

Unity 3.x Scripting

Write efficient, reusable scripts to build custom
characters, game environments, and control
enemy AI in your Unity game

Volodymyr Gerasimov

Devon Kraczla

BIRMINGHAM - MUMBAI

Unity 3.x Scripting

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Production Reference: 1140612

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84969-230-4

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

Credits

Authors
Volodymyr Gerasimov

Devon Kraczla

Reviewers
Peter Chan

Jeff Mundee

Acquisition Editor
Rashmi Phadnis

Lead Technical Editor
Hithesh Uchil

Technical Editor
Devdutt Kulkarni

Project Coordinator
Alka Nayak

Proofreader
Bernadette Watkins

Indexer
Monica Ajmera

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Volodymyr Gerasimov is a level designer and scripter. His major passion is
creating modifications for popular games, and developing small, indie projects, with
scripting as a main tool. He learned various scripting and programming languages at
The Art Institute of Vancouver. Introduced to Unity in 2010, he created and worked
on a number of projects, indie games, and prototypes. He has worked as Lead Level
Designer and Scripter, on the hack-and-slash action game, Splik and Blitz: Baked in
Blood, and has also worked on a couple of indie projects for iOS and PC. His latest,
finished project is the puzzle platformer game, Red Rolling Hood. Currently, he is
working at Best Way, as Producer of an action role-playing game.

I would like to thank all my friends and teachers who shared their
experience with me. They surrounded me with an aura of creativity
and art, which kept my passion burning, and my work going. I
would also like to thank all who will open this book, and be able
to learn something, create, and share.

Devon Kraczla is an independent game developer. Having an artistic background,
Devon came to the gaming industry to explore new ways to surprise people with his
creations. Over the last couple of years, having graduated from The Art Institute of
Vancouver, Devon has developed multiple, independent projects, both solo and with
other enthusiasts, and has worked on the award-winning Battlefield 3, as a member
of the motion capture team at EA Canada. In his games, Devon focuses on simple
and engaging game mechanics, covered with a unique art style that makes his games
appealing for hardcore and casual audiences alike. Currently, Devon is working on a
new project along with a large group of passionate developers.

I would like to thank my teachers and peers of The Art Institute of
Vancouver, for helping me pursue the endeavors that I sought after.
I would also like to thank my friends and family, outside of my
school life, who helped keep me sane, well, as sane as I can be, and
for being there when it mattered most. Prost!

About the Reviewer

Jeff Mundee is a game designer and instructor from New Brunswick, USA, who
moved to Vancouver, Canada, a decade ago to produce video games. Since then he
has worked on many game projects in various roles, from Motion Capture Specialist
at Electronic Arts, to Game Designer for Activision, and all sorts of independent
productions in between. He is currently working on a Unity-based game with Holy
Mountain Games. He also teaches classes at The Art Institute of Vancouver, about
game production using Unity, among other subjects.

I would like to thank Vlad and Devon for being leaders in a strong
graduating class, by taking the initiative to master Unity. I know
they will both go on to make great games.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads
related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library
of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Diving into Scripting 5

Downloading and installing assets for this book 5
Getting started with the game 8
Available Character Controllers 8
Interactive objects 12

Triggers 12
Buttons 12

Base button script 13
Activating platform status 13

Explosion box 15
The Update function 15
The BOOM function 16

Downloading the Detonator package 17
Pressing the button 19

Dynamic objects 20
Moving boxes 20
Triggered object 23
Moving platform 23
Moving the character with the platform 25

Summary 27
Chapter 2: Custom Character Controller 29

Creating a controllable character 29
Custom Character Controller 31

Setting up the project 32
Creating movement 33

Manipulating character vector 33
Register input from the user 34
The Rigidbody component 35

Table of Contents

[ii]

Jumping 36
User input verification 36
Raycasting 38
Additional jump functionality 40

Running 42
Cameras 42

Camera scripting 42
Creating camera script 43
Creating an enumeration list 44
Writing functions 44
Writing camera switching controls 47
Character movement and camera positioning 48
Updating camera type changing 49
Influencing camera with a mouse 50
Clamping angles 51
Camera's late update 53
Rotating character with a camera 53

Animation controls 55
Playing simple animations 55

Start function versus Awake function 56
Animation component and playing speed 57
Animation scripting 59
Walk, run, and idle animations 61

Summary 63
Chapter 3: Action Game Essentials 65

Programming weapons and pickables 65
Creating the base 66
Programming the weapon 68

The Shooting function 71
Shooting cooldown 72
Alternative shooting function 73

Advanced animation system 74
Working of an animation 75

Animation mixing 75
Animation script overview 78

Weapon pickup 80
Adding ammo and health pickups 82
Creating a treasure chest 85
Applying projectile fixes 89
Tethering and soft body 90

Tethering 90
Creating a tether 90

Creating assets 92
Tether manager 93

Table of Contents

[iii]

Creation of tether 94
The StickySegment script 98
Tether scripts overview 101

Summary 103
Chapter 4: Drag-and-Drop Inventory 105

GUI basics 105
GUI.Box 106
GUI.Button 106
GUI.Label 107
GUI.TextField 107
GUI.TextArea 108
GUI.Toggle 108
GUI.Toolbar and GUI.SelectionGrid 109
GUI.HorizontalSlider and GUI.VerticalSlider 110
GUI.HorizontalScrollBar and GUI.VerticalScrollBar 110
GUI.BeginGroup and GUI.EndGroup 111
GUI.BeginScrollView, GUI.EndScrollView, and ScrollTo 111
Other GUI classes 112

Drag-and-drop inventory 112
Basics 113
Inventory slots and draggable objects 114
Working with GUI windows 118
Inventory slots 121
Patching the inventory 126

Character customization 127
3D character avatar 128

Dealing with a camera 128
Adjusting the camera 130
Window dragging limits 131

Customization 132
Setting up items 132
Adding items 133
Modifying character 135
Reloading and inventory 141
Finishing adjustments 142

Summary 144
Chapter 5: Dynamic GUI 145

Radial health display 146
The Health script 146
Health display script 148
Revisiting the Health script 151
Hooking up objects to Inspector 152

Table of Contents

[iv]

Creating items 153
The Change_Item script 154

Setting up the code 154
Changing items 155
Addition and removal 155
Displaying items 156
Increment controls 157

Creating the UseItem script 159
Revisiting the Change_Item script 161
The PlayerStats script 162
The TextManager script 164
The textMesh script 165
Revisiting the UseItem script 167
Revisiting the Health script 169

Creating armor 169
The Armor script 170
Revisiting the HealthBar script 172
Revisiting the Health script 173
Revisiting the UseItem script 174

Creating the weapons 174
The Change_Weapon script 175
The UseWeapon script 176
Revisiting PlayerStats 178
Revisiting the textMesh script 179

Scripting and displaying the score system 180
The Score script 180

Reading from the text file 182
Writing to the text file 183

The timer script 184
Revisiting the textMesh script 185

Displaying the objectives 186
Revisiting TextManager 186
Revisiting textMesh 187
Hooking up HUD 188
Game manager 189
Health 190
Item_Pic 191
ItemMultiplier, highScoreDisplay, ObjectiveDisplay, scoreDisplay, and
weaponDisplay 191
saveDisplay 192
Weapon_Pic 192

Table of Contents

[v]

Creating the targeting system 193
Creating the Bezier equation script 194
ArcBehaviour 195
The moveObject script 196
Hooking it up in the editor 197

Summary 197
Chapter 6: Game Master Controller 199

Game manager theory 200
Creating game managers 200

Level streaming 201
Mission creation 204
Managing levels 207
Save/load system 208
Loading with checkpoints 214

GameLoader 217
Dynamic camera 218
Audio 218
Audio manager 221
Summary 222

Chapter 7: Introduction to AI Pathfinding and Behaviors 223
Simple waypoint pathfinding 224

Setting up the hierarchy 225
Writing the waypoint display script 225
Setting up the path arrays 226
Creating the aiSimplePath script 227

Declaring variables 227
Starting up functions 228
Traversing the path 229
Shutting down the robot 232
Hooking up the aiSimplePath script on Inspector 233

Enemy statistics, shooting, and behaviors 233
The enemyStats script 233

Setting up variables 234
Setting up functions 234
Retrieving functions 234
Manipulation functions 234
Hooking up the enemyStats script on Inspector 236

The Shoot script 236
Setting up the script 236
Writing shooting functionality 237
Hooking up the Shoot script on Inspector 239

Table of Contents

[vi]

The aiSimpleBehaviour script 240
Setting up the script 240
Behavior functions 241
Additional functions 247
Hooking up the aiSimpleBehaviour script on Inspector 248

Returning to the aiSimplePath script 249
Pursue functionality 249
Revisiting the EnemyPath function 250

The bulletCollision, ammoCollision, and AmmoInfo scripts 252
Creating the bulletCollision script 252

Hooking up the bulletCollision script on bullet's Inspector 253
Creating the ammoCollision script 254

Hooking up the ammoCollision script on enemy's Inspector 255
Creating the AmmoInfo script 255

Hooking up the AmmoInfo script on ammo's Inspector 257
Summary 258

Appendix: Object-oriented Programming in Unity 259
Object-oriented programming – basics 259

Encapsulation 259
Classes 260
Constructors 260

Code 260
Inheritance 261

Preparations 261
Code 261

Polymorphism 262
Code 263

Nested classes 263
Summary 263

Index 265

Preface
If you are an enthusiastic gamer who is ready to seriously get into game
development, this book will give you a great head start for your journey. We will
guide you through the step-by-step process of creating your first playable game
prototype, which you will be able to further extend into a full-scale game. This
book contains examples of the most important features that can be found in games,
and much more; it will help you to understand Unity better, and increase your
programming skills.

What this book covers
Chapter 1, Diving into Scripting, will teach you how to set up the project and take
advantage of built-in character controllers. We will talk about dynamic objects and
their collision, as well as investigate creating a moving platform and explosions.

Chapter 2, Custom Character Controller, will show you how to create your own
character controllers, camera rigs, and animation systems.

Chapter 3, Action Game Essentials, will introduce programming of basic gameplay
features, such as shooting, picking up items, and opening treasure boxes, as well
as soft bodies and tethering.

Chapter 4, Drag-and-Drop Inventory, will give you an example on how to create your
own inventory and character customization with the help of Unity GUI.

Chapter 5, Dynamic GUI, will take you step by step, through the creation of the HUD
and targeting system.

Chapter 6, Game Master Controller, will teach you how to design and program systems
to run and manage your game.

Preface

[2]

Chapter 7, Introduction to AI Pathfinding and Behaviors, will give you a sneak peek of AI
programming, and talk about the basic theory behind it.

Appendix, Object-oriented Programming in Unity, will cover some basics of
programming that will help you to continue learning.

What you need for this book
You need to be comfortable in an editor's environment, and have a very basic
knowledge of Unity's JavaScripts, or any other object-oriented programming language.

Who this book is for
This book is for passionate game developers, students who are preparing to make
their first project, or people who think they are ready to learn something new.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "After the Start function, we will create
the MoveButton function."

A block of code is set as follows:

function Update(){
if(tnt != null){
 If(trigObj.getComponent("Button").ReturnButtonStatus()){
 BOOM();
 }
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To gain
access to the package data, open Unity and go to Assets | Import Package | Custom
Package..., as shown in the following screenshot".

Preface

[3]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Diving into Scripting
Welcome to advanced Unity scripting! In this book, we will cover interesting
information about scripting in Unity's built-in scripting language—JavaScript for
Unity. We believe that this book, and included material, has the fundamentals
needed to create a game that you always dreamed of creating.

In order to start working with this book, you need to have a basic understanding
of what Unity3D is; navigate freely inside Unity, and have basic knowledge of
JavaScript and object-oriented programming (OOP) in general.

In this chapter, we will:

•	 Set up a project and a third-person Character Controller
•	 Talk about dynamic objects and collision detection
•	 Create moving platform and explosion box

Downloading and installing assets for
this book
In Unity3D, there is the ability to download pre-made packages or import assets.
These packages/assets can be of 3D models in the form of raw art assets, game
objects, prefabs, particles, scripts, animations, sounds, and so on. Packages are
identified by having a .package extension.

In order for the reader to be able to follow along with the examples
in the book, get the greatest amount of experience, and practice out
scripting in Unity, pre-made packages have been made available for
the reader's convenience.

Diving into Scripting

[6]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

These packages are available for download on the book's website underneath the
Packages heading. There is only one package here and it is called Unity_Scripting.
unitypackage. The downloaded file will be a ZIP file.

Extract the data and put the package where you would like it to be in your Unity
project. To gain access to the package data, open Unity and go to Assets | Import
Package | Custom Package..., as shown in the following screenshot:

Chapter 1

[7]

Search for the location of your project and open your package. A small interface
comes up showing a list of all the assets on the left-hand side and a prompt
asking if you would like to install all assets. Click on All, as shown in the
following screenshot:

This will open up the Unity_Scripting package. The default path for the downloaded
assets is Standard Assets in the Unity project. If a Standard Assets folder does not
exist, it will create one and download your package into it.

Diving into Scripting

[8]

Congratulations, you have now downloaded and successfully installed the assets
required for this book. Now, let's start building!

Getting started with the game
From now on, we will start to script our own game and dive into uncharted depths
of JavaScript. The first chapter is dedicated to creating a simple platform game. We
will learn to use the built-in functionality of Unity to set up our character, and use
the Character Controller component to make that character move and be controlled
with our commands. Later in the chapter, we will get into creating a playground for
our character. We will also get into teaching him to move boxes around, script
moving platforms, create custom triggers, and make huge explosions.

Available Character Controllers
Now, let's get into the fun part and set up a controllable character. Let's open the
project that comes with the book and start coding.

There are two kinds of Character Controllers that are available with a Pro version
of Unity3D—3rd Person Controller and First Person Controller. Default Character
Controllers can be found in Project view | Standard Assets | Character Controllers,
as shown in the following screenshot. To use any of those Character Controllers, just
drag-and-drop them on a scene using the left mouse button. Now, we can click
Play and start the game, and see our character following orders when we press
control buttons.

Now, let's take a look at what these Character Controllers consist of.

Chapter 1

[9]

Character Controller is a default physics component that does all the necessary
collision calculations for us but, at the same time, doesn't follow rules of physics
and isn't affected by external forces. However, that doesn't mean that it can't push
Rigidbodies if scripted. In general, if we are trying to create a controllable humanoid
and don't wish bothering with tons of code, Character Controller will be our best
choice. If we are planning to create a character that is being influenced by external
forces (like physics) or interacting with objects that are influenced by physics, we
will see Character Controller becoming our worst enemy that will break game
functionality for no reason. Supplementary to Character Controller are pure physics
objects—Rigidbodies. They allow us to create almost anything that is physics related
and consist of many hard edges that we will go around in future chapters.

From now on, we will look into both Character Controllers separately and start
with First Person Controller. By dragging First Person Controller prefab on the
screen, we will see a simple cylinder with a camera icon above it. Let's take a look
at what's inside:

•	 Character Controller: This is attached to the cylinder with the camera icon
above it, at the very top of the list. To attach the Character Controller to the
object, select the object, go to Component at the top of the screen, and click
on Physics | Character Controller.

•	 Mouse Look (Script): This handles the camera rotation based on mouse
manipulations. This script is written in C# and is beyond this book's scope,
but it has a fair amount of description inside, which can be used to tweak
mouse controls. To attach a script, go to Component | Camera Control |
Mouse Look.

•	 Character Motor (Script): This is a script that is responsible for registering
all the inputs and controlling Movement, Jumping, Sliding, and so on.
It is available at Component | Character | Character Motor. Some of the
functionality can be tweaked from the Inspector view, but most of it has
been purposely hidden and is accessible only through scripts.

Diving into Scripting

[10]

•	 FPSInput Controller (Script): This works together with Character Motor
(Script). Its main purpose is to control the functionality of previous
scripts (Component | Character | FPSInput Controller).

Now that we are done with the First Person Controller, lets switch to 3rd Person
Controller. There are few things that make it stand apart. They are as follows:

•	 Animation: Unlike First Person Camera, we are expecting to visually
observe our character and watch it playing various types of animations. This
is what Animation does; we simply attach it to the object (Component |
Miscellaneous | Animation) and add baked animations to the animation
array. The rest is done through code and will be covered in future chapters.

Chapter 1

[11]

•	 Third Person Controller (Script) and Third Person Camera (Script): They
are self-explanatory. The first one controls character, registers inputs from
the keyboard, handles animation synchronization, and so on. The latter one
adjusts the camera according to character position and actions. Both scripts
can be found in Component | Scripts.

•	 Character Motor (Script): This is a script that is responsible for registering
all the inputs and controlling Movement, Jumping, Sliding, and so on.
It is available at Component | Character | Character Motor. Some of the
functionality can be tweaked from the Inspector view, but most of it has
been purposely hidden and is accessible only through scripts.

•	 FPSInput Controller (Script): It works together with Character Motor
(Script). Its main purpose is to control the functionality of previous
scripts (Component | Character | FPSInput Controller).

Diving into Scripting

[12]

Interactive objects
So, you want to interact with objects in the environment now? Interactive objects are
usually the objects, which the player has to interact with in order to continue their
progression through a level and/or environment. In deciding which interactive items
to include as examples, we have chosen to pick objects that show a variety of player
interactions. The following is an overview of the type of interactive objects, which
will be covered in this chapter:

•	 Buttons/plunger
•	 Explosion box
•	 Moving boxes
•	 Platform

The list of interactive items can be quite extensive but luckily, once you have thought
of the logic behind one, scripting another becomes easier. For a better understanding
of the preceding interactive objects, we can split them into two categories—Triggers
and Triggered Objects. TNT plunger, targets, buttons, levers, and volumes fall
under the Triggers category, whereas TNT box, triggered door, item required/event
door, breakable door, and raft fall under Triggered Objects. For more information
on other interactive items such as pickups, treasure chests, and weapons, see Chapter
3, Action Game Essentials. All assets for this chapter can be found in the History |
Resources | Chapter 1 folder.

Triggers
As stated previously, these objects are used to trigger events in the environment.
Through interacting with them, doors can be opened, non-interactive events can
be triggered, and enemies can be spawned. These are only a couple of examples of
the infinite number of tasks that can be done by interacting with a trigger. Here is a
breakdown of the mentioned triggers. Due to the limited number of pages, we will
dive right into the description and breakdown of code for each project.

Buttons
In our case, a button will be described as an object, which the character directly has
to interact with in order for it to be triggered. What we will write is a base script,
which when used triggers an event. This script, once written, will be used to open
a door and explode a box of TNT.

Chapter 1

[13]

Base button script
So let's script a button. Go grab the Button prefab from the Chapter 1 prefabs
folder and drag it into the Hierarchy view. Once that is done, there will be two
game objects in the prefab asset. In buttonTrigger, there is a default script on the
asset called Button.

In the Start function of this script, we want to get the initial position of the button.

Declare a variable for initial position, make its type a Vector3 and default it
to Vector3.zero. To get the position, have the variable equal to transform.
localPosition in the Start function:

var initPos : Vector3;
function Start(){
 initPos = transform.localPosition;
}

After the Start function, we will create the MoveButton function.

Activating platform status
This next function will move the button to the move position and set the activated
status for the platform.

Create a private variable for the button pressed, set its type as Boolean and default
it to false. Inside the MoveButton function, create an if statement. Have the if
statement check to see if the button pressed variable is equal to false. Inside the
if statement, we want to send the activation information to triggered object.

To send the information to the appropriate platform in the level, we will have to
create a new variable called Platform, or something along those lines, with the type
of gameObject and defaulted to null. In the MoveButton function, we need to call
the Activated function in the platform script (this script will be created later in this
chapter). The following is an example of what it could look like:

Platform.GetComponent(platform).Activated();

Now, we need to move the button to give visual indication to the player that the
button has been pressed. To get the move position, create another variable for
move position, set its type as a float and default its value to 0.1 (this value
can be adjusted later in the inspector).

var movePos : float = 0.1;

Diving into Scripting

[14]

To move the button from its current position to the new position, we will take the
local Z position of the button, subtract the move position value and apply it to the
current local position of the button (we will use the Z axis for the example due to
the world having Z as depth and the button being mounted on a wall).

The last thing to add to this if statement before we close it is to turn the button
pressed variable true. That's it for this script. We just need to add the collision check
function to the built-in Character Controller script and we will have functionality.

Inside of this function, we will do a name check to identify what object the character
has collided with. In order to get the name information from the collided object, we
have to access the name component, which is a property of gameObject. We will
then compare this to one that we want, which in this case is Button:

function OnControllerColliderHit (Hit : ControllerColliderHit){
 if (Hit.gameObject.name == "Button"){
 }
}

If the name matches what we want, we need to access the MoveButton function in the
Button script. To do this, use GetComponent to grab the Button script and access the
desired function. The following statement shows roughly what it should look like:

Hit.gameObject.GetComponent("Button").MoveButton();

Then in the if statement for the detonator plunger, we want to access the
GetPressed function in the Button script.

You have finished writing the base Button script. The following is a sample of what
that script could look like:

var initPos : Vector3;
var movePos : float = 0.1;
var Platform : Transform = null;
var isPressed : Boolean = false;
function Start(){
 initPos = transform.position;
}
function MoveButton(){
 if(!isPressed){
 Platform.GetComponent(platform).Activated();
 transform.position.z = transform.position.z - movePos;
 isPressed = true;
 }
}

Remember that this is a base script and much, much more functionality can be
scripted into it.

Chapter 1

[15]

Explosion box
It's time to make things explode. Let's script a little bit of explosion box. When the
player applies pressure to a detonator box, it triggers the explosion box, and the
explosion box explodes! There are just six steps to achieve that, as follows:

1. Prepare objects.
2. Write Update function.
3. Write BOOM function.
4. Download and install Detonator package.
5. Write functionality for button pressing.
6. Preparation.

In this section, we will handle the entire preparation of available resources.

Grab the Detonator_Box prefab out of the Chapter 1
prefabs folder and drag it into the Hierarchy view.

If you open the gameObject of the detonator box, you will see that it is made up of
two pieces—Detonator_Box and Explosion Box. We want to drag the Button script,
made in the last example, to the inspector of the Detonator_Plunger asset located
underneath the Detonator_Box group. As the plunger is essentially a button, and the
base Button script is generic, it can be used for many purposes, such as triggering
the explosion box to explode. This script will be the master control for the explosion
box as well as the detonator box. It will determine the explosion created when the
explosion box explodes, what object is used as the trigger, and the object triggered.
You will notice that the prefab parent of Detonator_Box has the TNT script in its
Inspector menu.

The Update function
The next function that we will write is the Update function. In this function, we will
do a check for getting the trigger object's pressed status.

First, we have to create a couple of variables—the first one for a trigger and the
second one for the explosion box. We want the trigger variable to be of Transform
type and defaulted to null and the tnt variable to be of a Transform type as well
and defaulted to null. Create an Update function. We will have an if statement to
make sure that the tnt variable has an object associated with it.

Diving into Scripting

[16]

To do the trigger check, we will have to write an if statement that gets the Button
script component from the trigger object. To do this, we will have to declare a new
variable, make it public and call it something along the lines of trigObj. We should
declare its type as gameObject, and default it to null.

The value we need for this statement is the return function located in the Button
script. To access this, we get the script component of the trigger object using
GetComponent. We then declare the script by the name that we wish to access
and then the name of the function which has the value to check. The following
is an example.

function Update(){
if(tnt != null){
 If(trigObj.getComponent("Button").ReturnButtonStatus()){
 BOOM();
 }
 }
}

As you can see, we have added the BOOM function in the name of the next function,
which we will be writing.

The BOOM function
The BOOM function will create an explosion at the location of the explosion box
and destroy the explosion box game object from the Hierarchy view. Before we do
anything, let's declare two more variables. The first variable is explosion and the
second one is collidedObj. Make sure that explosion is public, its type declaration
is Transform, and it is defaulted to null. The collidedObj variable should be
private, and the type declaration should be as a Collider array.

In the BOOM function, we want to create a collision sphere that will detect all colliders
within a given area from a given point. To accomplish this, we will use the Physics.
OverlapSphere function. Have the collidedObj variable equal to the Physics
function with the parameters of the tnt variables—position for position and
the size of the collision sphere set to 1. The following is an example of how it
should look:

collidedObj = Physics.OverlapSphere(tnt.transform.position, 1);

Chapter 1

[17]

After this, we need to go through the collidedObj array and for each object
in that array, create an explosion at its position and then destroy the object.
To do this use a for loop to loop through the array. Call Unity's built-in
creation function—Instantiate inside of the loop.

The Instantiate parameters are the explosion variables, Obj in the collidedObj
array position and then a rotation. The rotation of the current gameObject will
perform transform.rotation. The following is a sample:

for (var obj in collidedObj) {
 Instantiate(explosion, obj.transform.position, transform.
rotation);
}

Lastly, we will destroy the gameObject in the array. To do that, after the
instantiation code, type the following line:

 destroy(obj.gameObject);

Downloading the Detonator package
Now, return to the Inspector of Detonator_Box. Under the TNT script, you will see
the variables that were public. These variables are, for example, trigger, explosion,
and TNT.

In the trigger variable, drag your detonator trigger into it. For the explosion
variable, we are going to do something different. For the explosion, we will utilize
the Detonator package that can be downloaded off of Unity's website. You can find it
in the Support | Resources section at http://unity3d.com/support/resources/.

http://unity3d.com/support/resources/

Diving into Scripting

[18]

You will find it in the Resources section, at the very bottom on
http://unity3d.com/support/resources/, as shown in the
following screenshot:

This package is downloaded and imported into Unity the same way as the assets for
the book. It will also appear in the Resources folder. Below it, you will see Prefab
Examples. In here, you will find a variety of pre-made explosion prefabs. For our
purposes, just go ahead and drag the Detonator-Tiny into your explosion variable,
as shown in the following screenshot:

The TNT variable—obj is the Explosion_Box object in the Detonator_Box prefab in
the Hierarchy.

Remember, you can move the detonator box and the Explosion_Box box anywhere
you want. Just make sure that they stay within the parental hierarchy in the
Hierarchy view.

The following is an example of a complete TNT script:

var trigObj: Transform = null;
var explosion : Transform = null;
var tnt : Transform = null;
private var collidedObj : Collider[];
function Boom(){

http://unity3d.com/support/resources/
http://unity3d.com/support/resources/

Chapter 1

[19]

 collidedObj = Physics.OverlapSphere(tnt.transform.position, 1);
 for (var obj in collidedObj){
 Instantiate(explosion, obj.transform.position,
 transform.rotation);
Destroy(obj.gameObject);
}
}
function Update(){
 if(tnt != null){
 if(trigObj.getComponent(Button).ReturnButtonStatus();){
 Boom();
 }
 }
}

Pressing the button
Now we need to add an if statement to the ThirdPersonController script inside of
the OnControllerColliderHit function.

We need to check if the character is interacting with a detonator plunger.
Duplicate the Button, check the if statement, and paste it below that if
statement. This time, in place of the name Button, put Detonator_Plunger
instead. The following statement shows an example of what it should look like:

if(objCollided.gameObject.name == "Detonator_Plunger"){
 }

Inside this if statement, access the GetPressed function inside of the Button script.
Again, copy the GetComponent statement in the preceding if statement. Change the
MoveButton function to GetPressed.

Now, we must get back to the Button script. We need to write the GetPressed
function at the end of this script. In this function, check if the button/plunger has
been pressed. If not, move the button. Move the button down so that it is on the Y
axis, and by the movePos value multiplied by the time variable—Time.deltaTime:

transform.localPosition.y -= movePos * Time.deltaTime;

Next, add another if statement inside of the previous one. This if statement is going
to check if the current position is greater than the initial position subtracted by the
movePos variable's value. Inside this if, we can have isPressed equal to true.

Diving into Scripting

[20]

Lastly for this script, we will create a simple return function. This return
function—ReturnButtonStatus—is going to return the isPressed variable's value:

function ReturnButtonStatus(): boolean{
 return isPressed;
}

Congratulations, you can now have fun blowing stuff up. Remember that these are
very basic scripts and much more functionality can be added to them to make them
a much more complex mechanism. Add the following code snippet at the end of the
Button script:

function GetPressed(){
 if(!isPressed){
 transform.localPosition.y -= movePos * Time.deltaTime;
 if(transform.localPosition.y > (initPos.y - movePos)){
 isPressed = true;
 }
 }
}
function ReturnButtonStatus(): boolean{
 return isPressed;
}

Dynamic objects
Now that you can interact with objects that don't move, why don't we interact
with something more dynamic? Dynamic interactive objects are the ones that are,
well, moving. They usually involve adding their velocity to the character. For
example, this could be done when we want our character to travel through the
moving train level. The train's velocity is being added to the Character Controller to
keep the character's position with that of the train's position. Once the player moves
the joystick, moving the character, the additional velocity from the input value is
added to the current velocity of the Character Controller creating a clean, smooth
walk/run/jump while on the moving train. We will cover this transfer of velocity
of one object to another.

Moving boxes
Now let's teach our construction worker (character) to move boxes. Select the Box
prefab from the Chapter 1 prefabs folder in the Project view and drag it to the scene.
Having an instance of Box selected, go to Component | Physics | Rigidbody to
make the box follow the laws of physics.

Chapter 1

[21]

At the beginning of the chapter, we talked about Character Controller and its
problems with Rigidbodies. For example, if we press Play and try to push the
box with our character, we'll see that no matter what we do, there is no way our
character can make this box move, not even an inch. That happens because the
default 3rd Person Character Controller doesn't know what to do when interacting
with objects. Neither will the Character Controller component help us because it's
not programmed to affect physics objects.

Diving into Scripting

[22]

To solve our problem, we will have to modify the original script and add additional
functionality to be able to interact with dynamic objects:

1. Select the character and open the attached ThirdPersonController script.
Scroll down and find the OnControllerColliderHit function.

2. Declare the local variable—pushForce of a float type that will control
the force that will be applied to the box when we push it. To make it more
interesting, let's assign it a current speed that the character is moving at. For
that, we will use the default function—GetSpeed that will return the speed
of our character. (This way we can push the object even further if we run
into it.)

3. Declare the body variable of Rigidbody type that will contain information of
Rigidbody from the object we collided with.

4. Just to make sure that this script works only with objects that have
Rigidbody attached, we'll add the following check:
If the object that we collided with doesn't have Rigidbody or is checked as
kinematic, then stop here and get out from the function.

5. Check if the distance from the center of the capsule collider to the place we
are touching is less than -0.3 (simply if the object is below us and we don't
want to push it).

6. Declare a dirVector variable of a Vector3 type that will be used to prevent
the box from moving up or down when we're pushing it. dirVector should
store the current location of the box on the X and Z axes.

7. Apply force to the box's Rigidbody by modifying its velocity and
multiplying its force by a vector.

8. In this case, we want the box to slide on the surface rather than spin over. To
make that possible, select Box object and in the Rigidbody component, under
Constraints check, select all boxes for Freeze Rotation.

The following code snippet shows how the OnControllerColliderHit function
should look at this point:

function OnControllerColliderHit (hit : ControllerColliderHit){
if (hit.gameObject.name == "Button"){
 hit.gameObject.GetComponent("Button").MoveButton();
 }
var pushForce : float = GetSpeed();
var body : Rigidbody = hit.collider.attachedRigidbody;
if (body == null || body.isKinematic)
return;
if (hit.moveDirection.y < -0.3)

Chapter 1

[23]

return;
var dirVector : Vector3 = Vector3(hit.moveDirection.x, 0,
 hit.moveDirection.z);
body.velocity = dirVector * pushForce;
}

Done. If we test the game now, we will see that when our character runs over the
box, it is being pushed in the direction of the impact.

Triggered object
Next in line are triggered objects. These objects are classified by needing an
outside interaction to make them active and usable. In games as well as in real
life, this device that can activate them is usually found to be a switch, a lever, or a
button. Unique triggers can be used as well, for example, when a player enters an
area and triggers a cinematic sequence.

Moving platform
In this section, we will learn how to create button-triggered platforms and teach our
character to move along with them. Let's get started. Perform the following steps:

1. Create new script and call it platform (this name will be used to reference it
in the future).

Diving into Scripting

[24]

2. Attach it to the platform prefab that can be found in a scene.

3. Declare two public variables of GameObject type. Call them PointA
and PointB. We will use position information of these objects to navigate
movement of our platform.

4. Declare another variable of a Vector3 type, private this time, and call it
Target. This variable will tell the platform where to move at this moment
in time.

5. Create Awake function and assign position of PointA to the Target vector.
6. We need a function that will be changing targets for platform when it

reached its destination to reverse direction. Create a Toggle function that
will check current target and change it to opposite.

7. Then next thing we need is to control the platform to stop it from moving.
Declare a public variable—AllowMove of a Boolean type and set its
default value to false (we don't want to start moving the platform at
the game start).

8. Write the Activated function that will activate the platform to move if it's
not moving.

Chapter 1

[25]

9. Finally, we need an Update function that will handle the platform moving
and stop movement if the platform reached the goal.

The completed platform script is as follows:

public var AllowMove : boolean = false;
public var PointA : GameObject;
public var PointB : GameObject;
private var Target : Vector3;
function Awake(){
 Target = PointA.transform.position;
}
function Update(){
 if (AllowMove == true){
 this.transform.position =
 Vector3.MoveTowards(this.transform.position, Target, Time.
deltaTime);
 }
 if (this.transform.position == Target){
 AllowMove = false;
 Toggle();
 }
}
function Toggle(){
 if (Target == PointA.transform.position)
 Target = PointB.transform.position;
 else
 Target = PointA.transform.position;
}
function Activated(){
 if(AllowMove == false)
 AllowMove = true;
}

Moving the character with the platform
Now, we are done with the platform script and have a tough platform to move upon
our command. However, if we jump at the platform when it moves, we will see that
it simply moves away while we are standing still. Our new objective is to make the
character move with the platform while standing on it. Let's create a new script and
call it moveAlong. Perform the following steps:

1. We will need one variable of Vector3 type to guide in which direction to
move the player.

Diving into Scripting

[26]

2. Last, but not least, we will declare an OnTriggerStay function that will be
triggered when a player is standing on it. We will also check the AllowMove
variable that will tell us if the platform is moving or not.

3. Inside the if statement, we will get the destination of the platform and apply
movement to the player.

The following is an example of the complete moveAlong script:

public var MoveTo:Vector3;
function OnTriggerStay (other : Collider) {
if(other.gameObject.tag == "Player" && transform.root.
GetComponent("platform").AllowMove){
MoveTo = transform.root.GetComponent("platform").Target;
MoveTo.y = other.gameObject.transform.position.y;
MoveTo.z = other.gameObject.transform.position.z;
other.gameObject.transform.position = Vector3.MoveTowards(other.
gameObject.transform.position, MoveTo, Time.deltaTime);
}
}

Attach this script to the child of our platform, which is called trigger and we are
done. Now we have a fully functional moving platform that will carry our character
with it:

Chapter 1

[27]

Summary
We have covered the basics of scripting basic triggers and the activation of objects
based upon those triggers and the use of Unity's Character Controller component.
We hope that you have come away with at least a better understanding of how to
go about tackling the preparation and implementation of these game components.

In the next chapter, we will cover creating a custom Character Controller with
an explanation for implementing animations and a camera rig system, which will
allow you to change between a first-person view, a shoulder view, and a bird's
eye/third-person view at the press of a button. Please continue to enjoy the book
and we await you in Chapter 2, Custom Character Controller, to learn about animations
and camera rigs.

Custom Character Controller
Welcome to creating custom Character Controller in Unity. In this chapter, we
will go through scripting our own fully controllable character without Character
Controller component, with attached Rigidbody. We will cover the barebones of
movement such as walking, running, and jumping. We will talk about the ways to
create fully player-controlled first-person, third-person, and shoulder view camera
with ability to switch in between them at any time, and finally learn to attach and
control animations through code. In this long awaited chapter, we will learn the
following topics:

•	 Character Controller versus Rigidbody – pros and cons
•	 Player-controlled character walk, run, jump, and shoot
•	 Program camera controls and switching between different camera types with

a press of a single button
•	 Script animations to follow characters actions

Creating a controllable character
As described in the previous chapter, there are two ways to create a controllable
character in Unity, by using the Character Controller component or physical
Rigidbody. Both of them have their pros and cons, and the choice to use one or the
other is usually based on the needs of the project. For instance, if we want to create
a basic role playing game, where a character is expected to be able to walk, fight,
run, and interact with treasure chests, we would recommend using the Character
Controller component. The character is not going to be affected by physical forces,
and the Character Controller component gives us the ability to go up slopes and
stairs without the need to add extra code. Sounds amazing, doesn't it? There is one
caveat. The Character Controller component becomes useless if we decide to make
our character non-humanoid. If our character is a dragon, spaceship, ball, or a piece
of gum, the Character Controller component won't know what to do with it.

Custom Character Controller

[30]

It's not programmed for those entities and their behavior. So, if we want our
character to swing across the pit with his whip and dodge traps by rolling over
his shoulder, the Character Controller component will cause us many problems.

In this chapter, we will look into the creation of a character that is greatly affected
by physical forces, therefore, we will look into the creation of a custom Character
Controller with Rigidbody, as shown in the preceding screenshot.

Chapter 2

[31]

Custom Character Controller
In this section, we will write a script that will take control of basic character
manipulations. It will register a player's input and translate it into movement. We
will talk about vectors and vector arithmetic, try out raycasting, make a character
obey our controls and see different ways to register input, describe the purpose of
the FixedUpdate function, and learn to control Rigidbody.

We shall start with teaching our character to walk in all directions, but before we start
coding, there is a bit of theory that we need to know behind character movement.

Most game engines, if not all, use vectors to control the movement of objects. Vectors
simply represent direction and magnitude, and they are usually used to define an
object's position (specifically its pivot point) in a 3D space. Vector is a structure that
consists of three variables—X, Y, and Z. In Unity, this structure is called Vector3, but
we have encountered this variable type before in a previous chapter:

To make the object move, knowing its vector is not enough.

Length of vectors is known as magnitude. In physics, speed is a pure scalar, or
something with a magnitude but no direction. To give an object a direction, we
use vectors. Greater magnitude means greater speed. By controlling vectors and
magnitude, we can easily change our direction or increase speed at any time
we want.

Vectors are very important to understand if we want to create any movement in
a game. Through the examples in this chapter, we will explain some basic vector
manipulations and describe their influence on the character. It is recommended
that you learn extra material about vectors to be able to perfect a Character
Controller based on game needs.

Custom Character Controller

[32]

Setting up the project
To start this section, we need an example scene. Perform the following steps:

1. Select Chapter 2 folder from book assets, and click on on the Unity_chapter2
scene inside the custom_scene folder.

2. In the Custom scripts folder, create a new JavaScript file. Call it
CH_Controller (we will reference this script in the future, so try to
remember its name, if you choose a different one):

3. In a Hierarchy view, click on the object called robot. Translate the mouse to
a Scene view and press F; the camera will focus on a funny looking character
that we will teach to walk, run, jump, and behave as a character from a
video game.

Chapter 2

[33]

Creating movement
The following is the theory of what needs to be done to make a character move:

1. Register a player's input.
2. Store information into a vector variable.
3. Use it to move a character.

Sounds like a simple task, doesn't it? However, when it comes to moving a
player-controlled character, there are a lot of things that we need to keep in mind,
such as vector manipulation, registering input from the user, raycasting, Character
Controller component manipulation, and so on. All these things are simple on
their own, but when it comes to putting them all together, they might bring a few
problems. To make sure that none of these problems will catch us by surprise, we
will go through each of them step by step.

Manipulating character vector
By receiving input from the player, we will be able to manipulate character
movement. The following is the list of actions that we need to perform in Unity:

1. Open the CH_Character script.
2. Declare public variables Speed and MoveDirection of types float and

Vector3 respectively. Speed is self-explanatory, it will determine at which
speed our character will be moving. MoveDirection is a vector that will
contain information about the direction in which our character will
be moving.

3. Declare a new function called Movement. It will be checking horizontal and
vertical inputs from the player.

4. Finally, we will use this information and apply movement to the character.
An example of the code is as follows:
public var Speed : float = 5.0;
public var MoveDirection : Vector3 = Vector3.zero;
function Movement (){
if (Input.GetAxis("Horizontal") || Input.GetAxis("Vertical"))
MoveDirection = Vector3(Input.GetAxisRaw("Horizontal"),MoveDirecti
on.y, Input.GetAxisRaw("Vertical"));
this.transform.Translate(MoveDirection);
}

Custom Character Controller

[34]

Register input from the user
In order to move the character, we need to register an input from the user. To do
that, we will use the Input.GetAxis function. It registers input and returns values
from -1 to 1 from the keyboard and joystick. Input.GetAxis can only register input
that had been defined by passing a string parameter to it. To find out which options
are available, we will go to Edit | Projectsettings | Input. In the Inspector view,
we will see Input Manager.

Click on the Axes drop-down menu and you will be able to see all available input
information that can be passed to the Input.GetAxis function. Alternatively, we can
use Input.GetAxisRaw. The only difference is that we aren't using Unity's built-in
smoothing and processing data as it is, which allows us to have greater control over
character movement.

To create your own input axes, simply increase the size of the array by 1 and specify
your preferences (later we will look into a better way of doing and registering input
for different buttons).

this.transform is an access to transformation of this particular object. transform
contains all the information about translation, rotation, scale, and children of this
object (object parenting will be covered in later chapters of this book). Translate is
a function inside Unity that translates GameObject to a specific direction based on a
given vector.

If we simply leave it as it is, our character will move with the speed of light.
That happens because translation is being applied on character every frame.
Relying on frame rate when dealing with translation is very risky, and as each
computer has different processing power, execution of our function will vary
based on performance. To solve this problem, we will tell it to apply movement
based on a common factor—time:

this.transform.Translate(MoveDirection * Time.deltaTime);

This will make our character move one Unity unit every second, which is still a bit
too slow. Therefore, we will multiply our movement speed by the Speed variable:

this.transform.Translate((MoveDirection * Speed) * Time.deltaTime);

Chapter 2

[35]

Now, when the Movement function is written, we need to call it from Update. A word
of warning though—controlling GameObject or Rigidbody from the usual Update
function is not recommended since, as mentioned previously, that frame rate is
unreliable. Thankfully, there is a FixedUpdate function that will help us by applying
movement at every fixed frame. Simply change the Update function to FixedUpdate
and call the Movement function from there:

function FixedUpdate (){
Movement();
}

The Rigidbody component
Now, when our character is moving, take a closer look at the Rigidbody component
that we have attached to it. Under the Constraints drop-down menu, we will notice
that Freeze Rotation for X and Z axes is checked, as shown in the following screenshot:

If we uncheck those boxes and try to move our character, we will notice that it starts
to fall in the direction of the movement. Why is this happening? Well, remember, we
talked about Rigidbody being affected by physics laws in the engine? That applies
to friction as well. To avoid force of friction affecting our character, we forced it to
avoid rotation along all axes but Y. We will use the Y axis to rotate our character
from left to right in the future.

Custom Character Controller

[36]

Another problem that we will see when moving our character around is a significant
increase in speed when walking in a diagonal direction. This is not an unusual bug,
but an expected behavior of the MoveDirection vector. That happens because for
directional movement we use vertical and horizontal vectors. As a result, we have a
vector that inherits magnitude from both, in other words, its magnitude is equal to
the sum of vertical and horizontal vectors.

To prevent that from happening, we need to set the magnitude of the new vector
to 1. This operation is called vector normalization. With normalization and speed
multiplier, we can always make sure to control our magnitude:

this.transform.Translate((MoveDirection.normalized * Speed) * Time.
deltaTime);

Jumping
Jumping is not as hard as it seems. Thanks to Rigidbody, our character is already
affected by gravity, so the only thing we need to do is to send it up in the air. Jump
force is different from the speed that we applied to movement. To make a decent
jump, we need to set it to 500.0). For this specific example, we don't want our
character to be controllable in the air (as in real life, that is physically impossible).
Instead, we will make sure that he preserves transition velocity when jumping, to be
able to jump in different directions. But, for now, let's limit our movement in air by
declaring a separate vector for jumping.

User input verification
In order to make a jump, we need to be sure that we are on the ground and not
floating in the air. To check that, we will declare three variables—IsGrounded,
Jumping, and inAir—of a type boolean. IsGrounded will check if we are grounded.
Jumping will determine if we pressed the jump button to perform a jump. inAir will
help us to deal with a jump if we jumped off the platform without pressing the jump
button. In this case, we don't want our character to fly with the same speed as he
walks; we need to add an airControl variable that will smooth our fall.

Chapter 2

[37]

Just as we did with movement, we need to register if the player pressed a jump
button. To achieve this, we will perform a check right after registering Vertical
and Horizontal inputs:

public var jumpSpeed : float = 500.0;
public var jumpDirection : Vector3 = Vector3.zero;
public var IsGrounded : boolean = false;
public var Jumping : boolean = false;
public var inAir : boolean = false;
public var airControl : float = 0.5;
function Movement(){
if (Input.GetAxis("Horizontal") || Input.GetAxis("Vertical")) {
MoveDirection = Vector3(Input.GetAxisRaw("Horizontal"),MoveDirection.y
,Input.GetAxisRaw("Vertical"));
}
if (Input.GetButtonDown("Jump") && isGrounded) {}
}

GetButtonDown determines if we pressed a specific button (in this case, Space bar),
as specified in Input Manager. We also need to check if our character is grounded
to make a jump.

We will apply vertical force to a rigidbody by using the AddForce function that
takes the vector as a parameter and pushes a rigidbody in the specified direction.
We will also toggle Jumping boolean to true, as we pressed the jump button and
preserve velocity with JumpDirection:

if (Input.GetButtonDown("Jump") &&isGrounded){
Jumping = true;
jumpDirection = MoveDirection;
rigidbody.AddForce((transform.up) * jumpSpeed);
}
if (isGrounded)
this.transform.Translate((MoveDirection.normalized * Speed) * Time.
deltaTime);
else if (Jumping || inAir)
this.transform.Translate((jumpDirection * Speed * airControl) * Time.
deltaTime);

To make sure that our character doesn't float in space, we need to restrict its
movement and apply translation with MoveDirection only, when our character
is on the ground, or else we will use jumpDirection.

Custom Character Controller

[38]

Raycasting
The jumping functionality is almost written; we now need to determine whether our
character is grounded. The easiest way to check that is to apply raycasting. Raycasting
simply casts a ray in a specified direction and length, and returns if it hits any collider
on its way (a collider of the object that the ray had been cast from is ignored):

To perform a raycast, we will need to specify a starting position, direction (vector),
and length of the ray. In return, we will receive true, if the ray hits something, or
false, if it doesn't:

function FixedUpdate ()
{
if (Physics.Raycast(transform.position, -transform.up, collider.
height/2 + 2)){
 isGrounded = true;
 Jumping = false;
 inAir = false;
}
else if (!inAir){
 inAir = true;
 JumpDirection = MoveDirection;
}
Movement();
}

As we have already mentioned, we used transform.position to specify the
starting position of the ray as a center of our collider. -transform.up is a vector that
is pointing downwards and collider.height is the height of the attached collider.
We are using half of the height, as the starting position is located in the middle of
the collider and extended ray for two units, to make sure that our ray will hit the
ground. The rest of the code is simply toggling state booleans.

Chapter 2

[39]

Improving efficiency in raycasting
But what if the ray didn't hit anything? That can happen in two cases—if we walk off
the cliff or are performing a jump. In any case, we have to check for it.

If the ray didn't hit a collider, then obviously we are in the air and need to specify
that. As this is our first check, we need to preserve our current velocity to ensure
that our character doesn't drop down instantly.

Raycasting is a very handy thing and being used in many games. However, you
should not rely on it too often. It is very expensive and can dramatically drop
down your frame rate.

Right now, we are casting rays every frame, which is extremely inefficient. To
improve our performance, we only need to cast rays when performing a jump,
but never when grounded. To ensure this, we will put all our raycasting section
in FixedUpdate to fire when the character is not grounded.

function FixedUpdate (){
 if (!isGrounded){
 if (Physics.Raycast(transform.position, -transform.up,
collider.height/2 + 0.2)){
 isGrounded = true;
 Jumping = false;
 inAir = false;
 }
 else if (!inAir){
 inAir = true;
 jumpDirection = MoveDirection;
 }
 }
Movement();
}
function OnCollisionExit(collisionInfo : Collision){
 isGrounded = false;
}

To determine if our character is not on the ground, we will use a default function—
OnCollisionExit(). Unlike OnControllerColliderHit(), which had been used
with Character Controller, this function is only for colliders and rigidbodies. So,
whenever our character is not touching any collider or rigidbody, we will expect to
be in the air, therefore, not grounded.

Let's hit Play and see our character jumping on our command.

Custom Character Controller

[40]

Additional jump functionality
Now that we have our character jumping, there are a few issues that should be
resolved. First of all, if we decide to jump on the sharp edge of the platform, we will
see that our collider penetrates other colliders. Thus, our collider ends up being stuck
in the wall without a chance of getting out:

A quick patch to this problem will be pushing the character away from the contact
point while jumping. We will use the OnCollisionStay() function that's called at
every frame when we are colliding with an object. This function receives collision
contact information that can help us determine who we are colliding with, its
velocity, name, if it has Rigidbody, and so on. In our case we are interested in
contact points. Perform the following steps:

1. Declare a new private variable contact of a ContactPoint type that
describes the collision point of colliding objects.

2. Declare the OnCollisonStay function.
3. Inside this function, we will take the first point of contact with the collider

and assign it to our private variable.

Chapter 2

[41]

4. Add force to the contact position to reverse the character's velocity, but only
if the character is not on the ground.

5. Declare a new variable and call it jumpClimax of boolean type.

Contacts is an array of all contact points.

Finally, we need to move away from that contact point by reversing our velocity. The
AddForceAtPosition function will help us here. It is similar to the one that we used
for jumping, however, this one applies force at a specified position (contact point):

public var jumpClimax :boolean = false;
...
function OnCollisionStay(collisionInfo : Collision){
contact = collisionInfo.contacts[0];
if (inAir || Jumping)
rigidbody.AddForceAtPosition(-rigidbody.velocity, contact.point);
}

The next patch will aid us in the future, when we will be adding animation to
our character later in this chapter. To make sure that our jumping animation runs
smoothly, we need to know when our character reaches jumping climax, in other
words, when it stops going up and start a falling.

In the FixedUpdate function, right after the last else if statement, put the following
code snippet:

else if (inAir&&rigidbody.velocity.y == 0.0) {
 jumpClimax = true;
 }

Nothing complex here. In theory, the moment we stop going up is a climax of our
jump, that's why we check if we are in the air (obviously we can't reach jump climax
when on the ground), and if vertical velocity of rigidbody is 0. The last part is to
set our jumping climax to false. We'll do that at the moment when we touch
the ground:

if (Physics.Raycast(transform.position, -transform.up, collider.
height/2 + 2)){
 isGrounded = true;
 Jumping = false;
 inAir = false;
 jumpClimax = false;
}

Custom Character Controller

[42]

Running
We taught our character to walk, jump, and stand aimlessly on the same spot. The
next logical step will be to teach him running. From a technical point of view, there
is nothing too hard. Running is simply the same thing as walking, but with a greater
speed. Perform the following steps:

1. Declare a new variable IsRunning of a type boolean, which will be used to
determine whether our character has been told to run or not.

2. Inside the Movement function, at the very top, we will check if the player is
pressing left or right, and shift and assign an appropriate value to isRunning:
public var isRunning : boolean = false;
...
function Movement()
{
if (Input.GetKey (KeyCode.LeftShift) || Input.GetKey (KeyCode.
RightShift))
 isRunning = true;
else
 isRunning = false;
...
}

Another way to get input from the user is to use KeyCode. It
is an enumeration for all physical keys on the keyboard. Look
at the KeyCode script reference for a complete list of available
keys, on the official website: http://unity3d.com/
support/documentation/ScriptReference/KeyCode.

We will return to running later, in the animation section.

Cameras
They are important! It does not matter what discipline an individual is in. A camera
and its uses are crucial to the development of the game and/or positions that the
players will find themselves in. We will build a generic camera script that we will be
able to configure for various positions.

Camera scripting
The camera script is quite heavy when it comes to scripting. So, we are going to first
script functionality for the fps camera, which will form the basic structure for the
other types of cameras.

Chapter 2

[43]

It will come down to the following steps:

1. Create the camera script.
2. Write the camera switching functions.
3. Write the camera movement functionality.
4. Influence character movement through camera positioning.

Creating camera script
First, we will create a JavaScript named CameraScr. In that, we will have the
functionalities for the reader to be able to manipulate various properties for the
camera setup, such as the height that the camera will sit at and the distance from
which the camera will be located from the target. In the script:

•	 We will set up some simple variables
•	 There will be a variable for the object to be tracked, another for distance, for

height offset, side offset, smooth follow, and the current camera type

In the case of the object to be tracked, this will be the GameObject character. Make
sure to set its type as Transform and make the variable public. We will use a list
of variables of specified types to store multiple values of a specific type in a single
variable. Be sure to use the square brackets after the following variable types and
make them public, as we will be adding values to them in the Inspector menu:

•	 The second variable is the current camera state and will be of the type int
and defaulted to 0. It is okay if it is private.

•	 The third variable is for the distance, which we define as the camera distance
and have its type defined as float.

•	 The fourth variable is for height and its type is again float. This variable
will handle the height offset for the camera.

Custom Character Controller

[44]

The following is an example of what these variables may look like:
public var charObj : Transform;
public var camNum: int = 0;
public var camDistance: float[];
public var heightOffset : float[];

At this point, we only care about the values that are in position 0 of the array variables.

Creating an enumeration list
Next, we will set up an enumeration that will deal with switching the values for the
different camera types. An enumeration is a variable that can hold integer values
in any form. The user just needs to keep in mind that whatever is put into an enum,
enumeration for short, will be converted into an integer. The first value in an enum is
considered in the first spot, the second in the second spot, and so on. Create an enum
and call it CamType.

Remember that enum is like a class or list of variables (names in this case) and must
use curly braces to begin and end its statement. Inside enum, create the camera types
(FP, SP, TP). The camera types FP, SP, and TP, will have the variable integer values of
0, 1, and 2.

In order not to get an error at this point, you will have to create a variable, of type
enum. Call it CamType. This variable allows the reader to change the enum type at
will in the Inspector menu. The variable may be private but remember, if you wish
to change the type in Inspector, it must be public. The variable and enum should
resemble the following code snippet:

private var cameraType : CamType;
enum CamType { FP, SP, TP }

Writing functions
For now, we have taken care of variables, and we have to begin to write the functions.

The Initialize function
We will start with giving values to our variables. Perform the following steps:

1. Right off the bat, we will need to write an Initialize function.
2. In this function, we want to change the camera type to the default camera

type, which we want the character to start off with. In this case, it is camera 1.
This is based upon the camera's value in enum.

Chapter 2

[45]

3. After that, we will need to change the camera enum type to the
first-person camera.

4. Set charObj with received Player value.

Right now, the Initialize function will look similar to the following code snippet:

function Initialize(Player : Transform){
 camNum = 1;
 cameraType = CamType.FP;
charObj = Player;
}

So, we have that function taken care of for the time being; next, we want another
function to handle the switching of the camera.

In order to work, the Initialize function needs to be called. Perform the
following steps:

1. Open the CH_Controller script.
2. Create a public variable CPrefab of a type GameObject.
3. Inside the Start function, check if this object exists.
4. If it does, set the charObj value to transform. Call the Initialize function

with transform information about the character.
5. If it doesn't, try to find an object with a MainCamera tag, call the Initialize

function and set the charObj value to transform.

This function needs to be called from CH_Controller just in case we forgot to set the
camera. In the CH_Controller script, write the following code snippet:

public var CPrefab : GameObject;
function Start(){
...
if (CPrefab == null){
CPrefab = GameObject.FindGameObjectWithTag("MainCamera");CPr
efab.GetComponent("CameraScr").charObj = transform;CPrefab.
GetComponent("CameraScr").Initialize(transform);}
else{CPrefab.GetComponent("CameraScr").charObj = transform;CPrefab.
GetComponent("CameraScr").Initialize(transform);}
}

Changing camera function
The changing camera function will be called ChangeCamType. As its name implies,
this function will change the camera from one type to another.

Custom Character Controller

[46]

In this function, we need to check a couple of things, such as identify the current
camera type and then change the camera to the next type. Perform the following steps:

1. First, create the ChangeCamType function.
2. Check for the camera number, inside of which we want to use the same

camera switching line that we used in the Initialize function. After that
line, we want to state that the camera number is now equal to the next
camera type. This function should look similar to the following code snippet:

function ChangeCamType(){
 If(camNum == 1){
 cameraType = camType.SP;
 camNum = 2;
}
}

Now that we have the camera switching, we need to assign the list variable values
to our equation variables. To do this, we will use a switch case statement to change
the equation variables based upon the current camera type.

A switch statement is pretty much an if statement except that you can switch
variable values without having to reassign them. This type of statement works great
for Artificial Intelligence (AI) behaviors and will be used later on in the book for just
that purpose.

Changing the camera values function
The changing camera values function will be called SetCamValues. Perform the
following steps:

1. The first thing is to call the ChangeCamType function.
2. For the switch statement, the first thing that we have to check is that camera

type is true. After that, we can use a case statement to switch variables
based upon the current camera type. The first case statement will check for
when the current camera is first person.

Now, we will create the equation variables. These variables will be used to hold the
values from the selected array variables and in the final equations that will determine
the final setup of the camera. This is done so that there can be one block of code for
all of the camera types instead of a block of code for each of the camera types. Each
of these variables will have the same type, minus the square brackets, of the values
which they will be taking on but can be made private if preferred.

Chapter 2

[47]

1. The variables to be created are as follows:
	° camDist: This variable will deal with camera distance list variable
	° hOffset: This variable will deal with height offset list variable

2. Inside the case statement, after the reader has matched all of the equation
variables with the list variables, we need to make sure that the right list
number has been assigned to the variable. For camera number 1, FP, the
number is one but with lists, as in most scripting or programming languages,
they start at 0. So, make sure that the list variables that the equation variables
are equaling, have 0 in the brackets for FP, 1 for SP, and 2 for TP.

3. At the end of the case statement, we then want to put a break line in. This
break line prevents the code from moving on to the next case statement.

In the Initialize function, at the end of it, we want to add this function in there
as well. The following is an example of the code:

function SetCamValues(){
ChangeCamValues();
switch(cameraType){

case CamType.FP :
 camDist = camDistance[0];
 hOffset = heightOffset[0];
 break;
}
}
function Initialize(Player : Transform){
...
SetCameraValues();
}

Writing camera switching controls
Now that the primary functionality is done, we need to write one more script
that will deal with the player's input to toggle between camera types. Perform
the following steps:

1. Create another JavaScript called Player_Input. Hook it up to camera.
2. In this script, we will need an Update function to always be checking for

player's pressing of the toggle camera button, in this case T.
3. Create an Update function and put an if statement inside. This statement

will check for the pressed status of T using Unity's built-in function—Input.
GetKeyDown(KeyCode.T).

Custom Character Controller

[48]

4. Inside the if statement, we will call the SetCameraValues function in
CameraScr.

The script should resemble the following code snippet:
function Update(){
 If(Input.GetKeyDown(KeyCode.T){
 this.gameObject.GetComponent(CameraScr).SetCameraValues();
}
}

Make sure to hook up the cameraObj as your target camera.

Character movement and camera positioning
Now for secondary functionality of the camera, orbiting and character movement
based upon camera positioning and the coding for the two other cameras.
Third-person view camera is demonstrated in the following screenshot:

Chapter 2

[49]

Updating camera type changing
First we will tackle the two other cameras as they are the easier of the two
functionalities to implement. Let's venture back to the ChangeCamType function. In
here, we only had a change statement for one camera. Now we need to add the other
two in. Perform the following steps:

1. We just need to copy and paste the existing if statement two times.
2. Change the if statements to the else if statements. The camera

numbers should be from 1 to 2 for the middle statement and 1 to 3
for the lower statement.

3. The CampType value for the middle statement should be changed from SP to
TP as well and for the lower statement, SP to FP.

4. Lastly, the camera numbers found within the if statement blocks should be
changed to 3 for the middle one and 1 for the lower one.

These statements allow the camera to change its enum type whenever
the T button is pressed. This function should now look like the following
code snippet:
function ChangeCamType(){
if (camNum == 1){
 cameraType = camType.SP;
 camNum = 2;
}
if (camNum == 2){
 cameraType = camType.TP;
 camNum = 3;
}
if (camNum == 3){
 cameraType = camType.FP;
 camNum = 1;
}
}

5. Next, we will add in the SetCameraValues function to the switch case
statement. All we have to do again is copy the case statement and change
some values in the copies.

6. After copying and pasting the current case statement twice below the
current one, we need to change CamType for the middle one to SP and
the lower one to TP.

Custom Character Controller

[50]

7. The bracket values need to change as well. For the middle statement, all
bracket numbers need to be 1 and for the lower statement, all bracket
numbers need to be 2:

function SetCamValue(){
ChangeCamValues();
switch(cameraType){
case CamType.FP :
 camDist = camDistance[0];
 hOffset = heightOffset[0];
 break;
case CamType.SP :
 camDist = camDistance[1];
 hOffset = heightOffset[1];
 break;
case CamType.TP :
 camDist = camDistance[2];
 hOffset = heightOffset[2];
 break;
}
}

Influencing camera with a mouse
The last two things to write now for the camera are mouse input for camera control
and the ClampAngle function. First, we will add the mouse control to the Apply
function. Perform the following steps:

1. At the bottom of the Apply function, we want to get the mouse X positioning
and add it to the x angle of the camera and grab the mouse Y positioning and
subtract it from the y angle of the camera.

2. As we want to limit the angle by which the camera can move on the Y axis,
we will call the ClampAngle function.

3. As we wish to follow the rotation of the player, which is the Y axis, we grab
the player's angle by using Unity's built-in euler angles functionality.

4. Then, we grab the camera's euler angle on Y.

eulerAngles is a representation of a rotation around
a specific axis. eulerAngles.x is, therefore, a rotation
around the X axis and the same goes for the Y and Z axes.

Chapter 2

[51]

5. After this, we want to create a variable for rotation and position.
6. The rotation variable will be equal to Quaternion Euler angles using the

x value of the mouse, and the y value of the mouse.
7. Starting position of the character should be recorded when camera initializes.
8. For the positioning variable, we will take the rotation and multiply it by the

camera distance and add the target object's position.
9. Lastly, we will have the camera's rotation equal to the variable rotation and

the camera's position equal to the variable position.

The following code will go into the Initialize function and variable section of
the script:

private var x : float = 0.0;
private var y : float = 0.0;
private var startRotation : int;
function Initialize(Player : Transform){
 camNum = 1;
 cameraType = CamType.FP;
 startRotation = charObj.transform.eulerAngles.y;
 x = transform.eulerAngles.y;
 y = transform.eulerAngles.x;
 charObj = Player;
 SetCameraValues();
}

The following code shows what should have been added to the bottom of the
Apply function:

x += Input.GetAxis("Mouse X") * mouseSpeed[0] * Time.deltaTime;
y -= Input.GetAxis("Mouse Y") * mouseSpeed[1] * Time.deltaTime;
y = ClampAngle(y, yLimit[0], yLimit[1]);
var targPos = Quaternion.Euler(y, x + startRotation, 0);
var position = rotation * Vector3(0.0, 0.0, camDist) + charObj.
position;

transform.rotation = rotation;
transform.position = targPos;

Clamping angles
The last function to write for this script is the ClampAngle function. It has the
following characteristics:

•	 The ClampAngle function is going to be taking three parameters.
•	 Those parameters are angle, min, and max.

Custom Character Controller

[52]

•	 There will be two if statements in the function and then a return function.
•	 The parameters that are coming in are the angle, which we want to check

and see if it is smaller or greater than 360 degrees. If greater, we subtract 360
so that the angle becomes within the acceptable range. If lower, we add 360
degrees. We return the result back to the function so that it makes sure that
the angle never goes out of range.

The following is an example of the code:

function ClampAngle(angle:float, min:float, max:float){
 If(angle < -360)
 Angle += 360;
 If(angle > 360){
 Angle -=360;
}
return Mathf.Clamp(angle, min, max);
}

Now that everything is compiled, we need to go back to Inspector and add in the
values for the list variables and the target object. These variables can be set to your
own discretion but the following is a screenshot of our values:

Chapter 2

[53]

Camera's late update
There is one more function to write for this stage of the camera and that is the
LateUpdate function.

This function is used because during the Update function, the target object of the
script might have moved beyond an area where the camera can see, that is, inside of
a building. This function will handle the calling of the remaining functions. Perform
the following steps:

1. Create the function and inside of it, do a simple check to make sure that a
target exists (charObj).

2. Inside of this check, we want to call the Apply function.

The following code snippet shows what it should look like:
function LateUpdate(){
 If(charObj)
 Apply();
}

Rotating character with a camera
One more function before we are done. In the Character Controller script, inside
of the FixedUpdate function, right before the calling of the Movement function, we
will add the following line of code:

transform.Rotate(Vector3(0, Input.GetAxis("Mouse X"), 0) * Time.
deltaTime * 250.0);

This line allows the character to rotate with the rotation of the camera. We grab the
mouse x and rotate the character by it and we dampen it by the delta time to make
sure that it becomes smooth gradually. The following code snippet, which shows the
complete CamerScr script is the final code:

public var charObj: Transform;
public var camDistance: float[];
public var heightOffset: float[];
public var mouseSpeed : float[];
public var yAngleLimit : float[];
private var camNum : float = 0;
private var cameraType : CamType;
private var camDist : float;
private var hOffset : float;
private var x = 0.0;
private var y = 0.0;
enum CamType{FP,SP,TP}

Custom Character Controller

[54]

function Initialize(Player : Transform){
 camNum = 1;
 cameraType = CamType.FP;
startRotation = charObj.transform.eulerAngles.y;
 x = transform.eulerAngles.y;
 y = transform.eulerAngles.x;
charObj = Player;
 SetCameraValues();
}
function ChangeCamType(){
 if(camNum == 1){
 cameraType = CamType.SP;
 camNum = 2;
 }
 else if(camNum == 2){
 cameraType = CamType.TP;
 camNum = 3;
 }
 else if(camNum == 3){
 cameraType = CamType.FP;
 camNum = 1;
 }
}
function SetCameraValues(){
 ChangeCamType();
 switch(cameraType){
 caseCamType.FP :
 camDist = camDistance[0];
 hOffset = heightOffset[0];
 break;
 caseCamType.SP :
 camDist = camDistance[1];
 hOffset = heightOffset[1];
 break;
 case CamType.TP :
 camDist = camDistance[2];
 hOffset = heightOffset[2];
 break;
 }
}
function Apply(){
 x += Input.GetAxis("Mouse X") * mouseSpeed[0] * Time.deltaTime;
 y -= Input.GetAxis("Mouse Y") * mouseSpeed[1] * Time.deltaTime;

Chapter 2

[55]

 y = ClampAngle(y, yAngleLimit[0], yAngleLimit[1]);\
 var rotation = Quaternion.Euler(y, x + startRotation, 0);
 var targPos = rotation * Vector3(0.0, 0.0, camDist) +
 charObj.position;
 targPos.y += hOffset;
 transform.rotation = rotation;
 transform.position = targPos;
}
function ClampAngle (angle : float, min : float, max : float) {
 if (angle < -360)
 angle += 360;
 if (angle > 360)
 angle -= 360;
 return Mathf.Clamp (angle, min, max);
}
function LateUpdate () {
 Apply();
}

In the Player_Input script, add the following code snippet:

function Update (){
 if(Input.GetKeyDown(KeyCode.T))
 this.gameObject.GetComponent(CameraScr).SetCameraValues();
}

Congratulations! You can now have a camera rig that will give you a lot of
functionality in a small limited package.

Animation controls
In the last part of this chapter, we will talk about what makes games look
awesome—animations. We will learn how to control animations through code,
learn the truth about the Start and Awake functions, and figure out how to make
smooth transactions in between animations.

Playing simple animations
Time to add some visual indication to our movement and jump into the world of
animations. Thankfully, we don't have to worry about animating our character, all
animations are already done for us and are included with the model.

Custom Character Controller

[56]

In this section, we will talk about basic animations and how to play them. As
our game continues to grow, we will add more advanced techniques to handle
various animations.

Let's create a new script whose main purpose will be to handle and control all
animations for our character, such as their speed, play order, and modes. Perform
the following steps:

1. Create a new script in the Custom scripts folder and call it CH_Animation.
2. Declare a private variable of a CH_Controller type (script that handles

movement, if you name it differently, use your name to declare its type),
call it Controller. This way we can reference any scripts, just by declaring
them with a type of script's name.

3. Declare two functions—Start and Awake:
private var Controller : CH_Controller;
function Start (){}
function Awake (){}

Start function versus Awake function
Let's talk a bit about the difference between these two functions. At first glance,
there is none, and many people make the same mistake by mismatching them.
This is a mistake that can lead to problems.

The Awake() function is the first function that is called when you start a game. Right
after you press the Play key, the engine goes through all scripts and executes the
Awake function in each of them.

The Start() function is called right after all the Awake() functions on all objects
are executed.

We can give both these functions a small test. Let's test this:

1. Add debug logs in both of these functions. In Awake, write something like
I'm awake and I'm ready to start in the Start function:

2. Attach this script to our character and hit Play. Double-click at the debug line
at the bottom and look at what we got—I'm awake printed before I'm ready
to start as planned:

function Start (){
Debug.Log("I'm ready to start");
}
function Awake (){
Debug.Log("I'm awake");
}

Chapter 2

[57]

Your console messages should be similar to those displayed on the
following screenshot:

Remember, there is no order in which the engine calls the awake or start functions
among the objects by default, it can randomly choose one or another and call it from
there. Another interesting thing is that the Start() function won't be called if an
object is disabled. In other words, if we disable an object in the Awake() function,
we can save some performance for our game to run faster at start-up.

Using specifics of these functions we should be prepared to use Awake() for
referencing objects, scripts, variables etc. Assigning default properties and
start-up functionality is better in the Start() function.

Animation component and playing speed
We will use this script to control speed of animations and movement speed for the
character; therefore, we need to declare the following variables to control them:

public var forwardSpeed : float = 5.0;
public var backwardSpeed : float = 3.0;
public var strafingSpeed : float = 4.0;
public var runningSpeed : float = 10.0;
public var idleAnimationSpeed : float = 1.0;
public var forwardAnimationSpeed : float = 6.0;
public var runningAnimationSpeed : float = 3.0;
public var backwardAnimationSpeed : float = 1.0;
public var strafingAnimationSpeed : float = 3.0;
public var jumpingAnimationSpeed : float = 1.5;

Custom Character Controller

[58]

Variables in the preceding code snippet will control movement speed for our
character based on direction, animation, and animation speed.

Let's get back to animations:

1. Remove the debug logs from this script and reference CH_Controller from
this object in the Awake function:
function Awake(){
 Controller = this.gameObject.GetComponent(CH_Controller);
}

2. In order for the object to play animations, we need to attach an animation
component to our character. Select character and go to Component |
Miscellaneous | Animation, as shown in the following screenshot:

3. Inside Animation Controller, click on a small circle, it will lead you to the
Select AnimationClip window. Click on any of the available animations.

4. Under the Animations drop-down menu, increase the size to 4 and assign a
unique animation to each Element.

5. Uncheck the Play Automatically box. We don't want Unity to play random
animation for us; we will take care of it through the code:

Chapter 2

[59]

All the animation manipulations will be done through Animation Controller. The
first thing that we need to learn about animations is WrapMode. WrapMode controls
the play of animation—or repeating, to be more precise. There are a number of
repeating modes available in Unity. They are as follows:

•	 Once: It plays the animation once and stops
•	 Loop: It plays the animation over and over again until told to stop
•	 Ping-pong: It plays the animation till the end, then reverses and plays

it backwards
•	 Default: It reads a default repeat mode set higher up
•	 ClampForever: It will play the animation till the end and then continuously

keeps playing its last frame

We can specify WrapMode for all animations by referencing
just an animation component or an individual animation, by
specifying a name in square brackets:
animation.wrapMode = WrapMode.Loop;

or
animation["idle"].wrapMode = WrapMode.Loop;

To play an animation, we simply call the Play function with name of the animation.

Animation scripting
In this section, we will put information learned in the preceding section into action.
Perform the following steps:

1. When script initializes, we need to set WrapMode to looping by default.
2. Specify ClampForever WrapMode for "jump" animation.
3. Set speed for all known animations.
4. First animation to play should be "idle".

Put the following code snippet inside the Start function:

function Start(){
animation.wrapMode = WrapMode.Loop;
animation["jump"].wrapMode = WrapMode.ClampForever;
animation["idle"].speed = idleAnimationSpeed;
animation["walk_forward"].speed = forwardAnimationSpeed;
animation["run"].speed = runningAnimationSpeed;
animation["walk_backward"].speed = backwardAnimationSpeed;

Custom Character Controller

[60]

animation["walk_side"].speed = strafingAnimationSpeed;
animation["jump"].speed = jumpingAnimationSpeed;
animation.Play("idle");
}

Now that we have that, it's about time to add animation to our character's jump.
Perform the following steps:

1. Create a new function and call it DetermineDirection().
2. We will start with jumping animations; first, we need to determine if the

character is in the air.
3. We will utilize jumpClimax, implemented earlier in this chapter, to check if

the character reached a jump climax.
4. Call DetermineDirection function from Update:

function Update (){
DetermineDirection();
}
function DetermineDirection (){
if (Controller.inAir){
if(!Controller.jumpClimax) {}
}
}

Jump can be performed from any height, therefore, we have no idea how long
animation should be played for. ClampForever, a loop playing the last frame
of the animation, will help us here.

CrossFade is used to blend in between animations. Blending is a very
important aspect of animations, as it helps to create numerous transitions
from one animation to another.

Imagine that there was no blending. Our character would be walking, then instantly
changing animation to jumping, shooting, landing, and so on. That will look weird and
hard-edged. If we want to make smooth transactions from one animation to another,
from jumping to landing to walking, for instance, we will have to manually create
numerous animations. Thankfully, Unity can blend in between animations for us, with
the CrossFade function. Crossfade interpolates one basic animation into another,
creating more complex and unique animations for our character to play. We can even
specify a speed of fading by adding an extra float parameter, like the following one:

animation.CrossFade("jump", 0.3);

0.3 seconds is a default value.

Chapter 2

[61]

We will now add this functionality to our jump, right after we checked if our
character didn't reach climax:

if(!Controller.jumpClimax){
animation.CrossFade("jump", 0.5,PlayMode.StopSameLayer);
}

But what if our character reached jump climax? To fix that, we need to do the same
thing we did before climax, but reverse the animation with the Rewind function:

else{
animation.Rewind ("jump");
}

The only difference is that, once a character reaches climax, we want to reverse the
animation. We will give its speed a negative value to make it play backwards; the
rest of it is the same as before.

Walk, run, and idle animations
The rest of the animations are as simple as jump animation, so here we go.

If the character is not moving in any direction (stands on the same spot), he should
be playing idle animation:

else if (Controller.MoveDirection == Vector3.zero){
 animation.CrossFade("idle");
 }

Custom Character Controller

[62]

This script goes after the first if statement, at the very top. To determine whether the
character is moving or not, we used the MoveDirection vector from CH_Controller.

Now we are left to deal with different movements. Realistically, we don't want
our character to move with exactly the same speed in all directions. We will assign
different values to the Speed variable in the Controller script based on the direction
in which the character is moving:

else if (Controller.MoveDirection.z> 0){}
else if (Controller.MoveDirection.z< 0){}
else if (Controller.MoveDirection.x> 0 || Controller.MoveDirection.x<
0){}

We will use the MoveDirection vector to check the player's movement direction.
Positive or negative Z axis will tell us if the character is moving forward or
backwards; X axis controls side walk.

To play those animations we need to do three things. They are as follows:

1. Modify speed variable in CH_Controller.
2. Assign animation speed.
3. Crossfade the animation.

We can crossfade the animation as follows:

else if (Controller.MoveDirection.z> 0){
 Controller.Speed = forwardSpeed;
 animation.CrossFade("walk_forward",0.5, PlayMode.
StopSameLayer);
 }
else if (Controller.MoveDirection.z< 0){
 Controller.Speed = backwardSpeed;
 animation.CrossFade("walk_backward");
 }
else if (Controller.MoveDirection.x> 0 || Controller.MoveDirection.x<
0){
 Controller.Speed = strafingSpeed;
 animation.CrossFade("walk_side",0.5, PlayMode.StopSameLayer);
 }

We did exactly the same thing to every direction movement. The only exception
should be forward movement. That's where we will implement running. In theory,
we will check isRunning from CH_Controller and rewrite the function for moving
forward as follows:

if (Controller.isRunning){
 Controller.Speed = runningSpeed;
 animation.CrossFade("run",0.5, PlayMode.StopSameLayer);

Chapter 2

[63]

 }
else{
 Controller.Speed = forwardSpeed;
 animation.CrossFade("walk_forward",0.5,PlayMode.StopSameLayer);
}

The animation is now officially done.

Summary
In this chapter, we learned how to make Rigidbody act like a character and move
around the world. We created different camera modes that a player can change by
pressing a key, and touched upon animations. In the next chapter, we will teach our
character to interact with objects in the world and talk about soft body projectiles
that we will create for our bio gun.

Action Game Essentials
Welcome to the third, and probably, one of the most exiting chapters in this book!
In this chapter, we will perform the following actions:

•	 We will cover the barebones of action game mechanics
•	 We will create a useable weapon that shoots soft bodies
•	 We will take a creative approach towards creating pickups
•	 We will dive deeper into the animation system and try out animation

mixing techniques
•	 We will start creating a physical grappling hook that will make our character

travel across dangerous obstacles

No more introductions, let's get to coding!

Programming weapons and pickables
Weapons are fun! Weapons can shoot! But there are limits to weapon functionality,
aren't there? Sometimes, weapons have a cooldown between each shot, reloading
when ammo in a clip is out, primary and secondary fire (a usual thing is videogames),
and choice between spawning a physical bullet or casting rays in certain directions to
save frame rate. Weapons can be tricky, and it's always recommended to plan ahead
for the required functionality of the weapon. Pickables are easier, but can become a
headache whenever we are dealing with particle effects and modifying stats.

Action Game Essentials

[66]

Creating the base
Before we start programming weapons and pickables, we should create a base
to store statistics and make them affect our character. Create a script called
CH_PlayerStats and attach it to the character. Declare the following private
variables of int type—Health, AmmoPrime, AmmoAlt, Money. Create enumeration
called TypeofAmmo, as shown in the code snippet just after the following screenshot:

private var Health : int = 100;
private var AmmoPrime : int = 20;
private var AmmoAlt : int = 20;
private var Money : int = 0;
enum TypeofAmmo{
Prime,
Alt
};

Declare the GetAmmo and AddAmmo functions. To retrieve and set information we will
be using enumerations:

function GetAmmo(Ammotype : int){
 switch (Ammotype){
 case TypeofAmmo.Prime:
 return AmmoPrime;
 break;
 case TypeofAmmo.Alt:
 return AmmoAlt;
 break;
 default:
 Debug.Log ("Wrong ammo type!");
 }
}

Chapter 3

[67]

function AddAmmo(Ammotype : int , amount : int, modify : int){
 switch (Ammotype){
 case TypeofAmmo.Prime:
 if(modify)
 AmmoPrime += amount;
 else
 AmmoPrime = amount;
 break;
 case TypeofAmmo.Alt:
 if(modify)
 AmmoAlt += amount;
 else
 AmmoAlt = amount;
 break;
 default:
 Debug.Log ("wrong type");
 }
}

AddAmmo is asking for the type of ammo to change (Ammotype : int), the amount
of ammo to add (amount : int), and if ammo needs to be modified or set (modify :
int). We will go through the list of the switch statements and determine which type
of ammo to add. If we send the wrong ammo type to function, the default case will
tell us about it. GetAmmo is asking only for the ammo type that will be returned.

Next, we will declare GetHealth and AddHealth, that will work in a similar way.
AddMoney and GetMoney are made in a similar way, too:

function GetHealth(){return Health;}
function AddHealth(amount : int, modify : int){
 if(modify)
 Health += amount;
 else
 Health = amount;
}
function GetMoney(){return Money;}
function AddMoney(amount : int){Money += amount;}

Action Game Essentials

[68]

Programming the weapon
Now, we will start the interesting part—programming the weapon. Our weapon will
be unusual. It will be able to shoot as an assault rifle, yes, it will also shoot exploding
toxic goo that we will create with interactive cloth, but we will talk about this in
future chapters. For now, let's focus on the weapon.

It so happens that a gun is already attached to a demonstrational model, so all we
need to take care of is the proper particles to be emitted.

In the customObjects folder, you will find a prefab called Sparks. It will be used to
emit muzzle fire for us:

Chapter 3

[69]

Drag it to the scene and put it inside the robot prefab, as shown in the
following screenshot:

Open the CH_Controller script. We have many interesting functionalities to add
to it. Let's start with variables. We will need variables to store information about
current state of weapon, reloading, and projectiles:

public var bIsShooting : boolean = false;
public var bIsShootingAlt : boolean = false;
public var Muzzle : GameObject;
public var MuzzleAlt1 : GameObject;
public var MuzzleAlt2 : GameObject;
public var Projectile : Cloth;
public var projectileSpeed : float = 20.0;
private var Stats : CH_PlayerStats;
private var counter : boolean = false;
private var countTime : float = 0;
private var canShootPrime : boolean = true;
private var canShootAlt : boolean = true;
public var flush: ParticleEmitter;
private var bWeaponEquiped : boolean = false;

The following list explains about the functions in the CH_Controller script and
their uses:

bIsShooting and bIsShootingAlt will determine if the gun is currently in a
shooting state. This will greatly aid us when we go into animations.

Muzzle will contain the location that our goo projectiles will shoot from.

MuzzleAlt1 and MuzzleAlt2 will contain the location that our usual bullets will
shoot from.

Projectile is self explanatory; however, take a look at the variable type—Cloth
that we gave to it. InteractiveCloth is a special type of object different from
GameObject. We will talk more about this later in the chapter. The Projectile
prefab can be found inside the customObjects folder.

projectileSpeed will control the speed of our projectile.

Action Game Essentials

[70]

Stats is a reference to the CH_PlayerStats script that we just created to retrieve
information from it.

Counter and countTime will control the reload counter. Counter will check if we are
reloading or not and countTime will control the reloading time.

canShootPrime and canShootAlt will help us determine if we can shoot one type
of fire or another. This is useful to be able to control animations and stop shooting
when reloading.

Flush is the particle emitter that we just attached to the muzzle.

bWeaponEquiped will check if weapon is currently being equipped by character.

We will continue with the CH_Controller script. Declare a Start function. We
will need to store a reference to the CH_PlayerStats script first. Now, we need to
disable our particle emitter from emitting ahead of time. We will proceed with the
FixedUpdate function and start creating weapon control by registering player input.
Exactly the same thing will be done to register alternative fire:

...
function Start(){
Stats = this.gameObject.GetComponent(CH_PlayerStats);
 if (flush)
flush.emit = false;
}
function FixedUpdate(){
if (Input.GetKey (KeyCode.Mouse0) && bWeaponEquiped){

 if(canShootPrime && Stats.GetAmmo(0) > 0){
 Shooting();
 bIsShooting = true;
 }
 }
if(Input.GetKey (KeyCode.Mouse1) && bWeaponEquiped){

 if (canShootAlt && Stats.GetAmmo(1) > 0){
 bIsShootingAlt = true;
 AltShooting();
 }
if (!Input.GetKey (KeyCode.Mouse0))
 bIsShooting = false;
if (!Input.GetKey (KeyCode.Mouse1))
 bIsShootingAlt = false;
}

Chapter 3

[71]

We registered the mouse button down and made sure that the weapon is currently
being equipped. Toggle bIsShooting and bIsShootingAlt to true and go through
another series of checks to determine if we can shoot with a prime fire and alternative
fire (canShootPrime and canShootAlt) and have more than 0 ammo available.

KeyCode.Mouse0 is the left mouse button, and KeyCode.Mouse1
is the right mouse button.

Declare the Shooting function; this will control everything that has to do with
shooting the prime fire. Declare AltShooting to control alternative fire. We will
also need to register that if a player is not pressing any button, then bIsShooting
and bIsShootingAlt should be false.

The Shooting function
The next step will be to spawn the actual projectile that will kill enemies. To
achieve this, we will instantiate a soft body projectile using the reference set
by the Projectile variable and location specified in Muzzle and kick it hard
so it can fly. To make sure that our Projectile fires when the robot points a gun
at the target and not when the gun is looking down, we will use coroutines, one in
particular—WaitForSeconds. This will allow us to postpone execution of the code
for a specified number of seconds.

Coroutines are computer program components that generalize subroutines to allow
multiple entry points for suspending and resuming execution at certain locations.

We will deal with the Shooting function first. The first thing that needs to happen
when this function is called is a start of our reload. Sounds strange indeed, but this is
the way we need to do it to avoid problems with two projectiles spawning at the same
time. It is better to eliminate the problem without even giving it a chance to appear.

As mentioned previously, we are creating a local variable of a Cloth type and
instantiating it right at the muzzle position. Next, we are getting into a Rigidbody
analogy in Cloth called InteractiveCloth and adding a force at a specified position
in a positive Z direction with speed captured in the projectileSpeed variable.

Last, but not least, we will call the AddAmmo function from a CH_PlayerStats script
and decrease the number of available ammo by one. All of it will happen in the
CH_Controller script, after the last line of code:

...
function Shooting(){
canShootPrime = false;
counter = true;

Action Game Essentials

[72]

yield WaitForSeconds (0.5);
var bullet : Cloth = Cloth.Instantiate(Projectile, Muzzle.transform.
position,Muzzle.transform.rotation);
bullet.transform.GetComponent(InteractiveCloth).
AddForceAtPosition(Muzzle.transform.TransformDirection(Vector3
(projectileSpeed* 10, 0, 0)), bullet.transform.position, 1.0,
ForceMode.Impulse);
Stats.AddAmmo (0, -1);
}

A word of warning
Do not use Cloth to create goo projectiles in a real project, as it will
affect your performance dramatically. The example in this book is
for demonstration purposes only.

Shooting cooldown
To prevent the character from shooting goo projectiles too often, we need to add a
cooldown after every shot. Perform the following steps:

At the very beginning of the FixedUpdate function, we need to check if counter
is true.

Increase the countTime variable with every second.

When countTime reaches 3 or more, we will set counter to false. Allow shooting
with prime fire and reset countTime.

Add the following code snippet at the very beginning of the FixedUpdate function:

if (counter){
 countTime += Time.deltaTime;
 if (countTime >= 3.0){
 counter = false;
 canShootPrime = true;
 countTime = 0.0;
 }
 }

Now our gun can shoot only once in three seconds.

Chapter 3

[73]

Alternative shooting function
Now that a prime shooting function is set up, we will move to alternative fire. In
video games, instantiating projectiles when shooting a rocket launcher is totally fine
and desirable, because we might want to show a flying rocket. But can you imagine
what will happen if we decide to apply it to a machine gun?! This would be totally
unacceptable, and would lead to frame rate killing. Instead, we will use raycasting,
which is cheaper and faster than instantiation of a projectile. We will use raycasting
for our alternative fire to fake an assault rifle.

Again, we are using a forward vector and shooting from the MuzzleAlt1 and
MuzzleAlt2 positions with a created ray for 100 meters (it could be less if you want).

The reason to declare a new ray is to later retrieve information from colliding objects;
in our case, we will need to get information from a point where the collision occurred
to place sparks in that position and emit them, as shown in the screenshot just after the
following code snippet. All of the following code will go after the Shooting function:

function AltShooting(){
var hit: RaycastHit;
Stats.AddAmmo(1, -1);
yield WaitForSeconds (0.5)
if (Physics.Raycast(MuzzleAlt1.transform.position, MuzzleAlt1.
transform.right, hit, 100) || Physics.Raycast(MuzzleAlt2.transform.
position, MuzzleAlt2.transform.right, hit, 100)){
flush.transform.position = hit.point;
flush.transform.rotation = Quaternion.FromToRotation(Vector3.up, hit.
normal);
flush.Emit();
}
}

Action Game Essentials

[74]

And that's what we do in the preceding code. We place a particle in the position
of a hit. Change its rotation based on the normal of the hit surface and activate it.
Awesome, now we have a fully functional weapon, well… close to functional. If we
try to shoot it now, we will find that we can't fully control it. To solve this problem,
we will have to add a few more animations, to make our character move.

Advanced animation system
It is time for us to add additional animations to our character and teach it to hold
a weapon and shoot. Open the CH_Animation script that takes care of all of our
animations. Declare a new public variable called ShootingAnimationSpeed, which
will take care of our animation speed. Next, we will go to the DetermineDirection
function and, at the very top, check whether the player is shooting; if not we will
make our character play animation, with a specified speed:

public var ShootingAnimationSpeed : float = 1.0;
...
function DetermineDirection(){
 if(Controller.bIsShooting){
animation["shoot"].speed = ShootingAnimationSpeed;
animation.Play("shoot");
...
}

Chapter 3

[75]

That could have been all; our character can shoot and play animation that
ensures that the projectile will shoot in the right direction. There is only one
small problem—if we try to walk and shoot, we will notice that our character
will stop playing walking animation and will translate with shooting animation
playing. That is an obvious flaw that we will fix with animation mixing.

But before we get to it, let's cover some basic theory to understand how animations
work and how they affect our character.

Working of an animation
While we animate the character, we record all transforms and rotations of bones.
Bones manipulate vertices to move them according to specified animation
commands. But before we can transport our model to Unity, we have to perform
animation baking.

Warning
Do not attempt to bake animations inside Unity. This could lead to
various problems that will cause animations to break and deform.

Baking makes every bone remember the way it should be rotated and transformed
over time (all transformations are done locally to the object). In other words, at
every frame that animations are playing, they will have complete control over how
bones transform and rotate, which is exactly what we want, if not trying to control
every bone manually through code (this topic could use a book on its own, therefore
will not be covered in here). Instead, we will use a trick mentioned previously—
animation mixing.

Animation mixing
The theory behind animation mixing is simple and can be explained in a few
sentences. Basically, we are creating new animations by slicing the original
animation to be able to influence a part of a body that we need to animate. Clear?
Not really? Practically, we will take an animation of shooting and transform all spine
manipulations to the new animation. This way we can have animation that animates
only the top part of the body, without influencing the bottom, which could be used
for walking or running animation (lower part of the body – play running animation,
upper part – shooting). Let's see this in action:

1. The code snippet given just after this list will go into the Start function,
at the very top of the CH_Animation script.

Action Game Essentials

[76]

2. Add mixing transformation to the spine bone of our character; it will now
have a separate animation playing.

3. Put idle, run, walk, and jump animations at the lower layer in the
Start function.

4. Set WrapMode for animations.
5. Set the playing speed for all animations.
6. Start playing the idle animation.

Here is the Start function in the CH_Animation script:

function Start (){
animation.AddClip(animation["shoot"].clip, "shootUpperBody");
animation.AddClip(animation["shoot2"].clip, "shootUpperBody2");
animation["shootUpperBody"].AddMixingTransform(transform.Find("COG/
Spine"));
animation["shootUpperBody2"].AddMixingTransform(transform.Find("COG/
Spine"));
animation["idle"].layer = -1;
animation["run"].layer = -1;
animation["jump"].layer = -1;
animation["walk_forward"].layer = -1;
animation["walk_backward"].layer = -1;
animation["walk_side"].layer = -1;
animation.wrapMode = WrapMode.Loop;
animation["jump"].wrapMode = WrapMode.ClampForever;
animation["shoot"].wrapMode = WrapMode.Once;
animation["shoot2"].wrapMode = WrapMode.Once;
animation["shootUpperBody"].wrapMode = WrapMode.Once;
animation["shootUpperBody2"].wrapMode = WrapMode.Once;
animation["idle"].speed = idleAnimationSpeed;
animation["walk_forward"].speed = forwardAnimationSpeed;
animation["run"].speed = runningAnimationSpeed;
animation["walk_backward"].speed = backwardAnimationSpeed;
animation["walk_side"].speed = strafingAnimationSpeed;
animation["jump"].speed = jumpingAnimationSpeed;
animation["shootUpperBody"].speed = ShootingAnimationSpeed;
animation["shootUpperBody2"].speed = ShootingAnimationSpeed
animation.Stop();
animation.Play("idle");
}

Chapter 3

[77]

AddClip is a function within the animation component that we have attached to
our character. It creates a new animation using animation["shoot"].clip as
a reference, and we called it shootUpperBody. A new animation clip on its own
doesn't do anything. To make it influence our character, we will add transforms to it
at specific bones. Basically, we are manually specifying bones that will be animated
while this clip will be playing, by using the transform.Find function that returns
the object (bone in this case) from the hierarchy.

However, this is not the end of it. If we decide to play walking and upper body
shooting animations at the same time, they will be in conflict, as both animations
are playing and have the exact same priority. To fix this issue, Unity allows us to
put animations at different layers and manually tweak the priority and influence
of each layer.

By default, a higher animation layer has a higher priority of playing, and every single
bone will be animated based on transforms that are specified at the highest levels. This
way we can have walking and shooting animations playing at the same time without
conflicting, as shooting animation doesn't affect the bottom part of the body.

As we've created animation just for shooting with upper body, we might replace
all the Shoot animations by shootUpperBody; similarly, we can replace shoot2 by
shootUpperBody2.

If character is shooting, we will continuously play shooting animation. If it is
not shooting, we will play another animation. Change the code at the top of the
DetermineDirection function in the CH_Animation script as follows:

if(Controller.bIsShooting){
 if(!animation.IsPlaying("shootUpperBody"))
 animation.Play("shootUpperBody");
}
if(Controller.bIsShootingAlt){
 if(!animation.IsPlaying("shootUpperBody2"))
 animation.Play("shootUpperBody2");
}

There is one more fix that we need to make in our animation script. In the
DetermineDirection function, where we check if our character is moving
forward, in the else statement:

else{
Controller.Speed = forwardSpeed;
if (!animation.IsPlaying("shootUpperBody") || !animation.
IsPlaying("shootUpperBody2"))
animation.CrossFade("walk_forward",0.5, PlayMode.StopSameLayer);
else{
 animation.CrossFade("walk_forward",0.5, PlayMode.StopSameLayer);
}
}

Action Game Essentials

[78]

Same fix is required where we are playing the idle animation:

else if (Controller.MoveDirection == Vector3.zero &&
(animation.IsPlaying("shootUpperBody") || !animation.
IsPlaying("shootUpperBody2"))){
 animation.CrossFade("idle",0.5);
}

This way we are smoothly changing the animation if we stopped shooting.

Animation script overview
The following code snippet shows how the CH_Animation script should look by now:

private var Controller : CH_Controller;
public var forwardSpeed : float = 5.0;
public var backwardSpeed : float = 3.0;
public var strafingSpeed : float = 4.0;
public var runningSpeed : float = 10.0;
public var idleAnimationSpeed : float = 1.0;
public var forwardAnimationSpeed : float = 6.0;
public var runningAnimationSpeed : float = 3.0;
public var backwardAnimationSpeed : float = 1.0;
public var strafingAnimationSpeed : float = 1.0;
public var jumpingAnimationSpeed : float = 1.5;
public var ShootingAnimationSpeed : float = 5.0;
function Awake(){
Controller = this.gameObject.GetComponent("CH_Controller");
}
function Start(){
animation.AddClip(animation["shoot"].clip, "shootUpperBody");
animation.AddClip(animation["shoot2"].clip, "shootUpperBody2");
animation["shootUpperBody"].AddMixingTransform(transform.Find("COG/
Spine"));
animation["shootUpperBody2"].AddMixingTransform(transform.Find("COG/
Spine"));
animation.wrapMode = WrapMode.Loop;
animation["jump"].wrapMode = WrapMode.ClampForever;
animation["shoot"].wrapMode = WrapMode.Once;
animation["shoot2"].wrapMode = WrapMode.Once;
animation["shootUpperBody"].wrapMode = WrapMode.Once;
animation["shootUpperBody2"].wrapMode = WrapMode.Once;
animation["idle"].layer = -1;
animation["run"].layer = -1;
animation["jump"].layer = -1;
animation["walk_forward"].layer = -1;
animation["walk_backward"].layer = -1;
animation["walk_side"].layer = -1;
animation["idle"].speed = idleAnimationSpeed;

Chapter 3

[79]

animation["walk_forward"].speed = forwardAnimationSpeed;
animation["run"].speed = runningAnimationSpeed;
animation["walk_backward"].speed = backwardAnimationSpeed;
animation["walk_side"].speed = strafingAnimationSpeed;
animation["jump"].speed = jumpingAnimationSpeed;
animation["shootUpperBody"].speed = ShootingAnimationSpeed;
animation["shootUpperBody2"].speed = ShootingAnimationSpeed;
animation.Stop();
animation.Play("idle");
}
function Update (){DetermineDirection();}
function DetermineDirection(){
 if(Controller.bIsShooting){
 if(!animation.IsPlaying("shootUpperBody"))
 animation.Play("shootUpperBody");
 }
 if(Controller.bIsShootingAlt){
 if(!animation.IsPlaying("shootUpperBody2"))
 animation.Play("shootUpperBody2");
 }
if (Controller.inAir){
 if(!Controller.jumpClimax) {
 animation.CrossFade("jump",0.5,PlayMode.StopSameLayer);
 }
 else {
 animation.Rewind("jump");
 }
 }
 else if (Controller.MoveDirection == Vector3.zero &&
 (!animation.IsPlaying("shootUpperBody") ||
 !animation.IsPlaying("shootUpperBody2"))){
 animation.CrossFade("idle",0.5);
 }
 else if (Controller.MoveDirection.z > 0){
 if (Controller.isRunning){
 Controller.Speed = runningSpeed;
 animation.CrossFade("run",0.5);
 }
 else{
 Controller.Speed = forwardSpeed;
 if (!animation.IsPlaying("shootUpperBody") ||
 !animation.IsPlaying("shootUpperBody2"))
 animation.CrossFade("walk_forward",0.5, PlayMode.
StopSameLayer);
 }
 }
 else if (Controller.MoveDirection.z < 0){
 Controller.Speed = backwardSpeed;
 animation.CrossFade("walk_backward",0.5, PlayMode.
StopSameLayer);

Action Game Essentials

[80]

 }
 else if (Controller.MoveDirection.x > 0 || Controller.
MoveDirection.x
 < 0){
 Controller.Speed = strafingSpeed;
 animation.CrossFade("walk_side",0.5, PlayMode.StopSameLayer);
 }
}

We are done! Now, our character can run and shoot enemies at the same time. Next,
we will talk about pickups creation.

Weapon pickup
Our next step will be programming of the weapon pickups. To begin with, create a
new script called Weapon_pickUp. Attach it to the Gun_PickUp prefab and drag it to
the scene.

Chapter 3

[81]

As with most of the weapon pickups, we want it to rotate around its base and
disappear when a player collides with it. Open the Weapon_pick Up script and
declare a couple of variables:

•	 We need to declare a public variable called Speed of float type, which will
be used to control weapon rotation speed around the base

•	 We need to make sure that we are not colliding with anything but
gameObject with the Player tag

•	 Last is a placeholder for the function to notify the CH_Controller script that
we have equipped the weapon and are now ready to use it

Add the following code snippet to the Weapon_pickUp script:

public var Speed : float = 20.0;
function OnTriggerEnter(other : Collider){
 if (other.gameObject.tag != "Player")
 return;
other.gameObject.GetComponent("CH_Controller").EquipWeapon();

Switch to the CH_Controller script and declare the EquipWeapon() function at the
very bottom of the script.

Inside the CH_Controller script in the EquipWeapon function, we need to switch
boolean, to set weapon to be equipped or not:

...
function EquipWeapon()
{ bWeaponEquiped = (bWeaponEquiped) ? false : true; }
...

If bWeaponEquiped = (bWeaponEquiped) ?false : true; looks
strange to you, this is how it can be interpreted:
Variable = (condition) ? if true(first value) : else (second value).
The other way to make that is: bWeaponEquiped = !bWeaponEquiped.

If bWeaponEquiped is true, then choose the first option and set it to false, or
else set it to true. This new statement has to be added in several different places
as follows:

•	 At the top of the FixedUpdate function, in the first if statement:
if (counter && bWeaponEquiped){

Action Game Essentials

[82]

•	 At the end of the FixedUpdate function where we are registering input from
the mouse:
if(Input.GetKey (KeyCode.Mouse0) && bWeaponEquiped){
...
if(Input.GetKey (KeyCode.Mouse1) && bWeaponEquiped){

•	 Last, but not least, we will add a rotation for our gun at the bottom of the
Weapon_pickUp script:

function Update ()
{transform.Rotate(Vector3.up * Time.deltaTime * Speed); }

The following screenshot shows the gun pickup:

Adding ammo and health pickups
Apart from actual weapon pickup, we need to add ammo and health pickup for our
character to replenish them. We don't want to create separate code for each type of
pickup. That technically takes more copy-pasting skills than scripting, so we decided
to show how to create a universal script to handle any type of pickups based on the
string type specified for each individual instance. Go to the custom meshes folder
and drag Random_Pickup prefab to the scene. Perform the following steps:

1. Create a script called PickUps and attach it to the prefab.

Chapter 3

[83]

2. First, we need to specify which type of pickup this specific instance will
represent; this will be done in the Awake function by checking the Type
variable of a MeshType type. MeshType is enumeration; we will use it
to switch pickup type in editor.

3. Next, we will detect if an object is colliding with a player or not, with the
OnTriggerEnter function.

4. We need to make sure that the player will collide with pickup only once.
Declare a new variable—bCanCollide of a boolean type.

5. If the collided object has the Player tag, then it must have a CH_PlayerStats
script attached to it, which we will be referencing. Disable colliding with this
object by setting bCanCollide to false.

6. Declare the Speed variable of float type that will be used to rotate pickup.
7. Now, based on the type of pickup, we want to do different things. If our

pickup is Type.health, we will increase our character's health by 20 and
increase rotating speed by 200 to make it spin very fast showing that this
object had been picked up. On the other hand, if we have Type.ammo, we
will add 10 ammo to our character and destroy pickup instantly.

8. We don't want our pickup to be there forever. Once it's picked up, it must
disappear. Declare the destroyTime variable that will take countdown
before destroying the object.

9. In the end, we will add another visual feature, which will make our pickup
rotate and fly up when it's picked up.

The completed PickUps script should be as follows:

public var Speed : float = 20.0;
public var destroyTime : float = 2.0;
private var Stats : CH_PlayerStats;
private var bCanCollide : boolean = true;

Action Game Essentials

[84]

public var myMesh1 : Mesh;
public var myMesh2 : Mesh;
public enum MeshType{
 health,
 ammo
};
public var Type : MeshType;
function Awake(){
 if (Type == Type.health)
 this.gameObject.GetComponent(MeshFilter).mesh = myMesh1;
 if(Type == Type.ammo)
 this.gameObject.GetComponent(MeshFilter).mesh = myMesh2;
}
function OnTriggerEnter(other:Collider){
if (other.gameObject.tag !="Player" || bCanCollide != true)
return;
bCanCollide = false;
Stats = other.gameObject.GetComponent(CH_PlayerStats);
switch (Type){
 case Type.health:
 Stats.AddHealth(20,1);
 Speed += 200;
 break;
 case Type.ammo:
 destroyTime = 0.0;
 Stats.AddAmmo(1,10,1);
 }
Destroy(this.gameObject, destroyTime);
}
function Update(){
 transform.Rotate(Vector3.up * Time.deltaTime * Speed);
 if(!bCanCollide)
 transform.Translate(Vector3.up * Time.deltaTime * Speed/100);
}

Speed and destroyTime are controlling rotation speed and the time it will take to
destroy the object after it has been picked up. Stats is a reference to the character's
CH_PlayerStats script. bCanCollide will control if we can or cannot collide with
the pickup. myMesh1 and myMesh2 are mesh references to different mesh types that
will be used to represent this pickup.

Chapter 3

[85]

Our pickups are ready, and our character is happy! The following screenshot shows
the ammo and health packages:

Creating a treasure chest
Treasure chests are the most interesting part of any game; everybody likes them. In
this section, we will create a treasure chest that will be storing a specified reward for
every instance.

Our treasure chest consists of three pieces—a stepping trigger, chest, and a top that
will slide whenever the chest is to be opened by a player.

Action Game Essentials

[86]

Go to the custom objects folder and drag the treasure chest prefab to the scene.
To make our treasure chest work and generate rewards, we will have to define
many variables:

private var bInRange : boolean = false;
private var bCanBeOpened : boolean = true;
private var bActivated : boolean = true;
private var OriginalPos : Vector3 = Vector3.zero;
private var DestinationPos :Vector3 = Vector3.zero;
public var LidSpeed : float = 3;
public var Top : GameObject;
private var Stats : CH_PlayerStats;
public enum TreasureType{
 Money,
 ammoPrime,
 ammoAlt,
 Health
};
public var treasure : TreasureType;
public var Constant : boolean = true;
public var Reward : int = 0;
public var MinRange : int = 0;
public var MaxRange : int = 0;
private var Bounty : int = 0;
public var Player : GameObject;

The top three variables in the preceding code snippet look similar, however,
serve different purposes. The following list explains about variables declared
in the preceding code:

bInRange checks if a player is standing in a using zone specified by our trigger.
bCanBeOpened checks if this chest has already been used or not and bActivated
will tell us if the chest is in the middle of sliding the top.

OriginalPos and DestinationPos are vectors that store information about the
current position of a top, and destination to which it will be moved when the chest
is opened. LidSpeed is a speed at which Top will be sliding and Top is a reference
to the chest lid. Stats, as usual, represents a CH_PlayerStats script attached to the
player. treasure, of a TreasureType type, will determine what type of treasure we
will put inside each instance of a treasure chest.

Constant checks if reward should be a constant number specified in the Reward
variable. MinRange and MaxRange will be used to get a random amount of gold
from a chest if we set Constant to false.

Chapter 3

[87]

Bounty is a final reward that the character will receive after opening a chest.

Player is a reference to the controlled character.

Now that we are done with variables, let's get down to functions. They are as follows:

•	 In the Start function, we need to process all values that were given to our
chest and set references.

•	 Then, we need the OnTriggerEnter and OnTriggerExit functions that will
tell our chest if a player is standing in a zone where he can interact with it
(this trigger is bigger than treasure chest itself and covers the area around it,
far enough for the player to interact with it).

•	 Last is the Update function. The first thing that we will be checking is if a
chest is active and can be used:

•	 Now is the best part; we will check if the player is within a chest reach and
pressing an E button that will signify that they are opening the chest, then
we will reward the player with a treasure specified in the treasure variable.

The completed treasure script is as follows:

function Start(){
 OriginalPos = Top.transform.position;
 DestinationPos = OriginalPos + Vector3(0,0,1);
 Stats = Player.gameObject.GetComponent(CH_PlayerStats);
 if (!Constant)

Action Game Essentials

[88]

 Bounty = Random.Range (MinRange, MaxRange);
 else
 Bounty = Reward;
}
function OnTriggerEnter(other: Collider){
 if(other.gameObject.tag == "Player" && bCanBeOpened)
 bInRange = true;
}
function OnTriggerExit(other : Collider){
 if(other.gameObject.tag == "Player" && bCanBeOpened)
 bInRange = false;
}
function Update (){
if (!bActivated)
return;
if (Top.transform.position == DestinationPos)
 bActivated = false;
if(bInRange && Input.GetKeyDown(KeyCode.E) && bCanBeOpened){
 bCanBeOpened = false;
switch(treasure){
 case TreasureType.Money:
 Stats.AddMoney(Bounty);
 break;
 case TreasureType.ammoPrime:
 Stats.AddAmmo(0,Bounty,1);
 break;
 case TreasureType.ammoAlt:
 Stats.AddAmmo(1,Bounty,1);
 break;
 case TreasureType.Health:
 Stats.AddHealth(Bounty,1);
 break;
 default:
 Debug.Log("Unknown treasure is set");
 }
 }
if(!bCanBeOpened && bActivated)
Top.transform.position = Vector3.Lerp(Top.transform.position,
DestinationPos, Time.deltaTime * LidSpeed);
}

Chapter 3

[89]

The final part is to make a top slide and stop when it reaches a destination. Now, we
have a beautiful chest that gives us rewards for opening it.

Applying projectile fixes
Soft bodies are expensive to use, therefore, we should limit their use to a minimum,
by having only two of them on the screen at a time. Perform the following steps:

1. Open a CH_Controller script and declare a couple of new variables:
private var ProjectilesArray : Cloth[];
private var aLength :int = 0;

The first variable is an array of the InteractiveCloth objects and the second is
a variable that controls the length of the array.

2. In the Start function, set ProjectilesArray size to 5:
ProjectilesArray = new Cloth[5];

3. Next, we will go to a Shooting function, add each created bullet to that
array, and increase its length.

Action Game Essentials

[90]

4. If our array grows to a limit of two, we need to delete the first member and
shift the entire array to the left by one:

ProjectilesArray[aLength] = bullet;
aLength ++;
if (aLength> 2)
 {
 Destroy((ProjectilesArray[0]).gameObject);
 for (var i : int = 0; i<aLength; i++){
 ProjectilesArray[i] = ProjectilesArray[i+1];
 }
 ProjectilesArray[aLength] = null;
 aLength--;
 }

That's it! Now, the number of our projectiles will never go over two at a time.

Tethering and soft body
Finally, we get to see things interact with the world. We will see from a tether that
will sway as you brush by or stick to Rigidbody and swing, to soft body projectiles
that will deform as they are fired at a hard surface. Unity's joint systems and cloth
simulations can be used for different tasks, for example, tethering, which we will
talk about in this chapter.

Tethering
This feature can be a main mechanic, a supporting mechanic, an environmental
feature, or just plainly used as a source of entertainment for the player. With the
tether that we will create, we will go see how it is created, some of the difficulties in
creating one, and the end potential of having one. Tethers are really fun, so I hope
you enjoy the following and are prepared to dwell into the next few pages.

As stated in pretty much every one of the chapters, we are covering the basic
fundamentals of the tools talked about in the book. Each can be explored beyond what
is described and so the least we can do is point you in the right direction. For the tether,
nothing else is different. We will have a tether with some basic functionality. It is by
no means optimized, but will give a basis of comprehension when tackling the task
of creating one. Without further deviation from the task at hand, let's script a tether.

Creating a tether
The functionality that our tether will have is the ability to create a series of
Rigidbody links along a path determined by the placement of two points,
begin and end. These points will also determine the length of the tether itself.

Chapter 3

[91]

We will also add onto the last joint a sticky segment script which, when a Rigidbody
comes into contact with it, will attach the body, allowing it to be manipulated by the
tethers swaying.

Action Game Essentials

[92]

Creating assets
First off, we will create all the assets needed for this script to take place. We will need:

•	 Three spheres, of which two to represent the beginning point and endpoint
of the tether and a third to represent what our tether segment will be. Call
them ChainStartPoint, ChainEndPoint, and tetherSegment.

•	 One empty gameObject (call it tetherManager), which will house all aspects
of the tether creation (ChainStartPoint, ChainEndPoint).

For the ChainEndPoint sphere, we can leave it as it is. However, for the tetherSegment
and ChainStartPoint spheres, we will need to add the Rigidbody component and the
ConfigurableJoint component. The following screenshot represents the values that we
want for the ConfigurableJoint and Rigidbody components:

Chapter 3

[93]

After you have created those three spheres and put the appropriate values in,
we want to parent the ChainStartPoint and ChainEndPoint spheres to empty
tetherManager. After doing so, create a prefab of it. As for the tetherSegment
sphere, we will create a prefab of it and delete the original from the hierarchy:

Tether manager
We can start writing the tether script. This script will give us control over the tether,
the mesh, which is used as the joint segment, and the creation of the tether itself. So,
go ahead, create a JavaScript and call it tetherManager. Perform the following steps:

1. The first two variables that we will write will be p0 to represent the
beginning and p1 to represent the end. These variables should be declared as
private with a type of Vector3 and set to Vector3.zero, as shown in the
following code snippet:
private var p0 : Vector3 = Vector3.zero;
private var p1 : Vector3 = Vector3.zero;

2. In the Awake function, we want to set the p0 and p1 variables to the transform
of their relative points in the world. So, for p0, we will find the transform of
the parented begin point specified by its name and then grab its transform
position. We will then do the same for p1. It should look similar to the
following code snippet:
p0 = transform.Find("ChainStartPoint").transform.position;
p1 = transform.Find("ChainEndPoint").transform.position;

3. After these lines, we then want to find the gameObject instances of those
points, again specified by name, and turn its renderer off using the enabled
function and setting it to false. This is to make sure that at runtime, the
endpoints are invisible and in the editor they can be seen:
gameObject.Find("ChainStartPoint").renderer.enabled = false;
gameObject.Find("ChainEndPoint").renderer.enabled = false;

4. After the Awake function, we will create the Start function. The Start
function will house the creation of the tether itself. The first thing we want
to check in the function is that p0 and p1 are in the scene and are placed.
One way to do this is to check if each is not at vector3.zero.

Action Game Essentials

[94]

5. Inside the if statement, the first step is to grab the tether length. This
variable will be declared within the if statement and can be called
chainLength. To get the length of the tether, we subtract the endpoint
from the beginning point using the magnitude. After grabbing the length
we want, we need to grab the number of segments. The number of segments
for the tether is determined by the length of the tether divided by the
distance between those segments.

We will then declare the distanceBetweenSegments variable at the top of the script
as public and a float. It can be defaulted between 0.1 to 0.6. You can go larger but
the best results come between these values.

Essentially, the greater the distance between the segments, the fewer the number of
segments there will be in the tether:

var distanceBetweenSegments : float = 0.8;
function Start(){
 if(p0!=Vector3.zero && p1!=Vector3.zero){
var chainLength = (p1 – p0).magnitude;
var numberOfSegments = chainLength / distanceBetweenSegments;
}
}

First, we check to make sure that the number of segments is greater than 0 because,
if it is not, then there is no need to create a tether. There are a few variables to declare
inside of this if statement. Next, we will set the tether creation point variable to the
location of the begin point. Then, we have a variable, which will hold the number of
segments that will be added on to the creation segment until we reach our endpoint.
The last variable to be created is our counter. The counter variable will be equal to
the number of segments to be created:

if (numberOfSegments => 0){
var segmentCreatorPosition = p0;
var meshSegmented = (p1 - p0) / numberOfSegments;
var counter = numberOfSegments;
}

Creation of tether
We have reached the tether creation. We will want to use a while loop here to make
sure that it creates the entire tether before it goes and does anything else. The while
loop will be controlled by the counter variable. As long as the counter is greater
than 0, we will loop through the while loop. Perform the following steps:

1. First off, inside the while loop, we want to create a new tether segment—
newSegment. We will have a variable to hold the instantiation of the object.

Chapter 3

[95]

2. Declare a new meshSegment variable of a GameObject type, in a variable
section of the script , outside the Start function.

3. Instantiate newSegment at the tether creation point and use the default
transform.rotation for the object's rotation, inside the while loop.

4. After this, we want to push the newly created segment (newSegment) into
the array of segments. This array will be called meshSegments declared in
a variable section as an Array type.

5. Back inside the while loop, an if statement here will check and see
if newSegment has a collider and, if it does, it will check the collision
variable to determine whether that collider is a trigger or not.

6. In the following if statement, we will set up the collision of the newly
created segment. At the top, declare a variable called useCollision or
something along those lines.

7. Next, we want the mass of the segment to be affected by the chainMass
variable and the drag of the segment affected by the chainDrag variable.
These two variables should be declared at the top as public and as floats
so that you can change them in editor.

The following is an example of the code:

Created variables:

var meshSegment : GameObject = null;
var useCollision : boolean = true;
private var meshSegments : Array = new Array();
var chainMass : float = 2.0;
var chainDrag : float = 0.0;

while loop:

while (counter > 0){
var newSegment = Instantiate(meshSegment, segmentCreatorPosition,
transform.rotation);
meshSegments.Push(newSegment);
if (newSegment.collider){
 if (useCollision)
 newSegment.collider.isTrigger = false;
 else
 newSegment.collider.isTrigger = true;
 }
}

Action Game Essentials

[96]

The following several lines will be affecting ConfigurableJoint on the tether.

As the beginning of each line starts the same, we will just state it now and avoid
having to repeat it. We need to access ConfigurableJoint located on the new
segments. This line will look like the following statement:

newSegment.GetComponent("ConfigurableJoint")

After ("ConfigurableJoint"), we will be accessing different attributes of the
joint. The first will be linearLimit.spring. This value will become equal to the
chainSpringiness variable set up at the beginning. This variable controls how tight
the tether is. The smaller this value, the less tight and more sway on the tether. This
variable by default will be set to 420.

The second attribute affected is linearLimit.damper. This value will be assigned
to the chainDamper variable, which will be declared as a float, public and with
a value of 0. This variable controls how fast the tether moves. The last one will be
breakForce and it will be equal to the chainTolerance variable. This variable will
be defaulted to Mathf.Infinity. Make sure that it is public and has the type
of float.

The following are the variables that need to be declared:

var chainSpringiness : float = 420.0;
var chainDamper : float = 0.0;
var chainTolerence : float = Mathf.Infinity;

So, let us take a look at what we have written inside of the while loop so far:

while(counter > 0){
 var newSegment = Instantiate(meshSegment, segmentCreatorPosition,
transform.rotation);
meshSegments.Push(newSegment);
 if(newSegment.collider){
 if(useCollision)
 newSegment.collider.isTrigger = false;
 else
 newSegment.collider.isTrigger = true;
}
newSegment.rigidbody.mass = chainMass;
newSegment.rigidbody.drag = chainDrag;
newSegment.GetComponent("ConfigurableJoint").linearLimit.spring =
chainSpringiness;
newSegment.GetComponent("ConfigurableJoint").linearLimit.damper =
chainDamper;
newSegment.GetComponent("ConfigurableJoint").breakForce =
chainTolerence;
}

Chapter 3

[97]

After assigning the attribute values of the ConfigurableJoint, we need to add a
few more lines of code to the while loop.

The first will be another if statement. This statement is going to be checking to see
if the first tether segment has been created. To do this, we use a variable to check if
the last target has been created. The lastTarget variable is essentially going to hold
the last segment created. If this variable is null, that means that this is indeed the first
segment. Inside of this if statement, we will have this segment that becomes equal to
another variable, which will hold the first created segment. Next, we will access the
ConfigurableJoint attribute—connectedBody and connect the rigidbody:

private var firstSegment: GameObject = null;
private var lastTarget : GameObject = null;
...
while(counter > 0){
...
if (lastTarget == null){
firstSegment = newSegment;
newSegment.GetComponent(ConfigurableJoint).connectedBody = transform.
Find("ChainStartPoint").rigidbody;
}

Lastly, for this statement, we will check the restrainStartingPoint variable for the
starting point. If it is true, we change the isKinematic property of the rigidbody
to true. For the else statement, it will represent that this is not the first segment but
has come afterwards. Inside of it, we will connect the new segment's connectedBody
attribute to the last segment's rigidbody. This in the end creates a series of
connected joints.

Following the else statement, have the last target variable equal to the new segment
so that the last segment always equals the newly created segment. Next, have the
segment creation position incremented by the mesh segmentation value. This is so
that the distance between joints is in equal proportion. Lastly, decrement the counter
by one.

The last line to add in this script will be to assign the stick segment script to the last
joint created. As the mesh segments array is holding the created segments, we need
the length of that array minus one to get the last segment in the array. Once done, we
add the StickySegment component. If you wish to have this turned off, comment
out this line of code.

while(counter > 0){
 var newSegment = Instantiate(meshSegment, segmentCreatorPosition,
transform.rotation);
meshSegments.Push(newSegment);
 if(newSegment.collider){

Action Game Essentials

[98]

 if(useCollision)
 newSegment.collider.isTrigger = false;
 else
 newSegment.collider.isTrigger = true;
}
newSegment.rigidbody.mass = chainMass;
newSegment.rigidbody.drag = chainDrag;
newSegment.GetComponent("ConfigurableJoint").linearLimit.spring =
chainSpringiness;
newSegment.GetComponent("ConfigurableJoint").linearLimit.damper =
chainDamper;
newSegment.GetComponent("ConfigurableJoint").breakForce =
chainTolerence;
if (lastTarget == null){
firstSegment = newSegment;
newSegment.GetComponent("ConfigurableJoint").connectedBody =
transform.Find("ChainStartPoint").rigidbody;
 if(restrainStartingPoint)
 firstSegment.rigidbody.isKinematic = true;
}
else{
newSegment.GetComponent(ConfigurableJoint).connectedBody = lastTarget.
rigidbody;
}

 lastTarget = newSegment;
 segmentCreatorPosition += meshSegmented;
 counter--;
}
meshSegments[meshSegments.length - 1].AddComponent("StickySegment");

Now that this script is written, make sure that you have all the variables declared
and, when ready, we will move on to the StickySegment script.

The StickySegment script
This script is very small and can be written quickly. There are two functions and no
variables. The script itself will give the end joint the ability to stick to rigidbody
that comes in contact with it. With that being said, the first function to write is
OnCollisionEnter(). The parameter will be declared as other with the type of
Collision. An if statement checks to make sure that the collided object has a
rigidbody connect, and if not, then do nothing. A single line is present in the
if statement. This line calls the StickTo function and has the parameter of the
collided rigidbody objects:

function OnCollisionEnter(other : Collision){
 if(other.gameObject.rigidbody)
 StickTo(other.gameObject.rigidbody);
}

Chapter 3

[99]

The following list explains about the functions and variables used in the
StickySegment script:

•	 The StickTo function is next and carries the parameter of other as a
rigidbody type. Inside of the function is an if statement checking to see if
the end joint has CharacterJoint attached. If it does not, it proceeds. If it
does, that means it is already attached to something and ends.

•	 Inside the if statement, a new variable is declared as newStickyJoint
and it will have the CharacterJoint component added onto this joint.

•	 Afterwards, have connectedBody equal to that of the collided object
rigidbody.

•	 Just in case the joint has been caused to become kinematic, we will set its
kinematic property to off.

The following is the StickTo function:

function StickTo (other : Rigidbody){
 if(!gameObject.GetComponent(CharacterJoint)) {
 var newStickyJoint = gameObject.AddComponent(CharacterJoint);
 newStickyJoint.connectedBody = other;
 }
 if (gameObject.rigidbody.isKinematic)
 gameObject.rigidbody.isKinematic = false;
}

After this script is done, go back to Inspector and add the tetherManager script
to the tetherManager object of the tether points. Make sure that the values of the
tetherManager are like those given in the following screenshot. Play around with
them later, but for now, use these to make sure that it works. In the Mesh Segment
variable, we will drag our mesh which will be instantiated. This is tetherSegment,
which we had initially created at the beginning of the section.

Action Game Essentials

[100]

Create any object, attach a Rigidbody component to it, and place it under the
ChainEndPoint object so that they collide. Afterwards, it should be as simple as
pressing Play. Between your beginning point and endpoint, you should see a series
of segments created to represent your tether.

Congratulations! You have succeeded in the creation of the simple tether!

Chapter 3

[101]

Tether scripts overview
The following code snippet shows how the tetherManager script should look
by now:

var meshSegment :GameObject = null;
var distanceBetweenSegments : float = 0.5;
var useCollision : boolean = true;
var restrainStartingPoint : boolean = true;
var chainMass : float = 0.1;
var chainDrag : float = 0.1;
var chainSpringiness : float = 10.0;
var chainDamper : float = 1.0;
var chainTolerence : float = Mathf.Infinity;
private var meshSegments : Array = new Array();
private var firstSegment: GameObject = null;
private var lastTarget : GameObject = null;
private var p0 : Vector3 = Vector3.zero;
private var p1 : Vector3 = Vector3.zero;

function Awake(){
 p0 = transform.Find("ChainStartPoint").transform.position;
 p1 = transform.Find("ChainEndPoint").transform.position;
 gameObject.Find("ChainStartPoint").renderer.enabled = false;
 gameObject.Find("ChainEndPoint").renderer.enabled = false;
}
function Start(){
 if (p0 != Vector3.zero && p1 !=Vector3.zero){
 var chainLength = (p1 - p0).magnitude;
 var numberOfSegments = chainLength / distanceBetweenSegments;
 if (numberOfSegments>= 0){
 var segmentCreatorPosition = p0;
 var meshSegmented = (p1 - p0) / numberOfSegments;
 var counter = numberOfSegments;
 while (counter > 0){
 var newSegment = Instantiate(meshSegment,
segmentCreatorPosition,
transform.rotation);
 meshSegments.Push(newSegment);
 if (newSegment.collider){
 if (useCollision)
 newSegment.collider.isTrigger = false;
 else
 newSegment.collider.isTrigger = true;
 }

Action Game Essentials

[102]

 newSegment.rigidbody.mass = chainMass;
 newSegment.rigidbody.drag = chainDrag;
 newSegment.GetComponent("ConfigurableJoint").
 linearLimit.spring = chainSpringiness;
 newSegment.GetComponent("ConfigurableJoint").
 linearLimit.damper = chainDamper;
 newSegment.GetComponent("ConfigurableJoint").
 breakForce =
 chainTolerence;
 if (lastTarget == null){
 firstSegment = newSegment;
newSegment.GetComponent(ConfigurableJoint).connectedBody =
transform.Find(ChainStartPoint).rigidbody;
 if(restrainStartingPoint)
 firstSegment.rigidbody.isKinematic = true;
 }
 else{
 newSegment.GetComponent(ConfigurableJoint).
 connectedBody = lastTarget.rigidbody;
 }
 lastTarget = newSegment;
 segmentCreatorPosition += meshSegmented;
 counter--;
 }
 meshSegments[meshSegments.length -1].
AddComponent("StickySegment");
 }
 }
}

The following code snippet shows what the StickSegment script should look like:

function OnCollisionEnter(other : Collision){
 if(other.gameObject.rigidbody)
 StickTo(other.gameObject.rigidbody);
}

function StickTo (other : Rigidbody){
 if(!gameObject.GetComponent(CharacterJoint)) {
 var newStickyJoint = gameObject.AddComponent(CharacterJoint);
 newStickyJoint.connectedBody = other;
 }
 if (gameObject.rigidbody.isKinematic)
 gameObject.rigidbody.isKinematic = false;
}

Chapter 3

[103]

Summary
In this chapter, we saw the breakdown of how you can create multiple-type pickups
from the same gameObject and treasure chests that give you random amounts of
the specified contents. We saw how animations can be brought into Unity and then,
from there, their manipulation. We hope that you saw that animation manipulation
in Unity is no small feat. Further on, tethering was explained in as simple a system
that could be devised. Lastly, we have the soft body projectiles that are a lot of fun
to play with. There is much functionality that can be added into each toolset and we
hope that you will take what has been shown, and expand and explore it. In the next
chapter, we will cover the basics of creating role-playing games (RPGs) inventory
with graphical user interface (GUI).

Drag-and-Drop Inventory
It's time for your character to acquire its personal inventory. In this chapter, we will
look into the creation of a drag-and-drop inventory that will allow us to customize
our character, control his statistics and equipment, and show information about the
current amount of money. In this example, we will utilize GUI to get the visuals on
to the screen. However, due to multiple limitations of GUI, we can't rely on them to
create drag-and-drop functionality. Therefore, we will have to recreate it ourselves.
In this chapter, we will cover the following topics:

•	 GUI basics and the pros and cons of using them
•	 Draggable objects
•	 Working with windows and slots
•	 Basics of classes
•	 How to make inventory manipulations influence a character
•	 Creating a 3D character avatar
•	 Character customization

GUI basics
GUI stands for Graphical User Interface and is mainly used to get the user
interface to the screen. When it comes to interactivity, GUI won't be a perfect
choice, and it will give you lots of trouble if you decide to do something beyond
its basic functionality. GUI elements are also located in the screen space. Let's talk
about basic classes of GUI, functionality, and its uses in games.

Drag-and-Drop Inventory

[106]

GUI.Box
The following code snippet gives an example of the GUI.Box class:

static function Box (position : Rect, text : String) : void
static function Box (position : Rect, image : Texture) : void
static function Box (position : Rect, content : GUIContent) : void
static function Box (position : Rect, text : String, style : GUIStyle)
: void
static function Box (position : Rect, image : Texture, style :
GUIStyle) : void
static function Box (position : Rect, content : GUIContent, style :
GUIStyle) : void

struct Rect is a basic structure used by all GUI classes to mark its position on the
screen. Rect is simple to create and use; for that we need four variables—x and y
coordinates on the screen, as well as width and length of the rectangular box.

Rect is just an abstract entity; it contains information about GUI position
and doesn't render anything on the screen.

GUI.Box is a basic class of GUI that creates a non-interactive graphical box. We are
asked to specify its position with Rect and can add any component such as texture
or a string to be displayed in the box.

GUI.Button
GUI.Button is a first interactive GUI, and we will be using it in the following example.

static function Button (position : Rect, text : String) : boolean
static function Button (position : Rect, image : Texture) :
boolean
static function Button (position : Rect, content : GUIContent) :
boolean
static function Button (position : Rect, text : String, style :
GUIStyle) : boolean
static function Button (position : Rect, image : Texture, style :
GUIStyle) : boolean
static function Button (position : Rect, content : GUIContent, style :
GUIStyle) : boolean

http://unity3d.com/support/documentation/ScriptReference/GUI.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html

Chapter 4

[107]

Its creation is similar to GUI.Box with one major difference—the creation of
GUI.Button is usually being put inside a if statement. That works because
GUI.Button is a function with a boolean return value. It returns true if we
have pressed the button and false if we haven't pressed it. Inside a if
statement, we can add any functionality for this button.

GUI.RepeatButton is the same as GUI.Button, but will return true only if the user
clicks and holds the left mouse button while hovering over the button.

GUI.Label
GUI.Label is a non-interactive label that can be used to display text or image at a
specified position. The following code snippet gives an example of GUI.Label:

static function Label (position : Rect, text : String) : void
static function Label (position : Rect, image : Texture) : void
static function Label (position : Rect, content : GUIContent) : void
static function Label (position : Rect, text : String, style :
GUIStyle) : void
static function Label (position : Rect, image : Texture, style :
GUIStyle) : void
static function Label (position : Rect, content : GUIContent, style :
GUIStyle) : void

A GUI.Label may look as follows:

GUI.TextField
GUI.TextField creates areas where a user can type in one-line string. The following
code snippet gives an example of a GUI.TextField:

static function TextField (position : Rect, text : String) : String
static function TextField (position : Rect, text : String, maxLength :
int) : String

http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/String.html

Drag-and-Drop Inventory

[108]

static function TextField (position : Rect, text : String, style :
GUIStyle) : String
static function TextField (position : Rect, text : String, maxLength :
int, style : GUIStyle) : String

GUI.TextArea
GUI.TextArea creates areas where the user can type in multi-line string. The
following code snippet gives an example of a GUI.TextArea:

static function TextArea (position : Rect, text : String) : String
static function TextArea (position : Rect, text : String, maxLength :
int) : String
static function TextArea (position : Rect, text : String, style :
GUIStyle) : String
static function TextArea (position : Rect, text : String, maxLength :
int, style : GUIStyle) : String

A GUI.TextArea may look as follows:

GUI.Toggle
GUI.Toggle makes a toggling button on/off. The following code snippet gives an
example of GUI.Toggle:

static function Toggle (position : Rect, value : boolean, text :
String) : boolean
static function Toggle (position : Rect, value : boolean, image :
Texture) : boolean
static function Toggle (position : Rect, value : boolean, content :
GUIContent) : boolean
static function Toggle (position : Rect, value : boolean, text :
String, style : GUIStyle) : boolean
static function Toggle (position : Rect, value : boolean, image :
Texture, style : GUIStyle) : boolean
static function Toggle (position : Rect, value : boolean, content :
GUIContent, style : GUIStyle) : boolean

http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/String.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html

Chapter 4

[109]

A GUI.Toggle may look as follows:

GUI.Toolbar and GUI.SelectionGrid
GUI.Toolbar creates a row of buttons and GUI.SelectionGrid creates rows and
columns of buttons. The following code snippet gives an example of a GUI.Toolbar:

static function Toolbar (position : Rect, selected : int, texts :
string[]) : int
static function Toolbar (position : Rect, selected : int, images :
Texture[]) : int
static function Toolbar (position : Rect, selected : int, content :
GUIContent[]) : int
static function Toolbar (position : Rect, selected : int, texts :
string[], style : GUIStyle) : int
static function Toolbar (position : Rect, selected : int, images :
Texture[], style : GUIStyle) : int
static function Toolbar (position : Rect, selected : int, contents :
GUIContent[], style : GUIStyle) : int

The following code snippet gives an example of a GUI.SelectionGrid:

static function SelectionGrid (position : Rect, selected : int, texts
: string[], xCount : int) : int
static function SelectionGrid (position : Rect, selected : int, images
: Texture[], xCount : int) : int
static function SelectionGrid (position : Rect, selected : int,
content : GUIContent[], xCount : int) : int
static function SelectionGrid (position : Rect, selected : int, texts
: string[], xCount : int, style : GUIStyle) : int
static function SelectionGrid (position : Rect, selected : int, images
: Texture[], xCount : int, style : GUIStyle) : int
static function SelectionGrid (position : Rect, selected : int,
contents : GUIContent[], xCount : int, style : GUIStyle) : int

Only one of the buttons can be selected at a time and will be assigned a unique
integer. This can be used as extended toggle button, where we can have more
than on or off options.

http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Texture.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html

Drag-and-Drop Inventory

[110]

GUI.HorizontalSlider and GUI.VerticalSlider
GUI.HorizontalSlider and GUI.VerticalSlider create interactive sliders.
They are very useful as they allow us to withdraw integer values based on the
current slider position. The following code snippet gives an example of a
GUI.HorizontalSlider:

static function HorizontalSlider (position : Rect, value : float,
leftValue : float, rightValue : float) : float
static function HorizontalSlider (position : Rect, value : float,
leftValue : float, rightValue : float, slider : GUIStyle, thumb :
GUIStyle) : float

The following code snippet gives an example of a GUI.VerticalSlider:

static function VerticalSlider (position : Rect, value : float,
topValue : float, bottomValue : float) : float
static function VerticalSlider (position : Rect, value : float,
topValue : float, bottomValue : float, slider : GUIStyle, thumb :
GUIStyle) : float

A GUI.HorizontalSlider may look as follows:

GUI.HorizontalScrollBar and GUI.
VerticalScrollBar
GUI.HorizontalScrollBar and GUI.VerticalScrollBar create scrollbars that can
be used to scroll through documents or, in our case, inventory slots. The following
code snippet gives an example of a GUI.HorizontalScrollBar:

static function HorizontalScrollbar (position : Rect, value : float,
size : float, leftValue : float, rightValue : float) : float
static function HorizontalScrollbar (position : Rect, value : float,
size : float, leftValue : float, rightValue : float, style : GUIStyle)
: float

The following code snippet gives an example of a GUI.VerticalScrollBar:

static function VerticalScrollbar (position : Rect, value : float,
size : float, topValue : float, bottomValue : float, style : GUIStyle)
: float

http://unity3d.com/support/documentation/ScriptReference/GUI.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html
http://unity3d.com/support/documentation/ScriptReference/Rect.html
http://unity3d.com/support/documentation/ScriptReference/GUIStyle.html

Chapter 4

[111]

A GUI.HorizontalScrollBar may look as follows:

GUI.BeginGroup and GUI.EndGroup
GUI.BeginGroup and GUI.EndGroup will group together all GUIs that are put in
between those two functions, and their positioning will be based on group origin
and not screen origin.

GUI.BeginScrollView, GUI.EndScrollView, and
ScrollTo
GUI.BeginScrollView, GUI.EndScrollView, and ScrollTo are used together
to create a scrolling document with horizontal and vertical scrollbars. They will
be used in our inventory example.

Drag-and-Drop Inventory

[112]

Other GUI classes
GUI.Window creates a window that calls its personal function and groups all GUIs
that are being created from there. With windows, we can utilize the GUI.DragWindow
function that will allow us to create an area where we can drag our window around.

GUIContent is a special class for contents of the GUI. It can contain text, image, or a
tooltip, and the last one is a text that is displayed when the mouse is hovering over
the GUI.

GUILayout is a special type of GUI that automatically lays out GUIContent for us.
Sounds amazing, however, when it comes down to practical use, take great care, as
any automatic layout can potentially be more headache than help and is therefore
not recommended. To use it, simply substitute GUI with GUILayout and call any of
the preceding functions.

GUIStyle is what makes GUI worth our time. GUIStyle allows us to change GUI
texture based on various events such as click, button press, hover, and so on. We can
directly control it through the code or to specify them in the Inspector view, we can
even switch multiple GUIStyle classes for the same buttons.

There are some other GUI classes that we won't talk about here, simply because they
have been created for very specific uses.

Before we start scripting, there is one thing that we should know and remember at
all times when we deal with GUIs. Unlike screen origin point that is located at the
bottom-left corner of the screen, GUIs are located in the top-left corner. This helps
to visualize where GUIs will be created, however, it creates huge frustration when it
comes to indicating GUI position based on mouse location. There are a couple of ways
around that and we will look into them later in this chapter. Now let's start scripting.

Drag-and-drop inventory
Drag-and-drop inventory is a usual thing for role playing games (RPGs). In this
section, we will look under the hood of the technology behind it. GUI is not the
best technology for drag-and-drop functionality in Unity; it's hard to work with,
and it slows down the performance. On the other hand, it is a great opportunity
to showcase problems and limitations of GUI.

Chapter 4

[113]

Basics
Perform the following steps:

1. Create a new script called CH_Inventory and assign it to the character.
2. Declare a boolean variable that will be controlling GUI rendering; call it

inventoryOpened.
3. Declare variables that will be used to store textures, which will be used in the

GUI manipulation as follows:
var inventoryOpened : boolean = false;
public var EmptySlotTexture : Texture;
public var ChestIcon : Texture;
public var LeftArmIcon : Texture;
public var RightWeaponIcon : Texture;
public var HeadIcon : Texture;
public var ShoulderIcon : Texture;
public var BootsIcon : Texture;
public var MedKitIcon : Texture;
public var AmmoIcon : Texture;

4. Declare a new function called OnGUI().
5. Declare a new variable of the Rect type that will be used to reference and

control the position of the window.
6. In the OnGUI() function, we will assign a value to it and create a GUI.Window

at the same time.
7. Declare a DoMyWindow() function that will be called by our window.
8. Create a GUI button that is located at the top-right corner of the window and

occupies 32 by 32 pixels.
9. Set the inventoryOpened variable to false inside that if statement to close

the window.

In the CH_Inventory script, add the following code snippet:

var windowRect : Rect = Rect (20, 20, 200, 300);
function OnGUI () {
windowRect = GUI.Window (0, windowRect, DoMyWindow, "Inventory");
}
function DoMyWindow (windowID : int) {
if (GUI.Button(Rect(windowRect.width - 32, 0, 32, 32), "Close")){
inventoryOpened = false;
}
}

Drag-and-Drop Inventory

[114]

OnGUI is a function where all GUIs should be called from (you cannot
make GUI calls from anywhere else); this function is being executed every
frame. It creates and checks GUI status every frame that allows creating
instant response to all GUI changes.

The first thing that we are creating in our example is a window that will be used
as the base for our inventory. The first argument in the window constructor is a
personal ID of the window; it will be used to reference this specific window by
window controlling functions. The second is a rectangular box that we declared at
the top. The third is a function called by a window every time it's being rendered;
we will use this function to create other GUIs that will be grouped by it. The last
argument is a string that we are passing to the window to make it display that
string's name.

Now that we have a window, we are creating a button to close it.

As we are calling this GUI from the window function, it will be grouped inside the
window, and all coordinates that we set are based on window position. We used
the width of the window and subtracted the width of the button from it to allow our
button to be located in the top-right corner. When it's rendered, the word Close will
be displayed on the button.

Inventory slots and draggable objects
Now, we will jump slightly ahead and create inventory slots and draggable objects
that will be the basis of future code. We will start by creating our new classes for
inventory slots and draggable objects.

Classes are structures of variables and functions that were put together
for convenience. We will go through classes in depth in the appendix.

We will check if the current location of the mouse is within the slot location.
Remember that mouse position is different from GUI location, therefore, we need to
subtract current location from overall screen height, so that they could be pointing at
the same position. To make this happen, we will create classes for inventory slots
and draggable objects, and establish communication between them. Perform the
following steps:

1. Declare new classes called InventorySlot and DraggableObject.
2. To make our classes displayable in the Inspector view, we will need to add

@System.Serializable before them.

Chapter 4

[115]

3. In both classes, we will declare variables to identify a type of the object, or
slot and icon that is assigned to it.

4. In the InventorySlot class, add extra variables, such as location of a
Vector2 type, empty, Focused, ConstType of a boolean type, and Type
of a String type.

5. Declare a new function called CheckFocus() inside the InventorySlot
class. The following is the code for the InventorySlot and
DraggableObject classes:

@System.Serializable
class InventorySlot{
var icon : Texture;
var Type : String;
var location : Vector2;
var empty : boolean = true;
var Focused : boolean;
var ConstType : boolean = false;
function CheckFocus(){
 if (Input.mousePosition.y > (Screen.height - location.y -32)
 && Input.mousePosition.y < (Screen.height - location.y) &&
 Input.mousePosition.x > location.x && Input.mousePosition.x <
 (location.x + 32))
{Focused = true;}
 else
{Focused = false;}
 }
}
@System.Serializable
class DraggableObject{
var icon : Texture;
var Type : String;
}

This will allow us to easily communicate among them.

location is self-explanatory; it will help us to identify a location of the slot on the
screen. empty will tell us if this slot is occupied or not; Focused will be used to check
if the mouse is currently over that slot; and ConstType will determine if this slot is a
generic inventory slot or is reserved for a specific type.

The CheckFocus() function will be used to check if the mouse is currently hovering
over this slot and modify the Focused variable accordingly.

Drag-and-Drop Inventory

[116]

That is it for the InventorySlot class, so let's return to the DraggableObject class.

1. Declare the LastSlot and HoveringSlot variables of a InventorySlot type
inside the DraggableObject class.

2. Declare a new Array variable called InventorySet that will contain the
InventorySlot objects.

3. We will need a couple more slots that will be used to store weapons and
armor for our character, and we also need to initialize our draggable object.

4. We will need a boolean variable that will be identifying if we are dragging
something or not.

5. Declare the Awake function where we will set the values for slots, as well as
create a fixed size for our slot array.

The following code snippet goes inside the CH_Inventory script:

...
var DraggedObject : DraggableObject;
var draggablesection : Rect = Rect (10, 10, 30, 30);
var ChestSlotLoc : Rect =Rect(5,130,32,32);
var ChestSlot : InventorySlot;
var RightWeaponSlotLoc : Rect =Rect(5,85,32,32);
var RightWeaponSlot : InventorySlot;
var LeftArmSlotLoc : Rect =Rect(160,85,32,32);
var LeftArmSlot : InventorySlot;
var HeadSlotLoc : Rect =Rect(5,40,32,32);
var HeadSlot : InventorySlot;
var ShoulderSlotLoc : Rect =Rect(160,40,32,32);
var ShoulderSlot : InventorySlot;
var BootsSlotLoc : Rect =Rect(160,130,32,32);
var BootsSlot : InventorySlot;
var InventorySet : InventorySlot[];
var dragging : boolean = false;
@System.Serializable
class DraggableObject{
var Type : String;
var LastSlot : InventorySlot;
var HoveringSlot : InventorySlot;
var icon : Texture;
}
function Awake(){
InventorySet = new Array(40);
ChestSlot.icon = ChestIcon;
ChestSlot.Type = "Chest";

Chapter 4

[117]

ChestSlot.ConstType = true;
RightWeaponSlot.icon = RightWeaponIcon;
RightWeaponSlot.Type = "RightWeapon";
RightWeaponSlot.ConstType = true;
LeftArmSlot.icon = LeftArmIcon;
LeftArmSlot.Type = "LeftArm";
LeftArmSlot.ConstType = true;
HeadSlot.icon = HeadIcon;
HeadSlot.Type = "Head";
HeadSlot.ConstType = true;
BootsSlot.icon = BootsIcon;
BootsSlot.Type = "Boots";
BootsSlot.ConstType = true;
ShoulderSlot.icon = ShoulderIcon;
ShoulderSlot.Type = "Shoulder";
ShoulderSlot.ConstType = true;
}

LastSlot and HoveringSlot will be used to determine the slot that we are currently
hovering over, when dragging an object; and which slot we acquired the object from
so that it can be returned if we close the window or click in the empty space.

We will continue with creating draggable slots and implementing our slot array into
the window:

1. Declare a new variable called coord of a Vector2 type. It will be used to
control the draggable object location on the screen:
var coord :Vector2 = Vector2.zero;

2. In the OnGUI function, assign mouse position to the coord variable and
subtract it's y value from the screen height. Inside the OnGUI function,
add the following code lines:
coord = Input.mousePosition;
coord.y = Screen.height - coord.y;

3. If the dragging is on, we need to modify the draggable object location based
on mouse information; we also need to create the draggable object and use
the modified location as its coordinates:

if (dragging){
draggablesection = Rect(coord.x-15, coord.y-15, 30, 30);
GUI.Box (draggablesection,GUIContent (DraggedObject.icon));
}

Drag-and-Drop Inventory

[118]

We are using 15 pixels offset to locate the draggable object in the center of the
selection, instead of dragging its corner.

Working with GUI windows
As our window is going to be draggable, we need to make sure that we keep
up-to-date information about our weapon and armor slots. However, as slots are
located inside the window, and all their location is based on window coordinates, we
need to adjust our coordinates based on that. Thankfully, there is a function that does
it for us—GUIUtility.GUIToScreenPoint(). It takes the position of the GUI within
the group and returns its position relative to the screen. Perform the following steps:

1. Declare a new function called DoMyWindow(); it will handle all window
manipulations.

2. Now, it is about time for us to check if these slots are being hovered
by mouse.

3. There are two cases where we need to check if those slots are hovered—if
we are currently dragging an object and hovering over the slot, or if we are
trying to drag out an item from that slot.

4. In the first case, we will assign the current slot to the draggable object—
HoveringSlot. In the second case, we will toggle dragging and make our
current slot empty.

5. We will then do the same thing for the armor slot.
6. The next thing we need to do is to get those buttons on the screen.

The completed function in the CH_Inventory script should be as follows:

...
function DoMyWindow(windowID : int){
if (GUI.Button(Rect(windowRect.width - 32, 0, 32, 32), "Close"))
inventoryOpened = false;
ChestSlot.location = GUIUtility.GUIToScreenPoint(Vector2(ChestSlotLoc
.x, ChestSlotLoc.y));
RightWeaponSlot.location = GUIUtility.GUIToScreenPoint(Vector2(RightWe
aponSlotLoc.x, RightWeaponSlotLoc.y));
LeftArmSlot.location = GUIUtility.GUIToScreenPoint(Vector2(LeftArmSlot
Loc.x, LeftArmSlotLoc.y));
HeadSlot.location = GUIUtility.GUIToScreenPoint(Vector2(HeadSlotLoc.x,
HeadSlotLoc.y));
BootsSlot.location = GUIUtility.GUIToScreenPoint(Vector2(BootsSlotLoc
.x, BootsSlotLoc.y));
ShoulderSlot.location = GUIUtility.GUIToScreenPoint(Vector2(ShoulderSl
otLoc.x, ShoulderSlotLoc.y));

Chapter 4

[119]

ChestSlot.CheckFocus();
RightWeaponSlot.CheckFocus();
LeftArmSlot.CheckFocus();
HeadSlot.CheckFocus();
BootsSlot.CheckFocus();
ShoulderSlot.CheckFocus();
if (ChestSlot.Focused){
 if (dragging){DraggedObject.HoveringSlot = ChestSlot;}
 else if (Event.current.type == EventType.MouseDrag && ChestSlot.
empty
 == false){
if (!dragging){
 DraggedObject.icon = ChestSlot.icon;
 DraggedObject.Type = ChestSlot.Type;
 DraggedObject.LastSlot = ChestSlot;
 ChestSlot.empty = true;
 ChestSlot.icon = ChestIcon;
 }
 dragging = true;
 }
}
if (RightWeaponSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = RightWeaponSlot;}
else if (Event.current.type == EventType.MouseDrag && RightWeaponSlot.
empty == false){
if (!dragging){
 DraggedObject.icon = RightWeaponSlot.icon;
 DraggedObject.Type = RightWeaponSlot.Type;
 DraggedObject.LastSlot = RightWeaponSlot;
 RightWeaponSlot.empty = true;
 RightWeaponSlot.icon = RightWeaponIcon;
 }
 dragging = true;
 }
}
if(LeftArmSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = LeftArmSlot;}
else if (Event.current.type == EventType.MouseDrag&& LeftArmSlot.empty
== false){
if (!dragging){
 DraggedObject.icon = LeftArmSlot.icon;
 DraggedObject.Type = LeftArmSlot.Type;
 DraggedObject.LastSlot = LeftArmSlot;
 LeftArmSlot.empty = true;
 LeftArmSlot.icon = LeftArmIcon;

Drag-and-Drop Inventory

[120]

 }
 dragging = true;
 }
}
if (HeadSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = HeadSlot;}
else if (Event.current.type == EventType.MouseDrag && HeadSlot.empty
== false){
if (!dragging){
 DraggedObject.icon = HeadSlot.icon;
 DraggedObject.Type = HeadSlot.Type;
 DraggedObject.LastSlot = HeadSlot;
 HeadSlot.empty = true;
 HeadSlot.icon = HeadIcon;
 }
 dragging = true;
 }
}
if (ShoulderSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = ShoulderSlot;}
else if (Event.current.type == EventType.MouseDrag && ShoulderSlot.
empty == false){
if (!dragging){
 DraggedObject.icon = ShoulderSlot.icon;
 DraggedObject.Type = ShoulderSlot.Type;
 DraggedObject.LastSlot = ShoulderSlot;
 ShoulderSlot.empty = true;
 ShoulderSlot.icon = ShoulderIcon;
 }
 dragging = true;
 }
}
if (BootsSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = BootsSlot;}
else if (Event.current.type == EventType.MouseDrag && BootsSlot.empty
== false){
if (!dragging){
 DraggedObject.icon = BootsSlot.icon;
 DraggedObject.Type = BootsSlot.Type;
 DraggedObject.LastSlot = BootsSlot;
 BootsSlot.empty = true;
 BootsSlot.icon = BootsIcon;
 }
 dragging = true;

Chapter 4

[121]

 }
}
if(GUI.RepeatButton(ChestSlotLoc,ChestSlot.icon)&&!dragging){}
if(GUI.RepeatButton(RightWeaponSlotLoc,RightWeaponSlot.icon)
&&!dragging){}
if(GUI.RepeatButton (LeftArmSlotLoc,LeftArmSlot.icon) && !dragging){}
if(GUI.RepeatButton (HeadSlotLoc,HeadSlot.icon)&&!dragging){}
if(GUI.RepeatButton (ShoulderSlotLoc,ShoulderSlot.icon)&& !dragging){}
if(GUI.RepeatButton(BootsSlotLoc,BootsSlot.icon)&&!dragging){}

As you may observe, there are a lot of if statements.

Lastly, we will add a GUI.Label to display the amount of money that the player has:

GUI.Label(Rect(60, 150, 100, 20), "Money: " + Stats.GetMoney());

Inventory slots
Having done that, we will have two constant slots that are being controlled and
supervised. Now, we just need to do the same thing to our inventory slots that will
serve as item holders and get them with scrolling bars. Perform the following steps:

1. We will start with rendering the scrolling bar.
2. At the variable section of the script, declare a new variable called counter of

an int type, assign it to 0 below the last line and declare scrollPosition of
a Vector2 type.

3. Now, we will need to run two for loops to create rows and columns for our
inventory slots.

The rest of the functionality will be written inside the second for loop:

4. Now, we need to find the location of each inventory slot and store it
inside the previously created InventorySet array. First, we will check
if InventorySlot with a specific index number exists.

5. If InventorySlot really exists, our next step will be storing its location
in the inside location variable of the specific InventorySlot. Remember
that these slots are located based on window location.

6. If the slot is empty, we will need to assign an icon for it.
7. And it is about time to check if this slot is being focused by a mouse.
8. Check if the mouse is over this slot and the user is trying to drag the

object out of the slot.

Drag-and-Drop Inventory

[122]

9. In the CH_Inventory script, continue the DoMyWindow() function as follows:
scrollPosition = GUI.BeginScrollView (Rect (0,200,200,100),
scrollPosition, Rect (0, 0, 300, 120));
counter = 0;
for (var i : int = 0; i < 10; i ++){
 for(var j: int = 0; j < 4; j++){
 if (InventorySet[counter] != null){
 InventorySet[counter].location = GUIUtility.
GUIToScreenPoint(Vector2(30 * i, 30 * j));
 if (InventorySet[counter].empty)
 {InventorySet[counter].icon = EmptySlotTexture;}
 InventorySet[counter].CheckFocus();
 if(InventorySet[counter].Focused == true && Event.current.
type ==
 EventType.MouseDrag && InventorySet[counter].empty ==
false){
 if (!dragging){
 DraggedObject.icon = InventorySet[counter].icon;
 DraggedObject.Type = InventorySet[counter].Type;
 DraggedObject.LastSlot = InventorySet[counter];
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 }
 dragging = true;
 DraggedObject.HoveringSlot = InventorySet[counter];
}

If the mouse pointer was already dragging something, we would change the
hovering object of the dragging object to the current slot. Otherwise, we assign
all necessary information to the draggable object and make the slot empty.

The i and j variables will help us to align all slots so they will be located next to
each other.

Another very interesting feature that we can add here is double-clicking. When
a user double-clicks a weapon, it will check if a weapon slot is free and will
automatically assign a weapon to that slot; or if the user double-clicks on MedKit
from the inventory, it will increase the character's health. Perform the following
steps to make it happen:

1. We need a couple more variables—LastClick of a InventorySlot type that
will determine the last clicked slot and ClickCount of a int type that will
count how many times we clicked on it.

2. To be done with variables, we need to create a reference to the
CH_Controller and CH_PlayerStats scripts of our character to
allow us to modify values in both of them.

3. Declare a Start function and reference the attached scripts.

Chapter 4

[123]

4. If that was the first click we made on the slot, it will assign this slot to
LastClick and increase ClickCount.

5. Otherwise, we will compare the LastClick location and current slot location,
and if they are the same, assign an object to a slot it belongs to, or increase
our health with MedKit.

6. Before we move out of this else statement, we need to reset ClickCount.
7. In the end of the for loop at the bottom, we need to display the actual slot

and increment the counter.
8. Scroll view won't close on its own and we need to call the GUI.

EndScrollView function to do that.
9. To finish this function, we need to close our scrolling and make the

window that we are using as a base for our inventory draggable. This
can be achieved with a GUI.DragWindow function inside the window
function. We will also make sure that we can drag a window only if
our mouse is holding it by the top.

The following code snippet goes into the variable section of the CH_Inventory script:

...
var LastClick : InventorySlot;
var ClickCount : int = 0;
var Stats : CH_PlayerStats;
var Controller : CH_Controller;
function Start(){
Controller = this.gameObject.GetComponent("CH_Controller");
Stats = this.gameObject.GetComponent("CH_PlayerStats");
}
...

The following code snippet is added after the last if statement of the for loop at
the bottom:

...
else if (InventorySet[counter].Focused && Event.current.type ==
EventType.MouseDown){
if (ClickCount == 0){
LastClick = InventorySet[counter];
if (!dragging)
ClickCount++;
}
else{

Drag-and-Drop Inventory

[124]

 if(LastClick.location == InventorySet[counter].location &&
ClickCount
 == 1){
switch (InventorySet[counter].Type){
case "RightWeapon":
 if(RightWeaponSlot.empty){
 RightWeaponSlot.empty = false;
 RightWeaponSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 }
 break;
case "LeftArm":
 if(LeftArmSlot.empty){
 LeftArmSlot.empty = false;
 LeftArmSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 }
 break;
case "Head":
 if(HeadSlot.empty){
 HeadSlot.empty = false;
 HeadSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 }
 break;
case "Shoulder":
if(ShoulderSlot.empty){
 ShoulderSlot.empty = false;
 ShoulderSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 }
 break;
case "Boots":
if(BootsSlot.empty){
 BootsSlot.empty = false;
 BootsSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 }

Chapter 4

[125]

 break;
case "Chest":
if(ChestSlot.empty){
 ChestSlot.empty = false;
 ChestSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 }
 break;
case "MedKit":
 Stats.AddHealth(20,1);
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 break;
 }
 }
ClickCount = 0;
}
}
else if (InventorySet[counter].Focused && dragging){
DraggedObject.HoveringSlot = InventorySet[counter];
 }
}
if (InventorySet[0] == null)
GUI.Box(Rect (30 * i, 30 * j, 30, 30), GUIContent(EmptySlotTexture));
else
GUI.Box(Rect (30 * i, 30 * j, 30, 30), GUIContent(InventorySet[count
er].icon));
counter ++;
 }
}
GUI.EndScrollView ();
GUI.DragWindow ();

Again, we need to make sure that the array is initialized before we start referencing
it; that's why we need those extra if statements.

We have finished with the inventory function in the previous section, but not with
the script.

Drag-and-Drop Inventory

[126]

Patching the inventory
Now, we will focus on dropping down objects while dragging them and checking
if they have landed in the right slot, or whether they have missed it and need to be
returned. Perform the following steps:

1. Return to the OnGUI function and after the first if statement, create a new
one. But, this time check if we are dragging and releasing the button.

2. We need to explore two cases here if we are focused on our last hovering slot
and it is empty, or anything else.

3. In the first if statement, we need to check if the hovering slot type is the
same as the dragged object's, or if it is of a constant type, such as armor
or weapon.

4. If that is the case, we will insert that object into the slot and clean the
dragging object also, if the object that we dragged was a weapon and
we inserted it into the weapon slot, we will equip that weapon.

5. To do this, we will create the finishingDrag function that will assign
properties of the dragged object to the hovering object; or we will return
the dragged object to the last slot if dragging isn't successful and we missed
positioning the dragged object to the correct slot.

6. If that is not the case, then we simply return this object to where it used
to belong.

7. We will have to copy that last else statement content to the else statement
outside and set dragging to false:

This is how the OnGUI function should look at this point:

...
if(dragging && Event.current.type == EventType.MouseUp){
if (DraggedObject.HoveringSlot.Focused && DraggedObject.HoveringSlot.
empty){
if (DraggedObject.HoveringSlot.Type == DraggedObject.Type ||
DraggedObject.HoveringSlot.ConstType == false){
 switch (DraggedObject.HoveringSlot.Type){
 case "RightWeapon":
 Controller.EquipWeapon();
 break;
 case "Chest":
 break;
 case "Ammo":

Chapter 4

[127]

 break;
 default:
 break;
 }
 finishingDrag(true);
 }
 else{finishingDrag(false);}
 }
 else{finishingDrag(false);}
dragging = false;
}
function finishingDrag(successful : boolean){
switch (successful){
case true:
 DraggedObject.HoveringSlot.icon = DraggedObject.icon;
 DraggedObject.HoveringSlot.Type = DraggedObject.Type;
 DraggedObject.HoveringSlot.empty = false;
 break;
default:
 DraggedObject.LastSlot.icon = DraggedObject.icon;
 DraggedObject.LastSlot.Type = DraggedObject.Type;
 DraggedObject.LastSlot.empty = false;
}
 DraggedObject.LastSlot = null;
}

Character customization
In this next part of the chapter, we will talk about character customization and how
to make our character change outfit by dragging different parts of equipment in
inventory slots.

Perform the following steps:

1. Create a 3D avatar of our character to be displayed on the Inventory screen.
2. Add the adding items functionality.
3. Make our character swap outfits when we drag outfit item into the

appropriate item slot.
4. Make our character take ammo from the inventory to reload (as a bonus).

Drag-and-Drop Inventory

[128]

3D character avatar
Creating a 3D character avatar isn't as hard as it might seem. Technically speaking,
we don't need to create anything at all. The following are the steps that we will take
to create it:

1. Create a new camera and locate it to show our character.
2. Put the character on a separate layer and order the camera to render that

layer only.
3. Put the rendered image on the screen.
4. Make sure our image always aligns with the inventory when we are

dragging it.

Not too hard, is it? Let's get to it.

Dealing with a camera
As mentioned previously, we need to set up our camera. Perform the following steps:

1. Create a new Camera object and give it a name avatar_Camera.
2. Locate a camera in front of the character; make sure that it doesn't cut

it anywhere.

3. Attach Camera to the character under the robot GameObject in the
Hierarchy view. This way we will make sure that, whatever happens,
the camera will be facing the same direction.

Chapter 4

[129]

Great! Now the problem is the camera is acting just like a usual camera and
rendering everything that it captures. To make the camera render our character
only, we will need to put our character on a separate layer and make our camera
render only that layer. Perform the following steps:

1. Having avatar_Camera selected, go to the Inspector view. Under the Layer
drop-down menu, select Add Layer, as shown in the following screenshot:

2. Create a new Layer and call it Avatar.
3. Select our character and put him on Avatar Layer.
4. Reselect the camera GameObject. Go to the Camera component and set

Culling Mask to Avatar only (deselect all other layers). Culling Mask
will not render anything with that camera, but only the selected layer.

5. Set the Clear Flags value to Depth only to get rid of the background color.
6. Set Projection to Orthographic and adjust Size to fit the character

in completely:

Drag-and-Drop Inventory

[130]

Adjusting the camera
Camera setup is almost complete, however, if you try and hit Play right now, you
won't be able to see our avatar_Camera render. That is because it's being overlapped
by our main camera. To prevent that from happening, we need to make sure that our
avatar_Camera always stays on top. To do that, we need to set the Depth value of
our camera to 100. Depth is determining the layer order on the screen; the higher
the value, the closer it is to the screen.

Having dealt with the depth, we have one more important thing to fix—camera
screen space. It is obvious that we don't want our avatar_Camera to occupy the
entire screen, but only a small portion of it. to make that happen, we need to
adjust the Normalized View Port Rect values that dictate what part of the screen
our camera should occupy. The X and Y values are the Vector2D parameters
of the screen, however, they can be set between 0 and 1 to allow us to specify
which percentage of the screen we want to occupy. W and H are width and
height, respectively.

Adjusting the Normalized View Port Rect values of two
cameras can be done to create a split screen for 2 players
(or more if you have more cameras).

Usually, we don't have to worry about these things and simply convert render of
the second camera into a texture and apply it to any object, but this option is only
available in Unity Pro. For those of you who don't have it, we will have to manually
adjust the position of the render with the position of the dynamically moving
inventory window. To make that happen, we will have to get back to scripting
into the CH_Inventory script. Perform the following steps:

1. Declare a new variable to hold the camera object; call it avatarCamera.
2. Declare two variables of a Vector2 type—AvatarLoc with a default value

of Vector2(20,-45) and AvatarLocation.
3. Declare the Update function; it will handle the modification of render

position every frame.

The following code snippet goes into the CH_Inventory script:

public var avatarCamera : Camera;
public var AvatarLocation : Vector2;
var AvatarLoc : Vector2 = Vector2(20,-45);
function Update(){}

Chapter 4

[131]

To make sure that our render always moves with the window, we need to use the
window position to modify the render position. The rest of the code will be written
inside the Update function:

function Update(){
AvatarLocation = Vector2(windowRect.x + AvatarLoc.x, Screen.height -
windowRect.y + AvatarLoc.y);
avatarCamera.rect = Rect (AvatarLocation.x/Screen.width,
AvatarLocation.y/Screen.height - 0.2, 0.2, 0.2);
}

We are using the AvatarLoc value to adjust the position of the render inside the
window. As GUI space has different coordinates, we need to subtract the window
location from the overall screen height. All of that will give us the render location
on the screen, but to adjust the render position, we need values from 0 to 1. That's
why we are calculating the relation of the render position with respect to the overall
screen size.

Window dragging limits
If we try to drag our window around the screen, we will notice that the render
starts to shrink when we are dragging the window outside of the screen borders.
Unfortunately, this cannot be helped and the only way to fix it is to make sure that
our window is never being dragged outside of the screen borders. Additionally, we
probably don't want our window to become draggable everywhere, that's why we
need to limit, not only where it can go, but also the space where we can grab it. All
the fixes will go at the very end of the DoMyWindow function, right before calling
GUI.DragWindow:

GUI.EndScrollView ();
if(windowRect.x < 0)
windowRect.x = 0;
if(windowRect.y < 0)
windowRect.y = 0;
if (windowRect.y > Screen.height - windowRect.height)
 windowRect.y = Screen.height - windowRect.height;
 if (windowRect.x > Screen.width - windowRect.width)
 windowRect.x = Screen.width - windowRect.width;
if(Input.mousePosition.y >= Screen.height - windowRect.y-20 && Input.
mousePosition.x <= windowRect.x + windowRect.width && dragging ==
false)
GUI.DragWindow ();

Drag-and-Drop Inventory

[132]

First, we check if the window is in the wrong position and pushing it back when it
should be on the screen space. Lastly, we will check the mouse position. If we are
not dragging anything and pointing at the tab of the window, then we can grab
and drag it.

That concludes our work with cameras.

Customization
In order to customize our character, we need an actual outfit. The easiest way to
make changeable parts of the body is to attach meshes and toggle them based on
the item in the slot. That way, we can have 20 weapons attached to the character,
but render one at a time to save performance.

In this example we will look into something different, like changing only visuals,
but not the form of robot parts. To make this happen, we will perform the
following steps:

1. Set up variables and items that will be used in the inventory.
2. Add items to the inventory.
3. Make them influence the character.

Setting up items
Our outfit will be changing by changing the textures in materials that are applied to
our character. Perform the following steps:

1. Declare variables for inventory slots to hold textures for items in the
CH_Inventory script:
public var ChestIconFull : Texture;
public var LeftArmIconFull : Texture;
public var RightWeaponIconFull : Texture;
public var HeadIconFull : Texture;
public var ShoulderIconFull : Texture;
public var BootsIconFull : Texture;

2. Declare variables to hold materials that we will need to modify:
public var HeadMaterial : Material;
public var ChestMaterial : Material;
public var RightWeaponMaterial : Material;
public var LeftArmMaterial : Material;
public var BootsMaterial : Material;
public var ShoulderMaterial : Material;

Chapter 4

[133]

3. Declare variables to hold two textures that we will be modifying our
materials with:

public var MainOutfit : Texture;
public var AltOutfit : Texture;

Having done that, we need to grab textures and materials from the custom_materials
and custom_textures folders in the Project view and assign them to the variables, as
shown in the following screenshot:

Adding items
To add items to the inventory, we need to create a function called
FindFirstAvailableSlot(), which will find the first available slot and return it. To
do that, we need to go through all the slots, check if they are empty, and return the
last one. This function will go through all the slots in the InventorySet array, and it
will find the first one that is empty, or return null if all are full:

In the CH_Inventory script, add the following code snippet:

...
private function FindFirstAvailableSlot(){
 for (var i : int = 0; i < 40; i ++){
 if (InventorySet[i].empty)

Drag-and-Drop Inventory

[134]

 return i;
 if(i == 40 && !InventorySet[i].empty)
 return null;
 }
}

Now, we need a function that will take advantage of that and will add items to the
inventory. All we need to pass here is a string of the object that we needs to add,
when we will check it through the if statement and modify the slot icon and status
accordingly. The following is an example of this function:

function AddInventory(ObjectType : String){
var emptySlot : int = FindFirstAvailableSlot();
if (ObjectType == "Chest"){
 InventorySet[emptySlot].icon = ChestIconFull;
 InventorySet[emptySlot].Type = "Chest";
 InventorySet[emptySlot].empty = false;
}
else if (ObjectType == "RightWeapon"){
 InventorySet[emptySlot].icon = RightWeaponIconFull;
 InventorySet[emptySlot].Type = "RightWeapon";
 InventorySet[emptySlot].empty = false;
 }
else if (ObjectType == "LeftArm"){
 InventorySet[emptySlot].icon = LeftArmIconFull;
 InventorySet[emptySlot].Type = "LeftArm";
 InventorySet[emptySlot].empty = false;
 }
else if (ObjectType == "Shoulder"){
 InventorySet[emptySlot].icon = ShoulderIconFull;
 InventorySet[emptySlot].Type = "Shoulder";
 InventorySet[emptySlot].empty = false;
 }
else if (ObjectType == "Head"){
 InventorySet[emptySlot].icon = HeadIconFull;
 InventorySet[emptySlot].Type = "Head";
 InventorySet[emptySlot].empty = false;
 }
else if (ObjectType == "Boots"){
 InventorySet[emptySlot].icon = BootsIconFull;
 InventorySet[emptySlot].Type = "Boots";
 InventorySet[emptySlot].empty = false;
 }

Chapter 4

[135]

else if (ObjectType == "MedKit"){
 InventorySet[emptySlot].icon = MedKitIcon;
 InventorySet[emptySlot].Type = "MedKit";
 InventorySet[emptySlot].empty = false;
 }
else if (ObjectType == "Ammo"){
 InventorySet[emptySlot].icon = AmmoIcon;
 InventorySet[emptySlot].Type = "Ammo";
 InventorySet[emptySlot].empty = false;
}
}

Modifying character
As mentioned previously, we need to modify texture inside the material to change
the outfit of the character. This can be done with the SetTexture function and
specifying the type of the texture and the texture file itself. In our case, the character
has two texture maps on the material—diffuse and illumination. Diffuse map sets a
color of the object and illumination sets the glowing color.

Once we have changed the textures in the game, the change will remain until the
next launch, as we are changing the properties of the material. To make sure that
we are receiving default texture when the game loads, we need to set textures in
the Awake function:

ChestMaterial.SetTexture("_MainTex", MainOutfit);
ChestMaterial.SetTexture("_Illum", MainOutfit);
RightWeaponMaterial.SetTexture("_MainTex", MainOutfit);
RightWeaponMaterial.SetTexture("_Illum", MainOutfit);
LeftArmMaterial.SetTexture("_MainTex", MainOutfit);
LeftArmMaterial.SetTexture("_Illum", MainOutfit);
HeadMaterial.SetTexture("_MainTex", MainOutfit);
HeadMaterial.SetTexture("_Illum", MainOutfit);
BootsMaterial.SetTexture("_MainTex", MainOutfit);
BootsMaterial.SetTexture("_Illum", MainOutfit);
ShoulderMaterial.SetTexture("_MainTex", MainOutfit);
ShoulderMaterial.SetTexture("_Illum", MainOutfit);

Next, we need to change the texture, once we are dragging the item away from the
full item slot and every time we put an item in the item slot. All of that will go into
the DoMyWindow function, which should now look like the following code snippet:

...
if (ChestSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = ChestSlot;}

Drag-and-Drop Inventory

[136]

else if (Event.current.type == EventType.MouseDrag && !ChestSlot.
empty){
if (!dragging){
 DraggedObject.icon = ChestSlot.icon;
 DraggedObject.Type = ChestSlot.Type;
 DraggedObject.LastSlot = ChestSlot;
 ChestSlot.empty = true;
 ChestSlot.icon = ChestIcon;
 ChestMaterial.SetTexture("_MainTex", MainOutfit);
 ChestMaterial.SetTexture("_Illum", MainOutfit);
 }
 dragging = true;
 }
}
if (RightWeaponSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = RightWeaponSlot;}
else if (Event.current.type == EventType.MouseDrag &&
!RightWeaponSlot.empty){
if (!dragging){
 DraggedObject.icon = RightWeaponSlot.icon;
 DraggedObject.Type = RightWeaponSlot.Type;
 DraggedObject.LastSlot = RightWeaponSlot;
 RightWeaponSlot.empty = true;
 RightWeaponSlot.icon = RightWeaponIcon;
 RightWeaponMaterial.SetTexture("_MainTex", MainOutfit);
 RightWeaponMaterial.SetTexture("_Illum", MainOutfit);
 }
 dragging = true;
 }
}
if (LeftArmSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = LeftArmSlot;}
else if (Event.current.type == EventType.MouseDrag&& !LeftArmSlot.
empty){
if (!dragging){
 DraggedObject.icon = LeftArmSlot.icon;
 DraggedObject.Type = LeftArmSlot.Type;
 DraggedObject.LastSlot = LeftArmSlot;
 LeftArmSlot.empty = true;
 LeftArmSlot.icon = LeftArmIcon;
 LeftArmMaterial.SetTexture("_MainTex", MainOutfit);
 LeftArmMaterial.SetTexture("_Illum", MainOutfit);
 }
 dragging = true;

Chapter 4

[137]

 }
}
if (HeadSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = HeadSlot;}
else if (Event.current.type == EventType.MouseDrag && !HeadSlot.empty)
{
if (!dragging){
 DraggedObject.icon = HeadSlot.icon;
 DraggedObject.Type = HeadSlot.Type;
 DraggedObject.LastSlot = HeadSlot;
 HeadSlot.empty = true;
 HeadSlot.icon = HeadIcon;
 HeadMaterial.SetTexture("_MainTex", MainOutfit);
 HeadMaterial.SetTexture("_Illum", MainOutfit);
 }
 dragging = true;
 }
}
if (ShoulderSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = ShoulderSlot;}
else if (Event.current.type == EventType.MouseDrag && !ShoulderSlot.
empty){
if (!dragging){
 DraggedObject.icon = ShoulderSlot.icon;
 DraggedObject.Type = ShoulderSlot.Type;
 DraggedObject.LastSlot = ShoulderSlot;
 ShoulderSlot.empty = true;
 ShoulderSlot.icon = ShoulderIcon;
 ShoulderMaterial.SetTexture("_MainTex", MainOutfit);
 ShoulderMaterial.SetTexture("_Illum", MainOutfit);
 }
 dragging = true;
 }
}
if (BootsSlot.Focused){
if (dragging){DraggedObject.HoveringSlot = BootsSlot;}
else if (Event.current.type == EventType.MouseDrag && !BootsSlot.
empty){
if (!dragging){
 DraggedObject.icon = BootsSlot.icon;
 DraggedObject.Type = BootsSlot.Type;
 DraggedObject.LastSlot = BootsSlot;
 BootsSlot.empty = true;
 BootsSlot.icon = BootsIcon;

Drag-and-Drop Inventory

[138]

 BootsMaterial.SetTexture("_MainTex", MainOutfit);
 BootsMaterial.SetTexture("_Illum", MainOutfit);
 }
 dragging = true;
 }
}
...
for (var i : int = 0; i < 10; i ++){
for(var j: int = 0; j < 4; j++){
if (InventorySet[counter] != null){
InventorySet[counter].location = GUIUtility.
GUIToScreenPoint(Vector2(30 * i, 30 * j));
if (InventorySet[counter].empty){
InventorySet[counter].icon = EmptySlotTexture;
}
InventorySet[counter].CheckFocus();
if(InventorySet[counter].Focused == true && Event.current.type ==
EventType.MouseDrag && InventorySet[counter].empty == false){
if (!dragging){
DraggedObject.icon = InventorySet[counter].icon;
DraggedObject.Type = InventorySet[counter].Type;
DraggedObject.LastSlot = InventorySet[counter];
InventorySet[counter].empty = true;
InventorySet[counter].icon = EmptySlotTexture;
}
dragging = true;
DraggedObject.HoveringSlot = InventorySet[counter];
}
else if (InventorySet[counter].Focused && Event.current.type ==
EventType.MouseDown){
 if (ClickCount == 0){
 LastClick = InventorySet[counter];
 if (!dragging)
 ClickCount++;
 }
 else{
 if(LastClick.location == InventorySet[counter].location &&
 ClickCount == 1){
 switch (InventorySet[counter].Type){
 case "RightWeapon":
 if(RightWeaponSlot.empty){
 RightWeaponSlot.empty = false;
 RightWeaponSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;

Chapter 4

[139]

 RightWeaponMaterial.SetTexture("_MainTex",
 AltOutfit);
 RightWeaponMaterial.SetTexture("_Illum",
AltOutfit);
 }
 break;
 case "LeftArm":
 if(LeftArmSlot.empty){
 LeftArmSlot.empty = false;
 LeftArmSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 LeftArmMaterial.SetTexture("_MainTex", AltOutfit);
 LeftArmMaterial.SetTexture("_Illum", AltOutfit);
 }
 break;
 case "Head":
 if(HeadSlot.empty){
 HeadSlot.empty = false;
 HeadSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 HeadMaterial.SetTexture("_MainTex", AltOutfit);
 HeadMaterial.SetTexture("_Illum", AltOutfit);
 }
 break;
 case "Shoulder":
 if(ShoulderSlot.empty){
 ShoulderSlot.empty = false;
 ShoulderSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 ShoulderMaterial.SetTexture("_MainTex",
AltOutfit);
 ShoulderMaterial.SetTexture("_Illum", AltOutfit);
 }
 break;
 case "Boots":
 if(BootsSlot.empty){
 BootsSlot.empty = false;
 BootsSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 BootsMaterial.SetTexture("_MainTex",
AltOutfit);

Drag-and-Drop Inventory

[140]

 BootsMaterial.SetTexture("_Illum", AltOutfit);
 }
 break;
 case "Chest":
 if(ChestSlot.empty){
 ChestSlot.empty = false;
 ChestSlot.icon = InventorySet[counter].icon;
 InventorySet[counter].empty = true;
 InventorySet[counter].icon = EmptySlotTexture;
 ChestMaterial.SetTexture("_MainTex", AltOutfit);
 ChestMaterial.SetTexture("_Illum", AltOutfit);
 }
 break;
...

Done! now our character is fully customizable.

The last thing that we will add are defaulted items in the inventory. For that, we will
go into the Start function and add the following code at the very bottom:

yield WaitForSeconds (2);
AddInventory("RightWeapon");
AddInventory("Head");
AddInventory("Shoulder");
AddInventory("LeftArm");
AddInventory("Boots");
AddInventory("Chest");
AddInventory("Ammo");

The following screenshot shows the Inventory screen:

Chapter 4

[141]

Reloading and inventory
Now that we can have ammo in the inventory, we also need to make use of it. The
idea is that every time we run out of ammo, we send an issue to the inventory and
search for an ammo item. If we find an item, we destroy an item in the inventory
and replenish our ammo.

First of all, let's create a FindAmmo function in the CH_Inventory script that will
be searching for the ammo item in the inventory (this function is similar to the
FindFirstAvailableSlot function that we wrote earlier). The following is an
example of the FindAmmo function:

public function FindAmmo(){
 for (var i : int = 0; i < 40; i ++){
 if (InventorySet[i].Type == "Ammo"){
 InventorySet[i].icon = EmptySlotTexture;
 InventorySet[i].Type = "";
 InventorySet[i].empty = true;
 Stats.AddAmmo(1,40,1);
 }
 if(i == 40 && !InventorySet[i].empty)
 Debug.Log("No Ammo");
 }
}

Now, we need to call this function when we run out of ammo. The best
way to do it is to call the function from the CH_Controller script, from
the AltShooting function:

public var inventory : CH_Inventory;
function Start(){
Stats = this.gameObject.GetComponent("CH_PlayerStats");
inventory = this.gameObject.GetComponent("CH_Inventory");
...
}
function AltShooting(){
var hit: RaycastHit;
Stats.AddAmmo(1, -1, 1);
if (Stats.GetAmmo(1) == 0){
inventory.FindAmmo();
 }
...
}

Our weapon will now reload with ammo from the inventory.

Drag-and-Drop Inventory

[142]

Finishing adjustments
There are some last touch-ups that need to be done in the code.

Open the CH_Inventory script and perform the following steps:

1. In the Start function, disable AvatarCamera.
2. At the very top of the OnGUI function, we need to enable or disable

the camera based on the inventoryOpened value and return from
the function if inventoryOpened is false:

function Start(){
...
avatarCamera.enabled = false;
}
function OnGUI(){
avatarCamera.enabled = (inventoryOpened) ? true : false;
if (!inventoryOpened)
 return;
...
}

Open the CH_Controller script and perform the following steps:

1. In the FixedUpdate function, check if inventory is open before calling the
Movement function; if it is, return.

2. In the end of the FixedUpdate function, check if the player has hit
the I button and toggle the inventoryOpened variable inside the
CH_Inventory script.

3. Now, we will go to the weapon_pickUp script and change the last line of the
OnTriggerEnter function to this.

4. Save the weapon_pickUp script and open the treasure script. Create a
reference to the CH_Inventory script.

5. In the switch statement where we are checking the type of treasure, add last
case MedKit, reference Inventory, and add MedKit to it.

In the FixedUpdate function, add the following code snippet:

...
transform.Rotate(Vector3(transform.rotation.x, Input.GetAxis("Mouse
X"), transform.rotation.z) * Time.deltaTime * 250.0);
if (inventory.inventoryOpened)
return;
 Movement()
...

Chapter 4

[143]

if (Input.GetKeyDown (KeyCode.I)){
 inventory.inventoryOpened = (inventory.inventoryOpened) ?
false : true;
 }

Go to the weapon_pickUp script and change the last line of the
OnTriggerEnter function:

other.gameObject.GetComponent("CH_Inventory").
AddInventory("RightWeapon");

That is it, we are done.

Drag-and-Drop Inventory

[144]

Summary
Those were the barebones of the inventory. As we saw in this example, GUI is
our best friend as far as they are asked to do what they were made for—display
information on the screen. In the next chapter, we will attempt a different approach
to creating user interface with planes.

Dynamic GUI
In this chapter, we will be going over several types of graphical user interface (GUI).
The GUI is extremely important for the user to find out what is going on and to be
given visual feedback on their inputs. The GUI elements that will be covered are
score display, objective display, pickup display, and arch targeting.

Several of these elements have multiple parts and work in unison with others, so it
is important to have an understanding of GUI and the way these parts interact with
each other slowly. It is easy to get lost and confused in the logic of setting up
the GUI.

With that being said, let's now begin. The first GUI element to be explored is
Dynamic heads up display (HUD). We will perform the following actions:

•	 We will create a circular health bar
•	 We will write scripts for item and weapon selection
•	 We will discuss text meshes
•	 We will create the scoring system
•	 We will save/read and build an arch targeting system

As stated previously, some of the GUIs have multiple parts. When it comes to HUD,
there are usually several parts that can be taken into consideration. Those parts in
our case are the display of health, armor, items, weapons, change camera mode,
and saved score display. We will tackle these one at a time starting with health.

Dynamic GUI

[146]

Radial health display
To make the creation of the health interesting and hopefully show a great way to
display the health, we are going to create a radial bar. A brief description of this is
that the player's health will start at 100, or max, and as it drops, it will move around
in a circle appearing to be draining, as shown in the following diagram. We first
stumbled across this in a Unity forum and have found it very useful for various
situations, one of which has been the display of health.

Alright, let's take a look at what we are going to need to get this to work the way we
want it to. We need the following for that:

Alpha gradient: This is a texture that has an alpha radial gradient transparency with
a color layer. Luckily, this is already created for you, as it is the Unity material as
well. It is found in the materials folder for this chapter.

Game manager: This is a manager game object that can hold our scripts. If you
already have a manager set up, create the Health script.

Health script: This is a script to handle the health separate from the display of health.
We will write this script in the next section.

Health display script: This is a script to handle the display of health.

Once these scripts are written, we will revisit the Health script to add some functions.

The Health script
Before we go ahead and begin displaying the health, we must first get the health
working. This script will cover setting up the minimum health, maximum health,
increase and decrease of health. To begin, let's start with initializing some variables.

Chapter 5

[147]

We will need a variable for currentHealth; this can be private. We will also need
two additional variables, healthMax and another for healthMin. These two can be
public so that they can be modified in Inspector:

public var healthMax : float = 100;
public var healthMin : float = 0;
private var currentHealth : float = 0;

Next, we will want to establish a function to handle the rise and fall of our player's
health. Create a function and call it PlayerHealth. Inside PlayerHealth, we want
to get the influence on our currentHealth variable. In this case, we are using
the – button to lower health and the + button to increase it. There will be two if
statements in the function. One if statement will be for the increase in health and
another for the decrease.

The first step is getting the pressing and holding input from the - button with
the GetKey and KeyCode functions. We also need to make sure to check here that
currentHealth is greater than the healthMin value.

The second step is getting the pressing and holding input from the + button with
the GetKey and KeyCode functions. We also need to make sure to check here that
currentHealth is less than healthMax:

if(Input.GetKey(KeyCode.KeypadMinus) && currentHealth >
healthMin){currentHealth -= 0.5;}
if(Input.GetKey(KeyCode.KeypadPlus) && currentHealth <
healthMax){currentHealth += 0.5;}

Lastly, we need to constantly check for the input coming from the player. We
therefore call the PlayerHealth function inside of the Update function:

function Update(){PlayerHealth();}

We are done, at least with the Health script for the time being. We will have to
revisit it soon.

public var healthMax : float = 100;
public var healthMin : float = 0;
private var currentHealth : float = 0;
PlayerHealth(){
if(Input.GetKey(KeyCode.KeypadMinus) && currentHealth > healthMin)
{currentHealth -= 0.5;}
if(Input.GetKey(KeyCode.KeypadPlus) && currentHealth < healthMax)
{currentHealth += 0.5;}
}
function Update(){PlayerHealth();}

Dynamic GUI

[148]

Health display script
Next up, we create a script, which will display a visual indicator of our character's
(or bot's) health. This script will be called HealthBar. Let's begin creating the
variables that will help us display the health bar.

The first one which we need to create will be to hold our radial health textures to be
displayed. This variable should be a Texture2D list and should be public.

We will also need a variable to hold reference to the game manager, as our
HealthBar script will not be on the gameManager object. The variable will be
of GameObject type and should be public.

Next, we need to set up some more reference variables for our health values. These
variables are currentHealth, healthMax, and healthMin and can be copied from
the Health script. They can also be changed to private for this script:

public var healthValue : Texture2D[];
public var gameManager : GameObject;
private var healthMax : float = 0;
private var healthMin : float = 0;
private var currentHealth : float = 0;

Now that we have our variables set up, we can set their references in the Awake
function. Starting with our 2D texture list, we will want to set the default texture
to be displayed. To do this, we need to access the renderer of gameObject and
change its mainTexture material to the one in slot 0 that we have specified in
our texture list:

renderer.material.mainTexture = healthValue[0];

Next, we need to set the healthMax and healthMin variables. These are from
the Health script in the game manager so we need to access that component and
read them from the return functions in the Health script. To do that, we use our
gameManager variable that is referencing the game manager and the GetComponent
function to specify which script we want access to. Then we need to call the returned
functions for the specified variables as follows:

healthMin = gameManager.GetComponent("Health").SendHealthMin();
healthMax = gameManager.GetComponent("Health").SendHealthMax();

After that is set up, we want to create a function that will change the texture color
based upon the health value. Call the Health(health : float) function. This
function will have to receive information, so make sure that it has a float parameter.

Chapter 5

[149]

In the Health(health : float) function, there will be an if statement and two else
if statements. All are based upon the health value that is coming into the function.
The first statement is to check if health is greater than or equal to healthMax/3. If it
is, have mainTexture equal to that of our default texture—healthValue[0]. And in
addition, we will set the emissive property of the Shader:

if (health >= healthMax/3){
 renderer.material.mainTexture = healthValue[0];
 renderer.material.SetColor("_Emission", Color.green);
 }
else if (health < healthMax/3 && health >= healthMax/1.5){
 renderer.material.mainTexture = healthValue[1];
 renderer.material.SetColor("_Emission", Color.yellow);
 }
else if (health < healthMax/1.5){
 renderer.material.mainTexture = healthValue[2];
 renderer.material.SetColor("_Emission", Color.red);
 }

This property allows the texture to emit the color specified, hence the reason it
is being used here. Setting the color of the property is very similar to setting the
texture. Instead of mainTexture, we use SetColor. SetColor is a built-in function
with parameters. Those parameters for the color are the properties of the Shader
to be affected—_Emission—followed by the color to be used. In this case, we will
set the color to green to coincide with the texture that we are using. This process is
repeated for the two else if statements.

For the first else if statement, the if parameter will compare whether health is
less than healthMax/3. It will also compare whether health is greater than or equal
to healthMax/1.5. The texture should change to the second slot and the color of
SetColor should be changed to yellow.

The next else if statement will have the if parameter to compare whether health is
less than healthMax/1.5. The texture again shall change, this time to the third slot
and the color property will become red.

The last line that we need to write for this function is to make the currentHealth
variable equal to the health parameter of the function:

currentHealth = health;

There are two small functions left to write and then back to the Health script. The
next function will handle the visual increase and decrease in health. The function is
called HealthRiseFall.

Dynamic GUI

[150]

There is one line in here and it again plays with Shader attributes. This one in
particular will be playing with the transparent cutoff Shader. This Shader allows one
to create an alpha gradient that will dictate how the Shader handles transparency.
Then, one can go in and manipulate the cutoff control to have parts of the texture
appear or disappear. The Shader takes the values put in and puts minimum and
maximum transparency to that. It then uses the parameter to set its transparency
to slide between those two values. This is why we will be able to use it for a radial
health bar. We will set its maximum transparency to healthMax and minimum
transparency to healthMin. We then take the current health variable and slide
the cutoff between these two values.

For our purposes, we want to use the SetFloat function. The parameters for this
function are the Shader attribute to be affected—_Cutoff—and the value that it
should be set at. For the value, we use another Unity built-in function called
Mathf.InverseLerp.

This function allows us to specify the values we want to transition between and the
value to transition between them. Inside this function, then, is where we have our
healthMax as our start and healthMin as our end with the value determining the
transition being current health:

renderer.material.SetFloat("_Cutoff", Mathf.InverseLerp(healthMax,heal
thMin, currentHealth));

The last part of this script is to create the Update function. In here, all we need to do
is call the HealthRiseFall function:

public var healthValue : Texture2D[];
public var gameManager : GameObject;
private var healthMax : float = 0;
private var healthMin : float = 0;
private var currentHealth : float = 0;
function Awake(){
 renderer.material.mainTexture = healthValue[0];
 healthMin = gameManager.GetComponent("Health").SendHealthMin();
 healthMax = gameManager.GetComponent("Health").SendHealthMax();
}
function Health(health : float){
 if (health >= healthMax/3){
 renderer.material.mainTexture = healthValue[0];
 renderer.material.SetColor("_Emission", Color.green);
 }
 else if (health < healthMax/3 && health >= healthMax/1.5){
 renderer.material.mainTexture = healthValue[1];
 renderer.material.SetColor("_Emission", Color.yellow);

Chapter 5

[151]

 }
 else if (health < healthMax/1.5){
 renderer.material.mainTexture = healthValue[2];
 renderer.material.SetColor("_Emission", Color.red);
 }
 currentHealth = health;
}
function HealthRiseFall(){
 renderer.material.SetFloat("_Cutoff", Mathf.InverseLerp(healthMax,
healthMin, currentHealth));
}
function Update () {
 HealthRiseFall();
}

Well, that is it for the HealthBar script for now. However, we need to revisit the
Health script and add some functions and variables.

Revisiting the Health script
As we now have values from the Health script that the HealthBar script is trying to
access, we need to create two variables and two functions. Those variables will be for
the health bar and the accessing of the HealthBar script on the health bar. The health
bar variable should be GameObject and public, and the HealthBar script variable
should be of the HealthBar type (the name of the script to be accessed) and private:

public var healthBar : GameObject;
private var healthBarScr : HealthBar;

Added to the Awake function is the referencing of the HealthBar script from the
health bar GameObject variable:

healthBarScr = healthBar.GetComponent(HealthBar);

Now that the variables are taken care of, we can write the remaining functions. These
functions will return our healthMin and healthMax variables. The HealthBar script
is referencing certain names of functions so let's go ahead and name them the same:

function SendHealthMax(){return healthMax;}
function SendHealthMin(){return healthMin;}

Lastly, in the PlayerHealth function, after all the if statements, we need to send the
current health to the Health function of the HealthBar script:

healthBarScr.Health(currentHealth);

Dynamic GUI

[152]

Hooking up objects to Inspector
One more step to go and you will soon see a radial health bar go up and down on
your command.

In the Project menu, go to the Assets folder for this chapter. Under Prefabs, you
will see a prefab called Health_Bar. Drag this to your Hierarchy. Inside of the prefab,
you will see that there is a gameObject for the background called Health_BG and
another called Health. Apply red background ring material to Health_BG, as shown
in the following screenshot:

Drag the HealthBar script onto the Health gameObject. You should see your 2D
texture list and its value set to 0; change this to 3. Assign greenHealth to the first
slot, yellowHealth to the second, and redHealth to the third. Next, grab your
GameManager and drag it into the Game Manager slot in the HealthBar script,
as shown in the following screenshot:

Chapter 5

[153]

Go to your game manager and drag the Health script onto it. If not already done,
set Health Max to 100 and Health Min to 0. Drag the Health gameObject into the
Health Bar variable, as shown in the following screenshot:

Congrats! You should have noticed by now that there is a green ring in your preview
window. Upon pressing Play, and holding down the + or - key, you should see the
green ring move around the circle. Based on amount of health, its color will change
to yellow if two-third of health is left or to red if one-third is left:

Creating items
What would a game be if a player could not go and pick up items? An unfortunate
game I tell you. It is true they are not needed for all games, but just in case you need
to keep track of them and display them, then we can give you a hands-on way to
do it.

This system will allow you to keep track of items in your inventory and display
them. We will keep track of images that will dictate which item is displayed and
use the name to dictate which item is displayed and the information to be displayed.
Also, the use of the items and display of their information will be tackled:

Dynamic GUI

[154]

Alright, let's take a look at what there is that needs to be done to get this system up
and running:

1. Create the Change_Item script.
2. Create the UseItem script.
3. Create the PlayerStats script.
4. Create the textMesh script.
5. Create the TextManager script.
6. Revisit the Health Script.

The Change_Item script
This script is going to allow the player to press a button and toggle through the item
array. Also, there is a function that can be called to add new items to that item array.
To make this work, we will need to perform the following steps:

1. Create variables to manage texture files and values.
2. Write changing items function.
3. Write functions for addition and removal from the array.
4. Handle texture rendering.
5. Create a function for the increment control.

Setting up the code
So, first off, let's create our variables. The item array will be the first. It can be
private. To show functionality of the script, two items have already been set up in
the array. One variable will hold the painKiller texture and the other will have the
healthPack texture. As we are dealing with arrays, we need a variable to handle the
item to be removed and a variable for an item to be added. As we want to display
item image, the item to be removed can be String and the item to add can be
Texture2D. The last variable to set up at the moment is one to increment
through the array:

public var itemLog : Array = new Array();
private var increment : int = 0;
public var painKiller: Texture2D;
public var healthPack: Texture2D;
private var itemToRemove: String;
private var itemToAdd: Texture2D;
private var item : String;

Chapter 5

[155]

Next, we will need some functions. As we need to add the painKiller and
healthPack items to the array, we need that done in the Awake function. Then, based
upon the first item in the array, we need to set the mainTexture of gameObject:

function Awake(){
 itemLog.Add(painKiller, healthPack);
 renderer.material.mainTexture = itemLog[increment];
 }

Changing items
The next function that we want to create is ChangeItem. This function will increment
through the array to the next item based upon the player's input and return the
current item name. An if statement is used for this, and using the GetKeyDown
function, check for the J key to be pressed and that our item array is larger than 0. It
is a precaution that makes sure no errors occur if we press the button when there are
no items in the array. Inside, we will then call for the IncrementControl function
to make sure that the next time we press the I key, it is the next item that comes up.
This will be followed by the changing of mainTexture of the object using the current
increment index. Lastly, we call the ItemName function to return the current item:

function ChangeItem(){
 if (Input.GetKeyDown(KeyCode.J) && itemLog.length > 0){
 IncrementControl();
 renderer.material.mainTexture = itemLog[increment];
 ItemName();
 }
 }

Addition and removal
The following two functions deal with addition of items to the array and their removal.

The first one is called AddItemToList and receives a Texture2D parameter. This
function needs to be called externally. Inside the function, we want the itemToAdd
variable to become equal to the newItem added parameter variable. Now, we add
that item to the array by using the Add function and specifying itemToAdd as its
parameter. After that, we need to set the increment value to the length of the array
as the Add function adds the new item to the end of the array. Next, we need to call
the ItemName and ItemDisplay functions:

function AddItemToList(newItem : Texture2D){
 itemToAdd = newItem;
 itemLog.Add(itemToAdd);
 increment = itemLog.length - 1;
 ItemName();
 ItemDisplay();
}

Dynamic GUI

[156]

The second array function is RemoveItemFromList and it has a parameter variable of
String represented by removeItem.

This function will take the incoming name and set it to a variable; and then using a
for loop, we will loop through the array looking for the specific item that is to be
removed. Upon finding it, we use the RemoveAt function. It takes an integer index as
its parameter so to make sure that we have the correct spot within the array, when
searching through it, we use a counter that increments with each pass through the
for loop. After removing the item, we do a check and see if the increment value is
equal to the length of the list. If it is, we leave it as 0 and if it is not, we decrement
it by 1. After this, we call the ItemName function to make sure that the appropriate
information is displayed. As for the last function to call in here, it is ItemDisplay.
The completed RemoveItemFromList function should be as follows:

function RemoveItemFromList(removeItem : String){
 var newCounter : int = 0;
 itemToRemove = removeItem;
 for(n in itemLog){
 if(n.name == itemToRemove) {
 itemLog.RemoveAt(newCounter);
 if(itemLog.length == 0){
 increment = 0;
 }else if(increment > 0){
 increment -= 1;
 }
 ItemName();
 }
 newCounter++;
 }
 ItemDisplay();
}

Displaying items
The next function, which is ItemDisplay, controls the alpha and rendering of the
texture. It consists of an if statement and an else if. The if statement checks if
there is anything in the item array; if there is not, it sets the renderer alpha to 0.
The else if statement checks if the array is larger than 0 in length. If so, it sets
the mainTexture of the material to that of the current itemLog[increment]
and sets the alpha for the material back at 255:

function ItemDisplay()
{
 if(itemLog.length == 0)
 {

Chapter 5

[157]

 renderer.material.color.a = 0;
 }
 else if (itemLog.length > 0)
 {
 renderer.material.mainTexture = itemLog[increment];
 renderer.material.color.a = 255;
 }
}

Increment controls
Next, let's create the IncrementControl function. This function controls the
incrementing of the item array. The easiest way is to have an if statement to check
if increment is not at the end of the array. This is done by simply taking the array
length and subtracting 1 from it. This needs to be done because arrays start at 0 in
content and 1 for counting, so we therefore need to make sure that - 1 is there. If
increment is not at the end of the array, add 1 to increment. However, if increment
has reached the end of the array, we use an else statement to set increment back
down to 0:

function IncrementControl(){
 if(increment != itemLog.length - 1){
 increment += 1;
 }
 else{
 increment = 0;
 }
 }

After the increment control, we need to add in one more function. Create an Update
function and call the ChangeItem function:

function Update (){
ChangeItem();
}

For the time being, we are done with this script. We need to build one other script
before we can integrate other functionality into this one. The following code snippet
shows how the Change_Item script should look at this point:

public var itemLog : Array = new Array();
private var increment : int = 0;
private var itemToRemove: String;
private var itemToAdd: Texture2D;
public var painKiller: Texture2D;
public var healthPack: Texture2D;

Dynamic GUI

[158]

function Awake(){
 itemLog.Add(painKiller, healthPack);
 renderer.material.mainTexture = itemLog[increment];
 }
 function ChangeItem(){
 if (Input.GetKeyDown(KeyCode.J) && itemLog.length > 0){
 IncrementControl();
 renderer.material.mainTexture = itemLog[increment];
 ItemName();
 }
 }
function AddItemToList(newItem : Texture2D)
{
 itemToAdd = newItem;
 itemLog.Add(itemToAdd);
 increment = itemLog.length - 1;
 ItemName();
 ItemDisplay();
}

function RemoveItemFromList(removeItem : String)
{
 var newCounter : int = 0;
 itemToRemove = removeItem;
 for(n in itemLog)
 {
 if(n.name == itemToRemove)
 {
 itemLog.RemoveAt(newCounter);
 if(itemLog.length == 0)
 {
 increment = 0;
 }else if(increment > 0)
 {
 increment -= 1;
 }
 ItemName();
 }
 newCounter++;
 }
 ItemDisplay();
}

function ItemDisplay()

Chapter 5

[159]

{
 if(itemLog.length == 0)
 {
 renderer.material.color.a = 0;
 }
 else if (itemLog.length > 0)
 {
 renderer.material.mainTexture = itemLog[increment];
 renderer.material.color.a = 255;
 }
}

 function IncrementControl(){
 if(increment != itemLog.length - 1){
 increment += 1;
 }
 else{
 increment = 0;
 }
 }
 function Update () {
 ChangeItem();
 }

One thing that you might have noticed so far, in this chapter, is that many of the
scripts rely on others to make sure that their functionalities are working. We will be
backtracking into the scripts and adding covers, functions, or variables, so please be
patient as everything will come together in the end.

Creating the UseItem script
The UseItem script will have the functionality of making the selected item useable.
There is only one variable that we need to set up at the moment. The first one we will
create is the itemName variable. It can be private and have its type as String:

private var itemName : String = null;

Next, we want to go ahead and create the SetItemName function. It will also have
the parameter of item with type of String. This function is going to do just as its
name implies, receive an item name and then set the itemName variable to that
received name:

 function SetItemName(item : String) {
 itemName = item;
 }

Dynamic GUI

[160]

Now that we have the item to be used, we can create our UseItem function. This
function is going to allow us to press a key and at this moment, nothing will happen,
but when we return after creating the PlayerStats script, we can have the pressing
of the key to have the effect that is wanted.

The function has the if statements that check the item name and if the Q key was
pressed. If itemName matches the if parameter, the effect occurs. As we have two
items in our item array at the moment, we have two if statements that it is checking:

 function UseItem(){
if (Input.GetKeyDown(KeyCode.Q)){
 switch(itemName):
 case:"painKiller"{
 }
 case:"healthPack"{
 }
}

There are two more functions to write until we are done with this script. The first is
the Update function, which contains only the call for the UseItem function and the
second is a return function for item name:

function Update () {
 UseItem();
}
function ItemRemove(){return itemName;}

This script is done for now. There is a lot more that needs to be added into this
script for functionality, but first the PlayerStats script needs to be written. That
being said, we first need to return back to the Change_Item script and add some
missing functionality:

private var itemName : String = null;
function SetItemName(item : String) {
 itemName = item;
}
function UseItem(){
if (Input.GetKeyDown(KeyCode.Q)){
 switch(itemName):
 case:"painKiller"{
 }
 case:"healthPack"{
 }
}
function Update () {
 UseItem();
}
function ItemRemove(){return itemName;}

Chapter 5

[161]

Revisiting the Change_Item script
Now that we are back in the Change_Item script, we can add two lines of code to the
script. Thankfully, these two lines are exactly the same. What needs to be added is
returning the item name to the SetItemName function of the UseItem script.

To do this, we need to create a variable to hold the GameManager object. After that,
we need to write the ItemName function. In here, we have an if statement followed
by else. The if statement sends the actual name based upon increment value. It
is used when there are items in the array. When there are no items in the array, we
send the else line. This line is identical to the preceding one in the if statement
except that for the parameter for the SetItemName function, we use placeholder
to kill it and not display anything:

function ItemName()
{
 if(itemLog.length > 0)
 GameManager.GetComponent("UseItem").
 SetItemName(itemLog[increment].name);
 else
 GameManager.GetComponent("UseItem").SetItemName("placeholder");
}

The itemLog line can also be copied into the Awake function to have the display
change automatically:

 var GameManager : GameObject;
 function Awake(){
 GameManager.GetComponent("UseItem").
 SetItemName(itemLog[increment].name);
 }
 function ItemName()
{
 if(itemLog.length > 0)
 GameManager.GetComponent("UseItem").
 SetItemName(itemLog[increment].name);
 else
 GameManager.GetComponent("UseItem").SetItemName("placeholder");
}

Dynamic GUI

[162]

The PlayerStats script
This script handles various statistics of the player. It is a reference script and so it
contains many return statements. We will cover what we can do with this script for
the time being.

Some of the variables that the script has are painCount, the number of painKiller
instances, healthCount, the number of healthPack instances, a return value for
the healthPackValue upon the use of healthPack, and lastly an item variable to
handle incoming item names:

public var painCount : int = 2;
public var healthCount : int = 5;
public var healthPackValue : float = 25;
private var item : String = null;

After we have established our variables, there are a couple of functions that we need
to write. These functions are non-return functions. Those will come next.

First off, we need to create the DecrementItemCount function. This function
allows an item being used to be identified and then have its visual count number
decrease upon the HUD. The function has the item variable become equal to the
ItemRemove function from the UseItem script. These are on the same gameObject
so it is easy using the gameObject.GetComponent function here. Next, there are
two if statements. The second one is else if. They are basically checking the
item variable's value against a predetermined name, in our case, painKiller and
healthPack. Inside each if statement, we have their respective variables, painCount
for painKiller instances and healthCount for healthPack. Here, we will subtract
1 from their counts. Lastly, we will write a line here, which will reflect our next two
steps in putting together the HUD. We will start with the DecrementItemCount
function that should look like the following code snippet:

function DecrementItemCount()
{
 item = gameObject.GetComponent("UseItem").ItemRemove();

 if(item == "painKiller")
 {
 painCount -= 1;
 }

 else if(item == "healthPack")
 {
 healthCount -= 1;
 }
}

Chapter 5

[163]

This line will access the TextManager script and grab the itemText list array slot
0 from this script (this is a list of gameObject instances that are representative of
the various screen displays of text). From there, we want to access the textMesh
component and the DisplayInformation function from that component. The
display information script has two parameters, one is the item variable identifying
the particular item information to display and the other is the Color that the text
should be identified with:

gameObject.GetComponent("TextManager").itemText[0].
GetComponent("textMesh").DisplayInformation(item, Color.black);

A single function now remains, which is the ResetValues function. This function is
called externally from another script to reset the amount that a useable item has, for
instance, health and ammo. Inside of the function, we check the amount remaining in
the item and, if it is equal to 0, we then have the item's amount returned to its default
value. This can be looked at as a crude form of reload:

function ResetValues(ammo:String, itemCount:String)
{
 if(painCount <= 0)
 painCount = 2;
 else if(healthCount <= 0)
 healthCount = 5;
}

Now that this is taken care of, we can write those return functions. The first one will
return painCount, the second one will return healthCount, and the third one will
return healthPackValue:

function ReturnPainCount(){return painCount;}
function ReturnHealthCount(){return healthCount;}
function ReturnHealthPackValue(){return healthPackValue;}

For now, the PlayerStats script is done. It will have to be revisited when dealing
with weapons and ammo:

public var painCount : int = 2;
public var healthCount : int = 5;
public var healthPackValue : float = 25;
private var item : String = null;
function DecrementItemCount()
{
 item = gameObject.GetComponent("UseItem").ItemRemove();

 if(item == "painKiller")
 {

Dynamic GUI

[164]

 painCount -= 1;
 }

 else if(item == "healthPack")
 {
 healthCount -= 1;
 }
gameObject.GetComponent("TextManager").itemText[0].
GetComponent("textMesh").DisplayInformation(item, Color.black);
]
function ResetValues(ammo:String, itemCount:String)
{
 if(painCount <= 0)
 painCount = 2;
 else if(healthCount <= 0)
 healthCount = 5;
}
function ReturnPainCount(){return painCount;}
function ReturnHealthCount(){ return healthCount;}
function ReturnHealthPackValue(){ return healthPackValue;}

The TextManager script
The TextManager script is a reference holder for several GUI elements in the HUD.
It will help in the displaying of ammo, items remaining, score, saved game prompt,
and objective display.

A very short script containing a couple of functions, it plays a huge role in
keeping everything separate and clean and is very easy to use. It acts as a hub and
redistributes information to referenced sources. The script has a GameObject variable
list that holds those gameObject variables stated previously. Each gameObject in
that array has a specific component on it, which allows this script to work.

So, talking about variables, let's define ours. As stated, we need the itemText
GameObject variable array:

public var itemText : GameObject[];

As said before, this is a short script. The last thing to do now is write the
ReturnTextManager function, which returns the itemText variable:

function ReturnTextManager(){return itemText;}

And that is literally it for this script, at least for the time being. We will return here in
a little while. The textMesh script will be displaying all text information.

Chapter 5

[165]

The textMesh script
Moving on to our next script to write, which will be our largest so far. The textMesh
script will pretty much display our informative text all over the screen. It will look at
the gameObject that it is attached to and, based upon that, determine the set of data
to display.

Let's move on to variables. First off, we need a variable to determine color.
This color will be our default and will be used in case a color is not specified
on particular text. Next, we need a variable to hold gameManager, one for the
PlayerStats script, another for referencing of an item's name, and one more to
reference the text component of the Unity TextMesh component. Then, the last to
be written are boolean variables for each object in the itemText variable of the
textManager script. At the moment, there needs to be only one:

public var newColor : Color = Color.black;
public var gameManager : GameObject;
private var playerStatScr : PlayerStats;
private var itemName : String;
private var myText : TextMesh;
private var itemDisplay : boolean = false;

Now, there are just two more functions to write. One for the Awake function and the
other for the display information.

In the Awake function, we want the myText variable to get a reference of the
textMesh component on the gameObject. We then create an if statement to grab
which gameObject we are on, based upon the name of the gameObject. In this case,
as it is only the one, we can just create the if statement for itemMultiplier and set
itemDisplay to true. Next, we will need to set the reference of the PlayerStats
script by using gameManager.GetComponent. Next, we need to make sure that our
default color chosen is applied at the very beginning. As the TextMesh component is
directly referencing the material of the gameObject, we can just change renderer.
material.color to our specified color. The last line to write in here is the calling
of DisplayInformation. It is to make sure that all information that needs to
be displayed, is displayed right off the bat. The variables for its parameters are
itemName and newColor:

function Awake()
{
myText = (GetComponent("TextMesh") as TextMesh);
 if(gameObject.name == "itemMultiplier")
 {
 itemDisplay = true;
 }

Dynamic GUI

[166]

playerStatScr = gameManager.GetComponent("PlayerStats");
renderer.material.color = Color.black;
DisplayInformation(itemName, newColor);
}

Now, let's move on to the DisplayInformation function. This function will
be looking at the text name coming in and its color, and depending on that, it
determines which information to display, where to display it, and how it should
be colored. Its parameters are String and Color.

First off, we have set the itemName variable equal to the incoming name (textName)
and the newColor variable equal to the incoming textColor. Then, we want to start
processing our information. We do an if check to determine which gameObject this
is. If itemDisplay, for instance, is true, we can proceed with item display, which
we are. Next, we have two if statements and one else statement. The if statements
are used to determine which item is selected based upon its name. Then, depending
on that, the color is applied from the function parameter and the necessary text
is displayed.

In order to display the necessary text, we must convert our wanted information,
an integer, into a string. To do this, we have a myText reference to the text input
and have it equal to the text that we don't want to change, which is represented
by the text in quotation marks concatenated with the information that needs to be
dynamically changing. Then a bracket wrapper needs to be put around the display
information. For our two-item if statements, the information that we want to
display is the current item count, which is being returned by the PlayerStats script.

The else statement that follows right after the if statements has a single line, which
defaults the item display text to null:

function DisplayInformation(textName : String, textColor : Color)
{
 itemName = textName;
 newColor = textColor;
 //
 if(itemDisplay)
 {
 if(textName == "healthPack")
 {
 renderer.material.color = newColor;
 myText.text = ("X " + playerStatScr.ReturnHealthCount());
 }

 else if(textName == "painKiller")
 {
 renderer.material.color = newColor;
 myText.text = ("X " + playerStatScr.ReturnPainCount());

Chapter 5

[167]

 }
 else
 myText.text = "";
 }
}

There we go. That is our textMesh script. There is more to add but at least the
foundation has been laid.

Revisiting the UseItem script
Now that we have our foundations laid in some other scripts, we can go back to our
UseItem script and add some additional functionality.

First off, we need to create some new variables. One variable of gameObject
type to hold reference to the item switching manager, another for referencing
the PlayerStats script, a float variable for healthPackValue, and one more
for referencing the Health script:

public var itemManager : GameObject;
private var playerStatScr : PlayerStats;
private var healthPackValue : float;
private var healthScr : Health;

Next, we need to create an Awake function. In here, we will be setting up the
referencing for the playerStatScr and healthScr variables and calling the
SethealthPackValue function.

Before we create the SethealthPackValue function, let's add a line of code at
the end of the SetItemName function. This line is identical to the one found in the
PlayerStats script inside the DecrementItemCount function except that you will
have to change the parameter of DisplayInformation from item to itemName:

gameObject.GetComponent("TextManager").itemText[0].
GetComponent("textMesh").DisplayInformation(itemName, Color.black);

Now, we can create the SethealthPackValue function. In here, there is a single line
that has healthPackValue referencing the ReturnHealthPackValue function from
the PlayerStats script:

function SethealthPackValue()
{
 healthPackValue = playerStatScr.ReturnHealthPackValue();
}

Dynamic GUI

[168]

Inside of the UseItem function, we need to add some functionality to
healthPack—if statement as well as some parameters to the if statement
itself. After checking for the input from the player for the Q button, we now need
to add two more parameters if we want to use the health kits with our health bar.

The first parameter to be added is to check that we have health packs remaining
for use and the second is to check that our current health is less than our maximum
health. The health pack count is coming from the ReturnHealthCount function
of PlayerStats, and ReturnCurrentHealth and SendHealthMax are from the
Health script:

.... && playerStatScr.ReturnHealthCount() > 0 && healthScr.
ReturnCurrentHealth() < healthScr.SendHealthMax())

Inside of the if statement, we need to call the DecrementItemCount function from
PlayerStats as well as give healthPackValue to the GetHealth function from the
Health script as its parameter:

playerStatScr.DecrementItemCount();
healthScr.GetHealth(healthPackValue);

The last line added to the function calls the next function—RemoveItemFromArray,
which we will write next.

The RemoveItemFromArray function checks if itemName coinciding with one it
knows has no more remaining uses. If the item has no more uses, it sends the
name of the currently selected item to the RemoveItemFromList function with
the ItemRemove function of UseItem on the ChangeItem script. After this line,
the ResetValues script from PlayerStats is called:

function RemoveItemFromArray()
{
 if(itemName == "healthPack" && playerStatScr.
 ReturnHealthCount() <= 0)
 {
 itemManager.GetComponent("Change_Item").
 RemoveItemFromList(ItemRemove());
 playerStatScr.ResetValues();
 }
}

Chapter 5

[169]

Revisiting the Health script
We are back in the Health script. We should not spend much time here as there is
only one function to write.

In order for us to be able to use a health pack and make it affect the visual
representation of the health bar, we need to add it to the existing current health.
By using the GetHealth function, we can receive a value and then add that value
to the existing health:

function GetHealth(inputHealth : float)
{
 currentHealth += inputHealth;
}

And so ends our time in the Health script again.

Creating armor
Now that we can see health packs working and all the foundations of the code are in,
we can go in and finish hooking up the armor scripts and functionality.

So, before we go ahead and rush towards creating the script, let's take a look at what
it is that needs to be done:

1. Create the Armor script.
2. Revisit the HealthBar script.
3. Revisit the Health script.
4. Revisit the UseItem script.

Dynamic GUI

[170]

The Armor script
The Armor script's functionality and looks are very similar to that of the Health
script, and as a matter of fact, we are going to ask you to copy several functions
and variables over and we can then tweak them.

First off, copy all of the following variables out of the Health script and paste them
into the Armor script:

•	 healthMax: Rename to armorMax
•	 healthMin: Rename to armorMin
•	 currentHealth: Rename to currentArmor
•	 healthBar: Don't rename
•	 healthBarScr: Don't rename

Also, add a boolean variable—armorActive to track when armor has been activated.

Next, we are going to copy over the following functions and rename some
variable names:

Awake function

	° Rename currentHealth and healthMax with their appropriate names
PlayerHealth function

	° Rename the KeyCode from - to A
	° Change all instances of currentHealth to currentArmor
	° Rename the KeyCode from + to D
	° Remove the if statement comparing the currentHealth amount
	° Add ArmorDrain function after second if statement
	° Wrap the if statements and the call of the ArmorDrain function in an

if statement with the parameter of armorActive
	° Send current armor to the armor function in the HealthBar script,

outside of the armorActive if statement
	° Rename PlayerHealth to PlayerArmor

Update function

	° Add GetArmorStatus function call
	° Rename PlayerHealth to PlayerArmor
	° Add ResetArmor function call

Chapter 5

[171]

Return functions

	° Rename ReturnCurrentHealth to ReturnCurrentArmor
	° Rename SendHealthMax to SendArmorMax
	° Rename SendHealthMin to SendArmorMin
	° Make sure they are returning their values

Finally, as there are no more variables or functions to copy, we can now add some
unique properties to this script.

Create a function called ArmorDrain. This function is going to drain the player's
armor upon the activation of the armor. There is an if statement in here comparing
to see if currentArmor is not yet equal to the armorMin value. In this statement, the
currentArmor variable should decrement by Time.deltaTime*2 in order to make it
drain one armor per second:

function ArmorDrain(){
 if(currentArmor > armorMin){ currentArmor -= Time.deltaTime*2;}
}

If you want to turn this functionality off, comment out the function call in the
PlayerArmor function.

The next function we want to write is the reset for currentArmor after the armor has
been depleted. Call the ResetArmor function. Have an if statement state that if the
armor is not active, it must have its currentArmor set to that of armorMax to make
sure that when the activation button is next pressed, the armor is ready to go:

function ResetArmor(){
 if(!armorActive){
currentArmor = armorMax;}
}

The last function to write in here is the GetArmorStatus function. In here, have
armorActive equal to SendArmorStatus from the HealthBar script:

function GetArmorStatus(){
armorActive = healthBarScr.SendArmorStatus();}

A few more tweaks here and there, well, nearly everywhere, and the painKiller
item will have the desired effect.

Dynamic GUI

[172]

Revisiting the HealthBar script
It is time to get some visual representation of the armor. Before we can really do
anything, we have to create some variables. We need to create an armor variable
that will hold the texture to represent it. So, just in case anyone wants to create
varying degrees of armor such as the health, we will make this variable have the
Texture2D[] type. Next, we need variables that represent armorMax and armorMin
followed by one variable for currentArmor and the other for keeping track of
its activation:

private var armorActive : boolean = false;
private var armorMax : float = 0;
private var armorMin : float = 0;
private var currentArmor : float = 0;
public var armorValue : Texture2D[];

Now, we are going to move on to function tweaking. In the Awake function, just
under healthMin and healthMax, you might want to copy those two and paste
them just underneath, and change the healthMin to armorMin and likewise for
healthMax. Change the GetComponent referencing from "Health" to "Armor" and
change the SendHealthMin and SendHealthMax functions to SendArmorMin and
SendArmorMax, respectively.

armorMin = gameManager.GetComponent("Armor").SendArmorMin();
armorMax = gameManager.GetComponent("Armor").SendArmorMax();

Next, create a function called Armor. This function will have a parameter of a float
and it will handle setting the rendering settings of the armor as well as turning the
armor off when the armor is depleted.

Inside of the function, first is an if statement. This statement will check if the armor
level has reached 0 and if it has, it will set the armorActive variable to false and call
the SendArmorStatus function. After this statement, change mainTexture to be equal
to that of the first index of the armorValue list array. After that, set the color value of
the emission to blue. Set the currentArmor variable to the armor value parameter:

function Armor(armor : float){
 if(currentArmor <= 0){
 armorActive = false;
 SendArmorStatus();
 }

 renderer.material.mainTexture = armorValue[0];
 renderer.material.SetColor("_Emission", Color.blue);

 currentArmor = armor;
}

Chapter 5

[173]

We now need to create the ActivateArmor function. The function will receive
a boolean value as its parameter. The armorActive variable is set to the
activate parameter:

function ActivateArmor(activate : boolean){
 armorActive = activate;
}

Next, we need to create a return function for the armorActive variable. Call it
SendArmorStatus:

function SendArmorStatus(){
 return armorActive;
}

Inside of the Health function, we will have to put an if statement wrapped around
everything. The parameter for the statement is to check that armorActive is false:

 if(!armorActive){
 Content.......
 }

There's just one more thing to do and we are done with this script. Inside the
HealthRiseFall function, we need to wrap the health rendering in an if statement
with the parameter of checking if armorActive is false. The second if statement is
an else if checking if armorActive is true. Copy the rendering for health and paste
it into this statement:

 if(!armorActive){
 Health Content.....
 }
 else if(armorActive){
 renderer.material.SetFloat("_Cutoff", Mathf.
 InverseLerp(armorMax,armorMin, currentArmor));
 }

Revisiting the Health script
We have a single tweak to do in this script. We need to wrap the input controls of the
PlayerHealth function inside of an if statement. The parameter for the statement is
going to check whether the SendArmorStatus function of the HealthBar script is
not activated:

if(!healthBarScr.SendArmorStatus()){
 Content....
}

Dynamic GUI

[174]

Revisiting the UseItem script
In order to get the armor functionality to work in the script, we need to create a
armorScr variable that will hold reference to the Armor script:

private var armorScr : Armor;

In the Awake function, have the armor script variable equal the Armor component off
the gameObject:

armorScr = gameObject.GetComponent("Armor");

Next, inside the UseItem function, we need to add the painKiller functionality
and if parameters. There is an if wrapper that will surround the content of the
function except for the bottom function—RemoveItemFromArray. The parameter
for the wrapper is checking if the SendArmorStatus function of the HealthBar
script is false:

if(!healthBar.GetComponent("HealthBar").SendArmorStatus())
 {
 if(itemName == "painKiller" && Input.GetKeyDown(KeyCode.Q)
 && playerStatScr.ReturnPainCount() > 0)
 {
 playerStatScr.DecrementItemCount();
 return healthBar.GetComponent
 ("HealthBar").ActivateArmor(true);
 }
}

Creating the weapons
It's time to get us some weapon display functionality. A lot of what is going to be
covered here is covered in much more detail in items. At the moment, we are going
to copy many functions and scripts for the scripts required for the weapons to work.
The following is what needs to be done:

1. Create the Change_Weapon script.
2. Create the UseWeapon script.
3. Revisit PlayerStats.
4. Revisit textMesh.
5. Revisit TextManager.

Chapter 5

[175]

The Change_Weapon script
This script, as said before, is very similar to the Change_Item script, however, it
will be easier for us to copy over what we need and modify the existing code.
Let's begin with variables.

Copy the variables over to the Change_Weapon script. The variables we will be
using are the itemLog array, increment, GameManager, itemtoadd, painKiller,
and healthPack. These are what we need but let's rename them now. Change
the itemLog array to weaponLog; increment, and GameManager can stay the
same. Change itemToAdd to weaponToAdd, painKiller to grenadeLauncher,
and healthPack to m16:

var weaponLog : Array = new Array();
private var increment : int = 0;
var GameManager : GameObject;
private var weaponToAdd : Texture2D;
var grenadeLauncher : Texture2D;
var m16 : Texture2D;

First off, from now on, change all itemLog variables to the weaponLog variable.

Next, we will copy over the Awake function. Change the Add instances of
painKiller and healthPack to grenadeLauncher and m16 respectively.
Change GetComponent("UseItem") to GetComponent("UseWeapon"),
the function name to GetWeaponName:

function Awake(){
 weaponLog.Add(grenadeLauncher, m16);
 renderer.material.mainTexture = weaponLog[increment];
 GameManager.GetComponent("UseWeapon").
 GetWeaponName(weaponLog[increment].name);
}

The next function to copy over is the AddItemToList function. Change the name of
the function to AddWeaponToList and call its parameter variable newWeapon. Inside
the function, have the weaponToAdd variable equal to the new weapon variable.
Next, using the Add function for arrays, add weaponToAdd to weaponLog. Increment
and then call the WeaponName function. As with the Change_Item script, this needs to
be called externally:

function AddWeaponToList(newWeapon : Texture2D){
 weaponToAdd = newWeapon;
 weaponLog.Add(weaponToAdd);
 increment = weaponLog.length - 1;
 WeaponName();
}

Dynamic GUI

[176]

Now, copy over the ChangeItem function. Change KeyCode to C and change
ItemName to WeaponName:

function ChangeWeapon()
{
 if (Input.GetKeyDown(KeyCode.C))
 {
 IncrementControl();
 renderer.material.mainTexture = weaponLog[increment];
 WeaponName();
 }
}

There is one more function to copy over. Copy over the ItemName function and
change its name to WeaponName. Delete everything in the function except for the line
referencing the itemLog[increment].name. With this line, we will change some of
its names and we are good to go. In GetComponent, put UseWeapon and change the
function name to GetWeaponName:

function WeaponName(){
 GameManager.GetComponent("UseWeapon").
 GetWeaponName(weaponLog[increment].name);
}
function Update (){
 ChangeWeapon();
}

The UseWeapon script
This script is going to handle the use of the equipped gun. So to get us firing, let's
set up some variables. These variables are going to be the weapon's name and a
reference for the PlayerStats script:

private var playerStatScr : PlayerStats;
private var weaponName : String = null;

To begin the functions, let's start with the Awake function. In here, we want to set the
reference of playerStatScr to that of the PlayerStats script:

function Awake(){
 playerStatScr = gameObject.GetComponent("PlayerStats");
}

Chapter 5

[177]

The next function is the GetWeaponName function with its weapon parameter as
String type. Inside of the function, we need to make weaponName equal to the
parameter variable. Then, we want to send the color and the weapon name to the
itemText in the second slot. This line is found in UseItem. Change itemName in
DisplayInformation to weaponName and the index of itemText to 2:

function GetWeaponName(weapon : String)
{
 weaponName = weapon;
 gameObject.GetComponent("TextManager").itemText[2].
 GetComponent("textMesh").DisplayInformation(weaponName, Color.
black);
}

A couple more functions to go. UseWeapon is the next function to write. This function
will have two if statements that will check if the weapon name is equal to it, if the
player has pressed the F key, and if the ammo reference from PlayerStats is greater
than zero:

function UseWeapon()
{
 if(weaponName == "m-32" && Input.GetKeyDown(KeyCode.F) &&
 playerStatScr.ReturnM32AmmoCount() > 0)
 {
 playerStatScr.DecrementAmmoCount();
 }
 if(weaponName == "m16" && Input.GetKeyDown(KeyCode.F) &&
playerStatScr.ReturnM16AmmoCount() > 0)
 {
 playerStatScr.DecrementAmmoCount();
 }
}

Two functions remain. Call the UseWeapon function inside the Update function and
return the weapon name with the WeaponRemove function:

function Update (){
 UseWeapon();
}
function WeaponRemove(){ return weaponName; }

Dynamic GUI

[178]

Revisiting PlayerStats
There are a couple of variables to add to this script involving weapons. These
variables will be public. One will be m16Ammo and the other will be m32Ammo:

public var m16Ammo : int = 100;
public var m32Ammo : int = 10;

Now, we need to create and modify some functions. Copy the decrementItemCount
function and paste it below. Rename the function to DecrementAmmoCount. Create
the weapon variable inside of the function and give it a String type. This variable
is going to be equal to the returned weapon name from the UseWeapon script
function—WeaponRemove. Next, just rename things appropriately, weapon in place of
item, "m16" for painKiller, "m-32" for healthPack and change in the health and
pain counts for the respective ammos. For the last line in the function that references
textMesh, all that needs to be done is changing the list index on itemText to 2 and
changing item to weapon:

function DecrementAmmoCount()
{
 var weapon = gameObject.GetComponent("UseWeapon").WeaponRemove();
 if(weapon == "m16")
 {
 m16Ammo -= 1;
 }
 else if(weapon == "m-32")
 {
 m32Ammo -= 1;
 }
 gameObject.GetComponent("TextManager").itemText[2].GetComponent
 ("textMesh").DisplayInformation(weapon, Color.black);
}

Inside of the ResetValues function, we need to add two if statements. Each checks
a different gun's ammo and if it is at 0, it then replaces the ammo clip:

 if(m32Ammo <= 0)
 m32Ammo = 10;
 else if(m16Ammo <= 0)
 m16Ammo = 100;

Chapter 5

[179]

The last two functions to create are return functions. Each one returns a different
gun's ammo count:

function ReturnM16AmmoCount(){ return m16Ammo;}
function ReturnM32AmmoCount(){ return m32Ammo;}

Revisiting the textMesh script
We only have a couple of small additions to be made to the script. A new variable is
needed that checks to see if the gameObject is the weaponMultiplier:

private var weaponDisplay : boolean = false;

In the Awake function, this is used to switch the weaponDisplay flag to true if the
gameObject name is correct:

if(gameObject.name == "weaponMultiplier")
 {
 weaponDisplay = true;
 }

There is still one more change to be made. In the DisplayInformation function,
you need to copy the itemDisplay if statement and paste it below it. Change the
textName to "m16" and "m-32", and change the playerStatScr return functions to
those that are for m16 and m32. Remove the else statement.

 else if(weaponDisplay)
 {
 if(textName == "m16")
 {
 renderer.material.color = newColor;
 myText.text = ("X " + playerStatScr.ReturnM16AmmoCount());
 }

 else if(textName == "m-32")
 {
 renderer.material.color = newColor;
 myText.text = ("X " + playerStatScr.ReturnM32AmmoCount());
 }
 }

Dynamic GUI

[180]

Scripting and displaying the score
system
Now that health, items, and weapons are being displayed and working, why don't
we add some scoring into the mix. We create a script that allows a player to save
his score at the press of a button and save it to a text field so that he may come back
at a future date and his same file will still exist. The high score will be displayed on
screen and when the current score reaches and surpasses the high score, the high
score will automatically start updating. Lastly, when the player saves the score, a
prompt will pop up letting him know that he has saved his game.

The following steps will take us to our goal:

1. Create the Score script.
2. Create the SaveScore script.
3. Create the timer script.
4. Revisit the textMesh script.

The Score script
The Score script is rather small and will be our foundation for keeping track of our
score. There are two variables that we need to create. One will keep track of our score
and the other will be used as a reference to the textManager script:

private var currentScore : int = 0;
private var textManager : TextManager;

In the Awake function, we need to have the textManager reference the
TextManager script.

The next function allows us to increment the score and send information to the
score's associated itemText when a player presses the P key. The itemText index
needed is number 3 and the String parameter of the DisplayInformation function
is "score":

function AddScore()
{
 if(Input.GetKeyDown(KeyCode.P))

Chapter 5

[181]

 {
 currentScore += 5;
 gameObject.GetComponent("TextManager").
 itemText[3].GetComponent("textMesh").DisplayInformation
 ("score", Color.yellow);
 }
}

The Update and ReturnScore functions are the last functions remaining. In the
Update function, call the AddScore function and in the ReturnScore function,
return currentScore:

function Update(){ AddScore();}
function ReturnScore(){ return currentScore;}

This save system that we are creating is really cool. It has many possible uses but,
for the time being, this use will suffice for teaching how to go about utilizing text
documents, and reading and writing to and from them, respectively. As can be
thought, this method can have the functionality of save systems like inventory,
score, or random seeds for the building of randomly generated worlds.

For this script, we first have to import system input and output. This is represented
by writing import System.IO:

import System.IO;

Next, we bring that in, so we need to bring in variables. We are going to have
a display for when we write to the file so we need a variable for that. Make
it GameObject and call it saveDisplay. The next variable is sw, which is of
StreamWriter type followed by sr, which is of StreamReader type. We will
then need variables for the score. One each for savedHighScore, currentScore,
displayScore, and highScore. Lastly, we need reference variables for the Score
script and textManager:

public var saveDisplay : GameObject;
private var sw : StreamWriter;
private var sr : StreamReader;
private var savedHighScore : int;
private var currentScore : int;
private var displayScore : int;
private var highScore : int;
private var scoreScr : Score;
 private var textManager : TextManager;

In the Awake function, we will first turn the renderer off on the save display by
disabling it. Then, we will want to set the score reference variable to the Score
script. The same can be done for textManager.

Dynamic GUI

[182]

Reading from the text file
The next part here is where we begin reading from the text file, because these files
need to exist before they can be accessed. We will write the code and then make the
files so that you can make sure that things are working appropriately.

To read from the file, we use the StreamReader function. The StreamReader
function takes the application path to the file and opens its contents. The actual
name of the file is also needed. Next, we need to create a new variable called
fileContents and have it equal to the sr.ReadToEnd() function. What this does
is set all the information in the file into a single text but at the same time, remember
where a new line was created.

Next, we no longer need the file to be open so we can just close the file by calling
the Close function on the sr variable. We will then create another variable that
will hold the lines of the file. To do this, we will call the Split function on the
fileContents variable. We specify the type of split that we would like to perform
and as we have information on different lines, we use \n (new line), and also where
to start by stating a list index. Then, after knowing that the information has been
split into individual lines and our score information is now separate and can be
read, we have the savedHighScore variable equal to the line that the information is
on by converting the string information or into an integer with parseInt(). We
then proceed on and have the highScore variable to be equal to savedHighScore.
Lastly, we need to send our high score information to be displayed. As the
itemText list variable has the highscore variable in the fifth place, we use that
index for itemText. So, in this case that would be 4. The information for the
DisplayInformation is "highScore" and the Color is red:

function Awake(){
 saveDisplay.renderer.enabled = false;
 scoreScr = gameObject.GetComponent(Score);
 textManager = gameObject.GetComponent("TextManager");
 sr = new StreamReader(Application.dataPath +
 "/Save_ScoreFiles/Saved_High_Score.txt");
 var fileContents = sr.ReadToEnd();
 sr.Close();
 var lines = fileContents.Split("\n"[0]);
 savedHighScore = parseInt(lines[1]);
 highScore = savedHighScore;
 gameObject.GetComponent("TextManager").itemText[4].
 GetComponent("textMesh").DisplayInformation("highScore", Color.
red);
}

Chapter 5

[183]

Writing to the text file
This next function deals with writing information to the text files and goes by the
name HighScore. It will handle taking the existing score and comparing it with what
is stored as the high score. If the new score is larger than the high score, highscore
updates as currentScore updates.

First, we set out currentScore to what is being displayed, as there can sometimes be
a lag in information transfer. Next, we compare the high score and the current score.
If the current score is equal or higher, we continue in the statement. The highscore
becomes equal to the current score so that it may start updating in real time.
savedHighScore becomes equal to highScore, and the StreamWriting process
starts. sw will be equal to the same datapath that was established in the Awake
function. Then using the StreamWriter variable sw, use the WriteLine function
to state what needs to be written. In this case, on the first line, we have put what
is to represent and the following line that will be represented. Repeat the process
of writing the line again. However, the problem that arises here is that we want to
write an integer to the file. To do this, we need to convert the integer information to a
string. This is accomplished by concatenating a string value, double quotes, with the
value to be converted, savedHighScore. After that, close the file.

function HighScore(){
 currentScore = displayScore;
 if (currentScore >= highScore)
 {
 highScore = currentScore;
 savedHighScore = highScore;
 sw = new StreamWriter(Application.dataPath +
 "/Save_ScoreFiles/Saved_High_Score.txt");
 sw.WriteLine("Score: ");
 sw.WriteLine(savedHighScore + "");
 sw.Close();
 }
}

Next, it is time to set up displaying the current score as it reaches the high score and
awaiting the player's response to save the high score.

Dynamic GUI

[184]

We want displayScore to become equal to the score being returned by the
ReturnScore function. Next, we compare that score with the high score and if it is
higher, the high score equals that of the current score. This time, we change the color
of the high score to show that a change has occurred:

displayScore = scoreScr.ReturnScore();
if(displayScore > highScore){
 highScore = displayScore;
 gameObject.GetComponent("TextManager").itemText[4].GetComponent
 ("textMesh").DisplayInformation("highScore", Color.green);
 }

An if statement follows the preceding code snippet, which checks for the players
pressing of the B key. If it is done, we toggle the saveDisplay renderer to true,
start the display timer, and save the current high score.

The last function to write is ReturnHighScore and it returns highScore.

The timer script
The timer script does exactly what its name implies, it times, and in this case, it acts
like a countdown timer. The script requires three variables. One for the begin time,
one for the cutoff time, and one to keep track of the current time:

public var startTime : float = 1;
public var minTime : float = 0;
private var currentTime: float = 0;

Next, we will want to create the Awake function. In here, initialize currentTime
as startTime:

function Awake(){
 currentTime = startTime;
}

After the Awake function, we will create the DisableRenderer function. We do a
check and see if currentTime is greater than minTime. If it is, then we decrease
currentTime by Time.deltaTime and if it is not, then we turn the renderer off
and reset the timer:

function DisableRenderer(){
 if(currentTime > minTime){
 currentTime -= Time.deltaTime;
 }
 else{
 renderer.enabled = false;
 currentTime = startTime;
 }
}

Chapter 5

[185]

Lastly, we create the FixedUpdate function. This works nicely for time and gives
accurate feedback:

function FixedUpdate(){
 DisableRenderer();
}

Revisiting the textMesh script
Alas, we are back in the textMesh script. We need to create four new variables. Two
will be for the boolean check to see which gameObject they are on, and the other
two are for accessing the Score script as well as the SaveScore script:

private var saveScoreScr : SaveScore;
private var scoreScr : Score;
private var scoreDisplay: boolean = false;
private var highScoreDisplay : boolean = false;

In the Awake function, check highScoreDisplay if they are of gameObject type.
Do the same for scoreDisplay. Just below the PlayerStats referencing, set up
the referencing for the SaveScore script and the Score script:

else if(gameObject.name == "scoreDisplay"){
 scoreDisplay = true;
 }
 else if(gameObject.name == "highScoreDisplay"){
 highScoreDisplay = true;
 }
 scoreScr = gameManager.GetComponent("Score");
 saveScoreScr = gameManager.GetComponent("SaveScore");

In the DisplayInformation function, create two else if statements at the end of
the function, make one of them check if scoreDisplay is activated and make the
other check if highScoreDisplay is activated.

Inside each, make them check if incoming textName is the one that they need
to compare. Then, inside of that if statement, put the renderer color to the
newColor. Lastly, set the text for score to ReturnScore from the Score script
and ReturnHighScore from the SaveScore script:

else if(scoreDisplay){
 if(textName == "score"){
 renderer.material.color = newColor;
 myText.text = ("SCORE: " + scoreScr.ReturnScore());
 }
 }

Dynamic GUI

[186]

 else if(highScoreDisplay){
 if(textName == "highScore"){
 renderer.material.color = newColor;
 myText.text = ("HIGH SCORE: " +
 saveScoreScr.ReturnHighScore());
 }
 }

Displaying the objectives
As this chapter has been about the creation and implementation of visual indications
of various kinds, we believe it would make sense if we actually showed these
functions working appropriately. We will write a Displaying Objectives script
to do this.

This script will allow players to have the current objective displayed on screen and
then upon triggering or giving an input, have that objective changed to the next one.
Perform the following steps:

1. Revisit TextManager.
2. Revisit textMesh.

Revisiting TextManager
Just a few things to tackle in here to get objective display working. This script
essentially is going to act as an objective manager. The player will be able to
keep and display as many objectives as he wishes. As the O button is pressed,
the objective array increments itself to display the next objective in the array.

Two variables need to be added. One will be the String list and the other will
be increment:

var objectiveArray : String[];
private var increment : int = 0;

Access the DisplayInformation function through the Awake function. Create
newText and Color.blue as its parameters:

function Awake(){
 itemText[1].GetComponent("textMesh").DisplayInformation("newText",
 Color.blue);
}

Chapter 5

[187]

An increment control is required to control the flow through the array. An
explanation on this is given earlier in this chapter:

function IncrementControl(){
 if(increment != objectiveArray.length - 1){
 increment += 1;
 }
 else{
 increment = 0;
 }

}

The next function is ChangeObjective and it does just that. Two functions are called
in here. One is Objectives and the other is IncrementControl:

function ChangeObjective()
{
 Objectives();
 IncrementControl();
}

The second last function to create is the Update function. We have an if statement
checking for player input for the O key. If the player does press the O key, call the
DisplayInformation function again to get it to display the next message:

function Update()
{
 if(Input.GetKeyDown(KeyCode.O))
 {
 itemText[1].GetComponent("textMesh").
 DisplayInformation("newText", Color.blue);
 }
}

Finally, create the Objectives function. This function will return the current
objective to be displayed:

function Objectives(){ return objectiveArray[increment];}

Revisiting textMesh
As we have done with the previous HUD elements, a new variable needs to be
created. That variable is ObjectiveDisplay and is boolean:

private var ObjectiveDisplay : boolean = false;

Dynamic GUI

[188]

In the Awake function, we need to check if this gameObject is ObjectiveDisplay; if
it is, the flag is true:

 else if(gameObject.name == "ObjectiveDisplay"){
 ObjectiveDisplay = true;
 }

In the DisplayInformation function, create an else if statement with
ObjectiveDisplay as its parameter. Inside it, create an if statement that checks if
textName is equal to its own. If it is, it sets the renderer color to the parameter color.
It also sets the text display of the attached textMesh to the current Objective being
returned from textManager and the Objectives function. After this, the increment
control in the text manager is activated to make sure that the next time a player
presses that button, the next message appears:

 else if(ObjectiveDisplay){
 if(textName == "newText"){
 renderer.material.color = newColor;
 myText.text = ("Current Objective: " +
 gameManager.GetComponent("TextManager").Objectives());
 gameManager.GetComponent("TextManager").
IncrementControl();
 }
 }

Hooking up HUD
This part is going to be a checklist to make sure that everything is displaying and set up
properly. The following screenshot is an example of the HUD we have been building:

Chapter 5

[189]

We are going to go through it based upon our layout, so first off, we are going to
make sure that your layout is similar to mine, so that if you have any errors or
questions, it will be easy to navigate through what is going on. With that being said,
let's structure our HUD layout like we have here in Hierarchy. Once done we will
move on to each gameObject and make sure that the right objects are hooked up
and that no questions are left unanswered towards the hooking up of this HUD.

Game manager
Make sure that all these scripts are attached and have correct values in them, as
shown in the following screenshot:

Dynamic GUI

[190]

Make sure that in the Text Manager script, Text Mesh and Objective Array have the
correct items hooked up, as shown in the following screenshot:

Health
This is an example of the Health Bar script. Make sure that all texture elements are in
place, as shown in the following screenshot:

Chapter 5

[191]

Item_Pic
Make sure that you hooked up the correct Game Manager, Pain Killer, and
Health Pack scripts. They should have textures that represent them, as shown
in the following screenshot:

ItemMultiplier, highScoreDisplay,
ObjectiveDisplay, scoreDisplay, and
weaponDisplay
Everything that has to deal with text needs to have parameters like those given in the
following screenshot:

Dynamic GUI

[192]

saveDisplay
Make sure that the Timer and Text Mesh scripts are set up properly, as shown in the
following screenshot:

Weapon_Pic
Last, but not least, weapon pictures. Make sure that all weapons have correct
pictures attached to the variables, as shown in the following screenshot:

Chapter 5

[193]

Creating the targeting system
Having an indicator lets you know what your projectile is going to be doing. It is
a great asset to have. This targeting system uses a line renderer to show what is
happening with the trajectory curve, a reticule target of where it is going to land and
the player has control over the steepness of shot, the distance it will shoot, and the
horizontal angle.

The following are the steps that we need to take in order to create a targeting system:

1. Create the Bezier equation script.
2. Create the ArcBehaviour script.
3. Hook it up in editor.

Dynamic GUI

[194]

Creating the Bezier equation script
The Bezier equation script will handle the equation for setting up the quadratic
points to allow us to get a smooth curve along the line renderer. This was brought
to my attention recently on a Unity3D forum. This Bezier equation can be written
as follows:

x(t) = axt3 + bxt2 + cxt + x0

First, we need to create the variables. There are only two, and they are segments.
The first one will determine the number of segments along the line, and the second
is lineRenderer of LineRenderer type:

var sections : float = 10.0;
private var lineRenderer : LineRenderer;

In the Awake function, make the lineRenderer variable reference the LineRenderer
component on its gameObject. After that, set the lineRenderer vertex count to the
number of segments:

function Start(){
 lineRenderer = GetComponent(LineRenderer);
 lineRenderer.SetVertexCount(segments);
}

The next function that needs to be created is the GetQuadraticCoordinates
function. This function will set up the Bezier equation. The function takes
parameters, such as t for time, p0 being the originating position, c0 for the
center position, and p1 for the end position:

 function GetQuadraticCoordinates(t : float, p0 : Vector3 , c0 :
Vector3 , p1 : Vector3) : Vector3
{
 return Mathf.Pow(1-t,2)*p0 + 2*t*(1-t)*c0 + Mathf.Pow(t,2)*p1 ;
}

The last function to write is the Plot function, which sets up the location of the
points that will be used to determine the positioning of the line renderer:

function Plot(p0 : Vector3 , c0 : Vector3 , p1 : Vector3){
 var t : float ;
 for (var i : int = 0 ; i < segments ; i++)
 {
 t = i/(sections-1) ;
 lineRenderer.SetPosition (i ,GetQuadraticCoordinates(t , p0 , c0
, p1));
 }
}

Chapter 5

[195]

ArcBehaviour
The ArcBehaviour script handles the locations of the beginning, middle, and end
of the arch to be created. It then sends the position locations to the bezier.plot
function for calculation.

The variables to be calculated are start, middle, and end to define the arch and they
are of the Transform type. Other variables are maxHeight at which the middle point
may achieve a reference to the Bezier script, a reference to the moveObject script,
and the manager of the projectile:

public var start : Transform ;
public var middle : Transform ;
public var end : Transform ;
public var maxHeight : float = 200;
public var playerController: GameObject;
private var bezier : Bezier;
private var moveObjectScr : moveObject;

Inside of the Awake function, we will have the reference of the moveObject script
from the manager, and the reference of the Bezier script:

function Awake(){
 moveObjectScr = playerController.GetComponent("moveObject");
 bezier = GetComponent(Bezier);
}

After this function, we will have the Update function declared. In here, we will set the
position for the middle. This will determine the trajectory. We will also make the end
point follow the mouse. And finally, we will set the coordinates for both the bezier.
plot function and the moveObject script GetQuadraticCoordinate function:

function Update()
{
 var mousePos = Input.mousePosition;
 var yPosition : float ;
 yPosition = Mathf.Min(Screen.height , Mathf.Max(mousePos.y,0));
 middle.position.y = (yPosition / Screen.height) * maxHeight ;
 middle.position.z = -mousePos.x;
 end.position.z = -mousePos.x;
 bezier.Plot(start.position , middle.position , end.position);
 moveObjectScr.GetQuadraticCoordinates(start.position , middle.
position , end.position);
}

Dynamic GUI

[196]

The moveObject script
The moveObject script will handle the movement of an object along the project
trajectory arch.

To set the script up, we will need some variables. We will need two that are of
GameObject type; one for our projectile, the other being for the arcManager. We
will need a reference variable for our Bezier script and then three variables start,
middle, and end of the Vector3 type to represent the start, the middle, and the end
of the arch:

var mortars : GameObject;
var arcManager : GameObject;
private var bezierScr : Bezier;
private var start : Vector3;
private var middle : Vector3;
private var end : Vector3;

Inside of the Awake function, we will set the arcManager script to Arc gameObject
and bezierScr will reference the Bezier script on arcManager:

function Awake(){
 arcManager = gameObject.Find("Arc");
 bezierScr = arcManager.GetComponent("Bezier");
}

Next, in the GetQuadraticCoordinates function, we need it to have three Vector3
parameters, those being stP, midP, and endP. Inside the function, we have our
coinciding variables equal to their matches:

function GetQuadraticCoordinates(stP : Vector3, midP : Vector3, endP :
Vector3){
 start = stP;
 middle = midP;
 end = endP;
}

Chapter 5

[197]

The Shoot function follows after the preceding section. There is an if statement in it
that checks for the player's input of the left mouse button. If it receives this value, it
will create a mortar and fire the projectile along the arch landing in the centre of
the reticule:

function Shoot(){
 if(Input.GetMouseButtonDown(0))
 {
 var newMortar : GameObject = Instantiate(mortars,
 Vector3(transform.position.x, transform.position.y +15,
 transform.position.z), transform.rotation);
 newMortar.transform.position =
 bezierScr.GetQuadraticCoordinates(Mathf.Lerp(0.0,1,Time.time)
,
 start , middle, end);
 }
}

Lastly, we will call the Shoot function in the Update function:

function Update(){Shoot();}

Hooking it up in the editor
Luckily for this project, the trajectory is found already put together for you inside
the asset folder for this chapter. It is called Trajectory. Drag it to the Hierarchy
view and you will have it set up. Remember that you can modify the end, middle,
and start points to change the shape of the arch.

Summary
That's it, we are done! We hope that this example will give you a better
understanding of how to create a dynamic HUD, and use of plane primitives
and tricks to create it without using GUI.

In the next chapter, we will look into the creation of a game controlling system, cover
sound mixing, and put all the pieces of our game together.

Game Master Controller
This chapter is dedicated to one of the most important parts of game
development—putting all the pieces together and making them work as
one solid project. In this example, we will learn how to create and set up a
game manager, which will control transitions from one scene to another, track
mission completing, stream new scenes as we go, save player's progress when
checkpoint is hit, and play ambient music. The following list shows what we
will look into:

•	 Game managers
•	 Level streaming
•	 Mission creation
•	 Saving and loading
•	 Audio sources and listeners
•	 Sound settings
•	 Attaching audio to the basic actions (shooting, walking,

and intractable objects)

Game Master Controller

[200]

Game manager theory
Why do we use game managers? In reality, this simple question has a simple answer;
the game managers help us to organize our work. For more efficient use, we can
create managers to control the behavior of a particular part of the game such as the
HUD, save/load system, mission management, and so on. As we create content
for the game, it starts to grow and keeping track of every single function, class,
and object becomes a very difficult task. To simplify navigation, we will put all the
related functionality into separate managers, which makes it easier to find and keep
track of in the future.

Creating game managers
There are many ways to create a game manager, and it really depends on the game
and type of structure that the developer has in mind. In this example, we will create
two game managers—world manager that will contain all the information about
scenes, missions and will handle the saving system, and audio manager that will
control ambient music. Perform the following steps:

1. Create a new script, and call it WorldManager.
2. Declare a new static private variable of a WorldManager type,

and call it instance.
3. Declare a new static public function called GetInstance().

The WorldManager script should be as follows:

static private var instance : WorldManager = null;
static public function GetInstance(){
if(!instance){
instance = FindObjectOfType(WorldManager);
if(!instance){
Debug.LogError("WorldManager does not exist");
}
return instance;
}
}

Chapter 6

[201]

Here, we check if the instance of world manager has been assigned to the instance
variable. If not, we will look for an object of a WorldManager type in the scene and
return the instance (FindObjectOfType finds and returns first active loaded object
of a specified type). If we don't succeed in that, we will have to report a debug error
that world manager doesn't exist in the scene and needs to be created there. The
instance variable is static; you will find more information about the static
variables in the appendix. At this point, it is enough to say that the static variables
exist throughout the entire lifetime of the project and can be accessed from any script
(think of them as the advanced public variables, but don't use them unless you
absolutely have to).

instance is equal to null, because we need to create this instance dynamically
through code. We will use this function to retrieve the instance of the world
manager or find one if it wasn't assigned.

Level streaming
In this example, we will look into a level-loading feature inside Unity. In the Scenes
folder, we have five levels as follows:

•	 FrontEnd: This will serve as a starting screen for our game
•	 Level 1, Level 2, and Level 3: These are the three levels that will be

loading as our character goes through the game
•	 EndGameScene: This will be shown if a player dies or fails to complete

the objective

Game Master Controller

[202]

The following screenshot shows the five levels mentioned in the preceding section:

Chapter 6

[203]

To make Unity recognize these scenes as levels from our game, we need to manually
assign them in the project properties. Perform the following steps:

1. Go to File | Build Settings..., and have the FrontEnd scene loaded. Click on
the Add Current button. Current scene will be included in the game build
and will be assigned an index number that we will be using to reference the
scene in the code.

2. Load up each level one by one and include them in the build. Make sure
that each level has an index that is the same as its number; this will make
referencing easier for us. EndGameScene should go last.

3. In the WorldManager script, declare the Awake function:
function Awake(){
DontDestroyOnLoad (transform.gameObject);
}

Game Master Controller

[204]

Having used scenes before, you would probably notice that as soon as you load
a new scene, all objects from the old one disappear. To prevent objects from
disappearing, we can tell Unity to avoid destroying the specified object.

DontDestroyOnLoad is the function that tells Unity that a
particular object needs to remain constant throughout the game
and should not be destroyed when we change the scene.

Mission creation
Let's say we want the player to hit the button in the Level 1 with a bio gun primary
fire to open the door that will load the new level.

We will create a script for two types of buttons. The first one will be activated by the
projectile and will open the door, as shown in the following screenshot:

The other button will be activated with a player stepping on it and will be used to
open a second door, as shown in the following screenshot:

Chapter 6

[205]

To create a multipurpose script, we will need variables that identify a type of
specific button, and flags that will determine if buttons can be activated or if they
are currently active. We determine whether a button is activated or not with the
OnCollisionEnter function and will move the button down afterwards. Perform
the following steps:

1. Declare the ButtonType and Activation variables of a integer type, and
the bActivated and canBeActivated variables of a boolean type.

2. Declare the OnCollisionEnter function.
3. The first thing that we need to check is whether the button can be activated.

If it can't be, then we will return from the function. The next step is to check
the type of the button and the tag of the collided object.

Game Master Controller

[206]

4. In the first case, we need to set bActivated to true and canBeActivated to
false, and increment the Activation variable.

5. In the second case, we also need to toggle the bActivated and
canBeActivated boolean variables.

6. In our example, we will be opening doors whenever the buttons are
activated. Let's declare the required variables.

7. In the Awake function, we need to store the original location of the moved
doors and buttons into the variables.

8. In the Update function, we will handle opening the doors based on
their type.

9. In the Button script, add the following code snippet:

public var Door1 : GameObject;
public var Door2 : GameObject;
public var ButtonType : int;
static var Activation: int;
public var bActivated: boolean;
private var canBeActivated: boolean;
private var DoorOneStartPosition: Vector3;
private var DoorTwoStartPosition: Vector3;
private var ThisStartPosition: Vector3;
function OnCollisionEnter(other : Collision){
if (!canBeActivated)
return;
if (ButtonType == 1 && other.gameObject.tag == "projectile"){
bActivated = true;
canBeActivated = false;
}
else if (ButtonType == 2 && other.gameObject.tag == "Player"){
bActivated = true;
Activation ++;
canBeActivated = false;
}
}
function Awake(){
 ThisStartPosition = this.transform.position;
 if(Door1)
 DoorOneStartPosition = Door1.transform.position;
 if(Door2)
 DoorTwoStartPosition = Door2.transform.position;
}

Chapter 6

[207]

function Update(){
if(bActivated == true){
 if (ButtonType == 1){
 this.transform.position =
 Vector3.Lerp(this.transform.position, ThisStartPosition +
 Vector3(0.5, 0, 0), Time.deltaTime);
 Door1.transform.position =
 Vector3.Lerp(DoorLeft.transform.position,
 DoorLeftStartPosition + Vector3(0,7,0), Time.deltaTime);
 }
 else if (ButtonType == 2){
 transform.position = Vector3.Lerp(this.transform.position,
 ThisStartPosition + Vector3(0, -0.5, 0), Time.deltaTime);
 if (Activated == 2)
 Door2.transform.position =
 Vector3.Lerp(Door.transform.position,
 DoorStartPosition + Vector3(0, 7, 0),
 Time.deltaTime);
 }
 }
}

Activation will be used to calculate the number of buttons activated by a player.
bActivated will be used for the projectile activated button, and as we are not
referencing any other buttons, this variable can remain public. canBeActivated
will help us to disable the button when it gets activated.

The Vector3.Lerp function will be moving the door until it reaches the offset
destination and is saved to use in the Update function. That is it for now; we will
return to that function later after talking about level loading.

Managing levels
Now that the basic functionality of the buttons is written, we need to make them
load levels for us. There are multiple ways to load scenes; one of them is to destroy
the current scene and load a new one. This can be done with the Application.
LoadLevel(levelindex : int) function. (For this function to work, our scene needs
to be included into level array in the Build Settings window. levelindex is used
to reference it) But, what if we don't wish to destroy the current level, and need
to load a new scene on top of the existing one? For this to work, we can use the
Application.LoadLevelAdditive(levelindex : int) function, which will load a
new level without destroying the current one. This option is very useful when we
are working with a limited amount of memory and want only the required pieces
of levels to exist, by loading new parts and destroying the old ones.

Game Master Controller

[208]

In our case, buttons don't need to destroy previous levels, but only load new ones
when the time is right.

In the OnCollisonEnter function, if our ButtonType is 1, we will load the second
level on top of the current one:

Application.LoadLevelAdditive(2);

The same thing needs to be done to the Update function under the ButtonType 0:

else if (ButtonType == 2){
Application.LoadLevelAdditive(3);

Save/load system
In the previous chapter, we have already covered writing data in the text file
and retrieving it back with Windows libraries. Now, we will do the same with
checkpoints, plus learn how to dynamically create directories and files if they
don't exist.

There is some information, which we will be saving in the save file that we need to
set up, before going into save/load functions.

The following are the variables that we need to declare in the WorldManager script,
which will be used in the saving system:

private var PlayerHealth : int;
private var AmmoPrime : int;
private var AmmoAlt : int;
private var Money : int;
static private var currentLevel : int;
static public var levelState : String;
static private var Missions : int[] = [0, 0, 0];
static public var CurrentSpawnPointIndex : int = 1;

Private player information (PlayerHealth, AmmoPrime, AmmoAlt, Money) will be
retrieved from the CH_PlayerStats script and set back with the SetStats function.
We will use them to set the player's statistics to where they were when the player
was last saved. currentLevel is a static variable that will keep track of the level
needed to be loaded. levelState will tell us about the state of the game. We will use
that to check whether the game is in play mode, or whether the player has failed and
we need to load the dying scene. Missions is an array of integers that will keep track
of mission progress. CurrentSpawnPointIndex is self-explanatory; we will use it to
spawn the player at the right spawnpoint.

Chapter 6

[209]

To save the player statistics, we need to reference the script that is attached to our
player. We will use the FindWithTag function, which will help us to find the object
with a Player tag out of all the objects in the scene:

public function SetStats(PlayerHealth : int ,AmmoPrime : int, AmmoAlt
: int, Money : int){
var PlayerStats : CH_PlayerStats = GameObject.FindWithTag("Player").
GetComponent("CH_PlayerStats");

We will need to create a static function to save the game from any script. Declare a
new static function called SaveGame:

static public function SaveGame(){}

The rest of this function will write information into the text file:

var file = new StreamWriter(Application.dataPath + "/Saves/SavedGame.
txt");
file.WriteLine(currentLevel);
file.WriteLine(CurrentSpawnPointIndex);
if (GameObject.FindWithTag("Player")){
var PlayerStats : CH_PlayerStats = GameObject.FindWithTag("Player").
GetComponent("CH_PlayerStats");
file.WriteLine(PlayerStats.GetHealth());
file.WriteLine(PlayerStats.GetAmmo(0));
file.WriteLine(PlayerStats.GetAmmo(1));
file.WriteLine(PlayerStats.GetMoney());
}
file.WriteLine(Missions[0]);
file.WriteLine(Missions[1]);
file.WriteLine(Missions[2]);
file.Flush();
file.Close();

Declare a new function called Initialize():

public function Initialize(){}

We will start Initialize with setting level state. Create a new function called
SetLevelState; it needs to be static and will take String as an argument,
which will be assigned to the current state of the game:

static function SetLevelState(newState : String){
levelState = newState;}

Game Master Controller

[210]

Later, we will need the set and get functions for the Missions array and the
CurrentSpawnPointIndex variable, so we might as well set and declare them now.
In the case of the Missions array, it's the only one that needs both the set and get
functions and an extra variable to take an index of the array:

static public function MissionStatusCheck (missionIndex : int){
 return Missions[missionIndex];}
static public function SetMissionStatus (missionIndex : int, status :
int){
Missions[missionIndex] = status;}
static public function SetCheckPoint(newCheckPoint : int){
 CurrentSpawnPointIndex = newCheckPoint;}

Back to the Initialize function, we need to check whether the directory exists, and
if not, create it, just like we did in the SaveGame function. However, in this function,
we also need to check if the save file exists:

if(!Directory.Exists("Assets/Saves/")){Directory.
CreateDirectory("Assets/Saves/");}
if (File.Exists(Application.dataPath + "/Saves/SavedGame.txt")){}
If file indeed exists we need to read all data from it and assign to
our variables.
var file = new StreamReader(Application.dataPath + "/Saves/SavedGame.
txt");
currentLevel = parseInt(file.ReadLine());
CurrentSpawnPointIndex = parseInt (file.ReadLine());
PlayerHealth = parseInt (file.ReadLine());
AmmoPrime = parseInt (file.ReadLine());
AmmoAlt = parseInt (file.ReadLine());
Money = parseInt (file.ReadLine());
Missions[0] = parseInt (file.ReadLine());
Missions[1] = parseInt (file.ReadLine());
Missions[2] = parseInt (file.ReadLine());
file.Close();
}

On the other hand, if the file is not yet created, we need to set the default values
to variables and create a file in the directory; this means that we are starting a
new game:

else{
currentLevel = 1;
CurrentSpawnPointIndex = 1;
PlayerHealth = 100;

Chapter 6

[211]

AmmoPrime = 20;
AmmoAlt = 20;
Money = 0;
Missions[0] = 0;
Missions[1] = 0;
Missions[2] = 0;
var file = new StreamWriter(Application.dataPath + "/Saves/SavedGame.
txt");
file.WriteLine(currentLevel);
file.WriteLine(CurrentSpawnPointIndex);
file.WriteLine(PlayerHealth);
file.WriteLine(AmmoPrime);
file.WriteLine(AmmoAlt);
file.WriteLine(Money);
file.WriteLine(Missions[0]);
file.WriteLine(Missions[1]);
file.WriteLine(Missions[2]);
file.Close();
}

Now that we have all the needed variables assigned to their value, we can use them
to check which scenes need to be loaded. For this, we will create a new function
called LoadingLevels():

function LoadingLevels(){
if(!Missions[0]){
Application.LoadLevel(currentLevel);
}
else if(!Missions[1]){
Application.LoadLevel(currentLevel);
Application.LoadLevelAdditive(currentLevel + 1);
}
else if(!Missions[2]){
Application.LoadLevel(currentLevel);
Application.LoadLevelAdditive(currentLevel - 1);
}
}

Directory is a part of the System IO library.

Game Master Controller

[212]

The completed WorldManager script is as follows:

static public function SaveGame(){
var file = new StreamWriter(Application.dataPath + "/Saves/SavedGame.
txt");
file.WriteLine(currentLevel);
file.WriteLine(CurrentSpawnPointIndex);
if (GameObject.FindWithTag("Player")){
var PlayerStats : CH_PlayerStats = GameObject.FindWithTag("Player").
GetComponent("CH_PlayerStats");
file.WriteLine(PlayerStats.GetHealth());
file.WriteLine(PlayerStats.GetAmmo(0));
file.WriteLine(PlayerStats.GetAmmo(1));
file.WriteLine(PlayerStats.GetMoney());
}
file.WriteLine(Missions[0]);
file.WriteLine(Missions[1]);
file.WriteLine(Missions[2]);
file.Flush();
file.Close();
}
public function Initialize(){
if(!Directory.Exists("Assets/Saves/")){Directory.CreateDirectory(
"Assets/Saves/");}
if (File.Exists(Application.dataPath + "/Saves/SavedGame.txt")){
var file = new StreamReader(Application.dataPath + "/Saves/SavedGame.
txt");
currentLevel = parseInt(file.ReadLine());
CurrentSpawnPointIndex = parseInt (file.ReadLine());
PlayerHealth = parseInt (file.ReadLine());
AmmoPrime = parseInt (file.ReadLine());
AmmoAlt = parseInt (file.ReadLine());
Money = parseInt (file.ReadLine());
Missions[0] = parseInt (file.ReadLine());
Missions[1] = parseInt (file.ReadLine());
Missions[2] = parseInt (file.ReadLine());
file.Close();
}
else{
File.Create(Application.dataPath + "/Saves/SavedGame.txt");
currentLevel = 1;
CurrentSpawnPointIndex = 1;
PlayerHealth = 100;
AmmoPrime = 20;
AmmoAlt = 20;

Chapter 6

[213]

Money = 0;
Missions[0] = 0;
Missions[1] = 0;
Missions[2] = 0;
var file = new StreamWriter(Application.dataPath + "/Saves/SavedGame.
txt");
file.WriteLine(currentLevel);
file.WriteLine(CurrentSpawnPointIndex);
file.WriteLine(PlayerHealth);
file.WriteLine(AmmoPrime);
file.WriteLine(AmmoAlt);
file.WriteLine(Money);
file.WriteLine(Missions[0]);
file.WriteLine(Missions[1]);
file.WriteLine(Missions[2]);
file.Close();
}
}
static function SetLevelState(newState : String){
levelState = newState;
}
static public function MissionStatusCheck (missionIndex : int){
 return Missions[missionIndex];
}
static public function SetMissionStatus(missionIndex : int, status :
int){
 Missions[missionIndex] = status;
}
static public function SetCheckPoint(newCheckPoint : int){
 CurrentSpawnPointIndex = newCheckPoint;
}
function LoadingLevels(){
if(!Missions[0]){
Application.LoadLevel(currentLevel);
}
else if(!Missions[1]){
Application.LoadLevel(currentLevel);
Application.LoadLevelAdditive(currentLevel + 1);
}
else if(!Missions[2]){
Application.LoadLevel(currentLevel);
Application.LoadLevelAdditive(currentLevel - 1);
}
}

Game Master Controller

[214]

Initialize does not need to be static as it will be called only from within the
script. Initialize will be used to initialize the game, by reading from the saved
file and making all the arrangements to start the gameplay.

Loading with checkpoints
One way to keep track of our game status is by checking the completed missions and
loading levels according to it. But, let's return to the Initialize function and call
LoadingLevels from it.

...

LoadingLevels();

After the level is loaded, we need to spawn the actual player in the specified
checkpoint. Declare a new function called SpawnPlayer, which will take
SpawnIndex as an argument:

static function SpawnPlayer(spawnIndex : int){}

Based on the sent variable, we need to find SpawnPoint in the level:

var SpawnPlace : GameObject = GameObject.FindWithTag("spawnPoint" +
CurrentSpawnPointIndex) ;

We also need to specify the prefab of the player that will be spawned. To be used
in the static function, we need to declare the static variable. However, static
variables cannot be set in the Inspector view, therefore we need to create a pair
of variables—one public and one static:

static public var PlayerPrefab : GameObject;
public var PlayerPrefab2 : GameObject;

In the Awake function, we need to assign the public variable to the static variable:

PlayerPrefab = PlayerPrefab2;

Now that we have that, two series of checks need to be done—we need to check
if the SpawnPlace that we issued really exists and if PlayerPrefab is set, then all
that's left to do is to instantiate the player:

if(SpawnPlace){
 if(PlayerPrefab){
 Instantiate (PlayerPrefab, SpawnPlace.transform.position,
 Quaternion.identity);}
 else
 Debug.LogError("Player Prefab is not set");}
else
Debug.Log("Spawnpoint wasn't found");}

Chapter 6

[215]

Right after the player is spawned, we need to adjust his statistics with a SetStats
function by referencing the CH_PlayerStats script and calling modifying
functions there:

public function SetStats(PlayerHealth : int ,AmmoPrime : int, AmmoAlt
: int, Money : int){
var PlayerStats : CH_PlayerStats = GameObject.FindWithTag("Player").
GetComponent("CH_PlayerStats");
PlayerStats.AddHealth(PlayerHealth, 0);
PlayerStats.AddAmmo(1,AmmoPrime, 0);
PlayerStats.AddAmmo(2,AmmoPrime, 0);
PlayerStats.AddMoney(Money, 0);}

Now, we have all we need to finish the Initialize function. The first thing that we
need to check is if the level with which we are trying to create our player has finished
loading and that the SpawnPoint exists. Thankfully, we can check level progress
with the GetStreamProgressForLevel function. This whole check needs to be done
inside the while loop to be able to constantly check if the level has finished loading.
If that doesn't work, we will simply go through the while loop again, but that will be
too expensive to call each frame. To make sure that it doesn't, we will use the yield
command and call the WaitForSeconds function with one second delay.

while(1){
var SpawnPlace : GameObject = GameObject.FindWithTag("spawnPoint" +
CurrentSpawnPointIndex);
if(Application.GetStreamProgressForLevel(currentLevel) == 1 &&
SpawnPlace != null){
SpawnPlayer(CurrentSpawnPointIndex);
SetStats(PlayerHealth, AmmoPrime, AmmoAlt, Money);
break;}
else{
yield WaitForSeconds(1);}

yield is a coroutine; a function that can suspend
its execution until requirements specified in
YieldInstructions have been met.

One other function that we need to create is called SetMissionStatus, which will
help us to set a new value to the Mission array:

static public function SetMissionStatus(missionIndex : int, status :
int){
 Missions[missionIndex] = status;
}

Game Master Controller

[216]

The first thing that we should have done is to set the level state to Playing. At the
beginning of the Initialize function, add the following line of code:

SetLevelState("Playing");

To finalize the WorldManager script, we will create menu buttons with GUI. By
checking the current level and state, we will show appropriate menu options.

Continuing with the WorldManager script, we will add the following code snippet:

function OnGUI(){
if (Application.loadedLevel == 0){
if(GUI.Button(Rect(Screen.width - Screen.width/2, Screen.height -
Screen.height/2, 180, 20), "New Game/ Continue")){
Initialize();
}
}
else if (levelState == "Dead"){
if(GUI.Button(Rect(Screen.width - Screen.width/2, Screen.height -
Screen.height/2, 180, 20), "Load last checkpoint")){
Initialize();
}
if(GUI.Button(Rect(Screen.width - Screen.width/2, Screen.height -
Screen.height/2 + 30, 180, 20), "Go To Main Menu")){
Application.LoadLevel(0);
}
}
}

The following screenshot shows what our simple frontend should look like:

Chapter 6

[217]

Now that we have finished with the WorldManager script, we need to add a few
lines to the Button script. The first addition will be inside the OnCollisionEnter
function. When the projectile activates ButtonType 1 (inside the else if statement),
we need to set the mission to complete, set a new level, set a new checkpoint, save
the game, and load the new level.

In the Button script, add the following code snippet:

...
WorldManager.SetMissionStatus(0, 1);
WorldManager.SetCurrentLevel(2);
WorldManager.SetCheckPoint(2);
WorldManager.SaveGame();
Application.LoadLevelAdditive(2);
...

As we have made WorldManager a static class, we don't need to bother
referencing it.

Now, we need to do the same thing, but only with the Update function. Inside
the else if statement when we are comparing ButtonType to 0, we need to check
if we haven't completed the first mission and activated both the buttons in the
Button script:

if(!WorldManager.MissionStatusCheck(1) && Activated == 2){
WorldManager.SetMissionStatus(1, 1);
WorldManager.SetCurrentLevel(3);
WorldManager.SetCheckPoint(3);
WorldManager.SaveGame();
Application.LoadLevelAdditive(3);

GameLoader
To load our managers, we need to create a loader script, which we will call
GameLoader. GameLoader is essentially a singleton; it's being called only once,
when the game starts. It calls the GetInstance functions in managers and is
never referenced after the game is loaded.

Now, we will create a singleton mentioned in the preceding paragraph and call it
GameLoader. Perform the following steps:

1. Create a script called GameLoader.
2. In the Start function, we need to call the GetInstance function from

WorldManager and import the System IO libraries that need to be used
in other scripts.

Game Master Controller

[218]

The following code snippet will go into the GameLoader script:

import System.IO;
function Start (){
WorldManager.GetInstance();
}

Dynamic camera
Being able to create a character has its pluses and minuses; one of them is a problem
with a camera. Whenever we start with a level that doesn't have a camera, we need
to create it dynamically. Perform the following steps:

1. Go to the CH_Controller script. Create a new public variable—
createCameraPrefab. It will contain a prefab of a camera that we
want to instantiate.

2. Inside the else statement from the Awake function, we need to check if an
object with a MainCamera tag exists or not.

3. If it doesn't exist, we need to instantiate it using createCameraPrefab that
we have declared before, and put it inside CPrefab.

Audio
There are two things that we need to keep in mind when dealing with audio in
Unity—Audio Listener and Audio Source. Audio Source is a component that
uses the transform information of an object to emit sound from a location. Audio
Listener picks up all the sounds and serves as a microphone. Listeners are usually
attached to cameras; however, sometimes attaching them to the character can give
better results. Each scene can have only one listener and any number of sources. It is
important to remember that Unity will issue an error if it finds more than one listener
in the scene.

Audio Source has a few interesting parameters that we need to look at. The first of
them is Audio Clip; this specifies a sound track that is to be played by a selected
Audio Source. The other two parameters are Play On Awake and Loop. If we are
not creating ambient sounds, it is recommended to uncheck them; it would be easier
to control them through scripts.

Chapter 6

[219]

The first thing that we need to do is to attach sound to a controllable character.
Perform the following steps:

1. Open CH_Controller and declare three public variables of a
AudioClip type.

2. Inside the Movement function where we apply movement to the player, we
need to check if any audio is playing and the character is not moving.

Game Master Controller

[220]

3. At the beginning of the AltShooting function, we need to start playing
the shooting sound:
public var ShootingAlt : AudioClip;
public var ShootingMain : AudioClip;
public var FootstepSound : AudioClip;

4. The following code snippet goes to the Movement function:
...
if (isGrounded){
this.transform.Translate((MoveDirection.normalized * Speed) *
Time.deltaTime);
if(audio.isPlaying == false && MoveDirection != Vector3.zero){
audio.clip = FootstepSound;
audio.Play();
}
}
...

5. The following code snippet goes to the AltShooting function:
...
if (audio.clip == FootstepSound || audio.isPlaying == false ||
(audio.isPlaying == false && audio.clip == ShootingAlt)){
audio.clip = ShootingAlt;
audio.Play();
}
...

We are assigning an audio clip that will be played from the character's audio source
to play a footsteps sound.

From the character, we will switch to the environmental object, like the fan that is
located in the second level. Perform the following steps:

1. Create a new script called fan_rotation.
2. We need to make this fan spin around constantly.
3. In the Awake function from the fan_rotation script, we need to start playing

the fan sound and make it loop, as follows:

public var FanSound : AudioClip;
function Awake(){
 audio.clip = FanSound;
 audio.loop = true;

Chapter 6

[221]

 audio.Play();
}
function Update () {
transform.Rotate(Vector3.right * Time.deltaTime * 100.0);
}

4. Create a new script called deathTrigger; it will be used as a killing volume
in level 3, when the player falls in a river.

5. In the Awake function, we will assign a clip to the audio source.
6. We need OnTriggerEnter for decreasing the player's health, destroying

the player's object, playing the audio sound, loading EndGameLevel, and
changing the level state to Dead.

7. The following code snippet goes into the deathTrigger script:

public var WaterSplash : AudioClip;
function Awake(){
audio.clip = WaterSplash;
}
function OnTriggerEnter(other : Collider){
if(other.gameObject.tag == "Player"){
other.gameObject.GetComponent("CH_PlayerStats").AddHealth(-100);
WorldManager.SetLevelState("Dead");
audio.Play();
Destroy(other.gameObject);
Application.LoadLevel(4);
}
}

Audio manager
To design the audio manager, perform the following steps:

1. Create a new script called AudioManager.
2. As in world manager, we need to create the GetInstance function.
3. Now, we need to create a music player that will take care of switching music.
4. To initialize our audio manager, we need to call the GetInstance function

from GameLoader.

Game Master Controller

[222]

5. In the AudioManager script, add the following code snippet:
static private var instance : AudioManager = null;
public var auMusicPlaying1 : AudioClip;
public var auMusicPlaying2 : AudioClip;

static public function GetInstance(){
if(!instance){
instance = FindObjectOfType(AudioManager);
if(!instance){
Debug.LogError("AudioManager does not exist");
return instance;
}
}
function MusicPlayer(){
if (!audio.isPlaying){
if(audio.clip == auMusicPlaying1)
audio.clip = auMusicPlaying2;
else
audio.clip = auMusicPlaying1;
audio.Play();
}
}
function Update(){
MusicPlayer();
}
function Awake(){
audio.clip = auMusicPlaying1;
}

6. In the GameLoader script, add the following code snippet:

function Start (){
WorldManager.GetInstance();
AudioManager.GetInstance();
}

Summary
All necessary sounds can be found in the Audio folder and can be assigned without
detailed instructions.

Game managers are important if we wish to make everything fast and organized.
The ultimate advantage of managers is their reusability; having created a manager
once, it can be reused as a template in future projects.

In the next chapter, we will look into the basics of programming—Artificial
Intelligence (AI) for video games, talk about behaviors, path finding, obstacle
avoidance, and so on.

Introduction to AI Pathfinding
and Behaviors

When it comes to designing a game, a person has to take a step back and ask himself,
how is this game going to be played? Is it a single-person puzzler, a first-person
shooter (FPS) with a campaign, a third-person shooter (TPS) action adventure,
a fighter, or a real-time strategy (RTS)? Each of these can, and usually do, have a
form of Artificial Intelligence (AI). There are many forms of AI that can present
themselves and they appear in many ways such as pathfinding, collision detection,
item collection, cover, animations, and so on. Pretty much everything that we take
for granted being humans, and can do in a game without thinking about it, has to be
carefully thought about and crafted to work together as if the humans were indeed
in control of the AI. So, with such a huge and complex topic to explore and present,
the best and most useful aspect is to show an example of enemies with behaviors
and waypoint path navigation. First we will explore setting up the basic waypoint
pathfinding without behaviors.

In this chapter we will look into the following topics:

•	 Pathfinding with waypoints
•	 Writing a pathfinding script for robots
•	 Making robots shoot and interact with a player
•	 Writing stats scripts for robots

Introduction to AI Pathfinding and Behaviors

[224]

•	 Teaching AI different kinds of behaviors

Let's get started.

Simple waypoint pathfinding
When it comes to pathfinding, there are many types and each of them has a
different function and ability. For pathfinding, there are various algorithms such
as breadth-first search, depth-first search, Dijkstra, and A* for pathing waypoint
and nav-mesh. A nav-mesh is a mesh, which has its faces triangulated to form
surfaces that can be transversed. Games such as Uncharted 2 and Killzone 3 use
this form of navigation. With that being said, it is not uncommon to see the enemies
navigating along using the different types of pathfinding techniques in different
situations. The pathfinding type that we will use, as I have mentioned in the
introductory section, is going to be a static waypoint navigation system.

In this section we will look into the following:

•	 Setting up the hierarchy
•	 Writing the waypoint display script
•	 Setting up the path arrays
•	 Creating the aiSimplePath script

Chapter 7

[225]

Setting up the hierarchy
What we need to do, before we move any further, is to set up the scene hierarchy.
In the Assets folder for this chapter, there is an enemy prefab and a test level called
"Scene". Drag the test level and the four enemies into the Hierarchy view. Once this is
done, you should see the enemies and the level, as shown in the following screenshot:

Now we need to decide our paths as well.

Writing the waypoint display script
The script that we will be creating in this section will allow the user to have a gizmo
icon, which is representative of our waypoints. It will allow us to turn the gizmo on
and off in the scene view and game view as well. To make this happen, all we need
to do is to create a new script called WaypointNode_Display. In here we need to call
a single function called OnDrawGizmos. Then, in order to have the icon displayed,
we need to set up the location of the image. For us, we want that location to be the
location of the attached gameObject. The texture is located in the Textures folder
and is called waypointnode_icon. To do all this, we use the Gizmos.DrawIcon
function as follows:

function OnDrawGizmos(){
 Gizmos.DrawIcon(transform.position, Application.dataPath +
 "\History\Chapter 7\Custom_textures\waypoint.png");
}

Now that we have this script written, we can set up our waypoints for our paths.
Perform the following steps:

1. Create waypoint arrays.
2. Establish communication between them.
3. Make robots patrol the area using waypoints.

Introduction to AI Pathfinding and Behaviors

[226]

Have a look at the following screenshot:

Setting up the path arrays
If you would like to just move ahead to writing the pathfinding script, drag the path
examples, located in the Assets folder for this chapter, into the Hierarchy view.
These paths are already set up for you and have the waypoints set as well. We need
to write the script before we can assign the paths to the enemies. After you do this,
skip down to writing the aiSimplePath script.

Chapter 7

[227]

For each enemy that is in the scene, we want to create an empty gameObject,
which will be its path array and house the waypoints for that path. A path is not
necessary for every enemy. Enemies can share paths and have multiple paths, but it
will be easier to showcase the enemies' pathfinding and behavior if they have their
own paths.

We want to create a waypoint prefab and drag the waypointPointnode_Display
script onto it. After that, we will create waypoints for the enemies. So, go ahead and
place them around where you want. Keep in mind when you are placing them, the
order in which you place them, and where and which path they are to be associated
with. Once that is done, parent the appropriate waypoints to their path gameObject
variables. We must now write the aiSimplePath script.

Creating the aiSimplePath script
The aiSimplePath script will handle the enemy's navigation through waypoints,
and later on, the tracking of injured bots, the player, and ammo. This path system
will allow our enemy to be able to travel through the path and once at the last
waypoint, he will have three options. The first option is to be able to loop back to the
beginning of the first waypoint and the second one is to reverse and go back to the
first waypoint along the path that the enemy came. A third option does present itself
when an enemy is set to reverse. When the enemy is at the beginning of the array
again and if reverseLoop is set to true, the enemy will then travel through the array
to the last waypoint and then back again to the beginning, and so forth. With these
three options, we can have the enemies acting differently from each other.

Declaring variables
First, let's define our path variables. To do this, we need to:

•	 Declare variables for our path
•	 Define the object to be pursued (in this case, the player)
•	 Define the speed at which we want the enemy to travel

Three of these variables, as mentioned previously, will represent the navigation of
the path—reverse, reverseLoop, and looping. They are of the boolean type and
public as well.

The next set deals with information gathering. We need to have one variable for
housing the waypoint paths of the enemy, one variable that for holding all the
waypoints in those paths, another one for the waypoint that we would like to
get to and, lastly, a variable for the direction in which we are navigating through
the waypoint array.

Introduction to AI Pathfinding and Behaviors

[228]

The enemyPath variable will be a Transform list and public. The waypointArray
variable needs to be an array and, for default, set it to new Array and make it
private. Create a third variable called currentWaypoint, which will handle the
tracking of the current waypoint to pursue. It will be an integer and private as well.
The last path variable to create is the arrayDirection variable, which will keep
track of the direction in which we are navigating through the array:

public var reverse : boolean;
public var reverseLoop : boolean;
public var looping : boolean;
public var enemyPath : Transform[];
private var waypointArray : Array = new Array();
private var currentWaypoint : int = 0;
private var arrayDirection : int;

The object to be pursued is called player, and it is public and of the GameObject
type. Next, we need to define the speed variable to set the speed at which the
player will move, make it a float and public, too. Our last variable for now
is the stopRobot variable, and it is boolean and private:

public var player : GameObject;
public var speed : float;
private var stopRobot : boolean;

Starting up functions
Once all the variables are in place, we will start our functions.

The Awake function will get all the waypoints in all the enemy paths through
the enemyPath variable and add them to the waypoint array. It will then set the
arrayDirection variable to the length of the waypoint array. A for loop is then
used to loop through each path and a second for loop inside of the first one is used
to grab the waypoints. Then, each waypoint in each path is added to the waypoint
array. Naming convention for the nodes will make a difference, as it will determine
the order in which enemies will be moving from one to another.

function Awake(){
 for(var path in enemyPath){
 for(var waypoint in path){
 waypointArray.Add(waypoint);
 }
 }
 arrayDirection = waypointArray.length;
}

Chapter 7

[229]

After the Awake function, we will get down to the EnemyPath function. This is a
mean beefy piece of code that allows our enemies to traverse the path.

Traversing the path
The EnemyPath function will set the pathfinding for the enemies in various
situations, such as patrolling, pursuing the enemy, locating ammo, and locating
injured enemies.

At the beginning of the function, we first need to make sure that our pathfinding
variables—reverse, reverseLoop, and looping—are set. Remember, when reverse
is set to true, looping is false. reverseLoop can only be true if reverse is set to
true, and when looping is set to true, reverse and reverseLoop are false.

Next, we will check if the robot has come to a complete stop for whatever
reason, and if not, we will start our pathfinding. We need to define three
variables—velocity (to deal with the speed that our enemy will move at),
moveDirection (to deal with the facing direction of the enemy), and Target
(to define the place where the enemy wants to go). All are of the Vector3 type.

The code for the beginning of the function is as follows:

function EnemyPath(){
 if(reverse){looping = false;}
 if(reverseLoop){looping = false; reverse = true;}
 if(looping){reverse = false; reverseLoop = false;}
 if(!stopRobot){
 var velocity : Vector3 = rigidbody.velocity
 var moveDirection : Vector3;
 var Target : Vector3;
}
}

As mentioned previously, our enemy will be searching for the player, ammo, and
injured bots, but before we get to writing that code, we will first just implement the
following of the waypoints, and once the aiSimpleBehaviour script is written, we
will return to this script and add the rest of the code.

Introduction to AI Pathfinding and Behaviors

[230]

In that case, we set our enemies to patrol. Our enemy will patrol through
the waypoints of our waypoint array. We will use our arrayDirection and
currentWaypoint variables to determine how we navigate through the
waypoints. We will perform the following steps:

1. If the arrayDirection variable equals our waypointArray.length and if
our current waypoint is less than that, then it means that we are increasing
through the array. Inside of the if statement, we need to set the Target
and moveDirection variables. The Target variable becomes the current
waypoint position from the waypoint array, and moveDirection is Target
minus the enemy's position.

2. Next, we will check whether we are at the last waypoint using the Vector3.
Distance function to check our position against the last waypoint's position.
If we are not at the last waypoint, and if we are not looping or reversing,
we will set the enemy's velocity to Vector3.zero (This will stop the
enemy's momentum).

3. If however, we are not at the last waypoint and are within the range of 1
from our next point, we will increment the current waypoint. (We use the
magnitude function on our moveDirection variable to determine if the
distance between the enemy and its target is in range. In this case, that
range value is 1.)
If the magnitude between the enemy and the target is not less than 1 and
therefore not in range, normalize our moveDirection variable, multiply
with speed, and assign it to velocity.
The code for increasing through the waypoint array if statement is
as follows:
if (arrayDirection == waypointArray.length && currentWaypoint <
arrayDirection){
 Target = waypointArray[currentWaypoint].position;
 moveDirection = Target - transform.position;
if (Vector3.Distance(waypointArray[waypointArray.length-
1].position, transform.position) < 1 && !looping && !reverse &&
!reverseLoop){
 velocity = Vector3.zero;
 }
 else if(moveDirection.magnitude < 1){
 currentWaypoint++;
 }
 else{
 velocity = moveDirection.normalized * speed;
 }
}

Chapter 7

[231]

That ends the increasing through the waypoint array if statement. Right
after it though, we need an else if statement, which will determine if we
are decreasing through the waypoint array.

4. Next, we will check the arrayDirection variable again. If it is equal to 0 and
if our current waypoint is greater than our array direction, it means that we
are decreasing through the array. The Target and moveDirection variables
can stay the same, but our next if statement will have different parameters.

5. We need to check that our range (remember, moveDirection.magnitude)
is less than 1, our current waypoint is equal to 0, and that we are not doing
a reverse loop. If all of these are true, we will set our velocity variable to
Vector3.zero.

6. If our range to our target is less than 1, we will decrement the
currentWaypoint variable. If the enemy is not in range of the target,
we will normalize our moveDirection variable, multiply with speed,
and assign it to velocity.
The code for the decreasing through the waypoint array if statement is
as follows:
else if(arrayDirection == 0 && currentWaypoint >= arrayDirection){
 Target = waypointArray[currentWaypoint].position;
 moveDirection = Target - transform.position;
 if(moveDirection.magnitude < 1 && currentWaypoint == 0 &&
 !reverseLoop) {
 velocity = Vector3.zero;
 }
 else if(moveDirection.magnitude < 1) {
 currentWaypoint--;
 }
 else {
 velocity = moveDirection.normalized * speed;
 }
}

Now we need to check if our enemy is looping or going in reverse in the
else statement that follows right after the else if statement.

7. If looping, we will set the currentWaypoint variable to 0.
8. If reversing looping, we will set the arrayDirection variable back to

waypointArray.length and increment the currentWaypoint variable.
9. If just reverse, set the arrayDirection to 0 and decrement the

currentWaypoint variable.

Introduction to AI Pathfinding and Behaviors

[232]

10. Lastly, at the bottom of the !stopRobot if statement, give the enemy's
rigidbody.velocity, the velocity value and use the transform.LookAt
function with the Target variable as the parameter to make an enemy look
at another enemy.
The code in the else statement and the final lines of the function are
as follows:
else{
 if(looping){
 currentWaypoint = 0;
 }
 else if(reverse){
 if (arrayDirection == 0 &&
 Vector3.Distance(waypointArray[0].position,
 transform.position) < 1 && reverseLoop){
 arrayDirection = waypointArray.length;
 currentWaypoint++;
 }
 else if(currentWaypoint == waypointArray.length){
 arrayDirection = 0;
 currentWaypoint--;
 }
 }
}
rigidbody.velocity = velocity;
transform.LookAt(Target);

Shutting down the robot
The ShutDownRobot function will set the stopRobot variable to the stop boolean
variable of the function. If stopRobot is true, set velocity to Vector3.zero. The
code for the ShutDownRobot function is as follows:

function ShutDownRobot(stop : boolean){
 stopRobot = stop;
 if(stopRobot){
 velocity = Vector3.zero;
 }
}

The Update function is used to call the EnemyPath function as follows:

function Update(){
 EnemyPath();
}

Chapter 7

[233]

The aiSimplePath script is now complete, at least for the time being. We will set up
Inspector for our enemies next.

Hooking up the aiSimplePath script on Inspector
We can now drag the aiSimplePath script from the Project view to the Inspector
view of our enemies. You should see that our path variable will allow us to drag our
respective paths to our enemies. We also need to give a speed to our enemy. After
that, you can set the type of navigation of the waypoints for the enemy to do. Press
Play in the editor, and if you have everything set up correctly, your enemy should
travel along the path that you have specified for him.

We will have to come back to this script later, and add a couple of functions and
some lines of code to make the enemy locate ammo and injured bots, and pursue the
player. For the time being, however, the next section will deal with enemy statistics,
shooting, and behaviors.

Enemy statistics, shooting, and
behaviors
Now that we have our enemies moving and following a path, we should set up some
statistics for them, and allow them to take damage and fire bullets. Then at the end of
this section, we will write the aiSimpleBehaviour script. This script will give some
more believability to our enemies in how they react to the situations they are in and
give them unique behaviors. First up to be written is the enemyStats script.

In this section we will look into the following:

•	 Creating the enemyStats script
•	 Hooking up the enemyStats script on Inspector of each enemy
•	 Creating the Shoot script
•	 Hooking up the Shoot script on Inspector of each enemy
•	 Writing the aiSimpleBehaviour script
•	 Hooking up the aiSimpleBehaviour script on Inspector of each enemy

The enemyStats script
The enemyStats script will hold and track our enemy's health and ammo, and shut
down the enemy if his health drops to zero. This script will also return the current
values of health and ammo, and increment or decrement the ammo and health.

Introduction to AI Pathfinding and Behaviors

[234]

Setting up variables
There are a few variables for this script. We have one to represent the health,
one for the ammo, and another one that will be the reference variable to the
aiSimplePath script.

The health variable should be public and an integer; the same can be done for the
ammo variable. The pathScr variable can be private, but make sure that it has as its
type the name of the aiSimplePath script as follows:

public var health : int = 100;
public var ammo : int = 100;
private var pathScr : aiSimplePath;

Once we are finished with the variables, it's time to write our functions.

Setting up functions
All the functions in this script are relatively short and mainly consist of one line.
Up first is the Awake function.

The Awake function makes the pathScr variable reference to the aiSimplePath script:

function Awake(){pathScr = gameObject.GetComponent("aiSimplePath");}

Retrieving functions
The Get functions will help us retrieve health and ammo information from robots.
The retrieving functions are as follows:

•	 The GetHealth function returns the current health value:
function GetHealth(){return health;}

•	 The GetAmmo function returns the current ammo value:
function GetAmmo(){return ammo;}

•	 The RepairBot function will increase the health of an enemy by 2 when it
is called:
function RepairBot(){health += 2;}

Manipulation functions
The manipulation functions will allow us to manipulate health and ammo. They are
as follows:

•	 The ReceiveAmmo function will increase ammo by the amount given in the
function's parameter variable—ammoAmount:
function ReceiveAmmo(ammoAmount : int) {ammo += ammoAmount; }

Chapter 7

[235]

•	 The DecrementAmmo function will decrease ammo by the amount given in the
function's parameter variable—decrementAmount:
function DecrementAmmo(decrementAmount : int) {ammo -=
decrementAmount;}

•	 The DecrementHealth function will decrease health by the amount given in
the function's parameter variable—decrementAmount:
function DecrementHealth(decrementAmount : int) {health -=
decrementAmount;}

•	 The CheckCurrentHealth function will make sure that health is not greater
than 100 and not less than 0. It will also shut down the robot if the enemy's
health does reach 0. To do this, we have one if statement and the Mathf.
Clamp function. If the enemy's health decreases below 0, we will call the
ShutDownRobot function from the path script with the function parameter
of true.

The complete CheckCurrentHealth function should look like the following
code snippet:
function CheckCurrentHealth(){
health = Mathf.Clamp(health, 0,100);
 if(health == 0){
 pathScr.ShutDownRobot(true);
 }
}

•	 The CheckAmmo function will make sure that ammo is not greater than 100 and
not less than 0. We will use two if statements to check the ammo count. One
if statement will make sure that ammo is not greater than 100 and the other
if statement will make sure that the ammo count is not less than 0.
The CheckAmmo function should look like the following code snippet:
function CheckAmmo(){
 ammo = Mathf.Clamp(ammo, 0, 100);
}

The Update function calls the CheckCurrentHealth and CheckAmmo functions
as follows:

function Update (){
 CheckCurrentHealth();
 CheckAmmo();
}

Congrats, the enemyStats script is complete. We will not have to revisit this script in
the future and we can now stop our enemy if their health drops to zero.

Introduction to AI Pathfinding and Behaviors

[236]

Hooking up the enemyStats script on Inspector
To test the script now, drag it onto the enemies and press Play. Go over to one enemy
and make the health variable 0. The enemy should stop. If you increase it even to 1,
the enemy should resume its pathfinding.

The Shoot script
The Shoot script will set up the type of weapon that the enemy is firing with, where
the projectiles are to be instantiated at, how fast they are to be fired, and the amount
of ammo each projectile fired uses up.

Setting up the script
The following are the variables that we need to put together in this script:

•	 Weapon variables
•	 Shooting variables
•	 Script reference variable

There is an enumeration as well for our weapon type. The weapon variables are all
public. The EnemyWeapon variable has the type of weaponType. The currentWeapon
variable determines the weapon that an enemy is using from enum Weapon. The
enemies can have weapons such as FlameThrower, shortRange, and longRange.
The projectile variable is of the GameObject type. The last public variable is
launcherLoc, which is for the launcher's location and is of the Transform type.

The shooting variables consist of the speed at which the bullet will fly, the amount of
ammo consumed when fired, the cooldown time between each bullet fired, the initial
timer for the separation, and the canShoot variable. speed is public and float;
ammoConsumeValue is an integer; bulletSeparationTime is public and float;
currentTimer is private and float; and canShoot is private and boolean.
The default value of canShoot should be set to false.

Chapter 7

[237]

The script reference variable is to reference the enemyStats script. It can be private,
and make sure that its type is the name of the enemyStats script.

enum is for the weaponType. In here, put the different types of weapons that the
enemy could possibly use:

public var EnemyWeapon : weaponType;
public enum Weapon{
FlameThrower,
shortRange,
longRange
}
public var currentWeapon : int;
public var projectile : GameObject;
public var launcherLoc : Transform;
public var speed : float;
public var AmmoConsumeValue : int = 1;
public var bulletSeparationTime : float = 1;
private var currentTimer : float = 0;
private var canShoot : boolean = false;
private var enemyStatScr : enemyStats;
enum weaponType{
 Projectile,
 Special
}

The Awake function will handle the script reference variable—enemyStatScr with
the enemyStats script.

Writing shooting functionality
There are two functions that we are going to write in this section—Shoot and
incrementTime. These functions will determine if an enemy can shoot and what
type of weapon to use. They also manage bullet separation time. Let's begin.

The Shoot function will check if the enemy can shoot, and if he can, it will "fire"
the projectile based upon the weapon type. After checking if he can shoot, the
incrementTime function is called and it handles bullet separation.

If the weapon is shortRange, it checks if weaponType is special, and in our case
it is. It's FlameThrower. We will set the canShoot variable to false so that bullet
separation can happen. The FlameThrower emits a flame from the specified launcher
and turns on a collider to handle particle collision, and lastly, we will decrement the
ammo count based upon the specified ammo usage for the weapon.

Introduction to AI Pathfinding and Behaviors

[238]

If the weapon is longRange, we will again set the canShoot variable to false for
bullet separation, then we will create a new bullet with the Instantiate function. We
will create the projectile at the muzzle's position with the muzzle rotation. Then we
will take rigidbody.velocity and multiply it by our bullet's speed, and assign that
to tempBullet.rigidbody.velocity. Then we will decrement the ammo count.

Lastly, if we cannot shoot, we will put an else statement at the end, and in this case,
with the flamethrower, we will turn off the flame emitter and disable the particle
collision detection.

The code for the Shoot function is as follows:

function Shoot(fire : boolean){
 if(fire){
 incrementTime();
 if(canShoot){
 if(currentWeapon == Weapon.shortRange){
 if(EnemyWeapon.Special && currentWeapon ==
 Weapon.FlameThrower){
 canShoot = false;
 projectile.particleEmitter.emit = true;
 projectile.collider.enabled = true;
 enemyStatScr.DecrementAmmo(AmmoConsumeValue);
 }
 }
 if(currentWeapon == Weapon.longRange){
 canShoot = false;
 var tempBullet : GameObject = Instantiate(projectile,
 launcherLoc.position,
 launcherLoc.rotation);
 if((rigidbody.velocity).magnitude > 1){
 tempBullet.rigidbody.velocity =
 rigidbody.velocity * speed;
 }
 else{
 tempBullet.rigidbody.velocity = (rigidbody.
velocity *
 speed) * 1000;
 }
 enemyStatScr.DecrementAmmo(AmmoConsumeValue);
 }
 }
 }
 else {

Chapter 7

[239]

 if(currentWeapon == Weapon.FlameThrower) {
 projectile.collider.enabled = false;
 projectile.particleEmitter.emit = false;
 }
 }
}

The incrementTime function will increment a timer up to the bullet separation
time by Time.deltaTime added to itself to get seconds. If timer equals the bullet
separation time, the enemy can shoot and the timer resets back to 0.

The Increment function should look like the following code snippet:

function incrementTime(){
 if(currentTimer < bulletSeparationTime){
 currentTimer += Time.deltaTime * 2;
 }
 else{
 canShoot = true;
 currentTimer = 0;
 }
}

Congrats, the Shoot script is complete and we don't have to modify it for this
tutorial again. However, now that the script is written, we have to hook it up on
enemy's Inspector.

Hooking up the Shoot script on Inspector
With the Shoot script done, we can now go ahead and drag it to each enemy's
Inspector. What you should see is the enum variable at the top, allowing you to
select the type of weapon the enemy will have; the FlameThrower boolean should
follow after. The projectile variable needs you to drag the bullet prefab to be
instantiated onto it. You then need to specify if it is shortRange or longRange and
drag the Muzzle on to the launcher location variable. The speed of the bullet has
to be defined along with how much ammo each bullet consumes and, lastly, the
amount of time between each bullet.

Introduction to AI Pathfinding and Behaviors

[240]

Once everything is defined and hooked up, when you press Play, nothing will
happen. That is because the behavior script runs the shooting script. With that
being said, let's now start the aiSimpleBehaviour script.

The aiSimpleBehaviour script
The aiSimpleBehaviour script will set up the behaviors that the enemies can have,
the behavior effects, the enemy's awareness range, and the function to locate and
detect injured bots and ammo.

Setting up the script
The types of variables found in this script are enemy behavior, enemy range, time,
attacking, reference, and locate variables.

The behavior variables are passive (the enemy does not attack the player),
defensive (the enemy will attack only if attacked and only for a period of time), and
aggressive (the enemy will attack the player if the player is within range). All these
variables are public and boolean. A private botType variable with a String type
is defined as well.

The enemy range variables are enemyRange (the enemy's awareness range),
defaultRange (this is equal to the enemy's range), and maxRange (used to locate
ammo). All these range variables are of the float type and only the enemyRange
variable is public, the other two being private.

The single variable used for locating ammo is lookForAmmo, and it is private and
boolean. It is used to determine if an enemy should look for ammo.

The time variables are pursueTimeAfterAttack (the time for which a defensive
enemy will pursue the instigator), currentTimer (starts the pursue time at 0),
and pursueTime (used to start the pursue timer). pursueTimeAfterAttack and
currentTimer are of the float type and pursueTime is boolean. The pursueTime
and currentTimer variables are private.

Chapter 7

[241]

Next, the attacking variables are engagingPlayer (used to check if the enemy should
attack the player), disengagedPlayer (used to check if the enemy should disengage
from attacking the player), and playerEngaging (used to see if the player is attacking
the enemy). All these variables are of the boolean type and they are private.

Lastly, we have our reference variables and they are pathingScr (it has type of
aiSimplePath and references the aiSimplePath script), enemyStatScr (it has type
of enemyStats and references the enemyStats script), and shootScr (it has type of
Shoot and references the Shoot script).

public var passive : boolean;
public var aggresive : boolean;
public var defensive : boolean;
private var botType : String;
public var enemyRange : float;
private var defaultRange : float;
private var maxRange : float = 100;
private var lookForAmmo : boolean;
public var pursueTimeAfterAttack : float = 3;
private var currentTimer : float = 0;
private var pursueTime : boolean;
private var engagingPlayer : boolean = true;
private var disengagedPlayer : boolean = false;
private var playerEngaging : boolean = false;
private var pathingScr : aiSimplePath;
private var enemyStatScr : enemyStats;
private var shootScr : Shoot;

The Awake function will set the script reference variables, set the default range to the
specified enemy range, and call the ReturnBotType function as follows:

function Awake(){
 pathingScr = GetComponent("aiSimplePath");
 enemyStatScr = GetComponent("enemyStats");
 shootScr = GetComponent("Shoot");
 defaultRange = enemyRange;
 ReturnBotType();
}

Behavior functions
The following behavior functions will handle the bot's behavior control:

•	 ReturnBotType

•	 SetIfPlayerIsAttacking

•	 CheckPlayerDistanceToEnemy

•	 PassiveBot

•	 FindAmmo

Introduction to AI Pathfinding and Behaviors

[242]

The preceding functions may sound self-explanatory, if not, don't worry; we will
look deeper into them right now.

The ReturnBotType function will set the botType variable based upon the behavior
type of the enemy and return it to the SetEnemyType function parameter of the path
script as follows:

function ReturnBotType(){
 if(passive){
 botType = "Passive";
 }
 else if(aggresive) {
 botType = "Aggressive";
 }
 else if(defensive) {
 botType = "Defensive";
 }
 pathingScr.SetEnemyType(botType);
}

The SetIfPlayerIsAttacking function will set the playerEngaging variable to its
true/false parameter—isAttacking as follows:

function SetIfPlayerIsAttacking(isAttacking : boolean){
 playerEngaging = isAttacking;
}

The CheckPlayerDistanceToEnemy function will get the current distance between
the player and the enemy using the Vector3.Distance function and give it to the
function variable—distanceToPlayer. It will then compare this distance to the
enemy's range to see if it is less, and therefore, within the enemy's awareness zone.
It will then check the behavior type of enemy.

As our passive bot does not care for the player, we do not need to check if the player
is in its range.

For aggressive enemies, we will skip right to checking if the enemy has enough
ammo to shoot and that their health is greater than 0. If the enemy is defensive, we
will first check if he is engaging the player before moving on to checking ammo
and health. If the health is greater than 0 and if we do have ammo to shoot, we will
call the GetBehaviourInfo function with the pathingScr variable and assign it
the engagingPlayer variable. After that, we will call the Shoot function with the
shootScr variable and assign it true for the function parameter. The same is done
for the defensive enemy.

Chapter 7

[243]

If it happens that there is no ammo, or the enemy's health is greater than 0, we will
call the FindAmmo function with true as the function parameter. Call the Shoot
function from the Shoot script and set the function parameter to false. Lastly,
extend the enemy's range to maxRange to search for ammo. The same else
statement is used for defensive enemies.

Next, we will check if the player is outside of the enemy's range, and if so, we tell
the path script that we are disengaging from the player with the GetBehaviourInfo
function and the disengagedPlayer variable as the function parameter. Then we
will set the Shoot function to false to make the enemy stop shooting.

Lastly, we want to check if our ammo count is greater than 0, and if it is, we will set
our enemyRange variable back to the defaultRange variable and tell the enemy to
stop searching for ammo. We will then set the AmmoToLocate function of the path
script with the parameters of null and false to clear the data of the last ammo that
was located.

The complete CheckPlayerDistanceToEnemy function should look like the
following code snippet:

function CheckPlayerDistanceToEnemy(){
 var distanceToPlayer = Vector3.Distance
 (gameObject.FindWithTag("Player").
 transform.position,transform.position);
 if(distanceToPlayer < enemyRange) {
 if(aggresive) {
 if(enemyStatScr.GetAmmo() > 0
 && enemyStatScr.GetHealth() > 1){
 pathingScr.GetBehaviourInfo(engagingPlayer);
 shootScr.Shoot(true);
 }
 else {
 FindAmmo(true);
 shootScr.Shoot(false);
 enemyRange = maxRange;
 }
 }
 else if(defensive) {
 if(playerEngaging){
 if(enemyStatScr.GetAmmo() > 0
 && enemyStatScr.GetHealth() > 1){
 pathingScr.GetBehaviourInfo(engagingPlayer);
 shootScr.Shoot(true);
 }
 else {

Introduction to AI Pathfinding and Behaviors

[244]

 FindAmmo(true);
 shootScr.Shoot(false);
 enemyRange = maxRange;
 }
 }
 }
 }
 else if(distanceToPlayer > enemyRange)
 {
 pathingScr.GetBehaviourInfo(disengagedPlayer);
 shootScr.Shoot(false);
 }
 if(enemyStatScr.GetAmmo() > 0)
 {
 enemyRange = defaultRange;
 FindAmmo(false);
 pathingScr.AmmoToLocate(null, false);
 }
}

The PassiveBot function is for the bot having passive behavior. This bot acts as a
medic and will seek out injured enemies and heal them.

To start off, we will set three array variables. The first variable grabs all the enemies
in the level with the FindGameObjectsWithTag function and is called getEnemies,
the second one is defined for distance and is called distanceArray, and the third
one is defined for bots that need help and is called botArray.

We then check each enemy in the getEnemies array with a for loop, and for each
one, we then check the health. If their health is below an acceptable limit, which in
this case is 100, they are added to botArray, their distance is acquired using the
Vector3.Distance function, and they are grabbed using the if statement by the
botsDistance variable. The distances are also added to distanceArray.

If the length of distanceArray is greater than 0, it means that we have enemies to
heal and we will continue.

If there are bots that need help, we will loop through distanceArray and check
it against the first distance in the array. If the next distance is larger, we will take
its distance and make it the closest distance. Once we have looped through all the
distances, we will check it against the range of the medic bot. If it lies within the
awareness range, we will call the BotToHeal function from the path script and assign
it the first function parameter of the bot from botArray that the distance coincides
with and true as the second parameter.

Chapter 7

[245]

In order to get the proper bot from botArray, we will use a counter to keep track
of the spot in the array that the closest distance is at. So, as we loop through
distanceArray for checking distances, we will have the counter variable
incremented each time. When we find a new closer distance we save the counter
number. This counter number is then used to pull the proper bot out of the array.

Lastly, if no bots need the medic's assistance, we will set the BotToHeal function's
first parameter to null and the second parameter to false. The complete
PassiveBot function should look like the following code snippet:

function PassiveBot(){
 if(passive){
 var getEnemies : Array = new
 Array(gameObject.FindGameObjectsWithTag("Enemy"));
 var distanceArray : Array = new Array();
 var botArray : Array = new Array();
 for(var Bot : GameObject in getEnemies){
 if(Bot.GetComponent("enemyStats").GetHealth() < 100){
 var botsDistance : float =
 Vector3.Distance(Bot.transform.position,
 transform.position);
 distanceArray.Add(botsDistance);
 botArray.Add(Bot);
 }
 }
 if(distanceArray.length > 0){
 for(var dist : float in distanceArray) {
 var counter : int = 0;
 var closDist : float = distanceArray[0];
 if(dist < closDist) {
 var arrayCounter = counter;
 closDist = dist;
 }
 counter++;
 }
 if(closDist < enemyRange) {
 pathingScr.BotToHeal(botArray[arrayCounter], true);
 }
 }
 else {
 pathingScr.BotToHeal(null, false);
 }
 }
}

Introduction to AI Pathfinding and Behaviors

[246]

The FindAmmo function will search for ammo in a given range. If the ammoNeeded
variable is true, we need to go through a similar process with the medic and the
injured bots.

We will define the three arrays. Copy and paste the ones from the PassiveBot
function; and change the name from getEnemies to ammoArray for the search
array, distanceArray can stay the same, and change botArray to ammoAvailable.

For the rest of the functions up to the final statement, if there are no bots that need a
medic, we will copy the PassiveBot function and paste it here. Make sure that you
change the names of the arrays with the appropriate ones throughout the code.

After we have the ammo sent to the AmmoToLocate function of the path script, we
need to set the FindAmmo function to false. Then we have an else statement to
check if any ammo is available and another one after the first if statement checking
if there is any ammo in the level. In these else statements, we need to set the
FindAmmo function to false, reset the AmmoToLocate function in the path script to
null and false, and tell the GetBehaviourInfo to disengage from the player so
that the enemy can resume his waypoint path.

function FindAmmo(ammoNeeded : boolean){
 lookForAmmo = ammoNeeded;
 if(lookForAmmo){
 var ammoArray : Array = new
 Array(gameObject.FindGameObjectsWithTag("Ammo"));
 var distanceArray : Array = new Array();
 var ammoAvailable : Array = new Array();
 if(ammoArray.length > 0){
 for(var ammo : GameObject in ammoArray){
 if(ammo.renderer.enabled){
 var ammoDistance : float =
 Vector3.Distance(ammo.transform.position,
 transform.position);
 distanceArray.Add(ammoDistance);
 ammoAvailable.Add(ammo);
 }
 }
 if(distanceArray.length > 0){
 for(var dist : float in distanceArray) {
 var counter : int = 0;
 var closDist : float = distanceArray[0];
 if(dist < closDist) {

Chapter 7

[247]

 var arrayCounter = counter;
 closDist = dist;
 }
 counter++;
 }
 if(closDist < enemyRange) {
 pathingScr.AmmoToLocate(ammoAvailable[arrayCounter],
 true);
 FindAmmo(false);
 }
 }
 else {
 FindAmmo(false);
 pathingScr.AmmoToLocate(null, false);
 pathingScr.GetBehaviourInfo(disengagedPlayer);
 }
 }
 else {
 FindAmmo(false);
 pathingScr.AmmoToLocate(null, false);
 pathingScr.GetBehaviourInfo(disengagedPlayer);
 }
 }
}

Additional functions
These functions will help to trigger the behavior functions and support their work.

For the defensive enemy, the OnCollisionEnter function checks if a bullet has
collided with it. If it has, we will set the GetIfPlayerIsAttacking function to
true and start the pursue time for the defensive enemy as follows:

function OnCollisionEnter(objCollided : Collision){
 if(defensive) {
 if(objCollided.gameObject.tag == "projectile"){
 GetIfPlayerIsAttacking(true);
 pursueTime = true;
 }
 }
}

Introduction to AI Pathfinding and Behaviors

[248]

The IncrementTime function sets the pursue time for the defensive
enemy. If pursueTime is true, it checks if currentTimer is equal to the
pursueTimeAfterAttack value. If it is not, currentTimer is increased by the
value given by multiplying Time.deltaTime with 2. This is done to get seconds.
If currentTimer is greater than or equal to pursueTimeAfterAttack, we will set
currentTimer back to 0, tell the enemy that the player is not attacking him anymore
using GetIflayerIsAttacking, set pursueTime to false, and disengage from
pursuing the player as follows:

function IncrementTime(){
 if(pursueTime){
 if(currentTimer < pursueTimeAfterAttack){
 currentTimer += Time.deltaTime * 2;
 }
 else {
 currentTimer = 0;
 GetIfPlayerIsAttacking(false);
 pursueTime = false;
 pathingScr.GetBehaviourInfo(disengagedPlayer);
 }
 }
}

The Update function calls the FindAmmo, PassiveBot, IncrementTime, and
CheckPlayerDistanceToEnemy functions. Make sure to assign the FindAmmo
function the lookForAmmo variable.

function Update(){
 FindAmmo(lookForAmmo);
 PassiveBot();
 IncrementTime();
 CheckPlayerDistanceToEnemy();
}

Congratulations, the aiSimpleBehaviour script is written. Now we must hook it up
on Inspector and add some functionality to the path script again, and we will be able
to run this script with no errors.

Hooking up the aiSimpleBehaviour script on
Inspector
After you drag the aiSimpleBehaviour script onto each enemy, we need to set the
enemy behavior, the enemy range, and the pursue time for each enemy. However,
we will be able to play without having errors only if we add the extra functions to
the pathfinding script. Let's add that functionality now.

Chapter 7

[249]

Returning to the aiSimplePath script
Now that we have our behavior script, we can add the additional functionality to the
aiSimplePath script.

The additional functionality is a couple of functions that will deal with receiving
path information and additional functionality for the enemy path script so as to
find which bot is injured and needs to be healed, to locate the ammo, and to
pursue the player.

Pursue functionality
We will have to add some variables before we add in the new functions and code.
The variables that we will have to add are the pursue variables. These variables are
used to make the enemy pursue different objectives.

Those variables are pursuePlayer (it is of the boolean type and used to determine if
the enemy should pursue the player), healBotLoc (it is of the GameObject type and
is used to locate the injured bot that needs to be healed by the passive bot), healBot
(it is of the boolean type and used to determine whether the bot to be healed should
be healed), locateAmmo (it is of the boolean type and used to determine whether the
enemy should grab the ammo), and lastly, ammoToFind (it is of the GameObject type
and used to determine the location of the ammo). The last variable to define is the
script reference variable—enemyStatScr. It can be private and make sure that its
type is enemyStats.

public var player : GameObject;
private var pursuePlayer : boolean;
private var healBotLoc : GameObject;
private var healBot : boolean;
private var locateAmmo : boolean;
private var ammoToFind : GameObject;
private var enemyStatScr : enemyStats;

Introduction to AI Pathfinding and Behaviors

[250]

The GetBehaviourInfo function will get the behavior information from
the aiSimpleBehaviour script and set the pursuePlayer variable to the
engagePlayer variable's value.

The SetEnemyType function will get the enemy's type as string and set the
enemyType variable to the String value.

The BotToHeal function will grab the bot that the medic (passive bot) needs to heal,
and it will also set the healBot variable.

The AmmoToLocate function will grab the ammo that the enemy should pursue and
set the locateAmmo variable.

function GetBehaviourInfo(engagePlayer: boolean){pursuePlayer =
engagePlayer;}
function SetEnemyType(type: String){enemyType = type;}
function BotToHeal(Bot : GameObject, heal : boolean){healBotLoc = Bot;
healBot = heal;}
function AmmoToLocate(Ammo : GameObject, find : boolean){ammoToFind =
Ammo; locateAmmo = find;}

Revisiting the EnemyPath function
The functionality that is being added to this function is the functionality of the
enemy to pursue and repair a damaged bot, the ability to locate and pursue ammo,
and the ability to locate and pursue an enemy. Right after the declarations of the
three Vector3 variables, we want to add in an if statement that will hold the if
statements for pursuing the player, pursuing the ammo, and locating the injured
bots. We need to perform the following steps:

1. If we are pursuing the player, we will set Target to the player's position,
moveDirection will become the facing angle of the player, and we will make
velocity equal to rigidbody.velocity. We will check the magnitude of
moveDirection to see how close we are to our target, and if we are within
our specified range, we will set velocity to Vector3 zero. If we are not
within the specified range, we will normalize our direction, multiply it by
our speed variable, and assign that to our velocity variable.

2. If we are a passive bot and if we are looking to heal a bot, we will continue
pursuing the player till the Target variable becomes equal to the location of
the bot to be healed and the range becomes less. If our target is within the
range, we will call the RepairBot function from the enemyStats script.

Chapter 7

[251]

3. If we are pursuing ammo, we will again follow the same procedure, except
that the Target variable becomes equal to the location of the ammo to find
and the range becomes less. We won't call any functions if within the range.
We will just set velocity to Vector3 zero.

The code should look like the following code snippet:

if(pursuePlayer){
 Target = player.transform.position;
 moveDirection = Target - transform.position;
 if(moveDirection.magnitude < 3){
 velocity = Vector3.zero;
 }
 else{
 velocity = moveDirection.normalized * speed;
 }
}
 if(enemyType == "Passive" && healBot) {
 Target = healBotLoc.transform.position;
 moveDirection = Target - transform.position;
 if(moveDirection.magnitude < 2) {
 velocity = Vector3.zero;
 healBotLoc.GetComponent("enemyStats").RepairBot();
 }
 else{
 velocity = moveDirection.normalized * speed;
 }
 }
 else if(locateAmmo) {
 Target = ammoToFind.transform.position;
 moveDirection = Target - transform.position;
 if(moveDirection.magnitude < 0.5) {
 velocity = Vector3.zero;
 }
 else{
 velocity = moveDirection.normalized * speed;
 }
 }

After placing those three statements in the function, we need to add an else if
statement around the original waypoint path navigation. That else if statement
is to check if the enemy is indeed pursuing the player.

Introduction to AI Pathfinding and Behaviors

[252]

With that done, the aiSimplePath script is completed. We have added the full
functionality to it. Now all that is left is to press Play, and the behavior that has
been applied and the path attributes should take effect.

The bulletCollision, ammoCollision, and
AmmoInfo scripts
This section will allow the projectiles that we are firing to be able to identify what
it is that they are hitting at and to apply damage to the object if it has the right tag.
The ammoCollision script will handle the amount of ammo that will be given upon
contact and the type of ammo. The AmmoInfo script will handle the respawn time
and the enabling and disabling of the ammo.

In this section we will look into the following:

•	 Creating the bulletCollision script
•	 Hooking up the bulletCollision script on bullet's Inspector
•	 Creating the ammoCollision script
•	 Hooking up the ammoCollision script on bullet's Inspector
•	 Creating the AmmoInfo script
•	 Hooking up the AmmoInfo script on bullet's Inspector

Creating the bulletCollision script
The bulletCollision script handles how the bullet will react upon contact with an
object. Depending upon the collided object's tag, a specified effect will happen. It will
also set up a life timer on the bullet, and the bullet will explode when it has run out
of time to live.

We will create the variables such as explosion for the explosion that will occur
upon the bullet's contact with something, bulletDamage to determine the
amount of damage that the projectile will do to the collided object when the tag
matches, bulletLifeTime to determine how long until the bullet explodes, and
currentTimer that will be the tracker for the timing of the bullet. Each variable is
public except currentTimer, which is private. The explosion variable is of the
GameObject type, bulletDamage is of the integer type, the bulletLifeTime variable
is float, and so is currentTimer.

public var explosion : GameObject;
public var bulletDamage : int;
public var bulletLifeTime : float = 2;
private var currentTimer : float = 0;

Chapter 7

[253]

The OnCollisionEnter function will handle the bullet's collision with objects. If it has
collided with a wall and the player, it instantiates an explosion at the coordinates of its
collision and destroys itself. If it is an enemy, it also causes damage to the enemy.

function OnCollisionEnter(collidedObj : Collision){
 if(collidedObj.gameObject.layer == "Wall" ||
 collidedObj.gameObject.tag == "Player"){
 Instantiate(explosion, transform.position, transform.
rotation);
 Destroy(gameObject);
 }
 else if(collidedObj.gameObject.tag == "Enemy"){
 collidedObj.gameObject.GetComponent("enemyStats").
 DecrementHealth(bulletDamage);
 Instantiate(explosion, transform.position, transform.
rotation);
 Destroy(gameObject);
 }
}

The incrementTime function handles the life of the bullet. If it has not collided with
anything by the time the timer has run out, it creates an explosion and destroys itself.
This is similar to how flax cannons work.

function incrementTime(){
 if(currentTimer < bulletLifeTime){
 currentTimer += Time.deltaTime * 2;
 }
 else {
 Instantiate(explosion, transform.position, transform.
rotation);
 Destroy(gameObject);
 }
}
Update function calls the incrementTime function.
function Update(){
 incrementTime();
}

Hooking up the bulletCollision script on bullet's
Inspector
Now that the script is written, we want to create a prefab that is called bullet and
drag a cube or a sphere or any object that you would like to be our projectile. Drag
the bulletCollision script onto the object as well and set the damage of the bullet and
lifetime of the bullet. Once that is done, make sure that it is in the prefab and drag it
to the projectile slot in every enemy's Shoot script.

Introduction to AI Pathfinding and Behaviors

[254]

Now when you press Play and the player comes into the range of an enemy, the
player will be pursued if:

•	 The enemy is aggressive and the player is in range of the enemy
•	 The player attacks a defensive enemy and is in range of the enemy

Creating the ammoCollision script
The ammoCollision script, as mentioned, will destroy the ammo when hit,
grab the ammo's information, and return it to the enemyStats script and the
ReceiveAmmo function.

Declaring variables for this function is easy. All we have to define is a script
reference variable for the enemyStats script. The variable will be private
and its type will be the name of our enemyStats script:

private var enemyStatScr : enemyStats;

The Awake function will set the enemyStatScr variable to the enemyStats script
as follows:

function Awake(){
 enemyStatScr = GetComponent("enemyStats");
}

The OnCollisionEnter function will determine the amount of ammo that the enemy
receives upon contact with ammo. If the enemy collides with ammo, we will turn the
ammo's renderer off by setting objCollided.gameObject.renderer.enabled to
false and make it noncollidable by setting objCollided.gameObject.collider.
isTrigger to true.

Three variables are declared—one variable to hold the script reference to the
AmmoInfo script, a second one to get the type of ammo collided, and the third one to
hold how much ammo should be given. The ammoAmount variable is an integer and
the ammoType variable is string.

Chapter 7

[255]

If ammoType is projectile, we will call the GetProjectileAmmoAmount
function from the AmmoInfo script and if it is special, we will call the
GetSpecialAmmoAmount function instead.

Lastly, we will set the ReceiveAmmo function of the enemyStats script to the
ammoAmount variable.

function OnCollisionEnter(objCollided : Collision){
 if(objCollided.gameObject.tag == "Ammo"){
 objCollided.gameObject.renderer.enabled = false;
 objCollided.gameObject.collider.isTrigger = true;
 var ammoInfoScr : AmmoInfo =
 objCollided.gameObject.GetComponent("AmmoInfo");
 var ammoType : string = ammoInfoScr.GetAmmoType();
 var ammoAmount : int;
 if(ammoType == "projectile"){
 ammoAmount = ammoInfoScr.GetProjectileAmmoAmount();
 }
 else if(ammoType == "special") {
 ammoAmount = ammoInfoScr.GetSpecialAmmoAmount();
 }
 enemyStatScr.ReceiveAmmo(ammoAmount);
 }
}

Hooking up the ammoCollision script on enemy's
Inspector
Not much to do to hook this script up. Drag it onto Inspector of each enemy and
you're done.

Creating the AmmoInfo script
The AmmoInfo script allows for ammo to have value when it is picked up by an
enemy. The script will have the amount worth for the ammo and respawn the
ammo after it has been disabled.

There are a couple of variables needed to be defined for this script.

Introduction to AI Pathfinding and Behaviors

[256]

We need an enum variable that handles kindOfAmmo. It has the enum name of weapon
type and we will call it ammoType.

The next two are the ammo worth variables. The first one is projectileAmmoAmount
and the second one is specialAmmoAmount. Both of them are public and are of the
integer type.

The next set of variables contains the time variables. They are the respawnTime,
currentTimer, and startTime variables. respawnTime is public and the other two
are private. respawnTime and currentTimer are of the float type, and startTime
is boolean.

The last variable is the kindOfAmmo enum. This one, at this moment, holds reference
to projectile type ammo and special type ammo.

public var ammoType : kindOfAmmo;
public var projectileAmmoAmount : int = 50;
public var specialAmmoAmount : int = 25;
public var respawnTime : float = 5;
public var currentTimer : float = 0;
private var startTime : boolean = false;
enum kindOfAmmo{
 projectile,
 special
}

The GetAmmoType function will return ammoType based upon the selection from the
enumeration (projectile or special).

The GetProjectileAmmoAmount function returns projectileAmmoAmount.

The GetSpecialAmmoAmount function returns specialAmmoAmount.

The incrementTime function will start the respawn time of the ammo after the
ammo has been disabled. The timer will count up to the respawn time by adding
Time.deltaTime to itself. When the timer reaches the respawn time, we will set
the startTime variable to false, turn the ammo's renderer back on by setting
gameObject.renderer.enabled to true, make the ammo collidable by setting
gameObject.collider.isTrigger to false, and reset the timer to 0.

The Update function will check if the renderer of the gameObject is enabled,
and if it is not, it will set startTime (respawn time) to true and call the
incrementTime function.

function GetAmmoType() : String {
 if(ammoType.projectile)
 return "projectile";
 if(ammoType.special)

Chapter 7

[257]

 return "special";
}
function GetProjectileAmmoAmount(){return projectileAmmoAmount;}
function GetSpecialAmmoAmount(){return specialAmmoAmount;}
function incrementTime(){
 if(startTime) {
 if(currentTimer < respawnTime){
 currentTimer += Time.deltaTime * 2;
 }
 else {
 startTime = false;
 gameObject.renderer.enabled = true;
 gameObject.collider.isTrigger = false;
 currentTimer = 0;
 }
 }
}
function Update(){
 if(gameObject.renderer.enabled == false){
 startTime = true;
 incrementTime();
 }
}

Hooking up the AmmoInfo script on ammo's
Inspector
Once the AmmoInfo script is written, we will create a new prefab called ammo. Create
a single cylinder and apply a basic material to it so that it can be differentiated from
the background color of the level.

After that, apply the script to the gameObject and set the values of the script. For
testing purposes, the enum defaults to projectile or whichever one you have at
the first place. Set Projectile Ammo Amount to 100, Special Ammo Amount to 50,
Respawn Time to 15 (this represents seconds). Tag the gameObject Ammo and
drag the gameObject onto the prefab. Place your ammo around the level and you
are done.

Introduction to AI Pathfinding and Behaviors

[258]

Now place the player in a position where an enemy will interact with him. So, when
you go and press Play, the enemies will follow their paths, but if they come across
the player, and if their behavior type is aggressive, they can shoot the player but
only for a specific time. With each bullet fired, their health goes down and now they
have to search out ammo. If the ammo has been out of range of the player when the
enemies pick it up, they disengage from the player and resume their waypoint path,
at least, until their paths cross again.

Summary
This chapter has shown a fair beginning to AI. A person should be able to identify
aspects of what needs to go into designing systems for AI to work. In this chapter,
we explored concepts such as identifying the path that the enemy should navigate
along, how the enemy should react at the end of a waypoint array, how behaviors
can help expand and enrich the player's experience, and bring some challenge to
enemies. We saw how tweaking values can give us different battle situations, and
therefore, if we have a simple battle setup for bots, it is very doable and easy to
accomplish for the player.

As mentioned throughout this book, these concepts and principles that are being
shown are merely the basics and they are very simple. In order to truly get results,
whether it be AI, tethering, cameras, or controllers, there is a more sophisticated
way that allows for optimization and more freedom with the code. This is merely a
gateway. I am hoping you want to learn more and explore the boundaries of Unity
and then surpass them. In the reading material of the Appendix, Object-oriented
Programming in Unity, there are several excellent websites, wikis, forums, and
blogs to visit, which will help with questions you may have.

Object-oriented Programming
in Unity

The book has almost come to an end, but there are a lot of things to learn ahead.
In this appendix, we will cover object-oriented programming inside Unity. Those
of you who used to work with C/C++/Java/AS3 should be familiar with all the
concepts of OOP and will find their application in Unity. For others, it would be
a next step of how to improve oneself in programming.

Object-oriented programming – basics
Object-oriented programming, or OOP, is a programming paradigm that uses data
structures called objects to store parameters and methods. To make it simple, every
object has a number of parameters and functions that it can execute, and whole
programming is based upon object manipulation.

Encapsulation
One of the four fundamentals of OOP is encapsulation, the ability of objects to hide
properties and methods. It might sound as if its only purpose is to protect them,
and in general it is. There is no better way to hide the source code that you’ve been
working on for so long if you decide to give your program to somebody to try. But,
imagine that you are not working alone and wish to save your peers from reading
and trying to understand thousands of lines of your code. The best way to do that is
to hide everything that they wouldn’t need to use or even look at, and provide them
only with everything necessary for their work. That’s when encapsulation comes
in handy.

Object-oriented Programming in Unity

[260]

There are three types of access levels that are used:

•	 private: visible only to the current class
•	 public: visible to everybody
•	 protected: visible to the current class and inherited classes

Unity has a very interesting way to incorporate encapsulation by letting us
choose which properties we want to be modified inside the editor and be visible
in the Inspector view. Basically, if we want any variables to be modified or seen in
the editor, we need to give them public access level; all others will remain saved
and hidden.

Classes
Before we can create an object, we need to create its prototype or a template, which
is called class. A class is a construct that can create instances of itself. A class defines
constituent members that enable its instances to have state and behavior. In general,
class is referred to as a noun (cow, table, inventory). Inside the class, we can specify
properties (data) and methods (functions).

Constructors
The interesting feature of classes is a function that executes upon creation. Whenever
we create a new instance of an object, we automatically call the so-called constructor
function, which can even take arguments and do basic setup for the object. The
constructor function must be named after class to be recognized as a constructor.

Code
Perform the following steps:

1. Create the constructor function for ParentClass:
function ParentClass(){Debug.Log(“Constructor function is
called”);}

2. Instantiate ParentClass from the Awake function:

var inheritedClassSample= new ParentClass();

If we run the code now, as soon as the instance of ParentClass is instantiated,
we will see a debug message that “Constructor function is called”.

Appendix

[261]

Inheritance
One of the most wonderful features of classes is inheritance. Whenever we create a
new class, we can extend from an already existing class and inherit all its data and
methods. Of course, we can regulate access level by making data private, which will
make it accessible only by its original class.

Inheritance is widely used in OOP. Imagine that you need to create a number of
weapons; you can create each class for the weapon separately, however, if we look
closer, each weapon has some things in common. These common data and methods
can be stored in a template class, and we can create each individual weapon class as
a child of the template class. The template classes that are never instantiated, but use
inheritance to create child classes, are called abstract.

If the class that we created is not meant to be extended from, we can declare it as
final, which will prevent it from being inherited from.

Preparations
Let’s take a look at some examples of class manipulations. In this example, we will
create a script that contains a couple of classes, and they will inherit from each other.
Each class will have data and methods with different access levels to demonstrate
how they work:

1. Create a new script, and call it OOP.
2. Create a new scene, and place a random object in there.
3. Attach the OOP script to this object.

Code
Perform the following steps:

1. Declare a new public class and call it ParentClass:
public class ParentClass{}

2. Inside ParentClass, declare the private, protected, and public variables:
protected var protectedVar : int = 1;
private var privateVar : int = 1;
public var publicVar : int = 1;

Object-oriented Programming in Unity

[262]

3. Create three functions—private, public and protected:
private function voidFunction() : int
{Debug.Log(“Private function called”);}
public function getPrivateFunction():void
{voidFunction();}
protected function protectedFunction() : int
{return privateVar;}

4. Create a new class, and call it inheritedClass. It will inherit from
ParentClass and will be the final class:
public final class InheritedClass extends ParentClass{}

5. Declare the Awake function outside the class, create a new instance
of inheritedClass, and try calling the public and protected
functions from the parent class:

function Awake(){
 var ClassSample = new InheritedClass();
ClassSample.getPrivateFunction();
Debug.Log(ClassSample.protectedFunction ());
}

The result is predictable; the child class recognized the public and protected
functions of the parent and successfully called them.

Polymorphism
Inheritance is an amazing feature that allows us to save on copying and pasting
the same code from one class to another and making our code more organized, but
what if the methods that we wish to use in child classes need to be tweaked a bit?
Thankfully, we don’t have to create new functions; we can simply rewrite existing
ones. This concept in OOP is called polymorphism. Polymorphism has two features
that we need to keep in mind:

•	 Method overloading: This allows us to declare functions with the same
naming signature within the class, but a different argument list

•	 Method overriding: This allows us to declare functions with the same
naming signature as the parent class, but change what is actually being
executed in them

The argument list, really, is the only way to control an overloaded function, but what
if we need to call an overridden function from the parent class? This can be done by
calling super.functionname(). super is a reference to a parent class and can be
called from anywhere in the child class.

Appendix

[263]

Code
Perform the following steps:

1. Inside InheritedClass, override protectedFunction and create a
constructor function:
function InheritedClass(){}
public function protectedFunction(): int {return 5.1;}

2. In the constructor function, call both the original and overridden
protectedFunction functions:

Debug.Log(“Calling super: “ + super.protectedFunction());
Debug.Log(“Calling protected: “ + protectedFunction());

When we start the program, the constructor function will call two functions with the
same naming signature, but from different classes.

Nested classes
Classes can be the storage for class properties, as well as other classes. Classes that
are stored within other classes are called nested classes. Nested classes can get access
to the public and protected functions, methods, and properties of upper class.

Summary
Most of the modern programming and scripting languages use an object-oriented
programming paradigm, which makes the knowledge gained in this appendix
universal. The more you work with classes, the more ways of using them you
will find, which will make your work easier to communicate and more efficient.

In the end, it’s all about the experience, and about how much effort and time you
spend on solving problems, which will make you a better programmer. Go ahead
now! Start working on personal and group projects, read other people's code, and
find efficient solutions to the problems! We can’t wait to see what you come up with.

Index
Symbols
3D character avatar

camera, adjusting 130, 131
camera, setting up 128, 129
creating 128
window dragging, limits 131

3rd Person Camera (script)
and 3rd Person Controller (script) 11

3rd Person Controller
about 8, 10
animation 10
character motor (script) 11
FPSInput controller (script) 11

3rd Person Controller (script)
and 3rd Person Camera (script) 11

@System.Serializable 114

A
A* 224
abstract 261
Activated function 24
Activation variable 205
AddAmmo function 66, 71
Add Current button 203
AddForceAtPosition function 41
AddForce function 37
AddItemToList 155
AddScore function 181
AI 223
airControl variable 36
aiSimpleBehaviour script

about 240
additional functions 247, 248
behavior functions 241-246

hooking up, on inspector 248
setting up 240, 241

aiSimplePath script
about 226, 249, 252
creating 227
EnemyPath function, revisiting 250-252
functions, starting up 228, 229
hooking up, on inspector 233
path, traversing 229-232
robot, shutting down 232
variables, declaring 227

alpha gradient 146
AltShooting function 141
ammoAmount variable 254
ammoCollision script

about 254, 255
creating 254, 255
hooking up, on enemy's inspector 255

AmmoInfo script
creating 255-257
hooking up, on ammo's inspector 257, 258

ammo's inspector
AmmoInfo script, hooking up on 257, 258

AmmoToLocate function 243, 246, 250
angles, cameras

clamping 51, 52
animation, 3rd Person Controller 10
animations

about 55
component 57, 58
idle animation 61, 62
playing speed 57, 58
repeating modes 59
run animation 61, 62
scripting 59-61

[266]

simple animations, playing 55, 56
start function versus awake function 56, 57
walk animation 61, 62

animation system
advanced 74, 75
mixing 75-77
script overview 78, 80
working 75

Application.LoadLevelAdditive(levelindex :
int) function 207

Application.LoadLevel(levelindex : int)
function 207

Apply function 50
ArcBehaviour script, targeting system

creating 195
armor

creating 169
HealthBar script, revisiting 172, 173
Health script, revisiting 173
script 170, 171
UseItem script, revisiting 174

ArmorDrain function 171
armorValue list array 172
arrayDirection variable 228, 230, 231
Artificial Intelligence. See AI
assets

creating 92, 93
Standard Assets 7
StickySegment script 98, 100
tether, creating 94-97
tether manager 93, 94
Tether scripts, overview 101, 102

Audio
about 218
sound attaching, to controllable

character 219, 221
Audio Clip 218
Audio Listener 218
Audio manager

designing 221, 222
Audio Source 218
awake function

about 24, 170, 186, 203, 206, 228, 234, 260
versus start function 56, 57

Awake() function 56

B
bActivated variable 206
base button script 13
behavior functions, aiSimpleBehaviour

script
about 241
AmmoToLocate function 246
CheckPlayerDistanceToEnemy function

242
FindAmmo function 243, 246
FindGameObjectsWithTag function 244
PassiveBot function 244
ReturnBotType function 242
SetIfPlayerIsAttacking function 242

Bezier equation script, targeting system
creating 194

bInRange variable 86
bIsShooting 69
bIsShootingAlt 69
boolean return value 107
boolean type 227, 249
boolean variable 206
BOOM function, explosion box

collidedObj variable 16
Physics.OverlapSphere function 16

botsDistance variable 244
BotToHeal function 250
Bounty variable 87
breadth-first search 224
bulletCollision script

creating 252, 253
hooking up, on bullets inspector 253, 254

bulletLifeTime variable 252
bullet's inspector

bulletCollision script, hooking up on
253, 254

Button script 206
buttons, interactive object

about 12
base button script 13
platform status, activating 13, 14

ButtonType variable 205
bWeaponEquiped 70

[267]

C
camera function 45, 46
cameras

about 42
angles, clamping 51, 52
camera type changing, updating 49, 50
camera values function, changing 46, 47
character movement 48
character, rotating 53, 55
enumeration list, creating 44
function, changing 45, 46
functions, writing 44
influencing, with mouse 50, 51
iniitialize function 44, 45
late update 53
positioning 48
script, creating 43, 44
scripting 42
scripting, steps 43
switching controls, writing 47, 48

camera type changing
updating 49, 50

canBeActivated variable 206
canShootAlt 70
canShootPrime 70
canShoot variable 236, 237
chainDamper variable 96
chainDrag variable 95
ChainEndPoint object 100
ChainEndPoint sphere 93
chainMass variable 95
chainSpringiness variable 96
ChainStartPoint sphere 93
ChangeCamType function 49
Change_Item script

about 157
code, setting up 154, 155
creating 154
revisiting 161

Change_Weapon script 175
CH_Animation script 78
character, cameras

rotating 53, 55
Character | Character Motor 11

character controller
3rd Person Controller 8, 10
about 8, 31
character vector, manipulating 33
composition 9
First Person Controller 8, 9
input, registering from user 34, 35
jump functionality 40, 41
jumping 36
movement, creating 33
project, setting up 32
raycasting 38
raycasting efficiency, improving 39
rigidbody component 35, 36
running 42
types 8
user input verification 36, 37

character controller, First Person
Controller 9

Character Controller script 53
character, customization

3D character avatar 128
about 127
character, modifying 135, 140
items, adding 133, 135
items, setting up 132, 133
reloading and inventory 141
steps 132

character, inventory
modifying 135, 140

CharacterJoint component 99
character motor (script), 3rd Person

Controller 11
character motor (script), First Person

Controller 9
character vector, custom character controller

manipulating 33
CH_Controller script

about 45, 69, 71
uses 69

CH_Controller script, uses
bIsShooting 69
bIsShootingAlt 69
bWeaponEquiped 70
canShootAlt 70

[268]

canShootPrime 70
Counter 70
countTime 70
Flush 70
Muzzle 69
MuzzleAlt1 69
Projectile 69
projectileSpeed 69
Stats 70

CheckAmmo function 235
CheckCurrentHealth function 235
CheckFocus() function 115
CheckPlayerDistanceToEnemy function

242, 248
checkpoints, game manager

loading with 214, 215
CH_Inventory script 113, 116, 142
CH_PlayerStats script 66, 70, 208
ClampAngle function 50
ClampForever 60
class 260
classes 114
collidedObj variable 16
Component | Camera Control | Mouse

Look 9
Component | Character | Character Motor.

9
Component | Character | FPSInput

Controller 11
Component | Miscellaneous | Animation

10
Component | Physics | Rigidbody 20
Component | Scripts 11
ConfigurableJoint 96
ConfigurableJoint attribute 97
connectedBody attribute 97
Constant variable 86
constructor

about 260
coding 260

ConstType 115
controllable character

creating 29, 30
cooldown

shooting 72
coroutines 71
Counter 70

countTime variable 70, 72
CrossFade function 60
currentArmor variable 171, 172
currentHealth variable 147, 148, 170
currentScore update 183
CurrentSpawnPointIndex variable 208, 210
currentTimer 240
currentWaypoint variable 228, 230, 231
currentWeapon variable 236
customObjects folder 68
Custom scripts folder 32

D
DecrementAmmo function 235
DecrementHealth function 235
DecrementItemCount function 162, 178
defaultRange variable 243
depth-first search 224
DestinationPos variable 86
destroyTime variable 83, 84
DetermineDirection function 74, 77
Detonator_Box 15
Detonator package, interactive object

button, pressing 19, 20
downloading 17, 18
TNT variable 18

Dijkstra 224
dirVector variable 22
DisableRenderer function 184
disengagedPlayer variable 243
DisplayInformation function 163, 166, 179,

185, 187, 188
Displaying Objectives script 186
distanceBetweenSegments variable 94
DoMyWindow() function 113, 118
DontDestroyOnLoad function 204
drag-and-drop inventory

about 112
basics 113, 114
draggable object 114-117
GUI windows, working with 118, 121
inventory, patching 126, 127
inventory slots 114-116, 121, 122

DraggableObject class 115
draggable objects 114-117

[269]

dynamic camera 218
Dynamic heads up display. See HUD
dynamic objects

about 20
character, moving with platform 25
moving boxes 20, 22
moving platform 24, 25
triggered object 23

E
else if statement 149, 217
else statement 97
encapsulation

about 259
private, access level 260
public, access level 260

EnemyPath function 229, 232
enemyPath variable 228
enemy's inspector

ammoCollision script, hooking up on 255
enemyStats script

about 233
functions, manipulating 234, 235
functions, retrieving 234
functions, setting up 234
hooking up, on inspector 236
variables, setting up 234

enemyType variable 250
EnemyWeapon variable 236
engagePlayer variable 250
engagingPlayer variable 242
enumeration list, cameras

creating 44
enum variable 239
EquipWeapon function 81
EquipWeapon() function 81
eulerAngle 50
Explosion Box 15
explosion box, interactive object

about 15
achieving, steps 15
BOOM function 16, 17
Detonator package, downloading 19
update function 15, 16

explosion variable 252

F
FindAmmo function 141, 246
FindFirstAvailableSlot function 141
FindGameObjectsWithTag function 244
FindObjectOfType 201
FindWithTag function 209
First Person Controller

about 8, 9
character controller 9
character motor (script) 9
FPSInput controller (script) 10
mouse lookup (script) 9

first-person shooter. See FPS
FixedUpdate function 31, 35, 41, 70, 72, 142
FlameThrower boolean 239
Flush 70
Focused variable 115
for loop 123, 228
FPS 223
FPSInput controller (script), 3rd Person

Controller 11
FPSInput controller (script), First Person

Controller 10
FrontEnd scene 203
functions, aiSimplePath script

starting up 228
functions, cameras

camera function 45, 46
camera values function, changing 46, 47
initialize function 44, 45
writing 44

functions, enemyStats script
manipulating 234, 235
retrieving 234
setting up 234

G
GameLoader 217
game manager

about 146, 189, 190
Application.LoadLevelAdditive(levelindex

: int) function 207
Awake function 203, 206
Button script 206

[270]

checkpoints, loading with 214-217
creating 200
CurrentSpawnPointIndex variable 210
DontDestroyOnLoad function 204
FindWithTag function 209
Initialize function 210
instance 201
levels, managing 207
level streaming 201-204
mission, creating 204-207
OnCollisionEnter function 205
SaveGame function 210
save/load system 208-214
static function 209
static variable 208
theory 200
Update function 206
Vector3.Lerp function 207
WorldManager script 200, 203

GameManager object 161
gameObject instance 163
GameObject type 196, 228
GameObject variable 164
GetAmmo function 234
GetAmmoType function 256
GetArmorStatus function 171
GetBehaviourInfo function 243, 250
GetButtonDown 37
Get function 234
GetHealth function 234
GetIfPlayerIsAttacking function 247
GetInstance function 217, 221
GetKeyDown function 155
GetKey function 147
GetPressed function 14, 19
GetProjectileAmmoAmount function 256
GetQuadraticCoordinate function 195
GetQuadraticCoordinates function 194
GetSpecialAmmoAmount function 256
GetStreamProgressForLevel function 215
Gizmos.DrawIcon function 225
Graphical User Interface. See GUI
GUI

about 105, 145
GUI.BeginGroup class 111
GUI.BeginScrollView class 111
GUI.Box class 106

GUI.Button class 106, 107
GUIContent class 112
GUI.EndGroup class 111
GUI.EndScrollView class 111
GUI.HorizontalScrollBar class 110
GUI.HorizontalSlider class 110
GUI.Label class 107
GUILayout class 112
GUI.SelectionGrid class 109
GUIStyle class 112
GUI.TextArea class 108
GUI.TextField class 107, 108
GUI.Toggle class 108
GUI.VerticalScrollBar class 110
GUI.VerticalSlider class 110
GUI.Window class 112
ScrollTo class 111

GUI.BeginGroup class 111
GUI.BeginScrollView class 111
GUI.Box class 106
GUI.Button class 106, 107
GUIContent class 112
GUI.DragWindow function 112
GUI.DragWindow function 123
GUI.EndGroup class 111
GUI.EndScrollView class 111
GUI.EndScrollView function 123
GUI.HorizontalScrollBar class 110
GUI.HorizontalSlider class 110
GUI.Label class 107
GUILayout class 112
GUI.RepeatButton 107
GUI.SelectionGrid class 109
GUIStyle class 112
GUI.TextArea class 108
GUI.TextField class 107, 108
GUI.Toggle class 108
GUI.Toolbar class 109
GUI.VerticalScrollBar class 110
GUI.VerticalSlider class 110
GUI.Window class 112
Gun_PickUp prefab 80

H
healBot variable 250
health 190

[271]

HealthBar script
revisiting 172, 173

healthBarScr variable 170
healthBar variable 170
health display script 146, 148, 149, 151
Health(health : float) function 149
healthMax variable 148, 170
healthMin variable 148, 170
healthPack texture 154
health pickups 82
HealthRiseFall function 149, 150
health script

about 146, 147
revisiting 151, 169, 173

Hierarchy section 18
Hierarchy view 32, 225
highScoreDisplay 191
highscore update 183
HoveringSlot variable 116, 117
HUD

about 145
hooking up 188

I
idle animation 61, 62
if parameter 160
if statement 13, 14, 19, 107
IncrementControl function 155, 157
incrementTime function 237, 239, 253, 256
IncrementTime function 248
inheritance

about 261
coding 261, 262
inheritedClass class 262
preparing 261

inheritedClass class 262
initialize function 44, 45, 210, 214, 216
Input.GetAxis function 34
inspector

objects, hooking up 152, 153
inspector, aiSimpleBehaviour script

aiSimpleBehaviour script, hooking up on
248

inspector, aiSimplePath script
hooking up on 233

inspector, enemyStats script
hooking up on 236

inspector, shoot script
hooking up on 239

instance 201
InteractiveCloth 71
interactive object

about 12
buttons 12
triggered objects 12
triggers 12
types 12

interactive object, types
buttons/plunger 12
explosion box 12, 15
moving boxes 12
platform 12

inventory
and reloading 141
patching 126, 127

inventoryOpened variable 113
InventorySet array 121
InventorySlot class 115, 116
inventory slots 114, 115, 116, 117
ItemDisplay function 155
itemLog array 175
ItemMultiplier 191
ItemName function 155, 156, 161
itemName variable 159
Item_Pic 191
items

adding, to array 155, 156
change_Item script 154
Change_Item script, revising 161
changing 155
code, setting up 154
creating 153, 154
displaying 156
health script, revisiting 169
increment controls 157, 159
playerStats script 162-164
removing, from array 155, 156
TextManager script 164
textMesh script 165, 166
UseItem script, creating 159, 160
UseItem script, revising 167, 168

[272]

items, inventory
adding 133, 135
setting up 132

J
jumping, character controller

about 36
user input verification 36

K
KeyCode function 147

L
LastClick location 123
LastSlot variable 116, 117
late update, cameras 53
level, game manager

managing 207, 208
streaming 201-204

lineRenderer variable 194
LoadingLevels() function 211
locateAmmo variable 250
location 115
lookForAmmo variable 248

M
magnitude 31
MainCamera tag 218
Mathf.InverseLerp function 150
meshSegment variable 95
method overloading, polymorphism 262
method overriding, polymorphism 262
mission, game manager

creating 204-207
Missions array 208
mouse lookup (script), First Person

Controller 9
moveAlong 25
MoveButton function 13, 19
moveDirection variable 230, 231
MoveDirection vector 62
movement, cameras 48
movement, character controller

character vector, manipulating 33

input, registering from user 34, 35
Rigidbody component 35, 36

Movement function 35, 42, 53
moveObject script, targeting system

creating 196, 197
moving boxes, dynamic objects 20-22
moving character with platform, dynamic

objects 25
moving platform, dynamic objects

Activated function 24
button-triggered platforms, creating 23, 24

Muzzle 69
MuzzleAlt1 69

N
nav-mesh 224
nested classes 263

O
ObjectiveDisplay 191
objectives

displaying 186
game manager 189, 190
Health Bar script 190
HUD, hooking up 188, 189
Item_Pic 191
saveDisplay 192
TextManager, revisiting 186, 187
textMesh, revisiting 187
Weapon_Pic 192

Object-Oriented Programming. See OOP
objects

hooking up, to inspector 152, 153
OnCollisionEnter() function 98
OnCollisionEnter function 205, 217, 247,

253, 254
OnCollisionExit() function 39
OnCollisionStay() function 40
OnControllerColliderHit function 19, 22
OnControllerColliderHit() function 39
OnDrawGizmos function 225
OnGUI function 114
OnGUI() function 113
OnTriggerEnter function 83, 87, 142
OnTriggerExit function 87

[273]

OOP
about 5, 259
class 260
constructor 260
encapsulation 259, 260
inheritance 261
nested classes 263
polymorphism 262

OriginalPos variable 86

P
packages

opening 7
path, for downloading 6
Unity_Scripting.unitypackage 6

painKiller texture 154
ParentClass 260
PassiveBot function 244, 245, 246
path, aiSimplePath script

traversing 229-232
path arrays

setting up 226, 227
pathfinding, with waypoints

A* 224
about 224
aiSimplePath script, creating 227
breadth-first search 224
depth-first search 224
Dijkstra 224
hierarchy, setting up 225
nav-mesh 224
path arrays, setting up 226, 227
waypoint display script, writing 225, 226

pathingScr variable 242
PathScr variable 234
Physics | Character Controller 9
Physics.OverlapSphere function 16
pickables

about 65
base, creating 66, 67

pivot point 31
platform script 25
platform status

activating 13, 14
PlayerArmor function 171
PlayerHealth function 147, 151, 170

PlayerHealth variable 147
Player_Input script 55
PlayerStats

revisiting 178
PlayerStats script 160, 162, 163, 164, 176
Player tag 209
Player variable 87
plunger. See buttons, interactive object
polymorphism

about 262
coding 263
method overloading 262
method overriding 262

positioning, cameras 48
prefab 68
private access level, encapsulation 260
private botType variable 240
private variable 13, 56, 66
Projectile 69
projectile fixes

applying 89
projectileSpeed 69
projectile variable 236
protectedFunction function 263
public access level, encapsulation 260
pursueTimeAfterAttack 240

R
Radial health display

about 146
alpha gradient 146
game manager 146
health display script 146
health script 146

raycasting
about 38
efficiency, improving 39

real-time strategy. See RTS
ReceiveAmmo function 234
Rect 106
RemoveAt function 156
RemoveItemFromArray function 168
RemoveItemFromList function 156
RepairBot function 234
ResetArmor function 171
ResetValues function 163, 178

[274]

Resources section 18
restrainStartingPoint variable 97
ReturnBotType function 241, 242
ReturnButtonStatus function 20
return function 171
ReturnScore function 181
reverseLoop 227
Rigidbody component 100
robot, aiSimplePath script

shutting down 232
robot prefab 69
role playing game. See RPGs
RPGs 112
RTS 223
run animation 61, 62
running, character controller 42

S
saveDisplay 192
SaveGame function 210
save/load system, game manager 208-211,

214
SaveScore script 185
scoreDisplay 191
score script

about 180, 181
text file, reading from 182
text file, writing to 183, 184

score system
about 180
score script 180, 181
textMesh script, revisiting 185
timer script 184

ScrollTo class 111
SetColor. SetColor function 149
SetEnemyType function 242, 250
SetFloat function 150
SetIfPlayerIsAttacking function 242
SetItemName function 159, 161
SetLevelState 209
SetMissionStatus 215
SetStats function 208
Shoot function 197
ShootingAnimationSpeed, public variable

74
Shooting function 71

shoot script
hooking up, on inspector 239
setting up 236, 237
shooting functionality, writing 237-239

shootUpperBody 77
ShutDownRobot function 232
SpawnPlayer function 214
Speed variable 84
sr.ReadToEnd() function 182
Standard Assets 7
start function

versus awake function 56, 57
Start function 59, 87
Start() function 56
static function 209
static variable 201, 208, 214
Stats 70
StickSegment script 102
StickTo function 99
StickySegment component 97
StickySegment script 98
stopRobot variable 228
StreamReader function 182
string parameter 180
super.functionname(). super 262
switching controls, cameras

writing 47, 48
switch statement 67

T
targeting system

about 193
ArcBehaviour script 195
Bezier equation script, creating 194
editor, hooking in 197
moveObject script 196, 197

Target variable 231
tethering

about 90
creating 90

tetherManager script 99
tetherSegment sphere 93
TextManager script

about 164, 180
revisiting 186, 187

[275]

TextMesh component
about 165
revisiting 187

textMesh script
about 165, 166, 167
revisiting 179

ThirdPersonController script 22
third-person shooter. See TPS
this.transform 34
timer script 184
TNT script 17
TNT variable 18
TPS 223
treasure chest

creating 85-89
triggered objects, interactive object 12
triggers, interactive object 12
TypeofAmmo 66

U
Unity

custom character controller 29
Unity3D

character controller 8
package, opening 7
packages downloading, path for 6
prerequisites 5
Unity_Scripting package 7
Unity_Scripting.unitypackage 6

Unity_Scripting package 7
Unity_Scripting.unitypackage 6
Update function 35, 87, 160, 170, 187, 195,

206, 217, 232, 235
update function, explosion box 15
useCollision 95
UseItem function 160, 174
UseItem script

revisiting 167, 168, 174
UseWeapon function 177
UseWeapon script 176, 177
UseWeapon script function 178

V
variables, aiSimplePath script

declaring 227

variables, enemyStats script
setting up 234

Vector3 31
Vector3.Lerp function 207
vector normalization 36

W
WaitForSeconds function 215
walk animation 61, 62
waypointArray variable 228
waypoint display script

writing 225, 226
WaypointNode_Display 225
waypointnode_icon 225
waypoint pathfinding. See pathfinding,

with waypoints
waypointPointnode_Display script 227
weaponDisplay 191
weaponLog variable 175
WeaponName function 175
Weapon_Pic 192
Weapon_pick Up script 80, 81
weapons

about 65
base, creating 66, 67
Change_Weapon script 175, 176
creating 174
pickup 80, 81
PlayerStats, revisiting 178
programming 68-71
shooting cooldown 72
shooting function 71, 72
shooting function, alternative 73, 74
textMesh script, revisiting 179
UseWeapon script 176, 177

while loop 94
WorldManager script 200, 203, 216
WorldManager type 200
WriteLine function 183

Y
yield 215

Thank you for buying
Unity 3.x Scripting

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3.x Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-184-0 Paperback: 408 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly with Unity 3.x

1. Build fun games using the free Unity game
engine even if you've never coded before

2. Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3. Deploy your games to the Internet so that your
friends and family can play them

Unity 3.x Game Development
Essentials
ISBN: 978-1-84969-144-4 Paperback: 488 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects,
and more!

1. Kick start your game development, and build
ready-to-play 3D games with ease

2. Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more

3. Test & optimize your game to perfection with
essential tips-and-tricks

4. Written in clear, plain English, this book
takes you from a simple prototype through
to a complete 3D game with concepts you’ll
reuse throughout your new career as a
game developer

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Diving into Scripting
	Downloading and installing assets for this book
	Getting started with the game
	Available Character Controllers
	Interactive objects
	Triggers
	Buttons
	Base button script
	Activating platform status

	Explosion box
	The Update function
	The BOOM function

	Downloading the Detonator package
	Pressing the button

	Dynamic objects
	Moving boxes
	Triggered object
	Moving platform
	Moving the character with the platform

	Summary

	Chapter 2: Custom Character Controller
	Creating a controllable character
	Custom Character Controller
	Setting up the project
	Creating movement
	Manipulating character vector
	Register input from the user
	The Rigidbody component

	Jumping
	User input verification
	Raycasting
	Additional jump functionality

	Running

	Cameras
	Camera scripting
	Creating camera script
	Creating an enumeration list
	Writing functions
	Writing camera switching controls
	Character movement and camera positioning
	Updating camera type changing
	Influencing camera with a mouse
	Clamping angles
	Camera's late update
	Rotating character with a camera

	Animation controls
	Playing simple animations
	Start function versus Awake function
	Animation component and playing speed
	Animation scripting
	Walk, run, and idle animations

	Summary

	Chapter 3: Action Game Essentials
	Programming weapons and pickables
	Creating the base
	Programming the weapon
	The Shooting function
	Shooting cooldown
	Alternative shooting function

	Advanced animation system
	Working of an animation
	Animation mixing
	Animation script overview

	Weapon pickup
	Adding ammo and health pickups
	Creating a treasure chest
	Applying projectile fixes
	Tethering and soft body
	Tethering
	Creating a tether

	Creating assets
	Tether manager
	Creation of tether
	The StickySegment script
	Tether scripts overview

	Summary

	Chapter 4: Drag-and-Drop Inventory
	GUI basics
	GUI.Box
	GUI.Button
	GUI.Label
	GUI.TextField
	GUI.TextArea
	GUI.Toggle
	GUI.Toolbar and GUI.SelectionGrid
	GUI.HorizontalSlider and GUI.VerticalSlider
	GUI.HorizontalScrollBar and GUI.VerticalScrollBar
	GUI.BeginGroup and GUI.EndGroup
	GUI.BeginScrollView, GUI.EndScrollView, and ScrollTo
	Other GUI classes

	Drag-and-drop inventory
	Basics
	Inventory slots and draggable objects
	Working with GUI windows
	Inventory slots
	Patching the inventory

	Character customization
	3D character avatar
	Dealing with a camera
	Adjusting the camera
	Window dragging limits

	Customization
	Setting up items
	Adding items
	Modifying character
	Reloading and inventory
	Finishing adjustments

	Summary

	Chapter 5: Dynamic GUI
	Radial health display
	The Health script
	Health display script
	Revisiting the Health script
	Hooking up objects to Inspector

	Creating items
	The Change_Item script
	Setting up the code
	Changing items
	Addition and removal
	Displaying items
	Increment controls

	Creating the UseItem script
	Revisiting the Change_Item script
	The PlayerStats script
	The TextManager script
	The textMesh script
	Revisiting the UseItem script
	Revisiting the Health script

	Creating armor
	The Armor script
	Revisiting the HealthBar script
	Revisiting the Health script
	Revisiting the UseItem script

	Creating the weapons
	The Change_Weapon script
	The UseWeapon script
	Revisiting PlayerStats
	Revisiting the textMesh script

	Scripting and displaying the score system
	The Score script
	Reading from the text file
	Writing to the text file

	The timer script
	Revisiting the textMesh script

	Displaying the objectives
	Revisiting TextManager
	Revisiting textMesh
	Hooking up HUD
	Game manager
	Health
	Item_Pic
	ItemMultiplier, highScoreDisplay, ObjectiveDisplay, scoreDisplay, and weaponDisplay
	saveDisplay
	Weapon_Pic

	Creating the targeting system
	Creating the Bezier equation script
	ArcBehaviour
	The moveObject script
	Hooking it up in the editor

	Summary

	Chapter 6: Game Master Controller
	Game manager theory
	Creating game managers
	Level streaming
	Mission creation
	Managing levels
	Save/load system
	Loading with checkpoints

	GameLoader
	Dynamic camera
	Audio
	Audio manager
	Summary

	Chapter 7: Introduction to AI Pathfinding and Behaviors
	Simple waypoint pathfinding
	Setting up the hierarchy
	Writing the waypoint display script
	Setting up the path arrays
	Creating the aiSimplePath script
	Declaring variables
	Starting up functions
	Traversing the path
	Shutting down the robot
	Hooking up the aiSimplePath script on Inspector

	Enemy statistics, shooting, and behaviors
	The enemyStats script
	Setting up variables
	Setting up functions
	Retrieving functions
	Manipulation functions
	Hooking up the enemyStats script on Inspector

	The Shoot script
	Setting up the script
	Writing shooting functionality
	Hooking up the Shoot script on Inspector

	The aiSimpleBehaviour script
	Setting up the script
	Behavior functions
	Additional functions
	Hooking up the aiSimpleBehaviour script on Inspector

	Returning to the aiSimplePath script
	Pursue functionality
	Revisiting the EnemyPath function

	The bulletCollision, ammoCollision, and AmmoInfo scripts
	Creating the bulletCollision script
	Hooking up the bulletCollision script on bullet's Inspector

	Creating the ammoCollision script
	Hooking up the ammoCollision script on enemy's Inspector

	Creating the AmmoInfo script
	Hooking up the AmmoInfo script on ammo's Inspector

	Summary

	Appendix: Object-oriented Programming in Unity
	Object-oriented programming – basics
	Encapsulation
	Classes
	Constructors
	Code

	Inheritance
	Preparations
	Code

	Polymorphism
	Code

	Nested classes

	Summary

	Index

