans are useless on the battlefield (another 
military leader, the Prussian Helmuth von Moltke, famously said that “no 
plan survives first contact with the enemy”). But no army can succeed with-
out planning and organization. Through planning, a general learns what his 
army’s capabilities are, how the different parts of the army work together, 
and so on.

In the same way, you must always have a plan for solving a problem. It 
may not survive first contact with the enemy—it may be discarded as soon as 
you start to type code into your source editor—but you must have a plan.

Without a plan, you are simply hoping for a lucky break, the equivalent 
of the randomly typing monkey producing one of the plays of Shakespeare. 
Lucky breaks are uncommon, and those that occur may still require a plan. 
Many people have heard the story of the discovery of penicillin: A researcher 
named Alexander Fleming forgot to close a petri dish one night and in the 
morning found that mold had inhibited the growth of the bacteria in the 
dish. But Fleming was not sitting around waiting for a lucky break; he had 
been experimenting in a thorough and controlled way and thus recognized 
the importance of what he saw in the petri dish. (If I found mold growing on 
something I left out the night before, this would not result in an important 
contribution to science.)

Planning also allows you to set intermediate goals and achieve them. 
Without a plan, you have only one goal: solve the whole problem. Until you 
have solved the problem, you won’t feel you have accomplished anything. As 
you have probably experienced, many programs don’t do anything useful 
until they are close to completion. Therefore, working only toward the pri-
mary goal inevitably leads to frustration, as there is no positive reinforcement 
from your efforts until the end. If instead, you create a plan with a series of 
minor goals, even if some seem tangential to the main problem, you will 
make measurable progress toward a solution and feel that your time has 
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been spent usefully. At the end of each work session, you’ll be able to check 
off items from your plan, gaining confidence that you will find a solution 
instead of growing increasingly frustrated.

Restate the Problem
As demonstrated especially by the fox, goose, and corn problem, restating a 
problem can produce valuable results. In some cases, a problem that looks 
very difficult may seem easy when stated in a different way or using different 
terms. Restating a problem is like circling the base of a hill that you must 
climb; before starting your climb, why not check out the hill from every angle 
to see whether there’s an easier way up?

Restatement sometimes shows us the goal was not what we thought it 
was. I once read about a grandmother who was watching over her baby 
granddaughter while knitting. In order to get her knitting done, the grand-
mother put the baby next to her in a portable play pen, but the baby didn’t 
like being in the pen and kept crying. The grandmother tried all sorts of toys 
to make the pen more fun for the baby, until she realized that keeping the 
baby in the pen was just a means to an end. The goal was for the grand-
mother to be able to knit in peace. The solution: Let the baby play happily 
on the carpet, while the grandmother knits inside the pen. Restatement can 
be a powerful technique, but many programmers will skip it because it doesn’t 
directly involve writing code or even designing a solution. This is another 
reason why having a plan is essential. Without a plan, your only goal is to 
have working code, and restatement is taking time away from writing code. 
With a plan, you can put “formally restate the problem” as your first step; 
therefore, completing the restatement officially counts as progress.

Even if a restatement doesn’t lead to any immediate insight, it can help 
in other ways. For example, if a problem has been assigned to you (by a 
supervisor or an instructor), you can take your restatement to the person 
who assigned the problem and confirm your understanding. Also, restating 
the problem may be a necessary prerequisite step to using other common 
techniques, like reducing or dividing the problem.

More broadly, restatement can transform whole problem areas. The 
technique I employ for recursive solutions, which I share in a later chapter, is 
a method to restate recursive problems so that I can treat them the same as 
iterative problems. 

Divide the Problem
Finding a way to divide a problem into steps or phases can make the problem 
much easier. If you can divide a problem into two pieces, you might think 
that each piece would be half as difficult to solve as the original whole, but 
usually, it’s even easier than that. 

Here’s an analogy that will be familiar if you have already seen common 
sorting algorithms. Suppose you have 100 files you need to place in a box in 
alphabetical order, and your basic alphabetizing method is effectively what 
we call an insertion sort: You take one of the files at random, put it in the box, 
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then put the next file in the box in the correct relationship to the first file, 
and then continue, always putting the new file in its correct position relative 
to the other files, so that at any given time, the files in the box are alphabet-
ized. Suppose someone initially separates the files into 4 groups of roughly 
equal size, A–F, G–M, N–S, and T–Z, and tells you to alphabetize the 4 
groups individually and then drop them one after the other into the box.

If each of the groups contained about 25 files, then one might think 
that alphabetizing 4 groups of 25 is about the same amount of work as alpha-
betizing a single group of 100. But it’s actually far less work because the work 
involved in inserting a single file grows as the number of files already filed 
grows—you have to look at each file in the box to know where the new file 
should be placed. (If you doubt this, think of a more extreme version—
compare the thought of ordering 50 groups of 2 files, which you could prob-
ably do in under a minute, with ordering a single group of 100 files.)

In the same way, dividing a problem can often lower the difficulty by an 
order of magnitude. Combining programming techniques is much trickier 
than using techniques alone. For example, a section of code that employs a 
series of if statements inside a while loop that is itself inside a for loop will be 
more difficult to write—and to read—than a section of code that employs all 
those same control statements sequentially.

We’ll discuss specific ways to divide problems in the chapters that follow, 
but you should always be alert to the possibility. Remember that some problems, 
like our sliding tile puzzle, often hide their potential subdivision. Sometimes 
the way to find a problem’s divisions is to reduce the problem, as we’ll discuss 
shortly. 

Start with What You Know
First-time novelists are often given the advice “write what you know.” This 
doesn’t mean that novelists should try only to craft works around incidents 
and people they have directly observed in their own lives; if this were the 
case, we could never have fantasy novels, historical fiction, or many other 
popular genres. But it means that the further away a writer gets from his or 
her own experience, the more difficult writing may be.

In the same way, when programming, you should try to start with what 
you already know how to do and work outward from there. Once you have 
divided the problem up into pieces, for example, go ahead and complete any 
pieces you already know how to code. Having a working partial solution may 
spark ideas about the rest of the problem. Also, as you may have noticed, a 
common theme in problem solving is making useful progress to build confi-
dence that you will ultimately complete the task. By starting with what you 
know, you build confidence and momentum toward the goal.

The “start with what you know” maxim also applies in cases where you 
haven’t divided the problem. Imagine someone made a complete list of every 
skill in programming: writing a C++ class, sorting a list of numbers, finding 
the largest value in a linked list, and so on. At every point in your develop-
ment as a programmer, there will be many skills on this list that you can do 
well, other skills you can use with effort, and then the other skills that you 
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don’t yet know. A particular problem may be entirely solvable with the skills 
you already have or it may not, but you should fully investigate the problem 
using the skills already in your head before looking elsewhere. If we think of 
programming skills as tools and a programming problem as a home repair 
project, you should try to make the repair using the tools already in your 
garage before heading to the hardware store.

This technique follows the principles we have already discussed. It follows 
a plan and gives order to our efforts. When we begin our investigation of a 
problem by applying the skills we already have, we may learn more about 
the problem and its ultimate solution. 

Reduce the Problem
With this technique, when faced with a problem you are unable to solve, you 
reduce the scope of the problem, by either adding or removing constraints, 
to produce a problem that you do know how to solve. We’ll see this technique 
in action in later chapters, but here’s a basic example. Suppose you are given 
a series of coordinates in three-dimensional space, and you must find the 
coordinates that are closest to each other. If you don’t immediately know 
how to solve this, there are different ways you could reduce the problem to 
seek a solution. For example, what if the coordinates are in two-dimensional 
space, instead of three-dimensional space? If that doesn’t help, what if the 
points lie along a single line so that the coordinates are just individual num-
bers (C++ doubles, let’s say)? Now the question essentially becomes, in a list 
of numbers, find the two numbers with the minimum absolute difference.

Or you could reduce the problem by keeping the coordinates in three-
dimensional space but have only three values, instead of an arbitrary-sized 
series. So instead of an algorithm to find the smallest distance between any 
two coordinates, it’s just a question of comparing coordinate A to coordinate 
B, then B to C, and then A to C.

These reductions simplify the problem in different ways. The first reduc-
tion eliminates the need to compute the distance between three-dimensional 
points. Maybe we don’t know how to do that yet, but until we figure that out, 
we can still make progress toward a solution. The second reduction, by con-
trast, focuses almost entirely on computing the distance between three-
dimensional points but eliminates the problem of finding a minimal value in 
an arbitrary-sized series of values.

Of course, to solve the original problem, we will eventually need the 
skills involved in both reductions. Even so, reduction allows us to work on a 
simpler problem even when we can’t find a way to divide the problem into 
steps. In effect, it’s like a deliberate, but temporary, Kobayashi Maru. We know 
we’re not working on the full problem, but the reduced problem has enough 
in common with the full problem that we will make progress toward the ulti-
mate solution. Many times, programmers discover they have all the individual 
skills necessary to solve the problem, and by writing code to solve each indi-
vidual aspect of the problem, they see how to combine the various pieces of 
code into a unified whole.
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Reducing the problem also allows us to pinpoint exactly where the remain-
ing difficulty lies. Beginning programmers often need to seek out experienced 
programmers for assistance, but this can be a frustrating experience for every-
one involved if the struggling programmer is unable to accurately describe 
the help that is needed. One never wants to be reduced to saying, “Here’s my 
program, and it doesn’t work. Why not?” Using the problem-reduction tech-
nique, one can pinpoint the help needed, saying something like, “Here’s 
some code I wrote. As you can see, I know how to find the distance between 
two three-dimensional coordinates, and I know how to check whether one 
distance is less than another. But I can’t seem to find a general solution for 
finding the pair of coordinates with the minimum distance.” 

Look for Analogies
An analogy, for our purposes, is a similarity between a current problem and a 
problem already solved that can be exploited to help solve the current problem. 
The similarity may take many forms. Sometimes it means the two problems 
are really the same problem. This is the situation we had with the fox, goose, 
and corn problem and the Quarrasi lock problem. 

Most analogies are not that direct. Sometimes the similarity concerns 
only part of the problems. For example, two number-processing problems 
might be different in all aspects except that both of them work with numbers 
requiring more precision than that given by built-in floating point data types; 
you won’t be able to use this analogy to solve the whole problem, but if you’ve 
already figured out a way to handle the extra precision issue, you can handle 
that same issue the same way again.

Although recognizing analogies is the most important way you will improve 
your speed and skill at problem solving, it is also the most difficult skill to 
develop. The reason it is so difficult at first is that you can’t look for analogies 
until you have a storehouse of previous solutions to reference. 

This is where developing programmers often try to take a shortcut, find-
ing code that is similar to the needed code and modifying from there. For 
several reasons, though, this is a mistake. First, if you don’t complete a solu-
tion yourself, you won’t have fully understood and internalized it. Put simply, 
it’s very difficult to correctly modify a program that you don’t fully under-
stand. You don’t need to have written code to fully understand, but if you 
could not have written the code, your understanding will be necessarily lim-
ited. Second, every successful program you write is more than a solution to 
a current problem; it’s a potential source of analogies to solve future prob-
lems. The more you rely on other programmers’ code now, the more you will 
have to rely on it in the future. We’ll talk in depth about “good reuse” and 
“bad reuse” in Chapter 7. 

Experiment
Sometimes the best way to make progress is to try things and observe the 
results. Note that experimentation is not the same as guessing. When you 
guess, you type some code and hope that it works, having no strong belief 
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that it will. An experiment is a controlled process. You hypothesize what will 
happen when certain code is executed, try it out, and see whether your hypoth-
esis is correct. From these observations, you gain information that will help you 
solve the original problem.

Experimentation may be especially helpful when dealing with application 
programming interfaces or class libraries. Suppose you are writing a program 
that uses a library class representing a vector (in this context, a one-dimensional 
array that automatically grows as more items are added), but you’ve never 
used this vector class before, and you’re not sure what happens when an item 
is deleted from the vector. Instead of forging ahead with solving the original 
problem while uncertainties swirl inside your head, you could create a short, 
separate program just to play around with the vector class and to specifically 
try out the situations that concern you. If you spend a little time on the “vec-
tor demonstrator” program, it might become a reference for future work 
with the class.

Other forms of experimentation are similar to debugging. Suppose a 
certain program is producing output that is backward from expectations—
for example, if the output is numerical, the numbers are as expected, but in 
the reverse order. If you don’t see why this is occurring after reviewing your 
code, as an experiment, you might try modifying the code to deliberately 
make the output backward (run a loop in the reverse direction, perhaps). 
The resulting change, or lack of change, in the output may reveal the prob-
lem in your original source code or may reveal a gap in your understanding. 
Either way, you’re closer to a solution. 

Don’t Get Frustrated
The final technique isn’t so much a technique, but a maxim: Don’t get frus-
trated. When you are frustrated, you won’t think as clearly, you won’t work as 
efficiently, and everything will take longer and seem harder. Even worse, 
frustration tends to feed on itself, so that what begins as mild irritation ends 
as outright anger.

When I give this advice to new programmers, they often retort that while 
they agree with my point in principle, they have no control over their frustra-
tions. Isn’t asking a programmer not to get frustrated at lack of success like 
asking a little boy not to yell out if he steps on a tack? The answer is no. When 
someone steps on a tack, a strong signal is immediately sent through the cen-
tral nervous system, where the lower depths of the brain respond. Unless you 
know you’re about to step on the tack, it’s impossible to react in time to coun-
termand the automatic response from the brain. So we’ll let the little boy off 
the hook for yelling out. 

The programmer is not in the same boat. At the risk of sounding like a 
self-help guru, a frustrated programmer isn’t responding to an external stim-
ulus. The frustrated programmer isn’t angry with the source code on the 
monitor, although the programmer may express the frustration in those 
terms. Instead, the frustrated programmer is angry at himself or herself. The 
source of the frustration is also the destination, the programmer’s mind.
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When you allow yourself to get frustrated—and I use the word “allow” 
deliberately—you are, in effect, giving yourself an excuse to continue to fail. 
Suppose you’re working on a difficult problem and you feel your frustration 
rise. Hours later, you look back at an afternoon of gritted teeth and pencils 
snapped in anger and tell yourself that you would have made real progress if 
you had been able to calm down. In truth, you may have decided that giving 
in to your anger was easier than facing the difficult problem. 

Ultimately, then, avoiding frustration is a decision you must make. How-
ever, there are some thoughts you can employ that will help. First of all, never 
forget the first rule, that you should always have a plan, and that while writing 
code that solves the original problem is the goal of that plan, it is not the only 
step of that plan. Thus, if you have a plan and you’re following it, then you 
are making progress and you must believe this. If you’ve run through all the 
steps on your original plan and you’re still not ready to start coding, then it’s 
time to make another plan.

Also, when it comes down to getting frustrated or taking a break, you 
should take a break. One trick is to have more than one problem to work on 
so that if this one problem has you stymied, you can turn your efforts elsewhere. 
Note that if you successfully divide the problem, you can use this technique 
on a single problem; just block out the part of the problem that has you 
stuck, and work on something else. If you don’t have another problem you 
can tackle, get out of your chair and do something else, something that keeps 
your blood flowing but doesn’t make your brain hurt: Take a walk, do the 
laundry, go through your stretching routine (if you’re signing up to be a pro-
grammer, sitting at a computer all day, I highly recommend developing a 
stretching routine!). Don’t think about the problem until your break is over. 

Exercises

Remember, to truly learn something you have to put it into practice, so work 
as many exercises as you can. In this first chapter, of course, we’re not yet dis-
cussing programming, but even so, I encourage you to try some exercises 
out. Think of these questions as warm-ups for your fingers before we start 
playing the real music.

1-1. Try a medium-difficulty sudoku puzzle (you can find these all over the 
Web and probably in your local newspaper), experimenting with different 
strategies and taking note of the results. Can you write a general plan for 
solving a sudoku?

1-2. Consider a sliding tile puzzle variant where the tiles are covered with a picture 
instead of numbers. How much does this increase the difficulty, and why?

1-3. Find a strategy for sliding tile puzzles different from mine.
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1-4. Search for old-fashioned puzzles of the fox, goose, and corn variety and try to 
solve them. Many of the great puzzles were originated or popularized by Sam 
Loyd, so you might search for his name. Furthermore, once you uncover (or 
give up and read) the solution, think of how you could make an easier version 
of the puzzle. What would you have to change? The constraints or just the 
wording?

1-5. Try to write some explicit strategies for other traditional pencil-and-paper 
games, like crosswords. Where should you start? What should you do when 
you’re stuck? Even simple newspaper games, like “Jumble,” are useful for 
contemplating strategy.
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In this chapter, we’ll start dealing with 
actual code. While intermediate program-

ming knowledge will be needed for later 
chapters, the programming skills required in 

this chapter are as simple as can be. That doesn’t 
mean that all of these puzzles will be easy, only that 
you should be able to focus on the problem solving
and not the programming syntax. This is problem solving at its purest. Once 
you figure out what you want to do, translating your thoughts into C++ code 
will be straightforward. Remember that reading this book, in itself, provides 
limited benefit. You should work through any problem that appears nontriv-
ial to you as we discuss it, trying to solve it yourself before reading about my 
approach. At the end of the chapter, try some of the exercises, many of 
which will be extensions of the problems we discuss.
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Review of C++ Used in This Chapter

This chapter uses the basic C++ with which you should already be familiar, 
including the control statements if, for, while and do-while, and switch. You 
may not yet be comfortable writing code to solve original problems with 
these statements—that’s what this book is about, after all. You should, how-
ever, understand the syntax of how these statements are written or have a 
good C++ reference handy. 

You should also know how to write and call functions. To keep things 
simple, we’ll use the standard streams cin and cout for input and output. To 
use these streams, include the necessary header file, iostream, in your code, 
and add using statements for the two standard stream objects: 

#include <iostream>
using std::cin;
using std::cout;

For brevity, these statements won’t be shown in the code listings. Their 
inclusion is assumed in any program that uses them.

Output Patterns

In this chapter, we will work through three main problems. Because we’ll be 
making extensive use of the problem division and reduction techniques, 
each of these main problems will spawn several subproblems. In this first sec-
tion, let’s try a series of programs that produce patterned output in a regular 
shape. Programs like these develop loop-writing skills.

P R O B L E M :  H A L F  O F  A  S Q U A R E

Write a program that uses only two output statements, cout << "#" and cout << "\n", 
to produce a pattern of hash symbols shaped like half of a perfect 5 x 5 square (or a 
right triangle):
#####
####
###
##
#

Here’s another great example of the importance of constraints. If we 
ignore the requirement that we can use only two output statements, one that 
produces a single hash symbol and one that produces an end-of-line, we can 
write a Kobayashi Maru and solve this problem trivially. With that constraint 
in place, however, we’ll have to use loops to solve this problem.

You may already see the solution in your head, but let’s assume that you 
don’t. A good first weapon is reduction. How can we reduce this problem to 
a point where it’s easy to solve? What if the pattern was a whole square instead 
of half of a square?
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P R O B L E M :  A  S Q U A R E  
( H A L F  O F  A  S Q U A R E  R E D U C T I O N )

Write a program that uses only two output statements, cout << "#" and cout << "\n", 
to produce a pattern of hash symbols shaped like a perfect 5x5 square:
#####
#####
#####
#####
#####

This may be enough to get us going, but suppose we didn’t know how to 
tackle this either. We could reduce the problem further, making a single line 
of hash symbols instead of the square.

P R O B L E M :  A  L I N E  
( H A L F  O F  A  S Q U A R E  F U R T H E R  R E D U C T I O N )

Write a program that uses only two output statements, cout << "#" and cout << "\n", 
to produce a line of five hash symbols:
#####

Now we have a trivial problem that can be solved with a for loop:

for (int hashNum = 1; hashNum <= 5; hashNum++) {
   cout << "#";
}
cout << "\n";

From here, return to the previous reduction, the full square shape. The 
full square is simply five repetitions of the line of five hash symbols. We know 
how to make repeating code; we just write a loop. So we can turn our single 
loop into a double loop:

for (int row = 1; row <= 5; row++) {
   for (int hashNum = 1; hashNum <= 5; hashNum++) {
      cout << "#";
   }
   cout << "\n";
}

We’ve placed all of the code from the previous listing in a new loop so 
that it repeats five times, producing five rows, each row a line of five hash 
symbols. We’re getting closer to the ultimate solution. How do we modify the 
code so that it produces the half-square pattern? If we look at the last listing 
and compare it to our desired half-square output, we can see that the prob-
lem is in the conditional expression hashNum <= 5. This conditional produces 
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the same line of five hash symbols on each row. What we require is a mecha-
nism to adjust the number of symbols produced on each row so that the first 
row gets five symbols, the second row gets four, and so on.

To see how to do this, let’s make another reduced program experiment. 
Again, it’s always easiest to work on the troublesome part of a problem in iso-
lation. For a moment, let’s forget about hash symbols and just talk about 
numbers.

P R O B L E M :  C O U N T  D O W N  B Y  C O U N T I N G  U P

Write a line of code that goes in the designated position in the loop in the listing 
below. The program displays the numbers 5 through 1, in that order, with each num-
ber on a separate line.

for (int row = 1; row <= 5; row++) {
   cout <<  expression << "\n";
}

We must find an expression  that is 5 when row is 1, 4 when row is 2, 
and so on. If we want an expression that decreases as row increases, our first 
thought might be to stick a minus sign in front of the values of row by multi-
plying row by –1. This produces numbers that go down, but not the desired 
numbers. We may be closer than we think, though. What’s the difference 
between the desired value and the value given by multiplying row by –1? 
Table 2-1 summarizes this analysis.

The difference is a fixed value, 6. This means the expression we need is 
row * -1 + 6. Using a little algebra, we can simplify this to 6 - row. Let’s try 
it out:

for (int row = 1; row <= 5; row++) {
   cout << 6 - row << "\n";
}

Great—it works! If this hadn’t worked, our mistake probably would have 
been minor, because of the careful steps we have taken. Again, it’s very easy 

Table 2-1: Computation of Desired Value from Row Variable

Row
Desired 
Value Row * –1

Difference from 
Desired Value

1 5 –1 6

2 4 –2 6

3 3 –3 6

4 2 –4 6

5 1 –5 6
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to experiment with a block of code that is this small and simple. Now let’s 
take this expression, and use it to limit the inner loop:

for (int row = 1; row <= 5; row++) {
   for (int hashNum = 1; hashNum <= 6 - row; hashNum++) {
      cout << "#";
   }
   cout << "\n";
}

Using the reduction technique requires more steps to get from the 
description to the completed program, but each step is easier. Think of using 
a series of pulleys to lift a heavy object: You have to pull the rope farther to 
get the same amount of lift, but each pull is much easier on your muscles. 

Let’s tackle another shape problem before moving on.

P R O B L E M :  A  S I D E W A Y S  T R I A N G L E

Write a program that uses only two output statements, cout << "#" and cout << "\n", 
to produce a pattern of hash symbols shaped like a sideways triangle:
#
##
###
####
###
##
#

We’re not going to go through all the steps we used on the previous 
problem, because we don’t need to. This “Sideways Triangle” problem is 
analogous to the “Half of a Square” problem, so we can use what we have 
learned from the latter in the former. Remember the “start with what you 
know” maxim? Let’s start by listing skills and techniques from the “Half of 
a Square” problem that can be applied to this problem. We know how to:

 Display a row of symbols of a particular length using a loop

 Display a series of rows using nested loops

 Create a varying number of symbols in each row using an algebraic 
expression instead of a fixed value

 Discover the correct algebraic expression through experimentation and 
analysis

Figure 2-1 summarizes our current position. The first row shows the pre-
vious “Half of a Square” problem. We see the desired pattern of hash symbols 
(a), the line pattern (b), the square pattern (c), and the number sequence 
(d) that will transform the square pattern to the half-a-square pattern. The 
second row shows the current “Sideways Triangle” problem. We again see 
the desired pattern (e), the line (f), a rectangle pattern (g), and a number 
sequence (h).
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At this point, we will have no 
problem producing (f) because it is 
almost the same as (b). And we should 
be able to produce (g) because it is 
just (c) with more rows and one fewer 
symbol per row. Finally, if someone 
were to give us the algebraic expres-
sion that would produce the number 
sequence (h), we would have no diffi-
culty creating the desired pattern (e).

Thus, most of the mental work 
required to create a solution for the 
“Sideways Triangle” problem has 
already been done. Furthermore, 
we know exactly what mental work 
remains: figuring out an expression 
to produce the number sequence (h). 
So that’s where we should direct our 
attention. We could either take the 
finished code for the “Half of a Square” 
problem and experiment until we can produce the desired numbered sequence 
or take a guess and make a table like Table 2-1 to see whether that jogs our 
creativity. 

Let’s try experimenting this time. In the “Half of a Square” problem, sub-
tracting the row from a larger number worked well, so let’s see what numbers 
we get by running row in a loop from 1 to 7 and subtracting row from 8. The 
result is shown in Figure 2-2 (b). That’s not what we want. Where do we go 
from here? In the previous problem, we needed a number that went down 
instead of up, so we subtracted our loop variable from a greater number. In 
this problem, we need to go up first and then down. Would it make sense to 
subtract from a number in the middle? If we replace the 8 - row in the previous 
code with 4 - row, we get the result in Figure 2-2 (c). That’s not right either, 
but it looks like it could be a useful pattern if we don’t look at the minus signs 
on the last three numbers. What if we used the absolute value function to 
remove those minus signs? The expression abs(4 - row) produces the results 
in Figure 2-2 (d). We’re so close now—I can almost taste it! It’s just that we are 
going down first and then up when we need to go up first and then down. But 
how do we get from the number sequence we have to the number sequence 
we need?

Let’s try looking at the numbers in Figure 2-2 (d) in a different way. 
What if we count the empty spaces instead of the hash marks, as shown in 
Figure 2-2 (e)? Column (d) is the right pattern of values if we count the 
empty spaces. To get the right number of hash marks, think of each row as 
having four boxes, and then subtract the number of empty spaces. If each 
row has four boxes of which abs(4 - row) are empty spaces, then the number 
of boxes with hash marks will be given by 4 - abs(4 - row). That works. Plug 
it in, and try it out.
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Figure 2-2: Various components needed to solve the 
“Sideways Triangle” problem

We have avoided most of the work for this problem through analogy and 
have solved the rest through experimentation. This one-two punch is a great 
approach when a new problem is very similar to another you can already solve.

Input Processing

The previous programs only produced output. Let’s change things up and 
try programs that are all about processing the input. Each of these programs 
shares one constraint: The input will be read character by character, and the 
program must process each character before reading the next one. In other 
words, the programs will not store the characters in a data structure for later 
processing but process as they go.

In this first problem, we’ll perform identification number validation. In 
the modern world, almost everything has an identification number, such as 
an ISBN or a customer number. Sometimes these numbers have to be entered 
by hand, which introduces the potential for error. If a mistakenly entered 
number doesn’t match any valid identification number, the system can easily 
reject it. But what if the number is wrong, yet valid? For example, what if a 
cashier, attempting to credit your account for a product return, enters another 
customer’s account number? The other customer would receive your credit. 
To avoid this situation, systems have been developed to detect mistakes in 
identification numbers. They work by running the identification number 
through a formula that generates one or more extra digits, which become 
part of an extended identification number. If any of the digits are changed, 
the original part of the number and the extra digits will no longer match, 
and the number can be rejected. 

P R O B L E M :  L U H N  C H E C K S U M  V A L I D A T I O N

The Luhn formula is a widely used system for validating identification numbers. Using 
the original number, double the value of every other digit. Then add the values of the 
individual digits together (if a doubled value now has two digits, add the digits indi-
vidually). The identification number is valid if the sum is divisible by 10. 

Write a program that takes an identification number of arbitrary length and 
determines whether the number is valid under the Luhn formula. The program must 
process each character before reading the next one.
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The process sounds a little complicated, but an example will make every-
thing clearer. Our program will only validate an identification number, not 
create the check digit. Let’s walk through both ends of the process: comput-
ing a check digit and validating the result. This process is demonstrated in 
Figure 2-3. In part (a), we compute the check digit. The original identifica-
tion number, 176248, is shown in the dashed-line box. Every other digit, 
starting from the rightmost digit of the original number (which, after the 
addition of the check digit, will be the second rightmost), is doubled. Then 
each digit is added together. Note that when doubling a digit results in a two-
digit number, each of those digits is considered separately. For example, 
when 7 is doubled to produce 14, it’s not 14 that is added to the checksum, 
but 1 and 4 individually. In this case, the checksum is 27, so the check digit 
is 3 because that’s the digit value that would make the overall sum 30. 
Remember, the checksum of the final number should be divisible by 10; in 
other words, it should end in 0.

Figure 2-3: The Luhn checksum formula

In part (b), we validate the number 1762483, which now includes the 
check digit. This is the process we will be using for this problem. As before, 
we double every second digit, starting with the digit to the right of the check 
digit, and add the values of all digits, including the check digit, to determine 
the checksum. Because the checksum is divisible by 10, this number validates.
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Breaking Down the Problem
The program that will solve this problem has several separate issues we will 
have to handle. One issue is the doubling of digits, which is tricky because 
doubled digits are determined from the right end of the identification num-
ber. Remember, we’re not going to read and store all of the digits and then 
process. We’re going to process as we go. The problem is that we’ll be getting 
the digits left to right, but we really need them right to left in order to know 
which digits to double. We would know which digits to double if we knew how 
many digits were in the identification number, but we don’t because the prob-
lem states that the identification number is of arbitrary length. Another issue 
is that doubled numbers 10 and greater must be treated according to their 
individual digits. Also, we have to determine when we’ve read the whole iden-
tification number. Finally, we have to figure out how to read the number digit 
by digit. In other words, the user is going to enter one long number, but we 
want to read it as though the digits were entered as separate numbers.

Because we always want to have a plan, we should make a list of these 
issues and tackle them one by one:

 Knowing which digits to double

 Treating doubled numbers 10 and greater according to their individual 
digits

 Knowing we’ve reached the end of the number

 Reading each digit separately

To solve problems, we’ll be working on individual pieces before writing a 
final solution. Thus, there is no need to work on these issues in any particular 
order. Start with the issue that looks the easiest or, if you want a challenge, 
the one that looks the most difficult. Or just start with the one that’s the most 
interesting. 

Let’s begin by tackling the doubled digits that are 10 and greater. This is 
a situation where problem constraints make things easier rather than more 
difficult. Computing the sum of the digits of an arbitrary integer could be a 
good amount of work by itself. But what is the range of possible values here? 
If we start with individual digits 0–9 and double them, the maximum value is 
18. Therefore, there are only two possibilities. If the doubled value is a single 
digit, then there’s nothing more to do. If the doubled value is 10 or greater, 
then it must be in the range 10–18, and therefore the first digit is always 1. 
Let’s do a quick code experiment to confirm this approach:

int digit;
cout << "Enter a single digit number, 0-9: ";
cin >> digit;

 int doubledDigit = digit * 2;
int sum;

 if (doubledDigit >= 10) sum = 1 + doubledDigit % 10;
else sum = doubledDigit;

 cout << "Sum of digits in doubled number: " << sum << "\n";
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NOTE The % operator is called the modulo operator. For positive integers, it returns the 
remainder of integer division. For example, 12 % 10 would be 2 because after dividing 
10 into 12, the 2 is left over.

This is straightforward code: the program reads the digit, doubles it , 
sums the digits of the doubled number , and outputs the sum . The heart 
of the experiment is the calculation of the sum for a doubled number that 
is greater than 10 . As with the calculation of the number of hash marks 
needed for a particular row in our shapes problems, isolating this calculation 
to a short program of its own makes experimentation easy. Even if we don’t 
get the correct formula at first, we’re sure to find it quickly.

Before we scratch this issue off our list, let’s turn this code into a short 
function we can use to simplify future code listings:

int doubleDigitValue(int digit) {
   int doubledDigit = digit * 2;
   int sum;
   if (doubledDigit > 10) sum = 1 + doubledDigit % 10;
   else sum = doubledDigit;
   return sum;
}

Now let’s work on reading the individual digits of the identification num-
ber. Again, we could tackle a different issue next if we wanted, but I think 
this issue is a good choice because it will allow us to type the identification 
number naturally when testing the other parts of the problem. 

If we read the identification number as a numeric type (int, for example), 
we’d just get one long number and have a lot of work ahead of us. Plus, there’s 
a limit to how big an integer we can read, and the question says the identifi-
cation number is of arbitrary length. Therefore, we’ll have to read character 
by character. This means that we need to make sure we know how to read a 
character representing a digit and turn it into an integer type we can work 
with mathematically. To see what would happen if we took the character 
value and used it in an integer expression directly, take a look at the follow-
ing listing, which includes sample output.

char digit;
cout << "Enter a one-digit number: ";

 digit = cin.get();
int sum = digit;
cout << "Is the sum of digits " << sum << "? \n";

 Enter a one-digit number: 7
Is the sum of digits 55?

Note that we use the get method  because the basic extraction operator 
(as in cin >> digit) skips whitespace. That’s not a problem here, but as you’ll 
see, it would cause trouble later. In the sample input and output , you see 
the problem. All computer data is essentially numeric, so individual charac-
ters are represented by integer character codes. Different operating systems 
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may use different character code systems, but in this text we’ll focus on the 
common ASCII system. In this system, the character 7 is stored as the charac-
ter code value 55, so when we treat the value as an integer, 55 is what we get. 
We need a mechanism to turn the character 7 into the integer 7.

P R O B L E M :  C O N V E R T  C H A R A C T E R  D I G I T  T O  I N T E G E R

Write a program that reads a character from the user representing a digit, 0 through 
9. Convert the character to the equivalent integer in the range 0–9, and then output 
the integer to demonstrate the result.

In the shape problems of the previous section, we had a variable with 
one range of values that we wanted to convert to another range of values. We 
made a table with columns for the original values and desired values and 
then checked the difference between the two. This is an analogous problem, 
and we can use the table idea again, as in Table 2-2.

The difference between the character code and the desired integer is 
always 48, so all we have to do is subtract that value. You might have noticed 
that this is the character code value for the zero character, 0. This will always 
be true because character code systems always store the digit characters in 
order, starting from 0. We can therefore make a more general, and more 
readable, solution by subtracting the character 0 rather than using a pre-
determined value, like 48: 

char digit;
cout << "Enter a one-digit number: ";
cin >> digit;
int sum = digit - '0';
cout << "Is the sum of digits " << sum << "? \n";

Table 2-2: Character Codes and Desired Integer Values

Character Character Code Desired Integer Difference

0 48 0 48

1 49 1 48

2 50 2 48

3 51 3 48

4 52 4 48

5 53 5 48

6 54 6 48

7 55 7 48

8 56 8 48

9 57 9 48
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Now we can move on to figuring out which digits to double. This part 
of the problem may take several steps to figure out, so let’s try a problem 
reduction. What if we initially limited ourselves to a fixed-length number? 
That would confirm our understanding of the general formula while making 
progress toward the ultimate goal. Let’s try limiting the length to six; this is 
long enough to be a good representation of the overall challenge.

P R O B L E M :  L U H N  C H E C K S U M  V A L I D A T I O N ,  
F I X E D  L E N G T H

Write a program that takes an identification number (including its check digit) of 
length six and determines whether the number is valid under the Luhn formula. The 
program must process each character before reading the next one.

As before, we can reduce even further to make getting started as easy as 
possible. What if we changed the formula so that none of the digits is doubled? 
Then the program only has to read the digits and sum them.

P R O B L E M :  S I M P L E  C H E C K S U M  V A L I D A T I O N ,  
F I X E D  L E N G T H

Write a program that takes an identification number (including its check digit) of 
length six and determines whether the number is valid under a simple formula where 
the values of each digit are summed and the result checked to see whether it is divisi-
ble by 10. The program must process each character before reading the next one.

Because we know how to read an individual digit as a character, we can 
solve this fixed-length, simple checksum problem pretty easily. We just need 
to read six digits, sum them, and determine whether the sum is divisible 
by 10.

char digit;
int checksum = 0;
cout << "Enter a six-digit number: ";
for (int position = 1; position <= 6; position ++) {
   cin >> digit;
   checksum += digit - '0';
}
cout << "Checksum is " << checksum << ". \n";
if (checksum % 10 == 0) {
   cout << "Checksum is divisible by 10. Valid. \n";
} else {
   cout << "Checksum is not divisible by 10. Invalid. \n";
}
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From here, we need to add the logic for the actual Luhn validation for-
mula, which means doubling every other digit starting from the second digit 
from the right. Since we are currently limiting ourselves to six-digit numbers, 
we need to double the digits in positions one, three, and five, counting from 
the left. In other words, we double the digit if the position is odd. We can iden-
tify odd and even positions using the modulo (%) operator because the defi-
nition of an even number is that it is evenly divisible by two. So if the result 
of the expression position % 2 is 1, position is odd and we should double. It’s 
important to remember that doubling here means both doubling the individ-
ual digit and also summing the digits of the doubled number if the doubling 
results in a number 10 or greater. This is where our previous function really 
helps. When we need to double a digit according to the Luhn formula, we 
just send it to our function and use the result. Putting this together, just 
change the code inside the for loop from the previous listing:

for (int position  = 1; position  <= 6; position++) {
   cin >> digit;
   if (position % 2 == 0) checksum += digit - '0';
      else checksum += doubleDigitValue(digit - '0');
}

We’ve accomplished a lot on this problem so far, but there are still a 
couple of steps to go before we can write the code for arbitrary-length iden-
tification numbers. To ultimately solve this problem, we need to divide and 
conquer. Suppose I asked you to modify the previous code for numbers with 
10 or 16 digits. That would be trivial—you’d only have to change the 6 used 
as the upper bound of the loop to another value. But suppose I asked you to 
validate seven-digit numbers. That would require a small additional modifi-
cation because if the number of digits is odd and we are doubling every digit 
starting from the second on the right, the first digit on the left is no longer 
doubled. In this case, you need to double the even positions: 2, 4, 6, and so 
on. Putting aside that issue for the moment, let’s figure out how to handle 
any even-length number.

The first issue we face is determining when we have reached the end of 
the number. If the user enters a multidigit number and presses ENTER and 
we’re reading the input character by character, what character is read after 
the last digit? This actually varies based on the operating system, but we’ll just 
write an experiment:

cout << "Enter a number: ";
char digit;
while (true) {
   digit = cin.get();
   cout << int(digit) << " ";
}
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This loop runs forever, but it does the job. I typed in the number 1234 
and pressed ENTER. The result was 49 50 51 52 10 (based on ASCII; this will 
vary based on the operating system). Thus, 10 is what I’m looking for. With 
that information in hand, we can replace the for loop in our previous code 
with a while loop:

char digit;
int checksum = 0;

 int position = 1;
cout << "Enter a number with an even number of digits: ";

 digit = cin.get();
while (digit != 10) {
if (position % 2 == 0) checksum += digit - '0';

   else checksum += 2 * (digit - '0');
digit = cin.get();
position++;

}
cout << "Checksum is " << checksum << ". \n";
if (checksum % 10 == 0) {
   cout << "Checksum is divisible by 10. Valid. \n";
} else {
   cout << "Checksum is not divisible by 10. Invalid. \n";
}

In this code, position is no longer the control variable in a for loop, so we 
must initialize  and increment it separately . The loop is now controlled 
by the conditional expression , which checks for the character code value 
that signals the end-of-line. Because we need a value to check the first time 
we go through the loop, we read the first value before the loop begins  and 
then read each subsequent value inside the loop , after the processing code.

Again, this code will handle a number of any even length. To handle a 
number of any odd length, we’d need only to modify the processing code, 
reversing the logic of the if statement condition  in order to double the 
numbers at the even positions, rather than the odd positions.

That, at least, exhausts every possibility. The length of the identifica-
tion number must be odd or even. If we knew the length ahead of time, we 
would know whether to double the odd positions or the even positions in the 
number. We don’t have that information, however, until we have reached 
the end of the number. Is a solution impossible given these constraints? If we 
know how to solve the problem for an odd number of digits and for an even 
number of digits but don’t know how many digits are in the number until 
we’ve read it completely, how can we solve this problem?

You may already see the answer to this problem. If you don’t, it’s not 
because the answer is difficult but because it is hidden in the details. What we 
could use here is an analogy, but we haven’t seen an analogous situation so 
far. Instead, we’ll make our own analogy. Let’s make a problem that is explic-
itly about this very situation and see whether staring the problem in the face 
helps us find a solution. Clear your mind of preconceptions based on the 
work so far, and read the following problem.
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P R O B L E M :  P O S I T I V E  O R  N E G A T I V E

Write a program that reads 10 integers from the user. After all the numbers have 
been entered, the user may ask to display the count of positive numbers or the count 
of negative numbers.

This is a simple problem, one that doesn’t seem to have any complica-
tions at all. We just need one variable that counts the positive numbers and 
another variable that counts the negative numbers. When the user specifies 
the request at the end of the program, we just need to consult the proper 
variable for the response:

int number;
int positiveCount = 0;
int negativeCount = 0;
for (int i = 1; i <= 10; i++) {
   cin >> number;
   if (number > 0) positiveCount++;
   if (number < 0) negativeCount++;
}
char response;
cout << "Do you want the (p)ositive or (n)egative count? ";
cin >> response;
if (response == 'p') 
   cout << "Positive count is " << positiveCount << "\n";
if (response == 'n')
    out << "Negative count is " << negativeCount << "\n";

This shows the method we need to use for the Luhn checksum problem: 
Keep track of the running checksum both ways, as if the identification num-
ber is an odd length and again as if it is an even length. When we get to the 
end of the number and discover the true length, we’ll have the correct check-
sum in one variable or the other. 

Putting the Pieces Together
We’ve now checked off everything on our original “to-do” list. It’s time to put 
everything together and solve this problem. Because we’ve solved all of the 
subproblems separately, we know exactly what we need to do and can use our 
previous programs as reference to produce the final result quickly:

char digit;
int oddLengthChecksum = 0;
int evenLengthChecksum = 0;
int position = 1;
cout << "Enter a number: ";
digit = cin.get();
while (digit != 10) {
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   if (position % 2 == 0) {
      oddLengthChecksum += doubleDigitValue(digit - '0');
      evenLengthChecksum += digit - '0';
   } else {
      oddLengthChecksum += digit - '0';
      evenLengthChecksum += doubleDigitValue(digit - '0');
   }
   digit = cin.get();
   position++;
}
int checksum;

 if ((position - 1) % 2 == 0) checksum = evenLengthChecksum;
else checksum = oddLengthChecksum;
cout << "Checksum is " << checksum << ". \n";
if (checksum % 10 == 0) {
   cout << "Checksum is divisible by 10. Valid. \n";
} else {
   cout << "Checksum is not divisible by 10. Invalid. \n";
}

Note that when we check to see whether the length of the input number is 
odd or even , we subtract 1 from position. We do this because the last char-
acter we read in the loop will be the terminating end-of-line, not the last digit 
of the number. We could also have written the test expression as (position % 2 
== 1), but that’s more confusing to read. In other words, it’s better to say “if 
position - 1 is even, use the even checksum” than “if position is odd, use the 
even checksum” and have to remember why that makes sense. 

This is the longest code listing we’ve looked at so far, but I don’t need to 
annotate everything in the code and describe how each part works because 
you’ve already seen each part in isolation. This is the power of having a plan. 
It’s important to note, though, that my plan is not necessarily your plan. The 
issues I saw in the original description of the problem and the steps I took to 
work through those issues are likely to differ from what you would’ve seen 
and done. Your background as a programmer and the problems you have 
successfully completed determine which parts of the problem are trivial or 
difficult and thus what steps you need to take to solve the problem. There 
may have been a point in the previous section where I took what looked like 
a needless detour to figure out something that was already obvious to you. 
Conversely, there may have been a point where I nimbly skipped over some-
thing that was tricky for you. Also, if you’d worked through this yourself, you 
might have come up with an equally successful program that looked quite 
different from mine. There is no one “right” solution for a problem, as any 
program that meets all constraints counts as a solution, and for any solution, 
there is no one “right” way of reaching it.

Seeing all the steps that we took to reach the solution, along with the 
relative brevity of the final code, you might be tempted to try to trim steps in 
your own problem-solving process. I would caution against this impulse. It’s 
always better to take more steps than to try to do too much at once, even if 
some steps seem trivial. Remember what the goals are in problem solving. The 
primary goal is, of course, to find a program that solves the stated problem 
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and meets all constraints. The secondary goal is to find that program in the 
minimal amount of time. Minimizing the number of steps isn’t a goal, and 
no one has to know how many steps you took. Consider trying to reach the 
summit of a steep hill that has a shallow but long and winding path. Ignoring 
the path and climbing the hill directly from the base to the peak will certainly 
require fewer steps than following the path—but is it faster? The most likely 
outcome of a direct climb is that you give up and collapse. 

Also remember the last of my general rules for problem solving: Avoid 
frustration. The more work you try to do in each step, the more you invite 
potential frustration. Even if you back off a difficult step and break it up into 
substeps, the damage will have been done because psychologically you’ll feel 
like you’re going backward instead of making progress. When I coach begin-
ning programmers in a step-by-step approach, I sometimes have a student 
complain, “Hey, that step was too easy.” To which I reply, “What are you com-
plaining about?” If you’ve taken a problem that initially looked tough and 
broken it down into pieces so small that every piece is trivial to accomplish, 
I say: Congratulations! That’s just what you should hope for. 

Tracking State

The last problem we’ll work through for this chapter is also the most diffi-
cult. This problem has a lot of different pieces and a complicated descrip-
tion, which will illustrate the importance of breaking down a complex 
problem.

P R O B L E M :  D E C O D E  A  M E S S A G E

A message has been encoded as a text stream that is to be read character by charac-
ter. The stream contains a series of comma-delimited integers, each a positive number 
capable of being represented by a C++ int. However, the character represented by 
a particular integer depends on the current decoding mode. There are three modes: 
uppercase, lowercase, and punctuation.

In uppercase mode, each integer represents an uppercase letter: The integer 
modulo 27 indicates the letter of the alphabet (where 1 = A and so on). So an input 
value of 143 in uppercase mode would yield the letter H because 143 modulo 27 is 
8 and H is the eighth letter in the alphabet.

The lowercase mode works the same but with lowercase letters; the remainder of 
dividing the integer by 27 represents the lowercase letter (1 = a and so on). So an 
input value of 56 in lowercase mode would yield the letter b because 57 modulo 27 
is 2 and b is the second letter in the alphabet.

In punctuation mode, the integer is instead considered modulo 9, with the inter-
pretation given by Table 2-3 below. So 19 would yield an exclamation point because 
19 modulo 9 is 1.

At the beginning of each message, the decoding mode is uppercase letters. Each 
time the modulo operation (by 27 or 9, depending on mode) results in 0, the decod-
ing mode switches. If the current mode is uppercase, the mode switches to lowercase 
letters. If the current mode is lowercase, the mode switches to punctuation, and if it is 
punctuation, it switches back to uppercase.



42 Chapter 2

As with the Luhn validation formula, we’re going to walk through a con-
crete example to make sure we have all the steps straight. Figure 2-4 demon-
strates a sample decoding. The original input stream is shown at the top. The 
processing steps proceed from the top down. Column (a) shows the current 
number in the input. Column (b) is the current mode, cycling from upper-
case (U) to lowercase (L) to punctuation (P). Column (c) shows the divisor 
for the current mode. Column (d) is the remainder of dividing the current 
divisor in column (c) into the current input from column (a). The result is 
shown in column (e), either a character or, if the result in (d) is 0, a switch to 
the next mode in the cycle.

As with the previous problem, we can start by explicitly considering the 
skills we’ll need to craft a solution. We need to read a string of characters until 
we reach an end-of-line. The characters represent a series of integers, so we 
need to read digit characters and convert them to integers for further process-
ing. Once we have the integers, we need to convert the integer into a single 
character for output. Finally, we need some way to track the decoding mode so 
we know whether the current integer should be decoded into a lowercase let-
ter, uppercase letter, or punctuation. Let’s turn this into a formal list:

 Read character by character until we reach an end-of-line.

 Convert a series of characters representing a number to an integer.

 Convert an integer 1–26 into an uppercase letter. 

 Convert an integer 1–26 into a lowercase letter.

 Convert an integer 1–8 into a punctuation symbol based on Table 2-3.

 Track a decoding mode.

The first item is something we already know how to do from the previous 
problem. Furthermore, although we only dealt with individual digits in the 
Luhn validation formula, I suspect some of what we did there will also be help-
ful on the second item of our list. The finished code for the Luhn algorithm 
is probably still fresh in your mind, but if you put the book down between 
that problem and this one, you’ll want to go back and review that code. In 
general, when the description of a current problem “rings bells,” you’ll want 
to dig out any similar code from your archives for study.

Table 2-3: Punctuation Decoding Mode

Number Symbol

1 !

2 ?

3 ,

4 .

5 (space)

6 ;

7 "

8 '
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Figure 2-4: Sample processing for the “Decode a Message” problem

Let’s get down to business on the items that remain. You may have noticed 
that I’ve made each of the conversions a separate item. I suspect that convert-
ing a number into a lowercase letter is going to be very similar to converting 
a number into an uppercase letter, but perhaps converting to a punctuation 
symbol will require something different. In any case, there’s no real down-
side to chopping up the list too finely; it just means you’ll be able to cross 
things off the list more often.

Let’s start with those integer-to-character conversions. From the Luhn 
formula program, we know the code required to read a character digit 0–9 
and convert it to an integer in the range 0–9. How can we extend this method 
to deal with multidigit numbers? Let’s consider the simplest possibility: two-
digit numbers. This looks straightforward. In a two-digit number, the first 

18,12312,171,763,98423,1208,216,11,500,18,241,0,32,20620,27,10
Original input:

18 U 27 18 R

12312 U 27 0

171 L 27 6 i

L

763 L 27 7 g

98423 L 27 8 h

1208 L 27 20 t

216 L 27 0 P

11 P 9 2 ?

18 P 9 0 U

500 P 9 5

241 U 27 25 Y

0 U 27 0 L

32 L 27 5 e

20620 L 27 19 s

27 L 27 0 P

10 P 9 1 !

(a) (b) (c) (d) (e)

Cycle of modes:

Decoded message:
Right? Yes!

U

LP
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digit is the tens digit, so we should multiply this individual digit by 10, and 
then add the value of the second digit. For example, if the number were 35, 
after reading the individual digits as characters 3 and 5, and converting these 
to the integers 3 and 5, we would obtain the overall integer we need by the 
expression 3 * 10 + 5. Let’s confirm this with code:

cout << "Enter a two-digit number: ";
char digitChar1 = cin.get();
char digitChar2 = cin.get();
int digit1 = digitChar1 - '0';
int digit2 = digitChar2 - '0';
int overallNumber = digit1 * 10 + digit2;
cout << "That number as an integer: " << overallNumber << "\n";

That works—the program outputs same two-digit number that we put in. 
We encounter a problem, however, when we try to extend this method. This 
program uses two different variables to hold the two character inputs, and 
while that causes no problems here, we certainly don’t want to extend that as 
a general solution. If we did, we would need as many variables as we have dig-
its. That would get messy, and it would be difficult to modify if the range of 
possible numbers in the input stream varied. We need a more general solu-
tion to this subproblem of converting characters to integers. The first step to 
finding that general solution is to reduce the previous code to just two vari-
ables—one char and one int:

cout << "Enter a two-digit number: ";
 char digitChar = cin.get();
 int overallNumber = (digitChar - '0') * 10;

S T O R I N G  C O D E  F O R  L A T E R  R E U S E

The similarities between elements of the current problem and the previous problem 
show the importance of putting source code away in a manner that facilitates later 
review. Software developers talk a lot about code reuse, which occurs whenever you 
use pieces of old software to build new software. Often this involves using an encap-
sulated component or reusing source code verbatim. It’s just as important, though, to 
have easy access to prior solutions that you have written. Even if you aren’t copying 
old code outright, this allows you to reuse previously learned skills and techniques 
without having to relearn them. To maximize this benefit, strive to keep all the source 
code you write (mindful of any intellectual property agreements you may have with 
clients or employers, of course).

Whether you receive full benefit from previously written programs, though, 
depends largely on the care you take to store them away; code you can't find is 
code you can't use. If you employ a step-by-step approach and write individual pro-
grams to test ideas separately before integrating them into the whole, make sure you 
save those intermediate programs, too. You may find it very convenient to have them 
available later when the similarity between your current program and the old pro-
gram lies in one of the areas for which you wrote a test program.
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 digitChar = cin.get();
 overallNumber += (digitChar - '0');

cout << "That number as an integer: " << overallNumber << "\n";

We accomplish this by doing all the calculations on the first digit before 
reading the second digit. After reading the first character digit  in one step, 
we convert to an integer, multiply by 10, and store the result . After reading 
the second digit , we add its integer value to the running total . This is 
equivalent to the previous code while using only two variables, one for the 
last character read and one for the overall value of the integer. The next step 
is to consider extending this method to three-digit numbers. Once we do 
that, we’re likely to see a pattern that will allow us to create a general solution 
for any number of digits.

When we try this, though, we encounter a problem. With the two-digit 
number, we multiplied the left digit by 10 because the left digit was in the 
tens position. The leftmost digit in a three-digit number would be in the hun-
dreds position, so we would need to multiply that digit by 100. Then we could 
read in the middle digit, multiply it by 10, add it to the running total, and 
then read in the last digit and add it, as well. That should work, but it’s not 
heading us in the direction of a general solution. Do you see the problem? 
Consider the previous statement: The leftmost digit in a three-digit number would 
be in the hundreds position. For a general solution, we won’t know how many 
digits are in each number until we reach the next comma. The leftmost digit 
in a number with an unknown quantity of digits can’t be labeled in the hun-
dreds position or any other position. So how do we know what multiplier to 
use for each digit before adding to the running total? Or do we need another 
approach entirely?

As always, when stuck, it’s a good idea to create a simplified problem to 
work on. The issue here is not knowing how many digits the number is going 
to have. The simplest problem that deals with this issue would be one that 
has just two possible digit counts.

P R O B L E M :  R E A D I N G  A  N U M B E R  W I T H  T H R E E  O R  
F O U R  D I G I T S

Write a program to read a number character by character and convert it to an inte-
ger, using just one char variable and one int variable. The number will have either 
three or four digits.

This issue of not knowing the count of characters until the end but need-
ing the count right from the beginning is analogous to the issue in the Luhn 
formula. In the Luhn formula, we didn’t know whether the identification 
number had an odd or even length. In that case, our solution was to calculate 
the results two different ways and choose the appropriate one at the end. 
Could we do something like that here? If the number is either three or four 
digits, there are only two possibilities. If the number has three digits, the left-
most digit is the hundreds digit. If the number has four digits, the leftmost 
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digit is the thousands digit. We could compute as if we had a three-digit num-
ber and as if we had a four-digit number and then choose the right number 
at the end, but the problem description allows us to have only one numeric 
variable. Let’s relax that restriction to make some progress.

P R O B L E M :  R E A D I N G  A  N U M B E R  W I T H  T H R E E  O R  
F O U R  D I G I T S ,  F U R T H E R  S I M P L I F I E D

Write a program to read a number character by character and convert it to an inte-
ger, using just one char variable and two int variables. The number will have either 
three or four digits.

Now we can put the “compute it both ways” method to work. We’ll pro-
cess the first three digits two different ways and then see whether there is a 
fourth digit:

cout << "Enter a three-digit or four-digit number: ";
char digitChar = cin.get();

 int threeDigitNumber = (digitChar - '0') * 100;
 int fourDigitNumber = (digitChar - '0') * 1000;

digitChar = cin.get();
threeDigitNumber += (digitChar - '0') * 10;
fourDigitNumber += (digitChar - '0') * 100;
digitChar = cin.get();
threeDigitNumber += (digitChar - '0');
fourDigitNumber += (digitChar - '0') * 10;
digitChar = cin.get();
if (digitChar == 10) {
    cout << "Numbered entered: " << threeDigitNumber << "\n";
} else {
fourDigitNumber += (digitChar - '0');

    cout << "Numbered entered: " << fourDigitNumber << "\n";
}

After reading the leftmost digit, we multiply its integer value by 100, and 
store it in our three-digit variable . We also multiply the integer value by 
1,000, and store it in our four-digit variable . This pattern continues for the 
next two digits. The second digit is treated both as a tens digit in a three-digit 
number and as a hundreds digit in a four-digit number. The third digit is 
treated as both a ones and a tens digit. After reading the fourth character, we 
check to see whether it’s an end-of-line by comparing it to the number 10  
(as in the previous problem, this value may vary per operating system). If it is 
an end-of-line, the input was a three-digit number. If not, we still need to add 
the ones digit to the total .

Now we need to figure out how to get rid of one of the integer vari-
ables. Suppose we removed the variable fourDigitNumber entirely. The value 
of threeDigitNumber would still be correctly assigned, but when we reached a 
point where we needed fourDigitNumber, we wouldn’t have it. Using the value 
in threeDigitNumber, is there some way to determine the value that would have 
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been in fourDigitNumber? Suppose the original input was 1234. After reading 
the first three digits, the value in threeDigitNumber would be 123; the value 
that would have been in fourDigitNumber is 1230. In general, since the multi-
pliers for fourDigitNumber are 10 times those of threeDigitNumber, the former 
would always be 10 times the latter. Thus, only one integer variable is needed 
because the other variable can just be multiplied by 10 if necessary:

cout << "Enter a three-digit or four-digit number: ";
char digitChar = cin.get();
int number = (digitChar - '0') * 100;
digitChar = cin.get();
number += (digitChar - '0') * 10;
digitChar = cin.get();
number += (digitChar - '0');
digitChar = cin.get();
if (digitChar == 10) {
   cout << "Numbered entered: " << number << "\n";
} else {
   number = number * 10 + (digitChar - '0');
   cout << "Numbered entered: " << number << "\n";
}

Now we have an exploitable pattern. Consider expanding this code to 
handle five-digit numbers. After computing the right value for the first four 
digits, we would repeat the same process we followed for reading the fourth 
character instead of displaying the result immediately: Read a fifth character, 
check to see whether it’s an end-of-line, display the previously computed 
number if it is—otherwise, multiply by 10, and add the digit value of the cur-
rent character:

cout << "Enter a number with three, four, or five digits: ";
char digitChar = cin.get();
int number = (digitChar - '0') * 100;
digitChar = cin.get();
number += (digitChar - '0') * 10;
digitChar = cin.get();
number += (digitChar - '0');
digitChar = cin.get();
if (digitChar == 10) {
   cout << "Numbered entered: " << number << "\n";
} else {
   number = number * 10 + (digitChar - '0');
   digitChar = cin.get();
   if (digitChar == 10) {
      cout << "Numbered entered: " << number << "\n";
   } else {
      number = number * 10 + (digitChar - '0');
      cout << "Numbered entered: " << number << "\n";
   }
}
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At this point, we could easily expand the code to handle six-digit num-
bers or numbers with fewer digits. The pattern is clear: If the next character 
is another digit, multiply the running total by 10 before adding the integer 
digit value of the character. With this understanding, we can write a loop to 
handle a number of any length:

cout << "Enter a number with as many digits as you like: ";
 char digitChar = cin.get();
 int number = (digitChar - '0');
 digitChar = cin.get();

while (digitChar != 10) {
   number = number * 10 + (digitChar - '0');
   digitChar = cin.get();
}
cout << "Numbered entered: " << number << "\n";

Here, we read the first character , and determine its digit value . 
Then we read the second character  and reach the loop, where we check to 
see whether the most recently read character is an end-of-line . If not, we 
multiply the running total in the loop by 10, and add the current character’s 
digit value  before reading the next character . Once we reach the end-
of-line, the running total variable number contains the integer value for us to 
output .

That handles the conversion of one series of characters to its integer 
equivalent. In the final program, we’ll be reading a series of numbers, sepa-
rated by commas. Each number will have to be separately read and pro-
cessed. As always, it’s best to start by thinking about a simple situation that 
demonstrates the issue. Let’s consider the input 101,22[EOL], where [EOL] is 
explicitly marking the end-of-line for clarity. It would be enough to modify 
the test condition of the loop to check for either the end-of-line character or 
a comma. Then we would need to place all the code that processes one num-
ber inside a larger loop that continues until all the numbers have been read. 
So the inner loop should stop for [EOL] or a comma, but the outer loop 
should stop only for [EOL]:

 char digitChar;
do {
    digitChar = cin.get();
    int number = (digitChar - '0');
    digitChar = cin.get();
    while ((digitChar != 10) && (digitChar != ',')) {
        number = number * 10 + (digitChar - '0');
        digitChar = cin.get();
    }
    cout << "Numbered entered: " << number << "\n";
} while (digitChar != 10);

This is another great example of the importance of small steps. Although 
this is a short program, the wheels-within-wheels nature of the double loop 
would have made for tricky code if we had tried to write this from scratch. It’s 
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straightforward, though, when we arrive at this code by taking a step from 
the previous program. The declaration of digitChar  is moved to a separate 
line so that the declaration is in scope throughout the code. The rest of the 
code is the same as the previous listing, except that it’s placed inside a do-
while loop that continues until we reach the end-of-line .

With that part of the solution in place, we can focus on processing the 
individual numbers. The next item on our list is converting a number 1–26 
to a letter A–Z. If you think about it, this is actually a reversal of the process 
we used to convert the individual digit characters to their integer equiva-
lents. If we subtract the character code for 0 to translate from the 0–9 charac-
ter code range to the 0–9 integer range, we should be able to add a character 
code to translate from 1–26 to A–Z. What if we added 'A'? Here’s an attempt 
along with a sample input and output:

cout << "Enter a number 1-26: ";
int number;
cin >> number;
char outputCharacter;
outputCharacter = number + 'A';
cout << "Equivalent symbol: " << outputCharacter << "\n";

Enter a number 1-26: 5
Equivalent letter: F

That’s not quite right. The fifth letter of the alphabet is E, not F. The 
problem occurs because we are adding a number in the range that starts 
from 1. When we were converting in the other direction, from a character 
digit to its integer equivalent, we were dealing with a range that started 
from 0. We can fix this problem by changing the computation  from 
number + 'A' to number + 'A' - 1. Note that we could look up the character 
code value for the letter A (it’s 65 in ASCII) and simply use one less than 
that value (for example, number + 64 in ASCII). I prefer the first version, 
though, because it’s more readable. In other words, if you come back to 
look at this code later, you can more quickly remember what number + 'A' - 1 
does than what number + 64 does because the appearance of 'A' in the former 
will remind you of converting to uppercase letters.

Having sorted that out, we can easily adapt this idea to convert to lower-
case letters by changing the computation  to number + 'a' - 1. The punctu-
ation table conversion is not as concise because the punctuation symbols in 
the table do not appear in that order in ASCII or any other character code 
system. As such, we’re going to have to handle this through brute force:

cout << "Enter a number 1-8: ";
int number;
cin >> number;
char outputCharacter;

 switch (number) {
   case 1: outputCharacter = '!'; break;
   case 2: outputCharacter = '?'; break;
   case 3: outputCharacter = ','; break;
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   case 4: outputCharacter = '.'; break;
   case 5: outputCharacter = ' '; break;
   case 6: outputCharacter = ';'; break;
   case 7: outputCharacter = '"'; break;
   case 8: outputCharacter = '\''; break;
}
cout << "Equivalent symbol: " << outputCharacter << "\n";

Here, we’ve used a switch statement  to output the correct punctuation 
character. Note that a backslash has been employed as an “escape” in order 
to display the single quote .

We have one last subproblem to tackle before putting everything together: 
switching from mode to mode whenever the most recent value decodes to 
0. Remember that the problem description requires us to modulo each inte-
ger value by 27 (if we are currently in the uppercase mode or lowercase 
mode) or 9 (if we are in punctuation mode). When the result is 0, we switch 
to the next mode. What we need is a variable to store the current mode and 
logic inside our “read and process the next value” loop to switch modes if 
necessary. The variable tracking the current mode could be a simple integer, 
but it’s more readable to use an enumeration. A good rule of thumb: If a 
variable is only tracking a state and there is no inherent meaning to any par-
ticular value, an enumeration is a good idea. In this case, we could have a 
variable int mode arbitrarily say that the value of 1 means uppercase, 2 means 
lowercase, and 3 means punctuation. There’s no inherent reason, however, 
why those values are chosen. When we come back to look at the code later, 
we’ll have to reacquaint ourselves with the system to make sense of a state-
ment such as if (mode == 2). If we use an enumeration—as in the statement 
(mode == LOWERCASE)—there is nothing for us to remember because it’s all 
spelled out. Here’s the code that results from this idea, along with a sample 
interaction:

enum modeType {UPPERCASE, LOWERCASE, PUNCTUATION};
int number;
modeType mode = UPPERCASE;
cout << "Enter some numbers ending with -1: ";
do {
   cin >> number;
   cout << "Number read: " << number;
   switch (mode) {
      case UPPERCASE:
         number = number % 27;
         cout << ". Modulo 27: " << number << ". ";
         if (number == 0) {
            cout << "Switch to LOWERCASE";
            mode = LOWERCASE;
         }
         break;
      case LOWERCASE:
         number = number % 27;
         cout << ". Modulo 27: " << number << ". ";
         if (number == 0) {
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            cout << "Switch to PUNCTUATION";
            mode = PUNCTUATION;
         }
         break;
      case PUNCTUATION:
         number = number % 9;
         cout << ". Modulo 9: " << number << ". ";
         if (number == 0) {
            cout << "Switch to UPPERCASE";
            mode = UPPERCASE;
         }
         break;
   }
   cout << "\n";
} while (number != -1);

Enter some numbers ending with -1: 2 1 0 52 53 54 55 6 7 8 9 10 -1
Number read: 2. Modulo 27: 2.
Number read: 1. Modulo 27: 1.
Number read: 0. Modulo 27: 0. Switch to LOWERCASE
Number read: 52. Modulo 27: 25.
Number read: 53. Modulo 27: 26.
Number read: 54. Modulo 27: 0. Switch to PUNCTUATION
Number read: 55. Modulo 9: 1.
Number read: 6. Modulo 9: 6.
Number read: 7. Modulo 9: 7.
Number read: 8. Modulo 9: 8.
Number read: 9. Modulo 9: 0. Switch to UPPERCASE
Number read: 10. Modulo 27: 10.
Number read: -1. Modulo 27: -1.

We have crossed off everything on our list, so now it’s time to integrate 
these individual code listings to make a solution for the overall program. We 
could approach this integration in different ways. We might put just two pieces 
together and build up from there. For example, we could combine the code 
to read and convert the comma-separated numbers with the mode switching 
from the most recent listing. Then we could test that integration and add the 
code to convert each number to the appropriate letter or punctuation symbol. 
Or we could build up in the other direction, taking the number-to-character 
listing and turning it into a series of functions to be called from the main 
program. At this point, we’ve mostly moved beyond problem solving into 
software engineering, which is a different subject. We made a series of blocks—
that was the hard part—and now we just have to assemble them, as shown in 
Figure 2-5.

Almost every line in this program was extracted from previous code in 
this section. The bulk of the code  comes from the mode-switching pro-
gram. The central processing loop  comes from our code to read a series of 
comma-delimited numbers character by character. Finally, you’ll recognize 
the code that converts the integers into uppercase letters, lowercase letters, 
and punctuation . The small amount of new code is marked by . The 
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continue statements skip us to the next iteration of the loop when the last 
input was a mode-switch command, skipping the cout << outputCharacter at 
the end of the loop.

Figure 2-5: The assembled solution to the “Decode a Message” 
problem 

char outputCharacter;
enum modeType {UPPERCASE, LOWERCASE, PUNCTUATION}; 
modeType mode = UPPERCASE;
char digitChar;
do {
   digitChar = cin.get();
   int number = (digitChar - '0');
   digitChar = cin.get();
   while ((digitChar != 10) && (digitChar != ',')) { 
      number = number * 10 + (digitChar - '0'); 
      digitChar = cin.get();
   } 
   switch (mode) { 
      case UPPERCASE:
         number = number % 27; 
         outputCharacter = number + 'A' - 1; 
         if (number == 0) { 
            mode = LOWERCASE; 
            continue; 
         } 
         break;
      case LOWERCASE: 
         number = number % 27; 
         outputCharacter = number + 'a' - 1; 
         if (number == 0) {
            mode = PUNCTUATION;
            continue;
         } 
         break; 
      case PUNCTUATION: 
         number = number % 9; 
         switch (number) { 
            case 1: outputCharacter = '!'; break;
            case 2: outputCharacter = '?'; break;
            case 3: outputCharacter = ','; break;
            case 4: outputCharacter = '.'; break;
            case 5: outputCharacter = ' '; break;
            case 6: outputCharacter = ';'; break;
            case 7: outputCharacter = '"'; break;
            case 8: outputCharacter = '\''; break;
         }
         if (number == 0) {
            mode = UPPERCASE; 
            continue; 
         }
         break; 
   } 
   cout << outputCharacter; 
} while (digitChar != 10); 
cout << "\n";

�

�

�

�
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While this is a cut-and-paste job, this is the good kind of cut-and-paste job, 
where you reuse the code you just wrote and therefore completely under-
stand it. As before, think about how easy each step was in this process, versus 
trying to write the final listing from scratch. Undoubtedly, a good program-
mer could produce the final listing without going through the intermediate 
steps, but there would be false steps, times when the code looks ugly, and lines 
of code commented out and then put back again. By taking the smaller steps, 
all the dirty work gets done early, and the code never gets too ugly because the 
code we’re currently working with never gets long or complicated. 

Conclusion

In this chapter, we looked at three different problems. In one sense, we had 
to take three different paths to solve them. In another sense, we took the 
same route each time because we used the same basic technique of breaking 
up the problem into components; writing code to solve those components 
individually; and then using the knowledge gained from writing the pro-
grams, or even directly using lines of code from the programs, to solve the 
original problem. In the chapters that follow, we won’t use this method 
explicitly for each problem, but the fundamental idea is always there: to 
chop up the problem into manageable pieces.

Depending on your background, these problems may have initially 
appeared to lie anywhere on the difficulty spectrum from fiendish to trivial. 
Regardless of how difficult a problem initially seems, I would recommend 
using this technique on each new problem you face. You don’t want to wait 
until you reach a frustratingly difficult problem before trying out a new tech-
nique. Remember that one of the goals of this text is for you to develop con-
fidence in your ability to solve problems. Practice using the techniques on 
“easy” problems and you’ll have lots of momentum for when you hit the 
hard ones.

Exercises

As before, I urge you to try as many exercises as you can stand. Now that we 
are fully into the actual programming, working through exercises is essential 
for you to develop your problem-solving skills.

2-1. Using the same rule as the shapes programs from earlier in the chapter (only 
two output statements—one that outputs the hash mark and one that outputs 
an end-of-line), write a program that produces the following shape:

########
 ######
  ####
   ##
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2-2. Or how about:

   ##
  ####
 ######
########
########
 ######
  ####
   ##

2-3. Here’s an especially tricky one:

#            #
 ##        ##
  ###    ###
   ########
   ########
  ###    ###
 ##        ##
#            #

2-4. Design your own: Think up your own symmetrical pattern of hash marks, 
and see whether you can write a program to produce it that follows the 
shapes rule.

2-5. If you like the Luhn formula problem, try writing a program for a different 
check-digit system, like the 13-digit ISBN system. The program could take an 
identification number and verify it or take a number without its check digit 
and generate the check digit.

2-6. If you’ve learned about binary numbers and how to convert from decimal 
to binary and the reverse, try writing programs to do those conversions with 
unlimited length numbers (but you can assume the numbers are small 
enough to be stored in a standard C++ int).

2-7. Have you learned about hexadecimal? Try writing a program that lets the 
user specify an input in binary, decimal, or hexadecimal, and output in any 
of the three.

2-8. Want an extra challenge? Generalize the code for the previous exercise to 
make a program that converts from any number base-16 or less to any other 
number base. So, for example, the program could convert from base-9 to 
base-4.

2-9. Write a program that reads a line of text, counting the number of words, 
identifying the length of the longest word, the greatest number of vowels 
in a word, and/or any other statistics you can think of.
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S O L V I N G  P R O B L E M S  
W I T H  A R R A Y S

In the previous chapter, we limited ourselves 
to scalar variables, that is, variables that can 

hold only one value at a time. In this chapter, 
we’ll look at problems using the most common 

aggregate data structure, the array. Although arrays are 
simple structures with fundamental limitations, their 
use greatly magnifies the power of our programs.

In this chapter, we will primarily deal with actual arrays, that is, those 
declared with the built-in C++ syntax, such as:

int tenIntegerArray[10];

However, the techniques we discuss apply just as well to data structures 
with similar attributes. The most common of these structures is a vector. The 
term vector is often used as a synonym for any array of a single dimension, but 
we’ll use it here in the more specific sense of a structure that has the attributes 
of an array without a specified maximum number of elements. So for our 
discussions, an array is of a fixed size, while a vector can grow or shrink 
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automatically as needed. Each of the problems we discuss in this chapter 
includes some restriction that allows us to use a structure with a fixed number 
of elements. Problems without such restrictions, however, could be adapted 
to use a vector.

Moreover, the techniques used with arrays can often be used with data 
structures that do not have every attribute listed above. Some techniques, for 
example, don’t require random access, so they can be used with structures 
like linked lists. Because arrays are so common in programming, and because 
array techniques are frequently used in non-array contexts, arrays are a great 
training ground for the study of problem solving with data structures.

Review of Array Fundamentals

You should already know what an array is, but let’s go over some of the 
attributes of arrays for clarity. An array is a collection of variables of the same 
type organized under one name, where the individual variables are denoted 
by a number. We call the individual variables the elements of the array. In C++ 
and most other languages, the first element has number 0, but in some lan-
guages, this will vary.

The primary attributes of the array follow directly from the definition. 
Every value stored in an array is of the same type, whereas other aggregate 
data structures can store values of mixed types. An individual element is ref-
erenced by a number called a subscript; in other data structures, individual 
elements might be referenced by name or by a key value.

From these primary attributes, we can derive several secondary attributes. 
Because each of the elements is designated by a number in a sequence start-
ing from 0, we can easily examine every value in an array. In other data 
structures, this may be difficult, inefficient, or even impossible. Also, whereas 
some data structures, such as linked lists, can be accessed only sequentially, 
an array offers random access, meaning we can access any element of the array 
at any time.

These primary and secondary attributes determine how we can use arrays. 
When dealing with any aggregate data structure, it’s good to have a set of 
basic operations in mind as you consider problems. Think of these basic 
operations as common tools—the hammers, screwdrivers, and wrenches of 
the data structure. Not every mechanical problem can be solved with com-
mon tools, but you should always consider whether a problem can be solved 
with common tools before making a trip to the hardware store. Here’s my list 
of basic operations for arrays.

Store
This is the most basic of operations. An array is a collection of variables, and 
we can assign a value to each of those variables. To assign the integer 5 to the 
first element (element 0) in the previously declared array, we just say:

tenIntegerArray[0] = 5;
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As with any variable, the values of the elements inside our array will be 
random “garbage” until particular values are assigned, so arrays should be 
initialized before they are used. In some cases, especially for testing, we will 
want to assign a particular value to every element in the array. We can do that 
with an initializer when the array is declared.

int tenIntegerArray[10] = {4, 5, 9, 12, -4, 0, -57, 30987, -287, 1};

We’ll see a good use of an array initializer shortly. Sometimes, instead of 
assigning a different value to each element, we just want every element in the 
array to be initialized to the same value. There are some shortcuts for assign-
ing a zero to every element in the array, depending on the situation or the 
compiler used (the C++ compiler in Microsoft Visual Studio, for example, 
initializes every value in any array to zero unless otherwise specified). At this 
stage, however, I would always explicitly initialize an array wherever initializa-
tion is required in order to enhance readability, as in this code, which sets 
every element in a 10-element array to –1:

int tenIntegerArray[10];
for (int i = 0; i < 10; i++) tenIntegerArray[i] = -1;

Copy
We can make a copy of the array. There are two common situations in which 
this might be useful. First, we might want to heavily manipulate the array but 
still require the array in its original form for later processing. Putting the 
array back in its original form after manipulation may be difficult, or even 
impossible, if we’ve changed any of the values. By copying the entire array, 
we can manipulate the copy without disturbing the original. All we need to 
copy an entire array is a loop and an assignment statement, just like the code 
for initialization:

int tenIntegerArray[10] = {4, 5, 9, 12, -4, 0, -57, 30987, -287, 1};
int secondArray[10];
for (int i = 0; i < 10; i++) secondArray[i] = tenIntegerArray[i];

That operation is available to most aggregate data structures. The second 
situation is more specific to arrays. Sometimes we want to copy part of the 
data from one array to a second array, or we want to copy the elements from 
one array to a second array as a method of rearranging the order of the ele-
ments. If you have studied the merge-sort algorithm, you’ve seen this idea in 
action. We’ll see examples of copying later in this chapter.

Retrieval and Search
With the ability to put values into the array, we also need the ability to get 
them out of the array. Retrieving the value from a particular location is 
straightforward:

int num = tenIntegerArray[0];
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Searching for a Specific Value

Usually the situation isn’t that simple. Often we don’t know the location we 
need, and we instead have to search the array to find the location of a specific 
value. If the elements in the array are in no particular order, the best we can 
do is a sequential search, where we look at each element in the array from 
one end to the other until we find the desired value. Here’s a basic version.

 const int ARRAY_SIZE = 10;
 int intArray[ARRAY_SIZE] = {4, 5, 9, 12, -4, 0, -57, 30987, -287, 1};
 int targetValue = 12;
 int targetPos = 0;

while ((intArray[targetPos] != targetValue) && (targetPos < ARRAY_SIZE)) 
    targetPos++;

In this code, we have a constant that stores the size of the array , the 
array itself , a variable to store the value we are looking for in the array , 
and a variable to store the location where the value is found . In this exam-
ple, we use our ARRAY_SIZE constant to limit the number of iterations over our 
array , so that we won’t run past the end of the array when targetValue is not 
found among the array elements. You could “hard-wire” the number 10 in 
place of the constant, but using the constant makes the code more general, 
thus making it easy to modify and reuse. We’ll use an ARRAY_SIZE constant in 
most of the code in this chapter. Note that if targetValue is not found in intArray, 
then targetPos will be equal to ARRAY_SIZE after the loop. This is enough to 
signify the event because ARRAY_SIZE is not a valid element number. It will be 
up to the code that follows, however, to check that. Also note that the code 
makes no effort to handle the possibility that the target value appears more 
than once. The first time the target value appears, the loop is over.

Criterion-Based Search

Sometimes the value we are looking for isn’t a fixed value but a value based 
on the relationship with other values in the array. For example, we might 
want to find the highest value in the array. The mechanism to do that is what 
I call “King of the Hill,” in reference to the playground game. Have a variable 
that represents the highest value seen so far in the array. Run through all 
the elements in the array with a loop, and each time you encounter a value 
higher than the previous highest value, the new value knocks the previous 
king off the hill, taking his place:

const int ARRAY_SIZE = 10;
int intArray[ARRAY_SIZE] = {4, 5, 9, 12, -4, 0, -57, 30987, -287, 1};

 int highestValue = intArray[0];
 for (int i = 1; i < ARRAY_SIZE; i++) {

    if (intArray[i] > highestValue) highestValue = intArray[i];
}

The variable highestValue stores the largest value found in the array so far. 
At its declaration, it is assigned the value of the first element in the array , 
which allows us to start the loop at the second element in the array (it allows 
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us to start with i at 1 instead of 0) . Inside the loop, we compare the value 
at the current position with highestValue, replacing highestValue if appropri-
ate . Note that finding the lowest value, instead of the highest, is just a 
matter of switching the “greater-than” comparison  to a “less-than” compar-
ison (and changing the name of the variable so we don’t confuse ourselves). 
This basic structure can be applied to all sorts of situations in which we want 
to look at every element in the array to find the value that most exemplifies a 
particular quality. 

Sort 
Sorting means putting data in a specified order. You have probably already 
encountered sorting algorithms for arrays. This is a classic area for perfor-
mance analysis because there are so many competing sorting algorithms, 
each with performance characteristics that vary depending on features of the 
underlying data. The study of different sorting algorithms could be the subject 
of an entire book by itself, so we’re not going to explore this area in its full 
depth. Instead, we’re going to focus on what is practical. For most situations, 
you can make do with two sorts in your toolbox: a fast, easy-to-use sort and a 
decent, easy-to-understand sort that you can modify with confidence when 
the situation arises. For fast and easy, we’ll use the standard library function 
qsort, and when we need something to tweak, we’ll use an insertion sort.

Fast-and-Easy Sorting with qsort

The default fast sort for C/C++ programmers is the qsort function in the 
standard library (the name suggests that the underlying sort employs a quick-
sort, but the implementer of the library is not required to use that algorithm). 
To use qsort, we have to write a comparator function. This function will be 
called by qsort whatever it needs to compare two elements in the array to see 
which should appear earlier in sorted order. The function is passed two void 
pointers. We haven’t discussed pointers yet in this book, but all you need to 
know here is that you should cast those void pointers to pointers to the element 
type in your array. Then the function should return an int, either positive, 
negative, or zero, based on whether the first element is larger, smaller, or 
equal to the second element. The exact value returned doesn’t matter, only 
whether it is positive, negative, or zero. Let’s clear up this discussion with a 
quick example of sorting an array of 10 integers using qsort. Our comparator 
function:

int compareFunc(const void * voidA, const void * voidB) {
int * intA = (int *)(voidA);

    int * intB = (int *)(voidB);
return *intA - *intB;

}

The parameter list consists of two const void pointers . Again, this is 
always the case for the comparator. The code inside the function begins by 
declaring two int pointers  and casting the two void pointers to the int 
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pointer type. We could write the function without the two temporary vari-
ables; I’m including them here for clarity. The point is, once we are done 
with those declarations, intA and intB will point at two elements in our array, 
and *intA and *intB will be two integers that must be compared. Finally, we 
return the result of subtracting the second integer from the first . This pro-
duces the result we want. If intA > intB, for example, we want to return a posi-
tive number, and intA – intB will be positive if intA > intB. Likewise, intA – intB 
will be negative if intB > intA and will be zero when the two integers are equal.

With the comparator function in place, a sample use of qsort looks like this:

const int ARRAY_SIZE = 10;
int intArray[ARRAY_SIZE] = {87, 28, 100, 78, 84, 98, 75, 70, 81, 68};
qsort(intArray, ARRAY_SIZE, sizeof(int), compareFunc);

As you can see, the call to qsort takes four parameters: the array to be 
sorted ; the number of elements in that array ; the size of one element in 
the array, usually determined, as it is here, by the sizeof operator ; and 
finally, the comparator function . If you haven’t had much experience 
passing functions as parameters to other functions, note the syntax used for 
the last parameter. We are passing the function itself, not calling the func-
tion and passing the result of the call. Therefore, we simply state the name of 
the function, with no parameter list or parentheses. 

Easy-to-Modify Sorting with Insertion Sort

In some cases, you will need to write your own sorting code. Sometimes the 
built-in sort just won’t work for your situation. For example, suppose you had 
an array of data that you wanted to order based on the data in another array. 
When you have to write your own sort, you will want a straightforward sorting 
routine that you believe in and can crank out on demand. A reasonable sug-
gestion for a go-to sort is an insertion sort. The insertion sort works the way 
many people would sort cards when playing bridge: They pick up the cards 
one at a time and insert them in the appropriate place in their hands to 
maintain the overall order, moving the other cards down to make room. 
Here’s a basic implementation for our integer array:

 int start = 0;

 int end = ARRAY_SIZE - 1;
 for (int i = start + 1; i <= end; i++) {

    for (int j = i; j > start && intArray[j-1] > intArray[j]; j--) {
int temp = intArray[j-1];

        intArray[j-1] = intArray[j];
        intArray[j] = temp;
    }
}

We start by declaring two variables, start  and end , indicating the 
subscript of the first and last elements in the array. This improves the read-
ability of the code and also allows the code to be easily modified to sort just a 
portion of the array, if desired. The outer loop selects the next “card” to be 
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inserted into our ever-increasing sorted hand . Notice that the loop initial-
izes i to start + 1. Remember in the “find the largest value” code, we initial-
ized our highest-value variable to the first element in the array and started 
our loop with the second element in the array. This is the same idea. If we 
have only one value (or “card”), then by definition it is “in order” and we can 
begin by considering whether the second value should come before or after 
the first. The inner loop puts the current value in its correct position by 
repeatedly swapping the current value with its predecessor until it reaches 
the correct location. The loop counter j starts at i , and the loop decre-
ments j so long as we haven’t reached the lower end of the array  and 
haven’t yet found the right stopping point for this new value . Until then, 
we use three assignment statements to swap the current value down one posi-
tion in the array . In other words, if you had a hand of 13 playing cards and 
had already sorted the leftmost 4 cards, you could put the 5th card from the 
left in the correct position by repeatedly moving it down one card until it was 
no longer of a lower value than the card to its left. That’s what the inner loop 
does. The outer loop does this for every card starting from the leftmost. So 
when we’re done, the entire array is sorted.

An insertion sort is not the most efficient sort for most circumstances, 
and to tell the truth, the previous code is not even the most efficient way to 
perform an insertion sort. It is reasonably efficient for small to moderately 
sized arrays, however, and it is simple enough that it can be memorized—
think of it as a mental macro. Whether you choose this sort or another, you 
should have one decent or better sorting routine that you can code yourself 
with confidence. It’s not enough to have access to someone else’s sorting code 
that you don’t fully understand. You don’t want to tinker with the machinery 
if you’re not sure how everything works. 

Compute Statistics
The final operation is similar to the retrieval operation, in that we need to 
look at every element in the array before returning a value. It is different 
from the retrieval operation, in that the value is not simply one of the elements 
in the array but some statistic computed from all the values in the array. For 
example, we might compute the average, median, or mode, and we will per-
form all of these computations later in this chapter. A basic statistic we might 
compute could be the average of a set of student grades:

const int ARRAY_SIZE = 10;
int gradeArray[ARRAY_SIZE] = {87, 76, 100, 97, 64, 83, 88, 92, 74, 95};
double sum = 0;
for (int i = 0; i < ARRAY_SIZE; i++) {
    sum += gradeArray[i];
}
double average = sum / ARRAY_SIZE;

As another simple example, consider data validation. Suppose an array 
of double values called vendorPayments represents payments to vendors. Only 
positive values are valid, and therefore negative values indicate data integrity 
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problems. As part of a validation report, we might write a loop to count the 
number of negative values in the array:

const int ARRAY_SIZE = 10;
int countNegative = 0;
for (int i = 0; i < ARRAY_SIZE; i++) {
    if (vendorPayments[i] < 0) countNegative++;
}

Solving Problems with Arrays

Once you have the common operations understood, solving an array prob-
lem is not much different than solving problems with simple data, as we did 
in the previous chapter. Let’s take one example and run all the way through 
it using the techniques of the previous chapter and any of the common oper-
ations for arrays that we might need.

P R O B L E M :  F I N D I N G  T H E  M O D E

In statistics, the mode of a set of values is the value that appears most often. Write 
code that processes an array of survey data, where survey takers have responded to 
a question with a number in the range 1–10, to determine the mode of the data set. 
For our purpose, if multiple modes exist, any may be chosen.

In this problem, we’re asked to retrieve one of the values from an array. 
Using the techniques of searching for analogies and starting with what we 
know, we might hope that we can apply some variation of the retrieval tech-
nique we have already seen: finding the largest value in an array. That code 
works by storing the largest value seen thus far in a variable. The code then 
compares each subsequent value to this variable, replacing it if necessary. 
The analogous method here would be to say we’d store the most frequently 
seen value thus far in a variable and then replace the value in the variable 
whenever we discovered a more common value in the array. When we say it 
like that, in English, it almost sounds as if it could work, but when we think 
about the actual code, we discover the problem. Let’s take a look at a sample 
array and size constant for this problem:

const int ARRAY_SIZE = 12;
int surveyData[ARRAY_SIZE] = {4, 7, 3, 8, 9, 7, 3, 9, 9, 3, 3, 10};

The mode of this data is 3 because 3 appears four times, which is more 
often than any other value. But if we’re processing this array sequentially, as 
we do for the “highest value” problem, at what point do we decide that 3 is 
our mode? How do we know, when we have encountered the fourth and final 
appearance of 3 in the array, that it is indeed the fourth and final appearance? 
There doesn’t seem to be any way to discover this information with a single, 
sequential processing of the array data.
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So let’s turn to one of our other techniques: simplifying the problem. 
What if we made things easier on ourselves by putting all occurrences of the 
same number together? So, for example, what if our sample array survey data 
looked like this:

int surveyData[ARRAY_SIZE] = {4, 7, 7, 9, 9, 9, 8, 3, 3, 3, 3, 10};

Now both of the 7s are together, the 9s are together, and the 3s are 
together. With the data grouped in this manner, it seems that we should be 
able to sequentially process the array to find the mode. Processing the array 
by hand, it’s easy to count the occurrences of each value, because you just 
keep counting down the array until you find the first number that’s different. 
Converting what we can do in our head into programming statements, how-
ever, can be tricky. So before we try writing the code for this simplified prob-
lem, let’s write some pseudocode, which is programming-like statements that 
are not entirely English or C++ but something in between. This will remind 
us what we’re trying to do with each statement we need to write.

int mostFrequent = ?;
int highestFrequency = ?;
int currentFrequency = 0;

 for (int i = 0; i < ARRAY_SIZE; i++) {
currentFrequency++;
if (surveyData[i] IS LAST OCCURRENCE OF A VALUE) {

if (currentFrequency > highestFrequency) {
             highestFrequency = currentFrequency;
             mostFrequent = surveyData[i];
         }

currentFrequency = 0;
    }
}

There is no right or wrong way to write pseudocode, and if you use this 
technique, you should adopt your own style. When I write pseudocode, I tend 
to write legal C++ for any statement I’m already confident about and then spell 
out in English the places where I still have thinking to do. Here, we know that 
we will need a variable (mostFrequent) to hold the most frequently found value so 
far, which at the end of the loop will be the mode once we’ve written every-
thing correctly. We also need a variable to store how often that value occurs 
(highestFrequency) so we have something to compare against. Finally, we need 
a variable we can use to count the number of occurrences of the value we’re 
currently tracking as we sequentially process the array (currentFrequency). We 
know we need to initialize our variables. For currentFrequency, it logically has 
to start at 0, but it’s not clear how we need to initialize the other variables yet, 
without the other code in place. So let’s just drop in question marks  to 
remind us to look at that again later.

The loop itself is the same array-processing loop we’ve already seen, so 
that’s already in final form . Inside the loop, we increment the variable that 
counts the occurrences of the current value , and then we reach the pivotal 
statement. We know we need to check to see whether we’ve reached the last 
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occurrence of a particular value . The pseudocode allows us to skip figur-
ing out the logic for now and sketch out the rest of the code. If this is the last 
occurrence of the value, though, we know what to do because this is like the 
“highest value” code: We need to see whether this value’s count is higher 
than the highest seen so far. If it is, this value becomes the new most frequent 
value . Then, because the next value read will be the first occurrence of a 
new value, we reset our counter .

Let’s return to the if statement logic we skipped. How do we know whether 
this is the last occurrence of a value in the array? Because the values in the 
array are grouped, we know whether a value is the last occurrence when the 
next value in the array is something different: in C++ terms, when surveyData[i] 
and surveyData[i + 1] are not equal. Furthermore, the last value in the array is 
also the last occurrence of some value, even though there’s not a next value. 
We can check for this by checking to see whether i == ARRAY_SIZE - 1, in which 
case this is the last value in the array. 

With all of that figured out, let’s think about those initial values for our 
variables. Remember with the “highest value” array-processing code, we ini-
tialized our “highest so far” variable to the first value in the array. Here, the 
“most frequently seen” value is represented by two variables, mostFrequent for 
the value itself and highestFrequency for the number of occurrences. It would 
be great if we could initialize mostFrequent to the first value that appears in the 
array and highestFrequency to its frequency count, but there’s no way to deter-
mine the first value’s frequency until we get into the loop and start counting. 
At this point, it might occur to us that the first value’s frequency, whatever it 
is, would be greater than zero. Therefore, if we set highestFrequency to zero, 
once we reach the last occurrence of the first value, our code will replace 
mostFrequent and highestFrequency with the numbers for the first value anyway. 
The completed code looks like this:

int mostFrequent;
int highestFrequency = 0;
int currentFrequency = 0;
for (int i = 0; i < ARRAY_SIZE; i++) {
    currentFrequency++;
// if (surveyData[i] IS LAST OCCURENCE OF A VALUE)
if (i == ARRAY_SIZE - 1 || surveyData[i] != surveyData[i + 1]) {

        if (currentFrequency > highestFrequency) {
            highestFrequency = currentFrequency;
            mostFrequent = surveyData[i];
        }
        currentFrequency = 0;
    }
}

In this book, we won’t talk much about pure style issues, such as docu-
mentation (commenting) style, but since we are using pseudocode on this 
problem, I want to mention a tip. I’ve noticed that the lines I leave as “plain 
English” in the pseudocode are the lines that benefit most from a comment 
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in the final code, and the plain English itself makes a great comment. I’ve 
demonstrated that in the code here. You might forget the exact meaning 
behind the conditional expression in the if statement , but the comment 
on the preceding line  clears things up nicely. 

As for the code itself, it does the job, but remember that it requires our 
survey data to be grouped. Grouping the data might be a job in itself, except—
what if we sorted the array? We don’t actually need the data to be sorted, but 
sorting will accomplish the grouping we need. Because we don’t intend to do 
any special kind of sorting, let’s just add this call to qsort to the beginning of 
our code:

qsort(surveyData, ARRAY_SIZE, sizeof(int), compareFunc);

Note that we’re using the same compareFunc we wrote earlier for use with 
qsort. With the sorting step in place, we have a complete solution to the orig-
inal problem. So our work is done. Or is it?

Refactoring
Some programmers talk about code that gives off “bad smells.” They are talk-
ing about working code that is free of bugs but still problematic in some way. 
Sometimes this means code that is too complicated or has too many special 
cases, making the program difficult for a programmer to modify and main-
tain. In other cases, the code isn’t as efficient as it could be, and while it works 
for test cases, the programmer worries that performance will break down 
with larger cases. That’s my concern here. The sorting step is nearly instanta-
neous for our tiny test case, but what if the array is huge? Also, I know that 
the quicksort algorithm, which qsort may be using, has its lowest performance 
when there are lots of duplicate values in the array, and the whole point of 
this problem is that all of our values are in the range 1–10. I therefore propose 
to refactor the code. Refactoring means improving working code, not chang-
ing what it does but how it does it. I want a solution that is highly efficient for 
even huge arrays, assuming that the values are in the range of 1–10.

Let’s think again about the operations we know how to do with arrays. 
We’ve already explored several versions of the “find the highest” code. We 
know that applying the “find the highest” code directly to our surveyData 
array won’t produce useful results. Is there an array to which we could apply 
the “stock” version of “find the highest” and get the mode of the survey data? 
The answer is yes. The array we need is the histogram of the surveyData array. 
A histogram is a graph showing how often different values appear in an under-
lying dataset; our array will be the data for such a histogram. In other words, 
we’ll store, in a 10-element array, how often each of the values 1 through 10 
appears in surveyData. Here’s the code to create our histogram:

const int MAX_RESPONSE = 10;
 int histogram[MAX_RESPONSE];
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 for (int i = 0; i < MAX_RESPONSE; i++) {
    histogram[i] = 0;
}

 for (int i = 0; i < ARRAY_SIZE; i++) {
   histogram[surveyData[i] - 1]++;
}

On the first line, we declare the array to hold our histogram data . 
You’ll note we declare the array with 10 elements, but the range of our sur-
vey responses is 1–10, and the range of subscripts for this array is 0–9. Thus, 
we’ll have to make adjustments, putting the count of 1s in histogram[0] and so 
on. (Some programmers would choose to declare the array with 11 elements, 
leaving location [0] unused, to allow each count to go into its natural position.) 
We explicitly initialize the array values to zero with a loop , and then we are 
ready to count the occurrences of each value in surveyData with another loop . 
The statement inside the loop  has to be read carefully; we are using the 
value in the current location of surveyData to tell us which position in histogram 
to increment. To make this clear, let’s take an example. Suppose i is 42. We 
inspect surveyData[42] and find (let’s say) the value 7. So we need to incre-
ment our 7 counter. We subtract 1 from 7 to get 6 because the counter for 7s 
is in position [6] in histogram, and histogram[6] is incremented.

With the histogram data in place, we can write the rest of the code. Note 
that the histogram code was written separately so that it could be tested sepa-
rately. No time is saved by writing all of the code at once in a situation where 
the problem is easily separated into parts that can be individually written and 
tested. Having tested the above code, we now search for the largest value in 
the histogram array: 

 int mostFrequent = 0;
for (int i = 1; i < MAX_RESPONSE; i++) {
    if (histogram[i] > histogram[mostFrequent]) mostFrequent = i;
}

 mostFrequent++; 

Although this is an adaptation of the “find the highest” code, there is a 
difference. Although we are searching for the highest value in the histogram 
array, ultimately, we don’t want the value itself, but the position. In other 
words, with our sample array, we want to know that 3 occurs more often than 
any other value in the survey data, but the actual number of times 3 occurs 
isn’t important. So mostFrequent will be the position of the highest value in 
histogram, not the highest value itself. Therefore, we initialize it to 0  and 
not the value in location[0]. This also means that in the if statement, we com-
pare against histogram[mostFrequent]  and not mostFrequent itself, and we 
assign i, not histogram[i], to mostFrequent  when a larger value is found. 
Finally, we increment mostFrequent . This is the reverse of what we did in the 
earlier loop, subtracting 1 to get the right array position. If mostFrequent is tell-
ing us that the highest array position is 5, for example, it means that the most 
frequent entry in the survey data was 6. 
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The histogram solution scales linearly with the number of elements in 
our surveyData array, which is as good as we could hope for. Therefore, it’s a 
better solution than our original approach. This doesn’t mean that the first 
approach was a mistake or a waste of time. It’s possible, of course, to have 
written this code without going through the previous version, and we can be 
forgiven for wishing that we had driven directly to our destination instead of 
taking the longer route. However, I would caution against slapping yourself 
on the forehead on those occasions when the first solution turns out not to 
be the final solution. Writing an original program (and remember this means 
original for the programmer writing it) is a learning process and can’t be expected 
to always progress in a straight line. Also, it’s often the case that taking a 
longer path on one problem helps us take a shorter path on a later problem. 
In this particular case, note that our original solution (while it doesn’t scale 
well for our particular problem) could be the right solution if the survey 
responses weren’t strictly limited to the small range of 1–10. Or suppose that 
you are later asked to write code that finds the median of a set of integer val-
ues (the median is the value in the middle, such that half of the other values 
in the set are higher and half of the other values are lower). The histogram 
approach doesn’t get you anywhere with the median, but our first approach 
for the mode does.

The lesson here is that a long journey is not a waste of time if you learned 
something from it that you wouldn’t have learned by going the short way. 
This is another reason why it’s helpful to methodically store all of the code 
that you write so that you can easily find and reuse it later. Even the code that 
turns out to be a “dead end” can become a valuable resource.

Arrays of Fixed Data

In most array problems, the array is a repository for data external to the pro-
gram, such as user-entered data, data on a local disk, or data from a server. 
To get the most out of the array tool, however, you need to recognize other 
situations in which an array can be used. It’s often useful to create an array 
where the values never change after the initialization. Such an array can 
allow a simple loop or even a direct array lookup to replace a whole block of 
control statements.

In the final code for the “Decode a Message” problem on page 52, we 
used a switch statement to translate the decoded input number (in the 
range 1–8) to the appropriate character when in “punctuation mode” 
because the connection between the number and the character was arbi-
trary. Although this worked fine, it made that section of code longer than 
the equivalent code for the uppercase and lowercase modes, and the code 
would not scale well if the number of punctuation symbols increased. We 
can use an array to solve this problem instead of the switch statement. First, 
we need to permanently assign the punctuation symbols to an array in the 
same order they appear in the coding scheme:

const char punctuation[8] = {'!', '?', ',', '.', ' ', ';', '"', '\''};
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Notice that this array has been declared const because the values inside 
will never change. With that declaration in place, we can replace the entire 
switch statement with a single assignment statement that references the array:

outputCharacter = punctuation[number - 1];

Because the input number is in the range 1–8, but array elements are 
numbered starting from 0, we have to subtract 1 from the input number 
before referencing the array; this is the same adjustment we made in the 
histogram version of the “Finding the Mode” program. You can use the same 
array to go in the other direction. Suppose instead of decoding the message, 
we had to encode a message—that is, we were given a series of characters to 
convert into numbers that could be decoded using the rules of the original 
problem. To convert a punctuation symbol into its number, we have to locate 
the symbol in the array. This is a retrieval, performed using the sequential 
search technique. Assuming the character is to be converted and stored in the 
char variable targetValue, we could adapt the sequential search code as follows:

const int ARRAY_SIZE = 8;
int targetPos = 0;
while (punctuation[targetPos] != targetValue && targetPos < ARRAY_SIZE)
    targetPos++;
int punctuationCode = targetPos + 1;

Note that just as we had to subtract 1 from number in the previous exam-
ple to get the right array position, we have to add 1 to the array position in 
this example to get our punctuation code, converting from the array’s range 
of 0–7 to our punctuation code range of 1–8. Although this code is not as 
simple as a single line, it’s still much simpler than a series of switch statements, 
and it scales well. If we were to double the number of punctuation symbols in 
our coding scheme, it would double the number of elements in the array, 
but the length of the code would stay the same.

In general, then, const arrays can be used as lookup tables, replacing a 
burdensome series of control statements. Suppose you are writing a program 
to compute the cost of a business license in a state where the license cost var-
ies as the gross sales figures of the business vary.

Table 3-1: Business License Costs

Business category Sales threshold License cost

I $0 $25

II $50,000 $200

III $150,000 $1,000

IV $500,000 $5,000
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With this problem, we could use arrays both to determine the business cat-
egory based on the company’s gross sales and to assign the license cost based 
on the business category. Suppose a double variable, grossSales, stores the gross 
sales of a business, and based on the sales figure, we want to assign the proper 
values to int category and double cost:

const int NUM_CATEGORIES = 4;
 const double categoryThresholds[NUM_CATEGORIES ] = 

{0.0, 50000.0, 150000.0, 500000.0};
 const double licenseCost[NUM_CATEGORIES ] = 

{50.0, 200.0, 1000.0, 5000.0};
 category = 0;
 while (category < NUM_CATEGORIES && 

categoryThresholds[category] <= grossSales) {
    category++;

}
 cost = licenseCost[category - 1];

This code uses two arrays of fixed values. The first array stores the gross 
sales threshold for each business category . For example, a business with 
$65,000 in yearly gross sales is in category II because this amount exceeds 
the $50,000 threshold of category II but is less than the $150,000 threshold 
of category III. The second array stores the cost of a business license for each 
category . With the arrays in place, we initialize category to 0  and search 
through the categoryThresholds array, stopping when the threshold exceeds the 
gross sales or when we run out of categories . In either case, when the loop is 
done, category will be correctly assigned 1–4 based on the gross sales. The last 
step is to use category to reference the license cost from the licenseCost array . 
As before, we have to make a small adjustment from the 1–4 range of the 
business categories to the 0–3 range of our array. 

Non-scalar Arrays

So far, we’ve just worked with arrays of simple data types, such as int and 
double. Often, however, programmers must deal with arrays of compound data, 
either structures or objects (struct or class). Although the use of compound 
data types necessarily complicates the code somewhat, it doesn’t have to com-
plicate our thinking about array processing. Usually the array processing just 
involves one data member of the struct or class, and we can ignore the other 
parts of the data structure. Sometimes, though, the use of compound data 
types requires us to make some changes to our approach.

For example, consider the problem of finding the highest of a set of stu-
dent grades. Suppose that instead of an array of int, we have an array of data 
structures, each representing a student’s record: 

struct student {
    int grade;
    int studentID;
    string name;
};
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One nice thing about working with arrays is that it is easy to initialize a 
whole array with literal values for easy testing, even with an array of struct:

const int ARRAY_SIZE = 10;
student studentArray[ARRAY_SIZE] = {
    {87, 10001, "Fred"},
    {28, 10002, "Tom"},
    {100, 10003, "Alistair"},
    {78, 10004, "Sasha"},
    {84, 10005, "Erin"},
    {98, 10006, "Belinda"},
    {75, 10007, "Leslie"},
    {70, 10008, "Candy"},
    {81, 10009, "Aretha"},
    {68, 10010, "Veronica"}
};

This declaration means that studentArray[0] has an 87 for its grade, 10001 
for its studentID, and “Fred” for a name, and so on for the other nine elements 
in the array. As for the rest of the code, it could be as simple as copying the 
code from the beginning of this chapter, and then replacing every reference 
of the form intArray[subscript] with studentArray[subscript].grade. That would 
result in the following: 

int highest = studentArray[0].grade;
for (int i = 1; i < ARRAY_SIZE; i++) {
    if (studentArray[i].grade > highest) highest = studentArray[i].grade;
}

Suppose instead that because we now have additional information for 
each student, we want to find the name of the student with the best grade, 
not the grade itself. This would require additional modification. When our 
loop is over, the only statistic we have is the best grade, and that does not 
allow us to directly determine the student to which it belongs. We’d have to 
run through the array again, searching for the struct with the matching grade, 
which seems like extra work we shouldn’t have to do. To avoid this issue, we 
should either additionally track the name of the student that matches the 
current value in highest, or, instead of tracking the highest grade, track the 
location in the array where the highest grade is found, much as we did with 
histogram earlier. The latter approach is the most general because tracking 
the array position allows us to retrieve any of the data for that student later:

 int highPosition = 0;
for (int i = 1; i < ARRAY_SIZE; i++) {
    if (studentArray[i].grade > studentArray[highPosition].grade) {
        highPosition = i;
    }
}
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Here, the variable highPosition  takes the place of highest. Because we 
aren’t directly tracking the grade closest to the average, when it’s time to com-
pare the closest grade against the current grade, we use highPosition as a refer-
ence into studentArray . If the grade in the current array position is higher, 
the current position in our processing loop is assigned to highPosition . 
Once the loop is over, we can access the name of the student with the grade 
closest to the average using studentArray[highPosition].name, and we can also 
access any other data related to that student record. 

Multidimensional Arrays

So far, we’ve only discussed one-dimensional arrays because they are the most 
common. Two-dimensional arrays are uncommon, and arrays with three or 
more dimensions are rare. That’s because most data is one-dimensional by 
nature. Furthermore, data that is inherently multidimensional can be repre-
sented as multiple single-dimension arrays, so using a multidimensional array 
is always the choice of the programmer. Consider the business license data of 
Table 3-1. That’s clearly multidimensional data. I mean, look at it—it’s a grid! 
I represented this multidimensional data, however, as two one-dimensional 
arrays, categoryThresholds and licenseCost. I could have represented the data 
table as a two-dimensional array, like this: 

const double licenseData[2][numberCategories] = {
    {0.0, 50000.0, 150000.0, 500000.0}, 
    {50.0, 200.0, 1000.0, 5000.0}
};

It’s difficult to discern any advantage from combining the two arrays into 
one. None of our code is simplified because there is no reason to process all 
of the data in the table at once. What is clear, though, is that we have lowered 
the readability and ease of use for our table data. In the original version, the 
names of the two separate arrays make it clear what data is stored in each. 
With the combined array, we programmers will have to remember that refer-
ences of the form licenseData[0][] refer to the gross sales thresholds of the 
different business categories, while references of the form licenseData[1][] 
refer to business license costs.

Sometimes it does make sense to use a multidimensional array, though. 
Suppose we are processing the monthly sales data for three sales agents, and 
one of the tasks is finding the highest monthly sales, from any agent. Having 
all of the data in one 3 x 12 array means we can process the entire array at 
once, using nested loops:

const int NUM_AGENTS = 3;
const int NUM_MONTHS = 12;

 int sales[NUM_AGENTS][NUM_MONTHS] = {
    {1856, 498, 30924, 87478, 328, 2653, 387, 3754, 387587, 2873, 276, 32},
    {5865, 5456, 3983, 6464, 9957, 4785, 3875, 3838, 4959, 1122, 7766, 2534},
    {23, 55, 67, 99, 265, 376, 232, 223, 4546, 564, 4544, 3434}
};
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 int highestSales = sales[0][0];
for (int agent = 0; agent < NUM_AGENTS; agent++) {
    for (int month = 0; month < NUM_MONTHS; month++) {
        if (sales[agent][month] > highestSales)
            highestSales = sales[agent][month];
    }
}

Although this is a straightforward adaptation of the basic “find the largest 
number” code, there are a few wrinkles. When we declare our two-dimensional 
array, notice that the initializer is organized by agent, that is, as 3 groups of 12, 
not 12 groups of 3 . As you’ll see in the next problem, this decision can have 
consequences. We initialize highestSales to the first element in the array, as 
usual . It may occur to you that the first time through the nested loops, both 
of our loop counters will be 0, so we will be comparing this initial value of 
highestSales to itself. This doesn’t affect the outcome, but sometimes novice 
programmers will attempt to avoid this tiny inefficiency by putting in a sec-
ond if statement in the inner loop body:

if (agent != 0 || month != 0)
    if (sales[agent][month] > highestSales)
        highestSales = sales[agent][month];

This, however, is considerably less efficient than the previous version 
because we would be performing 50 extra comparisons while avoiding 
only one.

Notice also that I have used meaningful names for the loop variables: 
agent for the outside loop  and month for the inside loop . In a single loop 
that processes a one-dimensional array, little is gained by a descriptive identi-
fier. In a double loop that processes a two-dimensional array, however, the 
meaningful identifiers help me keep my dimensions and subscripts straight 
because I can look up and see that I am using agent in the same dimension 
where I used numAgents in the array declaration.

Even when we have a multidimensional array, sometimes the best approach 
is to deal with just one dimension at a time. Suppose, using the same sales 
array as the previous code, we wanted to display the highest agent monthly 
sales average. We could do this using a double loop, as we have previously, 
but the code would be clearer to read and easier to write if we treated the 
whole array as three individual arrays and processed them separately.

Remember the code we’ve been repeatedly using to compute the aver-
age of an array of integers? Let’s make that into a function:

double arrayAverage(int intArray[], int ARRAY_SIZE) {
    double sum = 0;
    for (int i = 0; i < ARRAY_SIZE; i++) {
        sum += intArray[i];
    }
    double average = (sum + 0.5) / ARRAY_SIZE; 
    return average;
}
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With the function in place, we can modify the basic “find the largest 
number” again to find the agent with the highest monthly sales average:

int highestAverage = arrayAverage(sales[0], 12);
for (int agent = 1; agent < NUM_AGENTS; agent++) {
    int agentAverage = arrayAverage(sales[agent], 12);
    if (agentAverage > highestAverage)
        highestAverage = agentAverage;
}
cout << "Highest monthly average: " << highestAverage << "\n";

The big new idea here is shown in the two calls to arrayAverage. The 
first parameter accepted by this function is a one-dimensional array of int. 
In the first call, we pass sales[0] for the first argument , and in the second 
call, we pass sales[agent] . So in both cases, we specify a subscript for the 
first dimension of our two-dimensional array sales, but not for the second 
dimension. Because of the direct relationship between arrays and addresses 
in C++, this reference indicates the address of the first element of the speci-
fied row, which can then be used by our function as the base address of a 
one-dimensional array consisting of just that row.

If that sounds confusing, look again at the declaration of the sales array, 
and in particular, the initializer. The values are laid out in the initializer in 
the same order they will be laid out in memory when the program is execut-
ing. So sales[0][0], which is 1856, will come first, followed by sales[0][1], 498, 
and so on through the last month for the first agent, sales[0][11], 32. Then 
the values for the second agent will begin, starting with sales[1][0], 5865. 
Therefore, even though the array is conceptually 3 rows of 12 values, it’s laid 
out in memory as one big sequence of 36 values.

It’s important to note that this technique works because of the order 
we’ve placed the data into the array. If the array were organized along the 
other axis, that is, by month instead of by agent, we couldn’t do what we are 
doing here. The good news is that there is an easy way to make sure you have 
set up the array appropriately—just check the initializer. If the data you want 
to individually process isn’t contiguous in the array initializer, you’ve orga-
nized the data the wrong way.

The last thing to note about this code is the use of the temporary vari-
able, agentAverage. Because the average monthly sales for the current agent is 
potentially referenced twice, once in the conditional expression of the if 
statement and then again in the assignment statement in the body, the tem-
porary variable eliminates the possibility of calling arrayAverage twice for the 
same agent’s data.

This technique of considering a multidimensional array as an array of 
arrays follows directly from our core principle of breaking problems up into 
simpler components and in general makes multidimensional array problems 
a lot easier to conceptualize. Even so, you may be thinking that the technique 
looks a little tricky to employ, and if you’re like most new C++ programmers, 
you are probably a little wary of addresses and behind-the-scenes address 
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arithmetic. The best way around those feelings, I think, is to make the separa-
tion between the dimensions even stronger, by placing one level of array inside 
a struct or class. Suppose we made an agentStruct:

struct agentStruct {
    int monthlySales[12];
};

Having gone to the trouble of making a struct, we might think about 
adding other data, like an agent identification number, but this will get the 
job done in terms of simplifying our thought processes. With the struct in 
place, instead of creating a two-dimensional array of sales, we create a one-
dimensional array of agents:

agentStruct agents[3];

Now when we make our call to the array-averaging function, we aren’t 
employing a C++ specific trick; we’re just passing a one-dimensional array. 
For example:

int highestAverage = arrayAverage(agents[1].monthlySales, 12);

Deciding When to Use Arrays

An array is just a tool. As with any tool, an important part of learning how to 
use an array is learning when to use it—and when not to use it. The sample 
problems discussed so far assumed the use of arrays in their descriptions. In 
most situations, though, we won’t have this detail spelled out for us, and we 
must instead make our own determination on array use. The most common 
situations in which we must make this decision are those in which we are given 
aggregate data but not told how it must be stored internally. For example, in 
the problem where we found the mode, suppose the line that began Write 
code that processes an array of survey data . . ., had read Write code that processes a 
collection of survey data . . . . Now the choice of using an array or not would be 
ours. How would we make this decision?

Remember that we cannot change the size of an array after it has been 
created. If we ran out of space, our program would fail. So the first consider-
ation is whether we will know, at the place in our program where we need an 
aggregate data structure, how many values we will store or at least a reliable 
estimate on the maximum size. This doesn’t mean we have to know the size 
of the array when we write the program. C++, as well as most other languages, 
allows us to create an array that is sized at runtime. Suppose the mode prob-
lem was modified so that we didn’t know ahead of time how many survey 
responses we would have, but that number came to the program as user 
input. Then we could dynamically declare an array to store the survey data.
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int ARRAY_SIZE;
cout << "Number of survey responses: ";
cin >> ARRAY_SIZE;

 int *surveyData = new int[ARRAY_SIZE];
for(int i = 0; i < ARRAY_SIZE; i++) {
    cout << "Survey response " << i + 1 << ": ";
cin >> surveyData[i];

}

We declare the array using pointer notation, initializing it through an 
invocation of the new operator . Because of the fluidity between pointer and 
array types in C++, the elements can then be accessed using array notation , 
even though surveyData is declared as a pointer. Note that because this array 
is dynamically allocated, at the end of the program when we no longer need 
the array, we have to make sure to deallocate it:

delete[] surveyData;

The delete[] operator, rather than the usual delete operator, is used for 
arrays. Although it won’t make any difference with an array of integers, if you 
create an array of objects, the delete[] operator ensures that the individual 
objects in the array are deleted before the array itself is deleted. So you should 
adopt the habit of always using delete[] with dynamically allocated arrays. 

Having the responsibility of cleaning up dynamic memory is the bane 
of the C++ programmer, but if you program in the language, it is something 
you simply must do. Beginning programmers often shirk this responsibility 
because their programs are so small and execute for such short periods of 
time that they never see the harmful effects of memory leaks (memory that is 
no longer used by the program but never deallocated and therefore unavail-
able to the rest of the system). Don’t develop this bad habit.

Note that we can use the dynamic array only because the user tells us the 
number of survey responses beforehand. Consider another variant where the 
user begins by entering survey responses without telling us the number of 
responses, indicating that there are no more responses by entering a –1 (a 
data entry method known as a sentinel). Can we still use an array to solve this 
problem?

This is a gray area. We could still use an array if we had a guaranteed 
maximum number of responses. In such a case, we could declare an array of 
that size and assume that we are safe. We might still have concerns over the 
long term, though. What if the size of the survey pool increases in the future? 
What if we want to use the same program with a different survey taker? More 
generally, why build a program with a known limitation if we can avoid it?

Better, then, to use a data collection without a fixed size. As discussed 
earlier, the vector class from the C++ standard template library acts like an 
array but grows as necessary. Once declared and initialized, the vector can 
be processed exactly the same way as an array. We can assign a value to a vec-
tor element or retrieve a value using standard array notation. If the vector 
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has filled its initial size and we need to add another element, we can do so 
using the push_back method. Solving the modified problem with a vector 
looks like this:

 vector<int> surveyData;
 surveyData.reserve(30);

int surveyResponse;
cout << "Enter next survey response or -1 to end: ";

 cin >> surveyResponse;
while (surveyResponse != -1) {
   surveyData.push_back(surveyResponse);
    cout << "Enter next survey response or -1 to end: ";
    cin >> surveyResponse;
} 

 int vectorSize = surveyData.size();
const int MAX_RESPONSE = 10;
int histogram[MAX_RESPONSE];
for (int i = 0; i < MAX_RESPONSE; i++) {
    histogram[i] = 0;
}
for (int i = 0; i < vectorSize; i++) {
    histogram[surveyData[i] - 1]++;
}
int mostFrequent = 0;
for (int i = 1; i < MAX_RESPONSE; i++) {
    if (histogram[i] > histogram[mostFrequent]) mostFrequent = i;
}
mostFrequent++; 

In this code, we first declare the vector  and then reserve space for 30 sur-
vey responses . The second step is not strictly necessary, but reserving a 
small amount of space that is in excess of the likely number of elements pre-
vents the vector from resizing itself frequently as we add values to it. We read 
the first grade before the data entry loop , a technique we first used in the 
previous chapter that allows us to check each entered value before process-
ing. In this case, we want to avoid adding the sentinel value, –1, to our vector. 
The survey results are added to the vector using the push_back method . After 
the data entry loop is completed, we retrieve the size of the vector using the 
size method . We could also have counted the number of elements our-
selves in the data entry loop, but since the vector is already tracking its size, 
this avoids duplicate effort. The rest of the code is the same as the previous 
version with the array and the fixed number of responses, except that we have 
changed the names of the variables. 

All this discussion of vectors, though, overlooks an important point. If 
we are reading the data directly from the user, rather than being told that we 
are starting with an array or other data collection, we may not need an array 
for the survey data, only one for the histogram. Instead, we can process the 
survey values as we read them. We need a data structure only when we need 
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to read in all the values before processing or need to process the values more 
than once. In this case, we don’t need to do either:

const int MAX_RESPONSE = 10;
int histogram[MAX_RESPONSE];
for (int i = 0; i < MAX_RESPONSE; i++) {
    histogram[i] = 0;
}
int surveyResponse;
cout << "Enter next survey response or -1 to end: ";
cin >> surveyResponse;
while (surveyResponse != -1) {
    histogram[surveyResponse - 1]++;
    cout << "Enter next survey response or -1 to end: ";
    cin >> surveyResponse;
} 
int mostFrequent = 0;
for (int i = 1; i < MAX_RESPONSE; i++) {
    if (histogram[i] > histogram[mostFrequent]) mostFrequent = i;
}
mostFrequent++;

Although this code was easy to write, given the previous versions as a guide, 
it would have been even easier just to read the user data into an array and use 
the previous processing loop verbatim. The benefit to this process-as-you-go 
approach is efficiency. We avoid unnecessarily storing each of the survey 
responses, when we need to store just one response at a time. Our vector-
based solution was inefficient in space : It took more space than required with-
out providing a corresponding benefit. Furthermore, reading all of the grades 
into the vector required a loop on its own, separate from the loops to process 
all of the survey responses and find the highest value in the histogram. That 
means the vector version does more work than the version above. Therefore, 
the vector version is also inefficient in time : It does more work than required 
without providing a corresponding benefit. In some cases, different solutions 
offer trade-offs, and programmers must decide between space efficiency and 
time efficiency. In this case, however, the use of the vector makes the program 
inefficient all around.

In this book, we won’t spend a lot of time tracking down every inefficiency. 
Programmers must sometimes engage in performance tuning, which is the sys-
tematic analysis and improvement of a program’s efficiency in time and space. 
Performance tuning a program is a lot like performance tuning a race car: 
an exacting job, where small adjustments can have large effects and expert 
knowledge of how mechanisms work “under the hood” is required. Even if 
we don’t have the time, desire, or knowledge to fully tune a program’s per-
formance, though, we should still avoid decisions that lead to gross ineffi-
ciencies. Using a vector or an array unnecessarily is not like an engine with a 
fuel-to-air mix that is too lean; it’s like driving a bus to the beach for vacation 
when you could have fit everything you were taking into a Honda Civic.
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If we’re sure we need to process the data multiple times, and we have a 
good handle on the maximum size of the data set, the last criterion for decid-
ing whether to use an array is random access. Later on, we’ll discuss alternate 
data structures, such as lists, which like vectors can grow as needed but unlike 
vectors and arrays the elements can be accessed only sequentially. That is, if we 
want to access the 10th element in a list, we have to run through the first 9 items 
to get to it. By contrast, random access means that we can access any element 
in an array or vector at any time. So the last rule is that we should use an 
array when we need random access. If we need only sequential access, we 
might consider a different structure.

You might notice that many of the programs in this chapter fail on this 
last criterion; we access the data sequentially, not randomly, and yet we are 
using an array. This leads to the great, common-sense exception to all of 
these rules. If an array is small, then none of the previous objections holds 
much weight. What constitutes “small” may vary based on the platform or 
application. The point is, if your program needs a collection of as few as 1 or 
as many as 10 items, each of which requires 10 bytes, you have to consider 
whether the potential waste of 90 bytes that could result from allocating an 
array of the maximum required size is worth searching for a better solution. 
Use arrays wisely, but don’t let the perfect be the enemy of the good. 

Exercises

As always, I urge you to try as many exercises as you can stand. 

3-1. Are you disappointed we didn’t do more with sorting? I’m here to help. To 
make sure you are comfortable with qsort, write code that uses the function 
to sort an array of our student struct. First have it sort by grade, and then try 
it again using the student ID.

3-2. Rewrite the code that finds the agent with the best monthly sales average so 
that it finds the agent with the highest median sales. As stated earlier, the median 
of a set of values is the “one in the middle,” such that half of the other values 
are higher and half of the other values are lower. If there is an even number 
of values, the median is the simple average of the two values in the middle. 
For example, in the set 10, 6, 2, 14, 7, 9, the values in the middle are 7 and 9. 
The average of 7 and 9 is 8, so 8 is the median.

3-3. Write a bool function that is passed an array and the number of elements in 
that array and determines whether the data in the array is sorted. This should 
require only one pass!

3-4. Here’s a variation on the array of const values. Write a program for creating a 
substitution cipher problem. In a substitution cipher problem, all messages 
are made of uppercase letters and punctuation. The original message is called 
the plaintext, and you create the ciphertext by substituting each letter with 
another letter (for example, each C could become an X). For this problem, 
hard-code a const array of 26 char elements for the cipher, and have your 
program read a plaintext message and output the equivalent ciphertext.
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3-5. Have the previous program convert the ciphertext back to the plaintext to 
verify the encoding and decoding.

3-6. To make the ciphertext problem even more challenging, have your pro-
gram randomly generate the cipher array instead of a hard-coded const array. 
Effectively, this means placing a random character in each element of the 
array, but remember that you can’t substitute a letter for itself. So the first 
element can’t be A, and you can’t use the same letter for two substitutions—
that is, if the first element is S, no other element can be S.

3-7. Write a program that is given an array of integers and determines the mode, 
which is the number that appears most frequently in the array.

3-8. Write a program that processes an array of student objects and determines 
the grade quartiles—that is, the grade one would need to score as well as or 
better than 25% of the students, 50% of the students, and 75% of the students.

3-9. Consider this modification of the sales array: Because salespeople come and 
go throughout the year, we are now marking months prior to a sales agent’s 
hiring, or after a sales agent’s last month, with a –1. Rewrite your highest 
sales average, or highest sales median, code to compensate.
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D Y N A M I C M E M O R Y

In this chapter, we’ll learn to solve problems 
using pointers and dynamic memory, which 

will allow us to write flexible programs that 
can accommodate data sizes that are unknown 

until the program runs. Pointers and dynamic memory
allocation are “hard-core” programming. When you can write programs that 
grab blocks of memory on the fly, link them into useful structures, and clean 
up everything at the end so there is no residue, you’re not just someone who 
can do a little coding—you’re a programmer.

Because pointers are tricky, and because many popular languages, such 
as Java, appear to forgo the use of pointers, some fledgling programmers will 
convince themselves that they can skip this subject entirely. This is a mistake. 
Pointers and indirect memory access will always be used in advanced pro-
gramming, even though they may be hidden by the mechanisms of a high-
level language. Therefore, to truly think like a programmer, you have to be 
able to think your way through pointers and pointer-based problems.
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Before we get down to solving pointer problems, though, we’re going to 
carefully examine all aspects of how pointers work, both on the surface and 
behind the scenes. This study provides two benefits. First, this knowledge will 
allow us to make the most effective use of pointers. Second, by dispelling the 
mysteries of pointers, we can employ them with confidence. 

Review of Pointer Fundamentals

As with topics covered in previous chapters, you should have had some expo-
sure to basic pointer use, but to make sure we’re on the same page, here’s a 
quick review. 

Pointers in C++ are indicated with an asterisk (*). Depending on the con-
text, the asterisk indicates either that a pointer is being declared or that we 
mean the pointed-to memory, not the pointer itself. To declare a pointer, we 
place the asterisk between the type name and the identifier:

int * intPointer;

This declares the variable intPointer as a pointer to an int. Note that the 
asterisk binds with the identifier, not the type. In the following, variable1 is a 
pointer to an int, but variable2 is just an int:

int * variable1, variable2;

An ampersand in front of a variable acts as the address-of operator. So we 
could assign the address of variable2 to variable1 with:

variable1 = &variable2;

We can also assign the value of one pointer variable to another directly:

intPointer = variable1;

Perhaps most importantly, we can allocate memory during runtime that 
can be accessed only through a pointer. This is accomplished with the new 
operator:

double * doublePointer = new double;

Accessing the memory at the other end of the pointer is known as 
dereferencing and is accomplished with an asterisk to the left of a pointer 
identifier. Again, this is the same placement we would use for a pointer dec-
laration. The context makes the meaning different. Here’s an example:

 *doublePointer = 35.4;
 double localDouble = *doublePointer;
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We assign a value to the double allocated by the previous code  before 
copying the value from this memory location to the variable localDouble .

To deallocate memory allocated with new, once we no longer need it, we 
use the keyword delete:

delete doublePointer;

The mechanics of this process are described in detail in “Memory Matters” 
on page 85.

Benefits of Pointers

Pointers give us abilities not available with static memory allocation and also 
provide new opportunities for efficient use of memory. The three main ben-
efits of using pointers are:

 Runtime-sized data structures

 Resizable data structures

 Memory sharing 

Let’s take a look at each of these in a bit more detail.

Runtime-Sized Data Structures
By using pointers, we can make an array with a size determined at runtime, 
rather than having to choose the size before building our application. This 
saves us from having to choose between potentially running out of space in 
the array and making the array as large as could possibly be needed, thereby 
wasting much of the array space in the average case. We first saw runtime 
data sizing in “Deciding When to Use Arrays” on page 74. We’ll use this con-
cept later in this chapter, in “Variable-Length Strings” on page 91.

Resizable Data Structures
We can also make pointer-based data structures that grow or shrink during 
runtime as needed. The most basic resizable data structure is the linked list, 
which you may have already seen. Although the data in the structure can be 
accessed only in sequential order, the linked list always has just as many 
places for data as it has data itself, with no wasted space. Other, more elabo-
rate pointer-based data structures, as you will see later, have orderings and 
“shapes” that can reflect the relationship of the underlying data better than 
an array can. Because of this, even though an array offers full random-access 
that no pointer-based structure offers, the retrieval operation (where we find 
the element in the structure that best meets a certain criterion) can be much 
faster with a pointer-based structure. We’ll use this benefit later in this chapter 
to create a data structure for student records that grows as needed.
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Memory Sharing
Pointers can improve program efficiency by allowing memory blocks to be 
shared. For example, when we call a function, we can pass a pointer to a block 
of memory instead of passing a copy of the block using reference parameters. 
You’ve most likely seen these before; they are parameters in which an amper-
sand (&) appears between the type and the name in the formal parameter list:

void refParamFunction (int & x) {
    x = 10;
}

int number = 5;
refParamFunction(number);
cout << number << "\n";

NOTE The spaces shown before and after the ampersand symbol are not required—I just 
include them here for aesthetic reasons. In other developers’ code, you may see int& x, 
int &x, or perhaps even int&x.

In this code, the formal parameter x  is not a copy of the argument 
number ; rather, it is a reference to the memory where number is stored. 
Therefore, when x is changed , the memory space for number is changed, 
and the output at the end of the code snippet is 10 . Reference parameters 
can be used as a mechanism to send values out of a function, as shown in this 
example. More broadly, reference parameters allow the called function and 
the calling function to share the same memory, thus lowering overhead. If a 
variable being passed as a parameter occupies a kilobyte of memory, passing 
the variable as a reference means copying a 32- or 64-bit pointer instead 
of the kilobyte. We can signal that we are using a reference parameter for 
performance, not its output, by using the const keyword:

int anotherFunction(const int & x);

By prefixing the word const in the declaration of the reference parame-
ter x, anotherFunction will receive a reference to the argument passed in the 
call but will be unable to modify the value in that argument, just like any 
other const parameter.  

In general, we can use pointers in this way to allow different parts of a 
program, or different data structures within the program, to have access to 
the same data without the overhead of copying. 

When to Use Pointers

As we discussed with arrays, pointers have potential drawbacks and should be 
used only when appropriate. How do we know when pointer use is appropri-
ate? Having just listed the benefits of pointers, we can say that pointers should 
be used only when we require one or more of their benefits. If your program 
needs a structure to hold an aggregate of data, but you can’t accurately estimate 
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how much data ahead of runtime; if you need a structure that can grow and 
shrink during execution; or if you have large objects or other blocks of data 
being passed around your program, pointers may be the way to go. In the 
absence of any of these situations, though, you should be wary of pointers 
and dynamic memory allocation.

Given pointers’ notorious reputation as one of the most difficult C++ fea-
tures, you might think that no programmer would ever try to use a pointer 
when it isn’t necessary. I have been surprised many times, however, to find 
otherwise. Sometimes programmers simply trick themselves into thinking a 
pointer is required. Suppose you are making a call to a function written by 
someone else, from a library or application programming interface, perhaps, 
with the following prototype:

void compute(int input, int* output);

We might imagine that this function is written in C, not C++, and that 
is why it uses a pointer rather than a reference (&) to make an “outgoing” 
parameter. In calling this function, a programmer might carelessly do some-
thing like this:

int num1 = 10;
int* num2 = new int;
compute(num1, num2);

This code is inefficient in space because it creates a pointer where none 
is needed. Instead of the space for two integers, it uses the space for two integers 
and a pointer. The code is also inefficient in time because the unnecessary 
memory allocation takes time (as explained in the next section). Lastly, the 
programmer now has to remember to delete the allocated memory. All of 
this could’ve been avoided by using the other aspect of the & operator, which 
allows you to get the address of a statically allocated variable, like this:

int num1 = 10;
int num2;
compute(num1, &num2);

Strictly speaking, we’re still using a pointer in the second version, but 
we’re using it implicitly, without a pointer variable or dynamic memory 
allocation.

Memory Matters

To understand how dynamic memory allocation gives us runtime sizing and 
memory sharing, we have to understand a little bit about how memory alloca-
tion works in general. This is one of the areas where I think it benefits new 
programmers to learn C++. All programmers must eventually understand 
how memory systems work in a modern computer, and C++ forces you to face 
this issue head-on. Other languages hide enough of the dirty details of memory 
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systems that new programmers convince themselves that these details are of 
no concern, which is simply not the case. Rather, the details are of no con-
cern so long as everything is working. As soon as there is a problem, however, 
ignorance of the underlying memory models creates an insurmountable 
obstacle between the programmer and the solution.

The Stack and the Heap
C++ allocates memory in two places: the stack and the heap. As the names imply, 
the stack is organized and neat, and the heap is disjointed and messy. The name 
stack is especially descriptive because it helps you visualize the contiguous nature 
of the memory allocation. Think of a stack of crates, as in Figure 4-1 (a). When 
you have a crate to store, you place it on the top of the stack. To remove a 
particular crate from the stack, you have to first remove all the crates that are 
on top of it. In practical programming terms, this means that once you have 
allocated a block of memory (a crate) on the stack, there’s no way to resize it 
because at any time you may have other memory blocks immediately follow-
ing it (other crates on top of it).

In C++, you might explicitly create your own stack for use in a particular 
algorithm, but regardless, there is one stack your program will always be 
using, known as the program’s runtime stack. Every time a function is called 
(and this includes the main function), a block of memory is allocated on the 
top of the runtime stack. This block of memory is called an activation record. 
A full discussion of its contents is beyond the scope of this text, but for your 
understanding as a problem-solver, the main content of the activation record 
is the storage space for variables. Memory for all the local variables, including 
the function’s parameters, is allocated within the activation record. Let’s take 
a look at an example:

int functionB(int inputValue) {
return inputValue - 10;

}
int functionA(int num) {
    int localVariable = functionB(num * 10);
    return localVariable;
}
int main()
{
    int x = 12;
    int y = functionA(x);
    return 0;
}

In this code, the main function calls functionA, which in turn calls functionB. 
Figure 4-1 (b) shows a simplified version of how the runtime stack would 
be arranged at the point right before we execute the return statement of 
functionB . The activation records for all three functions would be arranged 
in a stack of contiguous memory, with the main function at the bottom of the 
stack. (Just to make things extra confusing, it’s possible that the stack begins 
at the highest possible point in memory and is built downward to lower memory 
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addresses rather than upward to higher memory addresses. You do yourself 
no harm, though, by ignoring the possibility.) Logically, the main function 
activation record is on the bottom of the stack, with the functionA activation 
record on top of it and the functionB activation record on top of functionA. 
Neither of the lower two activation records can be removed before functionB’s 
activation record is removed.

Figure 4-1: A stack of crates and a stack of function calls

While a stack is highly organized, a heap, by contrast, has little organiza-
tion. Suppose you’re storing things in crates again, but these crates are fragile 
and you can’t stack them on top of each other. You’ve got a big, initially empty 
room to store the crates, and you can put them anywhere you want on the 
floor. The crates are heavy, however, so once you put one down, you’d rather 
just leave it where it is until you’re ready to take it out of the room. This sys-
tem has advantages and disadvantages compared to the stack. On the one 
hand, this storage system is flexible and allows you to get to the contents of 
any crate at any time. On the other hand, the room is going to quickly become 
a mess. If the crates are all different sizes, it’s going to be especially difficult 
to make use of all of the available space on the floor. You’ll end up with a lot 
of gaps between crates that are too small to fill with another crate. Because 
the crates can’t be easily moved, removing several crates just creates several 
hard-to-fill gaps rather than providing the wide-open storage of our original 
empty floor. In practical programming terms, our heap is like the floor of 
that room. A block of memory is a contiguous series of addresses; thus, over 
the lifetime of a program with many memory allocations and deallocations, 
we’ll end up with lots of gaps between the remaining allocated memory blocks. 
This problem is known as memory fragmentation.
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Every program has its own heap, from which memory is dynamically allo-
cated. In C++, this usually means an invocation of the new keyword, but you 
will also see calls to the old C functions for memory allocation, such as malloc. 
Each call to new (or malloc) sets aside a chunk of memory in the heap and 
returns a pointer to the chunk, while each call to delete (or free if the mem-
ory was allocated with malloc) returns the chunk to the pool of available heap 
memory. Because of fragmentation, not all of the memory in the pool is equally 
useful. If our program begins by allocating variables A, B, and C in heap 
memory, we might expect those blocks to be contiguous. If we deallocate B, 
the gap it leaves behind can be filled only by another request that is of B’s 
size or smaller, until either A or C is also deallocated. 

Figure 4-2 clarifies the situation. In part (a), we see the floor of our room 
littered with crates. At one point the room was probably well organized, but 
over time, the arrangement became haphazard. Now there is a small crate (b) 
that cannot fit in any open space on the floor, even though the overall unused 
floor area greatly exceeds the footprint of the crate. In part (c), we represent 
a small heap. The dashed-line squares are the smallest (indivisible) chunks of 
memory, which might be a single byte, a memory word, or something larger, 
depending on the heap manager. The shaded areas represent allocations of 
contiguous memory; for clarity, one allocation has some of its chunks num-
bered. As with the fragmented floor, the fragmented heap has the unallocated 
memory chunks separated, which reduces their usability. There are a total of 
85 unused chunks of memory, but the largest contiguous range of unused 
memory, as indicated by the arrow, is only 17 chunks long. In other words, if 
each chunk were a byte, this heap could not fulfill any request from an invo-
cation of new for more than 17 bytes, even though the heap has 85 bytes free. 

Figure 4-2: A fragmented floor, a crate that cannot be placed, and fragmented memory

Memory Size
The first practical issue with memory is limiting its use to what is necessary. 
Modern computer systems have so much memory that it’s easy to think of it 
as an infinite resource, but in fact each program has a limited amount of 
memory. Also, programs need to use memory efficiently to avoid overall system 
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slowdown. In a multitasking operating system (which means just about every 
modern operating system), every byte of memory wasted by one program 
pushes the system as a whole toward the point where the set of currently run-
ning programs doesn’t have enough memory to run. At that point, the oper-
ating system constantly swaps out chunks of one program for another and 
thus grinds to a crawl. This condition is known as thrashing.

Note that, beyond the desire to keep the overall program memory foot-
print as small as possible, the stack and the heap have maximum sizes. To 
prove this, let’s allocate memory from the heap a kilobyte at a time, until 
something blows up:

const int intsPerKilobyte = 1024 / sizeof(int);
while (true) {
    int *oneKilobyteArray = new int[intsPerKilobyte];
}

Let me emphasize that this is horrible code written purely to demonstrate 
a point. If you try this code out on your system, you should save all of your 
work first, just to be safe. What should happen is that the program halts and 
your operating system complains that the code generated but did not handle 
a bad_alloc exception. This exception is thrown by new when no block of unal-
located memory in the heap is large enough to fulfill the request. Running 
out of heap memory is called a heap overflow. On some systems, a heap over-
flow can be common, while on other systems, a program will cause thrashing 
long before it produces a bad_alloc (on my system, the new call didn’t fail until 
I had allocated two gigabytes in previous calls).

A similar situation exists with the runtime stack. Each function call allo-
cates space on the stack, and there is some fixed overhead for each activation 
record, even for a function with no parameters or local variables. The easiest 
way to demonstrate this is with a runaway recursive function:

 int count = 0;
void stackOverflow() {
   count++;
   stackOverflow();
}
int main()
{
  stackOverflow();

return 0;
}

This code has a global variable , which in most cases is bad style, but 
here I need a value that persists throughout all of the recursive calls. As this 
variable is declared outside of the function, no memory is allocated for it in 
the function’s activation record, nor are there any other local variables or 
parameters. All the function does is increment count and make a recursive 
call . Recursion is discussed extensively in Chapter 6 but is used here simply 
to make the chain of function calls as long as possible. The activation record 
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of a function remains on the stack until that function ends. So when the first 
call is made to stackOverflow from main, an activation record is placed on the 
runtime stack that cannot be removed until that first function call ends. This 
will never happen because the function makes a second call to stackOverflow, 
placing another activation record on the stack, which then makes a third call, 
and so on. These activation records stack up until the stack runs out of room. 
On my system, count is around 4,900 when the program bombs. My develop-
ment environment, Visual Studio, defaults to a 1MB stack allocation, which 
means that each of these function calls, even without any local variables or 
parameters, creates an activation record of over 200 bytes. 

Lifetime
The lifetime of a variable is the time span between allocation and deallocation. 
With a stack-based variable, meaning either a local variable or a parameter, 
the lifetime is handled implicitly. The variable is allocated when the function 
is called and deallocated when the function ends. With a heap-based variable, 
meaning a variable dynamically allocated using new, the lifetime is in our hands. 
Managing the lifetime of dynamically allocated variables is the bane of every 
C++ programmer. The most obvious issue is the dreaded memory leak, a situa-
tion in which memory is allocated from the heap but never deallocated and 
not referenced by any pointer. Here’s a simple example:

 int *intPtr = new int;
 intPtr = NULL;

In this code, we declare a pointer to an integer , initializing it by allo-
cating an integer from the heap. Then in the second line, we set our integer 
pointer to NULL  (which is simply an alias for the number zero). The integer 
we allocated with new still exists, however. It sits, lonely and forlorn, in its place 
in the heap, awaiting a deallocation that can never come. We cannot deallo-
cate the integer because to deallocate a block of memory, we use delete followed 
by a pointer to the block, and we no longer have a pointer to the block. If we 
tried to follow the code above with delete intPtr, we would get an error because 
intPtr is zero. 

Sometimes, instead of memory that never gets deallocated, we have the 
opposite problem, attempting to deallocate the same memory twice, which 
produces a runtime error. This might seem like an easy problem to avoid: Just 
don’t call delete twice on the same variable. What makes this situation tricky 
is that we may have multiple variables pointing to the same memory. If multi-
ple variables point to the same memory and we call delete on any of those 
variables, we have effectively deallocated the memory for all of the variables. If 
we don’t explicitly clear the variables to NULL, they will be known as dangling 
references, and calling delete on any of them will produce a runtime error. 
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Solving Pointer Problems

By this point, you’re probably ready for some problems, so let’s look at a cou-
ple and see how we can use pointers and dynamic memory allocation to solve 
them. First we’ll work with some dynamically allocated arrays, which will 
demonstrate how to keep track of heap memory through all of our manipula-
tions. Then we’ll get our feet wet with a truly dynamic structure. 

Variable-Length Strings
In this first problem, we’re going to create functions to manipulate strings. 
Here, we’re using the term in its most general sense: a sequence of characters, 
regardless of how those characters are stored. Suppose we need to support 
three functions on our string type.

P R O B L E M :  V A R I A B L E - L E N G T H  S T R I N G  M A N I P U L A T I O N

Write heap-based implementations for three required string functions:

append This function takes a string and a character and appends the character 
to the end of the string.
concatenate This function takes two strings and appends the characters of the 
second string onto the first.
characterAt This function takes a string and a number and returns the character 
at that position in the string (with the first character in the string numbered zero).

Write the code with the assumption that characterAt will be called frequently, 
while the other two functions will be called relatively seldom. The relative efficiency of 
the operations should reflect the calling frequency.

In this case, we want to choose a representation for our string that allows 
for a fast characterAt function, which means we need a fast way to locate a par-
ticular character. As you probably recall from the previous chapter, this is what 
an array does best: random access. So let’s solve this problem using arrays of 
char. The append and concatenate functions change the size of the string, which 
means we run into all the array problems we discussed earlier. Because there’s 
no built-in limitation to the size of the string in this problem, we can’t pick a 
large initial size for our arrays and hope for the best. Instead, we’ll need to 
resize our arrays during runtime.

To start off, let’s create a typedef for our string type. We know we’re 
going to be dynamically creating our arrays, so we need to make our string 
type a pointer to char.

typedef char * arrayString;
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With that in place, let’s start on the functions. Using the principle of start-
ing with what we already know how to do, we can quickly write the characterAt 
function.

char characterAt(arrayString s, int position) {
    return s[position];
}

Recall from Chapter 3 that if a pointer is assigned the address of an array, 
we can access elements in the array using normal array notation . Note, how-
ever, that bad things can happen if position is not actually a valid element 
number for the array s, and this code places the responsibility of validating 
the second parameter on the caller. We’ll consider alternatives to this situa-
tion in the exercises. For now, let’s move onto the append function. We can 
imagine what this function will do generally, but to get the specifics right, we 
should consider an example. This is a technique I call solving by sample case. 

Start with a nontrivial sample input for the function or program. Write 
down all the details of that input along with all the details of the output. Then 
when you write your code, you’ll be writing for the general case while also 
double-checking how each step transforms your sample to make sure that 
you reach the desired output state. This technique is especially helpful when 
dealing with pointers and dynamically allocated memory, because so much 
of what happens in the program is outside of direct view. Following through 
a case on paper forces you to track all the changing values in memory—not 
just those directly represented by variables but also those in the heap.

Suppose we start with the string test, which is to say we have an array of 
characters in the heap with t, e, s, and t, in that order, and we want to append, 
using our function, an exclamation point. Figure 4-3 shows the state of memory 
before (a) and after (b) this operation. In these diagrams, anything to the left of 
the dashed vertical line is stack memory (local variables or parameters) and 
anything to the right is heap memory, dynamically allocated using new.

Figure 4-3: Proposed “before” (a) and “after” (b) 
states for append function

Looking at this figure, right away I’m seeing a potential issue for our 
function. Based on our implementation approach for the strings, the func-
tion is going to create a new array that is one element larger than the original 
array and copy all the characters from the first array to the second. But how 
are we to know how large the first array is? From the previous chapter, we know 
that we have to track the size of our arrays ourselves. So something is missing.

e st t

e st t !

(a)

(b)
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If we’ve had experience working with strings in the standard C/C++ 
library, we will already know the missing ingredient, but if we don’t, we can 
quickly reason it out. Remember that one of our problem-solving techniques 
is looking for analogies. Perhaps we should think about other problems in 
which the length of something was unknown. Back in Chapter 2, we pro-
cessed identification codes with an arbitrary number of digits for the “Luhn 
Checksum Validation” problem. In that problem, we didn’t know how many 
digits the user would enter. In the end, we wrote a while loop that continued 
until the last character read was the end-of-line. 

Unfortunately, there is no end-of-line character waiting for us at the 
end of our arrays. But what if we put an end-of-line character in the last ele-
ment of all our string arrays? Then we could discover the length of our arrays 
the same way we discovered how many digits were in the identification codes. 
The only downside to this approach is that we could no longer use the end-
of-line character in our strings, except as the string terminator. That’s not 
necessarily a huge restriction, depending on how the strings will be used, but 
for maximum flexibility, it would be best to choose a value that cannot be 
confused with any character anyone might actually want to use. Therefore, 
we’ll use a zero to terminate our arrays because a zero represents a null char-
acter in ASCII and other character code systems. This is exactly the method 
used by the standard C/C++ library. 

With that issue cleared up, let’s get more specific about what append will do 
with our sample data. We know our function is going to have two parameters, 
the first being an arrayString, a pointer to an array of characters in the heap, 
and the second being the char to be appended. To keep things straight, let’s go 
ahead and write the outline of the append function and the code to test it.

void append(arrayString& s, char c) {
}
void appendTester() {
    arrayString a = new char[5];
    a[0] = 't'; a[1] = 'e'; a[2] = 's'; a[3] = 't'; a[4] =  0;
    append(a, '!');
    cout << a << "\n";
}

The appendTester function allocates our string in the heap . Note that 
the size of the array is five, which is necessary so that we can assign all four let-
ters of the word test along with our terminating null character . Then we 
call append , which at this point is just an empty shell. When I wrote the 
shell, I realized that the arrayString parameter had to be a reference (&)  
because the function is going to create a new array in the heap. That’s the 
whole point, after all, of using dynamic memory here: to create a new array 
whenever the string is resized. Therefore, the value that the variable a has 
when passed to append is not the same value it should have when the function 
is through, because it needs to point to a new array. Note that because our 
arrays use the null-character termination expected by the standard libraries, 
we can send the array referenced by the pointer a directly to the output stream 
to check the value .
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Figure 4-4 shows our new understanding of what the function will do 
with our test case. The array terminators are in place, shown as NULL for clarity. 
In the after (b) state, it’s clear that s is pointing at a new allocation of mem-
ory. The previous array is now in a shaded box; in these diagrams, I’m using 
shaded boxes to indicate memory that has been deallocated. Including the 
allocated memory in our diagrams helps remind us to actually perform the 
deallocation.

Figure 4-4: Updated and elaborated memory states before (a) 
and after (b) the append function

With everything properly visualized, we can write this function:

void append(arrayString& s, char c) {
    int oldLength = 0;
while (s[oldLength] != 0) {

        oldLength++;
    }
arrayString newS = new char[oldLength + 2];
for (int i = 0; i < oldLength; i++) {

        newS[i] = s[i];
    }
newS[oldLength] = c;
newS[oldLength + 1] = 0;
delete[] s;
s = newS;

}

There’s a lot going on in this code, so let’s check it out piece by piece. 
At the beginning of the function, we have a loop to locate the null character 
that terminates our array . When the loop completes, oldLength will be the 
number of legitimate characters in the array (that is, not including the termi-
nating null character). We allocate the new array from the heap with a size of 
oldLength + 2 . This is one of those details that is tricky to keep straight if you’re 
figuring it all out in your head but easy to get right if you have a diagram. 
Following the code through our example in Figure 4-5, we see that oldLength 
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would be four in this case. We know that oldLength would be four because test 
has four characters and that the new array in part (b) requires six characters 
because we need space for the appended character and the null terminator.

With the new array allocated, we copy all of the legitimate characters from 
the old array to the new , and we then assign the appended character  
and the null character terminator  to their appropriate locations in the 
new array. Again, our diagram helps us keep things straight. To make things 
even clearer, Figure 4-5 shows how the value of oldLength was computed and 
what position that value would indicate in the new array. With that visual 
reminder, it’s easy to get the subscripts correct in those two assignment 
statements.

Figure 4-5: Showing the relationship of a local variable, parameters, 
and allocated memory before and after the append function

The last three lines in the append function are all about that shaded box 
in part (b) of the figure. To avoid a memory leak, we have to deallocate the 
array in the heap that our parameter s originally pointed to . Finally, we 
leave our function with s pointing to the new, longer array . Unfortunately, 
one of the reasons memory leaks are so common in C++ programming is that 
until the total amount of memory leaks is large, the program and overall sys-
tem will display no ill effects. Thus, the leaks can go totally unnoticed by pro-
grammers during testing. As programmers, therefore, we must be diligent and 
always consider the lifetime of our heap memory allocations. Every time you 
use the keyword new, think about where and when the corresponding delete 
will occur.

Notice how everything in this function follows directly from our diagrams. 
Tricky programming becomes so much less tricky with good diagrams, and I 
wish more new programmers would take the time to draw before they code. 
This goes back to our most fundamental problem-solving principle: Always 
have a plan. A well-drawn diagram for a problem example is like having a 
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mapped-out route to your destination before starting on a long vacation drive. 
It’s a little bit of extra effort at the start to potentially avoid much more effort 
and frustration at the end. 

Getting back to our append function, the code looks solid, but remember 
that we based this code on a particular sample case. Thus, we shouldn’t get 
cocky and assume that the code will work for all valid cases. In particular, we 
need to check for special cases. In programming, a special case is a situation 
in which valid data will cause the normal flow of code to produce erroneous 
results. 

Note that this problem is distinct from that of bad data, such as out-of-
range data. In the code for this book, we’ve made the assumption of good 
input data for programs and individual functions. For example, if the program 
is expecting a series of integers separated by commas, we’ve assumed that’s 
what the program is getting, not extraneous characters, nonnumbers, and 
so on. Such an assumption is necessary to keep code length reasonable and 
to avoid repeating the same data-checking code over and over. In the real 
world, however, we should take reasonable precautions against bad input. 
This is known as robustness. A robust program performs well even with bad 
input. For example, such a program could display an error message to the 
user instead of crashing.

Checking for Special Cases

Let’s look at append again, checking for special cases—in other words, making 
sure we don’t have any oddball situations among the possible good input 
values. The most common culprits for special cases are at the extremes, such 
as the smallest or largest possible input. With append, there’s no maximum size 
for our string array, but there is a minimum size. If the string has no legitimate 
characters, it would actually correspond to an array of one character (the one 
character being the null terminating character). As before, let’s make a dia-
gram to keep things straight. Suppose we appended the exclamation point to 
a null string, as shown in Figure 4-6.

C R E A T I N G  D I A G R A M S

All you need to draw a diagram is a pencil and paper. If you’ve got the time, though, 
I would recommend using a drawing program. There are drawing tools with templates 
specifically for programming problems, but any general vector-based drawing pro-
gram will get you started (the term vector here means the program works with lines 
and curves and isn’t a paintbox program like Photoshop). I made the original illustra-
tions for this book using a program called Inkscape, which is freely available. Creat-
ing the diagrams on your computer allows you to keep them organized in the same 
place where you store the code that the diagrams illustrate. The diagrams are also 
likely to be neater and therefore more easily understood if you come back to them 
after an absence. Finally, it’s easy to copy and modify a computer-created diagram, 
as I did when I created Figure 4-5 from Figure 4-4, and if you want to make some 
quick temporary notations, you can always print out a copy to doodle on. 
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Figure 4-6: Testing the smallest case for the append function

When we look at the diagram, this doesn’t appear to be a special case, 
but we should run the case through our function to check. Let’s add the 
following to our appendTester code:

arrayString b = new char[1];
b[0] = 0;
append(b, '!');
cout << b << "\n";

That works, too. Now that we’re reasonably sure that the append function 
is correct, do we like it? The code seemed straightforward, and I’m not get-
ting any “bad smells,” but it does seem a little long for a simple operation. As 
I think ahead to the concatenate function, it occurs to me that, like append, the 
concatenate function will need to determine the length of a string array—or 
maybe the lengths of two string arrays. Because both operations will need a 
loop that finds the null character that terminates the string, we could put that 
code in its own function, which is then called from append and concatenate as 
needed. Let’s go ahead and do that and modify append accordingly.

int length(arrayString s) {
int count = 0;

    while (s[count] != 0) {
        count++;
    }
    return count;
}
void append(arrayString& s, char c) {
int oldLength = length(s);

    arrayString newS = new char[oldLength + 2];
    for (int i = 0; i < oldLength; i++) {
        newS[i] = s[i];
    }
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    newS[oldLength] = c;
    newS[oldLength + 1] = 0;
    delete[] s;
    s = newS;
}

The code in the length function  is essentially the same code that previ-
ously began the append function. In the append function itself, we’ve replaced 
that code with a call to length . The length function is what’s known as a 
helper function, a function that encapsulates an operation common to several 
other functions. Besides reducing the length of our code, the elimination of 
redundant code means our code is more reliable and easier to modify. It also 
helps our problem solving because helper functions divide our code into smaller 
chunks, making it easier for us to recognize opportunities for code reuse. 

Copying Dynamically Allocated Strings

Now it’s time to tackle that concatenate function. We’ll take the same approach 
we did with append. First, we’ll write an empty shell version of the function to 
get the parameters and their types straight in our heads. Then, we’ll make a 
diagram of a test case, and finally, we’ll write code to match our diagram. Here 
is the shell of the function, along with additional testing code:

void concatenate(arrayString& s1, arrayString s2) {
}
void concatenateTester() {
    arrayString a = new char[5];
    a[0] = 't'; a[1] = 'e'; a[2] = 's'; a[3] = 't'; a[4] =  0;
    arrayString b = new char[4];
    b[0] = 'b'; b[1] = 'e'; b[2] = 'd'; b[3] = 0;
    concatenate(a, b);
}

Remember that the description of this function says that the characters 
in the second string (the second parameter) are appended to the end of the 
first string. Therefore, the first parameter to concatenate will be a reference 
parameter , for the same reason as the first parameter of append. The sec-
ond parameter , though, should not be changed by the function, so it will 
be a value parameter. Now for our sample case: We’re concatenating the 
strings test and bed. The before-and-after diagram is shown in Figure 4-7.

The details of the diagram should be familiar from the append function. 
Here, for concatenate, we start with two dynamically allocated arrays in the 
heap, pointed to by our two parameters, s1 and s2. When the function is com-
plete, s1 will point to a new array in the heap that’s nine characters long. The 
array that s1 previously pointed to has been deallocated; s2 and its array are 
unchanged. While it might seem pointless to include s2 and the bed array on 
our diagram, when trying to avoid coding errors, keeping track of what doesn’t 
change is as important as keeping track of what does. I’ve also numbered the 
elements of the old and new arrays, as that came in handy with the append 
function. Everything is in place now, so let’s write this function.
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Figure 4-7: Showing the “before” (a) and “after” (b) states for the concatenate method

void concatenate(arrayString& s1, arrayString s2) {
int s1_OldLength = length(s1);

    int s2_Length = length(s2);
    int s1_NewLength = s1_OldLength + s2_Length;
arrayString newS = new char[s1_NewLength + 1];
for(int i = 0; i < s1_OldLength; i++) {

        newS[i] = s1[i];
    }
    for(int i = 0; i < s2_Length; i++) {
        newS[s1_OldLength + i] = s2[i];
    }
newS[s1_NewLength] = 0;
delete[] s1;
s1 = newS;

}

First, we determine the lengths of both of the strings we’re concatenat-
ing , and then we sum those values to get the length the concatenated string 
will have when we are done. Remember that all of these lengths are for the 
number of legitimate characters, not including the null terminator. Thus, 
when we create the array in the heap to store the new string , we allocate 
one more than the combined length to have a space for the terminator. Then 
we copy the characters from the two original strings to the new string . The 
first loop is straightforward, but notice the computation of the subscript in 
the second loop . We’re copying from the beginning of s2 into the middle 
of newS; this is yet another example of translating from one range of values to 
another range of values, which we’ve been doing in this text since Chapter 2. 
By looking at the element numbers on my diagram, I’m able to see what vari-
ables I need to put together to compute the right destination subscript. The 
remainder of the function puts the null terminator in place at the end of the 
new string . As with append, we deallocate the original heap memory pointed 
to by our first parameter  and repoint the first parameter at the newly allo-
cated string .
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This code appears to work, but as before, we want to make sure that we 
haven’t inadvertently made a function that succeeds for our test case but not 
all cases. The most likely trouble cases would be when either or both of the 
parameters are zero-length strings (just the null terminator). We should check 
these cases explicitly before moving on. Note that when you are checking for 
correctness in code that uses pointers, you should take care to look at the 
pointers themselves and not just the values in the heap that they reference. 
Here is one test case:

arrayString a = new char[5];
a[0] = 't'; a[1] = 'e'; a[2] = 's'; a[3] = 't'; a[4] =  0;
arrayString c = new char[1];
c[0] = 0;
concatenate(c, a);
cout << a << "\n" << c << "\n"; 

 cout << (void *) a << "\n" << (void *) c << "\n";

I wanted to be sure that the call to concatenate results in a and c both 
pointing to the string test—that is, that they point to arrays with identical 
values. Equally important, though, is that they point to different strings, as 
shown in Figure 4-8 (a). I check this in the second output statement by chang-
ing the types of the variables to void *, which forces the output stream to dis-
play the raw value of the pointers . If the pointers themselves had the same 
value, then we would say that the pointers had become cross-linked, as shown 
in Figure 4-8 (b). When pointers have unknowingly become cross-linked, 
subtle problems occur because changing the contents of one variable in the 
heap mysteriously changes another variable—really the same variable, but in 
a large program, that can be hard to see. Also, remember that if two pointers 
are cross-linked, when one of them is deallocated via delete, the remaining 
pointer becomes a dangling reference. Therefore, we have to be diligent 
when we review our code and always check potential cross-linking. 

Figure 4-8: concatenate should result in two distinct strings (a), 
not two cross-linked pointers (b).

With all three functions implemented—characterAt, append, and 
concatenate—we’ve completed the problem.
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Linked Lists
Now we’re going to try something trickier. The pointer manipulations will be 
more complicated, but we’ll keep everything straight now that we know how 
to crank out the diagrams.

P R O B L E M :  T R A C K I N G  A N  U N K N O W N  
Q U A N T I T Y  O F  S T U D E N T  R E C O R D S

In this problem, you will write functions to store and manipulate a collection of student 
records. A student record contains a student number and a grade, both integers. The 
following functions are to be implemented:

addRecord This function takes a pointer to a collection of student records (a student 
number and a grade), and it adds a new record with this data to the collection.
averageRecord This function takes a pointer to a collection of student records 
and returns the simple average of student grades in the collection as a double.

The collection can be of any size. The addRecord operation is expected to be 
called frequently, so it must be implemented efficiently.

A number of approaches would meet the specifications, but we’re 
going to choose a method that helps us practice our pointer-based problem-
solving techniques: linked lists. You may have already seen a linked list before, 
but if not, know that the introduction of linked lists represents a kind of 
sea change from what we have discussed so far in this text. A good problem-
solver could have developed any of the previous solutions given enough time 
and careful thought. Most programmers, however, wouldn’t come up with 
the linked list concept without help. Once you see it and master the basics, 
though, other linked structures will come to mind, and then you are off and 
running. A linked list is truly a dynamic structure. Our string arrays were stored 
in dynamically allocated memory, but once created, they were static struc-
tures, never getting any larger or smaller, just being replaced. A linked list, 
in contrast, grows piece by piece over time like a daisy chain.

Building a List of Nodes

Let’s construct a sample linked list of student records. To make a linked list, 
you need a struct that contains a pointer to the same struct, in addition to 
whatever data you want to store in the collection represented by the linked 
list. For our problem, the struct will contain a student number and grade.

struct listNode {
int studentNum;

    int grade;
listNode * next;

};
 typedef listNode * studentCollection;

The name of our struct is listNode . A struct used to create a linked 
list is always referred to as a node. Presumably the name is an analogy to the 
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botanical term, meaning a point on a stem from which a new branch grows. 
The node contains the student number  and grade that make up the real 
“payload” of the node. The node also contains a pointer to the very type of 
struct we are defining . The first time most programmers see this, it looks 
confusing and perhaps even a syntactical impossibility: How can we define a 
structure in terms of itself? But this is legal, and the meaning will become 
clear shortly. Note that the self-referring pointer in a node is typically given 
a name like next, nextPtr, or the like. Lastly, this code declares a typedef for a 
pointer to our node type . This will help the readability of our functions. 
Now let’s build our sample linked list using these types:

 studentCollection sc;
 listNode * node1 = new listNode;
 node1->studentNum = 1001; node1->grade = 78;

listNode * node2 = new listNode;
node2->studentNum = 1012; node2->grade = 93;
listNode * node3 = new listNode;

 node3->studentNum = 1076; node3->grade = 85;
 sc = node1;
 node1->next = node2;
 node2->next = node3;
 node3->next = NULL;
 node1 = node2 = node3 = NULL;

We begin by declaring a studentCollection, sc , which will eventually 
become the name for our linked list. Then we declare node1 , a pointer to 
a listNode. Again, studentCollection is synonymous with node *, but for read-
ability I’m using the studentCollection type only for variables that will refer 
to the whole list structure. After declaring node1 and pointing it to a newly 
allocated listNode in the heap , we assign values to the studentNum and grade 
fields in that node . At this point, the next field is unassigned. This is not a 
book on syntax, but if you haven’t seen the -> notation before, it’s used to 
indicate the field of a pointed-to struct (or class). So node1->studentNum means 
“the studentNum field in the struct pointed to by node1” and is equivalent to 
(*node1).studentNum. We then repeat the same process for node2 and node3. 
After assigning the field values to the last node, the state of memory is as 
shown in Figure 4-9. In these diagrams, we’ll use the divided-box notation 
we previously used for arrays to show the node struct.

Figure 4-9: Halfway through building a sample linked list
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Now that we have all of our nodes, we can string them together to form 
a linked list. That’s what the rest of the previous code listing does. First, we 
point our studentCollection variable to the first node , then we point the 
next field of the first node to the second node , and then we point the next 
field of the second node to the third node . In the next step, we assign NULL 
(again, this is just a synonym for zero) to the next field of the third node . 
We do this for the same reason we put a null character at the end of our arrays 
in the previous problem: to terminate the structure. Just as we needed a spe-
cial character to show us the end of the array, we need a zero in the next field 
of the last node in our linked list so that we know it is the last node. Finally, to 
clean things up and avoid potential cross-linking problems, we assign NULL to 
each of the individual node pointers . The resulting state of memory is 
shown in Figure 4-10.

Figure 4-10: The completed sample linked list

With this visual in front of us, it’s clear why the structure is called a linked 
list: Each node in the list is linked to the next. You’ll often see linked lists 
drawn linearly, but I actually prefer the scattered-in-memory look of this dia-
gram because it emphasizes that these nodes have no relationship to each 
other besides the links; each of them could be anywhere inside the heap. 
Make sure you trace through the code until you are confident you agree with 
the diagram.

Notice that, in the concluding state, only one stack-based pointer remains 
in use, our studentCollection variable sc, which points to the first node. A 
pointer external to the list (that is, not the next field of a node in the list) 
that points to the first node in a linked list is known as a head pointer. On a 
symbolic level, this variable represents the list as a whole, but of course it 
directly references only the first node. To get to the second node, we have to 
go through the first, and to get to the third node, we have to go through the 
first two, and so on. This means that linked lists offer only sequential access, 
as opposed to the random access provided by arrays. Sequential access is the 
weakness of linked-list structures. The strength of linked-list structures, as 
previously alluded to, is our ability to grow or shrink the size of the structure 
by adding or removing nodes, without having to create an entirely new struc-
ture and copy the data over, as we’ve done with arrays. 
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Adding Nodes to a List

Now let’s implement the addRecord function. This function is going to create a 
new node and connect it into an existing linked list. We’ll use the same tech-
niques we used in the previous problem. First up: a function shell and a sample 
call. For testing, we’ll add code to the previous listing, so sc already exists as 
the head pointer to the list of three nodes.

void addRecord(studentCollection& sc, int stuNum, int gr) {
}

 addRecord(sc, 1274, 91);

Again, the  call would come at the end of the previous listing. With the 
function shell outlining the parameters, we can diagram the “before” state of 
this call, as shown in Figure 4-11.

Figure 4-11: The “before” state for the addRecord function

Regarding the “after” state, though, we have a choice. We can guess that 
we’re going to create a new node in the heap and copy the values from the 
parameters stuNum and gr into the studentNum and grade fields of the new node. 
The question is where this node is going to go, logically, in our linked list. The 
most obvious choice would be at the end; there’s a NULL value in a next field just 
asking to be pointed to a new node. That would correspond to Figure 4-12.

Figure 4-12: Proposed “after” state for addRecord function

But if we can assume that the order of the records doesn’t matter (that 
we don’t need to keep the records in the same order they were added to the 
collection), then this is the wrong choice. To see why, consider a collection, 
not of three student records, but of 3,000. To reach the last record in our 
linked list in order to modify its next field would require traveling through all 
3,000 nodes. That’s unacceptably inefficient because we can get the new node 
into the list without traveling through any of the existing nodes. 
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Figure 4-13 shows how. After the new node is created, it is linked into the 
list at the beginning, not at the end. In the “after” state, our head pointer sc 
points to the new node, while the next field of the new node points to what 
was previously the first node in the list, the one with student number 1001. 
Note that while we assign a value to that next field of the new node, the only 
existing pointer that changes is sc, and none of the values in the existing nodes 
are altered or even inspected. Working from our diagram, here’s the code:

void addRecord(studentCollection& sc, int stuNum, int gr) {
listNode * newNode = new listNode;
newNode->studentNum = stuNum;

newNode->grade = gr;
newNode->next = sc;
sc = newNode;

}

Figure 4-13: Acceptable “after” state for addRecord function. 
The dashed arrow indicates the previous value of the pointer 
stored in sc.

Again, let me emphasize that translating a diagram and that code is a lot 
easier than trying to keep things straight in your head. The code comes directly 
from the illustration. We create a new node  and assign the student number 
and grade from the parameters . Then we link the new node into the list, 
first by pointing the next field of the new node to the former first node (by 
assigning it the value of sc)  and then by pointing sc itself at the new node . 
Note that the last two steps have to happen in that order; we need to use the 
original value of sc before we change it. Also note that because we change sc, 
it must be a reference parameter.

As always, when we build code from a sample case, we have to check 
potential special cases. Here, that means checking to see that the function 
works with an empty list. With our string arrays, an empty string was still a valid 
pointer because we still had an array to point to, an array with just the null 
terminating character. Here, though, the number of nodes is the same as 
the number of records, and an empty list would be a NULL head pointer. Will 
our code still hold up if we try to insert our sample data when the incoming 
head pointer is NULL? Figure 4-14 shows the “before” state and the desired 
“after” state.

sc

stuNum

781001

931012

851076

gr

1274

91

911274

NULL



106 Chapter 4

Walking this example through our 
code, we see that it handles this case 
fine. The new node is created just as 
before. Because sc is NULL in the “before” 
state, when  this value is copied into 
the next field of our new node, that’s 
exactly what we want, and our one-
node list is properly terminated. Note 
that if we had continued with the 
other implementation idea—adding 
the new node at the end of the linked 
list rather than at the beginning—an 
initially empty list would be a special 
case because it would then be the 
only case in which sc is modified. 

List Traversal

Now it’s time to figure out the averageRecord function. As before, we’ll start 
with a shell and a diagram. Here’s the function shell and sample call. Assume 
the sample call  occurs after the creation of our original sample list, as shown 
in Figure 4-10.

double averageRecord(studentCollection sc) {
}

 int avg = averageRecord(sc);

As you can see, I’ve chosen to compute the average as an int, as we did 
with arrays in the previous chapter. Depending on the problem, however, it 
might be better to compute it as a floating point value. Now we need a dia-
gram, but we pretty much already have a “before” state with Figure 4-9. We 
don’t need a diagram for the “after” state because this function isn’t going to 
change our dynamic structure, just report on it. We just need to know the 
expected result, which in this case is about 85.3333.

So how do we actually compute the average? From our experience com-
puting the average of all values in an array, we know the general concept. We 
need to add up every value in the collection and then divide that sum by the 
number of values. With our array averaging code, we inspected every value 
using a for loop from 0 to one less than the size of the array, using the loop 
counter as the array subscript. We can’t use a for loop here because we don’t 
know ahead of time how many numbers are in the linked list; we have to 
keep going until we reach the NULL value in a node’s next field indicating list 
termination. This suggests a while loop, something like what we used earlier 
in this chapter to process our arrays of unknown length. Running through a 

Figure 4-14: The “before” and “after” 
states for the smallest addRecord case
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linked list like this, from beginning to terminus, is known as a list traversal. 
This is one of the basic operations on a linked list. Let’s put the traversal idea 
to work to solve this problem:

double averageRecord(studentCollection sc) {
int count = 0;
double sum = 0;
listNode * loopPtr = sc;
while (loopPtr != NULL) {

        sum += loopPtr->grade;
        count++;
        loopPtr = loopPtr->next;
    }
double average = sum / count;

    return average;
}

We start by declaring a variable count to store the number of nodes we 
encounter in the list ; this will also be the number of values in the collec-
tion, which we’ll use to compute the average. Next we declare a variable sum 
to store the running total of grade values in the list . Then we declare a 
listNode * called loopPtr, which we’ll use to traverse the list . This is the 
equivalent of our integer loop variable in an array-processing for loop; it 
keeps track of where we are in the linked list, not with the position number 
but by storing a pointer to the node we are processing currently.

At this point, the traversal itself begins. The traversal loop continues 
until our loop-tracking pointer reaches our terminating NULL . Inside the 
loop, we add the value of the grade field in the currently referenced node to 
sum . We increment the count , and then we assign the next field of the cur-
rent node to our loop-tracking pointer . This has the effect of moving our 
traversal one node ahead. This is the tricky part of the code, so let’s make 
sure we have this straight. In Figure 4-15, I’m showing how the node variable 
changes over time. The letters (a) through (d) mark different points during 
the execution of the code on our sample data, showing different points dur-
ing the lifetime of loopPtr and the locations from which loopPtr’s value has 
been obtained. Point (a) is just as the loop begins; loopPtr has just been ini-
tialized with the value of sc. Therefore, loopPtr points to the first node in the 
list, just as sc does. During the first iteration of the loop, then, the first node’s 
grade value of 78 is added to sum. The first node’s next value is copied to loopPtr 
so that now loopPtr points to the second node of the list; this is point (b). Dur-
ing the second iteration, we add 93 to sum and copy the next field of the sec-
ond node to loopPtr; this is point (c). Finally, during the third and last iteration 
of the loop, we add 85 to sum and assign the NULL of the next field in the third node 
to loopPtr; this is point (d). When we reach the top of the while loop again, the 
loop ends because loopPtr is NULL. Because we incremented count each time 
we iterated, count is three.
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Figure 4-15: How the local variable loopPtr changes 
during loop iterations in the averageRecord function

Once the loop is all done, we just divide the sum by the count and return 
the result .

The code works on our sample case, but as always, we need to check for 
potential special cases. Again, with lists, the most obvious special case is an 
empty list. What happens with our code if sc is NULL when the function begins?

Guess what? The code blows up. (I had to make one of these special 
cases turn out badly; otherwise, you wouldn’t take me seriously.) There’s 
nothing wrong with the loop for the processing of the linked list itself. If sc is 
NULL, then loopPtr is initialized to NULL, the loop ends as soon as it begins, and 
sum is left at zero, which seems reasonable enough. The problem is when we 
perform the division to compute the average , count is also zero, which means 
we are dividing by zero and which will result in either a program crash or a 
garbage result. To handle this special case, we could check count against zero at 
the end of the function, but why not handle the situation up front and check 
sc? Let’s add the following as the new first line in our averageRecord function:

if (sc == NULL) return 0;

As this example shows, handling special cases is usually pretty simple. We 
just have to make sure we take the time to identify them. 

Conclusion and Next Steps

This chapter has just scratched the surface of problem solving using pointers 
and dynamic memory. You’ll see pointers and heap allocations throughout 
the rest of this text. For example, object-oriented programming techniques, 
which we’ll discuss in Chapter 5, are especially helpful when dealing with 
pointers. They allow us to encapsulate pointers in such a way that we don’t 
have to worry about memory leaks, dangling pointers, or any of the other 
common pointer pitfalls.

sc 781001

931012

851076

(a) (b)

(c)

NULL
(d)

loopPtr
(a)

loopPtr
(b)

loopPtr
(c)

loopPtr
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Even though there is much more to learn about problem solving in this 
area, you’ll be able to develop your skills with pointer-based structures of 
increasing complexity if you follow the basic ideas in this chapter: First, apply 
the general rules of problem solving. Then, apply specific rules for pointers, 
and use a diagram or similar tool to visualize each solution before you start 
coding.

Exercises

I’m not kidding about doing the exercises. You’re not just reading the chap-
ters and moving on, are you?

4-1. Design your own: Take a problem that you already know how to solve using 
an array but that is limited by the size of the array. Rewrite the code to remove 
that limitation using a dynamically allocated array.

4-2. For our dynamically allocated strings, create a function substring that takes 
three parameters: an arrayString, a starting position integer, and an integer 
length of characters. The function returns a pointer to a new dynamically 
allocated string array. This string array contains the characters in the original 
string, starting at the specified position for the specified length. The original 
string is unaffected by the operation. So if the original string was abcdefg, the 
position was 3, and the length was 4, then the new string would contain cdef. 

4-3. For our dynamically allocated strings, create a function replaceString that takes 
three parameters, each of type arrayString: source, target, and replaceText. 
The function replaces every occurrence of target in source with replaceText. 
For example, if source points to an array containing abcdabee, target points to 
ab, and replaceText points to xyz, then when the function ends, source should 
point to an array containing xyzcdxyzee.

4-4. Change the implementation of our strings such that location[0] in the array 
stores the size of the array (and therefore location[1] stores the first actual 
character in the string), rather than using a null-character terminator. 
Implement each of the three functions, append, concatenate, and charactertAt, 
taking advantage of the stored size information whenever possible. Because 
we’ll no longer be using the null-termination convention expected by the 
standard output stream, you’ll need to write your own output function that 
loops through its string parameter, displaying the characters.

4-5. Write a function removeRecord that takes a pointer to a studentCollection and a 
student number and that removes the record with that student number from 
the collection.

4-6. Let’s create an implementation for strings that uses a linked list of characters 
instead of dynamically allocated arrays. So we’ll have a linked list where the 
data payload is a single char; this will allow strings to grow without having to re-
create the entire string. We’ll start by implementing the append and characterAt 
functions.
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4-7. Following up on the previous exercise, implement the concatenate function. 
Note that if we make a call concatenate(s1, s2), where both parameters are 
pointers to the first nodes of their respective linked lists, the function should 
create a copy of each of the nodes in s2 and append them to the end of s1. 
That is, the function should not simply point the next field of the last node in 
s1’s list to the first node of s2’s list.

4-8. Add a function to the linked-list string implementation called removeChars to 
remove a section of characters from a string based on the position and length. 
For example, removeChars(s1, 5, 3) would remove the three characters starting 
at the fifth character in the string. Make sure the removed nodes are properly 
deallocated.

4-9. Imagine a linked list where instead of the node storing a character, the node 
stores a digit: an int in the range 0–9. We could represent positive numbers 
of any size using such a linked list; the number 149, for example, would be a 
linked list in which the first node stores a 1, the second a 4, and the third and 
last a 9. Write a function intToList that takes an integer value and produces a 
linked list of this sort. Hint: You may find it easier to build the linked list 
backward, so if the value were 149, you would create the 9 node first.

4-10. For the digit list of the previous exercise, write a function that takes two such 
lists and produces a new list representing their sum.
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S O L V I N G  P R O B L E M S  
W I T H C L A S S E S

In this chapter, we’re going to discuss classes 
and object-oriented programming. As before, 

the assumption is that you’ve seen the class 
declaration in C++ and understand the basic 

syntax of creating a class, invoking the methods of a 
class, and so on. We’ll have a quick review in the next 
section, but we’ll mostly discuss the problem-solving 
aspects of classes.

This is another situation in which I think C++ has an advantage over other 
languages. Because C++ is a hybrid language, the C++ programmer can cre-
ate classes where appropriate but never has to. By contrast, in a language like 
Java or C#, all code must appear within the confines of a class declaration. In 
the hands of expert programmers, this causes no undue harm, but in the hands 
of novices, it can lead to bad habits. To a Java or C# programmer, everything 
is an object. While all the code written in these languages must be encapsu-
lated into objects, the result doesn’t always reflect sensible object-oriented 
design. An object should be a meaningful, closely knit collection of data and 
code that operates on that data. It shouldn’t be an arbitrary grab bag of leftovers.
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Because we are programming in C++ and therefore have the choice 
between procedural and object-oriented programming, we’ll talk about good 
class design, as well as when classes should and should not be used. Recogniz-
ing a situation in which a class would be useful is essential to reaching the 
higher levels of programming style, but it’s equally important to recognize 
situations in which a class is going to make things worse. 

Review of Class Fundamentals

As always, this book assumes you have previous contact with fundamentals 
and references for C++ syntax, but let’s review the fundamentals of class syn-
tax so we are on the same page with terminology. A class is a blueprint for 
constructing a particular package of code and data; each variable created 
according to a class’s blueprint is known as an object of that class. Code out-
side of a class that creates and uses an object of that class is known as a client 
of the class. A class declaration names the class and lists all of the members, or 
items inside that class. Each item is either a data member—a variable declared 
within the class—or a method (also known as a member function), which is a func-
tion declared within the class. Member functions can include a special type 
called a constructor, which has the same name as the class and is invoked implic-
itly when an object of the class is declared. In addition to the normal attributes 
of a variable or function declaration (such as type, and for functions, the 
parameter list), each member also has an access specifier, which indicates what 
functions can access the member. A public member can be accessed by any code 
using the object: code inside the class, a client of the class, or code in a subclass, 
which is a class that “inherits” all the code and data of an existing class. A 
private member can be accessed only by the code inside the class. Protected 
members, which we’ll see briefly in this chapter, are similar to private mem-
bers, except that methods in subclasses can also reference them. Both private 
and protected members, though, are inaccessible from client code.

Unlike attributes such as the return type, the access specifier inside the 
class declaration holds until replaced by a different specifier. Thus, each 
specifier usually appears only once, with the members grouped together by 
access. This leads programmers to refer to “the public section” or “the private 
section” of a class, as in, “We should put this method in the private section.”

Let’s look at a tiny example class declaration:

class sample {
 public:

    sample();
    sample(int num);
    int doesSomething(double param);
private:
    int intData;
};

This declaration starts by naming the class , so afterward sample becomes 
a type name. The declaration begins with a public access specifier , so until 
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we reach the private specifier , everything that follows is public. Many pro-
grammers include the public declarations first, expecting the public interface 
to be of most interest to other readers. The public declarations here are two 
constructors ( and ) named sample and another method, doesSomething . 
The constructors are implicitly invoked when objects of this class are declared.

sample object1;
sample object2(15);

Here, object1 would invoke the first constructor , known as the default 
constructor, which has no parameters, while object2 would invoke the second 
constructor  because it specifies a single integer value and thus matches 
the parameter signature of the second constructor.

The declaration concludes with a private data member, intData . Remem-
ber that a class declaration ends with a closing brace and a semicolon . This 
semicolon may look a little mysterious because we don’t conclude functions, 
if statement blocks, or any other closing braces with semicolons. The semi-
colon’s presence actually indicates that class declarations are also, optionally, 
object declarations; we could put identifiers in between the closing brace and 
semicolon and make objects as we make our classes. This isn’t too common 
in C++, though, especially considering that many programmers put their 
class definitions in separate files from the programs that use them. The 
mysterious semicolon appears after the closing brace of a struct, as well. 

Speaking of struct, you should know that in C++, struct and class denote 
nearly the same thing. The only difference between the two involves mem-
bers (data or methods) declared before the first access specifier. In a struct, 
these members would be public, while in a class, they would be private. Good 
programmers, though, use the two structures in different ways. This is analogous 
to how any for loop could be written as a while loop, but a good programmer 
can make code more readable by using for loops in more straightforward 
counting loops. Most programmers reserve struct for simpler structures, 
either those with no data members beyond constructors or those intended 
for use as parameters to methods of a larger class.

Goals of Class Use

In order to recognize the right and wrong situations for class use and the 
right and wrong way to build a class, we have to decide what our goals are for 
using classes in the first place. In considering this, we should remember that 
classes are always optional. That is, classes do not give us new capabilities in 
the way that an array or a pointer-based structure does. If you take a program 
that uses an array to sort 10,000 records, it won’t be possible to write that 
same program without the array. If you have a program that depends on a 
linked list’s ability to grow and shrink over time, you won’t be able to create 
the same effects with the same efficiency without using a linked list or similar 
pointer-based structure. If you take away the classes from an object-oriented 
program, though, and rewrite it, the program will look different, but the 
capabilities and efficiency of the program will not be diminished. Indeed, 
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early C++ compilers worked as preprocessors. The C++ compiler would read 
C++ source code and output new source on the fly that was legal C syntax. 
This modified source code would then be sent to a C compiler. What this 
tells us is that the major additions that C++ made to the C language were not 
about the functional capabilities of the language but about how the source 
code reads to the programmer.

Therefore, in choosing our general class design goals, we are choosing 
goals to help us, as programmers, accomplish our tasks. In particular, because 
this book is about problem solving, we should think about how classes help 
us solve problems. 

Encapsulation
The word encapsulation is a fancy way of saying that classes put multiple pieces 
of data and code together into a single package. If you’ve ever seen a gelatin 
medicine capsule filled with little spheres, that’s a good analogy: The patient 
takes one capsule and swallows all the individual ingredient spheres inside. 

Encapsulation is the mechanism that allows many of the other goals we list 
below to succeed, but it is also a benefit in itself because it organizes our code. 
In a long program listing of purely procedural code (in C++, this would mean 
code with functions but no classes), it can be difficult to find a good order for 
our functions and compiler directives that allows us to easily remember their 
locations. Instead, we’re forced to rely on our development environment to 
find our functions for us. Encapsulation keeps stuff together that goes together. 
If you’re working on a class method and you realize you need to look at or 
modify other code, it’s likely that other code appears in another method of 
the same class and is therefore nearby. 

Code Reuse
From a problem-solving standpoint, encapsulation allows us to more easily 
reuse the code from previous problems to solve current problems. Often, 
even though we have worked on a problem similar to our current project, 
reusing what we learned before still takes a lot of work. A fully encapsulated 
class can work like an external USB drive; you just plug it in and it works. For 
this to happen, though, we must design the class correctly to make sure that 
the code and data is truly encapsulated and as independent as possible from 
anything outside of the class. For example, a class that references a global 
variable can’t be copied into a new project without copying the global vari-
able, as well.

Beyond reusing classes from one program to the next, classes offer the 
potential for a more immediate form of code reuse: inheritance. Recall that, 
back in Chapter 4, we talked about using helper functions to “factor out” the 
code common to two or more functions. Inheritance takes this idea to a larger 
scale. Using inheritance, we create parent classes with methods common to 
two or more child classes, thereby “factoring out” not just a few lines of code 
but whole methods. Inheritance is a large subject unto itself, and we’ll explore 
this form of code reuse later in the chapter.
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Dividing the Problem
One technique we’ve returned to again and again is dividing a complex 
problem into smaller, more manageable pieces. Classes are great at dividing 
programs up into functional units. Encapsulation not only holds data and 
code together in a reusable package; it also cordons off that data and code 
from the rest of the program, allowing us to work on that class, and every-
thing else separately. The more classes we make in a program, the greater 
the problem-dividing effect.

So, where possible, we should let the class be our method of dividing 
complex problems. If the classes are well designed, this will enforce func-
tional separation, and the problem will be easier to solve. As a secondary 
effect, we may find that classes we created for one problem are reusable in 
other problems, even if we didn’t fully consider that possibility when we cre-
ated them. 

Information Hiding
Some people use the terms information hiding and encapsulation interchange-
ably, but we’ll separate the ideas here. As described previously in this chapter, 
encapsulation is packaging data and code together. Information hiding means 
separating the interface of a data structure—the definition of the operations 
and their parameters—from the implementation of a data structure, or the 
code inside the functions. If a class has been written with information hiding 
as a goal, then it’s possible to change the implementation of the methods 
without requiring any changes in the client code (the code that uses the 
class). Again, we have to be clear on the term interface ; this means not only 
the name of the methods and their parameter list but also the explanation 
(perhaps expressed in code documentation) of what the different methods 
do. When we talk about changing the implementation without changing 
the interface, we mean that we change how the class methods work but not 
what they do. Some programming authors have referred to this as a kind of 
implicit contract between the class and the client: The class agrees never to 
change the effects of existing operations, and the client agrees to use the 
class strictly on the basis of its interface and to ignore any implementation 
details. Think of having a universal remote that can control any television, 
whether that’s an old tube model or one that uses an LCD or plasma screen. 
You press 2, then 5, then Enter, and any of the screens will display channel 25, 
even though the mechanism to make that happen is vastly different depend-
ing on the underlying technology.

There is no way to have information hiding without encapsulation, but as 
we have defined the terms, it’s possible to have encapsulation without infor-
mation hiding. The most obvious way this can happen is if a class’s data 
members are declared public. In such a case, the class is still an encapsulation, 
in that it’s a package of code and data that belong together. However, the 
client code now has access to an important class implementation detail: the 
variables and types the class uses to store its data. Even if the client code 
doesn’t modify the class data directly and only inspects it, the client code 
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then requires that particular class implementation. Any change to the class 
that changes the name or type of any of the variables accessed by the client 
code requires changes to the client code, as well.

Your first thought might be that information hiding is assured so long as 
all data is made private and we spend enough time designing the list of mem-
ber functions and their parameter lists so that they never need to change. 
While all of that is required for information hiding, it’s not sufficient because 
information-hiding problems can be more subtle. Remember that the class is 
agreeing not to change what any of the methods do, regardless of the situa-
tion. In previous chapters, we’ve had to decide the smallest case a function 
will handle or what to do with an anomalous case, like finding the average of 
an array when the parameter that stores the size of the array is zero. Chang-
ing the result of a method even for an oddball case represents a change of 
the interface and should be avoided. This is another reason why explicitly 
considering special cases is so important in programming. Many a program 
has blown up when its underlying technology or application programming 
interface (API) has been updated, and some system call that used to reliably 
return a –1 when one of the parameters was erroneous now returns a seem-
ingly random, but still negative, number. One of the best ways to avoid this 
problem is to state special case results in the class or method documentation. 
If your own documentation says that you return a –1 error code when a cer-
tain situation occurs, you’ll think twice about having your method return 
anything else.

So how does information hiding affect problem solving? The principle of 
information hiding tells the programmer to put aside class implementation 
details when working on the client code, or more broadly, to be concerned 
about a particular class’s implementation only when working inside that class. 
When you can put implementation details out of your mind, you can elimi-
nate distracting thoughts and concentrate on solving the problem at hand.

We should be aware, however, of the limitations of information hiding as 
it relates to problem solving. Sometimes implementation details do matter to 
the client. In previous chapters, we’ve seen the strengths and weaknesses of 
some array-based and pointer-based data structures. Array-based structures 
allow random access but cannot easily grow or shrink, while pointer-based 
structures offer only sequential access but can have pieces added or removed 
without having to re-create the entire structure. Therefore, a class built with 
an array-based structure as a foundation will have qualities different from 
one based on a pointer-based structure.

In computer science, we often talk about the concept of an abstract data 
type, which is information hiding in its purest form: a data type defined only 
by its operations. In Chapter 4, we discussed the concept of a stack and 
described how a program’s stack is a contiguous block of memory. But as an 
abstract data type, a stack is any data type where you can add and remove 
individual items, and the items are removed in the opposite order that they 
were added. This is known as last-in first-out ordering, or LIFO. Nothing 
requires a stack to be a contiguous block of memory, and we could make a 
stack using a linked list. Because a contiguous block of memory and a linked 
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list have different properties, a stack that uses one implementation or the 
other will also have different properties, and these may make a big difference 
to the client using the stack.

The point of all this is that information hiding will be a useful goal for us 
as problem solvers, to the extent it allows us to divide problems and work on 
different parts of a program separately. We cannot, however, allow ourselves 
to ignore implementation details entirely.

Readability
A good class enhances the readability of the program in which it appears. 
Objects can correspond to how we look at the real world, and therefore 
method calls often have an English-like readability. Also, the relationship 
between objects is often clearer than the relationship between simple variables. 
Enhancing readability enhances our ability to solve problems, because we 
can understand our own code more easily while it is in development and 
because reuse is enhanced when old code is easy to follow.

To maximize the readability benefit of classes, we need to think about how 
the methods of our class will be used in practice. Method names should be 
chosen with care to reflect the most specific meaning of the method’s effects. 
For example, consider a class representing a financial investment that contains 
a method for computing the future value. The name compute doesn’t convey 
nearly as much information as computeFutureValue. Even choosing the right 
part of speech for the name can be helpful. The name computeFutureValue is a 
verb, while futureValue is a noun. Look at how the names are used in the code 
samples that follow:

double FV; 
 investment.computeFutureValue(FV, 2050);

 if (investment.futureValue(2050) > 10000) { ...

If you think about it, the former makes more sense for a call that would 
stand alone, that is, a void function in which the future value is sent back to 
the caller via a reference parameter . The latter makes better sense for a 
call that would be used in an expression, that is, the future value comes back 
as the value of the function .

We’ll see specific examples later in the chapter, but the guiding princi-
ple for maximizing readability is to always think about the client code when 
you are writing any part of the class interface.

Expressiveness
A final goal of a well-designed class is expressiveness, or what might be broadly 
called writability—the ease with which code can be written. A good class, once 
written, makes the rest of the code simpler to write in the same way that a 
good function makes code simpler to write. Classes effectively extend the 
language, becoming high-level counterparts to basic low-level features such 
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as loops, if statements, and so forth. In C++, even central functionality like 
input and output is not an inherent part of the language syntax but is pro-
vided as a set of classes that must be explicitly included in the program that 
uses it. With classes, programming actions that previously took many steps 
can be done in just a few steps or just one. As problem solvers, we should 
make this goal a special priority. We should always be thinking, “How is this 
class going to make the rest of this program, and future programs that may 
use this class, easier to write?” 

Building a Simple Class

Now that we know what goals our classes should aim for, it’s time to put theory 
into practice and build some classes. First, we’ll develop our class in stages for 
use in the following problem.

P R O B L E M :  C L A S S  R O S T E R

Design a class or set of classes for use in a program that maintains a class roster. For 
each student, store the student’s name, ID, and final grade score in the range 0–100. 
The program will allow student records to be added or removed; display the record of 
a particular student, identified by ID, with the grade displayed as a number and as a 
letter; and display the average score for the class. The appropriate letter grade for a 
particular score is shown in Table 5-1.

We’ll start by looking at a basic class framework that forms the foundation 
of the majority of classes. Then we’ll look at ways in which the basic frame-
work is expanded.

Table 5-1: Letter Grades

Score Range Letter Grade

93–100 A

90–92 A–

87–89 B+

83–86 B

80–82 B–

77–79 C+

73–76 C

70–72 C–

67–69 D+

60–66 D

0–59 F
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The Basic Class Framework
The best way to explore the basic class framework is through a sample class. 
For this example, we’re going to start from the student struct from Chapter 3 
and build it into a full class. For ease of reference, here’s the original struct:

struct student {
    int grade;
    int studentID;
    string name;
};

Even with a simple struct in this form, we at least get encapsulation. Remem-
ber that in Chapter 3 we built an array of student data with this struct, and 
without using the struct, we would have had to build three parallel arrays, one 
each for the grades, IDs, and names—ugly! What we definitely don’t get with 
this struct, though, is information hiding. The basic class framework gives us 
information hiding by declaring all the data as private and then adding pub-
lic methods to allow client code to indirectly access, or change, this data.

class studentRecord {
 public:

studentRecord();
    studentRecord(int newGrade, int newID, string newName);
int grade();
void setGrade(int newGrade);

    int studentID();
    void setStudentID(int newID);
    string name();
    void setName(string newName);

 private:
int _grade;

   int _studentID;
   string _name;
};

As promised, this class declaration is separated into a public section with 
member functions  and a private section , which contains the same data 
as the original struct . There are eight member functions: two constructors  
and then a pair of member functions for each data member. For example, 
the _grade data member has two associated member functions, grade  and 
setGrade . The first of these methods will be used by client code to retrieve 
the grade of a particular studentRecord, while the second of these methods is 
used to store a new grade for this particular studentRecord. 

Retrieval and store methods associated with a data member are so com-
mon that they are typically referred to by the shorthand terms get and set. 
As you can see, I incorporated the word set into the methods that store new 
values into the data members. Many programmers would have also incorpo-
rated get into the other names, for example, getGrade instead of grade. Why 
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didn’t I do this? Because then I would have been using a verb name for a 
function that is used as a noun. Some would argue, though, that the get term 
is so universally understood, and its meaning therefore so clear, that its use 
overrides the other concern. Ultimately, that’s a matter of personal style.

Although I’ve been quick in this book to point out the advantages C++ 
has over other languages, I must admit that more recent languages, like C#, 
have C++ beat when it comes to get and set methods. C# has a built-in mecha-
nism called a property that acts as both a get and set method. Once defined, 
the client code can access the property as though it were a data member 
rather than a function call. This is a great enhancement to readability and 
expressiveness. In C++, without a built-in mechanism, it’s important that we 
decide on some naming convention for our methods and use it consistently.

Note that my naming convention extends to the data members, which, 
unlike the original struct, all begin with underscores. This allows me to name 
the get functions with (almost) the same name as the data members they retrieve. 
This also allows easy recognition of data member references in code, enhanc-
ing readability. Some programmers use the keyword this for all data member 
references instead of using an underscore prefix. So instead of a statement 
such as: 

return _grade; 

they would have:

return this.grade;

If you haven’t seen the keyword this before, it’s a reference to the object 
in which it appears. So if the statement above appeared in a class method and 
that method also declared a local variable with the name grade, the expression 
this.grade would refer to the data member grade, not the local variable with 
the same name. Employing the keyword in this way has an advantage in a 
development environment with automatic syntax completion: The program-
mer can just type this, press the period key, and select the data member from 
a list, avoiding extra typing and potential misspellings. Either technique high-
lights data member references, though, which is what’s important.

Now that we’ve seen the class declaration, let’s look at the implementa-
tion of the methods. We’ll start with the first get/set pair.

int studentRecord::grade() {
   return _grade;
}
void studentRecord::setGrade(int newGrade) {
   _grade = newGrade;
}

This is the most basic form of the get/set pair. The first method, grade, 
returns the current value of the associated data member, _grade . The sec-
ond method, setGrade, assigns the value of the parameter newGrade to the data 
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member _grade . If this were all we did with our class, however, we wouldn’t 
have accomplished anything. Although this code provides information hid-
ing because it passes data in both directions without any consideration or 
modification, it’s only better than having _grade declared public because it 
reserves us the right to change the data member’s name or type. The setGrade 
method should at least perform some rudimentary validation; it should pre-
vent values of newGrade that don’t make sense as a grade from being assigned 
to the _grade data member. We have to be careful to follow problem specifica-
tions, though, and not to make assumptions about data based on our own 
experiences, without consideration of the user. It might be reasonable to 
limit grades to the range 0–100, but it might not, for example, if a school 
allows extra credit to push a score above 100 or uses a grade of –1 as a code 
for a class withdrawal. In this case, because we are given some guidance by 
the problem description, we can incorporate that knowledge into validation.

void studentRecord::setGrade(int newGrade) {
    if ((newGrade >= 0) && (newGrade <= 100)) 
        _grade = newGrade;
}

Here, the validation is just a gatekeeper. Depending upon the definition 
of the problem, however, it might make sense for the method to produce an 
error message, write to an error log, or otherwise handle the error. 

The other get/set pairs would work exactly the same way. There are undoubt-
edly rules about the construction of student ID numbers at a particular school 
that could be used for validation. With a student name, however, the best we 
can do is reject strings with oddball characters, like % or @, and these days per-
haps even that wouldn’t be possible. 

The last step in completing our class is writing the constructors. In the 
basic framework, we include two constructors: a default constructor, which 
has no parameters and sets the data members to reasonable default values, 
and a constructor with parameters for every data member. The second con-
structor form is important for our expressiveness goal, as it allows us to create 
an object of our class and initialize the values inside in one step. Once you 
have written the code for the other methods, this second constructor almost 
writes itself.

studentRecord::studentRecord(int newGrade, int newID, string newName) {
    setGrade(newGrade);
    setStudentID(newID);
    setName(newName);
}

As you can see, the constructor merely calls the appropriate set methods 
for each of the parameters. In most cases, this is the correct approach because 
it avoids duplicating code and ensures that the constructor will take advan-
tage of any validation code in the set methods.
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The default constructor is sometimes a little tricky, not because the code 
is complicated but because there is not always an obvious default value. When 
choosing default values for data members, keep in mind the situations in 
which an object created with the default constructor would be used and, in 
particular, whether there is a legitimate default object for that class. This will 
tell you whether you should fill the data members with useful default values 
or with values that signal that the object is not properly initialized. For exam-
ple, consider a class representing a collection of values that encapsulates a 
linked list. There is a meaningful default linked list, and that’s an empty linked 
list, so we would set our data members to create a legitimate, but conceptually 
empty, list. But with our sample basic class, there’s no meaningful definition 
of a default student; we wouldn’t want to give a valid ID number to a default 
studentRecord object because that could potentially cause confusion with a 
legitimate studentRecord. Therefore, we should choose a default value for the 
_studentID field that is obviously illegitimate, such as –1:

studentRecord::studentRecord() {
    setGrade(0);
    setStudentID(-1);
    setName("");
} 

We assign the grade with setGrade, which validates its parameter. This 
means we have to assign a valid grade, in this case, 0. Because the ID is set to 
an invalid value, the record as a whole can be easily identified as illegitimate. 
Therefore, the valid grade shouldn’t be an issue. If that were a concern, we 
could assign an invalid value directly to the _grade data member. 

This completes the basic class framework. We have a group of private 
data members that reference attributes of the same logical object, in this 
case, a student’s class record; we have member functions to retrieve or alter 
the object’s data, with validation as appropriate; and we have a useful set of 
constructors. We have a good class foundation. The question is, do we need 
to do more? 

Support Methods
A support method is a method in a class that does not merely retrieve or store 
data. Some programmers may refer to these as helper methods, auxiliary 
methods, or something else, but whatever they are called, they are what 
take a class beyond the basic class framework. A well-designed set of sup-
port methods is often what makes a class truly useful.

To determine possible support methods, consider how the class will be 
used. Are there common activities we would expect client code to perform 
on our class’s data? In this case, we’re told that the program for which we are 
initially designing our class will display students’ grades not only as numerical 
scores but also as letters. So let’s create a support method that returns a stu-
dent’s grade as a letter. First, we’ll add the method declaration to the public 
section of our class declaration.
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string letterGrade();

Now we need to implement this method. The function will convert the 
numerical value stored in _grade to the appropriate string based on the grade 
table shown in the problem. We could accomplish this with a series of if 
statements, but is there a cleaner, more elegant way? If you just thought, 
“Hey, this sounds a lot like how we converted incomes into business license 
categories back in Chapter 3,” congratulations—you’ve spotted an apt pro-
gramming analogy. We can adapt that code, with parallel const arrays to store 
the letter grades and the lowest numerical scores associated with those grades, 
to convert the numerical score with a loop.

string studentRecord::letterGrade() {
    const int NUMBER_CATEGORIES = 11;
    const string GRADE_LETTER[] = {"F", "D", "D+", "C-", "C", "C+", "B-", "B", "B+", "A-", "A"};
    const int LOWEST_GRADE_SCORE[] = {0, 60, 67, 70, 73, 77, 80, 83, 87, 90, 93};
    int category = 0;
    while (category < NUMBER_CATEGORIES && LOWEST_GRADE_SCORE[category] <= _grade)
        category++;
    return GRADE_LETTER[category - 1];
}

This method is a direct adaptation of the function from Chapter 3, so 
there’s nothing new to explain about how the code works. However, its adap-
tation for a class method does introduce some design decisions. The first thing 
to note is that we have not created a new data member to store the letter grade 
but instead to compute the appropriate letter grade on the fly for every request. 
The alternative approach would be to have a _letterGrade data member and 
rewrite the setGrade method to update _letterGrade alongside _grade. Then 
this letterGrade method would become a simple get method, returning the 
value of the already-computed data member. 

The issue with this approach is data redundancy, a term describing a situa-
tion in which data is stored that is either a literal duplicate of other data or 
can be directly determined from other data. This issue is most commonly 
seen with databases, and database designers follow elaborate processes to 
avoid creating redundant data in their tables. Data redundancy can occur in 
any program, however, if we are unwary. To see the danger, consider a medical 
records program that stores age and date of birth for each of a set of patients. 
The date of birth gives us information the age does not. The two data items 
are therefore not equal, but the age does not tell us anything we can’t already 
tell from the birth date. And what if the two values are not in agreement 
(which will happen eventually, unless the age is automatically updated)? 
Which value do we trust? I’m reminded of the famous (though possibly apocry-
phal) proclamation of the Caliph Omar when he ordered the burning of the 
Library of Alexandria. He proclaimed that if the books in the library agreed 
with the Koran, they were redundant and need not be preserved, but if they 
disagreed with the Koran, they were pernicious and should be destroyed. 
Redundant data is trouble waiting to happen. The only justification would 
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be performance, if we thought updates to _grade would be seldom and calls 
to letterGrade would be frequent, but it’s hard to imagine a significant overall 
performance boost to the program. 

However, this method could be improved. In testing this method, I noticed 
a problem. Although the method produces correct results for valid values of 
_grade, the method crashes when _grade is a negative value. When the while 
loop is reached, the negative value of _grade causes the loop test to immedi-
ately fail; therefore, category remains zero and the return statement attempts 
to reference GRADE_LETTER[-1]. We could avoid this problem by initializing 
category to one instead of zero, but that would mean that a negative grade 
would be assigned “F” when it really shouldn’t be assigned any string at all 
because, as an invalid grade value, it doesn’t fit into any category.

Instead, we could validate _grade before converting it to a letter grade. 
We’re already validating grade values in the setGrade method, so instead of 
adding new validation code to the letterGrade method, we should “factor out” 
what would be the common code in these methods to make a third method. 
(You might wonder how, if we’re validating grades as they are assigned, we 
could ever have an invalid grade, but remember that our default constructor 
assigns –1 to signal that no legitimate grade has been assigned yet.) This is 
another kind of support method, which is the class equivalent of the general 
helper function concept introduced in previous chapters. Let’s implement 
this method and modify our other methods to use it:

 bool studentRecord::isValidGrade(int grade) {
    if ((grade >= 0) && (grade <= 100)) 
        return true;
    else 
        return false;
}
void studentRecord::setGrade(int newGrade) {
    if (isValidGrade(newGrade))
        _grade = newGrade;
}
string studentRecord::letterGrade() {
    if (!isValidGrade(_grade)) return "ERROR";
    const int NUMBER_CATEGORIES = 11;
    const string GRADE_LETTER[] = {"F", "D", "D+", "C-", "C", "C+", "B-", "B", "B+", "A-", "A"};
    const int LOWEST_GRADE_SCORE[] = {0, 60, 67, 70, 73, 77, 80, 83, 87, 90, 93};
    int category = 0;
    while (category < NUMBER_CATEGORIES && LOWEST_GRADE_SCORE[category] <= _grade)
        category++;
    return GRADE_LETTER[category - 1];
}

The new grade validation method is of type bool , and since this is a 
yes-or-no issue I’ve chosen the name isValidGrade . This gives the most 
English-like reading to calls to this method, such as those in the setGrade  
and letterGrade  methods. Also, note that the method takes the grade to 
validate as a parameter . Although letterGrade is validating the value already 
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in the _grade data member, setGrade is validating the value that we may or 
may not assign the data member. So isValidGrade needs to take the grade as 
a parameter to be useful to both of the other methods.

Although the isValidGrade method is implemented, one decision regard-
ing it remains: What access level should we assign to it? That is, should we 
place it in the public section of the class or the private section? Unlike the get 
and set methods of the basic class framework, which always go in the public 
section, support methods may be public or private depending on their use. 
What are the effects of making isValidGrade public? Most obviously, client 
code can access the method. Because having more public methods appears 
to make a class more useful, many novice programmers make every method 
public that could possibly be used by the client. This, however, ignores the 
other effect of the public access designation. Remember that the public sec-
tion defines the interface of our class, and we should be reluctant to change 
the method once our class is integrated into one or more programs because 
such a change is likely to cascade and require changes in all the client code. 
Placing a method in the public section, therefore, locks the method’s inter-
face and its effects. In this case, suppose that some client code, based on the 
original formulation of isValidGrade, relies upon it as a 0–100 range checker, 
but later, the rules for acceptable grades get more complicated. The client 
code could fail. To avoid that, we might have to instead create a second 
grade validation method inside the class and leave the first one alone. 

Let’s suppose that we expect isValidGrade to be of limited use to the client 
and have decided not to make it public. We could make the method private, but 
that’s not the only choice. Because the function does not directly reference any 
data member or any other method of the class, we could declare the function 
outside of the class altogether. This, however, not only creates the same prob-
lem public access has on modifiability but also lowers encapsulation because 
now this function, which is required by the class, is no longer part of it. We 
could also leave the method in the class but make it protected instead of private. 
The difference would be seen in any subclasses. If isValidGrade is protected, 
the method can be called by methods in subclasses; if isValidGrade is private, 
it can be used only by other methods in the studentRecord class. This is the 
same quandary as public versus private on a smaller scale. Do we expect 
methods in subclasses to get much use from our method, and do we expect 
that the method’s effect or its interface could change in the future? In many 
cases, the safest thing to do is make all helper methods private and make 
public only those support methods that were written to benefit the client.

Classes with Dynamic Data

One of the best reasons to create a class is to encapsulate dynamic data struc-
tures. As we discussed back in Chapter 4, programmers face a real chore 
keeping track of dynamic allocations, pointer assignments, and deallocations 
so that we avoid memory leaks, dangling references, and illegal memory ref-
erences. Putting all of the pointer references into a class doesn’t eliminate 
the difficult work, but it does mean that once we’ve got it right, we can safely 
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drop that code into other projects. It also means that any problems with our 
dynamic data structure are isolated to the code within the class itself, simpli-
fying debugging.

Let’s build a class with dynamic data to see how this works. For our sample 
problem, we’re going to use a modified version of the major problem from 
Chapter 4.

P R O B L E M :  T R A C K I N G  A N  U N K N O W N  
Q U A N T I T Y  O F  S T U D E N T  R E C O R D S

In this problem, you will write a class with methods to store and manipulate a collection 
of student records. A student record contains a student number and a grade, both inte-
gers, and a string for the student name. The following functions are to be implemented:

addRecord This method takes a student number, name, and grade and adds a 
new record with this data to the collection.
recordWithNumber This function takes a student number and retrieves the record 
with that student number from the collection.
removeRecord This function takes a student number and removes the record with 
that student number from the collection.

The collection can be of any size. The addRecord operation is expected to be 
called frequently, so it must be implemented efficiently.

The main differences between this description and the original version 
are that we’ve added a new operation, recordWithNumber, and also that none of 
the operations make any reference to a pointer parameter. This is the key 
benefit of using a class to encapsulate a linked list. The client may be aware 
that the class implements the student record collection as a linked list and 
may even be counting on that (remember our prior discussion about the lim-
itations of information hiding). The client code, however, will have no direct 
interaction with the linked list or any pointer in the class.

Because this problem is storing the same information per student as the 
previous problem, we have an opportunity for class reuse here. In our linked 
list node type, instead of separate fields for each of the three pieces of student 
data, we’ll have one studentRecord object. Using an object of one class as a 
data type in a second class is known as composition. 

We have enough information now to make a preliminary class declaration:

class studentCollection {
private:
struct studentNode {

studentRecord studentData;
        studentNode * next;
    };
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 public:
    studentCollection();
    void addRecord(studentRecord newStudent);
    studentRecord recordWithNumber(int idNum);
    void removeRecord(int idNum);
private:
typedef studentNode * studentList;
studentList _listHead;

};

Previously, I said programmers tend to start classes with public declarations, 
but here we have to make an exception. We begin with a private declaration 
of the node struct, studentNode , which we’ll use to make our linked list. This 
declaration has to come before the public section because several of our pub-
lic member functions reference this type. Unlike our node type in Chapter 4, 
this node doesn’t have individual fields for the payload data but rather includes 
a member of the studentRecord struct type . The public member functions  
follow directly from the problem description; plus, as always, we have a con-
structor. In the second private section, we declare a typedef  for a pointer to 
our node type for clarity, just as we did in Chapter 4. Then we declare our list 
head pointer, cleverly called _listHead .

This class declares two private types. Classes can declare types as well as 
member functions and data members. As with other members, types appear-
ing in the class can be declared with any access specifier. As with data members, 
though, you should think of type definitions as private by default, and only 
make them less restrictive if you have a clear reason to do so. Type declara-
tions are typically at the heart of how a class operates behind the scenes, and 
as such, they are critical to information hiding. Furthermore, in most cases, 
client code has no use for the types you will declare in your class. An excep-
tion occurs when a type defined in the class is used as the return type of a 
public method or as the type of a parameter to a public method. In this case, 
the type has to be public or the public method can’t be used by client code. 
Class studentCollection assumes that the struct type studentRecord will be sepa-
rately declared, but we could make it part of the class as well. If we did, we 
would have to declare it in the public section.

Now we are ready to implement our class methods, starting with the con-
structor. Unlike our previous example, we have only the default constructor 
here, not a constructor that takes a parameter to initialize our data member. 
The whole point of our class is to hide the details of our linked list, so we don’t 
want the client even thinking about our _listHead, let alone manipulating it. 
All we need to do in our default constructor is set the head pointer to NULL:

studentCollection::studentCollection() {
    _listHead = NULL;
}
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Adding a Node
We move on to addRecord. Because nothing in the problem description 
requires us to keep student records in any particular order, we can directly 
adapt the addRecord function from Chapter 4 for use here.

void studentCollection::addRecord(studentRecord newStudent) {
    studentNode * newNode = new studentNode;
    newNode->studentData = newStudent;
    newNode->next = _listHead;
    _listHead = newNode;
}

There are only two differences between this code and our blueprint 
function. Here, we need only one parameter in our parameter list , which 
is the studentRecord object we’re going to add to our collection. This encapsu-
lates all of the data for a student, which reduces the number of parameters 
needed. We also don’t need to pass a list head pointer because that is already 
stored in our class as _listHead and is referenced directly when needed. As 
with the addRecord function from Chapter 4, we create a new node , copy 
the new student data into the new node , point the next field of the new 
node at the previous first node in the list , and finally point _listHead at 
the new node . Normally I recommend drawing a diagram for all pointer 
manipulations, but since this is the same manipulation we were already doing, 
we can reference our previously drawn diagram.

Now we can turn our attention to the last of the three member functions, 
recordWithNumber. That name is a bit of a mouthful, and some programmers 
might have chosen retrieveRecord or something similar. Following my previously 
stated naming rules, however, I decided to use a noun because this method 
returns a value. This method will be similar to averageRecord in that it needs to 
traverse the list; the difference in this case is that we can stop once we find 
the matching student record.

studentRecord studentCollection::recordWithNumber(int idNum) {
studentNode * loopPtr = _listHead;
while (loopPtr->studentData.studentID() != idNum) {

        loopPtr = loopPtr->next;
    }
return loopPtr->studentData;

}

In this function, we initialize our loop pointer to the head of the list  
and traverse the list as long as we haven’t seen the desired ID number . 
Finally, arriving at the desired node, we return the entire matching record as 
the value of the function . This code looks good, but as always, we have to 
consider potential special cases. The case we always consider when dealing 
with linked lists is an initially NULL head pointer. Here, that definitely causes a 
problem, as we are not checking for that and the code will blow up when we 
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try to dereference loopPtr upon first entering the loop. More generally, though, 
we have to consider the possibility that the ID number provided by the client 
code doesn’t actually match any of the records in our collection. In that case, 
even if _listHead is not NULL, loopPtr will eventually become NULL when we reach 
the end of the list. 

So the general issue is that we need to stop the loop if loopPtr becomes 
NULL. That’s not difficult, but then, what do we return in this situation? We 
certainly can’t return loopPtr->studentData because loopPtr will be NULL. Instead, 
we can build and return a dummy studentRecord with obvious invalid values 
inside.

studentRecord studentCollection::recordWithNumber(int idNum) {
    studentNode * loopPtr = _listHead;
    while (loopPtr != NULL && loopPtr->studentData.studentID() != idNum) {
        loopPtr = loopPtr->next;
    }
    if (loopPtr == NULL) {

studentRecord dummyRecord(-1, -1, "");
        return dummyRecord;
    } else {
        return loopPtr->studentData;
    }
}

In this version of the method, if our loop pointer is NULL when the loop is 
over , we create a dummy record with a null string for a name and –1 values 
for the grade and student ID  and return that. Back in the loop, we are 
checking for that NULL loopPtr condition, which again can happen either because 
there is no list to traverse or because we have traversed it with no success. One 
key point here is that the loop’s conditional expression  is a compound 
expression with loopPtr != NULL first. This is absolutely required. C++ uses a 
mechanism for evaluating compound Boolean expressions known as short-
circuit evaluation; put simply, it doesn’t evaluate the right half of a compound 
Boolean expression when the overall value of the expression is already known. 
Because && represents a logical Boolean and, if the left side of an && expres-
sion evaluates to false, the overall expression must also be false, regardless of 
the right-side evaluation. For efficiency, C++ takes advantage of this fact, skip-
ping the evaluation of the right side of an && expression when the left side is 
false (for an ||, logical or, the right side is not evaluated when the left side is 
true, for the same reason). Therefore, when loopPtr is NULL, the expression 
loopPtr != NULL evaluates to false, and the right side of the && is never evalu-
ated. Without short-circuit evaluation, the right side would be evaluated, and 
we would be dereferencing a NULL pointer, crashing the program.

The implementation avoids the potential crash of the first version, but 
we need to be aware that it places a good deal of trust in the client code. 
That is, the function that calls this method is responsible for checking the 
studentRecord that comes back and making sure it’s not the dummy record 
before further processing. If you’re like me, this makes you a little uneasy.
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Rearranging the List
The removeRecord method is similar to recordWithNumber in that we must traverse 
the list to find the node we’re going to remove from the list, but there’s a lot 
more to it. Removing a node from a list requires care to keep the remaining 
nodes in the list linked. The simplest way to sew up the hole we will have cre-
ated is to link the node that came before the removed node to the node that 
came after. We don’t need a function outline because we already have a func-
tion prototype in the class declaration, so we just need a test case:

studentCollection s;
studentRecord stu3(84, 1152, "Sue");
studentRecord stu2(75, 4875, "Ed");
studentRecord stu1(98, 2938, "Todd");
s.addRecord(stu3);
s.addRecord(stu2);
s.addRecord(stu1);

 s.removeRecord(4875);

Here we’ve created a studentCollection object s, as well as three studentRecord 
objects, each of which is added to our collection. Note that we could reuse 
the same record, changing the values between the calls to addRecord, but 
doing it this way simplifies our test code. The last line in the test is the call 
to removeRecord , which in this case is going to remove the second record, 
the one for the student named “Ed.” Using the same style of pointer dia-
grams used in Chapter 4, Figure 5-1 shows the state of memory before and 
after this call.

In Figure 5-1 (a), we see the linked list that was created by our test code. 
Note that because we’re using a class, our diagram conventions are a little 
skewed. On the left side of our stack/heap division, we have _listHead, which 
is the private data member inside our studentCollection object s, and idNum, 
which is the parameter to removeRecord. On the right side is the list itself, out 
in the heap. Remember that addRecord puts the new record at the beginning 
of the list, so the records are in the opposite order from how they were added 
in the test code. The middle node, "Ed", has the ID number that matches the 
parameter, 4875, so it will be removed from the list. Figure 5-1 (b) shows the 

E X C E P T I O N S

There is another option. C++, as well as many other programming languages, offers 
a mechanism known as an exception, which allows a function, either a method or a 
general function, to unambiguously signal an error status back to the caller. It’s 
designed for the kind of situation we have in this method, where there isn’t a good 
answer for what to return when the input is bad. Exception syntax is more than we 
can get into here, and unfortunately, the way exceptions are implemented in C++, 
they don’t solve the trust problem explained in the previous paragraph. 
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result of the call. The first node in the list, that of "Todd", now points to what 
was the third node in the list, that of "Sue". The "Ed" node is no longer linked 
into the larger list and has been deleted.

Figure 5-1: “Before” and “after” states for the removeRecord test case

Now that we know what effect the code should have, we can start to 
write it. Since we know we need to find the node with the matching ID 
number, we could start with the while loop from recordWithNumber. When 
that loop is complete, we would have a pointer to the node we needed to 
remove. Unfortunately, we need more than that to complete the removal. 
Look at Figure 5-1; in order to close the hole and maintain the linked list, 
we need to change the next field of the "Todd" node. If all we have is a pointer 
to the "Ed" node, there is no way to reference the "Todd" node because each 
node in the linked list references its successor, not its predecessor. (Because 
of situations like this, some linked lists link in both directions; these are known 
as doubly linked lists, but they are rarely needed.) So in addition to a pointer 
to the node to be removed (which will be called loopPtr if we adapt the code 
from the previous function), we need a pointer to the node immediately pre-
vious: Let’s call this pointer trailing. Figure 5-2 shows this concept applied to 
our sample case.
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Figure 5-2: The pointers required to remove the node specified by idNum

With loopPtr referencing the node we’re removing and trailing referenc-
ing the previous node, we can remove the desired node and keep the list 
together. 

void studentCollection::removeRecord(int idNum) {
    studentNode * loopPtr = _listHead;
studentNode * trailing = NULL;

    while (loopPtr != NULL && loopPtr->studentData.studentID() != idNum) {
       trailing = loopPtr;
        loopPtr = loopPtr->next;
    }
if (loopPtr == NULL) return;
trailing->next = loopPtr->next;

 delete loopPtr;
}

The first part of this function is like that of recordWithNumber, except that 
we declare our trailing pointer  and, inside the loop, we assign the old 
value of loopPtr to trailing  before advancing loopPtr to the next node. In 
this way, trailing is always one node behind loopPtr. Because of our work with 
the previous function, we are already on guard against one special case. There-
fore, when the loop is over, we check to see whether loopPtr is NULL. If so, it 
means we never found a node with the desired ID number, and we immedi-
ately return . I call a return statement that appears in the middle of a function 
“getting out of Dodge.” Some programmers object to this because functions 
with multiple exit points can be more difficult to read. The alternative in this 
case, though, is another level of nesting for the if statements that follow, and 
I would rather just get out of Dodge.

Having determined that there is a node to remove, it’s time to remove it. 
From our diagram, we see that we need to set the next field of the trailing node 
to point to the node currently pointed to by the next field of the loopPtr node . 
Then we can safely delete the node pointed to by loopPtr .

That works for our test case, but as always, we need to check for potential 
special cases. We’ve already handled the possibility that idNum doesn’t appear 
in any of the records in our collection, but is there another possible issue? 
Looking at our test case, would anything change if we tried to delete the first 
or third node rather than the middle node? Testing and hand-checking shows 
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no issues with the third (last) node. The first node, however, does cause trouble 
because in this situation, there is no previous node for trailing to point to. 
Instead, we must manipulate _listHead itself. Figure 5-3 shows the situation 
after the while loop ends.

Figure 5-3: The situation prior to removing the first node in the list

In this situation, we need to repoint _listHead to the former second node 
in the list, the one for "Ed". Let’s rewrite our method to handle the special case.

void studentCollection::removeRecord(int idNum) {
    studentNode * loopPtr = _listHead;
    studentNode * trailing = NULL;
    while (loopPtr != NULL && loopPtr->studentData.studentID() != idNum) {
        trailing = loopPtr;
        loopPtr = loopPtr->next;
    }
    if (loopPtr == NULL) return;
if (trailing == NULL) {

_listHead = _listHead->next;
    } else {
        trailing->next = loopPtr->next;
    }
    delete loopPtr;
}

As you can see, both the conditional test  and the code to handle the 
special case  are straightforward because we have carefully analyzed the 
situation before writing the code. 

Destructor
With the three methods specified by the problem implemented, we might 
think that our studentCollection class is complete. However, as it stands, it has 
serious problems. The first is that the class lacks a destructor. This is a special 
method that is called when the object goes out of scope (when the function 
that declared the object completes). When a class has no dynamic data, it 
typically doesn’t need a destructor, but if you have the former, you definitely 
need the latter. Remember that we have to delete everything we have allocated 
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with new to avoid memory leaks. If an object of our studentCollection class has 
three nodes, each of those nodes needs to be deallocated. Fortunately, this is 
not too difficult. We just need to traverse our linked list, deleting as we go. 
Instead of doing this directly, though, let’s write a helper method that deletes 
all the nodes in a studentList. In the private section of our class, we add the 
declaration:

void deleteList(studentList &listPtr);

The code for the method itself would be:

void studentCollection::deleteList(studentList &listPtr) {
    while (listPtr != NULL) {
        studentNode * temp = listPtr;
        listPtr = listPtr->next;
        delete temp;
    }
}

The traversal copies the pointer to the current node to a temporary vari-
able , advances the current node pointer , and then deletes the node 
pointed to by the temporary variable . With this code in place, we can code 
the destructor very simply. First, we add the destructor to the public section 
of our class declaration:

~studentCollection();

Note that like a constructor, the destructor is specified using the name 
of the class, and there is no return type. The tilde before the name distin-
guishes the destructor from the constructors. The implementation is as 
follows:

studentCollection::~studentCollection() {
    deleteList(_listHead);
}

The code in these methods is straightforward, but it’s important to test 
the destructor. Although a poorly written destructor could crash your pro-
gram, many destructor problems don’t result in crashes, only memory leaks, 
or worse, inexplicable program behavior. Therefore, it’s important to test 
the destructor using your development environment’s debugger so that you 
can see that the destructor is actually calling delete on each node.

Deep Copy
Another serious problem remains. Back in Chapter 4, we briefly discussed 
the concept of cross-linking, where two pointer variables had the same value. 
Even though the variables themselves were distinct, they pointed to the same 
data structure; therefore, modifying the structure of one variable modified 
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them both. This problem can easily occur with classes that incorporate 
dynamically allocated memory. To see why this can be such a problem, con-
sider the following elementary C++ code sequence:

int x = 10;
int y = 15;
x = y;

 x = 5;

Suppose I asked you what effect the last statement  had on the value 
of the variable y. You would probably wonder whether I had misspoken. 
The last statement wouldn’t have any effect on y at all, only x. But now con-
sider this:

studentCollection s1;
studentCollection s2;
studentRecord r1(85, 99837, "John");
s2.addRecord(r1);
studentRecord r2(77, 4765, "Elsie");
s2.addRecord(r2);

 s1 = s2;
 s2.removeRecord(99837);

Suppose I ask you what effect the last statement  had on s1. Unfortunately, 
it does have an effect. Although s1 and s2 are two different objects, they are 
no longer entirely separate objects. By default, when one object is assigned to 
another, as we assign s2 to s1 here , C++ performs what is known as a shallow 
copy. In a shallow copy, each data member of one object is directly assigned to 
the other. So if _listHead, our only data member, were public, s1 = s2 would 
be the same as s1._listHead = s2._listHead. This leaves the _listHead data 
member of both objects pointing at the same place in memory: the node for 
"Elsie", which points at the other node, the one for "John". Therefore, when 
the node for "John" is removed, it’s apparently removed from two lists because 
there is actually only one list. Figure 5-4 shows the situation at the end of 
the code.

Figure 5-4: Shallow copy results in cross-linking; deleting "John" node from one list deletes 
from both.
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As quirky as that is, though, it could actually have been much worse. 
What if the last line of the code had removed the first record, the "Elsie" 
node? In that case, the _listHead inside s2 would have been updated to point 
to "John", and the "Elsie" node would have been deleted. The _listHead inside 
s1, however, would still point to the deleted "Elsie" node, a dangerous dan-
gling reference, as shown in Figure 5-5.

Figure 5-5: Removal from s2 causing a dangling reference in s1

The solution to this issue is a deep copy, which means we don’t just copy 
the pointer to the structure but rather make copies of everything in the struc-
ture. In this case, it means copying all of the nodes in the list to make a true 
list copy. As before, let’s start by making a private helper method, in this case, 
one that copies a studentList. The declaration in the class’s private section 
looks like this:

studentList copiedList(const studentList original);

As before, I’ve chosen a noun for a method that returns a value. The 
implementation for the method is as follows:

 studentCollection::studentList studentCollection::copiedList(const studentList original) {
if (original == NULL) {

        return NULL;
    }
    studentList newList = new studentNode;
newList->studentData = original->studentData;
studentNode * oldLoopPtr = original->next;
studentNode * newLoopPtr = newList;

    while (oldLoopPtr != NULL) {
newLoopPtr->next = new studentNode;

        newLoopPtr = newLoopPtr->next;
        newLoopPtr->studentData = oldLoopPtr->studentData;
        oldLoopPtr = oldLoopPtr->next;
    }
newLoopPtr->next = NULL;
return newList;

}

listHead
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9983785 "John" NULLlistHead
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There’s a lot going on in this method, so let’s take it step by step. On a 
syntax note, when specifying the return type in the implementation, we have 
to prefix the name of the class . Otherwise, the compiler won’t know what 
type we are talking about. (Inside the method, that’s not necessary because 
the compiler already knows what class the method is a part of—a bit confus-
ing!) We check to see whether the incoming list is empty. If so, we get out of 
Dodge . Once we know there is a list to be copied, we copy the first node’s 
data prior to the loop  because for that node we have to modify our new 
list’s head pointer.

We then set up two pointers for tracking through the two lists. The 
oldLoopPtr  traverses the incoming list; it’s always going to point to the 
node we are about to copy. The newLoopPtr  traverses the new, copied list, 
and it always points to the last node we created, which is the node prior to 
where we’ll add the next node. Just as in the removeRecord method, we need 
a kind of trailing pointer here. Inside the loop , we create a new node, 
advance newLoopPtr to point to it, copy the data from the old node to the new, 
and advance oldLoopPtr. After the loop, we terminate the new list by assigning 
NULL to the next field of the last node  and return the pointer to the new 
list . 

So how does this helper method solve the issue we saw previously? 
By itself, it doesn’t. But with this code in place, we can now overload the 
assignment operator. Operator overloading is a feature of C++ that allows us to 
change what the built-in operators do with certain types. In this case, we want 
to overload the assignment operator (=), so that instead of the default shal-
low copy, it calls our copiedList method to perform a deep copy. In the public 
section of our class, we add:

 studentCollection& operator=(const studentCollection & rhs);

The operator we are overloading is specified by naming the method 
using the keyword operator followed by the operator we want to overload . 
The name I’ve chosen for the parameter (rhs ) is a common choice for 
operator overloads because it stands for right-hand side. This helps the pro-
grammer keep things straight. So in the assignment statement that started 
this discussion, s2 = s1, the object s1 would be the right-hand side of the 
assignment operation, and s2 would be the left-hand side. We reference the 
right-hand side through the parameter, and we reference the left-hand side 
by directly accessing class members, the way we would with any other method 
of the class. So our task in this case is to create a list pointed to by _listHead 
that is a copy of the list pointed to by the _listHead of rhs. This will have the 
effect in the call s2 = s1 of making s2 a true copy of s1.

The type of the parameter is always a constant reference to the class in 
question ; the return type is always a reference to the class . You’ll see 
why the parameter is a reference shortly. You might wonder why the method 
returns anything, since we are manipulating the data member directly in the 
method. It’s because C++ allows chained assignments, like s3 = s2 = s1, in 
which the return value of one assignment becomes the parameter of the next.
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Once all of the syntax is understood, the code for the assignment opera-
tor is quite direct:

studentCollection& studentCollection::operator=(const studentCollection &rhs) {
if (this != &rhs) {

       deleteList(_listHead);
       _listHead = copiedList(rhs._listHead);
    }
return *this;

}

To avoid a memory leak, we must first remove all of the nodes from the 
left-hand side list . (It is for this purpose that we write deleteList as a helper 
method rather than including its code directly in the destructor.) With the 
previous left-hand list deleted, we copy the right-hand list using our other 
helper method . Before performing either of these steps, though, we check 
that the object on the right-hand side is different from the object on the left-
hand side (that is, it’s not something like s1 = s1) by checking whether the 
pointers are different . If the pointers are identical, there’s no need to do 
anything, but this is not just a matter of efficiency. If we performed the deep 
copy on identical pointers, when we delete the nodes currently in the left-
hand side list, we would also be deleting the nodes in the right-hand side list. 
Finally, we return a pointer to the left-hand side object ; this happens 
whether we actually copied anything or not because although a statement 
like s2 = s1 = s1 is screwy, we still would like it to work if someone tries it.

As long as we have our list-copying helper method, we should also create 
a copy constructor. This is a constructor that takes another object of the same 
class as an object. The copy constructor can be invoked explicitly whenever 
we need to create a duplicate of an existing studentCollection, but copy con-
structors are also invoked implicitly whenever an object of that class is passed 
as a value parameter to a function. Because of this, you should consider pass-
ing object parameters as const references instead of value parameters unless 
the function receiving the object needs to modify the copy. Otherwise, your 
code could be doing a lot of work unnecessarily. Consider a student collec-
tion of 10,000 records, for example. The collection could be passed as a 
reference, a single pointer. Alternatively, it could invoke the copy construc-
tor for a long traversal and 10,000 memory allocations, and this local copy 
would then invoke the destructor at the end of the function with another 
long traversal and 10,000 deallocations. This is why the right-hand side param-
eter to the assignment operator overload uses a const reference parameter. 

To add the copy constructor to our class, first we add its declaration to 
our class declaration in the public section.

studentCollection(const studentCollection &original);

As with all constructors, there is no return type, and as with the over-
loaded assignment operator, the parameter is a const reference to our class. 
The implementation is easy because we already have the helper method.
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studentCollection::studentCollection(const studentCollection &original) {
    _listHead = copiedList(original._listHead);
}

Now we can make a declaration like this:

studentCollection s2(s1);

This declaration has the effect of declaring s2 and copying the nodes of 
s1 into it.

The Big Picture for Classes with Dynamic Memory
We’ve really done a lot to this class since completing the methods specified 
by the problem description, so let’s take a moment to review. Here’s what 
our class declaration looks like now.

class studentCollection {
private:
    struct studentNode {
        studentRecord studentData;
        studentNode * next;
    };
public:
    studentCollection();
    ~studentCollection();
    studentCollection(const studentCollection &original);
    studentCollection& operator=(const studentCollection &rhs);
    void addRecord(studentRecord newStudent);
    studentRecord recordWithNumber(int idNum);
    void removeRecord(int idNum);
private:
    typedef studentNode * studentList;
    studentList _listHead;
    void deleteList(studentList &listPtr);
    studentList copiedList(const studentList original);
};

The lesson here is that new pieces are required when creating a class 
with dynamic memory. In addition to the features of our basic class frame-
work—private data, a default constructor, and methods to send data in and 
out of the object—we have to add additional methods to handle the alloca-
tion and cleanup of dynamic memory. At a minimum, we should add a copy 
constructor and a destructor and also overload the assignment operator if 
there’s any chance someone would use it. The creation of these additional 
methods can often be facilitated by creating helper methods to copy or 
delete the underlying dynamic data structure.

This may seem like a lot of work, and it can be, but it’s important to note 
that everything you are adding to the class is something you need to deal with 
anyway. In other words, if we didn’t have a class for our linked-list collection 
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of student records, we’re still responsible for deleting the nodes in the list 
when we we’re through with them. We would still have to be wary of cross-
linking, still have to traverse through a list and copy node by node if we wanted 
a true copy of the original list, and so on. Putting everything into the class 
structure is only a little more work up front, and once everything works, the 
client code can ignore all the memory allocation details. In the end, encapsu-
lation and information hiding make dynamic data structures much easier to 
work with. 

Mistakes to Avoid

We’ve talked about how to create a good class in C++, so let’s round off the 
discussion by talking about a couple of common pitfalls you should avoid.

The Fake Class
As I mentioned at the beginning of this chapter, I think that C++, as a hybrid 
language that includes both the procedural and the object-oriented paradigms, 
is a great language for learning object-oriented programming because the 
creation of a class is always a positive choice on the part of the programmer. 
In a language like Java, the question is never, “Should I make a class?” but 
rather, “How am I going to put this into a class?” The requirement to put 
everything into a class structure results in what I call a fake class, a class with-
out a coherent design that is correct syntactically but has no real meaning. 
The word class as it is used in programming is derived from the sense of the 
English word meaning a group of things with common attributes, and a good 
C++ class meets this definition.

Fake classes can happen for several reasons. One type occurs because the 
programmer really wants to use global variables, not for any defensible rea-
son (such reasons are rare, though they do exist) but out of laziness—just to 
avoid passing parameters from function to function. While the programmer 
knows that widespread use of global variables is considered terrible style, he 
or she thinks the loophole has been found. All or most of the functions of 
the program are shoveled into a class, and the variables that would have been 
global are now data members of the class. The main function of the program 
simply creates one object of the fake class and invokes some “master” method 
in the class. Technically, the program uses no global variables, but the fake 
class means that the program has all of the same defects as one that does.

Another type of fake class occurs because the programmer just assumes 
that object-oriented programming is always “better” and forces it into situa-
tions where it doesn’t apply. In these cases, the programmer often creates a 
class that encapsulates very specific functionality that only makes sense in the 
context of the original program for which it is written. There are two ways to 
test whether you are writing this type of fake class. The first is by asking, “Can 
I give the class a specific and reasonably short name?” If you find yourself with 
a name like PayrollReportManagerAndPrintSpooler, you might have a problem. 
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The other test asks, “If I were to write another program with similar functional-
ity, can I imagine how the class could be reused, with only small modifications? 
Or would it have to be dramatically rewritten?”

Even in C++, a certain number of fake classes are inevitable, for example, 
because we have to encapsulate data for use in collection classes. Such classes, 
however, are usually small and basic. If we can avoid elaborate fake classes, 
our code will improve. 

Single-Taskers
If you’ve ever seen the television show Good Eats, you know that host Alton 
Brown spends a lot of time discussing how you should outfit your kitchen for 
maximum efficiency. He often rails against kitchen gadgets he calls single-
taskers, by which he means tools that do one task well but don’t do anything 
else. In writing our classes, we should strive to make them as general as pos-
sible, consistent with including all the specific functionality required for our 
program.

One way of doing this is with template classes. This is an advanced sub-
ject with a somewhat arcane syntax, but it allows us to make classes where one 
or more of the data members has a type that is specified when an object of 
the class is created. Template classes allow us to “factor out” general func-
tionality. For example, our studentCollection class contains a lot of code that 
is common to any class that encapsulates a linked list. We could instead make 
a template class for a general linked list, such that the type of data within the 
list nodes is specified when the object of the template class is created, rather 
than being hardwired as a studentRecord. Then our studentCollection class would 
have an object of the template linked list class as a data member, rather than 
a list head pointer, and would no longer manipulate the linked list directly.

Template classes are beyond the scope of this book, but as you develop 
your abilities as a class designer, you should always strive to make classes that 
are multitaskers. It’s a great feeling when you discover a current problem can 
be solved using a class you wrote previously, long before you knew the cur-
rent problem existed.

Exercises

You know what I’m about to say, don’t you? Go ahead and try some!

5-1. Let’s try implementing a class using the basic framework. Consider a class to 
store the data for an automobile. We’ll have three pieces of data: a manufacturer 
name and model name, both strings, and a model year, an integer. Create a 
class with get/set methods for each data member. Make sure you make good 
decisions concerning details like member names. It’s not important that you 
follow my particular naming convention. What’s important is that you think 
about the choices you make and are consistent in your decisions.
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5-2. For our automobile class from the previous exercise, add a support method 
that returns a complete description of the automobile object as a formatted 
string, such as, "1957 Chevrolet Impala". Add a second support method that 
returns the age of the automobile in years.

5-3. Take the variable-length string functions from Chapter 4 (append, concatenate, 
and characterAt) and use them to create a class for variable-length strings, 
making sure to implement all necessary constructors, a destructor, and an 
overloaded assignment operator.

5-4. For the variable-length string class of the previous exercise, replace the 
characterAt method with an overloaded [] operator. For example, if myString 
is an object of our class, then myString[1] should return the same result as 
myString.characterAt(1).

5-5. For the variable-length string class of the previous exercises, add a remove 
method that takes a starting position and a number of characters and removes 
that many characters from the middle of the string. So myString.remove(5,3) 
would remove three characters starting at the fifth position. Make sure your 
method behaves when the value of either of the parameters is invalid.

5-6. Review your variable-length string class for possible refactoring. For example, 
is there any common functionality that can be separated into a private 
support method?

5-7. Take the student record functions from Chapter 4 (addRecord and averageRecord) 
and use them to create a class representing a collection of student records, as 
before, making sure to implement all necessary constructors, a destructor, 
and an overloaded assignment operator.

5-8. For the student record collection class of the previous exercise, add a method 
RecordsWithinRange that takes a low grade and a high grade as parameters and 
returns a new collection consisting of the records in that range (the original 
collection is unaffected). For example, myCollection.RecordsWithinRange(75, 80) 
would return a collection of all records with grades in the range 75–80 inclusive.
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S O L V I N G  P R O B L E M S  
W I T H R E C U R S I O N

This chapter is about recursion, which is when 
a function directly or indirectly calls itself. 

Recursive programming looks as if it should 
be simple. Indeed, a good recursive solution 

often has a simple, almost elegant appearance. How-
ever, very often the route to that solution is anything
but simple. This is because recursion requires us to think differently than 
we do with other types of programming. When we process data using loops, 
we’re thinking about processing in a sequential manner, but when we pro-
cess data using recursion, our normal sequential thinking process won’t 
help. Many good, fledgling programmers struggle with recursion because 
they can’t see a way to apply the problem-solving skills they’ve learned to 
recursive problems. In this chapter, we’ll discuss how to attack recursive prob-
lems systematically. The answer is using what we will call the Big Recursive Idea, 
henceforth referred to as the BRI. It’s an idea that’s so straightforward it will 
seem like a trick, but it works.
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Review of Recursion Fundamentals

There is not much to know about the syntax of recursion; the difficulty arises 
when you try to use recursion to solve problems. Recursion occurs any time a 
function calls itself, so the syntax of recursion is just the syntax of a function 
call. The most common form is direct recursion, when a call to a function occurs 
in the body of that same function. For example:

int factorial(int n) {
  if (n == 1) return 1;
   else return n * factorial(n - 1);
}

This function, which is a common but highly inefficient demonstration 
of recursion, computes the factorial of n. For example, if n is 5, then the fac-
torial is the product of all the numbers from 5 to 1, or 120. Note that in some 
cases no recursion occurs. In this function, if the parameter is 1, we simply 
return a value directly without any recursion , which is known as a base case. 
Otherwise, we make the recursive call .

The other form of recursion is indirect recursion—for example, if function 
A calls function B, which later calls function A. Indirect recursion is rarely 
used as a problem-solving technique, so we won’t cover it here. 

Head and Tail Recursion

Before we discuss the BRI, we need to understand the difference between 
head recursion and tail recursion. In head recursion, the recursive call, when it 
happens, comes before other processing in the function (think of it happen-
ing at the top, or head, of the function). In tail recursion, it’s the opposite—
the processing occurs before the recursive call. Choosing between the two 
recursive styles may seem arbitrary, but the choice can make all the differ-
ence. To illustrate this difference, let’s look at two problems.

P R O B L E M :  H O W  M A N Y  P A R R O T S ?

Passengers on the Tropical Paradise Railway (TPR) look forward to seeing dozens of 
colorful parrots from the train windows. Because of this, the railway takes a keen interest 
in the health of the local parrot population and decides to take a tally of the number of 
parrots in view of each train platform along the main line. Each platform is staffed by a 
TPR employee (see Figure 6-1), who is certainly capable of counting parrots. Unfortu-
nately, the job is complicated by the primitive telephone system. Each platform can call 
only its immediate neighbors. How do we get the parrot total at the main line terminal?
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Figure 6-1: The employees at the five stations can communicate only with their immediate 
neighbors.

Let’s suppose that there are 7 parrots by Art at the main terminal, 5 parrots 
by Belinda, 3 parrots by Cory, 10 parrots by Debbie, and 2 parrots by Evan at 
the last station. The total number of parrots is thus 27. The question is, how 
are the employees going to work together to communicate this total to Art? 
Any solution to this problem is going to require a chain of communications 
all the way from the main terminal to the end of the line and back. The staff 
member at each platform will be requested to count parrots and will then 
report his or her observations. Even so, there are two distinct approaches to 
this communications chain, and those approaches correspond to the head 
recursion and tail recursion techniques in programming.

Approach 1
In this approach, we keep a running total of the parrots as we progress 
through the outbound communications. Each employee, when making the 
request of the next employee down the line, passes along the number of par-
rots seen so far. When we get to the end of the line, Evan will be the first to 
discover the parrot total, which he will pass up to Debbie, who will pass it to 
Cory, and so on (as shown in Figure 6-2). 

Figure 6-2: Numbering of steps taken in Approach 1 for the parrot-counting problem

1. ART begins by counting the parrots around his platform. He counts 
7 parrots.

2. ART to BELINDA: “There are 7 parrots here at the main terminal.” 

3. BELINDA counts 5 parrots around her platform for a running total of 12.

4. BELINDA to CORY: “There are 12 parrots around the first two stations.”

5. CORY counts 3 parrots.

Art Belinda Cory Debbie Evan

Art Belinda Cory Debbie Evan

3 5 7 9
2 4 6 8

1

13 12 11 10
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6. CORY to DEBBIE: “There are 15 parrots around the first three stations.”

7. DEBBIE counts 10 parrots.

8. DEBBIE to EVAN: “There are 25 parrots around the first four stations.”

9. EVAN counts 2 parrots and discovers that the total number of parrots is 27.

10. EVAN to DEBBIE: “The total number of parrots is 27.”

11. DEBBIE to CORY: “The total number of parrots is 27.”

12. CORY to BELINDA: “The total number of parrots is 27.”

13. BELINDA to ART: “The total number of parrots is 27.”

This approach is analogous to tail recursion. In tail recursion, the recur-
sive call happens after the processing—the recursive call is the last step in the 
function. In the communications chain above, note that the “work” of the 
employees—the parrot counting and summation—happens before they signal 
the next employee down the line. All of the work happens on the outbound 
communications chain, not the inbound chain. Here are the steps each 
employee follows:

1. Count the parrots visible from the station platform.

2. Add this count to the total given by the previous station.

3. Call the next station to pass along the running sum of parrot counts.

4. Wait for the next station to call with the total parrot count, and then pass 
this total up to the previous station.

Approach 2
In this approach, we sum the parrot counts from the other end. Each employee, 
when contacting the next station down the line, requests the total number 
of parrots from that station onward. The employee then adds the number of 
parrots at his or her own station and passes this new total up the line (as shown 
in Figure 6-3). 

Figure 6-3: Numbering of steps taken in Approach 2 for the parrot-counting problem

1. ART to BELINDA: “What’s the total number of parrots from your station 
to the end of the line?” 

2. BELINDA to CORY: “What’s the total number of parrots from your station 
to the end of the line?”

Art Belinda Cory Debbie Evan

1 2 3 4

12 10 8 6
11 9 7 513
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3. CORY to DEBBIE: “What’s the total number of parrots from your station 
to the end of the line?”

4. DEBBIE to EVAN: “What’s the total number of parrots from your station 
to the end of the line?”

5. EVAN is the end of the line. He counts 2 parrots.

6. EVAN to DEBBIE: “The total number of parrots here at the end is 2.”

7. DEBBIE counts 10 parrots at her station, so the total from her station to 
the end is 12.

8. DEBBIE to CORY: “The total number of parrots from here to the end 
is 12.”

9. CORY counts 3 parrots.

10. CORY to BELINDA: “The total number of parrots from here to the end 
is 15.”

11. BELINDA counts 5 parrots.

12. BELINDA to ART: “The total number of parrots from here to the end 
is 20.”

13. ART counts 7 parrots at the main terminal, making a total of 27.

This approach is analogous to head recursion. In head recursion, the 
recursive call happens before the other processing. Here, the call to the next 
station happens first, before counting the parrots or the summation. The 
“work” is postponed until after the stations down the line have reported their 
totals. Here are the steps each employee follows:

1. Call the next station.

2. Count the parrots visible from the station platform.

3. Add this count to the total given by the next station.

4. Pass the resulting sum up to the previous station.

You may have noticed two practical effects of the different approaches. 
In the first approach, eventually all of the station employees will learn the 
overall parrot total. In the second approach, only Art, at the main terminal, 
learns the full total—but note that Art is the only employee who needs the 
full total. 

The other practical effect will become more important for our analysis 
when we transition the discussion to actual programming code. In the first 
approach, each employee passes along the “running total” to the next station 
down the line when making the request. In the second approach, the employee 
simply makes the request for information from the next station, without passing 
any data down the line. This effect is typical of the head recursion approach. 
Because the recursive call happens first, before any other processing, there is 
no new information to give the recursive call. In general, the head recursion 
approach allows the minimum set of data to be passed to the recursive call.  
Now let’s look at another problem.
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P R O B L E M :  W H O ’ S  O U R  B E S T  C U S T O M E R ?

The manager of DelegateCorp needs to determine which of eight customers produces 
the most revenue for his company. Two factors complicate this otherwise simple task. 
First, determining the total revenue for a customer requires going through that customer’s 
whole file and tallying numbers on dozens of orders and receipts. Second, the employees 
of DelegateCorp, as the name suggests, love to delegate, and each employee passes 
work along to someone at a lower level whenever possible. To keep the situation from 
getting out of hand, the manager enforces a rule: When you delegate, you must do 
some portion of the work yourself, and you have to give the delegated employee less 
work than you were given.

Tables 6-1 and 6-2 identify the employees and customers of DelegateCorp. 

Following the company rule on delegating work, here’s what will happen 
to the six customer files. The manager will take one file and determine how 
much revenue that customer has generated for the company. The manager 
will delegate the other five files to the vice manager. The vice manager will 
process one file and pass the other four to the associate manager. This pro-
cess continues until we reach the sixth employee, the intern, who is handed 
one file and must simply process it, with no further delegation possible. 

Figure 6-4 describes the lines of communication and the division of labor. 
As with the previous example, though, there are two distinct approaches to 
the communications chain.

Table 6-1: DelegateCorp Employee Titles and Rank

Title Rank

Manager 1

Vice manager 2

Associate manager 3

Assistant manager 4

Junior manager 5

Intern 6

Table 6-2: DelegateCorp Customers

Customer Number Revenue

#0001 $172,000

#0002 $68,000

#0003 $193,000

#0004 $13,000

#0005 $256,000

#0006 $99,000
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Figure 6-4: The numbering of steps in Approach 1 (a) and Approach 2 (b) 
for finding the highest-revenue customer

Approach 1
In this approach, when delegating the remaining files, the employee also 
passes along the highest amount of revenue seen so far. This means that 
the employee must tally the revenue in one file and compare this to the pre-
vious highest amount seen before delegating the remaining files to another 
employee. Here’s an example of how this would proceed in practice.

1. MANAGER tallies the revenue for customer #0001, which is $172,000.

2. MANAGER to VICE MANAGER: “The highest revenue we have seen so 
far is $172,000, customer #0001. Take these five files and determine the 
overall highest revenue.”

3. VICE MANAGER tallies the revenue for customer #0002, which is $68,000. 
The highest revenue seen so far is still $172,000, customer #0001.
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4. VICE MANAGER to ASSOCIATE MANAGER: “The highest revenue we 
have seen so far is $172,000, customer #0001. Take these four files and 
determine the overall highest revenue.”

5. ASSOCIATE MANAGER tallies the revenue for customer #0003, which is 
$193,000. The highest revenue seen so far is now $193,000, customer #0003.

6. ASSOCIATE MANAGER to ASSISTANT MANAGER: “The highest revenue 
we have seen so far is $193,000, customer #0003. Take these three files 
and determine the overall highest revenue.”

7. ASSISTANT MANAGER tallies the revenue for customer #0004, which is 
$13,000. The highest revenue seen so far is still $193,000, customer #0003.

8. ASSISTANT MANAGER to JUNIOR MANAGER: “The highest revenue 
we have seen so far is $193,000, customer #0003. Take these two files and 
determine the overall highest revenue.”

9. JUNIOR MANAGER tallies the revenue for customer #0005, which is 
$256,000. The highest revenue seen so far is now $256,000, customer #0005.

10. JUNIOR MANAGER to INTERN: “The highest revenue we have seen so 
far is $256,000, customer #0005. Take this remaining file and determine 
the overall highest revenue.”

11. INTERN tallies the revenue for customer #0006, which is $99,000. The 
highest revenue seen so far is still $256,000, customer #0005.

12. INTERN to JUNIOR MANAGER: “The highest revenue of all customers 
is $256,000, customer #0005.”

13. JUNIOR MANAGER to ASSISTANT MANAGER: “The highest revenue 
of all customers is $256,000, customer #0005.”

14. ASSISTANT MANAGER to ASSOCIATE MANAGER: “The highest revenue 
of all customers is $256,000, customer #0005.”

15. ASSOCIATE MANAGER to VICE MANAGER: “The highest revenue of 
all customers is $256,000, customer #0005.”

16. VICE MANAGER to MANAGER: “The highest revenue of all customers 
is $256,000, customer #0005.”

This approach, shown in Figure 6-4 (a), uses the tail recursion technique. 
Each employee processes one customer file and compares the computed 
revenue for that customer against the highest revenue seen so far. Then the 
employee passes the result of that comparison to the subordinate employee. 
The recursion—the passing off of work—happens after the other processing. 
Each employee’s process runs like this:

1. Tally the revenue in one customer file.

2. Compare this total with the highest revenue seen by superiors in other 
customer files.

3. Pass the remaining customer files to a subordinate employee, along with 
the highest revenue amount seen so far.

4. When the subordinate employee returns the highest revenue of all the 
customer files, pass this back to the superior. 
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Approach 2
In this approach, each employee begins by setting aside one file and then pass-
ing the others to the subordinate. In this case, the subordinate isn’t asked to 
determine the highest revenue of all the files, just of the files the subordinate has 
been given. As with the first sample problem, this simplifies the requests. Using 
the same data as the first approach, the conversation would be as follows:

1. MANAGER to VICE MANAGER: “Take these five customer files, and tell 
me the highest revenue.”

2. VICE MANAGER to ASSOCIATE MANAGER: “Take these four customer 
files, and tell me the highest revenue.”

3. ASSOCIATE MANAGER to ASSISTANT MANAGER: “Take these three 
customer files, and tell me the highest revenue.”

4. ASSISTANT MANAGER to JUNIOR MANAGER: “Take these two customer 
files, and tell me the highest revenue.”

5. JUNIOR MANAGER to INTERN: “Take this one customer file, and tell 
me the highest revenue.”

6. INTERN tallies the revenue for customer #0006, which is $99,000. This is 
the only file the INTERN has seen, so that’s the highest revenue.

7. INTERN to JUNIOR MANAGER: “The highest revenue in my files is 
$99,000, customer #0006.”

8. JUNIOR MANAGER tallies the revenue for customer #0005, which is 
$256,000. The highest revenue this employee knows about is $256,000, 
customer #0005.

9. JUNIOR MANAGER to ASSISTANT MANAGER: “The highest revenue 
in my files is $256,000, customer #0005.”

10. ASSISTANT MANAGER tallies the revenue for customer #0004, which 
is $13,000. The highest revenue this employee knows about is $256,000, 
customer #0005.

11. ASSISTANT MANAGER to ASSOCIATE MANAGER: “The highest reve-
nue in my files is $256,000, customer #0005.”

12. ASSOCIATE MANAGER tallies the revenue for customer #0003, which is 
$193,000. The highest revenue this employee knows about is $256,000, 
customer #0005.

13. ASSOCIATE MANAGER to VICE MANAGER: “The highest revenue in 
my files is $256,000, customer #0005.”

14. VICE MANAGER tallies the revenue for customer #0002, which is 
$68,000. The highest revenue this employee knows about is $256,000, 
customer #0005.

15. VICE MANAGER to MANAGER: “The highest revenue in my files is 
$256,000, customer #0005.”

16. MANAGER tallies the revenue for customer #0001, which is $172,000. The 
highest revenue this employee knows about is $256,000, customer #0005.
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This approach, shown in Figure 6-4 (b), uses the head recursion tech-
nique. Each employee still has to tally the revenue in one customer file, but 
that action is postponed until after the subordinate employee determines the 
highest revenue among the remaining files. The process each employee takes 
is as follows:

1. Pass all customer files except one to a subordinate employee.

2. Get the highest revenue of those files back from the subordinate employee.

3. Tally the revenue in the one customer file.

4. Pass the larger of those two revenues to the superior.

As in the “counting parrots” problem, the head recursion technique 
allows each employee to pass the minimum amount of information to the 
subordinate. 

The Big Recursive Idea

We now arrive at the Big Recursive Idea. In fact, if you’ve read through the 
steps of the sample problems, you have already seen the BRI in action. 

How so? Both of the sample problems follow the form of a recursive solu-
tion. Each person in the communications chain performs the same steps on 
a smaller and smaller subset of the original data. It’s important to note, 
however, that the problems involve no recursion at all. 

In the first problem, each railway employee makes a request of the next 
station down the line, and in fulfilling that request, the next employee fol-
lows the same steps as the previous employee. But nothing in the wording of 
the request requires an employee to follow those particular steps. When Art 
called Belinda using Approach 2, for example, he asked her to count the 
total number of parrots from her station to the end of the line. He did not 
dictate a method for discovering this total. If he thought about it, he might 
have realized that Belinda would have to follow the same steps that he him-
self was following, but he doesn’t have to consider this. To complete his task, 
all Art required was for Belinda to provide the correct answer to the question 
he asked.

Likewise, in the second problem, each employee in the management 
chain hands off as much work as possible to a subordinate. The assistant 
manager, for example, may know the junior manager well and expect the 
junior manager to hand all of the files but one to the intern. However, the 
assistant manager has no reason to care whether the junior manager pro-
cesses all of the remaining files or passes some of them off to a subordinate. 
The assistant manager cares only that the junior manager returns the right 
answer. Because the assistant manager is not going to repeat the work of the 
junior manager, the assistant manager simply assumes that the result returned 
by the junior manager is correct and uses that data to solve the overall task 
that the assistant manager received from the associate manager.
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In both problems, when employees make requests of other employees, they 
are concerned with what but not how. A question is handed off; an answer is 
received. This, then, is the Big Recursive Idea: If you follow certain conven-
tions in your coding, you can pretend that no recursion is taking place. You can even 
use a cheap trick (shown below) to move from an iterative implementation to 
a recursive implementation, without explicitly considering how the recursion 
is actually solving the problem. Over time, you will develop an intuitive under-
standing of how recursive solutions work, but before that intuition develops, 
you can craft recursive implementations and be confident in your code. 

Let’s put the concept into practice through a code example. 

P R O B L E M :  C O M P U T I N G  T H E  S U M  
O F  A N  A R R A Y  O F  I N T E G E R S

Write a recursive function that is given an array of integers and the size of the array 
as parameters. The function returns the sum of the integers in the array.

Your first thought may have been that this problem would be trivial to 
solve iteratively. Indeed, let’s start with an iterative solution to this problem:

int iterativeArraySum(int integers[], int size) {
    int sum = 0;
    for (int i = 0; i < size; i++) {
        sum += integers[i];
    }
    return sum;
}

You saw code very similar to this in Chapter 3, so the function should be 
simple to understand. The next step is to write code that is halfway between 
the iterative solution and the final desired recursive solution. We will keep the 
iterative function and add a second function we will refer to as a dispatcher. The 
dispatcher will hand off most of the work to the previously written iterative 
function and use this information to solve the overall problem. To write a 
dispatcher, we have to follow two rules:

1. The dispatcher must completely handle the most trivial case, without 
calling the iterative function. 

2. The dispatcher, when calling the iterative function, must pass a smaller 
version of the problem.

In applying the first rule to this problem, we must decide what the most 
trivial case is. If size is 0, then the function has conceptually been passed a 
“null” array, with a sum of 0. One could also make the argument that the 
most trivial case should be when size is 1. In that case, there would be only 
one number in the logical array, and we could return that number as the 



154 Chapter 6

sum. Either of these interpretations will work, but making the first choice 
allows the function to handle a special case. Note that the original iterative 
function will not fail when size is zero, so it would be preferable to maintain 
that flexibility.

To apply the second rule to this problem, we must figure out a way to 
pass a smaller version of the problem from the dispatcher to the iterative 
function. There is no easy way to pass a smaller array, but we can easily pass a 
smaller value for size. If the dispatcher is given the value of 10 for size, the 
function is being asked to compute the sum of 10 values in the array. If the 
dispatcher passes 9 as the value of size to the iterative function, it is request-
ing the sum of the first 9 values in the array. The dispatcher can then add the 
value of the one remaining value in the array (the 10th) to compute the sum 
of all 10 values. Note that reducing size by 1 when calling the iterative func-
tion maximizes the work of the iterative function and thereby minimizes the 
work of the dispatcher. This is always the desired approach—like the managers 
of DelegateCorp, the dispatcher function avoids as much work as possible.

Putting these ideas together, here’s a dispatcher function for this problem:

int arraySumDelegate(int integers[], int size) {
if (size == 0) return 0;
int lastNumber = integers[size - 1];

    int allButLastSum = iterativeArraySum(integers, size - 1);
return lastNumber + allButLastSum;

}

The first statement enforces the first rule of dispatchers: It checks for a 
trivial case and handles it completely, in this case, by returning 0 . Otherwise, 
control passes to the remaining code, which enforces the second rule. The last 
number in the array is stored in a local variable called lastNumber , and then 
the sum of all the other values in the array is computed via a call to the itera-
tive function . This result is stored in another local variable, allButLastSum, 
and finally the function returns the sum of the two local variables .

If we have correctly created a dispatcher function, we have already effec-
tively created a recursive solution. This is the Big Recursive Idea in action. To 
convert this iterative solution to a recursive solution requires but one further, 
simple step: have the delegate function call itself where it was previously call-
ing the iterative function. We can then remove the iterative function altogether.

int arraySumRecursive(int integers[], int size) {
    if (size == 0) return 0;
    int lastNumber = integers[size - 1];
    int allButLastSum = arraySumRecursive(integers, size - 1);
    return lastNumber + allButLastSum;
}
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Only two changes have been made to the previous code. The name of the 
function has been changed to better describe its new form , and the func-
tion now calls itself where it previously called the iterative function . The 
logic of the two functions, arraySumDelegate and arraySumRecursive, is identical. 
Each function checks for a trivial case in which the sum is already known—in 
this case, an array of size 0 that has a sum of 0. Otherwise, each function com-
putes the sum of values in the array by making a function call to compute the 
sum of all of the values, save the last one. Finally, each function adds that last 
value to the returned sum for a grand total. The only difference is that the 
first version of the function calls another function, while the recursive version 
calls itself. The BRI tells us that if we follow the rules outlined above for writ-
ing the dispatcher, we can ignore that distinction.

You do not need to literally follow all of the steps shown above to follow 
the BRI. In particular, you usually would not implement an iterative solution 
to the problem before implementing a recursive solution. Writing an iterative 
function as a stepping-stone is extra work that will eventually be thrown away. 
Besides, recursion is best applied to situations in which an iterative solution 
is difficult, as explained later. However, you can follow the outline of the BRI 
without actually writing the iterative solution. The key is thinking of a recur-
sive call as a call to another function, without regards to the internals of that 
function. In this way, you remove the complexities of recursive logic from the 
recursive solution. 

Common Mistakes

As shown above, with the right approach, recursive solutions can often be 
very easy to write. But it can be just as easy to come up with an incorrect 
recursive implementation or a recursive solution that “works” but is ungainly. 
Most problems with recursive implementations stem from two basic faults: 
overthinking the problem or beginning implementation without a clear plan.

Overthinking recursive problems is common for new programmers because 
limited experience and lack of confidence with recursion lead them to think 
that the problem is more difficult than it really is. Code produced by over-
thinking can be recognized by its too-careful appearance. For example, a 
recursive function might have several special cases where it needs only one.

Beginning implementation too soon can lead to overcomplicated “Rube 
Goldberg” code, where unforeseen interactions lead to fixes that are bolted 
onto the original code.

Let’s look at some specific mistakes and how to avoid them.

Too Many Parameters
As described previously, the head recursion technique can reduce the data 
passed to the recursive call, while the tail recursion technique can result in 
passing additional data to recursive calls. Programmers often get stuck in the 
tail recursion mode because they overthink and start implementation too soon. 
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Consider our problem of recursively computing the sum of an array of 
integers. Writing an iterative solution to this problem, the programmer knows 
a “running total” variable will be needed (in the iterative solution provided, I 
called this sum) and the array will be summed starting from the first element. 
Considering the recursive solution, the programmer naturally imagines an 
implementation that most directly mirrors the iterative solution, with a running 
total variable and the first recursive call handling the first element in the 
array. This approach, however, requires the recursive function to pass the 
running total and the location where the next recursive call should begin 
processing. Such a solution would look like this:

int arraySumRecursiveExtraParams(int integers[], int size, int sum, int currentIndex) {
    if (currentIndex == size) return sum;
    sum += integers[currentIndex];
    return arraySumRecursiveExtraParameters(integers, size, sum, currentIndex + 1);
}

This code is as short as the other recursive version but considerably 
more semantically complex because of the additional parameters, sum  
and currentIndex . From the client code’s point of view, the extra parame-
ters are meaningless and will always have to be zeroes in the call, as shown 
in this example:

int a[10] = {20, 3, 5, 22, 7, 9, 14, 17, 4, 9};
int total = arraySumRecursiveExtraParameters(a, 10, 0, 0);

This problem can be avoided with the use of a wrapper function, as described 
in the next section, but because we can’t eliminate those parameters alto-
gether, that’s not the best solution. The iterative function for this problem 
and the original recursive function answer the question, what is the sum of 
this array with this many elements? In contrast, this second recursive func-
tion is being asked, what is the sum of this array if it has this many elements, 
we are starting with this particular element, and this is the sum of all the 
prior elements?

The “too many parameters” problem is avoided by choosing your func-
tion parameters before thinking about recursion. In other words, force 
yourself to use the same parameter list you would if the solution were itera-
tive. If you use the full BRI process and actually write the iterative function 
first, you will avoid this problem automatically. If you skip using the whole 
process formally, though, you can still use the idea conceptually if you write 
out the parameter list based on what you would expect for an iterative 
function.

Global Variables
Avoiding too many parameters sometimes leads programmers into making a 
different mistake: using global variables to pass data from one recursive call 
to the other. The use of global variables is generally a poor programming 
practice, although it is sometimes permissible for performance reasons. Global 
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variables should always be avoided in recursive functions when possible. Let’s 
look at a specific problem to see how programmers talk themselves into this 
mistake. Suppose we were asked to write a recursive function that counted the 
number of zeros appearing in an array of integers. This is a simple problem 
to solve using iteration:

int zeroCountIterative(int numbers[], int size) {
   int sum = 0;
int count = 0;

   for (int i = 0; i < size; i++) {
      if (numbers[i] == 0) count ++;
   }
   return count;
}

The logic of this code is straightforward. We’re just running through the 
array from the first location to the last, counting up the zeroes as we go and 
using a local variable, count , as a tracker. If we have a function like this in 
our minds when we write our recursive function, though, we may assume that 
we need a tracker variable in that version as well. We can’t simply declare 
count as a local variable in the recursive version because then it would be a 
new variable in each recursive call. So we might be tempted to declare it as a 
global variable:

int count;
int zeroCountRecursive(int numbers[], int size) {
   if (size == 0) return count;
   if (numbers[size - 1] == 0) count++;
   zeroCountRecursive(numbers, size - 1);
}

This code works, but the global variable is entirely unnecessary and causes 
all the problems global variables typically cause, such as poor readability and 
more difficult code maintenance. Some programmers might attempt to miti-
gate the problem by making the variable local, but static: 

int zeroCountStatic(int numbers[], int size) {
static int count = 0;

   if (size == 0) return count;
   if (numbers[size - 1] == 0) count++;
   zeroCountStatic(numbers, size - 1);
}

In C++, a local variable declared as static retains its value from one func-
tion call to the next; thus, the local static variable count  would act the same 
as the global variable in the previous version. So what’s the problem? The ini-
tialization of the variable to zero  happens only the first time the function 
is called. This is necessary for the static declaration to be of any use, but it 
means that the function will return a correct answer only the first time it is 
called. If this function were called twice—first with an array that had three 
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zeros, then with an array that had five zeros—the function would return an 
answer of eight for the second array because count would be starting where it 
had left off.

The solution to avoiding the global variable in this case is to use the BRI. 
We can assume that a recursive call with a smaller value for size will return 
the correct result and compute the correct value for the overall array from 
that. This will lead to a head-recursive solution:

int zeroCountRecursive(int numbers[], int size) {
   if (size == 0) return 0;
int count = zeroCountRecursive(numbers, size - 1);
if (numbers[size - 1] == 0) count++;
return count;

}

In this function, we still have a local variable, count , but here no attempt 
is made to maintain its value from one call to the next. Instead, it stores the 
return value from our recursive call; we optionally increment the variable  
before returning it .

Applying Recursion to Dynamic Data Structures

Recursion is often applied to dynamic structures such as linked lists, trees, 
and graphs. The more complicated the structure, the more the coding can 
benefit from a recursive solution. Processing complicated structures is often 
a lot like finding one’s way through a maze, and recursion allows us to back-
track to previous steps in our processing. 

Recursion and Linked Lists
Let’s start, though, with the most basic of dynamic structures, a linked list. For 
discussions in this section, let’s assume we have the simplest of node structures 
for our linked list, just a single int for data. Here are our type declarations:

struct listNnode {
    int data;
    listNode * next;
};
typedef listNode * listPtr;

Applying the BRI to a singly linked list follows the same general outline 
regardless of the specific task. Recursion requires us to divide the problem, 
to be able to pass a reduced version of the original problem to the recursive 
call. There is only one practical way to divide a singly linked list: the first node in 
the list and the rest of the list. 

In Figure 6-5, we see a sample list divided into unequal parts: the first 
node and all of the other nodes. Conceptually, we can view the “rest of” the 
original list as its own list, starting with the second node in the original list. It 
is this view that allows the recursion to work smoothly. 
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Figure 6-5: A list divided into a first node and “the rest of the list”

Again, though, we are not 
required to picture all the steps of 
the recursion to make the recur-
sion work. From the point of view 
of someone writing a recursive 
function to process a linked list, it 
can be conceptualized as the first 
node, which we have to deal with, 
and the rest of the list, which we 
don’t and therefore aren’t con-
cerned about. This attitude is 
shown in Figure 6-6.

With the division of labor fixed, we can say that recursive processing of 
singly linked lists will proceed according to the following general plan. Given 
a linked list L and a question Q:

1. If L is minimal, we directly assign a default value. Otherwise . . .

2. Use a recursive call to produce an answer to Q for the “rest of” list L (the 
list starting with the second node of L).

3. Inspect the value in the first node of L.

4. Use the results of the previous two steps to answer Q for the whole of L.

As you can see, this is just a straightforward application of the BRI given 
the practical restrictions on breaking up a linked list. Now let’s apply this 
blueprint to a specific problem.

P R O B L E M :  C O U N T I N G  N E G A T I V E  
N U M B E R S  I N  A  S I N G L Y  L I N K E D  L I S T

Write a recursive function that is given a singly linked list where the data type is integer. 
The function returns the count of negative numbers in the list.

The question, Q, we want to answer is, how many negative numbers are 
in the list? Therefore, our plan can be stated as:

1. If the list has no nodes, the count is 0 by default. Otherwise . . .

2. Use a recursive call to count how many negative numbers are in the “rest 
of” the list.

3. See whether the value in the first node of the list is negative. 

listHead 7 12 9 14 NULL

First node Rest of list

listHead 7

First node Rest of list
?

Figure 6-6: The list as a programmer using 
recursion should picture it: a first node and the 
rest of the list as a nebulous shape to be passed 
off to the recursive call
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4. Use the results of the previous two steps to determine how many negative 
numbers are in the whole list.

Here’s a function implementation that follows directly from this plan:

int countNegative(listPtr head) {
    if (head == NULL) return 0;
    int listCount = countNegative(head->next);
    if (head->data < 0) listCount++;
    return listCount;
}

Note how this code follows the same principles as previous examples. It 
will count the negative numbers “backward,” from the end of the list to the 
front. Also note that the code employs the head recursion technique; we pro-
cess the “rest of” the list before we process the first node. As before, this allows 
us to avoid passing extra data in the recursive call or using global variables.

Also notice how linked-list rule 1, “if list L is minimal,” is interpreted in 
the specific implementation of this problem as “if the list has no nodes.” That’s 
because it is meaningful to say that a list with no nodes has zero negative values. 
In some cases, though, there is no meaningful answer for our question Q for 
a list with no nodes, and the minimal case is a list with one node. Suppose 
our question was, what’s the largest number in this list? That question cannot 
be answered for a list with no values. If you don’t see why, pretend you are an 
elementary school teacher, and your class happens to be all girls. If your school’s 
principal asked you how many boys in your classroom were members of the 
boy’s choir, you could simply answer zero because you have no boys. If your 
principal asked you to name the tallest boy in your class, you could not give a 
meaningful answer to that question—you would have to have at least one boy 
to have a tallest boy. In the same way, if the question about a data set requires 
at least one value to be meaningfully answered, the minimal data set is one 
item. You may still want to return something for the “size zero” case, however, 
if only for flexibility in the use of the function and to guard against a crash. 

Recursion and Binary Trees
All of the examples we have explored so far make no more than one recursive 
call. More complicated structures, however, may require multiple recursive 
calls. For a taste of how that works, let’s consider the structure known as a 
binary tree, in which each node contains “left” and “right” links to other nodes. 
Here are the types we’ll use:

struct treeNode {
    int data;
    treeNode * left;
    treeNode * right;
};
typedef treeNode * treePtr;
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Because each node in the tree points to two other nodes, recursive tree-
processing functions require two recursive calls. We conceptualized linked 
lists as having two parts: a first node and the rest of the list. For applying 
recursion, we will conceptualize trees as having three parts: the node at the 
top, known as the root node ; all of the nodes reached from the left link of the 
root, known as the left subtree ; and all of the nodes reached from the right 
link of the root, known as the right subtree. This conceptualization is shown 
in Figure 6-7. As with the linked list and as developers of a recursive solution, 
we just focus on the existence of the left and right subtrees, without consider-
ing their contents. This is shown in Figure 6-8.

Figure 6-7: A binary tree divided into a root node and left and right subtree

As always, when recursively solving 
problems involving binary trees, we want 
to employ the BRI. We will make recursive 
function calls and assume they return cor-
rect results without worrying about how the 
recursive process solves the overall prob-
lem. As with linked lists, we will work with 
the natural divisions of a binary tree. This 
produces the following general plan. To 
answer a question Q for tree T:

1. If tree T is of minimal size, directly 
assign a default value. Otherwise . . .

2. Make a recursive call to answer Q for the left subtree of T.

3. Make a recursive call to answer Q for the right subtree of T.

4. Inspect the value in the root node of T.

5. Use the results of the previous three steps to answer Q for all of T.

Now let’s apply the general plan to a specific problem.

17

root node

99163 217

4 144

left subtree right subtree

NULL NULL NULL NULL NULL NULL NULL NULL

rightdataleft

treeNode struct

17

root node

left subtree
?

right subtree
?

Figure 6-8: A binary tree as a pro-
grammer using recursion should 
picture it: a root node with left and 
right subtrees of unknown and 
unconsidered structure
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P R O B L E M :  F I N D  T H E  L A R G E S T  V A L U E  I N  A  B I N A R Y  T R E E

Write a function that, when given a binary tree where each node holds an integer, 
returns the largest integer in the tree.

Applying the general plan to this specific problem results in the follow-
ing steps:

1. If the root of the tree has no children, return the value in the root. 
Otherwise . . .

2. Make a recursive call to find the largest value in the left subtree.

3. Make a recursive call to find the largest value in the right subtree.

4. Inspect the value in the root node.

5. Return the largest of the values in the previous three steps.

With those steps in mind, we can directly write the code for the solution:

int maxValue(treePtr root) {
if (root == NULL) return 0;
if (root->right == NULL && root->left == NULL) 

        return root->data;
int leftMax = maxValue(root->left);
int rightMax = maxValue(root->right);
int maxNum = root->data;

    if (leftMax > maxNum) maxNum = leftMax;
    if (rightMax > maxNum) maxNum = rightMax;
    return maxNum;
}

Notice how the minimal tree for this problem is a single node  (although 
the empty-tree case is covered for safety ). This is because the question we 
are asking can only be meaningfully answered with at least one data value. 
Consider the practical problem if we tried to make the empty tree the base 
case. What value could we return? If we return zero, we implicitly require 
some positive values in the tree; if all of the values in the tree are negative, 
zero will be erroneously returned as the largest value in the tree. We might 
solve this problem by returning the lowest (most negative) possible integer, 
but then we would have to be careful adapting the code for other numeric 
types. By making a single node the base case, we avoid this decision altogether.

The rest of the code is straightforward. We use recursion to find the max-
imum values in the left  and right subtrees . Then we find the largest of 
the three values (value at root, largest in left subtree, largest in right subtree) 
using a variant of the “King of the Hill” algorithm we’ve been using through-
out this book .
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Wrapper Functions

In the previous examples in this chapter, we have discussed only the recur-
sive function itself. In some cases, however, the recursive function needs 
to be “set up” by a second function. Most commonly, this occurs when we 
write recursive functions inside of class structures. This can cause a mismatch 
between the parameters required for the recursive function and the parame-
ters needed for a public method of the class. Because classes typically enforce 
information hiding, the class client code may not have access to the data or 
types the recursive function requires. This problem and its solution are shown 
in the next example.

P R O B L E M :  F I N D  T H E  N U M B E R  O F  L E A V E S  I N  A  B I N A R Y  T R E E

For a class that implements a binary tree, add a publicly accessible method that returns 
the number of leaves (nodes without children) in the tree. The counting of leaves should 
be performed using recursion.

Let’s sketch the outline of what this class might look like before we try 
to implement a solution to this problem. For simplicity, we will include only 
the relevant parts of the class, ignoring the constructors, the destructor, and 
even the methods that would allow us to build the tree in order to focus on 
our recursive method.

class binaryTree {
    public:

int countLeaves();
    private:
        struct binaryTreeNode {
            int data;
            binaryTreeNode * left;
            binaryTreeNode * right;
        };
        typedef treeNode * treePtr;
        treePtr _root;
};

Note that our leaf-counting function takes no parameters . From an 
interface point of view, this is exactly correct. Consider a sample call for a 
previously constructed binaryTree object bt:

int numLeaves = bt.countLeaves();

After all, if we are asking the tree how many leaves it has, what informa-
tion could we possibly provide to the object that it would not already know 
about itself? As correct as this is for the interface, it’s all wrong for the recur-
sive implementation. If there is no parameter, what changes from one recursive 
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call to the next? Nothing can change in that case, except through global vari-
ables, which, as stated earlier, are to be avoided. If nothing changes, there’s 
no way for the recursion to progress or terminate.

The way around this problem is to write the recursive function first, 
conceptualizing it as a function outside of a class. In other words, we’ll write 
this function to count the leaves in a binary tree in the same style we wrote 
the function to find the largest value in a binary tree. The one parameter we 
need to pass is a pointer to our node structure. 

This gives us another opportunity to employ the BRI. What is the ques-
tion Q in this case? It is, how many leaves are in the tree? Applying the general 
plan for recursively processing binary trees to this specific problem results in 
the following:

1. If the root of the tree has no children, then the tree has one node total. 
That node is a leaf by definition, so return 1. Otherwise . . .

2. Make a recursive call to count the leaves in the left subtree.

3. Make a recursive call to count the leaves in the right subtree.

4. In this case, there is no need to inspect the root node because if we get to 
this step, there is no way the root is a leaf. So . . .

5. Return the sum of steps 2 and 3.

Translating this plan into code results in this:

struct binaryTreeNode {
    int data;
    treeNode * left;
    treeNode * right;
};
typedef binaryTreeNode * treePtr;
int countLeaves(treePtr rootPtr) {
    if (rootPtr == NULL) return 0; 
    if (rootPtr->right == NULL && rootPtr->left == NULL) 
        return 1;
    int leftCount = countLeaves(rootPtr->left);
    int rightCount = countLeaves(rootPtr->right);
    return leftCount + rightCount;
}

As you can see, the code is a direct translation of the plan. The question 
is, how do we get from this independent function to something we can use in 
the class? This is where the unwary programmer could easily get into trouble, 
thinking that we need to use a global variable or make the root pointer pub-
lic. But we don’t need to do that; we can keep everything inside the class. 
The trick is to use a wrapper function. First, we put the independent function, 
with the treePtr parameter, in the private section of our class. Then, we write 
a public function, the wrapper function, which will “wrap” the private function. 
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Because the public function has access to the private data member root, it 
can pass this along to the recursive function and then return the results back 
to the client like this:

class binaryTree {
    public:
        int publicCountLeaves();
    private:
        struct binaryTreeNode {
            int data;
            binaryTreeNode * left;
            binaryTreeNode * right;
        };
        typedef binaryTreeNode * treePtr;
        treePtr _root;
        int privateCountLeaves(treePtr rootPtr);
};

 int binaryTree::privateCountLeaves(treePtr rootPtr) {
    if (rootPtr == NULL) return 0;
    if (rootPtr->right == NULL && rootPtr->left == NULL) 
        return 1;
    int leftCount = privateCountLeaves(rootPtr->left);
    int rightCount = privateCountLeaves(rootPtr->right);
    return leftCount + rightCount;
}

 int binaryTree::publicCountLeaves() {
   return privateCountLeaves(_root);
}

Although C++ would allow both functions to have the same name, for 
clarity I’ve used different names to distinguish between the public and pri-
vate “count leaves” functions. The code in privateCountLeaves  is exactly the 
same as our previous, independent function countLeaves. The wrapper func-
tion publicCountLeaves  is simple. It calls privateCountLeaves, passing the 
private data member root, and returns the result . In essence, it “primes 
the pump” of the recursive process. Wrapper functions are very helpful 
when writing recursive functions inside classes, but they can be used any-
time a mismatch exists between the parameter list required by a function 
and the desired parameter list of a caller. 

When to Choose Recursion

New programmers often wonder why anyone has to deal with recursion. 
They may have already learned that any program can be constructed using 
basic control structures, such as selection (if statements) and iteration (for 
and while loops). If recursion is more difficult to employ than basic control 
structures and unnecessary, perhaps recursion should just be ignored.

There are several rebuttals to this. First, programming recursively helps 
programmers think recursively, and recursive thinking is employed through-
out the world of computer science in such areas as compiler design. Second, 
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some languages simply require recursion because they lack some basic control 
structures. Pure versions of the Lisp language, for example, require recursion 
in almost every nontrivial function.

The question remains, though: If a programmer has studied recursion 
enough to “get it” and is using a full-featured language such as C++, Java, or 
Python, should recursion ever be employed? Does recursion have practical 
use in such languages, or is it just a mental exercise? 

Arguments Against Recursion
To explore this question, let’s enumerate the bad features of recursion.

Conceptual complexity
For most problems, it’s more difficult for the average programmer to 
solve a problem using recursion. Even once you understand the Big 
Recursive Idea, it’s still going to be easier in most cases to write code 
using loops.

Performance
Function calls incur significant overhead. Recursion involves lots of func-
tion calls and, therefore, can be slow.

Space requirements
Recursion doesn’t simply employ many function calls; it also nests them. 
That is, you can end up with a long chain of function calls waiting for 
other calls to complete. Each function call that has begun but has yet to 
end takes additional space on the system stack.

At a glance, this list of features constitutes a strong indictment against 
recursion as difficult, slow, and wasteful of space. However, these arguments 
do not hold universally. The most basic rule, then, for deciding between 
recursion and iteration is, choose recursion when these arguments do not apply.

Consider our function that counts the number of leaves in a binary tree. 
How would you solve this problem without recursion? It’s possible, but you 
would need an explicit mechanism for maintaining the “breadcrumb trail” of 
nodes for which the left children had already been visited but not the right 
children. These nodes would need to be revisited at some point so we could 
travel down the right side. You might store these nodes in a dynamic structure, 
such as a stack. For comparison, here’s an implementation of the function 
that uses the stack class from the C++ standard template library:

int binaryTree::stackBasedCountLeaves() {
    if (_root == NULL) return 0;
    int leafCount = 0;
stack<binaryTreeNode *> nodes;
nodes.push(_root);

    while (!nodes.empty()) {
        treePtr currentNode = nodes.top();

nodes.pop();
        if (currentNode->left == NULL && currentNode->right == NULL) 
            leafCount++;
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        else {
            if (currentNode->right != NULL) nodes.push(currentNode->right);
            if (currentNode->left != NULL) nodes.push(currentNode->left);
        }
    }
    return leafCount;
}

This code follows the same pattern as the original, but if you’ve never used 
the stack class before, a few comments are in order. The stack class works like the 
system stack we discussed in Chapter 3; you can add and remove items only at 
the top. Note that we could perform our leaf count operation using any data 
structure that doesn’t have a fixed size. We could have used a vector, for 
example, but the use of the stack most directly mirrors the original code. When 
we declare the stack , we specify the type of items we will store there. In this 
case, we would store pointers to our binaryTreeNode structure . We make use 
of four stack class methods in this code. The push method  places an item 
(a node pointer, in this case) on the top of the stack. The empty method  
tells us whether there are any items left on the stack. The top method  gives 
us a copy of the item on top of the stack, and the pop method  removes the 
top item from the stack.

The code solves the problem by placing a pointer to the first node on the 
stack and then repeatedly removing a pointer to a node from the stack, check-
ing whether it’s a leaf, incrementing our counter if it is, and placing pointers 
to child nodes, if they exist, on the stack. So the stack keeps track of the nodes 
we have discovered, but have yet to process, in the same way that the chain of 
recursive calls in the recursive version keeps track of nodes we must revisit. In 
comparing this iterative version to the recursive version, we see that none of 
the standard objections to recursion applies with much vigor in this case. First, 
this code is longer and more complicated than the recursive version, so there 
is no argument against the recursive version on the basis of conceptual com-
plexity. Second, look how many function calls stackBasedCountLeaves makes—
for each visit to an interior node (i.e., not a leaf), this function makes four 
function calls: one each to empty and top, and two to push. The recursive ver-
sion makes only the two recursive calls for each interior node. (Note that it is 
possible for us to avoid the function calls to the stack object by incorporating 
the logic of the stack within the function. This, however, would increase the 
complexity of the function even further.) Third, while this iterative version 
doesn’t use additional system stack space, it makes explicit use of a private 
stack. In fairness, this is less space than the system stack overhead of the 
recursive calls, but it’s still an expenditure of system memory in proportion 
to the maximum depth of the binary tree we are traversing. 

Because the objections against recursion are mitigated or minimized in 
this case, recursion is a good choice for the problem. Put more generally, if a 
problem is simple to solve iteratively, then iteration should be your first choice. 
Recursion should be used when iteration would be complicated. Often this 
involves the necessity of the “breadcrumb trail” mechanism shown here. 
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Traversals of branching structures, such as trees and graphs, are inherently 
recursive. Processing linear structures, such as arrays and linked lists, usually 
does not require recursion, but there are exceptions. You will never go wrong 
making a first stab at a problem using iteration and seeing how far you get. 
As a last set of examples, consider the following linked-list problems.

P R O B L E M :  D I S P L A Y  A  L I N K E D  L I S T  I N  O R D E R

Write a function that is passed the head pointer of a singly linked list where the data 
type of each node is an integer and that displays those integers, one per line, in the 
order they appear in the list.

P R O B L E M :  D I S P L A Y  A  L I N K E D  L I S T  I N  R E V E R S E  O R D E R

Write a function that is passed the head pointer of a singly linked list where the data 
type of each node is an integer and that displays those integers, one per line, in the 
reverse order they appear in the list.

Because these problems are mirror images of each other, it’s natural to 
assume that their implementations would likewise be mirror images. That is 
indeed the case for recursive implementations. Using the listNode and listPtr 
type given previously, here are recursive functions to solve both of these 
problems:

void displayListForwardsRecursion(listPtr head) {
    if (head != NULL) {
        cout << head->data << "\n";
        displayListForwardsRecursion(head->next);
    }
}
void displayListBackwardsRecursion(listPtr head) {
    if (head != NULL) {
        displayListBackwardsRecursion(head->next);
        cout << head->data << "\n";
    }
}

As you can see, the code in these functions is identical except for the 
order of the two statements inside the if statement. That makes all the dif-
ference. In the first case, we display the value in the first node  before 
making the recursive call to display the rest of the list . In the second case, 
we make the call to display the rest of the list  before we display the value in 
the first node . This results in an overall backward display.
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Because both of these functions are equally succinct, one might assume 
that recursion is properly used to solve both of these problems, but that’s not 
the case. To see that, let’s look at iterative implementations of both of these 
functions.

void displayListForwardsIterative(listPtr head) {
   for (listPtr current = head; current != NULL; current = current->next) 
        cout << current->data << "\n";
}
void displayListBackwardsIterative(listPtr head) {
   stack<listPtr> nodes;
   for (listPtr current = head; current != NULL; current = current->next) 
        nodes.push(current);
   while (!nodes.empty()) {

nodePtr current = nodes.top();
nodes.pop();
cout << current->data << "\n";

    }
}

The function to display the list in order is nothing more than a straight-
forward traversal loop , such as those we saw back in Chapter 4. The function 
to display the list in reverse order, though, is more complicated. It suffers 
from the same requirement for a “breadcrumb trail” as our binary tree prob-
lems. Displaying the nodes in a linked list in reverse order requires returning 
to prior nodes by definition. In a singly linked list, there’s no way to do that 
using the list itself, so a second structure is required. In this case, we need 
another stack. After declaring the stack , we push all of the nodes in our 
linked list onto the stack using a for loop . Because this is a stack, where 
each item is added on top of previous items, the first item in the linked list 
will be on the bottom of the stack, and the last item in the linked list will be 
on the top. We enter a while loop that continues until the stack is empty , 
repeatedly grabbing a pointer to the top node on the stack , removing that 
node pointer from the stack , and then displaying the data in the refer-
enced node . Because the data on the top is the last data in the linked list, 
this has the effect of displaying the data in the linked list in reverse order.

As with the iterative binary tree function shown earlier, it would be pos-
sible to write this function without using a stack (by building a second list 
within the function that is a reverse of the original). There is no way, how-
ever, to make the second function as simple as the first or to avoid effectively 
traversing two structures instead of one. Comparing the recursive and itera-
tive implementations, it’s easy to see that the iterative “forward” function is 
so simple that there is no practical advantage in employing recursion, and 
there are several practical disadvantages. In contrast, the recursive “back-
ward” function is simpler than the iterative version and should be expected 
to perform approximately as well as the iterative version. Therefore, the 
“backward” function is a reasonable use of recursion, while the “forward” 
function, though a good recursive programming exercise, is not a good 
practical use of recursion. 



170 Chapter 6

Exercises

As always, trying out the ideas presented in the chapter is imperative!

6-1. Write a function to compute the sum of just the positive numbers in an array 
of integers. First, solve the problem using iteration. Then, using the technique 
shown in this chapter, convert your iterative function to a recursive function.

6-2. Consider an array representing a binary string, where every element’s data 
value is 0 or 1. Write a bool function to determine whether the binary string 
has odd parity (an odd number of 1 bits). Hint: Remember that the recursive 
function is going to return true (odd) or false (even), not the count of 1 bits. 
Solve the problem first using iteration, then recursion.

6-3. Write a function that is passed an array of integers and a “target” number 
and that returns the number of occurrences of the target in the array. Solve 
the problem first using iteration, then recursion.

6-4. Design your own: Find a problem processing a one-dimension array that you 
have already solved or that is trivial for you at your current skill level, and 
solve the problem (or solve it again) using recursion.

6-5. Solve exercise 6-1 again, using a linked list instead of an array.

6-6. Solve exercise 6-2 again, using a linked list instead of an array.

6-7. Solve exercise 6-3 again, using a linked list instead of an array.

6-8. Design your own: Try to discover a linked-list processing problem that is 
difficult to solve using iteration but can be solved directly using recursion.

6-9. Some words in programming have more than one common meaning. In 
Chapter 4, we learned about the heap, from which we get memory allocated 
with new. The term heap also describes a binary tree in which each node value 
is higher than any in the left or right subtree. Write a recursive function to 
determine whether a binary tree is a heap.

6-10. A binary search tree is a binary tree in which each node value is greater than 
any value in that node’s left subtree but less than any value in the node’s 
right subtree. Write a recursive function to determine whether a binary tree 
is a binary search tree.

6-11. Write a recursive function that is passed a binary search tree’s root pointer and 
a new value to be inserted and that creates a new node with the new value, 
placing it in the correct location to maintain the binary search tree structure. 
Hint: Consider making the root pointer parameter a reference parameter.

6-12. Design your own: Consider basic statistical questions you can ask of a set of 
numerical values, such as average, median, mode, and so forth. Attempt to 
write recursive functions to compute those statistics for a binary tree of integers. 
Some are easier to write than others. Why?
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S O L V I N G  P R O B L E M S  
W I T H C O D E  R E U S E

This chapter is very different from those 
that came before. In previous chapters, I 

stressed the importance of finding your own 
solution to problems. That’s what the book is 

about, after all: writing original solutions to program-
ming problems. Even in previous chapters, though, we
talked about how you are always learning from what you’ve written before, 
and that’s why you should retain all the code that you write for future refer-
ence. In this chapter, we’ll go one step further and discuss how to use code 
and ideas from other programmers to solve our problems.

If you remember how this book started, this topic may seem like an odd 
inclusion. At the beginning, I talked about what a mistake it was to try to solve 
complex problems by modifying someone else’s code. Not only does this have 
a low chance of success, but even when it succeeds, it provides no learning 
experience for you. And if this is all you ever do, you never actually become a 
programmer and are of limited use in software development. That said, once 
any programming problem reaches a respectable size, it’s not reasonable to 



172 Chapter 7

expect a programmer to develop a solution entirely from scratch. That’s an 
inefficient use of the programmer’s time, and it relies too heavily on the pro-
grammer being an expert in all things. Plus, it’s more likely to lead to a 
buggy or difficult-to-maintain program.

Good Reuse and Bad Reuse

We must therefore distinguish between good reuse, which allows us to write 
better programs and write them more quickly, and bad reuse, which may 
allow us to impersonate a programmer for a while but ultimately leads to 
poor development, of both the code and the programmer. Table 7-1 sum-
marizes the differences. The left column shows the properties of good reuse 
and the right column shows the properties of bad reuse. When considering 
whether or not to attempt a reuse of code, ask yourself whether you are more 
likely to produce the properties in the left column or the right column.

It’s important to note that the difference between good reuse and bad 
reuse doesn’t reside in what code you reuse or how you reuse it but in your 
relationship to the code and concepts that you are borrowing. Once, in 
writing a term paper in a literature class, I discovered that something I had 
learned in a previous course was relevant to my paper’s topic, so I included it. 
When I submitted a draft of my paper to the professor, she told me I needed 
a citation for that information. Frustrated, I asked my professor at what point 
I could simply state my knowledge in a paper without providing a reference. 
Her answer was that I could stop referencing others for what was in my head 
when I became such an expert that others were referencing me.

In programming terms, good reuse occurs when you write code yourself 
based on reading someone’s description of a general concept or when you 
make use of code that you could have written yourself. Throughout this chapter, 
we’re going to talk about how you can take ownership of coding concepts so 
that you can be sure that your reuse is helping you become a better program-
mer, not a lazier one. 

Let me also draw attention to the last row in Table 7-1. Attempts at bad 
reuse often fail altogether. This is not surprising, because it involves a pro-
grammer using code that he or she doesn’t actually understand. In some 
situations, the borrowed code will work initially, but when the programmer 

Table 7-1: Good and Bad Code Reuse

Good Reuse Bad Reuse

Following a blueprint Copying someone else’s work

Magnifies and extends your capabilities Falsifies your capabilities

Helps you learn Helps you avoid learning

Saves time in the short term and the long term May save time in the short term but may 
lengthen time in the long term

Results in a working program May result in a program that doesn’t work 
anyway
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attempts to modify or expand the borrowed code base, the lack of deep compre-
hension removes the possibility of an organized approach. The programmer 
then resorts to flailing about and trial and error, thus violating the first and 
most important of our general problem-solving rules: Always have a plan. 

Review of Component Fundamentals

Now that we know the kind of reuse we are aiming for, let’s categorize the 
different ways in which code can be reused. In this book, I’m going to use the 
term component to refer to anything created by one programmer that can be 
reused by another to help solve a programming problem. Components can 
exist anywhere on the continuum from abstract to concrete, from an idea to 
fully implemented code. If we think of solving a programming problem as 
analogous to tackling a handyman project, the techniques we’ve learned 
for solving problems are like tools, and components are like specialty parts. 
Each of the following components is a different way of reusing prior work of 
programmers.

Code Block
A code block is just that: a block of code that has been copied from one pro-
gram listing to another. More colloquially, we would call this a copy-and-paste 
job. This is the lowest form of component use and is often bad reuse, with all 
of the problems that implies. Of course, if the code you are copying is your 
own, there’s no real harm done, except that you might consider packaging 
the existing code as a class library or other structure to allow it to be reused 
in a cleaner and more easily maintained way.

Algorithms
An algorithm is a programming recipe; it’s a particular method of accomplish-
ing a goal and is expressed either in plain language or pictorially as in a 
flowchart. For example, back in Chapter 3, we discussed the sort operation 
for arrays and different ways this sort could be accomplished. One method of 
sorting an array is the insertion-sort algorithm, and I showed a sample imple-
mentation of the algorithm. It’s important to note that the given code was 
one implementation of the insertion sort, but insertion sort is the algorithm 
itself—that way of sorting an array—and not the particular code. Insertion 
sort works by repeatedly taking the next unsorted value in the array and shift-
ing the sorted values “up” one position until we’ve made a hole in the correct 
position for the value we’re currently inserting. Any code that uses this method 
to sort an array is an insertion sort.

Algorithms are a high-level form of reuse and generally lead to good reuse 
properties. Algorithms are essentially just ideas, and you, the programmer, 
must implement the ideas, calling upon your programming skills and your 
deep understanding of the algorithm itself. The algorithms you will commonly 
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use are well studied and have predictable performance in various situations. 
With an algorithm as a blueprint, you can have confidence in the correctness 
of your code and in its performance.

There are some potential downsides to basing code on an algorithm, 
though. When you use an algorithm, you are starting at the conceptual level. 
Therefore, you have a long road ahead to the finished code for that section 
of the program. The algorithm certainly saves time, because the problem-solving 
aspect is essentially complete, but depending on the algorithm and its partic-
ular application in your programming, the implementation of the algorithm 
can be nontrivial. 

Patterns
In programming, a pattern (or design pattern) is a template for a particular 
programming technique. The concept is related to an algorithm but distin-
guishable. Algorithms are like recipes for solving particular problems, while 
patterns are general techniques used in particular programming situations. 
The problems that patterns solve are typically within the structure of the code 
itself. For example, in Chapter 6 we discussed the problem presented by a 
recursive function in a linked-list class: The recursive function needed the 
“head” pointer to the first node in the list as a parameter, but that data 
needed to remain private. The solution was to create a wrapper, a function 
that would adapt one parameter list to another. The wrapper technique is a 
design pattern. We can use this pattern to solve the problem of a recursive 
function in a class, but it can be used in other ways as well. For example, sup-
pose we had a linkedList class that allowed items to be inserted or removed at 
any point in the list, but what we needed was a stack class—that is, a list that 
allowed insertion and removal only at one end. We could create a new class 
stack that had public methods for the typical stack operations, such as push 
and pop. These methods would just call member functions on the linkedList 
object that was a private data member of our stack class. In this way, we would 
reuse the functionality of a linked-list class while providing the interface of a 
stack class.

Like algorithms, patterns are a high-level form of component use, and 
learning patterns is a great way to build up your programming tool chest. 
Patterns share some of the potential problems of algorithms, though. Know-
ing that a pattern exists is not the same as knowing how to implement a pattern 
in the particular language you have chosen for a programming solution, 
and patterns are often tricky to implement correctly or with maximum 
performance. For example, there is a pattern known as a singleton, which 
is a class that allows only one object of the class to be created. Creating a 
singleton class is straightforward, but creating a singleton class that does 
not create the one allowed instance object until it is actually needed can 
be surprisingly difficult, and the best technique may vary from language to 
language. 



Solv ing Problems wi th Code Reuse 175

Abstract Data Types
An abstract data type, as we discussed in Chapter 5, is a type defined by its 
operations, not by how those operations are implemented. The stack type, 
which we have used several times in this book, is a good example. Abstract 
data types are like patterns in that they define the effects of operations, but 
they do not specifically define how those operations are implemented. As 
with algorithms, however, there are well-known implementation techniques 
for these operations. For example, a stack can be implemented using any 
number of underlying data structures, such as a linked list or an array. Once 
we make the decision to use a particular data structure, though, the imple-
mentation decisions are sometimes already made. Suppose we implemented 
a stack using a linked list and are unable to wrap around an existing linked 
list, but we must write our own list code. Because the stack is a last-in-first-out 
structure, it only makes sense for us to insert and remove items at one end of 
the linked list. Furthermore, it only makes sense to insert and remove at the 
front of the list. Theoretically, you could insert and remove at the end, but 
this would result in an inefficient traversal of the entire list for every insertion 
or removal. To avoid those traversals would require a doubly linked list with 
a separate pointer to the last node in the list. Inserting and removing at the 
beginning of the list allows the simplest, most efficient implementation, so 
linked-list implementations of stacks are almost all implemented the same way.

Thus, even though the abstract in abstract data type means the type is con-
ceptual and without implementation detail, in practice, when you choose to 
implement an abstract data type in your code, you won’t be figuring out the 
implementation from scratch. Rather, you will have existing implementa-
tions of the type as guides. 

Libraries
In programming, a library is a collection of related pieces of code. A library 
typically includes the code in compiled form, along with needed source code 
declarations. Libraries can include stand-alone functions, classes, type decla-
rations, or anything else that can appear in code. In C++, the most obvious 
examples are the standard libraries. The strcmp function we used in previous 
chapters comes from the old C library cstring, the container classes such as 
vector come from the C++ Standard Template Library, and even the NULL we 
have used in all of our pointer-based code is not part of the C++ language 
itself but defined in a library header file, stdlib.h. Because so much core 
functionality is contained within libraries, library use is inevitable in modern 
programming.

Generally, library use is good code reuse. Code is included in a library 
because it provides functionality that is commonly needed in a variety of 
programs—library code helps programmers avoid “reinventing the wheel.” 
Nevertheless, as developing programmers, when we use library code, we must 
strive to learn from the experience and not merely take a shortcut. We’ll see 
an example of this later in the chapter.
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Note that while many libraries are general purpose, others are designed 
as application programming interfaces (APIs) providing the high-level language 
programmer with a simplified or more coherent view of an underlying plat-
form. For example, the Java language includes an API called JDBC, which 
provides classes that allow programs to interact with relational databases in a 
standard way. Another example is DirectX, which provides Microsoft Windows 
game programmers extensive functionality with sound and graphics. In both 
cases, the library provides a connection between the high-level program and 
foundation-level hardware and software—the database engine in the case of 
JDBC and the graphics and sound hardware in the case of DirectX. More-
over, in both cases, the code reuse is not just good—it is, for all practical 
purposes, required. A database programmer in Java or a graphics program-
mer writing C++ code for Windows is going to make use of an API—if not 
these APIs, then something else, but the programmer isn’t going to cook up 
a new connection to the platform from scratch. 

Building Component Knowledge

Components are so helpful that programmers make use of them whenever 
possible. In order to use a component to aid in solving a problem, though, a 
programmer must know of its existence. Depending on how finely you define 
them, available components might number into the hundreds or even thou-
sands, and a beginning programmer is going to be exposed to only a few of 
them. A good programmer must therefore always be adding component knowl-
edge to his or her toolkit. Such knowledge gathering occurs in two different 
ways: A programmer may explicitly allot time for learning new components 
as a general task, or the programmer may search for a component to solve a 
specific problem. We’ll call the first approach exploratory learning and the 
second approach as-needed learning. To develop as a programmer, you will 
need to employ both approaches. Once you have mastered the syntax of your 
chosen programming language, discovering new components is one of the 
primary ways for you to better yourself as a programmer.

Exploratory Learning
Let’s start with an exploratory learning example. Suppose we wanted to learn 
more about design patterns. Fortunately, there is general agreement about 
which design patterns are the most useful or frequently used, so we could 
begin with any number of resources on this topic and be fairly sure that we 
aren’t missing anything important. We would benefit by simply finding a list 
of design patterns and studying it, but we would gain more insight if we 
implemented some of the patterns. 

One pattern we’ll find in a typical list is called strategy or policy. This is the 
idea of allowing an algorithm, or part of an algorithm, to be chosen at run-
time. In the purest form, the strategy form, this pattern allows changing how 
a function or method operates but does not alter the result. For example, a 
method of a class that sorts its data, or involves sorting data, might allow the 
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sort methodology (quicksort or insertion sort, for example) to be chosen. The 
result is the same in any case—sorted data—but allowing the client to choose 
the sort methodology could offer performance benefits. For example, the cli-
ent could avoid using quicksort for data with a high rate of duplicates. In the 
policy form, the client’s choice affects the outcome. For example, suppose 
a class represents a hand of playing cards. The sorting policy could determine 
whether aces are considered high (above a king) or low (less than a 2).

Putting Learning into Practice

Reading that paragraph, you now know what the strategy/policy pattern is, 
but you haven’t made it your own. It’s the difference between browsing tools 
at the hardware store and actually buying one and using it. So let’s take this 
design pattern down from the shelf and put it to use. The fastest way to try 
out a new technique is to incorporate it into code you’ve already written. 
Let’s create a problem that can be solved using this pattern and that is built 
upon code we’ve already written.

P R O B L E M :  T H E  F I R S T  S T U D E N T

At a particular school, each class has a designated “first student” who is responsible 
for maintaining order in the classroom if the teacher has to leave the room. Originally, 
this title was bestowed upon the student with the highest grade, but now some teach-
ers think the first student should be the student with the greatest seniority, which means 
the lowest student ID number, as they are assigned sequentially. Another faction of 
teachers thinks the first student tradition is silly and intends to protest by simply choos-
ing the student whose name appears first in the alphabetical class roll. Our task is to 
modify the student collection class, adding a method to retrieve the first student from 
the collection, while accommodating the selection criteria of the various teacher groups.

As you can see, this problem is going to employ the policy form of the 
pattern. We want our method that returns the first student to return a differ-
ent student based on a chosen criterion. In order to make this happen in 
C++, we’re going to use function pointers. We’ve briefly seen this concept in 
action in Chapter 3 with the qsort function, which takes a pointer to a func-
tion that compares two items in the array to be sorted. We’ll do something 
similar here; we’ll have a set of comparison functions that takes two of our 
studentRecord objects and determines whether the first student is “better” than 
the second by looking at the grades, ID numbers, or names of the students.

To get started, we need to define a type for our comparison functions:

typedef bool (* firstStudentPolicy)(studentRecord r1, studentRecord r2);

This declaration creates a type named firstStudentPolicy as a pointer to a 
function that returns a bool and takes two parameters of type studentRecord. 
The parentheses around * firstStudentPolicy  are necessary to prevent the 
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declaration from being interpreted as a function that returns a pointer to a 
bool. With this declaration in place, we can create our three policy functions:

bool higherGrade(studentRecord r1, studentRecord r2) {
   return r1.grade() > r2.grade();
}
bool lowerStudentNumber(studentRecord r1, studentRecord r2) {
   return r1.studentID() < r2.studentID();
}
bool nameComesFirst(studentRecord r1, studentRecord r2) {
   return strcmp(r1.name().c_str(), r2.name().c_str()) < 0;
}

The first two functions are very simple: higherGrade returns true when 
the first record has the higher grade, and lowerStudent number returns true 
when the first record has the lower student number. The third function, 
nameComesFirst, is essentially the same, but it requires the strcmp  library 
function, which expects two “C-style” strings—that is, null-terminated 
character arrays instead of string objects. So we have to invoke the c_str() 
method on the name strings in both student records. The strcmp function 
returns a negative number when the first string comes before the second 
alphabetically, so we check the return value to see whether it’s less than 
zero . Now we are ready to modify the studentCollection class itself:

class studentCollection {
private:

struct studentNode {
studentRecord studentData;
studentNode * next;

};
public:

studentCollection();
~studentCollection();
studentCollection(const studentCollection &copy);
studentCollection& operator=(const studentCollection &rhs);
void addRecord(studentRecord newStudent);
studentRecord recordWithNumber(int IDnum);
void removeRecord(int IDnum);

void setFirstStudentPolicy(firstStudentPolicy f);
studentRecord firstStudent();

private:
firstStudentPolicy _currentPolicy;
typedef studentNode * studentList;
studentList _listHead;
void deleteList(studentList &listPtr);
studentList copiedList(const studentList copy);

};
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This is the class declaration we saw back in Chapter 5 with three new 
members: a private data member, _currentPolicy , to store a pointer to one 
of our policy functions; a setFirstStudentPolicy  method to change this pol-
icy; and the firstStudent method itself , which will return the first student 
according to the current policy. The code for setFirstStudentPolicy is simple:

void studentCollection::setFirstStudentPolicy(firstStudentPolicy f) {
   _currentPolicy = f;
}

We also need to modify the default constructor to initialize the current 
policy:

studentCollection::studentCollection() {
   _listHead = NULL;
   _currentPolicy = NULL;
}

Now we are ready to write firstStudent:

studentRecord studentCollection::firstStudent() {
if (_listHead == NULL || _currentPolicy == NULL) {

      studentRecord dummyRecord(-1, -1, "");
      return dummyRecord;
   }
   studentNode * loopPtr = _listHead;
studentRecord first = loopPtr->studentData;
loopPtr = loopPtr->next;

   while (loopPtr != NULL) {
      if (_currentPolicy(loopPtr->studentData, first)) {
         first = loopPtr->studentData;
      }

loopPtr = loopPtr->next;
   }
   return first;
}

The method begins by checking for special cases. If there is no list to 
review or no policy in place , we return a dummy record. Otherwise, we 
traverse the list to find the student who best meets the current policy, using 
the basic searching techniques we’ve been using throughout this book. We 
assign the record at the beginning of the list to first , start our loop vari-
able at the second record in the list , and begin the traversal. Inside the 
traversal loop, a call to the current policy function  tells us whether the stu-
dent we’re currently looking at is “better” than the best student we’ve found 
so far, based on the current criterion. When the loop is over, we return the 
“first student” .
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Analysis of First Student Solution

Having solved a problem using the strategy/policy pattern, we’re much more 
likely to recognize situations in which the technique can be employed than 
if we had just read about the technique once and never used it. We can also 
analyze our sample problem to start forming our own opinion about the worth 
of the technique, when it can be properly employed, and when it might be a 
mistake, or at least more trouble than it’s worth. One thought that may have 
occurred to you about this particular pattern is that it weakens encapsulation 
and information hiding. For example, if the client code is providing the policy 
functions, it requires access to types that would normally remain internal to 
the class, in this case, the studentRecord type. (We’ll consider a way around 
this problem in the exercises.) This means the client code could break if we 
ever modify that type, and we must weigh this concern against the benefits of 
the pattern before applying it in other projects. In previous chapters, we dis-
cussed how knowing when to use a technique—or when not to use it—is as 
important as knowing how to use it. By examining your own code, you gain 
insight into this critical question.

For further practice, you can review your library of completed projects in 
search of code that could be refactored using this technique. Remember that 
much “real world” programming involves supplementing or modifying an exist-
ing code base, so this is excellent practice for such modifications, in addition 
to developing your skill with the particular component. Moreover, one of the 
benefits of good code reuse is that we learn from it, and this practice maxi-
mizes learning.  

As-Needed Learning
The previous section described what we might call “learning through wander-
ing.” While such journeys are valuable to programmers, there are other times 
where we must move toward a particular goal. If you’re working on a particular 
problem, especially if you’re working against any kind of deadline, and you sus-
pect that a component could be of great help to you, you don’t want to wander 
randomly through the world of programming and hope that you stumble 
upon what you need. Instead, you want to find the component or components 
that directly apply to your situation as quickly as possible. That sounds very 
tricky, though—how do you find what you need when you don’t know exactly 
what you’re looking for? Consider the following sample problem:

P R O B L E M :  E F F I C I E N T  T R A V E R S A L

A programming project will use your studentCollection class. The client code needs the 
ability to traverse all of the students in the collection. Obviously, to maintain information 
hiding, the client code cannot be given direct access to the list, but it’s a requirement 
that the traversals are efficient.
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Because the key word in this description is efficient, let’s be precise about 
what that means in this case. Let’s suppose that a particular object of our 
studentCollection class has 100 students. If we had direct access to the linked 
list, we could write a loop to traverse the list that would loop 100 times. That’s 
the most efficient any list traversal can be. Any solution that requires us to 
loop more than 100 times to determine the result would be inefficient.

Without the requirement for efficiency, we might try to solve the prob-
lem by adding a simple recordAt method to our class that would return the 
student record at a particular position in the collection, numbering the first 
record as 1:

studentRecord studentCollection::recordAt(int position) {
   studentNode * loopPtr = _listHead;
   int i = 1;
while (loopPtr != NULL && i < position) {

      i++;
      loopPtr = loopPtr->next;
   }
   if (loopPtr == NULL) {

studentRecord dummyRecord(-1, -1, "");
      return dummyRecord;
   } else {

return loopPtr->studentData;
   }
}

In this method, we use a loop  to traverse the list until we reach the 
desired position or we reach the end of the list. At the end of the loop, if the 
end of the list has been reached, we create and return a dummy record , or 
we return the record at the specified position . The problem is that we are 
performing a traversal merely to find one student record. This is not neces-
sarily a full traversal, because we will stop when we reach the desired position, 
but it is a traversal nonetheless. Suppose the client code is attempting to aver-
age student grades:

int gradeTotal = 0;
for (int recNum = 1; recNum <= numRecords; recNum++) {
   studentRecord temp = sc.recordAt(recNum);
   gradeTotal += temp.grade();
}
double average = (double) gradeTotal / numRecords;

For this code segment, assume that sc is a previously declared and popu-
lated studentCollection and recNum is an int storing the number of records. 
Suppose recNum is 100. If you just glance at this code, it might appear that 
computing the average takes just 100 trips through the loop, but since each 
call to recordAt is itself a partial list traversal, this code involves 100 traversals, 
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each of which will involve looping about 50 times for the average case. So instead 
of 100 steps, which would be efficient, this could require about 5,000 steps, 
which is very inefficient. 

When to Search for a Component

We have now arrived at the real problem. Providing client access to collec-
tion members for traversals is easy; providing such access efficiently is not. 
We could, of course, try to solve this problem using only our own problem-
solving ability, but we would reach the solution much faster if we could use a 
component. The first step in finding a previously unknown component that 
can aid our solution is assuming that such a component actually exists. Put 
another way, you won’t find a component unless you start searching for one. 
Therefore, to maximize the benefit of components, you need to be on the 
lookout for situations where they can help. When you find yourself stuck on 
some aspect of the problem, try the following:

1. Restate the problem generically.

2. Ask yourself: Is this likely to be a common problem?

The first step is important because if we state our problem as “Allow cli-
ent code to efficiently compute the average student grade in a linked list of 
records encapsulated in a class,” it sounds like it’s specific to our situation. 
If, however, we state the problem as “Allow client code to efficiently traverse 
a linked list without providing direct access to the list’s pointers,” then we 
begin to understand that this might be a common problem. Surely, we might 
ask ourselves, as often as programs store linked lists and other sequentially 
accessed structures within classes, other programmers must have figured out 
ways to allow efficient access to every item in the structure?

Finding a Component

Now that we’ve agreed to look, it’s time to find our component. To make 
things clear, let’s restate the original programming problem as a research 
problem: “Find a component we can use to modify our studentCollection class 
to allow client code to efficiently traverse the internal list.” How do we solve 
this problem? We could start by looking at any of our component types: patterns, 
algorithms, abstract data types, or libraries.

Suppose we started by looking at the standard C++ libraries. We would 
not necessarily be looking for a class to “plug in” to our solution, but we 
instead could mine a library class that was similar to our studentCollection 
class for ideas. This employs the analogy strategy we used to solve program-
ming problems. If we find a class that has an analogous problem, we can 
borrow its analogous solution. Our previous exposure to the C++ library has 
brought us into contact with its container classes, such as vector, and we should 
look for the container class that’s most like our student collection class. If we 
go to a favorite C++ reference, be that a book or a site on the Web, and review 
the C++ container classes, we see there is a “sequence container” called list 
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that fits the bill. Does the list class allow efficient traversal by client code? It 
does, using an object known as an iterator. We see that the list class provides 
methods begin and end that produce iterators, which are objects that can ref-
erence a particular item in the list and be incremented to make the iterator 
reference the next object in the list. If integerList is a list<int>, populated 
with integers, and iter is a list<int>::iterator, then we could display all of 
the integers in the list with the following:

iter = intList.begin();
while (iter != intList.end()) {
   cout << *iter << "\n";
   iter++;
}

Through the use of the iterator, the list class has solved the problem of 
providing a mechanism to the client for efficiently traversing the list. At this 
point, we might think to drop the list class itself into our studentCollection 
class, replacing our home-built linked list. We could then create begin and end 
methods for our class that would wrap the same methods from the embedded 
list object, and the problem would be solved. This, however, runs straight 
into the issue of good versus bad reuse. Once we fully understand the itera-
tor concept and can reproduce it on our own in our own code, plugging an 
existing class from the Standard Template Library into our code will be a 
good option—perhaps the best option. If we’re not able to do that, using 
the list class becomes a shortcut that doesn’t help us grow as programmers. 
Sometimes, of course, we must avail ourselves of components that we couldn’t 
reproduce, but if we fall into the habit of depending on other programmers 
to solve our problems, we risk never becoming problem solvers ourselves.

So let’s implement the iterator ourselves. Before we do that, though, let’s 
briefly look at other ways we could have arrived at the same place. We began 
the search in the standard template libraries, but we could have begun else-
where. For example, we could have searched through a list of common 
design patterns. Under the heading of “behavioral patterns,” we would find 
the iterator pattern, in which the client is allowed sequential access to a collec-
tion of items without exposing the underlying structure of the collection. 
This is exactly what we need, but we could have found it only by searching 
through a list of patterns or remembering it from previous investigations of 
patterns. We could have started our search with abstract data types because 
list in general, and linked list in particular, are common abstract data types. 
However, many discussions and implementations of the list abstract data type 
do not consider client list traversal to be a basic operation, so the iterator 
concept never comes up. Finally, if we begin our search in the algorithms 
area, we would be unlikely to find anything helpful. Algorithms tend to 
describe tricky code, and the code to create an iterator is fairly simple, as we 
will soon see. In this case, then, the class library was the quickest route to our 
destination, followed by patterns. As a general rule, however, you must con-
sider all component types when searching for a helpful component. 
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Applying the Component

We now know we’re going to make an iterator for our studentCollection class, 
but all the list standard library class has shown us is how the iterator meth-
ods work externally. If we got stuck on implementation, we might consider 
reviewing the source code list and its ancestor classes, but given the difficulty 
of reading large swaths of unfamiliar code, that’s a measure of last resort. 
Instead, let’s just think our way through this. Using the previous code example 
as a guide, we can say that an iterator is defined by four central operations:

1. A method in the collection class that provides an iterator that references 
the first item in the collection. In the list class, this was begin.

2. A mechanism to test whether the iterator has advanced past the last item 
in the collection. In the previous example, this was a method called end in 
the list class that produced a special iterator object to test against.

3. A method in the iterator class that moves the iterator so that it references 
the next item in the collection. In the previous example, this was the 
overloaded ++ operator.

4. A method in the iterator class that returns the currently referenced 
item in the collection. In the previous example, this was the overloaded 
* (prefixed) operator.

In terms of writing the code, nothing here looks difficult. It’s just a ques-
tion of putting everything in the right place. So let’s get started. From the 
descriptions above, our iterator, which we’ll call scIterator, needs to store a 
reference to an item in the studentCollection and needs to be able to advance 
to the next item. Thus, our iterator should store a pointer to a studentNode. 
That will allow it to return the studentRecord contained within, as well as advance 
to the next studentNode. Therefore, the private section of iterator class will 
have this data member:

studentCollection::studentNode * current;

Right away, we’ve got a problem. The studentNode type is declared within 
a private section of studentCollection, and therefore the line above won’t 
work. Our first thought is that perhaps studentNode shouldn’t have been 
declared privately, but that’s not the right answer. The node type is inher-
ently private because we don’t want random client code to depend upon a 
particular implementation of the node type, thus creating code that could 
break if we modify our class. Nevertheless, we need to allow scIterator access 
to our private type. We do that with a friend declaration. In the public section 
of studentCollection, we add:

friend class scIterator;
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Now scIterator can access the private declarations within studentCollection, 
including the declaration for studentNode. We can also declare some 
constructors:

scIterator::scIterator() {
   current = NULL;
}
scIterator::scIterator(studentCollection::studentNode * initial) {
   current = initial;
}

Let’s hop over to the studentCollection for a second and write our begin 
method—a method that returns an iterator that references the first item in 
our collection. Following the naming scheme I have used in this book, this 
method should have a noun for a name, such as firstItemIterator:

scIterator studentCollection::firstItemIterator() {
   return scIterator(_listHead);
}

As you can see, all we need to do here is stuff the head pointer of the 
linked list into a scIterator object and return it. If you’re anything like me, 
seeing the pointers flying around here may make you a little nervous, but 
note that scIterator is just going to hold onto a reference to an item in the 
studentCollection list. It’s not going to allocate any memory of its own, and 
therefore we don’t need to worry about deep copy and overloaded assign-
ment operators.

Let’s return to scIterator and write our other methods. We need a method 
to advance the iterator to the next item, as well as a method to determine 
whether we are past the end of the collection. We should think about both 
of these at the same time. In advancing the iterator, we need to know what 
value the iterator should have when it passes beyond the last node in the list. 
If we do nothing special, the iterator would naturally get the value of NULL, so 
that would be the easiest value to use. Note that we have initialized our itera-
tor to NULL in the default constructor, so when we use NULL to indicate past-
the-end we lose any distinction between these two states, but for this current 
problem that’s not an issue. The code for the methods is:

 void scIterator::advance() {
if (current != NULL) 

current = current->next;
}

 bool scIterator::pastEnd() {
   return current == NULL;
}

Remember that we are just using the iterator concept to solve the origi-
nal problem. We are not trying to duplicate the exact specification of a C++
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Standard Template Library iterator, so we don’t have to use the same inter-
face. In this case, rather than overloading the ++ operator, I have a method 
called advance , which checks to see that the current pointer isn’t NULL  
before advancing it to the next node . Similarly, I find having to create a 
special “end” iterator to compare against cumbersome, so I just have a bool 
method called pastEnd  that determines whether we’ve run out of nodes.

Lastly, we need a way to get the currently referenced studentRecord object:

studentRecord scIterator::student() {
if (current == NULL) {

      studentRecord dummyRecord(-1, -1, "");
      return dummyRecord;
} else {

      return current->studentData;
   }
}

As we’ve done previously, for safety, if our pointer is NULL, we create and 
return a dummy record . Otherwise, we return the currently referenced 
record . This completes the implementation of the iterator concept with 
our studentCollection class. For clarity, here’s the complete declaration of the 
scIterator class:

class scIterator {
public:
   scIterator();
   scIterator(studentCollection::studentNode * initial);
   void advance();
   bool pastEnd();
   studentRecord student();
private:
   studentCollection::studentNode * current;
};

With the code all in place, we can test our code with a sample traversal. 
Let’s implement that average grade computation for comparison:

scIterator iter;
int gradeTotal = 0;
int numRecords = 0;

 iter = sc.firstItemIterator();
 while (!iter.pastEnd()) {

   numRecords++;
gradeTotal += iter.student().grade();
iter.advance();

}
double average = (double) gradeTotal / numRecords;

This listing makes use of all of our iterator-related methods, so it’s a 
good test of our code. We call firstItemIterator to initialize our scIterator 
object . We call pastEnd as our loop termination test . We call the student 



Solv ing Problems wi th Code Reuse 187

method of the iterator object to get the current studentRecord so that we can 
extract the grade . Finally, to move the iterator to the next record, we call 
the advance method . When this code works, we can be reasonably confi-
dent that we have implemented the various methods correctly, and more 
than that, that we have a firm understanding of the iterator concept. 

Analysis of Efficient Traversal Solution

As before, just because the code works doesn’t mean the potential for learn-
ing from this event is over. We should carefully consider what we have done, 
its positive effects and negative effects, and contemplate expansions of the 
basic idea we have just implemented. In this case, we can say that the iterator 
concept definitely solves the original problem of inefficient client traversal of 
our collection, and once implemented, the use of the iterator is elegant and 
highly readable. On the downside, there’s no denying that the inefficient 
approach based on the recordAt method was much easier to write. In deciding 
whether or not the implementation of an iterator is valuable for a particular 
situation, we have to ask ourselves how often traversals would occur, how 
many items would typically be in our list, and so on. If traversals are infre-
quent and the list is small, the inefficiency is probably not important, but if 
we expect the list to grow large or cannot guarantee that it will not, the itera-
tor may be required.

Of course, if we had decided to use a list object from the Standard Tem-
plate Library, we would no longer worry about the difficulty of implementing 
the iterator because we would not be implementing it ourselves. The next 
time a situation like this arises, we can make use of the list class without feel-
ing we are shortchanging ourselves or setting ourselves up for later difficulties, 
because we have investigated both lists and iterators to the point where we 
understand what must be going on behind the scenes, even if we never 
reviewed the actual source code.

Going further, we can think about broader applications of iterators and 
their possible limitations. Suppose, for example, we needed an iterator that 
could efficiently move not just to the next item in our studentCollection but 
also to the previous item. Now that we know how the iterator works, we can 
see that there is really no way to do this with our current studentCollection 
implementation. If the iterator maintains a link to a particular node in the 
list, advancing to the next node requires merely following the link in the 
node. Retreating to the previous node, however, requires traversing the list 
again up to that point. Instead, we would need a doubly linked list, where 
the nodes have pointers in both directions, to both the next node and the 
previous one. We can generalize this thought and start to consider different 
data structures and what kinds of traversals or data access can be efficiently 
offered to clients. For example, in the previous chapter on recursion, we 
briefly encountered the binary tree structure. Is there some way to allow an 
efficient client traversal of this structure in its standard form? If not, how 
would we have to modify it to allow efficient reversals? What is even the right 
order for the nodes in a binary tree to be traversed? Thinking through ques-
tions like these helps us to become better programmers. Not only will we 
teach ourselves new skills, but we’ll also learn more about the strengths and 
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weaknesses of different components. Knowing the pros and cons of a com-
ponent will allow us to use it wisely. Failing to consider the limitations of a 
particular approach can lead to dead ends, and the more we know about the 
components we use, the less likely this will happen to us. 

Choosing a Component Type

As we’ve seen in these examples, the same problem can be solved using dif-
ferent types of components. A pattern may express the idea of a solution, an 
algorithm may outline an implementation of that idea or another idea that 
will solve the same problem, an abstract data type may encapsulate the con-
cept, and a class in a library may contain a fully tested implementation of the 
abstract data type. If each of these is an expression of the same concept that 
we need to solve our problem, how do we know which component type to 
pull out of our toolbox?

One primary consideration is how much work may be required to inte-
grate the component into our solution. Linking a class library into our code 
is often a fast way to solve a problem, whereas implementing an algorithm 
from a pseudocode description may take a lot of time. Another important 
consideration is how much flexibility the proposed component offers. Often, 
a component will come in a nice, prepackaged form, but when it is integrated 
into the project, the programmer discovers that while the component does 
most of what he or she needs, it doesn’t do everything. Perhaps the return 
value of one method is in the wrong format and requires additional processing, 
for example. If the component is used anyway, more trouble may be discov-
ered down the road before the component is eventually discarded altogether 
and new code for that part of the problem is developed from scratch. If the 
programmer had chosen a component at a higher conceptual level, such as a 
pattern, the resulting code implementation would fit the problem perfectly 
because it was created specifically for that problem.

Figure 7-1 summarizes the interplay of these two factors. Generally, code 
from a library comes ready to use, but it cannot be directly modified. It can 
only be indirectly modified either through the use of C++ templates or if the 
code in question implements something like the strategy pattern we saw ear-
lier in this chapter. At the other end of the scale, a pattern may be presented 
as nothing more than an idea (“a class that can have only one instance”), 
offering maximum implementation flexibility but requiring a lot of work 
from the programmer.

Of course, this is just a general guideline, and individual cases will differ. 
Perhaps the class we’re using from the library is at such a low level in our pro-
gram that flexibility won’t suffer. For example, we might wrap a collection 
class of our own design around a basic container class like list, which is 
broad enough in capabilities that even if we have to expand the functionality 
of our container class, we can expect the list class to handle it. Before using 
a pattern, perhaps we’ve already implemented a particular pattern before, so 
we’re not so much creating new code as adapting previously written code.



Solv ing Problems wi th Code Reuse 189

Figure 7-1: Flexibility versus work required for component types

The more experience you have in using components, the more confident 
you can be that you are starting in the right place. Until you develop that 
experience, you can use the trade-off between flexibility and work required 
as a rough guide. For each specific situation, ask yourself questions such as 
the following:

 Can I use the component as is, or does it require additional code to bolt 
it into my project?

 Am I confident that I understand the full extent of the problem, or the 
part that relates to this component, and that it will not change in the 
future?

 Will I increase my programming knowledge by choosing this component?

Your answers to these questions will help you estimate how much work will 
be involved and how much benefit you receive from each possible approach. 

Component Choice in Action
Now that we understand the general idea, let’s run through a quick example 
to demonstrate the specifics.

P R O B L E M :  S O R T I N G  S O M E ,  L E A V I N G  O T H E R S  A L O N E

A project requires you to sort an array of studentRecord objects by grade, but 
there’s a catch. Another part of the program is using a special grade value of –1 
to indicate a student whose record cannot be moved. So while all the other records 
must be moved around, those with –1 grades should be left exactly where they are, 
resulting in an array that is sorted except for –1 grades interspersed throughout.
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This is a tricky problem, and there are lots of ways we could attempt to 
solve it. To keep things simple, let’s reduce our choices to two: Either we 
choose an algorithm—that is, a sorting routine like insertion sort—and mod-
ify it to ignore the studentRecord objects with –1 grades, or we figure out a way 
to use the qsort library routine to solve this problem. Both of these options 
are possible. Because we’re comfortable with the insertion-sort code, it 
shouldn’t be too difficult to throw in some if statements to explicitly check 
and skip over records with –1 grades. Making qsort do the work for us will 
take a bit of a workaround. We could copy the student records with the real 
grades into a separate array, sort them using qsort, and then copy them back, 
making sure we don’t copy over any of the –1 grade records.

Let’s follow through with both options to see how the choice of compo-
nent type affects the resulting code. We’ll start with the algorithm component, 
writing our own modified insertion sort to solve the problem. As usual, we’ll 
approach this problem in stages. First, let’s reduce the problem by removing 
the whole –1 grade issue and just sorting an array of studentRecord objects 
without any special rules. If sra is an array containing arraysize objects of type 
studentRecord, the resulting code looks like this:

int start = 0;
int end = arraySize - 1;
for (int i = start + 1; i <= end; i++) {
   for (int j = i; j > start && sra[j-1].grade() > sra[j].grade(); j--) {

studentRecord temp = sra[j-1];
      sra[j-1] = sra[j];
      sra[j] = temp;
   }
}

This code is very similar to the insertion sort for integers. The only differ-
ences are that the comparison requires calls to the grade method , and our 
temporary object used for swap space has changed type . This code works 
fine, but there is one caveat for testing this and other code blocks that follow 
in this section: Our studentRecord class validates data, and as previously written, 
it will not accept a –1 grade, so make sure you make the necessary changes. 
Now we’re ready to complete this version of the solution. We need the inser-
tion sort to ignore records with –1 grades. This is not as simple as it sounds. 
In the basic insertion-sort algorithm, we are always swapping adjacent loca-
tions in the array, j and j - 1 in the code above. If we are leaving records 
with –1 grades in place, though, the locations of the next records to be 
swapped could be an arbitrary distance apart.

Figure 7-2 illustrates this problem with an example. If this shows the array 
in its original configuration, then the arrows indicate the locations of the 
first records to be swapped, and they are not adjacent. Furthermore, eventu-
ally the last record (for Art) will have to be swapped from location [5] to [3] 
and then from [3] to [0], so all the swaps required to sort this array (as much 
as we are sorting it) involve nonadjacent records.
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Figure 7-2: Arbitrary distance between records to be swapped in modified insertion sort

In considering how to solve this problem, I looked out for an analogy 
and found one in the processing of linked lists. In many linked-list algorithms, 
we have to maintain a pointer not only to the current node in our list traversal 
but also to the previous node. So at the end of loop bodies, we often assign 
the current pointer to the previous pointer before advancing the current 
pointer. Something similar needs to go on here. We need to keep track of the 
last “real” student record as we progress linearly through the array to find the 
next “real” record. Putting this idea into practice results in the following code:

for (int i = start + 1; i <= end; i++) {
if (sra[i].grade() != -1) {

int rightswap = i;
      for (int leftswap = i - 1; 
         leftswap >= start 
         && (sra[leftswap].grade() > sra[rightswap].grade() 

|| sra[leftswap].grade() == -1); 
         leftswap--)
      {

if(sra[leftswap].grade() != -1) {
            studentRecord temp = sra[leftswap];
            sra[leftswap] = sra[rightswap];
            sra[rightswap] = temp;

rightswap = leftswap;
         }
      }
   }
}

In the basic insertion-sort algorithm, we repeatedly insert unsorted items 
into an ever-growing sorted area within the array. The outer loop selects the 
next unsorted item to be placed in sorted order. In this version of the code, 
we start by checking that the grade in location i is not –1  inside the outer 
loop body. If it is, we will just skip to the next record, leaving this record in 
place. Once we have established that the student record at location i can be 
moved, we initialize rightswap to this location . Then we begin the inner 
loop. In the basic insertion-sort algorithm, each iteration of the inner loop 
swaps an item with its neighbor. In our version, though, because we are leav-
ing records with –1 grades in place, we perform a swap only when location j 
does not contain a grade of –1 . We then swap between locations leftswap 
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and rightswap and assign leftswap to rightswap , setting up the next swap in 
the inner loop if there is one. Finally, we have to modify our inner loop con-
dition. Normally the inner loop in an insertion sort stops when we reach the 
front end of the array or when we find a value that is less than the value we 
are inserting. Here, we have to make a compound condition using logical or 
so that the loop continues past –1 grades  (because –1 will be less than any 
legitimate grade, thus stopping the loop prematurely). 

This code solves our problem, but it’s possible that it may be giving off 
some “bad smells.” The standard insertion-sort code is easy to read, especially 
if you understand the gist of what it’s doing, but this modified version is hard 
on the eyes and probably needs some comment lines if we want to be able to 
understand it later. Perhaps a refactoring is in order, but let’s try the other 
approach for solving this problem and see how that reads.

The first thing we’ll need is a comparison function for use with qsort. In 
this case, we’ll be comparing two studentRecord objects, and our function will 
subtract one grade from the other:

int compareStudentRecord(const void * voidA, const void * voidB) {
   studentRecord * recordA = (studentRecord *) voidA;
   studentRecord * recordB = (studentRecord *) voidB;
   return recordA->grade() - recordB->grade();
}

Now we’re ready to sort the records. We’ll do this in three phases. First, 
we will copy all of the records that don’t have a –1 grade to a secondary array, 
leaving no gaps. Then, we’ll call qsort to sort the secondary array. Finally, 
we will copy the records from the secondary array back to the original array, 
skipping over the records with the –1 grades. The resulting code looks like this:

 studentRecord sortArray[arraySize];
 int sortArrayCount = 0;

for (int i = 0; i < arraySize; i++) {
if (sra[i].grade() != -1) {

      sortArray[sortArrayCount] = sra[i];
      sortArrayCount++;
   }
}

 qsort(sortArray, sortArrayCount, sizeof(studentRecord), compareStudentRecord);
 sortArrayCount = 0;
 for (int i = 0; i < arraySize; i++) {

if (sra[i].grade() != -1) {
      sra[i] = sortArray[sortArrayCount];
      sortArrayCount++;
   }
}

Although this code is about the same length as the other solution, it’s 
more straightforward and easier to read. We begin by declaring our second-
ary array, sortArray , of the same size as the original array. The variable 
sortArrayCount is initialized to zero ; in the first loop, we’ll use this to track 
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how many records we have copied into the secondary array. Inside that loop, 
each time we encounter a record without a –1 grade , we assign it to the next 
available slot in sortArray and increment sortArrayCount. When the loop is over, 
we sort the secondary array . The variable sortArrayCount is reset to 0 ; 
we’ll use it in the second loop to track how many records we have copied 
from the secondary array back to the original array. Note that the second 
loop traverses the original array , looking for slots that need to be filled . 
If we approach this the other way, trying to loop through the secondary array 
and pushing the records over to the original array, we would need a double 
loop, with the inner loop searching for the next real-grade slot in the origi-
nal array. This is another example of how the problem can be made easy or 
difficult based on our conceptualization of it.

Comparing the Results
Both solutions work and are reasonable approaches. For most programmers, 
the first solution, in which we modified insertion sort to leave some records 
in place as we sorted around them, is harder to write and harder to read. The 
second solution, though, appears to introduce some inefficiency because it 
requires copying the data to the secondary array and back again. Here’s 
where a little knowledge of algorithm analysis comes in handy. Suppose we 
were sorting 10,000 records—if we were sorting much fewer, we wouldn’t really 
care about the efficiency. We can’t know for sure what algorithm underlies 
the qsort call, but the worst case for a general-purpose sort would require 
100 million record swaps, and the best case would be around 130,000. Regard-
less of where along the range we end up, copying 10,000 records back and 
forth isn’t going to be a major performance drain compared to the sorting. 
Also, we have to consider that whatever algorithm is used by qsort may be 
more efficient than our simple insertion sort, wiping out any benefit we may 
have gained from avoiding copying the data to and from the secondary array.  

So in this scenario, the second approach, using qsort, appears to be 
the winner. It’s simpler to implement, simpler to read and therefore more 
easily maintained, and we can expect its performance to be as good as, or 
possibly better than, the first solution. The best thing we can say about the 
first approach is that we may have learned skills that we can apply to other 
problems, whereas the second approach, by virtue of its simplicity, offers no 
such insights. As a general rule, when you are at the stage of programming 
where you are trying to maximize your learning, you should favor higher-
level components such as algorithms and patterns. When you are at the stage 
of trying to maximize your efficiency as a programmer (or are under a hard 
deadline), you should favor lower-level components, choosing prebuilt code 
when possible. Of course, if time permits, trying several different approaches, 
as we have done here, provides the best of all worlds. 

Exercises

Try out as many components as you can. Once you get a handle on how to 
learn new components, your abilities as a programmer will start to grow quickly.
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7-1. A complaint offered against the policy/strategy pattern is that it requires exposing 
some internals of the class, such as types. Modify the “first student” program 
from earlier in this chapter so that the policy functions are all stored within 
the class and are chosen by passing a code value (of a new, enumerated type, 
for example), instead of passing the policy function itself.

7-2. Rewrite our studentCollection functions from Chapter 4 (addRecord and 
averageRecord) so that instead of directly implementing a linked list, you 
use a class from the C++ library.

7-3. Consider a collection of studentRecord objects. We want to be able to quickly 
find a particular record based on student number. Store the student records 
in an array, sort the array by student number, and investigate and implement 
the interpolation search algorithm.

7-4. For the problem in 7-3, implement a solution by implementing an abstract 
data type that allows an arbitrary number of items to be stored and individual 
records to be retrieved based on a key value. A generic term for a structure 
that can efficiently store and retrieve items based on a key value is a symbol 
table, and common implementations of the symbol table idea are hash tables 
and binary search trees.

7-5. For the problem in 7-3, implement a solution using a class from the C++ library.

7-6. Suppose you are working on a project in which a particular studentRecord 
may need to be augmented with one of the following pieces of data: term 
paper title, year of enrollment, or a bool indicating whether the student is 
auditing the class. You don’t want to include all of these data fields in the 
base studentRecord class, knowing that in most cases they won’t be used. Your 
first thought is to create three subclasses, each having one of the data fields, 
with names such as studentRecordTitle, studentRecordYear and studentRecordAudit. 
Then you are informed that some student records will contain two of these 
additional data fields or perhaps all three. Creating subclasses for each 
possible variation is impractical. Find a design pattern that addresses this 
conundrum, and implement a solution.

7-7. Develop a solution to the problem described in 7-6 that does not make use 
of the pattern you discovered but instead solves the problem using C++ 
library classes. Rather than focusing on the three particular data fields 
described in the previous question, try to make a general solution: a version 
of the studentRecord class that allows arbitrary extra fields of data to be added 
to particular objects. So, for example, if sr1 is a studentRecord, you might want 
client code to make the call sr1.addExtraField("Title", "Problems of Unconditional 
Branching"), and then later sr1.retrieveField("Title") would return “Problems 
of Unconditional Branching.”

7-8. Design your own: Take a problem you have already solved, and solve it again 
using a different component. Remember to analyze the results in comparison to 
your original solution.
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T H I N K I N G  L I K E  A  
P R O G R A M M E R

It’s time for us to bring together everything 
we’ve experienced over the previous chap-

ters to complete the journey from fledgling 
coder to problem-solving programmer. 

In previous chapters, we’ve solved problems in a variety of areas. I believe 
these areas are the most beneficial for the developing programmer to mas-
ter, but of course there are always more things to learn, and many problems 
will require skills not covered in this book. So in this chapter, we’re going to 
come full circle to general problem-solving concepts, taking the knowledge 
we’ve gained in our journey to develop a master plan for attacking any pro-
gramming problem. Although we might call this a general plan, in one way 
it’s actually a very specific plan: It will be your plan, and no one else’s. We’ll 
also look at the many ways you can add to your knowledge and skills as a 
programmer.
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Creating Your Own Master Plan

Way back in the first chapter, we learned the first rule of problem solving was 
that you should always have a plan. A more precise formulation would be to 
say you should always follow your plan. You should construct a master plan 
that maximizes your strengths and minimizes your weaknesses and then 
apply this master plan to each problem you must solve.

Over many years of teaching, I’ve seen students of all different abilities. 
By that I don’t simply mean that some programmers have more ability than 
others, although of course this is true. Even among programmers with the 
same level of ability, there is great diversity. I’ve lost track of how often I’ve 
been surprised by a formerly struggling student who quickly masters a partic-
ular skill or a talented student who displays a weakness in a new area. Just as 
no two fingerprints are the same, no two brains are the same, and lessons 
that are easy for one person are difficult for another. 

Suppose you’re a football coach, planning your offense for the next game. 
Because of an injury, you’re not sure which of two quarterbacks will be able 
to start. Both quarterbacks are highly capable professionals, but like any indi-
viduals in any endeavor, they have their strengths and weaknesses. The game 
plan that creates the best opportunity for victory with one quarterback might 
be terrible for the other.

In creating your master plan, you are the coach and your skill set is your 
quarterback. To maximize your chances for success, you need a plan that rec-
ognizes both your strengths and your weaknesses.

Playing to Your Strengths and Weaknesses
The key step in making your own master plan, then, is identifying your 
strengths and weaknesses. This is not difficult, but it requires effort and a fair 
degree of honest self-appraisal. In order to benefit from your mistakes, you 
must not only correct them in programs in which they appear, but you must 
also note them, at least mentally, or better yet, in a document. In this way, 
you can identify patterns of behavior that you would have otherwise missed.

I’m going to describe weaknesses in two different categories: coding and 
design. Coding weaknesses are areas where you tend to repeat mistakes when 
you’re actually writing the code. For example, many programmers frequently 
write loops that iterate one time too many or one time too few. This is known 
as a fencepost error, from an old puzzle about how many fenceposts are needed 
to build a 50-foot fence with 10-foot-long rails between posts. The immediate 
response from most people is five, but if you think about it carefully, the answer 
is six, as shown in Figure 8-1.

Most coding weaknesses are situations in which the programmer creates 
semantic errors by coding too quickly or without enough preparation. Design 
weaknesses, in contrast, are problems you commonly have in the problem-
solving or design stage. For example, you might discover you have trouble 
getting started or trouble integrating previously written subprograms into a 
complete solution.
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Figure 8-1: The fencepost puzzle

Although there is some overlap between these two categories, the two 
types of weaknesses tend to create different sorts of problems and must be 
defended against in different ways.

Planning Against Coding Weaknesses

Perhaps the most frustrating activity in programming is spending hours 
tracking down a semantic error that turns out to be a simple thing to fix once 
identified. Because no one is perfect, there’s no way to completely eliminate 
these situations, but a good programmer will do all he or she can to avoid 
making the same mistakes over and over again. 

I knew a programmer who had tired of making what is perhaps the 
most common semantic error in C++ programming: the substitution of the 
assignment operator (=) for the equality operator (==). Because conditional 
expressions in C++ are integer, not strictly Boolean, a statement such as the 
following is syntactically legal:

if (number = 1) flag = true;

In this case, the integer value 1 is assigned to number, and then the value 1 
is used as the result of the conditional statement, which C++ evaluates as true. 
What the programmer meant to do, of course, was:

if (number == 1) flag = true;

Frustrated at making this type of mistake over and over, the programmer 
taught himself to always write equality tests the other way, with the numerical 
literal on the left side, such as:

if (1 == number) flag = true;

By doing this, if the programmer slips up and substitutes the equality 
operator, the expression 1 = number would no longer be legal C++ syntax, and 
would produce a syntax error that would be caught at compile time. The 
original error is legal syntax, so it’s only a semantic error, which would be 
caught at compile time or not caught at all. Since I had made this mistake 
many times myself (and driven myself crazy trying to track the bug down), I 
employed this method, putting the numerical literal on the left side of the 
equality operator. In doing so, I discovered something curious. Because this 
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ran counter to my usual style, putting the literal on the left forced me to 
pause momentarily when writing conditional statements. I would think, “I 
need to remember to put the literal on the left so that I’ll catch myself if I use 
the assignment operator.” As you might expect, by having that thought run 
through my head, I never actually used the assignment operator but always 
correctly used the equality operator. Now, I no longer put the literal on the 
left side of the equality operator, but I still pause and let those thoughts run 
through my head, which keeps me from using the wrong operator.

The lesson here is that being aware of your coding-level weaknesses is 
often all that is necessary to avoid them. That’s the good news. The bad news 
is that you still have to put in the work to be aware of your coding weaknesses 
in the first place. The key technique is asking yourself why you made a partic-
ular mistake, rather than just fixing the mistake and moving on. This will 
allow you to identify the general principle you failed to follow. For example, 
suppose you had written the following function to compute the average of 
the positive numbers in an array of integers:

double averagePositive(int array[ARRAYSIZE]) {
   int total = 0;
   int positiveCount = 0;
   for (int i = 0; i < ARRAYSIZE; i++) {
      if (array[i] > 0) {
         total += array[i];
         positiveCount++;
      }
   }
 return total / (double) positiveCount;
}

At a glance, this function looks fine, but upon closer inspection, it has 
a problem. If there are no positive numbers in the array, then the value of 
positiveCount will be zero when the loop ends, and this will result in a division 
by zero at the end of the function . Because this is floating-point division, the 
program may not actually crash but rather produce odd behavior, depending 
on how the value of this function is used in the overall program.

If you were quickly trying to get your code running and you discovered this 
problem, you might add some code to handle the case where positiveCount is 
zero and move on. But if you want to grow as a programmer, you should ask 
yourself what mistake you made. The specific problem, of course, is that you 
didn’t account for the possibility of dividing by zero. If that’s as deep as the 
analysis goes, though, it won’t help you very much in the future. Sure, you 
might catch another situation where a divisor might turn out to be zero, but 
that is not a very common situation. Instead, we should ask what general 
principle has been violated. The answer: that we should always look for spe-
cial cases that can blow up our code.

By considering this general principle, we’ll be more likely to see patterns 
in our mistakes and therefore more likely to catch those mistakes in the future. 
Asking ourselves, “Any chance of dividing by zero here?” is not nearly as useful 
as asking ourselves, “What are the special cases for this data?” By asking the 
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broader question, we’ll be reminded to check not just for division by zero but 
also for empty data sets, data outside the expected range, and so on. 

Planning Against Design Weaknesses

Design weaknesses require a different approach to circumvent. The first step, 
though, is the same: You identify the weaknesses. A lot of people have trouble 
with this step because they don’t like to turn such a critical eye on themselves. 
We’re conditioned to conceal personal failings. It’s like when a job interviewer 
asks you what your biggest weakness is, and you are expected to answer with 
some nonsense about how you care too much about the quality of your work 
instead of providing an actual weakness. But just as Superman has his Krypto-
nite, even the best programmers have real weaknesses.

Here’s a sample (and certainly not exhaustive) list of programmer weak-
nesses. See whether you recognize yourself in any of these descriptions.

Convoluted designs
The programmer with this weakness creates programs that have too many 
parts or too many steps. While the programs work, they don’t inspire 
confidence—like worn clothing that looks as if it would fall apart at the 
first tug of a thread—and they are clearly inefficient.

Can’t get started
This programmer has a high degree of inertia. Whether from a lack of 
confidence in problem solving or plain procrastination, this program-
mer takes too long to make any initial progress on a problem.

Fails to test
This programmer doesn’t like to formally test the code. Often the code 
will work for general cases, but not for special cases. In other situations, 
the code will work fine but won’t “scale up” for larger problem sets 
that the programmer hasn’t tested.

Overconfident
Confidence is a great thing—this book is intended to increase the confi-
dence of its readers—but too much confidence can sometimes be as much 
a problem as too little. Overconfidence manifests itself in various ways. 
The overconfident programmer might attempt a more complicated solu-
tion than necessary or allow too little time to finish a project, resulting in 
a rushed, bug-ridden program.

Weak area
This category is a bit of a catchall. Some programmers work smoothly 
enough until they hit certain concepts. Consider the topics discussed in 
previous chapters of this book. Most programmers, even after complet-
ing the exercises, will be more confident in some of the areas we’ve cov-
ered than others. For example, perhaps the programmer gets lost with 
pointer programs, or recursion turns the programmer’s head inside out. 
Maybe the programmer has trouble designing elaborate classes. It’s not 
that the programmer can’t muddle through and solve the problem, but 
it’s rough work, like driving through mud.
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There are different ways you can confront your large-scale weaknesses, 
but once you recognize them, it’s easy to plan around them. If you’re the 
kind of programmer who often skips testing, for example, make testing an 
explicit part of your plan for writing each module, and don’t move onto the 
next module until you put a check in that box. Or consider a design para-
digm called test-driven development, in which the testing code is written first, 
and then the code is written to fill those tests. If you have trouble getting 
started, use the principles of dividing or reducing problems, and start writing 
code as soon as you can, with the understanding that you may have to rewrite 
that code later. If your designs are often too complicated, add an explicit 
refactoring step to your master plan. The point is, no matter what weaknesses 
you have as a programmer, if you recognize them, you can plan around them. 
Then your weaknesses are no longer weaknesses—just obstacles in the road 
that you will steer around on the way to successful project completion. 

Planning for Your Strengths

Planning for your weaknesses is largely about avoiding mistakes. Good plan-
ning, though, isn’t just about avoiding mistakes. It’s about working toward 
the best possible result given your current abilities and whatever restraints 
you may be operating under. This means you must also incorporate your 
strengths into your master plan.

You might think that this section isn’t for you, or at least not yet. After 
all, if you are reading this book, then you are still becoming a programmer. 
You might wonder whether you even have any strengths at this stage of your 
development. I’m here to tell you that you do, even if you haven’t recognized 
them yet. Here’s a list of common programmer strengths, by no means exhaus-
tive, with descriptions of each and hints to help you recognize whether the 
term applies to you:

Eye for detail
This type of programmer can anticipate special cases, see potential per-
formance issues before they arise, and never lets the big picture cloud 
over the important details that must be handled for the program to be a 
complete and correct solution. Programmers with this strength tend to 
test their plans on paper before coding, code slowly, and test frequently.

Fast learner
A fast learner picks up new skills quickly, whether that’s learning a new 
technique in an already-known language or working with a new applica-
tion framework. This type of programmer enjoys the challenge of learn-
ing new things and may choose projects based on this preference.

Fast coder
The fast coder doesn’t need to spend a lot of time with a reference book 
to hammer out a function. Once it’s time to start typing, the code flows 
off the ends of the fast coder’s fingers without much effort and with few 
syntactical errors.
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Never gives up
For some programmers, a pesky bug is a personal affront that can’t be 
ignored. It’s like the program has slapped the programmer across the 
mouth with a leather glove, and it’s up to the programmer to respond. 
This type of programmer always seems to stay levelheaded, determined 
but never very frustrated, and confident that with enough effort, victory 
is assured.

Super problem-solver
Presumably you were not a super problem-solver when you bought this 
book, but now that you’ve gotten some guidance, perhaps it’s all starting 
to come easily. The programmer with this trait is starting to envision 
potential solutions to a problem even as he or she is reading it.

Tinkerer
To this sort of programmer, a working program is like a wonderful toy 
box. The tinkerer has never lost the thrill of making the computer do 
his or her bidding and loves to keep finding something else for the com-
puter to do. Maybe the tinkering means adding more and more func-
tionality to a working program—a symptom known as creeping featurism. 
Maybe the program can be refactored for improved performance. Maybe 
the program can just be made prettier for the programmer or the user.

Few programmers will exhibit more than a couple of these strengths—in 
fact, some of them tend to cancel each other out. But every programmer has 
strengths. If you don’t recognize yourself in any of these, it just means you 
have yet to learn enough about yourself or your strength is something that 
doesn’t fit into one of my categories.

Once you’ve identified your strengths, you need to factor them into your 
master plan. Suppose you’re a fast coder. Obviously this will help get any 
project across the finish line, but how can you leverage this strength in a 
systematic way? In formal software engineering, there is an approach called 
rapid prototyping, in which a program is initially written without extensive 
planning and then improved through successive iterations until the results 
meet the problem requirements. If you’re a fast coder, you might try adopt-
ing this method, coding as soon as you have a basic idea and letting your rough 
prototype guide the design and development of the final program code.

If you’re a rapid learner, maybe you should start every project by hunting 
for new resources or techniques to solve the current problem. If you’re not a 
rapid learner, but you are the sort of programmer who doesn’t easily get frus-
trated, maybe you should start the project with the areas you think will be the 
most difficult to give yourself the most time to tackle them.

So whatever strengths you have, make sure you are taking advantage of 
them in your programming. Design your master plan so that you spend as 
much time as possible doing what you do best. Not only will you produce the 
best results this way, but you’ll also have the most fun, too.
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Putting the Master Plan Together
Let’s look at constructing a sample master plan. The ingredients include all 
the problem-solving techniques we have developed, plus our analysis of our 
strengths and weaknesses. For this example, I’ll use my own strengths and 
weaknesses.

In terms of problem-solving techniques, I use all of the techniques I share 
in this book, but I’m especially fond of the “reduce the problem” technique 
because using that technique allows me to feel that I’m always making con-
crete progress toward my goal. If I’m currently unable to figure out a way to 
write code that meets the full specification, I just throw out part of the speci-
fication until I gain momentum.

My biggest coding weakness is excessive eagerness. I love to program 
because I love to see computers following my instructions. Sometimes this 
leads me to think, “Let’s give this thing a rip and see what happens,” when I 
should still be analyzing the correctness of what I just wrote. The danger here 
isn’t that the program will fail—it’s that the program will either appear to 
succeed but not cover all the special cases, or succeed but not be the best 
possible solution I could write.

I love elegant program designs that are easy to expand and reuse. Often 
when I code larger projects, I spend a lot of time developing alternative designs. 
On the whole, this is a good trait, but sometimes this results in me spending 
too much time in the design phase, not leaving enough time to actually 
implement the selected design. Also, this can sometimes result in a solution 
that is over-designed. That is, sometimes the solution is more elegant, expand-
able, and robust than it really needs to be. Because every project is limited in 
time and money, the best solution must balance the desire for high software 
quality with the need to conserve resources.

My best programming strength, I think, is that I pick up new concepts 
well, and I love to learn. While some programmers like using the same skills 
over and over, I love a project where I can learn something new, and I’m always 
exhilarated by that challenge.

With all that in mind, here is my master plan for a new project.
To fight my primary design weakness, I will strictly limit my time spent in 

the design phase or, alternatively, limit the number of distinct designs I will 
consider before moving on. This might sound like a dangerous idea to some 
readers. Shouldn’t we spend as much time as we can in the design phase 
before jumping into coding? Don’t most projects fail because not enough 
time was spent on the front end, leading to a cascade of compromises on the 
back end? These concerns are valid, but remember that I’m not creating a 
general guidebook for software development. I’m creating my own personal 
master plan for tackling programming problems. My weakness is over-designing, 
not under-designing, so a rule limiting design time makes sense for me. For 
another programmer, such a rule could be disastrous, and some programmers 
may need a rule to force them to spend more time on design.
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After I complete my initial analysis, I’m going to consider whether the 
project presents opportunities to learn new techniques, libraries, and so forth. 
If it does, I’m going to write a small test-bed program to try out these new 
skills before attempting to incorporate them into my developing solution.

To fight excessive eagerness, I could incorporate a miniature code-
review step when I finish coding each module. However, that will require an 
exercise of willpower on my part—when I complete each module, I’m going 
to want to go ahead and try it out. Simply hoping that I can talk myself out of 
it each time is like leaving an open bag of potato chips next to a hungry man 
and being surprised when the bag is emptied. It’s better to subvert weak-
nesses with a plan that doesn’t require the programmer to fight his or her 
instincts. So what if I create two versions of the project: a crusty, anything-
goes version and a polished version for delivery? If I allow myself to play with the 
first version at will but prevent myself from incorporating code into the pol-
ished version until it’s been fully vetted, I’m much more likely to overcome 
my weakness. 

Tackling Any Problem

Once we have a master plan, we’re ready for anything. That’s what this book 
is ultimately all about: starting with a problem, any problem, and finding a way 
through to the solution. In all the previous chapters, the problem descriptions 
pushed us in a particular initial direction, but in the real world, most problems 
don’t come with a requirement to use an array or recursion or to encapsulate 
some part of the program’s functionality into a class. Instead, the program-
mer makes those decisions as part of the problem-solving process. 

At first, fewer requirements might seem to make problems easier. After 
all, a design requirement is a constraint, and don’t constraints make problems 
harder? While this is true, it’s also true that all problems have constraints—
it’s just that in some cases they are more explicitly spelled out than in others. 
For example, not being told whether a particular problem requires a dynam-
ically allocated structure doesn’t mean that the decision has no effect. The 
broad constraints of the problem—whether for performance, modifiability, 
speed of development, or something else—may be more difficult, or perhaps 
impossible, to meet if we make the wrong design choices. 

Imagine a group of friends has asked you to select a movie for everyone 
to watch. If one friend definitely wants a comedy, another doesn’t like older 
films, and another lists five films she’s just seen and doesn’t want to see 
again, these constraints will make the selection difficult. However, if no one 
has any suggestions beyond “just pick something good,” your work is even 
harder, and you’re highly likely to pick something that at least one member 
of the group won’t like at all.

Therefore larger, broadly defined, weakly constrained problems are 
the most difficult of all. However, they are susceptible to the same problem-
solving techniques we’ve used throughout this book; they just take more time 
to solve. With your knowledge of these techniques and your master plan in 
hand, you will be able to solve any problem.
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To demonstrate what I’m talking about, I’m going to walk you through 
the first steps of a program that plays hangman, the classic children’s game, 
but with a twist.

Before we get to the problem description, let’s review the basic rules of 
the game. The first player selects a word and tells a second player how many 
letters are in the word. The second player then guesses a letter. If the letter is 
in the word, the first player shows where the letter appears in the word; if the 
letter appears more than once, all appearances are indicated. If the letter is 
not in the word, the first player adds a piece to a stick-figure drawing of a 
man being hanged. If the second player guesses all the letters in the word, 
the second player wins, but if the first player completes the drawing, the first 
player wins. Different rules exist for how many pieces make up the drawing 
of the hanged man, so more generally we can say that the players agree 
ahead of time how many “misses” will win the game for the first player.

Now that we’ve covered the basic rules, let’s look at the specific problem, 
including the challenging twist.

P R O B L E M :  C H E A T I N G  A T  H A N G M A N

Write a program that will be Player 1 in a text-based version of hangman (that is, you 
don’t actually have to draw a hanged man—just keep track of the number of incorrect 
guesses). Player 2 will set the difficulty of the game by specifying the length of the 
word to guess as well as the number of incorrect guesses that will lose the game. 

The twist is that the program will cheat. Rather than actually picking a word at 
the beginning of the game, the program may avoid picking a word, so long as when 
Player 2 loses, the program can display a word that matches all the information given 
to Player 2. The correctly guessed letters must appear in their correct positions, and 
none of the incorrectly guessed letters can appear in the word at all. When the game 
ends, Player 1 (the program) will tell Player 2 the word that was chosen. Therefore, 
Player 2 can never prove that the game is cheating; it’s just that the likelihood of Player 2 
winning is small.

This is not a monster-sized problem by real-world standards, but it’s large 
enough to demonstrate the issues we face when dealing with a programming 
problem that specifies results but no methodology. Based on the problem 
description, you could fire up your development environment and begin to 
write code in one of dozens of different places. That, of course, would be a 
mistake because we always want to program with a plan, so I need to apply my 
master plan to this specific situation. 

The first part of my master plan is limiting the amount of time I spend in 
the design phase. In order to make that a reality, I need to think carefully 
about the design before I work on the production code. However, I believe 
that some experimentation will be necessary in this case for me to work out a 
solution to the problem. My master plan also allows me to create two projects, 
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a rough-and-ready prototype and a final, polished solution. So I’m going to 
allow myself to begin coding for the prototype at any time, prior to any real 
design work, but not allow any coding in the final solution until I believe 
my design is set. That won’t guarantee I’ll be entirely satisfied with the design 
in the second project, but it offers the best opportunity for that to be so.

Now it’s time to start picking this problem apart. In previous chapters, 
we would sometimes list all of the subtasks needed to complete a problem, 
so I’d like to make an inventory of the subtasks. At this point, though, this 
would be difficult because I don’t know what the program will actually do to 
accomplish the cheating. I need to investigate this area further.

Finding a Way to Cheat
Cheating at hangman is specific enough that I don’t expect to find any help 
in the normal sources of components; there is no NefariousStrategy pattern. At 
this point, I have a vague idea how the cheating could be accomplished. I’m 
thinking that I’ll choose an initial puzzle word and hang on to that as long as 
Player 2 chooses letters that aren’t actually in that word. Once Player 2 hits 
upon a letter that’s actually in the word, though, I’ll switch to another word if 
it’s possible to find one that has none of the letters selected thus far. In other 
words, I’ll deny a match to Player 2 as long as possible. That’s the idea, but I 
need more than an idea—I need something I can implement. 

In order to firm up my ideas, I’m going to work through an example 
on paper, taking on the role of Player 1, working from a word list. To keep 
things simple, I’m going to assume that Player 2 has requested a three-letter 
word and that the complete list of three-letter words that I know are shown 
in the first column of Table 8-1. I’ll assume that my first choice “puzzle word” 
is the first word on the list, bat. If Player 2 guesses any letter besides b, a, or t, 
I’ll say “no,” and we’ll be one step closer to completing the gallows. If Player 2 
guesses a letter in the word, then I’ll pick another word, one that doesn’t 
contain that letter.

Looking at my list, though, I’m not so sure this strategy is the best. In 
some situations, it probably makes sense. Suppose Player 2 guesses b. No 
other word in the list contains b, so I can switch the puzzle word to any of 
them. This also means that I’ve minimized the damage; I’ve eliminated only 
one possible word from my list. But what happens if Player 2 guesses a? If I 
just say “no,” I eliminate all words containing an a, which leaves just the three 
words in the second column of Table 8-1 for me to choose from. If I decided 
instead to admit the presence of letter a in the puzzle word, I would have five 
words left I could choose from, as shown in the third column. Note, though, 
that this extended selection exists only because all five of the words have the 
a in the same position. Once I declare a guess correct, I have to show exactly 
where the letter appears in the word. I’ll feel a lot better about my chances 
for the rest of the game if I have more word choices remaining to react to 
future guesses. 
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Also, even if I managed to avoid revealing letters early in the game, I 
have to expect that Player 2 will eventually make a correct guess. Player 2 
could start with all of the vowels, for example. Therefore, at some point I will 
have to decide what to do when a letter is revealed, and from my experiment 
with the sample list, it looks like I will have to find the location (or locations) 
where the letter appears most often. From this observation, I realized that I 
have been thinking about cheating in the wrong way. I should never actually 
pick a puzzle word, even temporarily, but just keep track of all the possible 
words I could choose if I have to. 

With this idea in mind, I can now define cheating in a different way: Keep 
as many words as possible in the list of candidate puzzle words. For each 
guess that Player 2 makes, the program has a decision to make. Do we claim 
that the guess was a miss or a match? If it was a match, in which positions 
does the guessed letter appear? I’ll have my program keep an ever-dwindling 
list of candidate puzzle words and, after each guess, make the decision that 
will leave the greatest number of words in that list.

Required Operations for Cheating at Hangman
Now I understand the problem well enough to create my list of subtasks. In a 
problem of this size, there’s a good chance that a list made at this early stage 
will leave some operations out. This is okay, because my master plan antici-
pates that I will not create a perfect design the first time around.

Store and maintain a list of words.
This program must have a list of valid English words. The program will 
therefore have to read a list of words from a file and store them internally 
in some format. This list will be reduced, or extracted from, during the 
game as the program cheats.

Table 8-1: Sample Word List

All Words Words Without a Words with a

bat dot bat

car pit car

dot top eat

eat saw

pit tap

saw

tap

top
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Create a sublist of words of a given length.
Given my intention to maintain a list of candidate puzzle words, I have to 
start the game with a list of words of the length specified by Player 2.

Track letters chosen.
The program will need to remember which letters have been guessed, 
how many of those were incorrect, and for any that were deemed correct, 
where they appear in the puzzle word. 

Count words in which a letter does not appear.
In order to facilitate cheating, I’ll need to know how many words in the 
list do not contain the most recently guessed letter. Remember that the 
program will decide whether the most recently guessed letter appears in 
the puzzle word with the goal of leaving the maximum number of words 
in the candidate word list.

Determine the largest number of words based on letter and position.
This looks like the trickiest operation. Let’s suppose Player 2 has just 
guessed the letter d and the current game has a puzzle-word length of 
three. Perhaps the current candidate word list as a whole contains 10 words 
that include d, but that’s not what’s important because the program will 
have to state where the letter occurs in the puzzle word. Let’s call the 
positioning of letters in a word a pattern. So d?? is a three-letter pattern 
that specifies the first letter is a d and the other two letters are anything 
other than a d. Consider Table 8-2. Suppose that the list in the first col-
umn contains every three-letter word containing d known to the program. 
The other columns break this list down by pattern. The most frequently 
occurring pattern is ??d, with 17 words. This number, 17, would be com-
pared with the number of words in the candidate list that do not contain 
a d to determine whether to call the guess a match or a miss.

Create a sublist of words matching a pattern.
When the program declares that a Player 2 guess is a match, it will create 
a new candidate word list with only those words that match the letter pat-
tern chosen. In the previous example, if we declared d a match, the third 
column in Table 8-2 would become the new candidate word list.

Keep playing until the game is over.
After all the other operations are in place, I need to write the code that 
glues everything together and actually play the game. The program should 
repeatedly request a guess from Player 2 (the user), determine whether 
the candidate word list would be longer by rejecting or accepting that 
guess, reduce the word list accordingly, and then display the resulting 
puzzle word, with any correctly guessed letters revealed, along with a 
review of all previously guessed letters. This process would continue until 
the game was over, having been won by one player or the other—the 
conditions for which I also need to figure out.
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Initial Design
Although it may appear that the previous list of required operations merely 
lists raw facts, design decisions are being made. Consider the operation “Cre-
ate a sublist of words matching a pattern.” That operation is going to appear 
in my solution, or at least this initial version of it, but strictly speaking, it’s not 
a required operation at all. Neither is “Create a sublist of words of a given 
length.” Rather than maintaining a list of candidate puzzle words that keeps 
getting smaller, I could keep the original master list of words throughout the 
game. This would complicate most of the other operations, though. The 
operation to “Count words in which a letter does not appear” could not 
merely iterate through the candidate puzzle-word list and count all words 
without the specified letter. Because it would be searching through the master 
list, it would also have to check the length of each word and whether the word 

Table 8-2: Three-Letter Words

All Words ?dd ??d d?? d?d

add add aid day did

aid odd and die

and bad doe

bad bed dog

bed bid dry

bid end due

day fed

did had

die hid

doe kid

dog led

dry mad

due mod

end old

fed red

had rid

hid sad

kid

led

mad

mod

odd

old

red

rid

sad
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matches the letters revealed so far in the puzzle word. I think the path I have 
chosen is easier overall, but I have to be aware that even these early choices 
are affecting the final design.

Beyond the initial breakdown of the problem into subtasks, though, I 
have other decisions to make.

How to store the lists of words
The key data structure of the program will be the list of words, which the 
program will reduce throughout the game. In choosing a structure, I make 
the following observations. First, I don’t believe I will require random 
access to the words in the list but instead will always be processing the list 
as a whole, from front to back. Second, I don’t know the size of the initial 
list I require. Third, I’m going to be reducing the list frequently. Fourth 
and finally, the methods of the standard string class will probably come 
in handy in this program. Putting all of these observations together, I 
decide that my initial choice for this structure will be the standard tem-
plate list class, with an item type of string.

How to track letters guessed
The chosen letters are conceptually a set—that is, a letter has either been 
chosen or it hasn’t, and no letter can be chosen more than once. Thus, 
it’s really a question of whether a particular letter of the alphabet is a 
member of the “chosen” set. I’m therefore going to represent chosen 
letters as an array of bool of size 26. If the array is named guessedLetters, 
then guessedLetters[0] is true if a has been guessed during the game so 
far and false otherwise; guessedLetters[1] is for b, and so on. I’ll use the 
range conversion techniques we’ve been employing throughout this 
book to convert between a lowercase alphabet letter and its correspond-
ing position in the array. If letter is a char representing a lowercase let-
ter, then guessedLetters[letter - 'a'] is the corresponding location.

How to store patterns
One of the operations I’ll be coding, “Create a sublist of words matching 
a pattern,” is going to use the pattern of a letter’s positions in a word. 
This pattern will be produced by another operation, “Determine the 
largest number of words based on letter and position.” So what format 
will I use for that data? The pattern is a series of numbers representing 
the positions in which a particular letter appears. There are a lot of ways 
I could store these numbers, but I’m going to keep things simple and use 
another list, this one with an item type of int.

Am I writing a class?
Because I am coding this program in C++, I can use object-oriented pro-
gramming or not, at my discretion. My first thought is that many of the 
operations in my list could naturally coalesce into a class, called wordList 
perhaps, with methods to remove words based on specified criteria (that 
is, length and pattern). However, because I’m trying to avoid making 
design decisions now that I’ll have to revoke later, I’m going to make my 
first, rough-and-ready program entirely procedural. Once I’ve worked 
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out all of the tricky aspects of the program and actually written code for 
all of the operations in my list, I’ll be in a great position to determine the 
applicability of object-oriented programming for the final version.

Initial Coding
Now the fun begins. I fire up my development environment and get to work. 
This program is going to use a number of classes from the standard library, 
so for clarity, let me set all of those up first:

#include <iostream>
using std::cin;
using std::cout;
using std::ios;
#include <fstream>
using std::ifstream;
#include <string>
using std::string;
#include <list>
using std::list;
using std::iterator;
#include <cstring>

Now I’m ready to start coding the operations on my list. To some extent, 
I could code the operations in any order, but I’m going to start with a function 
to read a plain text file of words into my chosen list<string> structure. At this 
point, I realize I need to find an existing master file of words—I don’t want 
to type it up myself. Luckily, Googling word list reveals a number of sites that 
have lists of English words in plain-text format, one word per line of the file. 
I’m already familiar with reading text files in C++, but if I weren’t, I would 
write a small test program just to play around with that skill first and then 
integrate that ability into the cheating hangman program, a practice I discuss 
later in this chapter.

With the file in hand, I can write the function:

list<string> readWordFile(char * filename) {
   list<string> wordList;
 ifstream wordFile(filename, ios::in);
 if (wordFile == NULL) {
      cout << "File open failed. \n";
      return wordList;
   }
   char currentWord[30];
 while (wordFile >> currentWord) {
    if (strchr(currentWord, '\'') == 0) {
         string temp(currentWord);
         wordList.push_back(temp);
      }
   }
   return wordList;
}
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This function is straightforward, so I’ll make just a few brief comments. If 
you’ve never seen one before, an ifstream object  is an input stream that 
works just like cin, except that it reads from a file instead of standard input. If 
the constructor is unable to open the file (usually this means the file wasn’t 
found), the object will be NULL, something I explicitly check for . If the file 
exists, it’s processed in a loop  that reads each line of the file into a charac-
ter array, converts the array to a string object, and adds it to a list. The file 
of English words I ended up using included words with apostrophes, which 
aren’t legal for our game, so I explicitly exclude them .

Next, I write a function to display all the words in my list<string>. This 
isn’t on my required list of operations, and I wouldn’t use it in the game (that 
would only help Player 2, whom I’m trying to cheat, after all), but it’s a good 
way to test whether my readWordFile function is working correctly:

void displayList(const list<string> & wordList) {
 list<string>::const_iterator iter;
   iter = wordList.begin();
   while (iter != wordList.end()) {
      cout << iter->c_str() << "\n";
      iter++;
   }
}

This is essentially the same list traversal code introduced in the previous 
chapter. Note that I have declared the parameter as a const reference . 
Because the list may be quite large at the beginning, having a reference 
parameter reduces the overhead of the function call, while a value parameter 
would have to copy the entire list. Declaring that reference parameter a const 
signals that the function won’t change the list, which aids the readability of 
the code. A const list requires a const iterator . The cout stream can’t output 
a string object, so this method produces the equivalent null-terminated char 
array using c_str(). 

I use this same basic structure to write a function that counts the words 
in the list that do not contain a specified letter:

int countWordsWithoutLetter(const list<string> & wordList, char letter) {
   list<string>::const_iterator iter;
   int count = 0;
   iter = wordList.begin();
   while (iter != wordList.end()) {
    if (iter->find(letter) == string::npos) {
         count++;
      }
      iter++;
   }
   return count;
}



212 Chapter 8

As you can see, this is the same basic traversal loop. Inside, I call the find 
method of the string class , which returns the position of its char parameter 
in the string object, returning the special value npos when the character isn’t 
found.

I use this same basic structure to write the function that removes all the 
words from my word list that don’t match the specified length:

void removeWordsOfWrongLength(list<string> & wordList, 
                              int acceptableLength) 
{
   list<string>::iterator iter;
   iter = wordList.begin();
   while (iter != wordList.end()) {
      if (iter->length() != acceptableLength) {
       iter = wordList.erase(iter);
      } else {
       iter++;
      }
   }
}

This function is a good example of how every program you write is an 
opportunity to deepen your understanding of how programs work. This 
function was straightforward for me to write because I understood what was 
happening “under the hood” from previous programs that I had written. 
This function employs the basic traversal code of the previous functions, 
but the code gets interesting inside the loop. The erase() method removes an 
item, specified by an iterator, from a list object. But from our experience 
implementing the iterator pattern for a linked list in Chapter 7, I know that 
the iterator is almost certainly a pointer. From our experience with pointers 
back in Chapter 4, I know that a pointer is useless, and often dangerous, when 
it’s a dangling reference to something that’s been deleted. Therefore, I know 
I need to assign a valid value to iter after this operation. Fortunately, the 
designers of erase() have anticipated this problem and have the method 
return a new iterator that points to the item immediately following the one 
we just erased, so I can assign that value back to iter . Also note that I explicitly 
advance iter  only when I have not deleted the current string from the list, 
because the assignment of the erase() return value effectively advances the 
iterator, and I don’t want to skip any items.

Now for the tough part: finding the most common pattern of a speci-
fied letter in the remaining word list. This is another opportunity to use the 
divide-the-problem technique. I know one of the subtasks of this operation 
is determining whether a particular word matches a particular pattern. 
Remember that a pattern is a list<int>, with each int representing a posi-
tion where the letter appears in the word, and that for a word to match a 
pattern, not only must the letter appear in the specified positions in the 
word, but the letter must not appear anywhere else in the word. With that 
thought in mind, I’m going to test a string for a match by traversing it; for 
each position in the string, if the specified letter appears, I’ll make sure 
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that position is in the pattern, and if some other letter appears, I’ll make 
sure that position is not in the pattern.

To make things even simpler, I’ll first write a separate function to check 
whether a particular position number appears in a pattern:

bool numberInPattern(const list<int> & pattern, int number) {
   list<int>::const_iterator iter;
   iter = pattern.begin();
   while (iter != pattern.end()) {
      if (*iter == number) {
         return true;
      }
      iter++;
   }
   return false;
}

This code is pretty simple to write based on the previous functions. I 
simply traverse the list, searching for number. Either I find it and return true 
or I get to the end of the list and return false. Now I can implement the 
general pattern-matching test:

bool matchesPattern(string word, char letter, list<int> pattern) {
   for (int i = 0; i < word.length(); i++) {
      if (word[i] == letter) {
         if (!numberInPattern(pattern, i)) {
            return false;
         }
      } else {
         if (numberInPattern(pattern, i)) {
            return false;
         }
      }
   }
   return true;
}

As you can see, this function follows the plan outlined earlier. For each 
character in the string, if it matches letter, the code checks that the current 
position is in the pattern. If the character doesn’t match letter, the code checks 
that the position is not in the pattern. If a single position doesn’t match the 
pattern, the word is rejected; otherwise, the end of the word is reached, and 
the word is accepted.

At this point, it occurs to me that finding the most frequent pattern will 
be easier if every word in the list contains the specified letter. So I write a 
quick function to chop out the words without the letter:

void removeWordsWithoutLetter(list<string> & wordList, 
                               char requiredLetter) {
   list<string>::const_iterator iter;
   iter = wordList.begin();
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   while (iter != wordList.end()) {
      if (iter->find(requiredLetter) == string::npos) {
         iter = wordList.erase(iter);
      } else {
         iter++;
      }
   }
}

This code is just a combination of the ideas used in the previous functions. 
Now that I think about it, I’m going to need the opposite function as well, 
one that chops out all the words that have the specified letter. I’ll use this to 
reduce the candidate word list when the program calls the latest guess a miss:

void removeWordsWithLetter(list<string> & wordList, char forbiddenLetter) {
   list<string>::const_iterator iter;
   iter = wordList.begin();
   while (iter != wordList.end()) {
      if (iter->find(forbiddenLetter) != string::npos) {
         iter = wordList.erase(iter);
      } else {
         iter++;
      }
   }
}

Now I’m ready to find the most frequent pattern in the word list for the 
given letter. I considered a number of approaches and picked the one that I 
thought I could most easily implement. First, I’ll use a call to the function 
above to remove all the words without the specified letter. Then, I’ll take the 
first word in the list, determine its pattern, and count how many other words 
in the list have the same pattern. All of these words will be erased from the 
list as I count them. Then the process will repeat again with whatever word is 
now at the head of the list and so on until the list is empty. The result looks 
like this:

void mostFreqPatternByLetter(list<string> wordList, char letter,
                             list<int> & maxPattern,
                             int & maxPatternCount) {
 removeWordsWithoutLetter(wordList, letter);
   list<string>::iterator iter;
   maxPatternCount = 0;
 while (wordList.size() > 0) {
      iter = wordList.begin();
      list<int> currentPattern;
    for (int i = 0; i < iter->length(); i++) {
         if ((*iter)[i] == letter) {
            currentPattern.push_back(i);
         }
      }
      int currentPatternCount = 1;
      iter = wordList.erase(iter);



Think ing L ike a Programmer 215

    while (iter != wordList.end()) {
         if (matchesPattern(*iter, letter, currentPattern)) {
            currentPatternCount++;
            iter = wordList.erase(iter);
         } else {
            iter++;
         }
      }
    if (currentPatternCount > maxPatternCount) {
         maxPatternCount = currentPatternCount;
         maxPattern = currentPattern;
      }
      currentPattern.clear();
   }
}

The list arrives as a value parameter  because this function is going 
to whittle the list down to nothing during processing, and I don’t want to 
affect the parameter passed by the calling code. Note that maxPattern  and 
maxPatternCount  are outgoing parameters only; these will be used to send 
the most regularly occurring pattern and its number of occurrences back to 
the calling code. I remove all of the words without letter . Then I enter the 
main loop of the function, which continues as long as the list isn’t empty . 
The code inside the loop has three main sections. First, a for loop constructs 
the pattern for the first word in the list . Then, a while loop counts how many 
words in the list match that pattern . Finally, we see whether this count is 
greater than the highest count seen so far, employing the “King of the Hill” 
strategy first seen back in Chapter 3 .

The last utility function I should need will display all of the letters guessed 
so far. Remember that I am storing these as an array of 26 bool values:

void displayGuessedLetters(bool letters[26]) {
   cout << "Letters guessed: ";
   for (int i = 0; i < 26; i++) {
      if (letters[i]) cout << (char)('a' + i) << " ";
   }
   cout << "\n";
}

Note that I am adding the base value of one range, in this case, the char-
acter a, to a value from another range , a technique we first employed back 
in Chapter 2.

Now I have all the key subtasks completed, and I’m ready to try solving 
the whole problem, but I have a lot of functions here that haven’t been fully 
tested, and I would like to get them tested as soon as possible. So, rather than 
tackle the rest of the problem in one step, I’m going to reduce the problem. 
I’ll do this by making some of the variables, such as the size of the puzzle word, 
into constants.

Because I’m going to be throwing this version away, I’m comfortable 
with putting the entire game-playing logic into the main function. Because the 
result is lengthy, though, I’m going to present the code in stages.
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int main () {
 list<string> wordList = readWordFile("wordlist.txt");
   const int wordLength = 8;
   const int maxMisses = 9;
 int misses = 0;
 int discoveredLetterCount = 0;
 removeWordsOfWrongLength(wordList, wordLength);
 char revealedWord[wordLength + 1] = "********";
 bool guessedLetters[26];
   for (int i = 0; i < 26; i++) guessedLetters[i] = false;
 char nextLetter;
   cout << "Word so far: " << revealedWord << "\n";

This first section of code sets up the constants and variables we’ll need to 
play the game. Most of this code is self-explanatory. The word list is created 
from a file  and then pared down to the specified word length, in this case, 
the constant value 8 . The variable misses  stores the number of wrong 
guesses by Player 2, while discoveredLetterCount  tracks the number of posi-
tions revealed in the word (so if d appears twice, guessing d increases this 
value by two). The revealedWord variable stores the puzzle word as currently 
known to Player 2, with asterisks for letters that have not yet been guessed . 
The guessedLetters array of bool  tracks the specific letters guessed so far; 
a loop sets all the values to false. Finally, nextLetter  stores the current 
guess of Player 2. I output the initial revealedWord, and then I’m ready for the 
main game loop.

 while (discoveredLetterCount < wordLength && misses < maxMisses) {
cout << "Letter to guess: ";
cin >> nextLetter;

guessedLetters[nextLetter - 'a'] = true;
int missingCount = countWordsWithoutLetter(wordList, nextLetter);
list<int> nextPattern;
int nextPatternCount;

mostFreqPatternByLetter(wordList, nextLetter, nextPattern, nextPatternCount);
if (missingCount > nextPatternCount) {
removeWordsWithLetter(wordList, nextLetter);
misses++;

} else {
list<int>::iterator iter = nextPattern.begin();
while (iter != nextPattern.end()) {

discoveredLetterCount++;
revealedWord[*iter] = nextLetter;
iter++;

}
wordList = reduceByPattern(wordList, nextLetter, nextPattern);

}
cout << "Word so far: " << revealedWord << "\n";
displayGuessedLetters(guessedLetters);

}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Think ing L ike a Programmer 217

There are two conditions that can end the game. Either Player 2 discov-
ers all of the characters in the word, so that discoveredLetterCount reaches 
wordLength, or Player 2’s bad guesses complete the hangman, in which case 
misses will equal maxMisses. So the loop continues as long as neither condition 
has occurred . Inside the loop, after the next guess is read from the user, 
the corresponding position in guessedLetters is updated . Then the cheating 
begins. The program determines how many candidates would be left in the 
word list if the guess were declared a miss using countWordsWithoutLetter , 
and it determines the maximum that could be left if the guess were declared 
a hit using mostFreqPatternByLetter . If the former is larger, the words with 
the guessed letter are culled and misses is incremented . If the latter is larger, 
we’ll take the pattern given by mostFreqPatternByLetter and update revealedWord, 
while also removing all words from the list that don’t match the pattern .

   if (misses == maxMisses) {
      cout << "Sorry. You lost. The word I was thinking of was '";
      cout << (wordList.cbegin())->c_str() << "'.\n";
   } else {
      cout << "Great job. You win. Word was '" << revealedWord << "'.\n";
   }
   return 0;
}

The remainder of the code is what I call a loop postmortem, where the post-
loop action is determined by the condition that “killed” the loop. Here, either 
our program successfully cheated its way to a victory or Player 2, against all 
odds, forced the program to reveal the entire word. Note that when the pro-
gram wins, at least one word must remain in the list, so I just display the first 
word  and claim that was the one I was thinking of all along. A more devi-
ous program might randomly select one of the remaining words to reduce 
the chance of the opponent detecting the cheating.

Analysis of Initial Results
I’ve put all this code together and tested it, and it works, but clearly there are 
a lot of improvements to be made. Beyond any design considerations, the 
program is missing a lot of functionality. It doesn’t allow the user to specify 
the size of the puzzle word or the number of allowable wrong guesses. It 
doesn’t check to see whether the guessed letter has been guessed before. For 
that matter, it doesn’t even check that the input character is a lowercase let-
ter. It’s missing a lot of interface pleasantries, like telling the user how many 
more misses are available. I think it would also be nice if the program could 
offer to play again, rather than making the user re-run the program.

As for the design, when I begin to think about the finished version of 
the program, I’m going to seriously consider an object-oriented design. A 
wordlist class now seems like a natural choice. The main function looks too 
large to me. I like a modular, easy-to-maintain design, and that should result 
in a main function that is short and merely directs traffic among the subpro-
grams that do the real work. So my main function needs to be broken up into 
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several functions. Some of my initial design choices might need rethinking. 
For example, in hindsight, storing patterns as list<int> looks cumbersome. 
Perhaps I could try an array of bool, in a manner analogous to guessedLetters?

Or perhaps I should look for another structure entirely. Now is also the 
time for me to step back to see whether there are any opportunities to learn 
new techniques in solving this problem. I’m wondering whether there are 
specialized data structures that I have not yet considered that could be help-
ful. Even if I end up sticking with my original choices, I could learn a lot 
from the investigation.

Though all of these decisions are still looming, I feel like I’m well on my 
way with this project. Having a working program that meets the essential 
requirements of the problem is a great place to be. I can easily experiment 
with the different design ideas in this rough version, with the confidence that 
comes from knowing I already have a solution, and I’m only looking for a 
better solution.

The Art of Problem Solving
Did you recognize all the problem-solving techniques I employed in my solu-
tion so far? I had a plan for solving the problem. As always, this is the most 
crucial of all problem-solving techniques. I decided to start with what I knew 
for the first version of my solution, employing a couple of data structures with 
which I was very familiar, arrays and the list class. I reduced the functionality 
to make it easier to write my rough-and-ready version and to allow me to test 
my code earlier than I could otherwise. I divided the problem into operations 
and made each operation a different function, allowing me to work on pieces 
of the program separately. When I was unsure how to cheat, I experimented, 
allowing me to restate “cheating” as “maximizing the size of the candidate 

C R E A T E  A  R E S T O R E  P O I N T

The Microsoft Windows operating system creates what it calls a restore point before 
installing or modifying system components. The restore point contains backup copies 
of key files, such as the registry. If an installation or update results in a serious prob-
lem, it can effectively be “rolled back,” or undone by copying back the files from the 
restore point.

I highly recommend taking the same approach with your own source code. 
When you have a working program that you expect to later modify, make a copy of 
the entire project, and modify only the copy. It’s quick to do and can save you con-
siderable time later if your modifications go awry. Programmers can easily fall into 
the trap of thinking, “I accomplished this once; therefore, I can do it again.” That’s 
usually true, but there’s a big difference between knowing that you can do some-
thing again and being able to bring up the old source code for instant reference.

You can also use version control software, which automates the copying and 
storage of project files. Version control software performs more than the “restore 
point” function; it also may allow multiple programmers to work independently on 
the same files, for example. While such tools are beyond the scope of this book, 
they’re something you should investigate as you develop as a programmer.
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word list,” which was a concrete concept for me to code. In the particulars 
of coding the operations, I employed techniques analogous to those used 
throughout this book.

I also successfully avoided getting frustrated, although I suppose you’ll 
have to take my word for that.

Before we move on, let me be clear that I have demonstrated the steps I 
took to get to this stage in the process of solving this problem. These are not 
necessarily the same steps you would take to solve this problem. The code 
shown above is not the best solution to the problem and is not necessarily 
better than what you would come up with. What I hope it demonstrates is 
that any problem, no matter the size, can be solved using variations of the 
same basic techniques used throughout this book. If you were tackling a 
problem twice as large as this one, or 10 times as large, it might test your 
patience, but you could solve it. 

Learning New Programming Skills

There’s one more topic to discuss. In mastering the problem-solving techniques 
of this book, you are taking the key step down the road of life as a program-
mer. However, as with most professions, this is a road without a destination, 
for you must always be striving to better yourself as a programmer. As with 
everything else in programming, you should have a plan for how you will 
learn new skills and techniques, rather than just trusting that you will pick up 
new things here and there along the way. 

In this section, we’ll discuss some of the areas in which you may want to 
acquire new skills and some systematic approaches for each. The common 
thread running through all of the areas is that you must put what you want to 
learn into practice. That’s why each chapter in this book ends with exercises—
and you have been working through those exercises, right? To read about 
new ideas in programming is a vital first step in actually learning them, but it 
is only the first step. To reach the point where you can confidently employ a 
new technique in the solution for a real-world problem, you should first try 
out the technique in a smaller, synthetic problem. Remember that one of 
our basic problem-solving techniques is to break complex problems down, 
by either dividing the problem or temporarily reducing the problem so that 
each state we’re dealing with has just one nontrivial element. You don’t want 
to try to solve a nontrivial problem at the same time that you’re learning the 
skill that will be central to your solution because then your attention will be 
divided between two difficult problems.

New Languages
I think C++ is a great programming language for production code, and I 
explained in the first chapter why I think it’s also a great language to learn 
with. That said, no programming language is superior in all situations; there-
fore, good programmers must learn several.
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Take the Time to Learn

Whenever possible, you should give yourself time to study a new language 
before attempting to write production code with one. If you attempt to solve 
a nontrivial problem in the language you have never used before, you are 
quickly going to run counter to an important problem-solving rule: Avoid 
frustration. Set yourself the task of learning a language, and complete the 
task before you assign yourself any “real” programs in that language.

Of course, in the real world, sometimes we are not completely in control 
of when we are assigned projects. At any moment, someone could request 
that we write a program in a particular language, and that request could be 
accompanied by a deadline that would prevent us from leisurely studying 
the language before tackling the actual problem. The best defense against 
encountering this situation is to begin studying other programming lan-
guages before you are absolutely required to know them. Investigate languages 
that interest you or that are used for areas in which you expect to program 
during your career. This is another situation in which an activity that seems 
like a poor use of time in the short term will pay large dividends in the long 
term. Even if it turns out that you don’t require the language you have stud-
ied in the near future, studying another language can improve your skills 
with the other languages you already know because it forces you to think in 
new and different ways, breaking you out of old habits and giving you fresh 
perspectives on your skills and techniques. Think of it as the programming 
equivalent of cross-training.

Start with What You Know

When you begin learning a new programming language, by definition you 
know nothing about it. If it’s not your first programming language, though, 
you do know a lot about programming. So a good first step in learning a new 
language is to understand how code that you already know how to write in 
another language can be written in the new language.

As stated before, you want to learn this by doing, not just by reading. Take 
programs you have written in other languages, and rewrite them in the new 
language. Systematically investigate individual language elements, such as 
control statements, classes, other data structures, and so on. The goal is to 
transfer as much of your previous knowledge as possible to the new language.

Investigate What’s Different

The next step is to study what is different about the new language. While two 
high-level programming languages may have extensive similarities, something 
must be different with the new language, or there would be no reason to 
choose this language over any other. Again, learn by doing. Just reading, for 
example, that a language’s multiple-selection statement allows ranges (instead 
of the individual values of a C++ switch statement) isn’t as helpful to your 
development as actually writing code that meaningfully employs the capability.
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This step is obviously important for languages that are noticeably dissim-
ilar but is equally important for languages that have a common ancestor, such as 
C++, C#, and Java, which are all object-oriented descendents of C. Syntax 
similarities can trick you into believing you know more about the new language 
than you really do. Consider the following code:

integerListClass numberList;
numberList.addInteger(15);

If these lines were presented to you as C++ code, you would understand 
that the first line constructed an object, numberList, of a class, integerListClass, 
and the second line invoked an addInteger method on that object. If that class 
actually exists and has a method of that name that takes an int parameter, 
this code makes perfect sense. Now suppose I told you this code had been 
written in Java, not C++. Syntactically, there is nothing illegal about these two 
lines. However, in Java, a mere variable declaration of a class object does not 
actually construct the object because object variables are actually references—
that is, they behave in a manner analogous to pointers. To perform the equiva-
lent steps in Java, the correct code would be:

integerListClass numberList = new integerListClass;
numberList.addInteger(15);

You would likely catch on to this particular difference between Java and 
C++ quickly, but many other differences could be quite subtle. If you don’t 
take the time to discover them, they can make debugging very difficult in the 
new language. As you scan your code, your internal programming language 
interpreter will be feeding you incorrect information about what you are 
reading.

Study Well-Written Code

I’ve made a point throughout this book that you shouldn’t try to learn pro-
gramming by taking someone else’s code and modifying it. There are times, 
however, when the study of someone else’s code is vital. While you can build 
up your skills in a new language by writing a series of original programs, to 
reach a level of mastery, you will want to seek out code written by a program-
mer skilled in that language. 

You’re not looking to “crib” this code; you’re not going to borrow this 
code to solve a specific problem. Instead, you’re looking at existing code to 
discover the “best practices” in that language. Look at an expert programmer’s 
code and ask yourself not just what the programmer is doing but why the 
programmer is doing it. If the code is accompanied by the programmer’s 
explanations, all the better. Differentiate between style choices and benefits 
to performance. By completing this step, you will avoid a common pitfall. 
Too often, programmers will learn just enough in a new language to survive, 
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and the result is weak code that doesn’t use all of the features of the language. 
If you are a C++ programmer required to write code in Java, for example, you 
don’t want to settle for writing code in pidgin C++; instead, you want to learn 
to write actual Java code the way a Java programmer would.

As with everything else, put what you learn into practice. Take the origi-
nal code and modify it to do something new. Put the code out of sight and 
try to reproduce it. The goal is to become comfortable enough with the code 
that you could answer questions about it from another programmer.

It’s important to emphasize that this step comes after the others. Before 
we reach the stage of studying someone else’s code in a new language, we 
have already learned the syntax and grammar of the new language and applied 
the problem-solving skills we learned in another language to the new language. 
If we try to shorten the process by starting the study of the new language with 
the study of long program samples and the modification of those samples, 
there’s a real risk that that’s all we’ll ever be able to do. 

New Skills for a Language You Already Know
Just because you reach the point where you can say that you “know” a lan-
guage, doesn’t mean you know everything about that language. Even once 
you have mastered the syntax of the language, there will always be new ways 
to combine existing language features to solve problems. Most of these new 
ways will fall under one of the “component” headings of the previous chapter, 
in which we discussed how to build component knowledge. The important 
factor is effort. Once you get good at solving problems in certain ways, it’s 
easy to rely on what you already know and cease growing as a programmer. 
At that point, you’re like a baseball pitcher who throws a mean fastball but 
doesn’t know how to throw anything else. Some pitchers have had successful 
professional careers with only one pitch, but the pitcher who wants to go 
from being a reliever to a starter needs more. 

To be the best programmer you can be, you need to seek new knowledge 
and new techniques and put them into practice. Look for challenges and 
overcome them. Investigate the work of expert programmers of your chosen 
languages.

Remember that necessity is the mother of invention. Seek out problems 
that cannot satisfactorily be solved with your current skill set. Sometimes you 
can modify problems you have already solved to provide new challenges. For 
example, you may have written a program that works fine when the data set is 
small, but what happens when you allow the data to grow to gargantuan pro-
portions? Or what if you have written a program that stores its data on the 
local hard drive, but you wanted the data to be stored remotely? What if you 
need multiple executions of the program that could access and update the 
remote data concurrently? By starting with a working program and adding 
new functionality, you can focus on just the new aspects of the programming. 
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New Libraries
Modern programming languages are inseparable from their core libraries. 
When you learn C++, you’ll inevitably learn something about the standard 
template libraries, for example, and when you study Java, you will learn about 
standard Java classes. Beyond the libraries bundled with the language, though, 
you’ll need to study third-party libraries. Sometimes these are general appli-
cation frameworks, such as Microsoft’s .NET framework, that can be used 
with several different high-level languages. In other cases, the library is spe-
cific to a particular area, like OpenGL for graphics, or is part of a third-party 
proprietary software package.

As with learning a new language, you should not try to learn a new 
library during a major project that requires that library. Instead, learn the 
main components of the library separately in a test project of zero impor-
tance before employing them in a real project. Assign yourself a progression 
of increasingly difficult problems to solve. Remember that the goal is not 
necessarily to complete any of those problems, only to learn from the process, 
so you don’t need to polish the solutions or even complete them once you 
have successfully employed that part of the library in your program. These 
programs can then serve as references for later work. When you find yourself 
stuck because you’re unable to remember how to, let’s say, superimpose a 2D 
display over a 3D scene in OpenGL, there’s nothing better than being able to 
open up an old program that was created just to demonstrates that very tech-
nique and is written in your own style because it was written by you.

Also, as with learning a new language, once you are comfortable with the 
basics of a library, you should review the code written by experts in the use 
of that library. Most large libraries have idiosyncrasies and caveats that aren’t 
exposed by the official documentation and that, outside of long experience, 
can only be discovered from other programmers. In truth, to make much 
headway with some libraries requires the initial use of a framework provided 
by another programmer. The important thing is not to rely on others’ code 
any more than you have to and to quickly get to the stage where you re-create 
the code you were originally shown. You might be surprised how much you 
learn from the process of re-creating someone else’s existing code. You may 
see a call to a library function in the original code and understand that the 
arguments passed in this call produce a certain result. When you set that 
code aside, though, and try to reproduce that effect on your own, you’ll be 
forced to investigate the function’s documentation, all the particular values 
the arguments could take, and why they have to be what they are to get the 
desired effect. 

Take a Class
As a longtime educator, I feel I have to conclude this section by talking about 
classes—not in the object-oriented programming sense, but in the sense of a 
course at a school. Whatever area of programming you want to learn about, 
you’ll find someone offering to teach you, whether in a traditional classroom
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or in some online environment. However, a class is a catalyst for learning, 
not the learning itself, especially in an area like programming. No matter 
how knowledgeable or enthusiastic a programming instructor is, when you 
actually learn new programming abilities, it will happen as you’re sitting in 
front of your computer, not as you’re sitting in a lecture hall. As I reiterate 
throughout this book, you have to put programming ideas into practice, and 
you have to make them your own to truly learn them.

This isn’t to suggest that classes have no value—because they often have 
tremendous value. Some concepts in programming are inherently difficult 
or confusing, and if you have access to an instructor with a talent for explain-
ing difficult concepts, that may save you loads of time and frustration. Also, 
classes provide an evaluation of your learning. If you are again fortunate with 
your instructor, you may learn much from the evaluation of your code, which 
would streamline the learning process. Finally, the successful completion of a 
class provides some evidence to current or future employers that you under-
stand the subjects taught (if you are unfortunate and have a poor instructor, 
you can at least take solace in that).

Just remember that your programming education is your responsibility, 
even when you take a class. A course will provide a framework for acquiring a 
grade and credit at the end of the term, but that framework doesn’t limit you 
in your learning. Think of your time in the class as a great opportunity to 
learn as much about the subject as possible, beyond any objectives listed in 
the course syllabus. 

Conclusion

I fondly remember my first programming experience. I wrote a short, text-
based simulation of a pinball machine, and no, that doesn’t make any sense 
to me either, but it must have at the time. I didn’t own a computer then—
who did in 1976?—but at my father’s office was a teletype terminal, essentially 
an enormous dot-matrix printer with a click-clack keyboard, that communi-
cated with the mainframe at the local university via acoustic modem. (You 
picked up the phone to dial by hand, and when you heard electronic scream-
ing, you dropped the handset into a special cradle connected to the terminal.) 
As primitive and pointless as my pinball simulation was, the moment the pro-
gram worked and the computer was acting under my instructions, I was hooked.

The feeling I had that day—that a computer was like an infinite pile of 
Legos, Erector Sets, and Lincoln Logs, all for me to build anything I could 
imagine—is what drives my love of programming. When my development 
environment announces a clean build and my fingers reach for the keystroke 
that will begin execution of my program, I’m always excited, in anticipation 
of success or failure, and anxious to see the results of my efforts, whether I 
am writing a simple test project or putting the finishing touches on a large 
solution, or whether I am creating beautiful graphics or just constructing the 
front end of a database application.

I hope you have similar feelings when you program. Even if you are still 
struggling with some of the areas covered in this book, I hope you now under-
stand that as long as programming excites you so much that you always want 
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to stick with it, there is no problem you can’t solve. All that is required is the 
willingness to put in the effort and to go about the process the right way. Time 
takes care of the rest.

Are you thinking like a programmer yet? If you’ve solved the exercises at 
the ends of these chapters, then you should be thinking like a programmer 
and be confident in your problem-solving ability. If you haven’t solved many 
of the exercises, then I have a suggestion for you, and I’ll bet you can guess 
what it is: Solve more exercises. If you’ve skipped some in previous chapters, 
don’t start with the exercises in this chapter—go back to where you left off, 
and work your way forward from there. If you don’t want to do more exer-
cises because you don’t enjoy programming, then I can’t help you.

Once you are thinking like a programmer, be proud of your skills. If 
someone calls you a coder rather than a programmer, say that a well-trained 
bird could be taught to peck out code—you don’t just write code, you use 
code to solve problems. When you’re sitting across an interview table from 
a future employer or client, you’ll know that whatever the job requires, you 
can figure it out.

Exercises

You had to know that there would be one last set of exercises. These are, of 
course, tougher and more open-ended than any from previous chapters.

8-1. Write a complete implementation for the cheating hangman problem that’s 
better than mine.

8-2. Expand your hangman program so that the user can choose to be Player 1. 
The user still selects the number of letters in the word and the number of 
missed guesses, but the program does the guessing.

8-3. Rewrite your hangman program in another language, one that you currently 
know little or nothing about.

8-4. Make your hangman game graphical, actually displaying the gallows and the 
hangman as he is being constructed. You’re trying to think like a programmer, 
not like an artist, so don’t worry about the quality of the art. You must make 
an actual graphical program, though. Don’t draw the hangman using ASCII 
text—that’s too easy. You might want to investigate 2D graphics libraries for 
C++ or choose a different platform that’s more graphically oriented to begin 
with, like Flash. Having a graphical hangman might require constraining the 
number of wrong guesses, but there may be a way to offer at least a range of 
choices for this number.

8-5. Design your own exercise: Employ the skills you learned in the hangman 
problem to solve something completely different that involves manipulat-
ing a list of words, such as another game that uses words—like Scrabble, a 
spellchecker, or whatever else you can think of.

8-6. Design your own exercise: Search for a C++ programming problem of such 
size or difficulty that you are sure you would have once considered it 
impossible for you to solve with your skills, and solve it.
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8-7. Design your own exercise: Find a library or API that interests you but that 
you have yet to use in a program. Then investigate that library or API and use 
it in a useful program. If you’re interested in general programming, consider 
the Microsoft .NET library or an open-source database library. If you like low-
level graphics, consider OpenGL or DirectX. If you’d like to try making 
games, consider an open-source game engine like Ogre. Think about the 
kinds of programs you’d like to write, find a library that fits, and go at it.

8-8. Design your own exercise: Write a useful program for a new platform (one 
that’s new to you)—for example, mobile or web programming.
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delete operator, 83
exception, 130
file processing, 210–211
free function, 88
friend keyword, 184
get method, 34
header files for input/output, 26
list class, 182–183, 210–214, 

216, 218
malloc function, 88
new operator, 75, 82, 97, 98
pointer declaration, 82
prerequisites, xv
reference parameters, 84
short-circuit evaluation, 129, 

132, 133
Standard Template Library, 175
this keyword, 120
typedef keyword, 91, 101, 127, 

160, 177
character codes, 34–35

checksum validation, 31–32
cin standard stream, 26
class

access specifier, 112, 119, 
125, 127

basic framework, 119–122
composition, 126
constructor, 112–113, 119, 

121–122, 126–127
data member, 112
declaration, 112–113
deep copy, 134–137
destructor, 133–134
dynamic data structures, 

125–140
encapsulation, 114, 126, 180
expressiveness, 117–118, 121, 128
fake, 140–141
friend method, 184
get and set, 119–121
goals of use, 113–118
information hiding, 115, 180
interface, 115
method, 112
method names, choosing, 117, 

119–120
operator overloading, 137
private member, 112
protected member, 112
public member, 112
shallow copy, 135
single-tasker, 141
subclass, 112
support method, 122
template, 141
validation, 121, 124
wrapper function, 163–165

classic puzzles
the Fox, the Goose, and the 

Corn, 3–7, 15, 17, 20
sliding number puzzle, 7–11, 18
sudoku, 11–13
Quarrasi Lock, 13–15, 20

code block, 173
code reuse, 53, 172–173

abstract data type, 175
algorithm, 173–174
as-needed learning, 180–188



INDEX 229

class use, 114
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prerequisites, xv
property (C#), 120
pseudocode, 63

conversion to documentation, 64
solving problems with, 63–64

Q
qsort, 59–60, 65, 192–193

comparator function, 59, 192
Quarrasi Lock problem, 13–15, 20

R
random access, 56, 78
rapid prototyping, 201
readability, 117
recursion, 143

base case, 144
Big Recursive Idea, 143, 152–155
binary tree, 160–165
breadcrumb trail, 166–169
common mistakes, 155–158
direct, 144
dynamic data structures, 

applying to, 158–165
head, 144, 146–147, 151–152
indirect, 144
linked list, 158–160
vs. stack, 166–169
tail, 144, 145–146, 149–150
when to use, 165–169
wrapper function, 163–165

reducing problems, 19–20, 41–53, 
63, 190

loop problems, 26–29
redundant data, 123–124
refactoring, 65–67, 180, 200
reference parameters, 84–85, 137, 

211, 213
const, 211, 213

resizable data structure, 83
restating problems, 17, 33, 42, 

182, 193
the Fox, the Goose, and the 

Corn, 5–7
loop problems, 31

restore point, 218
reuse. See code reuse
right-hand side, 137
robust programs, definition of, 96
root node, 161
runtime-sized data structure, 83

S
scalar variable, 55
sequential access, 103
sequential search, 58
set method, 119
shallow copy, 135
short-circuit evaluation, 129
single-tasker, 141
singleton, 174
sliding number puzzle, 7–11, 18
solving by sample case, 92–96
sorting, 59, 176–177, 189–193

insertion sort, 60–61, 
190–192, 193

qsort, 59–60, 192–193
special cases, 96

checking for, 96–97, 100, 124, 
128, 132, 198–199

stack, 86
linked list, 175
overflow, 89–90
runtime, 86–87

starting with what you know, 18–19, 
62, 92

loop problems, 29–30
most constrained variable, 12
sudoku, 11–13

strategy, 176–180
string class, 119

array, 123
c_str method, 211
find method, 211–212
npos value, 211–212

strings, 91
array implementation, 91–100
copying, 98
C-style, 178
linked list implementation, 

101–107
terminator, 93
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struct, 69
structure deference (->), 102, 128
subclass, 122
subscript, 56
sudoku, 11–13
support method, 122–125

T
tail recursion, 144, 145–146, 

149–150
template class, 141
test-driven development, 200
testing, 124, 190, 199–200, 215

memory leaks, 95
promoting ease of, 34, 57, 66, 

70, 218
storing test programs, 44
test cases, coding, 93, 98–100, 

130–134, 186–187
this keyword, 120
thrashing, 89
tracking state, 50-51
traversal, linked list, 106–108, 129, 

168–169, 179, 181
typedef keyword, 91, 101–102, 127, 

160, 177

V
validation

checksum 31–32
code (see testing)
data, 61–62, 92, 96, 121, 124–125

vectors, 55
vs. arrays, 75–76
declaring, 76
push_back method, 76

W
weaknesses

coding weaknesses, 196, 197–199
design weaknesses, 196, 199–200

whitespace, 34
wrapper function, 163–165, 174
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