

[image: image]

CONTENTS

Introduction

Chapter 1: Getting Started With IOS 5 Programming

Obtaining the Tools and SDK

Components of Xcode

Architecture of the iOS

Some Useful Information before You Get Started

Summary

Chapter 2: Writing Your First Hello World! Application

Getting Started with Xcode

Customizing Your Application Icon

Displaying Launch Images

Summary

Chapter 3: Understanding Views, Outlets, and Actions

Outlets and Actions

Using Views

Adding Views Dynamically Using Code

Understanding View Hierarchy

Summary

Chapter 4: Exploring The Different View Controllers

The Single View Application Template

The Empty Application Template

The Master-Detail Application Template

The Tabbed Application Template

Summary

Chapter 5: Enabling Multi-Platform Support For The Iphone and IPAD

Technique 1 — Modifying the Device Target Setting

Technique 2 — Creating Universal Applications

Choosing a Porting Technique

Summary

Chapter 6: Handling Keyboard Inputs

Using the Keyboard

Customizing the Type of Inputs

Detecting the Presence of the Keyboard

Summary

Chapter 7: Supporting Screen Rotations

Responding to Device Rotations

Programmatically Rotating the Screen

Summary

Chapter 8: Creating and Persisting Data Using The Table View

Creating a Simple Table View

Using the Table View in a Master-Detail Application

Displaying Sections

Summary

Chapter 9: Using Application Preferences

Creating Application Preferences

Programmatically Accessing the Settings Values

Summary

Chapter 10: File Handling

Understanding the Application Folders

Using Property Lists

Copying Bundled Resources

Importing and Exporting Files

Summary

Chapter 11: Database Storage Using Sqlite

Linking to the SQLite3 Library

Creating and Opening a Database

Bundling SQLite Databases with Your Application

Summary

Chapter 12: Programming Icloud

Storing and Using Documents in iCloud

Storing Key-Value Data in iCloud

Summary

Chapter 13: Performing Simple Animations and Video Playback

Using the NSTimer Class

Transforming Views

Animating a Series of Images

Playing Video on the iPhone

Summary

Chapter 14: Accessing Built-In Applications

Sending E-Mail

Accessing the Camera and the Photo Library

Summary

Chapter 15: Accessing The Sensors

Using the Gyroscope and Accelerometer

Visualizing the Sensor Data

Using the Shake API to Detect Shakes

Summary

Chapter 16: Using Web Services

Basics of Consuming XML Web Services

Consuming a Web Service in Your iOS Application Using SOAP

Parsing the XML Response

Consuming JSON Web Services

Integrating Twitter into Your Application

Summary

Chapter 17: Bluetooth Programming

Using the Game Kit Framework

Implementing Voice Chatting

Summary

Chapter 18: Bonjour Programming

Creating the Application

Publishing a Service

Browsing for Services

Summary

Chapter 19: Programming Remote Notifications Using Apple Push Notification Services

Using Apple Push Notification Service

Creating the iOS Application

Creating the Push Notification Provider

Summary

Chapter 20: Displaying Maps

Displaying Maps and Monitoring Changes Using the Map Kit

Getting Location Data

Summary

Chapter 21: Programming Background Applications

Understanding Background Execution on the iOS

Local Notification

Notifying Other Objects Using the NSNotification Class

Summary

Appendix A: Testing On An Actual Device

Appendix B: Getting Around in XCODE

Appendix C: Crash Course in Objective-C

Appendix D: Answers To Exercises

Advertisements

Chapter 1

Getting Started with iOS 5 Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to obtain the iOS SDK - Software Development Kit

	Components included in the iOS SDK

	Features of the development tools — Xcode, Interface Builder, and iOS Simulator

	Capabilities of the iOS Simulator

	Architecture of iOS

	Characteristics of the iPhone and iPad

Welcome to the world of iOS programming! That you are now holding this book shows that you are fascinated with the idea of developing your own iPhone and iPad applications and want to join the ranks of the tens of thousands of developers whose applications are already deployed in the App Store.

As the Chinese adage says, “To accomplish your mission, first sharpen your tools.” Successful programming requires that you first know your tools well. Indeed, this couldn’t be truer for iOS programming — you need to be familiar with quite a few tools before you can even get started. Hence, this chapter describes the various relevant tools and information you need to jump on the iOS development bandwagon.

Without further ado, it’s time to get down to work.

OBTAINING THE TOOLS AND SDK

To develop for iOS, you need to download the iOS SDK. The iOS SDK comes with free Xcode from the Mac App Store (see Figure 1-1).

FIGURE 1-1

[image: image]

Before you download and install Xcode, make sure you satisfy the following system requirements:

	Only Intel Macs are supported, so if you have another processor type (such as the older G4 or G5 Macs), you’re out of luck.

	Your system is updated with the latest Mac OS X Lion release.

An actual iPhone/iPod touch/iPad is highly recommended, although not strictly necessary. To test your application, you can use the included iOS Simulator (which enables you to simulate an iPhone or an iPad). However, to test certain hardware features like the accelerometer and gyroscope, you need to use a real device.

When Xcode is downloaded, proceed with installing it. Accept a few licensing agreements and then select the destination folder in which to install the SDK.

If you select the default settings during the installation phase, the various tools will be installed in the /Developer/Applications folder (see Figure 1-2).

FIGURE 1-2

[image: image]

COMPONENTS OF XCODE

The Xcode package includes a suite of development tools to help you create applications for your iPhone, iPod touch, and iPad. It includes the following:

	Xcode IDE — Integrated development environment (IDE) that enables you to manage, edit, and debug your projects

	Dashcode — Integrated development environment (IDE) that enables you to develop web-based iPhone and iPad applications and Dashboard widgets. Dashcode is beyond the scope of this book.

	iOS Simulator — Provides a software simulator to simulate an iPhone or an iPad on your Mac

	Interface Builder — Visual editor for designing user interfaces for your iPhone and iPad applications

	Instruments — Analysis tool to help you both optimize your application and monitor for memory leaks in real time

The following sections discuss each tool (except Dashcode) in more detail.

Xcode

To launch Xcode, double-click the Xcode icon located in the /Developer/Applications folder (refer to Figure 1-2). Alternatively, go the quicker route and use Spotlight: Simply type Xcode into the search box and Xcode should be in the Top Hit position.

Figure 1-3 shows the Xcode Welcome screen.

FIGURE 1-3

[image: image]

Using Xcode, you can develop different types of iPhone, iPad, and Mac OS X applications using the various project templates shown in Figure 1-4.

FIGURE 1-4

[image: image]

For iOS applications, each template gives you the option to select the platform you are targeting — iPhone, iPad, or Universal (runs on both iPhone and iPad).

The IDE in Xcode provides many tools and features that make your development life much easier. One such feature is Code Sense, which displays a popup list showing the available classes and members, such as methods, properties, and so on.

[image: image]
NOTE For a more comprehensive description of some of the most commonly used features in Xcode, refer to Appendix B.

iOS Simulator

The iOS Simulator, shown in Figure 1-5, is a very useful tool that you can use to test your application without using your actual iPhone/iPod touch/iPad. The iOS Simulator is located in the /Developer/Platforms/iPhoneSimulator.platform/Developer/Applications folder. Most of the time, you don’t need to launch the iOS Simulator directly — running (or debugging) your application in Xcode automatically brings up the iOS Simulator. Xcode installs the application on the iOS Simulator automatically.

FIGURE 1-5

[image: image]

THE IOS SIMULATOR IS NOT AN EMULATOR

To understand the difference between a simulator and an emulator, keep in mind that a simulator tries to mimic the behavior of a real device. In the case of the iOS Simulator, it simulates the real behavior of an actual iPhone/iPad device. However, the Simulator itself uses the various libraries installed on the Mac (such as QuickTime) to perform its rendering so that the effect looks the same as an actual iPhone. In addition, applications tested on the Simulator are compiled into x86 code, which is the byte-code understood by the Simulator. A real iPhone device, conversely, uses ARM-based code.

In contrast, an emulator emulates the working of a real device. Applications tested on an emulator are compiled into the actual byte-code used by the real device. The emulator executes the application by translating the byte-code into a form that can be executed by the host computer running the emulator.

To understand the subtle difference between simulation and emulation, imagine you are trying to convince a child that playing with knives is dangerous. To simulate this, you pretend to cut yourself with a knife and groan in pain. To emulate this, you actually cut yourself.

The iOS Simulator can simulate different versions of the iOS (see Figure 1-6. To support older versions of the SDK, you need to install the previous versions of the SDKs). This capability is useful if you need to support older versions of the platform, as well as test and debug errors reported in the application on specific versions of the OS.

FIGURE 1-6

[image: image]

In addition, the iOS Simulator can simulate different devices — iPad (see Figure 1-7), iPhone (3G and 3GS), and iPhone 4 with Retina display (see Figure 1-8).

FIGURE 1-7

[image: image]

FIGURE 1-8

[image: image]

Features of the iOS Simulator

The iOS Simulator simulates various features of a real iPhone, iPod touch, or iPad device. Features you can test on the iOS Simulator include the following:

	Screen rotation — left, right, top, and upside down

	Support for gestures:

	Tap

	Touch and Hold

	Double-tap

	Swipe

	Rotate

	Drag

	Pinch

	Low-memory warning simulations

However, the iOS Simulator, being a software simulator for the real device, does have its limitations. The following features are not available on the iOS Simulator:

	Making phone calls

	Accessing the accelerometer

	Sending and receiving SMS messages

	Installing applications from the App Store

	Camera

	Microphone

	Several features of OpenGL ES

[image: image]
NOTE In the latest release of the SDK (5.0), the iOS Simulator enables you to simulate different locations as well as movements. Chapter 20 discusses this in more detail.

Note also that the speed of the iOS Simulator is more tightly coupled to the performance of your Mac than the actual device. Therefore, it is important that you test your application on a real device, rather than rely exclusively on the iOS Simulator for testing.

Despite the iOS Simulator’s limitations, it is definitely a useful tool for testing your applications. That said, testing your application on a real device is imperative before you deploy it on the App Store.

Uninstalling Applications from the iOS Simulator

The user domain of the iOS file system for the iOS Simulator is stored in the ~/Library/Application Support/iPhone Simulator/ folder.

[image: image]
NOTE The ~/Library/Application Support/iPhone Simulator/ folder is also known as <iPhoneUserDomain>.

All third-party applications are stored in the <iPhoneUserDomain>/<version_no>/Applications/ folder. When an application is deployed onto the iOS Simulator, an icon is created on the Home screen and a file and a few folders are created within the Applications folder (see Figure 1-9).

FIGURE 1-9

[image: image]

To uninstall (delete) an application, execute the following steps:

1. Click and hold the icon of the application on the Home screen until all the icons start wriggling. Note that all the icons now have an X button displayed on their top-left corner.

2. Click the X button next to the icon of the application you want to uninstall (see Figure 1-10).

FIGURE 1-10

[image: image]

3. An alert window appears asking if you are sure you want to delete the icon. Click Delete to confirm the deletion.

[image: image]
WARNING When an application is uninstalled, the corresponding file and folder in the Applications folder are deleted automatically.

The easiest way to reset the iOS Simulator to its original state is to select iOS Simulator ⇒ Reset Content and Settings

Interface Builder

Interface Builder is a visual tool that enables you to design the user interfaces for your iPhone/iPad applications. Using Interface Builder, you drag and drop views onto windows and then connect the various views with outlets and actions so that they can programmatically interact with your code.

[image: image]
NOTE Outlets and actions are discussed in more detail in Chapter 3, and Appendix B discusses Interface Builder in more detail.

Figure 1-11 shows the various windows in Interface Builder.

FIGURE 1-11

[image: image]

Instruments

The Instruments application (see Figure 1-12) enables you to dynamically trace and profile the performance of your Mac OS X, iPhone, and iPad applications.

FIGURE 1-12

[image: image]

Using Instruments, you can do all of the following:

	Stress test your applications.

	Monitor your applications for memory leaks.

	Gain a deep understanding of the executing behavior of your applications.

	Track difficult-to-reproduce problems in your applications.

[image: image]
NOTE Covering the Instruments application is beyond the scope of this book. For more information, refer to Apple’s documentation, at http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html.

ARCHITECTURE OF THE IOS

Although this book doesn’t explore the innards of iOS, understanding some of its important characteristics is useful. Figure 1-13 shows the different abstraction layers that make up the Mac OS X and iOS (which is used by the iPhone, iPod touch, and iPad).

FIGURE 1-13

[image: image]

[image: image]
NOTE The iOS is architecturally very similar to the Mac OS X except that the topmost layer is Cocoa Touch for the iPhone, rather than the Cocoa Framework.

The bottom layer is the Core OS, which is the foundation of the operating system. It is in charge of memory management, the file system, networking, and other OS tasks, and it interacts directly with the hardware. The Core OS layer consists of components such as the following:

	OS X Kernel

	Mach 3.0

	BSD

	Sockets

	Security

	Power Management

	Keychain

	Certificates

	File System

	Bonjour

The Core Services layer provides an abstraction over the services provided in the Core OS layer. It provides fundamental access to iOS services and consists of the following components:

	Collections

	Address Book

	Networking

	File Access

	SQLite

	Core Location

	Net Services

	Threading

	Preferences

	URL Utilities

The Media layer provides multimedia services that you can use in your iPhone and iPad applications. It consists of the following components:

	Core Audio

	OpenGL

	Audio Mixing

	Audio Recording

	Video Playback

	JPG, PNG, TIFF

	PDF

	Quartz

	Core Animation

	OpenGL ES

The Cocoa Touch layer provides an abstraction layer to expose the various libraries for programming the iPhone and iPad, such as the following:

	Multi-Touch events

	Multi-Touch controls

	Accelerometer

	View Hierarchy

	Localization

	Alerts

	Web Views

	People Picker

	Image Picker

	Controllers

In iOS programming, all the functionalities in each layer are exposed through various frameworks that you will use in your project. Subsequent chapters in this book demonstrate how to use these frameworks in your projects.

[image: image]
NOTE A framework is a software library that provides specific functionalities. Refer to Apple’s documentation at http://developer.apple.com/iphone/library/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html for a list of frameworks included in the SDK.

SOME USEFUL INFORMATION BEFORE YOU GET STARTED

You now have a good idea of the tools involved in iPhone and iPad application development. Before you go ahead and take the plunge, the following sections discuss some useful information that can make your journey more pleasant.

Versions of iOS

At the time of writing, iOS is in its fifth revision — that is, version 5.0. Its major versions are as follows:

	1.0 — Initial release of the iPhone

	1.1 — Additional features and bug fixes for 1.0

	2.0 — Released with iPhone 3G; comes with App Store

	2.1 — Additional features and bug fixes for 2.0

	2.2 — Additional features and bug fixes for 2.1

	3.0 — Third major release of the iPhone OS

	3.1 — Additional features and bug fixes for 3.0

	3.2 — This version release is for the iPad only.

	4.0 — Fourth major release of the iPhone OS. Renamed as iOS. This version is designed for the new iPhone 4 and it also supports older devices, such as the iPod touch and iPhones.

	5.0 — Fifth major release of the iOS. Supports new features like iCloud, iMessage, Twitter integration, Notification Center, etc.

For a detailed description of the features in each release, see http://en.wikipedia.org/wiki/IPhone_OS_version_history.

Testing on Real Devices

One of the most common complaints about developing applications for the iPhone and iPad is how difficult Apple makes it to test a new application on an actual device. Nonetheless, for security reasons, Apple requires all applications to be signed with a valid certificate; and for testing purposes, a developer certificate is required.

To test your applications on a device, you must sign up for the iOS Developer Program and request that a developer certificate be installed onto your device. Appendix A outlines these steps in detail.

Screen Resolutions

The iPhone 4S is a beautiful device with a high-resolution screen. At 3.5 inches (diagonally), the iPhone screen supports multi-touch operation and allows a pixel resolution of 960 × 640 at 326 ppi (see Figure 1-14). When designing your application, note that because of the status bar, the actual resolution is generally limited to 920 × 640 pixels. Of course, you can turn off the status bar programmatically to gain access to the full 960 × 640 resolution.

FIGURE 1-14

[image: image]

Also, be mindful that users may rotate the device to display your application in landscape mode. You need to make provisions to your user interface so that applications can still work properly in landscape mode.

[image: image]
NOTE Chapter 7 discusses how to handle screen rotations.

The older iPhones (iPhone 3G/3GS) and the iPod touch have lower resolutions compared to the iPhone 4/4S. They have a resolution of 480 × 320 pixels, one quarter of the resolution of the iPhone 4.

When programming for the iPhones, it is important to note the difference between points and pixels. For example, the following statement specifies a frame that starts from the point (20,10) with a width of 280 points and a height of 50 points:

 CGRect frame = CGRectMake(20, 10, 280, 50);

On the older iPhones, a point corresponds to a pixel. Thus, the preceding statement translates directly to the pixel (20,10), with a width of 280 pixels and a height of 50 pixels. However, if the statement is executed within the iPhone 4/4S, a point translates to two pixels. Thus, the preceding statement translates into the pixel (40,20), with a width of 560 pixels and a height of 100 pixels. The translation is performed automatically by the OS, which is very useful because it enables older applications to run and scale correctly without modifications on the iPhone 4/4S.

The iPad has a pixel resolution of 1,024 × 768 at 132 ppi.

Table 1-1 summarizes the screen resolutions for the various platforms.

TABLE 1-1: Platform Resolutions

[image: image]

SUMMARY

This chapter offered a quick tour of the available tools used for iPhone and iPad application development. You had a look at the iOS Simulator, which you will use to test your applications without using a real device. The Simulator is a very powerful tool that you will use very often in your iPhone development journey.

You also learned some of the characteristics of the iPhone and iPad, such as screen resolutions, as well as characteristics of the operating systems. In the next chapter, you will develop your first iOS application, and soon be on your way to iOS nirvana!

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Obtaining the iOS SDK
	Download Xcode 4 from the Mac App Store.

	iOS Simulator
	Most of the testing can be done on the iOS Simulator. However, it is strongly recommended that you have a real device for actual testing.

	Limitations of the iOS Simulator
	Access to hardware is generally not supported by the Simulator. For example, the camera, accelerometer, voice recording, and so on are not supported.

	Frameworks in the iOS SDK
	The iOS SDK provides several frameworks that perform specific functionalities on the iPhone. You program your iOS applications using all these frameworks.

Chapter 2

Writing Your First Hello World! Application

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to create a new iPhone project

	Building your first iPhone application using Xcode

	Designing the user interface (UI) of your iPhone application with Interface Builder

	How to add an icon to your iPhone application

	How to display launch images for your iPhone application

Now that you have installed the iOS SDK, you are ready to start developing for the iPhone! Programming books customarily start by demonstrating how to develop a “Hello World!” application. This approach enables you to use the various tools quickly without getting bogged down with the details. It also provides you with instant gratification: You see for yourself that things really work, which can be a morale booster that inspires you to learn more.

GETTING STARTED WITH XCODE

Power up Xcode and you should see the Welcome screen, shown in Figure 2-1.

FIGURE 2-1

[image: image]

[image: image]
NOTE The easiest way to start Xcode is to type Xcode in Spotlight and then press the Enter key to launch it.

To create a new iPhone project, click the Create a new Xcode project button (or choose File ⇒ New ⇒ New Project). Figure 2-2 shows the different types of projects you can create using Xcode. The left panel shows the two primary categories — iPhone OS and Mac OS X. The iPhone uses the iOS, so click the Application item listed under iOS to view the different templates available for developing your iPhone application.

FIGURE 2-2

[image: image]

Although you can create quite a few types of iPhone applications, for this chapter select the Single View Application template and then click Next.

[image: image]
NOTE Subsequent chapters show you how to develop some of the other types of iOS applications, such as Tabbed applications and Master-Detail applications.

Name the project HelloWorld and provide a company identifier for your application (you typically use your company’s domain name in reverse order, such as net.learn2develop for my www.learn2develop.net domain). Name the Class Prefix to be the same as the project name and select iPhone as the Device Family. Finally, ensure that all the options are unchecked and then click Next (see Figure 2-3). You will be asked to select a folder in which to save your project. Xcode then proceeds to create the project for the template you have selected. Figure 2-4 shows the various files and folders automatically created for your project.

FIGURE 2-3

[image: image]

FIGURE 2-4

[image: image]

The left panel of Xcode shows the groups in the project. You can expand each group or folder to reveal the files contained in it. To edit a particular file, select it from the list, and the editor on the right panel opens the file for editing. If you want a separate window for editing, simply double-click the file to edit it in a new window.

Using Interface Builder

At this point, the project has no UI. To prove this, simply press Command-R (or select Product ⇒ Run), and your application is deployed to the included iPhone Simulator. Figure 2-5 shows the blank screen displayed on the iPhone Simulator. Note how it looks now, because as you go through the chapter you will see changes occur based on your actions.

FIGURE 2-5

[image: image]

[image: image]
NOTE By default, the iPhone Simulator that is launched shows the image of the iPhone 4. However, the screen resolution for this simulator is still 320x480 pixels, simulating the older iPhone 3GS’s screen resolution. If you want to simulate the Retina display of an iPhone 4 or iPhone 4S, you need to select Hardware ⇒ Device ⇒ iPhone (Retina).

Obviously, a blank screen is not very useful. Therefore, it’s time to try adding some views to your application’s UI. In the list of files in your project, you’ll notice a file with the .xib extension —HelloWorldViewController.xib. Files with .xib extensions are basically XML files containing the UI definitions of an application. You can edit .xib files by either modifying their XML content or, more easily (and more sanely), using Interface Builder.

Interface Builder, integrated into Xcode (prior to Xcode 4, Interface Builder is a separate application that ships with the iOS SDK), enables you to build the UI of iPhone (and Mac) applications by using drag and drop.

Select the HelloWorldViewController.xib file to edit it using Interface Builder. Figure 2-6 shows Interface Builder displaying the content of HelloWorldViewController.xib.

FIGURE 2-6

[image: image]

[image: image]
NOTE Refer to Appendix B for a crash course on Interface Builder if you are not familiar with it.

In the Utilities area on the right, go to the Object Library section and scroll down to the Label view and drag and drop a Label onto the View window (see Figure 2-7).

FIGURE 2-7

[image: image]

After the Label is added, select it and go to the Attributes Inspector window (you can view this by choosing View ⇒ Utilities ⇒ Show Attributes Inspector). Enter Hello World! in the Text field (see Figure 2-8). Then, in the Alignment field, click the center alignment button.

FIGURE 2-8

[image: image]

With the Label still selected, click on the “T” icon displayed next to the Font field and select the Helvetica Custom font (see Figure 2-9). Set the font size to 36.

FIGURE 2-9

[image: image]

Resize the Label so that it now looks like Figure 2-10.

FIGURE 2-10

[image: image]

Next, from the Library window, drag and drop a Text Field to the View window, followed by a Round Rect Button. Modify the attribute of the Round Rect Button by entering Click Me! in the Title field of its Attributes Inspector window. Figure 2-11 shows how the View window looks now.

FIGURE 2-11

[image: image]

[image: image]
NOTE Rather than specify the Text or Title property of a view to make the text display in the view (for example, the Label and the Round Rect Button), you can simply double-click the view itself and type the text directly. After doing this, you can rearrange the views and resize them to suit your needs. Interface Builder provides you with alignment guidelines to help you arrange your controls in a visually pleasing layout.

Run the application again by pressing Command-R. The iPhone Simulator now displays the modified UI (see Figure 2-12).

FIGURE 2-12

[image: image]

Click the Text Field and watch the keyboard automatically appear (see Figure 2-13).

FIGURE 2-13

[image: image]

Click the Home button on the iPhone Simulator, and you will see that your application has been installed on the Simulator. To go back to the application, simply click the HelloWorld icon (see Figure 2-14).

FIGURE 2-14

[image: image]

[image: image]
NOTE By default, starting with iOS 4, all applications built using the iOS SDK support multitasking. Hence, when you press the Home button on your iPhone, your application is not terminated; it is sent to the background and suspended. Tapping an application icon resumes the application. Chapter 21 contains more details about background execution of your iOS applications.

Writing Some Code

By now you should be comfortable enough with Xcode and Interface Builder to write some code. This section will give you a taste of programming the iPhone.

In the HelloWorldViewController.h file, add a declaration for the btnClicked: action:

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController

-(IBAction) btnClicked:(id) sender;

@end

The bold statement creates an action (commonly known as an event handler) named btnClicked:. With the action declared, save the file and return to Interface Builder by clicking the HelloWorldViewController.xib file.

Earlier in this chapter, when you edited the HelloWorldViewController.xib file, you saw three icons displayed in Interface Builder (see Figure 2-15) These three icons, from top to bottom, are File’s Owner, First Responder, and View.

FIGURE 2-15

[image: image]

Control-click the Round Rect Button in the View window and drag it to the File’s Owner item (see Figure 2-16). A small popup containing the btnClicked: action appears. Select the btnClicked: action. Basically, what you are doing here is linking the Round Rect Button with the action (btnClicked:) so that when the user clicks the button, the action is invoked.

FIGURE 2-16

[image: image]

In the HelloWorldViewController.m file, add the code that provides the implementation for the btnClicked: action:

#import "HelloWorldViewController.h"

@implementation HelloWorldViewController

-(IBAction) btnClicked:(id) sender {
 //---display an alert view---
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello World!"
 message:@"iPhone, here I come!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

The preceding code displays an alert containing the sentence “iPhone, here I come!”

That’s it! Run the application again. This time, when you click the Round Rect Button, an Alert view displays (see Figure 2-17).

FIGURE 2-17

[image: image]

CUSTOMIZING YOUR APPLICATION ICON

As shown earlier, the application installed on your iPhone Simulator uses a default white image as an icon. You can, however, customize this icon. When designing icons for your iPhone and iPad applications, bear the following in mind:

	Design your icon to be 57× 57 pixels (for iPhone), 114×114 pixels (for iPhone high resolution), or 72×72 pixels (for iPad). For distribution through the App Store, you also need to prepare a 512×512 pixel image.

	Use square corners for your icon image because iPhone automatically rounds them. It also adds a glossy surface (you can turn off this feature, though).

[image: image]
NOTE Apple has published a description of the various images that you can use in your iPhone application. For details, see http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html.

The following Try It Out demonstrates how to add an icon to your application so that the iPhone will use it instead of the default white image.

TRY IT OUT: Adding an Icon to the Application

1. To add an icon to your application, drag and drop an image (named as icon.png in this example) onto the Supporting Files folder of your project. You will be asked if you want to make a copy of the image you are dropping. Check this option so that a copy of the image will be stored in your project folder (see Figure 2-18).

FIGURE 2-18

[image: image]

2. Select the HelloWorld-Info.plist item (also located under the Supporting Files folder, the HelloWorld-Info.plist file is commonly referred to as the info.plist file). Expand the Icon files array item and add an item to it by clicking the + button displayed next to it. Set its value to the name of the icon, icon.png (see Figure 2-19). This specifies the name of the image to be used as the application icon.

FIGURE 2-19

[image: image]

3. Press Command-R to run the application and test it on the iPhone Simulator. Click the Home button to return to the main screen of the iPhone. You should see the newly added icon (see Figure 2-20). Observe that iOS automatically applies a glossy effect to your icon. It also rounds the four corners of the image.

FIGURE 2-20

[image: image]

HOW TO TURN OFF THE GLOSSY SURFACE ON YOUR ICON

To turn off the glossy effect applied to your icon, you need to add the UIPrerenderedIcon key (the friendly name for this key is “Icon already includes gloss effects”) to the HelloWorld-Info.plist file in your Xcode project and then set it to YES (see Figure 2-21). For more details on the various keys that you can set in your HelloWorld-Info.plist file, refer to Apple’s documentation at http://developer.apple.com/iphone/library/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html.

FIGURE 2-21

[image: image]

How It Works

Setting an icon for your application is very straightforward — simply specify the icon filename in the Icon files array item’s first array element and it will appear in your iPhone when you run the application again.

DISPLAYING LAUNCH IMAGES

In order to enhance the user experience of your application, Apple requires your application to include a launch image. Basically, a launch image is an image of what your application looks like when it is loaded for the first time. Using a launch image ensures that while your application is being loaded, the user is not staring at a blank screen. Instead, the launch image is displayed. This engages the user with your application immediately. When it is fully loaded, the launch image then disappears, and your application displays its first screen, ready to use.

Creating a launch image is simple — you merely create a file named Default.png and save it in the application bundle (i.e., in your project, such as the Supporting Files folder). This image needs to have a resolution of 480×320 pixels (or 960×640 for iPhone’s Retina display). When your application is loaded, the system will automatically display this image and then hide it when the first View window of your application is ready to be shown. If you want to display different launch images depending on the resolution of the device, you can do the following:

	Create an image named Default.png with a resolution of 320×480. This launch image will be loaded when your application is loaded on an iOS device with a screen resolution of 320×480 (e.g., the iPhone 3GS).

	Create an image named Default@2x.png with a resolution of 640×960. This launch image will be loaded when your application is loaded on an iOS device with a screen resolution of 640×960 (e.g., the iPhone 4 or iPhone 4S).

You can create the launch image from scratch using a photo-editing application, or easily capture one using the Organizer tool that is part of Xcode — all you need to do is view and capture the image you want to use as the launch image on your iPhone. The following Try It Out describes how to add a launch image using the Organizer.

TRY IT OUT: Adding a Launch Image to the Application

1. With the iPhone connected to your Mac, launch Xcode and select Window ⇒ Organizer.

2. You should now be able to see the name of the device attached to your Mac. Click the Use for Development button and then click the Screenshots tab (see Figure 2-22).

FIGURE 2-22

[image: image]

3. View the desired image on your iPhone. In this example, I have deployed the application onto my iPhone (Appendix A shows you how to deploy an application onto a real iOS device) and then launched it. I will capture the first View window that appears so that I can use it as a launch image. Click the New Screenshot button located on the bottom, right corner of the window to capture the screenshot.

4. All the captured images are shown in the middle of the Organizer window. Select the image that you want to use and click the Save As Launch Image . . . button.

5. You will be prompted to select the project that you want to use for the launch image (see Figure 2-23). You will also be asked to name the image. If you are capturing an image from a Retina display device (such as the iPhone 4 or iPhone 4S), name it Default@2x. If not, name it Default.

FIGURE 2-23

[image: image]

6. The file will be copied to the HelloWorld Xcode project (see Figure 2-24).

FIGURE 2-24

[image: image]

7. Observe that the captured image contains the status bar. You should erase the status bar using a graphics editor tool, as the status bar should not be displayed to users (see Figure 2-25). Interestingly, this area is automatically hidden by the status bar on the device when it is loaded.

FIGURE 2-25

[image: image]

8. Press Command-R to test the application on the iPhone Simulator. Notice that the application loads as usual, but if you try to click the Text Field or Round Rect Button in the initial couple of seconds, they will not be responsive, as the actual HelloWorldViewController View window has not been loaded yet (you are still seeing the launch image). After a few seconds, the actual HelloWorldViewController View window is loaded and you can click the Text Field or Round Rect buttons.

How It Works

When you include an image named Default@2x.png (or Default.png) in your project, it will be displayed when your application is first being loaded. This improves the user experience by creating the impression that your application loads immediately.

Pay attention to the dimension of the image; it will not be displayed during loading if it is the wrong size. If your application has only a single launch image (either Default.png or Default@2x.png), the launch image will be displayed regardless of device screen resolution. If you have multiple launch images, then a different launch image will be loaded for different devices. To prove this, add another image with a resolution of 320x480 (see Figure 2-26) and name it Default.png.

FIGURE 2-26

[image: image]

If you now run the application on the iPhone Simulator, you will notice that the Default.png will be displayed (see Figure 2-27). If you run it on the iPhone (Retina) Simulator, you will see the Default@2x.png loaded.

FIGURE 2-27

[image: image]

While Apple has explicitly stated that the launch image is meant to improve the user experience of your application, not to display a “splash screen” for it (like the example just shown), a lot of developers are making use of this feature to display splash screens for their applications.

SUMMARY

This chapter provided a brief introduction to developing your first iPhone application. You have created a simple iPhone application, designed its user interface using some of the built-in views, and then test it on the iPhone Simulator. You have also learned how to write a simple action for your Button so that it can display a message when the user clicks on it. Finally, you saw how to assign an image to be used as the icon for your application and how to set a launch image for your application.

Although you likely still have many questions, the aim of this chapter was to get you started. The next few chapters dive deeper into the details of iPhone programming, gradually revealing the secrets of how all those components that seem so mysterious at first work together to create your application.

EXERCISES

1. You want to add an icon to an iPhone project in Xcode. What is the size of the image that you should provide?

2. What is the easiest way to add a launch image to an iPhone application?

3. When adding an image to the Supporting Files folder in your Xcode project, why do you need to check the “Copy items into destination group’s folder (If needed)” option?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Xcode
	Create your iPhone Application project and write code that manipulates your application.

	Interface Builder
	Build your iPhone UI using the various views located in the Library.

	Adding an application icon
	Add an image to the project and then specify the image name in the Icon files item of the info.plist file.

	Adding a launch image
	Add an image named Default.png or (Default@2x.png) to the Supporting Files folder of your project.

	Creating icons for your iPhone applications
	Icon size is 57×57 pixels and 114×114 pixels (high resolution). For App Store hosting, the size is 512×512 pixels.

Chapter 3

Understanding Views, Outlets, and Actions

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to declare and define outlets

	How to declare and define actions

	Connecting outlets and actions to the views in your View window

	How to use the UIAlertView to display an alert view to the user

	How to use the UIActionSheet to display some options to the user

	Using the UIPageControl to control paging

	How to use the UIImageView to display images

	How to use the UIWebView to display web content in your application

	Dynamically adding views to your application during runtime

In the previous chapter, you built a simple Hello World! iPhone application without understanding much about the underlying details of how things work together. In fact, one of the greatest hurdles in gaining proficiency with iOS programming is the large number of details you need to learn before you can get an application up and running. Hence, this chapter starts with the basics of creating the user interface (UI) of an iPhone application, and describes how your code connects with the various graphical widgets.

OUTLETS AND ACTIONS

As you begin to program iOS applications, you need to first understand the concept of outlets and actions. In iOS programming, you use actions and outlets to connect your code to the various views in your UI. Think of actions as event handlers in the traditional object-oriented programming world, and outlets as object references. If you are familiar with traditional programming languages such as Java or C#, this is a concept that requires some time to get used to — not because it is difficult, but because it is a different way of doing things. At the end of this section, you will have a solid understanding of what outlets and actions are in iOS and how to create them, and be on your way to creating great iOS applications.

TRY IT OUT: Creating Outlets and Actions

codefile OutletsAndActions.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it OutletsAndActions. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the OutletsAndActionsViewController.xib file in order to edit it using Interface Builder. Populate the View window with three views: Label, Text Field, and Round Rect Button. Set the Label with the text “Please enter your name” by double-clicking on it. Set the Round Rect Button with the “OK” string (see Figure 3-1).

FIGURE 3-1

[image: image]

3. In Xcode, modify the OutletsAndActionsViewController.h file with the following statements shown in bold:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

4. In the OutletsAndActionsViewController.m file, define the following statements in bold:

#import "OutletsAndActionsViewController.h"

@implementation OutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

//---displays an alert view when the button is clicked---
-(IBAction) btnClicked:(id) sender {
 NSString *str =
 [[NSString alloc] initWithFormat:@"Hello, %@", txtName.text];
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello!"
 message:str
 delegate:self
 cancelButtonTitle:@"Done"
 otherButtonTitles:nil];
 [alert show];
 [str release];
 [alert release];
}

- (void)dealloc {
 //---release the outlet---
 [txtName release];
 [super dealloc];
}

5. In the OutletsAndActionsViewController.xib window, Control-click and drag the File’s Owner item to the Text Field (see Figure 3-2). A popup will appear; select the outlet named txtName.

FIGURE 3-2

[image: image]

6. Control-click and drag the OK Round Rect Button to the File’s Owner item (see Figure 3-3). Select the action named btnClicked:.

FIGURE 3-3

[image: image]

7. Right-click the OK Round Rect Button to display its events (see Figure 3-4). Notice that the Round Rect Button has several events, but one particular event — Touch Up Inside — is now connected to the action you specified (btnClicked:). Because the Touch Up Inside event is so commonly used, it is automatically connected to the action when you Control-click and drag it to the File’s Owner item. To connect other events to the action, simply click the circle displayed next to each event and then drag it to the File’s Owner item.

FIGURE 3-4

[image: image]

8. That’s it! Press Command-R to test the application on the iPhone Simulator. Enter a name in the Text Field and click the OK button. An alert view displays a welcome message (see Figure 3-5).

FIGURE 3-5

[image: image]

How It Works

As mentioned earlier, you use actions and outlets to connect your code to the various views in your UI. Actions are represented using the IBAction keyword, whereas outlets use the IBOutlet keyword:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

The IBOutlet identifier is used to prefix variables so that Interface Builder can synchronize the display and connection of outlets with Xcode. The @property keyword indicates to the compiler that you want the txtName outlet to be exposed as a property. The nonatomic keyword indicates that there is no need to ensure that the property is used in a thread-safe manner because it is not used in multiple threads. The default behavior is atomic; specifying nonatomic actually improves your application’s performance.

[image: image]
NOTE The IBOutlet tag can also be added to the @property identifier. This syntax is common in the Apple documentation:

@property (nonatomic, retain) IBOutlet UITextField *txtName;

[image: image]
NOTE For information about using the nonatomic and retain identifiers, refer to Appendix C, where you can find an introduction to Objective-C, the language used for iOS programming. The @synthesize keyword, discussed shortly, is also explained in more detail there.

The IBAction identifier is used to synchronize action methods. An action is a method that can handle events raised by views (for example, when a button is clicked) in the View window. An outlet, on the other hand, is an object that enables your code to programmatically reference a view on the View window.

Once your actions and outlets are added to the header (.h) file of the View controller, you need to connect them to your views in Interface Builder.

When you Control-click and drag the File’s Owner item to the Text Field and select txtName, you essentially connect the outlet you have created (txtName) with the Text Field on the View window. In general, to connect outlets you Control-click and drag the File’s Owner item to the view on the View window.

CONNECTING OUTLETS AND ACTIONS TO VIEWS

To connect outlets to views, Control-click and drag the File’s Owner item onto the required view in the View window. Note that you need to ensure that the type of the outlet is declared correctly; otherwise, you will not be able to connect it to the view. For example, if you declare txtName as UITextView (another type of view similar to the Text Field) and try to connect it to a Text Field on the View window, Interface Builder will not be able to connect it for you.

To connect an action to a view, Control-click and drag a view to the File’s Owner item. Hence, for the OK Round Rect Button, you Control-click and drag the button to the File’s Owner item and then select the action named btnClicked:. Alternatively, you can right-click on a view and drag and drop the event you want to connect over the File’s Owner item.

In the implementation file (.m), you use the @synthesize keyword to indicate to the compiler that it should create the getter and setter for the specified property:

[image: image]
WARNING Forgetting to add the @synthesize keyword is one of the most common mistakes that developers make. If you don’t remember to add this statement, you will encounter a runtime error when the application is executed. Appendix C covers getter and setter methods in more detail.

#import "OutletsAndActionsViewController.h"

@implementation OutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

//---displays an alert view when the button is clicked---
-(IBAction) btnClicked:(id) sender {
 NSString *str =
 [[NSString alloc] initWithFormat:@"Hello, %@", txtName.text];
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello!"
 message:str
 delegate:self
 cancelButtonTitle:@"Done"
 otherButtonTitles:nil];
 [alert show];
 [str release];
 [alert release];
}

- (void)dealloc {
 //---release the outlet---
 [txtName release];
 [super dealloc];
}

The btnClicked: action simply displays an alert view with a message containing the user’s name. Note that it has a parameter sender of type id. The sender parameter enables you to programmatically determine who actually invokes this action. This is useful when you have multiple views connected to one single action. For such cases, you often need to know which view invokes this method, and the sender parameter will contain a reference to the calling view.

USING VIEWS

So far, you have seen quite a number of views in action: Round Rect Button, Text Field, and Label. All these views are quite straightforward, but they provide a good opportunity for learning how to apply the concepts behind outlets and actions.

To use more views, you can locate them in the Object Library window in the Utilities panel (see Figure 3-6).

FIGURE 3-6

[image: image]

The Library is broadly divided into the following sections:

	Objects & Controllers — Contains views that control other views, such as the View Controller, Tab Bar Controller, Navigation Controller, and so on

	Data Views — Contains views that display data, such as the Image View, Table View, Data Picker, Picker View, and so on

	Controls — Contains views that accept input from users as well as display values, such as the Label, Round Rect Button, Text Field, and so on

	Windows & Bars — Contains views that display other miscellaneous views, such as View, Search Bar, Toolbar, and so on

	Gesture Recognizers — Contains classes that perform gesture recognition. Gestures include the tap, the pinch, rotation, and so on.

In the following sections, you learn how to use some of the views available in the Library. Although it is beyond the scope of this book to show the use of every view, you will see a number of views in action throughout the book. By learning some of the fundamental view concepts in this chapter, you can use other views later without problems.

Using the Alert View

One of the views not listed in the Library is the UIAlertView. The UIAlertView displays an alert view to the user and is usually created during runtime. Hence, you have to create it using code.

[image: image]
NOTE You actually saw the UIAlertView in the previous section. In this section, you will learn how it actually works.

The UIAlertView is useful for cases in which you have to display a message to the user. In addition, it can serve as a quick debugging tool when you want to observe the value of a variable during runtime.

The following Try It Out explores the UIAlertView in more detail.

TRY IT OUT: Using the Alert View

codefile UsingViews.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it UsingViews. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. In the UsingViewsViewController.m file, add the following bold code to the viewDidLoad method:

- (void)viewDidLoad
{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [super viewDidLoad];
}

3. Press Command-R to test the application on the iPhone Simulator. When the application is loaded, you see the alert view shown in Figure 3-7. Clicking the OK button dismisses the alert.

FIGURE 3-7

[image: image]

4. In Xcode, modify the otherButtonTitles parameter by setting it with the value shown in bold:

- (void)viewDidLoad
{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Option 1", nil];
 [alert show];
 [alert release];
 [super viewDidLoad];
}

5. In the UsingViewsViewController.h file, add the following line that appears in bold:

#import <UIKit/UIKit.h>

@interface UsingViewsViewController : UIViewController
<UIAlertViewDelegate>

@end

6. In the UsingViewsViewController.m file, add the following method:

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {
 NSLog(@"%d", buttonIndex);
}

7. Press Command-R to test the application on the iPhone Simulator. Notice that there is now one more button in addition to the OK button (see Figure 3-8). Clicking either the OK button or the Option 1 button dismisses the alert.

FIGURE 3-8

[image: image]

8. Back in Xcode, modify the otherButtonTitles parameter by setting it with the value shown in bold:

- (void)viewDidLoad
{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Option 1", @"Option 2", nil];
 [alert show];
 [alert release];
 [super viewDidLoad];
}

9. Press Command-R to test the application in the iPhone Simulator again. Observe the placement of the three buttons (see Figure 3-9). Clicking any of the buttons dismisses the alert.

FIGURE 3-9

[image: image]

10. Click any one of the buttons — Option 1, Option 2, or OK.

11. In Xcode, press Command-Shift-C to view the Output window (you can also select View ⇒ Debug Area ⇒ Activate Console from the menu). Observe the values printed. You can rerun the application a number of times, clicking the different buttons to observe the values printed. The values printed for each button clicked are as follows:

	OK button — 0

	Option 1 — 1

	Option 2 — 2

How It Works

To use UIAlertView, you first instantiate it and initialize it with the various arguments:

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

The first parameter is the title of the alert view, which you set to "Hello". The second is the message, which you set to "This is an alert view". The third is the delegate, which you need to set to an object that will handle the events fired by the UIAlertView object. In this case, you set it to self, which means that the event handler will be implemented in the current class — that is, the View Controller. The cancelButtonTitle parameter displays a button to dismiss your alert view. Last, the otherButtonTitles parameter enables you to display additional buttons if needed. If no additional buttons are needed, simply set this to nil.

To show the alert view modally, use the show method:

 [alert show];

[image: image]
WARNING Note that showing the alert view modally using the show method does not cause the program to stall execution at this statement. The subsequent statements after this line continue to execute even though the user may not have dismissed the alert.

For simple use of the alert view, you don’t really need to handle the events fired by it. Tapping the OK button (as set in the cancelButtonTitle parameter) simply dismisses the alert view.

If you want more than one button, you need to set the otherButtonTitles parameter, like this:

UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Option 1", @"Option 2",
 nil];

Note that you need to end the otherButtonTitles parameter with a nil or a runtime error will occur.

[image: image]
NOTE There is no limit to how many buttons you can display in a UIAlertView, but I don’t advise using more than two buttons. If you try to use more buttons than you have screen space for, the buttons will overflow the screen, which can look very messy.

Now that you have more than one button, you need to be able to determine which button the user pressed — in particular, whether Option 1 or Option 2 was pressed. To do so, you need to handle the event raised by the UIAlertView class. You do so by ensuring that your View Controller implements the UIAlertViewDelegate protocol:

@interface UsingViewsViewController : UIViewController
<UIAlertViewDelegate>

@end

The UIAlertViewDelegate protocol contains several methods associated with the alert view. To know which button the user tapped, you need to implement the alertView:clickedButtonAtIndex: method:

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {
 NSLog(@"%d", buttonIndex);
}

The index of the button clicked is passed in via the buttonIndex parameter.

[image: image]
NOTE Refer to Appendix C for a discussion of the concept of protocols in Objective-C.

Using the Action Sheet

Although the alert view can display multiple buttons, its primary use is still as a mechanism to alert users when something happens. If you need to display a message to the user with multiple options, you should use an action sheet, rather than the alert view. An action sheet displays a collection of buttons from which the user can select one.

To include an action sheet, use the following code snippet:

 UIActionSheet *action =
 [[UIActionSheet alloc] initWithTitle:@"Title of Action Sheet"
 delegate:self
 cancelButtonTitle:@"OK"
 destructiveButtonTitle:@"Delete Message"
 otherButtonTitles:@"Option 1", @"Option 2", nil];
 [action showInView:self.view];
 [action release];

To handle the event fired by the action sheet when one of the buttons is tapped, implement the UIActionSheetDelegate protocol in your View Controller, like this:

#import <UIKit/UIKit.h>

@interface UsingViewsViewController : UIViewController
<UIActionSheetDelegate>

@end

When a button is tapped, the actionSheet:clickedButtonAtIndex: event will be fired:

- (void) actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex{
 NSLog(@"%d", buttonIndex);
}

Figure 3-10 shows the action sheet when it is displayed on the iPhone Simulator. Observe that the action sheet pops up from the bottom of the View window.

FIGURE 3-10

[image: image]

One important aspect of the action sheet is that when it is used on the iPad, you should not display an action sheet in the viewDidLoad method — doing so causes an exception to be raised during runtime. Instead, you can display it in, say, an IBAction method.

Figure 3-11 shows the action sheet when displayed on the iPad. Interestingly, on the iPad the OK button (set by the cancelButtonTitle: parameter) is not displayed.

FIGURE 3-11

[image: image]

The value (buttonIndex) of each button when clicked is as follows:

	Delete Message — 0

	Option 1 — 1

	Option 2 — 2

	OK — 3

On the iPad, when the user taps on an area outside of the action sheet, the action sheet is dismissed and the value of buttonIndex becomes 3. Interestingly, if you specified nil for the cancelButtonTitle: part, the value of buttonIndex would be –1 when the action sheet is dismissed.

Page Control and Image View

Near the bottom of the iPhone’s Home screen is a series of dots (see Figure 3-12). A lighted dot represents the currently selected page. As you swipe the page to the next page, the next dot lights, and the first one dims. In the figure, the dots indicate that the first page is the active page. In the iOS SDK, the series of dots is represented by the UIPageControl class.

FIGURE 3-12

[image: image]

In the following Try It Out, you learn to use the Page Control within your own application to switch between images displayed in the Image View.

TRY IT OUT: Using the Page Control and the Image View

1. Using the UsingViews project created in the previous section, add five images to the Supporting Files folder by dragging and dropping them from the Finder. Figure 3-13 shows the five images added to the project.

FIGURE 3-13

[image: image]

2. Select the UsingViewsViewController.xib file to edit it using Interface Builder.

3. Drag and drop two Image Views onto the View window (see Figure 3-14). At this point, overlap them (but not entirely) as shown in the figure.

FIGURE 3-14

[image: image]

4. With the first Image View selected, open the Attributes Inspector window and set the Tag property to 0. Select the second Image View and set the Tag property to 1 (see Figure 3-15).

FIGURE 3-15

[image: image]

5. Drag and drop the Page Control onto the View window and set its number of pages to 5 (see Figure 3-16). Ensure that you increase the width of the Page Control so that all the dots are now visible.

FIGURE 3-16

[image: image]

6. Set the Background color of the View window to black so that the dots inside the Page Control are clearly visible (see Figure 3-17).

FIGURE 3-17

[image: image]

7. In Xcode, declare three outlets two UIImageView objects, and a variable in the UsingViewsViewController.h file:

#import <UIKit/UIKit.h>

@interface UsingViewsViewController : UIViewController
 <UIAlertViewDelegate, UIActionSheetDelegate>
{
 IBOutlet UIPageControl *pageControl;
 IBOutlet UIImageView *imageView1;
 IBOutlet UIImageView *imageView2;
 UIImageView *tempImageView, *bgImageView;
 int prevPage;
}

@property (nonatomic, retain) UIPageControl *pageControl;
@property (nonatomic, retain) UIImageView *imageView1;
@property (nonatomic, retain) UIImageView *imageView2;

@end

8. In Interface Builder, connect the three outlets to the views on the View window. Figure 3-18 shows the connections made for the imageView1, imageView2, and pageControl outlets.

FIGURE 3-18

[image: image]

9. You can now rearrange the Image Views on the View window so that they overlap each other. In particular, set the size of the Image View to be 320x420 (see Figure 3-19).

FIGURE 3-19

[image: image]

10. In Xcode, add the following statements in bold to the UsingViewsViewController.m file:

#import "UsingViewsViewController.h"

@implementation UsingViewsViewController

@synthesize pageControl;
@synthesize imageView1, imageView2;

- (void)viewDidLoad
{
 //---initialize the first imageview to display an image---
 [imageView1 setImage:[UIImage imageNamed:@"iMac_old.jpeg"]];
 tempImageView = imageView2;

 //---make the first imageview visible and hide the second---
 [imageView1 setHidden:NO];
 [imageView2 setHidden:YES];

 //---add the event handler for the page control---
 [pageControl addTarget:self
 action:@selector(pageTurning:)
 forControlEvents:UIControlEventValueChanged];

 prevPage = 0;

 [super viewDidLoad];
}

//---when the page control's value is changed---
- (void) pageTurning: (UIPageControl *) pageController {
 //---get the page number you can turning to---
 NSInteger nextPage = [pageController currentPage];
 switch (nextPage) {
 case 0:
 [tempImageView setImage:
 [UIImage imageNamed:@"iMac_old.jpeg"]];
 break;
 case 1:
 [tempImageView setImage:
 [UIImage imageNamed:@"iMac.jpeg"]];
 break;
 case 2:
 [tempImageView setImage:
 [UIImage imageNamed:@"Mac8100.jpeg"]];
 break;
 case 3:
 [tempImageView setImage:
 [UIImage imageNamed:@"MacPlus.jpeg"]];
 break;
 case 4:
 [tempImageView setImage:
 [UIImage imageNamed:@"MacSE.jpeg"]];
 break;
 default:
 break;
 }

 //---switch the two imageview views---
 if (tempImageView.tag == 0) { //---imageView1---
 tempImageView = imageView2;
 bgImageView = imageView1;
 }
 else { //---imageView2---
 tempImageView = imageView1;
 bgImageView = imageView2;
 }

 UIViewAnimationOptions transitionOption;

 if (nextPage > prevPage)
 //---if moving from left to right---
 transitionOption = UIViewAnimationOptionTransitionFlipFromLeft;
 else
 //---if moving from right to left---
 transitionOption = UIViewAnimationOptionTransitionFlipFromRight;

 //---animate by flipping the images---
 [UIView transitionWithView:tempImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [tempImageView setHidden:YES];
 }
 completion:NULL];

 [UIView transitionWithView:bgImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [bgImageView setHidden:NO];
 }
 completion:NULL];

 prevPage = nextPage;
}

- (void)dealloc {
 [pageControl release];
 [imageView1 release];
 [imageView2 release];
 [super dealloc];
}

11. Press Command-R to test the application on the iPhone Simulator. When you tap the Page Control located at the bottom of the screen, the Image View flips to display the next one. Figure 3-20 shows the transitioning of two images.

FIGURE 3-20

[image: image]

How It Works

When the View window is first loaded, you get one of the Image Views to display an image and then hide the other:

 //---initialize the first imageview to display an image---
 [imageView1 setImage:[UIImage imageNamed:@"iMac_old.jpeg"]];
 tempImageView = imageView2;

 //---make the first imageview visible and hide the second---
 [imageView1 setHidden:NO];
 [imageView2 setHidden:YES];

You then wire the Page Control so that when the user taps it, an event is fired and triggers a method. In this case, the pageTurning: method is called:

 //---add the event handler for the page control---
 [pageControl addTarget:self
 action:@selector(pageTurning:)
 forControlEvents:UIControlEventValueChanged];

In the pageTurning: method, you determine which image you should load based on the value of the Page Control:

//---when the page control's value is changed---
- (void) pageTurning: (UIPageControl *) pageController {

 //---get the page number you can turning to---
 NSInteger nextPage = [pageController currentPage];
 switch (nextPage) {
 case 0:
 [tempImageView setImage:
 [UIImage imageNamed:@"iMac_old.jpeg"]];
 break;
 case 1:
 [tempImageView setImage:
 [UIImage imageNamed:@"iMac.jpeg"]];
 break;
 case 2:
 [tempImageView setImage:
 [UIImage imageNamed:@"Mac8100.jpeg"]];
 break;
 case 3:
 [tempImageView setImage:
 [UIImage imageNamed:@"MacPlus.jpeg"]];
 break;
 case 4:
 [tempImageView setImage:
 [UIImage imageNamed:@"MacSE.jpeg"]];
 break;
 default:
 break;
 }
 //...
}

You then switch the two Image Views and animate them by using the various methods in the UIView class:

 //---switch the two imageview views---
 if (tempImageView.tag == 0) { //---imageView1---
 tempImageView = imageView2;
 bgImageView = imageView1;
 }
 else { //---imageView2---
 tempImageView = imageView1;
 bgImageView = imageView2;
 }

 UIViewAnimationOptions transitionOption;

 if (nextPage > prevPage)
 //---if moving from left to right---
 transitionOption = UIViewAnimationOptionTransitionFlipFromLeft;
 else
 //---if moving from right to left---
 transitionOption = UIViewAnimationOptionTransitionFlipFromRight;

 //---animate by flipping the images---
 [UIView transitionWithView:tempImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [tempImageView setHidden:YES];
 }
 completion:NULL];

 [UIView transitionWithView:bgImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [bgImageView setHidden:NO];
 }
 completion:NULL];

 prevPage = nextPage;

Specifically, you apply the flipping transitions to the Image Views using the transitionWithView:duration:options:animations:completion: method:

 //---animate by flipping the images---
 [UIView transitionWithView:tempImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [tempImageView setHidden:YES];
 }
 completion:NULL];

This method enables you to specify the animation that you want to perform on a specified view (transitionWithView:), the duration of the animation (duration:), the transition options (options:), the code that makes the changes to the view (animations:), and the code to execute when the animation ends. In this example, if the user is flipping the images from left to right, you will flip the images from left to right, and vice versa.

Using the Web View

To load web pages from within your application, you can embed a web browser in your application through the use of a Web View (UIWebView). Using the Web View, you can send a request to load web content, which is very useful if you want to convert an existing web application into a native application (such as those written using Dashcode). All you need to do is embed all the HTML pages into your Supporting Files folder in your Xcode project and load the HTML pages into the Web View during runtime.

[image: image]
NOTE Depending on how complex your web application is, you may have to do some additional work to port it to a native application if it involves server-side technologies such as CGI, PHP, or others.

The following Try It Out shows how to use the Web View to load a web page.

TRY IT OUT: Loading a Web Page Using the Web View

codefile UsingViews2.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it UsingViews2. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the UsingViews2ViewController.xib file to edit it using Interface Builder.

3. From the Library, add a Web View to the View window (see Figure 3-21). In the Attributes Inspector window for the Web View, check the Scales Page to Fit property.

FIGURE 3-21

[image: image]

4. In the UsingViews2ViewController.h file, declare an outlet for the Web View:

#import <UIKit/UIKit.h>

@interface UsingViews2ViewController : UIViewController
{
 IBOutlet UIWebView *webView;
}

@property (nonatomic, retain) UIWebView *webView;

@end

5. In Interface Builder, connect the webView outlet to the Web View.

6. In the UsingViews2ViewController.m file, add the following statements that appear in bold:

#import "UsingViews2ViewController.h"

@implementation UsingViews2ViewController

@synthesize webView;

- (void)viewDidLoad {
 NSURL *url = [NSURL URLWithString:@"http://www.apple.com"];
 NSURLRequest *req = [NSURLRequest requestWithURL:url];
 [webView loadRequest:req];
 [super viewDidLoad];
}

- (void)dealloc {
 [webView release];
 [super dealloc];
}

7. Press Command-R to test the application on the iPhone Simulator. You should see the application loading the page from Apple.com (see Figure 3-22).

FIGURE 3-22

[image: image]

How It Works

To load the Web View with a URL, you first instantiate an NSURL object with a URL via the URLWithString method:

 NSURL *url = [NSURL URLWithString:@"http://www.apple.com"];

You then create an NSURLRequest object by passing the NSURL object to its requestWithURL: method:

 NSURLRequest *req = [NSURLRequest requestWithURL:url];

Finally, you load the Web View with the NSURLRequest object via the loadRequest: method:

 [webView loadRequest:req];

ADDING VIEWS DYNAMICALLY USING CODE

Up to this point, all the UIs of your application have been created visually using Interface Builder. Although Interface Builder makes it relatively easy to build a UI using drag-and-drop, sometimes you are better off using code to create it. One such instance is when you need a dynamic UI, such as for games.

[image: image]
NOTE Interface Builder may be easy to use, but it can be confusing to some people. Because you often have more than one way of doing things in Interface Builder, it can create unnecessary complications. I know of developers who swear by creating their UIs using code.

In the following Try It Out, you learn how to create views dynamically from code, which will help you understand how views are constructed and manipulated.

TRY IT OUT: Creating Views from Code

codefile DynamicViews.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it DynamicViews. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. In the DynamicViewsViewController.m file, add the following statements that appear in bold:

#import "DynamicViewsViewController.h"

@implementation DynamicViewsViewController

- (void)loadView {
 //---create a UIView object---
 UIView *view =
 [[UIView alloc] initWithFrame:[UIScreen mainScreen].applicationFrame];

 //---set the background color to light gray---
 view.backgroundColor = [UIColor lightGrayColor];

 //---create a Label view---
 CGRect frame = CGRectMake(10, 15, 300, 20);
 UILabel *label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.backgroundColor = [UIColor clearColor];
 label.font = [UIFont fontWithName:@"Verdana" size:20];
 label.text = @"This is a label";
 label.tag = 1000;

 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@"Click Me, Please!" forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

 [view addSubview:label];
 [view addSubview:button];

 self.view = view;

 [label release];
 [view release];
}

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Action invoked!"
 message:@"Button clicked!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

3. Press Command-R to test the application on the iPhone Simulator. Figure 3-23 shows that the Label and Round Rect Button are displayed on the View window. Click the button to see an alert view displaying a message.

FIGURE 3-23

[image: image]

How It Works

You implemented the loadView method defined in your View Controller to programmatically create your views. You should implement this method only if you are generating your UI during runtime. The method is automatically called when the view property of your View Controller is called but its current value is nil.

[image: image]
NOTE Chapter 4 discusses some of the commonly used methods in a View Controller.

The first view you create is the UIView object, which enables you to use it as a container for more views:

 //---create a UIView object---
 UIView *view =
 [[UIView alloc] initWithFrame:
 [UIScreen mainScreen].applicationFrame];

 //---set the background color to light gray---
 view.backgroundColor = [UIColor lightGrayColor];

Next, you create a Label and set it to display a string:

 //---create a Label view---
 CGRect frame = CGRectMake(10, 15, 300, 20);
 UILabel *label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.backgroundColor = [UIColor clearColor];
 label.font = [UIFont fontWithName:@"Verdana" size:20];
 label.text = @"This is a label";
 label.tag = 1000;

Notice that you have also set the tag property, which is very useful for enabling you to search for particular views during runtime.

You also create a Round Rect Button by calling the buttonWithType: method with the UIButtonTypeRoundedRect constant. This method returns a UIRoundedRectButton object (which is a subclass of UIButton):

 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:
 UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@"Click Me, Please!"
 forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;

You then wire an event handler for its Touch Up Inside event so that when the button is tapped, the buttonClicked: method is called:

 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

Next, you add the label and button views to the view you created earlier:

 [view addSubview:label];
 [view addSubview:button];

Finally, you assign the view object to the view property of the current View controller:

 self.view = view;

[image: image]
NOTE Within the loadView method, you should not get the value of the view property (setting it is alright), like this:

 [self.view addSubview:label]; //--this is not OK--
 self.view = view; //--this is OK--

Trying to get the value of the view property in this method will result in a circular reference and cause memory overflow.

UNDERSTANDING VIEW HIERARCHY

As views are created and added, they are added to a tree data structure. Views are displayed in the order that they are added. To verify this, modify the location of the UIButton object you created earlier by changing its location to CGRectMake(10, 30, 300, 50), as in the following:

 //---create a Button view---
 //frame = CGRectMake(10, 70, 300, 50);
 frame = CGRectMake(10, 30, 300, 50);

When you now run the application again, you will notice that the Round Rect Button overlaps the Label (see Figure 3-24) because the button was added last:

FIGURE 3-24

[image: image]

 [view addSubview:label];
 [view addSubview:button];

To switch the order in which the views are displayed after they have been added, use the exchangeSubviewAtIndex:withSubviewAtIndex: method:

 [view addSubview:label];
 [view addSubview:button];
 [view exchangeSubviewAtIndex:1 withSubviewAtIndex:0];

 self.view = view;
 [label release];
 [view release];

The preceding statement in bold swaps the order of the Label and Round Rect Button. When the application is run again, the Label will now appear on top of the Round Rect Button (see Figure 3-25).

FIGURE 3-25

[image: image]

To learn the order of the various views already added, you can use the following code segment to print the value of the tag property for each view:

 [view addSubview:label];
 [view addSubview:button];
 [view exchangeSubviewAtIndex:1 withSubviewAtIndex:0];

 for (int i=0; i<[view.subviews count]; ++i) {
 UIView *v = [view.subviews objectAtIndex:i];
 NSLog(@"%d", v.tag);
 }

If you run the preceding code, you will see the following printed in the Output window:

2011-07-30 00:57:18.461 DynamicViews[2652:ef03] 2000
2011-07-30 00:57:18.463 DynamicViews[2652:ef03] 1000

The following method recursively prints out all the views contained in a UIView object:

-(void) printViews:(UIView *) view {
 if ([view.subviews count] > 0){
 for (int i=0; i<[view.subviews count]; ++i) {
 UIView *v = [view.subviews objectAtIndex:i];
 NSLog(@"View index: %d Tag: %d",i, v.tag);
 [self printViews:v];
 }
 } else
 return;
}

You can call the preceding method from the viewDidLoad method:

- (void)viewDidLoad
{
 [self printViews:self.view];
 [super viewDidLoad];
}

The preceding code snippet will print out the following output:

2011-07-30 00:57:18.463 DynamicViews[2652:ef03] View index: 0 Tag: 2000
2011-07-30 00:57:18.464 DynamicViews[2652:ef03] View index: 0 Tag: 0
2011-07-30 00:57:18.464 DynamicViews[2652:ef03] View index: 1 Tag: 1000

To remove a view from the current view hierarchy, use the removeFromSuperview method of the view you want to remove. For example, the following statement removes the label view:

 [label removeFromSuperview];

SUMMARY

This chapter explored the roles played by outlets and actions in an iPhone application. Outlets and actions are the cornerstone of iOS development, so understanding their use is extremely important. Throughout this book, you will come across them frequently. You have also seen the use of some of the commonly used views in the Library.

In the next chapter, you learn about the various types of View controllers supported by the iOS SDK, and how you can use them to build different types of iPhone and iPad applications.

EXERCISES

1. Declare and define an outlet for a UITextField view using code.

2. Declare and define an action using code.

3. When do you use an alert view and when do you use an action sheet?

4. Create a UIButton from code and wire its Touch Up Inside event to an event handler.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Action
	An action is a method that can handle events raised by views (for example, when a button is clicked, etc.) in the View window.

	Outlet
	An outlet allows your code to programmatically reference a view on the View window.

	Adding outlet using code
	Use the IBOutlet keyword:
IBOutlet UITextField *txtName;

	Adding action using code
	Use the IBAction keyword:
-(IBAction) btnClicked:(id) sender;

	Connecting actions
	To link actions, you commonly drag from the view in the View window onto the File’s Owner item.

	Connection outlets
	To link outlets, you commonly drag from the File’s Owner item onto the required view in the View window.

	Using the UIAlertView
	
UIAlertView *alert =
[[UIAlertView alloc]
 initWithTitle:@"Hello!"
 message:@"Hello, world!"
 delegate:self
 cancelButtonTitle:@"Done"
 otherButtonTitles:nil];
[alert show];
[alert release];

	Handling events fired by UIAlertView
	Ensure that your View Controller conforms to the UIAlertViewDelegate protocol.

	Using the UIActionSheet
	
UIActionSheet *action =
[[UIActionSheet alloc]
 initWithTitle:@"Title of Action Sheet"
 delegate:self
 cancelButtonTitle:@"OK"
destructiveButtonTitle:@"Delete Message"
 otherButtonTitles:@"Option 1", @"Option 2",
 nil];

[action showInView:self.view];
[action release];

	Handling events fired by UIActionSheet
	Ensure that your View Controller conforms to the UIActionSheetDelegate protocol.

	Wiring up the events for the UIPageControl
	
[pageControl addTarget:self
 action:@selector(pageTurning:)
 forControlEvents:UIControlEventValueChanged];

	Using the UIImageView
	
[imageView1 setImage:
 [UIImage imageNamed:@"iMac_old.jpeg"]];

	Using the UIWebView
	
NSURL *url =
[NSURL
 URLWithString:@"http://www.apple.com"];
NSURLRequest *req =
 [NSURLRequest requestWithURL:url];
[webView loadRequest:req];

Chapter 4

Exploring the Different View Controllers

WHAT YOU WILL LEARN IN THIS CHAPTER

	Understanding the structure of a Single View Application project

	How to create an Empty Application project and manually add a View controller and a View window to it

	Creating views dynamically during runtime

	Wiring up events of views with event handlers via code

	How to switch to another View window during runtime

	How to animate the switching of views

	How to create a Master-Detail application

	How to create a Tabbed application

So far you’ve dealt only with single-view applications — that is, applications with a single View controller for controlling the View window. The previous chapters all use the Single View Application template available in the iOS SDK because it is the simplest way to get started with iOS programming. When you create a Single View Application project, there is one View controller (named <Class_Prefix>ViewController by the iOS SDK) by default.

In real-life applications, you often need more than one View controller, with each controlling a different View windows displaying different information. This chapter explains the various types of projects you can create for your iPhone and iPad and how each utilizes a different type of View controller. You will also learn how to create multiple View windows in your application and then programmatically switch among them during runtime. In addition, you learn how to animate the switching of View windows using the built-in animation methods available in the iOS SDK.

THE SINGLE VIEW APPLICATION TEMPLATE

When you create a Single View Application project using Xcode, you automatically have a single view in your application. Until now, you have been using it without understanding much about how it works under the hood. In the following Try It Out, you will dive into the details and unravel all the magic that makes your application work.

TRY IT OUT: Creating a Single View Application Project

codefile SingleViewBasedApp.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project (see Figure 4-1) and click Next.

FIGURE 4-1

[image: image]

2. Name the project SingleViewBasedApp. Set the Class Prefix to be SingleViewBasedApp and ensure that you have the Use Automatic Reference Counting option unchecked. Click Next and then Create.

3. Press Command-R to test the application on the iPhone Simulator. The application displays an empty screen, as shown in Figure 4-2.

FIGURE 4-2

[image: image]

How It Works

What you have just created is a Single View Application project. By default, the Single View Application template includes a single View window, controlled by a View controller class.

First, take a look at the files and folders created for your project in Xcode. In particular, note the folders and files listed under the project name (see Figure 4-3).

FIGURE 4-3

[image: image]

As you can see, many files are created for you by default when you create a new project. The iOS SDK tries to make your life simpler by creating some of the items that you will use most often when you develop an iOS application. Table 4-1 describes the various files created in the project by default.

TABLE 4-1: Project Files Created by Default

	FILE
	DESCRIPTION

	SingleViewBasedApp.app
	The application bundle (executable), which contains the executable as well as the data that is bundled with the application

	SingleViewBasedApp_Prefix.pch
	Contains the prefix header for all files in the project. The prefix header is included by default in the other files in the project.

	SingleViewBasedAppAppDelegate.h
	Header file for the application delegate

	SingleViewBasedAppAppDelegate.m
	Implementation file for the application delegate

	SingleViewBasedAppViewController.h
	Header file for a View controller

	SingleViewBasedAppViewController.m
	Implementation file for a View controller

	SingleViewBasedAppViewController.xib
	XIB file containing the user interface of a View window

	CoreGraphics.framework
	C-based as for low-level 2D rendering

	Foundation.framework
	APIs for foundational system services such as data types, XML, URL, and so on

	UIKit.framework
	Provides fundamental objects for constructing and managing your application’s user interface

	SingleViewBasedApp-Info.plist
	A dictionary file that contains information about your project, such as icon, application name, and more; information is stored in key/value pairs.

	main.m
	The main file that bootstraps your iOS application

[image: image]
NOTE The types and number of files created vary according to the type of project you have selected. The Single View Application template is a good starting point for understanding the various files involved.

The main.m file contains code that bootstraps your application, and you rarely need to modify it:

#import <UIKit/UIKit.h>

#import "SingleViewBasedAppAppDelegate.h"

int main(int argc, char *argv[])
{
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([SingleViewBasedAppAppDelegate class]));
 }
}

Most of the hard work is done by the UIApplicationMain() function, which loads the SingleViewBasedAppAppDelegate class to obtain more information about the project. In particular, it looks at the main XIB file you will use for your project.

THE XIB AND NIB EXTENSIONS

iOS application development always includes files with the .xib extension (sometimes also known as NIB files), so it is useful to know what these extensions stand for. The current Mac OS X was built upon an operating system called NeXTSTEP, from a company known as NeXT (founded by Apple’s cofounder, Steve Jobs, in 1985). The N in NIB stands for NeXTSTEP. As for .xib, the X presumably stands for XML because its content is saved as an XML file. The IB stands for Interface Builder, the design tool that enables you to visually construct the UI for your application.

Application Delegate

The SingleViewBasedAppAppDelegate.m file contains code that is typically executed after the application has finished loading, or just before it is terminated. For this example, its content is as follows:

[image: image]
NOTE When creating your project using Xcode, the filename of your application delegate will always be appended with the string AppDelegate. For example, if the project name (and Class Prefix) is SingleViewBasedApp, then the application delegate will be called SingleViewBasedAppAppDelegate.

#import "SingleViewBasedAppAppDelegate.h"

#import "SingleViewBasedAppViewController.h"

@implementation SingleViewBasedAppAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (void)dealloc
{
 [_window release];
 [_viewController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[SingleViewBasedAppViewController alloc]
initWithNibName:@"SingleViewBasedAppViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application
{
 /*
 Sent when the application is about to move from active to inactive state.
This can occur for certain types of temporary interruptions (such as an incoming
phone call or SMS message) or when the user quits the application and it begins
the transition to the background state.
 Use this method to pause ongoing tasks, disable timers, and throttle down
OpenGL ES frame rates. Games should use this method to pause the game.
 */
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 /*
 Use this method to release shared resources, save user data, invalidate
timers, and store enough application state information to restore your application
to its current state in case it is terminated later.
 If your application supports background execution, this method is called
instead of applicationWillTerminate: when the user quits.
 */
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 /*
 Called as part of the transition from the background to the inactive state;
here you can undo many of the changes made on entering the background.
 */
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 /*
 Restart any tasks that were paused (or not yet started) while the application
was inactive. If the application was previously in the background, optionally
refresh the user interface.
 */
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 /*
 Called when the application is about to terminate.
 Save data if appropriate.
 See also applicationDidEnterBackground:.
 */
}

@end

When the application has finished launching, it sends its delegate the application:DidFinishLaunchingWithOptions: message. In the preceding case, it creates a UIWindow object based on the current screen size, and then creates an instance of the SingleViewBasedAppViewController class together with the SingleViewBasedAppViewController.xib file. Once the View controller is instantiated, it is assigned to the root View controller of the UIWindow object:

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[SingleViewBasedAppViewController alloc]
initWithNibName:@"SingleViewBasedAppViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

The SingleViewBasedAppAppDelegate.h file contains the declaration of the members of the SingleViewBasedAppAppDelegate class:

#import <UIKit/UIKit.h>

@class SingleViewBasedAppViewController;

@interface SingleViewBasedAppAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) SingleViewBasedAppViewController *viewController;

@end

Of particular interest is this line:

@interface SingleViewBasedAppAppDelegate : UIResponder <UIApplicationDelegate>

The <UIApplicationDelegate> statement specifies that the delegate class should implement the UIApplicationDelegate protocol. Put simply, it means that the delegate class will handle events (or messages) defined in the UIApplicationDelegate protocol. Examples of events in the UIApplicationDelegate protocol include the following (you saw some of these implemented in the SingleViewBasedAppAppDelegate.m file.):

	Application:DidFinishLaunchingWithOptions:

	applicationWillTerminate:

	applicationDidDidReceiveMemoryWarning:

	Other methods that inform you if the application is receding into the background or coming back into the foreground. You will learn more about these methods in Chapter 21.

The application delegate class is also a good place to put your global objects and methods, as they are accessible from all the other classes in your project.

[image: image]
NOTE Protocols are discussed in more detail in Appendix C.

Controlling Your UI Using View Controllers

In iOS programming, you typically use a View controller to manage a View window, as well as to perform navigation and memory management. In the Single View Application project template, Xcode automatically uses a View controller to help you manage your View window. Think of a View window as a screen (or window) you see on your iOS device.

Earlier in this chapter, you saw that the SingleViewBasedAppAppDelegate.m file creates an instance of the SingleViewBasedAppViewController class together with the SingleViewBasedAppViewController.xib file.

Select the SingleViewBasedAppViewController.xib file from Xcode, and you should see three icons: File’s Owner, First Responder, and View (see Figure 4-4). Select the File’s Owner item and view the Identity Inspector window (View ⇒ Utilities ⇒ Show Identity Inspector). Observe that the Class is set to SingleViewBasedAppViewController. This means that the View window is being controlled by the SingleViewBasedAppViewController class.

FIGURE 4-4

[image: image]

[image: image]
NOTE When creating your project using Xcode, the filename of your View controller will always be <Class_Prefix>ViewController. For example, if the project name is SingleViewBasedApp, and you name the class prefix to be the same as your project name, then the View Controller will be called SingleViewBasedAppViewController.

You can right-click (or Control-click) the File’s Owner item to view its properties (see Figure 4-5). Note that the view outlet is connected to the View item.

FIGURE 4-5

[image: image]

The View item represents the screen that appears on your application. Double-click View to display it.

The SingleViewBasedAppViewController class is represented by two files: SingleViewBasedAppViewController.h and SingleViewBasedAppViewController.m. The SingleViewBasedAppViewController class is where you write the code to interact with the views of your application.

The content of the SingleViewBasedAppViewController.h file looks like this:

#import <UIKit/UIKit.h>

@interface SingleViewBasedAppViewController : UIViewController

@end

Note that the SingleViewBasedAppViewController class inherits from the UIViewController base class, which provides most of the functionality available on a View window.

The content of the SingleViewBasedAppViewController.m file looks like this:

#import "SingleViewBasedAppViewController.h"

@implementation SingleViewBasedAppViewController

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Release any cached data, images, etc that aren't in use.
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

@end

The SingleViewBasedAppViewController.m file contains a number of methods commonly used by most developers. This is where you populate your View controllers with code to make it do interesting things.

THE EMPTY APPLICATION TEMPLATE

In this section, you discover another type of application template you can create using the iOS SDK: the Empty Application template. Unlike the Single View Application template, the Empty Application template does not include a View controller by default. Instead, it provides only the skeleton of an iOS application — you need to add your own views and their respective View controllers. Therefore, an Empty Application project presents a good opportunity for you to learn how View controllers work and appreciate all the work needed to connect the View controllers and XIB files. When you understand how View controllers work, you will be on your way to creating more sophisticated applications.

To put first things first, execute the following Try It Out to create an Empty Application project and then progressively add a View controller to it.

TRY IT OUT: Creating an Empty Application Project

codefile EmptyApp.zip available for download on Wrox.com

1. Using Xcode, create an Empty Application (iPhone) project (see Figure 4-6) and name it EmptyApp. You must also use the project name as the Class Prefix. Ensure that you have the Use Automatic Reference Counting option unchecked. Observe the files created for this project type (see Figure 4-7). Apart from the usual supporting files, note that there are only two delegate files (EmptyAppAppDelegate.h and EmptyAppAppDelegate.m).

FIGURE 4-6

[image: image]

FIGURE 4-7

[image: image]

2. Press Command-R to test the application. An empty screen is displayed on the iPhone Simulator. This is because the Empty Application template provides only the skeleton structure for a simple iOS application — just a window and the application delegate.

3. Right-click the project name and add a new file. In the New File window, click the Cocoa Touch item and select the UIViewController subclass template (see Figure 4-8). Click Next.

FIGURE 4-8

[image: image]

4. Name the item HelloWorldViewController.m. Ensure that the “With XIB for user interface” check box is checked (see Figure 4-9). Xcode should now look like Figure 4-10.

FIGURE 4-9

[image: image]

FIGURE 4-10

[image: image]

5. Select the HelloWorldViewController.xib file to edit it in Interface Builder.

6. Set the background color of the View window to Light Gray Color (see Figure 4-11).

FIGURE 4-11

[image: image]

7. Add a Round Rect Button to the View window and label the button as shown in Figure 4-12.

FIGURE 4-12

[image: image]

8. Back in Xcode, insert the bold lines in the following code into the EmptyAppAppDelegate.h file:

#import <UIKit/UIKit.h>

@class HelloWorldViewController;

@interface EmptyAppAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) HelloWorldViewController *viewController;

@end

9. In the EmptyAppAppDelegate.m file, insert the following code that appears in bold:

#import "EmptyAppAppDelegate.h"
#import "HelloWorldViewController.h"

@implementation EmptyAppAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (void)dealloc
{
 [_window release];
 [_viewController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];

 self.viewController = [[[HelloWorldViewController alloc]
 initWithNibName:@"HelloWorldViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;

 [self.window makeKeyAndVisible];
 return YES;
}

10. That’s it! Press Command-R to test the application on the iPhone Simulator. The button should appear on the main screen of the application as shown in Figure 4-13.

FIGURE 4-13

[image: image]

How It Works

When you create an iPhone project using the Empty Application template, Xcode provides you with only the bare minimum number of items in your project — some supporting files and the application delegate. You need to add your own View controller(s) and view(s).

In the preceding exercise, you added a View Controller class and an accompanying XIB file to the project. When the application has finished launching, you add the View window represented by the HelloWorldViewController object to the window so that it is visible:

 self.viewController = [[[HelloWorldViewController alloc]
 initWithNibName:@"HelloWorldViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;

Adding a View Controller and Views Programmatically

Another commonly used technique to create the UI of your application is to programmatically create the views during runtime without using Interface Builder. This provides a lot of flexibility, especially when you are writing games for which the application’s UI is constantly changing.

In the following Try It Out, you learn how to create a View window using an instance of the UIViewController class and then programmatically add views to it.

TRY IT OUT: Adding a View Controller and Views Programmatically

1. Using the EmptyApp project, right-click the project name in Xcode and add a new file. Select the UIViewController subclass item and name it SecondViewController. Ensure that the “With XIB for user interface” check box is unchecked. Xcode should now look like Figure 4-14.

FIGURE 4-14

[image: image]

2. Add the following bold code to SecondViewController.h:

#import <UIKit/UIKit.h>

@interface SecondViewController : UIViewController
{
 //---create two outlets - label and button---
 UILabel *label;
 UIButton *button;
}

//---expose the outlets as properties---
@property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) UIButton *button;

//---declaring the IBAction---
-(IBAction) buttonClicked: (id) sender;

@end

3. Add the following bold code to SecondViewController.m:

- (void)viewDidLoad
{
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@"Verdana" size:20];
 label.text = @"This is a label";
 label.backgroundColor = [UIColor lightGrayColor];

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@"OK" forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

 self.view.backgroundColor = [UIColor lightGrayColor];

 //---add the views to the View window---
 [self.view addSubview:label];
 [self.view addSubview:button];
 [super viewDidLoad];
}

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Action invoked!"
 message:@"Button clicked!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (void)dealloc {
 [label release];
 [button release];
 [super dealloc];
}

4. Add the following bold code to HelloWorldViewController.h:

#import <UIKit/UIKit.h>
#import "SecondViewController.h"

@interface HelloWorldViewController : UIViewController
{
 //---create an instance of the view controller---
 SecondViewController *secondViewController;
}

-(IBAction) btnClicked:(id) sender;

@end

5. Add the following bold code to HelloWorldViewController.m:

#import "HelloWorldViewController.h"

@implementation HelloWorldViewController

-(IBAction) btnClicked:(id) sender
{
 //---add the view of the view controller to the current View---
 if (secondViewController==nil) {
 secondViewController =
 [[SecondViewController alloc] initWithNibName:@"SecondViewController"
 bundle:nil];
 }
 [self.view addSubview:secondViewController.view];
}

- (void)dealloc {
 [secondViewController release];
 [super dealloc];
}

6. Select HelloWorldViewController.xib to edit it in Interface Builder. Control-click the Round Rect Button and drag it over the File’s Owner item. Select btnClicked:. Right-clicking on the File’s Owner item will reveal the connections as shown in Figure 4-15.

FIGURE 4-15

[image: image]

7. Press Command-R to test the application on the iPhone Simulator. Clicking the button will reveal the second View window (see Figure 4-16). Clicking the OK button reveals the alert view.

FIGURE 4-16

[image: image]

8. Back in Xcode, add the following bold code to SecondViewController.m:

-(IBAction) buttonClicked: (id) sender{
 /*
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Action invoked!"
 message:@"Button clicked!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 */
 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];
}

9. Press Command-R to test the application on the iPhone Simulator again. As usual, clicking the button will reveal the second View window. Clicking the OK button will now hide the second View window and show the first View window.

How It Works

In this Try It Out, you created a new View controller and its accompanying XIB file. Instead of populating the View windows with the Label and Round Rect Button in Interface Builder, you have added them using code, through the viewDidLoad method:

- (void)viewDidLoad
{
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@"Verdana" size:20];
 label.text = @"This is a label";
 label.backgroundColor = [UIColor lightGrayColor];

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@"OK" forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

 self.view.backgroundColor = [UIColor lightGrayColor];

 //---add the views to the View window---
 [self.view addSubview:label];
 [self.view addSubview:button];
 [super viewDidLoad];
}

Observe that you also added an action for the Round Rect Button so that when it is clicked, an action can be performed. To connect an action to a view, you use the addTarget:action:forControlEvents: method of a view. In this case, it is wired to the buttonClicked: method:

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Action invoked!"
 message:@"Button clicked!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

In the HelloWorldViewController class, the Round Rect Button is wired to the btnClicked: action:

-(IBAction) btnClicked:(id) sender
{
 //---add the view of the view controller to the current View---
 if (secondViewController==nil) {
 secondViewController =
 [[SecondViewController alloc] initWithNibName:@"SecondViewController"
 bundle:nil];
 }
 [self.view addSubview:secondViewController.view];
}

In this case, when a user clicks this button, you create a new instance of the SecondViewController class and then add its View window over the current View window. As a result, the SecondViewController’s View window covers the entire current window, giving the impression that the current window has transitioned to the next window.

To return to the first View window, you have to hide the current View window using the removeFromSuperview method of the view object:

 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];

CONTROL EVENTS

Users typically interact with views on a View window. A very good example is the Round Rect Button, which allows the user to tap on it so that it can perform an action. In this case, the Round Rect Button needs to support a series of events (known as Control Events) so that it knows how the user is interacting with it. For example, if you want to perform an action when the user touches a button (with the finger still touching the button), you need to handle the UIControlEventTouchDown event. If you want to perform another action when the finger is lifted, you need to handle the UIControlEventTouchUpInside event.

You can use the following list of events for views:

	UIControlEventTouchDown

	UIControlEventTouchDownRepeat

	UIControlEventTouchDragInside

	UIControlEventTouchDragOutside

	UIControlEventTouchDragEnter

	UIControlEventTouchDragExit

	UIControlEventTouchUpInside

	UIControlEventTouchUpOutside

	UIControlEventTouchCancel

	UIControlEventValueChanged

	UIControlEventEditingDidBegin

	UIControlEventEditingChanged

	UIControlEventEditingDidEnd

	UIControlEventEditingDidEndOnExit

	UIControlEventAllTouchEvents

	UIControlEventAllEditingEvents

	UIControlEventApplicationReserved

	UIControlEventSystemReserved

	UIControlEventAllEvents

The use of each event is detailed at http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIControl_Class/Reference/Reference.html.

Animating the Switching of Views

The switching of View windows that you have just seen in the previous section happens instantaneously — the two View windows change immediately without any visual cues. One of the key selling points of iOS is its animation capabilities. Therefore, for the switching of views, you can make the display a little more interesting by performing some simple animations, such as flipping one View window to reveal another. The following Try It Out shows you how.

TRY IT OUT: Animating View Transitions

1. Using the same project, add the following bold code to the HelloWorldViewController.m file:

-(IBAction) btnClicked:(id) sender
{
 //---add the view of the view controller to the current View---
 if (secondViewController==nil) {
 secondViewController =
 [[SecondViewController alloc] initWithNibName:@"SecondViewController"
 bundle:nil];
 }
 [UIView transitionWithView:self.view
 duration:0.5
 options:UIViewAnimationOptionTransitionFlipFromRight |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 [self.view addSubview:secondViewController.view];
 }
 completion:NULL];
}

2. In the SecondViewController.m file, add the following code that appears in bold:

-(IBAction) buttonClicked: (id) sender{
 /*
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Action invoked!"
 message:@"Button clicked!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 */
 [UIView transitionWithView:self.view.superview
 duration:0.5
 options:UIViewAnimationOptionTransitionFlipFromLeft |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];
 }
 completion:NULL];
}

3. Press Command-R to test the application on the iPhone Simulator. Click the buttons on both View windows and notice the direction in which the two Views flip to one another (see Figure 4-17).

FIGURE 4-17

[image: image]

How It Works

First, examine the animation that is applied to the HelloWorldViewController. You perform the animation by calling the transitionWithView:duration:options:animations: method of the UIView class to start the animation:

 [UIView transitionWithView:self.view
 duration:0.5
 options:UIViewAnimationOptionTransitionFlipFromRight |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 [self.view addSubview:secondViewController.view];
 }
 completion:NULL];

The transitionWithView: label specifies the view that you are animating. The duration: label specifies the duration of the animation, in seconds. Here, you set it to half a second. The options: method sets the types of animation you want to perform, in particular the UIViewAnimationOptionTransitionFlipFromRight option flips the view object around a vertical axis from right to left. The animations: label specifies the block object that contains the changes you want to make to the specified view.

The animation performed on the SecondViewController is similar to that of the HelloWorldViewController, except that the view to animate must be set to self.view.superview (which is actually the HelloWorldViewController):

 [UIView transitionWithView:self.view.superview
 duration:0.5
 options:UIViewAnimationOptionTransitionFlipFromLeft |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];
 }
 completion:NULL];

THE MASTER-DETAIL APPLICATION TEMPLATE

Beginning with the iOS SDK 3.2, a new application template exclusive to the iPad became available: Split View–based Application. It enables you to create a split-view interface for your iPad application, which is essentially a master-detail interface. The left side of the screen displays a list of selectable items, while the right-side displays details about the item selected. In iOS 5, Apple has merged the Split View-based Application template with the existing Navigation-based Application template, calling it the Master-Detail Application template. In essence, when your Master-Detail Universal application is run on the iPhone, it will behave just like a Navigation-based application. When it is run on the iPad, it will behave like a Split View-based application.

To see how the Master-Detail Application template works, take a look at the following Try It Out.

TRY IT OUT: Creating a Master-Detail Application

codefile MasterDetail.zip available for download at Wrox.com

1. Using Xcode, select the new Master-Detail Application template (see Figure 4-18). Click Next.

FIGURE 4-18

[image: image]

2. Name the project MasterDetail and select the Universal device family (see Figure 4-19). Recall that you also use the project name as the Class Prefix and must ensure that you have the Use Automatic Reference Counting option unchecked. Click Next.

FIGURE 4-19

[image: image]

3. Observe the files created (see Figure 4-20). Notice that there is one delegate class (MasterDetailAppDelegate), and two View controller classes (MasterDetailMasterViewController and MasterDetailDetailViewController), as well as four XIB files (two for iPhone and two for iPad).

FIGURE 4-20

[image: image]

4. Select the iPhone 5.0 Simulator scheme (see Figure 4-21) and press Command-R to debug the application on the iPhone Simulator.

FIGURE 4-21

[image: image]

5. Figure 4-22 shows the application displaying a table view containing a single item named Detail. Clicking the Detail item causes the application to navigate to the next Detail window.

FIGURE 4-22

[image: image]

6. Back in Xcode, select the iPad 5.0 Simulator scheme and press Command-R to debug the application on the iPad Simulator.

7. Figure 4-23 shows the iPad Simulator in Portrait mode. Clicking the Master button displays a PopoverView containing a table view with the Detail item.

FIGURE 4-23

[image: image]

8. Press Command-⇒ to switch the iPad Simulator to landscape mode. Figure 4-24 shows the application with two panes: One containing the Master pane and another containing the Detail pane.

FIGURE 4-24

[image: image]

How It Works

The Master-Detail application is very versatile. When it is run as an iPhone application, it functions as a Navigation-based application. When it is run as an iPad application, it functions as a Split-View-based application. To understand how it works, first, note the content of the MasterDetailAppDelegate.h file:

#import <UIKit/UIKit.h>

@interface MasterDetailAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) UINavigationController *navigationController;

@property (strong, nonatomic) UISplitViewController *splitViewController;

@end

Notice that it contains two View controller objects of type UISplitViewController (splitViewController) and UINavigationController (navigationController).

The UISplitViewController is a container View controller that contains two View controllers, allowing you to implement a master-detail interface. The UINavigationController is a controller that manages the navigation of View controllers.

Next, look at the content of the MasterDetailAppDelegate.m file:

#import "MasterDetailAppDelegate.h"

#import "MasterDetailMasterViewController.h"

#import "MasterDetailDetailViewController.h"

@implementation MasterDetailAppDelegate

@synthesize window = _window;
@synthesize navigationController = _navigationController;
@synthesize splitViewController = _splitViewController;

- (void)dealloc
{
 [_window release];
 [_navigationController release];
 [_splitViewController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {
 MasterDetailMasterViewController *masterViewController =
 [[[MasterDetailMasterViewController alloc]
 initWithNibName:@"MasterDetailMasterViewController_iPhone" bundle:nil] autorelease];
 self.navigationController = [[[UINavigationController alloc]
 initWithRootViewController:masterViewController] autorelease];
 self.window.rootViewController = self.navigationController;
 } else {
 MasterDetailMasterViewController *masterViewController =
 [[[MasterDetailMasterViewController alloc]
 initWithNibName:@"MasterDetailMasterViewController_iPad" bundle:nil] autorelease];
 UINavigationController *masterNavigationController =
 [[[UINavigationController alloc] initWithRootViewController:masterViewController] autorelease];

 MasterDetailDetailViewController *detailViewController = [[[MasterDetailDetailViewController alloc]
 initWithNibName:@"MasterDetailDetailViewController_iPad" bundle:nil] autorelease];
 UINavigationController *detailNavigationController =
 [[[UINavigationController alloc] initWithRootViewController:detailViewController] autorelease];

 self.splitViewController = [[[UISplitViewController alloc] init] autorelease];
 self.splitViewController.delegate = detailViewController;
 self.splitViewController.viewControllers = [NSArray
 arrayWithObjects:masterNavigationController, detailNavigationController, nil];

 self.window.rootViewController = self.splitViewController;
 }
 [self.window makeKeyAndVisible];
 return YES;
}

Observe that when the application has been loaded, it first checks to see if it is running as an iPhone application. If it is, it loads navigationController with an instance of the MasterDetailMasterViewController class, using the MasterDetailMasterViewController_iPhone.xib file:

 MasterDetailMasterViewController *masterViewController = [[[MasterDetailMasterViewController alloc]
 initWithNibName:@"MasterDetailMasterViewController_iPhone" bundle:nil] autorelease];
 self.navigationController = [[[UINavigationController alloc]
 initWithRootViewController:masterViewController] autorelease];
 self.window.rootViewController = self.navigationController;

Figure 4-25 summarizes the actions performed.

FIGURE 4-25

[image: image]

If it is running as an iPad application, it will do the following:

	Instantiate masterViewController using the MasterDetailMasterViewController class, using the MasterDetailMasterViewController_iPad.xib file

	Load masterNavigationController with masterViewController

	Instantiate detailViewController with the MasterDetailDetailViewController class, using the MasterDetailDetailViewController_iPad.xib file

	Load detailNavigationController with detailViewController

	Load splitViewController with masterViewController and detailNavigationController

 MasterDetailMasterViewController *masterViewController =
 [[[MasterDetailMasterViewController alloc]
 initWithNibName:@"MasterDetailMasterViewController_iPad" bundle:nil] autorelease];
 UINavigationController *masterNavigationController =
 [[[UINavigationController alloc]
 initWithRootViewController:masterViewController] autorelease];

 MasterDetailDetailViewController *detailViewController = [[[MasterDetailDetailViewController alloc] initWithNibName:@"MasterDetailDetailViewController_iPad" bundle:nil] autorelease];
 UINavigationController *detailNavigationController =
 [[[UINavigationController alloc]
 initWithRootViewController:detailViewController] autorelease];

 self.splitViewController = [[[UISplitViewController alloc] init]
 autorelease];
 self.splitViewController.delegate = detailViewController;
 self.splitViewController.viewControllers = [NSArray
 arrayWithObjects:masterNavigationController, detailNavigationController, nil];

 self.window.rootViewController = self.splitViewController;

Figure 4-26 summarizes the actions performed.

FIGURE 4-26

[image: image]

In short, for each View controller (MasterDetailMasterViewController and MasterDetailDetailViewController), you have two XIB files: one for iPhone and one for iPad.

At this point, it would be useful to take a look at each View controller to examine its contents. Here is the MasterDetailMasterViewController.h file:

#import <UIKit/UIKit.h>

@class MasterDetailDetailViewController;

@interface MasterDetailMasterViewController : UITableViewController

@property (strong, nonatomic) MasterDetailDetailViewController *detailViewController;

@end

Notice that this class inherits from the UITableViewController base class, not the UIViewController class. In a master-detail application, the master usually contains a list of items for selection, hence this class contains a Table View. The UITableViewController class is a subclass of the UIViewController class, providing the capability to display a table containing rows of data. (Chapter 8 discusses the Table View in more detail.)

Here is the content of the MasterDetailDetailViewController.h file:

#import <UIKit/UIKit.h>

@interface MasterDetailDetailViewController
 : UIViewController <UISplitViewControllerDelegate>

@property (strong, nonatomic) id detailItem;

@property (strong, nonatomic) IBOutlet UILabel *detailDescriptionLabel;

@end

Notice that the MasterDetailDetailViewController class implements the UISplitViewControllerDelegate protocol, which contains methods to manage changes to visible View controllers.

Now take a look at the MasterDetailDetailViewController.m file:

#import "MasterDetailDetailViewController.h"

@interface MasterDetailDetailViewController ()
@property (strong, nonatomic) UIPopoverController *masterPopoverController;
- (void)configureView;
@end

@implementation MasterDetailDetailViewController

@synthesize detailItem = _detailItem;
@synthesize detailDescriptionLabel = _detailDescriptionLabel;
@synthesize masterPopoverController = _masterPopoverController;

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem) {
 [_detailItem release];
 _detailItem = [newDetailItem retain];

 // Update the view.
 [self configureView];
 }

 if (self.masterPopoverController != nil) {
 [self.masterPopoverController dismissPopoverAnimated:YES];
 }
}

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text = [self.detailItem description];
 }
}

- (void)splitViewController:(UISplitViewController *)splitController
 willHideViewController:(UIViewController *)viewController
 withBarButtonItem:(UIBarButtonItem *)barButtonItem
 forPopoverController:(UIPopoverController *)popoverController
{
 barButtonItem.title = NSLocalizedString(@"Master", @"Master");
 [self.navigationItem setLeftBarButtonItem:barButtonItem animated:YES];
 self.masterPopoverController = popoverController;
}

- (void)splitViewController:(UISplitViewController *)splitController
 willShowViewController:(UIViewController *)viewController
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem
{
 // Called when the view is shown again in the split view, invalidating the
button and popover controller.
 [self.navigationItem setLeftBarButtonItem:nil animated:YES];
 self.masterPopoverController = nil;
}

//...
//...
//...
@end

The setDetailItem method (it is actually also a property) allows outside classes to pass in a value to this class so that it can display it in the Label through the configureView method.

You also need to handle two important events in this View Controller (both are defined in the UISplitViewControllerDelegate protocol):

	splitViewController:willHideViewController:withBarButtonItem:forPopover-Controller: — Fired when the iPad switches to portrait mode (where the Popover View is shown and the TableView is hidden)

	splitViewController:willShowViewController:invalidatingBarButtonItem: — Fired when the iPad switches to landscape mode (where the Popover View is hidden and the Table View is shown)

Displaying Some Items in the Master-Detail Application

Now that you have seen a Master-Detail application in action, it is time to make some changes to it and see how useful it is. The following Try It Out displays a list of movie names; and when a movie is selected, the name appears in the details View window.

TRY IT OUT: Displaying Some Items

1. Using the MasterDetail project, add the following bold statements to the MasterDetailMasterViewController.h file:

#import <UIKit/UIKit.h>

@class MasterDetailDetailViewController;

@interface MasterDetailMasterViewController : UITableViewController
{
 NSMutableArray *listOfMovies;
}

@property (strong, nonatomic) MasterDetailDetailViewController *detailViewController;

@end

2. Add the following bold statements to the MasterDetailMasterViewController.m file:

- (void)viewDidLoad
{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];
 [listOfMovies addObject:@"Training Day"];
 [listOfMovies addObject:@"Remember the Titans"];
 [listOfMovies addObject:@"John Q."];
 [listOfMovies addObject:@"The Bone Collector"];
 [listOfMovies addObject:@"Ricochet"];
 [listOfMovies addObject:@"The Siege"];
 [listOfMovies addObject:@"Malcolm X"];
 [listOfMovies addObject:@"Antwone Fisher"];
 [listOfMovies addObject:@"Courage Under Fire"];
 [listOfMovies addObject:@"He Got Game"];
 [listOfMovies addObject:@"The Pelican Brief"];
 [listOfMovies addObject:@"Glory"];
 [listOfMovies addObject:@"The Preacher's Wife"];

 //---set the title---
 self.navigationItem.title = NSLocalizedString(@"Movies", @"Movies");
 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0
 inSection:0] animated:NO scrollPosition:UITableViewScrollPositionMiddle];
 self.detailViewController =
 (MasterDetailDetailViewController *) [[self.splitViewController.viewControllers
 lastObject] topViewController];
 }
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 return [listOfMovies count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
 autorelease];
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 }

 // Configure the cell.
 //cell.textLabel.text = NSLocalizedString(@"Detail", @"Detail");
 cell.textLabel.text = [listOfMovies objectAtIndex:indexPath.row];

 return cell;
}

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
 *)indexPath
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 if (!self.detailViewController) {
 self.detailViewController = [[[MasterDetailDetailViewController alloc]
 initWithNibName:@"MasterDetailDetailViewController_iPhone" bundle:nil] autorelease];
 }
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@"%@", [listOfMovies objectAtIndex:indexPath.row]];

 [self.navigationController pushViewController:self.detailViewController
 animated:YES];
 }
 else
 {
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@"%@", [listOfMovies objectAtIndex:indexPath.row]];
 }
}

3. Press Command-R to test the application on the iPhone Simulator. Figure 4-27 shows the list of movies names shown in the master View controller. Clicking on a movie name will cause the application to navigate to the detail View controller.

FIGURE 4-27

[image: image]

4. Press Command-R to test the application on the iPad Simulator. When the Simulator is in portrait mode, the application shows a list of movies within the PopoverView (see Figure 4-28). Selecting a movie displays the movie name on the detail View controller. You can also switch to landscape mode and select the movies from the TableView (see Figure 4-29).

FIGURE 4-28

[image: image]

FIGURE 4-29

[image: image]

How It Works

First, you initialized a mutable array with a list of movie names and set the title of the navigation controller to Movies:

 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];
 [listOfMovies addObject:@"Training Day"];
 [listOfMovies addObject:@"Remember the Titans"];
 [listOfMovies addObject:@"John Q."];
 [listOfMovies addObject:@"The Bone Collector"];
 [listOfMovies addObject:@"Ricochet"];
 [listOfMovies addObject:@"The Siege"];
 [listOfMovies addObject:@"Malcolm X"];
 [listOfMovies addObject:@"Antwone Fisher"];
 [listOfMovies addObject:@"Courage Under Fire"];
 [listOfMovies addObject:@"He Got Game"];
 [listOfMovies addObject:@"The Pelican Brief"];
 [listOfMovies addObject:@"Glory"];
 [listOfMovies addObject:@"The Preacher's Wife"];

 //---set the title---
 self.navigationItem.title = NSLocalizedString(@"Movies", @"Movies");

For an iPad application, you need to set the detailViewController property to the last View Controller stored in the SplitViewController:

 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0
 inSection:0] animated:NO scrollPosition:UITableViewScrollPositionMiddle];
 self.detailViewController =
 (MasterDetailDetailViewController *)
 [[self.splitViewController.viewControllers lastObject] topViewController];
 }
}

The value returned by the tableView:numberOfRowsInSection: method sets the number of rows to be displayed, which in this case is the size of the mutable array:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
 (NSInteger)section
{
 //return 1;
 return [listOfMovies count];
}

The tableView:cellForRowAtIndexPath: method is fired for each item in the mutable array, thereby populating the TableView:

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
 autorelease];
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 }

 // Configure the cell.
 //cell.textLabel.text = NSLocalizedString(@"Detail", @"Detail");
 cell.textLabel.text = [listOfMovies objectAtIndex:indexPath.row];

 return cell;
}

When an item is selected in the TableView, you pass the movie name selected to the MasterDetailDetailViewController object via its detailItem property:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)
 indexPath
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 if (!self.detailViewController) {
 self.detailViewController = [[[MasterDetailDetailViewController alloc]
 initWithNibName:@"MasterDetailDetailViewController_iPhone" bundle:nil] autorelease];
 }
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@"%@", [listOfMovies objectAtIndex:indexPath.row]];

 [self.navigationController pushViewController:self.detailViewController
 animated:YES];
 }
 else
 {
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@"%@", [listOfMovies objectAtIndex:indexPath.row]];
 }
}

THE TABBED APPLICATION TEMPLATE

So far, you have seen the use of three types of application template provided by the iOS SDK: Single View Application, Empty Application, and Master-Detail Application. A fourth type of application template exists: The Tabbed Application template. The following Try It Out uses the Tabbed Application template to create a project and shows what a Tabbed application looks like. Download the necessary project files as indicated.

TRY IT OUT: Creating a Tabbed Application

codefile TabbedApp.zip available for download at Wrox.com

1. Using Xcode, select the Tabbed Application project (iPhone) (see Figure 4-30) and click Next.

FIGURE 4-30

[image: image]

2. Name the project TabbedApp (see Figure 4-31), use the project name as the Class Prefix, and ensure that you have the Use Automatic Reference Counting option unchecked. Click Next.

FIGURE 4-31

[image: image]

3. Examine the content of the project (see Figure 4-32). In addition to the usual application delegate files, it also contains two View controllers (TabbedAppFirstViewController and TabbedAppSecondViewController) and two XIB files: TabbedAppFirstViewController.xib and TabbedAppSecondViewController.xib.

FIGURE 4-32

[image: image]

4. Examine the content of the TabbedAppAppDelegate.h file, which is as follows:

#import <UIKit/UIKit.h>

@interface TabbedAppAppDelegate : UIResponder
<UIApplicationDelegate, UITabBarControllerDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) UITabBarController *tabBarController;

@end

Instead of the usual UIViewController class, you are now using the UITabBarController class, which inherits from the UIViewController class. A TabBarController is a specialized UIViewController class that contains a collection of View controllers.

5. When the application has finished loading, it creates two instances of the two View controllers and then assigns them to the tabBarController property, as evident in the TabbedAppAppDelegate.m file:

#import "TabbedAppAppDelegate.h"

#import "TabbedAppFirstViewController.h"

#import "TabbedAppSecondViewController.h"

@implementation TabbedAppAppDelegate

@synthesize window = _window;
@synthesize tabBarController = _tabBarController;

- (void)dealloc
{
 [_window release];
 [_tabBarController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 UIViewController *viewController1 = [[[TabbedAppFirstViewController alloc]
 initWithNibName:@"TabbedAppFirstViewController" bundle:nil] autorelease];
 UIViewController *viewController2 = [[[TabbedAppSecondViewController alloc]
 initWithNibName:@"TabbedAppSecondViewController" bundle:nil] autorelease];
 self.tabBarController = [[[UITabBarController alloc] init] autorelease];
 self.tabBarController.viewControllers = [NSArray arrayWithObjects:
 viewController1, viewController2, nil];
 self.window.rootViewController = self.tabBarController;
 [self.window makeKeyAndVisible];
 return YES;
}

6. Press Command-R to run the application on the iPhone Simulator (see Figure 4-33). You can now click the Tab Bar Items at the bottom of the screen to switch between the two views.

FIGURE 4-33

[image: image]

How It Works

Basically, the magic of a Tabbed application is in the use of the UITabBarController class. The Tab Bar Controller contains a collection of View Controllers. In this case, it has two View controllers. The first View controller inside the UITabBarController instance is always displayed when it is added to the current view:

 self.tabBarController.viewControllers = [NSArray arrayWithObjects:
 viewController1, viewController2, nil];

When the user touches the Tab Bar Items, each corresponding View controller is loaded to display its View window.

If you look at the content of the TabbedAppFirstViewController.m file, you will see that in the initWithNibName:bundle: method, you create the title and image to be displayed on the Tab Bar:

#import "TabbedAppFirstViewController.h"

@implementation TabbedAppFirstViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 self.title = NSLocalizedString(@"First", @"First");
 self.tabBarItem.image = [UIImage imageNamed:@"first"];
 }
 return self;
}

The image in this case is referring to two images in your project: first.png (loaded when the application is run on a non-retina display device) and first@2x.png (loaded when the application is run on a retina display device).

SUMMARY

This chapter provided a detailed look at the various application templates provided by the iOS SDK: Single View Application, Empty Application, Master-Detail Application, and Tabbed Application. Each one uses a different type of View controller. It is important to have a good understanding of how the various pieces of an iOS project are put together — knowing that enables you to build applications with sophisticated user interfaces.

EXERCISES

1. Write the code snippet that enables you to create a View controller programmatically.

2. Write the code snippet that creates a view dynamically during runtime.

3. Write the code snippet that wires an event of a view to an event handler.

4. In the EmptyApp project created earlier in this chapter, create an action to display an alert view when the button in the HelloWorldViewController class is pressed.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Types of iPhone/iPad Applications
	Single View application, Empty application, Master-Detail application, and Tabbed Application

	Coding a Label view
	
label = [[UILabel alloc] initWithFrame:frame];
label.textAlignment = UITextAlignmentCenter;
label.font = [UIFont fontWithName:@"Verdana" size:20];
label.text = @"This is a label";

	Coding a Button view
	
frame = CGRectMake(20, 60, 280, 50);
button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
button.frame = frame;
[button setTitle:@"OK" forState:UIControlStateNormal];
button.backgroundColor = [UIColor clearColor];

	Wiring up an event to an event handler
	
[button addTarget:self
action:@selector(buttonClicked:)
forControlEvents:UIControlEventTouchUpInside]

	Switching to another view
	
//---instantiate the second view controller---
mySecondViewController = [[MySecondViewController alloc]
initWithNibName:nil
bundle:nil];
//---add the view from the second view controller---
[window addSubview:mySecondViewController.view];

	Animating the view transition
	
[UIView transitionWithView:self.view
duration:0.5 options:UIViewAnimationOptionTransitionFlipFromRight
animations:^{
[self.view addSubview:secondViewController.view];
 }
completion:NULL];

Chapter 5

Enabling Multi-Platform Support for the iPhone and iPad

WHAT YOU WILL LEARN IN THIS CHAPTER

	Modifying a project’s Targeted Device Family setting to support both the iPhone and the iPad

	How to programmatically detect the device being run

	How to create a Universal application

Besides the iPhone and iPod touch, another device using the iOS is the iPad. Out of the box, the iPad will run your existing iPhone applications using the same screen size that is available on the iPhone and iPod touch — 320 × 480 pixels. Therefore, your applications will utilize only a portion of the screen. However, applications running in this default mode do not do justice to the much bigger screen real estate afforded by the iPad. Clearly, this was merely an interim size that can be used until developers port their application’s UI to the much bigger iPad screen. In order to support the different devices, you need to modify your applications so that they can take advantage of the capabilities of each device type.

Though the iPad is also running the iOS, you should be aware of some subtle differences when porting your applications over to the new device. This chapter examines two techniques you can use to port your existing iPhone apps to support both the iPhone and the iPad.

TECHNIQUE 1 — MODIFYING THE DEVICE TARGET SETTING

The easiest way to ensure that your iPhone application runs as an iPad application (that is, full screen) is to modify the Targeted Device Family setting in your Xcode project. The following Try It Out shows you how to achieve this.

TRY IT OUT: Modifying the Device Target Setting

codefile MyiPhoneApp.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it MyiPhoneApp. (You will also use the project name as the Class Prefix.) Ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the MyiPhoneAppViewController.xib file to edit it in Interface Builder.

3. Populate the View window with the following views (see Figure 5-1):

FIGURE 5-1

[image: image]

	Label (set it to display “Please enter your name”)

	Text field

	Round Rect button (set it to display “OK”)

4. Back in Xcode, press Command-R to test the application on the iPhone Simulator. You should see the screen shown in Figure 5-2.

FIGURE 5-2

[image: image]

5. At the top-left corner of the Xcode window, select the iPad 5.0 Simulator scheme (see Figure 5-3).

FIGURE 5-3

[image: image]

6. Press Command-R again. This time, the application will be shown running in the iPhone Simulator (simulating the iPad), running as an iPhone application (see Figure 5-4). This is the default behavior of iPhone applications running on the iPad.

FIGURE 5-4

[image: image]

7. In Xcode, select the MyiPhoneApp project name. In the Summary tab, change the Devices option to Universal (see Figure 5-5). If you click the Build Settings tab now, you will see that the Targeted Device Family setting is now set to iPhone/iPad (see Figure 5-6).

FIGURE 5-5

[image: image]

FIGURE 5-6

[image: image]

8. Press Command-R to test the application on the iPhone Simulator (with the iPad 5.0 Simulator scheme selected) again. This time, your application will run natively as an iPad application — that is, full screen (see Figure 5-7).

FIGURE 5-7

[image: image]

How It Works

In this example, you first created an iPhone application that you then tested on the iPhone Simulator, simulating both the iPhone and the iPad. By default, all iPhone applications run in their original screen size — 320 x 480 pixels. If you want your iPhone application to run full screen on the iPad, you have to modify the Targeted Device Family setting in your project.

The Targeted Device Family setting provides three different values: iPhone, iPad, or iPhone/iPad. Setting it to iPhone/iPad ensures that your application can automatically detect the device on which it is running, and runs your application full screen.

Notice that the UI of the application is exactly the same as that on the iPhone. It is your responsibility to re-layout your UI when the application is running on the iPad. One way would be to programmatically reposition your views when your application detects that it is running on an iPad. Another way would be to use the Size Inspector window to set the Autosize property of each view on the View window to anchor the view to the edges of the screen. The next section describes how to detect the device on which an application is currently running.

Detecting the Platform Programmatically

In order to re-layout your UI according to the device on which it is running, it is useful to be able to programmatically detect if your application is running on an iPhone/iPod touch or an iPad. The following Try It Out shows you how.

TRY IT OUT: Detecting the Device

1. Using the project created in the previous section, add the following statements shown in bold to the MyiPhoneAppViewController.m file:

- (void)viewDidLoad
{
#if (__IPHONE_OS_VERSION_MAX_ALLOWED >= 30200)

 NSString *str;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 str = [NSString stringWithString:@"Running as an iPad application"];
 } else {
 str = [NSString stringWithString:
 @"Running as an iPhone/iPod touch application"];
 }

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Platform"
 message:str
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

#endif

 [super viewDidLoad];
}

2. In Xcode, choose the iPhone 5.0 Simulator scheme and press Command-R to test the application on the iPhone Simulator. You will see the message displayed in Figure 5-8.

FIGURE 5-8

[image: image]

3. In Xcode, choose the iPad 5.0 Simulator scheme and press Command-R to test the application on the iPhone Simulator. You will see the message displayed in Figure 5-9.

FIGURE 5-9

[image: image]

How It Works

The preceding code includes a conditional compilation directive to indicate that if the application is compiled against the minimum iOS version of 3.2, then it will include a block of code to programmatically detect the type of application it is currently running as:

 #if (__IPHONE_OS_VERSION_MAX_ALLOWED >= 30200)

 //---code within this block will be compiled if application is compiled
 // for iPhone OS 3.2 and above---

 #endif

To detect if the application is running on an iPad, you check the result of the UI_USER_INTERFACE_IDIOM() function. This function returns the interface idiom supported by the current device. If it is an iPad, then the result of this function will be UIUserInterfaceIdiomPad:

 NSString *str;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 str = [NSString stringWithString:@"Running as an iPad application"];
 } else {
 str = [NSString stringWithString:
 @"Running as an iPhone/iPod touch application"];

If the application is running as an iPhone application (that is, not full screen) on the iPad, the UI_USER_INTERFACE_IDIOM() function will return UIUserInterfaceIdiomPhone.

TECHNIQUE 2 — CREATING UNIVERSAL APPLICATIONS

The previous technique shows how you can modify the Targeted Device Family setting to create a single application that runs on both the iPhone and the iPad, called a Universal application. The challenge is adapting the UI of the application for each platform — you have to programmatically detect the type of device the application is running on and then modify the layout of the UI dynamically.

Apple recommends that you create a Universal application, one that targets both the iPhone and the iPad, with separate XIB files representing the UI for each platform. The following Try It Out demonstrates how you can create a Universal application.

TRY IT OUT: Creating a Universal Application

codefile Universal.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application project and name it MyUniversalApp. Ensure that you select Universal for the Device Family (see Figure 5-10). You will also use the project name as the Class Prefix. Ensure that the Use Automatic Reference Counting option is unchecked.

FIGURE 5-10

[image: image]

2. Observe that you now have two XIB files (see Figure 5-11) in your project.

FIGURE 5-11

[image: image]

3 Select the MyUniversalAppViewController_iPhone.xib file to edit it in Interface Builder. 3. Add a Label view to the View window and label it as shown in Figure 5-12.

FIGURE 5-12

[image: image]

4. Select the MyUniversalAppViewController_iPad.xib file to edit it in Interface Builder. Add a Label view to the middle of the View window and label it as shown in Figure 5-13.

FIGURE 5-13

[image: image]

5. Press Command-R to test the application on the iPhone Simulator, first using the iPhone 5.0 Simulator scheme, followed by the iPad 5.0 Simulator scheme. You will see the application running on the iPhone Simulator as an iPhone app (see Figure 5-14) and as an iPad app (see Figure 5-15).

FIGURE 5-14

[image: image]

FIGURE 5-15

[image: image]

How It Works

This has been a very straightforward exercise. First, you created a Universal application using Xcode. When you create a Universal application project, Xcode automatically creates two XIB files for you – one for iPhone and one for iPad. When the application is loaded, it automatically detects the platform on which it is running. This is evident in the application delegate:

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone)
 {
 self.viewController =
 [[[MyUniversalAppViewController alloc]
 initWithNibName:@"MyUniversalAppViewController_iPhone"
 bundle:nil] autorelease];
 } else {
 self.viewController =
 [[[MyUniversalAppViewController alloc]
 initWithNibName:@"MyUniversalAppViewController_iPad"
 bundle:nil] autorelease];
 }
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

If the application is running on the iPhone, the MyUniversalAppViewController will be loaded using the MyUniversalAppViewController_iPhone.xib file. If it is running on the iPad, then the same View Controller will load the MyUniversalAppViewController_iPad.xib file. Note that in this case, you have two different XIB files, and only one View Controller for the two XIB files. The important thing to keep in mind about a Universal application is that you need to create separate XIB files for the different platforms — one for the iPhone and one for the iPad. Once you do that, you can then load the appropriate XIB files during runtime. Using this approach, you have only one executable for your application.

It is worth pointing out that the MyUniversalApp-Info.plist file now has one additional key: Supported interface orientations (iPad). The project will use this key (see Figure 5-16) to set the supported interface orientation for the application when it is run as an iPad app.

FIGURE 5-16

[image: image]

CHOOSING A PORTING TECHNIQUE

Now that you have seen the two techniques for porting your iPhone application to support the iPad, which technique should you adopt?

If your application does not have many UI changes when running on either the iPhone or the iPad, using the first technique (modifying the device target setting) is the easiest way to support two platforms without changing much code, and it uses a single set of XIB files. All you need to do is ensure that when the application runs on the iPad, the UI is rearranged correctly — this can be done programmatically in your View Controller or set in Interface Builder. Most developers should benefit from creating Universal applications. When you have an application that supports two different platforms, creating a Universal application enables you to have one code base with several XIB files designed specifically for the iPhone and the iPad. This technique saves you the trouble of uploading two different editions of your application to the AppStore. You need to upload just one version of your application and it will automatically support both platforms.

SUMMARY

In this chapter, you have seen how to port an existing iPhone application to support both the iPhone and the iPad. In general, the Universal application approach is the recommended one, as it enables you to maintain just one code base that can target multiple platforms.

EXERCISES

1. What function enables you to determine the device platform on which your application is currently running?

2. What are the different values available for the Targeted Device Family setting in your Xcode project?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Supporting an application natively on the iPhone and iPad
	Change the Devices item in the Summary tab of your project to Universal. Alternatively, modify the Targeted Device Family Setting of the project in Xcode, setting it to iPhone/iPad.

	Detecting the device programmatically
	Use the UI_USER_INTERFACE_IDIOM() function.

	Creating a Universal application
	Choose the Universal option in the Targeted Device Family setting when creating your new Xcode project.

Chapter 6

Handling Keyboard Inputs

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to customize the keyboard for different types of inputs

	How to hide the keyboard when you are done typing

	Detecting whether a keyboard is visible

	Using ScrollView to contain other views

	How to shift views to make way for the keyboard

One of the controversial aspects of the iPhone is the multi-touch keyboard that enables users to input data into their iPhone. Critics of the iPhone have pointed out its lack of a physical keyboard for data entry, whereas ardent supporters of virtual keyboards swear by its ease of use.

What makes the iPhone keyboard so powerful is its intelligence in tracking what you type, followed by suggestions for the word you are typing, and automatically correcting the spelling and inserting punctuation for you. In addition, the keyboard knows when to appear at the right time — it appears when you tap a Text Field or Text View, and it goes away automatically when you tap a non-input view. You can also input data in different languages.

For iPhone application programmers, the key concern is how to integrate the keyboard into the application. How do you make the keyboard go away naturally when it is no longer needed? And how do you ensure that the view with which the user is currently interacting is not blocked by the keyboard? In this chapter, you learn various ways to deal with the keyboard programmatically.

USING THE KEYBOARD

In iPhone programming, the views most commonly associated with the keyboard are the Text Field and the Text View. When a Text Field is tapped (or clicked, if you are using the Simulator), the keyboard is automatically displayed. The data that the user taps on the keyboard is then inserted into the Text Field. The following Try It Out demonstrates this.

TRY IT OUT: Using a Text Field for Inputs

codefile KeyboardInputs.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it KeyboardInputs. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the KeyboardInputsViewController.xib file to edit it using Interface Builder.

3. Populate the View window with the Label and Text Field views (see Figure 6-1). Set the Label to display the text “Alphanumeric Input.”

FIGURE 6-1

[image: image]

4. Press Command-R in Xcode to run the application on the iPhone Simulator. When the application is loaded, the keyboard is initially hidden; and when the user clicks the Text Field, the keyboard automatically appears (see Figure 6-2).

FIGURE 6-2

[image: image]

How It Works

The beauty of the iPhone user interface is that when the system detects that the current active view is a Text Field, the keyboard automatically appears; you don’t need to do anything to bring up the keyboard. Using the keyboard, you can enter alphanumeric data as well as numbers and special characters (such as symbols). The keyboard in the iPhone also supports characters of languages other than English, such as Chinese and Hebrew.

CUSTOMIZING THE TYPE OF INPUTS

To learn more about the input behaviors, go to Interface Builder, select the Text Field, and view its Attributes Inspector window (choose View ⇒ Utilities ⇒ Show Attributes Inspector). Figure 6-3 shows that window. In particular, pay attention to the section at the bottom that contains items named Capitalization, Correction, Keyboard, and so on.

FIGURE 6-3

[image: image]

This section contains several items you can configure to determine how the keyboard handles the text entered:

	Capitalization — Enables you to capitalize the words, the sentences, or all the characters of the data entered via the keyboard.

	Correction — Enables you to indicate whether you want the keyboard to provide suggestions for words that are not spelled correctly. You can also choose the Default option, which defaults to the user’s global text correction settings.

	Keyboard — Enables you to choose the different types of keyboard for entering different types of data. Figure 6-4 shows (from left to right) the keyboard configured with the following Keyboard types: Email Address, Phone Pad, and Number Pad.

FIGURE 6-4

[image: image]

	Appearance — Enables you to choose how the keyboard should appear

[image: image]
NOTE If the keyboard is configured using the Number Pad type, then no period (“.”) is provided to enter decimal-point numbers. If you need to enable users to enter a decimal number (such as currency), you should configure the keyboard using the Numbers and Punctuation type.

	Return Key — Enables you to show different types of Return key in your keyboard (see Figure 6-5). Figure 6-6 shows the keyboard set with the “Google” key serving as the Return key (the Return key appears as “Search”). Alternatively, setting the Return key as “Search” will also show the Return key as “Search.”

FIGURE 6-5

[image: image]

FIGURE 6-6

[image: image]

	Auto-Enable Return Key check box — Indicates that if no input is entered for a field, the Return key will be disabled (grayed out). It is enabled again if at least one character is entered.

	Secure check box — Indicates whether the input will be masked, or hidden from view (see Figure 6-7). This is usually used for password input.

FIGURE 6-7

[image: image]

Dismissing the Keyboard

You know that the keyboard in the iPhone automatically appears when a Text Field is selected. What about making it go away when you are done typing? You have two ways to dismiss the keyboard.

[image: image]
NOTE On the iPad, you can make the keyboard go away without any programming effort on your part — simply tapping the bottom right key on the keyboard dismisses it.

First, you can dismiss the keyboard by tapping the Return key on the keyboard. This method requires you to handle the Did End On Exit event of the Text Field that caused the keyboard to appear. This method is demonstrated in the following Try It Out.

Second, you can dismiss the keyboard when the user taps outside a Text Field. This method, which requires some additional coding, makes your application much more user-friendly. The subsequent Try It Out illustrates this method.

TRY IT OUT: Dismissing the Keyboard (Technique 1)

1. Using the KeyboardInputs project, edit the KeyboardInputsViewController.h file by adding the following bold statements:

#import <UIKit/UIKit.h>

@interface KeyboardInputsViewController : UIViewController

-(IBAction) doneEditing:(id) sender;

@end

2. Select the KeyboardInputsViewController.xib file to edit it in Interface Builder. Right-click the Text Field in the View window and then click the circle next to the Did End On Exit event and drag it to the File’s Owner item. The doneEditing: action you have just created should appear. Select it. Figure 6-8 shows the event connected to the File’s Owner item.

FIGURE 6-8

[image: image]

3. In the KeyboardInputsViewController.m file, provide the implementation for the doneEditing: action:

#import "KeyboardInputsViewController.h"

@implementation KeyboardInputsViewController

-(IBAction) doneEditing:(id) sender {
 [sender resignFirstResponder];
}

4. Press Command-R to run the application on the iPhone Simulator.

5. When the application appears on the iPhone Simulator, tap the Text Field. The keyboard should appear. Using the keyboard, type some text into the view and click the Return key when you are done. The keyboard now goes away.

How It Works

What you have just done is connect the Did End On Exit event of the Text Field with the doneEditing: action you have created. When you are editing the content of a Text Field using the keyboard, clicking the Return key on the keyboard fires the Did End On Exit event of the Text Field. In this case, it invokes the doneEditing: action, which contains the following statement:

 [sender resignFirstResponder];

The sender in this case refers to the Text Field, and resignFirstResponder asks the Text Field to resign its First-Responder status. Essentially, it means that you do not want to interact with the Text Field anymore and that the keyboard is no longer needed. Hence, the keyboard should hide itself.

[image: image]
NOTE The First Responder in a view always refers to the current view with which the user is interacting. In this example, when you click the Text Field, it becomes the First Responder and activates the keyboard automatically.

An alternative way to hide the keyboard is when the user taps an area outside of the Text Field. This method is more natural and does not require the user to manually tap the Return key on the keyboard to hide it. The following Try It Out shows how this method can be implemented.

TRY IT OUT: Dismissing the Keyboard (Technique 2)

1. Using the KeyboardInputs project, select the KeyboardInputsViewController.xib file to edit it using Interface Builder.

2. Add a Round Rect Button to the View window (see Figure 6-9).

FIGURE 6-9

[image: image]

3. With the Round Rect Button selected, choose Editor ⇒ Arrange ⇒ Send to Back. This makes the button appear behind the other views.

4. Resize the Round Rect Button so that it now covers the entire screen (see Figure 6-10).

FIGURE 6-10

[image: image]

5. In the Attributes Inspector window, set the Type of the Round Rect Button to Custom (see Figure 6-11).

FIGURE 6-11

[image: image]

6. In Xcode, edit the KeyboardInputsViewController.h file by adding the following bold statements:

#import <UIKit/UIKit.h>

@interface KeyboardInputsViewController : UIViewController
{
 IBOutlet UITextField *textField;
}

@property (nonatomic, retain) UITextField *textField;

-(IBAction) doneEditing:(id) sender;
-(IBAction) bgTouched:(id) sender;

@end

7. In Interface Builder, Control-click and drag the File’s Owner item onto the Text Field. The textField outlet should appear. Select it.

8. Control-click and drag the Round Rect Button view onto the File’s Owner item in the KeyboardInputsViewController.xib window. Select the bgTouched: action (see Figure 6-12).

FIGURE 6-12

[image: image]

[image: image]
NOTE The Touch Up Inside event of the Round Rect Button is wired to the bgTouched: action.

9. In the KeyboardInputsViewController.m file, add the following statements highlighted in bold:

#import "KeyboardInputsViewController.h"

@implementation KeyboardInputsViewController

@synthesize textField;

-(IBAction) bgTouched:(id) sender {
 [textField resignFirstResponder];
}

-(IBAction) doneEditing:(id) sender {
 [sender resignFirstResponder];
}

-(void) dealloc {
 [textField release];
 [super dealloc];
}

10. That’s it. Press Command-R in Xcode to deploy the application onto the iPhone Simulator. Then, try the following:

	Click the Text Field to bring up the keyboard.

	When you are done, click the Return key on the keyboard to dismiss it. Alternatively, click any of the empty spaces outside the Text Field to dismiss the keyboard.

How It Works

In this example, you added a Round Rect Button to cover up all the empty spaces in the View window of your application. Essentially, the button acts as a net to trap all touches outside of the Text Field on the View window, so when the user clicks (or taps, on a real device) the screen outside the keyboard and the Text Field, the Round Rect Button fires the Touch Up Inside event, which is handled by the bgTouched: action. In the bgTouched: action, you explicitly asked textField to resign its First-Responder status, which causes the keyboard to disappear.

The technique used in this example applies even if you have multiple Text Field views on your view. Suppose you have three Text Field views, with outlets named textField, textField2, and textField3. In that case, the bgTouched: action would look like this:

-(IBAction) bgTouched:(id) sender {
 [textField resignFirstResponder];
 [textField2 resignFirstResponder];
 [textField3 resignFirstResponder];
}

When the bgTouched: action is invoked, all three TextField views are asked to relinquish their First-Responder status. Calling the resignFirstResponder method on a view that is currently not the First Responder is harmless; hence, the preceding statements are safe and will not cause a runtime exception.

UNDERSTANDING THE RESPONDER CHAIN

The prior Try It Out is a good example of the responder chain in action. In the iPhone, events are passed through a series of event handlers known as the responder chain. As you touch the screen of your iPhone, the iPhone generates events that are passed up the responder chain. Each object in the responder chain checks whether it can handle the event. In the preceding example, when the user taps on the Label, the Label checks whether it can handle the event. Because the Label does not handle the Touch event, it is passed up the responder chain. The large background button that you have added is now next in line to examine the event. Because it handles the Touch Up Inside event, the event is consumed by the button.

In summary, objects higher up in the responder chain examine the event first and handle it if it is applicable. Any object can then stop the propagation of the event up the responder chain, or pass the event up the responder chain if it only partially handles the event.

Automatically Displaying the Keyboard When the View Window Is Loaded

Sometimes you might want to straightaway set a Text Field as the active view and display the keyboard without waiting for the user to do so. In such cases, you can use the becomeFirstResponder method of the view. The following code shows that the Text Field will be the First Responder as soon as the View window is loaded:

- (void)viewDidLoad {
 [textField becomeFirstResponder];
 [super viewDidLoad];
}

DETECTING THE PRESENCE OF THE KEYBOARD

Up to this point, you have seen the various ways to hide the keyboard after you are done using it. However, note one problem: When the keyboard appears, it takes up a significant portion of the screen. If your Text Field is located at the bottom of the screen, it would be covered by the keyboard. As a programmer, it is your duty to ensure that the view is relocated to a visible portion of the screen. Surprisingly, this is not taken care of by the SDK; you have to do the hard work yourself.

[image: image]
NOTE The keyboard in the iPhone (3G and 3GS) takes up 216 pixels (432 pixels for iPhone 4 and iPhone 4S) in height when in portrait mode, and 162 pixels (324 pixels for iPhone 4 and iPhone 4S) when in landscape mode. For the iPad, the keyboard takes up 264 pixels in height when in portrait mode, and 352 pixels when in landscape mode.

First, though, it is important that you understand a few key concepts related to the keyboard:

	You need to be able to programmatically know when a keyboard is visible or hidden. To do so, your application needs to register for the UIKeyboardDidShowNotification and UIKeyboardDidHideNotification notifications.

	You also need to know when and which Text Field is currently being edited so that you can relocate it to a visible portion of the screen. You can determine this information through the textFieldDidBeginEditing: method declared in the UITextFieldDelegate protocol.

Confused? Worry not; the following sections make it all clear.

Using the Scroll View

The key to relocating the view that is currently being hidden by the keyboard is to use a Scroll View to contain all the views on the View window. When a view (such as the Text Field) is hidden by the keyboard when the user taps on it, you can scroll all the views contained within the Scroll View upwards so that the view currently responding to the tap is visible. Before you learn how to do that, however, you need to first understand how the Scroll View works. The following Try It Out shows you that.

TRY IT OUT: Understanding the Scroll View

codefile Scroller.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Scroller. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the ScrollerViewController.xib file to edit it in Interface Builder.

3. Populate the View window with a Scroll View (see Figure 6-13).

FIGURE 6-13

[image: image]

4. Add two Round Rect Buttons to the Scroll View (see Figure 6-14).

FIGURE 6-14

[image: image]

5. To add more views to the Scroll View so that the user can view more than what the View window typically displays at one time, perform the following steps:

a. Click the Scroll View to select it. If you cannot select it, click on the title bar of the View window first and then click the Scroll View again.

b. Shift the Scroll View upwards (see the left of Figure 6-15).

FIGURE 6-15

[image: image]

c. Expand the height of the Scroll View by clicking and dragging the center dot of the Scroll View downwards. The Scroll View should now look like what is shown on the right in Figure 6-15.

6. Add a Text Field to the bottom of the Scroll View (see Figure 6-16).

FIGURE 6-16

[image: image]

7. Select the Scroll View and view its Size Inspector window (View ⇒ Utilities ⇒ Show Size Inspector; see Figure 6-17). Observe that its size is 320 × 713 points (in my case). If you do not see the same size as what I have, this is a good time to adjust the size so that it is the same as mine. You will need to use this value in your code, which you do next.

FIGURE 6-17

[image: image]

[image: image]
NOTE The unit of measurement used in Interface Builder is points. For the iPhone 3G/3GS, a point corresponds to a pixel. For the iPhone 4 and iPhone 4S, a point is equal to two pixels. Specifying the size in points enables your application to work correctly on both the older and newer iPhones. The conversion between points and pixels is done automatically by the iOS.

8. Back in Xcode, add the following code in bold to the ScrollViewController.h file:

#import <UIKit/UIKit.h>

@interface ScrollerViewController : UIViewController
{
 IBOutlet UIScrollView *scrollView;
}

@property (nonatomic, retain) UIScrollView *scrollView;

@end

9. In Interface Builder, Control-click and drag the File’s Owner item over to the Scroll View. Select scrollView.

10. Insert the following bold code in the ScrollerViewController.m file:

#import "ScrollerViewController.h"

@implementation ScrollerViewController

@synthesize scrollView;

- (void)viewDidLoad {
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 [scrollView setContentSize:CGSizeMake(320, 713)];
 [super viewDidLoad];
}

- (void)dealloc {
 [scrollView release];
 [super dealloc];
}

11. To test the application on the iPhone Simulator, press Command-R. You can now flick the Scroll View up and down to reveal all the views contained in it (see Figure 6-18)!

FIGURE 6-18

[image: image]

12. Tap on the Text Field located at the bottom. The keyboard will automatically appear. However, observe that the Text Field is now covered by the keyboard (see Figure 6-19). You need to ensure that the current view is not hidden by the keyboard; the next section shows you how.

FIGURE 6-19

[image: image]

How It Works

This example is pretty straightforward. You use the Scroll View as a container for other views. If you have more views than what you can display on the screen, you can expand the Scroll View and put all your views in it. The important point to remember is that you need to set the content size and the frame size of the Scroll View. The frame size determines the visible area of the Scroll View. The content size sets the overall size of the Scroll View. As long as the content size is larger than the frame size, the Scroll View will be scrollable.

Scrolling Views When the Keyboard Appears

Now that you understand how the Scroll View works, the following activity explains how you can scroll all the views contained within it when the keyboard appears.

TRY IT OUT: Shifting Views

1. Using the same project created in the previous section, add a few more Labels and Text Fields to the bottom of the Scroll View (see Figure 6-20) in Interface Builder.

FIGURE 6-20

[image: image]

2. In the ScrollerViewController.h file, add the following code in bold:

#import <UIKit/UIKit.h>

@interface ScrollerViewController : UIViewController
{
 IBOutlet UIScrollView *scrollView;

 UITextField *currentTextField;
 BOOL keyboardIsShown;
}

@property (nonatomic, retain) UIScrollView *scrollView;

@end

3. In Interface Builder, right-click each Text Field and connect the delegate outlet to the File’s Owner item (see Figure 6-21).

FIGURE 6-21

[image: image]

[image: image]
NOTE Step 3 is important because it enables the various events (textFieldDidBeginEditing:, textFieldDidEndEditing:, and textFieldShouldReturn:) to be handled by your View Controller.

4. Change the content size of the Scroll View to match its new size:

- (void)viewDidLoad {
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 [scrollView setContentSize:CGSizeMake(320, 1040)];
 [super viewDidLoad];
}

[image: image]
NOTE You can confirm the new content size of the Scroll View by looking at its Size Inspector window.

5. Add the following methods to the ScrollerViewController.m file:

//--before the View window appears--
-(void) viewWillAppear:(BOOL)animated {
 //--registers the notifications for keyboard--
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidShow:)
 name:UIKeyboardDidShowNotification
 object:self.view.window];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillAppear:animated];
}

//--when a Text Field begins editing--
-(void) textFieldDidBeginEditing:(UITextField *)textFieldView {
 currentTextField = textFieldView;
}

//--when the user taps on the return key on the keyboard--
-(BOOL) textFieldShouldReturn:(UITextField *) textFieldView {
 [textFieldView resignFirstResponder];
 return NO;
}

//--when a TextField view is done editing--
-(void) textFieldDidEndEditing:(UITextField *) textFieldView {
 currentTextField = nil;
}

//--when the keyboard appears--
-(void) keyboardDidShow:(NSNotification *) notification {
 if (keyboardIsShown) return;

 NSDictionary* info = [notification userInfo];

 //--obtain the size of the keyboard--
 NSValue *aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@"%f", keyboardRect.size.height);

 //--resize the scroll view (with keyboard)--
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height -= keyboardRect.size.height;
 scrollView.frame = viewFrame;

 //--scroll to the current text field--
 CGRect textFieldRect = [currentTextField frame];
 [scrollView scrollRectToVisible:textFieldRect animated:YES];

 keyboardIsShown = YES;
}

//--when the keyboard disappears--
-(void) keyboardDidHide:(NSNotification *) notification {
 NSDictionary* info = [notification userInfo];

 //--obtain the size of the keyboard--
 NSValue* aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 //--resize the scroll view back to the original size
 // (without keyboard)--
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height += keyboardRect.size.height;
 scrollView.frame = viewFrame;

 keyboardIsShown = NO;
}

//--before the View window disappear--
-(void) viewWillDisappear:(BOOL)animated {
 //--removes the notifications for keyboard--
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidShowNotification
 object:nil];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillDisappear:animated];
}

6. Press Command-R to test the application on the iPhone Simulator. Tap on the various Text Fields and observe the different views scrolling into position (see Figure 6-22).

FIGURE 6-22

[image: image]

How It Works

The first thing you did was connect the delegate outlet of each Text Field to the File’s Owner item. This step is important, as it ensures that when any of the Text Fields are tapped, the following three events will be handled:

	textFieldDidBeginEditing:

	textFieldDidEndEditing:

	textFieldShouldReturn:

Because the Scroll View contained more views than it could display at one time, you needed to change its content size:

- (void)viewDidLoad {
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 [scrollView setContentSize:CGSizeMake(320, 1040)];
 [super viewDidLoad];
}

Next, before the View window appeared, you registered two notifications: UIKeyboardDidShowNotification and UIKeyboardDidHideNotification. These two notifications enable you to know when the keyboard has either appeared or disappeared. You registered the notifications via the viewWillAppear: method:

//--before the View window appears--
-(void) viewWillAppear:(BOOL)animated {
 //--registers the notifications for keyboard--
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidShow:)
 name:UIKeyboardDidShowNotification
 object:self.view.window];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillAppear:animated];
}

When any of the Text Fields are tapped, the textFieldDidBeginEditing: method will be called:

//--when a Text Field begins editing--
-(void) textFieldDidBeginEditing:(UITextField *)textFieldView {
 currentTextField = textFieldView;
}

Here, you saved a copy of the Text Field currently being tapped. When the user taps the Return key on the keyboard, the textFieldShouldReturn: method will be called:

//--when the user taps on the return key on the keyboard--
-(BOOL) textFieldShouldReturn:(UITextField *) textFieldView {
 [textFieldView resignFirstResponder];
 return NO;
}

Next, you hid the keyboard by calling the resignFirstResponder method of the Text Field, which then triggers another event, textFieldDidEndEditing:. Here, you set the currentTextField to nil:

//--when a TextField view is done editing--
-(void) textFieldDidEndEditing:(UITextField *) textFieldView {
 currentTextField = nil;
}

When the keyboard appears, it calls the keyboardDidShow: method (which is set via the notification):

//--when the keyboard appears--
-(void) keyboardDidShow:(NSNotification *) notification {
 if (keyboardIsShown) return;

 NSDictionary* info = [notification userInfo];

 //--obtain the size of the keyboard--
 NSValue *aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@"%f", keyboardRect.size.height);

 //--resize the scroll view (with keyboard)--
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height -= keyboardRect.size.height;
 scrollView.frame = viewFrame;

 //--scroll to the current text field--
 CGRect textFieldRect = [currentTextField frame];
 [scrollView scrollRectToVisible:textFieldRect animated:YES];

 keyboardIsShown = YES;
}

This obtains the size of the keyboard — in particular, its height. This is important, as the keyboard has different heights depending on whether it is in landscape mode or portrait mode. You then resize the view frame of the Scroll View and scroll the Text Field until it is visible.

What happens when the keyboard is visible and the user taps on another Text Field? In this case, the keyboardDidShow: method will be called again, but because the keyboardIsShown method is set to YES, the method immediately exits. If the Text Field that is tapped is partially hidden, it will automatically be scrolled to a visible region on the View window.

When the keyboard disappears, the keyboardDidHide: method is called:

//--when the keyboard disappears--
-(void) keyboardDidHide:(NSNotification *) notification {
 NSDictionary* info = [notification userInfo];

 //--obtain the size of the keyboard--
 NSValue* aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 //--resize the scroll view back to the original size
 // (without keyboard)--
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height += keyboardRect.size.height;
 scrollView.frame = viewFrame;

 keyboardIsShown = NO;
}

This restores the size of the view frame of the Scroll View to the one without the keyboard.

Finally, before the View window disappears, you remove the notifications that you set earlier:

//--before the View window disappear--
-(void) viewWillDisappear:(BOOL)animated {
 //--removes the notifications for keyboard--
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidShowNotification
 object:nil];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillDisappear:animated];
}

SUMMARY

In this chapter, you learned various techniques for dealing with the keyboard in your iPhone application. In particular, this chapter showed you how to hide the keyboard when you are done entering data, how to detect the presence or absence of the keyboard, and how to ensure that views are not blocked by the keyboard.

EXERCISES

1. How do you hide the keyboard for a UITextField object?

2. How do you detect whether the keyboard is visible or not?

3. How do you get the size of the keyboard?

4. How do you display more views than the View window can display at any one time?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Making the keyboard go away
	Use the resignFirstResponder method on a UITextField object to resign its First-Responder status.

	Displaying the different types of keyboard displayed
	Modify the keyboard type by changing the text input traits of a UITextField object in the Attributes Inspector window.

	Handling the Return key of the keyboard
	Either handle the Did End On Exit event of a UITextField object or implement the textFieldShouldReturn: method in your View Controller (remember to ensure that your View Controller class is the delegate for the UITextField object).

	Making a Scroll View scrollable
	Set its frame size and content size. As long as the content size is larger than the frame size, the Scroll View is scrollable.

	Detecting when the keyboard appears or hides
	Register for two notifications: UIKeyboardDidShowNotification and UIKeyboardDidHideNotification.

	Detecting which UITextField object has started editing
	Implement the textFieldDidBeginEditing: method in your View Controller.

	Detecting which UITextField object has ended editing
	Implement the textFieldDidEndEditing: method in your View Controller.

Chapter 7

Supporting Screen Rotations

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to support the four different types of screen orientation

	Events that are fired when a device rotates

	How to reposition the views in a View window when the orientation of a device changes

	How to change the screen rotation dynamically during runtime

	How to fix the orientation of your application before it is loaded

The Hello World! application in Chapter 2 showed you how your iPhone application supports viewing in either the portrait or landscape mode. This chapter dives deeper into the topic of screen orientation. In particular, it demonstrates how to manage the orientation of your application when the device is rotated. You will also learn how to reposition your views when the device is rotated so that your application can take advantage of the change in screen dimensions.

RESPONDING TO DEVICE ROTATIONS

One of the features that modern mobile devices support is the capability to detect the current orientation — portrait or landscape — of the device. An application can take advantage of this to re-adjust the device’s screen to maximize use of the new orientation. A good example is Safari on the iPhone. When you rotate the device to landscape orientation, Safari automatically rotates its view so that you have a wider screen to view the content of the page (see Figure 7-1).

FIGURE 7-1

[image: image]

The iOS SDK contains several events that you can handle to ensure that your application is aware of changes in orientation. Check them out in the following Try It Out.

TRY IT OUT: Supporting Different Screen Orientations

codefile ScreenRotations.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it ScreenRotations. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Press Command-R to test the application on the iPhone 4 Simulator.

3. Change the iPhone Simulator orientation by pressing either Command-→ (rotate it to the right) or Command-← (rotate it to the left) key combination. Observe that the application stays upright when the Simulator is either in portrait (upright) mode or in landscape mode (see Figure 7-2). However, if the Simulator is in the portrait upside down mode, the application’s orientation stays in its previous orientation (before it was rotated).

FIGURE 7-2

[image: image]

How It Works

By default, the iPhone Application project you created using Xcode supports three screen orientations: portrait and the two landscape modes (landscape left and landscape right). This is evident in the shouldAutorotateToInterfaceOrientation: method defined in the View controller:

(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

The shouldAutorotateToInterfaceOrientation: method is called when the View window is loaded and whenever orientation of the device changes. This method passes in a single parameter — the orientation to which the device has been changed. The returning value of this method determines whether the current orientation is supported. For a particular orientation to be supported, this method must return YES. In other words, the preceding states that the application should stay upright for all orientation modes, except when the device is in the portrait upside-down mode (see Figure 7-3).

FIGURE 7-3

[image: image]

[image: image]
NOTE On the iPad, the default behavior of an application supports all orientations — portrait as well as landscape modes. While you can specify the specific orientations supported by your application, based on the UI guidelines provided by Apple, iPad applications should support all screen orientations.

[image: image]
NOTE On the iPhone and iPad, screen rotation is automatically handled by the OS. When the OS detects a change in screen orientation, it fires the shouldAutorotateToInterfaceOrientation: event; it is up to the developer to decide how the application should display in the target orientation.

To support all orientations, simply return a YES to allow your application to display upright for all orientations:

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 //return (interfaceOrientation !=
 UIInterfaceOrientationPortraitUpsideDown);
 return YES;
}

[image: image]
NOTE To easily differentiate between UIInterfaceOrientationLandscapeLeft and UIInterfaceOrientationLandscapeRight, just remember that UIInterfaceOrientationLandscapeLeft refers to the Home button positioned on the left, and UIInterfaceOrientationLandscapeRight refers to the Home button positioned on the right.

Rotating to a Different Screen Orientation

You have a total of four constants to use for specifying screen orientations:

	UIInterfaceOrientationPortrait — Displays the screen in portrait mode

	UIInterfaceOrientationPortraitUpsideDown — Displays the screen in portrait mode but with the Home button at the top of the screen

	UIInterfaceOrientationLandscapeLeft — Displays the screen in landscape mode with the Home button on the left

	UIInterfaceOrientationLandscapeRight — Displays the screen in landscape mode with the Home button on the right

If you want your application to support specific screen orientations, override the shouldAutorotateTo-InterfaceOrientation: method and then use the || (logical OR) operator to specify all the orientations it supports, like this:

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait ||
 interfaceOrientation == UIInterfaceOrientationLandscapeLeft);
}

The preceding code snippet enables your application to support both the portrait and the landscape left modes.

Handling Rotations

The View Controller declares several methods that you can implement to handle the rotation of the screen. The ability to implement these methods is important because it enables you to reposition the views on the View window, or you can stop media playback while the screen is rotating. You can implement the following methods:

	willAnimateFirstHalfOfRotationToInterfaceOrientation:

	willAnimateSecondHalfOfRotationFromInterfaceOrientation:

	willRotateToInterfaceOrientation:

	willAnimateRotationToInterfaceOrientation:

The willAnimateFirstHalfOfRotationToInterfaceOrientation: method is called just before the rotation of the View window starts, whereas the willAnimateSecondHalfOfRotationFrom InterfaceOrientation: method is fired when the rotation is halfway through. In iOS 5, these two methods have been deprecated in favor of the smoother, single-stage animation using either the willRotateToInterfaceOrientation: or the willAnimateRotationToInterfaceOrientation: methods.

The next two sections take a more detailed look at the last two methods.

willRotateToInterfaceOrientation:

The first two methods mentioned in the previous section are called consecutively — first willAnimateFirstHalfOfRotationTo-InterfaceOrientation:, followed by willAnimateSecondHalfOfRotationFromInterface-Orientation. If you don’t need two separate methods for handling rotation, you can use the simpler willRotateToInterfaceOrientation: method (recommended in iOS 5).

The willRotateToInterfaceOrientation: method is invoked before the orientation starts. In contrast to the previous two events, this is a one-stage process. Note that if you implement this method, the willAnimateFirstHalfOfRotationToInterfaceOrientation: and willAnimateSecondHalfOfRotationFromInterfaceOrientation: methods will still be called (if you implemented them).

The method looks like this:

- (void)willRotateToInterfaceOrientation:
(UIInterfaceOrientation) toInterfaceOrientation
 duration:(NSTimeInterval) duration {

}

The toInterfaceOrientation parameter indicates the orientation to which it is changing, and the duration parameter indicates the duration of the rotation, in seconds.

willAnimateRotationToInterfaceOrientation:

The willAnimateRotationToInterfaceOrientation: event is called before the animation of the rotation starts.

[image: image]
NOTE If you handle both the willRotateToInterfaceOrientation: and the willAnimateRotationToInterfaceOrientation: methods, the former will be called first, followed by the latter.

The method looks like this:

- (void)willAnimateRotationToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
 duration:(NSTimeInterval)duration {

}

The interfaceOrientation parameter specifies the target orientation to which it is rotating.

[image: image]
NOTE If you implement this method, the willAnimateFirstHalfOfRotationTo-InterfaceOrientation: and willAnimateSecondHalfOfRotationFrom-InterfaceOrientation: events will not be called anymore (if you implemented them).

In the following Try It Out, you will reposition the views on your user interface (UI) when the device changes orientation.

TRY IT OUT: Repositioning Views during Orientation Change

1. Using the project created earlier, select the ScreenRotationsViewController.xib file and add a Round Rect Button to the View window (see Figure 7-4).

FIGURE 7-4

[image: image]

2. Observe its size and positioning by viewing the Size Inspector window. Here, its position is (20,20) and its size is 233 by 37 points.

3. Rotate the orientation of the View window from portrait to landscape mode by changing its Orientation attribute to Landscape in the Attributes Inspector window (see Figure 7-5).

FIGURE 7-5

[image: image]

4. Reposition the Round Rect Button by relocating it to the bottom-right corner of the View window (see Figure 7-6). Also observe and take note of its new position.

FIGURE 7-6

[image: image]

5. In the ScreenRotationsViewController.h file, add the following code shown in bold:

#import <UIKit/UIKit.h>

@interface ScreenRotationsViewController : UIViewController
{
 IBOutlet UIButton *btn;
}

@property (nonatomic, retain) UIButton *btn;

@end

6. In Interface Builder, connect the outlet you have created by Control-clicking the File’s Owner item and dragging over to the Round Rect Button. Select btn.

7. In the ScreenRotationsViewController.m file, add the following bold code:

#import "ScreenRotationsViewController.h"

@implementation ScreenRotationsViewController

@synthesize btn;

-(void) positionViews {
 UIInterfaceOrientation destOrientation = self.interfaceOrientation;
 if (destOrientation == UIInterfaceOrientationPortrait ||
 destOrientation == UIInterfaceOrientationPortraitUpsideDown) {
 //--if rotating to portrait mode--
 btn.frame = CGRectMake(20, 20, 233, 37);
 } else {
 //--if rotating to landscape mode--
 btn.frame = CGRectMake(227, 243, 233, 37);
 }
}

- (void)willRotateToInterfaceOrientation:
(UIInterfaceOrientation) toInterfaceOrientation
 duration:(NSTimeInterval) duration {
 [self positionViews];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 return YES;
}

- (void)viewDidLoad {
 [self positionViews];
 [super viewDidLoad];
}

- (void)dealloc {
 [btn release];
 [super dealloc];
}

8. Press Command-R in Xcode to deploy the application onto the iPhone Simulator.

9. Observe that when the iPhone Simulator is in portrait mode, the Round Rect Button is displayed in the top-left corner; but when you change the orientation to landscape mode, it is repositioned to the bottom-right corner (see Figure 7-7).

FIGURE 7-7

[image: image]

How It Works

This project illustrated how you can reposition the views on your application when the device changes orientation. You first created an outlet and connected it to the Round Rect Button on the View window.

When the device is being rotated, the willRotateToInterfaceOrientation: method that you implemented is called so that you can reposition the Round Rect Button. When this method is called, you can obtain the destination orientation using the interfaceOrientation property of the current View window (self), like this:

 UIInterfaceOrientation destOrientation = self.interfaceOrientation;

Using this information, you position the Round Rect Button according to the destination orientation by altering its frame property via the positionViews method, which you have defined:

-(void) positionViews {
 UIInterfaceOrientation destOrientation = self.interfaceOrientation;
 if (destOrientation == UIInterfaceOrientationPortrait ||
 destOrientation == UIInterfaceOrientationPortraitUpsideDown) {
 //--if rotating to portrait mode--
 btn.frame = CGRectMake(20, 20, 233, 37);
 } else {
 //--if rotating to landscape mode--
 btn.frame = CGRectMake(227, 243, 233, 37);
 }
}

You should also call the positionViews method in the viewDidLoad method so that the Round Rect Button can be displayed correctly when the View window is loaded:

- (void)viewDidLoad {
 [self positionViews];
 [super viewDidLoad];
}

PROPERTIES FOR DEALING WITH THE POSITIONING OF VIEWS

In the previous example, you used the frame property to change the position of a view during runtime. The frame property defines the rectangle occupied by the view, with respect to its superview (the view that contains it). Using the frame property enables you to set the positioning and size of a view. Besides using the frame property, you can also use the center property, which sets the center of the view, also with respect to its superview. You usually use the center property when you are performing some animation and just want to change the position of a view.

PROGRAMMATICALLY ROTATING THE SCREEN

You’ve seen how your application can handle changes in device orientation when the user rotates the device. Sometimes (such as when you are developing a game), however, you want to force the application to display in a certain orientation independently of the device’s orientation.

There are two scenarios to consider:

	Rotating the screen orientation during runtime when your application is running

	Displaying the screen in a fixed orientation when the View window has been loaded

Rotating during Runtime

During runtime, you can programmatically rotate the screen by using the setOrientation: method on an instance of the UIDevice class. Suppose you want to let users change the screen orientation: They press the Round Rect Button. Using the project created earlier, you can code it as follows (you need to connect the Touch Up Inside event of the button to this IBAction):

-(IBAction) btnClicked: (id) sender{
 [[UIDevice currentDevice]
 setOrientation:UIInterfaceOrientationLandscapeLeft];
}

The setOrientation: method takes a single parameter specifying the orientation to which you want to change.

[image: image]
NOTE After you have programmatically switched the orientation of your application, your application’s rotation can still be changed when the device is physically rotated. The orientation that it can be changed to is dependent on what you set in the shouldAutorotateToInterfaceOrientation: method.

Fixing the View Window to a Specific Orientation

When a View window is loaded, by default it is always displayed in portrait mode. If your application requires that you fix the View window in a particular orientation when it has been loaded, you can do so by modifying a particular key (Initial Supported interface orientations) in the info.plist file located in the Supporting Files folder of your Xcode project.

For example, if you want to force your View window to display in the landscape left mode, set the first array item of the Initial Supported interface orientations key to Landscape (left home button), as shown in Figure 7-8).

FIGURE 7-8

[image: image]

Then, modify the shouldAutorotateToInterfaceOrientation: method as follows:

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationLandscapeLeft);
}

The application will now load in landscape mode and will be fixed in this orientation even if you rotate the device.

[image: image]
NOTE Remember to set the orientation to which you are changing to in the shouldAutorotateToInterfaceOrientation: method.

SUMMARY

This chapter explained how changes in screen orientation are handled by the various methods in the View Controller class. Proper handling of screen orientations will make your application more useable and improve the user experience.

EXERCISES

1. Suppose you want your application to support only the landscape right and landscape left orientations. How should you modify your code?

2. What is the difference between the frame and center property of a view?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Handling device rotations
	Implement the willRotateToInterfaceOrientation: and willAnimateRotationToInterfaceOrientation: methods.

	Four orientations supported
	UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft
UIInterfaceOrientationLandscapeRight
UIInterfaceOrientationPortraitUpsideDown

	Events fired when device is rotated
	willAnimateFirstHalfOfRotationToInterfaceOrientation:

	Properties for changing the position of a view
	Use the frame property for changing the positioning and size of a view.
Use the center property for changing the positioning of a view.

Chapter 8

Creating and Persisting Data Using the Table View

WHAT YOU WILL LEARN IN THIS CHAPTER

	Manually adding a Table view to a view, and wiring the data source and delegate to your View Controller

	Handling the various Table view events to populate it with items

	Enabling users to select Table view items

	Displaying text and images in the rows of the Table view

	Displaying the items from a property list in a Table view

	Grouping the items in a Table view into sections

	Adding indexing to the Table view

	Adding search capabilities to the Table view

	Adding disclosures and checkmarks to rows in the Table view

	Navigating to another View window

One of the most commonly used views in iOS applications is the Table view. The Table view is used to display lists of items from which users can select, or users can tap an item to display more information about it. Figure 8-1 shows a Table view in action in the Safari application.

FIGURE 8-1

[image: image]

The Table view is such an important topic that it deserves a chapter of its own. Hence, in this chapter, you examine the Table view in detail, and learn about the various building blocks that make it such a versatile view.

CREATING A SIMPLE TABLE VIEW

The best way to understand how to use a Table view in your application is to create a new Single View Application project and then manually add a Table view to the View window and wire it to a View Controller. That way, you can understand the various building blocks of the Table view.

Without further ado, use the following Try It Out to create a new project and see how to put a Table view together!

TRY IT OUT: Using a Table View

Codefile [TableViewExample.zip] available for download at Wrox.com

1. Create a new Single View Application (iPhone) project and name it TableViewExample. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the TableViewExampleViewController.xib file to edit it in Interface Builder.

3. Drag the Table View from the Object Library and drop it onto the View window (see Figure 8-2).

FIGURE 8-2

[image: image]

4. Right-click the Table view and connect the dataSource outlet to the File’s Owner item (see Figure 8-3). Do the same for the delegate outlet.

FIGURE 8-3

[image: image]

5. In the TableViewExampleViewController.h file, add the following statement that appears in bold:

#import <UIKit/UIKit.h>

@interface TableViewExampleViewController : UIViewController
<UITableViewDataSource>

@end

6. In the TableViewExampleViewController.m file, add the following statements that appear in bold:

#import "TableViewExampleViewController.h"

@implementation TableViewExampleViewController

NSMutableArray *listOfMovies;

//---insert individual row into the table view---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 //--try to get a reusable cell--
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 //---create new cell if no reusable cell is available---
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //---set the text to display for the cell---
 NSString *cellValue = [listOfMovies objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;

 return cell;
}

//---set the number of rows in the table view---
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [listOfMovies count];
}

- (void)viewDidLoad
{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];

 //---add items---
 [listOfMovies addObject:@"Training Day"];
 [listOfMovies addObject:@"Remember the Titans"];
 [listOfMovies addObject:@"John Q."];
 [listOfMovies addObject:@"The Bone Collector"];
 [listOfMovies addObject:@"Ricochet"];
 [listOfMovies addObject:@"The Siege"];
 [listOfMovies addObject:@"Malcolm X"];
 [listOfMovies addObject:@"Antwone Fisher"];
 [listOfMovies addObject:@"Courage Under Fire"];
 [listOfMovies addObject:@"He Got Game"];
 [listOfMovies addObject:@"The Pelican Brief"];
 [listOfMovies addObject:@"Glory"];
 [listOfMovies addObject:@"The Preacher's Wife"];
 [super viewDidLoad];
}

7. Press Command-R to test the application on the iPhone Simulator. Figure 8-4 shows the Table view displaying a list of movies.

FIGURE 8-4

[image: image]

How It Works

You start the application by creating an NSMutableArray object called listOfMovies containing a list of movie names. The items stored in this array will be displayed by the Table view.

[image: image]
NOTE The use of an array to contain the items to be displayed by the Table view is purely for demonstration. Of course, in a real-world scenario, your data might be stored in a database or accessed from a web service.

- (void)viewDidLoad
{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];

 //---add items---
 [listOfMovies addObject:@"Training Day"];
 [listOfMovies addObject:@"Remember the Titans"];
 [listOfMovies addObject:@"John Q."];
 [listOfMovies addObject:@"The Bone Collector"];
 [listOfMovies addObject:@"Ricochet"];
 [listOfMovies addObject:@"The Siege"];
 [listOfMovies addObject:@"Malcolm X"];
 [listOfMovies addObject:@"Antwone Fisher"];
 [listOfMovies addObject:@"Courage Under Fire"];
 [listOfMovies addObject:@"He Got Game"];
 [listOfMovies addObject:@"The Pelican Brief"];
 [listOfMovies addObject:@"Glory"];
 [listOfMovies addObject:@"The Preacher's Wife"];
 [super viewDidLoad];
}

To populate the Table view with items, you need to handle several events contained in the UITableViewDataSource protocol. Hence, you need to ensure that your View Controller conforms to this protocol:

#import <UIKit/UIKit.h>

@interface TableViewExampleViewController : UIViewController
<UITableViewDataSource>
@end

[image: image]
NOTE Strictly speaking, if you have connected the dataSource outlet to the File’s Owner item, you don’t need to add the preceding statement. However, doing both doesn’t hurt anything. There is one advantage to adding the <UITableViewDataSource> protocol, though — the compiler will warn you if you forget to implement any mandatory methods in your code, helping to prevent errors.

The UITableViewDataSource protocol contains several events that you can implement to supply data to the Table view. Two events that you have handled (and they are mandatory in this protocol) in this example are as follows:

	tableView:numberOfRowsInSection:

	tableView:cellForRowAtIndexPath:

The tableView:numberOfRowsInSection: event indicates how many rows you want the Table view to display. In this case, you set it to the number of items in the listOfMovies array:

//---set the number of rows in the table view---
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [listOfMovies count];
}

The tableView:cellForRowAtIndexPath: event inserts a cell in a particular location of the Table view. This event is fired once for each row of the Table view that is visible.

One of the parameters contained in the tableView:didSelectRowAtIndexPath: event is of the type NSIndexPath. The NSIndexPath class represents the path of a specific item in a nested array collection. To determine which row is currently being populated, you simply call the row property of the NSIndexPath object (indexPath) and then use the row number to reference against the listOfMovies array. The value is then used to set the text value of the row in the Table view:

//---insert individual row into the table view---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 //---try to get a reusable cell---
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 //---create new cell if no reusable cell is available---
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //---set the text to display for the cell---
 NSString *cellValue = [listOfMovies objectAtIndex:indexPath.
 row];
 cell.textLabel.text = cellValue;

 return cell;

Each row in the Table View is represented by a UITableViewCell object. Specifically, you use the dequeueReusableCellWithIdentifier: method of the UITableView class to obtain an instance of the UITableViewCell class. The dequeueReusableCellWithIdentifier: method returns a reusable Table view cell object. This is important because if you have a large table (say, with 10,000 rows) and you create a single UITableViewCell object for each row, you would generate a large performance and memory hit. In addition, because a Table view displays only a fixed number of rows at any one time, reusing the cells that have been scrolled out of view makes sense. This is exactly what the dequeueReusableCellWithIdentifier: method does. Therefore, for example, if 10 rows are visible in the Table view, only 10 UITableViewCell objects are ever created — they are always reused when the user scrolls through the Table view.

As the user flicks the Table view to review more rows (that are hidden), the tableView:cellForRowAtIndexPath: event is continually fired, enabling you to populate the newly visible rows with data.

[image: image]
NOTE The tableView:cellForRowAtIndexPath: event is not fired continuously from start to finish. For example, if the Table view has 100 rows to display, the event is fired continuously for the first, say, 10 rows that are visible. When the user scrolls down the Table view, the tableView:cellForRowAtIndexPath: event is fired for the next few visible rows.

Adding a Header and Footer

You can display a header and footer for the Table view by simply implementing either of the following two methods in your View Controller:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section{
 //--display "Movie List" as the header--
 return @"Movie List";
}

- (NSString *)tableView:(UITableView *)tableView
titleForFooterInSection:(NSInteger)section {
 //--display "by Denzel Washington" as the footer--
 return @"by Denzel Washington";
}

If you insert the preceding statements in the TableViewExampleViewController.m file and rerun the application, you see the header and footer of the Table view, as shown in Figure 8-5.

FIGURE 8-5

[image: image]

Adding an Image

In addition to text, you can display an image next to the text of a cell in a Table view. Suppose you have an image named apple.jpeg in the Supporting Files folder of your project (see Figure 8-6).

FIGURE 8-6

[image: image]

[image: image]
NOTE You can simply drag and drop an image to the Supporting Files folder of Xcode. When prompted, ensure that you save a copy of the image in your project.

To display an image next to the text of a cell, insert the following statements that appear in bold into the tableView:cellForRowAtIndexPath: method:

//---insert individual row into the table view---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 //---try to get a reusable cell---
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 //---create new cell if no reusable cell is available---
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //---set the text to display for the cell---
 NSString *cellValue = [listOfMovies objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;

 //---display an image---
 UIImage *image = [UIImage imageNamed:@"apple.jpeg"];
 cell.imageView.image = image;

 return cell;
}

Press Command-R to test the application. The image is now displayed next to each row (see Figure 8-7).

FIGURE 8-7

[image: image]

Notice that the UITableViewCell object already has the imageView property. All you need to do is create an instance of the UIImage class and then load the image from the Supporting Files folder of your project.

Displaying the Item Selected

So far, you have seen how to populate the Table view with items by ensuring that your View Controller conforms to the UITableViewDataSource protocol. This protocol takes care of populating the Table view, but if you want to select the items in a Table view, you need to conform to another protocol — UITableViewDelegate.

The UITableViewDelegate protocol contains events that enable you to manage selections, edit and delete rows, and display a header and footer for each section of a Table view.

To use the UITableViewDelegate protocol, modify the TableViewExampleViewController.h file by adding the statement in bold as follows:

#import <UIKit/UIKit.h>

@interface TableViewExampleViewController : UIViewController
<UITableViewDataSource, UITableViewDelegate>

@end

Again, if you have connected the delegate outlet to the File’s Owner item previously (refer to Figure 8-3), you don’t need to add the preceding statement (UITableViewDelegate). However, doing both doesn’t hurt.

The following Try It Out shows how you can enable users to make selections in a Table view.

TRY IT OUT: Making a Selection in a Table View

1. Using the same project created earlier, add the following method to the TableViewExampleViewController.m file:

- (void) tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSString *movieSelected = [listOfMovies objectAtIndex:indexPath.row];
 NSString *msg = [NSString stringWithFormat:@"You have selected %@",
 movieSelected];
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Movie selected"
 message:msg
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

}

2. Press Command-R to test the application on the iPhone Simulator.

3. Select a row by tapping it. When a row is selected, an Alert view displays the row you have selected (see Figure 8-8).

FIGURE 8-8

[image: image]

How It Works

One of the methods declared in the UITableViewDelegate protocol is tableView:didSelectRowAtIndexPath:, which is calls when the user selects a row in the Table view.

As usual, to determine which row has been selected, you simply call the row property of the NSIndexPath object (indexPath) and then use the row number to reference against the listOfMovies array:

 NSString *movieSelected = [listOfMovies objectAtIndex:indexPath.row];

After the selected movie is retrieved, you simply display it using the UIAlertView class:

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Movie selected"
 message:msg
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

[image: image]
NOTE The row property of the NSIndexPath class is one of the additions made by the UIKit framework to enable the identification of rows and sections in a Table view, so be aware that the original class definition of the NSIndexPath class does not contain the row property.

Indenting

Another event in the UITableViewDelegate protocol is tableView:indentationLevelForRowAtIndexPath:. When you handle this event, it is fired for every row that is visible on the screen. To set an indentation for a particular row, simply return an integer indicating the level of indentation:

- (NSInteger) tableView:(UITableView *)tableView
indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath {
 return [indexPath row] % 2;
}

In the preceding example, the indentation alternates between 0 and 1, depending on the current row number. Figure 8-9 shows how the Table view looks if you insert the preceding code in the TableViewExampleViewController.m file.

FIGURE 8-9

[image: image]

Modifying the Height of Each Row

Another method defined in the UITableViewDelegate protocol is tableView:heightForRowAtIndexPath:. This method enables you to modify the height of each row. The following method specifies that each row now takes up 70 points (see Figure 8-10):

FIGURE 8-10

[image: image]

- (CGFloat) tableView:(UITableView *)tableView
heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return 70;
}

The key advantage of using this method is that you can set the height of each individual row based on the indexPath parameter.

USING THE TABLE VIEW IN A MASTER-DETAIL APPLICATION

In the previous sections, you created a Single View Application project, manually added a Table view to the View window, connected the data source, and delegated to the File’s Owner item. You then handled all the relevant events defined in the two protocols — UITableViewDelegate and UITableViewDataSource, so that you could populate the Table view with items and make them selectable.

In real life, the Table view is often used with a Master-Detail (previously known as the Navigation-based Application) project because users often need to select an item from a Table view and then navigate to another window showing details about the item selected. For this reason, the Master-Detail Application template in the iOS SDK by default uses the UITableView class instead of the UIView class. This section demonstrates how to use a Table view from within a Master-Detail Application project.

DISPLAYING SECTIONS

In addition to displaying a series of rows in a Table view, you can group items into sections and then create a header for the related items in each section. In the following Try It Out, you learn how to use the Table view from within a Master-Detail Application project and group the items into sections. At the same time, you learn how to display items stored in a property list, as opposed to an array.

TRY IT OUT: Displaying Sections in a Table View

Codefile [TableView.zip] available for download at Wrox.com

1. Using Xcode, create a new project and select the Master-Detail Application project template and click Next (see Figure 8-11).

FIGURE 8-11

[image: image]

2. Name the project TableView and click Next and then Finish (see Figure 8-12). Leave the Class Prefix empty and ensure that you have the Use Automatic Reference Counting option unchecked.

FIGURE 8-12

[image: image]

3. Select the MasterViewController.xib file to edit in Interface Builder. This file represents the first View window that will be loaded when your application starts.

4. Notice that in the MasterViewController.xib window you now have a TableView item instead of the usual View item (see Figure 8-13).

FIGURE 8-13

[image: image]

5. Examine the MasterViewController.h file and note that the MasterViewController class now extends the UITableViewController base class:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
@property (strong, nonatomic) DetailViewController *detailViewController;

@end

6. Also examine the MasterViewController.m file and observe that it includes a number of method stubs that you can implement. Some of the methods are those you have defined in the previous Try It Out.

7. Right-click the Supporting Files folder and choose New File. . . .

8. Select the Resource category (under iOS) on the left of the dialog that appears and select the Property List template on the right (see Figure 8-14).

FIGURE 8-14

[image: image]

9. Name the property list Movies.plist. The property list is now saved in the Supporting Files folder of your project. Select it and create the list of items, as shown in Figure 8-15.

FIGURE 8-15

[image: image]

10. In the MasterViewController.h file, add the following statements that appear in bold:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
{
 NSDictionary *movieTitles;
 NSArray *years;
}
@property (strong, nonatomic) DetailViewController *detailViewController;

@property (nonatomic, retain) NSDictionary *movieTitles;
@property (nonatomic, retain) NSArray *years;

@end

11. In the MasterViewController.m file, add the following statements that appear in bold:

#import "MasterViewController.h"

#import "DetailViewController.h"

@implementation MasterViewController
@synthesize detailViewController = _detailViewController;
@synthesize movieTitles;
@synthesize years;

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@"Movies"
 ofType:@"plist"];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;
 [super viewDidLoad];
}

// Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 //return 1;
 return [self.years count];
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 //---check the current year based on the section index---
 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section ---
 return [movieSection count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 // Configure the cell.
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];

 // cell.textLabel.text = NSLocalizedString(@"Detail", @"Detail");
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

- (void)dealloc {
 [movieTitles release];
 [years release];
 [super dealloc];
}

12. Press Command-R to test the application on the iPhone Simulator. As shown in Figure 8-16, the movies are now grouped into sections organized by year.

FIGURE 8-16

[image: image]

13. You can also change the style of the Table view by selecting the TableView item in Interface Builder and then changing the Style attribute in the Attributes Inspector window to Grouped (see Figure 8-17).

FIGURE 8-17

[image: image]

14. If you rerun the application, the appearance of the Table view is now different (see Figure 8-18).

FIGURE 8-18

[image: image]

How It Works

This exercise covered quite a number of concepts, and you may need some time to absorb them all. First, you create a property list in your project. You populate the property list with several key/value pairs. Essentially, you can visualize the key/value pairs stored in the property list as shown in Figure 8-19.

FIGURE 8-19

[image: image]

Each key represents a year, and the value for each key represents the movies released in that particular year. You use the values stored in the property list to display them in the Table view.

Within the MasterViewController class, you create two properties: movieTitles (an NSDictionary object) and years (an NSArray object).

When the View window is loaded, you first locate the property list and load the list into the NSDictionary object, followed by retrieving all the years into the NSArray object:

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@"Movies"
 ofType:@"plist"];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;
 [super viewDidLoad];
}

Because the Table view now displays the list of movies in sections with each section representing a year, you need to tell the Table view how many sections there are. You do so by implementing the numberOfSectionsInTableView: method:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 //return 1;
 return [self.years count];
}

After the Table view knows how many sections to display, it must also know how many rows to display in each section. You provide that information by implementing the tableView:numberOfRowsInSection: method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 //---check the current year based on the section index---
 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section ---
 return [movieSection count];
}

To display the movies for each section, you implement the tableView:cellForRowAtIndexPath: method and extract the relevant movie titles from the NSDictionary object:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

 // Configure the cell.
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];

 // cell.textLabel.text = NSLocalizedString(@"Detail", @"Detail");
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

Finally, you implement the tableView:titleForHeaderInSection: method to retrieve the year as the header for each section:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

Adding Indexing

The list of movies is pretty short, so scrolling through the list is not too much of a hassle. However, imagine a movie list containing 10,000 titles spanning 100 years. In this case, scrolling from the top of the list to the bottom can take a long time. A useful feature of the Table view is the capability to display an index on the right side of the view. An example is the A–Z index list available in your Contacts list. To add an index list to your Table view, you just need to implement the sectionIndexTitlesForTableView: method and return the array containing the section headers, which is the years array in this case:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return self.years;
}

[image: image]
NOTE If the Table view’s style is set to Grouped, the index will overlap with the layout of the Table view.

Figure 8-20 shows the index displayed on the right side of the Table view.

FIGURE 8-20

[image: image]

Adding Search Capability

A common function associated with the Table view is the capability to search the items contained within it. For example, the Contacts application provides the search bar at the top for easy searching of contacts.

The following Try It Out demonstrates how to add search functionality to the Table view.

TRY IT OUT: Adding a Search Bar to the Table View

1. Using the same project created in the previous section, in Interface Builder drag a Search Bar from the Library and drop it onto the Table view (see Figure 8-21).

FIGURE 8-21

[image: image]

2. In the MasterViewController.h file, add the following statements that appear in bold:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
<UISearchBarDelegate>
{
 NSDictionary *movieTitles;
 NSArray *years;
 IBOutlet UISearchBar *searchBar;
}
@property (strong, nonatomic) DetailViewController *detailViewController;

@property (nonatomic, retain) NSDictionary *movieTitles;
@property (nonatomic, retain) NSArray *years;
@property (nonatomic, retain) UISearchBar *searchBar;

@end

3. In Interface Builder, Control-click and drag the File’s Owner item to the Search Bar and select searchBar.

4. Right-click the Search Bar and connect the delegate to the File’s Owner item (see Figure 8-22).

FIGURE 8-22

[image: image]

5. In the MasterViewController.m file, add the following statements that appear in bold:

#import "MasterViewController.h"

#import "DetailViewController.h"

@implementation MasterViewController
@synthesize detailViewController = _detailViewController;
@synthesize movieTitles;
@synthesize years;

@synthesize searchBar;

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@"Movies"
 ofType:@"plist"];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;

 //---Search---
 self.tableView.tableHeaderView = searchBar;
 self.searchBar.autocorrectionType = UITextAutocorrectionTypeYes;

 [super viewDidLoad];
}

- (void)dealloc {
 [searchBar release];
 [movieTitles release];
 [years release];
 [super dealloc];
}

6. Press Command-R to test the application on the iPhone Simulator. Figure 8-23 shows the Search Bar displayed at the top of the Table view.

FIGURE 8-23

[image: image]

7. Back in Xcode, edit the MasterViewController.h file by adding the following statements that appear in bold:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
<UISearchBarDelegate>
{
 NSDictionary *movieTitles;
 NSArray *years;
 IBOutlet UISearchBar *searchBar;

 BOOL isSearchOn;
 BOOL canSelectRow;
 NSMutableArray *listOfMovies;
 NSMutableArray *searchResult;
}
@property (strong, nonatomic) DetailViewController *detailViewController;
@property (nonatomic, retain) NSDictionary *movieTitles;
@property (nonatomic, retain) NSArray *years;
@property (nonatomic, retain) UISearchBar *searchBar;

- (void) doneSearching:(id)sender;
- (void) searchMoviesTableView;
@end

8. In the MasterViewController.m file, add the following methods:

//---fired when the user taps on the searchbar---
- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
 isSearchOn = YES;
 if (searchBar.text.length>0){
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 } else {
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }

 //---add the Done button at the top---
 self.navigationItem.rightBarButtonItem =
 [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self
 action:@selector(doneSearching:)]
 autorelease];
}

//---done with the searching---
- (void) doneSearching:(id)sender {
 isSearchOn = NO;
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 self.navigationItem.rightBarButtonItem = nil;

 //---hides the keyboard---
 [searchBar resignFirstResponder];

 //---refresh the TableView---
 [self.tableView reloadData];
}

//---fired when the user types something into the searchbar---
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {

 //---if there is something to search for---
 if ([searchText length] > 0) {
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 [self searchMoviesTableView];
 }
 else {
 //---nothing to search---
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }
 [self.tableView reloadData];
}

//---performs the searching using the array of movies---
- (void) searchMoviesTableView {
 //---clears the search result---
 [searchResult removeAllObjects];

 for (NSString *str in listOfMovies) {
 NSRange titleResultsRange = [str rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch];
 if (titleResultsRange.length > 0)
 [searchResult addObject:str];
 }
}

//---fired when the user taps the Search button on the keyboard---
- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 [self searchMoviesTableView];
}

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 if (canSelectRow)
 return indexPath;
 else
 return nil;
}

9. Modify the following methods in bold in the MasterViewController.m file:

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@"Movies"
 ofType:@"plist"];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;

 //---Search---
 self.tableView.tableHeaderView = searchBar;
 self.searchBar.autocorrectionType = UITextAutocorrectionTypeYes;

 //---copy all the movie titles in the dictionary into
 // the listOfMovies array---
 listOfMovies = [[NSMutableArray alloc] init];
 for (NSString *year in array) { //---get all the years---
 //---get all the movies for a particular year---
 NSArray *movies = [movieTitles objectForKey:year];
 for (NSString *title in movies) {
 [listOfMovies addObject:title];
 }
 }

 //---used for storing the search result---
 searchResult = [[NSMutableArray alloc] init];
 isSearchOn = NO;
 canSelectRow = YES;

 [super viewDidLoad];
}

// Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 //return 1;
 if (isSearchOn)
 return 1;
 else
 return [self.years count];
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 if (isSearchOn) {
 return [searchResult count];
 } else {
 //---check the current year based on the section index---
 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section---
 return [movieSection count];
 }
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

 // Configure the cell.
 if (isSearchOn) {
 NSString *cellValue = [searchResult objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;
 } else {
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];
 // cell.textLabel.text = NSLocalizedString(@"Detail", @"Detail");
 }
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 if (isSearchOn)
 return nil;
 else
 return year;
}

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 if (isSearchOn)
 return nil;
 else
 return self.years;
}

- (void)dealloc {
 [listOfMovies release];
 [searchResult release];

 [searchBar release];
 [movieTitles release];
 [years release];
 [super dealloc];

10. Press Command-R to test the application on the iPhone Simulator.

11. Tap the Search Bar and the keyboard will appear. Observe the following:

	When the keyboard appears and the Search Bar has no text in it, the Table view contains the original list and the items are not selectable.

	As you type, the Table view displays the movies whose title contains the characters you are typing, as demonstrated in Figure 8-24, wherein “on” was typed into the search bar of the right-most image and movie titles containing “on” are now displayed. You can select a search result by tapping it. Observe that your application will navigate to another View window. You will learn more about this in the next section.

FIGURE 8-24

[image: image]

	When you tap the Done button, the keyboard disappears and the original list appears.

How It Works

This is quite a bit of work, but it is actually quite easy to follow the details. First, you add an outlet to connect to the Search Bar:

 IBOutlet UISearchBar *searchBar;

You then define two Boolean variables so that you can track whether the search process is ongoing and specify whether the user can select the rows in the Table view:

 BOOL isSearchOn;
 BOOL canSelectRow;

You then define two NSMutableArray objects so that you can use one to store the list of movies and another to temporarily store the result of the search:

 NSMutableArray *listOfMovies;
 NSMutableArray *searchResult;

When the View window is first loaded, you first associate the Search Bar with the Table view and then copy the entire list of movie titles from the NSDictionary object into the NSMutableArray:

 //---Search---
 self.tableView.tableHeaderView = searchBar;
 self.searchBar.autocorrectionType = UITextAutocorrectionTypeYes;

 //---copy all the movie titles in the dictionary into
 // the listOfMovies array---
 listOfMovies = [[NSMutableArray alloc] init];
 for (NSString *year in array) { //---get all the years---
 //---get all the movies for a particular year---
 NSArray *movies = [movieTitles objectForKey:year];
 for (NSString *title in movies) {
 [listOfMovies addObject:title];
 }
 }

 //---used for storing the search result---
 searchResult = [[NSMutableArray alloc] init];
 isSearchOn = NO;
 canSelectRow = YES;

When the user taps the Search Bar, the searchBarTextDidBeginEditing: event (one of the methods defined in the UISearchBarDelegate protocol) fires. In this method, you add a Done button to the top-right corner of the screen. When the Done button is tapped, the doneSearching: method is called (which you define next):

//---fired when the user taps on the searchbar---
- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
 isSearchOn = YES;

 if (searchBar.text.length>0){
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 } else {
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }

 //---add the Done button at the top---
 self.navigationItem.rightBarButtonItem =
 [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self
 action:@selector(doneSearching:)]
 autorelease];
}

The doneSearching: method makes the Search Bar resign its First Responder status (thereby hiding the keyboard). At the same time, you reload the Table view by calling the reloadData method of the Table view. This causes the various events associated with the Table view to be fired again:

//---done with the searching---
- (void) doneSearching:(id)sender {
 isSearchOn = NO;
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 self.navigationItem.rightBarButtonItem = nil;

 //---hides the keyboard---
 [searchBar resignFirstResponder];

 //---refresh the TableView---
 [self.tableView reloadData];
}

As the user types into the Search Bar, the searchBar:textDidChange: event is fired for each character entered. In this case, if the Search Bar has at least one character, the searchMoviesTableView method (which you define next) is called:

//---fired when the user types something into the searchbar---
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {

 //---if there is something to search for---
 if ([searchText length] > 0) {
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 [self searchMoviesTableView];
 }
 else {
 //---nothing to search---
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }
 [self.tableView reloadData];
}

The searchMoviesTableView method performs the searching on the listOfMovies array. You use the rangeOfString:options: method of the NSString class to perform a case-insensitive search of each movie title using the specified string. The returned result is an NSRange object, which contains the location and length of the search string being searched. If the length is more than zero, then a match has been found, and hence you add it to the searchResult array:

//---performs the searching using the array of movies---
- (void) searchMoviesTableView {
 //---clears the search result---
 [searchResult removeAllObjects];

 for (NSString *str in listOfMovies) {
 NSRange titleResultsRange = [str rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch];
 if (titleResultsRange.length > 0)
 [searchResult addObject:str];
 }
}

When the user taps the Search button (on the keyboard), you make a call to the searchMoviesTableView method:

//---fired when the user taps the Search button on the keyboard---
- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 [self searchMoviesTableView];
}

You also implement the tableView:willSelectRowAtIndexPath: method to check whether or not rows are selectable:

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 if (canSelectRow)
 return indexPath;
 else
 return nil;
}

The rest of the methods are straightforward. If the search is currently active (as determined by the isSearchOn variable), then you display the list of titles contained in the searchResult array. If not, then you display the entire list of movies.

Disclosures and Checkmarks

Because users often select rows in a Table view to view more detailed information, rows in a Table view often sport images such as an arrow or a checkmark (these images are known as accessories). There are three types of accessories that you can display:

	Checkmark

	Disclosure indicator

	Detail Disclosure button

To display a disclosure or a checkmark accessory, you use the accessoryType property of the UITableViewCell object, as shown by default in the tableView:cellForRowAtIndexPath: event:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

 // Configure the cell.
 if (isSearchOn) {
 NSString *cellValue = [searchResult objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;
 } else {
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];
 // cell.textLabel.text = NSLocalizedString(@"Detail", @"Detail");
 }
 return cell;
}

You can use the following constants for the accessoryType property:

	UITableViewCellAccessoryCheckmark

	UITableViewCellAccessoryDisclosureIndicator

	UITableViewCellAccessoryDetailDisclosureButton

Figure 8-25 shows the Detail Disclosure button and Checkmark accessories.

FIGURE 8-25

[image: image]

Of the three accessory types, only the UITableViewCellAccessoryDetailDisclosureButton can handle one additional tap event of the user. To handle the additional event when the user taps the Detail Disclosure button, you need to implement the tableView:accessoryButtonTappedForRowWithIndexPath: method:

- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath {
 //--insert code here--
 // e.g. navigate to another view to display detailed information, etc
}

Figure 8-26 shows the two different events fired when a user taps the content of the cell, as well as the Detail Disclosure button.

FIGURE 8-26

[image: image]

Commonly, you use the Detail Disclosure button to display detailed information about the selected row.

Navigating to Another View

One of the features of a Master-Detail Application project is the capability to navigate from one View window to another. For example, the user can select an item from the Table view and the application will navigate to another View window showing the details about the item selected. By default, Xcode creates a second View window so that your application can navigate to it. In the following Try It Out, you modify the application you have been building so that when the user selects a movie, the application displays the name of the movie selected in the second View window.

TRY IT OUT: Displaying the Movie Selected in a Second View Window

1. Using the project created in the previous section, note a set of files named DetailViewController.xib, DetailViewController.h, and DetailViewController.m. The DetailViewController.m file contains the following methods:

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem) {
 _detailItem = newDetailItem;

 // Update the view.
 [self configureView];
 }
}

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text = [self.detailItem description];
 }
}

2. Select the DetailViewController.xib file to edit it in Interface Builder. Right-click on the File’s Owner item to view its connections. Note that the detailDescriptionLabel outlet is connected to the Label (see Figure 8-27).

FIGURE 8-27

[image: image]

3. Add the following bold code to the tableView:didSelectRowAtIndexPath: method located in the MasterViewController.m file:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *
)indexPath
{
 NSString *message;
 if (!isSearchOn) {
 NSString *year = [self.years objectAtIndex:[indexPath section]];
 NSArray *movieSection = [self.movieTitles objectForKey:year];
 NSString *movieTitle = [movieSection objectAtIndex:[indexPath row]];
 message = [NSString stringWithFormat:@"You have selected %@", movieTitle];
 } else {
 if ([searchResult count]==0) return;
 message =
 [NSString stringWithFormat:@"You have selected %@",
 [searchResult objectAtIndex:indexPath.row]];
 }

 if (!self.detailViewController) {
 self.detailViewController = [[[DetailViewController alloc]
 initWithNibName:@"DetailViewController" bundle:nil] autorelease];
 }

 self.detailViewController.detailItem = message;

 [self.navigationController
 pushViewController:self.detailViewController
 animated:YES];
}

4. Press Command-R to test the application on the iPhone Simulator. As shown in Figure 8-28, when you click on one of the movies in the Table view, the application navigates to another View window, showing the name of the movie selected.

FIGURE 8-28

[image: image]

How It Works

In order to enable navigation to another View window, you need to create an instance of its corresponding View controller. Fortunately, Xcode does this for you automatically.

In the DetailViewController class, there is a property named detailItem (which is defined as follows) as well as a method named configureView:

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem) {
 _detailItem = newDetailItem;

 // Update the view.
 [self configureView];
 }
}

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text = [self.detailItem description];
 }
}

You use this property to pass the name of the movie selected. Once this property is set, it will call the configureView method to update the Label on the View window.

When the user selects an item in the Table view, you first determine the name of the movie (in the tableView:didSelectRowAtIndexPath: method) selected:

 NSString *message;
 if (!isSearchOn) {
 NSString *year = [self.years objectAtIndex:[indexPath section]];
 NSArray *movieSection = [self.movieTitles objectForKey:year];
 NSString *movieTitle = [movieSection objectAtIndex:[indexPath row]];
 message = [NSString stringWithFormat:@"You have selected %@", movieTitle];
 } else {
 if ([searchResult count]==0) return;
 message =
 [NSString stringWithFormat:@"You have selected %@",
 [searchResult objectAtIndex:indexPath.row]];
 }

You then navigate to the DetailViewController class by instantiating a copy of it and then set the detailItem property to the name of the movie selected:

 if (!self.detailViewController) {
 self.detailViewController = [[[DetailViewController alloc]
 initWithNibName:@"DetailViewController" bundle:nil] autorelease];
 }

 self.detailViewController.detailItem = message;

Finally, to navigate to the new View window, you use the pushViewController: method of the Navigation Controller:

 [self.navigationController
 pushViewController:self.detailViewController
 animated:YES];

SUMMARY

In this chapter, you had a good look at the Table view and learned how to customize it to display items in various formats. You also learned how to implement search functionality in the Table view, which is an essential function in real-world applications. In addition, you learned how to move between View windows in a Navigation-based application.

EXERCISES

1. Name the two protocols to which your View Controller must conform when using the Table view in your view. Briefly describe their uses.

2. Which method should be implemented if you want to add an index to a Table view?

3. Name the three disclosure and checkmark accessories that you can use. Which one handles user taps?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Adding items to a Table view
	Handle the various events in the UITableViewDataSource protocol.

	Allowing users to select rows in a Table view
	Handle the various events in the UITableViewDelegate protocol.

	Adding images to rows in a Table view
	Use the image property of the UITableViewCell class and set it to an instance of the UIImage class containing an image.

	Using a property list with a Table view
	Use the following code snippet to locate the property list:
NSString *path = [[NSBundle mainBundle]
pathForResource:@“Movies”
ofType:@“plist”];
Then use a combination of NSDictionary and NSArray objects to retrieve the key/value pairs stored in the property list.

	Grouping items in a Table view in sections
	Implement the following methods: numberOfSectionsInTableView:tableView:numberOfRowsInSection:tableView:titleForHeaderInSection:.

	Adding an index to a Table view
	Implement the sectionIndexTitlesForTableView: method.

	Adding disclosure and checkmark images to a row in a Table view
	Set the accessoryType property of an UITableViewCell object to one of the following:
* UITableViewCellAccessoryDetailDisclosureButton
* UITableViewCellAccessoryCheckmark
* UITableViewCellAccessoryDisclosureIndicator.

	Implementing a search in a Table view
	Use the Search Bar view and handle the various events in the UISearchBarDelegate protocol.

	Navigating to another View window
	Use the pushViewController: method of the Navigation Controller.

Chapter 9

Using Application Preferences

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to add application preferences to your application

	How to programmatically access the Settings values

	How to reset your application’s preferences settings

If you are a relatively seasoned Mac OS X user, you’re familiar with the concept of application preferences. Almost every Mac OS X application has application-specific settings that are used to configure the application’s appearance and behavior. These settings are known as the application preferences.

In iOS, applications also have application preferences. In contrast to Mac OS X applications, however, whose application preferences are an integral part of the application, iPhone preferences are centrally managed by an application called Settings (see Figure 9-1).

FIGURE 9-1

[image: image]

The Settings application displays the preferences of system applications as well as third-party applications. Tapping any setting displays the details, where you can configure the preferences of an application.

In this chapter, you learn how to incorporate application preferences into your application and modify them programmatically during runtime.

CREATING APPLICATION PREFERENCES

Creating application preferences for your iOS application is a relatively straightforward process. It involves adding a resource called the Settings Bundle to your project, configuring a property list file, and then deploying your application. When your application is deployed, the application preferences are automatically created for you in the Settings application.

The following Try It Out shows how to add application preferences to your iPhone application project in Xcode.

TRY IT OUT: Adding Application Preferences

1. Using Xcode, create a new Single View Application (iPhone) project and name it ApplicationSettings. You will also use the project name as the Class Prefix. Ensure that you have unchecked the Use Automatic Reference Counting option.

2. Right-click the project name in Xcode and add a new file. Click the Resource template category and select Settings Bundle (see Figure 9-2). Click Next.

FIGURE 9-2

[image: image]

3. When asked to name the file, use the default name of Settings.bundle and click Save.

4. The Settings.bundle item should now be part of your project (see Figure 9-3). Expand it and click the Root.plist item to view its content using the default Property List editor (see Figure 9-4).

FIGURE 9-3

[image: image]

FIGURE 9-4

[image: image]

5. Press Command-R to test the application on the iPhone Simulator. When the application is loaded on the Simulator, press the Home key to return to the main screen of the iPhone. Click the Settings application. You can now see a new Settings entry, ApplicationSettings (see Figure 9-5). Click the ApplicationSettings entry to see the default settings created for you.

FIGURE 9-5

[image: image]

How It Works

It seems almost magical that without coding a single line, you have incorporated your application preferences into your application. The magic part is actually the Settings.bundle file that you have added to your project. It contains two files: Root.plist and Root.strings. The Root.plist file is an XML file that contains a collection of dictionary objects (key/value pairs). These key/value pairs are translated into the preferences entries shown in the Settings application.

Take a moment to review the use of the various keys used in the Root.plist file. There are two root-level keys in the Root.plist file:

	StringsTable, which contains the name of the strings file associated with this Settings.bundle file. In this case, it is pointing to Root.strings. This file provides the localized content to display to the user for each of your preferences.

	PreferenceSpecifiers, which is of type Array and contains an array of dictionaries, with each item containing the information for a single preference.

Each preference is represented by an item (known as PreferenceSpecifiers), such as Item 0, Item 1, Item 2, and so on. Each item has a Type key, which indicates the type of data stored. Table 9-1 describes the preference specifiers.

TABLE 9-1: List of Preference Specifiers and Usage

	ELEMENT TYPE
	DESCRIPTION
	USE FOR

	PSTextFieldSpecifier
	A text field preference. Displays an optional title and an editable text field.
	Preferences that require the user to specify a custom string value

	PSTitleValueSpecifier
	A read-only string preference
	Displaying preference values as formatted strings

	PSToggleSwitchSpecifier
	A toggle switch preference
	Configuring a preference that can have only one of two values

	PSSliderSpecifier
	A slider preference
	Preferences that represent a range of values. The value for this type is a real number whose minimum and maximum you specify.

	PSMultiValueSpecifier
	A multivalue preference
	Preferences that support a set of mutually exclusive values

	PSGroupSpecifier
	A group item preference
	Organizing groups of preferences on a single page

	PSChildPaneSpecifier
	A child pane preference
	Linking to a new page of preferences

By default, the various items inside the Root.plist file are represented using their user-friendly names, such as Default Value, Text Field Is Secure, and so on. However, for editing purposes (such as adding new keys into the file), it is always easier to display the keys in their raw format. To do so, right-click on another item inside the .plist file and select Show Raw Keys/Values (see Figure 9-6). Doing so makes the editor toggle between displaying the names in user-friendly format and displaying them in raw form.

FIGURE 9-6

[image: image]

Each PreferenceSpecifiers key contains a list of subkeys that you can use. For example, the PSTextFieldSpecifier key provides Type, Title, Key, DefaultValue, IsSecure, KeyBoardType, AutocapitalizationType, and AutocorrectionType keys. You then set each key with its appropriate values.

Examine the Root.plist file in more detail. Note, for example, that Item 2 has four keys under it: Type, Title, Key, and DefaultValue. The Type key specifies the type of information it is going to store. In this case, it is a PSToggleSwitchSpecifier, which means it will be represented visually as an On/Off switch. The Title key specifies the text that will be shown for this item (Item 2). The Key key is the identifier that uniquely identifies this key so that you can programmatically retrieve the value of this item in your application. Finally, the DefaultValue key specifies the default value of this item. In this case, it is checked, indicating that the value is On.

[image: image]
NOTE The key/value pair in the Root.plist file is case sensitive, so you need to be careful when modifying the entries. A single typo can result in a nonfunctional application.

In the next Try It Out, you modify the Root.plist file so that you can use it to store a user’s credentials. This is very useful when you are writing an application that requires users to log in to a server. When users access your application for the first time, they supply their login credentials, such as username and password. Your application can then store the credentials in the application preferences so that the next time the users access your application, the application can automatically retrieve the credentials, rather than ask for them.

[image: image]
NOTE For more information on the use of each key, refer to Apple’s “Settings Application Schema Reference” documentation. The easiest way to locate it is to do a web search for the title. The full URL is http://developer.apple.com/library/ios/documentation/PreferenceSettings/Conceptual/SettingsApplicationSchemaReference/SettingsApplicationSchemaReference.pdf.

TRY IT OUT: Modifying the Application Preferences

1. In Xcode (using the same project created in the previous section), select the Root.plist file and remove all four items (Item 0 to Item 3) under the PreferenceSpecifiers key. To do so, select individual items under the PreferenceSpecifiers key and then press the Delete key (see Figure 9-7).

FIGURE 9-7

[image: image]

2. Modify the entire Root.plist file so that it looks like Figure 9-8. Ensure that the capitalization of each key and value pair is correct. Pay particular attention to the Type and Value of each item.

FIGURE 9-8

[image: image]

3. Save the project and press Command-R to test the application on the iPhone Simulator. Click the Home button and launch the Settings application again. Select the ApplicationSettings settings and observe the preferences shown (see Figure 9-9). Clicking the Favorite Color setting will display a page for choosing your favorite color (see Figure 9-10).

FIGURE 9-9

[image: image]

FIGURE 9-10

[image: image]

4. Make some changes to the settings values and then press the Home button to return to the Home screen. The changes in the settings are automatically saved to the device. When you return to the Settings page again, the new values will be displayed.

How It Works

What you have done is basically modify the Root.plist file to store three preferences: Login Name, Password, and Favorite Color. For the Password field, you use the IsSecure key to indicate that the value must be masked when displaying it to the user. Of particular interest is the Favorite Color preference, for which you use the Titles and Values keys to display a list of selectable options and their corresponding values to store on the iPhone.

The following preference specifiers are used in this example:

	PSGroupSpecifier — Used to display a group for the settings. In this case, all the settings are grouped under the Account Information group.

	PSTextFieldSpecifier — Specifies a text field

	PSMultiValueSpecifier — Specifies a list of selectable values. The Titles item contains a list of visible text from which users can select. The Values item is the corresponding value for the text selected by the user. For example, if a user selects Blue Color as the favorite color, the value Blue will be stored on the iPhone.

PROGRAMMATICALLY ACCESSING THE SETTINGS VALUES

Of course, the preferences settings are of little use if you can’t programmatically access them from within your application. In the following sections, you modify the application so that you can load the preferences settings as well as make changes to them programmatically.

First, use the following Try It Out to prepare the UI by connecting the necessary outlets and actions.

TRY IT OUT: Preparing the UI

1. Using the project created in the previous section, select the ApplicationSettingsViewController.xib file to edit it in Interface Builder.

2. Populate the View window with the following views (see Figure 9-11):

FIGURE 9-11

[image: image]

	Round Rect Button

	Label

	Text Field

	Picker View

3. In Xcode, insert the following code that appears in bold into the ApplicationSettingsViewController.h file:

#import <UIKit/UIKit.h>

@interface ApplicationSettingsViewController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> {
 IBOutlet UITextField *loginName;
 IBOutlet UITextField *password;
 IBOutlet UIPickerView *favoriteColor;
 }

@property (nonatomic, retain) UITextField *loginName;
@property (nonatomic, retain) UITextField *password;
@property (nonatomic, retain) UIPickerView *favoriteColor;

-(IBAction) loadSettings: (id) sender;
-(IBAction) saveSettings: (id) sender;
-(IBAction) doneEditing: (id) sender;

@end

4. In Interface Builder, connect the outlets and action to the various views. In the ApplicationSettingsViewController.xib window, do the following:

	Control-click and drag the File’s Owner item to the first Text Field and select loginName.

	Control-click and drag the File’s Owner item to the second Text Field and select password.

	Control-click and drag the File’s Owner item to the Picker View and select favoriteColor.

	Control-click and drag the Picker View to the File’s Owner item and select dataSource.

	Control-click and drag the Picker View to the File’s Owner item and select delegate.

	Control-click and drag the Load Settings Value button to the File’s Owner item and select loadSettings:.

	Control-click and drag the Save Settings Value button to the File’s Owner item and select saveSettings:.

	Right-click the Load Settings Value button and connect the Did End on Exit event to the File’s Owner item. Select doneEditing:.

	Right-click the Save Settings Value button and connect the Did End on Exit event to the File’s Owner item. Select doneEditing:.

5. Right-click the File’s Owner item to verify that all the connections are connected properly (see Figure 9-12).

FIGURE 9-12

[image: image]

6. In Xcode, add the following bold code to the ApplicationSettingsViewController.m file:

#import "ApplicationSettingsViewController.h"

@implementation ApplicationSettingsViewController

@synthesize loginName;
@synthesize password;
@synthesize favoriteColor;
NSMutableArray *colors;
NSString *favoriteColorSelected;

-(IBAction) doneEditing:(id) sender {
 [sender resignFirstResponder];
}

- (void)viewDidLoad {
 //---create an array containing the colors values---
 colors = [[NSMutableArray alloc] init];
 [colors addObject:@"Red"];
 [colors addObject:@"Green"];
 [colors addObject:@"Blue"];
 [super viewDidLoad];
}

//---number of components in the Picker View---
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)thePickerView {
 return 1;
}

//---number of items(rows) in the Picker View---
- (NSInteger)pickerView:(UIPickerView *)thePickerView
numberOfRowsInComponent:(NSInteger)component {
 return [colors count];
}

//---populating the Picker view---
- (NSString *)pickerView:(UIPickerView *)thePickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [colors objectAtIndex:row];
}

//---the item selected by the user---
- (void)pickerView:(UIPickerView *)thePickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 favoriteColorSelected = [colors objectAtIndex:row];
}

- (void)dealloc {
 [colors release];
 [favoriteColorSelected release];
 [loginName release];
 [password release];
 [favoriteColor release];
 [super dealloc];
}

7. That’s it! Press Command-R to test the application on the iPhone Simulator. Figure 9-13 shows the Picker View loaded with the three colors.

FIGURE 9-13

[image: image]

How It Works

So far, all the work that has been done prepares the UI for displaying the values retrieved from the preferences settings. In particular, you needed to prepare the Picker View to display a list of colors from which the user can choose.

To load the Picker View with the three colors, you ensure that the ApplicationSettingsViewController class conforms to the UIPickerViewDataSource and UIPickerViewDelegate protocols:

@interface ApplicationSettingsViewController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> {

The UIPickerViewDataSource protocol defines the methods to populate the Picker View with items, while the UIPickerViewDelegate protocol defines the methods to enable users to select an item from the Picker View.

In the ApplicationSettingsViewController.m file, you first created an NSMutableArray object to store the list of colors available for selection, in the viewDidLoad method:

- (void)viewDidLoad {
 //---create an array containing the colors values---
 colors = [[NSMutableArray alloc] init];
 [colors addObject:@"Red"];
 [colors addObject:@"Green"];
 [colors addObject:@"Blue"];
 [super viewDidLoad];
}

To set the number of components (columns) in the Picker View, you implemented the numberOfComponentsInPickerView: method:

//---number of components in the Picker View---
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)thePickerView {
 return 1;
}

To set the number of items (rows) you want to display in the Picker View, you implemented the pickerView:numberOfRowsInComponent: method:

//---number of items(rows) in the Picker View---
- (NSInteger)pickerView:(UIPickerView *)thePickerView
numberOfRowsInComponent:(NSInteger)component {
 return [colors count];
}

To populate the Picker View with the three colors, you implemented the pickerView:titleForRow:forComponent: method:

//---populating the Picker view---
- (NSString *)pickerView:(UIPickerView *)thePickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [colors objectAtIndex:row];
}

To save the color selected by the user in the Picker View, you implemented the pickerView:didSelectRow:inComponent: method:

//---the item selected by the user---
- (void)pickerView:(UIPickerView *)thePickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 favoriteColorSelected = [colors objectAtIndex:row];
}

The color selected will now be saved in the favoriteColorSelected object.

Loading the Settings Values

With the user interface of the application ready, it is time to learn how you can programmatically load the values of the preferences settings and then display them in your application, as described in the following Try It Out. This display is useful because it gives users a chance to view the values of the settings without needing to access the Settings application.

TRY IT OUT: Loading Settings Values

1. Using the project created in the previous section, modify the application:didFinishLaunchingWithOptions: method in the ApplicationSettingsAppDelegate.m file:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 //--- initialize the settings value first;
 // if not all settings values will be null --
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 if (![defaults objectForKey:@"login_name"])
 [defaults setObject:@"login name" forKey:@"login_name"];
 if (![defaults objectForKey:@"password"])
 [defaults setObject:@"password" forKey:@"password"];
 if (![defaults objectForKey:@"color"])
 [defaults setObject:@"Green" forKey:@"color"];
 [defaults synchronize];

 self.window =
 [[[UIWindow alloc] initWithFrame:
 [[UIScreen mainScreen] bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController =
 [[[ApplicationSettingsViewController alloc]
 initWithNibName:@"ApplicationSettingsViewController"
 bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

2. Insert the following method into the loadSettings: method in the ApplicationSettingsViewController.m file:

-(IBAction) loadSettings: (id) sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 loginName.text = [defaults objectForKey:@"login_name"];
 password.text = [defaults objectForKey:@"password"];

 //---find the index of the array for the color saved---
 favoriteColorSelected = [[NSString alloc] initWithString:
 [defaults objectForKey:@"color"]];
 int selIndex = [colors indexOfObject:favoriteColorSelected];

 //---display the saved color in the Picker view---
 [favoriteColor selectRow:selIndex inComponent:0 animated:YES];
}

3. Press Command-R to test the application on the iPhone Simulator. When the application is loaded, click the Load Settings Values button. You should see the settings values displayed in the Text Fields and the Picker View (see Figure 9-14).

FIGURE 9-14

[image: image]

How It Works

To load the values of the preferences settings, you use a class known as NSUserDefaults:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

The preceding statement returns the one instance of the NSUserDefaults class. Think of NSUserDefaults as a common database that you can use to store your application preferences settings.

When your application runs for the first time, you need to set the values of the settings before you can use them. Hence, the best place to initialize them is in the application delegate.

To retrieve the values of the preferences settings, you use the objectForKey: method to check whether each setting is null. If it is, the setting has not been initialized yet and hence you need to set it. To initialize the setting, use the setObject:forKey: method:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 if (![defaults objectForKey:@"login_name"])
 [defaults setObject:@"login name" forKey:@"login_name"];
 if (![defaults objectForKey:@"password"])
 [defaults setObject:@"password" forKey:@"password"];
 if (![defaults objectForKey:@"color"])
 [defaults setObject:@"Green" forKey:@"color"];
 [defaults synchronize];

Note that to immediately save the settings values to the Settings application, you should call the synchronize method of the NSUserDefaults instance.

To load the settings value, likewise you use the objectForKey: method, specifying the name of the preference setting you want to retrieve:

-(IBAction) loadSettings: (id) sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 loginName.text = [defaults objectForKey:@"login_name"];
 password.text = [defaults objectForKey:@"password"];

 //---find the index of the array for the color saved---
 favoriteColorSelected = [[NSString alloc] initWithString:
 [defaults objectForKey:@"color"]];
 int selIndex = [colors indexOfObject:favoriteColorSelected];

 //---display the saved color in the Picker view---
 [favoriteColor selectRow:selIndex inComponent:0 animated:YES];
}

Resetting the Preferences Settings Values

Sometimes, you may want to reset the values of the preferences settings of your application. This is especially true if you have made an error in the Root.plist file and want to reset all the settings. The easiest way to do this is to remove the application from the device or Simulator. To do so, simply tap (or click the Simulator) and hold the application’s icon; and when the icons start to wriggle, tap the X button to remove the application. The preferences settings associated with the application will also be removed.

Another way to clear the values of the preferences settings is to navigate to the folder containing your application (on the iPhone Simulator). The applications on the iPhone Simulator are stored in the following folder: ~/Library/Application Support/iPhone Simulator>/<version_no>/Applications/ (note that the tilde symbol (~) represents your home directory and not your root directory). Inside this folder, you need to find the folder containing your application. Within the application folder is a Library/Preferences folder. Delete the file ending with <application_name>.plist (see Figure 9-15) and your preferences settings will be reset.

FIGURE 9-15

[image: image]

Saving the Settings Values

Now that you have seen how to load the values of preferences settings, the following Try It Out demonstrates how to save the values back to the preferences settings. This enables users to directly modify their preferences settings from within your application, instead of using the Settings application to do so.

TRY IT OUT: Saving Settings Values

1. Using the same project created in the previous section, insert the following method in the saveSettings: method in the ApplicationSettingsViewController.m file:

-(IBAction) saveSettings: (id) sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject:loginName.text forKey:@"login_name"];
 [defaults setObject:password.text forKey:@"password"];
 [defaults setObject:favoriteColorSelected forKey:@"color"];
 [defaults synchronize];

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Settings Value Saved"
 message:@"Settings Saved"
 delegate:nil
 cancelButtonTitle:@"Done"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

2. Press Command-R to test the application on the iPhone Simulator. Make some changes to the login name, password, and favorite color. When you click the Save Settings Value button, all the changes are made to the device (see Figure 9-16). When you check the Settings application, you will see the updated settings values (see Figure 9-17).

FIGURE 9-16

[image: image]

FIGURE 9-17

[image: image]

How It Works

To save the values back to the preferences settings, you used the same approach that you used to retrieve those settings — that is, the NSUserDefaults class:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject:loginName.text forKey:@"login_name"];
 [defaults setObject:password.text forKey:@"password"];
 [defaults setObject:favoriteColorSelected forKey:@"color"];
 [defaults synchronize];

As usual, rather than use the objectForKey: method, you now used the setObject:forKey: method to save the values.

SUMMARY

This chapter explained how you can make use of the Application Preferences feature of the iPhone to save your application preferences to the Settings application. This enables you to delegate most of the mundane tasks of saving and loading an application’s preferences settings to the OS. All you need to do is use the NSUserDefaults class to programmatically access the preferences settings.

EXERCISES

1. You have learned that you can use the NSUserDefaults class to access the preferences settings values for your application. What are the methods for retrieving and saving the values?

2. What are the two ways in which you can remove the preferences settings for an application?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Adding application preferences to your application
	Add a Settings Bundle file to your project and modify the Root.plist file.

	Loading the value of a preference setting
	
NSUserDefaults *defaults =
[NSUserDefaults standardUserDefaults];
loginName.text = [defaults
 objectForKey:@"login_name"];

	Resetting preferences settings values
	Remove the entire application either from the Home screen or via the iPhone Simulator folder on your Mac.

	Saving the value of a preference setting
	
NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
[defaults setObject:loginName.text
 forKey:@"login_name"];
[defaults synchronize];

Chapter 10

File Handling

WHAT YOU WILL LEARN IN THIS CHAPTER

	Where your applications are stored in iOS 5

	The various folders within your Applications folder

	How to read and write to files in the Documents and tmp folders

	How to use a property to store structured data

	How to programmatically retrieve values stored in a property list

	How to modify the values retrieved from a property list and save the changes to a file

	How to copy bundled resources to the application’s folder during runtime

	How to export a document from your application to another application

	How to share your application’s Documents folder through iTunes

	How to allow other applications to import documents into your application

All the applications you have developed up to this point are pretty straightforward — the application starts, performs something interesting, and ends. In Chapter 9, you saw how you can make use of the Application settings feature to save the preferences of your application to a central location managed by the Settings application. Sometimes, however, you simply need to save some data to your application’s folder for use later. For example, rather than keep files you download from a remote server in memory, a more effective and memory-efficient method is to save them in a file so that you can use them later (even after the application has shut down and restarted).

This chapter describes the two available approaches to persisting data in your application so that you can access it later: saving the data as files or as a property list. You also learn how to bundle resources such as text files and database files with your application so that when the application is installed on the user’s device, the resources can be copied onto the local storage of the device and used from there. In addition, you will learn how to share files between applications.

UNDERSTANDING THE APPLICATION FOLDERS

Your applications are stored in the iOS file system, so you’ll find it useful to understand the folder structure of the iPhone and iPad.

On the desktop, the contents of the iOS Simulator is stored in the ~/Library/Application Support/iPhone Simulator>/<version_no>/ folder.

[image: image]
NOTE The ~ (tilde) represents the current user’s directory. Specifically, the preceding directory is equivalent to the following:

/Users/<username>/Library/Application Support/
iPhone Simulator>/<version_no>/

Note that in Lion, the Library folder is now hidden. To view the Library folder, you can select Go ⇒ Go to Folder. . ., and then enter “~/Library.”

Within this folder are five subfolders:

	Applications

	Library

	Media

	Root

	tmp

The Applications folder contains all your installed applications (see Figure 10-1). Within it are several folders with long filenames. These filenames are generated by Xcode to uniquely identify each of your applications. Each application’s folder holds your application’s executable file (the .app file, which includes all embedded resources), together with a few other folders, such as Documents, Library, and tmp. On the iPhone and iPad, all applications run within their own sandboxed environments — that is, an application can access only the files stored within its own folder; it cannot access the folders of other applications.

FIGURE 10-1

[image: image]

Using the Documents and Library Folders

The Documents folder is where you can store files used by your application, whereas the Library folder stores the application-specific settings. It also contains snapshots of your application before its goes into the background so that they can be displayed later when they are returned to the foreground, giving the impression that your application is springing back to life instantly. The tmp folder stores temporary data required by your application.

How you do write to these folders? The following Try It Out provides an example of doing just that. You can download the indicated code files to work through the project.

TRY IT OUT: Writing to and Reading from Files

codefile FilesHandling.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it FilesHandling. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. In the FilesHandlingViewController.h file, add the following bold statements:

#import <UIKit/UIKit.h>

@interface FilesHandlingViewController : UIViewController

-(NSString *) documentsPath;
-(NSString *) readFromFile:(NSString *) filePath;
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath;

@end

3. In the FilesHandlingViewController.m file, add the following bold statements:

#import "FilesHandlingViewController.h"

@implementation FilesHandlingViewController

//---finds the path to the application's Documents folder---
-(NSString *) documentsPath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return documentsDir;
}

//---write content into a specified file path---
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:text];
 [array writeToFile:filePath atomically:YES];
 [array release];
}

//---read content from a specified file path---
-(NSString *) readFromFile:(NSString *) filePath {
 //--check if file exists--
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array =
 [[NSArray alloc] initWithContentsOfFile: filePath];
 NSString *data =
 [NSString stringWithFormat:@"%@",
 [array objectAtIndex:0]];
 [array release];
 return data;
 }
 else
 return nil;
}

- (void)viewDidLoad
{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@"data.txt"];

 //---write something to the file---
 [self writeToFile:@"a string of text" withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@"%@", fileContent);
 [super viewDidLoad];
}

4. Press Command-R to test the application on the iPhone Simulator.

5. Go to Finder and navigate to the Documents folder of your application. The data.txt file is now visible (see Figure 10-2).

FIGURE 10-2

[image: image]

6. When you deploy the application to a real iOS device, the location of the file on the real device is /var/mobile/Applications/<application_id>/Documents/data.txt.

7. Double-click the data.txt file to view its contents as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>a string of text</string>
</array>
</plist>

8. If you turn on the output window (press Command-Shift-c), you will see that the application prints a string of text (see Figure 10-3).

FIGURE 10-3

[image: image]

How It Works

You first define the documentsPath method, which returns the path to the Documents folder:

//---finds the path to the application's Documents folder---
-(NSString *) documentsPath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return documentsDir;
}

Basically, you use the NSSearchPathForDirectoriesInDomains() function to create a list of directory search paths, indicating that you want to look for the Documents folder (using the NSDocumentDirectory constant). The NSUserDomainMask constant indicates that you want to search from the application’s home directory, and the YES argument indicates that you want to obtain the full path of all the directories found.

To obtain the path to the Documents folder, you simply extract the first item of the paths array (because there is only one Documents folder in an iOS application’s folder). In fact, this block of code is derived from the Mac OS X API, which might return multiple folders; but in the case of the iOS, there can only be one Documents folder per application.

You next define the writeToFile:withFileName: method, which creates an NSMutableArray and adds the text to be written to the file to it:

//---write content into a specified file path---
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:text];
 [array writeToFile:filePath atomically:YES];
 [array release];
}

To persist the contents (a process known as serialization) of the NSMutableArray to a file, you use its writeToFile:atomically: method. The atomically: parameter indicates that the file should first be written to a temporary file before it is renamed to the filename specified. This approach guarantees that the file will never be corrupted, even if the system crashes during the writing process.

To read the contents from a file, you define the readFromFile: method:

//---read content from a specified file path---
-(NSString *) readFromFile:(NSString *) filePath {
 //--check if file exists--
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array =
 [[NSArray alloc] initWithContentsOfFile: filePath];
 NSString *data =
 [NSString stringWithFormat:@"%@",
 [array objectAtIndex:0]];
 [array release];
 return data;
 }
 else
 return nil;
}

You first use an instance of the NSFileManager class to determine whether the specified file exists. If it does, then you read the content of the file into an NSArray object. In this case, because you know that the file contains a single line of text, you extract the first element in the array.

With all the methods in place, you are ready to make use of them. When the view is loaded, you create the pathname for a file that you want to save. You then write a string of text into the file and immediately read it back and print it in the output window:

- (void)viewDidLoad
{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@"data.txt"];

 //---write something to the file---
 [self writeToFile:@"a string of text" withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@"%@", fileContent);
 [super viewDidLoad];
}

Storing Files in the Temporary Folder

In addition to storing files in the Documents folder, you can store temporary files in the tmp folder. Files stored in the tmp folder are not backed up by iTunes, so you need to find a permanent place for the files you want to keep. To get the path to the tmp folder, you can call the NSTemporaryDirectory() function, like this:

-(NSString *) tempPath{
 return NSTemporaryDirectory();
}

The following statement returns the path of a file ("data.txt") to be stored in the tmp folder:

 NSString *fileName =
 [[self tempPath] stringByAppendingPathComponent:@"data.txt"];

Which Folder Should You Use: Documents or tmp?

All the files stored in the Documents folder (as well as the Library folder, with the exception of the caches folder) of your application are automatically backed up by iTunes when the user connects his or her device to iTunes. Hence, if your applications store a large number of files in the Documents folder, it will take a long time to back up the files each time the user connects to iTunes. If all the applications on the user’s device contain a large number of files in their Documents folder, you can easily imagine the amount of time needed for iTunes to synchronize your device. As such, your application should only use the Documents folder sparingly to store files that are absolutely necessary for the running of your application. For example, in the Documents folder, you can store databases that are required by your application. For temporary files that you don’t need later (such as results returned from a web service that you will store somewhere else later, images, etc.), you can store them in the tmp folder. Files stored in the tmp folder will not be backed up by iTunes, and it is your responsibility to perform your own housekeeping. Occasionally, iOS may also delete files in the tmp folder when your application is not running.

USING PROPERTY LISTS

In iOS programming, you can use property lists to store structured data using key/value pairs. Property lists are stored as XML files and are highly transportable across file systems and networks. For example, you might want to store a list of App Store application titles in your application. Because applications in the App Store are organized by category, it would be natural to store this information using a property list employing the structure shown in the following table:

	CATEGORY
	TITLES

	Games
	"Animal Park", "Biology Quiz", "Calculus Test"

	Entertainment
	"Eye Balls - iBlower", "iBell", "iCards Birthday"

	Utilities
	"Battery Monitor", "iSystemInfo"

In Xcode, you can create and add a property list to your project and populate it with items using the built-in Property List Editor. The property list is deployed together with the application. Programmatically, you can retrieve the values stored in a property list using the NSDictionary class. More importantly, if you need to make changes to a property list, you can write the changes to a file so that you can later refer to the file directly instead of the property list.

In the following Try It Out, you create a property list and populate it with some values. You then read the values from the property list during runtime, make some changes, and save the modified values to another property list file in the Documents folder.

[image: image]
NOTE To store application-specific settings that users can modify outside your application, consider using the NSUserDefaults class to store the settings in the Settings application. Application settings are discussed in Chapter 9.

TRY IT OUT: Creating and Modifying a Property List

1. Using the same project created in the previous section, right-click the project name in Xcode and choose New File

2. Select the Resource item on the left of the New File dialog and select the Property List template on the right of the dialog (see Figure 10-4). Click Next.

FIGURE 10-4

[image: image]

3. Name the property list Apps.plist.

4. Populate Apps.plist as shown in Figure 10-5.

FIGURE 10-5

[image: image]

5. Add the following bold statements to the viewDidLoad method:

- (void)viewDidLoad
{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@"data.txt"];

 //NSString *fileName =
 //[[self tempPath] stringByAppendingPathComponent:@"data.txt"];
 //NSLog(@"%@", fileName);

 //---write something to the file---
 [self writeToFile:@"a string of text" withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@"%@", fileContent);

 //---get the path to the property list file---
 NSString *plistFileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@"Apps.plist"];

 //---if the property list file can be found---
 if ([[NSFileManager defaultManager] fileExistsAtPath:plistFileName]) {

 //---load the content of the property list file into a NSDictionary
 // object---
 NSDictionary *dict =
 [[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];

 //---for each category---
 for (NSString *category in dict) {
 NSLog(@"%@", category);
 NSLog(@"========");

 //---return all titles in an array---
 NSArray *titles = [dict valueForKey:category];

 //---print out all the titles in that category---
 for (NSString *title in titles) {
 NSLog(@"%@", title);
 }
 }
 [dict release];
 }
 else {
 //---load the property list from the Resources folder---
 NSString *pListPath =
 [[NSBundle mainBundle] pathForResource:@"Apps"
 ofType:@"plist"];

 NSDictionary *dict =
 [[NSDictionary alloc] initWithContentsOfFile:pListPath];

 //---make a mutable copy of the dictionary object---
 NSMutableDictionary *copyOfDict = [dict mutableCopy];

 //---get all the different categories---
 NSArray *categoriesArray =
 [[copyOfDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---for each category---
 for (NSString *category in categoriesArray) {
 //---get all the app titles in that category---
 NSArray *titles = [dict valueForKey:category];

 //---make a mutable copy of the array---
 NSMutableArray *mutableTitles = [titles mutableCopy];

 //---add a new title to the category---
 [mutableTitles addObject:@"New App title"];

 //---set the array back to the dictionary object---
 [copyOfDict setObject:mutableTitles forKey:category];
 [mutableTitles release];
 }

 //---write the dictionary to file---
 fileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@"Apps.plist"];
 [copyOfDict writeToFile:fileName atomically:YES];
 [dict release];
 [copyOfDict release];
 }
 [super viewDidLoad];
}

6. Press Command-R to test the application on the iPhone Simulator.

7. When you first run the application, it creates a new .plist file in the Documents folder. Double-click the .plist file to view it using the Property List Editor; you will see a new item named New App title for each category of applications (see Figure 10-6).

FIGURE 10-6

[image: image]

8. Run the application a second time. It prints the content of the .plist file in the Documents folder to the output window (see Figure 10-7), proving the existence of the property list in the Documents folder.

FIGURE 10-7

[image: image]

How It Works

The first part of this example shows how you can add a property list file to your application. In the property list file, you add three keys representing the category of applications in the App Store: Entertainment, Games, and Utilities. Each category contains a list of application titles.

When the view is loaded, you look for a file named Apps.plist in the Documents folder of your application:

 //---get the path to the property list file---
 NSString *plistFileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@"Apps.plist"];

If the file is found, you load its contents into an NSDictionary object:

 //---if the property list file can be found---
 if ([[NSFileManager defaultManager] fileExistsAtPath:plistFileName]) {

 //---load the content of the property list file into a NSDictionary
 // object---
 NSDictionary *dict =
 [[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];

 //...
 }

Next, you enumerate through all the keys in the dictionary object and print the title of each application in the output window:

 //---for each category---
 for (NSString *category in dict) {
 NSLog(@"%@", category);
 NSLog(@"========");

 //---return all titles in an array---
 NSArray *titles = [dict valueForKey:category];

 //---print out all the titles in that category---
 for (NSString *title in titles) {
 NSLog(@"%@", title);
 }
 }
 [dict release];

When the application is run for the first time, the Apps.plist file is not available, so you load it from the Resources folder:

 else {
 //---load the property list from the Resources folder---
 NSString *pListPath =
 [[NSBundle mainBundle] pathForResource:@"Apps"
 ofType:@"plist"];

 NSDictionary *dict =
 [[NSDictionary alloc] initWithContentsOfFile:pListPath];

 //...
 }

Because you are making changes to the dictionary object, you need to make a mutable copy of it and assign it to an NSMutableDictionary object:

 //---make a mutable copy of the dictionary object---
 NSMutableDictionary *copyOfDict = [dict mutableCopy];

This step is important because the NSDictionary object is immutable, meaning that after the items are populated from the property list, you cannot add content to the dictionary object. Using the mutableCopy method of the NSDictionary class allows you to create a mutable instance of the dictionary object, which is NSMutableDictionary.

You then retrieve an array containing all the keys in the mutable dictionary object:

 //---get all the different categories---
 NSArray *categoriesArray =
 [[copyOfDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

You use this array to loop through all the keys in the dictionary so that you can add some additional titles to each category:

 //---for each category---
 for (NSString *category in categoriesArray) {

 }

Note that you cannot enumerate using the NSMutableDictionary object like this:

 for (NSString *category in copyOfDict) {
 //...
 }

That’s because you cannot add items to the NSMutableDictionary object while it is being enumerated. Therefore, you need to loop using an NSArray object.

When you’re inside the loop, you extract all the titles of the applications in each category and make a mutable copy of the array containing the titles of the applications:

 //---get all the app titles in that category---
 NSArray *titles = [dict valueForKey:category];

 //---make a mutable copy of the array---
 NSMutableArray *mutableTitles = [titles mutableCopy];

You can now add a new title to the mutable array containing the application titles:

 //---add a new title to the category---
 [mutableTitles addObject:@"New App title"];

After the additional item is added to the mutable array, you set it back to the mutable dictionary object:

 //---set the array back to the dictionary object---
 [copyOfDict setObject:mutableTitles forKey:category];
 [mutableTitles release];

Finally, you write the mutable dictionary object to a file using the writeToFile:atomically: method:

 //---write the dictionary to file---
 fileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@"Apps.plist"];
 [copyOfDict writeToFile:fileName atomically:YES];
 [dict release];
 [copyOfDict release];

COPYING BUNDLED RESOURCES

In the previous section, you learned how to embed a property list file into your application and then programmatically recreate the property list and save it in the Documents folder during runtime. While that example showed the various ways to manipulate a property list, in general it is much easier to simply copy the resource (such as the property list) into the Documents folder directly.

All resources embedded within your application (commonly known as bundled resources) are read-only. In order to make changes to them, you need to copy them into the application’s folders, such as the Documents or tmp folders. You can do so by copying the resource when the application starts. The ideal location to perform this is in the application delegate. Using the preceding example, you could define the following copyFileInBundleToDocumentsFolder:withExtension: method in the FilesHandlingAppDelegate.m file:

#import "FilesHandlingAppDelegate.h"

#import "FilesHandlingViewController.h"

@implementation FilesHandlingAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (void) copyFileInBundleToDocumentsFolder:(NSString *) fileName
 withExtension:(NSString *) ext {

 //--get the path of the Documents folder--
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths objectAtIndex:0];

 //--get the path to the file you want to copy in the Documents folder--
 NSString *filePath =
 [documentsDirectory
 stringByAppendingPathComponent:
 [NSString stringWithString:fileName]];

 filePath = [filePath stringByAppendingString:@"."];
 filePath = [filePath stringByAppendingString:ext];

 //--check if file is already in Documents folder,
 // if not, copy it from the bundle--
 NSFileManager *fileManager = [NSFileManager defaultManager];
 if (![fileManager fileExistsAtPath:filePath]) {

 //--get the path of the file in the bundle--
 NSString *pathToFileInBundle =
 [[NSBundle mainBundle] pathForResource:fileName ofType:ext];

 //--copy the file in the bundle to the Documents folder--
 NSError *error = nil;
 bool success =
 [fileManager copyItemAtPath:pathToFileInBundle
 toPath:filePath error:&error];

 if (success) {
 NSLog(@"File copied");
 }
 else {
 NSLog(@"%@", [error localizedDescription]);
 }
 }
}

This method simply copies the specified file to the Documents folder if it is not already there.

To copy the property list when the application is starting, call the copyFileInBundleToDocumentsFolder:withExtension: method in the application:didFinishLaunchingWithOptions: event:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 //---copy the txt files to the Documents folder---
 [self copyFileInBundleToDocumentsFolder:@"Apps" withExtension:@"plist"];

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[FilesHandlingViewController alloc]
initWithNibName:@"FilesHandlingViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

Doing this ensures that the property list is copied to the Documents folder when the application runs for the first time.

IMPORTING AND EXPORTING FILES

One of the common tasks that iOS developers have to do is import and export documents from their iOS application. For example, suppose you are developing a document reader and you want to allow the user to import documents into your application so that they can be read offline. In addition, your reader might also support the exporting of documents so that other applications can make use of them. In this section, you will learn the different techniques you can employ to allow documents to be imported into or exported from your iOS application.

The following Try It Out creates the project that you will use to learn the various methods to import and export documents.

TRY IT OUT: Creating the Project

1. Using Xcode, create a new Single View (iPhone) application and name it OfflineReader. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the OfflineReaderViewController.xib file to open it in Interface Builder and populate it with a Web View and Round Rect Button (see Figure 10-8):

FIGURE 10-8

[image: image]

3. In the Attributes Inspector window for the Web View, ensure that you check the Scales Page to Fit option.

4. In the OfflineReaderViewController.xib file, add the following statements in bold:

#import <UIKit/UIKit.h>

@interface OfflineReaderViewController : UIViewController
<UIDocumentInteractionControllerDelegate> {
 IBOutlet UIWebView *webView;
}

-(void)openDocumentIn;
-(void)handleDocumentOpenURL:(NSURL *)url;
-(void)displayAlert:(NSString *) str;
-(void)loadFileFromDocumentsFolder:(NSString *) filename;
-(void)listFilesFromDocumentsFolder;

- (IBAction) btnDisplayFiles;

@end

5. Back in Interface Builder, connect the outlet and action to the Web View and Round Rect Button. Right-clicking on the File’s Owner item should now reveal the connections, as shown in Figure 10-9.

FIGURE 10-9

[image: image]

6. Drag and drop two files into the Supporting Files folder of the project (see Figure 10-10). In this example, I have a PDF file named Courses for Sep and Oct 2011.pdf and an image file named icon.jpg.

FIGURE 10-10

[image: image]

7. In the OfflineReader-Info.plist file, set the first item of the "Icon files" key to "icon.jpg" (see Figure 10-11).

FIGURE 10-11

[image: image]

How It Works

You now have an iPhone project with the icon set. It also has a PDF document in the Supporting Files folder. In the following sections, you will see how you can export the PDF file to external applications and allow other applications to import documents into your application.

Exporting Documents

In this section, you will learn how to export a document from your application. For example, in the Mail application on your iPhone, when you receive a PDF file, you can either tap on the icon (see Figure 10-12) to view the document within the Mail application or tap and hold the icon.

FIGURE 10-12

[image: image]

If you do the latter, an action sheet is displayed (see Figure 10-13). You can tap the “Open in . . .” button to see a list of applications to which your document can be exported.

FIGURE 10-13

[image: image]

The following Try It Out demonstrates how you can export the PDF document in the Supporting Files folder of your application to an external application.

TRY IT OUT: Exporting Documents to External Applications

1. Using the same project created in the previous section, add the following lines of code in bold to the OfflineReaderViewController.m file:

#import "OfflineReaderViewController.h"

@implementation OfflineReaderViewController

UIDocumentInteractionController *documentController;

-(void)openDocumentIn {
 NSString * filePath = [[NSBundle mainBundle] pathForResource:
 @"Courses for Sep and Oct 2011" ofType:@"pdf"];
 documentController = [UIDocumentInteractionController
 interactionControllerWithURL:[NSURL fileURLWithPath:filePath]];
 documentController.delegate = self;
 [documentController retain];
 documentController.UTI = @"com.adobe.pdf";
 [documentController presentOpenInMenuFromRect:CGRectZero
 inView:self.view
 animated:YES];
}

-(void)documentInteractionController:(UIDocumentInteractionController *)controller
 willBeginSendingToApplication:(NSString *)application {

}

-(void)documentInteractionController:(UIDocumentInteractionController *)controller
 didEndSendingToApplication:(NSString *)application {

}

-(void)documentInteractionControllerDidDismissOpenInMenu:
(UIDocumentInteractionController *)controller {

}

- (void)viewDidLoad {
 [self openDocumentIn];
 [super viewDidLoad];
}
-(void) dealloc {
 [documentController release];
 [super dealloc];
}

2. Press Command-R to test the application on a real device (the iOS Simulator won’t work in this case). When the View window is loaded, you will see an action sheet displaying the list of applications to which you can export your document (see Figure 10-14).

FIGURE 10-14

[image: image]

3. If you select iBooks, the PDF document will appear in iBooks (see Figure 10-15).

FIGURE 10-15

[image: image]

How It Works

The UIDocumentInteractionController class provides in-app support for user interaction with files in your application. In this example, you use it to export a document to an external application.

You then define a few methods. The openDocumentIn method basically creates the path to point to the PDF document (that you want to export) and then uses it to feed into the documentController object. You need to set the UTIs (Uniform Type Identifiers) for the documentController object so that it can help the system find the appropriate application to open your document. In this case, it is set to com.adobe.pdf, which represents a PDF document. Other common UTIs are com.apple.quicktime-movie (QuickTime movies), public.html (HTML documents), and public.jpeg (JPEG files).

The other three methods (documentInteractionController:willBeginSendingToApplication:,

documentInteractionController:didEndSendingToApplication:, and

documentInteractionControllerDidDismissOpenInMenu:) are the methods defined in the UIDocumentInteractionControllerDelegate protocol. They are fired when the documentController object is being invoked. For this example, you don’t really need to code anything within these methods.

Finally, in the viewDidLoad method, you invoke the openDocumentIn method to export the document.

File Sharing

The previous section showed how you can export a document to an external application that can be chosen by the user. What about the reverse — importing a document into your application? In iOS, there are two ways to get files into your application:

	File sharing through iTunes

	Exchanges between applications (like the one you just saw in the previous section)

The first method presents a very easy and direct way for users to transfer large number of files into or out of an application. The following Try It Out shows you how.

TRY IT OUT: File Sharing through iTunes

1. Using the same project created in the previous section, add a new key named UIFileSharingEnabled to the OfflineReader-Info.plist file and set its value to YES (see Figure 10-16).

FIGURE 10-16

[image: image]

[image: image]
NOTE The UIFileSharingEnabled key is also known as “Application supports iTunes File Sharing” in the drop-down menu.

2. Press Command-R to redeploy the application onto the real device. Launch iTunes and select the device name, followed by the Apps tab. Figure 10-17 shows that the OfflineReader application now appears under the File Sharing section (scroll down to the bottom of the page).

FIGURE 10-17

[image: image]

3. To copy a file into the application, simply drag and drop it into the rectangle labeled OfflineReader Documents. Figure 10-18 shows that I have copied a PDF document into the application. All copied documents will reside in the Documents folder of your application.

FIGURE 10-18

[image: image]

4. If you want to extract files from the application’s Documents folder and save them locally to your computer, select the file(s) and click the “Save to . . .” button.

5. To confirm that the files are copied into the Documents folder of your application, add the following code to the OfflineReaderViewController.m file:

-(void) displayAlert:(NSString *) str {
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Alert"
 message:str
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (void)handleDocumentOpenURL:(NSURL *)url {
 NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];
 [webView setUserInteractionEnabled:YES];
 [webView loadRequest:requestObj];
}

-(void)loadFileFromDocumentsFolder:(NSString *) filename {
 //---get the path of the Documents folder---
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:filename];
 NSURL *fileUrl = [NSURL fileURLWithPath:filePath];
 [self handleDocumentOpenURL:fileUrl];
}

-(void)listFilesFromDocumentsFolder {
 //---get the path of the Documents folder---
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];

 NSFileManager *manager = [NSFileManager defaultManager];
 NSArray *fileList =
 [manager contentsOfDirectoryAtPath:
 documentsDirectory error:nil];
 NSMutableString *filesStr =
 [NSMutableString stringWithString:
 @"Files in Documents folder \n"];
 for (NSString *s in fileList){
 [filesStr appendFormat:@"%@ \n", s];
 }
 [self displayAlert:filesStr];
 [self loadFileFromDocumentsFolder:@"Beginning iOS 4 Application Development.pdf"];
}

- (IBAction) btnDisplayFiles {
 [self listFilesFromDocumentsFolder];
}

6. Press Command-R to deploy the application on the device again. Tapping the Display Files in Documents button will both display the filename and load the PDF document in the Web View (see Figure 10-19), proving that the file was transferred into the application successfully.

FIGURE 10-19

[image: image]

How It Works

The magic for making your application appear under the File Sharing section of iTunes is the UIFileSharingEnabled key. Once this key is set to YES, your application will automatically appear in iTunes, exposing the Documents folder.

In this example, the displayAlert: method is simply a helper method to display an alert view on the screen.

The handleDocumentOpenURL: method takes an NSURL object and loads the Web View with its content.

The loadFileFromDocumentsFolder: method takes a filename and converts its path into an NSURL object. It then calls the handleDocumentOpenURL: method to display the Web View with the content of the file.

The listFilesFromDocumentsFolder method displays the names of all files and folders contained within the Documents folder of the application. Besides that, it is also hardcoded to display the PDF document named Beginning iOS 4 Application Development.pdf (which was copied earlier). If the file is loaded successfully on the Web View, this proves that the document is copied correctly through iTunes.

Importing Documents

The second method of transferring documents into an application is through another application. Earlier, you saw how a PDF document in your application can be transferred to the iBooks application for viewing. This time, you will learn how a document can be transferred into your own application.

To begin, the following Try It Out shows you how to modify your application to accept PDF documents. Essentially, you need to get your application to register with the iOS, informing it that it is able to accept PDF documents.

TRY IT OUT: Importing Documents into Your Application

1. Using the same project created in the previous section, modify the OfflineReader-Info.plist file (right-click on any of the items in this file and select Show Raw Keys/Values) by adding a new CFBundleDocumentTypes key as shown in Figure 10-20.

FIGURE 10-20

[image: image]

2. Add the following bold statements to the OfflineReaderAppDelegate.m file:

#import "OfflineReaderAppDelegate.h"

#import "OfflineReaderViewController.h"

@implementation OfflineReaderAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

-(BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation {
 if (url != nil && [url isFileURL]) {
 [self.viewController handleDocumentOpenURL:url];
 }
 Return YES;
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[OfflineReaderViewController alloc]
 initWithNibName:@"OfflineReaderViewController"
 bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 Return YES;
}

3. Add the following bold statements to the handleDocumentOpenURL: method:

- (void)handleDocumentOpenURL:(NSURL *)url {
 [self displayAlert:[url absoluteString]];
 NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];
 [webView setUserInteractionEnabled:YES];
 [webView loadRequest:requestObj];
}

4. Press Command-R to redeploy the application onto the real device. This time, if you go back to the same e-mail containing the PDF document and tap and hold onto it, you will find that you have the option to open the document in the OfflineReader application (see Figure 10-21).

FIGURE 10-21

[image: image]

5. When the document is opened in OfflineReader, the path of the document is shown (see Figure 10-22).

FIGURE 10-22

[image: image]

How It Works

The CFBundleDocumentTypes key in the OfflineReader-Info.plist file will register that the application is capable of handling PDF documents with iOS. Note the following:

	The CFBundleDocumentTypes key is of type Array. It contains an array of dictionaries describing the types of documents supported by your application.

	Item 0 is of type Dictionary.

	The CFBundleTypeName key specifies the abstract name for the specified document type.

	The LSHandlerRank key specifies whether the application is the Owner (creator of this file type), Alternate (secondary viewer of this file type), None, or Default.

	The CFBundleTypeRole key specifies the application’s role with respect to the type: Editor, Viewer, Shell, or None.

	The LSItemContentTypes key is of type Array. It contains an array of UTIs specifying the file type.

When a PDF document is passed into the application, the application fires a particular method: application:openURL:sourceApplication:annotation:. This method must be implemented in the application delegate:

-(BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation {
 if (url != nil && [url isFileURL]) {
 [self.viewController handleDocumentOpenURL:url];
 }
 return YES;
}

When a document is passed into your application, it is copied into a folder called Inbox, located within the Documents folder. The url argument contains the path to the document in the Inbox folder. In the preceding code, once the document is passed in, you call the handleDocumentOpenURL: method defined in the OfflineReaderViewController class to load the document in the Web View.

Importing Self-Defined Documents

The previous section showed how to import well-known document types, such as PDF, into your application. What if you want to import your own self-defined document types? For example, suppose you are writing a Sudoku program and want to implement your own file format for saving the state of a game. In this case, your file might have the .sdk extension, which is used only by your application. The following Try It Out shows you how to accomplish this.

TRY IT OUT: Importing Self-Defined Documents into Your Application

1. Using the same project created in the previous section, add the keys shown in Figure 10-23 to the OfflineReader-Info.plist file:

FIGURE 10-23

[image: image]

2. Press Command-R to test the application on a real device again. This time, if your e-mail contains a document of extension .sdk, you will see the icon of your application displayed next to the document name (see Figure 10-24). When you tap on the document name, you will see a list of options to open your documents with (see Figure 10-25).

FIGURE 10-24

[image: image]

FIGURE 10-25

[image: image]

How It Works

Observe that you add another key to the CFBundleDocumentTypes array. You set the LSItemContentTypes to a unique value, using the reverse domain name of your company and the type you are defining. Since this is a self-defined content type, you have to define it using the UTExportedTypeDeclarations key.

Once the self-defined document is copied into your application, you can proceed to perform whatever actions you want. The document is saved in the Inbox folder, located within the Documents folder.

[image: image]
NOTE For more information on UTI, refer to Apple’s documentation: “Introduction to Uniform Type Identifiers Overview.” http://developer.apple.com/library/ios/#documentation/FileManagement/Conceptual/understanding_utis/understand_utis_intro/understand_utis_intro.html.

SUMMARY

This chapter demonstrated how to write a file to the file system of the iPhone and how to read it back. In addition, you saw how structured data can be represented using a property list and how you can programmatically work with a property list using a dictionary object. The next chapter shows you how to use databases to store more complex data.

EXERCISES

1. Describe the uses of the various subfolders contained within an application’s folder.

2. What is the difference between the NSDictionary and NSMutableDictionary classes?

3. Name the paths of the Documents and tmp folders on a real device.

4. Name the class that provides in-app support for exporting documents from your application.

5. What key should be set in order to allow file sharing support for your application?

6. What key is used to register a new file type with iOS to inform it that your application is capable of handling it?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Subdirectories in each of the applications folders
	Documents, Library, and tmp

	Getting the path of the Documents folder
	
NSArray *paths =
NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsDir = [paths objectAtIndex:0];

	Getting the path of the tmp directory
	
-(NSString *) tempPath{
return NSTemporaryDirectory();
}

	Checking whether a file exists
	
if ([[NSFileManager defaultManager]
fileExistsAtPath:filePath]) {
}

	Loading a property list from the Resources folder
	
NSString *pListPath =
[[NSBundle mainBundle]
 pathForResource:@"Apps"
 ofType:@"plist"];

	Creating a mutable copy of an NSDictionary object
	
NSDictionary *dict =
[[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];
NSMutableDictionary *copyOfDict = [dict mutableCopy];

	Using bundled resources in your application
	Copy the resources into the application’s folders, such as Documents or tmp. You should copy the resources in the application’s delegate when the application has just finished launching.

	Exporting documents from your application
	Use the UIDocumentInteractionController class.

	Enabling file sharing in your application
	Set the UIFileSharingEnabled key to YES in the .plist file of your project.

	Importing documents into your application
	Implement the application:openURL:sourceApplication:annotation: method in your application delegate.

	Defining a file type supported by your application
	Set the CFBundleDocumentTypes key in the .plist file.

Chapter 11

Database Storage Using SQLite

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to use the SQLite3 database in your Xcode project

	Creating and opening a SQLite3 database

	How to use the various SQLite3 functions to execute SQL strings

	How to use bind variables to insert values into a SQL string

	Bundling a pre-built SQLite database with your application

As you continue on your iOS development journey, you will soon realize that your application needs a way to save data. For example, you may want to save the text that the user is entering into a text field, or, in an RSS application, the last item that the user has read.

For simple applications, you can write the data you want to persist to a text file. For more structured data, you can use a property list. For large and complex data, it is more efficient to store it using a database. The iOS comes with the SQLite3 database library, which you can use to store your data. With your data stored in a database, your application can populate a Table view or store a large amount of data in a structured manner.

[image: image]
NOTE Besides using SQLite for data storage, developers can also use another framework for storage: Core Data. Core Data is part of the Cocoa API, which was first introduced in the iPhone SDK 3.0. It is basically a framework for manipulating data without worrying about the details of storage and retrieval. A discussion of Core Data is beyond the scope of this book.

This chapter shows you how to use the embedded SQLite3 database library in your applications.

LINKING TO THE SQLITE3 LIBRARY

To use a SQLite3 database in your application, you first need to add the libsqlite3.dylib library to your Xcode project. The following Try It Out demonstrates how. You will need to download the code files indicated for this exercise and the rest of the Try It Out features in this chapter.

TRY IT OUT: Preparing Your Project to Use SQLite3

codefile Databases.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Databases. Use the project name as the Class Prefix. Ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the project name and then click the Build Phases tab on the right (see Figure 11-1). Click the “+” button shown in the Link Binary with Libraries section to add the libsqlite3.dylib library to it. After this, the library will be added to the project (see Figure 11-2).

FIGURE 11-1

[image: image]

FIGURE 11-2

[image: image]

3. In the DatabasesViewController.h file, declare a variable of type sqlite3, as well as a few methods (see the code in bold). You will define the various methods throughout this chapter.

#import <UIKit/UIKit.h>
#import "sqlite3.h"

@interface DatabasesViewController : UIViewController
{
 sqlite3 *db;
}

-(NSString *) filePath;
-(void) openDB;
-(void) createTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 withField2:(NSString *) field2;
-(void) insertRecordIntoTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 field1Value:(NSString *) field1Value
 andField2:(NSString *) field2
 field2Value:(NSString *) field2Value;
-(void) getAllRowsFromTableNamed: (NSString *) tableName;

@end

4. In the DatabasesViewController.m file, define the filePath method as shown in bold:

#import "DatabasesViewController.h"

@implementation DatabasesViewController

-(NSString *) filePath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:@"database.sql"];
}

How It Works

In order to work with SQLite3, you must link your application to a dynamic library called libsqlite3.dylib. The libsqlite3.dylib that you selected is an alias to the latest version of the SQLite3 library. On an actual iPhone device, the libsqlite3.dylib is located in the /usr/lib/ directory.

To use a SQLite database, you need to create an object of type sqlite3:

 sqlite3 *db;

The filePath method returns the full path to the SQLite database that will be created in the Documents directory on your iPhone (within your application’s sandbox):

-(NSString *) filePath {
NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:@"database.sql"];

[image: image]
NOTE Chapter 10 discusses the various folders that you can access within your application’s sandbox.

CREATING AND OPENING A DATABASE

After the necessary library is added to the project, you can open a database for usage. You use the various C functions included with SQLite3 to create or open a database, as demonstrated in the following one-step Try It Out.

TRY IT OUT: Opening a Database

1. Using the Databases project created previously, define the openDB method in the DatabasesViewController.m file:

-(void) openDB {
 //--create database--
 if (sqlite3_open([[self filePath] UTF8String], &db) != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @"Database failed to open.");
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [super viewDidLoad];
}

How It Works

The sqlite3_open() C function opens a SQLite database whose filename is specified as the first argument:

[self filePath] UTF8String]

In this case, the filename of the database is specified as a C string using the UTF8String method of the NSString class because the sqlite3_open() C function does not understand an NSString object.

The second argument contains a handle to the sqlite3 object, which in this case is db.

If the database is available, it is opened. If the specified database is not found, a new database is created. If the database is successfully opened, the function will return a value of 0 (represented using the SQLITE_OK constant).

The following list from www.sqlite.org/c3ref/c_abort.html shows the result codes returned by the various SQLite functions:

#define SQLITE_OK 0 /* Successful result */
#define SQLITE_ERROR 1 /* SQL error or missing database */
#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
#define SQLITE_PERM 3 /* Access permission denied */
#define SQLITE_ABORT 4 /* Callback routine requested an abort */
#define SQLITE_BUSY 5 /* The database file is locked */
#define SQLITE_LOCKED 6 /* A table in the database is locked */
#define SQLITE_NOMEM 7 /* A malloc() failed */
#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
#define SQLITE_FULL 13 /* Insertion failed because database is full */
#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
#define SQLITE_EMPTY 16 /* Database is empty */
#define SQLITE_SCHEMA 17 /* The database schema changed */
#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
#define SQLITE_MISMATCH 20 /* Data type mismatch */
#define SQLITE_MISUSE 21 /* Library used incorrectly */
#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
#define SQLITE_AUTH 23 /* Authorization denied */
#define SQLITE_FORMAT 24 /* Auxiliary database format error */
#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
#define SQLITE_NOTADB 26 /* File opened that is not a database file */
#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */

Examining the Database Created

If the database is created successfully, it can be found in the Documents folder of your application’s sandbox on the iPhone Simulator in the ~/Library/Application Support/iPhone Simulator/5.0/Applications/<App_ID>/Documents/folder (see Figure 11-3).

FIGURE 11-3

[image: image]

Creating a Table

After the database is created, you can create a table to store some data. The following one-step Try It Out demonstrates how to create a table with two text fields. For illustration purposes, create a table named Contacts, with two fields called email and name.

TRY IT OUT: Creating a Table

1. Using the same Databases project, define the createTableNamed:with-Field1:withField2: method in the DatabasesViewController.m file as follows:

-(void) createTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 withField2:(NSString *) field2 {

 char *err;
 NSString *sql = [NSString stringWithFormat:
 @"CREATE TABLE IF NOT EXISTS '%@' ('%@' "
 "TEXT PRIMARY KEY, '%@' TEXT);",
 tableName, field1, field2];

 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @"Tabled failed to create.");
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [self createTableNamed:@"Contacts"
 withField1:@"email"
 withField2:@"name"];
 [super viewDidLoad];

How It Works

The createTableNamed:withField1:withField2: method takes three parameters: tableName, field1, and field2.

Using these parameters, you first formulate a SQL string and then create a table using the sqlite3_exec() C function, with the important arguments to this function being the sqlite3 object, the SQL query string, and a pointer to a variable for error messages. If an error occurs in creating the database, then you use the NSAssert method to halt the application and close the database connection.

If the operation is successful, a table named Contacts with two fields (email and name) is created.

[image: image]
NOTE For a jump start in the SQL language, check out the SQL tutorial at http://w3schools.com/sql/default.asp.

Inserting Records

After the table is created, you can insert some records into it. The following Try It Out shows you how to write three rows of records in the table created in the previous section.

TRY IT OUT: Inserting Records

1. In the Databases project, define the insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method in the DatabasesViewController.m file as follows and modify the viewDidLoad method as shown in bold:

-(void) insertRecordIntoTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 field1Value:(NSString *) field1Value
 andField2:(NSString *) field2
 field2Value:(NSString *) field2Value {

 NSString *sql = [NSString stringWithFormat:
 @"INSERT OR REPLACE INTO '%@' ('%@', '%@') "
 "VALUES ('%@','%@')", tableName, field1, field2,
 field1Value, field2Value];

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @"Error updating table.");
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [self createTableNamed:@"Contacts"
 withField1:@"email"
 withField2:@"name"];
 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @"user%d@learn2develop.net",i];

 NSString *name = [[NSString alloc] initWithFormat: @"user %d",i];
 [self insertRecordIntoTableNamed:@"Contacts"
 withField1:@"email" field1Value:email
 andField2:@"name" field2Value:name];
 [email release];
 [name release];
 }

 [super viewDidLoad];

How It Works

The code in this example is similar to that of the previous one; you formulate a SQL string and use the sqlite3_exec() C function to insert a record into the database:

 NSString *sql = [NSString stringWithFormat:
 @"INSERT OR REPLACE INTO '%@' ('%@', '%@') "
 "VALUES ('%@','%@')", tableName, field1, field2,
 field1Value, field2Value];
 //--the above SQL statement to be typed in a single line--

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @"Error updating table.");
 }

In the viewDidLoad method, you insert three records into the database by calling the insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method:

 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @"user%d@learn2develop.net",i];

 NSString *name = [[NSString alloc] initWithFormat: @"user %d",i];
 [self insertRecordIntoTableNamed:@"Contacts"
 withField1:@"email" field1Value:email
 andField2:@"name" field2Value:name];
 [email release];
 [name release];
 }

Bind Variables

When formulating SQL strings, you often need to insert values into the query string and ensure that the string is well formulated and contains no invalid characters. In the preceding section, you saw that in order to insert a row into the database, you had to formulate your SQL statement like this:

 NSString *sql = [NSString stringWithFormat:
 @"INSERT OR REPLACE INTO '%@' ('%@', '%@') "
 "VALUES ('%@','%@')", tableName, field1, field2,
 field1Value, field2Value];
 //--the above SQL statement to be typed in a single line--

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @"Error updating table.");
 }

SQLite supports a feature known as bind variables to help you formulate your SQL string. For example, the preceding SQL string can be formulated as follows using bind variables:

 NSString *sqlStr = [NSString stringWithFormat:
 @"INSERT OR REPLACE INTO '%@' ('%@', '%@') "
 "VALUES (?,?)", tableName, field1, field2];
 const char *sql = [sqlStr UTF8String];

Here, the ? is a placeholder; you must replace it with the actual value of the query. In the preceding statement, assuming that tableName is Contacts, field1 is email, and field2 is name, the sql is now as follows:

INSERT OR REPLACE INTO Contacts ('email', 'name') VALUES (?,?)

[image: image]
NOTE The ? can be inserted only into the VALUES and WHERE section of the SQL statement; you cannot insert it into a table name, for example. The following statement would be invalid:

INSERT OR REPLACE INTO ? ('email', 'name') VALUES (?,?)

To substitute the values for the ?, create a sqlite3_stmt object and use the sqlite3_prepare_v2() function to compile the SQL string into a binary form and then insert the placeholder values using the sqlite3_bind_text() function, like this:

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, sql, -1, &statement, nil) == SQLITE_OK) {
 sqlite3_bind_text(statement, 1, [field1Value UTF8String],
 -1, NULL);
 sqlite3_bind_text(statement, 2, [field2Value UTF8String],
 -1, NULL);

[image: image]
NOTE To bind integer values, use the sqlite3_bind_int() function.

After the preceding call, the SQL string looks like this:

INSERT OR REPLACE INTO Contacts ('email', 'name') VALUES
 ('user0@learn2develop.net', 'user0')

To execute the SQL statement, you use the sqlite3_step() function, followed by the sqlite3_finalize() function to delete the prepared SQL statement:

 if (sqlite3_step(statement) != SQLITE_DONE)
 NSAssert(0, @"Error updating table.");
 sqlite3_finalize(statement);

Using bind variables, the insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method could now be rewritten as follows:

-(void) insertRecordIntoTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 field1Value:(NSString *) field1Value
 andField2:(NSString *) field2
 field2Value:(NSString *) field2Value {

 NSString *sqlStr = [NSString stringWithFormat:
 @"INSERT OR REPLACE INTO '%@' ('%@', '%@') "
 "VALUES (?,?)", tableName, field1, field2];
 const char *sql = [sqlStr UTF8String];

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, sql, -1, &statement, nil) == SQLITE_OK) {
 sqlite3_bind_text(statement, 1, [field1Value UTF8String],
 -1, NULL);
 sqlite3_bind_text(statement, 2, [field2Value UTF8String],
 -1, NULL);
 }

 if (sqlite3_step(statement) != SQLITE_DONE)
 NSAssert(0, @"Error updating table.");
 sqlite3_finalize(statement);

[image: image]
NOTE In the “Inserting Records” section, you used the sqlite3_exec() function to execute SQL statements. In this example, you actually use a combination of the sqlite3_prepare(), sqlite3_step(), and sqlite3_finalize() functions to do the same thing. In fact, the sqlite3_exec() function is actually a wrapper for these three functions. For nonquery SQL statements (such as for creating tables, inserting rows, and so on), it is always better to use the sqlite3_exec() function.

Retrieving Records

Now that the records have been successfully inserted into the table, it is time to retrieve them. This is a good way to ensure that they have actually been saved. The following Try It Out shows you how to retrieve your records.

TRY IT OUT: Retrieving Records from a Table

1. In the Databases project, define the getAllRowsFromTableNamed: method in the DatabasesViewController.m file as follows and modify the viewDidLoad method as shown in bold:

-(void) getAllRowsFromTableNamed: (NSString *) tableName {
 //--retrieve rows--
 NSString *qsql = [NSString stringWithFormat:@"SELECT * FROM %@",
 tableName];

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@"%@ - %@",
 field1Str, field2Str];
 NSLog(@"%@", str);

 [field1Str release];
 [field2Str release];
 [str release];
 }

 //--deletes the compiled statement from memory--
 sqlite3_finalize(statement);
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [self createTableNamed:@"Contacts"
 withField1:@"email"
 withField2:@"name"];
 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @"user%d@learn2develop.net",i];

 NSString *name = [[NSString alloc] initWithFormat: @"user %d",i];
 [self insertRecordIntoTableNamed:@"Contacts"
 withField1:@"email" field1Value:email
 andField2:@"name" field2Value:name];
 [email release];
 [name release];
 }

 [self getAllRowsFromTableNamed:@"Contacts"];
 sqlite3_close(db);
 [super viewDidLoad];
 }

2. Press Command-R to test the application. In Xcode, press Command-Shift-C to display the Output window. When the application has loaded, the Debugger Console displays the records (see Figure 11-4), proving that the rows are indeed in the table.

FIGURE 11-4

[image: image]

How It Works

To retrieve the records from the table, you first prepare the SQL statement and then use the sqlite3_step() function to execute the prepared statement. The sqlite3_step() function returns a value of 100 (represented by the SQLITE_ROW constant) if another row is ready. In this case, you call the sqlite3_step() function using a while loop, continuing as long as it returns a SQLITE_ROW:

 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@"%@ - %@",
 field1Str, field2Str];
 NSLog(@"%@", str);

 [field1Str release];
 [field2Str release];
 [str release];
 }
 //--deletes the compiled statement from memory--
 sqlite3_finalize(statement);
 }

To retrieve the value for the first field in the row, you use the sqlite3_column_text() function by passing it the sqlite3_stmt object as well as the index of the field you are retrieving. For example, you use the following to retrieve the first field of the returned row:

 char *field1 = (char *) sqlite3_column_text(statement, 0);

To retrieve an integer column (field), use the sqlite3_column_int() function.

[image: image]
NOTE If the method you are calling is defined below the viewDidLoad, the compiler will generate a warning.

BUNDLING SQLITE DATABASES WITH YOUR APPLICATION

Although programmatically creating a SQLite database and using it during runtime is very flexible, most of the time you just need to create the database file during the designing stage of your development, and bundle the database with your application so that it can be used during runtime. Therefore, rather than create the database file using code, you need to create it in Mac OS X.

Fortunately, you can easily create a SQLite database file in Mac OS X by using the sqlite3 application in Terminal. Figure 11-5 shows the command that you need to create a database named mydata.sql, containing a table named Contacts with two fields: email and name. It also inserts a row into the table and then retrieves it to verify that it is inserted properly.

FIGURE 11-5

[image: image]

The commands are as follows:

	sqlite3 mydata.sql

	CREATE TABLE IF NOT EXISTS Contacts (email TEXT PRIMARY KEY, name TEXT);

	INSERT INTO Contacts (email, name) VALUES ('weimenglee@gmail.com’, ‘weimenglee’);

	SELECT * FROM Contacts;

[image: image]
NOTE Remember to end each command with a semicolon (;). Also, by default, when you launch Terminal, you are in your home directory. Hence, running the sqlite3 application will save your database file in your home directory.

Even though you could use the sqlite3 application to insert records into the database, it would be much easier to use a graphical tool to do that. You can use the SQLite Database Browser (see Figure 11-6), which you can download free from http://sourceforge.net/projects/sqlitebrowser/. Using the SQLite Database Browser, you can perform a wide variety of functions with the database file.

FIGURE 11-6

[image: image]

SUMMARY

This chapter provided a brief introduction to the SQLite3 database used in the iPhone. With SQLite3, you can now store all your structured data in an efficient manner and perform complex aggregations on your data. To learn more about SQLite, visit its official page at www.sqlite.org.

EXERCISES

1. Explain the difference between the sqlite3_exec() function and the three functions sqlite3_prepare(), sqlite3_step(), and sqlite3_finalize().

2. How do you obtain a C-style string from an NSString object?

3. Write the code segment to retrieve a set of rows from a table.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Using a SQLite3 database in your application
	Add a reference to the libsqlite3.dylib library to your project.

	Obtaining a C-style string from an NSString object
	Use the UTF8String method of the NSString class.

	Creating and opening a SQLite3 database
	Use the sqlite3_open() C function.

	Executing a SQL query
	Use the sqlite3_exec() C function.

	Closing a database connection
	Use the sqlite3_close() C function.

	Using bind variables
	Create a sqlite3_stmt object.
Use the sqlite3_prepare_v2() C function to prepare the statement.
Use the sqlite3_bind_text() (or sqlite3_bind_int(), and so on) C function to insert the values into the statement.
Use the sqlite3_step() C function to execute the statement.
Use the sqlite3_finalize() C function to delete the statement from memory.

	Retrieving records
	Use the sqlite3_step() C function to retrieve each individual row.

	Retrieving columns from a row
	Use the sqlite3_column_text() (or sqlite3_column_int(), and so on) C function.

Chapter 12

Programming iCloud

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to enable iCloud storage for your iOS application

	How to store documents for your application on iCloud

	How to store key-value data for your application on iCloud

One of the major new features in iOS 5 is iCloud. Using iCloud, all the information stored on your devices is stored on remote servers (commonly known as cloud computing) maintained by Apple. For example, all the contacts on your iPhone can be synced to iCloud. When you purchase a new iPad, all the contacts on your iPhone can automatically be downloaded from iCloud wirelessly, saving you all the time of transferring the information (either manually or through iTunes) to the new device; and when you make changes to a contact on the iPad, the changes are automatically synced to the iPhone. In addition to syncing content, you can also use iCloud to automatically download songs, apps, and books that you have purchased on other iOS devices.

In iOS 5, iCloud is available free to all users. When you sign up for iCloud, you get 5GB of free storage (you can purchase additional storage if you need more). Using this free storage, you can use iCloud to back up your devices so that in the unfortunate event that you lose your iPhone (or iPad), you can simply restore all your content onto a new replacement device.

In this chapter, you will learn how to make use of iCloud to save documents and data in your application so that they are available to the same application running on all your other devices.

STORING AND USING DOCUMENTS IN ICLOUD

From an iOS developer’s perspective, iCloud presents two different usage scenarios:

	Document storage — Saves all your application documents on iCloud so that it accessible to other devices

	Key-value data storage — Saves small amounts of application-specific data to the application so that it can be shared with other devices

The first usage involves saving documents in your application on the iCloud. For example, in an eBook reader application, a user may purchase an eBook (or simply copy a PDF document into the application’s Documents folder; see Chapter 10). The user would expect the newly purchased eBook to be available to the same application on another device. Instead of storing the eBook on your application’s sandbox, your application can make use of iCloud’s document storage to store the eBook. Documents stored in the iCloud’s document storage are automatically available to your application on all other devices. This way, all your application’s documents are stored in a central location and available to all the user’s devices.

The second usage allows you to store application-specific data on iCloud. Data that is specific to an application (such as application preferences) can be saved onto iCloud and made visible to the same application on all your other devices. Using the eBook reader example, the page number of a book that the reader is currently reading is a perfect example of an application-specific data that can be stored on the iCloud and made available on other devices, with the result being the reader can start reading a book on one device, turn that device off, and then later start reading the same book at the same place they left off, on another device.

The following sections describe these two usage scenarios.

Enabling iCloud Storage for Your Application

Even though iCloud is free for iOS 5 users, you need to register for iCloud on your device before you can use it. To register for iCloud, go to the Settings application on your iOS device, tap the iCloud item, and follow the instructions on screen.

[image: image]
NOTE The following sections describe how to write an application to make use of iCloud. Because several steps are involved, I have divided them into individual sections so that you can understand each part of the process before continuing.

The following Try It Out shows you how to take the first step to enabling iCloud for your application: creating an iCloud-enabled App ID and provisioning profile.

TRY IT OUT: Creating the App ID and Provisioning Profile for iCloud

1. Log in to the iOS Provisioning Portal at http://developer.apple.com/devcenter/ios/index.action to create a new App ID.

[image: image]
NOTE For more information on how to log in to the iOS Provisioning Portal, please refer to Appendix A.

2. On the Manage tab of the App IDs page, create an App ID and give it a description of DemoiCloudAppID. Select Use Team ID as the Bundle Seed and name the Bundle Identifier net.learn2develop.DemoiCloud (see Figure 12-1).

FIGURE 12-1

[image: image]

[image: image]
NOTE The Bundle Identifier must be globally unique; hence be sure to use your organization’s reverse domain name so that you can minimize the chances that someone has the same Bundle Identifier as you. In any case, if there is a conflict you will be asked to provide another unique Bundle Identifier.

3. With the App ID created, you need to enable the App ID for iCloud. Click the Configure link shown on the right of the App ID that you have just created to configure it. Check the Enable for iCloud option, as shown in Figure 12-2.

FIGURE 12-2

[image: image]

4. A pop-up will appear, warning you that all new provisioning profiles you create using this App ID will be enabled for iCloud. All existing profiles that you wish to use for iCloud must be modified and reinstalled on your devices again. Click OK to continue (see Figure 12-3).

FIGURE 12-3

[image: image]

5. You now need to create a new provisioning profile to use with this new App ID. On the Development tab of the Provisioning page, create a new Profile named DemoiCloudProfile, associate it with this new App ID, and select the devices on which you wish to test (see Figure 12-4). Click Submit to continue.

FIGURE 12-4

[image: image]

6. Once the profile is created, download and install it onto any devices that you will use to test your application. For the example in this chapter, you need two iOS devices; the Simulator does not support iCloud.

[image: image]
NOTE Refer to Appendix A if you are unsure how to install the provisioning profile onto your devices. To test the iCloud feature, you need a real device; the iOS Simulator will not work.

How It Works

To use iCloud for storage of your documents, you need to have an App ID that is enabled for iCloud. Note that for the Bundle Identifier, you need to specify a unique identifier string (using your reverse-domain name is recommended); the wildcard character (*) is not allowed. Also, the provisioning profiles that you will use to deploy your application onto real devices must use this iCloud-enabled App ID. If you already have existing provisioning profiles created and want to use this iCloud-enabled App ID, you need to modify these provisioning profiles to use this new App ID, and then download and install them onto your devices again. The easiest way to get this example to work is to create a new provisioning profile.

Setting Project Entitlements

When your application uses iCloud to store documents, folders will be created in iCloud to uniquely identify the owner. Hence, you need to request specific entitlements in your application so that iCloud can differentiate your application’s documents from other applications. These entitlements are tied to the provisioning profile.

The following Try It Out demonstrates how to request for entitlements in your application in order to use iCloud for document storage and key-value data.

TRY IT OUT: Creating the Project and Setting the Entitlements

codefile DemoiCloud.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it DemoiCloud. Use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. In the Summary page for the project (see Figure 12-5), scroll down to the Entitlements section.

FIGURE 12-5

[image: image]

3. Check the Enable Entitlements option and set the values as follows: (shown in Figure 12-5)

	Entitlements File — DemoiCloud

	iCloud-Key-Value Store — net.learn2develop.DemoiCloud

	iCloud Containers — net.learn2develop.DemoiCloud

	Keychain Access Groups — net.learn2develop.DemoiCloud

How It Works

You need to set two entitlements in your application if you want to use iCloud.

If you want to use iCloud document storage, you need to request the iCloud Containers entitlement. This is done by simply setting it to a value of the following format: <TEAM_ID>.<CUSTOM_STRING>. The Team_ID is the unique ten-character identifier associated with your developer account (refer to Figure 12-2). Note that in this example you do not need to enter the TEAM_ID, as it is set for you automatically (more on this shortly).The CUSTOM_STRING is a string that you set to uniquely identify the iCloud storage container used by your application. It is recommended that you use the reverse domain name of your organization for the custom string, just like the Bundle Identifier used in your App ID. You can set more than one iCloud Containers entitlement if you want to create multiple containers to be used by multiple applications. The first iCloud containers entitlement is always the main container used by your application.

If you want to use iCloud key-value data storage, you need to request the iCloud Key-Value Store entitlement. You only need to set a single value for this entitlement.

In the preceding example, the entitlements are saved in the DemoiCloud.entitlements file in the project. To see its raw content, right-click on the file and select Open As ⇒ Source Code. Its raw content looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "
 http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>com.apple.developer.ubiquity-container-identifiers</key>
<array>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
<key>com.apple.developer.ubiquity-kvstore-identifier</key>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
<key>keychain-access-groups</key>
<array>
<string>$(AppIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
</dict>
</plist>

Notice the inclusion of the $(TeamIdentifierPrefix) placeholder (which is shown in bold above). Hence, you do not need to enter your TEAM_ID earlier when you set the entitlements for your application.

As mentioned, you can add multiple strings for the iCloud Containers entitlement. For example, suppose you add a second string to it as shown here:

<key>com.apple.developer.ubiquity-container-identifiers</key>
<array>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud.Free</string>
</array>

In this case, besides being able to access the documents stored in the container identified by $(TeamIdentifierPrefix)net.learn2develop.DemoiCloud, your application will also be able to access the container identified by $(TeamIdentifierPrefix)net.learn2develop.DemoiCloud.Free, which is created by another separate application.

Managing iCloud Documents Using the UIDocument Class

To manage documents stored in iCloud, Apple recommends you use the UIDocument class. This class does all the work of reading and writing to files stored in iCloud. Using the UIDocument class, there is no need for you to manage the complexity of resolving conflicts when two devices try to update the same file at the same time. To use the UIDocument class, you need to subclass it and then implement a few methods.

The following Try It Out shows how to subclass the UIDocument class so that you can use it to manage your documents in iCloud.

TRY IT OUT: Managing iCloud Documents

1. Using the project created in the previous section, add a new Objective-C class and name it MyCloudDocument. Make it a subclass of UIDocument (see Figure 12-6).

FIGURE 12-6

[image: image]

2. Populate the MyCloudDocument.h file as follows:

#import <UIKit/UIKit.h>
@class MyCloudDocument;

@protocol MyCloudDocumentDelegate <NSObject>
- (void)documentContentsDidUpdate:(MyCloudDocument *)document;
@end

@interface MyCloudDocument : UIDocument

@property (assign, nonatomic) id <MyCloudDocumentDelegate> delegate;
@property (copy, nonatomic) NSString *contents;

@end

3. Populate the MyCloudDocument.m file as follows:

#import "MyCloudDocument.h"

@implementation MyCloudDocument

@synthesize delegate = _delegate;
@synthesize contents = _contents;

- (void)dealloc {
 [_contents release];
 [super dealloc];
}

//---create the file at the specified URL and init it with some content---
- (id)initWithFileURL:(NSURL *)url {
 self = [super initWithFileURL:url];
 return self;
}

//---load the content of the document---
- (BOOL)loadFromContents:(id)contents
 ofType:(NSString *)
 typeName error:(NSError **)outError {
 if ([contents length] > 0)
 {
 self.contents =
 [[[NSString alloc] initWithData:contents
 encoding:NSUTF8StringEncoding]
 autorelease];
 } else {
 //---if nothing, set it to empty string---
 self.contents = @"";
 }

 //---if the object implements this delegate, call it---
 if ([_delegate respondsToSelector:
 @selector(documentContentsDidUpdate:)]) {
 //---tell the delegate that the content of the document has changed---
 [self.delegate documentContentsDidUpdate:self];
 }
 return YES;
}

//---save the content of the document---
- (id)contentsForType:(NSString *)typeName
 error:(NSError **)outError {
 return [self.contents dataUsingEncoding:NSUTF8StringEncoding];
}

@end

How It Works

In the preceding example, you defined a protocol named MyCloudDocumentDelegate, which contains a method named documentContentsDidUpdate.

In the class, you implemented the following methods:

	initWithFileURL: — This method is called when you are creating a new document in iCloud. It takes a single argument, which is the URL for the file to be created.

	loadFromContents:ofType:error: — This method is called when your application tries to load the content of the document from iCloud. For this example, the document is a simple text file; therefore, you will only deal with strings by converting the data from NSData to NSString. When a document is loaded, you also invoke the documentContentsDidUpdate delegate so that the application knows that it has managed to load the document from iCloud.

	contentsForType:error: — This method is called when you try to save the file to iCloud. Here, you simply convert the string content of the file to the NSData type.

To create documents on iCloud, you need to create instances of subclasses of UIDocument, which in this case is the MyCloudDocument class. The next Try It Out shows how this is done.

Storing Documents on iCloud

Now that you have seen how to use the UIDocument class, it is time to put everything together and create an application that stores your documents in iCloud.

The following Try It Out shows how your application can make use of the UIDocument class to save a document on iCloud, and then access the same document from other iOS devices running the same application. If you are eager to see how things work first, follow the steps and try it out on two iOS devices. For those of you who want to understand the details of how this works, jump to the How It Works section, which dissects the code. After that you can try it out on your devices.

TRY IT OUT: Saving Documents on iCloud

1. Using the project created in the previous section, select the DemoiCloudViewController.xib file to edit it in Interface Builder.

2. Add the following views to the View window (see also Figure 12-7):

FIGURE 12-7

[image: image]

	Two Labels (set their text properties to “Enter some text here” and “Files on iCloud”)

	Text Field

	Two Round Rect Buttons (set their text properties to “Create file on iCloud” and “Save to file on iCloud”)

	Text View (remember to delete the text displayed inside it)

3. In the DemoiCloudViewController.h file, add the following lines in bold:

#import <UIKit/UIKit.h>
#import "MyCloudDocument.h"

@interface DemoiCloudViewController : UIViewController
<MyCloudDocumentDelegate>
{
 IBOutlet UITextField *txtContent;
 IBOutlet UITextView *txtFilesOniCloud;

 NSURL *documentiCloudPath;
 MyCloudDocument *myCloudDocument;
 NSMutableArray *documentURLs;
}

@property (nonatomic, retain) UITextField *txtContent;
@property (nonatomic, retain) UITextView *txtFilesOniCloud;
@property (nonatomic, retain) NSMetadataQuery *query;

-(IBAction) btnSave:(id)sender;
-(IBAction) createFileOniCloud:(id)sender;
-(IBAction) doneEditing:(id)sender;

- (NSURL *)ubiquitousDocumentsURL;
- (void)updateUbiquitousDocuments:(NSNotification *)notification;
- (void) searchFilesOniCloud;
- (void) displayAlert:(NSString *) title withmessage:(NSString *) msg;

@end

4. Back in Interface Builder, perform the following actions:

	Control-click the File’s Owner item and drag it over the Text Field. Select txtContent.

	Control-click the File’s Owner item and drag it over the Text View. Select txtFilesOniCloud.

	Control-click the Create File on iCloud button and drag it over the File’s Owner item. Select createFileOniCloud:.

	Control-click the Save to file on iCloud button and drag it over the File’s Owner item. Select btnSave:.

	Right-click on the Text Field and connect the Did End On Exit item to the File’s Owner item. Select doneEditing:.

5. Right-click on the File’s Owner item and you should see the connections as shown in Figure 12-8.

FIGURE 12-8

[image: image]

6. In the DemoiCloudViewController.m file, add the following lines in bold:

#import "DemoiCloudViewController.h"

@implementation DemoiCloudViewController

@synthesize txtContent, txtFilesOniCloud;
@synthesize query = _query;

NSString *FILENAME = @"MyFile.txt";

-(IBAction)doneEditing:(id)sender {
 [sender resignFirstResponder];
}

- (void) displayAlert:(NSString *) title withmessage:(NSString *) msg {
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:title
 message:msg
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles: nil];
 [alert show];
 [alert release];
}

//---get the root URL for the iCloud storage's Documents folder---
- (NSURL *)ubiquitousDocumentsURL {
 //---use the string that you added earlier when setting the
 // entitlement for the iCloud container---
 return
 [[[NSFileManager defaultManager] URLForUbiquityContainerIdentifier:
 @"6LNSVE9D8J.net.learn2develop.DemoiCloud"]
 URLByAppendingPathComponent:@"Documents"];
}

//---search for files on iCloud---
-(void) searchFilesOniCloud {
 NSURL *ubiquitousDocumentsURL = [self ubiquitousDocumentsURL];
 if (ubiquitousDocumentsURL) {
 NSMetadataQuery *query = [[[NSMetadataQuery alloc] init] autorelease];
 query.predicate = [NSPredicate predicateWithFormat:@"%K like '*'",
 NSMetadataItemFSNameKey];
 query.searchScopes = [NSArray arrayWithObject:
 NSMetadataQueryUbiquitousDocumentsScope];
 [query startQuery];
 self.query = query;
 } else {
 [self displayAlert:@"iCloud"
 withmessage:@"iCloud storage not enabled on this device.
Please enable it and try again."];
 }
}

//---called when there are changes to the files in iCloud---
- (void)updateUbiquitousDocuments:(NSNotification *)notification {
 [documentURLs removeAllObjects];
 txtFilesOniCloud.text = @"";

 for (NSMetadataItem *item in self.query.results) {
 NSURL *url = [item valueForAttribute:NSMetadataItemURLKey];
 NSLog(@"%@", [url absoluteString]);

 //---add the URL of the document to the array---
 if (![documentURLs containsObject:(url)]) {
 [documentURLs addObject:url];
 txtFilesOniCloud.text = [txtFilesOniCloud.text
 stringByAppendingFormat:@"%@\n",[url absoluteString]];
 }
 }
}

//---content of the document from iCloud is retrieved---
- (void)documentContentsDidUpdate:(MyCloudDocument *)document {
 txtContent.text = document.contents;
}

-(IBAction)createFileOniCloud:(id)sender {
 //---get the path of the Documents folder in iCloud (local)---
 documentiCloudPath = [self ubiquitousDocumentsURL];

 //---create the full pathname for document to sync to iCloud---
 documentiCloudPath = [documentiCloudPath
 URLByAppendingPathComponent:FILENAME];

 //---create the UIDocument document---
 myCloudDocument =
 [[MyCloudDocument alloc] initWithFileURL:documentiCloudPath];
 myCloudDocument.delegate = self;

 //---check if the document already exists on iCloud---
 if ([documentURLs containsObject:(documentiCloudPath)]) {
 [self displayAlert:@"Document exists on iCloud"
 withmessage:@"Document already exists on iCloud. Retrieving
it..."];

 //---open the existing file---
 [myCloudDocument openWithCompletionHandler:^(BOOL success) {}];
 } else {
 [self displayAlert:@"Creating Document on iCloud"
 withmessage:@"Document is currently being created on iCloud."];
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
 }
}

-(IBAction) btnSave:(id)sender {
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
}

- (void)viewDidLoad {
 //---used for storing the filenames of files in iCloud---
 documentURLs = [[NSMutableArray alloc] init];

 //---register for notifications; used for searching of files on iCloud---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidUpdateNotification
 object:nil];

 //---search for all the files in iCloud---
 [self searchFilesOniCloud];

 [super viewDidLoad];
}

7. You are now ready to deploy the application on two iOS devices to see if it works. For illustration purposes, I have deployed the application onto an iPhone and an iPad.

8. On the iPhone, first type some text into the Text Field. Then tap on the Create File on iCloud button to save the file on iCloud. Because this is the first time you are saving this file onto iCloud, you will see the alert shown in Figure 12-9.

FIGURE 12-9

[image: image]

9. A little later (about 10-15 seconds typically), the Text View will display the path of the document (see Figure 12-10). This proves that the file has been saved successfully. Note that the path points to a location on your local device, indicating that the file is saved there. The UIDocument subclass takes care of synchronizing all the documents saved in this folder to iCloud.

FIGURE 12-10

[image: image]

10. On the iPad, the application automatically displays the path of the file saved on iCloud (see Figure 12-11).

FIGURE 12-11

[image: image]

11. Tap on the Create File on iCloud button. Because the file already exists on iCloud, you will see the alert shown in Figure 12-12. Click OK to dismiss the alert.

FIGURE 12-12

[image: image]

12. You will now see the content of the file displayed in the Text Field (see Figure 12-13). The content of the file has been fetched from iCloud.

FIGURE 12-13

[image: image]

13. Tap on the Text Field and type some text into it (see Figure 12-14). Tap on the Save to file on iCloud button to save the changes to the file on iCloud.

FIGURE 12-14

[image: image]

14. On the iPhone, after a while (typically 10-15 seconds), you will see that the change made on the iPad is now displayed automatically in the Text Field (see Figure 12-15).

FIGURE 12-15

[image: image]

How It Works

To create documents in iCloud, you first create a variable of type MyCloudDocument (which is a subclass of UIDocument):

 MyCloudDocument *myCloudDocument;

You also create an NSMutableArray object to store all the files that are found on iCloud:

 //---used for storing the filenames of files in iCloud---
 documentURLs = [[NSMutableArray alloc] init];

When the application starts, you first register for two notifications — one for searching (which you will see next) and one for getting updates when documents are updated:

 //---register for notifications; used for searching of files on iCloud---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidUpdateNotification
 object:nil];

When new files are found on iCloud or when changes are found on files on iCloud, the updateUbiquitousDocuments: method is called.

Then you search for all the files on your iCloud directory:

 //---search for all the files in iCloud---
 [self searchFilesOniCloud];

The searchForFilesOniCloud method first calls the ubiquitousDocumentsURL method to obtain the URL for your iCloud’s Documents folder:

//---search for files on iCloud---
-(void) searchFilesOniCloud {
 NSURL *ubiquitousDocumentsURL = [self ubiquitousDocumentsURL];
 if (ubiquitousDocumentsURL) {
 NSMetadataQuery *query = [[[NSMetadataQuery alloc] init] autorelease];
 query.predicate = [NSPredicate predicateWithFormat:@"%K like '*'",
 NSMetadataItemFSNameKey];
 query.searchScopes = [NSArray arrayWithObject:
 NSMetadataQueryUbiquitousDocumentsScope];
 [query startQuery];
 self.query = query;
 } else {
 [self displayAlert:@"iCloud"
 withmessage:@"iCloud storage not enabled on this device.
Please enable it and try again."];
 }
}

The ubiquitousDocumentsURL method calls the URLForUbiquityContainerIdentifier: method of the NSFileManager object using the string that you added earlier when setting the entitlement for the iCloud container(note the TEAM ID, which you can obtain from Figure 12-2) of the NSFileManager object to obtain the user’s iCloud directory. It then appends the Documents folder to this directory and returns it:

//---get the root URL for the iCloud storage's Documents folder---
- (NSURL *)ubiquitousDocumentsURL
{
 return
 [[[NSFileManager defaultManager] URLForUbiquityContainerIdentifier:
 @"6LNSVE9D8J.net.learn2develop.DemoiCloud"]
 URLByAppendingPathComponent:@"Documents"];
}

You are free to create additional directories inside the iCloud directory, but Apple recommends that you create a Documents folder inside it to store the user’s documents. One benefit of doing so is that the all the files stored inside the Documents folder will be exposed via Settings ⇒ iCloud ⇒ Storage & Backup ⇒ Manage Storage on the user’s device. Users will then be able to delete these files directly through the Settings application.

The path of the iCloud’s Documents folder looks like this: /private/var/mobile/Library/Mobile Documents/6LNSVE9D8J~net~learn2develop~DemoiCloud/Documents/. Note that this is a path on your local device. All the files that you want to save on iCloud are saved in this directory. The UIDocument class takes care of moving the documents to iCloud, synchronizing the changes, and so on. If iCloud is not enabled or the entitlement string supplied is not correct, the URLForUbiquityContainerIdentifier: method will return nil.

Continuing with the search, you create an NSMetadataQuery object to search for all files in the Documents folder of the iCloud container. You use the NSMetadataQueryUbiquitousDocumentsScope constant to search for files in the Documents folder; if you want to search for files elsewhere, you should use the NSMetadataQueryUbiquitousDataScope constant:

 if (ubiquitousDocumentsURL) {
 NSMetadataQuery *query = [[[NSMetadataQuery alloc] init] autorelease];
 query.predicate = [NSPredicate predicateWithFormat:@"%K like '*'",
 NSMetadataItemFSNameKey];
 query.searchScopes = [NSArray arrayWithObject:
 NSMetadataQueryUbiquitousDataScope];
 [query startQuery];
 self.query = query;
 } else {
 [self displayAlert:@"iCloud"
 withmessage:@"iCloud storage not enabled on this device.
Please enable it and try again."];
 }

To start the search, you use the startQuery method. When files are found on the iCloud container, the updateUbiquitousDocuments: method is called:

//---called when there are changes to the files in iCloud---
- (void)updateUbiquitousDocuments:(NSNotification *)notification {
 [documentURLs removeAllObjects];
 txtFilesOniCloud.text = @"";

 for (NSMetadataItem *item in self.query.results) {
 NSURL *url = [item valueForAttribute:NSMetadataItemURLKey];
 NSLog(@"%@", [url absoluteString]);

 //---add the URL of the document to the array---
 if (![documentURLs containsObject:(url)]) {
 [documentURLs addObject:url];
 txtFilesOniCloud.text = [txtFilesOniCloud.text
 stringByAppendingFormat:@"%@\n",[url absoluteString]];
 }
 }
}

Here, you simply add the file paths of each document found in the search result into the array and then display the path on the Text View.

To create a document on iCloud, you instantiate the MyCloudDocument class and pass it the full URL of the document you want to create:

-(IBAction)createFileOniCloud:(id)sender {
 //---get the path of the Documents folder in iCloud (local)---
 documentiCloudPath = [self ubiquitousDocumentsURL];

 //---create the full pathname for document to sync to iCloud---
 documentiCloudPath = [documentiCloudPath
 URLByAppendingPathComponent:FILENAME];

 //---create the UIDocument document---
 myCloudDocument =
 [[MyCloudDocument alloc] initWithFileURL:documentiCloudPath];
 myCloudDocument.delegate = self;

 //---check if the document already exists on iCloud---
 if ([documentURLs containsObject:(documentiCloudPath)]) {
 [self displayAlert:@"Document exists on iCloud"
 withmessage:@"Document already exists on iCloud. Retrieving
it..."];

 //---open the existing file---
 [myCloudDocument openWithCompletionHandler:^(BOOL success) {}];
 } else {
 [self displayAlert:@"Creating Document on iCloud"
 withmessage:@"Document is currently being created on iCloud."];
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
 }
}

If the document you want to create already exists in the iCloud container, you open it using the openWithCompletionHandler: method. This method opens and reads the content of the file asynchronously. If the file does not exist, you assign its content with the value of the Text File. You then call the updateChangeCount: method of the UIDocument to signal that there are changes to your document so that UIDocument can make the changes to iCloud.

To save changes to a file, you simply modify the contents property of the MyCloudDocument instances and then call the updateChangeCount: method:

-(IBAction) btnSave:(id)sender {
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
}

When your document is modified in iCloud, the documentContentsDidUpdate: method is called:

//---content of the document from iCloud is retrieved---
- (void)documentContentsDidUpdate:(MyCloudDocument *)document {
 txtContent.text = document.contents;
}

In this case, you simply display the updated content in the Text Field. To confirm that the document is created in iCloud, go to your device and examine the Settings ⇒ iCloud ⇒ Storage & Backup ⇒ Manage Storage page (see Figure 12-16). Tapping on the Documents & Data item will display the file MyFile.txt, which was created by your application. If you want to delete the file, you can tap on the Edit button.

FIGURE 12-16

[image: image]

STORING KEY-VALUE DATA IN ICLOUD

In Chapter 9, you learned about the use of the NSUserDefaults class to save user’s preferences data in the Settings application. You do so via the use of key-value pairs, which can be simple data types like numbers, strings, arrays, and so on. However, data stored using the NSUserDefaults class is available only to the application on that particular device; if you have the same application on multiple devices, these values cannot be shared. Imagine you are writing an eBook reader application that runs on both the iPhone and iPad platforms. Users may install your application on multiple devices. When they stop reading at a particular page on their iPhone, they might want to continue from where they left off by reading it on their iPad later. In this case, there must be a way for the application on both devices to retrieve the user’s last page number. Of course, you could devise your own server solution whereby the application can sync the information back to the server, but that would mean you have to write an additional application (such as JSON web services, or a socket server).

Fortunately, besides saving user documents, you can use iCloud to save small chunks of information so that the same application running on different devices can share them. It does impose some restrictions, most of which should not be a major problem for most applications. Using iCloud, you can save key-value data with the following restrictions:

	The maximum amount of space in a key-value store is 64KB.

	The maximum size of a single key is 4KB.

The following Try It Out demonstrates how you can store key-value data on iCloud. It uses the same project you created in the previous section of this chapter.

TRY IT OUT: Using iCloud to Store Key-Value Data

1. Using the project created in the previous section, add the following lines in bold to the DemoiCloudViewController.h file:

- (void)viewDidLoad {
 //---used for storing the filenames of files in iCloud---
 documentURLs = [[NSMutableArray alloc] init];

 //---register for notifications; used for searching of files on iCloud---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidUpdateNotification
 object:nil];

 //---search for all the files in iCloud---
 [self searchFilesOniCloud];

 //---get the ubiquitous key store from iCloud---
 NSUbiquitousKeyValueStore *keyValue =
 [NSUbiquitousKeyValueStore defaultStore];

 NSString *lastUsed = [keyValue stringForKey:@"lastUsed"];
 if ([lastUsed length]>0) {
 [self displayAlert:@"Last Used"
 withmessage:[NSString stringWithFormat:
 @"Application was last used on: %@", lastUsed]];
 }

 //---get the current date and time---
 NSDate *currentDateTime = [NSDate date];
 NSDateFormatter *dateFormatter =
 [[[NSDateFormatter alloc] init] autorelease];
 [dateFormatter setDateFormat:@"yyyy-MM-dd HH:mm:ss"];
 NSString *dateInString = [dateFormatter stringFromDate:currentDateTime];

 //---save the current date and time---
 [keyValue setString:dateInString forKey:@"lastUsed"];
 [keyValue synchronize];

 [super viewDidLoad];
}

2. Deploy the application onto the iPad, wait a few seconds (e.g., 20 seconds) and then deploy onto the iPhone. When the application loads onto the iPhone, you will see the alert shown in Figure 12-17, indicating the date and time when the application was last used.

FIGURE 12-17

[image: image]

How It Works

In order to store key-value data on the iCloud, you need to specify the string for the iCloud key-value Store in your entitlements file, which you have done earlier in this chapter. This string is represented by the com.apple.developer.ubiquity-kvstore-identifier key:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST
1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>com.apple.developer.ubiquity-container-identifiers</key>
<array>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
<key>com.apple.developer.ubiquity-kvstore-identifier</key>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
<key>keychain-access-groups</key>
<array>
<string>$(AppIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
</dict>
</plist>

To store key-value data on iCloud, you first need to obtain an instance of the NSUbiquitousKeyValueStore object:

 //---get the ubiquitous key store from iCloud---
 NSUbiquitousKeyValueStore *keyValue =
 [NSUbiquitousKeyValueStore defaultStore];

To retrieve the string value of a key, you use the stringForKey: method:

 NSString *lastUsed = [keyValue stringForKey:@"lastUsed"];
 if ([lastUsed length]>0) {
 [self displayAlert:@"Last Used"
 withmessage:[NSString stringWithFormat:
 @"Application was last used on: %@", lastUsed]];
 }

Besides using the stringForKey: method, you can also use the following methods for other data types:

	arrayForKey:

	boolForKey:

	dataForKey:

	dictionaryForKey:

	doubleForKey:

	longLongForKey:

	objectForKey:

To store string key-value data, use the setString:forKey: method:

 [keyValue setString:dateInString forKey:@"lastUsed"];
 [keyValue synchronize];

To synchronize the changes back to iCloud, use the synchronize method. To store key-value data of other data types, you can also use the following methods:

	setArray:forKey:

	setBool:forKey:

	setData:forKey:

	setDictionary:forKey:

	setDouble:forKey:

	setLongLong:forKey:

	setObject:forKey:

	setString:forKey:

While the NSUbiquitousKeyValueStore class performs an almost identical service to that of the NSUserDefaults class, it should not be used as a replacement for it. Try to save all application-specific data to the local device using the NSUserDefaults class first. Only then do you make a copy on iCloud using the NSUbiquitousKeyValueStore class. This enables your application to always have a copy of the application’s data regardless of whether the user has network connectivity or whether he or she has enabled iCloud.

SUMMARY

In this chapter, you had a good look at how you can store your documents and data on iCloud. Using iCloud, you can automatically synchronize your documents and data across applications running on multiple devices. Best of all, the iOS SDK provides the UIDocument class, which provides all the heavy-lifting needed to ensure that documents are synced and updated correctly, thus leaving you with more time to develop your application.

EXERCISES

1. Name the method you can use to obtain the path of your iCloud storage container.

2. What is the advantage of saving your documents in the Documents folder of your iCloud storage container?.

3. What is the advantage of storing key-value data on iCloud?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Two main uses for iCloud
	Use for document storage and data storage.

	Setting entitlements for iCloud
	Set the iCloud Containers entitlement and the iCloud Key-Value Store entitlement.

	Managing iCloud documents
	Subclass the UIDocument class.

	Methods to implement in subclass of UIDocument
	The three methods are:
initWithFileURL:
loadFromContents:ofType:error:
contentsForType:error:

	Create a Documents folder in iCloud to store your documents
	Doing so allows users to manage the files directly through the Settings application.

	Storing key-value data on iCloud
	Use the NSUbiquitousKeyValueStore class.

Chapter 13

Performing Simple Animations and Video Playback

WHAT YOU WILL LEARN IN THIS CHAPTER

	Using the NSTimer class to create timers that call methods at regular intervals

	How to perform simple animations using the NSTimer class

	How to perform an affine transformation on an Image View

	Animating a series of images using an Image View

	How to play back videos in your iPhone application

Up to this point, the applications you have written have all made use of the standard views provided by the iOS SDK. As Apple has reiterated, the iPhone is not just for serious work; it is also a gaming platform.

In this chapter, you have some fun creating something visual. You learn how to perform some simple animations using a timer object and then perform some transformations on a view. Although it is beyond the scope of this book to show you how to create animations using OpenGL ES, this chapter does demonstrate some interesting techniques that you can use to make your applications come alive. In addition, you will also learn how to play back a video in your iPhone application.

USING THE NSTIMER CLASS

One of the easiest ways to get started with animation is to use the NSTimer class. The NSTimer class creates timer objects, which enable you to call a method at a regular time interval. Using an NSTimer object, you can update the position of an image at regular time intervals, thereby creating the impression that it is being animated.

In the following Try It Out, you learn how to display a bouncing ball on the screen using the NSTimer class. When the ball touches the sides of the screen, it bounces off in the opposite direction. You also learn how to control the frequency with which the ball animates. Download the code files indicated for this and other Try It Out features within this chapter.

TRY IT OUT: Animating a Ball

codefile Animation.zip is available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Animation. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Drag and drop an image named tennisball.jpg to the Supporting Files folder in Xcode. When the Add dialog appears, check the Copy Item into the Destination Group’s Folder (If Needed) option so that the image is copied into the project (see Figure 13-1).

FIGURE 13-1

[image: image]

3. Select the AnimationViewController.xib file to edit it in Interface Builder.

4. Drag and drop an Image View onto the View window and set its Image property to tennisball.jpg (see Figure 13-2).

FIGURE 13-2

[image: image]

Ensure that the size of the Image View accommodates the entire tennis ball image. Later, you will move the Image View on the screen, so it is important not to fill the entire screen with the Image View.

5. Select the View (outside the Image View) and change the background color to black (see Figure 13-3).

FIGURE 13-3

[image: image]

6. Add a Label and a Slider from the Library onto the View window (see the lower-left corner of Figure 13-4). Set the Current property of the Slider view to 0.01.

FIGURE 13-4

[image: image]

7. In the AnimationViewController.h file, declare the following outlets, fields, and actions (shown in bold):

#import <UIKit/UIKit.h>

@interface AnimationViewController : UIViewController
{
 IBOutlet UIImageView *imageView;
 IBOutlet UISlider *slider;

 CGPoint delta;
 NSTimer *timer;
 float ballRadius;
}

@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) UISlider *slider;

-(IBAction) sliderMoved:(id) sender;

@end

8. Back in Interface Builder, connect the outlets and actions as follows (see Figure 13-5 for the connections after all the outlets and actions are connected):

FIGURE 13-5

[image: image]

	Control-click and drag the File’s Owner item to the Image View and select imageView.

	Control-click and drag the File’s Owner item to the Slider and select slider.

	Control-click and drag the Slider to the File’s Owner item and select sliderMoved:.

9. Add the following bold statements to the AnimationViewController.m file:

#import "AnimationViewController.h"

@implementation AnimationViewController

@synthesize imageView;
@synthesize slider;

-(void) onTimer {
 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

 if (imageView.center.x > self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y > self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

- (void) viewDidLoad {
 ballRadius = imageView.bounds.size.width / 2;
 [slider setShowValue:YES];
 delta = CGPointMake(12.0,4.0);
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [super viewDidLoad];
}

-(IBAction) sliderMoved:(id) sender {
 [timer invalidate];
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
}

- (void)dealloc {
 [timer invalidate];
 [imageView release];
 [slider release];
 [super dealloc];
}

10. Press Command-R to test the application on the iPhone Simulator. The tennis ball should now be animated on the screen (see Figure 13-6). Vary the speed of the animation by moving the slider — to the right to slow it down and to the left to speed it up.

FIGURE 13-6

[image: image]

How It Works

When the view is loaded, the first thing you do is get the radius of the tennis ball, which in this case is half the width of the image:

 ballRadius = imageView.bounds.size.width / 2;

This value is used during the animation to check whether the tennis ball has touched the edges of the screen.

To set the slider to show its value, you used the setShowValue: method:

 [slider setShowValue:YES];

[image: image]
NOTE The setShowValue: method is undocumented; hence, the compiler will sound a warning. Be forewarned that using any undocumented methods may result in your application being rejected when you submit it to Apple for approval. In general, use undocumented methods only for debugging purposes.

You also initialized the delta variable:

 delta = CGPointMake(12.0,4.0);

The delta variable is used to specify how many pixels the image must move every time the timer fires. The preceding code tells it to move 12 points horizontally and 4 points vertically.

You next called the scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: class method of the NSTimer class to create a new instance of the NSTimer object:

 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:
 @selector(onTimer)
 userInfo:nil
 repeats:YES];

The scheduledTimerWithTimeInterval: parameter specifies the number of seconds between firings of the timer. Here, you set it to the value of the Slider view, which accepts a value from 0.0 to 1.0. For example, if the slider’s value is 0.5, the timer object will fire every half-second.

The selector: parameter specifies the method to call when the timer fires, and the repeats: parameter indicates whether the timer object will repeatedly reschedule itself. In this case, when the timer fires, it calls the onTimer method, which you defined next.

In the onTimer method, you changed the position of the Image View by setting its center property to a new value. After repositioning, you checked whether the image touched the edges of the screen; if it has, the value of the delta variable is negated:

-(void) onTimer {
 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);
 if (imageView.center.x >
 self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y >
 self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

When you move the slider, the sliderMoved: method is called. In this method, you first invalidated the timer object and then created another instance of the NSTimer class:

-(IBAction) sliderMoved:(id) sender {
 [timer invalidate];
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:
 @selector(onTimer)
 userInfo:nil
 repeats:YES];
}

Moving the slider enables you to change the frequency at which the image is animated.

[image: image]
NOTE After an NSTimer object is started, you cannot change its firing interval. The only way to change the interval is to invalidate the current object and create a new NSTimer object.

Animating the Visual Change

You may have noticed that as you move the slider toward the right, the animation slows and becomes choppy. To make the animation smoother, you can animate the visual changes by using one of the block-based animation methods. One such block-based animation method is the animateWithDuration:delay:options:animations:completion: class method of the UIView class:

 [UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);
 }
 completion:nil];

The preceding code performs the specified animations immediately using the UIViewAnimationOptionCurveLinear (constant speed) and UIViewAnimationOptionAllowUserInteraction (allows the user to interact with the views while they are being animated) animation options. This results in a much smoother animation.

TRANSFORMING VIEWS

You can use the NSTimer class to simulate a simple animation by continuously changing the position of the Image View, but you can also use the transformation techniques supported by the iOS SDK to achieve the same effect.

Transforms are defined in Core Graphics (a C-based API that is based on the Quartz advanced drawing engine; you use this framework to handle things such as drawings, transformations, image creation, etc.), and the iOS SDK supports standard affine 2D transforms. You can use the iOS SDK to perform the following affine 2D transforms:

	Translation — Moves the origin of the view by the amount specified using the x and y axes

	Rotation — Moves the view by the angle specified

	Scaling — Changes the scale of the view by the x and y factors specified

[image: image]
NOTE An affine transformation is a linear transformation that preserves co-linearity and ratio of distances. This means that all the points lying on a line initially will remain in a line after the transformation, with the respective distance ratios between them maintained.

Figure 13-7 shows the effects of the various transformations.

FIGURE 13-7

[image: image]

Translation

To perform an affine transform on a view, simply use its transform property. Recall that in the previous example, you set the new position of the view through its center property:

 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

Using 2D transformation, you can use its transform property and set it to a CGAffineTransform data structure returned by the CGAffineTransformMakeTranslation() function, like this:

//---add the following bold line in the AnimationViewController.h file---
#import <UIKit/UIKit.h>

@interface AnimationViewController : UIViewController
{
 IBOutlet UIImageView *imageView;
 IBOutlet UISlider *slider;
 CGPoint delta;
 NSTimer *timer;
 float ballRadius;

 //---add this line---
 CGPoint translation;
}

@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) UISlider *slider;

-(IBAction) sliderMoved:(id) sender;

@end

//---add the following bold lines in the AnimationViewController.m file---
- (void)viewDidLoad {
 ballRadius = imageView.bounds.size.width / 2;
 [slider setShowValue:YES];
 delta = CGPointMake(12.0,4.0);

 translation = CGPointMake(0.0,0.0);

 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [super viewDidLoad];
}

-(void) onTimer {
 [UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.transform =
 CGAffineTransformMakeTranslation(translation.x, translation.y);
 }
 completion:nil];

 translation.x += delta.x;
 translation.y += delta.y;

 if (imageView.center.x + translation.x >
 self.view.bounds.size.width - ballRadius ||
 imageView.center.x + translation.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y + translation.y >
 self.view.bounds.size.height - ballRadius ||
 imageView.center.y + translation.y < ballRadius)
 delta.y = -delta.y;
}

The CGAffineTransformMakeTranslation() function takes two arguments: the value to move for the x axis and the value to move for the y axis.

The preceding code achieves the same effect as setting the center property of the Image View.

Rotation

The rotation transformation enables you to rotate a view using the angle you specify. In the following Try It Out, you modify the code from the previous example so that the tennis ball rotates as it bounces across the screen.

TRY IT OUT: Rotating the Tennis Ball

1. In the AnimationViewController.h file, add the declaration for the angle variable as shown in bold:

#import <UIKit/UIKit.h>

@interface AnimationViewController : UIViewController
{
 IBOutlet UIImageView *imageView;
 IBOutlet UISlider *slider;
 CGPoint delta;
 NSTimer *timer;
 float ballRadius;

 CGPoint translation;

 //---add this line---
 float angle;
}

@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) UISlider *slider;

-(IBAction) sliderMoved:(id) sender;

@end

2. In the AnimationViewController.m file, add the following bold statements:

- (void)viewDidLoad {

 //--set the angle to 0--
 angle = 0;

 ballRadius = imageView.bounds.size.width / 2;
 [slider setShowValue:YES];
 delta = CGPointMake(12.0,4.0);

 translation = CGPointMake(0.0,0.0);

 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [super viewDidLoad];
}

-(void) onTimer {
 [UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.transform = CGAffineTransformMakeRotation(angle);
 }
 completion:nil];

 angle += 0.02;
 if (angle>6.2857) angle = 0;

 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

 if (imageView.center.x > self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y > self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

3. Press Command-R to test the application. The tennis ball now rotates as it bounces across the screen.

How It Works

To rotate a view, set its transform property using a CGAffineTransform data structure returned by the CGAffineTransformMakeRotation() function. The CGAffineTransformMakeRotation() function takes a single argument, which contains the angle to rotate (in radians). After each rotation, you increment the angle by 0.02:

 //--rotation--
 imageView.transform = CGAffineTransformMakeRotation(angle);
 ...
 angle += 0.02;

A full rotation takes 360 degrees, which works out to be 2PI radians (recall that PI is equal to 22/7, which is approximately 3.142857). If the angle exceeds 6.2857 (=2*3.142857), you reset angle to 0:

 if (angle>6.2857) angle = 0;

Interestingly, you can combine multiple transformations into one, using the CGAffineTransformConcat function:

[UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.transform =
 CGAffineTransformConcat(
 CGAffineTransformMakeRotation(angle),
 CGAffineTransformMakeTranslation(
 translation.x, translation.y));
 }
 completion:nil];

The above code snippet applies a rotation and translation transformation to the Image View.

Scaling

To scale views, you use the CGAffineTransformMakeScale() function to return a CGAffineTransform data structure and set it to the transform property of the view:

 imageView.transform = CGAffineTransformMakeScale(angle,angle);

CGAffineTransformMakeScale()takes two arguments: the factor to scale for the x axis and the factor to scale for the y axis. For simplicity, I have used the angle variable for the scale factor for both the x and y axes.

If you modify the previous Try It Out with the preceding statement, the tennis ball gets bigger as it bounces on the screen (see Figure 13-8). It then resets back to its original size and grows again.

FIGURE 13-8

[image: image]

ANIMATING A SERIES OF IMAGES

So far, you have seen that you can use an Image View to display a static image. In addition, you can use it to display a series of images and then alternate between them.

The following Try It Out shows how this is done using an Image View.

TRY IT OUT: Displaying a Series of Images

codefile Animations2.zip is available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Animations2.

2. Add a series of images to the project by dragging and dropping them into the Supporting Files folder in Xcode. When the Add dialog appears, check the Copy Item into Destination Group’s Folder (If Needed) option so that each of the images will be copied into the project. Figure 13-9 shows the images added.

FIGURE 13-9

[image: image]

3. In the Animations2ViewController.m file, add the following bold statements:

- (void)viewDidLoad {
 NSArray *images = [NSArray arrayWithObjects:
 [UIImage imageNamed:@"MacSE.jpeg"],
 [UIImage imageNamed:@"imac.jpeg"],
 [UIImage imageNamed:@"MacPlus.jpg"],
 [UIImage imageNamed:@"imac_old.jpeg"],
 [UIImage imageNamed:@"Mac8100.jpeg"],
 nil];

 CGRect frame = CGRectMake(0,0,320,460);
 UIImageView *imageView = [[UIImageView alloc] initWithFrame:frame];
 imageView.animationImages = images;
 imageView.contentMode = UIViewContentModeScaleAspectFit;

 //---seconds to complete one set of animation---
 imageView.animationDuration = 3;

 //---continuous---
 imageView.animationRepeatCount = 0z;

 //---start the animation---
 [imageView startAnimating];

 //---add the image view to the View window---
 [self.view addSubview:imageView];

 [imageView release];
 [super viewDidLoad];
}

4. Press Command-R to view the series of images on the iPhone Simulator. The images are displayed in the Image View (see Figure 13-10), one at a time.

FIGURE 13-10

[image: image]

How It Works

You first created an NSArray object and initialized it with a few UIImage objects:

 NSArray *images = [NSArray arrayWithObjects:
 [UIImage imageNamed:@"MacSE.jpeg"],
 [UIImage imageNamed:@"imac.jpeg"],
 [UIImage imageNamed:@"MacPlus.jpg"],
 [UIImage imageNamed:@"imac_old.jpeg"],
 [UIImage imageNamed:@"Mac8100.jpeg"],
 nil];

You then instantiated a UIImageView object:

 CGRect frame = CGRectMake(0,0,320,460);
 UIImageView *imageView = [[UIImageView alloc] initWithFrame:frame];

To get the Image View to display the series of images, you had to set its animationImages property to the images object. You also set the display mode of the Image View:

 imageView.animationImages = images;
 imageView.contentMode = UIViewContentModeScaleAspectFit;

To control how fast the images are displayed, you set the animationDuration property to a value. This value indicates the number of seconds it takes the Image View to display one complete set of images. The animationRepeatCount property enables you to specify how many times you want the animation to occur. Set it to 0 if you want it to be displayed indefinitely:

 //---seconds to complete one set of animation---
 imageView.animationDuration = 3;

 //---continuous---
 imageView.animationRepeatCount = 0;

Finally, you started the animation by calling the startAnimating method. You also needed to add the Image View to the View window by calling the addSubView: method:

 //---start the animation---
 [imageView startAnimating];

 //---add the image view to the View window---
 [self.view addSubview:imageView];

Note that the animation technique described in this section is suitable for a moderate number of animating objects. For more complex animation, you might want to explore OpenGL ES.

PLAYING VIDEO ON THE IPHONE

Playing videos is one of the most commonly performed tasks on the iPhone. Prior to iOS 4 for the iPhone, all videos had to be played full-screen. However, starting with iOS 4, this rule has been relaxed; you can now embed videos within your iPhone applications. This makes it possible for you to embed more than one video in any View window. This section shows you how to enable video playback in your iPhone applications.

TRY IT OUT: Enabling Video Playback

codefile PlayVideo.zip is available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it PlayVideo. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Drag a sample video into the Supporting Files folder of your Xcode project (see Figure 13-11).

FIGURE 13-11

[image: image]

3. Double-click on the project name in Xcode and select the PlayVideo target. Select the Build Phases tab on the right and expand the section Link Binary With Libraries (3 items). Click the “+” button (see Figure 13-12).

FIGURE 13-12

[image: image]

4. Select MediaPlayer.framework to add it to your project (see Figure 13-13).

FIGURE 13-13

[image: image]

5. In the PlayVideoViewController.h file, code the following in bold:

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

@interface PlayVideoViewController : UIViewController
{
 MPMoviePlayerController *player;
}

@end

6. In the PlayVideoViewController.m file, code the following in bold:

#import "PlayVideoViewController.h"

@implementation PlayVideoViewController

- (void)viewDidLoad {
 NSString *url = [[NSBundle mainBundle] pathForResource:@"Trailer"
 ofType:@"m4v"];

 player = [[MPMoviePlayerController alloc]
 initWithContentURL:[NSURL fileURLWithPath:url]];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

 //---set the size of the movie view and then add it to the View window---
 player.view.frame = CGRectMake(10, 10, 300, 300);
 [self.view addSubview:player.view];

 //---play movie---
 [player play];
 [super viewDidLoad];
}

//---called when the movie is done playing---
- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *moviePlayer = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayer];
 [moviePlayer.view removeFromSuperview];
 [player release];
}

7. To test the application on the iPhone Simulator, press Command-R. Figure 13-14 shows the movie playing on the iPhone Simulator.

FIGURE 13-14

[image: image]

8. Click the movie and you will be able to display the movie full-screen. Figure 13-15 shows two different scenes from the same movie; the one on the right is shown in full-screen width.

FIGURE 13-15

[image: image]

How It Works

Basically, you used the MPMoviePlayerController class to control the playback of a video:

 player = [[MPMoviePlayerController alloc]
 initWithContentURL:[NSURL fileURLWithPath:url]];

You then used the NSNotificationCenter class to register a notification so that when the movie is done playing (i.e., it ends), the movieFinishedCallback: method can be called:

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

To display the movie on the View window, you set the size of the movie, added its view property to the View window, and then played it:

 //-set the size of the movie view and then add it to the View window-
 player.view.frame = CGRectMake(10, 10, 300, 300);
 [self.view addSubview:player.view];

 //-play movie-
 [player play];

When the movie stops playing, you should unregister the notification, remove the movie, and then release the player object:

//-called when the movie is done playing-
- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *moviePlayer = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayer];
 [moviePlayer.view removeFromSuperview];
 [player release];
}

The MPMoviePlayerController class can play any movie or audio files (both fixed-length or streamed content) supported in iOS. Typical file extensions supported are: .mov, .mp4, .mpv, and .3GP.

SUMMARY

In this chapter, you have seen the usefulness of the NSTimer class and how it can help you perform some simple animations. You have also learned about the various affine transformations supported by the iOS SDK. Next, you learned how the Image View enables you to animate a series of images at a regular time interval. Last, but not least, you learned how to play back a video in your iPhone application.

EXERCISES

1. Name the three affine transformations supported by the iPhone SDK.

2. How do you pause an NSTimer object and then resume it?

3. What is the purpose of enclosing your block of code using the animateWithDuration:delay:options:animations:completion: method of the UIView class, as shown in the following code snippet?

[UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 //---code to effect visual change---
 }
 completion:nil];

4. Name the class that you can use for video playback.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Using the NSTimer object to create timers
	Create a timer object that will call the onTimer method every half-second:

timer = [NSTimer scheduledTimerWithTimeInterval: 0.5
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];

	Stopping the NSTimer object
	
[timer invalidate];

	Animating visual changes
	
[UIView animateWithDuration:slider.value
 animations:^{
 //---code to effect visual change---
}];

	Performing affine transformations
	Use the transform property of the view.

	Translation
	Use the CGAffineTransformMakeTranslation() function to return a CGAffineTransform data structure and set it to the transform property.

	Rotation
	Use the CGAffineTransformMakeRotation() function to return a CGAffineTransform data structure and set it to the transform property.

	Scaling
	Use the CGAffineTransformMakeScale() function to return a CGAffineTransform data structure and set it to the transform property.

	Animating a series of images using an Image View
	Set the animationImages property to an array containing UIImage objects.
Set the animationDuration property.
Set the animationRepeatCount property.
Call the startAnimating method.

	Playing back a video
	Use the MPMoviePlayerController class.

Chapter 14

Accessing Built-In Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to send e-mails from within your application

	Invoking Safari from within your application

	How to invoke the phone from within your application

	How to send SMS messages from within your application

	Accessing the camera and Photo Library

The iPhone comes with a number of built-in applications that make it one of the most popular mobile devices of all time. Some of these applications are Mail, Phone, Safari, SMS, and Calendar. These applications perform most of the tasks you would expect from a mobile phone. As an iPhone developer, you can also programmatically invoke these applications from within your application using the various APIs provided by the iOS SDK.

In this chapter, you learn how to invoke some of the built-in applications that are bundled with the iPhone, as well as how to interact with them from within your iPhone application.

SENDING E-MAIL

Sending e-mail is one of the many tasks performed by iPhone users. Sending e-mail on the iPhone is accomplished using the built-in Mail application, which is a rich HTML mail client that supports POP3, IMAP, and Exchange e-mail systems, and most web-based e-mail such as Yahoo! and Gmail.

There are times where you need to allow your user to send an e-mail message in your iPhone application. A good example is embedding a feedback button in your application that users can click to send feedback to you directly. You have two ways to send e-mail programmatically:

	Build your own e-mail client and implement all the necessary protocols necessary to communicate with an e-mail server.

	Invoke the built-in Mail application and ask it to send the e-mail for you.

Unless you are well versed in network communications and familiar with all the e-mail protocols, your most logical choice is the second option — invoke the Mail application to do the job. The following Try It Out shows you how.

TRY IT OUT: Sending E-Mail Using the Mail Application

Codefile [Emails.zip] is available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it Emails. You need to also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the EmailsViewController.xib file to edit it in Interface Builder. Populate the View window with the following views (see Figure 14-1):

FIGURE 14-1

[image: image]

	Label

	TextField

	TextView (remember to delete the sample text inside the view)

	Button

3. Insert the following statements in bold into the EmailsViewController.h file:

#import <UIKit/UIKit.h>

@interface EmailsViewController : UIViewController
{
 IBOutlet UITextField *to;
 IBOutlet UITextField *subject;
 IBOutlet UITextView *body;
}

@property (nonatomic, retain) UITextField *to;
@property (nonatomic, retain) UITextField *subject;
@property (nonatomic, retain) UITextView *body;

-(IBAction) btnSend: (id) sender;

@end

4. Back in Interface Builder, Control-click and drag the File’s Owner item to each of the three views (the two Text Field and oneText View) and select to, subject, and body, respectively.

5. Control-click and drag the Round Rect Button to the File’s Owner item and select btnSend:.

6. Insert the following code in bold into the EmailsViewController.m file:

#import "EmailsViewController.h"

@implementation EmailsViewController

@synthesize to, subject, body;

- (void) sendEmailTo:(NSString *) toStr
 withSubject:(NSString *) subjectStr
 withBody:(NSString *) bodyStr {

 NSString *emailString =
 [[NSString alloc] initWithFormat:@"mailto:?to=%@&subject=%@&body=%@",
 [toStr stringByAddingPercentEscapesUsingEncoding: NSASCIIStringEncoding],
 [subjectStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding],
 [bodyStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding]];

 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:emailString]];
 [emailString release];
}

-(IBAction) btnSend: (id) sender{
 [self sendEmailTo:to.text withSubject:subject.text withBody:body.text];
}

- (void)dealloc {
 [to release];
 [subject release];
 [body release];
 [super dealloc];
}

7. Press Command-R to test the application on a real iPhone. Figure 14-2 shows the application in action. After you have filled in the TextFields and TextView with the necessary information, click the Send button to invoke the Mail application and fill it with all the information you have typed in your application. Clicking the Send button in Mail sends the e-mail.

FIGURE 14-2

[image: image]

How It Works

The magic of invoking the Mail application lies in the string that you create in the sendEmailTo:withSubject:withBody: method that you have defined:

 NSString *emailString =
 [[NSString alloc] initWithFormat:@"mailto:?to=%@&subject=%@&body=%@",
 [toStr stringByAddingPercentEscapesUsingEncoding: NSASCIIStringEncoding],
 [subjectStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding],
 [bodyStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding]];

Basically, this is a URL string with the mailto: protocol indicated. The various parameters, such as to, subject, and body, are inserted into the string. Note that you use the stringByAddingPercentEscapesUsingEncoding: method of the NSString class to encode the various parameters with the correct percent escapes so that the result is a valid URL string.

To invoke the Mail application, simply call the sharedApplication method to return the singleton application instance and then use the openURL: method to invoke the Mail application:

 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:emailString]];

[image: image]
NOTE Remember that this example works only on a real device. Testing it on the iPhone Simulator will not work. Appendix A discusses how to prepare your iPhone for testing.

The downside of using this approach is that when you tap the Send button, the application is pushed to the background when the Mail application takes over. When the e-mail is sent, you have to manually bring the application to the foreground again; otherwise, it will not appear. To compose the e-mail from within your application and then get the Mail application to send it for you, you can use the MFMailComposeViewController class. The following Try It Out shows how this can be done.

TRY IT OUT: Sending E-Mail without Leaving the Application

1. Using the same project created in the previous Try It Out, add a new Round Rect button to the EmailViewController.xib file (see Figure 14-3).

FIGURE 14-3

[image: image]

2. In Xcode, add the MessageUI.framework file to your project (see Figure 14-4).

FIGURE 14-4

[image: image]

[image: image]
NOTE If you are not familiar with how to add a framework to your project, please refer to Appendix B for more details.

3. Add the following statement in bold to the EmailsViewController.h file:

#import <UIKit/UIKit.h>
#import <MessageUI/MFMailComposeViewController.h>

@interface EmailsViewController : UIViewController
<MFMailComposeViewControllerDelegate>
{
 IBOutlet UITextField *to;
 IBOutlet UITextField *subject;
 IBOutlet UITextView *body;
}

@property (nonatomic, retain) UITextField *to;
@property (nonatomic, retain) UITextField *subject;
@property (nonatomic, retain) UITextView *body;

-(IBAction) btnSend: (id) sender;
-(IBAction) btnComposeEmail: (id) sender;

@end

4. In Interface Builder, Control-click and drag the Compose E-mail button over the File’s Owner item. Select btnComposeEmail:.

5. Add the following statement in bold to the EmailsViewController.m file:

#import "EmailsViewController.h"

@implementation EmailsViewController

@synthesize to, subject, body;

-(IBAction) btnComposeEmail: (id) sender {
 MFMailComposeViewController *picker =
 [[MFMailComposeViewController alloc] init];
 picker.mailComposeDelegate = self;

 [picker setSubject:@"Email subject here"];
 [picker setMessageBody:@"Email body here" isHTML:NO];
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

- (void)mailComposeController:(MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError*)error {
 [controller dismissModalViewControllerAnimated:YES];
}

6. Press Command-R to test the application on a real iPhone. Like the previous Try It Out, you will see the Mail application’s compose screen (see Figure 14-5). However, unlike the previous example, when the e-mail is sent, control is returned to the application.

FIGURE 14-5

[image: image]

How It Works

The MFMailComposeViewController class presents the window for composing a message modally and does not cause the current application to go into the background. This is very useful when you want to resume with the current application after the e-mail has been sent.

Invoking Safari

If you want to invoke the Safari web browser on your iPhone, you can also make use of a URL string and then use the openURL: method of the application instance, like this:

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @"http://www.apple.com"]];

The preceding code snippet invokes Safari to open the www.apple.com page (see Figure 14-6).

FIGURE 14-6

[image: image]

Invoking the Phone

To make a phone call using the iPhone’s phone dialer, use the following URL string:

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @"tel:1234567890"]];

The preceding statement invokes the dialer of the iPhone using the phone number specified.

[image: image]
NOTE The preceding statement works only for the iPhone, not the iPod touch, of course, because the iPod touch does not have phone capabilities. Also, you would need to use a real device to test this out; the code does not have an effect on the iPhone Simulator. Appendix A discusses how to prepare your iPhone for testing.

Invoking SMS

You can also use a URL string to send SMS messages using the SMS application:

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @"sms:1234567890"]];

The preceding statement invokes the SMS application (see Figure 14-7). Note that the current application will be sent to the background.

FIGURE 14-7

[image: image]

[image: image]
NOTE As noted in the preceding section, this statement works only for the iPhone, not the iPod touch, because the iPod touch does not have a phone, and therefore messaging capabilities. Also, you would need to use a real device to test this out; the code does not have an effect on the iPhone Simulator. Appendix A discusses how to prepare your iPhone for testing.

Just like sending e-mail messages, you can also send SMS messages without leaving your application. The following Try It Out shows how to do this.

TRY IT OUT: Sending SMS Messages without Leaving Your Application

1. Using the previous project, Emails, add the following statements in bold to the EmailsViewController.h file:

#import <UIKit/UIKit.h>
#import <MessageUI/MFMailComposeViewController.h>
#import <MessageUI/MFMessageComposeViewController.h>

@interface EmailsViewController : UIViewController
<MFMailComposeViewControllerDelegate,
 MFMessageComposeViewControllerDelegate> {
 IBOutlet UITextField *to;
 IBOutlet UITextField *subject;
 IBOutlet UITextView *body;
}

@property (nonatomic, retain) UITextField *to;
@property (nonatomic, retain) UITextField *subject;
@property (nonatomic, retain) UITextView *body;

-(IBAction) btnSend: (id) sender;
-(IBAction) btnComposeEmail: (id) sender;
-(IBAction) btnComposeSMS: (id) sender;

@end

2. Add a Round Rect Button to the View window in the EmailsViewController.xib file (see Figure 14-8).

FIGURE 14-8

[image: image]

3. Add the following statements in bold to the EmailsViewController.m file:

#import "EmailsViewController.h"

@implementation EmailsViewController

@synthesize to, subject, body;

-(IBAction) btnComposeSMS: (id)sender {
 MFMessageComposeViewController *picker =
 [[MFMessageComposeViewController alloc] init];
 picker.messageComposeDelegate = self;

 [picker setBody:@"This message sent from the application."];
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

- (void)messageComposeViewController:(MFMessageComposeViewController *)controller
 didFinishWithResult:(MessageComposeResult)result {
 [controller dismissModalViewControllerAnimated:YES];
}

4. In Interface Builder, Control-click and drag the Compose SMS button over the File’s Owner item. Select btnComposeSMS:.

5. Press Command-R to test the application on an iPhone device. You will be able to compose your SMS message. When the message is sent, control is returned to your application.

How It Works

The MFMessageComposeViewController class presents the SMS composer window modally and does not cause the current application to go into the background. This is very useful when you want to resume with the current application after the SMS message has been sent.

INTERCEPTING SMS MESSAGES

One of the most frequently requested features of the iOS SDK is the capability to intercept incoming SMS messages from within an iPhone application. Unfortunately, the current version of the SDK does not provide a means to do this.

Likewise, you cannot send SMS messages directly from within your application; the messages must be sent from the built-in SMS application itself. This requirement prevents rogue applications from sending SMS messages without the user’s knowledge.

ACCESSING THE CAMERA AND THE PHOTO LIBRARY

The iPhone 4 (and 4S) (as well as the iPad 2) has a camera (in fact two – one front facing and one rear facing) that enables users to both take pictures and record videos. These pictures and videos are saved in the Photos application. As a developer, you have two options to manipulate the camera and to access the pictures and videos stored in the Photos application:

	You can invoke the camera to take pictures or record a video.

	You can invoke the Photos application to allow users to select a picture or video from the photo albums. You can then use the picture or video selected in your application.

Accessing the Photo Library

Every iOS device includes the Photos application, in which pictures are stored. Using the iOS SDK, you can use the UIImagePickerController class to programmatically display a UI that enables users to select pictures from the Photos application. The following Try It Out demonstrates how you can do that in your application.

TRY IT OUT: Accessing the Photos in the Photo Library

Codefile [PhotoLibrary.zip] is available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it PhotoLibrary. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the PhotoLibraryViewController.xib file to edit it in Interface Builder.

3. Populate the View window with the following views (see Figure 14-9):

FIGURE 14-9

[image: image]

	Round Rect Button

	ImageView

4. In the Attributes Inspector window for the ImageView view, set the Mode to Aspect Fit (see Figure 14-10).

FIGURE 14-10

[image: image]

5. In the PhotoLibraryViewController.h file, insert the following statements that appear in bold:

#import <UIKit/UIKit.h>

@interface PhotoLibraryViewController : UIViewController
<UINavigationControllerDelegate,
 UIImagePickerControllerDelegate>
{
 IBOutlet UIImageView *imageView;
 UIImagePickerController *imagePicker;
}

@property (nonatomic, retain) UIImageView *imageView;

-(IBAction) btnClicked: (id) sender;

@end

6. Back in Interface Builder, Control-click and drag the File’s Owner item to the ImageView view and select imageView.

7. Control-click and drag the Button view to the File’s Owner item and select btnClicked:.

8. In the PhotoLibraryViewController.m file, insert the following statements that appear in bold:

#import "PhotoLibraryViewController.h"

@implementation PhotoLibraryViewController

@synthesize imageView;

- (void)viewDidLoad {
 imagePicker = [[UIImagePickerController alloc] init];
 [super viewDidLoad];
}

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;
 imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 //---show the Image Picker---
 [self presentModalViewController:imagePicker animated:YES];
}

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *image;
 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:
 UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:
 UIImagePickerControllerEditedImage];
 if (image == nil) {
 //---original image selected---
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //---display the image---
 imageView.image = image;
 }
 else { //---edited image picked---
 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;
 }
 }
 //---hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 //---user did not select image; hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

- (void)dealloc {
 [imageView release];
 [imagePicker release];
 [super dealloc];
}

9. Press Command-R to test the application on the iPhone Simulator.

10. When the application is loaded, tap the Load Photo Library button. The Photo Albums on the iPhone Simulator appear. Select a particular album (see Figure 14-11), and then select a picture. The selected picture will then be displayed on the ImageView view (see Figure 14-12).

FIGURE 14-11

[image: image]

FIGURE 14-12

[image: image]

[image: image]
NOTE Because the iPhone Simulator does not contain any built-in photo albums, you might not be able to test this application on the simulator. Thus, I suggest you test this on a real device. Appendix A discusses how to test your application on real devices.

How It Works

Access to the Photo Library is provided by the UIImagePickerController class, which provides the UI for choosing and taking pictures and videos on your iPhone. All you need to do is create an instance of this class and provide a delegate that conforms to the UIImagePickerControllerDelegate protocol. In addition, your delegate must conform to the UINavigationControllerDelegate protocol because the UIImagePickerController class uses the Navigation Controller to enable users to select photos from the Photo Library. Therefore, you first needed to specify the protocols in PhotoLibraryViewController.h:

@interface PhotoLibraryViewController : UIViewController
 <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate>
{

When the Load Library button is clicked, you set the type of picker interface displayed by the UIImagePickerController class and then display it modally:

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;
 imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;
 //---show the Image Picker---
 [self presentModalViewController:imagePicker animated:YES];
}

Note that if you want the picture to be editable when the user chooses it, you can add the following statement:

 imagePicker.allowsEditing = YES;

By default, the source type is always UIImagePickerControllerSourceTypePhotoLibrary, but you can change it to one of the following:

	UIImagePickerControllerSourceTypeCamera — For taking photos directly with the camera

	UIImagePickerControllerSourceTypeSavedPhotosAlbum — For directly going to the Photo Albums application

When a picture has been selected by the user, the imagePickerController:didFinishPickingMediaWithInfo: event fires, which you handle by checking the type of media selected by the user:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *image;
 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:
 UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:
 UIImagePickerControllerEditedImage];
 if (image == nil) {
 //---original image selected---
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //---display the image---
 imageView.image = image;
 }
 else { //---edited image picked---
 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;
 }
 }
 //---hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

The type of media selected by the user is encapsulated in the info: parameter. You use the valueForKey: method to extract the appropriate media type and then typecast it to the respective type:

 mediaUrl = (NSURL *)
 [info valueForKey:UIImagePickerControllerMediaURL];

If the user cancels the selection, the imagePickerControllerDidCancel: event fires. In this case, you simply dismiss the Image Picker:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)
 picker {
 //---user did not select image; hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

Accessing the Camera

Besides accessing the Photo Library, you can also access the camera on your iPhone. Although accessing the hardware is the focus of the next chapter, this section takes a look at how to access the camera because it is also accomplished using the UIImagePickerController class.

In the following Try It Out, you modify the existing project created in the previous section. There isn’t much to modify because most of the code you have written still applies.

TRY IT OUT: Activating the Camera

1. Using the same project created in the previous section, edit the PhotoLibraryViewController.m file by changing the source type of the Image Picker to camera (see code highlighted in bold):

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;

 //---comment this out---
 /*
 imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 */

 //---invoke the camera---
 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
 NSArray *mediaTypes =
 [NSArray arrayWithObjects:kUTTypeImage, nil];
 imagePicker.mediaTypes = mediaTypes;

 imagePicker.cameraCaptureMode = UIImagePickerControllerCameraCaptureModePhoto;
 imagePicker.allowsEditing = YES;

 //--show the Image Picker--
 [self presentModalViewController:imagePicker animated:YES];
}

2. In the PhotoLibraryViewController.m file, define the following two methods:

- (NSString *) filePath: (NSString *) fileName {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:fileName];
}

- (void) saveImage{
 //---get the data from the ImageView---
 NSData *imageData =
 [NSData dataWithData:UIImagePNGRepresentation(imageView.image)];

 //---write the data to file---
 [imageData writeToFile:[self filePath:@"MyPicture.png"] atomically:YES];
}

3. Insert the following statements that appear in bold:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *image;
 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:UIImagePickerControllerEditedImage];
 if (image == nil) {
 //---original image selected---
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //---display the image---
 imageView.image = image;
 }
 else { //---edited image picked---

 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;
 }
 //---save the image captured---
 [self saveImage];
 }
 //---hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

4. Press Command-R to test the application on a real iPhone.

5. Tap the Load Photo Library button. You can now use your iPhone’s camera to take photos. Once a photo is taken (see Figure 14-13), the picture is saved to the Documents folder of your application.

FIGURE 14-13

[image: image]

How It Works

In this exercise you modified the source type of the Image Picker to camera:

 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;

When the camera takes a picture, the picture is passed back in the imagePickerController:didFinishPickingMediaWithInfo: method and displayed in the ImageView view. However, it is your responsibility to manually save the image to a location on the phone. In this case, you defined the filePath: method to save the picture to the Documents folder of your application:

- (NSString *) filePath: (NSString *) fileName {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:fileName];
}

The saveImage: method extracts the image data on the ImageView view and then calls the filePath: method to save the data into a file named MyPicture.png:

- (void) saveImage{
 //--get the date from the ImageView--
 NSData *imageData =
 [NSData dataWithData:UIImagePNGRepresentation(imageView.image)];

 //--write the date to file--
 [imageData writeToFile:[self filePath:@"MyPicture.png"] atomically:YES];
}

[image: image]
NOTE By default on the iPhone 4 and iPhone 4S, the rear camera is always activated when you use the UIImagePickerController class. If you want to activate the front camera instead, you can set the cameraDevice property of the UIImagePickerController class, which can be either of the following values: UIImagePickerControllerCameraDeviceRear (default) or UIImagePickerControllerCameraDeviceFront.

Appendix A discusses how to prepare your iPhone for testing.

SUMMARY

In this chapter, you learned how you can easily integrate the various built-in applications into your own iPhone applications. In particular, you saw how you can invoke the built-in SMS, Mail, Safari, and Phone simply by using a URL string. In addition, you learned how to send SMS and e-mail messages without leaving your application. You also learned about accessing the Photo Library applications using the classes provided by the iPhone SDK.

EXERCISES

1. Name the various URL strings for invoking the Safari, Mail, SMS, and Phone applications.

2. What is the class name for invoking the Image Picker UI in the iPhone?

3. What is the class name for invoking the Mail Composer UI in the iPhone?

4. What is the class name for invoking the Message Composer UI in the iPhone?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Sending e-mail from within your application
	
NSString *emailString =
@"mailto:?to=user@email.com&subject=Subject&body=Body";
[[UIApplication sharedApplication] openURL:[NSURL
URLWithString:emailString]];

	Invoking Safari
	
[[UIApplication sharedApplication]
openURL:[NSURL URLWithString: @"http://www.apple.com"]];

	Invoking the Phone
	
[[UIApplication sharedApplication]
openURL:[NSURL URLWithString: @"tel:12345678*2"]];

	Invoking SMS
	
[[UIApplication sharedApplication]
openURL:[NSURL URLWithString: @"sms:12345678*2"]];

	Accessing the Photo Library
	Use the UIImagePickerController class and ensure that your View Controller conforms to the UINavigationControllerDelegate protocol.

	Invoking the Mail Composer UI
	Use the MFMailComposeViewController class.

	Invoking the Message Composer UI
	Use the MFMessageComposeViewController class.

Chapter 15

Accessing the Sensors

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to obtain the gyroscope data from your iOS device

	How to obtain accelerometer data from your iOS device

	How to detect shakes to your device

Beginning with iPhone 4, Apple introduced a new gyroscopic sensor in addition to the original accelerometer sensor available since the first iPhone. Using the gyroscope, you can measure the device’s angular acceleration around the x, y, and z axes. This enables you to accurately measure the yaw, pitch, and roll of the device. In addition to the gyroscope, the built-in accelerometer measures the linear acceleration of the device along the three axes. With these two sensors, your application can determine how far, how fast, and in which direction it is moving in space.

In this chapter, you learn how to access the gyroscope and accelerometer data and use the Shake API to detect shakes to your iPhone.

USING THE GYROSCOPE AND ACCELEROMETER

The gyroscope in an iOS device enables you to measure the device’s angular acceleration around the x, y, and z axes. Figure 15-1 shows how this enables you to accurately measure the yaw, pitch, and roll of the device.

FIGURE 15-1

[image: image]

The accelerometer in iOS devices measures the acceleration of the device relative to freefall. A value of 1 indicates that the device is experiencing 1 g of force exerted on it (1 g of force being the gravitational pull of the earth, which your device experiences when it is stationary). The accelerometer measures the acceleration of the device in three different axes: x, y, and z. Figure 15-2 shows the different axes measured by the accelerometer.

FIGURE 15-2

[image: image]

Table 15-1 shows example readings of the three axes when the device is in the various positions. Bear in mind that you won’t see the exact same values as these, because they are always fluctuating due to the accelerometer’s sensitivity.

TABLE 15-1: Example Readings of the X, Y, and Z Axes

[image: image]

If the iPhone is held upright and moved to the right quickly, the value of the x-axis will increase from 0 to a positive value. If it is moved to the left quickly, the value of the x-axis will decrease from 0 to a negative value. If the device is moved upward quickly, the value of the y-axis will increase from −1.0 to a larger value. If the device is moved downward quickly, the value of the y-axis will decrease from −1.0 to a smaller value.

If the device is horizontal and then moved downward, the value of the z-axis will decrease from −1.0 to a smaller number. If it is moved upward, the value of the z-axis will increase from −1.0 to a bigger number.

[image: image]
NOTE The accelerometer used on the iPhone gives a maximum reading of about +/− 2.3 g, with a resolution of about 0.018 g.

In the iOS SDK, the device’s accelerometer and gyroscope data are all encapsulated within the CMMotionManager class. The CMMotionManager class exposes a number of properties containing the accelerometer data, rotation-rate data, and other device-motion data such as attitude.

The following Try It Out shows you how you can use the CMMotionManager class to access the gyroscope and accelerometer of an iOS device.

TRY IT OUT: Accessing the Gyroscope and Accelerometer Data

codefile Gyroscope.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Gyroscope. Use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add the CoreMotion.framework to your project (see Figure 15-3).

FIGURE 15-3

[image: image]

3. In the GyroscopeViewController.h file, add the following statements that appear in bold:

#import <UIKit/UIKit.h>
#import <CoreMotion/CoreMotion.h>

@interface GyroscopeViewController : UIViewController
{
 IBOutlet UITextField *txtRoll;
 IBOutlet UITextField *txtPitch;
 IBOutlet UITextField *txtYaw;

 IBOutlet UITextField *txtX;
 IBOutlet UITextField *txtY;
 IBOutlet UITextField *txtZ;

 CMMotionManager *mm;
}

@property (nonatomic, retain) UITextField *txtRoll;
@property (nonatomic, retain) UITextField *txtPitch;
@property (nonatomic, retain) UITextField *txtYaw;

@property (nonatomic, retain) UITextField *txtX;
@property (nonatomic, retain) UITextField *txtY;
@property (nonatomic, retain) UITextField *txtZ;

@end

4. Select the GyroscopeViewController.xib file to edit it in Interface Builder.

5. Add the following views to the View window (see Figure 15-4):

FIGURE 15-4

[image: image]

	Label (name them as Roll, Pitch, Yaw, x, y, and z)

	TextField

6. Connect the respective outlets to the TextField views by control-clicking the File’s Owner item and dragging each outlet over each TextField.

7. In the GyroscopeViewController.m file, add the following statements that appear in bold:

#import "GyroscopeViewController.h"

@implementation GyroscopeViewController

@synthesize txtRoll;
@synthesize txtPitch;
@synthesize txtYaw;

@synthesize txtX;
@synthesize txtY;
@synthesize txtZ;

- (void)viewDidLoad
{
 mm = [[CMMotionManager alloc] init];
 if (mm.isDeviceMotionAvailable) {
 mm.deviceMotionUpdateInterval = 1.0/60.0;
 [mm startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue]
 withHandler:^(CMDeviceMotion *motion, NSError *error)
 {
 CMAttitude *currentAttitude = motion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@"%f",roll];
 txtPitch.text = [NSString stringWithFormat:@"%f",pitch];
 txtYaw.text = [NSString stringWithFormat:@"%f",yaw];

 CMAcceleration currentAcceleration = motion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@"%f",currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@"%f",currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@"%f",currentAcceleration.z];
 }];
 }
 [super viewDidLoad];
}

-(void) dealloc
{
 [txtRoll release];
 [txtPitch release];
 [txtYaw release];
 [txtX release];
 [txtY release];
 [txtZ release];
 [mm stopDeviceMotionUpdates];
 [super dealloc];
}

8. Debug the application on a real iPhone device by pressing Command-R. Figure 15-5 shows a snapshot of the values on the device as it is moved.

FIGURE 15-5

[image: image]

How It Works

As mentioned earlier, you use the CMMotionManager class to obtain the gyroscope data. Before you start obtaining the result, you should first check whether the device supports the gyroscope and accelerometer sensors:

 mm = [[CMMotionManager alloc] init];
 if (mm.isDeviceMotionAvailable) {
 //...
 }

Because all the iOS devices support the accelerometer, the preceding check is essentially confirming whether the gyroscope is available on the device.

Next, you set the interval in which the motion manager updates its data through the block handler defined in the startDeviceMotionUpdatesToQueue:withHandler: method:

 mm.deviceMotionUpdateInterval = 1.0/60.0; //---in seconds---
 [mm startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue]
 withHandler:^(CMDeviceMotion *motion, NSError *error)
 {
 CMAttitude *currentAttitude = motion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@"%f",roll];
 txtPitch.text = [NSString stringWithFormat:@"%f",pitch];
 txtYaw.text = [NSString stringWithFormat:@"%f",yaw];

 CMAcceleration currentAcceleration = motion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@"%f",currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@"%f",currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@"%f",currentAcceleration.z];
 }];

The deviceMotionUpdateInterval property specifies the interval in seconds — that is, the number of seconds between updates. In this case, you want the sensor data to be updated 60 times per second.

The block handler passes in a CMDeviceMotion object (motion), which encapsulates the measures of the attitude and acceleration of a device. The attitude of a device is its orientation relative to a given frame of reference. Essentially, the attitude object represents the roll, pitch, and yaw of a device. To obtain the accelerometer data, you use the userAcceleration structure of the CMDeviceMotion object.

Besides using the block handler, you could actually schedule an NSTimer object to read the sensors’ values at regular time intervals. The preceding code could be rewritten as follows:

- (void)onTimer {
 CMAttitude *currentAttitude = mm.deviceMotion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@"%f",roll];
 txtPitch.text = [NSString stringWithFormat:@"%f",pitch];
 txtYaw.text = [NSString stringWithFormat:@"%f",yaw];

 CMAcceleration currentAcceleration = mm.deviceMotion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@"%f",currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@"%f",currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@"%f",currentAcceleration.z];
}

- (void)viewDidLoad
{
 mm = [[CMMotionManager alloc] init];
 if (mm.isDeviceMotionAvailable) {
 [NSTimer scheduledTimerWithTimeInterval:1.0/60.0
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [mm startDeviceMotionUpdates];
 }
 [super viewDidLoad];
}

Here, you use the startDeviceMotionUpdates method to start the sensors. The onTimer method will be fired 60 times per second, and this is where you read the sensors’ values.

VISUALIZING THE SENSOR DATA

Printing out the raw values of the gyroscope and accelerometer data is not very exciting. Instead, the following Try It Out shows you how to modify the application so that you can use the gyroscope data to move a soccer ball on the screen.

TRY IT OUT: Visualizing the Gyroscope Data

1. Using the same project created in the previous section, add the CoreGraphics.framework to the project (see Figure 15-6).

FIGURE 15-6

[image: image]

2. Add an image of a soccer ball to the Supporting Files folder, as shown in Figure 15-7.

FIGURE 15-7

[image: image]

3. Select the GyroscopeViewController.xib file to edit it in Interface Builder.

4. Add an ImageView to the View window and set its Image attribute to ball.png (see Figure 15-8).

FIGURE 15-8

[image: image]

5. In the GyroscopeViewController.h file, add the following code in bold:

#import <UIKit/UIKit.h>
#import <CoreMotion/CoreMotion.h>

@interface GyroscopeViewController : UIViewController
{
 IBOutlet UITextField *txtRoll;
 IBOutlet UITextField *txtPitch;
 IBOutlet UITextField *txtYaw;

 IBOutlet UITextField *txtX;
 IBOutlet UITextField *txtY;
 IBOutlet UITextField *txtZ;

 CMMotionManager *mm;

 IBOutlet UIImageView *imageView;
 CGPoint delta;
 CGPoint translation;
 float ballRadius;
}

@property (nonatomic, retain) UITextField *txtRoll;
@property (nonatomic, retain) UITextField *txtPitch;
@property (nonatomic, retain) UITextField *txtYaw;

@property (nonatomic, retain) UITextField *txtX;
@property (nonatomic, retain) UITextField *txtY;
@property (nonatomic, retain) UITextField *txtZ;

@property (nonatomic, retain) UIImageView *imageView;

@end

6. In Interface Builder, Control-click and drag the File’s Owner item over the Image View. Select imageView.

7. In the GyroscopeViewController.m file, add the following code in bold:

#import "GyroscopeViewController.h"

@implementation GyroscopeViewController

@synthesize txtRoll;
@synthesize txtPitch;
@synthesize txtYaw;

@synthesize txtX;
@synthesize txtY;
@synthesize txtZ;

@synthesize imageView;

- (void)viewDidLoad
{
 ballRadius = imageView.frame.size.width / 2;
 delta = CGPointMake(12.0,4.0);
 translation = CGPointMake(0.0,0.0);

 mm = [[CMMotionManager alloc] init];
 if (mm.isDeviceMotionAvailable) {
 mm.deviceMotionUpdateInterval = 1.0/60.0;
 [mm startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue]
 withHandler:^(CMDeviceMotion *motion, NSError *error)
 {
 CMAttitude *currentAttitude = motion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@"%f",roll];
 txtPitch.text = [NSString stringWithFormat:@"%f",pitch];
 txtYaw.text = [NSString stringWithFormat:@"%f",yaw];

 CMAcceleration currentAcceleration = motion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@"%f",currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@"%f",currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@"%f",currentAcceleration.z];

 //---animating the ball---
 if (currentAttitude.roll>0)
 delta.x = 2;
 else
 delta.x = -2;
 if (currentAttitude.pitch>0)
 delta.y = 2;
 else
 delta.y = -2;

 [UIView animateWithDuration:0.5
 animations:^
 {
 imageView.transform =
 CGAffineTransformMakeTranslation(
 translation.x, translation.y);
 }];

 translation.x = translation.x + delta.x;
 translation.y = translation.y + delta.y;

 if (imageView.center.x + translation.x > 320 - ballRadius ||
 imageView.center.x + translation.x < ballRadius) {
 translation.x -= delta.x;
 }

 if (imageView.center.y + translation.y > 460 - ballRadius ||
 imageView.center.y + translation.y < ballRadius) {
 translation.y -= delta.y;
 }
 }];
 }
 [super viewDidLoad];
}

-(void) dealloc
{
 [txtRoll release];
 [txtPitch release];
 [txtYaw release];
 [txtX release];
 [txtY release];
 [txtZ release];
 [mm stopDeviceMotionUpdates];

 [imageView release];
 [super dealloc];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

8. Press Command-R to test the application on a real iPhone device. Observe that as you move the device, the ball moves in the same direction as your hand (see Figure 15-9).

FIGURE 15-9

[image: image]

[image: image]
NOTE If you test this on an iPhone4 and find that the update rate of 60Hz over-drives the UI, causing slow updates and image delays from changes in the gyroscope, drop the rate to 30hz. It should be more responsive.

How It Works

This exercise enables you to visually examine the data reported by the gyroscope. In this case, only the roll and pitch data are used. The delta variable represents the amount to move, both in the x-axis and the y-axis.

To move the image, you apply a translation via the Image View’s transform property:

 [UIView animateWithDuration:0.5
 animations:^
 {
 imageView.transform =
 CGAffineTransformMakeTranslation(
 translation.x, translation.y);
 }];

The translation variable keeps track of the current translation so that the image animates smoothly.

You also restricted the View window to only display upright in the portrait mode so that you can see the ball moving when you rotate the device.

USING THE SHAKE API TO DETECT SHAKES

Beginning with the iPhone OS 3, Apple introduced the Shake API, which helps your application to detect shakes to the device. In reality, this API comes in the form of three events that you can handle in your code:

	motionBegan:

	motionEnded:

	motionCancelled:

These three events are defined in the UIResponder class, which is the superclass of UIApplication, UIView, and its subclasses (including UIWindow). The following Try It Out shows you how to detect shakes to your device using these three events.

TRY IT OUT: Using the Shake API

codefile Shake.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Shake. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the ShakeViewController.xib file to edit it in Interface Builder.

3. Populate the View window with the following views (the result will look like Figure 15-10):

FIGURE 15-10

[image: image]

	TextField

	DatePicker

4. Insert the following statements that appear in bold into the ShakeViewController.h file:

#import <UIKit/UIKit.h>

@interface ShakeViewController : UIViewController
{
 IBOutlet UITextField *textField;
 IBOutlet UIDatePicker *datePicker;
}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UIDatePicker *datePicker;

-(IBAction) doneEditing: (id) sender;
- (void)ResetDatePicker;

@end

5. In Interface Builder, perform the following actions:

	Control-click and drag the File’s Owner item to the TextField view and select textField.

	Control-click and drag the File’s Owner item to the DatePicker view and select datePicker.

	Right-click the TextField view and connect its Did End on Exit event to the File’s Owner item. Select doneEditing:.

6. Insert the following statements that appear in bold in the ShakeViewController.m file:

#import "ShakeViewController.h"

@implementation ShakeViewController

@synthesize textField, datePicker;

- (void) viewDidAppear:(BOOL) animated
{
 [self.view becomeFirstResponder];
 [super viewDidAppear:animated];
}

- (IBAction) doneEditing: (id) sender
{
 [sender resignFirstResponder];
}

- (void)motionBegan:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@"motionBegan:");
 }
 [super motionBegan:motion withEvent:event];
}

- (void)motionEnded:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@"motionEnded:");
 [self ResetDatePicker];
 }
 [super motionEnded:motion withEvent:event];
}

- (void)motionCancelled:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@"motionCancelled:");
 }
 [super motionCancelled:motion withEvent:event];
}

- (void)ResetDatePicker {
 [datePicker setDate:[NSDate date]];
}

- (void)dealloc {
 [textField release];
 [datePicker release];
 [super dealloc];
}

7. Right-click the project name in Xcode and choose New File. . . . Choose the Cocoa Touch Class item on the left and select the Objective-C class template. Choose the UIView subclass (see Figure 15-11) and name the file ShakeView.m. Click Next.

FIGURE 15-11

[image: image]

8. Insert the following statements in bold in ShakeView.m:

#import "ShakeView.h"

@implementation ShakeView

- (id)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self) {
 // Initialization code
 }
 return self;
}

- (BOOL)canBecomeFirstResponder {
 return YES;
}

/*
// Only override drawRect: if you perform custom drawing.
// An empty implementation adversely affects performance during animation.
- (void)drawRect:(CGRect)rect
{
 // Drawing code
}
*/

@end

9. In Interface Builder, select the View window and view its Identity Inspector window. Set ShakeView as its class name (see Figure 15-12).

FIGURE 15-12

[image: image]

10. Press Command-R to test the application on the iPhone Simulator. Open the output window by pressing Command-Shift-C in Xcode.

11. With the application in the iPhone Simulator, choose Hardware ⇒ Shake Gesture to simulate shaking the device. Note the information printed in the Debugger Console window:

2011-09-02 13:53:08.142 Shake[2402:707] motionBegan:
2011-09-02 13:53:08.851 Shake[2402:707] motionEnded:

12. Tap the TextField view to make the keyboard appear, and type some text into it. Choose Hardware ⇒ Shake Gesture to simulate shaking the device again. Note the values printed in the output window, and the alert on the screen (see Figure 15-13).

FIGURE 15-13

[image: image]

13. Close the keyboard by clicking the return key on the keyboard. Simulate shaking the device again and observe the output on the Debugger Console window.

14. Set the DatePicker view to any date. Choose Hardware ⇒ Shake Gesture to simulate shaking the device again. Notice that the DatePicker view resets to the current date.

How It Works

Be aware that the three events used for monitoring shakes are fired only when there is a first responder in your View. Hence, the first thing you do when your View appears is set it to become the first responder (in the ShakeViewController.m file):

- (void) viewDidAppear:(BOOL)animated
{
 [self.view becomeFirstResponder];
 [super viewDidAppear:animated];
}

However, by default, the View cannot be a first responder, so you need to create a UIView subclass (ShakeView.m) so that you can override the default canBecomeFirstResponder method to return a YES:

- (BOOL)canBecomeFirstResponder {
 return YES;
}

Doing so allows your View to become a first responder. By default, Interface Builder wires your View with the UIView base class (with which you need not do anything most of the time). You now need to tell Interface Builder to use the newly created ShakeView subclass.

Next, you handle the three events in the ShakeViewController.m file:

- (void)motionBegan:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@"motionBegan:");
 }
 [super motionBegan:motion withEvent:event];
}

- (void)motionEnded:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@"motionEnded:");
 [self ResetDatePicker];
 }
 [super motionEnded:motion withEvent:event];
}

- (void)motionCancelled:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@"motionCancelled:");
 }
 [super motionCancelled:motion withEvent:event];
}

For each event, you first check that the motion is indeed a shake; then, you print a debugging statement in the Debugger Console.

The motionBegan: event is fired when the OS suspects that the device is being shaken. If eventually the OS determines that the action is not a shake, the motionCancelled: event is fired. When the OS finally determines that the action is a shake action, the motionEnded: event is fired.

You also added a ResetDatePicker method to reset the DatePicker to the current date:

- (void)ResetDatePicker {
 [datePicker setDate:[NSDate date]];
}

When the device is shaken, you called the ResetDatePicker method to reset the DatePicker to the current date:

- (void)motionEnded:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@"motionEnded:");
 [self ResetDatePicker];
 }
 [super motionEnded:motion withEvent:event];
}

SUMMARY

In this chapter, you have seen how to obtain the gyroscope and accelerometer data of your iOS device. You also saw how to use the Shake API to help you determine whether your device is being shaken. Combining this knowledge enables you to create very compelling applications (such as shaking the device to refresh the data displayed in a Table View).

EXERCISES

1. Name the class to use to obtain the gyroscope and accelerometer data on your iOS device.

2. Name the three events in the Shake API in the iOS SDK.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Accessing the gyroscope and accelerometer data
	Use the CMMotionManager class.

	Detecting shakes
	You can use either the accelerometer data or the Shake API in the iOS SDK. For the Shake API, handle the following events: motionBegan:, motionEnded:, and motionCancelled:.

Chapter 16

Using Web Services

WHAT YOU WILL LEARN IN THIS CHAPTER

	Understanding the various ways to consume Web services in your iPhone applications

	How to communicate with a Web service using SOAP

	How to communicate with a Web service using HTTP GET

	How to communicate with a Web service using HTTP POST

	How to communicate with a JSON Web service

	Parsing the result of a Web service call using the NSXMLParser class

	How to integrate Twitter into your application

Communicating with the outside world is one of the ways to make your iOS applications interesting and useful. This is especially true today when so many Web services provide such useful functionality. However, consuming Web services in an iOS is not for the fainthearted. Unlike other development tools (such as Microsoft Visual Studio), Xcode does not have built-in tools that make consuming Web services easy. Everything must be done by hand, and you need to know how to form the relevant XML messages to send to the Web services and then parse the returning XML result.

This chapter explains how to communicate with XML Web services from within your iOS application. Working through the examples in this chapter will give you a solid foundation for consuming other Web services that you will need in your own projects. Besides consuming XML Web services, you will also learn how to consume a much more efficient type of Web service — JSON Web services.

In addition, this chapter covers one of the new APIs in iOS 5 — integrating with Twitter. You will learn how to enable your users to post tweets from within your application.

[image: image]
NOTE For an introduction to XML Web services, check out this link: www.w3schools.com/webservices/ws_intro.asp.

BASICS OF CONSUMING XML WEB SERVICES

Before you create an Xcode project to consume a Web service, it is good to examine a real Web service to see the different ways you can consume it. My favorite example is to use an ASMX XML Web service created using .NET. For the purposes of this discussion, we’ll look at a Web service called CurrencyConvertor, which enables you to convert one currency to another.

The CurrencyConvertor Web service is located at http://www.webservicex.net/currencyconvertor.asmx. If you use Safari to load this URL, you will see that it exposes one Web method: ConversionRate, as shown in Figure 16-1.

FIGURE 16-1

[image: image]

The ConversionRate method returns the result (the exchange rate between two specified currencies) as an XML string. Clicking the ConversionRate link reveals the page shown in Figure 16-2.

FIGURE 16-2

[image: image]

The important parts are the sections following the Test section shown on the page. They detail the various ways in which you can consume the Web service: SOAP, and optionally, HTTP GET and HTTP POST. In the .NET world, accessing the Web service is a pretty straightforward affair — Visual Studio provides a built-in tool to create a Web proxy service object for the Web service simply by downloading the WSDL document. For iOS development, you need to get your hands dirty, so you must understand the underlying mechanics of how to consume a Web service.

Using SOAP 1.1

The most common way to consume a Web service is using SOAP (Simple Object Access Protocol). When using SOAP, you need to use the POST method to send the following header to the Web service:

POST /currencyconvertor.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.webserviceX.NET/ConversionRate"

You then send the request packet to the Web service:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ConversionRate xmlns="http://www.webserviceX.NET/">
 <FromCurrency>fromCurrency</FromCurrency>
 <ToCurrency>toCurrency</ToCurrency>
 </ConversionRate>
 </soap:Body>
</soap:Envelope>

The bold italic word in the code is the placeholder where you need to substitute the actual value. Note a few important things in this example:

	The URL for the Web service is http://www.webservicex.net/currencyconvertor.asmx. This is the URL shown in Figure 16-1.

	The URL for the SOAPAction is http://www.webserviceX.NET/ConversionRate.

	The Content-Type for the request is text/xml; charset=utf-8.

	The HTTP method is POST.

	The SOAP request is as follows:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ConversionRate xmlns="http://www.webserviceX.NET/">
 <FromCurrency>currency1</FromCurrency>
 <ToCurrency>currency2</ToCurrency>
 </ConversionRate>
 </soap:Body>
</soap:Envelope>

	The Content-Length of the SOAP request is the total number of characters in the SOAP request.

	The Web service will return the following header response followed by the SOAP Response packet:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ConversionRateResponse xmlns="http://www.webserviceX.NET/">
 <ConversionRateResult>double</ConversionRateResult>
 </ConversionRateResponse>
 </soap:Body>
</soap:Envelope>

The result (exchange rate) will be enclosed within the block of XML results (shown in bold above). You would need to extract it from the XML result.

Using SOAP 1.2

Using SOAP 1.2 is very similar to using SOAP 1.1. The following shows the SOAP request for SOAP 1.2:

POST /currencyconvertor.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
 <soap12:Body>
 <ConversionRate xmlns="http://www.webserviceX.NET/">
 <FromCurrency>fromCurrency</FromCurrency>
 <ToCurrency>toCurrency</ToCurrency>
 </ConversionRate>
 </soap12:Body>
 </soap12:Envelope>

The SOAP response for SOAP 1.2 would be as follows:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
 <soap12:Body>
 <ConversionRateResponse xmlns="http://www.webserviceX.NET/">
 <ConversionRateResult>double</ConversionRateResult>
 </ConversionRateResponse>
 </soap12:Body>
</soap12:Envelope>

The key difference between SOAP 1.1 and 1.2 is that SOAP 1.1 requires the specification of the SOAP Action in the header, which is not needed in SOAP 1.2.

Using HTTP GET

If you do not want to use SOAP, you can use the simpler HTTP GET method, passing the data required by the Web service through the query string. Here is the format for sending the request header:

GET /currencyconvertor.asmx/ConversionRate?FromCurrency=string&
ToCurrency=string HTTP/1.1
Host: www.webservicex.net
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

Take note of the following:

	The URL for the Web service is http://www.webservicex.net/currencyconvertor.asmx/ConversionRate?FromCurrency=fromCurrency&ToCurrency=toCurrency.

	The Content-Type for the request is text/xml; charset=utf-8.

	The Content-Length of the SOAP request is 0, since there is nothing you need to send separately (everything is sent through the query string in the header).

	The HTTP method is GET.

The result will be returned in the following packet:

<?xml version="1.0" encoding="utf-8"?>
<double xmlns="http://www.webserviceX.NET/">double</double>

Using HTTP POST

In addition to using HTTP GET, you can also use HTTP POST. Here is the format for sending the request header:

POST /currencyconvertor.asmx/ConversionRate HTTP/1.1
Host: www.webservicex.net
Content-Type: application/x-www-form-urlencoded
Content-Length: length

FromCurrency=fromCurrency&ToCurrency=toCurrency

Take note of the following:

	The URL for the Web service is http://www.webservicex.net/currencyconvertor.asmx/ConversionRate.

	The Content-Type for the request is application/x-www-form-urlencoded.

	The Content-Length of the SOAP request is the length of FromCurrency=fromCurrency&ToCurrency=toCurrency.

	The HTTP method is POST.

The result will be returned in the following header and packet:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<double xmlns="http://www.webserviceX.NET/">double</double>

CONSUMING WEB SERVICES USING SOAP, HTTP GET, AND HTTP POST

As you can see here, besides using SOAP to communicate with a Web service, two more methods are available: HTTP GET and HTTP POST. Using HTTP GET (the simplest), all the information you need to pass to the Web service can be sent through the query string. For example, you can invoke a Web service through the query string like this:

www.somewebservice.com/webservice.asmx?key1=value1&key2=value2

However, the query string length is limited (recommended to be less than 256 characters), and is hence not suitable if you need to pass a lot of data to the Web service.

An alternative to this would be to use the HTTP POST method, which allows more data to be sent. Using the example just used, instead of passing all the keys and their values through the URL, you would send them through the HTTP header. However, HTTP POST has its limitations as well. As with HTTP GET, the data to be sent must be formatted as key/value pairs, but each key/value pair is limited in size to 1,024 characters. HTTP POST is also a little more secure than HTTP GET, because it is more difficult (but not impossible) to modify the values sent in the header than the query string. The most versatile method is to use the SOAP method, which allows complex data types to be sent to the Web service through the SOAP request.

CONSUMING A WEB SERVICE IN YOUR iOS APPLICATION USING SOAP

Now you’re ready to tackle the exciting task of consuming a Web service in your iOS application! In the following Try It Out, you learn how to communicate with the Web service using the SOAP method.

TRY IT OUT: Consuming Web Services Using SOAP

codefile WebServices.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it WebServices. Use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the WebServicesViewController.xib file to edit it in Interface Builder.

3. Populate the View window with the views as follows (see also Figure 16-3):

FIGURE 16-3

[image: image]

	Label (name it Enter amount to convert)

	Text Field

	Round Rect Button (name it Convert)

4. In Xcode, edit the WebServicesViewController.h file by adding the following bold statements:

#import <UIKit/UIKit.h>

@interface WebServicesViewController : UIViewController
<NSURLConnectionDelegate>
{
 IBOutlet UITextField *txtAmount;
 NSMutableData *webData;
 NSURLConnection *conn;
 NSString *matchingElement;
}

@property (nonatomic, retain) UITextField *txtAmount;

- (IBAction)buttonClicked:(id)sender;

@end

5. In Interface Builder, perform the following actions:

	Control-click the File’s Owner item and drag it over the TextField. Select txtAmount.

	Control-click the Round Rect Button and drag it over the File’s Owner item. Select buttonClicked:.

6. Right-click the File’s Owner item now and you should see the connections as shown in Figure 16-4.

FIGURE 16-4

[image: image]

7. In the WebServicesViewController.m file, add the following bold statements:

#import "WebServicesViewController.h"

@implementation WebServicesViewController

@synthesize txtAmount;

- (IBAction)buttonClicked:(id)sender {
 //---using SOAP 1.2 here---
	matchingElement = @"ConversionRateResult";
 NSString *soapMsg = [NSString stringWithFormat:
 @"<?xml version=\"1.0\" encoding=\"utf-8\"?>"
 "<soap12:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\" xmlns:soap12=\"http://www.w3.org/2003/05/soap-envelope\">"
 "<soap12:Body>"
 "<ConversionRate xmlns=\"http://www.webserviceX.NET/\">"
 "<FromCurrency>%@</FromCurrency>"
 "<ToCurrency>%@</ToCurrency>"
 "</ConversionRate>"
 "</soap12:Body>"
 "</soap12:Envelope>", @"USD", @"SGD"];

 //---print the XML to examine---
 NSLog(@"%@", soapMsg);

 NSURL *url = [NSURL URLWithString: @"http://www.webservicex.net/currencyconvertor.asmx"];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 NSString *msgLength = [NSString stringWithFormat:@"%d", [soapMsg length]];

 //---need this only if using SOAP 1.1---
 //[req addValue:@"http://www.webserviceX.NET/ConversionRate" forHTTPHeaderField:@"SOAPAction"];

 [req addValue:@"text/xml; charset=utf-8" forHTTPHeaderField:@"Content-Type"];
 [req addValue:msgLength forHTTPHeaderField:@"Content-Length"];
 [req setHTTPMethod:@"POST"];
 [req setHTTPBody: [soapMsg dataUsingEncoding:NSUTF8StringEncoding]];

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

-(void) connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *) response{
 [webData setLength: 0];
}

-(void) connection:(NSURLConnection *)connection
didReceiveData:(NSData *) data {
 [webData appendData:data];
}

-(void) connection:(NSURLConnection *)connection
 didFailWithError:(NSError *) error {
 [conn release];
 [webData release];
}

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 [conn release];
 NSLog(@"DONE. Received Bytes: %d", [webData length]);
 NSString *theXML = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 //---prints the XML received---
 NSLog(@"%@", theXML);
 [theXML release];
}

- (void)dealloc {
 [txtAmount release];
 [super dealloc];
}

8. Press Command-R to test the application on the iPhone Simulator. Enter a number in the Text Field, and click the Convert button.

9. In Xcode, press Shift-Command-C to open the output window. Observe that the following was sent to the Web service:

<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
 <soap12:Body>
 <ConversionRate xmlns="http://www.webserviceX.NET/">
 <FromCurrency>USD</FromCurrency>
 <ToCurrency>SGD</ToCurrency>
 </ConversionRate>
 </soap12:Body>
</soap12:Envelope>

10. The Web service responded with the following:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <ConversionRateResponse xmlns="http://www.webserviceX.NET/">
 <ConversionRateResult>1.205</ConversionRateResult>
 </ConversionRateResponse>
 </soap:Body>
</soap:Envelope>

The response from the Web service indicates that you have managed to communicate with it. The challenge now is how to parse the XML to extract the relevant result that you want. In this case, the result you want is encapsulated in the <ConversionRateResult> element. In the next section you’ll learn how to parse the XML response.

How It Works

Now, spend some time examining what you just did. First, you created the SOAP request packet:

 NSString *soapMsg = [NSString stringWithFormat:
 @"<?xml version=\"1.0\" encoding=\"utf-8\"?>"
 "<soap12:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
xmlns:soap12=\"http://www.w3.org/2003/05/soap-envelope\">"
 "<soap12:Body>"
 "<ConversionRate xmlns=\"http://www.webserviceX.NET/\">"
 "<FromCurrency>%@</FromCurrency>"
 "<ToCurrency>%@</ToCurrency>"
 "</ConversionRate>"
 "</soap12:Body>"
 "</soap12:Envelope>", @"USD", @"SGD"];

Here, you were hardcoding the two currencies, USD and SGD (Singapore Dollars), to obtain the exchange rate. Next, you created a URL load request object using an instance of the NSMutableURLRequest and NSURL objects:

 NSURL *url = [NSURL URLWithString: @"http://www.webservicex.net/currencyconvertor.asmx"];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
You then populated the request object with the various headers, such as Content-Type, SOAPAction, and Content-Length. You also set the HTTP method and HTTP body: [req addValue:@"text/xml; charset=utf-8" forHTTPHeaderField:@"Content-Type"];
 [req addValue:msgLength forHTTPHeaderField:@"Content-Length"];
 [req setHTTPMethod:@"POST"];
 [req setHTTPBody: [soapMsg dataUsingEncoding:NSUTF8StringEncoding]];

To establish the connection with the Web service, you used the NSURLConnection class together with the request object just created:

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }

The NSURLConnection object proceeded to send the request to the Web service and asynchronously call the various methods (which you will define next) when responses are received from the Web service. The data method of the NSMutableData class returns an empty data object. The NSMutableData object represents a wrapper for byte buffers, which you use to receive incoming data from the Web service.

When data starts streaming in from the Web service, the connection:didReceiveResponse: method is called, which you implemented here:

-(void) connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *) response{
 [webData setLength: 0];
}

Then, you initialized the length of webData to zero.

As the data progressively comes in from the Web service, the connection:didReceiveData: method is called. Next, you appended the data received to the webData object:

-(void) connection:(NSURLConnection *)connection
didReceiveData:(NSData *) data {
 [webData appendData:data];
}

If an error occurs during the transmission, the connection:didFailWithError: method is called:

-(void) connection:(NSURLConnection *)connection
 didFailWithError:(NSError *) error {
 [conn release];
 [webData release];
}

It is important that you handle a communication failure gracefully so that the user can try again later.

When the connection has finished and successfully downloaded the response, the connectionDidFinishLoading: method is called:

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 [conn release];
 NSLog(@"DONE. Received Bytes: %d", [webData length]);
 NSString *theXML = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 //---prints the XML received---
 NSLog(@"%@", theXML);
 [theXML release];

Finally, you simply print the XML response received from the Web service to the output window.

Besides using SOAP, you might want to use the simpler HTTP GET or POST method, which eliminates the need to create lengthy SOAP request packets. The following two Try It Outs show you how to modify the application to use HTTP GET and HTTP POST.

TRY IT OUT: Consuming Web Services Using HTTP GET

1. Using the same project created in the previous project, modfy the buttonClicked: method as shown in bold:

- (IBAction)buttonClicked:(id)sender {
 //---using HTTP GET---
 matchingElement = @"double";
 NSURL *url =
 [NSURL URLWithString:
 [NSString stringWithFormat:
 @"http://www.webservicex.net/currencyconvertor.asmx/ConversionRate?FromCurrency=%@&ToCurrency=%@",@"USD",@"SGD"]];

 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 NSString *msgLength = @"0";

 [req addValue:@"text/xml; charset=utf-8" forHTTPHeaderField:@"Content-Type"];
 [req addValue:msgLength forHTTPHeaderField:@"Content-Length"];
 [req setHTTPMethod:@"GET"];

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

2. Press Command-R to test the application. Click the Convert button and observe the results in the output window:

2011-08-30 14:00:54.650 WebServices[1029:f203] DONE. Received Bytes: 98
2011-08-30 14:00:54.651 WebServices[1029:f203] <?xml version="1.0"
 encoding="utf-8"?>
<double xmlns="http://www.webserviceX.NET/">1.205</double>

How It Works

In this exercise, you used the HTTP GET method to connect to the Web service. You formulated the query string to convert the USD to SGD and send it directly to the Web service. Observe that the response from the Web service is much simpler than using the SOAP method.

The next Try It Out will show you an alternative to using HTTP GET – HTTP POST. You might recall that HTTP GET imposes a restriction on the length of your query string. Hence, it is not suitable if you have a lot of data to send to your Web service. In this case, you could use HTTP POST.

TRY IT OUT: Consuming Web Services Using HTTP POST

1. Using the same project used in the previous example, modify the buttonClicked: method as shown in bold:

- (IBAction)buttonClicked:(id)sender {
 //---using HTTP POST---
 matchingElement = @"double";
 NSString *postStr =
 [NSString stringWithFormat:@"FromCurrency=%@&ToCurrency=%@",@"USD",@"SGD"];
 NSURL *url = [NSURL URLWithString:
 @"http://www.webservicex.net/currencyconvertor.asmx/ConversionRate"];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 NSString *strLength = [NSString stringWithFormat:@"%d", [postStr length]];

 [req addValue:@"application/x-www-form-urlencoded" forHTTPHeaderField:@"Content-Type"];
 [req addValue:strLength forHTTPHeaderField:@"Content-Length"];
 [req setHTTPMethod:@"POST"];
 [req setHTTPBody: [postStr dataUsingEncoding:NSUTF8StringEncoding]];

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

2. Press Command-R to test the application. Click the Convert button and observe the results in the output window:

2011-08-30 14:06:24.688 WebServices[1075:f203] DONE. Received Bytes: 99
2011-08-30 14:06:24.689 WebServices[1075:f203] <?xml version="1.0"
 encoding="utf-8"?>
<double xmlns="http://www.webserviceX.NET/">1.2055</double>

How It Works

In this exercise, you used the HTTP POST method to communicate with the Web service. Notice that the request information is sent to the Web service separately from the query string. Like the HTTP GET method, the response is much simpler than using the SOAP method.

PARSING THE XML RESPONSE

In the iOS SDK, you can use the NSXMLParser object to parse an XML response returned by the Web service. The NSXMLParser class is an implementation of the Simple API for the XML (SAX) mechanism, which parses an XML document serially.

An NSXMLParser object reads an XML document, scanning it from beginning to end. As it encounters the various items in the document (such as elements, attributes, comments, and so on), it notifies its delegates so that appropriate actions can be taken (such as extracting the value of an element, etc.).

In the following Try It Out, you will parse the XML result returned by the Web service so that you can obtain the exchange rate of the two currencies you sent to the Web service.

TRY IT OUT: Parsing the XML Result Returned by the Web Service

1. Using the WebServices project created in the previous section, add the following statements to the WebServicesViewController.h file to parse the response from the Web service:

#import <UIKit/UIKit.h>

@interface WebServicesViewController : UIViewController
<NSXMLParserDelegate, NSURLConnectionDelegate>
{
 IBOutlet UITextField *txtAmount;
 NSMutableData *webData;
 NSString *matchingElement;
 NSURLConnection *conn;
 NSMutableString *soapResults;
 NSXMLParser *xmlParser;
 BOOL elementFound;
}

@property (nonatomic, retain) UITextField *txtAmount;

- (IBAction)buttonClicked:(id)sender;

@end

2. In the WebServicesViewController.m file, add the following bold statements to the connectionDidFinishLoading: method:

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 [conn release];
 NSLog(@"DONE. Received Bytes: %d", [webData length]);
 NSString *theXML = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 //---prints the XML received---
 NSLog(@"%@", theXML);
 [theXML release];

 if (xmlParser) {
 [xmlParser release];
 }
 xmlParser = [[NSXMLParser alloc] initWithData: webData];
 [xmlParser setDelegate: self];
 [xmlParser setShouldResolveExternalEntities: YES];
 [xmlParser parse];
 [webData release];
}

3. In the WebServicesViewController.m file, add the following methods:

//---when the start of an element is found---
-(void) parser:(NSXMLParser *) parser
didStartElement:(NSString *) elementName
 namespaceURI:(NSString *) namespaceURI
 qualifiedName:(NSString *) qName
 attributes:(NSDictionary *) attributeDict {

 if ([elementName isEqualToString:matchingElement]) {
 if (!soapResults) {
 soapResults = [[NSMutableString alloc] init];
 }
 elementFound = YES;
 }
}

//---when the text of an element is found---
-(void)parser:(NSXMLParser *) parser foundCharacters:(NSString *)string {
 if (elementFound) {
 [soapResults appendString: string];
 }
}

//---when the end of element is found---
-(void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName {

 if ([elementName isEqualToString:matchingElement]) {
 //---displays the conversion rate---
 NSLog(@"%@", soapResults);

 float conversionRate = [soapResults floatValue];
 float result = [txtAmount.text floatValue] * conversionRate;

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Result"
 message:[NSString stringWithFormat:@"Converted Amount is $%.2f", result]
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 elementFound = FALSE;
 [xmlParser abortParsing];
 }
}

- (void)parserDidEndDocument:(NSXMLParser *)parser {
 if (soapResults) {
 [soapResults release];
 soapResults = nil;
 }
}

- (void) parser:(NSXMLParser *)parser
parseErrorOccurred:(NSError *)parseError {
 if (soapResults) {
 [soapResults release];
 soapResults = nil;
 }
}

- (void)dealloc {
 if (xmlParser) {
 [xmlParser release];
 }
 if (soapResults) {
 [soapResults release];
 }
 [txtAmount release];
 [super dealloc];
}

4. Test the application on the iPhone Simulator by pressing Command-R. Enter a number and click the Convert button. The application displays the result, as shown in Figure 16-5.

FIGURE 16-5

[image: image]

How It Works

To parse the XML result, you created an instance of the NSXMLParser class and then initialized it with the response returned by the Web service. The NSXMLParser is an implementation of the Simple API for the XML (SAX) parser. It parses an XML document sequentially, in an event-driven manner. As the parser encounters the various elements, attributes, and so forth, in an XML document, it raises events where you can insert your own event handlers to do your processing.

As the NSXMLParser object encounters the various items in the XML document, it fires off several methods, which you need to define:

	parser:didStartElement:namespaceURI:qualifiedName:attributes: — Fired when the start tag of an element is found:

//---when the start of an element is found---
-(void) parser:(NSXMLParser *) parser
didStartElement:(NSString *) elementName
 namespaceURI:(NSString *) namespaceURI
 qualifiedName:(NSString *) qName
 attributes:(NSDictionary *) attributeDict {

 if ([elementName isEqualToString:matchingElement]) {
 if (!soapResults) {
 soapResults = [[NSMutableString alloc] init];
 }
 elementFound = YES;
 }
}

Then, you checked whether the tag matched the string saved in the matchingElement string (which may be ConversionRateResult or double, depending on whether SOAP, HTTP GET, or HTTP POST is used). If it matched, you set the Boolean variable elementFound to YES.

	parser:foundCharacters: — Fired when the text of an element is found:

//---when the text of an element is found---
-(void)parser:(NSXMLParser *) parser foundCharacters:(NSString *)string {
 if (elementFound) {
 [soapResults appendString: string];
 }
}

Next, when the correct start tag was found, you extracted the value of the element into the soapResults object.

	parser:didEndElement:namespaceURI:qualifiedName: — Fired when the end of an element is found:

//---when the end of element is found---
-(void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName {

 if ([elementName isEqualToString:matchingElement]) {
 //---displays the conversion rate---
 NSLog(@"%@", soapResults);

 float conversionRate = [soapResults floatValue];
 float result = [txtAmount.text floatValue] * conversionRate;

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Result"
 message:[NSString stringWithFormat:@"Converted Amount is $%.2f", result]
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 elementFound = FALSE;
 [xmlParser abortParsing];
 }
}

Finally, you simply looked for the closing tag to confirm that the value of the element has been correctly extracted. You then calculated the converted amount and printed the value using a UIAlertView object.type=“note”

[image: image]
NOTE The Web service might take a while to return the result. Hence, once you have clicked on the button, be sure to wait a while for the result.

CONSUMING JSON WEB SERVICES

While most Web services currently in use were developed using XML and SOAP, they are inefficient for one primary reason: The use of XML makes data transfer expensive and slow (the start and end tags take up a huge portion of the document). Because the request and response packets use XML, it takes longer to transmit them, and parsing XML messages on the mobile device takes considerable effort.

Hence, if you are developing an end-to-end solution today, it is much better to use a non-XML based solution for the server side. A JSON Web service is one good candidate. JSON is a lightweight text-based open standard designed for human-readable data interchange. Using JSON, a Web service returns the result using a JSON string instead of an XML string. The following shows an example JSON string:

{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber":
 [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567"
 }
]
 }

Instead of using angle brackets to enclose data, JSON uses a series of braces, brackets, and colons to format the data. This formatting makes it very easy to parse the data into arrays and dictionary objects so that the relevant data can be extracted.

In the following Try It Out, you will learn how to consume a JSON Web service from your iPhone application.

TRY IT OUT: Consuming a JSON Web Service

codefile UsingJSON.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it UsingJSON. Be sure to use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Download the SBJson_v3.0.4.zip package from https://github.com/stig/json-framework/.

3. Add a new group in your project and name it SBJson (see Figure 16-6).

FIGURE 16-6

[image: image]

4. Unzip the downloaded package and drag all the files in the Classes folder into the newly created SBJson group in your Xcode project. Ensure that you check the “Copy items into destination group’s folder (if needed)” option (see Figure 16-7).

FIGURE 16-7

[image: image]

5. Select the UsingJSONViewController.xib file to edit it in Interface Builder.

6. Populate the View window with the following views (see Figure 16-8):

FIGURE 16-8

[image: image]

	Label (name it Lat and Lng)

	Text Field

	Round Rect Button (name it Get Weather)

7. Add the following bold code to the UsingJSONViewController.h file:

#import <UIKit/UIKit.h>
#import "SBJson.h"

@interface UsingJSONViewController : UIViewController
<NSURLConnectionDelegate>
{
 IBOutlet UITextField *txtLat;
 IBOutlet UITextField *txtLng;
 NSURLConnection *conn;
 NSMutableData *webData;
}

@property (nonatomic, retain) UITextField *txtLat;
@property (nonatomic, retain) UITextField *txtLng;
-(IBAction) btnGetWeather:(id)sender;

@end

8. Back in Interface Builder, perform the following actions:

	Control-click on the File’s Owner item and drag it over the first TextField. Select txtLat.

	Control-click on the File’s Owner item and drag it over the first TextField. Select txtLng.

	Control-click on the Round Rect Button and drag it over the File’s Owner item. Select btnGetWeather:.

9. Right-click on the File’s Owner item and view the connections (see Figure 16-9).

FIGURE 16-9

[image: image]

10. Add the following bold code to the UsingJSONViewController.m file:

#import "UsingJSONViewController.h"

@implementation UsingJSONViewController
@synthesize txtLat;
@synthesize txtLng;

-(IBAction) btnGetWeather:(id)sender
{
 NSString *queryURL =
 [NSString stringWithFormat:@"http://ws.geonames.org/findNearByWeatherJSON?lat=%@&lng=%@",
 txtLat.text, txtLng.text];
 NSURL *url = [NSURL URLWithString: queryURL];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 conn = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

-(void) connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *) response{
 [webData setLength: 0];
}

-(void) connection:(NSURLConnection *)connection
 didReceiveData:(NSData *) data {
 [webData appendData:data];
}

-(void) connection:(NSURLConnection *)connection
 didFailWithError:(NSError *) error {
 [conn release];
 [webData release];
}

-(void) connectionDidFinishLoading:(NSURLConnection *) connection
{
 [conn release];
 NSLog(@"DONE. Received Bytes: %d", [webData length]);
 NSString *strResult = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 NSDictionary *result = [strResult JSONValue];
 for (id theKey in result) {
 NSDictionary *detailedItems = [result objectForKey:theKey];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Result"
 message:strResult
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 NSLog(@"Key is %@, Value is %@", theKey, detailedItems);

 //---print out individual keys and their values---
 for (id detailedKey in detailedItems) {
 id detailedValue = [detailedItems objectForKey:detailedKey];
 NSLog(@"Key is %@, Value is %@", detailedKey, detailedValue);
 }
 }
 [strResult release];
 [webData release];
}

-(void) dealloc
{
 [txtLat release];
 [txtLng release];
 [super dealloc];
}

11. Press Command-R to debug the application on the iPhone Simulator. Enter the latitude and longitude of a location (see Figure 16-10) and then click the Get Weather button. You should see the result in an alert view.

FIGURE 16-10

[image: image]

12. In Xcode, press Command-Shift-C to view the output window (see Figure 16-11).

FIGURE 16-11

[image: image]

How It Works

To parse JSON strings, you use the json-framework, located at: https://github.com/stig/json-framework. To use the framework, you need to copy all the class files from this framework into your project and then import its header file.

The JSON Web service you used in this example enables you to check the weather information of a location given its latitude and longitude. You call this Web service just as you call a Web service using the HTTP GET method described earlier:

 NSString *queryURL =
 [NSString stringWithFormat:@"http://ws.geonames.org/findNearByWeatherJSON?lat=%@&lng=%@",
 txtLat.text, txtLng.text];
 NSURL *url = [NSURL URLWithString: queryURL];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 conn = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }

The latitude and longitude are passed in via the query string. When the Web service returns the result as a JSON string, you convert the JSON string into an NSDictionary object. This can be done by calling the JSONValue method (which belongs to the json-framework) on the NSString object:

 NSDictionary *result = [strResult JSONValue];

You then iterate through the dictionary object to find out the individual results in the JSON string:

 for (id theKey in result) {
 NSDictionary *detailedItems = [result objectForKey:theKey];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Result"
 message:strResult
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 NSLog(@"Key is %@, Value is %@", theKey, detailedItems);

 //---print out individual keys and their values---
 for (id detailedKey in detailedItems) {
 id detailedValue = [detailedItems objectForKey:detailedKey];
 NSLog(@"Key is %@, Value is %@", detailedKey, detailedValue);
 }
 }

INTEGRATING TWITTER INTO YOUR APPLICATION

In iOS 5, Twitter integration has been built right into the OS. A lot of built-in applications now support Twitter — Safari, Photos, Camera, YouTube, Maps, etc. In order to tweet directly from within all these applications, you first need to set up your Twitter account in the Settings application. Figure 16-12 shows the Twitter item in the Settings application on the iPhone Simulator. Clicking on the Twitter item allows you to sign in to your existing Twitter account, or create a new one if you do not already have an account.

FIGURE 16-12

[image: image]

Besides the built-in applications’ support for Twitter, you can also integrate Twitter support in your own application. The following Try It Out shows you how easy it is to enable users to tweet directly from your application.

TRY IT OUT: Tweeting Directly from Your Application

codefile Twitter.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Twitter. Use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add the Twitter.framework to your project (see Figure 16-13).

FIGURE 16-13

[image: image]

3. Select the TwitterViewController.xib file to edit it in Interface Builder.

4. Add the following views to the View window (see Figure 16-14):

FIGURE 16-14

[image: image]

	Label (name it Enter your tweets and URL)

	Text Field

	Round Rect Button (name it Tweet!)

5. Add the following bold statements to TwitterViewController.h:

#import <UIKit/UIKit.h>
#import <Twitter/Twitter.h>

@interface TwitterViewController : UIViewController
{
 IBOutlet UITextField *txtText;
 IBOutlet UITextField *txtURL;
}

@property (nonatomic, retain) UITextField *txtText;
@property (nonatomic, retain) UITextField *txtURL;

-(IBAction) btnTweet:(id)sender;
-(void) displayAlert:(NSString *) msg;

@end

6. Back in Interface Builder, perform the following actions:

	Control-click the File’s Owner item and drag it over the first TextField. Select txtText.

	Control-click the File’s Owner item and drag it over the second TextField. Select txtURL.

	Control-click on the Round Rect Button and drag it over the File’s Owner item. Select btnTweet:.

7. Right-click on the File’s Owner item and note the connections as shown in Figure 16-15.

FIGURE 16-15

[image: image]

8. Drag and drop an image named apple.jpeg into the Supporting Files folder (see Figure 16-16).

FIGURE 16-16

[image: image]

9. Add the following bold statements to TwitterViewController.m:

#import "TwitterViewController.h"

@implementation TwitterViewController
@synthesize txtText;
@synthesize txtURL;

-(IBAction) btnTweet:(id)sender
{
 if ([TWTweetComposeViewController class]) {
 //---twitter available---
 if ([TWTweetComposeViewController canSendTweet]) {
 //---twitter is configured---
 TWTweetComposeViewController *twitter =
 [[TWTweetComposeViewController alloc] init];
 [twitter setInitialText:txtText.text];
 [twitter addURL:[NSURL URLWithString:txtURL.text]];
 [twitter addImage:[UIImage imageNamed:@"apple.jpeg"]];

 [self presentViewController:twitter animated:YES completion:nil];
 twitter.completionHandler = ^(TWTweetComposeViewControllerResult result)
 {
 switch (result)
 {
 case TWTweetComposeViewControllerResultCancelled:
 [self displayAlert:@"Cancelled"];
 break;
 case TWTweetComposeViewControllerResultDone:
 [self displayAlert:@"Done!"];
 break;
 }
 [self dismissViewControllerAnimated:YES completion:NULL];
 };
 [twitter release];
 }
 } else {
 //--twitter is not available---
 [self displayAlert:@"Twitter not available."];
 }
}

-(void) displayAlert:(NSString *) msg
{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Message"
 message:msg
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

-(void) dealloc
{
 [txtText release];
 [txtURL release];
 [super dealloc];
}

10. Press Command-R to debug the application on the iPhone Simulator. Enter some text and an URL (see Figure 16-17). Then, click the Tweet! button.

FIGURE 16-17

[image: image]

11. You will see the Tweet Composer window showing the text that you have entered (see Figure 16-18). You can modify the text here before you post the tweet. When you are done, click the Send button to post the tweet.

FIGURE 16-18

[image: image]

12. To verify that the tweet was actually posted successfully, you can use Safari on your Mac to navigate to http://www.twitter.com to view the tweet posted (see Figure 16-19).

FIGURE 16-19

[image: image]

How It Works

To integrate Twitter into your application, you first needed to add the Twitter framework into your project.

For composing tweets, the Twitter framework provides the TWTweetComposeViewController class, which presents a modal window for users to enter the content of the tweet. As this class is only available in iOS 5 or later, it is important that you check for the availability of this class before actually calling it. You can did so by calling its class method, like this:

 if ([TWTweetComposeViewController class]) {
 //---twitter available---
 //...
 } else {
 //--twitter is not available---
 [self displayAlert:@"Twitter not available."];
 }

Once the TWTweetComposeViewController class was confirmed to be available, you checked whether the user has configured his or her Twitter account in the Settings application. This can be confirmed using the canSendTweet method:

 if ([TWTweetComposeViewController canSendTweet]) {
 //---twitter is configured---
 //...
 }

Once you created an instance of the TWTweetComposeViewController class, you set the initial text of the tweet, as well as the URL and image:

 TWTweetComposeViewController *twitter =
 [[TWTweetComposeViewController alloc] init];
 [twitter setInitialText:txtText.text];
 [twitter addURL:[NSURL URLWithString:txtURL.text]];
 [twitter addImage:[UIImage imageNamed:@"apple.jpeg"]];

To display the composer window, you used the presentViewController:animated:completion: method of the current view window:

 [self presentViewController:twitter animated:YES completion:nil];

From there, the user can modify the text of the tweet and post the Tweet by clicking the Send button on the compose window. You cannot programmatically send the tweet for the user.

To get the result of the compose window, you created a block and set it to the completionHandler property of the TWTweetComposeViewController object:

 twitter.completionHandler = ^(TWTweetComposeViewControllerResult result)
 {
 switch (result)
 {
 case TWTweetComposeViewControllerResultCancelled:
 [self displayAlert:@"Cancelled"];
 break;
 case TWTweetComposeViewControllerResultDone:
 [self displayAlert:@"Done!"];
 break;
 }
 [self dismissViewControllerAnimated:YES completion:NULL];
 };
 [twitter release];

You can monitor whether the user has cancelled the posting or proceeded to send the posting. After this, you dismiss the composer window.

SUMMARY

This chapter explored the various ways you can consume a Web service in your iOS applications: SOAP, HTTP GET, HTTP POST, and JSON. You also learned how to extract data from an XML document. Finally, you learned how to integrate Twitter into your application using the new API in iOS 5.

EXERCISES

1. Name the four ways in which you can consume a Web service in your iOS applications.

2. Name the three key events you need to handle when using the NSURLConnection class.

3. Describe the steps with which the NSXMLParser class parses the content of an XML document.

4. Name the class new in iOS 5 for composing Tweets.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Ways to consume a Web service
	SOAP 1.1/1.2, HTTP GET, HTTP POST, and JSON

	Formulating a URL request
	Use the NSMutableURLRequest class.

	Establishing a URL connection
	Use the NSURLConnection class.

	Class for storing byte buffers
	Use the NSMutableData class.

	Events fired by the NSURLConnection class
	connection:didReceiveResponse:
connection:didReceiveData:
connection:didFailWithError:
connectionDidFinishLoading:

	Parsing XML content
	Use the NSXMLParser class.

	Events fired by the NSXMLParser class
	*parser:didStartElement:namespaceURI:qualifiedName:attributes:
*parser:foundCharacters:
*parser:didEndElement:namespaceURI:qualifiedName:

	Parsing JSON strings
	Use the json-framework and add the classes to your project.

	Class for composing Tweets
	Use the TWTweetComposeViewController class.

Chapter 17

Bluetooth Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

	Using the various APIs within the Game Kit framework for Bluetooth communications

	How to look for peer Bluetooth devices using the GKPeerPickerController class

	Sending and receiving data from a connected device

	How to implement Bluetooth voice chat

The iPhone and iPad include built-in Bluetooth functionality, enabling them to communicate with other Bluetooth devices, such as Bluetooth headsets, iPhone, iPod touch, and iPad. This chapter shows you how to write iPhone and iPad applications that use Bluetooth to communicate with another device, performing tasks such as sending and receiving text messages, as well as voice chatting. Daunting as it may sound, Bluetooth programming is actually quite simple using the iOS SDK. All the Bluetooth functionalities are encapsulated within the Game Kit framework.

[image: image]
NOTE To test the concepts covered in this chapter, you need at least one device: iPad, iPhone (4S, 4, 3G or 3GS), or iPod touch (second generation or later) running iPhone OS 3.0 or later.

USING THE GAME KIT FRAMEWORK

One of the neat features available in the iOS SDK is the Game Kit framework, which contains APIs that enable communications over a Bluetooth network. You can use these APIs to create peer-to-peer games and applications with ease. Unlike other mobile platforms, using Bluetooth as a communication channel in the iOS is much easier than you might expect. In this section, you will learn how to build a simple application that enables two iOS devices to communicate with each other.

Searching for Peer Devices

Before any exchanges of data can take place, the first step to Bluetooth communication is for the devices to locate each other. The following Try It Out shows you how to use the Game Kit framework to locate your Bluetooth peer.

TRY IT OUT: Looking for Peer Devices

codefile Bluetooth.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Bluetooth. You need to use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add the GameKit.framework to your project (see Figure 17-1).

FIGURE 17-1

[image: image]

3. Select the BluetoothViewController.xib file to edit it in Interface Builder. As shown in Figure 17-2, add the following views to the View window:

FIGURE 17-2

[image: image]

	Text Field

	Round Rect buttons (name them Send, Connect, and Disconnect)

4. In the BluetoothViewController.h file, add the following statements shown in bold:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface BluetoothViewController : UIViewController
<GKSessionDelegate, GKPeerPickerControllerDelegate>
{
 GKSession *currentSession;
 IBOutlet UITextField *txtMessage;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
}

@property (nonatomic, retain) GKSession *currentSession;
@property (nonatomic, retain) UITextField *txtMessage;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;

-(IBAction) btnSend:(id) sender;
-(IBAction) btnConnect:(id) sender;
-(IBAction) btnDisconnect:(id) sender;

@end

5. Back in Interface Builder, perform the following actions:

	Control-click the File’s Owner item and drag and drop it over the Text Field view. Select txtMessage.

	Control-click the File’s Owner item and drag and drop it over the Connect button. Select connect.

	Control-click the File’s Owner item and drag and drop it over the Disconnect button. Select disconnect.

	Control-click the Send button and drag and drop it over the File’s Owner item. Select btnSend:.

	Control-click the Connect button and drag and drop it over the File’s Owner item. Select btnConnect:.

	Control-click the Disconnect button and drag and drop it over the File’s Owner item. Select btnDisconnect:.

6. Right-click on the File’s Owner item to verify that all the connections are made correctly (see Figure 17-3).

FIGURE 17-3

[image: image]

7. In the BluetoothViewController.m file, add the following statements in bold:

#import "BluetoothViewController.h"

@implementation BluetoothViewController

@synthesize currentSession;
@synthesize txtMessage;
@synthesize connect;
@synthesize disconnect;

GKPeerPickerController *picker;

-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;
 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

- (void)peerPickerController:(GKPeerPickerController *)picker
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *)session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;

 [picker dismiss];
 [picker autorelease];
}

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)picker {
 picker.delegate = nil;
 [picker autorelease];

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 self.currentSession = nil;

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

- (void)session:(GKSession *)session
 peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state) {
 case GKPeerStateAvailable:
 NSLog(@"State Available");
 break;
 case GKPeerStateConnecting:
 NSLog(@"State Connecting");
 break;
 case GKPeerStateUnavailable:
 NSLog(@"State Unavailable");
 break;
 case GKPeerStateConnected:
 NSLog(@"State Connected");
 break;
 case GKPeerStateDisconnected:
 NSLog(@"State Disconnected");
 self.currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 break;
 }
}

- (void)viewDidLoad
{
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 [super viewDidLoad];
}

- (void)dealloc {
 [txtMessage release];
 [currentSession release];
 [super dealloc];
}

8. Press Command-R to run the application on the iPhone Simulator first, followed by on a real device (iPhone, iPad, or iPod touch).

[image: image]
NOTE When testing your Bluetooth application using the Simulator and a real device, you need to ensure that both the Mac and the real device are connected to a wireless network belonging to the same subnet. In addition, the Mac must be connected using Wi-Fi in order for the Simulator to find the real device.

9. If Bluetooth is not turned on, you will be asked to turn it on. Tap the Connect button on each device. You will see the standard UI to discover other devices (see Figure 17-4).

FIGURE 17-4

[image: image]

10. After a few seconds, both devices should be able to find each other (see Figure 17-5). When testing on a Simulator and a real device, the Simulator will always be able to locate the real device (not the reverse). Tap the name of the found device; the application will attempt to connect to it.

FIGURE 17-5

[image: image]

11. When another device tries to connect to your device, a popup is displayed, as shown in Figure 17-6. Tap Accept to connect or tap Decline to decline the connection.

FIGURE 17-6

[image: image]

[image: image]
NOTE To ensure that the application only installs on devices that support Bluetooth, you should add the UIRequiredDeviceCapabilities key to the project’s Info.plist file and set its value to peer-peer.

How It Works

The GKSession object is used to represent a session between two connected Bluetooth devices. You use it to send and receive data between the two devices. Hence, you first created a variable of type GKSession:

 GKSession *currentSession;

The GKPeerPickerController class provides a standard UI to enable your application to discover and connect to another Bluetooth device. This is the easiest way to connect to another Bluetooth device.

To discover and connect to another Bluetooth device, you implemented the btnConnect: method as follows:

-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;
 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

The connectionTypesMask property indicates the types of connections from which the user can choose. Two types are available: GKPeerPickerConnectionTypeNearby and GKPeerPickerConnectionTypeOnline. For Bluetooth communication, use the GKPeerPickerConnectionTypeNearby constant. The GKPeerPickerConnectionTypeOnline constant indicates an Internet-based connection.

When remote Bluetooth devices are detected and the user has selected and connected to one of them, the peerPickerController:didConnectPeer:toSession: method is called. It is implemented as follows:

- (void)peerPickerController:(GKPeerPickerController *)picker
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *)session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;

 [picker dismiss];
 [picker autorelease];
}

The peerID argument allows you to identify the party with whom you are communicating. Your application can communicate with multiple parties using the peerID as the identifier.

When the user has connected to the peer Bluetooth device, you save the GKSession object to the currentSession property. This enables you to use the GKSession object to communicate with the remote device.

If the user cancels the Bluetooth Picker, the peerPickerControllerDidCancel: method is called. It’s defined as follows:

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)
picker {
 picker.delegate = nil;
 [picker autorelease];

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

To disconnect from a connected device, use the disconnectFromAllPeers method from the GKSession object:

-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 self.currentSession = nil;

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

The disconnectFromAllPeers method disconnects your application from all the parties that are currently connected to you. You can also use the disconnectPeerFromAllPeers: method to selectively disconnect a specific party.

When a device is connected or disconnected, the session:peer:didChangeState: method is called:

- (void)session:(GKSession *)session
 peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state) {
 case GKPeerStateAvailable:
 NSLog(@"State Available");
 break;
 case GKPeerStateConnecting:
 NSLog(@"State Connecting");
 break;
 case GKPeerStateUnavailable:
 NSLog(@"State Unavailable");
 break;
 case GKPeerStateConnected:
 NSLog(@"State Connected");
 break;
 case GKPeerStateDisconnected:
 NSLog(@"State Disconnected");
 self.currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 break;
 }
}

Handling this event enables you to determine when a connection is established or ended. For example, when the connection is established, you might want to immediately start sending data to the other device.

DISCOVERING EACH OTHER

Why is it that your application can only see another device running the same application, and not other Bluetooth applications running on the same device?

The reason is simple. When you use the GKPeerPickerController class to look for other Bluetooth devices, it creates a session ID. Applications will only be able to see each other if the session IDs are identical. By default, the session ID is the application’s Bundle Identifier (you can see this in the Info.plist file in the Xcode project). Hence, if an application is installed on two devices, each should be able to see the other because they have the same Bundle Identifier. By default, the bundle identifier is set to: <Company_Identifier>.${PRODUCT_NAME:rfc1034identifier}. Therefore, if two applications have a different Company Identifier and Product Name, they won’t be able to see each other.

If you want to customize the session ID by creating your own, just implement the following method:

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
 sessionForConnectionType:(GKPeerPickerConnectionType)type
 {
 if (!self.currentSession) {
 self.currentSession =
 [[[GKSession alloc] initWithSessionID:@"Session_ID_Here"
 displayName:nil
 sessionMode:GKSessionModePeer]
 autorelease];
 self.currentSession.delegate = self;
 }
 return self.currentSession;
}

In this case, devices can only see each other if their session IDs are the same. The displayName argument enables you to specify the name of the device that will be seen by the other party. If you set it to nil, iOS will use the device’s name.

Sending and Receiving Data

Once two devices are connected via Bluetooth, you can begin to send data between them. The data is transmitted using the NSData object (which is actually a bytes buffer), so you are free to define your own data format to send any types of data (such as images, text files, binary files, and so on).

The following Try It Out demonstrates how to send a simple text message to another Bluetooth-connected device.

TRY IT OUT: Sending Text to Another Device

1. Using the project created in the previous section, add the following statement in bold to the BluetoothViewController.h file:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface BluetoothViewController : UIViewController
<GKSessionDelegate, GKPeerPickerControllerDelegate>
{
 GKSession *currentSession;
 IBOutlet UITextField *txtMessage;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
}

@property (nonatomic, retain) GKSession *currentSession;
@property (nonatomic, retain) UITextField *txtMessage;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;

-(IBAction) btnSend:(id) sender;
-(IBAction) btnConnect:(id) sender;
-(IBAction) btnDisconnect:(id) sender;
-(void) mySendDataToPeers:(NSData *) data;

@end

2. Add the following methods to the BluetoothViewController.m file:

- (void) mySendDataToPeers:(NSData *) data {
 if (currentSession)
 [self.currentSession sendDataToAllPeers:data
 withDataMode:GKSendDataReliable
 error:nil];
}

-(IBAction) btnSend:(id) sender {
 //---convert an NSString object to NSData---
 NSData* data;
 NSString *str = [NSString stringWithString:txtMessage.text];
 data = [str dataUsingEncoding: NSASCIIStringEncoding];
 [self mySendDataToPeers:data];
}

- (void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---convert the NSData to NSString---
 NSString* str;

 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Data received"
 message:str
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [str release];
}

3. Deploy the application onto two devices (or the Simulator and a real device). Connect the devices using Bluetooth. Now enter some text and start sending it to the other device. Data received from another device is shown in an Alert view (see Figure 17-7).

FIGURE 17-7

[image: image]

How It Works

To send data to the connected Bluetooth device, you used the sendDataToAllPeers:withDataMode: method of the GKSession object. The data that you send is transmitted via an NSData object.

The mySendDataToAllPeers: method is defined as follows:

- (void) mySendDataToPeers:(NSData *) data {
 if (currentSession)
 [self.currentSession sendDataToAllPeers:data
 withDataMode:GKSendDataReliable
 error:nil];
}

In this example, you are sending data to all connected peers using the sendDataToAllPeers:withDataMode: method. To send data to a particular peer, use the sendData:toPeers:withDataMode: method.

[image: image]
NOTE Note the use of the GKSendDataReliable constant. This constant means that the GKSession object continues to send the data until it is successfully transmitted or the connection times out. The data is delivered in the order it is sent. Use this constant when you need to ensure guaranteed delivery. Conversely, the GKSendDataUnreliable constant indicates that the GKSession object sends the data once and does not retry if an error occurs. The data sent can be received out of order by recipients. Use this constant for small packets of data that must arrive quickly in order to be useful to the recipient.

The btnSend: method enables text entered by the user to be sent to the remote device:

-(IBAction) btnSend:(id) sender {
 //---convert an NSString object to NSData---
 NSData* data;
 NSString *str = [NSString stringWithString:txtMessage.text];
 data = [str dataUsingEncoding: NSASCIIStringEncoding];
 [self mySendDataToPeers:data];
}

When data is received from the other device, the receiveData:fromPeer:inSession:context: method is called:

- (void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---convert the NSData to NSString---
 NSString* str;

 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Data received"
 message:str
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [str release];
}

Here, the received data is in the NSData format. To display it using the UIAlertView class, you convert it to an NSString object.

Note that for Bluetooth data exchange, the maximum data size is 87KB per block. That is, you can send no more than 87KB of data every time you call the sendDataToAllPeers:withDataMode: method. Even so, Apple recommends that you send no more than 1,000 bytes at any time. If you need to transfer large amounts of data, you need to split them up into multiple blocks and reassemble them at the destination.

IMPLEMENTING VOICE CHATTING

Another cool feature of the Game Kit framework is its support for voice chat.

The Voice Chat service in the Game Kit enables two devices to establish a voice chat. The voice chat takes place over either an Internet connection or a Bluetooth connection. This section shows you how to implement voice chatting over a Bluetooth communication channel.

TRY IT OUT: Enabling Bluetooth Voice Chatting

codefile BluetoothChat.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it BluetoothChat. You need to use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add the GameKit and AVFoundation frameworks to the Frameworks folder of the project (see Figure 17-8).

FIGURE 17-8

[image: image]

3. Drag and drop a WAV file (see Figure 17-9) onto the Resources folder in Xcode.

FIGURE 17-9

[image: image]

4. Select the BluetoothViewController.xib file to edit it in Interface Builder.

5. Populate the View window with three Round Rect Button views (see Figure 17-10). Label them MUTE, Disconnect, and Connect.

FIGURE 17-10

[image: image]

6. Add the following bold statements to the BluetoothChatViewController.h file:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>
#import <AVFoundation/AVFoundation.h>

@interface BluetoothChatViewController : UIViewController
 <GKVoiceChatClient,
 GKPeerPickerControllerDelegate,
 GKSessionDelegate>
{
 GKSession *currentSession;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
 GKPeerPickerController *picker;
}

@property (nonatomic, retain) GKSession *currentSession;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;
-(IBAction)btnMute:(id) sender;
-(IBAction)btnUnmute:(id) sender;
-(IBAction)btnConnect:(id) sender;
-(IBAction)btnDisconnect:(id) sender;

@end

7. In the BluetoothViewController.xib window, perform the following connections:

	Control-click the File’s Owner item and drag and drop it over the Connect button. Select connect.

	Control-click the File’s Owner item and drag and drop it over the Disconnect button. Select disconnect.

	Control-click the Connect button and drag and drop it over the File’s Owner item. Select btnConnect:.

	Control-click the Disconnect button and drag and drop it over the File’s Owner item. Select btnDisconnect:.

	Right-click the Mute button and connect the Touch Down event to the File’s Owner item. Select btnMute:.

	Right-click the MUTE button and connect the Touch Up Inside event to the File’s Owner item. Select btnUnmute:.

8. To verify that all the connections are made correctly, right-click the File’s Owner item and view its connections (see Figure 17-11).

FIGURE 17-11

[image: image]

9. Add the following bold statements to the BluetoothViewController.m file:

#import "BluetoothChatViewController.h"

@implementation BluetoothChatViewController

@synthesize currentSession;
@synthesize connect;
@synthesize disconnect;

NSString *recorderFilePath;
AVAudioPlayer *audioPlayer;

- (void)viewDidLoad
{
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 [super viewDidLoad];
}

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
 sessionForConnectionType:(GKPeerPickerConnectionType)type {
 if (!self.currentSession) {
 self.currentSession =
 [[[GKSession alloc] initWithSessionID:@"Session_ID_Here"
 displayName:nil
 sessionMode:GKSessionModePeer] autorelease];
 self.currentSession.delegate = self;
 }
 return self.currentSession;
}

//---select a nearby Bluetooth device---
-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;
 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

//---disconnect from the other device---
-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---did connect to a peer---
-(void) peerPickerController:(GKPeerPickerController *)pk
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *) session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;
 [picker dismiss];
 [picker autorelease];
}

//---connection was cancelled---
-(void) peerPickerControllerDidCancel:(GKPeerPickerController *)pk {
 picker.delegate = nil;
 [picker autorelease];
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---mute the voice chat---
-(IBAction) btnMute:(id) sender {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;
}

//---unmute the voice chat---
-(IBAction) btnUnmute:(id) sender {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = NO;
}

//---returns a unique ID that identifies the local user---
-(NSString *) participantID {
 return currentSession.peerID;
}

//---sends voice chat configuration data to the other party---
-(void) voiceChatService:(GKVoiceChatService *) voiceChatService
 sendData:(NSData *) data
 toParticipantID:(NSString *) participantID {
 [currentSession sendData:data
 toPeers:[NSArray arrayWithObject:participantID]
 withDataMode:GKSendDataReliable error:nil];
}

//---session state changed---
-(void) session:(GKSession *)session
 peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state) {
 case GKPeerStateAvailable:
 NSLog(@"State Available");
 break;
 case GKPeerStateConnecting:
 NSLog(@"State Connecting");
 break;
 case GKPeerStateUnavailable:
 NSLog(@"State Unavailable");
 break;
 case GKPeerStateConnected: {
 //---plays an audio file---
 NSString *soundFilePath =
 [[NSBundle mainBundle] pathForResource:@"beep"
 ofType:@"wav"];
 NSURL *fileURL =
 [[NSURL alloc] initFileURLWithPath:soundFilePath];
 AVAudioPlayer *audioPlayer =
 [[[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil] autorelease];
 [fileURL release];
 [audioPlayer play];

 NSError *error;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 if (![audioSession
 setCategory:AVAudioSessionCategoryPlayAndRecord
 error:&error]) {
 NSLog(@"Error setting category: %@",
 [error localizedDescription]);
 }
 if (![audioSession setActive:YES error:&error]) {
 NSLog(@"Error activating audioSession: %@",
 [error description]);
 }
 [GKVoiceChatService defaultVoiceChatService].client = self;

 //---initiating the voice chat---
 if (![[GKVoiceChatService defaultVoiceChatService]
 startVoiceChatWithParticipantID:peerID error:&error]) {
 NSLog(@"Error starting startVoiceChatWithParticipantID:%@",
 [error userInfo]);
 }
 } break;
 case GKPeerStateDisconnected: {
 [[GKVoiceChatService defaultVoiceChatService]
 stopVoiceChatWithParticipantID:peerID];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 } break;
 }
}

//---data received from the other party---
-(void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---start the voice chat when initiated by the client---
 [[GKVoiceChatService defaultVoiceChatService]
 receivedData:data fromParticipantID:peer];
}

//---session failed with error---
-(void) session:(GKSession *)session
didFailWithError:(NSError *)error {
 NSLog(@"%@",[error description]);
}

- (void)dealloc {
 [currentSession release];
 [connect release];
 [disconnect release];
 [super dealloc];
}

10. To test the application, deploy it onto two devices (or the Simulator and a real device). For the iPod touch, you need to connect it to an external microphone, as it does not include one. Then run the application and press the Connect button to use Bluetooth to connect the two devices. As soon as the two devices are connected, you can start chatting! To temporarily mute the conversation, press and hold the MUTE button. When it is released, the conversation resumes. Have fun!

How It Works

When two Bluetooth devices are connected, you first play the beep sound and start the audio session (via the session:peer:didChangeState: method):

 //---plays an audio file---
 NSString *soundFilePath =
 [[NSBundle mainBundle] pathForResource:@"beep"
 ofType:@"wav"];
 NSURL *fileURL =
 [[NSURL alloc] initFileURLWithPath:soundFilePath];
 AVAudioPlayer *audioPlayer =
 [[[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil] autorelease];
 [fileURL release];
 [audioPlayer play];

 NSError *error;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 if (![audioSession
 setCategory:AVAudioSessionCategoryPlayAndRecord
 error:&error]) {
 NSLog(@"Error setting category: %@",
 [error localizedDescription]);
 }
 if (![audioSession setActive:YES error:&error]) {
 NSLog(@"Error activating audioSession: %@",
 [error description]);
 }
 [GKVoiceChatService defaultVoiceChatService].client = self;

You then retrieve a singleton instance of the GKVoiceChatService class and call its startVoiceChatWithParticipantID:error: method to start the voice chat:

 //---initiating the voice chat---
 if (![[GKVoiceChatService defaultVoiceChatService]
 startVoiceChatWithParticipantID:peerID error:&error]) {
 NSLog(@"Error starting startVoiceChatWithParticipantID:%@",
 [error userInfo]);
 }

Notice that you needed to implement the participantID method declared in the GKVoiceChatClient protocol:

//---returns a unique ID that identifies the local user---
-(NSString *) participantID {
 return currentSession.peerID;
}

This method should return a string that uniquely identifies the current user. Since you are using Bluetooth, you used the peerID property of the GKSession object.

Calling the startVoiceChatWithParticipantID:error: method invokes the voiceChatService:sendData:toParticipantID: method (defined in the GKVoiceChatClient protocol), which makes use of the current Bluetooth session to send the configuration data to the other connected device:

//---sends voice chat configuration data to the other party---
-(void) voiceChatService:(GKVoiceChatService *) voiceChatService
 sendData:(NSData *) data
 toParticipantID:(NSString *) participantID {
 [currentSession sendData:data
 toPeers:[NSArray arrayWithObject:participantID]
 withDataMode:GKSendDataReliable error:nil];
}

When it has received the configuration data, the other device starts the Voice Chat service by calling the receivedData:fromParticipantID: method (also defined in the GKVoiceChatClient protocol):

//---data received from the other party---
-(void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---start the voice chat when initiated by the client---
 [[GKVoiceChatService defaultVoiceChatService]
 receivedData:data fromParticipantID:peer];
}

The GKVoiceChatService uses the configuration information that was exchanged between the two devices and creates its own connection to transfer voice data.

You can mute the microphone by setting the microphoneMuted property to YES:

 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;

SUMMARY

This chapter has demonstrated how easy it is to connect two iOS devices using Bluetooth. Using the concepts shown in this chapter, you can build networked games and other interesting applications easily. You also saw how the Game Kit framework provides the GKVoiceChatService class, which makes voice communication between two devices seamless. It is not necessary to understand how the voices are transported between two devices — all you need to know is how to call the relevant methods to initialize the chat. However, there is one important thing you should know: Voice chat works not only over Bluetooth, but over any communication channel. In fact, if you have two devices connected using TCP/IP, you can stream the voices over the wire.

EXERCISES

1. What class can you use to locate peer Bluetooth devices?

2. Name the object that is responsible for managing the session between two connected Bluetooth devices.

3. Name the method from the GKVoiceChatService class that you need to call to establish a voice chat.

4. Name the two methods defined in the GKVoiceChatClient protocol that establish a voice chat channel.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Looking for peer Bluetooth devices
	Use the GKPeerPickerController class.

	Communicating between two Bluetooth devices
	Use the GKSession class.

	Establishing a voice chat
	Call the startVoiceChatWithParticipantID:error: method from the GKVoiceChatService class.
On the initiator, call the voiceChatService:sendData:toParticipantID: method defined in the GKVoiceChatClient protocol.
On the receiver, call the receivedData:fromParticipantID: method defined in the GKVoiceChatClient protocol.

	Muting the microphone
	
[GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;

Chapter 18

Bonjour Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to publish a service on the network using the NSNetService class

	Discovering services on the network using the NSNetServiceBrowser class

	How to resolve the IP addresses of services on the network

Bonjour is Apple’s implementation of the Zeroconf protocol, which enables the automatic discovery of computers, devices, and services on an IP network. In this chapter, you will learn how to implement Bonjour on the iOS by using the NSNetService class to publish a service. You will also use the NSNetServiceBrowser class to discover services that have been published.

CREATING THE APPLICATION

In this section, you create the user interface for the application. You’ll use a Table View to display the users that you have discovered on the network. As users are discovered, they will be added to the Table View.

TRY IT OUT: Creating the Application’s UI

1. Using Xcode, create a Single View Application (iPhone) project and name it Bonjour. Use this project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the BonjourViewController.xib file to edit it in Interface Builder. Populate the View window with the following views (see Figure 18-1):

FIGURE 18-1

[image: image]

	Label (set its text to Discovered Users and Debug statements)

	Table View

	Text View

3. In the BonjourViewController.h file, add the following bold statements:

#import <UIKit/UIKit.h>

@interface BonjourViewController : UIViewController
<UITableViewDelegate, UITableViewDataSource>
{
 IBOutlet UITableView *tbView;
 IBOutlet UITextView *debug;
}

@property (nonatomic, retain) UITableView *tbView;
@property (nonatomic, retain) UITextView *debug;

-(void) resolveIPAddress:(NSNetService *)service;
-(void) browseServices;

@end

4. In the BonjourViewController.xib window, perform the following connections:

	Control-click the File’s Owner item and drag and drop it over the TableView. Select tbView.

	Control-click the File’s Owner item and drag and drop it over the Text View. Select debug.

	Right-click the Table View and connect the dataSource outlet to the File’s Owner item.

	Right-click the Table View and connect the delegate outlet to the File’s Owner item.

5. To verify that all the connections are made correctly, right-click the File’s Owner item and view its connections (see Figure 18-2).

FIGURE 18-2

[image: image]

How It Works

Because you’ll use the Table View to display the list of users discovered on the network, you need to set the dataSource and delegate outlets to the File’s Owner item. The Text View is used to show the various things happening in the background. This is very useful for debugging your application and understanding what happens as services are discovered on the network.

PUBLISHING A SERVICE

With all the views and outlets wired up, you can publish a service using the NSNetService class. The following Try It Out shows you how.

TRY IT OUT: Publishing a Service on the Network

1. Using the same project created in the previous section, add the following bold statements to the BonjourAppDelegate.h file:

#import <UIKit/UIKit.h>

@class BonjourViewController;

@interface BonjourAppDelegate : UIResponder
<UIApplicationDelegate, NSNetServiceDelegate>
{
 NSNetService *netService;
}

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) BonjourViewController *viewController;

@end

2. In the BonjourAppDelegate.m file, add the following statements in bold:

#import "BonjourAppDelegate.h"

#import "BonjourViewController.h"

@implementation BonjourAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 //---publish the service---
 netService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_MyService._tcp."
 name:@"iOS 5 Simulator"
 port:9876];
 netService.delegate = self;
 [netService publish];

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[BonjourViewController alloc] initWithNibName:
 @"BonjourViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

-(void)netService:(NSNetService *)aNetService
 didNotPublish:(NSDictionary *)dict {
 NSLog(@"Service did not publish: %@", dict);
}

- (void)applicationWillTerminate:(UIApplication *)application {
 //---stop the service when the application is terminated---
 [netService stop];
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 //---stop the service when the application goes into background---
 [netService stop];
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 //---start the service when the application comes into foreground---
 [netService publish];
}

- (void)dealloc {
 [netService release];
 [super dealloc];
}

How It Works

To publish a service on the network, you use the NSNetService class to advertise your presence on the network:

 //--use this to publish a service--
 NSNetService *netService;

Here, you advertised your presence on the network by publishing a network service when your application has finished launching (application:DidFinishLaunchingWithOptions:). You publish a network service first by instantiating it with several parameters to the NSNetService class:

 //---publish the service---
 netService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_MyService._tcp."
 name:@"iOS 5 Simulator"
 port:9876];

The first argument specifies the domain for the service. You used @"" to denote the default domain. The second argument indicates the service type and transport layer. In this example, you named the service MyService and it uses TCP as the protocol. Note that you need to prefix the service name and protocol with an underscore (_) and end the protocol with a period (.). The service type will be used by other applications to locate your service. The third argument specifies the name of the service — you can either provide a unique name or use an empty string. The name set here will be visible to other applications that locate you. Finally, you specify the port number on which the service is published via the fourth argument.

To publish the service, you use the publish method of the NSNetService class:

 netService.delegate = self;
 [netService publish];

You also implemented the netService:didNotPublish: method so that in the event that the service is not published successfully, you write a message to the Debugger Console window (or perhaps display an alert to the user):

-(void)netService:(NSNetService *)aNetService
 didNotPublish:(NSDictionary *)dict {
 NSLog(@"Service did not publish: %@", dict);

When the application exits (applicationWillTerminate:) or goes into background mode (applicationDidEnterBackground:), you stop publishing the service:

- (void)applicationWillTerminate:(UIApplication *)application {
 //---stop the service when the application is terminated---
 [netService stop];
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 //---stop the service when the application goes into background---
 [netService stop];

When the application returns to the foreground (applicationWillEnterForeground:), you publish the service again:

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 //---start the service when the application comes into foreground---
 [netService publish];
}

BROWSING FOR SERVICES

Now that you have seen how to publish a service, this section demonstrates how you can browse for services that have been published on the network. You will use the NSNetServiceBrowser class to discover services published on the network.

TRY IT OUT: Browsing for Services on the Network

1. Using the Bonjour project from the previous Try it Out, add the following bold statements to the BonjourViewController.h file:

#import <arpa/inet.h>

@interface BonjourViewController : UIViewController
<UITableViewDelegate, UITableViewDataSource,
 NSNetServiceDelegate, NSNetServiceBrowserDelegate>
{
 IBOutlet UITableView *tbView;
 IBOutlet UITextView *debug;
 NSNetServiceBrowser *browser;
 NSMutableArray *services;
}

@property (nonatomic, retain) UITableView *tbView;
@property (nonatomic, retain) UITextView *debug;
@property (nonatomic, retain) NSNetServiceBrowser *browser;
@property (nonatomic, retain) NSMutableArray *services;

-(void) resolveIPAddress:(NSNetService *)service;
-(void) browseServices;

@end

2. In the BonjourViewController.m file, add the following bold statements:

#import "BonjourViewController.h"

@implementation BonjourViewController

@synthesize tbView;
@synthesize debug;

@synthesize browser;
@synthesize services;

-(NSInteger) tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.services count];
}

-(UITableViewCell *) tableView:(UITableView *)tableView cellForRowAtIndexPath:
 (NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 //---display the name of each service---
 cell.textLabel.text = [[self.services objectAtIndex:indexPath.row] name];

 return cell;
}

-(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didFindService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services addObject:aService];
 debug.text = [debug.text stringByAppendingString:
 @"Found service. Resolving address...\n"];
 [self resolveIPAddress:aService];
}

-(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didRemoveService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services removeObject:aService];
 debug.text = [debug.text stringByAppendingFormat:@"Removed: %@\n",
 [aService hostName]];
 [self.tbView reloadData];
}

-(void) resolveIPAddress:(NSNetService *)service {
 NSNetService *remoteService = service;
 remoteService.delegate = self;
 [remoteService resolveWithTimeout:0];
}

-(void) netServiceDidResolveAddress:(NSNetService *)service {
 NSData *address = nil;
 struct sockaddr_in *socketAddress = nil;
 NSString *ipString = nil;
 int port;

 for (int i=0;i < [[service addresses] count]; i++) {
 address = [[service addresses] objectAtIndex: i];
 socketAddress = (struct sockaddr_in *) [address bytes];
 ipString = [NSString stringWithFormat: @"%s",
 inet_ntoa(socketAddress->sin_addr)];
 port = socketAddress->sin_port;
 debug.text = [debug.text stringByAppendingFormat:
 @"Resolved: %@-->%@:%hu\n",
 [service hostName], ipString, port];
 }
 [self.tbView reloadData];
}

-(void) netService:(NSNetService *)service
 didNotResolve:(NSDictionary *)errorDict {
 debug.text = [debug.text stringByAppendingFormat:
 @"Could not resolve: %@\n", errorDict];
}

-(void) browseServices {
 self.services = [[NSMutableArray new] autorelease];
 self.browser = [[NSNetServiceBrowser new] autorelease];
 self.browser.delegate = self;
 [self.browser searchForServicesOfType:@"_MyService._tcp." inDomain:@""];
}

- (void) viewDidLoad
{
 [self browseServices];
 [super viewDidLoad];
}

- (void)dealloc {
 [tbView release];
 [debug release];
 [browser release];
 [services release];
 [super dealloc];
}

3. That’s it! Deploy the application onto the iPhone Simulator.

4. In the BonjourAppDelegate.m file, change the following in bold:

 //---publish the service---
 netService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_MyService._tcp."
 name:@"iOS 5 Device"
 port:9876];
 netService.delegate = self;
 [netService publish];

5. Deploy the application onto a real iPhone.

6. When the application is running, it will search for all services published on the same network. As services are discovered, their names appear in the Table View. Figure 18-3 shows the Table View displaying the hostname of the devices it has discovered.

FIGURE 18-3

[image: image]

How It Works

There is quite a bit of coding involved here, so let’s take a more detailed look.

First, you defined the browseServices method, which uses the NSNetServiceBrowser class to search for the service named “_MyService._tcp.” in the default domain:

-(void) browseServices {
 self.services = [[NSMutableArray new] autorelease];
 self.browser = [[NSNetServiceBrowser new] autorelease];
 self.browser.delegate = self;
 [self.browser searchForServicesOfType:@"_MyService._tcp." inDomain:@""];
}

As services are discovered, the netServiceBrowser:didFindService:moreComing: method is called. In this method, you add all the discovered services to the services mutable array:

(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didFindService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services addObject:aService];
 debug.text = [debug.text stringByAppendingString:
 @"Found service. Resolving address...\n"];
 [self resolveIPAddress:aService];
}

You also try to resolve the IP address of the discovered service by calling the resolveIPhonedress: method, which you define.

The resolveIPAddress: method uses the resolveWithTimeout: method of the NSNetService instance (representing the service that was discovered) to obtain its IP addresses:

(void) resolveIPAddress:(NSNetService *)service {
 NSNetService *remoteService = service;
 remoteService.delegate = self;
 [remoteService resolveWithTimeout:0];
}

If it manages to resolve the IP addresses of the service, the netServiceDidResolveAddress: method is called. If it does not manage to resolve the IP address, the netService:didNotResolve: method is called.

In the netServiceDidResolveAddress: method, you extracted all the available IP addresses of the service and displayed them on the Text View. You then try to reload the Table View using the reloadData method of the UITableView class:

-(void) netServiceDidResolveAddress:(NSNetService *)service {
 NSData *address = nil;
 struct sockaddr_in *socketAddress = nil;
 NSString *ipString = nil;
 int port;

 for (int i=0;i < [[service addresses] count]; i++) {
 address = [[service addresses] objectAtIndex: i];
 socketAddress = (struct sockaddr_in *) [address bytes];
 ipString = [NSString stringWithFormat: @"%s",
 inet_ntoa(socketAddress->sin_addr)];
 port = socketAddress->sin_port;
 debug.text = [debug.text stringByAppendingFormat:
 @"Resolved: %@-->%@:%hu\n",
 [service hostName], ipString, port];
 }
 [self.tbView reloadData];
}

When services are removed from the network, the netServiceBrowser:didRemoveService: method is called; therefore, in this method you remove the service from the services mutable array:

(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didRemoveService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services removeObject:aService];
 debug.text = [debug.text stringByAppendingFormat:@"Removed: %@\n",
 [aService hostName]];
 [self.tbView reloadData];
}
The rest of the code involves loading the Table View with the hostname of the
 services that have been discovered. In particular, you display the host name
 of each service in the Table View:-(NSInteger) tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.services count];
}

-(UITableViewCell *) tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 //---display the name of each service---
 cell.textLabel.text = [[self.services objectAtIndex:indexPath.row] name];

 return cell;
}

DOING MORE WITH TCP/IP

With peers on the network discovered, what can you do next? You can use TCP/IP to connect with your network peers and send messages to them. A discussion of using TCP/IP for networking is beyond the scope of this book, but interested users can download a working application from the author’s website — www.learn2develop.net — that illustrates how to build a chat application using Bonjour (see Figure 18-4).

FIGURE 18-4

[image: image]

SUMMARY

This chapter explained how to publish a service on the network using the NSNetService class and how to discover services on the local network using the NSNetServiceBrowser class. Once peers are discovered on the network, you can connect to them and initiate peer-to-peer communication. A chat application is a good example of a Bonjour application.

EXERCISES

1. What class can you use to publish a service on the network?

2. What class can you use to discover services on the network?

3. Name the method that is called when a service is discovered.

4. Name the method that is called when a service is removed.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Publishing a service
	Use the NSNetService class.

	Discovering services
	Use the NSNetServiceBrowser class.

	Resolving the IP address of a service
	Use the resolveWithTimeout: method of an NSNetService object.

	Getting the IP addresses of a service
	Use the addresses method of an NSNetService object.

	Method that is called when a service is discovered
	netServiceBrowser:didFindService:moreComing:

	Method that is called when a service is removed
	netServiceBrowser:didRemoveService:moreComing:

Chapter 19

Programming Remote Notifications Using Apple Push Notification Services

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to use the Apple Push Notification service

	Generating a certificate request

	Generating a development certificate

	How to create an App ID

	How to configure an App ID for push notification

	Creating a provisioning profile

	How to provision a device

	How to deploy an iOS application onto a device

	Using a push notification provider application

One of the key limitations of iOS is its constraint on running applications in the background, which means that applications requiring a constant state of connectivity (such as social networking applications) cannot receive timely updates when the user switches to another application.

To overcome this limitation, Apple uses the Apple Push Notification service (APNs). The APNs enables your device to remain connected to Apple’s push notification server (PNS). When you want to send a push notification to an application installed on the users’ devices, you (the provider) can contact the APNs so that it can deliver a push message to the particular application installed on the intended device.

In this chapter, you will learn how to use the APNs to push messages to users who have installed your application.

USING APPLE PUSH NOTIFICATION SERVICE

When your iOS application uses the Apple Push Notification service, the device remains connected to the APNs server using an open TCP/IP connection. To send notifications to your application running on iOS devices, you need to write a provider application that communicates with that server. Your provider application will send messages to the APNs server, which in turn relays the message to the various devices running your application by pushing the message to these devices through the TCP/IP connection.

[image: image]
NOTE Chapter 21 discusses the multi-tasking feature of iOS 5. While you have the capability to run your application in the background, the types of applications that are allowed to do so are limited. Also, applications running in the background are not allowed to have any network connectivity. While the steps for using the APNs are straightforward, you need to be aware of several details in order to enable messages to be pushed successfully to the devices. In this section, you learn how to create an iOS application that uses the APNs. The following sections take you through the steps for APNs programming in more detail.

Generating a Certificate Request

The first step to using the APNs is to generate a certificate request file so that you can request two development certificates — one for code-signing your application (so that it can be deployed on real devices) and one to be used by your provider to send notifications to the APNs server. The following Try It Out shows you how to generate the certificate request.

TRY IT OUT: Generating a Certificate Request

1. Launch the Keychain Access application (an application in Mac OS X that manages your security credentials) in your Mac OS X (you can do so by typing Keychain in Spotlight).

2. Select Keychain Access ⇒ Certificate Assistant ⇒ Request a Certificate From a Certificate Authority (see Figure 19-1).

FIGURE 19-1

[image: image]

3. Enter the information required, select the Saved to disk option, and click Continue (see Figure 19-2).

FIGURE 19-2

[image: image]

4. Save the certificate request using the suggested name and click Save (see Figure 19-3). Click Continue and then Done in the next two screens.

FIGURE 19-3

[image: image]

How It Works

This part is straightforward — use the Keychain Access application to generate a certificate request so that you can send it to Apple later to request for certificates.

Generating a Development Certificate

Once the certificate request is generated, you use it to request a development certificate from Apple. The development certificate is used for code-signing your application so that you can deploy it on a real device.

TRY IT OUT: Generating a Development Certificate

1. Sign in to the iOS Dev Center at http://developer.apple.com/devcenter/ios/index.action. Click the iOS Provisioning Portal link on the right side of the page (see Figure 19-4). The welcome page opens.

FIGURE 19-4

[image: image]

2. Click the Certificates tab on the left.

3. Click the Request Certificate button in the lower-right corner. Click the Choose File button and select the certificate request file that you created in the previous section, and then click Submit.

4. Your certificate is now pending approval. Refresh the page. After a few seconds the certificate will be ready and you can download it (see Figure 19-5).

FIGURE 19-5

[image: image]

5. Once the certificate is downloaded, double-click it to install it in the Keychain Access application. Figure 19-6 shows the development certificate installed in the Keychain Access application.

FIGURE 19-6

[image: image]

How It Works

This Try It Out generated the development certificate that you need to code-sign your application so that it can be deployed to a real iOS device for testing. The certificate installed in the Keychain Access application contains the private and public key pair. It is a good idea to back up the certificate at this juncture so that in the event that you need to shift your development work to another computer, you can simply restore the certificate from the backup. Downloading the certificate directly from the iOS Dev Center and installing the certificate to another computer will not work because the certificate downloaded from Apple contains only the public key, not the private key. The private key is stored on the machine that created the certificate request.

Creating an Application ID

Each iOS application that uses the APNs must have a unique application ID that identifies itself. In the following Try It Out, you create an App ID for push notification.

TRY IT OUT: Creating an App ID for Your Application

1. In the iOS Provisioning Portal, click the App IDs tab on the left and then click the New App ID button (see Figure 19-7).

FIGURE 19-7

[image: image]

2. Enter BegiOS5PushAppID for the Description and select Use Team ID for the Bundle Seed ID. For the Bundle Identifier, enter net.learn2develop.BegiOS5PushAppID. When you are done, click Submit.

[image: image]
NOTE App IDs are globally unique, even among developers. Therefore, in this step, rather than enter net.learn2develop.BegiOS5PushAppID for the Bundle Identifier, you should enter your own unique Bundle Identifier. A good recommendation is to use your reverse domain name, such as com.yourcompany.MyPushAppID.

3. You should now see the App ID that you have created, together with any you may have previously created (see Figure 19-8).

FIGURE 19-8

[image: image]

How It Works

For applications using the APNs, you need to specifically create an App ID to uniquely identify the application. The next section demonstrates how to configure the new App ID for push notifications.

Configuring an App ID for Push Notifications

Once an App ID is created, you need to configure it for push notifications. The following Try It Out shows you how to do this.

TRY IT OUT: Configuring an App ID for Push Notifications

1. To configure an App ID for push notification, click the Configure link displayed to the right of the App ID (refer to Figure 19-8). The Configure option (see Figure 19-9) becomes available.

FIGURE 19-9

[image: image]

2. Check the Enable for Apple Push Notification service option, and click the Configure button on the right of the Development Push SSL Certificate.

3. The Apple Push Notification service SSL Certificate Assistant screen opens (see Figure 19-10). Click Continue.

FIGURE 19-10

[image: image]

4. Click the Choose File button to locate the certificate request file that you saved earlier, and then click Generate.

5. Your SSL certificate will now be generated. Click Continue.

6. Click the Download button to download the SSL certificate, and then click Done (see Figure 19-11).

FIGURE 19-11

[image: image]

7. The filename for the SSL certificate you download is named aps.developer.identity.cer. Double-click it to install it in the Keychain Access application (see Figure 19-12). The SSL certificate is used by your provider application in order to contact the APNs to send push notifications to your applications.

FIGURE 19-12

[image: image]

How It Works

When the App ID is configured for push notifications, you need to upload the certificate signing request that you generated earlier to Apple so that you can obtain an SSL certificate for your provider application. Once the SSL certificate is downloaded, you install it into your Keychain Access application. The SSL certificate is for your provider application to use so that it can communicate securely with Apple’s Push Server to send push notifications to your application.

Creating a Provisioning Profile

Next, you create a provisioning profile so that your application can be installed onto a real iOS device.

TRY IT OUT: Creating a Provisioning Profile

1. In the iOS Provisioning Portal, select the Provisioning tab on the left and click the New Profile button (see Figure 19-13).

FIGURE 19-13

[image: image]

2. Enter MyiOS5DevicesProfile as the profile name, and select BegiOS5PushAppID as the App ID (see Figure 19-14). Finally, check all the devices that you want to provision (you can register these devices with the iOS Provisioning Portal through the Devices tab). When you are done, click Submit.

FIGURE 19-14

[image: image]

[image: image]
NOTE Appendix A describes how to register your devices through the iOS Provisioning Portal.

3. The provisioning profile is now pending approval. After a few seconds, it appears (if not, just refresh the browser). Click the Download button to download the provisioning profile (see Figure 19-15). The downloaded provisioning profile is named MyiOS5DevicesProfile.mobileprovision.

FIGURE 19-15

[image: image]

How It Works

The provisioning profile associates one development certificate with one or more devices and an App ID so that you can install your signed iOS application on a real iOS device.

Provisioning a Device

With the provision profile created, you will now install it onto a real device. Once a device is provisioned, your signed application will be able to run on your iOS devices.

Any devices on which you want to test your application must be provisioned. If a device is not provisioned, you will not be able to install your application on it. The following Try It Out shows you how to provision your iOS device.

TRY IT OUT: Provisioning a Device

1. Connect your iPhone (or iPad) to your Mac. For the example in this chapter, I will use an iPhone.

2. Drag and drop the downloaded MyiOS5DevicesProfile.mobileprovision file onto the Xcode icon on the Dock.

3. Launch the Organizer application from within Xcode and select the device currently connected to your Mac. You should see the MyiOS5DevicesProfile installed on the device (see Figure 19-16).

FIGURE 19-16

[image: image]

How It Works

Provisioning your iOS device is straight-forward — simply connect your iOS device to the Mac and then drag and drop the provisioning profile onto the Xcode. Xcode will then automatically install the provisioning profile onto the devices connected to your Mac.

CREATING THE IOS APPLICATION

Finally, you can write your iOS application to receive push notifications. The following Try It Out shows how you can programmatically receive notifications received from the APNs server.

TRY IT OUT: Creating an iOS Application

codefile ApplePushNotification.zip available for download at Wrox.com

1. In Xcode, create a new Single View Application (iPhone) project and name it ApplePushNotification. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Drag and drop a WAV file (shown as beep.wav in this example) onto the Supporting Files folder in Xcode (see Figure 19-17).

FIGURE 19-17

[image: image]

3. Double-click on the project name in Xcode and select the ApplePushNotification target. Select the Info tab, and set the Bundle Identifier to net.learn2develop.BegiOS5PushAppID (see Figure 19-18). This is the Bundle Identifier you set when you created the App ID earlier. As mentioned earlier, you should use your own unique Bundle Identifier.

FIGURE 19-18

[image: image]

4. Click the Build Settings tab and type Code Signing in the search box. In the Any iOS Device item (under Debug), select the profile that matches the Bundle Identifier, as shown in Figure 19-19.

FIGURE 19-19

[image: image]

5. In the ApplePushNotificationAppDelegate.m file, type the following bold code:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@"Registering for push notifications...");
 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound)];

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[ApplePushNotificationViewController alloc] initWithNibName:@"ApplePushNotificationViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)application:(UIApplication *)app didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
 NSString *str = [NSString
 stringWithFormat:@"Device Token=%@",deviceToken];
 NSLog(@"%@",str);
}

- (void)application:(UIApplication *)app didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSString *str = [NSString stringWithFormat: @"Error: %@", err];
 NSLog(@"%@", str);
}

- (void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDictionary *)userInfo {
 for (id key in userInfo) {
 NSLog(@"key: %@, value: %@", key, [userInfo objectForKey:key]);
 }
}

6. Press Command-R to test the application on a real device. When the application is loaded, you will be asked to enable Push Notification so that your application can receive notifications (see Figure 19-20). Tap the OK button to turn on notifications.

FIGURE 19-20

[image: image]

7. Press Shift-Command-C in Xcode to display the output window. Carefully observe the device token that is printed (see Figure 19-21). It is formatted as follows: xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx. Record this device token (you might want to cut and paste it into a text file). You will need it later so your provider application can uniquely identify the devices that will receive push notifications.

FIGURE 19-21

[image: image]

8. If you click the Settings application on your iPhone, you will notice that you have the Notifications item. Selecting the Notifications item displays a list of apps on your device that use notifications. Select ApplePushNotification and you can configure how the notifications are displayed (see Figure 19-22).

FIGURE 19-22

[image: image]

How It Works

To receive push notifications, you first configured your application with the App ID that you created earlier. You then configured your application so it is signed with the correct provisioning profile associated with your development certificate.

To register your application for push notification, you used the registerForRemoteNotificationTypes: method of the UIApplication class:

 NSLog(@"Registering for push notifications...");
 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound)];

This registers your application for the three types of notifications — alert, badge, and sound.

If the registration is successful, the application:didRegisterForRemoteNotificationsWithDeviceToken: event is called:

- (void)application:(UIApplication *)app
 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
 NSString *str = [NSString
 stringWithFormat:@"Device Token=%@",deviceToken];
 NSLog(@"%@",str);
}

At this juncture, you printed out the device token. In a real application, you should programmatically send the device token back to the provider application so that it can maintain a list of devices that need to be sent the notifications. In fact, Apple recommends that every time your application starts up, you send the device token to the provider application to inform the provider that the application is still in use.

If the registration fails, the application:didFailToRegisterForRemoteNotificationsWithError: event is called:

- (void)application:(UIApplication *)app
 didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSString *str = [NSString stringWithFormat: @"Error: %@", err];
 NSLog(@"%@", str);
}

If the application is running when it receives a push notification, the application:didReceiveRemoteNotification: event is called:

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo {
 for (id key in userInfo) {
 NSLog(@"key: %@, value: %@", key, [userInfo objectForKey:key]);
 }
}

Here, you can examine the content of the message received. If the application is not running when it receives a push notification, the user is prompted with an alert (see Figure 19-23).

FIGURE 19-23

[image: image]

Clicking the Launch button launches the application and fires the application:didReceiveRemoteNotification: event. The next section shows how you can get a server application to send a notification to your iOS application.

CREATING THE PUSH NOTIFICATION PROVIDER

A push notification provider is an application written by the application’s developer to send push notifications to the iOS application through the APNs. Here are the basic steps to send push notifications to your applications via the APNs server:

1. Communicate with the APNs server using the SSL Certificate you created earlier.

2. Construct the payload for the message you want to send.

3. Send the push notification containing the payload to the APNs.

The APNs is a stream TCP socket that your provider can communicate with using a SSL secured communication channel. You send the push notification (containing the payload) as a binary stream. Once you are connected to the APNs, you can send as many push notifications as you want within the duration of the connection.

[image: image]
NOTE Refrain from opening and closing the connections to the APNs for each push notification that you want to send. Rapid opening and closing of connections to the APNs will be deemed a denial-of-service (DOS) attack and may prevent your provider from sending push notifications to your applications.

The format of a push notification message looks like Figure 19-24 (taken from Apple’s documentation).

FIGURE 19-24

[image: image]

[image: image]
NOTE For more details on APNs, refer to the Apple Push Notification Service Programming Guide. The full path to this guide is http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction/Introduction.html.

The payload is a JSON-formatted string (maximum 256 bytes) carrying the information you want to send to your application. An example of a payload looks like the following:

{
 "aps":
 {
 "alert":"You got a new message!",
 "badge":5, "sound":"beep.wav"
 },
 "acme1":"bar",
 "acme2":42
}

To save yourself the trouble of developing a push notification provider from scratch, you can use the PushMeBaby application (for Mac OS X) written by Stefan Hafeneger (available at http://stefan.hafeneger.name/download/PushMeBabySource.zip).

The following Try It Out shows how to modify the PushMeBaby application to send a notification to your application.

TRY IT OUT: Modifying the Provider Application

1. Download the source of the PushMeBaby application and then open it in Xcode.

2. Drag and drop the aps_developer_identity.cer file that you downloaded earlier onto the Resources folder of the project (see Figure 19-25).

FIGURE 19-25

[image: image]

3. In the ApplicationDelegate.m file, modify the code as shown in bold, replacing the device_token with the actual device token you obtained earlier:

- (id)init {
 self = [super init];
 if(self != nil) {

 self.deviceToken = @"device_token";

 self.payload = @"{\"aps\":{\"alert\":\"You got a new message!\",\"badge\":5,\" sound\":\"beep.wav\"},\"acme1\":\"bar\",\"acme2\":42}";
 self.certificate = [[NSBundle mainBundle] pathForResource:@"aps_developer_ identity" ofType:@"cer"];
 }
 return self;
}

4. Press Command-R to test the application. You will be asked to grant access to the certificate. Click Always Allow (see Figure 19-26).

FIGURE 19-26

[image: image]

5. On the iPhone, ensure that the ApplePushNotification application is not running. To send a message to the device, click the Push button. The server essentially sends the following message to the APNs:

{
 "aps":
 {
 "alert":"You got a new message!",
 "badge":5,
 "sound":"beep.wav"
 },
 "acme1":"bar",
 "acme2":42
}

6. If the message is pushed correctly, you will see the notification shown earlier in Figure 19-23.

7. Debug the ApplePushNotification application by pressing Command-R and send a push message from the PushMeBaby application; the Debugger Console window will display the following output:

2011-08-31 13:30:52.077 ApplePushNotification[12160:707] key: aps, value: {
 alert = "You got a new message!";
 badge = 5;
 sound = "beep.wav";
}
2011-08-31 13:30:52.079 ApplePushNotification[12160:707] key: acme1, value: bar
2011-08-31 13:30:52.084 ApplePushNotification[12160:707] key: acme2, value: 42

How It Works

Basically, the role of the provider is to send notifications to the APNs server for relaying to the devices. Hence, you are sending a message of the following format:

{
 "aps":
 {
 "alert":"You got a new message!",
 "badge":5,
 "sound":"beep.wav"
 },
 "acme1":"bar",
 "acme2":42
}

The beep.wav filename indicates to the client to play the beep.wav file when the notification is received. If you specified an audio file that cannot be found on the target application (the one receiving the notification), the application will use the default sound for the alert.

SUMMARY

In this chapter, you have seen the various steps required to build an iOS application that utilizes the Apple Push Notification service. Take some time to go through the steps to obtain your development certificates and provisioning profile, for they commonly trip up a developer. Once you get the service working, however, the effort is well worth it!

EXERCISES

1. Name the two certificates that you need to generate in order to use the Apple Push Notification service.

2. Why is it recommended that you back up the development certificate in the Keychain Access application?

3. Name the method used for registering for push notifications.

4. What is the use of the device token?

5. Name the event used to obtain the notification pushed to your device.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Steps to using APNs
	Generate a certificate request.
Generate a development certificate.
Create an App ID.
Configure the App ID for Push Notification.
Create a provisioning profile.
Provision a device.
Create the iOS application.
Deploy the application onto a device.
Create the Push Notification Provider application.

	Development certificate
	The certificate you download from Apple contains only the public key; the private key is saved in Keychain Access when you generate the certificate request.
It is recommended that you back up the development certificate.

	Provisioning profile
	Specifies which devices can be allowed to deploy your applications

	Registering for push notification
	Use the registerForRemoteNotificationTypes: method of the UIApplication class.

	Obtaining the device token
	Obtainable from the application:didRegisterForRemoteNotificationsWithDeviceToken: event

	Obtaining the push notification sent to the device
	Obtainable from the application:didReceiveRemoteNotification: event

Chapter 20

Displaying Maps

WHAT YOU WILL LEARN IN THIS CHAPTER

	How to display Google Maps using the Map Kit framework

	Obtaining geographical data using the Core Location framework

	Obtaining directional data to rotate a map

	How to add annotations to a map

	How to perform reverse geocoding to obtain an address

With the advent of mobile devices, users have become accustomed to having access to locale information at their fingertips. In this chapter, you will learn how to use the Map Kit to give users that information quickly and easily. You will also learn how to obtain the geographical position of your device using the Core Location Manager, and how to use this information to create a compelling iOS Location-Based Services application.

DISPLAYING MAPS AND MONITORING CHANGES USING THE MAP KIT

The iOS SDK ships with the Map Kit framework, a set of libraries that work with the Google Mobile Maps Service. You can use the Map Kit to display maps within your iOS application, as well as to display your current location. In fact, you can enable the Map Kit to track your current location simply by setting a single property, and the Map Kit will then automatically display your current location as you move.

In the following Try It Out, you will get started with the Map Kit. In particular, you will use the Map Kit to display your current location on the map.

TRY IT OUT: Getting Started with Map Kit

codefile Maps.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it Maps. You also need to use the project name (Maps) as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add the MapKit.framework to the Frameworks folder of the project (see Figure 20-1).

FIGURE 20-1

[image: image]

3. Select the MapsViewController.xib file to edit it in Interface Builder.

4. Populate the View window with the following views (see Figure 20-2):

FIGURE 20-2

[image: image]

	Map View

	Round Rect Button (label it “Show My Location”; be sure to do this correctly, including capitalization)

5. In the MapsViewController.h file, add the following bold statements:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface MapsViewController : UIViewController
{
 IBOutlet UIButton *btnShowLocation;
 IBOutlet MKMapView *mapView;
}

@property (nonatomic, retain) UIButton *btnShowLocation;
@property (nonatomic, retain) MKMapView *mapView;

-(IBAction) showLocation:(id) sender;
@end

6. Back in Interface Builder, perform the following actions:

	Control-click and drag the File’s Owner item and drop it over the Map View. Select mapView.

	Control-click and drag the File’s Owner item and drop it over the Show My Location button. Select btnShowLocation.

	Control-click and drag the Show My Location button and drop it over the File’s Owner item. Select showLocation:.

7. In the MapsViewController.m file, add the following bold statements:

#import "MapsViewController.h"

@implementation MapsViewController

@synthesize btnShowLocation;
@synthesize mapView;

-(IBAction) showLocation:(id) sender {
 if ([[btnShowLocation titleForState:UIControlStateNormal]
 isEqualToString:@"Show My Location"]) {
 [btnShowLocation setTitle:@"Hide My Location"
 forState:UIControlStateNormal];
 mapView.showsUserLocation = YES;
 } else {
 [btnShowLocation setTitle:@"Show My Location"
 forState:UIControlStateNormal];
 mapView.showsUserLocation = NO;
 }
}

- (void)dealloc {
 [mapView release];
 [btnShowLocation release];
 [super dealloc];
}

8. Press Command-R to test the application on the iPhone Simulator. You should now be able to see the map. Click the Show My Location button to view your current location and iOS will ask to use your current location. Click OK and you will see your current location (see Figure 20-3). You can also zoom in and out of the map by Option-clicking and then dragging the mouse on the screen.

FIGURE 20-3

[image: image]

[image: image]
NOTE It may take up to 20 seconds for the map to locate your current location. In addition, the initial location displayed in the iPhone Simulator is locked on Apple’s headquarters in Cupertino, CA, not your actual location.

How It Works

To show your current location on the map, you simply set the showsUserLocation property of the MKMapView object to YES:

 mapView.showsUserLocation = YES;

The map will automatically obtain the device’s location using the Core Location framework (discussed in the second part of this chapter).

Note that this property merely specifies whether the user’s location is displayed on the map (represented as a throbbing blue circle); it does not center the map to display the user’s location. Hence, if you are viewing the map of another location, your current location indicator may not be visible on the map.

Note that as you Option-click and drag the map to zoom it in or out, it is important to keep track of the zoom level of the map so that when the user restarts the application, you can display the map using the previous zoom level.

In the following Try It Out, you keep track of the map zoom level as the user changes it.

TRY IT OUT: Printing Out the Map’s Zoom Level

1. Using the Maps project created in the previous section, edit the MapsViewController.h file by adding the following bold statement:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface MapsViewController : UIViewController
<MKMapViewDelegate>
{
 IBOutlet UIButton *btnShowLocation;
 IBOutlet MKMapView *mapView;
}

@property (nonatomic, retain) UIButton *btnShowLocation;
@property (nonatomic, retain) MKMapView *mapView;

-(IBAction) showLocation:(id) sender;

@end

2. In the MapsViewController.m file, add the following bold statements:

#import "MapsViewController.h"

@implementation MapsViewController

@synthesize btnShowLocation;
@synthesize mapView;

- (void)viewDidLoad
{
 //---connect the delegate of the MKMapView object to
 // this view controller programmatically; you can also connect
 // it via Interface Builder---
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [super viewDidLoad];
}

-(void)mapView:(MKMapView *)mv regionWillChangeAnimated:(BOOL)animated {
 //---print out the region span - aka zoom level---
 MKCoordinateRegion region = mapView.region;
 NSLog(@"%f",region.span.latitudeDelta);
 NSLog(@"%f",region. span.longitudeDelta);
}

3. Press Command-R to test the application on the iPhone Simulator. Zoom in and out of the map and observe the values displayed on the Debugger Console window (see Figure 20-4).

FIGURE 20-4

[image: image]

How It Works

Whenever the zoom level of the map changes, the mapView:regionWillChangeAnimated: event is fired. Hence, you implement the event handler for this event if you want to know when a map is pinched. The mapView:regionWillChangeAnimated: event is defined in the MKMapViewDelegate protocol, so you needed to implement this protocol in the View Controller:

@interface MapsViewController : UIViewController
<MKMapViewDelegate>

The region displayed by the map is defined by the region property, which is a structure of type MKCoordinateRegion:

 //---print out the region span - aka zoom level---
 MKCoordinateRegion region = mapView.region;

The MKCoordinateRegion structure contains a member called center (of type CLLocationCoordinate2D) and another member called span (of type MKCoordinateSpan). The MKCoordinateSpan structure in turn contains two members: latitudeDelta and longitudeDelta (both of type CLLocationDegrees, which is a double):

 NSLog(@"%f",region.span.latitudeDelta);
 NSLog(@"%f",region.span.longitudeDelta);

Both members define the amount of distance to display for the map:

	latitudeDelta — One degree of latitude is approximately 111 kilometers (69 miles).

	longitudeDelta — One degree of longitude spans a distance of approximately 111 kilometers (69 miles) at the equator but shrinks to 0 kilometers at the poles.

Examine the value of these two structures as you zoom in and out of the map — they are a representation of the map’s zoom level.

GETTING LOCATION DATA

Nowadays, mobile devices are commonly equipped with GPS receivers. Because of the many satellites orbiting the earth, courtesy of the U.S. government, you can use a GPS receiver to find your location easily. However, GPS requires a clear sky to work and hence does not always work indoors or where satellites can’t penetrate (such as a tunnel through a mountain).

Another effective way to locate your position is through cell tower triangulation. When a mobile phone is switched on, it is constantly in contact with base stations surrounding it. By knowing the identity of cell towers, it is possible to correlate this information into a physical location through the use of various databases containing the cell towers’ identities and their exact geographical locations. Cell tower triangulation has its advantages over GPS because it works indoors, without the need to obtain information from satellites. However, it is not as precise as GPS because its accuracy depends on the area you are in. Cell tower triangulation works best in densely populated areas where the cell towers are closely located.

A third method of locating your position is to rely on Wi-Fi triangulation. Rather than connect to cell towers, the device connects to a Wi-Fi network and checks the service provider against databases to determine the location serviced by the provider. Of the three methods described here, Wi-Fi triangulation is the least accurate.

On iOS devices, Apple provides the Core Location framework to help you determine your physical location. The beauty of this framework is that it makes use of all three approaches, and whichever method it uses is totally transparent to the developer. You simply specify the accuracy you need, and Core Location determines the best way to obtain the results for you.

Sound amazing? It is. The following Try It Out shows you how this is done in code.

TRY IT OUT: Obtaining Location Coordinates

codefile LBS.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it LBS. You also need to use the project name (LBS) as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add the CoreLocation.framework to the Frameworks folder (see Figure 20-5).

FIGURE 20-5

[image: image]

3. Select the LBSViewController.xib file to edit it in Interface Builder. Populate the View window with the following views (see Figure 20-6):

FIGURE 20-6

[image: image]

	Label (name them Latitude, Longitude, and Accuracy)

	Text Field

4. In the LBSViewController.h file, add the following statements that appear in bold:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@end

5. In Interface Builder, perform the following actions:

	Control-click and drag the File’s Owner item and drop it over the first Text Field view. Select latitudeTextField.

	Control-click and drag the File’s Owner item and drop it over the second Text Field view. Select longitudeTextField.

	Control-click and drag the File’s Owner item and drop it over the third Text Field view. Select accuracyTextField.

6. In the LBSViewController.m file, add the following statements that appear in bold:

#import "LBSViewController.h"

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];
 [super viewDidLoad];
}

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@"%f",
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];
}

- (void) locationManager:(CLLocationManager *) manager
 didFailWithError:(NSError *) error {
 NSString *msg = [[NSString alloc]
 initWithString:@"Error obtaining location"];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
 message:msg
 delegate:nil
 cancelButtonTitle:@"Done"
 otherButtonTitles:nil];
 [alert show];
 [msg release];
 [alert release];
}

- (void)dealloc {
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

7. Press Command-R to test the application on the iPhone Simulator. The Simulator will ask for permission to use your current location, so click OK. Observe the latitude, longitude, and accuracy reported (see Figure 20-7). The accuracy value indicates the radius of uncertainty for the location, measured in meters.

FIGURE 20-7

[image: image]

How It Works

First, to use the CLLocationManager class, you needed to implement the CLLocationManagerDelegate protocol in your View Controller:

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate> {

When the View is loaded, you create an instance of the CLLocationManager class:

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];
 [super viewDidLoad];
}

You then proceeded to specify the desired accuracy using the desiredAccuracy property. You can use the following constants to specify the accuracy that you want:

	kCLLocationAccuracyBestForNavigation

	kCLLocationAccuracyBest

	kCLLocationAccuracyNearestTenMeters

	kCLLocationAccuracyHundredMeters

	kCLLocationAccuracyKilometer

	kCLLocationAccuracyThreeKilometers

While you can specify the accuracy that you want, the actual accuracy is not guaranteed. Also, specifying a location with greater accuracy takes a significant amount of time and your device’s battery power.

The distanceFilter property enables you to specify the distance a device must move laterally before an update is generated. The unit for this property is in meters, relative to its last position. To be notified of all movements, use the kCLDistanceFilterNone constant.

Finally, you start the location manager using the startUpdatingLocation method. The user can enable/disable location services in the Settings application. If the service is not enabled and you proceed with the location update, the application asks the user if he or she would like to enable the location services. To stop the location manager, simply use the stopUpdatingLocation method. Remember to do this when you are done with the location tracking; otherwise, the battery of your device will run down quickly.

To obtain location information, you need to handle two events:

	locationManager:didUpdateToLocation:fromLocation:

	locationManager:didFailWithError:

When a new location value is available, the locationManager:didUpdateToLocation:fromLocation: event is fired. If the location manager cannot determine the location, it fires the locationManager:didFailWithError: event.

When a location value is obtained, you display its latitude and longitude, along with its accuracy, using the CLLocation object:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@"%f",
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];
}

The horizontalAccuracy property of the CLLocation object specifies the radius of accuracy, in meters.

Specifying the Hardware Requirement for Location Tracking

While most iOS devices support GPS capabilities, there are still some models that do not support it. For example, the iPod touch does not have a built-in GPS receiver. Hence, if your application uses location-based services, it is strongly recommended that you specify the hardware requirements using the UIRequiredDeviceCapabilities key in the .plist file. As shown in Figure 20-8, this key has two items: gps and location-services. If you only want higher-accuracy location data using GPS, you just need to add the gps item. If you want to use the GPS as well as cellular and wireless network triangulation, you need to specify both gps and location-services.

FIGURE 20-8

[image: image]

Setting the key in the .plist file ensures that AppStore will only install your application on devices that satisfy your hardware requirements. For example, if you specify only the gps item, then iPod touch users will not be able to install your application.

Displaying Location Using a Map

Obtaining the location value of a position is interesting, but it isn’t very useful if you can’t visually locate it on a map. Hence, the ideal situation would be to use the location information to display the location on a map. In the following Try It Out, you will use the Map Kit that you learned how to use in the first part of this chapter to display the map of the location coordinates returned by the Core Location framework. You will also learn how to create the map programmatically, instead of creating it in Interface Builder.

TRY IT OUT: Displaying the Location Using a Map

1. Using the LBS project that you just created, add the MapKit.framework to the Frameworks folder (see Figure 20-9).

FIGURE 20-9

[image: image]

2. Add the following bold statements to the LBSViewController.h file:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@end

3. In the LBSViewController.m file, add the following bold statements:

#import "LBSViewController.h"

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

 [super viewDidLoad];
}

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@"%f",
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];
}

- (void)dealloc {
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];

4. Press Command-R to test the application on the iPhone Simulator. Observe the map displaying the location reported by the location manager (see Figure 20-10). The center of the map is the location reported.

FIGURE 20-10

[image: image]

[image: image]
NOTE If you test the application on an actual iPhone device, you will see that the map updates itself dynamically when you move about. On the iPhone Simulator, you can simulate movement by selecting Debug ⇒ Location and choosing the desired location simulation (see Figure 20-11).

FIGURE 20-11

[image: image]

How It Works

To use the Map Kit in your application, you first needed to add the MapKit.framework to your project.

Then, you implemented the MKMapViewDelegate protocol in the View Controller to handle the various methods associated with the MapView:

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {

When the view has loaded, you dynamically create an instance of the MKMapView class and set the map type (hybrid — map and satellite) to display:

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

In this case, you specified the size of the map to display. You set the delegate property to self so that the View Controller can implement the methods declared in the MKMapViewDelegate protocol.

When the location information is updated, you zoom into the location using the setRegion: method of the mapView object:

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];

[image: image]
NOTE For more information on the MKMapView class, refer to Apple’s documentation at http://developer.apple.com/library/ios/#documentation/MapKit/Reference/MKMapView_Class/MKMapView/MKMapView.html.

Getting Directional Information

Most iOS devices come with a built-in compass. The following Try It Out shows you how to programmatically obtain directional information using this feature.

TRY IT OUT: Incorporating a Compass

You need a real device (iPhone) to test this application.

1. Using the LBS project, add an image named Compass.gif to the Supporting Files folder of the project (see Figure 20-12).

FIGURE 20-12

[image: image]

2. In Interface Builder, drag and drop an Image View onto the View window and set its Image attribute to Compass.gif and the View Mode attribute to Aspect Fit in the Attributes Inspector window. Also, add a Label to the View window (see Figure 20-13).

FIGURE 20-13

[image: image]

3. In the LBSViewController.h file, add the following bold statements:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;

@end

4. In Interface Builder, perform the following actions:

	Control-click and drag the File’s Owner item and drop it over the Image View. Select compass.

	Control-click and drag the File’s Owner item and drop it over the Label. Select heading.

5. In the LBSViewController.m file, add the following bold statements:

#import "LBSViewController.h"

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

@synthesize compass;
@synthesize heading;

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@"%.2f degrees",
 newHeading.magneticHeading];

 //---headings is in degrees---
 double d = newHeading.magneticHeading;

 //---convert degrees to radians---
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);
}

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];

 //---get the compass readings---
 [lm startUpdatingHeading];

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

 [super viewDidLoad];
}

- (void)dealloc {
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

6. Add the CoreGraphics.framework to your project if it is not already added to the project (in the beta version of the SDK, this framework is not added in by default).

7. Press Command-R to test the application on an actual iPhone. Observe the image as you turn the device (see Figure 20-14).

FIGURE 20-14

[image: image]

How It Works

Getting directional information is similar to getting location data; you use the Core Location framework. Instead of calling the startUpdatingLocation method of the CLLocationManager object, you call the startUpdatingHeading method:

 //---get the compass readings---
 [lm startUpdatingHeading];

When directional information is available, the locationManager:didUpdateHeading: method will continually fire:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@"%.2f degrees",
 newHeading.magneticHeading];

 //---headings is in degrees---
 double d = newHeading.magneticHeading;

 //---convert degrees to radians---
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);

The magneticHeading property of the CLHeading parameter will contain the readings in degrees, with 0 representing magnetic North. The ImageView is then rotated based on the value of the heading. Note that you need to convert the degrees into radians for the CGAffineTransformMakeRotation() method.

Rotating the Map

The previous section showed how you can programmatically rotate the image of a compass based on the directional heading information obtained from the Core Location framework. Using this concept, you could also rotate the map whenever the direction of your device changes. This is very useful when you are using the map for navigational purposes. The following Try It Out shows how you can rotate the map based on your headings.

TRY IT OUT: Rotating the Map

1. Using the LBS project, select the LBSViewController.xib file to edit it in Interface Builder.

2. Drag and drop a View view from the Object Library and set its size and location via its Size Inspector window as follows (see also Figure 20-15):

FIGURE 20-15

[image: image]

	X: 0

	Y: 130

	W: 320

	H: 330

3. In the Attributes Inspector window for the View, check the Clip Subviews option (see Figure 20-16).

FIGURE 20-16

[image: image]

4. In Xcode, add the following bold statements to the LBSViewController.h file:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
 IBOutlet UIView *viewForMap;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;
@property (nonatomic, retain) UIView *viewForMap;

@end

5. In Interface Builder, Control-click and drag the File’s Owner item and drop it over the newly added View view. Select viewForMap.

6. Add the following bold statements to the LBSViewController.m file:

#import "LBSViewController.h"

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

@synthesize compass;
@synthesize heading;

@synthesize viewForMap;

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];

 //---get the compass readings---
 [lm startUpdatingHeading];

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(-90, -85, 500,500)];

 //initWithFrame:CGRectMake(0, 130, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;

 // [self.view addSubview:mapView];
 [self.viewForMap addSubview:mapView];

 [super viewDidLoad];
}

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@"%.2f degrees",
 newHeading.magneticHeading];

 //---headings is in degrees---
 double d = newHeading.magneticHeading;

 //----convert degrees to radians----
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);

 //---rotate the map---
 mapView.transform = CGAffineTransformMakeRotation(-radians);

}

- (void)dealloc {
 [viewForMap release];
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];

7. Deploy the application to a real iPhone device. Observe that as you rotate the iPhone, the map rotates as well.

How It Works

Rotating the map is actually very simple. While you might first assume that the easiest way would be to apply the transformation to the mapView, doing that rotates not only the map, but the entire rectangle (see Figure 20-17).

FIGURE 20-17

[image: image]

The trick is to embed the mapView within another View view and rotate it within the View. Hence, you added another View view (viewForMap) in the View window and set it to Clip Subviews. Essentially, all the views added to this View will not display beyond its boundary.

Instead of displaying the map in the original size, you needed to set it to a minimum of 459.67 x 459.67 pixels. This is the length of the diagonal of the viewable rectangle of the map. For simplicity, round it up to 500 x 500 pixels.

The mapView is then added to viewForMap, instead of self.view:

 // [self.view addSubview:mapView];
 [self.viewForMap addSubview:mapView];

Recall that the initial position of the mapView was (0, 130):

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];

But it must now be changed to (−90, −85):

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(-90, -85, 500,500)];
 //initWithFrame:CGRectMake(0, 130, 320, 340)];

Figure 20-18 shows how the new coordinate of (−90, −85) was derived. Remember that when you try to add a view to another view, the coordinate specified is always with respect to the view you are adding to. In this case, the reference point (0,0) is at viewForMap.

FIGURE 20-18

[image: image]

Finally, to rotate the map, you applied the CGAffineTransformMakeRotation() method to the mapView:

 //---rotate the map---
 mapView.transform = CGAffineTransformMakeRotation(-radians);

[image: image]
NOTE In iOS 5, you can also use the new setUserTrackingMode:animated: method to automatically display a blue circle on the map showing the location of the user:

 [mapView setUserTrackingMode:MKUserTrackingModeFollowWithHeading
 animated:YES];

The MKUserTrackingModeFollowWithHeading constant causes the map to move with the user (see Figure 20-19) as well as rotate automatically based on the heading information.

FIGURE 20-19

[image: image]

Displaying Annotations

So far, you have used Core Location to report your current location and heading, and then Map Kit to display a map representing your location. A visual improvement you can make to the project is to add a pushpin to the map, representing your current location.

In the following Try It Out, you learn how to add annotations to the map in Map Kit. Annotations enable you to display pushpins on the map, denoting specific locations.

TRY IT OUT: Displaying a Pushpin

1. Continuing with the LBS project, add a new Objective-C class file to the project (see Figure 20-20).

FIGURE 20-20

[image: image]

2. Name it MyAnnotation.m. Once it is added, you should see the MyAnnotation.h and MyAnnotation.m files under the project (see Figure 20-21).

FIGURE 20-21

[image: image]

3. Populate the MyAnnotation.h file as follows:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface MyAnnotation : NSObject <MKAnnotation> {
 CLLocationCoordinate2D coordinate;
 NSString *title;
 NSString *subtitle;
}

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, readonly, copy) NSString *title;
@property (nonatomic, readonly, copy) NSString *subtitle;

-(id)initWithCoordinate:(CLLocationCoordinate2D) c
 title:(NSString *) t
 subtitle:(NSString *) st;

@end

4. Populate the MyAnnotation.m file as follows:

#import "MyAnnotation.h"

@implementation MyAnnotation

@synthesize coordinate;
@synthesize title;
@synthesize subtitle;

- (id)init
{
 CLLocationCoordinate2D location;
 location.latitude = 0;
 location.longitude = 0;
 return [self initWithCoordinate:coordinate
 title:nil
 subtitle:nil];
}

-(id)initWithCoordinate:(CLLocationCoordinate2D) c
 title:(NSString *) t
 subtitle:(NSString *) st {
 self = [super init];
 coordinate = c;
 title = [t retain];
 subtitle = [st retain];
 return self;
}

- (void) dealloc{
 [title release];
 [subtitle release];
 [super dealloc];
}

@end

5. In the LBSViewController.h file, add the following bold statements:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

#import "MyAnnotation.h"

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
 IBOutlet UIView *viewForMap;

 MyAnnotation *annotation;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;
@property (nonatomic, retain) UIView *viewForMap;

@end

6. In the LBSViewController.m file, add the following bold statements:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@"%f",
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];

 //---display an annotation here---
 if (!annotation) {
 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@"You are here"
 subtitle:[NSString
 stringWithFormat:@"Lat: %@. Lng: %@",
 latitudeTextField.text,
 longitudeTextField.text]];
 [mapView addAnnotation:annotation];
 }
}

- (void)dealloc {
 [annotation release];
 [viewForMap release];
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

7. Press Command-R to test the application on the iPhone Simulator. You’ll see the pushpin inserted into the current position. When you tap on it, it displays the information in the annotation view as shown in Figure 20-22.

FIGURE 20-22

[image: image]

How It Works

You first created the MyAnnotation class, which inherits from the MKAnnotation base class. Within the MyAnnotation class, you implemented several properties (including coordinate, which specifies the center point of the annotation), in particular:

	title property — Returns the title to be displayed on the annotation

	subtitle property — Returns the subtitle to be displayed on the annotation

As you get a location of the device, you display an annotation to represent the current location:

 //---display an annotation here---
 if (!annotation) {
 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@"You are here"
 subtitle:[NSString
 stringWithFormat:@"Lat: %@. Lng: %@",
 latitudeTextField.text,
 longitudeTextField.text]];
 [mapView addAnnotation:annotation];

To remove the annotation from the map, use the removeAnnotation: method of the MKMapView object.

Reverse Geocoding

While knowing your location coordinates is useful, and displaying your location on the Google Maps is cool, the capability to know your current address is even cooler! The process of finding your address from a pair of latitude and longitude coordinates is known as reverse geocoding. The following Try It Out shows how to obtain the address of a location given its latitude and longitude. You will do so via the API exposed by the Core Location framework.

TRY IT OUT: Obtaining an Address from Latitude and Longitude

1. Continuing with the LBS project, add the following bold statements to the LBSViewController.h file:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

#import "MyAnnotation.h"

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
 IBOutlet UIView *viewForMap;

 MyAnnotation *annotation;
 NSString *location;

 CLGeocoder *geocoder;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;
@property (nonatomic, retain) UIView *viewForMap;

@end

2. In the LBSViewController.m file, add the following bold statements:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@"%f",
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@"%f",
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];

 //---display an annotation here---
 if (!annotation) {
 //---perform reverse geocoding---
 [geocoder reverseGeocodeLocation:newLocation
 completionHandler:^(NSArray *placemark, NSError *error){
 for (int i=0; i<=[placemark count] - 1; i++) {
 location =
 [NSString stringWithFormat:@"%@, %@",
 ((CLPlacemark *) [placemark objectAtIndex:i]).locality,
 ((CLPlacemark *) [placemark objectAtIndex:i]).country];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Your location"
 message:location
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
 }];

 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@"You are here"
 subtitle:[NSString
 stringWithFormat:@"Lat: %f. Lng: %f",
 newLocation.coordinate.latitude,
 newLocation.coordinate.longitude]];

 [mapView addAnnotation:annotation];
 }
}

- (void)dealloc {
 [annotation release];
 [viewForMap release];
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

3. Press Command-R to test the application on the iPhone Simulator. Notice that when the address of the location is found, an alert is displayed (see Figure 20-23).

FIGURE 20-23

[image: image]

How It Works

To perform reverse geocoding, you use the CLGeocoder class:

 CLGeocoder *geocoder;

The CLGeocoder class (located in the Core Location framework) is new in iOS 5 and replaces the older MKReverseGeocoder class (from the Map Kit framework), which has now been deprecated.

When a location is obtained (via the locationManager:didUpdateToLocation:fromLocation: event), you instantiate the CLGeocoder class by setting it to a location coordinate via the reverseGeocodeLocation:completionHandler: method:

 //---display an annotation here---
 if (!annotation) {
 //---perform reverse geocoding---
 [geocoder reverseGeocodeLocation:newLocation
 completionHandler:^(NSArray *placemark, NSError *error){
 for (int i=0; i<=[placemark count] - 1; i++) {
 location =
 [NSString stringWithFormat:@"%@, %@",
 ((CLPlacemark *) [placemark objectAtIndex:i]).locality,
 ((CLPlacemark *) [placemark objectAtIndex:i]).country];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Your location"
 message:location
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
 }];

The CLGeocoder class works asynchronously, and will fire the CLGeocodeCompletionHandler block when an address has been found. The address(es) found are encapsulated in the placemark array, and here you simply printed out all the addresses using the alert view.

Displaying a Disclosure Button

When displaying an annotation on the map, it is customary to provide users with the option to select the annotation so that more details about the location can be shown. For example, the user may want to know the detailed address of the location, or you can provide routing information for the selected location. In Map Kit, you can add this option through a detail disclosure button. The following Try It Out shows how to display the disclosure button in an annotation.

TRY IT OUT: Displaying a Disclosure Button

1. Continuing with the LBS project, add the following methods to the LBSViewController.m file:

- (MKAnnotationView *)mapView:(MKMapView *)aMapView
 viewForAnnotation:(id)ann {

 NSString *identifier = @"myPin";
 MKPinAnnotationView *pin = (MKPinAnnotationView *)
 [aMapView dequeueReusableAnnotationViewWithIdentifier:identifier];
 if (pin == nil) {
 pin = [[[MKPinAnnotationView alloc] initWithAnnotation:ann
 reuseIdentifier:identifier]
 autorelease];
 } else {
 pin.annotation = ann;
 }

 //---display a disclosure button on the right---
 UIButton *myDetailButton =
 [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
 myDetailButton.frame = CGRectMake(0, 0, 23, 23);
 myDetailButton.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 myDetailButton.contentHorizontalAlignment =
 UIControlContentHorizontalAlignmentCenter;

 [myDetailButton addTarget:self
 action:@selector(checkButtonTapped:)
 forControlEvents:UIControlEventTouchUpInside];

 pin.rightCalloutAccessoryView = myDetailButton;
 pin.enabled = YES;
 pin.animatesDrop=TRUE;
 pin.canShowCallout=YES;

 return pin;
}

-(void) checkButtonTapped:(id) sender {
 //---know which button was clicked;
 // useful for multiple pins on the map---
 // UIControl *btnClicked = sender;
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Your Current Location"
 message:location
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

2. Press Command-R to test the application on the iPhone Simulator. The annotation view now displays a disclosure button to the right of it (see Figure 20-24). Clicking the button displays an alert view.

FIGURE 20-24

[image: image]

How It Works

What you did was override the mapView:viewForAnnotation: method (defined in the MKMapViewDelegate protocol), which is fired every time you add an annotation to the map.

Note the following block of code:

 NSString *identifier = @"myPin";
 MKPinAnnotationView *pin = (MKPinAnnotationView *)
 [aMapView dequeueReusableAnnotationViewWithIdentifier:identifier];
 if (pin == nil) {
 pin = [[[MKPinAnnotationView alloc] initWithAnnotation:ann
 reuseIdentifier:identifier]
 autorelease];
 } else {
 pin.annotation = ann;
 }

It tries to reuse any annotation objects that are currently not visible on the screen. Imagine you have 10,000 annotations on the map; maintaining MKPinAnnotationView objects in memory is not a feasible option (too much memory is used). Hence, this code tries to reuse MKPinAnnotationView objects that are currently not visible on the screen.

The following code block displays a disclosure button next to the annotation:

 //---display a disclosure button on the right---
 UIButton *myDetailButton =
 [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
 myDetailButton.frame = CGRectMake(0, 0, 23, 23);
 myDetailButton.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 myDetailButton.contentHorizontalAlignment =
 UIControlContentHorizontalAlignmentCenter;

 [myDetailButton addTarget:self
 action:@selector(checkButtonTapped:)
 forControlEvents:UIControlEventTouchUpInside];

 pin.rightCalloutAccessoryView = myDetailButton;
 pin.enabled = YES;
 pin.animatesDrop=TRUE;
 pin.canShowCallout=YES;

When the disclosure button is clicked, it fires the checkButtonTapped: method:

-(void) checkButtonTapped:(id) sender {
 //---know which button was clicked;
 // useful for multiple pins on the map---
 // UIControl *btnClicked = sender;
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Your Current Location"
 message:location
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

In this case, you simply displayed an Alert view. You can also display another View window to show more detailed information.

SUMMARY

This chapter explained how to use the Map Kit framework to display the Google Maps in your iPhone application. You also saw how to use the Core Location framework to help you obtain your location information. Combining the Map Kit and the Core Location frameworks enables you to create very compelling location-based services.

EXERCISES

1. Name the property of the MKMapView class that enables you to show your current location on the map.

2. Name the protocol that you need to implement in order to monitor changes in your map.

3. Name the method that you need to call to start updating your location.

4. Name the method that you need to call to start updating your heading.

5. Name the class responsible for reverse geocoding.

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Framework for displaying Google Maps
	Map Kit

	Framework for obtaining geographical location
	Core Location

	Class for displaying Google Maps
	MKMapView

	Showing current location on the map
	showsUserLocation

	Monitoring changes in the map
	Implement the MKMapViewDelegate protocol.

	Changing the zoom level of the map
	Set the latitudeDelta and longitudeDelta properties of the map.

	Monitoring changes in location
	Implement the CLLocationManagerDelegate protocol.

	Getting location updates
	Call the startUpdatingLocation method.

	Getting directional updates
	Call the startUpdatingHeading method.

	Rotating the map
	Embed the MapView in another View and rotate the MapView.

	Displaying annotations
	Create a class that inherits from the MKAnnotation base class.

Chapter 21

Programming Background Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

	How background code execution works in your iPhone applications

	Monitoring application states

	How to detect and opt out of background execution

	How to track location information in the background

	Creating local notifications

One of the main features of iOS beginning with version 4 is its support for background applications. Unlike previous versions of the iPhone OS, iOS 4 (and later) does not automatically terminate your application when you press the Home button on your device. Instead, your application is put into a suspended state and all processing is paused. When you tap on the application icon again, the application resumes from its suspended state and continues execution. If your application should continue executing in the background, you need to modify it to inform the OS.

In this chapter, you will examine how background execution works and some of the limitations placed on your applications. In particular, you will learn how to modify the location application covered in Chapter 20 so that it will continue working even after the user has switched it to the background. Last but not least, you will learn about the local notification feature, which was introduced with iOS 4.

UNDERSTANDING BACKGROUND EXECUTION ON THE IOS

While iOS supports background code execution, you need to understand several things before you write your application:

	In order to support background code execution, all applications must be compiled against the latest iOS SDK. In other words, if you have downloaded an application from the App Store that is compiled using an older SDK (prior to 4.0), the application will still terminate when you press the Home button on your iOS 5 device.

	Background code execution is limited to three specific types of applications:

	Audio — Playing music in the background

	Location — Getting location data in the background

	Voice Over IP (VOIP) — Making phone calls through an Internet connection

	If an application does not meet any of the preceding three criteria, it will be suspended when the Home button is pressed.

	When an application switches to the background (regardless of whether it is allowed to execute in the background or not), you should always disconnect all network connections (with the exception of VOIP applications). Applications that have active network connections are automatically terminated by the OS when they enter background mode. For example, if your location-based application is transmitting location data to a remote server, you should disable the transmission when the application is switched to the background. While you can continue receiving location data, transmitting it over a network is prohibited when the application is in the background. In this scenario, you might want to log the location data to a database and resend it to the remote server when the application is in the foreground again.

Programming multitasking iOS applications can be a very complex task. The following sections touch on some of the basics to get you started quickly.

Examining the Different Application States

The iOS includes events that you can handle in your application delegate so that you can monitor your application’s current state. The following Try It Out shows the various states that an application goes through.

TRY IT OUT: Handling Application Event States

codefile States.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it States. You will also use the project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add the following bold code to the StatesAppDelegate.m file:

#import "StatesAppDelegate.h"

#import "StatesViewController.h"

@implementation StatesAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@"application:didFinishLaunchingWithOptions:");
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[StatesViewController alloc]
 initWithNibName:@"StatesViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application
{
 NSLog(@"applicationWillResignActive:");
 /*
 Sent when the application is about to move from active to inactive state.
This can occur for certain types of temporary interruptions (such as an
incoming phone call or SMS message) or when the user quits the application and
it begins the transition to the background state.
 Use this method to pause ongoing tasks, disable timers, and throttle down
OpenGL ES frame rates. Games should use this method to pause the game.
 */
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 NSLog(@"applicationDidEnterBackground:");
 /*
 Use this method to release shared resources, save user data, invalidate
 timers, and store enough application state information to restore your
application to its current state in case it is terminated later.
 If your application supports background execution, this method is called
 instead of applicationWillTerminate: when the user quits.
 */
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 NSLog(@"applicationWillEnterForeground:");
 /*
 Called as part of the transition from the background to the inactive state;
here you can undo many of the changes made on entering the background.
 */
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 NSLog(@"applicationDidBecomeActive:");
 /*
 Restart any tasks that were paused (or not yet started) while the
application was inactive. If the application was previously in the background,
optionally refresh the user interface.
 */
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 NSLog(@"applicationWillTerminate:");
 /*
 Called when the application is about to terminate.
 Save data if appropriate.
 See also applicationDidEnterBackground:.
 */
}

@end

3. In Xcode, press Command-Shift-C to display the output window.

4. Press Command-R to test the application on the iPhone Simulator.

5. Observe the output in the output window (see Figure 21-1).

FIGURE 21-1

[image: image]

6. On the iPhone Simulator, press the Home button to send the application to the background. Note the output in the output window again:

2011-08-16 19:38:04.253 States[2851:ef03] application:didFinishLaunchingWithOptions:
2011-08-16 19:38:04.257 States[2851:ef03] applicationDidBecomeActive:
2011-08-16 19:41:14.035 States[2851:ef03] applicationWillResignActive:
2011-08-16 19:41:14.036 States[2851:ef03] applicationDidEnterBackground:

7. In the Home screen of the iPhone Simulator, click the application icon to start the application again. Note the output in the output window:

2011-08-16 19:38:04.253 States[2851:ef03] application:didFinishLaunchingWithOptions:
2011-08-16 19:38:04.257 States[2851:ef03] applicationDidBecomeActive:
2011-08-16 19:41:14.035 States[2851:ef03] applicationWillResignActive:
2011-08-16 19:41:14.036 States[2851:ef03] applicationDidEnterBackground:
2011-08-16 19:42:11.173 States[2851:ef03] applicationWillEnterForeground:
2011-08-16 19:42:11.174 States[2851:ef03] applicationDidBecomeActive:

How It Works

This exercise demonstrates the various states that an application goes through when it is loaded and when it goes into background mode.

In general, you should save your application state in the applicationDidEnterBackground: event when the application goes into the background. When an application goes into the background, execution of the application is suspended.

When the application returns to the foreground, you should restore its state in the applicationDidBecomeActive: event.

Opting Out of Background Mode

Although the default behavior of all applications compiled using the iOS SDK is to support background mode, you can override this behavior by adding an entry to your application’s Info.plist file. The following Try It Out demonstrates how.

TRY IT OUT: Disabling Background Mode

1. Using the same project created in the previous section, select the States-info.plist file, right-click on any of the keys and select Show Raw Keys/Values. Then, add a new key to the file and label the key UIApplicationExitsOnSuspend (see Figure 21-2).

FIGURE 21-2

[image: image]

2. Set the value of this key to YES.

3. Press Command-R to test the application on the iPhone Simulator again. When the application has been loaded onto the Simulator, press the Home button. Note the output, as shown in Figure 21-3.

FIGURE 21-3

[image: image]

How It Works

This example demonstrates how to disable the background mode for your application. By enabling the UIApplicationExitsOnSuspend key in your application, the iOS automatically terminates your application when the Home button is pressed.

Detecting Multitasking Support

Because not all devices running the iOS support background applications, it is important that your applications have a way to detect this.

You can enable this via the following code snippet:

- (void)viewDidLoad
{
 UIDevice *device = [UIDevice currentDevice];
 bool backgroundSupported = NO;

 if ([device respondsToSelector:@selector(isMultitaskingSupported)])
 backgroundSupported = device.multitaskingSupported;

 if (backgroundSupported)
 NSLog(@"Supports multitasking");
 else {
 NSLog(@"Does not support multitasking");
 }
 [super viewDidLoad];
}

Tracking Locations in the Background

You have seen how an application behaves when it is suspended and how to disable multitasking for an application. This section looks at an example that demonstrates how an application can continue to run even when it is in the background.

One of the three types of applications permitted to run in the background is the location-based services application. In Chapter 20, you learn how to use the Core Location framework to obtain geographical data. The limitation with the example shown in that chapter is that as soon as the application goes into the background, your application can no longer receive location updates.

The following Try It Out demonstrates how to enable the application to continue receiving location updates even as it goes into the background.

TRY IT OUT: Tracking Locations in the Background

1. Using the LBS project created in Chapter 20, select the LBS-Info.plist file and add a new key to it.

2. Right-click on any of the keys and select Show Raw Keys/Values. Add the key named UIBackgroundModes (see Figure 21-4).

FIGURE 21-4

[image: image]

3. Expand the key and set its first value to location (see Figure 21-5).

FIGURE 21-5

[image: image]

4. In the LBSAppDelegate.m file, add the following bold statements:

#import "LBSAppDelegate.h"

#import "LBSViewController.h"

@implementation LBSAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@"application:didFinishLaunchingWithOptions:");
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[LBSViewController alloc]
 initWithNibName:@"LBSViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application
{
 NSLog(@"applicationWillResignActive:");
 /*
 Sent when the application is about to move from active to inactive state.
This can occur for certain types of temporary interruptions (such as an
incoming phone call or SMS message) or when the user quits the application and
it begins the transition to the background state.
 Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL ES frame rates. Games should use this method to pause the game.

 */
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 NSLog(@"applicationDidEnterBackground:");
 /*
 Use this method to release shared resources, save user data, invalidate
timers, and store enough application state information to restore your
application to its current state in case it is terminated later.
 If your application supports background execution, this method is called
 instead of applicationWillTerminate: when the user quits.
 */
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 NSLog(@"applicationWillEnterForeground:");
 /*
 Called as part of the transition from the background to the inactive state;
here you can undo many of the changes made on entering the background.
 */
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 NSLog(@"applicationDidBecomeActive:");
 /*
 Restart any tasks that were paused (or not yet started) while the
application was inactive. If the application was previously in the background,
optionally refresh the user interface.
 */
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 NSLog(@"applicationWillTerminate:");
 /*
 Called when the application is about to terminate.
 Save data if appropriate.
 See also applicationDidEnterBackground:.
 */
}

@end

5. In the LBSViewController.m file, add the following bold statements:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //...
 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@"%f",
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 //---print out the lat and long---
 NSLog(@"%@|%@",latitudeTextField.text, longitudeTextField.text);

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 //...
}

6. Press Command-R to test the application on the iPhone Simulator. When the application has finished loading on the Simulator, press the Home button to send the application to the background. Select Debug ⇒ Location ⇒ Freeway Drive. Observe the output shown in the output window (press Command-Shift-C in Xcode):

2011-08-16 20:10:02.311 LBS[3322:11903]
 application:didFinishLaunchingWithOptions:
2011-08-16 20:10:02.327 LBS[3322:11903] applicationDidBecomeActive:
2011-08-16 20:10:06.868 LBS[3322:11903] applicationWillResignActive:
2011-08-16 20:10:06.869 LBS[3322:11903] applicationDidEnterBackground:
2011-08-16 20:10:12.655 LBS[3322:11903] 37.335275|-122.032547
2011-08-16 20:10:13.661 LBS[3322:11903] 37.335256|-122.032548
2011-08-16 20:10:14.655 LBS[3322:11903] 37.335236|-122.032549
2011-08-16 20:10:15.654 LBS[3322:11903] 37.335215|-122.032549
2011-08-16 20:10:16.655 LBS[3322:11903] 37.335196|-122.032550
2011-08-16 20:10:17.653 LBS[3322:11903] 37.335175|-122.032551
2011-08-16 20:10:18.650 LBS[3322:11903] 37.335151|-122.032553
2011-08-16 20:10:19.651 LBS[3322:11903] 37.335121|-122.032562
2011-08-16 20:10:20.683 LBS[3322:11903] 37.335072|-122.032604

How It Works

In order to enable your application to continue receiving location data even when it goes into the background, you need to set the UIBackgroundModes key in the Info.plist file to location. The UIBackgroundModes key is an array, and it can contain one or more of the following values:

	location

	audio

	voip

Note that no change to your code is required in order to enable your application to run in the background — you need only set the UIBackgroundModes key. The output shown in the window proves that even though the application has gone into the background, it continues to receive location data:

2011-08-16 20:10:06.868 LBS[3322:11903] applicationWillResignActive:
2011-08-16 20:10:06.869 LBS[3322:11903] applicationDidEnterBackground:
2011-08-16 20:10:12.655 LBS[3322:11903] 37.335275|-122.032547
2011-08-16 20:10:13.661 LBS[3322:11903] 37.335256|-122.032548
2011-08-16 20:10:14.655 LBS[3322:11903] 37.335236|-122.032549

Making Your Location Apps More Energy Efficient

The project that you modified in the previous section enables you to continuously track your location even though the application may be running in the background. While some scenarios require you to track all location changes, many do not. For example, your application may just need to track a point every few hundred meters. In this case, it is important to prevent the application from continuously tracking every single point, as this takes a heavy toll on the battery.

Instead of using the startUpdatingLocation method of the CLLocationManager class to receive location updates, you can use the startMonitoringSignificantLocationChanges method, like this:

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;

 //lm.distanceFilter = kCLDistanceFilterNone;
 //[lm startUpdatingLocation];

 [lm startMonitoringSignificantLocationChanges];

 //---get the compass readings---
 [lm startUpdatingHeading];

 //...
 [super viewDidLoad];
}

The startMonitoringSignificantLocationChanges method reports location data only when the device has moved a significant distance. Specifically, it reports location data only when it detects that the device has switched to another cell tower. This method works only with iPhones (and only iPhone 3GS, iPhone 4, and iPhone 4S; the older iPhone 3G does not support this feature). If you use this method to track location, the distanceFilter property is not needed. When a location update is received, it calls the same locationManager:didUpdateToLocation:fromLocation: method to report location data.

Using the startMonitoringSignificantLocationChanges method greatly reduces the power consumption of your device, as it does not use the power-intensive GPS radio. Note also that if you use this feature, there is no need to have the UIBackgroundModes key in the Info.plist file — the OS automatically wakes your application up from suspended mode to receive the location data.

If your application is terminated when a new location update event is received, it will automatically relaunch your application. To determine whether the application is restarted due to a change in location, you can check for the UIApplicationLaunchOptionsLocationKey key in the application’s delegate’s application:didFinishLaunchingWithOptions: event, like this:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@"application:didFinishLaunchingWithOptions:");

 //---if application is restarted due to changes in location---
 if ([launchOptions
 objectForKey:UIApplicationLaunchOptionsLocationKey]) {

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"LBS app restarted"
 message:@"App restarted due to changes in location."
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

 [alert show];
 [alert release];
 }

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[LBSViewController alloc]
initWithNibName:@"LBSViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

Once the application is restarted, you should create another instance of the CLLocationManager class and start the monitoring again.

To stop monitoring for location changes, use the stopMonitoringSignificantLocationChanges method:

 [lm stopMonitoringSignificantLocationChanges];

Note that you need to test the preceding using a real device as it has no effect on the iPhone Simulator.

LOCAL NOTIFICATION

In Chapter 19, you learn about the Apple Push Notification service (APNs), which enables an application to receive notifications even if it is no longer running on the device. Using the APNs, the provider of an application can continuously keep the user updated, by pushing messages directly to the user through Apple’s Push server.

In addition to the APNs, the iPhone also supports another notification framework, local notifications. While the notifications for APNs are sent by the application provider, local notifications are scheduled by the application and delivered by the iOS on the same device. For example, suppose you are writing a to-do list application. At a specific time, your application will display notifications to the user, reminding them of some future tasks. This scenario is a perfect example of the use of local notifications. Another good use of a local notification is that of a location application. The user may be running your application in the background, and when the application detects that the user is in the vicinity of a certain location, it can display a notification.

The following example illustrates the building blocks that you need to have in place in order to create an application that uses local notifications.

TRY IT OUT: Creating Local Notifications

codefile LocalNotification.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it LocalNotification. You need to use the project name (LocalNotification) as the Class Prefix and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Select the LocalNotificationViewController.xib file to edit it in Interface Builder.

3. Populate the View window with the following views (see Figure 21-6):

FIGURE 21-6

[image: image]

	Label (name it Enter notification message)

	Text Field

	Two Round Rect Button (name them Set and Cancel all notifications)

4. In the LocalNotificationViewController.h file, add the following bold statements:

#import <UIKit/UIKit.h>

@interface LocalNotificationViewController : UIViewController
{
 IBOutlet UITextField *message;
}

@property (nonatomic, retain) UITextField *message;

-(IBAction) btnSet:(id) sender;
-(IBAction) btnCancelAll:(id) sender;
@end

5. Back in Interface Builder, perform the following actions:

	Control-click the File’s Owner item and drag and drop it over the Text Field. Select message.

	Control-click the Set button and drag and drop it over the File’s Owner item. Select btnSet:.

	Control-click the Cancel All Notifications button and drag and drop it over the File’s Owner item. Select btnCancelAll:.

6. In the LocalNotificationViewController.m file, add the following bold statements:

#import "LocalNotificationViewController.h"

@implementation LocalNotificationViewController

@synthesize message;

-(IBAction) btnSet:(id) sender {
 UILocalNotification *localNotification =
 [[UILocalNotification alloc] init];

 //---set the notification to go off in 10 seconds time---
 localNotification.fireDate =
 [[NSDate alloc] initWithTimeIntervalSinceNow:10];

 //---the message to display for the alert---
 localNotification.alertBody = message.text;

 localNotification.applicationIconBadgeNumber = 1;

 //---uses the default sound---
 localNotification.soundName = UILocalNotificationDefaultSoundName;

 //---title for the button to display---
 localNotification.alertAction = @"View Details";

 //---schedule the notification---
 [[UIApplication sharedApplication]
 scheduleLocalNotification:localNotification];

 [localNotification release];
}

-(IBAction) btnCancelAll:(id) sender {
 //---cancel all notifications---
 [[UIApplication sharedApplication] cancelAllLocalNotifications];
}

- (void)dealloc {
 [message release];
 [super dealloc];
}

7. In the LocalNotificationAppDelegate.m file, add the following bold statements:

#import "LocalNotificationAppDelegate.h"

#import "LocalNotificationViewController.h"

@implementation LocalNotificationAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (void) application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Inside application:didReceiveLocalNotification:"
 message:notification.alertBody
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

 UILocalNotification *localNotification =
 [launchOptions objectForKey:
 UIApplicationLaunchOptionsLocalNotificationKey];

 if (localNotification) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Inside application:didFinishLaunchingWithOptions:"
 message:localNotification.alertBody
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[LocalNotificationViewController alloc]
 initWithNibName:@"LocalNotificationViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

8. Press Command-R to test the application on the iPhone Simulator.

9. Enter the message Time’s up! and click the Set button to set the local notification to fire in ten seconds (see Figure 21-7). Exit the application immediately by pressing the Home button. The application will go into the background.

FIGURE 21-7

[image: image]

10. Ten seconds later, the notification will appear (see Figure 21-8). If you click the View Details button, the application will return to the foreground. The alert view (see Figure 21-09) shows that the application:didReceiveLocalNotification: event in the application delegate was fired.

FIGURE 21-8

[image: image]

FIGURE 21-9

[image: image]

11. Stop the project in Xcode and then go to the iPhone Simulator and launch the project directly by clicking on the icon. Enter a notification message again and click the Set button again. This time, press the Home button to exit the application and then double-click the Home button and terminate the application so that it does not run in the background anymore.

12. Ten seconds later, the notification will appear again. If you click the View Details button, the application will return to the foreground. This time, the alert view shows that the application:didFinishLaunchingWithOptions: event in the application delegate was fired instead (see Figure 21-10).

FIGURE 21-10

[image: image]

How It Works

Creating a local notification using the UILocalNotification class is very straightforward:

 UILocalNotification *localNotification =
 [[UILocalNotification alloc] init];

Once you have obtained an instance of the UILocalNotification class, you need to configure the object with various information, such as the amount of time after which the notification will fire, the message to display, the badge number to display for your application icon, the sound to play, as well as the caption of the button to display:

 //---set the notification to go off in 10 seconds time---
 localNotification.fireDate =
 [[NSDate alloc] initWithTimeIntervalSinceNow:10];

 //---the message to display for the alert---
 localNotification.alertBody = message.text;

 localNotification.applicationIconBadgeNumber = 1;

 //---uses the default sound---
 localNotification.soundName = UILocalNotificationDefaultSoundName;

 //---title for the button to display---
 localNotification.alertAction = @"View Details";

In the preceding code, you use the fireDate property to set the local notification to fire in ten seconds. The alertBody property sets the message to display. The applicationIconBadgeNumber property displays a badge number next to the application’s icon (this badge number is displayed when the local notification fires). The soundName property enables you to specify the filename of a sound resource that is bundled with your application. If you want to play the system’s default sound, use the UILocalNotificationDefaultSoundName constant. Finally, the alertAction property enables you to set the button caption of the notification (see Figure 21-11).

FIGURE 21-11

[image: image]

To schedule a future local notification, use the scheduleLocalNotification: method of the UIApplication class:

 //---schedule the notification---
 [[UIApplication sharedApplication]
 scheduleLocalNotification:localNotification];

If you want to display the notification instantly, use the presentLocalNotificationNow: method instead:

 //---display the notification now---
 [[UIApplication sharedApplication]
 presentLocalNotificationNow:localNotification];

This is very useful for cases in which your application is executing in the background and you want to display a notification to draw the user’s attention.

When the notification is displayed (it will be displayed only if the application is not in the foreground), the user has two options: Close the notification or view the application that generated the notification. When the user views the notification, the application:didReceiveLocalNotification: method in the application’s delegate is called:

- (void) application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Inside
 application:didReceiveLocalNotification:"
 message:notification.alertBody
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

 [alert show];
 [alert release];
}

Here, you can simply print out the details of the notification through the notification parameter.

Note that the application:didReceiveLocalNotification: method is also called when the application is running and the local notification is fired. In this case, the local notification will not appear.

If the application is not running when the local notification occurs, viewing the application will invoke the application:didFinishLaunchingWithOptions: method instead:

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

 UILocalNotification *localNotification =
 [launchOptions objectForKey:
 UIApplicationLaunchOptionsLocalNotificationKey];

 if (localNotification) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Inside application:didFinishLaunchingWithOptions:"
 message:localNotification.alertBody
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[LocalNotificationViewController alloc]
 initWithNibName:@"LocalNotificationViewController" bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

To obtain more information about the notification, use the launchOptions parameter, by querying the details using the UIApplicationLaunchOptionsLocalNotificationKey constant.

To cancel all scheduled notifications, you can call the cancelAllLocalNotifications method of the UIApplication class:

 //---cancel all notifications---
 [[UIApplication sharedApplication] cancelAllLocalNotifications];

NOTIFYING OTHER OBJECTS USING THE NSNOTIFICATION CLASS

In this book, you have seen that all the delegate methods of objects are defined in the same class as the object. For example, one common class that you have seen is the UIAlertView class. When you have more than one button displayed in a UIAlertView object, you need to implement the alertView:clickedButtonAtIndex: method to handle the clicking of the buttons. This method can be defined with the same class it is used in (for example, in a View Controller class), or it can be declared separately in another class. However, if the method is defined in another class, how would you notify the View Controller when a button is clicked? This is the challenge: How do different classes communicate with one another? The following Try It Out shows you one way to do this using the NSNotification class.

TRY IT OUT: Using Notifications

codefile Notifications.zip available for download at Wrox.com

1. Using Xcode, create a new Single View Application (iPhone) project and name it Notifications. You need to set the class prefix to the project name and ensure that you have the Use Automatic Reference Counting option unchecked.

2. Add a new Objective-C Class file to the project and name it AlertViewDelegates.m.

3. Add the following lines in bold to the AlertViewDelegates.h file:

#import <Foundation/Foundation.h>

@interface AlertViewDelegates : NSObject
<UIAlertViewDelegate>

@end

4. Add the following lines in bold to the AlertViewDelegates.m file:

#import "AlertViewDelegates.h"

@implementation AlertViewDelegates

- (id)init
{
 self = [super init];
 if (self) {
 // Initialization code here.
 }

 return self;
}

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog(@"Button %d was clicked.", buttonIndex);
 NSDictionary *dict =
 [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSString stringWithFormat:@"%d", buttonIndex],
 @"buttonIndex", nil];

 //---send a notification to whoever is listening to tell
 // them that the user response has been handled---
 NSNotification *notification =
 [NSNotification notificationWithName:@"UserResponded"
 object:nil
 userInfo:dict] ;
 [[NSNotificationCenter defaultCenter] postNotification:notification];
 [dict release];
}

@end

5. Add the following lines in bold to the NotificationsViewController.h file:

#import <UIKit/UIKit.h>
#import "AlertViewDelegates.h"

@interface NotificationsViewController : UIViewController
{
 AlertViewDelegates *del;
}

@end

6. Add the following lines in bold to the NotificationsViewController.m file:

#import "NotificationsViewController.h"

@implementation NotificationsViewController

- (void)viewDidLoad
{
 del = [[AlertViewDelegates alloc] init];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Hello World"
 message:@"Hello, Objective-C"
 delegate:del
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Cancel", nil];
 [alert show];
 [alert release];

 //---notification to listen for the completion of user's response---
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(processNotification:)
 name:@"UserResponded"
 object:nil];
 [super viewDidLoad];
}

//---called when there is a notification; a callback function---
-(void) processNotification:(NSNotification *) notification {
 NSDictionary *dict = [notification userInfo];
 NSLog(@"In processNotification:, Button clicked: %@", [dict
 objectForKey:@"buttonIndex"])
}

-(void) dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [del release];
}

7. Press Command-R to run the application. Click either the OK button or the Cancel button (see Figure 21-12).

FIGURE 21-12

[image: image]

8. Observe the output in the output window, as shown in Figure 21-13.

FIGURE 21-13

[image: image]

How It Works

You first create a class called AlertViewDelegates to contain all the methods that are related to the UIAlertView class. In particular, you implement the alertView:clickedButtonAtIndex: method:

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog(@"Button %d was clicked.", buttonIndex);
 NSDictionary *dict =
 [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSString stringWithFormat:@"%d", buttonIndex],
 @"buttonIndex", nil];

 //---send a notification to whoever is listening to tell
 // them that the user response has been handled---
 NSNotification *notification =
 [NSNotification notificationWithName:@"UserResponded"
 object:nil
 userInfo:dict] ;
 [[NSNotificationCenter defaultCenter] postNotification:notification];
 [dict release];
}

Within this method, you create an NSDictionary object and use it to store the index of the button that was clicked. You then create a notification using the NSNotification class, and assign the dictionary object to this notification object. Essentially, you are broadcasting a notification to other objects listening for this notification, named UserResponded.

In the View Controller, you instantiate the AlertViewDelegates class and pass it as the delegate of the UIAlertView object:

 del = [[AlertViewDelegates alloc] init];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Hello World"
 message:@"Hello, Objective-C"
 delegate:del
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Cancel", nil];
 [alert show];
 [alert release];

You then listen for a notification named UserResponded:

 //---notification to listen for the completion of user's response---
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(processNotification:)
 name:@"UserResponded"
 object:nil];

When a notification is received, the processNotification: method will be called:

//---called when there is a notification; a callback function---
-(void) processNotification:(NSNotification *) notification {
 NSDictionary *dict = [notification userInfo];
 NSLog(@"In processNotification:, Button clicked: %@", [dict
 objectForKey:@"buttonIndex"]);
}

Here, you extract the NSDictionary object that is attached to the notification and print out the value of the button index.

Finally, in the dealloc method of your view controller, remember to stop listening for the notification:

-(void) dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [del release];
}

SUMMARY

In this chapter, you have seen how background execution works and how you can utilize it to make your applications more useful. You have also seen the other types of notifications that you can utilize in your applications — scheduling local notifications though the operating system, and using the NSNotification class for notifying objects within your application.

Combining all the different concepts discussed in this chapter will enable you to write compelling iOS applications.

EXERCISES

1. Name the three types of applications that are allowed to execute in the background.

2. Which devices support multitasking?

3. For the CLLocationManager class, when should you use the startUpdatingLocation and startMonitoringSignificantLocationChanges methods? Why?

4. What is the difference between Apple Push Notification service and local notifications?

Answers to the exercises can be found in Appendix D.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Opting out of background execution
	Use the UIApplicationExitsOnSuspend key.

	Tracking locations in the background
	Use the UIBackgroundModes key.

	Monitoring significant location changes
	Use the startMonitoringSignificantLocationChanges method.

	Creating local notifications
	Use the UILocalNotification class.

	Scheduling a local notification
	[[UIApplication sharedApplication] scheduleLocalNotification:localNotification];

	Presenting a local notification
	[[UIApplication sharedApplication] presentLocalNotificationNow:localNotification];

	Notifying other objects when an event occurs
	Use the NSNotification and NSNotificationCenter classes.

Appendix A

Testing on an Actual Device

Although the iOS Simulator is a very handy tool that enables you to test your iPhone/iPad applications without needing an actual device, nothing beats testing on a real device. This is especially true when you are ready to roll out your application to the world — you must ensure that it works correctly on real devices. In addition, if your application requires access to hardware features on an iPhone, iPod touch, or iPad, such as the accelerometer, gyroscope, and GPS, you need to test it on a real device — the iPhone Simulator is simply not adequate.

This appendix walks through the steps you need to take to test your applications on a real device, be it the iPhone, iPod touch, or iPad. In addition, you will also learn how to prepare your application for submission to the App Store, as well as how to distribute your application using the Ad Hoc distribution method.

SIGNING UP FOR THE IOS DEVELOPER PROGRAM

The first step toward testing your application on a real device is to sign up for the iOS Developer Program at http://developer.apple.com/programs/ios/. Two programs are available: Standard (Individual) and Enterprise. For most developers who want to release applications on the App Store, the Standard program, which costs $99, is sufficient. Check out http://developer.apple.com/programs/start/standard/ to learn more about the differences between the Standard and Enterprise programs.

If you just want to test your application on your actual iPhone/iPod touch, sign up for the Standard program.

OBTAINING THE UDID OF YOUR DEVICE

To test your application on your device, you need to prepare your Mac and your device. The following sections walk you through the necessary steps, from obtaining your certificate to deploying your application onto the device.

First, you need to obtain the 40-character identifier that uniquely identifies your device. This identifier is known as the UDID — Unique Device Identifier. Every device sold by Apple has a unique UDID. To do so, connect your device to your Mac and start Xcode. Choose Window ⇒ Organizer to launch the Organizer application. Figure A-1 shows the Organizer application displaying the identifier of my iPad. Copy the identifier and save it somewhere; you will need it later.

FIGURE A-1

[image: image]

If you are connecting your device to the Organizer for the first time, click the Use for Development button so that Organizer can prepare it for deployment. Essentially, you will be prompted to enter your credentials for login to the iPhone Dev Center (see Figure A-2). Once you have entered your username and password, Organizer will automatically register your device’s UDID with the iOS Provisioning Portal.

FIGURE A-2

[image: image]

If for some reason you are not prompted to enter your credentials, you can also manually register your device’s UDID by right-clicking on the device name (see Figure A-3) and selecting Add Device to Provisioning Portal.

FIGURE A-3

[image: image]

LOGGING IN TO THE IOS PROVISIONING PORTAL

Once you have signed up for the iOS Developer Program, you can log in to the iOS Dev Center website located at http://developer.apple.com/devcenter/ios/index.action. Figure A-4 shows the page displayed after you have logged in to the iOS Dev Center.

FIGURE A-4

[image: image]

On the right side of the page is a section named iOS Developer Program. The first item listed under this section is iOS Provisioning Portal. This portal contains all the details about preparing your Mac and devices for testing and deployment. Click the iOS Provisioning Portal item to display the window shown in Figure A-5.

FIGURE A-5

[image: image]

The pane on the left contains several links to pages where you can submit various information required to prepare your Mac and devices for testing. The center pane contains the welcome message and a Launch Assistant button. If you are using this page for the first time, the Launch Assistant provides an easy-to-follow series of guided instructions for testing your applications on your devices. However, to help you better understand the details of the process, the following sections describe each step by walking through the various links displayed on the left side of the page.

GENERATING A CERTIFICATE

The first step toward testing your application on a real device is to obtain a digital certificate from Apple so that Xcode can use it to code-sign your application. Any applications that are run on your devices must be code-signed. For testing purposes, you need a development certificate. Once you are ready to distribute your application (such as through the App Store), you then need a distribution certificate (discussed later in this Appendix).

To request a development certificate from Apple, you must generate a certificate signing request (CSR). You can do this using the Keychain Access application located in the Applications/Utilities/folder on your Mac.

In the Keychain Access application, choose Keychain Access ⇒ Certificate Assistant, and select Request a Certificate From a Certificate Authority (see Figure A-6).

FIGURE A-6

[image: image]

In the Certificate Assistant dialog (see Figure A-7), enter your email address and name, check the Saved to disk option, and click Continue.

FIGURE A-7

[image: image]

You will be asked to save the request to a file. Use the default name suggested and click Save (see Figure A-8).

FIGURE A-8

[image: image]

On the iOS Provisioning Portal page, click the Certificates item displayed on the left (see Figure A-9). Four tabs are displayed on the right side of the page: Development, Distribution, History, and How To.

FIGURE A-9

[image: image]

In the Development tab, click the Request Certificate button to request a development certificate from Apple. A detailed list of instructions will appear, telling you to generate a certificate request using the Keychain Access application (see Figure A-10). As you have already performed this step earlier in this Appendix, click the Choose file button to upload the certificate request file to Apple. After the file is selected, click Submit to send it to Apple.

FIGURE A-10

[image: image]

The development certificate will now have a status of Pending Issuance. Simply refresh the page or click the Development tab once more and your development certificate should now be ready (see Figure A-11).

FIGURE A-11

[image: image]

Click the Download button to download the development certificate. When it is downloaded to your Mac, double-click the developer_identity.cer file. When prompted, click OK. The certificate will now be installed in the Keychain Access application, which you can verify (see Figure A-12).

FIGURE A-12

[image: image]

REGISTERING YOUR DEVICES

The next step is to register your devices with the iOS Provisioning Portal so that you can later associate them with the provisioning profiles (more on this shortly). As mentioned in the beginning of this appendix, when you connect your device to Organizer for the first time, Organizer will attempt to register your device with the iOS Provisioning Portal automatically. However, if you skipped that step, or you want to register additional devices manually, you need to register them manually.

Back on the iOS Provisioning Portal page, click the Devices item displayed on the left side of the page (see Figure A-13). On the right you will see options to both add devices and upload a list of devices to register.

FIGURE A-13

[image: image]

Click the Add Devices button to register one or more devices. Give your device a name and enter its Device ID (see Figure A-14). Recall that you obtained the Device ID (UDID) of your device earlier, in the “Obtaining the UDID of Your Device” section. To register additional devices, click the plus (+) button. Then click Submit.

FIGURE A-14

[image: image]

[image: image]
NOTE For the Standard Program, you can register up to 100 devices for testing. All added devices count toward your 100-device limit, whether you use them or not. In other words, if you register five devices and then lose them in the bar, you can register only 95 more devices — the slots taken up by the other five devices cannot be recovered. You can reset the list only when you renew your membership annually.

CREATING AN APPLICATION ID

The next step of the process is to create an Application ID (App ID) that you use to identify your application. An App ID is a series of characters used to uniquely identify an application (or applications) on your iOS device. An App ID is represented in the following format: <Bundle Seed ID>.<Bundle Identifier>.

On the iOS Provisioning Portal page, click the App IDs item on the left (see Figure A-15). Click the New App ID button to create a new App ID. On a new page, you enter the details for the App ID (see Figure A-16).

FIGURE A-15

[image: image]

FIGURE A-16

[image: image]

Enter a description for the App ID you are creating. For this example, it is MyiOS5AppID. This name will be used to identify your App ID. Leave the Bundle Seed ID option as Use the Team ID. For the Bundle Identifier, you have two options:

	Give it a unique identifier, e.g., com.yourcompany.appname

	Use a wildcard character (*) as the trailing character, e.g., com.yourcompany.*, or simply use *

Using the wildcard character enables you to use a single App ID for all your applications, whereas if you use a unique identifier for the Bundle Identifier, you will need a unique App ID for each application.

In general, it is easier to use the wildcard character, as you can use one App ID for all your applications. Here, I used the * for the Bundle Identifier. When you compile your application, this wildcard will be substituted with the Bundle Identifier specified in the info.plist file in your Xcode.

CREATING A PROVISIONING PROFILE

In order for your application to be able to execute on a device, the device must be provisioned with a file known as a provisioning profile. A provisioning profile contains one or more device IDs, and it must be installed on all the devices to which you want to deploy your applications.

On the iOS Provisioning Portal page, click the Provisioning item displayed on the left (see Figure A-17). Click the New Profile button to create a new provisioning profile.

FIGURE A-17

[image: image]

Under the Development tab, shown in Figure A-18, provide a name for your provisioning profile, check the certificate name, select the App ID created in the previous section, and then check all the device names that you want to test on. Click Submit.

FIGURE A-18

[image: image]

The provisioning profile that you have created will now be pending issuance, as shown in the Status field in Figure A-19.

FIGURE A-19

[image: image]

Refresh the page or click the Development tab again and the provisioning profile should now be ready for download (see Figure A-20). Download the generated provisioning profile onto your Mac by clicking the Download button.

FIGURE A-20

[image: image]

Drag and drop the downloaded provisioning profile onto the Xcode icon that is on the Dock (see Figure A-21). Alternatively, double-click the provisioning profile.

FIGURE A-21

[image: image]

This installs the provisioning profile onto the Organizer application (part of Xcode). It also installs the provisioning profile onto your connected iPhone, iPod touch, or iPad device. To verify that the provisioning profile is indeed installed on your device, select the device that is currently connected to your Mac and view the Provisioning Profiles item (see Figure A-22).

FIGURE A-22

[image: image]

[image: image]
NOTE If you don’t see the provisioning profile, simply disconnect your device and connect again. If, after reconnecting the device, the provisioning profile is not there, click the plus (+) button to manually add the provisioning profile to your device.

You are now almost ready to deploy your iPhone application onto your iPhone, iPod touch, or iPad. In Xcode, select the project name. Then, in the Build Settings page, go to the Code Signing Identity section. Under the Debug/Any iOS SDK key, select the GeneraliOS5DeviceProfile profile that you have just installed (see Figure A-23). Select the device to deploy to and then press Command-R.

FIGURE A-23

[image: image]

The application should now be deployed onto the device.

UNDERSTANDING APPLICATION ID AND THE WILDCARD

Earlier, you learned that you can use the wildcard character for your App ID. If you don’t want to use the wildcard character, you need to perform the following additional step.

Figure A-24 assumes that you have an App ID called MyHelloWorldAppID. Observe that its Bundle Identifier is net.learn2develop.MyHelloWorld, instead of the wildcard (*).

FIGURE A-24

[image: image]

In Figure A-25, the provisioning profile HelloWorldAppProfile is associated with this App ID.

FIGURE A-25

[image: image]

If you were to install the HelloWorldAppProfile provisioning profile onto your device, you would have to modify the Bundle Identifier in your Xcode project to match the Bundle Identifier (net.learn2 develop.MyHelloWorld) specified in the MyHelloWorldAppID App ID. To do so, select the project name in Xcode and click the Info tab. Set the Bundle Identifier key to net.learn2develop.MyHelloWorld (see Figure A-26). This value must match the value that you have specified in your App ID.

FIGURE A-26

[image: image]

In the Build Settings tab, under the Code Signing Identity section, select the HelloWorldAppProfile profile (see Figure A-27).

FIGURE A-27

[image: image]

You will now be able to deploy your application using this provisioning profile. In short, the Bundle Identifier in your project must match the one that you have specified in your App ID.

PREPARING FOR APP STORE SUBMISSION

Preparing for submission to the App Store is very similar to preparing your application for testing on your device. Instead of using a development certificate, you use a distribution certificate. Also, instead of using a development provisioning profile, you use a distribution provisioning profile.

To create a distribution certificate, repeat the same process outlined earlier for creating the development certificate. The distribution certificate is created in the Distribution tab (see Figure A-28).

FIGURE A-28

[image: image]

For the distribution provisioning profile, select Provisioning from the panel on the left, and then click the Distribution tab (see Figure A-29). Click the New Profile button to create a new distribution provisioning profile.

FIGURE A-29

[image: image]

You need to select the distribution method. In this case, select App Store, as shown in Figure A-30. (You would select Ad Hoc for ad hoc distribution, discussed in the next section), name the distribution provisioning profile, and select the App ID. Note that there is no need to select the devices because the application will be hosted on the App Store and available to all users (you need to select the devices if you choose the Ad Hoc distribution method). Here, the profile name is called DLSDistributionProfile.

FIGURE A-30

[image: image]

Once the distribution provisioning profile is created, download it and install it in Xcode.

To prepare your application for submission, follow these steps:

1. Go to Xcode and set the Release/Any iOS SDK key to the DLSDistributionProfile profile (see Figure A-31).

FIGURE A-31

[image: image]

2. In Xcode, select the Edit Scheme. . . item as shown in Figure A-32.

FIGURE A-32

[image: image]

3. Select the Archive scheme and make sure you select the iOS Device destination (see Figure A-33). Click OK.

FIGURE A-33

[image: image]

4. Select Product ⇒ Archive (see Figure A-34).

FIGURE A-34

[image: image]

The Organizer will now appear (see Figure A-35), and the HelloWorld executable is created. In this page, you can validate your application against the App Store, share the executable as an .ipa file, and submit the application to the App Store. Before you can validate or submit your application to the App Store, however, you need to create an entry in iTunes Connect. Once that is done, you can come back to the page and validate and then submit your application.

FIGURE A-35

[image: image]

For submission to the App Store, you use the iTunes Connect page shown earlier on the right side of the iOS Dev Center (refer to Figure A-4).

Inside iTunes Connect, you can find detailed instructions for submitting your application to the App Store (see Figure A-36). Click the Manage Your Applications link to create an entry for the application you are submitting and follow the steps. Once that is done, you can validate and submit your application to the App Store.

FIGURE A-36

[image: image]

USING AD HOC DISTRIBUTION

While distributing your application through the App Store enables you to distribute it to anyone with access to the App Store, you might want to limit the distribution of your application to a particular group of users. For example, you may be developing an application for your company’s in-house use, in which case only the employees should install it. In such a case, you can use the Ad Hoc distribution method to distribute your application.

To use Ad Hoc distribution, execute the following steps:

1. You need to create an Ad Hoc distribution provisioning profile, as described in the previous section. The Ad Hoc distribution provisioning profile must contain the UDIDs of all the devices on which you want to install your application. Depending on the membership that you have enrolled in, there is a limit on how many devices you can install on (a maximum of 100 for the standard program).

2. Set the Release/Any iOS SDK key in your project to the Ad Hoc distribution provisioning profile.

3. Export the application as an .ipa file by clicking the Share button in Organizer (refer to Figure A-35).

4. Select the Identity of the .ipa file to the Ad Hoc distribution provisioning profile (see Figure A-37).

FIGURE A-37

[image: image]

5. Once the .ipa file is created, drag and drop it together with the Ad Hoc distribution provisioning profile onto the Library section in iTunes (see Figure A-38).

FIGURE A-38

[image: image]

6. In iTunes, connect your iOS device. Under the Apps tab, check the Sync Apps check box (see Figure A-39). Ensure that the application you are deploying is also checked.

FIGURE A-39

[image: image]

7. That’s it! Click the Sync button and the application will be installed on the device.

Appendix B

Getting Around in Xcode

Xcode is the integrated development environment (IDE) that Apple uses for developing Mac OS X, iPhone, and iPad applications. It is a suite of applications that includes a set of compilers, documentation, and Interface Builder.

Using Xcode, you can build your iPhone and iPad applications from the comfort of an intelligent text editor, coupled with many different tools to help debug your applications. If you are new to Xcode, this appendix can serve as a useful guide to get you started quickly.

At the time of writing, the version of Xcode available is version 4.2. It is available as a free download from the Mac App Store.

LAUNCHING XCODE

The easiest way to launch Xcode is to type Xcode in the textbox of Spotlight. Alternatively, you can launch Xcode by navigating to the Developer/Applications/ folder and double-clicking the Xcode icon.

[image: image]
NOTE For convenience, you can also drag the Xcode icon to the Dock so that in the future you can launch it directly from there.

Project Types Supported

Xcode supports the building of iPhone, iPad, and Mac OS X applications. When you create a new project in Xcode (which you do by choosing File ⇒ New ⇒ New Project . . .), the dialog shown in Figure B-1 appears.

FIGURE B-1

[image: image]

As shown on the left, you can create two main project types: iOS and Mac OS X. Under the iOS category are the Application, Framework & Library, and Other items.

If you select the Application item, you will see all the different project types you can create:

	Master-Detail Application

	OpenGL Game

	Page-Based Application

	Single View Application

	Tabbed Application

	Utility Application

	Empty Application

Depending on the project type you select, you have the option to use either Core Data for storage, or Storyboard for transitioning of View windows.

[image: image]
NOTE Core Data is part of the Cocoa API that was first introduced with the iPhone SDK 3.0. It is basically a framework for manipulating data without worrying about the details of storage and retrieval. Storyboard is a new feature in iOS 5 that helps you to manage the transitioning of View Controllers in your application. A discussion of Core Data and Storyboard is beyond the scope of this book.

Select the project type you want to create and click the Next button. You will see the options for your project, as shown in Figure B-2.

FIGURE B-2

[image: image]

You will be asked to fill in several pieces of information for your project:

	Product Name — Name of your project

	Company Identifier — Use the reverse domain name of your organization for this.

	Bundle Identifier — Concatenation of the product name and company identifier

	Class Prefix — Name to be used to prefix all your project filenames. For example, if you set this to be the same as the product name, then all the files in your project will be prefixed with this name.

	Device Family — Select either iPhone, iPad, or Universal.

	Additional options — You can also enable the features for Storyboard, Automatic Reference Counting (ARC), and Unit Tests for your project.

[image: image]
NOTE All the projects in this book are created with ARC turned off.

When the project is created, Xcode displays all the files that make up the project (see Figure B-3).

FIGURE B-3

[image: image]

To edit a code file, click the filename of a file to open the appropriate editor. For example, if you click an .h or .m file, the code editor in which you can edit your source code is displayed (see Figure B-4).

FIGURE B-4

[image: image]

Click a .plist file, and the XML Property List editor launches (see Figure B-5).

FIGURE B-5

[image: image]

Adding Frameworks

In iOS programming, you often need to add frameworks to your project in order to make use of certain functionalities in your application. Frameworks are basically class libraries providing specific functionalities. For example, if you need to play video within your application, you need to add the MediaPlayer framework to your project before you can use the specific classes for media playback.

To add a framework to your project, execute the following steps:

1. Double-click the project name in Xcode.

2. Select the Build Phases tab and click the “+” button displayed under the Link Binary With Libraries section (see Figure B-6).

FIGURE B-6

[image: image]

3. Select the framework you need to use (see Figure B-7) to add it to the project and click Add.

FIGURE B-7

[image: image]

The framework will now be added to the project. It is good practice to move the framework that you have just added into the Frameworks folder.

Code Sense

One of the most common features of a modern IDE is code completion, whereby the IDE automatically tries to complete the statement you are typing based on the current context. In Xcode, the code-completion feature is known as Code Sense. For example, if you type the letters uial in a method, such as the viewDidLoad() method, Code Sense automatically suggests the UIAlertView class, as shown in Figure B-8 (note that the suggested characters are displayed in gray). In addition, it displays a popup containing a list of matching method names.

FIGURE B-8

[image: image]

To accept the suggested word, simply press the Tab or Enter key, or Ctrl-/.

You can also invoke the Code Sense feature by pressing the Esc key. Xcode automatically recognizes the code you are typing and inserts the relevant parameters’ placeholders. For example, if you invoke the methods of an object, Xcode inserts the placeholders of the various parameters. Figure B-9 shows an example of the placeholders inserted for the UIAlertView object after you type “i.” To accept the placeholders for the various parameters, press the Tab key (you can also press the Enter key, or Ctrl-/). Press Ctrl-/ to move to each parameter placeholder, and then enter a value. Alternatively, click each placeholder and type over it.

FIGURE B-9

[image: image]

Running the Application

To execute an application, you first select the scheme to use. You also choose whether you want to test it on a real device or use the included iOS Simulator. You do so by selecting from the Scheme list (see Figure B-10).

FIGURE B-10

[image: image]

To run the application, press Command-R, and Xcode builds and deploys the application onto the selected device or Simulator.

DEBUGGING YOUR APPLICATIONS

Debugging your iOS applications is an essential part of your development effort. Xcode includes debugger utilities that help you trace and examine your code as you execute your application. The following sections describe some of the tips and tricks that you can employ when developing your iOS applications.

Errors

When you try to run your application, Xcode first tries to build the project before it can deploy the application onto the real device or Simulator. Any syntax errors that Xcode detects are immediately highlighted with the exclamation icons. Figure B-11 shows an Xcode-highlighted syntax error. The error within the code block is the missing brace symbol ([) for the [[UIAlertView alloc] statement.

FIGURE B-11

[image: image]

You can also click the error icon to view the error and let Xcode suggest a fix (see Figure B-12).

FIGURE B-12

[image: image]

Warnings

Because Objective-C is a case-sensitive language, a mistake often made by beginners is mixing up the capitalization for some of the method names. Consider the block of code shown in Figure B-13.

FIGURE B-13

[image: image]

Can you spot the error? Syntactically, the statement is correct. However, one of the parameters appears with the wrong case: initwithTitle: was misspelled — it should be initWithTitle: (note the capital “W”). When you compile the program, Xcode will not flag this code as an error; instead, it issues a warning message (as shown in the figure).

Pay special attention to a warning message in Xcode, and verify that the method name is spelled correctly, including case. Failing to do so may result in a runtime exception.

When a runtime exception occurs, the best way to troubleshoot the error is to open the output window by pressing Shift-Command-C. The output window displays all the debugging information that is printed when Xcode debugs your application. This window usually contains the clue that helps you determine exactly what went wrong behind the scenes. Figure B-14 shows the content of the Debugger Console window when an exception occurs. To determine the cause of the crash, scroll to the bottom of the window and look for the section displayed in bold. In this case, note the reason stated — the problem is with the UIAlertView object.

FIGURE B-14

[image: image]

Setting Breakpoints

Setting breakpoints in your code is helpful when debugging your application. Breakpoints enable you to execute your code line-by-line and examine the values of variables so you can check that they perform as expected.

In Xcode, you set a breakpoint by clicking the left column of the code editor — a breakpoint arrow will appear (see Figure B-15).

[image: image]
NOTE You can toggle the state of a breakpoint by clicking it to enable or disable it. Breakpoints displayed in dark blue are enabled; those displayed in light blue are disabled. To remove a breakpoint, click on it and drag it out of its resting place. It will vanish in a puff of smoke.

FIGURE B-15

[image: image]

After you have set breakpoints in your application, press Command-R (just as you would to run your application) to debug it. The code will stop at your breakpoints.

When the application reaches the breakpoint you have set, Xcode indicates the current line of execution with a green arrow (see Figure B-16).

FIGURE B-16

[image: image]

At this juncture, you can do several things:

	Step Over (F6) — Execute all the statements in a function or method and continue to the next statement.

	Step Into (F7) — Step into the statements in a function/method.

	Step Out (F8) — Finish executing all the statements in a function or method and continue to the next statement after the function call.

If you want to resume the execution of your application, press Option-Command-Y.

Using NSLog

In addition to setting breakpoints to trace the flow of your application, you can use the NSLog() macro to print debugging messages to the output window. Figure B-17 shows the output in the Output window (press Shift-Command-C to display it) when there is a change in orientation of the device/Simulator.

FIGURE B-17

[image: image]

Analyzing Your Code

A very useful feature of Xcode is its ability to analyze your code for potential memory leaks and logic faults. Beginning with Xcode 3.2, Apple has integrated the Clang Static Analyzer directly into Xcode. To use the Analyzer, press Option-Command-B. Figure B-18 (top) shows that Analyzer has detected a potential memory leak in the UIAlertView statement.

FIGURE B-18

[image: image]

Clicking on the blue arrow reveals the source of the potential leak. In this case, I have forgotten to release the alert object.

Documentation

During the course of your development, you often need to check the various methods, classes, and objects used in the iOS SDK. The best way to check them out is to refer to the documentation. Xcode enables you to quickly and easily browse the definitions of classes, properties, and methods. To view the help documentation for an item, simply press the Option key. The cursor changes to cross-hairs. Double-click the item you want to check out, and a small window showing a summary of the selected item appears (see Figure B-19).

FIGURE B-19

[image: image]

Clicking the book icon (on the top-right corner of the help dialog) displays the full Developer Documentation window (see Figure B-20).

FIGURE B-20

[image: image]

INTERFACE BUILDER

Interface Builder is one of the tools included with the iOS SDK. It is a visual design aid that you can use to build the user interface of your iOS applications. Although it is not strictly required for the development of your iOS applications, Interface Builder plays an integral role in learning about iOS application development. This section covers some of the important features of Interface Builder.

.XIB WINDOW

In Xcode 4, Apple has integrated Interface Builder right into the Xcode IDE. You no longer need to launch Interface Builder as a separate application. To use Interface Builder, simply select any of the .xib files in your Xcode project. For example, if you have created a Single View Application project, there will be one .xib file in the project. Selecting it automatically launches Interface Builder.

When Interface Builder is launched, you should see something like Figure B-21.

FIGURE B-21

[image: image]

Within this window are several items; and depending on what you have selected, you should see some of the following:

	File’s Owner

	First Responder

	View, Table View, etc.

By default, the three items are displayed in icon mode; but you can also switch to display in document outline mode, where you can view some of the items in more detail. For example, Figure B-22 shows that when viewed in document outline mode, the View item displays a hierarchy of views contained within the View window.

FIGURE B-22

[image: image]

DESIGNING THE VIEW

To design the user interface of your application, you typically select the .xib file to edit it using Interface Builder. To populate your View window with views, you drag and drop objects listed in the Library window (see the “Library” section for more information on the Library window). Figure B-23 shows some views being dropped and positioned onto the View window.

FIGURE B-23

[image: image]

As you position a view on the View window, gridlines appear to guide you (see Figure B-24).

FIGURE B-24

[image: image]

INTERFACE BUILDER KEYBOARD SHORTCUTS

As you add more views to the View window, you will begin to realize that you are spending a lot of time figuring out their actual sizes and locations with respect to other views. Here are two tips to make your life easier:

	To make a copy of a view on the View window, simply Option-click and drag a view.

	If a view is currently selected, pressing the Option key and then moving the mouse over the view displays that view’s size information (see the left of Figure B-25). If you move the mouse over another view, it displays the distance between the two (see the right of Figure B-25).

FIGURE B-25

[image: image]

INSPECTOR WINDOW

To customize the various attributes and properties of views, Interface Builder provides an Inspector window that is divided into four different windows:

	Attributes Inspector

	Connections Inspector

	Size Inspector

	Identity Inspector

You can invoke the Inspector window by choosing View ⇒ Utilities ⇒ Show <utility> Inspector.

The following sections discuss each of the Inspector windows in more detail.

Attributes Inspector Window

The Attributes Inspector window (see Figure B-26) is where you configure the attributes of views in Interface Builder. The window content is dynamic and varies according to what is selected in the View window.

FIGURE B-26

[image: image]

To open the Attributes Inspector window, choose View ⇒ Utilities ⇒ Show Attributes Inspector.

Connections Inspector Window

The Connections Inspector window (see Figure B-27) is where you connect the outlets and actions of your views to the View Controller in Interface Builder. Its content is dynamic and varies according to what is selected in the View window.

FIGURE B-27

[image: image]

To open the Connections Inspector window, choose View ⇒ Utilities ⇒ Show Connections Inspector.

Size Inspector Window

The Size Inspector window (see Figure B-28) is where you configure the size and positioning of views in Interface Builder.

FIGURE B-28

[image: image]

Open it by selecting View ⇒ Utilities ⇒ Show Size Inspector.

Identity Inspector Window

The Identity Inspector window (see Figure B-29) is where you configure the various properties of your selected view, such as the class controlling it.

FIGURE B-29

[image: image]

Open the Identity Inspector window by choosing View ⇒ Utilities ⇒ Show Identity Inspector.

LIBRARY

The Library (View ⇒ Utilities ⇒ Show Object Library) contains a set of views that you can use to build the user interface of your iOS application. Figure B-30 shows the Library’s set of views in two different perspectives — List view and Icon view.

FIGURE B-30

[image: image]

OUTLETS AND ACTIONS

Outlets and actions are fundamental mechanisms in iOS programming through which your code can connect to the views in your user interface (UI). When you use outlets, your code can programmatically reference the views on your UI, with actions serving as event handlers that handle the different events fired by the various views.

Although you can write code to connect actions and outlets, Interface Builder simplifies the process by enabling you to use the drag-and-drop technique.

Creating Outlets and Actions

In Xcode 4, Interface Builder further simplifies the creation of outlets and actions. To create an action in Interface Builder, first click the Assistant Editor button to open another code editor pane next to the XIB file (see Figure B-31). In the new editor, select the .h file of the View Controller representing the XIB file.

FIGURE B-31

[image: image]

Control-click the Round Rect Button and drag it onto the .h file as shown in Figure B-32.

FIGURE B-32

[image: image]

You will be prompted to create either an outlet or an action. In this case, create an action as shown in Figure B-33 and then click the Connect button.

FIGURE B-33

[image: image]

Xcode will automatically create the declaration for the action in the .h file:

#import <UIKit/UIKit.h>

@interface MyKillerAppViewController : UIViewController
- (IBAction)btnClicked:(id)sender;

@end

Xcode will also create the method stub in the .m file:

- (IBAction)btnClicked:(id)sender {
}

To create an outlet, Control-click the TextField (as shown in Figure B-34) and drag it over the .h file.

FIGURE B-34

[image: image]

Create the outlet as shown in Figure B-35 and then click the Connect button.

FIGURE B-35

[image: image]

The outlet will now be created in the .h file:

#import <UIKit/UIKit.h>

@interface MyKillerAppViewController : UIViewController
- (IBAction)btnClicked:(id)sender;

@property (retain, nonatomic) IBOutlet UITextField *txtName;

@end

In the .m file, Xcode will automatically add the @synthesize and release statements:

#import "MyKillerAppViewController.h"

@implementation MyKillerAppViewController
@synthesize txtName;

- (void)dealloc {
 [txtName release];
 [super dealloc];
}

Best of all, if you right-click on the File’s Owner item, you will see that both the outlet and the action are connected automatically (see Figure B-36).

FIGURE B-36

[image: image]

As you gain more experience with Xcode, you may find that it is much simpler to define the outlets and actions directly in the .h files of your View Controllers. The next section shows you how.

Manually Creating and Connecting Outlets and Actions

The previous section showed how Interface Builder can help create actions and outlets for you automatically. However, you may wish to define the actions and outlets yourself and then link them up manually instead. The following sections discuss the two options you have for connecting the actions and outlets to the views.

It is assumed that you have already defined the outlet and action in the View Controller as follows:

#import <UIKit/UIKit.h>

@interface MyKillerAppViewController : UIViewController

- (IBAction)btnClicked:(id)sender;

@property (retain, nonatomic) IBOutlet UITextField *txtName;

@end

Method 1

To connect an outlet, Control-click and drag the File’s Owner item to the view to which you want to connect (see Figure B-37).

FIGURE B-37

[image: image]

When you release the mouse button, a list appears where you can select the correct outlet. When defining your outlets, remember that you can specify the type of view to which your outlet is referring. When you release the mouse button, Interface Builder lists only the outlets that match the type of view you have selected. For example, if you defined myOutlet1 as UIButton and you Control-click and drag the File’s Owner item to a TextField on the View window, myOutlet1 does not appear in the list of outlets.

To connect an action, Control-click and drag the view to the File’s Owner item in the .xib window (see Figure B-38).

FIGURE B-38

[image: image]

When you release the mouse button, a list appears from which you can select the correct action.

When you have connected the outlets and actions, a good practice is to view all the connections in the File’s Owner item by right-clicking it. Figure B-39 shows that the File’s Owner item is connected to the Text Field view through the txtName outlet, and the Round Rect Button’s Touch Up Inside event is connected to the btnClicked: action.

FIGURE B-39

[image: image]

How does the Button know that it is the Touch Up Inside event (and not other events) that should be connected to the btnClicked: action when you Control-click and drag the Button to the File’s Owner item? The Touch Up Inside event is such a commonly used event that it is the default event selected when you perform a Control-click and drag action. What if you want to connect an event other than the default event? The next method shows you how.

Method 2

An alternative method for connecting an outlet is to right-click the File’s Owner item and connect the outlet to the view directly (see Figure B-40).

FIGURE B-40

[image: image]

To connect an action, you can connect the relevant action with the views to which you want to connect (see Figure B-41). When you release the mouse button, the list of available events appears, and you can select the one you want.

FIGURE B-41

[image: image]

Alternatively, you can right-click the view in question and connect the relevant events to the File’s Owner item (see Figure B-42). When you release the mouse button, a list of your declared actions appears. Select the action to which you want to connect.

FIGURE B-42

[image: image]

As mentioned earlier, it is always good to right-click the File’s Owner item after all the connections are made. One very common mistake that developers tend to make is changing the name of the actions or outlets after the connections are made. For example, suppose you now change the original outlet name from txtName to myTextField:

 IBOutlet UITextField *myTextField;

Now, if you right-click the File’s Owner item in Interface Builder, you will see a yellow triangle icon displayed on the right of the original connection (see Figure B-43). All broken connections in Interface Builder have the yellow triangle icon. To remedy this, click the “x” button to remove the connection and connect the appropriate outlet/action again.

FIGURE B-43

[image: image]

Appendix C

Crash Course in Objective-C

Objective-C is an object-oriented programming language used by Apple primarily for programming Mac OS X and iOS applications. It is an extension to the standard ANSI C language and hence it should be an easy language to pick up if you are already familiar with the C programming language. This appendix assumes that you already have some background in C programming and focuses on the object-oriented aspects of the language. If you are coming from a Java or .NET background, many of the concepts should be familiar to you; you just have to understand the syntax of Objective-C and, in particular, pay attention to the section on memory management.

Objective-C source code files are contained in two types of files:

	.h — header files

	.m — implementation files

For the discussions that follow, assume that you have created a Single View Application project using Xcode named LearningObjC and added an empty NSObject class named SomeClass to your project (see Figure C-1).

FIGURE C-1

[image: image]

DIRECTIVES

If you observe the content of the SomeClass.h file, you will notice that at the top of the file is an #import statement:

#import <Foundation/Foundation.h>

@interface SomeClass : NSObject {

}

@end

The #import statement is known as a preprocessor directive. In C and C++, you use the #include preprocessor directive to include a file’s content with the current source. In Objective-C, you use the #import statement to do the same, except that the compiler ensures that the file is included at most only once. To import a header file from one of the frameworks, you specify the header filename using angle brackets (<>) in the #import statement. To import a header file from within your project, you use the “and” characters, as in the case of the SomeClass.m file:

#import "SomeClass.h"

@implementation SomeClass

@end

CLASSES

In Objective-C, you will spend a lot of time dealing with classes and objects. Hence, it is important to understand how classes are declared and defined in Objective-C.

@interface

To declare a class, you use the @interface compiler directive, like this:

@interface SomeClass : NSObject {

}

This is done in the header file (.h), and the class declaration contains no implementation. The preceding code declares a class named SomeClass, and this class inherits from the base class named NSObject.

[image: image]
NOTE While you typically put your code declaration in an .h file, you can also put it inside an .m if need be. This is usually done for small projects.

[image: image]
NOTE NSObject is the root class of most Objective-C classes. It defines the basic interface of a class and contains methods common to all classes that inherit from it. NSObject also provides the standard memory management and initialization framework used by most objects in Objective-C, as well as reflection and type operations.

In a typical View Controller class, the class inherits from the UIViewController class, such as in the following:

@interface HelloWorldViewController : UIViewController {

}

@implementation

To implement a class declared in the header file, you use the @implementation compiler directive, like this:

#import "SomeClass.h"

@implementation SomeClass

@end

This is done in a separate file from the header file. In Objective-C, you define your class in an .m file. Note that the class definition ends with the @end compiler directive.

[image: image]
NOTE As mentioned earlier, you can also put your declaration inside an .m file. Hence, in your .m file you would then have both the @interface and @implementation directives.

@class

If your class references another class defined in another file, you need to import the header file of that file before you can use it. Consider the following example which defines two classes: SomeClass and AnotherClass. If you are using an instance of AnotherClass from within SomeClass, you need to import the AnotherClass.h file, as in the following code snippet:

//---SomeClass.h---
#import <Foundation/Foundation.h>
#import "AnotherClass.h"

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
}

@end

//---AnotherClass.h---
#import <Foundation/Foundation.h>

@interface AnotherClass : NSObject {

}

@end

However, if within AnotherClass you want to create an instance of SomeClass, you will not be able to simply import SomeClass.h in AnotherClass, like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>
#import "AnotherClass.h"

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
}

@end

//---AnotherClass.h---
#import <Foundation/Foundation.h>
#import "SomeClass.h" //---cannot simply import here---

@interface AnotherClass : NSObject {
 SomeClass *someClass; //---using an instance of SomeClass---
}

@end

Doing so results in circular inclusion. To prevent that, Objective-C uses the @class compiler directive as a forward declaration to inform the compiler that the class you specified is a valid class. You usually use the @class compiler directive in the header file; and in the implementation file, you can use the @import compiler directive to tell the compiler more about the content of the class you are using.

Using the @class compiler directive, the program now looks like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
}

@end

//---AnotherClass.h---
#import <Foundation/Foundation.h>

@class SomeClass; //---forward declaration---

@interface AnotherClass : NSObject {
 SomeClass *someClass; //---using an instance of SomeClass---
}

@end

[image: image]
NOTE Another notable reason to use forward declaration where possible is that it reduces your compile times because the compiler does not need to traverse as many included header files and their includes, and so on.

Class Instantiation

To create an instance of a class, you typically use the alloc keyword (more on this in the “Memory Management” section) to allocate memory for the object and then return it to a variable of the class type:

 SomeClass *someClass = [SomeClass alloc];

In Objective-C, you need to prefix an object name with the * character when you declare an object. If you are declaring a variable of primitive type (such as float, int, CGRect, NSInteger, and so on), the * character is not required. Here are some examples:

 CGRect frame; //--CGRect is a structure--
 int number; //--int is a primitive type--
 NSString *str; //--NSString is a class

Besides specifying the returning class type, you can also use the id type, like this:

 id someClass = [SomeClass alloc];
 id str;

The id type means that the variable can refer to any type of object; hence, the * is implicitly implied.

Fields

Fields are the data members of objects. For example, the following code shows that SomeClass has three fields — anotherClass, rate, and name:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

@end

Access Privileges

By default, the access privilege of all fields is @protected. However, the access privilege can also be @public or @private. The following list describes the various access privileges:

	@private — Visible only to the class that declares it

	@public — Visible to all classes

	@protected — Visible to the class that declares it and inheriting classes

Using the example shown in the previous section, if you now try to access the fields in SomeClass from another class, such as a View Controller, you will not be able to see them:

 SomeClass *someClass = [SomeClass alloc];
 someClass->rate = 5; //---rate is declared protected---
 someClass->name = @"Wei-Meng Lee"; //---name is declared protected---

[image: image]
NOTE Note that to access the fields in a class directly, you use the -> operator.

To make the rate and name visible outside the class, modify the SomeClass.h file by adding the @public compiler directive:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;

@public
 float rate;

@public
 NSString *name;
}

@end

The following two statements would now be valid:

 someClass->rate = 5; //--rate is now declared public--
 someClass->name = @"Wei-Meng Lee"; //--name is now declared public--

Although you can access the fields directly, doing so goes against the design principles of object-oriented programming’s rule of encapsulation. A better way is to encapsulate the two fields you want to expose in properties. Refer to the “Properties” section later in this appendix.

Methods

Methods are functions that are defined in a class. Objective-C supports two types of methods — instance methods and class methods.

Instance methods can be called only using an instance of the class; and they are prefixed with the minus sign (-) character.

Class methods can be invoked directly using the class name and do not need an instance of the class in order to work. Class methods are prefixed with the plus sign (+) character.

[image: image]
NOTE In some programming languages, such as C# and Java, class methods are commonly known as static methods.

The following code sample shows SomeClass with three instance methods and one class method declared:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

@end

The following shows the implementation of the methods that were declared in the header file:

#import "SomeClass.h"

@implementation SomeClass

-(void) doSomething {
 //---implementation here---
}

-(void) doSomething:(NSString *) str {
 //---implementation here---
}

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
 //---implementation here---
}

+(void) alsoDoSomething {
 //---implementation here---
}

@end

To invoke the three instance methods, you first need to create an instance of the class and then call them using the instance created:

 SomeClass *someClass = [SomeClass alloc];
 [someClass doSomething];
 [someClass doSomething:@"some text"];
 [someClass doSomething:@"some text" withAnotherPara:9.0f];

Class methods can be called directly using the class name, as the following shows:

 [SomeClass alsoDoSomething];

In general, you create instance methods when you need to perform some actions that are related to the particular instance of the class (that is, the object). For example, suppose you defined a class that represents the information of an employee. You may expose an instance method that enables you to calculate the overtime wage of an employee. In this case, you use an instance method because the calculation involves data specific to a particular employee object.

Class methods, on the other hand, are commonly used for defining helper methods. For example, you might have a class method called GetOvertimeRate: that returns the rate for working overtime. In a scenario in which all employees get the same rate for working overtime (assuming this is the case for your company), there is no need to create instance methods, and thus a class method will suffice.

The next section shows how to call methods with a varying number of parameters.

Message Sending (Calling Methods)

In Objective-C, you use the following syntax to call a method:

[object method];

Strictly speaking, in Objective-C you do not call a method; rather, you send a message to an object. The message to be passed to an object is resolved during runtime and is not enforced at compile time. This is why the compiler does not stop you from running your program even though you may have misspelled the method name. It does warn you that the target object may not respond to your message, though, because the target object will simply ignore the message (and in most situations result in a runtime exception).

[image: image]
NOTE For ease of understanding, I use the more conventional phrasing of “calling a method” to refer to Objective-C’s message-sending mechanism.

Using the example from the previous section, the doSomething method has no parameter:

-(void) doSomething {
 //---implementation here---
}

Therefore, you can call it like this:

 [someClass doSomething];

If a method has one or more inputs, you call it using the following syntax:

[object method:input1]; //---one input---
[object method:input1 andSecondInput:input2]; //---two inputs---

The interesting thing about Objective-C is the way you call a method with multiple inputs. Using the earlier example:

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
 //---implementation here---
}

The name of the preceding method is doSomething:withAnotherPara:. The first part of the method name, doSomething:, is called the label, and so is the second. Therefore, a method name in Objective-C is made up of one or more labels. Strictly speaking, the labels are optional. For example, the preceding method could be rewritten as follows:

-(void) :(NSString *) str :(float) value {
 //---implementation here---
}

To call the preceding method, I can use the following statement:

 [someClass :@"some text" :9.0f];

This works because in Objective-C, arguments are passed according to positions. While this compiles, it is not recommended, because it makes your method ambiguous.

It is important to note the names of methods and to differentiate those with parameters from those without them. For example, doSomething refers to a method with no parameter, whereas doSomething: refers to a method with one parameter, and doSomething:withAnotherPara: refers to a method with two parameters. The presence or absence of colons in a method name dictates which method is invoked during runtime. This is important when passing method names as arguments, particularly when using the @selector notation (discussed in the “Selectors” section) to pass them to a delegate or notification event.

Method calls can also be nested, as the following example shows:

 NSString *str = [[NSString alloc] initWithString:@"Hello World"];

Here, you first call the alloc class method of the NSString class and then call the initWithString: method of the returning result from the alloc method, which is of type id, a generic C type that Objective-C uses for an arbitrary object.

In general, you should not nest more than three levels because anything more than that makes the code difficult to read.

Properties

Properties enable you to expose the fields in your class so that you can control how values are set or returned. In the earlier example (in the “Access Privileges” section), you saw that you can directly access the fields of a class using the -> operator. However, this is not the ideal way; ideally, you should expose your fields as properties.

Prior to Objective-C 2.0, programmers had to declare methods to make the fields accessible to other classes, like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

//---expose the rate field---
-(float) rate; //---get the value of rate---
-(void) setRate:(float) value; //---set the value of rate---

//---expose the name field---
-(NSString *) name; //---get the value of name---
-(void) setName:(NSString *) value; //---set the value of name---

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

@end

These methods are known as getters and setters (or sometimes better known as accessors and mutators). The implementation of these methods may look like this:

#import "SomeClass.h"

@implementation SomeClass

-(float) rate {
 return rate;
}

-(void) setRate:(float) value {
 rate = value;
}

-(NSString *) name {
 return name;
}

-(void) setName:(NSString *) value {
 [value retain];
 [name release];
 name = value;
}

-(void) doSomething {
 //---implementation here---
}

-(void) doSomething:(NSString *) str {
 //---implementation here---
 NSLog(str);
}

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
 //---implementation here---
}

+(void) alsoDoSomething {
 //---implementation here---
}

@end

To set the value of these properties, you need to call the methods prefixed with the set keyword:

 SomeClass *sc = [[SomeClass alloc] init];
 [sc setRate:5.0f];
 [sc setName:@"Wei-Meng Lee"];

Alternatively, you can use the dot notation introduced in Objective-C 2.0:

 SomeClass *sc = [[SomeClass alloc] init];
 sc.rate = 5.0f;
 sc.name = @"Wei-Meng Lee";

To obtain the values of properties, you can either call the methods directly or use the dot notation in Objective-C 2.0:

 NSLog([sc name]); //--call the method--
 NSLog(sc.name); //--dot notation

To make a property read-only, simply remove the method prefixed with the set keyword.

Notice that within the setName: method, you have various statements using the retain and release keywords. These keywords relate to memory management in Objective-C; you learn more about them in the “Memory Management” section, later in this appendix.

In Objective-C 2.0, you don’t need to define getters and setters in order to expose fields as properties. You can do so via the @property and @synthesize compiler directives. Using the same example, you can use the @property directive to expose the rate and name fields as properties, like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

@property float rate;
@property (retain, nonatomic) NSString *name;

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

@end

The first @property statement defines rate as a property. The second statement defines name as a property as well, but it also specifies the behavior of this property. In this case, it indicates the behavior as retain and nonatomic, which you learn more about in the section on memory management later in this appendix. In particular, nonatomic means that the property is not accessed in a thread-safe manner. This is OK if you are not writing multi-threaded applications. Most of the time, you will use the retain and nonatomic combination when declaring properties. The first property does not need the retain keyword, as it is a primitive type and not an object.

In the implementation file, rather than define the getter and setter methods, you can simply use the @synthesize keyword to get the compiler to automatically generate the getters and setters for you:

#import "SomeClass.h"

@implementation SomeClass

@synthesize rate, name;

As shown, you can combine several properties using a single @synthesize keyword. However, you can also separate them into individual statements:

@synthesize rate;
@synthesize name;

You can now use your properties as usual:

 //---setting using setRate---
 [sc setRate:5.0f];
 [sc setName:@"Wei-Meng Lee"];

 //---setting using dot notation---
 sc.rate = 5;
 sc.name = @"Wei-Meng Lee";

 //---getting---
 NSLog([sc name]); //---using the name method---
 NSLog(sc.name); //---dot notation---

To make a property read-only, use the readonly keyword. The following statement makes the name property read-only:

@property (retain, nonatomic, readonly) NSString *name;

Initializers

When you create an instance of a class, you often initialize it at the same time. For example, in the earlier example (in the “Class Instantiation” section), you had this statement:

 SomeClass *sc = [[SomeClass alloc] init];

The alloc keyword allocates memory for the object; and when an object is returned, the init method is called on the object to initialize the object. Recall that in SomeClass, you do not define a method named init. So where does the init method come from? It is actually defined in the NSObject class, which is the base class of most classes in Objective-C. The init method is known as an initializer.

If you want to create additional initializers, you can define methods that begin with the init word (use of the init prefix is more of a norm than a hard-and-fast rule):

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

@property float rate;
@property (retain, nonatomic) NSString *name;

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

-(id)initWithName:(NSString *) n;
-(id)initWithName:(NSString *) n andRate:(float) r;

@end

The preceding example contains two additional initializers: initWithName: and initWithName:andRate:. You can provide the implementations for the two initializers as follows:

#import "SomeClass.h"

@implementation SomeClass

@synthesize rate, name;

- (id)initWithName:(NSString *) n {
 return [self initWithName:n andRate:0.0f];
}

- (id)initWithName:(NSString *) n andRate:(float) r {
 if (self = [super init]) {
 self.name = n;
 self.rate = r;
 }
 return self;
}

//...
//...

Note that in the initWithName:andRate: initializer implementation, you first call the init initializer of the super (base) class so that its base class is properly initialized, which is necessary before you can initialize the current class:

- (id)initWithName:(NSString *) n andRate:(float) r {
 if (self = [super init]) {
 self.name = n;
 self.rate = r;
 }
 return self;
}

The rule for defining an initializer is simple: If a class is initialized properly, it should return a reference to self (hence the id type). If it fails, it should return nil.

For the initWithName: initializer implementation, notice that it calls the initWithName:andRate: initializer:

- (id)initWithName:(NSString *) n {
 return [self initWithName:n andRate:0.0f];
}

In general, if you have multiple initializers, each with different parameters, you should chain them by ensuring that they all call a single initializer that performs the call to the super class’s init initializer. In Objective-C, the initializer that performs the call to the super class’s init initializer is called the designated initializer.

[image: image]
NOTE As a general guideline, the designated initializer should be the one with the greatest number of parameters.

To use the initializers, you can now call them at the time of instantiation:

 SomeClass *sc1 = [[SomeClass alloc] initWithName:@"Wei-Meng Lee"
 andRate:35];
 SomeClass *sc2 = [[SomeClass alloc] initWithName:@"Wei-Meng Lee"];

MEMORY MANAGEMENT

Memory management in Objective-C programming (especially for iOS) is a very important topic that every iOS developer needs to be aware of. Like all other popular languages, Objective-C supports garbage collection, which helps to remove unused objects when they go out of scope and hence releases memory that can be reused. However, because of the severe overhead involved in implementing garbage collection, the iOS does not support garbage collection. This leaves you, the developer, to manually allocate and de-allocate the memory of objects when they are no longer needed.

This section discusses the various aspects of memory management on the iOS.

Reference Counting

To help you allocate and de-allocate memory for objects, the iOS uses a scheme known as reference counting to keep track of objects to determine whether they are still needed or can be disposed of. Reference counting basically uses a counter for each object; and as each object is created, the count increases by 1. When an object is released, the count decreases by 1. When the count reaches 0, the memory associated with the object is reclaimed by the OS.

In Objective-C, a few important keywords are associated with memory management. The following sections take a look at each of them.

NEW FEATURE: AUTOMATIC REFERENCE COUNTING

In iOS 5, Objective-C now supports a new feature known as Automatic Reference Counting (ARC). Instead of needing you to keep track of each object’s ownership, ARC enables the compiler to examine your code and automatically insert statements to release the objects at compile time. Using ARC:

	You no longer need to use the retain, release, autorelease keywords, and the dealloc method.

	You cannot use the NSAutoreleasePool object.

While ARC makes it easier for you to write applications without worrying about object memory management, a lot of third-party libraries still need to manually release objects. For this book, all the projects are created with ARC turned off. Moreover, it is important for you to understand the basics of how Objective-C manages the memory.

alloc

The alloc keyword allocates memory for an object that you are creating. You have seen it in almost all the exercises in this book. An example is as follows:

 NSString *str = [[NSString alloc] initWithString:@"Hello"];

Here, you are creating an NSString object and instantiating it with a default string. When the object is created, the reference count of that object is 1. Because you are the one creating it, the object belongs to you, and it is your responsibility to release the memory when you are done with it.

[image: image]
NOTE See the “release” section for information on how to release an object.

So how do you know when an object is owned, and by whom? Consider the following example:

 NSString *str = [[NSString alloc] initWithString:@"Hello"];
 NSString *str2 = str;

In this example, you use the alloc keyword for str, so you own str. Therefore, you need to release it when it’s no longer needed. However, str2 is simply pointing to str, so you do not own str2, meaning you need not release str2 when you are done using it.

new

Besides using the alloc keyword to allocate memory for an object, you can also use the new keyword, like this:

 NSString *str = [NSString new];

The new keyword is functionally equivalent to

 NSString *str = [[NSString alloc] init];

As with the alloc keyword, using the new keyword makes you the owner of the object, so you need to release it when you are done with it.

retain

The retain keyword increases the reference count of an object by 1. Consider a previous example:

 NSString *str = [[NSString alloc] initWithString:@"Hello"];
 NSString *str2 = str;

Here, you do not own str2 because you do not use the alloc keyword on the object. When str is released, the str2 will no longer be valid.

To ensure that str2 is available even if str is released, you need to use the retain keyword:

 NSString *str = [[NSString alloc] initWithString:@"Hello"];
 NSString *str2 = str;
 [str2 retain]; //---str2 now also "owns" the object---
 [str release]; //---str can now be released safely---

In the preceding case, the reference count for str is now 2. When you release str, str2 will still be valid. When you are done with str2, you need to release it manually, like this:

 [str2 release]; //---str2 can now be released when you are done with it---

[image: image]
NOTE As a general rule, if you own an object (using alloc or retain), you need to release it.

release

When you are done with an object, you need to manually release it by using the release keyword:

 NSString *str = [[NSString alloc] initWithString:@"Hello"];

 //...do what you want with the object...

 [str release];

When you use the release keyword on an object, it causes the reference count of that object to decrease by 1. When the reference count reaches 0, the memory used by the object is released.

One important aspect to keep in mind when using the release keyword is that you cannot release an object that is not owned by you. For example, consider the example used in the previous section:

 NSString *str = [[NSString alloc] initWithString:@"Hello"];
 NSString *str2 = str;
 [str release];
 [str2 release]; //---this is not OK as you do not own str2---

Attempting to release str2 will result in a runtime error because you cannot release an object not owned by you. However, if you use the retain keyword to gain ownership of an object, you do need to use the release keyword:

 NSString *str = [[NSString alloc] initWithString:@"Hello"];
 NSString *str2 = str;
 [str2 retain];
 [str release];
 [str2 release]; //---this is now OK as you now own str2---

Recall that earlier, in the section on properties, you defined the setName: method, where you set the value of the name field:

-(void) setName:(NSString *) value {
 [value retain];
 [name release];
 name = value;
}

Notice that you first had to retain the value object, followed by releasing the name object and then finally assigning the value object to name. Why do you need to do that as opposed to the following?

-(void) setName:(NSString *) value {
 name = value;
}

If you were using garbage collection, the preceding statement would be valid. However, because iOS does not support garbage collection, the preceding statement will cause the original object referenced by the name object to be lost, thereby causing a memory leak. To prevent that leak, you first retain the value object to indicate that you wish to gain ownership of it; then you release the original object referenced by name. Finally, assign value to name:

 [value retain];
 [name release];
 name = value;

Convenience Method and Autorelease

So far, you learned that all objects created using the alloc or new keywords are owned by you. Consider the following case:

 NSString *str = [NSString stringWithFormat:@"%d", 4];

In this statement, do you own the str object? The answer is no, you don’t, because the object is created using one of the convenience methods — static methods that are used for allocating and initializing objects directly. In the preceding case, you create an object but you do not own it. Because you do not own it, you cannot release it manually. In fact, objects created using this method are known as autorelease objects. All autorelease objects are temporary objects and are added to an autorelease pool. When the current method exits, all the objects contained within it are released. Autorelease objects are useful for cases in which you simply want to use some temporary variables and do not want to burden yourself with allocations and de-allocations.

The key difference between an object created using the alloc (or new) keyword and one created using a convenience method is that of ownership, as the following example shows:

 NSString *str1 = [[NSString alloc] initWithFormat:@"%d", 4];
 [str1 release]; //--this is ok because you own str1--

 NSString *str2 = [NSString stringWithFormat:@"%d", 4];
 [str2 release]; //--this is not ok because you don't own str2--
 //--str2 will be removed automatically when the autorelease
 // pool is activated--

UNDERSTANDING REFERENCE COUNTING USING AN ANALOGY

When you think of memory management using reference counting, it is always good to use a real-life analogy to put things into perspective.

Imagine a room in the library that you can reserve for studying purposes. Initially, the room is empty and hence the lights are off. When you reserve the room, the librarian increases a counter to indicate the number of persons using the room. This is similar to creating an object using the alloc keyword.

When you leave the room, the librarian decreases the counter; and when the counter is 0, this means that the room is no longer being used and the lights can thus be switched off. This is similar to using the release keyword to release an object.

There may be times when you have booked the room and are the only person in it (hence, the counter is 1) until a friend of yours comes along. He may simply visit you and therefore not register with the librarian. Hence, the counter does not increase. Because he is just visiting you and hasn’t booked the room, he has no rights to decide whether the lights should be switched off. This is similar to assigning an object to another variable without using the alloc keyword. In this case, if you leave the room (release), the lights will be switched off and your friend will have to leave.

Consider another situation in which you are using the room and another person also booked the room and shares it with you. In this case, the counter is now 2. If you leave the room, the counter goes down to 1, but the lights are still on because another person is in the room. This is similar to creating an object and assigning it to another variable that uses the retain keyword. In such a situation, the object is released only when both objects release it.

If you want to take ownership of an object when using a convenience method, you can do so using the retain keyword:

 NSString *str2 = [[NSString stringWithFormat:@"%d", 4] retain];

To release the object, you can use either the autorelease or the release keyword. You learned earlier that the release keyword immediately decreases the reference count by 1 and that the object is immediately de-allocated from memory when the reference count reaches 0. In contrast, the autorelease keyword promises to decrease the reference count by 1 but not immediately — sometime later. It is like saying, “Well, I still need the object now, but later I can let it go.” The following code makes it clear:

 NSString *str = [[NSString stringWithFormat:@"%d", 4] retain];
 [str autorelease]; //---you don't own it anymore; still available---
 NSlog(str); //---still accessible for now---

[image: image]
NOTE After you have autoreleased an object, do not release it anymore.

Note that the statement

 NSString *str2 = [NSString stringWithFormat:@"%d", 4];

has the same effect as

 NSString *str2 = @"4";

Although autorelease objects seem to make your life simple by automatically releasing objects that are no longer needed, you have to be careful when using them. Consider the following example:

 for (int i=0; i<=99999; i++){
 NSString *str = [NSString stringWithFormat:@"%d", i];
 //...
 //...
 }

Here, you are creating an NSString object for each iteration of the loop. Because the objects are not released until the function exits, you may well run out of memory. One way to solve this dilemma is to use an autorelease pool, as discussed in the next section.

REFERENCE COUNTING: THE ANALOGY CONTINUES

Continuing with the analogy of the reserved room in the library, imagine that you are about to sign out with the librarian when you realize that you have left your books in the room. You tell the librarian that you are done with the room and want to sign out now, but because you left your books in the room, you tell the librarian not to switch off the lights yet so that you can go back to get them. Later, the librarian can switch off the lights at his or her own choosing. This is the behavior of autoreleased objects.

Autorelease Pools

All autorelease objects are temporary objects and are added to an autorelease pool. When the objects are no longer needed, all the objects contained within it are released. However, sometimes you want to control how the autorelease pool is emptied, rather than wait for it to be called by the OS. To do so, you can create an instance of the NSAutoreleasePool class, like this:

 for (int i=0; i<=99999; i++){
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSString *str1 = [NSString stringWithFormat:@"%d", i];
 NSString *str2 = [NSString stringWithFormat:@"%d", i];
 NSString *str3 = [NSString stringWithFormat:@"%d", i];
 //...
 //...
 [pool release];
 }

In this example, for each iteration of the loop, an NSAutoreleasePool object is created, and all the autorelease objects created within the loop — str1, str2, and str3 — go into it. At the end of each iteration, the NSAutoreleasePool object is released so that all the objects contained within it are automatically released. This ensures that you have at most three autorelease objects in memory at any one time.

dealloc

You have learned that by using the alloc or new keyword, you own the object that you have created. You have also seen how to release the objects you own using the release or autorelease keyword. When is a good time for you to release them?

As a rule of thumb, you should release the objects as soon as you are done with them. Therefore, if you created an object in a method, you should release it before you exit the method. For properties, recall that you can use the @property compiler directive together with the retain keyword:

@property (retain, nonatomic) NSString *name;

Because the values of the property will be retained, it is important that you free it before you exit the application. A good place to do so is in the dealloc method of a class (such as a View Controller):

-(void) dealloc {
 [self.name release]; //---release the name property---
 [super dealloc];
}

The dealloc method of a class is fired whenever the reference count of its object reaches 0. Consider the following example:

 SomeClass *sc1 = [[SomeClass alloc] initWithName:@"Wei-Meng Lee"
 andRate:35];
 //...do something here. . .
 [sc1 release]; //---reference count goes to 0; dealloc will be called---

The preceding example shows that when the reference count of sc1 reaches 0 (when the release statement is called), the dealloc method defined within the class will be called. If you don’t define this method in the class, its implementation in the base class will be called.

Memory Management Tips

Memory management is a tricky issue in iOS programming. Although there are tools you can use to test for memory leaks, this section presents some simple things you can do to detect memory problems that might affect your application.

First, ensure that you implement the didReceiveMemoryWarning method in your View controller:

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];
 //---insert code here to free unused objects---
 // Release any cached data, images, etc that aren't in use.
}

The didReceiveMemoryWarning method will be called whenever your iOS device runs out of memory. You should insert code in this method so that you can free resources/objects that you don’t need.

In addition, you should also handle the applicationDidReceiveMemoryWarning: method in your application delegate:

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application {
 /*
 Free up as much memory as possible by purging cached
 data objects that can be recreated (or reloaded from
 disk) later.
 */
 //---insert code here to free unused objects---
}

In this method, you should stop all memory-intensive activities, such as audio and video playback. You should also remove all images cached in memory.

When dealing with arrays, remember to retain item(s) retrieved from an array:

 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:@"Item 1"];
 [array addObject:@"Item 2"];
 [array addObject:@"Item 3"];

 //---this is not safe as the object can be removed anytime---
 //NSString *item = [array objectAtIndex:1];

 //---do this instead---
 NSString *item = [[array objectAtIndex:1] retain];
 [array removeObjectAtIndex:1];

 NSLog(@"item is %@", item);

 [item release];
 [array release];

When returning an alloc’ed object, remember to autorelease it:

-(NSString *) fullName {
 NSString *str = [[NSString alloc] initWithFormat:@"%@ %@",
 firstName, lastName];
 //---remember to release str; else it will leak memory---
 [str autorelease];
 return str;
}

When setting an alloc’ed object to a property with a retain or copy, remember to autorelease it:

-(id) initWithFirstName:(NSString *) fName
 andLastName:(NSString *) lName
 andEmail:(NSString *) emailAddress {
 self = [super init];
 if (self) {
 self.firstName = fName;
 self.lastName = lName;

 if ([emailAddress length]==0) {
 //---this will result in a memory leak---
 // self.email = [[NSString alloc]
 // initWithString:@"No email set"];

 //---do this instead---
 self.email =
 [[[NSString alloc] initWithString:@"No email set"]
 autorelease];
 } else {
 self.email = emailAddress;
 }
 }
 return self;
}

PROTOCOLS

In Objective-C, a protocol declares a programmatic interface that any class can choose to implement. A protocol declares a set of methods, and an adopting class may choose to implement one or more of its declared methods. The class that defines the protocol is expected to call the methods in the protocols that are implemented by the adopting class.

The easiest way to understand protocols is to examine the UIAlertView class. As you have experienced in the various chapters in this book, you can simply use the UIAlertView class by creating an instance of it and then calling its show method:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];

The preceding code displays an alert view with one button — OK. Tapping the OK button automatically dismisses the alert view. If you want to display additional buttons, you can set the otherButtonTitles: parameter like this:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Option 1", @"Option 2", nil];
 [alert show];

The alert view now displays three buttons — OK, Option 1, and Option 2. How do you know which button was tapped by the user? You can determine that by handling the relevant method(s) that will be fired by the alert view when the buttons are clicked. This set of methods is defined by the UIAlertViewDelegate protocol, which defines the following methods:

	alertView:clickedButtonAtIndex:

	willPresentAlertView:

	didPresentAlertView:

	alertView:willDismissWithButtonIndex:

	alertView:didDismissWithButtonIndex:

	alertViewCancel:

If you want to implement any of the methods in the UIAlertViewDelegate protocol, you need to ensure that your class, in this case the View Controller, conforms to this protocol. A class conforms to a protocol using angle brackets (<>), like this:

@interface ObjCTestViewController : UIViewController
 <UIAlertViewDelegate> { //---this class conforms to the
 // UIAlertViewDelegate protocol---

}

@end

[image: image]
NOTE To conform to more than one delegate, separate the protocols with commas, such as <UIAlertViewDelegate, UITableViewDataSource>.

After the class conforms to a protocol, you can implement the method in your class:

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog([NSString stringWithFormat:@"%d", buttonIndex]);

}

Delegate

In Objective-C, a delegate is just an object that has been assigned by another object as the object responsible for handling events. Consider the case of the UIAlertView example shown previously:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Option 1", @"Option 2", nil];
 [alert show];

The initializer of the UIAlertView class includes a parameter called the delegate. Setting this parameter to self means that the current object is responsible for handling all the events fired by this instance of the UIAlertView class. If you don’t need to handle events fired by this instance, you can simply set it to nil:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Option 1", @"Option 2", nil];
 [alert show];

If you have multiple buttons on the alert view and want to know which button was tapped, you need to handle the method declared in the UIAlertViewDelegate protocol. You can either implement the method in the same class in which the UIAlertView class was instantiated (as shown in the previous section), or create a new class to implement the method, like this:

//---SomeClass.m---
@implementation SomeClass

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog([NSString stringWithFormat:@"%d", buttonIndex]);

}
@end

To ensure that the alert view knows where to look for the method, create an instance of SomeClass and then set it as the delegate:

SomeClass *myDelegate = [[SomeClass alloc] init];

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Hello"
 message:@"This is an alert view"
 delegate:myDelegate;
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"Option 1", @"Option 2", nil];
[alert show];

SELECTORS

In Objective-C, a selector refers to the name used to select a method to execute for an object. It is used to identify a method. You have seen the use of a selector in some of the chapters in this book. Here is one of them:

 //---create a Button view---
 CGRect frame = CGRectMake(10, 50, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@"Click Me, Please!"
 forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

The preceding code shows that you are dynamically creating a UIButton object. In order to handle the event (for example, the Touch Up Inside event) raised by the button, you need to call the addTarget:action:forControlEvents: method of the UIButton class:

 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

The action: parameter takes an argument of type SEL (selector). In the preceding code, you pass in the name of the method that you have defined — buttonClicked: — which is defined within the class:

-(IBAction) buttonClicked: (id) sender {
 //...
}

Alternatively, you can create an object of type SEL and then instantiate it by using the NSSelectorFromString function (which takes a string containing the method name):

 NSString *nameOfMethod = @"buttonClicked:";
 SEL methodName = NSSelectorFromString(nameOfMethod);

The call to the addTarget:action:forControlEvents: method now looks like this:

 [button addTarget:self
 action:methodName
 forControlEvents:UIControlEventTouchUpInside];

[image: image]
NOTE When naming a selector, be sure to specify the full name of the method. For example, if a method name has one or more parameters, you need to add a “:” in the sector, such as the following:

 NSString *nameOfMethod = @"someMethod:withPara1:andPara2:";

[image: image]
NOTE Because Objective-C is an extension of C, it is common to see C functions interspersed throughout your Objective-C application. C functions use parentheses () to pass in arguments for parameters.

CATEGORIES

A category in Objective-C enables you to add methods to an existing class without the need to subclass it. You can also use a category to override the implementation of an existing class.

[image: image]
NOTE In some languages (such as C#), a category is known as an extension method.

For example, imagine you want to test whether a string contains a valid e-mail address. You can add an isEmail method to the NSString class so that you can call the isEmail method on any NSString instance, like this:

 NSString *email = @"weimenglee@gmail.com";
 if ([email isEmail]) {
 //...
 }

To do so, simply create a new class file and code it as follows:

//---Utils.h---
#import <Foundation/Foundation.h>

//---NSString is the class you are extending---
@interface NSString (Utilities)

//---the method you are adding to the NSString class---
-(BOOL) isEmail;

@end

Basically, it looks the same as declaring a new class except that it does not inherit from any other class. The stringUtils is a name that identifies the category you are adding, and you can use any name you want.

Next, you need to implement the method(s) you are adding:

//---Utils.m---
#import "Utils.h"

@implementation NSString (Utilities)

- (BOOL) isEmail {
 NSString *emailRegEx =
 @"(?:[a-z0-9!#$%\\&'*+/=?\^_`{|}~-]+(?:\.[a-z0-9!#$%\&'*+/=?\^_`{|}"
 @"~-]+)*|\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\"
 @"x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\")@(?:(?:[a-z0-9](?:[a-"
 @"z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5"
 @"]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-"
 @"9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21"
 @"-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])";

 NSPredicate *regExPredicate = [NSPredicate
 predicateWithFormat:@"SELF MATCHES %@",
 emailRegEx];

 return [regExPredicate evaluateWithObject:self];
}

@end

[image: image]
NOTE The code for validating an e-mail address using a regular expression is adapted from http://cocoawithlove.com/2009/06/verifying-that-string-is-email-address.html.

You can then test for the validity of an e-mail address using the newly added method:

 NSString *email = @"weimenglee@gmail.com";
 if ([email isEmail])
 NSLog(@"Valid email");
 else
 NSLog(@"Invalid email");

Appendix D

Answers to Exercises

This appendix provides the solutions for the end-of-chapter exercises located in Chapters 2–21 (there are no exercises in Chapter 1).

CHAPTER 2 EXERCISE SOLUTIONS

Answer to Question 1

The minimum image size you should design is 57 × 57 pixels (or 114 × 114 pixels for high resolution). It is OK to design a larger image because the iPhone automatically resizes it for you. In general, try to design a larger image because doing so prepares your application for the newer devices that Apple may roll out.

Answer to Question 2

The easiest way to add a launch image is to add an image named Default.png to your Xcode project. This image must be sized 480 × 320 pixels (or 960 × 640 pixels for high resolution).

Answer to Question 3

This ensures that the image is always copied into the project folder. If not, Xcode only makes a reference to the image; it is not physically in the project folder.

CHAPTER 3 EXERCISE SOLUTIONS

Answer to Question 1

In the .h file:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

@end

In the .m file:

#import "OutletsAndActionsViewController.h"

@implementation OutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

- (void)dealloc {
 //---release the outlet---
 [txtName release];
 [super dealloc];
}

Answer to Question 2

In the .h file:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

In the .m file:

@implementation OutletsAndActionsViewController

-(IBAction) btnClicked:(id) sender {
 //---action implementation here---
}

Answer to Question 3

Use the alert view when you simply want to notify the user when something happens. Use an action sheet when the user needs to make a selection, usually from a set of options.

Answer to Question 4

 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@"Click Me, Please!" forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

CHAPTER 4 EXERCISE SOLUTIONS

Answer to Question 1

mySecondViewController = [[MySecondViewController alloc]
 initWithNibName:@"MySecondViewController"
 bundle:nil];

Answer to Question 2

- (void)viewDidLoad {
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[[UILabel alloc] initWithFrame:frame] autorelease];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@"Verdana" size:20];
 label.text = @"This is a label";

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@"OK" forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the views to the View window---
 [self.view addSubview:label];
 [self.view addSubview:button];
 [super viewDidLoad];
}

Answer to Question 3

 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

 ...
 ...

-(IBAction) buttonClicked: (id) sender{
 //--add implementation here--
}

Answer to Question 4

In the HelloWorldViewController.m file, add the following code:

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Button Clicked!"
 message:@"Button was clicked!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

CHAPTER 5 EXERCISE SOLUTIONS

Answer to Question 1

To detect the platform on which your application is running, use the UI_USER_INTERFACE_IDIOM() function.

Answer to Question 2

The different values for the Targeted Device Family setting are iPhone, iPad, and iPhone/iPad.

CHAPTER 6 EXERCISE SOLUTIONS

Answer to Question 1

First, handle the Did End on Exit event (or implement the textFieldShouldReturn: method in the View Controller). Then call the resignFirstResponder method of the UITextField outlet to release its first-responder status.

Answer to Question 2

Register for the notifications UIKeyboardDidShowNotification and UIKeyboardDidHideNotification.

Answer to Question 3

 NSDictionary* info = [notification userInfo];

 //---obtain the size of the keyboard---
 NSValue *aValue = [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@"%f", keyboardRect.size.height);

Answer to Question 4

Use the UIScrollView to contain views so that the user can scroll through them. Then, set the new size of the scroll view:

- (void)viewDidLoad {
 //---set this to the screen size---
 scrollView.frame = CGRectMake(0, 0, 320, 460);

 //---set this to the final size of the scroll view---
 [scrollView setContentSize:CGSizeMake(320, 713)];

 [super viewDidLoad];
}

CHAPTER 7 EXERCISE SOLUTIONS

Answer to Question 1

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation ==
 UIInterfaceOrientationLandscapeRight ||
 interfaceOrientation ==
 UIInterfaceOrientationLandscapeLeft);
}

Answer to Question 2

The frame property defines the rectangle occupied by the view, with respect to its superview (the view that contains it). Using the frame property enables you to set the positioning and size of a view. Besides using the frame property, you can also use the center property, which sets the center of the view, also with respect to its superview. You usually use the center property when you are performing some animation and just want to change the position of a view.

CHAPTER 8 EXERCISE SOLUTIONS

Answer to Question 1

The two protocols are UITableViewDataSource and UITableViewDelegate.

The UITableViewDataSource protocol contains events that you can implement to populate the Table view with the various items.

The UITableViewDelegate protocol contains events that you can implement to handle the selection of rows in a Table view.

Answer to Question 2

To add an index list to your Table view, you need to implement the sectionIndexTitlesForTableView: method.

Answer to Question 3

The three disclosure and checkmark accessories are as follows:

	UITableViewCellAccessoryDetailDisclosureButton

	UITableViewCellAccessoryCheckmark

	UITableViewCellAccessoryDisclosureIndicator

The UITableViewCellAccessoryDetailDisclosureButton image handles a user’s tap event. The event name is tableView:accessoryButtonTappedForRowWithIndexPath:.

CHAPTER 9 EXERCISE SOLUTIONS

Answer to Question 1

To retrieve the values for preferences settings, you use the objectForKey: method. To save the values for preferences settings, you use the setObject:forKey: method.

Answer to Question 2

You can either remove the application from the device or Simulator, or you can remove the file ending with application_name.plist in the application folder within the Simulator.

CHAPTER 10 EXERCISE SOLUTIONS

Answer to Question 1

The three folders are Documents, Library, and tmp. Developers can use the Documents folder to store application-related data. Files saved in the Documents folder are backed up by iTunes. The Library folder stores application-specific settings, such as those used by the NSUserDefaults class, as well as snapshots of the application’s screen. The tmp folder can be used to store temporary data that will not be backed up by iTunes.

Answer to Question 2

The NSDictionary class creates a dictionary object whose items are immutable; that is, after it is populated, you can no longer add items to it. The NSMutableDictionary class, conversely, creates a mutable dictionary object that allows items to be added to it after it is loaded.

Answer to Question 3

Location of the Documents folder on a real device:

/private/var/mobile/Applications/<application_id>/Documents/

Location of the tmp folder on a real device:

/private/var/mobile/Applications/<application_id>/tmp/

Answer to Question 4

The class is UIDocumentInteractionController.

Answer to Question 5

The key is UIFileSharingEnabled.

Answer to Question 6

The key is CFBundleDocumentTypes.

CHAPTER 11 EXERCISE SOLUTIONS

Answer to Question 1

The sqlite3_exec() function is actually a wrapper for the three functions sqlite3_prepare(); sqlite3_step(); and sqlite3_finalize(). For nonquery SQL statements (such as for creating tables, inserting rows, and so on), it is always better to use the sqlite3_exec() function.

Answer to Question 2

To obtain a C-style string from an NSString object, use the UTF8String method from the NSString class.

Answer to Question 3

-(void) getAllRowsFromTableNamed: (NSString *) tableName {
 //---retrieve rows---
 NSString *qsql = [NSString stringWithFormat:@"SELECT * FROM %@",
 tableName];

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@"%@ - %@",
 field1Str, field2Str];
 NSLog(@"%@", str);

 [field1Str release];
 [field2Str release];
 [str release];
 }

 //---deletes the compiled statement from memory---
 sqlite3_finalize(statement);
 }
}

CHAPTER 12 EXERCISE SOLUTIONS

Answer to Question 1

The method is URLForUbiquityContainerIdentifier:.

Answer to Question 2

The advantage is that all the files stored in the Documents folder are exposed in the Settings ⇒ iCloud ⇒ Storage & Backup ⇒ Manage Storage page. You can manage the files directly using this page.

Answer to Question 3

Storing key-value data on iCloud ensures that application-specific data can be accessed by the application running on different devices. This enables users to enjoy a consistent, synchronized experience no matter where they access your application.

CHAPTER 13 EXERCISE SOLUTIONS

Answer to Question 1

The three affine transformations are translation, rotation, and scaling.

Answer to Question 2

The only way to pause the NSTimer object is to call its invalidate method. To resume it, you have to create a new NSTimer object.

Answer to Question 3

The animatingWithDuration:animations: method of the UIView class enables you to enclose a block of code that causes visual changes to your views, such that the changes in visual appearance will be animated, and not appear choppily.

Answer to Question 4

You can play a video using the MPMoviePlayerController class.

CHAPTER 14 EXERCISE SOLUTIONS

Answer to Question 1

For invoking Safari:

@"http://www.apple.com"

For invoking Mail:

@"mailto:?to=weimenglee@gmail.com&subject=Hello&body=Content of email"

For invoking SMS:

@"sms:96924065"

For invoking Phone:

@"tel:1234567890"

Answer to Question 2

The class name is UIImagePickerController.

Answer to Question 3

The class name is MFMailComposeViewController.

Answer to Question 4

The class name is MFMessageComposeViewController.

CHAPTER 15 EXERCISE SOLUTIONS

Answer to Question 1

The class is CMMotionManager.

Answer to Question 2

The three events are as follows:

	motionBegan:

	motionEnded:

	motionCancelled:

CHAPTER 16 EXERCISE SOLUTIONS

Answer to Question 1

The four ways are SOAP 1.1/1.2, HTTP GET, HTTP POST, and JSON.

Answer to Question 2

The three key events are as follows:

	connection:didReceiveResponse:

	connection:didReceiveData:

	connectionDidFinishLoading:

Answer to Question 3

The NSXmlParser class fires off the following events as it parses the content of an XML document:

	parser:didStartElement:namespaceURI:qualifiedName:attributes:

	parser:foundCharacters:

	parser:didEndElement:namespaceURI:qualifiedName:

Answer to Question 4

The class is TWTweetComposeViewController.

CHAPTER 17 EXERCISE SOLUTIONS

Answer to Question 1

The class is GKPeerPickerController.

Answer to Question 2

The class is GKSession.

Answer to Question 3

Call the startVoiceChatWithParticipantID:error: method from the GKVoiceChatService class.

Answer to Question 4

On the initiator, call the voiceChatService:sendData:toParticipantID: method defined in the GKVoiceChatClient protocol.

On the receiver, call the receivedData:fromParticipantID: method defined in the GKVoiceChatClient protocol.

CHAPTER 18 EXERCISE SOLUTIONS

Answer to Question 1

The class is NSNetService.

Answer to Question 2

The class is NSNetServiceBrowser.

Answer to Question 3

The method name is netServiceBrowser:didFindService:moreComing:.

Answer to Question 4

The method name is netServiceBrowser:didRemoveService:moreComing:.

CHAPTER 19 EXERCISE SOLUTIONS

Answer to Question 1

The two certificates are the development certificate and the SSL certificate for the provider application.

Answer to Question 2

This ensures that you have the private and public key pair of the certificate.

Answer to Question 3

The method is registerForRemoteNotificationTypes:.

Answer to Question 4

The device token is used to uniquely identify the device of the recipient of the push notification, and is needed by the APNs server.

Answer to Question 5

The event is application:didReceiveRemoteNotification:.

CHAPTER 20 EXERCISE SOLUTIONS

Answer to Question 1

The property is showsUserLocation.

Answer to Question 2

The protocol is MKMapViewDelegate.

Answer to Question 3

The method is startUpdatingLocation.

Answer to Question 4

The method is startUpdatingHeading.

Answer to Question 5

The class is CLGeocoder.

CHAPTER 21 EXERCISE SOLUTIONS

Answer to Question 1

The three types of applications are audio, location, and VOIP.

Answer to Question 2

At the time of writing, multi-tasking is supported only on iPod touch (third generation), iPhone 3GS, and iPhone 4.

Answer to Question 3

You use the startUpdatingLocation method to keep track of changes in location coordinates (using a combination of GPS, cell tower triangulation, and WiFi triangulation), while the startMonitoringSignificantLocationChanges method monitors for significant location changes (using cell tower triangulation) and notifies you only when the cell tower changes.

Answer to Question 4

Apple Push Notification service is a mobile service provided by Apple. It uses push technology to forward notification messages to the iPhone/iPod touch/iPad through a constantly connected IP connection. To use this service, an application provider must send a message to Apple’s server, which in turn sends a notification to the application on the user’s device.

Local notification, conversely, is a messaging service that can be used locally on the device. Applications running on an iPhone/iPod touch/iPad can schedule notifications to be fired at a scheduled time.

[image: image]

Beginning iOS 5 Application Development

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-14425-1

ISBN: 978-1-118-22571-4 (ebk)

ISBN: 978-1-118-23584-3 (ebk)

ISBN: 978-1-118-26369-3 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available in standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of this book that did not include media that is referenced by or accompanies a standard print version, you may request this media by visiting http://booksupport.wiley.com. For more information about Wiley products, visit us at www.wiley.com.

Library of Congress Control Number: 2011944672

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

Dedicated to Steve Jobs, whose vision changed the way we use computers and inspires many to follow his footsteps. Thank you for the inspiration!

ABOUT THE AUTHOR

[image: image]

WEI-MENG LEE is a technologist and founder of Developer Learning Solutions (www.learn2develop.net), a technology company specializing in hands-on training on the latest mobile technologies. Wei-Meng has many years of training experience and his training courses place special emphasis on the learning-by-doing approach. His hands-on approach to learning programming makes understanding the subject much easier than reading books, tutorials, and documentation. His name regularly appears in online and print publications such as DevX.com, MobiForge.com, and CoDe Magazine. Wei-Meng Lee is frequently invited to speak at technological conferences, and recently participated in Mobile Connections in the United States and DevTeach/DevMobile in Montreal, Canada. Contact Wei-Meng at weimenglee@learn2develop.net.

ABOUT THE TECHNICAL EDITOR

TRENT SHUMAY is the founder and Chief Architect at Finger Food Studios, Inc., in the Vancouver, BC, area. After graduating from the UBC Computer Science program, Trent spent 13 years in the gaming and interactive entertainment space, where handheld gaming devices ignited his passion for mobile development. Today, Finger Food Studios focuses on developing media-rich, interactive mobile and web applications. You can reach Trent directly at trent@fingerfoodstudios.com.

CREDITS

EXECUTIVE EDITOR

Robert Elliott

SENIOR PROJECT EDITOR

Ami Frank Sullivan

TECHNICAL EDITOR

Trenton Shumay

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

Luann Rouff

EDITORIAL MANAGER

Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nancy Carrasco

INDEXER

Robert Swanson

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© -M-I-S-H-A- /iStockPhoto

ACKNOWLEDGMENTS

OVER THE PAST YEAR OR SO, the development landscape of Apple’s iOS has changed greatly. The successful iOS is now in its fifth iteration, and the Xcode IDE has transitioned to a much easier-to-use version 4, with a tight integration of Interface Builder. I have received a lot of feedback from readers of the previous edition of this book, many of whom appreciate the hands-on approach that it takes. I also have received feedback from readers who are stumped by the changes that have occurred between Xcode versions 3 and 4; but such confusion epitomizes the rapid pace of change that all developers experience.

This new edition of the book was revised to cover both new technologies and the various feedback I have received. I had a thorough relook at the exercises readers were having issues with, to ensure that they can be easily followed and achieve the effect I intended. I also took this opportunity to revise all the examples using Xcode 4, which is the IDE included with iOS 5. Of course, this book covers new iOS 5 features — notably, the new iCloud feature that ships with iOS 5. I have also added some topics that would interest most iOS developers, such as how to import and export documents from within your application, programming the various sensors in iOS, and using JSON web services.

Writing a book is always exciting, but along with the excitement are long hours of hard work, straining to get things done accurately and on time. I would like to take this opportunity to thank a number of people who helped to make this book possible.

First, I want to thank my Executive Editor Robert Elliott, who started off as a stranger, but is now my good friend. Robert is not the usual AE, disappearing after the contract is signed. He has been involved throughout the entire writing process and is always ready to help. I can’t say enough good things about Robert, so I will just say thank you, Robert!

Next, a huge thanks to Ami Sullivan, my project editor, who is always a pleasure to work with. Ami is the force behind the scenes, who makes the book appear on time on shelves in the bookstores! Thanks, Ami!

I also thank copy editor Luann Rouff and technical editor Trenton Shumay. They have been eagle-eye editing the book, ensuring that every sentence makes sense — both grammatically as well as technically. Thanks, Luann and Trent!

Last, but not least, I want to thank my parents, and my wife, Sze Wa, for all the support they have given me. They have selflessly adjusted their schedules to accommodate my busy schedule when I was working on this book. My wife, as always, has stayed up with me on numerous nights as I furiously worked to meet a deadline, and for this I would like to say to her and my parents: “I love you all!” Finally, to our lovely dog, Ookii, thanks for staying by our side. Now that the book is done, sorry . . . daddy needs to write another book. . .

INTRODUCTION

APPLE FIRST OFFICIALLY ANNOUNCED the iOS 5 at the Worldwide Developers Conference (WWDC) in June 2011. After 7 betas and with much anticipation, Apple finally rolled out iOS 5 with the vastly improved iPhone 4S. With 200 new features added to the iOS, Apple is set to reign as the king of the mobile platform for the foreseeable future. This means developers also have vast potential for their applications — if you know how to program for the iOS platform. This book will show you how.

When I first started learning about iPhone and iPad development, I went through the same journey that most developers go through: Write a Hello World application, play around with Xcode and Interface Builder, try to understand what the code is doing, and repeat that process. I was also overwhelmed by the concept of a View Controller, and wondered why it was needed if I simply wanted to display a view. My background in developing for Windows Mobile and Android did not help much, and I had to start working with this concept from scratch.

This book was written to help jump-start beginning iPhone and iPad developers. It covers the various topics in a linear manner that enables you to progressively learn without being overwhelmed by the details. I adopt the philosophy that the best way to learn is by doing — hence, the numerous hands-on “Try It Out” sections in each chapter, which first demonstrate how to build something and then explain “How It Works.”

Although iPhone and iPad programming is a huge topic, my aim in this book is to get you started with the fundamentals, help you understand the underlying architecture of the SDK, and appreciate why things are done in a certain way. It is beyond the scope of any one book to cover everything under the sun related to iPhone and iPad programming, but I am confident that after reading this book (and doing the exercises), you will be well equipped to tackle your next iPhone or iPad programming challenge.

WHO THIS BOOK IS FOR

This book is for the beginning iPhone and iPad developer who wants to start developing applications using the Apple iOS SDK. To truly benefit from this book, you should have some background in programming and at least be familiar with object-oriented programming concepts. If you are totally new to the Objective-C language, you might want to jump straight to Appendix C, which provides an overview of the language. Alternatively, you can use Appendix C as a quick reference while you tackle the various chapters, checking out the syntax as you try the exercises. Depending on your learning style, one of these approaches should work best for you.

While most of the chapters are geared toward developing for the iPhone, the concepts apply to iPad development as well. In cases where specific features are available only on the iPad, they are pointed out.

[image: image]
NOTE All the examples discussed in this book were written and tested using the iOS SDK 5.0. While every effort has been made to ensure that the screen shots are as current as possible, the actual screen that you see may differ when the iOS SDK is revised.

WHAT THIS BOOK COVERS

This book covers the fundamentals of iPhone and iPad programming using the iOS SDK. It is divided into 21 chapters and four appendices.

Chapter 1: Getting Started with iOS 5 Programming covers the various tools found in the iOS SDK and explains their uses in iPhone and iPad development.

Chapter 2: Write Your First Hello World! Application gets you started with Xcode and Interface Builder to build a Hello World application. The focus is on giving you some hands-on practice getting a project up and running quickly. More details on the various project components are covered in subsequent chapters.

Chapter 3: Understanding Views, Outlets, and Actions covers the fundamental concepts of iPhone and iPad programming: outlets and actions. You learn how outlets and actions allow your code to interact with the visual elements in Interface Builder and why they are an integral part of every iPhone and iPad application. You will also learn about the various UI widgets known as views that make up the user interface of your application.

Chapter 4: Exploring the Different View Controllers discusses the various View Controllers available in the iOS SDK. You will learn how to develop different types of applications — Single View, Master-Detail, as well as Tabbed applications.

Chapter 5: Enabling Multi-Platform Support for the iPhone and iPad shows how you can port your iPhone applications to the iPad platform. You will also learn how to create universal applications that will run on both the iPhone and the iPad.

Chapter 6: Handling Keyboard Inputs shows you how to deal with the virtual keyboard in your iPhone or iPad. You learn how to hide the keyboard on demand and how to ensure that your views are not blocked by the keyboard when it is displayed.

Chapter 7: Supporting Screen Rotations demonstrates how you can reorient your application’s UI when the device is rotated. You learn about the various events that are fired when the device is rotated, and how to force your application to be displayed in a certain orientation.

Chapter 8: Displaying and Persisting Data Using the Table View explores one of the most powerful views in the iOS SDK — the Table View. The Table View is commonly used to display rows of data. In this chapter, you also learn how to implement search capabilities in your Table View.

Chapter 9: Using Application Preferences discusses the use of application settings to persist application preferences. Using application settings, you can access preferences related to your application through the Settings application available on the iPhone and iPad.

Chapter 10: File Handling shows how you can persist your application data by saving the data to files in your application’s sandbox directory. You also learn how to access the various folders available in your application sandbox.

Chapter 11: Database Storage Using SQLite covers the use of the embedded SQLite3 database library to store your data.

Chapter 12: Programming iCloud discusses and demonstrates how to store your documents and application-specific data on Apple’s new iCloud feature.

Chapter 13: Performing Simple Animations and Video Playback provides an overview of the various techniques you can use to implement basic animations on the iPhone and iPad. You also learn about the various affine transformations supported by the iOS SDK. In addition, you learn how to play back video on the iPhone and iPad.

Chapter 14: Accessing Built-In Applications describes the various ways you can access the iPhone and iPad’s built-in applications, such as the Photo Library, Contacts, and others. You also learn how you can invoke built-in applications such as Mail and Safari from within your applications.

Chapter 15: Accessing the Sensors shows how you can access the accelerometer and gyroscope sensors that are included with every iPhone and iPad. You will also learn how to detect shakes to your device.

Chapter 16: Using Web Services teaches you how to consume web services from within your iPhone and iPad application. You will learn the various ways to communicate with four web services — JSON, SOAP, HTTP GET, and HTTP POST. You will also learn how to parse the XML result returned by the web service.

Chapter 17: Bluetooth Programming explores the use of the Game Kit framework for Bluetooth programming. You will learn how to enable two devices to communicate using a Bluetooth connection, and how to implement voice chatting over a Bluetooth connection.

Chapter 18: Bonjour Programming shows how you can publish and find services on the network using the Bonjour protocol.

Chapter 19: Programming Remote Notifications Using Apple Push Notification Services explains how you can implement applications that use push notifications. The APNs enables your applications to continuously receive status updates from a service provider even though the application may not be running.

Chapter 20: Displaying Maps demonstrates how to build a location-based services application using the Map Kit framework. You will also learn how to obtain geographical location data and use it to display a map.

Chapter 21: Programming Background Applications shows how to build applications that can continue to run in the background when the user switches to another application. You will also learn how to use the local notifications feature to schedule notifications that will fire at specific time intervals.

Appendix A: Testing on an Actual Device outlines the steps you need to take to test your application on a real device.

Appendix B: Getting Around in Xcode provides a quick run-through of the many features in Xcode and Interface Builder.

Appendix C: Crash Course in Objective-C offers a brief tutorial in Objective-C. Readers who are new to this language should read this material before getting started.

Appendix D: Answers to Exercises contains the solutions to the end-of-chapter exercises found in every chapter except Chapter 1.

HOW THIS BOOK IS STRUCTURED

This book breaks down the task of learning iPhone and iPad programming into several smaller chunks, enabling you to digest each foundational topic before delving into a more advanced topic. In addition, some chapters cover topics already discussed in a previous chapter. That’s because there is usually more than one way of doing things in Xcode and Interface Builder, so this approach enables you to learn the different techniques available for developing iPhone and iPad applications.

If you are a total beginner to iOS programming, start with Chapters 1 and 2. After you are comfortable with the basics, head to the appendices to read more about the tools and language you are using. Once you are ready, you can continue with Chapter 3 and gradually move into more advanced topics.

A useful feature of this book is that all the code samples in each chapter are independent of those discussed in previous chapters. That gives you the flexibility to dive right into the topics that interest you and start working on the Try It Out projects.

WHAT YOU NEED TO USE THIS BOOK

Most of the examples in this book run on the iPhone Simulator (which is included with the iOS SDK). For exercises that access the hardware (such as the accelerometer and gyroscope), you need a real iPhone or iPad. In general, to get the most out of this book, having a real iPhone or iPad device is not necessary (although it is definitely required for testing if you plan to deploy your application on the App Store).

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of conventions throughout the book.

TRY IT OUT: These Are Exercises or Examples for You to Follow

The Try It Out sections, which appear once or more per chapter, provide hands-on exercises that demonstrate the concept under discussion as you follow the text.

1. They consist of numbered steps.

2. Follow the steps with your copy of the project files.

How It Works

After each Try It Out section, these sections explain the code you’ve typed in detail.

As for other conventions in the text:

	New terms and important words are highlighted in italics when first introduced.

	Keyboard combinations are treated like this: Control-R.

	Filenames, URLs, and code within the text are treated like so: persistence.properties.

	Code is presented in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is of particular importance in the present context.

[image: image]
WARNING Boxes like this one hold important, not-to-be forgotten information that is directly relevant to the surrounding text.

[image: image]
NOTE Notes, tips, hints, tricks, and asides to the current discussion look like this.

SOURCE CODE AND ANSWERS APPENDIX

As you work through the examples in this book, you may choose either to type in all the code manually or to use the source code files that accompany the book. All the source code used in this book is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the Search box or one of the title lists) and click the Download Code link on the book’s detail page to obtain all the source code for the book. Code that is included on the website is highlighted by the following icon and/or CodeNote, as shown following the icon:

[image: image]

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a CodeNote such as this:

Code zip filename available for download at wrox.com

After you download the code, just decompress it with your favorite compression tool. Alternatively, go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see the code available for this book and all other Wrox books.

Please note that Appendix D, “Answers to the Exercises,” is available as a PDF for download.

[image: image]
NOTE Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is 978-1-118-14425-1.

ERRATA

We make every effort to ensure that there are no errors in the text or the code. However, no one is perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save another reader hours of frustration and at the same time help us provide even higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all errata that has been submitted for this book and posted by Wrox editors. A complete book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml and complete the form there to send us the error you have found. We’ll check the information and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based system for you to post messages relating to Wrox books and related technologies and interact with other readers and technology users. The forums offer a subscription feature to email you topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you not only as you read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you want to provide and click Submit.

4. You will receive an email with information describing how to verify your account and complete the joining process.

After you join, you can post new messages and respond to messages that other users post. You can read messages at any time on the web. If you want to have new messages from a particular forum emailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to questions about how the forum software works as well as for many common questions specific to P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

[image: advert]
Visit www.safaribooksonline.com/wrox1 to get started

[image: advert]

Related Wrox Books

Beginning Android Application Development

ISBN: 978-1-118-01711-1

This full-color guide offers you a hands-on introduction to creating Android applications for the latest mobile devices. Each lesson is accompanied with real-world examples to drive home the content. Beginning with an overview of core Android features and tools, you’ll move at a steady pace while learning everything you need to know to successfully develop your own Android applications.

Beginning iOS Application Development with HTML and JavaScript

ISBN: 978-1-118-15900-2

Are you already proficient in HTML, CSS, JavaScript, and Ajax and eager to create apps that can be rapidly deployed across mobile devices? Then this is the book for you. You’ll learn to use what you already know to quickly apply your existing skills to the mobile platform so you can start developing apps for the iPhone, iPod touch, and iPad today. The book explains how to work with core technologies, enable and optimize websites for the iPhone and iPad, style with CSS, program the interface, and, ultimately, submit your apps to the App Store.

Beginning iOS Game Development

ISBN: 978-1-118-10732-4

This accessible guide is ideal for getting started developing games for the iPhone and iPad. It presents the iOS system architecture, gives you the step-by-step of game development, and introduces the languages used to develop games. From the basic building blocks to including drawing, responding to user interaction, animation, and sound, this book provides a one-stop-shop for getting your game up and running.

Beginning Windows Phone 7 Application Development:

Building Windows Phone Applications Using Silverlight and XNA

ISBN: 978-0-470-91233-1

This book offers a foundation for using the tools required for Windows Phone 7 development, including Visual Studio 2010 Express Edition, the Windows Phone 7 Series SDK, and Silverlight. Experienced authors provide you with detailed coverage on developing accordingly for an application’s lifetime, accessing cloud services, and developing notification services.

Professional Flash Mobile Development: Creating Android and iPhone Applications

ISBN: 978-0-470-62007-6

This Wrox guide shows Flash and ActionScript developers how to create native applications for Android and iPhone mobile devices using Flash and Flash Builder. Packed with practical examples, it shows how to build a variety of apps and integrate them with core mobile services such as Accelerometer, GPS, Photo Library, and more.

Professional iPhone and iPad Application Development

ISBN: 978-0-470-87819-4

Packed with over twenty complete standalone applications that are designed to be recreated, rebuilt, and reused by the professional developer, this resource presents step-by-step guidance for creating superior apps for the iPhone and iPad. You’ll explore the many developer tools and learn how to use them and you’ll also discover how to apply the techniques learned to real-world situations.

Professional iPhone and iPad Database Application Programming

ISBN: 978-0-470-63617-6

Award-winning developer Patrick Alessi walks you through the flow of data in an enterprise application. This includes in-depth coverage of displaying and manipulating data, creating and managing data using core data, and integrating your applications using Web Services. This book also covers extracting data from databases such as Oracle, MySQL, or SQL Server.

The Art of the App Store: The Business of Apple Development

ISBN: 978-0-470-95278-8

This invaluable book offers a non-technical look at all aspects of the iPhone application development landscape and gets to the core of what makes a popular—and profitable—application. From knowing your customer to launching a successful app, and everything in between, this must-have guide navigates such topics as developing a concept, analyzing the competition, considerations before the launch, marketing, building a community, and maintaining market share.

OEBPS/images/f527-02.jpg
806 Distribution Provisioning Profiles - i0S Provisioning Portal - Apple Developer
+ [nap:deveioper.apple.com;ios/ manage /prowsicningprofies create action 1y B h& Google m

& Developer Technologies Resowces Pogams Swport Memberemer (@ o

105 Provisioning Portal

Provisioning Portal
Coifcnen Development | Diswibution History. How To
i Create 08 Distribution Provisioning Profile
opos
DI e e i e A s e g s o e T e mor, i e ow To st
Olstribution Method @ ropsore ©
Profle Name ==

Distribution Cerficate Wel-Meng Lee (expiing on Sep 4,2012)

v D ==

OEBPS/images/f527-01.jpg
Provisioning Profiles - (05 Provisioning Portal - Apple Developer

-+ Do devsoper sope com s marageiponsoningproies vendmumuminproies e |G Cooge

Momber Comer (@ 5w D

& Developer Technologies Resources Progams Supporc

i0S Provisioning Portal

Provisioning Portal Gotor05 0 Cer
Carfcaes Development | Disuibution History. HowTo

@ Distribution Provisioning Profiles New profie
op0s

TR (e)

OEBPS/images/f528-02.jpg
Heiloworld
¥ 1 target, 105 Seompme—
4 Defaule@2xpng

4 Defaultpng
v [Helloworld
[h) HeloworldAppDelegate.h
I HelloWorldAppDelegate.m
mi

OEBPS/images/f528-01.jpg
Rosle Ll o 305 1

D matn Forrt At wih g5 i
i ourb Soon Nt

o i

Code i Eunans

o g dercy oortcotesin

Bt o

2 e et s o e Dl W e LGS LALSY i W)
oot ta optcaon sratrs e 2delop e lowr

AT Y i a—) seaTrges VA S 150t ot o Alcaton ek et e)

HelworiAgpale o eplcstion e e 2 gHeoN)
[S e e ——————

105 Team proviicin ol o eplcson Karties
e rovioig e o soplesn eretes)

OEBPS/images/f529-01.jpg
Xcode File Edit View Navigate Editor JfLITa® Window Help

Run
Test
Profile

Analyze

Build For
Perform Action

Build 8
Clean AgeK

OEBPS/images/f528-03.jpg
5 HelloWorld. xcodeproj — ., HelloWorld.app.
‘Archve Succeeded | Today at 1015 AN

No ssues

(elowond —————¢] ios —
Scneme Destination Breakaoines
Build Configuration (Release 3]

Archive Name [Helloviorlc

Options & Reveal Archive in Organizer

Duplicate Schame Manage Schemes...

+ 0@ (O

OEBPS/images/f530-01.jpg
806 iTunes Connect

(> [+ [https://itunesconnect.apple.com/WebObjects /iTune: Apple Inc. ¢ | (Q- Gocgle

& iTunes Connect Wei-Meng Lee, Wei-Meng Lee (Sign Out |

=
@

Welcome, Wei-Meng Lee
Tunes Connect provides tools to help manzge your content in the App Store.

Are you looking for opportunities to generate additional revenue and market your apps to milions of
iPhone and iPod touch users around the world? Apple now offers two choices to help promote your apps.
and earn extra revenue through advertising. iAd Network allows you to create media-rich ads and eam 60
percent of acvertising revenue generated by iAds served to your app. iAd for Developers gives you a
unique, cost-effective way to promote your 105 4 apps to millions of iPhore and ifod touch users. Learn
more about the iAd Network and iAd for Developers and take advantage of these programs today.

You can now generate promo codes for your Mac apps in iTunes Connect. These promo codes can be
redeemed in any Mac App Store worldwide. For each version of your app, you can request up to 50 promo
codes. To learn more about requesting promo codes in Tunes Connect, see the iTunes Connect
Developer Guide.

You can now view the most frequently encountered crashes for the latest version of each of your Mac
apps using crash reports. To view crash reports and crash logs for an 2pp, go to the Manage Your
Applications module, click View Details, and then click the Crash Reports link.

Version 1.2 of the [Tunes Connect Nobile app is now available for download on the App Store. iTunes
‘Connect Mobile 1.2 allows you to receive push notifications related to the status of your apps.

iAd is a new mobile advertising platform that combines the emotion of TV ads with the interactivity of the
web. For an opportunity to earn advertising revenue, Join the iAd Network and enzble ads in your
‘applications. Learn more &

To use 1Ad in your applications, your Team Agent must agree to the IAd Network Contract. Note that you
must agree to the latest version of the iPhone Developer Program Agreement before you can access the
1Ad Network Contradt.

Sales and Trends
Preview or download your daily and weeKly sales
information here.

Manage Your Applications
Add, view, and manage your applications in the
Tunes Store.

Contracts, Tay, and Banking
Manage your contracts, tax, and banking
information.

Contact Us
Having a problem uploading your application?
Can't find 2 Finance Report? Use our Contact Us.
system to find an answer to your question or to
generate a question to an Tures Rep

Payments and Financial Reports.
View and download your monthly financial
reports and payments.

Manage Users
Setaccess permissions and email settings for
users of your iTunes Connect account.

2) Download the Developer Guide. (2) FAQs Review our answers to common inguiries.

OEBPS/images/f529-02.jpg
Organizer - Archives

HelloWorld
Helloworld

Creston Date Sepember 6, 2011 10:24 AV
Version: L0
o ———

Rame Comment Siaus

OEBPS/images/f532-01.jpg
TIERARY.

n wusic

S s 60
@ podasts A=

= iTunesy ETTID @
13 Books

STORE Era

[=R Y AdHocProfile.
P, mobil.vision
52 ping

purchased

Devices
v 0 Wei-Meng Lee's P... £ ©

OEBPS/images/f531-01.jpg
Organizer - Archives

Identity: | iPhone Distribution: Wei-Meng Lee

Previous

OEBPS/images/f532-02.jpg
06 Munes |
(D)) + em—p 1 T] e

= purchasea Summary o @EID Music Moves TVShows Podcss Munesy fooks Phows

Lo @Sync Apps Wei-Meng Lee’s iPhone 4

1 music
e =TT 0
CHE BRI
Faceboo
s ok, v
2 vome shang ey
1 dink-068A7C & 13m8

4 Genus

© ey
2 90 wusic
2 Chassical Music
% Masic Videos
2wy Top Ratsa
£ Recenty Added

o

KAYAK Fligh, Hotel Search
ot Lesme

OEBPS/images/f387-01.jpg
(arie ‘401 P

Enter your teets

et postad om 0 51 From @wmengies

URL [rupsmoaweanacovacp o

OEBPS/images/f535-01.jpg
Losding

Choose options for your new project:

reducthame Wkierkps

Comary denifer neteamzceneion

Bundie Identifir et leam2develop MyKilerApp

Class prefx [MyKilerapo|)

Device Family [Phone =

0] Use Storyboard
) Use Automatic Referernce Counting
() include Unit Tests

OEBPS/images/f385-02.jpg
®o0e [Twitter xcodeproj — |« apple jpeg

@ _) Moo (=] Finished running Twiter Eﬂ =) m LJ

TR Ho ssues -

)-1;1 ® A = e <> | ETwiner) (Twites) (- supportg Fles) ==
Taiter

¥ 81 aner ossoxs.0

v Tt

[h TwinterAppDelegate.h
[TwierAppDelegate.m
[§] TwhterViewControlic
[8) TwmerviewConvaler.m
** TuiteriewContrller b

(8] Twiter-prefcpch
i Faeserte
[y S p—
[—
» & Foundaion amenor

G

OEBPS/images/f534-01.jpg
red

sl - o

osenct Game rige-tases sigle viw
Sopicanon pesiend

Empry Applcation

“ml
a

Master-Detail Application

Thistemplat provides a startng point for o masterdetall application. tprovides a user
{ntertace conhigured wih 3 Pavgason contrer 10 cSpy 3 I af ems and 56 3 S view
onipad

OEBPS/images/f388-01.jpg
What's happening?

@twitest_account
Test Account

Hey, this tweet posted from iOS 5!
From (?weimenglee

twitest_account Tt Acoun: &« | learnzdevelop.net

Hey, tis twee posted from 0 51 From (Lwieimergles s :
loam2develop.net pic.wittor.comfjutka7! pic.twitter.com/jutkazl
98 300nds ago 7 Favorts 4 Reply f Delete

Timeline @Montions Retweets - Searches - Lists ~

powered by [0 Phobuckst Fogthis media

38 saconds ago via 08
1 Favorte Roply & Dobto
Mentioned in this Tweet

weimenglee e mengiee - Folov

" Iam awriter, tecknologist and founder of
‘my own training company - Developer
Learning Solutions.

OEBPS/images/f536-02.jpg
806

2

MyKillerApp.xcodeproj — [m| MyKillerAppViewController.m ™

Xcode

Ty ————————

iller
v B e Booxso
v (] Myillerapp.
5] MyilerAppApsOelegare.n
] MykillerAppAprDelegate.m
|h| MyKillerAppViewControfler.h
[MyKillerAppViewController.m
7 MykillerAppViewControler.xib
» (isupporing Files
» (] Frameworks.

7/ MyKillerAppViewController.m
77 Mykilleraop

Vi

7/ Created by vei-Heng Lee on 6/9/11.

/7 Comyriaht’ (c) 2011 _WyConpanytane__. AL richts ressrved.

#import "MyKillerapoViewControlier.h"
inplenentation MyKillerAppViewController

- (void)didneceiveMamoryWarning
Fi

» [products
(super gisReceiveHznoryHarningls
/7 Release any cached data, inages, etc that aren't in use.
#pragna mark - View lifecycle
7 (et visupiatons
Louper viewdidLoad];
770" any agaitionsl setup stter losging the view, typically fron a nib.
3
(v0id)viewbidintosd
B
{super viewbidunload];
/7 Release any retainea subvieus of the main view.
77 evs. setfmyutlet = nil;
(void) viewhi LAppear (B00L | animated
B
+ QAP (S [super viewWillAppear:animated]:

OEBPS/images/f387-02.jpg
from

A

= BDEUEND
e

OEBPS/images/f536-01.jpg
MyKillerApp.xcodeproj

eo0e

®) @) (e R \ =
R s =
|z ® & = a < > | [imykilerapp. s OO
B Tirger 850K 50 POy R info. Build setings Build Phases Build Rules.
v (L] MyillerApp 53 myillerapp 105 Application Target

e TANE Identifier | net.learn2develop.MyKillerAnp

I Mylerappaproaegat m m
T vesion [10 wid [10

[h] MykillerappViewController.n
m| MykillerAppViewController.m
Devices |

= MykilleAppViewControler.xib (iPhone <)
¥ [[]supporting Files Deployment Target 5.0 k2
» (2 Frameworis
| » [Produas . iPhore | Pod Desloyment info
- Main Storyboard | [+)
Main Intrface | Iv)

BoEE

Portait Upside Landscpe Landscape
Right

; Add Target Validate Settings

|
Supported Device Orientations.

OEBPS/images/f394-02.jpg
(») (=) (5= hones0]

] Bluetooth.xcodepro) — - BluetoothViewController.xib
511 Sustor Succesded | Todsy 453 AN

(=[S}

<> Dn

BomtootimsCortoler s gt | [View

]

Buriooh
7 B s ios sox s
BuctootnAspDeegate

Supportng fles

Camekutamenork
Ut tiamenarc
Founcazon ramenar
s

+ OBE®

Sona]

Comect]

Disconneat]

St ar Gy

st s None

D 0le(=®

[—

(RTE3)

Text |

aE

s e i e o3

Siider -Disglys onnacus e of

Switch - Digios nclement srawig
e Do san o7 . Mowt

a4 b o
prces o unknonsGusion

Progress Vew - Depis he pregress

Page Control it a ot o sz
coeh g nan speearon ans
ot se s g

OEBPS/images/f538-01.jpg
[Playviceo - PlayVideo xcodeproj

dtor New Organiner
3 PlayVideo - PlayVideo.xcodeproj ol
Bl rues
Summay o SudSeings | BuildPhases | BuldRues
Ia !
(¥ Toraet Dependencies © ey)
[Compile Sources (3 tems) [=)]
[ik ey Wit e e |
Reauired §
& Fourdation famenork Reauired
6 CoreCraphics ramework. Recuired §
+ - Drag 0 reocer framenorks 2
[Copy Bundle Resources (3 items) g

Ade Buie Phase

OEBPS/images/f394-01.jpg
‘m. Ston Schemé

@iz & o = = 8
Sluetooth
¥ 31 target, 105 SDK 5.0 L
v (5 Bluetooth

[l BuctoothAppDelegate.n i
[m BluetoothAnpDelgate.m
[Bluetoothviewcontrolier.n
[BluetoothViewController.m
B i amaiecan
» (= Supporting Files
v (] Frameworks.
T
» & Foundation.framework
» & CoreGraphics.framework
» [l Products

OEBPS/images/f537-01.jpg
eoe

@) @ e (=)
Run_ Siop Scheme B

) MyKillerApp.xcodeproj — [[| MyKillerApp-Info.plist

eods

m—

\View Organizer

[min ® &

)

< > | [vilerap) [wyilerape [supporurg ies Dmﬁnluwmpnm o Setecton

Tirge, 03S0K'50
v 3 MykillerAgp.

b Myilerkppazposiegsieh

 [n MywilerppagpDEegatem
[h) WyKilerApovieacontroler.n
[MyKilkrAppVicwControlier.m

NyKilerAppViewContealier.xib

v (] supporting files.

‘ [MrkillerApp

i) infoplist.strings.

1) mainm

[f) MyilerAop-Frefn.pch
b [Frameworks.
» [Products

s OEE®

ey
Localzation native development region
Bundle display rame
Executabie e
> lcon fles
Bundie denufier
Infoictionary version
Bundie name
Bundie DS Type code
Bundie versions string, short
Bundi creator OS Type cods
Bundie version
Application requires /Phone environme:
¥ Supported interface orfentations

Tyee
Siring
String
sing
Ay
siring
String
sing
String
sung
String
suing
Boolean
Array

Value
S{PRODUCT NAWE]

SIEXECUTABLE_NAVIEL

©tems)

netleam2develop S{PRODUCT_NAME rfclo3iderifer}
60

SIPRODUCT_NAWE}

e

10
m
10
e

6 em

OEBPS/images/f398-01.jpg
Looking for other iPads,
1Phones, or iPod touches.

OEBPS/images/f539-01.jpg
#pragna mark - View lifecycle
- (void)viewdidLoad
1

UIALecey.

Ulatertvieustyle
[Uthlertvicustyle UIALertyieustyledetault

[Uihlertvicustyle UIALertviewstyleLoginAndPassuordInput
[Uthlertvicustyle UIALertvieustyleplainTextInput

[Uilercvicustyle UTALertviewstylesecureTextInput

~ (void)viewillAppear: (BOOL)aninated
q

OEBPS/images/f395-01.jpg
File's Owner

Outlets

comnect Button - Connect

disconnect Button - Disconnect

searchDisplayControler

oaessage TextFisd

view View

Referencing Outlets

New Refrencing Outet

Referencing Outlet Collections

New Referencing Outet Cllection

Recelved Actions

benConnect: Button - Connect
Touch Up Inside

benDisconnect Button - Disconnect
Touch Up Inside

bensend: Button - Send
Touch Up Inside

®
3
O
3
®
o
o
®
®
®

OEBPS/images/f538-02.jpg
[Playviceo - PlayVideo xcodeproj o

Eloo @0
i

- New orgminer
3 PlayVideo - PlayVideo xcodeproj ™ ————

Choose frameworks and libraris to adé

Buld Rules

7 M peraie] e

@
[oy

e
6 MapKit framework
1 MessageUl framework.

& MobileCoreservices framework
1 NewsstandKit framework

& OpenAL framework

& OpenGLES. framework
R,

€ QuartzCore.framework.

1 QuickLook framework

& Security.framework

= StoreKit framework

6 SystemConfiguration.framework
& Twitter.framework

G LKt Framework

Add Oter.. | Cancel | [Add)

OEBPS/images/f398-03.jpg
net.learn2develop.Blueto...
would like to connect.

OEBPS/images/f398-02.jpg

OEBPS/images/f539-02.jpg
#pragna mark - View lifecycle

- (oigvieoistons

B
- Goigvieoistoas
T

B

ULKlersyiew salert - [[UIAertView alloc] iffisyichlst e: [NSSEring 8], message: (NSSEring =), celegates
Stherout onTis1cs: NSSE) ezeseper

Luacr viewiaiosels
SR o sesit el setup of @

Lsuger viewicuntoos];
71 Release any retained subvi
I ea el - A

- (voig)viewi Uppear: (3000)an

tsuser views1UAspear: aninatel

voia

indexTAccessibilityElenent: (4)
SnitusthCode r: (NSCoder <)

nsertSubysen: UIView 41 oboveSubvicus (UVie)

nsertsubuten: (UTViow +) atasex: INSInteger)
snsertsubuiew: (U1view +) belowsubvieu: view +)

selogat: (4) cancelouttonatle: (SString -]

others.

OEBPS/images/f522-02.jpg
Provisioning Profiles - iOS Provisioning Portal - Apple Developer

+ [Inp:developer apple comjios manage/provsioningprofies ndex cton

B L(- Google

& Developer Technologies Resowrces Programs Suppor. Member Center 5
i0S Provisioning Portal i .
Provsioning poral —
e Dersopment | Disioion,_| sy =

¥ Development Provi ing Profiles Profie
o

m proviioning Proile A0 status. Actons.

Fers ST ———— rning
ST s —

OEBPS/images/f523-01.jpg

OEBPS/images/f522-03.jpg
806 T e P D e e o

[22)+ CIhww://developer.appie.com/ios; manage) provs oningprofie index.action

& Developer Techologes Resoures Progams

105 Provisioning Portal

Contteates Development | _ pistbusion ustory,

@ Development Provisioning Profiles

1 provisioning Profie A room
@ Generaisspevcesbofle sunsvsna+

Support

Member Comer (@ 501 vt e

saus
Acue

OEBPS/images/f524-01.jpg
"
T ey Tan st g stcin

© © -
TG et e seings

OEBPS/images/f523-02.jpg
®o0e Organizer - Devices

@ =] B O
it o i
uswane

e GeneraliOS5DevicesProfile

4 Software Images. reation Date Monday, September 5, 2011 10.40:50 PM Singapore Standard Time

o S B p e e e T e
B scnsnon e e e

: DECEs Apg Idantifier GLNSVEOD).*

B, o T ke V- o' . We-on e's e

Wei-Meng Lee
55(0As3130)

(@ profie vame

Em
A Applicatons

1 Console

 Device Logs

B Screenshors
o | Mel-Merg Locs Phone 4
MLy

- Device Logs

B screcnshors

eng Lo

Aca pelete

OEBPS/images/f525-01.jpg
Development Provisioning Profiles - i0S Provisioning Portal - Apple Developer

[developer appl comios/manage/provsioningprofies, crete actotype=1 e J{er coon

& Developer

Provisioning Portal

105 Provisioning Portal

Technologies Resources Programs Support Member Comter

Development | Disernuon History. HowTo

Create i0S Development Provisioning Profile

Generae provisioning profies hre. Al iekds ae requied uness thervise noted. Tolearn mre, vt the How To secton.

protie ame Feleviaagratie
Centficates erbengee
v 1D [eisworianosio <)
Devices select Al
Crer——— Vg Lo hone 8

OEBPS/images/f524-02.jpg
LEK:] /Add App IDs - 105 Provisioning Portal - Apple Developer
+ [develope appl comiios/manage/bundies add acion

& Developer Temologies Resouwces Pogams Swpon MemberCemer (@

i0S Provisioning Portal e | oot | logon
Provisioning portal Pras——
Cortnes ansoe HowTo

i Create App ID

pm— T

Entera common name or descrpion of your Agp D using alphanumarc characers, Th descpion ou specfy will be used
voughout the Provisioring Poral 0 idendty tis AD .

TGRS Vet sl s 8, £,y dscin

Bundie Seed 1 (app 10 Pre)

Use your Team 1D o select an exising Bundle Seed 1D for your A D,

[GEETeam) ¥y arceing s aplcatios it wil s the e Ky s, e i bl S o oy
o o1,

Bundie dendier (pp ID Suffx)

Entr uiaue denife for your Ap 1. Th recommended practice i o se reverse-doman rare st sting for th Bundie
dentfr orton of the App 0.

[t zeeiopyeaWang | B comdomimare sponams

OEBPS/images/f526-01.jpg
o e e g NG

o ot BOERAS

St e — e e

i S

S

OEBPS/images/f525-02.jpg
[HelloWorid.xcodepro]

®T@W Blog@ag) @

= e
14 > Priovens
moyect Sy (RO b ey Sl SR
e B retovors NG g repenis
& Defauitong TARGETS - = b
et s [T — i
e) Y S it o8 T]
m) HelloworigAppDelegate.m InfoDictionary version 60
B et anescomateh s verion 1o
8 ot oiescomrlom Becsmete fr——
R ko ool e —— -
¥ [Supporting Files. » Icon files. (L ftem)
Ty SHaTTe— B rems
5 ettt e Teon alreacy includes glons effects s
U e Somooicr s
= man S 3 T e =
[l S creer 05T e m
e -
Sidinane Somoocr s
> beameni s
> i et
P T
T
- et Sein et
+ 0@E®)lm o u oo i 3y @dovid

OEBPS/images/f526-02.jpg
Certificates - 05 Provisioning Portal - Apple Developer
|+ [nups://developer.apple.com ios manage/certfcates team istrbute.action < ‘;{Qv Google

& Developer Tt s Grrm Srmn Comeees
i0S Provisioning Portal

Provisioning Portal Got0105 s Camer

m Development Distribution History. How To
Deces .
Current Distribution Certificate
AspDs
Pravisioning Name Expiration Date Pravisioning Profles st Actons
Distribution (1) You currently do not have a vald disbution cedficate

1 you o nat have the WADR inermclate certficte insaled,cick hers to downloas o,

OEBPS/images/back01.jpg
Programmer to Programmer™

Connect with Wrox.

Participate
Take an active role online by participating
in our P2P forums @ p2p-wrox.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community

Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com

Browse the vast selection of Wrox titles, e-books,

and blogs and find exactly what you need

Contact Us.

User Group Program
Become a member and take advantage of all
the benefits

Wrox on

Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

[T facebook |

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferences
and user group events

We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

OEBPS/images/back.jpg
Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

Wit Safar Books Onine, you can expeience
searchable,ulimited acees to thousands of
technology, digtal mediaand professional
development books an vidos from dozens of
Ieaing publishers. With one ow mnthly oryealy
subscripion price you etz

« Access o hundreds of expert-ld rstructional
videos on today’ hftest topcs.

« Sample code o hefp accelerate a wide variety
ofsoftware projects

« Robust organzing features incluing favoits,
Highlights, tags, ntes, mash-ups and more

 Mobik access using any device with a browiser

E « Rough Cuts pre-publshed manuseripts
velopm®

L o0 START YOUR FREE TRIAL TODAY!
Visit www:safaribooksonline.com/wrox28 to ge started.

Dol s e i . Ui gpis ot
Sty s il st 12 sy
lingces i Uy s ot aalbinal i,

OEBPS/images/f002-02.jpg
eon (5 Applications
= o

PAYORITES
Al My Files
@ Ardrop

<] pesktop audio Dasicode.app Graphics Taols Instruments.app
1 weimenglee

#\ Applica .
= m =

(£ Drosbox
performance Tools Quarz Uuies Xeodeapp
SHARED
Composer.app
& 1921

I DiskStation

OEBPS/images/f003-01.jpg
Welcome to Xcode

Version 4.2 (4D1775)

S E B

Create a new Xcode project
Start building 2 new Mar, iPhons or iPad
application from one of the incluced templates

Connect to 2 repository.
Use Xcode's integrated source control features to
work with your existing projects

Learn about using Xcode
Explore the Xcode development environment with
the Xeode 4 User Guide

Go to Apple's developer portal
Visit the Mac and 105 Dev Center websites at
developerapple.com

No recents

No Selection

OEBPS/images/cross.gif

OEBPS/images/f002-01.jpg
Ol

@
16

OEBPS/images/f006-01.jpg
i0S Simulator File Edit JRETCUEICE Debug Window Help

Device »
Version 4.3.2 (8H7)

v 5.0 (9A5313e)

Rotate Left Be
Rotate Right B
Shake Gesture ~%Z

oRrH
BL

Home
Lock

Simulate Memory Warning
Toggle In-Call Status Bar 8T
Simulate Hardware Keyboard

TV Out »
e

OEBPS/images/f004-01.jpg
Loading

Previous

==

av m
sopiicavon >
ramework & Library 78 =
oter OpenGL Game Page-Based single View
& Macosx Application Application
soiicaton o
Frameworc & brary
e X
Sysem lag-in
omer Tabbed Appication Unlty Aooication Emory Azpicaton
-—
© Master-Detail Application
This empltsprvides starting ot fo » mastardstal sppication. 1 provides 3 user
ersce confiured wih s vaeion comolr to P 3t of A e s viw
o,

Il

OEBPS/images/f005-01.jpg

OEBPS/images/f491-01.jpg
806 I3 States - States-Info.plist

® @ Sfron] (=] Running States on iPhone Simulator

T =

)-1;1 ® A = ®» B <> | [ysutes [states) |supporting files) [B Siates-info.s
States e Tee ae
¥ B g 05 050 CPhund eDevelopmentegion Srng e
v (2 states CrtundeDizpaaTe Srng siPRODUCT_NAME)
5 statesappDelegaten CPBundieExecutable sting SIEXECUTABLE_NAVIEH
E SmestopDuieie . » CPaundelconfiles Ay © tems)
B Crhundieentrer Srng retleamdevelop SPRODUCT_NAMEricL03idertifr)
e CPRundinfobictionaryVersion srng 60
S Crhundename Srng SPRODUCT_NAME)
CPrundipadageTye Svng AL
S CPhundeshonversinsiring Ssrng 10
Boan CPrundesignature svng
et Crhundeversion srng 10
VR SRequiresIPhons0s Booen vEs
» [Products > UlsupportedinterfaceOrientatiorns Array @ items)
UikpplicatonExisorsusperd _ §©© Baoean 5 VE B

OEBPS/images/f130-03.jpg
33 Keyboardinputs - KeyboardinputsViewController.xib

Running Keyboardinputs on iPhone Smulator ‘

(=]

i No Issues Lt e e
bl Bipeeonpesy e M) ooyl e e B B 8ol 00
= —
= —
{7 e Dislosure i
TS

Alphanumeric Input T info Dark
Adé Contact h
AT T i) i
Background [Default Background Image [|
fon sysam 150 &)

Text color [mmm | Derauit

Shidow Color| =3 Defauc

Shadow Ofset o

width Feight
Highight (] Reverses Direction
‘Drauing (] Shows Touch On Highiight
¥ Highiighted Adjusts Image
M Disabled Adjusts Image
Lire Break [Truncate Micdle 2]

D (e =
ITE—

nted Control - Disolays
I 1 [2 J muh\mt ‘seqments, each of which
fancrions 2 2 discrete butten.

[@

() Text Fleld - Dispays eaadte tex ara
Text | sands an sction mezsage to target
oblect when Retur i tapped.

Slider - Dsplaysa contiuous range of
@1 values and allows the seecton of

OEBPS/images/f308-01.jpg
806 Animations - imac_old.jpeg
(e O RO BEloz)

e A AT
;- 1 :-: Y = a «_» | [jAnimatons [Aumations) (|supporng Files) |u| Imc_old peg) No Selecton

TR

(= Anmations

B imacipeg.
[Mac8100.peg

B Macpiueog
[Macstoeg

[ifoplavsrings
sl manm
(1) Animatins-Prafcpch
» [Frameworks
» [poducte

+ O@8 (>

OEBPS/images/f493-01.jpg
I3 L8S - LS~ Info.plist

Build L8S: Succaeded | 14/8/11 2t 1134 AM

¥ B ossoxso
v LS
hl LasAppDelegaten
‘m LBSAppDelegate.m
R 1BSViewContrallern
m LBSViewContraller.m
2 irsrmconmalir b
v [Supporting Files.

& 4 » | (9155 jtss) [Jsuppordng ies) [Lss-nfoplse NoSeecion
ey Tvee 7y

CrBundleDevelopmentRegion

CrBundleDisplayName

CrBundieExecutadle

» CrundlelconFies
CrBundleigentiner
CraundleinfaDictionarVersion
Craundieame
CrBundlePackageType
CrBundlesnortversionstring
CFBundlaSignature
CrBundleversion
LSReaquiresiPhoncOs

» Usupporteainteriaceorientations

b URequirecDeviceCapsbilte:

String
String
sting
Ay
sting
String
sting
String
sting
String
stng
Soolean
armay
Armay

SPRODUCT_NavIE}
S{ExECUTABLE NAME}
©items)
netlearnzdevelop.S{PRODUCT_NAME:fc103¢icentifer}
60

S{PRODUCT_NAME}

10
™
10
ves
3 1tems)
@ items)

OEBPS/images/f307-01.jpg

OEBPS/images/f491-02.jpg
20 outpur

Copyrint 2604 Free Software Foundotion, I

" Frec sotcuare, covaras by the G General PUBLLC License, and you are
neleone o change 1t ond/or distribute copics of it under certain conditions.
Type “enow copying’ <o seq the conaitions.
There i3 sbsolucely mo darranty for GOb.
Thiz DB as contidured 25 Bt 6.
20131-08-16 19:45:1.718 Statos (29
2013 98 16 10:45110.722 Seates (2070
2011-08-16 19:48121 362 States (2976
2011°88-16 19:45:21.363 States (2970
Erogran enes vith exit cose:

clesr) (0 W])

“show varranty" for detsils
ppla-daruin' Av<aching to process 2070
€103 spp Leation:didFinishiaunchinghi hoptions:

1 appic
£403] spoticationdilllerninats

OEBPS/images/f135-01.jpg
(=)

ko

3 Scroller - ScrollerViewController.xib.
ot

Elo = @=m "

v orsaneer

<>

Eisaoter. (]

DB mjes o

| @ ¢

Sy _ostauic

Scolers o Shaws Forzonel Seolers
Shows Vet Scroles
o Scroling Enabled

I

(oo

o e e

[R
e e i

Date icker - ooty muteie
[e o
Pcker View - Ciplays a sing-
Vhector s e mo f ke

Ad BamnerView - The 4D e
o promes s view tatdsns
B sheremets o 0 5

receaze ot tapgesres e ard
v

pinch Gasture Recagizer - Provkes
iecoonaa ot pinch Sstnes which

OEBPS/images/f311-01.jpg
o I3 PlayVideo - Trailer.mdv

m) (Eoithoe] [e Elog @E=a (=)
e e on Vew organzer
Mz & & > 8 <> | [Payvideo) [|Playideo | [Supporting Fles) < Traler.mdv) No Selection
~ , Payvideo

B e sossoxso

v Epayieo

) PlayVideeppDalegareh
in| PayVideoAppDelegate.m
] PlayvideaviewContralier.n
im| PayVideoViawCor
PayVideoViewControllerxb
v [supporting Files

S RS ——
) PlayVideo-info.plist
InfoPliststrings
) Playvideo-prefx.pch
» (Frameworks
> (Products

0000126

OEBPS/images/f499-01.jpg
eno

LocalNotification - LocalNotificationViewController.xib o
®) (3 i) Elus @Sm @
IRt o
\i\ﬂ ® & - 8 B B osahorinctonvewContolleio €. _|view |) E\. e o

" [LoealNotiheation
Ltaret 10550k 3.0
+ (] Locaouficaton
[l ocaiNotficaionAppDelegate
m LocsiNoticationAppDelegater
[f] LocaiNoeicatonvienContl er.n
[m tocaivorcavonvienconter.m

» I supporing iles
» (i Frameworks
> [products

£ OEE S

¥ Simulated Vetrics

ize [Nore

Enter notfication message

Sot

Cancel all nofifications

Orenaten ot
suas s Gar
Top r [None
sotom g Rore
0 0]

=

Label - Avaraty szes anountof

Labal Labe!

Round Rect Button - mercots
[toucn ovemss anasanc an acion
messaga 1 argt abjct whan.

Seomented Control - Dslys
(1)2) T ot

[Tem e - st v et
Text | ana sanas an 1o mactage 103
Gbject hen et £ toped.

Sider - Dspiys a contiunus ange
@7 ke and aioas e seacion o
2singlnlie

feecback on th prograss o 3 s or
process of unkaown durston

OEBPS/images/f131-01.jpg
) Beyboar...

4> | [Keyboarcimputs) [Keyboar.

€

Bkeyboar...) |_|view)

Alphanumeric Input

Sent Events
baTouched:
_ doneEditng

OEBPS/images/f309-01.jpg

OEBPS/images/f493-02.jpg
006
®) ® e =)
R Soo scheme

LBS - LBS-Info.plist

Build L8S: Succaeded | 14/8/11at 1134 AM

= Gl

Editor Vew Organizer

miz © 6 =8

| > [yiss) s []supporung ries) [Las-info.pist) No seecton

¥ B3, ossoxso
vius
b/ LBSAgpDelegate.n
isagpoecsaiem
iStmaommaters
usnevconralern
isvewconvalir b
v (] Supporting files
e

h
#

T foisttrings
[h) s-refinpch

Tl MyAnnotation
MyAnnatation.m

» (2 Frameworks

» (- products

Key Tvpe Value
CFBundleevelopmentRegon Stng en
CrBundieDisplayName S SPRODUCT_NAME}
Crtundietxecutable Stng SIEXECUTABLE_NAME}
» CraundielconFiles Array ©items)
Crtundieldentitier Strng netleamdevelop SIPRODUCT_NAME rfcl034icentiner}
CPaundiainfeDitonaersion Swng 60
CrtundieName Stng SIPRODUCT_NAME}
CraundiepaciageType String
CrtundieSortyersiorsring string 10
CPaundieSignature Swng 7w
CrtundieVersion strng 10
LSReauiresiPhoneos. foolean VS
» USupportedinteriaceOrientations Array 3 tems)
> URequiredDeviceCapabiltes Array 2 tems)
¥ UBackgroundiodes Ay (L item)
Trem 0 ©06 Suns 3 loation =

OEBPS/images/f135-03.jpg

OEBPS/images/f312-01.jpg
5 PlayVideo - PlayVideo. xcodeproj

Ela o
Editor

Breakpoints

E=0 [

View

Organ|

L < > | Eyrevay
PROJECT |
Pawideo |

TARGETS.

Choose frameworks and liraries to add:
@

[bz 125.dyi
[tz Layi
RES
L 6 MapKit framework

NediaPlayer framework.
& MessageUL framework
1 MobileCoreServices.framework

Reguired +
Required *
Required 3

OEBPS/images/f502-02.jpg

OEBPS/images/f135-02.jpg
uiscrollView

OEBPS/images/f311-02.jpg
[Playvideo - PlayVideo xcodeproj

BoE @oO =
o Vew O
eprol
Bl Seings | BuldPhases | _tulgues
@
> Target Deendencies @ kems)
[
[Lk By With Liraris 3 tems)
& UL ramework Reaured 3
Foundation.framework: Required 3
6 CoreGrapnice framaverk Regured 3
= Fmpp———
[Ade o i Resoures & ey

.
Modari Prisc

OEBPS/images/f502-01.jpg
Erternacanon message

e’ o

OEBPS/images/f022-02.jpg
[HelloWorld - HelloWorldViewController.xib
Running Helloworld on IPhone Simulator

o sues

T —
P

Sehavior o Enabled

Line Breaks [Truncate Tail i

o smem a0 @)
s 1)

G
o Adust o Fiewicth

Een —"
P vra—

‘shadon =) Defautt 2

Swmoten o)1)

Horizontal

¥ view

[_Dpojejs

e
=

e
e
EraE

Seqmented Control - il
1|2 i seqmerts, achot whicn

£ |7 | Heliowerld

®

OEBPS/images/f136-02.jpg
[Scroller - Scrolle: ntroller. xib

¥ sl viewsize

uiseroliview

Arnge postonview <]

| Actiy ndictor view.roids
Rl
oo e daen

OEBPS/images/f313-02.jpg

OEBPS/images/f502-04.jpg

OEBPS/images/f022-01.jpg
[HelloWorld - HelloWorldViewController.xib

Running Heloworid on [Phone Simulator

No.

sehavior Enabled
Baseline [Align Centers B
e Breaks [Truncate Tail B

e e—
ot System 140 g]

e minimum = @

 Agjust to Fit wictn

CEm i ra—
Pl a—

LSS r—
Aot — ol —i[)
A

¥ vew

T ——
Label garic rex:.

" Round hect Butan - eres
) o evens an s nacon
esage 103 ot obectwhen,

. Seamened Control - Dsplers
12 puitpe segments,canof wher

©),

204 | Helloviorld

OEBPS/images/f136-01.jpg

OEBPS/images/f313-01.jpg

OEBPS/images/f502-03.jpg
application:didReceiveLocalN
ofification:

Tines up!

Rl 2| c]v[e v v
e

g

OEBPS/images/f021-01.jpg
HelloWorld - HelloWorldViewController.xi

| n@ (@) [#ronesosima | [m] [WW Elo o @EoE)

Breakpolnts. i Eficor
< > CoieloNetd) (1))~ loteiiverConvaleris Gt ven] D B ® |
3 St s

\i\nbA -a\

. Heloworis
e os oo

» Erelonors = L

(e — enion Pariat

= HellorkaropDeleate m st tr iy

) HloworcvewContstern .-

o HellonericvsuContalern

Supporting s vew

) Rl o e | P —
3 foneasngs I
2 manm =
e pp e i 5 o £
UKt framework S
S Aot 0
ST i————n|
v Eiwodsas T3
A Draning & Opaque [Hidden
@ ") s G Contst
) o v
o Autoresize Subviews

o
(o

! Laber 8%, vt s of

| ound Rectsutton _ mercots
| o evens s sends a
masge 03 e ec when

‘ Seamentad Contol _Dises
12 | mikple segmens, can ot whcn

| g | Helloord -

OEBPS/images/f138-02.jpg

OEBPS/images/f320-01.jpg
3 100% &

To: weimenglee@gmail.com
Co/Bee, From: weimenglee@gmail.com
Subject: Hello

Sending emails from my iPhone app...

o[W[e[a[[¥[o] [ol7|
® BDEOO0D =
-

OEBPS/images/f020-02.jpg

OEBPS/images/f138-01.jpg
047 AM

OEBPS/images/f318-01.jpg
Emails - EmailsViewController xib

® 0 n
rr—— = Runring Emaison wel-eng Lee's Phone 4 E E =) E_El
= o otsses
N \ n ® 4 - 8 < » [9e- () B MEmailsvienControlleraib (Engish)) |_|View n 8 = \
= ¥ S Metics
L 0550850
T = Size [Nore
[h] EmailzAspDelagste.h Orientation porrai
m] EmailsAppDelegate.m . o
R Emaisviencontrolierh = e o
) Ematsvenconuoter.m 2 :
e] FRALIE]
> Supporting iles (e +) (@)
v Frameworks -
» 5 MessageUl framework Label - A variadly sized amount of
Label
» 6B Ui fiamenark frog
» & roundaton framevork
» (5 rouas < . Round Rect utton - mecens
— | o evenss and sencs an acon

L gt tos s atjct whan
| SendEmail | i o
— Seqmented Control - Displys
(1 2 mipe scgmets, cah of which
Finctons 52 3 e bt

| Text Feld - ispays edtable text
Toxt | snd sends an scton message 103
torge obact when Retrn tpped

Sider - Dispays a contnuous ange

o vlues and sllows th seection f
asngleabe,

€ e e

a
J

Activity Indicator View - Provides
feadhack on the progress of s o
Diccess of nknown duraor.

4+ OB @ (S = o 3 1|4 |Emas

OEBPS/images/f503-01.jpg
LocalNotification

Time's up!

—
Close m

OEBPS/images/f020-01.jpg
606 HelloWorld - HelloWorld.xcodeproj
) ® = = (= =
B S sheme o Ve e
< > | Exvilowona
Frosect | widsngs g e oule s
v.»«\wmm Bareloworis
WeloWorkcappoelsgst h e
B Tces enier [neteamzdereon. lomor |
eloworcapsDeiegae m A
[5] Metomoricviewconvalern Verson (10 st 10
{8 MelooriaviewContolerm
e Devies [Phone
v] Supporting Fles DestoymentTarger [1v]
(1] Hellord-nfc.plst
EEEES v rone Pt Deproyment o
) mainm
ey e o
Framencrs
> G U ramenerc i nrfce -
| > @ Foundaton framewor
‘ vi.t;’"‘mf"“"“""""”‘"‘ Supported Devie Orintatons
Atclonorcoo . -
um.
S
Ao teons

+ 0@ B @

T

Ak Targer

©

Nodernze Project

OEBPS/images/f019-01.jpg
Loading

Choose options for your new project:

Produc e [1eliowork

| Company identifier [net earn2develop

Bundle Identifier et earnzdevelop.Helloioric

clss e [etowora)

seneraniy
() Use Staryboare.
() Use Automatic Reference Counting
() Include Unit Tests.

OEBPS/images/f139-01.jpg
Label 1

Label 2

Label 3

Label 4

Label §

Label 6

Label 7

Label 8

Label 9

Label 10

OEBPS/images/f018-02.jpg
o066

It

Choose a template for your new project:

— | 2z
ramemat iy || o]
b

- m
%

Tabhes Apolicaten Uity Apolcaten Empy Applicaton

e Mac 05 X

Aopicaton
Framework 8 Ubnary
Appication Pg-in
Sysem Fug-in
omer

Wbicton

Master-Detail Application

Thi emolte provdesa starting poie for a master-etsl polcatin I provides a user
e Sanfgure it kg comor 1o ey o 4k of s and s 5 oAk i

B

Previous

OEBPS/images/f023-03.jpg

OEBPS/images/f023-02.jpg
.

~ Hello World!
|

OEBPS/images/f023-01.jpg

OEBPS/images/f321-01.jpg
Emails - EmailsViewController.xib

‘ Q @ oaitieng (=] Ranring Ermai on e-heng Le's Phare & EHoo @EoE

i scheme B e — souor vew __ongrizer
mnea < > | Demais (1R | Vew) | ion—Composetral | P @ B |
-m‘ 5 R
Virue. 105501 5.0
v Camais
] EmalisappDeiegateh
n Emalisapposigate.m)
I Emailsviencantrollern e [Tite | Compose Email

suojoct: |] n
supportng s [|

[Framenors
re

Vessagell framevork Label - A vanaby sized amunt et
[y — Label i o
» 5 Foundaton.framework

» [Produas

)

Type [Rounded Rect :

suate Coni | Defauc

Round Rect Button - Itercepts
[tooch events and sends anacio.
message 0 3 rget otjctwhen

[senaema | =
g el el e
|1 2 | maitiple segments, each of which

1 Compose Email S fincions a5 3 disrese buton.
) Toxt Fila - iy et txt
Text | ana conae a0 acton mascige 0
argetobjct when Retur s appec.

er - Displays coninaous range

s a0 allos the clcton f
Singie e

Actvty Indicator View - Poiges
‘ e ——— {asdbac on the pregrec o .5tk o
J procass of nknasn duratr.

+ OEB® =

OEBPS/images/f507-02.jpg
Attaching to process 5140.
2011-07-86 21:46:54.730 Notifications[5140:ef03] Button 0 was clicked.
2011-07-86 21:46:54.732 Notifications[3140:¢03] In processhiotification:,
Button clicked

OEBPS/images/f507-01.jpg

OEBPS/images/f142-01.jpg

OEBPS/images/f323-01.jpg
cancel Email subject here

To:
Ce/Bec, From: weimenglee@gmail.com

Subject: Email subject here

Email body here

Sent from my iPhone

OEBPS/images/f513-01.jpg
oee Organizer - Devices
* =) a L
i
" LiBRARY .

2. Developer rote
1 rrousioning Froes
4 Software Images,
 Device Loge

B scrsershors |

Devices |

Ll dtry

5. iPhone Provisioning Portal login
Please provide your credentias for login to the {Phone Dev Center

Username:

Password:
¥ Remember Password in Keychain

[Cancel] [Login

E] Provisioning Profies

1 Applcations
1 Consoe
 Device Logs
B Screenshors

o Mg
5006AS3 30
- Device Logs
B screcnshors

Provisioning N provisioning profes ©

Applications No developed appications ©
5 FerPley-cncrypted applications.

Device Logs 10 Crash Logs ©

Screenshots No screenshots ©

AddtoPoral Remove

OEBPS/images/f140-01.jpg
] Text Field
v Outlets

delegate * File's Owner
v Sent Events

Did End On Exit

Ediing Changed

Edring Did Begin

Edring Did End

Touch Cancel

Touch Down

Touch Down Repeat

Touch Drag Enter

Touch Drag Ext

Touch Drag Inside

Touch Drag Outside

Touch Up Insde

Touch Up Outside

Value Changed

Referencing Outlets

New Referencing Outet

Referencing Outlet Collections

New Referencing Outlet Collection

00000000000 @

OEBPS/images/f322-01.jpg
8 06

@ @ Emails) iPhone 5.0 Simu
R Sop sche

|mz= ® &4 = » 8

Emails
¥ B targer ios sk s.0
v (i Emails
[h) EmailsAppDelegate.h
In) EmailsAppDelegate.m
Bl EmailsViewControllern g
In] EmailsViewControler.m
8 EmaisViewControleraxib
» (] Supporting Fles
v (] Frameworks.
» 2 UKt ramework.
» 8 Foundation framework
[Products

OEBPS/images/f512-01.jpg
806 Organizer - Devices

L =

positories _Projects Atchives Documentation

LstaRy
Creues n Wei-Meng Lee’s iPad

4 Software images. | Capacity 14.97 GB

A) Devicn Logs: Model iPad

| e Sera Number Gro1zFRaz38

DEVICES ECID 2142215766059

B e © dentifier dse19da7752a e 7de cebGed9043besbosBzbs

Software Version 5.0 9A5313¢)

L] Provisioning Profiles

- Applications
Use for Development.

" Device Logs
B scrcenshors

[Wei-Meng Lecs iPnone &
ey
- Devia Loge
B sercemshors

e o

Add 1o Poral Remove

OEBPS/images/f150-02.jpg

OEBPS/images/f325-01.jpg
ATET 7 1223AM 7 3 100% @B

To: 1234567890

_lz[x]c]v]s|n]wil)

return

OEBPS/images/f514-01.jpg
eoe

105 Dev Center - Apple Developer
(2] [+ Clnuwsraeveope.

ple.com/devcenterlosIndex.action

& Developer Tecmologis Retources pogms Suppon MemberCanmer (@

iOS Dev Center

0850k 43

Developing for iOS 5 beta

Resources for (05 5 beta

. o N

B o

Sample Code.
yourown areat apolcations

‘Appie Developer Forums
‘epie engineers,

Featured Content
¥ Whats Newin 105 5
 (Cloud or Developers
105 5 beta 6 Reloase Notes
105 5 bera 6 AP Diffs

B Bluctooth Accessory Desion Guidelines

H, Wei-Meng Lee | MyProfle | Logout

105 Developer Program
105 Provisioning Portal
Tunes Connsct

‘Apple Develaper Forums

°© o o0 o

[R——
[E) App store Rasource Center
By e Ao sbmssin
LY —
T —

aad Morketing Resources

OEBPS/images/f150-01.jpg
Aopia-MacBook Po - The e MacBook o Fuge ags nperormance.

The new MacBook Pro

OEBPS/images/f324-01.jpg
1208 P
e

The new, faster
MacBook Al

OEBPS/images/f513-02.jpg
8 0o Organizer - Devices

‘kuxnﬂm Projects Atcives Documertation

LiBRARY
2 Developer profie
2 rrowsioning profies 1

Wei-Meng Lee’s iPad

% Software Images, Capadity 14.97 G

. Device Loge Model Pad

Scrsenshors

Seral Number GRO12FREZ38
ey £ciD 2142215766950
Mac

Ll dtry 2 Identifer 4ae19da7752aLc57dc LcebbedS0430cb0E64abE

(7 Wei-Neng Lees iFad Software Version (5.0 GASIT3e)) (Restorepas]
553l S

Bicrecasreud Cory Devica klantifer Keode cannot find the software image t fnstall this version

- Applcatons Ignore Device o
‘Add Device to Provisioning Portal _ (ASEASELASAS
" Device Loos
i Remove from Organizer No developed appfications ©

B Screenshors
o | Yei-Neng Lesi
50(A53 30
- Devie Logs
B screcnshors

b 5 FaitPey-crcrypted applications.

hot Devices Organizer Help
b

Device Logs 10 Crash Logs ©

Screenshots No screenshots ©

Add to Poral Remove

OEBPS/images/f155-01.jpg
[ScreenRotations - ScreenRotationsViewController.xib
Running ScreenRtations on Phone Smuiator

Observe this button carefully

(Woees ¢
| feadback o theprogress fatakor |
process o unknown duraton.

g Progress View - Depias the progress

OEBPS/images/f328-01.jpg
806

Do

(oo weiergie | [m]

3 PhotoLibrary - PhotoLibraryViewController.xib

+ ooy
i ProctitarytpaDeiegte
In PralirarytpaDeleaiem
i Ptctcaencontotern

(L Supportieg Fies
» [Frameworks
» [ocucs

+lOmE >

jmroaz=onsp R Photoutranyvesconiolerab gngish,_vew| D B = | & ©
B s x ety
e Size | None.

Load Phato Library

Onetsson o
sawswr(Gay

Tootar None)

sotm r| nare

heds scse o il

Ineraction o Usernteraction Enabies

D ilel®

Image View - gl 3 sle
ik o 42 i cescioed by
| oyt images.

Text View - Distays e s
of Sl ot 30 Senc a1 st
meiiga o rge oot ahen

Web View - 0soias amcedses

5 Map View - Disiars mas and
B oo incmbescai erce o
U g map camen:.

Scrall View - srvies 3 e
T iy comer s e 1

OEBPS/images/f515-02.jpg
File

Edit View Window Help

About Keychain Access

Preferences...

Keychain First Aid

EX
T #8A

Certificate Assistant Ol Open...

Ticket Viewer
Services

Hide Keychain Access
Hide Others
Show All

Quit Keychain Access

8K Create a Certificate....
Create a Certificate Authority...
» Create a Certificate For Someone Else as a Certificate Authority...

PPl Regquest a Certificate From a Certificate Authority...
~mH et the default Certificate Authority...

Evaluate “3rd Party Mac Developer Application: Wei-Meng Lee"...

xQ‘

OEBPS/images/f151-01.jpg

OEBPS/images/f326-01.jpg
s E
e B
Sl
H B
2k

3

OEBPS/images/f515-01.jpg
°

Overview - 105 Provisioning Portal - Apple Developer
[« 2] [+ CInups:jceveioperaple com s manage overewincex acion ¢)(a- cooge

Developer T s s o e @

EE— e
T Welcome to the i0S Provisioning Portal

[Proram userGuice
“The i0S Provisioning

Portal s designed to take you through the necessary steps S e R,
e 1 testyour appcations on 105 devices nd prepare them for isouton. Bl
App 105 .
Provisioning Obiaining your Cerucate
SR Visit the Member Center for Team, Account, and Program Info. View viceo

The new Member Center is now your destinaton for: Assigring Devices

= Sending mdations o jon your deveopmant eam and elting e

existing development team members.
« Requesting or purchasing Technical Support.

« Viewing account nformation, such as your Team ID, profile, and
Program detals

creaing your agp 103
[Pttt

Creating Provisioning Prafles
B Viewsiceo.

Vistthe Mermber Center now

o

unes Connect Support:

et your application on an 10S with the Development e

Provisioning Portal o 0105 Dev Certer
Provisioning Assistant Unlosding your ppieaion o frding

OEBPS/images/f010-01.jpg
0668 msuumm ¥

‘@O@ DmoscTngnl OIONC) S (@ stumenieal)
view

Choose a Template for the Trace Document:

1=

Nemory
oy

10 Actvity
Craphics

Tl s A

Al
Memory

ou

Fle system Time Profier System Trace

i Blank

oy This template provides a blank trace dozument, ready for custorizing.

RERI =
i ﬁ &

Bank Alocations Activiey Menitor

Energy Disgnostics

e Place items from the Library window onto the Instruments st then use the inspector to
Beravior adjust te Instruments setings 25 desirad.

T

(2) | Open an Existing Fi

[Cancel | | Record | [Choose]

@ =i =
B Trace Highights .

OEBPS/images/f156-01.jpg
Oserve this bution carefully

OEBPS/images/f330-01.jpg

OEBPS/images/f516-02.jpg
YaKo Ko FORMNIINRIRND - | -1 SO S—
e o T) |—

Ing.

Where: [Desictop. <

(e | [

A Emal Adress:
Reauestis: O Emaied to he CA
(© svea ik
(0 Lot me specty ey par nformtion

OEBPS/images/f009-01.jpg
eoe [MyKillerApp.xcodeproj — - MyKillerAppViewController.xib. L

‘ o) @ [m] B I :nmsos‘m.m _ (@)

e organzer
\ mneasaczes < > DD <) - WKl nConoterad i) | view
o Wi
e Roon s [
- L wrnoo it ane MyikiAspVewCantrle

R e =] e T Dfa - merace e Co.

In Wil AppAcpeeate

(5 s ppvancrtrtir
ilerppvencantarm

Locaton et to Group
entpr
Isileraspuencontioliersie

£l Users weimanles)Desiaop

v 5 Susorting ies Seginning 1055 Souce Cote]
| clarapp-ito plsx Mlkrhop/ MK erAop
WfoPlstuings enlorl
e MlerhoptiewContrlerxt
() WilerApp- e och D (e =
» [Framewaris T ——
» i s 5 | Croe—E
® [P R—
P . Round Rect Button- s ouch
i ne nde s et o
e e en 3 apped

Sepmente Controd - Diplays i
12 seamens, cach o ich Fncions 52

) TextFild - Dias v et and-
Text | sendsan octon mesage 03 arget et
e e e

P —
@ S,
P Tp——
€@ T,
et

s o@E(e — = @ 3] e yiiacn, Q

OEBPS/images/f155-02.jpg
ScreenRotations - ScreenRotationsViewController.xit

Running ScreenRotations on iPhone Simulator
2

Notssues

5301 B I screenRotationsViewContrllerxi English)) |_|view

v Simulated Metrics

size [None

Observe this button carefully

Orientatic ¢ _Portrait
Status)

Top 8ar None

Bottom ar [None

¥ View

Mode Scale To Fil
Tag o

Interaction (¥ User Interaction Enabled
() Multiple Touch

OEBPS/images/f328-02.jpg
PhotoLibrary - PhotoLibranyViewController.xib

3| ‘ Xeode ‘

¥
i ;

< > | [photolibary) (Jp...) BP..) BP..)| |View) ImageView DB e|vs o
¥ image View
= mge 7]
Honigned [[v]
swte (] Highlighted
[Load Photo Library) e

Mot ¢ Scale ToFill
o
Aspect Fil
Ineraci¢ Redraw
Center

Top
Bottom.

I
Z =
B

Top Left
Top Right
Bottom Left
Bottom Right

anarray of mages.

Text View - Displays muliple ines
of editable fext znd Sends an acion
message t0a target object wher.

web centent and enaies content

SR Ve View - ilas bedies
| s

Map View - Displays maps ané
provides an embeddable Interface to
navigate map content.

| st view - pavss amechnim
to display contert that i larger than

OEBPS/images/f516-01.jpg
800, Certificate Assistant

Certificate Information

Enter information for the certficate you are requesting.
Click Continue to request a certiicate from the CA.

User Emil Address: weimenglecamall.com 2

A Emal Aderess:
Emaisato te CA

© sivea ik

0] et me spacty ey parnformton

Continse

OEBPS/images/f008-02.jpg

OEBPS/images/f160-01.jpg
[ScreenRotations - ScreenRotations-Info.plist
Runring ScreerRotations on Wei-Meng Les's Phore

Project 02

[SresrRottions 7
Turge, 10550850 Localzaton natve development region
Screenkoratons Bundle dispay name
) SerecnRotationsApBDEIesate | pyecurabie e
S

» lcon files

Bundle icentifer

InfoDictionary version

Bundle name

Bundle 05 Type code

8undle versions suring, short

Bundle creator 05 Type code

[h] ScreenRotations -Prefix.och | Bundle version

» [Framewerks ‘Application requires [Phone environmer
» [Products v supported interface orientations

OEBPS/images/f008-01.jpg
357 P11
Applications
B = BN) @] (8| [#~] »
e =
ame
A LFFEDS27-ACCO-4557-B6SE - 575507ABMEE
Documents
Airdrop Lrary
Deskiop WyErsiapp app
waimenglee mo
Applicati
Documents
Dropbox
192.1
Disisstation
diink-0e
iDisk
s00TCAVP

OEBPS/images/f157-01.jpg

OEBPS/images/f330-02.jpg

OEBPS/images/f006-03.jpg
Carrier =&

Photos Contacts Settings Game Center

Newsstand

OEBPS/images/f006-02.jpg
11 |

OEBPS/images/f018-01.jpg
Welcome to Xcode

Varsion 4.2 (4D100)

el e

Start bullding a new Nzc, iPhone or IPad
application from one of th Included tempiates

Connect to a repository
Use Xcode's integrated source control features to
worl with your existing projects

Learn about using Xcode
Explor the Xcode development environment with
the Xcode 4 User Guide

Go to Apple’s developer portal
Visi the Vac and 105 Dev Center websites at
developer.apple.com [1No selection

OEBPS/images/f015-01.jpg
PLATFORM
iPhone 4/4S

iPhone
3G/3GS, iPod
touch

iPad

RESOLUTION
(PIXELS)

960 x 640

480 %320

1024 %768

VISIBLE REAL ESTATE WITHOUT
THE STATUS BAR (PIXELS) —
LANDSCAPE MODE

960 % 600

480300

1024 x 748

VISIBLE REAL ESTATE
WITHOUT THE STATUS BAR
(PIXELS) — PORTRAIT MODE

920 % 640

460 %320

1004 %768

OEBPS/images/f014-01.jpg
Carrior &

AR

Photos Game Center

Newsstand

OEBPS/images/f011-01.jpg
Cocoa Cocoa Touch

Media Media

Core Services

G el \ e/ (A
Gy i/ \ o) \iy)

[
(
{Core Services
[

Core OS Core OS

Mac OS X iPhone OS

OEBPS/images/f041-01.jpg
b

5
Editor View Organizer
DB e|®lse o
v Buon
Type Rounded Rect 8]
StteCorfig [Default]
Telox

D (o=

Objects O EE

wavel |~)(1]2) [Ten] «Cr [

OEBPS/images/f038-02.jpg
Ploaca ntr your name

Viena oo

©aoeuono «
e

@]

~—

OEBPS/images/f456-02.jpg
LBS - LBSViewController.xib

= et

L ===
< > [[L B sviescowoteras Grgien | view

BT
B v 05 50K 50

@ e Rone
h - s
i Lasappoclegaien e —— oreraton P
e LStopoeepaem _— ———
E.mmmfmum Laitue sunn o (G
ot iane
15 usvenconuotern - 4
ol Longhude oo o one -
Samporing s |
v Fameeers
¢ cTori
e e L) ok STl
i D Ule[m

» 6 Foundar

framenark [l obiecss
¥ (3 Products

Segmented Contro - isoays
1 2 muple segments,eachofwnn
Fincion: 25 dscree b,

[TextFeld -Disays v e

Text | s 12 o nestge o5
ﬁ o it when et & gt
Sider - Dspas s conewous ange
-

7 of e a0 s he S ecton o
2singie e

Switch - Dispiays an clemen:
Snoing na booean stare o 3 vl
Alos tappig the contr o

Activiy Indcator View - Frovides
eedbackon tha progress o 3 ask o
process o nknow duration.

Progress View - Devas e
S progress o st oertme

+ OBEB

OEBPS/images/f113-01.jpg
Ploasa e yourname

OEBPS/images/f276-01.jpg
) DemoiCloud.xcodeproj — [f) DemoiCloudAppDelegate.n

Choose aptions for your new file:

s wyCloudnocument

p— 5]

[previous | [ENex)

OEBPS/images/f460-01.jpg
Tyee Value
CPBundicDevclopmentiegion Suring o
| cRaundieDisolayName String SIPRODUCT_NANE]
| craundieexecutabie suing SIEXECUTABLE_NAME}
» CPundiciconfiles array © items)
| craundieidentfier String et leam2develon. PRODUCT_NAMEricl034ident er)
CrBundieinfoDictionanyversion sng s
| craundiename Suring SIPRODUCT_NANE]
CPaundiePackageTyse Swng AP
CPBundieshorversionstring Suing 10
CPaundiesignature sung w7m
| CRaundleversion sing 10
| sReauirestponeas Boolean YES
| > Ususportedinterfaceorientations eray G tems)
| ¥ URequiredDeviceCapabilties frray @ tems)
| hemo Suing location-services
e 1 swng ges

OEBPS/images/f274-01.jpg
DemoiCloud.xcodeproj C

Jance Boz @ SO
view

or T
< » | [pemoiCloud
PROJECT Summary | Info. Build Settings Ruild Phases. Build Rules.
v Bt Beemacion
] bemoiCloud.entilements SABCETS o ol

[h CemoiCloudAppDelegate.h image image
[0 . O — fed cpecifed

m] DemoicioudAppDeiegate.m

" DemoiCloudViewCortroler i
» (1Supporting Fies

» (I Frameworks

» (Jproducts

Retina Displzy

7 Linked Frameworks and Libraies

€ Ui framework Required

65 Foundation frameworc Required

65 CoreCraphics framework. Required
—

Entiterments (¥ Enable Enttlements
Enitlments File DemoiCloud =
iCloud Key-Value Store _ net.leam2develop DemoiCloud

iCloud Cantainers | netleam2develop Demo Coud]

Keychain Access Groups | netieamzcevelop.Demo Cioud —

| 0@ED (S Add Target Validate Settings.

OEBPS/images/f458-01.jpg
Lamiga | 37705834

Longtude | 122406417

Accury | 150000000000

OEBPS/images/f115-01.jpg
Please ntor your name

Running as an [Pad applcation

OEBPS/images/f280-01.jpg
Enter some text here

Create File on iCloud

G Save to file on iCloud
Fila's Owner

TextFeld
TextView

vew

Referencing Outiets

New Referencing Oudes

Referencing Outet Collections

New Referecing OucetCalcton

Received Actions

. s =S e
Touch up sice

crsaekONCouc: suton - reate il on .
Touch g Insice

doneting: TextFeld
OicEnd OnExt.

OEBPS/images/f462-01.jpg

OEBPS/images/f114-01.jpg

OEBPS/images/f279-01.jpg
[f) DemsCloudappDeigaten
[n) DemCloudtppOciegatam
[f) D CoucienContrler
[n) e CoudienCortrolerm
B Do GouaVinConwaler
» [Suppereng Fies

[f) WCloudDocument
[p) WCloudDocument m
Framenorie

1 DemoiCloud.xcodeproj — - DemoiCloudViewController.xib

OEBPS/images/f461-01.jpg
8 06

@ @ LBS) iPhone 5.0 Simulator

Scheme
}

H'SQA_-a

as

¥ By targer, ios sk 5.0

v Css
[h] LBSAppDelegate.n
In] LBSAppDelegate.m
Al Lssviewcontrollern
In] LoSViewControler.m
1 LssViewControlerxib

» (] Supporting Fles
v (& Frameworks

> 8 CoreLocation.framework
» 8 UKt framework.

» 8 Foundation framework
[products

OEBPS/images/f037-02.jpg

OEBPS/images/f117-01.jpg
806 [MyUniversalA

@) (@) (i) (=)
mz © 4 ==8

iyUniversalApp.
1target, 105 SDK 5.0
MyUniversalapp
[h MyuniversalAppAppDelegate.h
m MyUniversalAppAppDelegate.m
[hi MyuniversalAppViewController.n
m MyUniversalAppViewController.m
] ppViewContro =
B ppViewController_iPad
» (] Supporting Files
» (] Frameworks
» (] Products

OEBPS/images/f283-02.jpg
Create File on iCloud
Save to file on iCloud

flew/localhost/private/var/mobile/Library/Mob

ile%20Documents/6LNSVE9DBJ-net-leam2d
‘evelop-DemoiCloud/Documents/MyFile.bxt

OEBPS/images/f465-01.jpg
LBS - compass.gif

eo0e
@ @ o Running LES on iPhone Simulator Ela= @oo (@
‘ - (=] Notssues Ecitor. View Organizer

Stop. Scheme Breakpoints
Mz © 6 =» 8 4 > | 185) " |BS) [|supporting files) & compass.qlf) No Selecton
¥ B3 e, 03 sox50
v s
I LasAppDelegaten
m| LBSAppDelegate.m
1 LasviewContraller.h
ISviewConvolierm
8 LasviewContrellerxib
5 supportng les

InfoPliststrings
(s mainm
[h) LBs-pref.pch
¥ [l Framaworks
» € MapKtramemork
» I Corelocaton framenork
+ O™

OEBPS/images/f037-01.jpg

OEBPS/images/f116-01.jpg
Loading

Choose options for your new project:

roduce ame [winversaagn

Company dentier nstiearrzdaveiop

Bundle Identifier et earm2develop.MyUniversalapp

s e [yumversanod

Device Family [Universal ¢
0] Use Storyboar
L) Use Automatic Reference Courting
] Include Unit Tests

Cancal

s

OEBPS/images/f283-01.jpg
12PM___© 3 100% =

M1-3GSM =

Enter some text here

“This file is saved on iCloud.

Create File on iCloud

Save to file on iCloud

-| Creating Document or

Document is currently being created
on iCloud.

< ANBOO00

OEBPS/images/f463-01.jpg
® i0S Simulator

y-

File Edit Hardware

6:52 AV

Laitude | 37.330189
Longiude | -122.026905
Accuracy | 10.000000

Window Help
Toggle Slow Animations
Color Blended Layers
Color Copied Images

Color Misaligned Images
Color Offscreen-Rendered

None
Custom Location...
Apple Stores
Apple

City Run
Freeway Drive

OEBPS/images/f036-01.jpg

OEBPS/images/f118-01.jpg
eoe 2 MyUniversalApp - MyUniversalAppViewController.

() () (4 rud505m..] (=] (= [a0=)

R N T)
|mim ® & » 8 4 > 9% ()R B | View)| Label -laman iad app! DE & %o

v BYSE Y tabel

T e

[—
TR ——
i wyuriverssAppvenContolech

Supsorting files
» [Framewores
» [Produats

+ 08B

1am an P2

| @ o

e
Betavior f Enabled
Gsssine [Align Canters

L Breaks Truncate T

Atgnmen =1

D Ole =

/ messige to3 target objctwhen

—— Segmented Control - Dispiys
a 2\m.m,mmu o which
Rineions 52 3 cserte btton.

| Text Field - Disleys abe rex:-
[Toxt | snd senée sn acton messige oz
argetobject when Aetrn i apped.

Slder - Displays a continaous range
@7 v and lows the seecton
" dsinglealue.

OEBPS/images/f284-01.jpg
Enter some text here

Create File on iCloud

Document alroady exists on (Cloud.

Retrieving it

OEBPS/images/f467-01.jpg
P
Latitude | 33.450430
Longitude | -82.079979
Accuracy | 10.000000

5093 degrees

OEBPS/images/f032-02.jpg

OEBPS/images/f117-02.jpg
eo0e MyUniversalApp - MyUniversalAppViewController_iPhone.xib
‘) (@) (Mo irsdsosmi] (=] e Elo o IE_E LJ
e ey [o ey

[= ® & =8 [< > [OM) R B _|View _|abel-1amaniProne aopt) .\; °

[y MrUniversalAon ¥ e
Ttarger, 05 0K 5.0

e — oot 1m an Phone app!
5] MyUniversalAppApeDelegae b nes Vg
| MytniversalnppABRDelgate e

B MytinwersalzppVieuControler.n
) MyUnversalapoViewConoler.m

saseina Algn Cortars

Line bk [Truncate Tal

VyUniversalAppViewController i34 xio

Aigamert|
(L Supporting s
» i rramenorks roe[mem 100 (@0
Drroducs snimamsiee | 103 @ Shinke.
D O]e|s

Label - Avarably s2c6 ameuntof

+am an iPhone app!-
2 g i Label

L . Round Rect Button - nercsts
(touch avens 1 sands an acson
message o & targe objctwhen

Segmented Control - Dispars
(1 2 mutipe sagmerts. acn o ach
Fincans 2 3 discres buton,

. Text Field - Disoas sable ext
Text | and sends an acion message 02
g obect when Return 1 25pes

Slder -Disgays continious range
@7 chvaes and alons th sclectan o

1 0o = Ssinaevae

OEBPS/images/f283-03.jpg
Enter some toxt here.

oate File on iCloud

Files on iCloud
il localnostprivatenvarimabis/LibraryMobi

e%20D0cuments/BLNSVESD ~nel-learnzde
velop-DemoiCioud/DocumentsMyFile i

OEBPS/images/f465-02.jpg

OEBPS/images/f032-01.jpg
eo0e

@) @ Ere] =)

i HelloWorld - Default.png

Finished running HelloWorid

Run __ Stop Scheme Breakpoints I
2 ks i < it imtme ot i
|miz © & > © |m < > |[itcloWald) 4 dcfaultpng) No Sclccion
+ [y Hellowora

Ttarger, 05 SOKS 0

Defaut@2cono
v (o Hellowerld
i HelloWorldAogDelegate h
HelloWorldAppDelegate.m
I HelloWorldVewControllerh
) HelloWorldViewControllor m
% FelowaraviewControlerxio
v () Supperting Fles

 ican.ong
[[] Helloworig-nfo st
[nfopist.srings

[manm

[h) Helloorlg-Preix.och

meworks

v
» & UKt framework
» & Foundation framevork
» & CoreGraphics.ramevor
v (produas
A VelloWorld.spp

+ OB @O

OEBPS/images/f118-03.jpg

OEBPS/images/f284-03.jpg
Enter some text here

saved on ICloud. Changes made on the iPad.

Create File on iCloud

Save to file on iCloud
Files on iCloud

fileziocalnast/private/varimobile/Library/Mobil
©%20Documents/6LNSVESDBJ~net-learn2de

ol w[[+[u[o]
sl Jelw o]«

¥ E0ENA0D
e - =

OEBPS/images/f031-02.jpg
Giick Me!

OEBPS/images/f118-02.jpg
1045 AN

15 an Prons aop!

OEBPS/images/f284-02.jpg
Enter some text here
“This fileIs saved on ICloud.

Create File on iCloud

Save to filo on iCloud

Files on iCloud

filezfocalnost/privateivar/mobile/LibraryMobi
©%20D0cumonts/BLNSVESDSJ-not-learn2do
velop~DemoiCloud/Documents/MyFile.txt

OEBPS/images/f469-01.jpg
806 I3 LBS - LBSViewController.xib.

@ (0) (Lot (=] Fiished running L85 (= [50=)
ol o —— o

Rinsop sctene weagois e View omanizer

FIER N > 8 [& < > s s Rusiew RUsvew | Vew | Vew| D B B % @0
SRS o e —
v s Show (Frame Rectangle ¢
Sl e | 1T -0 =0
o] LBSAppDelegate.m | 3 ¢ §
B iienconmatorn Latudo o) sl
B iisvavconvatern [
Longiude

o

» supporting Files

[Framencrks — (R
ovecraghics framasr it Label

» G vapK framenork
» 6 CoreLocaron framenor

|@

| Window - Ocfineswindovs tt
manige ane covanats o vians
spiyed on e scran.

Navigation
mechani

laing 2
aigaton karust below he sats.

Navigation lem - Rereserts 2

=
W e
=

Search Bar - Dislaysanediavle
Ceen ar canvaring o sesen
Tcor hat sends an acton massage.

Searh Bar and sesrch Diepa
f kg
+ I 0EE G ®

OEBPS/images/f031-01.jpg
HelloWorid - Default@2x png

@@ [m] [g oo Hetowori onWe:-teng Lees hone ¢ E@@ [_]
R Organizer.
m e

Rin Sop screme Breakooints.

4 > || Helloworld)« Default@2xpng | No Selection
ETETE T

Hello World!

3 sanm

v £ Hellaworia
[elloWoridappeiegaee
[8] HellohoridApsDelegatem e
(1] Helomoraviencentroler.n
o] HelloWoriviewCartroter.m

E] \ Click Me!

X HallooriiewCantralr s
v supporirg Files
B
[nelonoris-no st
= ifopiststings
et etz
~ i s
» € U ramevark
6 foundmon mevork
» & Coreraphic Framever
rodute
i Hllaridasn

+ 1|4 |@reloword-7171

+|® @6 @

OEBPS/images/f030-01.jpg
06ee Organizer - Devices. o

Choose a name and workspace for your launch image:

e A [| iy o s

Delete Export Save as Launch Image Tolerance New Screenshot

OEBPS/images/f120-01.jpg
)

oe

MyUniversalApp - MyUniversalApp-Info.plist
Running MyUniversalApp on Pad Smultor

&) @ o pasosmi] (=]
e :

e =

Organizer

|miz ® &

< b nverssion | sreaipn) sopporting s || Myrersaiaginfophet) o Seeetn

WyUniversalaon
¥ B e ios socs0

o mensiage
e —

ey
Localizaton native develoamet rsgon
Bundle dsplay name

Ve
SIPRODUCT_NAVE}

Bt e Soecimas e
R Wynersalippdppbelegste »icon s @rems
i worverssovevcontotecn S e e eaideion SFRODUCT NAVE el
I Mrlvmum!v(muﬂel.nl:’mm . Sty =
g Bundle name ‘S{PRODUCT_NAME}
S e -
S vesions s, rrt o
e e ™
(@ meinn Bundle version 10
[Cpve——— Applcation requies Phore enviromment ves
» | Frameworks. Supported interface orientations. 100 3 G rems)
&~y et e
vt o 0o e e
renz incon g e b
ST T
et e e
vt o o o e
tenz e e nome bunon
vens Grs Landcge G e e
£00.8.0.0 e

OEBPS/images/f038-01.jpg
Please enter your name
[1

v Sent Events
Edting Changed
cating O sein
Eating Did tnd
o bragerer
o brsg msice
o upinsice = e cwner
bnClcke:

®0¢

Vabe Chanced
Referencing Outlets

[————r

OEBPS/images/f029-01.jpg
806 Organizer - Devices

|l = * &

mentation

il M1-3GSM = 10:16 AM

3 94%

Devices | Repositories Projects Archives Docus
LIBRARY
& Developer Profile Screenshot 2011.07.29 10.16..

Provisioning Profiles July 29,2011

+ Software mages
Devce Logs
B screenshors

Hello World!

DEVICES R S

T 02 T
B Console.

Wei-Meng Lee's iPad
> Biss@y

SR

Delete Export Save as Launch Image

Click Me!

Tolerance

]

New Screenshot

OEBPS/images/f284-04.jpg
“This file is saved on iCloud. Changes made ...

Create File on iCloud

Save to file on iCloud

file://localhost/private/var/mobile/Library/Mob

ile%20Documents/6LNSVE9D8J ~net-leam2d
evelop~DemoiCloud/Documents/MyFile.txt

OEBPS/images/f472-01.jpg

OEBPS/images/f469-02.jpg
[LBS - LBSViewController.xib
Finished running LBS. ‘

Project 11

> | (8) (ies) [RiBsview-..) [Losview... | |view) |_|view

D B8 8|

v View

Mode Scale To

Tag

(0] Multiple Touch

Alpha 1
Background [1 | Default

Drawing ¥ Opaque [Hidden
 Clears Graphics Context
4 Clip Subviews
4 Autoresize Subviews

Stretching

X i

D} m
(il objects

displayed on the screen.

EIE]

Navigaticn Bar - Provides 2
mechanism for displaying 2
navigation bar ust below the status.

Navigatien Item - Represents 2
state of the navigation bar, ncluding
atite,

0 E

Search Bar - Displays an editable
Search bar, containing the search
icon, that sends an action messace.

|7 search ar and search Display
Controller - Displays an editable

OEBPS/images/f124-02.jpg
Aonarumone

OEBPS/images/f290-01.jpg
Last Used

Application was last used on: 2011-
10-06 17:44:01

OEBPS/images/f474-01.jpg

OEBPS/images/f124-01.jpg

OEBPS/images/f288-01.jpg
22 M1-3GSM 7 3:40 PM 3 62%E™ wi_M1-3GSM T 349 PM 3 62% =™
«» Manage Storage

Storag

ettt 18CGB pocuments & Data 01KB

Wei-MengLee'. 1568 5 | [MyFileaxt 01 KB

Wei-Meng Lee... 242.3 MB >

Documents & Data 0.1KB

| 01KB >

| Mail 10 MB

3.1 GB available of 5.0 GB on iCloud 3.1 GB available of 5.0 GB on iCloud

OEBPS/images/f473-01.jpg
(-90,-85) Size of mapView

300
Reference point o
(0,0)
165
Size of vi
< 160

20

OEBPS/images/f126-01.jpg
RS- LS.

poppopeon | ¢ s e 4 s e
wopooooos ff 2 e 7 s s

OEBPS/images/f297-01.jpg
[Animation - AnimationViewController.xib
ot

-
Janmation) (1) B W /| [View) _mage view - wansballipg

= Image tennisballipa Sl
Hiohlghted

Stae [Highlighted

v view

Node [Center]
Ty o)
eraction (] User Intoraction Ensbled
(0] Multiple Touch

D Ole =

Toves —+) (@8

Table View Cell - Define the
atributes and bebavior of cels(rows)
ina ableview,

Image View - Dsplays asinge
image, of an animation descibed by.
anary of mages.

Text View - Dispays mutipl Ines
of eiable text and Sends an acton
message o3 taget objct when.

Web View - Displays embedded
e contare and enabies cartent
savigaion.

Map View - Dispays maps ard
provides an embedcable irerface 1o
navigae map conent.

OEBPS/images/f475-02.jpg
eo0e

@@ L) =)

oo
) 1:-: © 4 =m=8

s
¥ B e ios sok s.0

v Cies
[h] LBSAppDelegate.h
In] LBSAppDelegate.m
LesviewControllerh
il LosViewControllerm
B LssviewControlleraib
» (I Supporting Files
3 MyAnnotatio

v [Frameworks

oreGraphics framework

» 5 MapKit framework

» 5 Coratocation framawark

» 6 Uit framework

» % Foundation.framevork
Products

OEBPS/images/f125-01.jpg
[Keyboardinputs - KeyboardInputsViewController.xib

Running Keyboardinputs on Phone Simulator

No tssues

E E=E) (=
¥ Teuried
Texfrext

e
Disabled Disabled Background Imagd v |
e
G
() Clear when editing begins
T
O —
© Adjust to Fit
-
Coecton
oo
‘Appearance | Default 2

P e r—
() Auto-enable Return Key.
() secure

¥ Control

‘Table View - Displays data ina lst of
plain, sectioned, o grouped rows.

Q “Table View Cell - Defines the
T e R e B

OEBPS/images/f296-01.jpg
8006 [Animation - tennisball.jpg
@ (®) (Ao] (=) i EB =] mu 5] D

Snv Scheme. Breakpoints. Organizer
| b :': e 4 = » 8

< > | Do ammaton) [Anmation) supporting s) s tenisbalpg , o Selector

v 13 o5 soxso
v [Animation
b AnimationAppDelegaten
m AnimationappDelegate.m
b AnimationViewCortraller.s
AnimationVienControler.m
 AnimationViewContraller.xib
v [supportng Files
£ tennisballjpg
*...‘m.m info.l |
nfoptiststrings
[h) Animation-Prefixpeh
» [Frameworks.
» [Products

h

OEBPS/images/f475-01.jpg
o0 e [L8S - LBsviewController.m o

Uveconioler Obeciue-c OneaveC otecel | 199/
Siodiass category g

Onjectve-C rase et
nce ciss

siesa

noa
he sats,
An Objective-C class, with implementation and header fles.

prasers
B, ncding

Previous | [ENeE) ancduabe

[‘ ot itudeTextric1d. toxt = 18t

OEBPS/images/f027-02.jpg
3 HelloWorld - HelloWorld-Info.plist

< Covetonaia, ot [o i B
F—

Ker
Localizaian nacvs devlopmers rgion
00 sung

HelloworidviewContraller.n
1o rleravenconratem
2 lonmvonconealr

Bundle verions sring, shert.
Bundlecrator 05 Tyse code

Applicaton equies Phone ervronme:
> Supgorted e face orertations

Suing
wiay

Boslean

Ay

halloworkt

sRODUCT_Nawe)
sioxecuTase Nawe)
L nem

et esnzdeveiop SPRODUCT_NANE e 103 aiderite]
siRODUCT.Nane)

s

e

AlOutput t (e) DM)
e
e b o T
g 1o oracess 15655.

OEBPS/images/f127-02.jpg
a|w|e|r|T|Y|u|1

Als|p|FlG|H|J|K|L

OEBPS/images/f298-01.jpg
nimationViewController.xib

aton on Phone Simulator |

(@ 7 @] (=)

el L Editor View Organizer

v) M Aimationiere) |_view) | |HorsonalSides [4.5>] 0 8 @ [#] o O
Sider

Value 38 1
T

0.01]:]

T -

i -

Update Events (Continuous

Control

Algnment [1 101
Horzo

J objects

Label - A variably sized amount of

Label geaic text

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when

Segmented Control - Displays
multiple segments, each of which
functions as a discrete button.

Interval 4 — Text Field - Displays editable text

Text | and sends an action message o2
target object when Return s tapped.

OEBPS/images/f481-01.jpg

OEBPS/images/f027-01.jpg
Choose options for adding these files:

=]

Destimation & Copy tems ito desimation grow's folder f nesced)

Folders. (&) Create groups for any added folders
(O Create folder references for any added folders

Add to targets [V /A HelloWorld

———
=l
T

(&)

e

DEE

i

[
N sbeess

M

OEBPS/images/f127-01.jpg
v View

OEBPS/images/f297-02.jpg
Animation - AnimationViewController

B M
| anim. B Banmsronvevconrllerxih Gngisn)) | Mew| [B 8 [@] ©

Smubted vetrice
sizs | None
Oriataion | Porrat
suaws ar_cray
o0 8ar [vore

totom ar | None

Wode | Scae To il

a0 o]

Irteracion o User inceraction Erabied
Whitiple Teuch

e 1
Sackoround M Dark Text Coler

Drawing o Opaay

Clears

cirs
< anert I

o a]
i oecs
A e comcrtand
Map View -3}
B proven am
Fevgwe maped
Serol Viow - 1

0 isplay contel |
e izt of the 3

opaciy
100]%

OEBPS/images/f478-01.jpg
Lamuse

Longude

Accuracy

OEBPS/images/f026-01.jpg

OEBPS/images/f128-01.jpg
<

- | [Keyooardinputs

Keyb. Keyb...) [Rkeyb.

View

Alphanumeric Input

a
v

v

Text Field
Outlets
Sent Events
donsediting:
eiing Changed
ting D Begie
eatung 0 £nd.
Touch Cancel
Touch Down Rerest
Touch Drag nter
Touch Drag Exic
Touch Drag Insice
Touch Drag Outside:
Touch Up nsde
Touch Up Outside
Value Changed
Referencing Outlets
New Referencing Outet
Referencing Outlet Collections

OEBPS/images/f300-01.jpg

OEBPS/images/f490-01.jpg
(Clear) (O WL 0

15 (Apple version gdb-1706) (Tue Jul 19 23:

3:12 UTC 2011)

DB Is' free softuare, covered by the 6N Genaral PUbLLc License, and you are
snd/or distribute copies of it under certain conditions.
'Show capying* to see the conditions.

Tyee <o warranty” for etails
Attaching to process 2851
L inisaLaunchingniihoptions:
2H03] appLicotiondideconshctive

OEBPS/images/f025-02.jpg

OEBPS/images/f127-03.jpg
pr——

a/w E|R|T|Y|u|I|o|P

Als|p|F|a|H]JlK|L

OEBPS/images/f299-01.jpg
File's Owner

Outlets

imageview Image View - ten

searchDisplayControler

sider Horizont!Sider

view View

Referencing Outlets

New Refrencing Outlet

Referencing Outlet Collections

New Referencing Outet Cllecton

Recelved Actions

siderMoved: Horizont! Sider
Value Changed

® O O eeo@®

OEBPS/images/f483-01.jpg

OEBPS/images/f025-01.jpg
(@

OEBPS/images/f130-02.jpg
&)

Aphanumeric input

OEBPS/images/f024-03.jpg

OEBPS/images/f130-01.jpg

OEBPS/images/f303-01.jpg

OEBPS/images/f024-02.jpg
i Al

Hello World!

OEBPS/images/f024-01.jpg
Hello World!

OEBPS/images/f028-01.jpg
Bundle creator 05 Type code

Bundle version 10
‘Application requires iPhone enirorment es
Supported interface orientations @ fems
lcon already indludes gloss effects £ 00 B

Carrier 10:14 AM

HeloWorld

OEBPS/images/f027-03.jpg
curer = 1009 AN

OEBPS/images/f069-02.jpg
8 06

@ O iPhone 5.0 Simulator [l

Run_ swop

:':QA

v [SingleViewBasedApp
[h] SingleViewBasedAppAppDelegate
Inj SingleViewBascdAppABpDelegate.m
[h) SingleViewBasedAppViewController.n
[m SingleViewBasedAppViewControler.m
= SingleViewsasedAppViewController:xib
v (2 Supporting Files
[} SingleViewBasedApp-infopiist
7 Infoiststrings
) mainm
[h] SingleViewasedApp-Prefx.pch
v (] Frameworks.
» €2 Uit framework
» 8 Foundation framework
v [products
A SingleViewBasedApp.app

OEBPS/images/f069-01.jpg

OEBPS/images/f068-01.jpg
Loading

&

ol 17
= [.
rameworc oy | <l
mr
Ve Dol Opencicame Pase tced
& Macos X ‘Applicauon appication Aoplcation
Applcaton
ramewore & iorary
Aoptiauen pis -
St Mg
bt Tabed Aplcaon ey eplcion iy Acplicaton
[1] sisie view appicason
T mplat rovides sarig i for an sgplcaton tht s a snge e, provdes
e conrale s marage té wew. and 3 tovooird o I it <onas ch i,
Cancel Previous | ([N

OEBPS/images/f061-02.jpg
Cartr > 1254 AN

This is a label
Click Mo, Pl

OEBPS/images/f435-01.jpg
& login
@ system
1T system Roots

. Passwords
~ Secure Notes
[E] My Certificates
D Keys

[Certificates

©This certificate is valid

Apple Development 10S Push Services: 6LNSVESDS}:6LNSVEQDS]
(2 | esuad by: Apple Worldwide Develaper Ralations Certfcation Autharity
] exoies Tuescay, November 29, 2011 11:44:40 AM Singapore Standard Time.

find [Expires Keychain
»[5] 3rd party Mac Developer Application: Wei-Neng Lee cortficte Jan 25,2012 B1441PN login
»[5) 3rd Party Nac Developer Installer: Wei-Meng Lea corsficte Jan 25,2012 827:41PM login
) [5] 54605408-0849-46C4-874A-SOFEIBSEI2AT. corsficate Jan 29,2012 10:26:10 PV _login

ment 05 Pu: GLNSVED

@ Wei-Meng Lee

7[5 Phone Developer: Wei-Meng Lee (398N22LLOK)
@ Wei-Meng Lee

VG Wei-Menglee-PC

@ £15607b6-7d0f-4738-2534-d70155e7eD26

1 11:44:40 AM
privackey

corsficate Aug 30,2012 11:30:30 AM
privaekey

cersficate Feb 8, 2012 8:00:00 AM

privatckey -

OEBPS/images/f552-01.jpg
o teraon
Yiger 0550k 50
¥ Cienos.

MWilrko. pDclegte

[e®

+ O@E (>

p"

) MyKilerApp. xcodepro) — MyKillerApgViewController.xb L4
e g Wk ek an Phoe .0 St

&1 < > | [l wbeappvienconol. [Noseecton | 4 2 >0 8
v
71 wkiersppviewontrotter.n
7y A
71 created vy wescteng Lee on 679711,
7 Copuriant” (€ 2011 ycompaname_. AU rights
" =

impore <IKic UKz
enterfoce WKL erippYiewcontratler ¢ UIviewcontrolter
=

OEBPS/images/f551-01.jpg
Editor.

DB s

¥ Outlets

‘delegate

¥ SentEvents

~— Round Rect Button - Intercepts touch
| events and sends an action message toa
target object when it's tapped.

‘Segmented Control - Displays multiple
(12 segments, each of which functions 35 3
L= diseree buton.

o | e Field - Displas ciable text and
Text | sends an action message to a target object
‘when Return is tapped.

Slider - Displays a continuous range of
@ values and allows the selection of a single
7 value.

‘Switch - Displays an element showing the
boolean state of a value. Allows tapping the
control t0 toggle the value.

Activity Indicator View - Provides
feedback on the progress of a task or process,
of unknown duration.

Progress View - Depicts the progress of a
= skover time.

Page Control - Displays a dot for each
‘open page in an application and supports
sequental navigation through the pages.

| Stepper - Provides a userinterface for
incrementing or decrementing a value.

Datndonbat
Esting Cranged

D {|e|m [
([l obiects Bl ([l opjects
Label ::“b.d-Amemedimumoﬂm Label Fi \‘

N

I lOo®EE

OEBPS/images/f243-01.jpg
r.:,

Summary nfo @D Music Movies TVshows Podaasts fooks Photos

“The apps listed below cantransfer documents botwoen your iPhone and this computer
Apps OfflineReader Documents

|| PhotoLibrary

Capaciy

134068 Photos . Apps Boo

OEBPS/images/f436-02.jpg
eo0e L Provisioning Profiles - i0S ing Portal - Apple D L4
2 [+ @ nup 1 devloperappiecomios/maragejprovisonngprfies eate acionype=1)@ cooge @]
& Developer Techoogies Resouces Pogms Sippan Memoes enter
i0S Provisioning Portal s, we
Provisioning portal casou e
Canicnen Duvelopmen | Dsiusion Hisory HowTo
= Create I0S Development Provisioning Profile
SRR e o fhes o At v s ks e Tl o s o T et
Frtie Name e
R— v peraee
A g
pevices seloct Al

e e prane s

OEBPS/images/f553-01.jpg
MyKillerAppViewController.h
MyKillerApp

Created by Wei-Meng Lee on 6/9/11.

Copyright (c) 2011 __MyCompanyName__. ALl rights
reserved.

#inport <UIKit/UIKit.h>
Name | btnClicked]

interface MyKillerAppViewController ¢ UIViewController
e j Rl
Eent %l
Arguments

OEBPS/images/f242-01.jpg
Key Type Value
CFBundieDevelopmentRegion sung en
UFileSharingEnabled ©0 Bodlean 3 ¥ES -
CrBundleDisplayName Swing SIPRODUCT_NAME)
CrBundieExecutable Swing SIEXECUTABLE_ NAME}
v Craundieiconfiles Amay (item)
Kem 0 sung iconipg
CrBundieldentifier Swing netieam2develop SPRODUCT_NAME rfc1034identifier}

CFBundlelnfoDictionaryVersion

String

6.0

OEBPS/images/f436-01.jpg
Provisioning Profiles - iOS Provisioning Portal - Apple Developer

@ hupfdevloperapp comiios/ manage/prousioningprofiesndex acion

& (& conge

& Developer Techoges Resouces Pragams

Provisioning Portal
e Dovekgment | _pisuibutin vison
e Development Provisioning Profiles

Support Mermoer Cnter

OEBPS/images/f552-02.jpg
[MyKillerApp.xcodeproj — ~ MyKillerAppViewController.xib
3 Fiished running MyKilrApp on Phone 5.0 Simulat

» |) [h) Myxitlerappviencontrol...) No Selection | 4 2 | @ &

77 WyKillerhppvienController.h

77 WyKilterasp

77 Creates by WeiMeng Lee on 6/9/11.

77 Copyright (c) 2011 _MyCompanyName__. AUl rights
reserved.

"

Sinport <UIKit/UIKit. b

Sinterfsce MyKillerApViestantsallar o iivicaconotier
‘Outlet, Action, or Outlet Collection
eens

©

L] @60

OEBPS/images/f245-01.jpg
il ATET = 6:41 PM 7 3 100% =

Files in Documents folder
Beginning iOS 4 Application
Development.pdf

IN FULL COLOR

| Display Files in Documents |

OEBPS/images/f438-01.jpg
eo0e Organizer - Devices

I @ & O

Repositories Projects Archives Documentation

LIBRARY

1 Developer profe [MyiOS5DevicesProfile

Creation Date Wechesday, August 31, 201 11:57:50 AM Singapore Sndard Time
Expiration Date Tuesday, November 29, 2011 11:57:50 AM Singapore Standard Time
Profile dentifer B29501AC-64C4-4615-830C-DEDB7AZ239ED.

v PROV ‘App Idertifier 6LNSVESDB.net learn2develop.BegiOSSPushAppID

Wei-Meng Lee's 7.
L Rty = Devices Wei-Meng Lee's iPhone ¢

£ rovisoning rofes
Py (@ profic Name
H Conscle Status
P
Bl screnshos i S R ST 0 VSRR
L s s s

Sofware Images

 Device Logs
 screenshors

43363

DNS 2 e @

New Import Export

OEBPS/images/f554-01.jpg
1 /7 MyKillerAppViewController.h
| 17 MyKillerapp

/I Created by wei-Meng Lee on 6/3/11.

3

Copyriont (65 2011 yconpanshame__. AL rights
‘ | o
1 s ——
} Object | File's Owner ST R AV T S LU IVASRCOER L
|

o [R o menctiata: oy senaer
e [urexies v ([l eens
|

OEBPS/images/f061-01.jpg
Cartr > 1253 AN

Thic ic lahel

Click Mo, Ploase

OEBPS/images/f243-02.jpg
Apps OfflineReader Documents
. OfflineReader Bl Beginning i05 4 Ap...n Development.pdf 12,

0/10 8:52 AM 34.9M8

Cagde) (Saveton)

OEBPS/images/f437-01.jpg
Provisioning Profiles - i0S Provisioning Portal - Apple Developer

& MyiOSSDevicesrofle

8006
4 » ||+ @ o /ceveloper.apple.com/ios/manage, provisioningprofiles index.action ¢ \ﬁQv Google
& Developer Tedmologes Resources Progums Suport Member Center (@5t
105 Provisioning Portal e
Provisioning Portal Gwoson e
Corrams Development | Distrbution istor, HowTo
& Development Provisioning Profiles e
nop 0x
m 1 Provisioning Profile ~ A Status. Actions.
RV — Aetve @ s

OEBPS/images/f553-02.jpg
&3 MyKillerApp.xcodeproj —

MyKillerAppViewController.xib

Finished running MyKillerApp on iPhone 5.0 Simulat

> | €1 [h] MyKillerAppViewControl...) No Selection |4 2 | & £3

MyKillerAppViewController.h
MyKillerApp

Created by Wei-Meng Lee on 6/9/11.
Copyright (c) 2011 __MyCompanyNane_.
reserved.

AU rights

#import <UIKit/UIKit.h>

nterface MyKillerAppViewController : UIViewController
s2act ion) benClicked:

OEBPS/images/f059-01.jpg
252 Al

This is a label

OEBPS/images/f247-01.jpg
Cancel

OEBPS/images/f439-02.jpg
LX) [ApplePushNotification.xcodeproj — [ApplePushNotification.xcodeproj

() (W) (A weiven..] [=]

Anslyze Succeeded | Tocay st 119 P

Bl & Mo
oo view

Oraanizer

L)

| < > Ciasplerushoutcarion

m[= ® &

V% Y target, 105 SDK 5.0
reEr—
| ApplsPushNotfiatonappDelsate |
e
] Applapushati. VewCortraler
] ApplushNoti. ViewControerm
- Applerusraut, encontrler s>
v Cisupporting Fies

L beepwar

£ applepushat rction-ntopist

5 InfoPlstatrings
) mainm
) Applepushatifction- Pefcoch

+ 0EH O

mosecT
[y

Summary | Info | BuldSerings BuldPrases Buld Rues

¥ Custon 05 Target ropertes

Ker e vaie
TGRS sunge name sung__ strRopucT nave
[undie demier TG8 Svns Elrerieamaseviop beg OSSEARGT]

infoOiccrary verson Sung 60
Sundie version sweg 10
Execuabie e sung SEecUTASLE NawE
Aopicaton requires Prone evionmes Saolean VES

»icon fles Ay Onems

» Supported ntrface arentatons. Ny Gem
sundle dsolayrame Sng StPRODUCT_NawE:
Bundie 05 Type code sung AL
Sundle crator 05 Type code sing 7
Locazaton notve development regior Sung en
Sunde vercins cting, short swng 10

» DocumentTyoes ©

> Dooned UTi ()

» imported Uts ()

» URLTyses @)

(] © ©.
AsaTarger Valiace setngs Add

OEBPS/images/f555-01.jpg

OEBPS/images/f057-01.jpg

OEBPS/images/f246-01.jpg
Key [Type Value
CFBundleDevelopmentRegion String en
¥ CFBundleDocumentTypes Array W item)
¥ Item O (PDF Document) Diction. (@ items)
CPBundieTypeName String PDF Document
LSHandlerRank String Alternate
CFBundieTypeRole string Viewer
v LSiemContentTypes Array (1 item)
ftem 0 String com.adobe.pdf
UlFileSharingEnabled Boolean YES
CFBundleDisplayName String SIPRODUCT_NAME}

OEBPS/images/f439-01.jpg
8 06

@ @ ApplePushNotification » We

Rin_ stop Schem

|m|l= © & = 8

‘ApplePushNotification
v B e, i05 50K 5.0

v [Applepushnotification
[h ApplePushNotificationAppDelegate.h
Im| ApplePushNotificationAppDelegate.m|
|h] ApplePushNotifi.. ViewController.n
m| ApplePushNotifi.. ViewController.m
% ApplePushNotif._iewController.xib
v (] supporting Files
1 beep
‘ApplePushiotification-Info.plist
| nfoPliststrings
(e
[h) ApplePushNotification-Prefix.pch
» (2] Frameworks
» (] Products

OEBPS/images/f554-02.jpg
Please enter your name

oK

sarchbisplayConrolle
ooName TextFike
Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections.
New Referencing Outlet Collcion
Recelved Actions
Touch Up nside

OEBPS/images/f056-01.jpg
UsingViews2 - UsingViews2ViewController.xib

Running Usingviews2 on Phone Simulator

No ssues

—
jsngviewse) (usi)~ us Bus..) _|view) if webview

¥ e view

= ca Sals Page T e

Detection (] Links. [Addresses
(¥ Phone Numbers
O

¥ view

Node Scale To fill

Tio o
Interaction (User Interaction Enabled
) Muttiple Touch
Alpha £
Background [———1]
Drawing @ Opaque) Hidden
¥ Clears Graphics Context

0 Clip Subviews
 Autorssize Subviews

Sracning of
X

D Ule =
(liokies][]

Seroll View - Provides a mecharim
1o display contenttha s lrger than
he siz ofthe application's window.

Date picker - Dtz il
e
ik

OEBPS/images/f249-01.jpg
Key Type Value
CFBundleDevelopmentRegion String en
¥ UTExportedTypeDeclarations Array (Litem)
¥item 0 Diction (4 items)
UTTypeDescription String Sudoku Game Document
¥ UTTypeConformsTo OO Amay (1 item)
item 0 String public.data
UTTypeldentifier String net.leam2develop.offlinereader.sdk
¥ UTTypeTagSpecification Diction.. (2 items)
public filename-extension String sdk
public.mime-type String application/offlinereader
¥ CrBundleDocumentTypes Array @ items)
¥ item 0 (Sudoku Game Document) Diction (@ items)
CFBundleTypeName String Sudoku Game Document
LSHandlerRank String Owner
CFBundleTypeRole String Editor
v LSitemContentTypes Array (1 item)
item 0 String net.learn2develop.offlinereader.sdk
¥ Item 1 (PDF Document) Diction (@ items)
CFBundieTypeName String PDF Document
LSHandlerRank String Alternate
CFBundleTypeRole String Viewer
v LSitemContentTypes Array (1 item)
item 0 String com.adobe.pdf
UlfileSharingEnabled Boolean YES
CFBundieDisplayName String S{PRODUCT_NAME}

OEBPS/images/f441-01.jpg
“ApplePushNotification”
Would Like to Send You Push
Notifications

Notifications may include alerts,

sounds and icon badges. These can
be configured in Settings

R —
Don't Allow E

OEBPS/images/f556-01.jpg
File's Owner

Outlets
searchDisplayControler

oatname TextFild
iew View
Referencing Outlets

New Referencing Outlet

Referencing Outlet Collections

New Referencing Outet Cllection

Recelved Actions

benClicked: Buton - Ok
Touch Up Inside

OEBPS/images/f053-01.jpg

OEBPS/images/f247-02.jpg
il ATET 7 6:51 PM 7 3 100% e

filex//localhost/private/var/mobile/Ap
plications/72FB0704-FABB-4A7B-
95E7-
E5176C98570A/Documents/inbox/
Courses%20for%20Sep%20and%

200ct%202011.pdf

— e —
Display Files in Documents]
o)

OEBPS/images/f440-01.jpg
s |

+oEB0O

e coseSaning s

Dorccodesan

1i0ssDescsprotie_fordoo

B S ——

e s anssena
214 sovrmarcen
& Aot (ce (M)
Ioptormatti m sovice

500 s e deeion 35 055PtoAD)

OEBPS/images/f555-02.jpg

OEBPS/images/f050-02.jpg
[UsingViews - UsingViewsViewController.xib.
Todey 5555 P ‘ Eas) =)
Vew __orgnizer

Build Usingiews: Succceded

— s
Tusngviews) .. Bus. Rus | jview, migeven]| 0 B B 9] O
¥ view
snow Frame Recungle)

x Y
s20](2) a20/[}]
« Width Height
Grigin
i
Autosizing Examole

Avrange [Position View.

(il otyecss
Progress view - Depas the
S progressof 2 st over .

Dispiays 2 dotfor

i Page Contr
each open page in an application and
suppor sequential avigaton.

[| Tale view -Desias amimatst
O seCines o aroes o

OEBPS/images/f250-02.jpg
Open in “OfflineReader”

Cancel

OEBPS/images/f050-01.jpg
Fie's Owner

 1mage view

 Image Vew,
 Pigs Comrs

e * vew
B 7 Referencng Outlets
¥ Referencng Outlet Collectons
New Referencing Outet Calection

OEBPS/images/f250-01.jpg
Inbox (9)

Technologist & Founder,
Developer Learning Solutions

Tel: (65)-9-692-4065

Author of:
* Beginning Android Application Development
(Wrox)

* Beginning iOS 4 Application Development
(Wrox)

* C# 2008 Programmer's Reference (Wrox)
Join our Facebook fan page now at:

Solutions

FirstGame.sdk >
07KB

OEBPS/images/f441-02.jpg
nasdeth ipcins o3

pushNotifcation

All Output (Cear) (O WL 0

[Switching to process 7171 thread Oxice3]
sharectibrary apply-loat-rules all
3.2 '3 ApplePushNotification[1216
push natificationg. .
AppLepu:

€95591d0 228e0b84>.

OEBPS/images/f049-02.jpg
ingViews - UsingViewsViewController.xib.

I——

EE 5 @m=E (=

o R
V- M. Rmvervecomotesb Exi | ver| D B @98 0
5 e
s Cione D)
f——)
et i)
==
o (s To B
= o8l

UllmageView

Unimageview

merceon bser nracton erabled
(0] Multpe Toucn
s]
Sackgrours [M Dark Tex: Coor < |
Orawng Opaque | Hidden
1] Gears Grapics Context

0 cio s
e Q) 52 e [

e o I

(JiliObiecs

Progress view - Dapc
S progres oaask vert
Page Control - Disoay
ot
Table View - ity
of i, seconts, o a1

Opaciy

OEBPS/images/f049-01.jpg
gViews - UsingViewsViewControl
u Today 21555 P

aviews: Suc

vV Busingv gy | Niew BiPsgecorrol| D B 2
G) (aaa
Pages go)
sopages Comert

Sehavir (] Wides for Single Page
Defers Page Disolay

¥ Conval
Aigemert (1 0] [| B

Horizortal
= Oim)

Vertical

Cortert () Selected o Enaoiea
Unimageview) vighlighted
¥ view

Node ScaleTo Fil

T o

Ineraction User Interaction Erabied
(0 Mulipe Touch

s fie]
e ——n|
[RIL]

il obecs < (=lE)

Progress View - eoics e
S progiess of e ask ver ime

Page Control - ispiays dot for
36h aper psge inan applcston
supports sequential nnigaton

Table View - Disgaysdeta i st
of lsn, sectancd. o rouped row.

OEBPS/images/f048-02.jpg
 UsingViews - UsingViewsViewContraller.xib_

eepE]

BEa g mom @J.
e e __ oo

v e Buw.

inav_vew_msgevin

DB Bawso

G

.
[—

e

e s o i
erton) usr neracion rabies
1 e Toven

e
ewoa Opsaue en
¥ s G Coont
C opsumins
o rszssuvvens

B ol
o

B e |
EH@RB

OEBPS/images/f556-02.jpg
File's Owner
Outlets

 View

Referencing Outlets

New Referencing Outet

Referencing Outlet Collections

New Referenc

Received Actions

benClcked: Button- OK
Touch Up Inside

OEBPS/images/f254-01.jpg
800

(®) (oo] (=]

Databases e
¥ A L trger 105 50K5.0 ROjEC

[Databases - Databases.xcodeproj

|« » | Piouabases

summary oto

oecar B owases
) Dratmsseppscsh -
In DustacesepDdsstm

Buig sewngs |

(3 T Depdencim 6 e

=)
e, [D)
in DuatasesviewCervalerm
" Datstmsenvincontolir b ik ey s s e @
» Csupportng s & Uik menork e §
» Clrrmevors 6 Foundsson famenok Required §
» s
+ - [opp—
> Copy Bundte Resourcas 2 ams) g
s OEN®) ac6 Targe: Valdareserings sl rase

OEBPS/images/f443-01.jpg
Newsstang. iy Deta

s

OEBPS/images/f557-02.jpg
Please enter your name

ety g suon - 0k

v Sent Events
D4d £nd On Exit
Ediing Changed
Ediing Did egin

ef

Touch Drag Ext
Touch Drag Inside

Touch Drag Outside

Touch Up nside

Touch Up Outside:

Value Changed

Referencing Outlets.

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outle Collection

O O 00®00000000000

OEBPS/images/f442-01.jpg
Noticatons | ApplePushNotificati...

TN
Notification Center (@)

Show 5 Recent Items >

Alert Style

| -
[P —.

Alerts require an action before proceeding.
Banners appear at the top of the screen and
9o away automatically.

Badge App lcon [on @)

Y

OEBPS/images/f557-01.jpg
Referencing Outlets

New Referencing Outet
Referencing Outlet Collections
New Referencing Outlet Calecion
Received Actions

benClcked:

<

<

File's Owner

Please enter your name

 TextField
 View

oK

OEBPS/images/f104-02.jpg
Losding

Choose options for your new project:

PoductName [TabbedAop

| Company deifer et earnzceneion

Bundie Identifir e learmdevelop TabbedApp

Clsss prefx [Tabbedhor

Device Family | Phone B
) use storyboara
) Use Automatic Reference Counting
[include Unit Tests

OEBPS/images/f258-01.jpg
© O O [17FD3C17-D127-453C-B711-23976547C5BA

=] (o] [#-] »

FAVORITES —mﬂs_
AllMy Fies || :mm:;

“© AirDrop

[] Desktop

) wei-men... | > Emp

#\ Applications

[Documents
-] Dropbox

OEBPS/images/f445-01.jpg
806 PushMeBaby.xcodeproj — aps_developer_identity.cer

@ Q E] Build Succeeded | 18/7/11at 11:31PM. E@
R e i
Im[z ® &4 =

[PushMieBaby

<> | [yrusesany) JResources) | | aps developer idemttycer | o selecton

Tiares o 05X 5DK 107
'i:(“f;fjmmm,[w_h J—é Apple Development 10S Push Services:
m ApplicationDelegate.m 6LNSVE9DS8):6LNSVE9DS)

fosockh
e osock.c
v [Other Sources
R PushMebaby Prefcoch Subject Name
B User I netlearn2develop.BegiOs3PushADEID
Common Name Apple Developmant 105 Push Services: GLNSVESDJ6LNSVEGDE)
Country SG

ssuer Name

Country Us

Organization Apple Inc.

Orcarizational Uit Apple Werldwide Developer Relations

Common Name Apple Worldwide Deveoper Relatiors Certiication Authority

¥ [Frameworks
» [Products

Serial Number 203139835210516049
Version 3

Signature Algorithm SHA-Lwith RSA Excryption (12.840.113549.1.1.5)

Not Valid Before Wednesday, August 31, 2011 11:44:40 AM Sirgapore Standard Time
] | NotValid Afier Tuesday, November 20, 2011 11:44:40 AM Singapore Standard Time.
i (&

OEBPS/images/f559-01.jpg
[LearningobjcAppDelegate.n

|m LearningObiCApDelegate.m

[I LearningObiCVienControler

[m LearningObiCViewController.m

- LearningObiCYienContoller b
Sugporting Fles

» [Frameworks.

» [Products

OEBPS/images/f104-01.jpg
Loading

Choose a template for your new project:

Wios
Framework & Library
Other

27
77 -

Master-Detail OpenGL Game Page-Based Single View
& Mac 05 X ‘Application Application Application
Application s
Framework & Library Y
Application Plug-in £
System Plug-in T
Other Utilty Application Empty Application

| Tabbed Application

“This template provides a starting point for an application that uses a tab bar. It provides a user
interface configured with a tab bar controller, and view controllers for the tab bar items.

OEBPS/images/f254-02.jpg
806

‘®Qm =]]

O
sz © 4 = » &
e
e s
v (] Databases.

[h] DatabasesApoDelegare.h
] DatabasesApoDelegate.m
[h] DatabasesViewContrelleri
In] DatabasesViewContrcllerm
- DatabasesviewContrlieraxib

» (] Frameverke
» (] Producs

OEBPS/images/f444-01.jpg
‘Command

Token length Payload length
2 32 2 34

(blg endian)

(blg endian)

OEBPS/images/f558-01.jpg
Please enter your name

File's Owner
Outlets

myTextfield

pee—

taame * TextFied
view view
Referencing Outlets

New Referencing Outlet

Referencing Outlet Collections

New Referencing Outlet Callection

Received Actions

benClicked: Bution - OK
Touch Up Inside

OEBPS/images/f048-01.jpg
UllmageView

UlimageView

OEBPS/images/f106-01.jpg
First View

Loaged by o trstvew
contolr - an ntance o
FrstuewConollo - spociies n e app
dogate.

Second View

Loaoea by ne secondvew
contaler — i nstance of
SoconaViewGonTolbr — specredin he
avp aeeque

OEBPS/images/f265-01.jpg
Last login: Hon Aug 15 20:08:36 on console
Wei-Meng-Lees-HacBook-Pro:~ wei-nenglees sqlited mydata.sal

SoLite version 3.7.5
Enter ".help" for instructions

Enter SQL statements terminated with a
sqlite> CREATE TABLE IF NOT EXISTS Contacts (email TEXT PRIMARY KEY, name TEXT);

sqlite> INSERT INTO Contacts (email, name) VALUES ('weimengleeggmail.com','weime
nglee’

sqlite> SELECT » FROM Contacts;
‘weinengleeggnail.com|weinenglee
Zatices §

OEBPS/images/f450-01.jpg
|mlz ® &

v B8 e ossoxso

v [Maps
k| MapsAppDelegate.h
m] MapsAppDelegate.m
[h] MapsViewController.n
[m] MapsViewController.m
1B acaviewConmaier b

» (I supporting Files
v (] Frameworks

» 8 Foundation framework
[products

OEBPS/images/logo1.gif
O

Available fo
download or
Wrox.com

OEBPS/images/f047-01.jpg
06 I3 UsingViews - iMac_old.jpeg

@ O m— E] Build UsingViews: Succeaded | Today st 5:55 P BEloz

Scheme Editor Vew Organizer

)- [;-; © s = » = & 4 > | [Usingviens | []usingviews) [|supporing files) [« Mac_oldjoeg) No Selecton
T
v [UsingViews

b UsingViewsAppDslegate h

i UsingViewsppDelegate.n

I UsingViews\iewControler

m UsinguiewsVienConolierm

% UsingViewsVienControlerxb

e i

B o
£ Macaicospes
& MacPusipes

[Macsijpeg

) nfopiststrngs.
[h] UsingViws-Prefpch

b [Frameworks.

» [products

eEEa

OEBPS/images/f105-01.jpg
eo0e

) ® Gwe] =) [

Run Stop Scheme Breakpoints
iz & & > 8

 TabbedApp
V& target, 105 SDK 5.0
v [TabbedApp
h] TabbedAppAppDelegate.h
m] TabbedAppAppDelegate.m
[h] TabbedAppFirstviewContrallerh
In] TabbedAppFirstviewController.m
« frstpng
|4 first@2x.png
TabbedAppSecondviewCantrolier
‘TabbedAppSecondViewController.m
second.png
second@2x.png
TabbedAppFirstyiewControllerxib
- TabbedAppSecondViewControllr.xib
» (2] Supporting Files
» (] Frameworks
» (] Products

ERE]

3 [

OEBPS/images/f264-01.jpg
)| Al Output 3 G)
GNU gdb 6.3.50-20050815 (Apple version geb-1706) (Tue Jul 19 23:33:12 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcone to change it and/or distribute copies of it under certain conditions.
Type "show copying” to see the conditions.

There s absolutely no warranty for

This GDB was configured as "xB6_64

Type "show warranty” for details.
Le-darwin”. sharedlibrary apply-load-rule:

au
Attaching to process 26

Soitcaerte 31755506786 Datosasesia
2011-98-16 21:55:0

2011°08-16 21:55:0

03 userdglearn2develop.net - user O
782 Databases(268:e183] userl@learn2develop.net - user 1
782 Databas: 03] user2qlearnzdevelop.net - user 2

OEBPS/images/f446-01.jpg
PushMeBaby

Device Token: |c0c780dS 965deb7a f09db856 bd3da832 eSa3lcf |

Payload: |{'aps"{"alert""You got a new message! [Push |

“| PushMeBaby wants to sign using key “Wei-
Meng Lee” in your keychain.

[i e e

You want to allow access to ths Irem?

| [Deny | [Alow

Always Allow

OEBPS/images/fviii-01.jpg

OEBPS/images/f046-03.jpg

OEBPS/images/f111-01.jpg
Carer 1094 AN

Ploaseaner youramme

OEBPS/images/f271-01.jpg
[3 Developer

Provisioning Portal
cantficates

Devices

Technologies Resources Programs Support Member Center

Manage HowTo

e et

Distribution

Description

Enter a common name or description o your App 1D using alphanumeric characters. The description you specify will be usec!
througnout the provsioning Portl o identiy this A 1.

i your desciton

(PemaARE] Youcamnatuse spcil carazrs 1 6.,

Bundie Sead ID (App 1D Prefix)

Use your Team ID or select an existing Bundle Seed 1D for your App ID.

) Fyou raceating s of aplctions it il snar the same Keychii acas, s hesame bndlaSeed I o each ofyour
apcatn's e 0

(UseTeam

Bundle Identifier (App I Suffx)

Entor 2 unique dentifler for your App ID. The recommended Practice 5 0 use 2 raverse-omain name styl string for the Bundie
dentifier portion of the App ID.

e — TS

OEBPS/images/f452-01.jpg
i 550 P

OEBPS/images/title.jpg
iOS 5 Application Development

Wei-Meng Lee

iLEY
John Wiley & Sons, Inc.

OEBPS/images/f046-02.jpg
Tile of Action Shes!

Delete Message

OEBPS/images/f110-01.jpg
eo0o0
(B) (W Phone 505
N iPhone 505,
OXO)

53 MyiPhoneApp - MyiPhoneAppViewController.xib

gal Bz @om F
s scheme sdor Vew _ owerieer
min © a < > D c0 B B woesvevconolexb @gisn)_vew| D B = ®® ©

« o Wmeneapa
Ve 6550650
£ uvpronesco
[5] MrProreAgpApaDeigate.h
[wyPmoreazpapaoeiegate.m
v ——

+ 0BG (S

7 S musted Metncs

Size [Nore

Orinsaton [orrait

{

Please enter your name D {l & m
(WlObiees ®=

. Round Roct Button - tercnts
[o even and sance a0 action
—— assage 01 targer cojectwhen

Segmented Control - Dizplays
12) mliplesagments, cacn o whicn
DL nlons 525 dicrte o,

| TextFeld - Disoas eaable e
Text | and sends an action message 0
arge obect when Retn s wpped.

Sider -Dispays 2 cortuous range

@ afvalues and alows s sacion f
2singleale.

fesdback on he rogres o a st or
brcess o inkhown raton.

Progress View - Depcs the
progrss of sk ovy .

| g Conel D e

OEBPS/images/f266-01.jpg
© 0 O_&15Qlite Database Browser - /Users /wei-menglee/mydata.sql

D= o (o |a| o |ot]]]

-~ { Database Structure |JBROWSEIDRRAN| Execute SQL |
\
Table: | Contacts &) [O | | New Record || Delete Record |
email | name

1 weimenglee@gmail.com weimenglee

< J1-10f1[> Goto: |0

OEBPS/images/f451-01.jpg
€06 [Maps - MapsViewController.xib

‘ @ (m) [#hones.0s..] [m] e E@ Iﬂ_ﬂ u

- wearpores Grganizer
m = nesc==05 |4 > [iMs [1 B R MepsvienControlerin Engien))| View — E)q\‘ °
Mo ¥ Smatea et
¥ B ossokso
2 = Size (None
) MapsAppDelegate.n orentation _poruan
In Mapsagpelgare.m Sotus o

) spsvewcorcolern .
o] s ewConvoterm oot none
‘ Sotom 3 Mons
» = Suovoring i ¥ vew
v [prameworcs

8 Mapnframenoric Node | Scale To il

i
ot Treracion & Use eracson Evaled
> [produce ® El
0 (lelm
. (il Objects
S| of edtale e and s s scton

messageto 2 target objectwhen.

d Web View - Dispiaysembected
L] e contentang eabies content
nagaton

Map View Displey maps and
providesan embeddabl ntrice o
Ravigte rap conen:

s

1o dispiy coman:that arger than
he iz o e pelcaion’s windon.

Dot Picker - Dislars mlipe
(] i s
Sl s s e
rcker View - Diplas 3 sinni-
] st or s mache mottor

+ OB @S e

‘Show My Location

OEBPS/images/pen.gif

OEBPS/images/f046-01.jpg
—————
Option 1

oK

OEBPS/images/f111-03.jpg

OEBPS/images/f272-02.jpg
Warning

Al new provisioning profiles you create for
this App ID will be enabled for iCloud. If you
wish to enable iCloud for any existing
provisioning profiles associated with this App
ID, you must manually regenerate them. Click
OK to proceed.

=

OEBPS/images/f456-01.jpg
eo0e
@ @ LBS) iPhone 5.0 Simulator
Rin s Scheme

|z ®@ &4 = » 8

8s
¥ B tager, ios 5ok 5.0 .
v Cass
[h] LBSAppDelegate.n 4
In] LBSAppDelegate.m
h] LsSViewControllern L

In] LoSViewControler.m
- LasViewControllerxib

» (2] Supporting Fles
v (] Frameworks.

» = CoreLocation framework
Ui framework
» € Foundationframework
[producs

OEBPS/images/f043-02.jpg
This s an alort vow

OEBPS/images/f111-02.jpg
eo0o iOS Device

@ @ M.) ¥ iPhone 5.0 Simulator

ZN0ALA=Em8 |u

MyiPhoneApp

v 3 Y arger ios SDK 5.0
v [[1] MyiPhoneApp

[h] MyiPhoneA...pDelegate.h
|m| MyiPhoneA...pDelegate.m
[h| MyiPhoneA...Controller.n
|m] MyiPhoneA...Controller.m
(] Supporting Files
» (L] Frameworks

e ®

OEBPS/images/f272-01.jpg
Technologies Resowces Progiams Support Member Center

@ Developer

iOS Provisioning Portal

Provisioning Portal 6010105 Dey Cemer

=
e g o
=
ETm—
s ‘mare information on utilizing the Apple Push Notification service, view the Apple Push Notification service Programming Cuide, the.

L An Apo ID-specifc Cllent 5L Cerificate: A Clien SL certfcate allows your notficaion servr 1o connect 1o the Apole Push Notifcaton
o endbla to racave push noticatons.

Senvce. You wil e £ creste a indida Clen SSL Certricae for 2ach Ape
2 in Apple PuSh Notifcaion sarvice compatile powisning profie: Aer yo have ganeratad your Cllent SL cereficare, craxe 3 now
provisioning profile containing the Apo ID you wish to use fo notfications.

‘Once the steps above have been completed, you should buiid your 0pIcAtion Using this new provisioning prof .

DemoiCioudAppiD
6LNSVESD8) et earzdevelop.DemoiCloud

Enable for Apple Push Notification service

Push ssL Certfcate Saws. Exciration Date action

5 Developmen: ush S5t Certfeate @ Contguravie Conigue

Prosucion push SSL Certcste O Confgurssle Configure

 Enable for iCloud © Configurable

(=

OEBPS/images/f454-01.jpg
i Maps - MapsVie ler.h
Running Mass on Phane Smuator Bl == 6 =

e ~—m
. e
/1 MapsviewController.n X
%

iy i

+o@E®

o msptes

) shoutacation: (19] senders

vacs

Gear) (0
56 Hops 1025

667 Haps11629

667 Haps11629

1852 Haps 1020
22 napa 1029

7

961
119631
15631
1350;

19031
13003
1003
o)
o)
o)
1503
156
156
156

Haps11029: 135631

OEBPS/images/f043-01.jpg

OEBPS/images/f112-02.jpg
806 MyiPhoneApp - MyiPhoneApp.xcodeproj o~
® @ M. iPad 5. (=] ‘ Running MyiPhaneApp on iPad Simulator
R Sop Scheme == Edior View Organizer
mm®4==0 | 4 > | [uyihonespn
B PROJECT Summay o | BuldSewings | SuidPhases BuldRules
v (5] MyPhoneApp 5 yiPhonespp. [gasic JITMN Corbined JNTTS)
[ivirhonedt pDslegeta el +ancurs Setting A yiProreAsp.
m] MyiPhoneA...pDelegate.m ¥ Deployment
|h] MyiPronea...Controllerh Installation Directory Iapplications
m] MyiPhoneA...Controller.m Strip Linked Product No t
B myiPnanea._ontrolle.xib 4D Pad
» (] Supportng Files 105 Deployment Target 105508
> (Frameworks ¥ Paclaging
» [Produas Infoplist File MyiPhoneApp/MyiPhoneApp-Info.plist
Product Name NyiPhoneApp.
Wrapper Extension .
¥ Apple LLVN compiler 3.0 - Language -
Precompile Prefix Header Yest
Prefix Header MyiPhoneApp/MyiPhoneApp-Prefixpch

© @ ©.

Validats Settings Add Build Serting

+ | 0@ (S @ m o= i & 4 | MiPhonepp

OEBPS/images/f042-01.jpg

OEBPS/images/f112-01.jpg
606 MyiPhoneApp ~ MyiPhoneApp.xcodeproj

@ @ S Running MyiPhaneAsp on Pad Simulstor

i o tsues

» 8 | 4> | [MyiPhoneop
e | summa ofo ild Settings il Phases i Rudes
1 target, iC5 SDK 5.0 ":"C; Summary | i Build Setting: Buile. B
B yhane 105 Applcation Tas
v (] MyiPhoneAop MyBhanaksn o et

) MyiPnonea. .pelegate.n | 1arceTs E o
Erremisnnnt dentifer et learm2develop. My FroneAop

8} wehonen..Conratier IR, T — —

Version [10 suia [1.0
s e
B yiPhonea. ontroller.xib e A)
» (2] Supporting Fles Deployment T:
» (] Framevoris
i rodicie

¥ iPhore / iPod Deployment Info.

Main Storyboard | -
‘ Main Interface |

‘ Supported Device Orientations

| EE

Portait Upside lndscipe Landscipe
Rght

© ©

Acd Target Validate Settings.

+| OB B (S E m o & 1|4 | MyPhoeAp

OEBPS/images/f273-01.jpg
& Developer Technologies Resources Programs Support

Provisioning Portal Goto0S DevCenter-

Development | Distribution History. HowTo

Create iOS Development Provisioning Profile

‘Generate provisioning profiles here. Allields are required unless otherise noted. To learn more, vist the How To section.

Profile Name Dema B s
Cenificares wei-Neng Lse
Ao 1D [DemociowsApo)
Devices Saleet All
o wei-heng Loes 2 o ei-heng Loes hons &

OEBPS/images/f094-01.jpg
MasterDetailMasterView
Controller_iPhone.xib

O

masterViewController object

navigationController property

selfwindow.rootViewController

property

OEBPS/images/f092-02.jpg
i0S Simulator - iPad / i0S 5.0 (9A5302b)

OEBPS/images/f092-01.jpg
iOS Simulator — iPad / iOS 5.0 (9A5302b)

OEBPS/images/f091-03.jpg
Corrr T3 AN

Detail >

Detat v comentgoes ere

OEBPS/images/f091-02.jpg
Update Simulators.

v 5 Masterbetail
5 arger, 105 5DK 5.

v (] asterDetail MasterDetail
o

OEBPS/images/f091-01.jpg
8 0e

@Q—@W

Run_ Stop Scheme
|mm © & = 8
v Masterpetail
Ttarget, 055K 5.0
v (L] MasterDetail
[h] MasterDetalAppDelegate.h
MasterDetalAppDelegate.m
MasterDetailMaste ViewControllr.n
MasterDetailMaste ViewController.m
MasterDetailDetailViewCortrolle:n
MasterDetailDetilViewCortrollerm
MasterDetailMasterViewController.iPhone.xb
MasterDetailMasterViewController_{Pacxb
MasterDetailDetailViewCortroller_iPhone.xib
i MasterDetailDetalViewControle_iPac.xib
» [Supporting Fles
b [Frameworks
» (] Products

~
A

OEBPS/images/f403-01.jpg
147 Pt

OEBPS/images/f540-01.jpg
#pragna mark - View lifecycle

~ (void)viewdidLoad
1

UIAlertView valert = [[UIAlertView alloc] initWithTitle:
message:
delegate:
cancelButtonTitle!
otherButtonTitles:
falert shoul;
[super viewbidLoad];
77 Do any additional setup after loading the view, typically from a nib.

OEBPS/images/f539-03.jpg
806

@ O [MyKillerApp » iPhone 5.0 Simulator.)

Scheme

L >

806
@ @ MyKillerApp) ¥
Run__stop

)'-{r: ® &

FIYKL CeTApp

7
11 Created by Wei-h

iPad 5.0 Simulator
iPhone 5.0 Simulator

Update Simulators.

illerApp)

=, MyKillerApp
= targer, 05 50K 5.0

YKL TTerApp

7
7 Bowatad oy lelil

OEBPS/images/f405-02.jpg
») (M) (B..) Wei

Rin__Stop Scheme Breakpoints

53 BluetoothChat - beep.wav

Xcode

Bz @ A = » 8

53 Blueto.

TR

) No Selectior

BluetoothChat

8 1 targer, i0s 5D 5.0

(] BluetoothChat
) BluetoothChatAppDelegate. h
im] BluetoothChatAppDelegate.m
] BluetoothCharviewController.h
im] BluetoothChatviewController.m
% BluetoothCharViewControllerxib
(] supporting Files

[
7] BluetootnChat-info.plist
Infoplist.strings
] BluetoothChat-Prefix.pch
(] Frameworks
& GameKit. framework
&% AVFoundation.framework
€& UIkit framework
& Foundation.framework
85 CoreGraphics.framework
R

OEBPS/images/f540-03.jpg
#pragna mark - View lifecycle

voidlviewbidload

UiAtertView wolert = [[UIAlertView alloc] nitthTitlese Hello orld!” 1 nuncemebod “nviTiemesase legtcnct..
ressages e n o, my wortai”
attasaterselt
cancetuttonTiiies6 06"
etattomities il
fotert srouls
[Siper viewdidtosd:
1786y mddt onal setup after loading the view, typicslly fron a nib.

OEBPS/images/f405-01.jpg
'eee

B.) Wei-Meng...

Scheme Brealg

y-mea e

oy Bustootnchat
Ttarget 050K 5.0
v (] BluetootnChat
[h] BluewoothChatAppDelegateh
In] BluetoothChatAppDelegate.m
[R) BustoothChatViewContraler.n (B
Il BluetoothChatviewControlier.m
* BluetoothChatviewCortrolleraxib
» (] supporting Files
v (] ramevorks
> = GameKitframework
) = AVFoundation.framework
» 2 Uit framework
» 8 Foundation.framework
» 8 CoreGraphicsframework
» (] Products

OEBPS/images/f540-02.jpg
#pragna mark - View lifecycle
(void)viewidLoad

ULAlertView xalert = [[UTAlertView alloc] initWithTitl

startof message send expression
uttonTitlesinill;

77Do any additional setup after loading the view, typically from a nib,

OEBPS/images/f407-01.jpg
File's Owner
Outlets
comnect Button - Connect

r— utton - Disconnect
searchDisplayController

view View

Referencing Outlets

New Referencing Outtet

Referencing Outlet Collections.

New Referencing Outlet Collction

Received Actions

benComnect: Button - Connect
Touch Up Inside

[— utton - Disconnect
Touch Up Inside

beoute: utton - MUTE
Touch Down

bennmute: Button - MUTE
Touch Up Inside

Connect

OEBPS/images/f541-02.jpg
~ [veid)viewdicDisappear: (300L)aninated

Lsuper viewionisappea

ninatedt;
@ - (500L) shoulghutorotateTolnter facedrientat ion: (VIInter facedr ientat ion)
i

/7 Return YES for supported arientations
Feturn' interfacedrientation '= Ullnter face0rientationtortraitUpsidedomn) ;

cend

OEBPS/images/f090-02.jpg
Choose options for your new project:

roducthams (Vs)

| Companyenther neleamzdeveion]

Bundle Identifier net.Jeam2develop MasterDetail

Closs Pef Masterdeial]

Deice Famiy
] Use Storyboard

) Use Core Dara
() Use Automatic Reference Counting
) Include Unit Tests

= [Crreviows] (et

OEBPS/images/f406-01.jpg
3 BluetoothChat - BluetoothChatViewControl ler.xib

[® alues nd alona e secion s |

singievalue.

‘Switch - Dispays an element showing
e boolean Sat of valu, Alows
apping he conrol 1 odle e value.

Actvity Indicator View - rovides
oedoack o e pogressof a sk o
precass o uncnoun crztion.

Progress View - Depicsthe progrss

Page Control - Dislays do orcach
oper age in n appicaton
Suppers sequertal ravigaon..

Tavle view- Disisda st of
i, secioaes, or grouped

Table View Cell - Deines the
tioues and behavior of el rows)in
prevvivg

Image View - Disgaysasigl image.
or an anmaion descrbed by an aray of
images.

OEBPS/images/f541-01.jpg
MyKillerApp.xcodeproj — [m main.m

Running Mykillerigp on iPhone 5.0 Simalater. Elo=)

e Editor Vew Organizer

> | L wyKileragp)] wyNillerapp) [Supporting Fls) [njman.m) ho Seecton B

MyKillerApp
Palced

v i Tread 1
[0_ptaread kil
31 uikppiicationmain

b 1 Thread 2
b i Thread 3
b i Thread & WebThread

77 mainn
77 wyiiterapp

77 Crested by Weiheng Lee on 6/9/11.
77 Copyrignt (c) 2611 _MyCompamyName_. AL rights reserved.
#inport <UIKIt/UIKit.h>
#inport "MyCillerAppAppdelegate.h’
int mainCint arge, char sargvl)
<

eautoreleazesool {

[return UlApplicationain(arge, argy, nil,
NSStringF ronClass ([FyKil e rApphppDelcgate class]));

= o oo 4 | MyKillerApp) ¥t Thread 1) 1114 main

AllOutput + (Cear) (O

T¥DE "show CopyIng" 10 Se¢ the cangitions.

There is absolutely no warranty for GIB. Type "shou uarranty" for details

Thic GDB uas configured a: "x86_G-apple-darvin®.Attaching to process 1077.
5 R

unrecognized

06 13:49:35.591 MyKLULerApp[4677:14503] +ax Terminating app due to uncaught
Senniie Seintisiomucstio . nai o iatie
inituitnTitle: ancelbuttonTitle: otherButtonTitles
Seeter st To Trdtance. puasiaine:
wax First throw call stack:

Oriatcrd oria1eii xisLicr 1ok Dudcebe 117363 Qrarse]
10196 0x17633 0x fas 021382145
11747002 av1205038 by1saidid Cxizedcen Seos7 Briiish Briscs Gileds BE1)
terninate called throwing an exceptionsharedlibrary apply-load-rules all

auto; currently objective-c

unrecognized

OEBPS/images/f090-01.jpg
Loading

Choose a template for your new project:

az o

Sppliaton >

Frameork & Lirary E4) -

Oher Master-Detal OpencL Came Page-Based Single View]
& Macosx opiation Ropication Aopicition

Appicaton -

Framework & Library x

Apslicaton Plug-in o RaS

System fun-in

other Tibbad Applestion Uty Applcaion Gmpry Appication

—
 Master-Detail Application

“This template provides a starting point for a master-detail appiication. I provides a user
interface configured with 2 navigation controller to cisplay alist of tems and a0 a spitview
oniPad.

(Previous | (mein)

I),

OEBPS/images/f417-01.jpg
File's Owner
 TextView

 Table View
 View

Referencing Outlets

daasource Tabl View

delegate Table View

New Refrencing Outet

Referencing Outlet Collections

New Referencing Outlet Cllecton

@
o
3
®
®
3
o
o

OEBPS/images/f542-02.jpg
- (B00L) shouldhutorotateToInterfacaOrientat ion: (UIInterfacerientation)
interfoceorientation

YES for supported orientations
n the willRotateToInterfacedrientat ion:duration: event handler'
return (interfacedrientation 1= UlInterfaceOrientationPort raitUpsideDown

3

I
cena

202 L7 | MyKillerApp.
AllOutput & (Clear) (1 1 JEID.

2011-89-06 13:53:36.101 MyKillerApp[4152:14503) In the

OEBPS/images/f088-01.jpg

OEBPS/images/f416-01.jpg
[Bonjour.xcodeproj — - BonjourViewController.xib

Running Borjour on Phone Simulator

Nossues

Brea

Burlingame

Scotion Footer,

each openpage n a8 apoication and
Supports sequental ravigtn. .
) Stepper - Provides 3 use ntertace
=] for crementingor decremetinga.
e

Table View Cell - Defns the
auibicesand behair of el (ows)
na i vew.

|| mage view- ol ssingle
image.orananimaton escied by
| anarma of images.
Text View - Dispays mltile nes
et st and tande 3 scon
message o targe ojec wher...

+ O@6 >

2| 4 | Bonjour

OEBPS/images/f542-01.jpg
-~ (B00L) shouldAutorotateTolnterfaceOrientation: (UIInterface0rientation)
interfacedrientation

// Return YES for supported orientations
return (interfaceOrientation != UlInterfaceOrientationPortrait

sideDown) ;

| eend

OEBPS/images/f084-02.jpg
e 10:23 Al

This is a label

OEBPS/images/f425-01.jpg
Message
Conneced Users:
Wei-Meng Lee’s iP...

Comect

Wei-Meng Lee's iMac

Resoed: Wor-eng-Lees-Prone-4Jocal
5000037526

Found senvo. Resovng adeoss.
Rescvad: Woreng-Loos-ac 2 ocal
>162.168.1.11837525

Resoed: WorMeng-Loes-Mac 2loca -

OEBPS/images/f544-01.jpg
legate.h
#pragna mark - View lifecycle

legate.m
T T ~ (void)viewDidLoad
ontrollerxib satert = (I alloc] initHithTitle:e"Hello World
nessage:@"Hello, ny world!
delegaterselt
B UAlenview W B | cancelbuttonTitle:g"ok"
otherButtonTitles:nill;
Name: UlAlertView
Gz e loading the view, typically from a nib.
Abstract: Use the UlAlertView class to display an alert message to
the user. An alet view funcions similar to but diffrs in
appearance from an action sheet (an instance of UlActionSheet).
Deciared In: UlAlentviewh
Reference: UlAlertView Class Reference E—

™7

OEBPS/images/f084-01.jpg
Switch to Second View Window
File's Owner

Outlets

searchDisplayController

view

Referencing Outlts.

New Referencng Outet

Referencing Outlt Collections
New Referencing Ouet Colecion
Received Actions
Touch Up nside

OEBPS/images/f422-01.jpg
i0S 5 Device

i0S 5 Simulator

Detug satements

Found serve. esohing acress.
Resolved: Wi Mong-Loos-Phone-4 oca
>192.168.1.11237526

Resoled: Wk leng-Loes-Phone-4 ocal
000037526

Found sarvico. Fesotving adoss
Rosoed: W Mo Loos Mac.2 0cal.
Fescvod: WorMang-Loes-Mac 2 oca
5000037526

OEBPS/images/f543-01.jpg
©06 MyKillerApp.xcodeproj — [m MyKillerAppViewControlier.m
®® = R T e
Scheme L @ Ecitor View Organizer
}-1 = e A=>8 @ > | [myKile..) | [m wyKillerappviewController.m) | @impiementation MyKillerappviewCentroller |« .
My
v e s (void)vispidtosd
v (I Mkilleraon.

Wylerhp.. pDeiegate.n
m Mykillerap..Delegate.m
) Nyl Controllerh
5 NyKilera...omroller.m
% Nykilerhp. nuallerxib
v (5 upporting ries
[MyKillerApp-Info.plist |
) infoiss.trings
[manm
[
» [Framenorks
» [Products

+ o@E®

UTAlertview alert = [[UIAlersView alloc] initWithTitle:
nessage:

gelegate!

cancelputtontItLe

otherButtonTitles

[atert shoul;
Tsuper viewbidLoad]; @ Rouental sk

ine 24 3 sore nto ‘e
7700 any additional setup after loading the view,

of an object alocated on
ypically from a nib.

(void)viewDiduntoad |
1

[self setTatName:nil]
[Super viewbLeUnivag)
77 Release any retained subviews of the main view.
77 e.5. self.myoutlet = ny

- (void)viewillAppear: (800L) animated
1

MyKillerApp xcodeproj — [MyKillerAppViewController.m

n Analyze Succeeded | Today at 1023 AM (0 =)

B froke @1 ww Mew Organizer
| <> | ENyKillhop) _INyKilkrApp) i MyKilerAppViewControler.m) [[] ~viewDidLcad Er
Sl el 3 1. Metnod returns an Objective-C object with a +1 retain count 3 [@D) (Done)
v (I mialerapn. - (vaid)viewDidLosd
' MyKillerap... pDelegate.h T — e ———
s N

) kil Contallern
3 NyKilerhp.
- Wykilerp. mullerxib
v (] supportng files.
(L] MyKillerApo-info ot
() infotstrings
(1) MyKilerhep-Prefcch
» [Frameworks.
» Cproducts

nstwithTit e

Hello world:

/) messageretelio, ny worls:”
~ delegate:self
cancelButtonTitle:e"0K"
_— otherButtonTitlestnill;
falert-shovl; ——
[Super viewDi6Load]: O 2 Objectlesked:oyect aocted snd sord no e s ot eferenced et nthis execurion pch

7700 any additianal setup afcer loasing the view, typically from a nib i |
3
- (void)viewDiduntoad
i
[selr setTxtnane:nin);
[super viewbicunioag)

77 Release any retained subviews of the main view.
77 e.9. self.nyoutlet

e

OEBPS/images/f428-01.jpg
File
About Keychain Access

Edit View Window Help

Preferences... =,

| Keychain First Aid_ T3A

Certificate Assistant O Open...

Ticket Viewer K | Create a Certificate

Create a Certificate Authoriy...
Create a Certificate For Someane Else as a Certificate Authority.
[PPRPRVINRRUNSSMIPE Request a Certificate From a Certificate Authori
Hide Others | Sel the default Certfcate Authoriy

Services > 1

Show All Evaluate “3rd Party Mac Developer Application: Wei-Meng Lee"...

Quit Keychain Access %Q |

—_—

OEBPS/images/f082-01.jpg
806

@) @) (oo e s

[h)
8 SecondviewController.m

SecondiewContoller:xs
) HelloWorlaViewContollern

) HelloWorldViewControler.m
" HelloWorlaViewControler.xib

OEBPS/images/f081-01.jpg
1093 A

OEBPS/images/f080-01.jpg
'D;ummmn

v (S emoweon
b mptvAooAppDcieget
) EmptyAppAppDelegate.m
v (1 supporon Fies
) metyapp-ino plst
" torisusuias
[af man
[n) EmptyApe-Prefix.och
menoris
Ukt ramanark
» 6 roundvon famewore
» 6 CoreGraphics famewsrk

A EmpryAsnap

2 EmptyApp.xcodeproj —
Running EmptyApp on Phans 5.0 Simulstor

 HelloWorldViewController.xib

Switeh to Second View Window

T r—]
EE T —

Tite Switch o Second View
indow

Image [Defauicimage ___[v]
Sackground Deraut Background Imad~ |

font 2&... B 150 E‘E

PUE——

‘Rouna Rect Button - arepts
| toicheents and sencs an st
 massiac toatrge ojectwhen.

| Seqmented Control - Dipays
12 rnps ssgm o
Fancions 523 diccrss st

Text Feld - Dispiays egaie rext
ara sonds 0 et maseage o
‘argetobjct when Ratrn apped.

Text

e sy s contnas g
7 S s s o
== 3 single value.

e
P
e

+ 0@Bd >

2 | v | EmpeyApp : iPhone 5.0 Simulator

@)

OEBPS/images/f079-02.jpg
oy
s x5
5
v [Empyapp.
I EmptyAopAppDelegate.h
n EnpApaapeDekgaten
oo e
[Erpeyaep-io e
I3 oristsangs
15 Ererace penen
S
e
» €8 Foundation framework
» &% CoreGraphics. framework

A EnpryAsnap

2 EmptyApp.xcodeproj — - HelloWoridViewController.xib
=] [o croname on s s smuor

¥ view

e
T ol
imeracrion @ User Interaction Enabled
D i
pra o)
v

Drawng Opague | ridden
4 Clears Graphies Context
) i subwews
o Auoresize subvews

[e oB

b uhelm |

- seqmented control - Dspiye
1] 2 roipeseamens, serotunen |
ot s oaor,

Text Feld - Dispiays egasie ext
Text | ana conse n ctn meseage 23
argetobjct whan Raton 3ppes

e - ospays a oo ange
7 S s s o
F\—’ 3 single value.

e o
€ ST
S

+ OBd B

s

OEBPS/images/f079-01.jpg
oA,
e o
) Wellortdvincontlie
B HelbortdvinCantlr.m
elonoiave
v 2 EmotyApn
W Enpayacosonelgaten
n EnpryirpaosDesgete
@ (Jsopporing ies
[Emprvios oplst

InfoPlisstrings
] EmptyApe-prefix.pch

v [Frameworks.
» § UIKiLiramework
» K Foundation framework
» | CoreCraphics.framework.
v G Produas
FAe—

nwolier.xio

EmptyApp xcodeproj — HelloWorldViewController.xib
Runring EmpuyAPE on Pone 5.0 Simulaor

o

Q
=

WY _

 EmptyApp : Phone 5.0 Simulator

OEBPS/images/f544-02.jpg
eo0e

Organizer - Documentation o

1 2 * 8,

Devices Repositories Projects Archives | Documentation

©e m

< > 0810550 Lbrary [User Experi..) L] Windows & Views | || UAketview Class Reference

» Ugi05 43 Library.
» {gi05 50 Library.
» g Mac 0S X 10.6 Core Library.
» g Mac 0 X 10.7 Core Library.

» 1 Xcode 4.2 Developer Library.

Next

UlAlertView Class Reference

Inherits from UiView : UIResponder : NSObject

Conforms to NSCoding (UIView)
Ulppearance (UView)
UlppearanceContainer (UlView)

NSObject (NSObject)
Framework /System]Library/Frameworks /UKit.framework
Avallabllity Avallable In 105 2.0 and later.

Dedlared in Ulhlertview.h

Related sample code CKTank
Launchive
QuickContacts
Teslameter
URLCache

Overview

Important: This is a preliminary document for an APl or technology in
development. Although this document has been reviewed for technical accuracy,
is not final. Apple is supplying this information to help you plan for the
adoption of the technologies and programming interfaces described herein. This
information is subject to change, and software implemented according to this

OEBPS/images/f232-01.jpg
L2,
1 benji
@ blisser-valo
@ courtney-pc
5 edward-pc
) james-pc
[jenbug-pc
Jparduetazi2
B AL

Devices

) iDisk

2} sooTCAMP

[tace

(& Applications

© (% cY
Date Modified v
¥ [24D387AA-478D-46A6-957E-0ADGFF405407 Today 7:38 PM
v (i Documents Today 7:52 PM.
[C) Apps.plist Today 7: 671 bytes.
data.txt Today 7:52 PM 225 bytes
. FlesHandling Today 7:52 PM 26K8
e
| < > | [|Apps.plist) NoSelection
Key Type Value
v Entersainment Ay (aiems)
emo. String Eye Balls - iBlower
hem 1 swing el
hem2 Sting iCards Bintnday
hem3 Suing NewApp ite
v Games Ay (@iems)
kemo Sting Animal Park
e 1 ©0 swng Bology Quiz
nem2 Suing Caleulus Test
em3 Suing NewApp tite
v Utiites Ay Glems)
emo suing Battery Monitor
hem 1 sung iysieminfo
kem2 swing NewAppite

OEBPS/images/f429-02.jpg
o o G
Where: [I Desktop B e

(ot | (e |7

At Addves:
Requesti O Gl to s CA
© ot roae
[Let me specify key pair information.

OEBPS/images/f546-01.jpg
[MyKillerApp.xcodeproj — ~ MyKillerAppViewController.xib
Running MyKillerApp on iPhone 5.0 Simulator

B T
MyillerApp
MyKillerAppABpDelegate.n
{m| MyKillerAppAppDelegate.m
[h) MyKillerAppViewController.h
m MyKillerAppViewController.m

v (5 supporting Fles
[} MyKillerApp-info.plist
nfoPlist.strings
mainm
Mykillerapp-Prefix.och

» (1 Frameworks
produas

©] e
+ 0OB@E(® Jl@Em oM @ 3 2|4 | MyKillerApp

OEBPS/images/f429-01.jpg
Certificate Assistant

Certificate Information

Enter information for the certficate you are requesting.
Click Continus to requast a certificate from the CA.

User emai aceres: [weimeng eeggmallcom Bl

Comman Name:

A Bl Adress:
Requestis; () Emalle to tne CA
© savea o aisc
Let me spaciy key par information

Continue |

OEBPS/images/f545-01.jpg
oxo)

eoe
M., Phone 5.0
Sereme

B MykillerApp.xcodepraj —

mi] O Funring WyKicApp o Phone 5.0 Smaltor
e

= MyKillerAppViewController.xib

==L LI

|z © 4= =8

<> FMoC

- MilrApEN enContoler.xio Engls) || |View

jneoeso

ykileraps
v B e 08 S0k 5.0
« Ccerapn
[n wkierppapzosisaten
o MyKilcrAupApsDCleate
[8 Aerappuicuconcolerh
n MykilerppviConeollerm

Juaportng i

[Mierkep-infosis.
ittt suings

[a) mann

[5) Mo Pefcoch

» (pameworce

» Ciproduas

+ 0@ (®

$
4

oy

Mpleragp.

Ty
Fia are wyklerapevienControar
Pl Ty etaui - imrfac Buicer o |

LocationRelztve o Graup :
entproit

Inlarnppviencontotar

Ful Fah [Users meimenclee Deskion)
Begioning (05 5 Source Code
Viilerkps,yKlarkpa)

anpray
Inlersppvewconroter o
D} & =

oo @3

Lapel Label - Avarasl szeamcuof sic

Round Rect Buton - rereots ouch
| s an s 3 3o mesiaga 1o s
e bt when s taoed
ted Control - Dspius muspie
12 seaments. cachof whichforcions 53
o s,

TextFild - Dspiays i vt
st an action mesage o3 et oect
e R e

Toxt

Slder - ispars contnsous anae of
ot 0w e o 131704

Switch - Dispiaysan damer snoweg the
Socaan e of 3 v, Al 450 e
corrl 1 toglethe il

OEBPS/images/f237-01.jpg
20 AaA=m=8

B3 OfflineReader - OfflineReaderViewController.xib.

4> | [offineReader) (10 MO B |_View) i# Web View | < .. » |

nnaoo

oy OfinsRader
Turget, 105 50K 5.0
v [OftineReacer
E» OftineResderhooDeleasten

) OffineReaderAppeleaate.m
) OfineReaderviewControllerh
) OftineeadenviewConrolerm
Ofineseaderviewconralerxib
> L Supporting Fies

+ 0806 >

¥ Web view
Scaing Scales Page To it

Detecton () ks) Addresses

& Prone Numbers

O gents.
¥ view

Wode [scaeTorl 3]
Tag ot
Interscion o User Ineraction Enabled

) Mitiple Touch

| Table View Cel - Deines the
| s g b ol (v
— aubeven.

Image View - Dislays 3 zngle
image, o in anmation described by
| anamyofimages.

Text View - Dispays mltil ines
o cduabltext and sends ansction
messige 3 rge obectwhen

Display Files in Documents.

. Web View - Displays embeded
LA i conent andenaes content
007 mavigaion.

{555 Map View - Dislas maps ard
proves a» cmbeddap ieiace 1o
B Rga map conen.

OEBPS/images/f430-02.jpg
Certficates - [0S Provisioning Portal - Apple Developer
4> | [+ @ hup:developer.apple.com/ios (manage/certificats tearmindex.action & Ja- coogle (o)
Developer e e e B o

i0S Provisioning Portal

Provisioning Portal

Devices

Apoi0s
Provisoning.

Dtstibution

Q searen Develr

Development

Distributon Histry HowTo,

Current Development Certificates

[Your Centficate

Kame A Proviioning Profies Expiration Date Status
(25 Wei-beng Lee AG2s.2012 lsued

F you 6o ot have the WWDR Intermediate cerufcate installed, click here to Gownlosd now.

Actian

@m0 Revoke

OEBPS/images/f547-02.jpg
pp.xcodeproj

nning MyKillerApp on Phane 5 0 Simul

Elo=z @

Editor View Organizer

Klerapn) [Myilers

T MyKillera

View

_|Label - Label

|bls & s ©

¥ identity

File Name MyKillerAppViewControllerxib

File Type | Default - Interface Builder Co.

MyKillerApp.

Location | Kelative to Group
enlproj/
MyKillerAppViewController.xib

Full Path /Users/weimenglee/Desktop/
Beginning (05 5 Source Code/.
MyKillerApp/MyKillerApp/

en.lproj/
MykilerAppViewControllerxib O
D U|e =

[0 | 1

Label - A variably sized amount of static

Round Rect Button - Intercepts touch
| events and sends an action message toa
———/ targer object when s tppes.

Segmented Control - Displays multiple
1 2| segments, eachof which functions as a
“LZ discrete button,

i | Text Field - Displays editable text and
Text | sends an action message to a target object
when Return is apped.

Siider - isplays a continuous range of
@1 values and alows the selection of 2 single
= value.

OEBPS/images/f232-02.jpg
& FilesHandling - FilesHandlingViewController.m

fi
e Gacimentspath) stringbyAppendingPathCospanentie”s

//usstring otslenan
T1isets temgrath]

Jr—urite something to the Tile
et ureerert

£ring o1 text” withFLieNane: 111ekane)

el

2 Flestanging.

@ T Miowpu G) (OMNC
@M geb 6.3.50-20050815 (Apple version geb-1706) (Tue Jul 19 23:33:12 UTC 2011)
Copyright 2084 Free Sofuare

eumiation, Tnc.
845 Tree softuare, cove

e GUJ General Public License, and you
nalor 8istribets copies of 1t under cortain onbitions.

Lsno varranty” for details.
Aftachine 1o prec
He

Uehities

Sattary Monitor

26041
R) el i e

OEBPS/images/f430-01.jpg
eoe i0S Dev Center - Apple Developer
2|+ i miose sopecomdevcars s/ ncencion_](a- cooge

@& Developer Tehmologies Resourcss Pogms Swpor Membar Camer (@

i0S Dev Center

H, Wel-Meng Lee | Ny Profle | Log out

0550k 43 105 Developer Program
105 Provisioning Porel °
Developing for iOS 5 beta Tunes Connect °
Resources for 105 5 beta Featured Content o —— ®
L S R NiEec e Oersloger Sppont Camer ©
055 b coua for Devlopers
a 3 m:\n;"llbu:v e 105 5 beta 6 Release Notes. (S) Aep store Resource Center
01055 bera 6 AP s
¥ Bluetooth Accessory Design Guidelines n e et s
p——— @ o0 st oo pces
P S ——
Dt o e i A Mansgiog aopsan e agm sire

uad Merketina Resourees

OEBPS/images/f547-01.jpg
eoe 5 MyKillerApp.xcodeproj — ~ MyKillerAppViewController.xib o
) @ (i remzosmi) O [Ring Wl o Phons 5.0 it —
s neds

= > 8 (54> [0 B Bivommemnemn,_ve] D8 8% 2 0

aime &

B e
ot s

= e
. e

¥ ey

i Name MyilerAppVieuControllerxib

e Tye Dot

i wlerapeappostgie m
Mg venCortalerh
Wyilerptaconole

v (L suporing Fes
[ilerap- nfoiist
7 foptattring:
7 manm
(1, yilerapo-Prfixpch
» g Famenorks
» rrocucs

+ | 0@8 >

ODex

Mykilerapp

enipra
bysilerapeysucontolerib

Ful i users weimendlea/ o)
Beqring G5 5 Soure Code/
ilerApo MyKilerAop/
eior)

bkileapaVieuContrlerxib o

| Label - A vl sizes zmounc f stz

Round RectButton - st tcuch
) versandsens a acion messaa o3
Brge b when £ Gooee

Seamented Control - Discas motipe
1] 2 scamars, ach o i ancions 353

st Feld_Dipiays et e ana

[Text | ene an s e

o sarger et
e e 6 kg
_ stider - Dispias 3 comtous rage o
O Vil 20 ok the st o gle

ke

Switch - Dipap n demers.
oo Tk Aom oo
comral o el the vl

OEBPS/images/f078-03.jpg
006

2

s EmptyApp xcodeproj
o Pamina myAgponPhane 5.0 Smubor

Choose options for your new file:

Cisee [reloneranencontoli

Subcass of [UNienContrler

gl

L] Targetad foripad
Wt X for wser ineface

Y FiF

| —

+ | OBD®

OEBPS/images/f238-02.jpg
806 I OfflineReader - icon.jpg 2
() () (=) = Elo o @oia)

Run Stop Bre Ry Editor. View Organizer
|mjz © A = » 8 | 4> | [1)OffineReader) [OffineReader) [|Supporting Files) | icon.jpg) No Selection 4]

. OfineReader
1targer, 105 50K 5.0
v (23 OfineReader
1] OffineReaderAppDelegate.h
‘m| OfflineReaderAppDelegate.m
R OffineReaderViewControllern
n] OfineResderviewContalierm
B OffineReaderViewControlle xb.
v (] Supporting Files
G Courses for5..0ct 201 L.pdf
B iconjpg
‘OffineReader-info st
" Infoplistuings
m mainm
[h) OftineReader-Preixoch
» (] Frameworks.
» lproducts
+| 066>

OEBPS/images/f432-01.jpg
806 App IDs - 105 Provisioning Portal - Apple Developer

4> | [+ @ hupyjdeveloper.appie.comyios/manage/bundles index action 3 ¢ |(Q- cooge
@ Developer Tehnokgies Resouces Pogams Swpon MemberCemer (@ sorch e

i0S Provisioning Portal

e

e T —

e

EC O —

RN 5. i 5 Fiin st i o i
A ot ks g s s o ke i

Slowiusion. (such as passwords) between a suite of applications and share document and configuration data between your applications using

An App 1D i the combination of a unique ten character sirng called the “Bundle Seed 10" 2nd a trasitional CF Bundie ID (or Bunclle
dentfien. The Buncle Secd 0 portion of your ADp 10 €an be utlized to shara keychain access between multple appcarions you bulld
Wit a single App 0. In addiion, i can be ncorporated 100 any external hardware accessories you wish (o pair your 10S applicaion
with. Registration of your App D i required t utlize the Apple Push Notification service (APN) and to registe an applicaion to
ncorporate In App Purchases.

OEBPS/images/f549-01.jpg
¥ Text Field

Text Text

Placeholder | laceholder Text

T —
o =
o] = =)
soersoe [L1 | 0 5 L5
clarsuton

(] Clear when editing begins.

Text Color | MR | Default

Font system 14.0 8

@ Adjust to Fit
P S —
Correction [Default 3]
Keyboard [Default 1]
sepene

Return Key [Defaulc >
() Auto-enable Return Key
(J Secure.

v Control

Aignment GO @ | O | B
Horizontal
[T, 01 @
Vertial
Content (] Selected @ Enabled

(0] ighiighted

v view

Mode [Scale To Fill
o B

Interaction ¥ User Interaction Enabled
(] Multiple Touch

D {elm

OEBPS/images/f078-02.jpg
L EmptyApp xcodeproj

Running EmptyApp on iPhone 5.0 Simulator

Candcrr Objectve-C test cl
Userserface e cass b
Core Dara)
Resource «
Other =)

&

oy s L

A0 Objectia-C ciscs which i 5 ubelss of UIViewCartroler, with 3 hescer fle which ncluces
e <UKGH/UK > header and an optonal XIbincerface fe.

romie 1 |

OEBPS/images/f238-01.jpg
v Outlets
searchDisplayController
view

webview
¥ Referencing Outlets
New Refeencing Oulet

¥ Referencing Outlet Collections
New Refrencing Outlet Collection
v Received Actions
bunDisplayeles Button - Display Fles.
Touch Up Inside

OEBPS/images/f431-01.jpg
Keychains

' login
@ system
) system Roots

Keychain Access
—— . - . " Y
= iPhone Developer: Wei-Meng Lee (398N22LL9K)
b Issued by: Apple Worldwide Developer Relations Certification Authority

G| Evares: Turscoy August 0, 2015 11:30:30 A Sngapore Sandard Time
Thi certate s vali

Category Kind [Expires [Keychain
R Al »[5] 3rd Party Mac Developer Application: Wei-Meng Lee certificate Jan 25, 2012 8:14:41PM login
» (5] 3rd Party Mac Developer Instaler: Wei-Meng Lee certificate Jan 25,2012 8:27:41PM login
i b [5] B4605A08-0B49-46C4-874A-SOFEIBBEI2FF certificate Jan 29, 2012 10:26:10 PM_login
- secure Notes oy gym ¢ GosNz Ceuicate_— Aug 30, 2012 11:30:30 AM login
My Certificates § Wei-Meng Lee private key login
P Keys [Wei-MengLee-PC certficate Feb 8, 2012 0000 AM login
[Certficates. ® 135607b6-700f-4738-2531-d701557e026 privte key login

OEBPS/images/f548-01.jpg

OEBPS/images/f078-01.jpg
v i EmBARD
1 targe, 105 SDK5.0
v [EmptyApp
R EmpwAppApDelegate.n
[m) EmpryAppAppDelegate.m
v [supeorting Files
[EmpryApp-info.pist
nfoPlit.strings
[m] main.m
(i) Empryapp-rrefix.pcn
v [Frameworks
» 2 Uit framawork
» K Foundation framework.
» & CorcGraphics.framework
v [Producss
9 EmptyApp.app

OEBPS/images/f240-01.jpg
Wei-Meng Lee,
Technologist & Founder,
Developer Learning Solutions
hitp:/Avww.Leam2Develop.net
Tol: (65)-0-602-4065

Author of:

* Beginning iOS 4 Application Development
(Wrox)

* C# 2008 Programmer's Reference (Wrox)
* ASP.NET 2.0 - A Developer's Notebook
(O'Reilly)

Join our Facebook fan page now at:

Solutions

oo Courses for Q2 2011.pdf
| 968KB

OEBPS/images/f433-01.jpg
800 App 1Ds - i0S Provisioning Portal - Apple Developer

4 > | [+ @ it/ ieveloper.apple.comyios/manage bundies configure.actiondisplayld=Y2ISAe7MET € | (Qr Google el
& Developer Technologies Resources Programs Support Member Center (@ v omvoner

o005 DevCemer

e
= e
b
T
e byl B i i Bl
'’ ‘more information on utilizing the Apple Push Notification service, view the Apple Push Notification service Programming Guide, the

L A App I0-speciic Client SL Ceruficate: A Client 5L ceuficae allows yaur ocficaton sevar connect e AppIS Push Notfcason
senve. You wil need t ceate an nciual Cllen: S5 Crtficatefo each Apo 1D You nable 10 recene push notfca

2 A Apple Push Notication sevice compatsi povisioning profe: At you have geerated your Cliet S5 conificace, rae 3 new
Erovsoning eofie comainng the ApP 10 Yo w o se or nocfatons.

Once the steps above have been completed, you should buld your a0pl ction Using this new provisioning profe.

BegiOSSPushappID
‘GLNSVESDS net.lear2develop.Beg 0SS Push ADDID

@ Enable for Apple Push Notification service
Push 5L Certfcate Status Expiration Date Acton
5 bevelopment push sst. corufare © Confiourabie (=)

5 roducton Pusn SSL Cenfiate @ Confiourabie L Confiaure |

OEBPS/images/f550-01.jpg
Show [Frame Rectangle

2]
¥
250 en

i Width Height
~origin

I u
Autosizing S

Arnge Positonview 7]

D {)e|=

OEBPS/images/f077-01.jpg
Application
Framework & Library
other

& Mac0s X
soplication
Framework & Library
Application Plug-in
System Plug-in
Other

s - \)

OpenGL Game. Page-gased Single View
‘Application Application application

[~ &\

Tabbed Application Uity Application

Empty Application

“This template provides a starting point for any application. It provides Just an application
delegate and a window.

(rreons | ()

OEBPS/images/f239-01.jpg
) ?.",,',.”‘"""m SSxso
v i
5 Omreresieapposegee
OfflineReaderAppDelegate.m
OMtaatermnComoleh
Oetestenroncomlirm
R OffineReaderViewController.xib
v [Supporting Files

& Courses for S...0ct 2011.pdf.
5 congs

[OfflineReader - OfflineReader-Info.plist

Xcode

Projct 01

>.| B0

Localization native development region
Bundie display name
Executable il

¥ Icon fles

Bundle identifer

InfoDictionary version

Bundie name.

Bundie 05 Type code

Bundie versions strng, short

Bundie creator 05 Type code

Bundie version

Application requires iPhone environmer
» Supported Interface orientations,

String
string
Sting
Amay

String
sting
Sting
String
string
sting
string
Boolean
Array

SPRODUCT_NAME}
SIEXECUTABLE_NAME}
(L item)

netJearn2develop. SIPRODUCT_NAME rfc 1034identifer}
60

SIPRODUCT_NAME)

AL

10

™

10

Yes

@ items)

OEBPS/images/f432-02.jpg
Description 4 Apple Push Notification service | In App Purchase | Game Center | Cloud Action

GLNSVESDELnetlearn2deve.. @ Configurable for Development

BegiOS5PushAppID. @ Configurable for Production @ Enabled @ rnabled © Enabled Configure

OEBPS/images/f549-02.jpg
D =] (1

L

DB e % 0|

aelegate

<

Sent Events

D £nd On Bt
Editng Changed
Esiting Did g
Esiting Did £nd
Touch Cancel
Touch Down

Touch Down Repet
Touch Drag Enter
Touch Drag Exic
Touch Drag Inside
Touch Drag Outsde
Touch Up Inside
Touch Up Outside
Value Changed

¥ _Referencing Outlets

New Referencing Outer

¥ Referencing Outlet Collections.

‘New Referencing Outer Collecton

1Of |0 [OO000000000000| (O

D lel®

OEBPS/images/f075-01.jpg
00 B
() (@)

Rin oo Scheme Sreakpoims

Single)

iewBasedApp xcodeproj — / SingleViewBasedAppViewController.xi

e
e

EHoO (5

View Organier

|miz ® & > 8 SingleVi_) __|)) - SingleViewsasedApp\iewControllerxib (Engish)) _file's Owner

TR
v (] singleViewsasedapp =
e
e
Ly
e

[Supporting Files
[[) SinaleviewtasedAop-Irfo plist
Infoplistsrings

B
'?Z’ﬁ;f?.'fw.k searctOlplrConvalr
A ey e

‘e SingleViewBasedAop.app ¥ Referencing Outlet Collections

feencing Outie Colction

+ 0@E > d

OEBPS/images/f241-01.jpg
L)) iBooks

& Dropbox

Cancel

OEBPS/images/f434-02.jpg
‘Apple Push Notification service SSL Certificate Assistant

Download & Install Your Apple Push Notification service SSL
Certificate

Step 1: Download.

Wei-Meng Lee's Cert...
Download your APNS SsL Certifcate to your

Notification Server. Your private key should aiso Download

be instlled on this server.

OEBPS/images/f074-01.jpg
[singleViewBasedApp.xcodeproj —

BasedAppViewController.xib

J Bog @\ (=)
I T o s
miz © 64 = » 8 | % > [P0 ~)~ files owner DEle w0

- 1 SingleViewBascdApp
Ttargel, 055D 5.0
v (] SingleviewBasedapp.
[+) SmgleViewsasedApoAppDelegate.
[n] SngleviewtasedappAppDelegatem
[5] SngleviewtasedappViewControliern
[n] SngleViewSasedApoViewContrlk

» (I supporing Fies
v] Framewors.
» 5 UK framenork
» & Foundation framework
v [products
ArSingleViewasedAp app

+ 0@ E @

v Custom Class

Class [SingleViewBasedAopVewController O] v |
'v_User Defined Runtime Attrbutes
Tyee

Key Path Value

0 (jom

(Tl otiees.

Label

Label - A vartaly sized amountof st ext.

Round Rect Button - e cepts touch everts and
(| sencs an acton message t0 2 trget object when I's
avpec.

Segmented Control - Displys muitle
(12 segments, each o which fnctions a a iscrete:

8

OEBPS/images/f240-02.jpg
Quick Look

Opel “Evernote”

Cancel

OEBPS/images/f434-01.jpg
‘Apple Push Notification service SSL. Certificate Assistant

Generate a Certificate Signing Request

To request an Apple Push Notification SSL Certificate, you fist need to generate a
Certifcate Signing Request (CSR) utilzing the Keychain Access application in Mac O X.

w4)| Launch Keychain Access
In the Apglications folder an your Mac, open the Utiitis folder and launch Keychain

Access.

‘o Witnin the Keychain Access drop down menu, select Keychain Access > Certifcate.
Assistant > Request a Certificate from a Certficate Authority

 In the Certificate Information window, enter the following information.

© In the User Email Address field, enter your email address

o In the Common Name fieid, creats a rame for your private key
(eg. John Doe Dev Key)

o In the Request is group, select the “Saved to disk” opton
+ Click Cantinue within Keychain Access to complete the CSR generating procese

OEBPS/images/f550-02.jpg
s Edior
a D B8
v Custom Giass

Class [UTextrield v

¥ User Defined Runtime Attributes
KeyPath | Type Value

e e —

¥ identity

Label [Xcode Specific Label
xBEEUEE.
Object D 12

Lock [Inherited - (Nothing) :

Notes (] Show With Selection

¥ Accessibility
Accessibilty (Enabled
Label

Hint

Traits () Button 0 tink
() image (J Selected
(J static Text
(U Search Field
] Plays Sound
(J Keyboard Key
() Summary Element
(] Updates Frequently
& User Interaction Enabled

0D @] =

OEBPS/images/f241-02.jpg
= 6:12 PM e d

Edit PDFs Store.

Search

OEBPS/images/f101-02.jpg
108 Simulator - Pad /108 5.0 (9AS313e)

s,

oy

OEBPS/images/f101-01.jpg
i0S Simulator - iPad / i0S 5.0 (9A5313¢)

TaiingDay
Remember the Tians
John .

“The Bons Callector
Ricachat

Tho Sigo.

oy

OEBPS/images/f100-01.jpg
Corrir Carrie 126 P =

Training Day

Remember the Titans

John Q.

The Bone Collector

Ricochet Remene o Tians
The Siege

Malcolm X

Antwone Fisher

Courage Under Fire

OEBPS/images/f095-01.jpg
. e
* *

‘ detallViewController property ‘ ‘ detallViewController property ‘

3% Y
U

otviewController
property

OEBPS/images/f212-01.jpg
Logh Name

Pasenors

Favorte Color

OEBPS/images/f217-01.jpg
[Applications

[= IER

FAVORITES

Name

Al My Files v [3£90393E-3BCE-48E7-ASAA-BA4480DDCFIE Tod:

3 v (3 ibrary Tod:

@ AirDrop v [Preferences Tod
[Desktop B net.leam2develop ApplicationSettings.plist

T e 1) com.appie PeoplePickerplst Tod

A Applicats » [l Caches. Tod:

By) ApplicationSettings.app Tod:

OEBPS/images/f215-01.jpg
Logh Name [ogin rame

Paseworg | password

Favorte Color

OEBPS/images/f218-02.jpg
Account Inform

Login Name.

Password

Favorite Color

OEBPS/images/f218-01.jpg

OEBPS/images/f225-01.jpg
eoe (i Applications
<> A = e o [#:])
FAVORITES Name
Al My Filas v (1] 24D367AN-478D-46A6-957E-OAOGFF405407 Today 7:27 PM
= v (] Documents Today 7:26 PM
) AltDEop) ara.txt Today 7.26 PM
(] Desktop » (& Ubrary, Today 7:26 PM
2} wei-menglee > @ wp Today 7:26 PM
i 4 Filestandiing Today 726 PM
A\, Applicati
{,: ;‘;‘: 215 | > [0218ES68-11C3-4EAF-0739-AB721FEA24B7 Yesterday 5:27 AM
uments

[Dropbox

» [3CE93896-0FF3-4143-0720-D37C994A3DD2

Aug 3,201 11:35 PM

OEBPS/images/f223-01.jpg
eo0e s.0
(i) E3 = [(#]
sARED Date Modincd
) beni
= . v (0 9E6FBSFF-OFBS-40C0-B1C2-889617A7C38A Today 8:08 PM
iy (1 Documens Today 5:08 M
) courtney-pc v [brary Today 8:08 PM
) ko324 3 Caches Today 5:08 oM
Wi v (& snapshats Today 808 PM
[t v [net.learn2develop UsingViews Today 8:08 PM
) jenbuig-pe

- jparduetazi2
=
orvices

2 iDisk

£/ UiAppiicaionAut.(Defauli-portrait pg
v [Preferences
41 com apple.Peopleficier plist
v & mp
. usingviews

Today 8:08 M
Today 8:08 M
Today 8:08 M
Today 8:08 M
Tocay 8:08 M

OEBPS/images/f229-01.jpg
X File ‘settings Bundle. Rich Text File.

Suings ile

k) rropecorie f———

Aa XML property st .

e gy
/vocunents/

string of

Toxt

OEBPS/images/f225-02.jpg
) FilesHandling - FilesHandlingViewController.m
Ramning s

ing on Phone simulato

simport. "FilesHandlingVieuControtler.h®
inplenentation FilesHandlingVieuController

//—tinds the path to the application’s Docusents directory—
“inssring +) docunentspath
NSArray =p:
NSSearchpathForDirectoriesTadonains (NSDocusentDirectory, NSUserDomaimMask, YES):
NESEring sdocunentaDir = (paths abjectAtindex:ol;
Feturn docunentsdirs

ke content irta o specitics file gt
Z0eld) riteToritetissering) <
i ananes st ring 3 israth €
NSHutobleArray sarray = ([NSHutableArray alloc] initl;
Tarray sdedbiec ;
2% &g | Fleshanding

@ 01 Arouput [l)
GOB"is tree softuore, covered by the GUD General Public License,

and you
etcome (.. “change it and/or distribute copies of it under certain
Candition
Tyme.“shaw copying® o see the condstions,
There is absolutely no warranty for GOB. Type "show warranty”
Tor detaila.
ThiG08 et contigured o5 86_64-opple-dorvin® ALtaching to
process 2237

8-

OEBPS/images/f229-02.jpg
[FilesHandling - Apps.plist
9 on Wei-Meng Lee's iPhone 4

tem 0 Suing Animal Park

[oicsHnatng em 1 Swing iology Quiz
i rem2 Swng Calcous Test
) FlshandlinghppDelegate.n | ¢ ¢rieinment amy Giems
| Lol ursid wemo Sung e sl - ower
hem 1 Swing ifell
rem2 Suing iCards Binthday.
v Utltes Aray @ items)
rem 0 Suing Bauery Monitor
Rem 1 Sung isysteminfo

+ 0008 ® = A % & | 4 |FilesHandling - 2171

OEBPS/images/f184-01.jpg
TableView — MasterViewController.xib

Running Tableview on iPhone Simulator

Notssues

Tableview) [[Ta..) BM

B) Tableview) — search r

D B 8|

v Search Bar

(=1

California

Brea

Burlingame

Section Footer

Florida

Altamonte Springs

Section Footer

New York

Section Footer

Text
Placeholder

D 0]®]
[= —

Navigation Bar - Provides 2
mechanism for displaying 2
navigation bar just below the status.

Navigation Item - Represents a
state of the navigation bar, including
atite.

Search Bar - Displays an editable
search bar, containing the search
icon, that sends an action message.

[search Bar and Search Display
Controller - Displays an editable
Search bar connected to a search.

Toolbar - Provides a mechanism for
displaying a toolbar at the bottom of

S the screen.

e ——
B o e o
Srmgaonten shec.

Fixed Space Bar Button Item -
Represents a fixed space ftem on a
Urfoolbar object.

Flexible Space Bar Button Item -

Represents a flexiole space ftem on a

OEBPS/images/f378-02.jpg
) UsingISON..xcodeproj — [*) UsingJSON.xcodeproj

Gathering Class Information

Notssues

Choose options for adding these files:

Destination (¥ Copy items into destination group's folder (if needed)

Folders (&) Create groups for any added folders
(O Create folder references for any added folders

Add to targets ¥ ;A UsingJSON

+| OBE®

OEBPS/images/f378-01.jpg
UsingJSON
¥ & 1 arger, i05 50K 5.0

¥ (] UsingISON
[h] UsingISONAppDelegate h
In) UsingISONAppDelegate.m
Ih] UsingiSONViewControlern
In] UsingiSONViewController.m
. UsingISONViewContrllerxib

» (] supporting Fles
b [Frameworks
» (] Products

OEBPS/images/f186-01.jpg
2000

Malcolm X

The Pelican Brie!

The Hurricane

2001

Remember the Titans.

The Bone Collector

2002

OEBPS/images/f380-01.jpg
File's Owner

i ———
ot TextFild
vatng TexFild
view * View

Referencing Outlets

New Referencing Outtet

Referencing Outlet Collections

New Referencing Outlet Collction

Received Actions.

benGethether: Button - Get Weather
Touch Up Inside

® O O ee®eO

OEBPS/images/f185-01.jpg
L XS

Search Bar

 Fies Oumer
¥ Referencing Outet Collections
New Referencing Oult Colcion

tion Footer
Florida
Altamonte Springs

Section Foot

OEBPS/images/f379-01.jpg
CX:X:] UsingJSON.xcodeproj — - UsingJSONViewController.xib

‘®® s | 3 [W Bl FoE

screme seakvorts eaor
%14 > [- UsngSoNvewCowolerx. | New< b D B 8
7 Sruiaied Metrics

MO =N

[y UsnalsON
Virmosoxso

» Casmson =) e 2
[usngison orenatn Forvar
In)UsngisoNApoDelegare.n i 53 o €

{n] UsinglSONApsClgatc.m

) UsingSONVieaContrclieh S N ot none)
sotom i None -

= prasonverconroerm
| otWeaer | D..0hon B

Rt Ot S (oo +)(E0)

¥ [lSupporting files
» (produas

Label - Avaraby szsd amountof

Lavel e

Round Rect Button - Inerceoss
| tauch evertsand sendsan acton
— messige aarge ol hen

Sagmented Contel - Dplrs
(12) iy segments, exch of whicn
Rnctons a2 dsrte buon

0Oe

) Text Field - Dispiayseciale text.
Text | and sendsanacton message 02
HER R

Slder - Displars 2 contouous range

@7 o uabaesand slows the seecion
asinglevalie.

€@ e
fie i

Actviy Indicator View - Prorides
feedback onthe progress of a sk e

+ OEMES = 2 L & |4 | uUsngsan

OEBPS/images/f195-01.jpg
2000

Malcolm X

The Pelican Briet

The Hurricane

2001

Remember the Titans

The Bone Collector

2002

2000
Malcolm X

The Palican Briet
The Hurrcane

2001

Remember the Tians

The Bone Collector

2002

OEBPS/images/f382-01.jpg
4 | UsingisoN

o) (O WIED

2011-08-29
2011-00-29
201170820

829
2011-08-29

DONE, Received Bytes:
Key is weatherObservation, Value is {

FEVO30 20715 A300S";

usingason[3373
UsingIsoN[3373

hamiaity. Valua it 73
stationNane, Value is Pasto / Antonis Harin
Lot value e 1.d1csssessiosses?

Using3son(3373: 1203]
UsingIson[3373

ihabiraction, Veue 13 24
countryCode, Value is Co
jotetine, Value is 2011-08-20 23.
Log, Value ds 77 2sesseessicss?
windspoed. Value is
Shparvation, Velus.ie SKPS 2623682 02004KT 9589 FEWD3D 20/15 A300D
ICRO, Value is SKPS.

Clouds, Value is few clouds

EESEIIEEREERNEE

UsingISON[3373:1203]

OEBPS/images/f190-01.jpg
2000

Malcolm X

The Pelican Brief

The Hurricane

The Bane Collector
Wan on Fire

Carbon Copy

a/wER|T|Y|U/1l0o|P

Lalsioirle Ll IclL]

z[xfc]vielniu}

OEBPS/images/f381-01.jpg
Carrir 10518 AM
Lng

17,0065

CweatnerObservation”
Ccouds'ew
clouds", WeatherGondilorr v,
observatio'*SKPS 2823007

02004KT 9999 FEW030 2015

~A3008", windDirecton'20,ICAC"
5K oo 1326 oy

e ——
20" dowPaint"15' indSpeed
04" "numidy":72 statoname"

OEBPS/images/f196-01.jpg
eoe [TableView - DetailViewController.xib
@ o] 3 Running Tableview on Phone Simultor m
‘ Scheme_ Breakouints D Organizer
[&] n ® a) [<> | [mablaview) [Jr..) ~b.) <D, ‘Ju..m_uu,nmﬂmmmgmm <>
Tableview
7 B et 0550k 5.0 | 8 =
v [Tableview | —
b Appelegate h |

‘AppDelegate.m

) MastcrVienContollerh
I MasterVienCorrollerm
' DetailVizwContrcllerh
n Detaivievcontolerm
X MastervienConsroie
(] supoartig Fles

[} Moviespist

[Tabeview-nfo.pst
) ifoplist.stias

[a) mainm

(1] Tableview-preixpcn

» (] Framewerks
> [JProduas

File's Owner

Detail view content goes here

Tableview

OEBPS/images/f384-01.jpg
806

() (=) (o]

Run__ Stop Scheme
mn ®© 4 = = 8
Twitter
¥ B 1 arer, ios sox s.0
v [Twitter
[f) TwitterAppDelegate.n
m TwitterAppDelegate.m
[h) TwitterviewController.n
) TwitterViewController.m
. TwitterViewController xib
» (I Supporting Files
v (] Frameworks

> 8 UKt framework.
» i Foundation framework
[products

OEBPS/images/f195-02.jpg
i

The Pelican Brief

The Hurricane
2004/

OEBPS/images/f383-01.jpg
Corrir T1:35 AW Carree 11:35 A

B4 Location Services

Twitter
Totnet .

&) Goneral

T User Name.

R Coteri Password

8] Photos

Greate New Account

OEBPS/images/f201-01.jpg
{64 Location Services.

) Gonoral

3 Twitter

satari

. Photos

OEBPS/images/f385-01.jpg
File's Owner

 TextFild
atRL TextFild
view View
Referencing Outlets

New Refrencing Outlet

Referencing Outlet Collections

New Refrencing Outet Cllection

Recelved Actions

BT Button - Tweets
Touch Up Inside

® O O eeeoC

OEBPS/images/f197-01.jpg
2000

Malcolm X

‘The Pelican Brie!

‘The Hurricane

2001

The Bane Callector

2002

OEBPS/images/f384-02.jpg
eoe L2 Twitter.xcodeproj — = TwitterViewController xib

) @ [MJ D Rurnng Tater on Phone Smustor Blao M

o stop s T ssior. Organzer

= 0 a =20 e e E‘. Ceasc
v ¥ Sirutaia verncs
i o550 50
s = i (e
[TwitterAppDelegate.h Orientation [Portrat.
n TuiterappDelgate.m Enter your tweets =
§ e r) N

e
T | 1 =

b e P e e Mot ScanTo bt)
nfotststrngs 0 0lslm
B i EE———)
[Twitter-prefix.och < Tweet! —_—
s R [T R ——
» G URe e
» 6 Foundaron ramework " Round Rect utton — rcees
> Products | o svere sn sence n scvon
| st g anectwin

Seamented Control - Dispirs
12 muliie segmens.eachof wch

o] T Dupirs e e
0 sends on cion mezsaae 1o
{aroe: obect when Retn apped.

Sider - Dispays 2 cortnvous range

@ ok anc lows the secton o
= asinglevaue

Alous tapping the conrl o

+loEHdE B ou 2 & 2|4 |-Twee

OEBPS/images/f202-01.jpg
B3 Applicationsettings - ApplicationSettings xcodeproj
Turming Applcaionss

ings on Phons Simalator

S seunas unde

Bundle for specifying an 10S Applcaton's settings

| Previous.

+| 0@ B (@

o & 24 | ApplctionSettings.

OEBPS/images/f203-02.jpg
806 ApplicationSettings - Root.plist
) @) (aomo) [=] Running ApplcationSettings on iPhore Smulator
| Rn S Scheme Breskooints | . S - Editor View Oganizer.
Bz © &4 == 8 [4> | [Applcationsettings) | | Setings.bundle» | | Root lst) No Selecion
2y Aoslcaiansanings Yo Te ame
Liarget, 050K 5.0 ¥ Preference Items 106 Amay & (hems)
v) Seeings burdic ¥ item 0 (Group - Groun) Dicton... (2 ems)
> [enlproj Tite string Group
Type S Group
(= pplcatonsctings em 1 (Tt Fied - Name) Diction... (8 iteme)
ﬁ :::g:"m::x::g:: '"“ Autocapitalization Style String Nore
e Autocorrecion Svle Srma No Autcorreation
5 ApplationSettngsViewCantolrm Defut Value g
Dleiecie e Text ild 1 Secure toolean MO
g dentiier Sng mame prefernce
S s Keysoard Type S Aphaber
» (5 Products Tile String Name
e Srng Teafied
Vitem 2 (Toggle Switch - Emabled) Dicton... (& fems)
Defuut Value tootean v
dentier Sing ensbied preference
Tite Sy Enabied
Tv0e g Togole Switch
item 3 Sliden Dicton... (7 tems)
Defaut value Number 03
dentiier Stng sider prefernce
Waximum Value Namber 1
M Vae image Flerame String
Minimum Value Number 0
¥in value image Flename strng
e Sig sider
Stings ilename s Root
L O@E® bt el el S Appicascrsation:

OEBPS/images/f203-01.jpg
ApplicationSettings - Settings.bundle

8006
@) @ b)) =
gy

Running Apol

cionsattings on Phone Simuaor

Mo ssues

Eor

= ozl =l]
view

2

Organizer

| 4> [P Appliconserings) | sevioga bundle

¥ [/ Avplicationsettings

‘AoplicatiorSettings ApoDalegate.h

AoglicavorseuuingspoDelegate.m

AopliatonSettngsVienControler.

AoplicatioSettingavienCortroller.m
% AopliatorSettin...ewController.xi.

» [Suporting Files
» (Framenerks
» [Procucts

5

+ O@08(® =

Applicationettings

OEBPS/images/f205-01.jpg
806

n

®) @ (opron] (=]
Stop. Scheme Breakpoints

ApplicationSettings - Root.plist

Running Applicationsettings on iPhone Smuator

3

Ela = @Eo o
tator view

Organizer

| 4> | [Aoslicationsettings | _ Settngs oundle) [Rootplis) No Seection

v | Aoplcationsetugs
i) Applcavonsemngsappeiegiteh
n ApslcstonSetingsApeDelegite.m
) Avolcatonsertings\iewControle.h
I ApplcavonsetingsvienCortalrm
% hoplcationsetin...euControleralb

» (] Supporting Files
» (] Frameworks
» (G Products.

+0EE®

e Type Vane
Pl T
e D (Greus - Group) ¢ cut
Title s Copy
Type 5 Paste
Vitem 1 rext ek - Narme) ¢
AdrapalemeTyre 4 Shift Row Right
AutocorrectionType g Shift Row Left
Defeltiae § Value Type >
Key i Add Row
Keyboardrype s
Title E v Show Raw Keys/Values
e 5
¥ item 2 (Toggle Switch - Enabled) | Propeny Listype 4
Defaikvalde ! Property List Editor Help ~ »
ey
Tite Swng Enabled
e Sung PSToggeswiichspectier
Ve 3 (Sicen Dicton... (7 tems)
Defautvae Number 05
Key Sung sider preference
vaxmumvalue wumber 1
Waxmumvalucimage suing
Minimumvalus umber 0
Minimumyalueimage sting
Tyoe Swng pssicersoecher
StingaTable Roat

OEBPS/images/f204-01.jpg
Location Services i

Generat
© Enabled

Tuitter

7 satari

8. Photos

ApplicationSettings.

OEBPS/images/f207-02.jpg
606 ApplicationSettings - Root.plist

@ @ =) Running Appicatinsettngs on ithens Simulator
Sop scheme Breakpoints View

Fun Editor Organizer
miz © 4 = » @ <> | [Applcationsettings | | |settings bundle) [| Rootplist) No Selection
[orlicserings oy —
MR eteencespecters 100 Ary §Grens
7 semos e im0 Group - Accout nformator) Diton... @ tema)
L Title String Account Information
- Tree, String. PsCroupSpecifier
A TR ¥ item 1 (Text Field - Login Name) Diction. (6 items)
[h AppiicationsettingsappDelegate.h e i TN
el | 0 Srg PTeareldspectier
Im ApplicationSetiingsViewContraller.m Lo g oghy-nema
etk IS T suig loginname
i AoGapralizaiontype s nere
e Aitoconectontype s Mo
» (] Products ¥ item 2 (Text Field - Password) Diction. (5 items)
T Psswort
res Ptexicsoecher
ey pssword
Dol psnra
secure s
i (ki Vol - ot Color e
T ot Color
ree Srg RN
ey serg clor
Dot serg G
YValies Ay Gnens
emo sy e
tem 1 st Geen
fem? sy m
ites s G hems
o sy e colr
tem 1 St GreenCoor
o2 Sving__ueCobr
SrnTabe Er——

s OEE(® =

2 & & |4 | Appictonsettings

OEBPS/images/f207-01.jpg
Type

Key
v Preferencespecifiers Array (@ items)
tem 0 (Group - Group) v Diction... 3 (@ items)
¥ item 1 (Text Field - Name) Diction... (8 items)
P Item 2 (Toggle Switch - Enabled) Diction... (4 items)
> item 3 (slider) Diction... (7 items)

StringsTable String Root

OEBPS/images/f208-02.jpg
Red Color

Blue Color

OEBPS/images/f208-01.jpg
Account Inform

Login Name.

Password

Favorite Color

OEBPS/images/f211-01.jpg
Outlets
favoriteColor
logirName
password
searchDisplayController
view
Referencing Outlets
dataSource:
delegate
New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection
Received Actions.
doneEditing: Text Field
Did End On Exit
Text Field
Did End On Exit

Button - Load Settings V..

Touch Up Inside
Button - Save Seftings V..
Touch Up Inside

® O Oe® eCceee@®

OEBPS/images/f210-01.jpg
8086 ApplicationSettings - ApplicationSettingsViewController.xib. F)

‘ . O r— Hunning Aolcutonsecingson hone Simutor Elaz @am
Sop. Scheme. Breakpoints. g =

Rm
EEIERN - 2 2> I B))) e Amlatorsctim i Caratersiaep | Mew| D) 8 m
o Aliatonsetings [
T, 05 50K 5.0 e I |
v | seuings buncle =
> enipro
[Rootplse p
v i Aevlitorserings | Load Settings Values
[+ Aspcatorsexcnashopelegare.n \ /
(8 ApplcatonSet:ngsprDelegaters |)
(1) AoplcatonsettngsviewControler.n | Loah Name
lcatonSettingsVienContolern
s e s et I8
(L Supprting Files
» L Frameworks GOEnEEE
» Simoducts @
S | message o st bjectwhen.
@ | || sunnyvale
Q| e View Dilrs bedicd
s corten s casbls comen:
AT risuion.
Map View - islars mags arc
Santa Clara e ai i
Scral View - provies 3 mecranisn
10 lpla cortent ra i argr ran
he iz of e appcatrs window
‘ | Save Settings Values e e e
‘ S b (551 e,
Picker View Diglys < spning-
e o o macine et of
= w
‘ Ad Bamerview e
; [ing [t
+|O®E (S T T TR S SRy —yr—

OEBPS/images/f516-03.jpg
806 Certificates - i0S Provisioning Portal - Apple Developer 0

< » ||+ @ nup:ydeveloper.apple.com/ios/manage certficates /team/ index acton clQ-cooge) @‘
@& Developer e P s e e e Rt . evioger
i0S Provisioning Portal W ey Lo
Provisioning Portal 010105 D Center
Home
m Development Distribution History How To
Devices
Current Development Certificates
Avp 103,
Proviioning [= Your Certificate
Distibution

Name Provisioning Profiles Expiration Date staws Action
) You currently do not have a valid certficate [Reavest Certfieate |

1 you do not have the WWDR intermediate certfcate installed, click here 1o downlozd row.

OEBPS/images/f163-01.jpg
Reading List
History

Apple
Yahoo!

Google
iPhone User Guide

iPhone Web Applications

OEBPS/images/f339-01.jpg

OEBPS/images/f517-02.jpg
e6oe Certificates - 10S Provisioning Portal - Apple Developer
A n |+ @ hupjdevaoer applecomyios marage/cerdficases am/indexaction

<)G oo e

Developer Technologis

Resources Progmms Support Member Center (@ seych Develone

i0S Provisioning Portal

Provisioning Portal Covarosows corer-
Certcas Development | Distriution History How To
Devices §
. Current Development Certificates
rovisoning [Your Certficate
R—
Name A ProvsioningProfles Expirtion Date | St Acton
) Wei-Veng Lee AW e () Revke

1 you do not have the WADR Intermediats ceruficate installd, cl i here to download now.

OEBPS/images/f334-01.jpg
MacBook Pro

OEBPS/images/f517-01.jpg
Provisioning Portal

Appios

105 Provisioning Portal

806 Create Certificate - 0 Provisioning Portal - Apple Developer
+ @ o fdevlper. o com)os manapecetifctes teamicreat acton (& Goose
Developer Tecwmologes Remowces Pogrns Suppor MemberCemtr (G110

Development | Distisutien History HowTo

Create i0S Development Certificate

The Deelopment Certifcat s used 0 sign 3 rovisioning sofle and sssoiste deveoperto 3 reistersd dvice, You may v only
o0 2t el aprent CerAcat. T £8 MAve, A 1 CEM e secon o he. Deveopmen: Cvanen.
How 10 create a development certficate:
L Generatea Cemfiat Signing Reques (€S0 wi 2 puslc key
= Inyour Appicarans foder, ope the e oider and lunch Keychiin Acess.
- Choose Keychain Access > Cetficae Asssant > Reuest Cerificate fom a ertficae Autorhy.
+ inthe Cortfcae Informatien wigow, et o slectthe fllouing nformation
+ nthe User Email Address e, entar your el sdress
+ Inthe Common Name e, ener your rame
+ Inthe Rquest i group, slct the Saved 10 sk opion
+ Clckcontinue.
- The Coruicate Assstant saves Cerficate Signing Reauest (CSR)fle 1o your Destop.
- The pusic/privat ke parwil be generated when you cea th Cericate Sining Request(CSR) f you use the Ky Chain
ssistant 0 creste the CS.
2. Submit the SR through the Provisioning Poral.
+ Clck ne Deveiopment b
- Upload the certiate by croesing the e
+ Clcksubmi

(Chasse i o e seectes

OEBPS/images/f165-01.jpg
5 Tableviewsxample) (1) BT) T [View) Table View

v Tab

Index

a
v Outlets
dtsSource

‘Table View

Tencing Outlets
New Referencing Outiet
' v Referencing Outlet Collections

New Referencing OutetCollecion

e Costa Mesa

OEBPS/images/f340-02.jpg
POSITION
Vertical upright position
Landscape left
Landscape right
Upside down

Flat up

Flat down

00
10

0.0
0.0

0.0

-10

0.0

0.0

10

0.0

0.0

0.0

0.0

0.0

0.0

-10

OEBPS/images/f518-02.jpg
806 Devices - 05 Provisioning Portal - Apple Developer
[0+ Dineosrderiooeaope comios mangedeices ngexction c (@ coosie

& Developer e e e e e B L e

{05 Provisioning Portal

Provisioning Portal

corvtaes Manage. History HowTo
[Current Registered Devices . Upload Devices | Add Devices]
T
e Important: Your i0S Developer Program membership can be terminated if you provide pre-release Apple Software to
pr— anyane otrer than employees,conracrs, and members of yout organzation wh ae egsered a5 Apie Develoers

ad have a demonstrable need o know or use Apple Software In rcer todevelop and tst applcaions on your behaf.
Unauthorized distribuion of Apple Confidental Informaton (ncluding pre-release Apple Sofuare] s prohibited and
may sublect you both il and crminal ably.

OEBPS/images/f164-01.jpg
806 [TableViewExample - TableViewExamoleViewController.xib

(®) @ (s (=) L Gl
RS Organzer
jmiz ®a =m0 4 b | [iTabevievbampie) [T) BT BT |view, _Tabie view - E}’4‘ B
o TablevienEaamsie 3 Table vew
Thage 350KS
e = e
et | California ______________] e
(o) TablVienExampleApselegate m California i G
[l TabiViewExamplevienCortrolic et
[TabiViewEcampleViewCortroler.n B Lt
s kot o
.?.i',f:ZL",‘:?”‘“ ESiincare D Uje ®m
s b
> Erros Canoga Park L
rage cona- g o
28 v pege 3o
@ Carlsbad supperts sequentil ravigation
Chula Vista Ttevien s
® ene, o grauoe rovs.
N Corte Madera Table View Cell - Defnes tne
Seistesandbehavir o el (o)
I b e
Costa Mesa
image View - Dislas s snle
i, o s arimston s b1
Emeryville ot g
A e Vi - il o
: 5 O i e snd s 4 acton
Escondido "= | massage 1o trger object when.
(7| Web view - Dispas envedies
Section Footer) e b o
wap view - 0spss s s
Prdes an amiesai e o
R nap coment.
Scrol View - provs s eckans
+| 0@ ® ®

OEBPS/images/f340-01.jpg

OEBPS/images/f518-01.jpg
Keyehaine
& login

& System

O system Roots

Category
A Alllems

.. Passwords
I~ secure Notes
& My Certificates
P Keys

L Centficates

Keychain Access
— . . — &

] iPhone Developer: Wei-Meng Lee (398N22LL9K)
275" | tsued by: Apple Werldwide Developer Relations Certifcation Autharity

| exoies: Thursday, August 3, 2015 11:30:30 AM Singapore Scandard Tme
@ This certicate s valid

Kind [Expires [Keychain
»[5] 31 Party Mac Developer Application: Wel-Veng Lee cerufcate Jan 25, 2012 814141 PM _ login
>[5 3rd Party Mac Developer nstaller: Wei-Meng Lee contificate Jan 25,2012 827:41PM login
b [5] 84605A0B-0849-46C4-674A-SOFEIBBEI2FF certificate _Jan 29,2012 10:2610 M _login
certicats 0, 2012 11

§ Wei-Meng Lee private key togin
v Wei-MengLee-PC certfcate Feb8,2012 600:00 M lagin
© 135607b6-7d0f-4738-253-A70155€7¢026 private key - login

OEBPS/images/f169-01.jpg
Training Day
Remember the Titans.
John Q.

The Bone Collector
Ricochet

The Siege

Malcolm X

Antwone Fisher

Courage Under Fire

OEBPS/images/f342-01.jpg
» (I Supporting Fles
v [Frameworis
6 CoreGraphics framework.

T
&
b

| scmented Control Oipls
12 ki segments, xchof wheh
Fonctons 3.3 discree Bortn.

Dt e
Toxt | kst on siom g
st oo,
[T —
o S
e

St - Dupls an kment
14 the oolean s of 3l
oLt

+ O@E (S

2 | 4 | Gyroscope.

OEBPS/images/f520-01.jpg
606 el i Picion Borial s doie Deslorss,
(2] [+ D jdeveloper aple.comsmanageuncies naexaction Bz ¢ (@ coos'e
& Developer Techologies Resourcss Progams Suwson Member Gnter

i0S Provisioning Portal

Provisioning Portal
Cerntines

Manage HowTo

& o0 [enson |

ADD 105 are an ntegra e of e 105 Developmen and Provisoning Pocessthat allows an a9 caton o commuricate wih the
‘Aople Push Notfication senvice and/or an externalhardware acessory. I acdlion, an APp D Can aso b sed 1 shre keychaln data
(S1h a5 passwords) becween st o appcatons an share document and configuration ata between your appICatons uing
Clous.

A% ApPID 1 the combination of 3 nigue ten charactrstring called the “Bundle Seed 0" 3nd 3 tadanalCF Bundie D (or uncle
). The Sundle Se2c 0 parton of your App 15 a be w366 1 S keychan acess bueen mulipe 3catons you bl
with 2 single App 0. In addiion, 1 can ¢ ncorporaed o any external hardware Sccesserie You W o pair Your 05 appcaion
uith. Regisation of your App 1D required o iz the Apple Push Notifcatlon serice (AP) and t egiter 2n appicaton o
Incorporate n App Purchase.

The Bundle Idenier porionof an 299 D can be subsiuted with & wik-card charactr (sterisk ™) 5o that a sigle App 0 may be
st bulkd an nstall mutipl aoplatons. I the wid-card chracer s t use, he e dent a1 porton of your Agp 0 must
e nput 5 your CF Bundle D in code taliowthe apication 10 nstll o your devce. The Bundie See 10 orton of your App 1D
doe ot need 1 be Input nto Xcode. Wik-card Ap IDs cannt b used wih the ABol Push Notficaton sevice o for In A0p
Purchase.

OEBPS/images/f166-01.jpg
Training Day
Remember the Titans
John Q.

The Bone Collector

Ricochet

The Siege.

Malcolm X
Antwone Fisher
Courage Under Fire

He Got Game.

OEBPS/images/f341-01.jpg
8 06

@) @ (e v]

stop Scheme. Breakpo

\-mea_-a

v B s soxs0
v [Gyroscope
] GyroscopeAppDelegate.n
m) GyroscopeappDelegate.m
[h] GyroscopeviewControlier.n
[m] GyroscopeviewControlier.m
% GrroscopeviewConroliradb
» (] supporting Files
v (] Frameworks.
» §= Uit framework
» & Foundation.framework
» (] Products

OEBPS/images/f519-01.jpg
eoe Devices - Add Devices - I0S Provisioning Portal - Apple Developer
<> | [+ [lhitps:/developer.apple.com/ios /manage devices/ add.action & Q- Google

& Developer Technologies

Resources Programs Support Member Center

Gota 05 Dev Cantr

Canticates Manage History. HowTo

You can 2dd up to 83 devices). Enter name for aach dovice and It 1. Fnding the Dovice 0.

Important: Your 105 Developer Program membership can be terminater if you provide pre-release Apole Software to
‘anyone other than employees, contracors, and mambers of your organIZation who are regitared as Apple Developers
anct have 2 demonstrable need o kaow or use Appla Software n order to develop and test applications on your behalf
Unauthorized distribution of Apple Confidential Information (ncluding ore-release Apple Software) s prohibited and
may subjact you to both vl and criminal asily.

Device Name. Device ID (40 hex characters)

ot devee rame Tt deee D

®

Em s.or]

OEBPS/images/f171-01.jpg
203 P

Training Day
Remember the Titans
John Q.

‘The Bone Collector
Ricochet

The Siege

Malcolm X

Antwone Fisher

(]
(]
(]
(4]
(]
(]
@
(]
(4]

Courage Under Fire

OEBPS/images/f346-01.jpg
v B e 03 ok 50
v (] Gyroscope

[h) GyroscopeAppDelegate.n
m| GyroscopeAppDelegate.m I
|h) GyroscopeViewControlier.h
|m] GyroscopeviewControlier.m

GyroscopeviewController.xib
(1 supporting Files
v (] Frameworks
» " CoreGraphics.framework
» = CoreMotion. framework

» % Foundation.framework
» (] Products

OEBPS/images/f521-01.jpg
Provisioning Profiles - i0S Provisioning Portal - Apple Developer

+ @ sevoperaple comtos/manage prowsonprfies index.cton Ja ceone
@& Developer Technologes Resources Progums Support Member Ceter Roedsoe
05 Proy g Portal et
Provisioning Portal [r—
e e e, e =
::': @ Development Provisioning Profiles

OEBPS/images/f170-01.jpg
eoe

TableViewExample - apple.jpeg
® @ e =)

Running TableViewExample on Phone Simultor
Scheme _ Breakpoints Mot View Organizer
) Tl ;1 ® & > 8 | 4> | [Tableviewbxample) [TableviewExample) _|suporting Fles) |+ appleJpeg | No Selection
7y TableViewExample
1arge, 105 DK 5.0
v (1 TableViewExample:

b TableviewExampleAppDeiegate

|m TableViewExamleAppDe egate.m
[l TableviewExamplavienCantraier n
[m TableviewExampleviewconoler.m
 TatieViewExampievienContoler.xb
v (] Supporting Files

[apole.jpeg
TableViewExample-Info.plist

) tortsesrings

[s) minm

[h) TableViewExample-prefn.pch
» [Fameworks
» [products

+ | © @D (>

2|4 | Tableviewbample

OEBPS/images/f344-01.jpg
-0.003049

0.004635

0004718,

0.000727

0.001086.

0019577

OEBPS/images/f520-02.jpg
006 Add App IDs - iOS Provisioning Portal - Apple Developer
+ [Intps://developer apple.comios/manage bundies add.action 3 L - Google
& Developer Techmolgies Resources Pogms Suwppon Member enter
i0S Provisioning Portal
Provsioning Poral pre——
e g e

T "

Otsutbution

Descrption

Entera common name or descrption of your ABD D using alphanumeric characers, Th descrpion you specy Wil be used
hroughoutthe provsioning Fertal o Gency this App 1.

e —T T T TR p—

Bundle Seed D (App 1D Prfi)

st yourTeam 10 o sefect 1 existing Bunle Se2d 1D for your pp .

W you e i e ofapicatos i harethe s Kechn s, s s bl e 10 echfyour
Ssaton g 01

Bundla denuer (9p 1D Suff)

Entera unique dentfefo your Ap ID. The recommended practice i o use a reverse-domaln name sty string or the Bundle
Idendfier poton of the Azp 1.

e — T

OEBPS/images/f173-01.jpg
© Remember the Titans
© Jona.
@ The Bone Collector

@ nRicochet

@ The Siege

© Maicoim x
@© Antwone Fisher

@ courage Under Fire

OEBPS/images/f346-03.jpg
eoe Gyroscope.xcodeproj — - GyroscopeViewController.xio.

@ @ @ : Running Gyroscope on Wei-Meng Lee's iPhone 4 @
s e B

screme. sraakpoims

mineaczmeg B | Vew) maevewbigs] 0 B 8% 2 O
Gyroscope ¥ image view

v B Peessons0 @ —— =
v (5 Groscope & PN m—a)

i yoscopeapsDelegaren | Hiighes ~

im GyroscoperpsDelegate.. | Roll stste) Wgnlghted

Gyoscopevencontraern ¥ view

B Crosapeiencanraorm rem—
= supporing s |

< iy |

) Grroscape-itepist |

torussnogs I

Imeracion) User Inieracuion Erabled

@ e —=wy
[h) Groscape-pretoch 5

v (2 Framewcrks x sscgraund| £ Osfaut
— Draving ¥ Opaue [Hidden
Yy o Clers Graphics Context

» B Ui famewerk

e . Sakans
S == (lonests (28
{ & in array of images.

o st ot 300 e 3nachn
mesage o targes bjctmhen.

Web View - islaysembeced
Fiatn,

proudesan mbuddioe et 1o
Favatemay comn.

Scrll View - Povces s mecharim

+/ 0 @3 el el e

OEBPS/images/f172-01.jpg
) Heochot

@ Antwone Fisher

@ courage Under Fire

OEBPS/images/f346-02.jpg
CXeX:} L Gyroscope.xcodeproj — Generic_football.png

‘®®c,@‘ G[W-mzm_mu

sz e a

Vew __owunzer
< > DiCroscopn)) [)) = balong) NoSetecton | Diel
T

<« [Crroscope.
B seossoxso |
" Bgroe
' GroscooehonDelsite
B Groscopevieuconiroliarm

2 GroscooeViewControlerxib
v (] Supporting Fikes

sy ot mages.

Text View - Displys i lnes
o bt and srds i action
message 03 targe et mhen

[rscape- P el View -l i
S e o raos e

Map View - Disalys maps and
S cmbddsbi mace o
Favgate map otent.

SerollView - Provides a echusiom

OEBPS/images/f522-01.jpg
Development Provisioning Profiles - i05 Provisioning Portal - Apple Developer

[l deveioper appl comios/manage/provsionngprofies crete actorype=1 e Jfer cooo

@& Developer

i0S Provisioning Portal

Provisioning Portal

Technologies Resowrces Programs Support Member Comter

Development | Diserinuon History. HowTo

Create i0S Development Provisioning Profile

Generate provisioing profies hre. Al iekds ae requied uness othervise noted. Tolean mre, vt te How To secton.

Profie Name Crn
Centficates e pengee
oD [Ere—

Devices select Al
Crer——— CLErRa—

OEBPS/images/f173-02.jpg
‘

() Training Day
‘

) Remember the Titans

Q) votme
"

‘The Bone Collector

"
() Ricochet

‘

Q) mesiese

OEBPS/images/f349-01.jpg
=i..M1-3GSM = 10:40 PM 3 94% W@

————
Roll (0074529)

ey

Pitch | -0.120670 /

Yaw | 1.496686 g
N

X -0.002217
y 0010575
P —

z -0.015636

OEBPS/images/f175-01.jpg
Choose optins for your new project:

roduct Name [Tabewed]

e
A = T ———
Class Prefix xv7
PR = —

) use swrybourc

) use Core Daa

) Use Automarc Referance Counting
) Incude Unic Tests

OEBPS/images/f353-01.jpg
Running Shake on Phane Smulaior
Notsues

Choose options for your new file:

OEBPS/images/f174-01.jpg
Losding

Framewark & Library
other

i Mec 05 X
spplicaion
Frameworc & Libary
pplication ug-in
System Plug-in
Otrer

7
45
= OpenL Game
‘ropiicaton
Tabbed Appication Unity Application

=

-

Page-gased
Application

Single View
Application

Empty Aplication

Master-Detail Application

“This template provides & starting poit for a master

etai apglication. I provides a user

Interface conhgured with 2 ravigation controler to display 3 st of rems and lso it view

onPad.

Cancel

OEBPS/images/f351-01.jpg
806

() @) Goveiens..] [=]

‘Shake.xcodeproj — - ShakeViewController.xib
eode

Bla o ECE)

Organizer

sor vew
(B2 © 4 = = © [= <> (s [- Socvecomsnon ve| D B 2% @ 0
ke eces

Tiarge 10550k 50 @

Shake
[h) ShakeAppelzgate.n
m ShakeAppDeizgate.m
b ShakeviewControler.n
m srakeviwconrolerm

> st e
» (] Frameworks
» [producs

+ OEE

gu:m
| s {1 oo

“Text View - Displays multple nes
f adtaie text and s an Sction
message o trget object when-.

Web View - ispays embeded
web orent and enables coment
navigaton.

T
e,

ScrollView - Provides mechanisr
o dspay conenttht & gt han
the sizefthe appicatios window.

Picker View - Displays a spining-
el o ot machine ot of
=] v

Ad BamnerView - The
ADBanneview ciss provides 3 view
hat dissays amer

[oo Gesture Recognizer -
B

OEBPS/images/f176-01.jpg
[TableView - TableView.xcodeproj

Choose a template for your new file:

Xeode

Wios
Cocoa Touch
CandCor

User nterface
Core Data

other

i e 05 X

Cocan
CanaCr
User Interface
Core Data
Resource
other

anxrile

=S

Strings file

Settings Bundle

Rich Text file

N
Property List

A0 XML properey st file.

BI5

gl

oo (e
[I specified ‘ specified ‘
© (]
At e

OEBPS/images/f354-02.jpg

OEBPS/images/f175-02.jpg
[TableView - MasterViewController.xio

© m Tlavien
T 055K 50
[Tabltiew
) AooDeleqaien
) ApeOelgatc.m
] MacterviewContolier
WaserviewContolerm
[f] DeteiVienContralarh
NisuControer 1
B Masterviewcoroliradh
" DeaiNienContralarsds.
» (L1Supporting Files
» (o Pramevorks
» [producs

Dec

+ O@EE >

Burlingame
Canoga Park
Carlsbad
Chula Vista
Corte Madera
Costa Mesa

Emeryville

Escondido

OEBPS/images/f354-01.jpg
Shake xcodeproj — - ShakeViewController.xib

Running Shake on iPhone Simulator

Notssues

) (&)

Editor View Organizer

[y Shake) (15...) - S...) /- ShakeViewControllerxlb English)) |_|View

D 8|e|w ¢ O

¥ Custom Class

Thu Sep 1

uZliser,Defined
Key Path | Ty MKMapView

[rr—)

ADBanne View
e

UlActionSheet
UlActivityindicatorView

‘1oday

D 0|o =

(Hliobiess ¢ (=[8)

SatSep 3

Map View - Displays maps and
provides an embegdable interface to
navigate map conten.

Seroll View - Provides 2 mechanism
to display content that s larger than

gy prosmed el wairliaey

OEBPS/images/f179-01.jpg
Malcolm X
The Pelican Brief

‘The Hurricane

Remember the Titans.

The Bone Collector

John Q.

Man on Fire

OEBPS/images/f361-01.jpg
806 CurrencyConvertor Web Service

| 4 > ||+ @ hup://www.webservicex.net/currencyconvertor.asmx?op- & | (Q~ Google
Test
To test the operation using the HTTP POST protocol, click the ‘Tnvoke' button.
Parameter Value
FromCurrency
Tocurrency
Invoke
SoAP 1.1

The following
actual values.

a sample SOAP 1.1 request and response. The placeholders shown need to be replaced with

POST Jausrensyconvertor. ame NIT/1.1
Content Typa: toxt oy sharsetmute-s
SURPRGion: "REtp./ jonme. web s s cak, WET/ Conve xrionBated

e nvilope soilne weiovnets /ey v3. oxg/ 2001/ LS chena-ing tanse? snlng:xsd=rhttp: /s v3. 055/ 2001/ ML 5chenma’

kg . webseriesk MET /1
FvomiusrencysAER ox ALL ox DGD ox B35 ox BIG ox AUD ox BSD ox BND ox BUT ox BED ox BGD ox BMD ox BTN ox 505
ToCurvencysiER ox ALL ox DD ox AES ox MG ox AUD ox BSD ox ND ox DT ox ED ox BSD ox BXD ox BTN ox B0 o

</sompiBotr
</ronprBnvelapes

TR/ 200 0
Content-Typa: toxt/nl; chaxsetmute-s

e nriLope soilne Meiovnets /fmew.v3. oxg/ 2001/ LS chena-ing tanse? snlns:xsd=thttp: /s, v3. 055/ 2001/ ML 5chenma’
Zoeap Boars
ConversioxiateResponse xnins e wabs e sk BT[>
vmvereLombat Rl > Sout e/ o oL Rt RaseL 6
e e
</sompiBosr
</romp Brvelapes

OEBPS/images/f177-01.jpg
[TableView - Movies.plist
Pl

Xeode

(= Gl
etr vew

Organizer

| 4> | [Tableview) [|Tableview) [jsupporting iles) [| Wories.plist) No Selection

o Tableview
Y S1 arge, 0550k 50

v [Tabieview
‘AppDelegate.n
‘AppDelegate.n
NastarvienControlerh
NasterviewContolier.m
DenilienContraler.n
DetailienControler.m
NasterVienControlerxb
DeailisnContraler
v (] supportng Files

5 % BIEEEE

st
) nfopist.strings.

\ [l Tableview-Prefix.och

» [Framenori
» [Products

e

ey Type
V2000 Armay
fem o Suring
Hem 1 sting
hem 2 Suring
w2001 Armay
tem o Suring
em 1 sting
va002 Array
tem 0 sting
V2004 Array
tem 0 sting
hem 1 String
em 2 sting
fem 3 suring
tem 4 sting
V2006 Array
tem 0 sting
hem 1 Suing
w2007 Armay
Hem o Suing
w2008 Armay
Hem o Suing
Hem 1 sting

Vaiue
3 iems)

Malcolm X

The pelican Brief
The Horricane

2 iems)
Remermber the Titans
The Bone Collector
(item)

JohnQ

5 items)

Man on Fire

Outof Time.
Training Day.
License to Kill
Carbor Copy
@items)

AHand to Guide Me
Insice Man

(Litem)

Dejavu

2 iems)

The Great Debaters
American Gangster

OEBPS/images/f360-01.jpg
806 CurrencyConvertor Web Service
[<>] [+ @ hup://wwwwebservicex.net/currencyconvertorasmx & | (Q- Google (o)

CurrencyConvertor

The following operations are supported. For a formal definition, please review the Service Description.

« ConversionRate

Get conversion rate from one currency to another currency
Differenct currency Code and Names around the world

AFA-Afghanistan Afghani
AL Albanian Lek
D25-Algerian Dinar

Peso

RS-Argentine
et Florin

OEBPS/images/f180-02.jpg
2000

Malcolm X

The Pelican Brie!

The Hurricane

2001

Remember the Titans.

The Bone Collector

2002

John Q.

OEBPS/images/f367-01.jpg
File's Owner

Outlets

i ———

oxtAmount TextFild
view * View
Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collcton

 Button - Convert
Touch Up Inside

OEBPS/images/f180-01.jpg
Table view

Size [None

Burlingame

Florida

Altamonte

Aventura

New York

Springs

Section Footer

Section Footer

Albany

Section Footer

Orientaton [Porrait

Stz gar
Top sar None
Sotom sar [None
Y Tebevie pan
Separator | Single line Eiched ¢ |
Selecton [Allows Wil Editing
 show on Touch
Indes Row Uit -

¥ Seroll View

Suye [Default

Scrollers ¥ Shows Horizontal Scrolers.
4 Shows Vertical Scrollers
o scroliing Enabled
() Paging Enabled
() Direction Lock Enabled

n
[T — 5

Label 12bel- Avardlysizeéamountf

o Rt Butos - Itacogs

OEBPS/images/f366-01.jpg
e - |

Seneme areskponts

[WebServices xcodeproj

WebServicesViewController.xib
Succeeded | 18/7/11 41555 A

Eos @EoE &

cator View Organzer

<> Bwi

- WebsenvcesviewConuollr.xb Englist)) |View

Webservces
¥ B et 05 50K 50
+ uessencs:
| ebserveesaopoeiegaen
e —
e wevserveesviewcorirctiern
o) weservcesvieucontoler

» (53 supporting Fles
» Crramevorcs
» Eprogucs

@

Enter amount 1o convert

St s [Gray

[T

o]

Convert

Rouna Rect Qutton - merenre
| aich vents and s a0 scion
— messge 102 et obec when

Seamented Control - Dislrs
12 miipetegren tar o'

) Tent Fild - Oisays st tec
Toxt | andsends en cton messse t02
arge obec when Rt s apped

Slider - Displays a contnsous s

@ s and alaes o seechon o
2single e

€@ .
s

Bctivhy indicator view - provies
feedback onth progess o a tasicor
orocess of unkaoun duron.

Progress View - Deoicts the
S et o sk ovr e,

OEBPS/images/f183-01.jpg
2000

Malcolm X

The Pelican Brie!

The Hurricane

2001

Remember the Titans.

The Bone Collector

2002

John Q.

OEBPS/images/f180-03.jpg
“Tohn Q"

“Man onFite”, “Out of Time”, “Training Day”, “License to Kill”, “Carbon Copy”

“A Hand to Guide Me", “Inside Man™

“Deja Vu

“The Great Debaters”, “American Gangster”

OEBPS/images/f375-01.jpg
Lz [x]c]v[s]n[miC)
o

©)
~

OEBPS/images/9781118235843.jpg
IN FULL COLOR

Wei-Meng Lee

