
g.ullaskumar

ffirs.indd iffirs.indd i 05/12/11 3:01 PM05/12/11 3:01 PM

BEGINNING

IOS 5 APPLICATION DEVELOPMENT

INTRODUCTION . xxi

CHAPTER 1 Getting Started with iOS 5 Programming . 1

CHAPTER 2 Writing Your First Hello World! Application .17

CHAPTER 3 Understanding Views, Outlets, and Actions . 35

CHAPTER 4 Exploring the Diff erent View Controllers . 67

CHAPTER 5 Enabling Multi-Platform Support for the iPhone and iPad 109

CHAPTER 6 Handling Keyboard Inputs . 123

CHAPTER 7 Supporting Screen Rotations . 149

CHAPTER 8 Displaying and Persisting Data Using the Table View 163

CHAPTER 9 Using Application Preferences . 201

CHAPTER 10 File Handling . 221

CHAPTER 11 Database Storage Using SQLite . 253

CHAPTER 12 Programming iCloud . 269

CHAPTER 13 Performing Simple Animations and Video Playback 295

CHAPTER 14 Accessing Built-In Applications .317

CHAPTER 15 Accessing the Sensors . 339

CHAPTER 16 Using Web Services . 359

CHAPTER 17 Bluetooth Programming . 393

CHAPTER 18 Bonjour Programming . 415

CHAPTER 19 Programming Remote Notifi cations Using Apple

Push Notifi cation Services . 427

CHAPTER 20 Displaying Maps . 449

CHAPTER 21 Programming Background Applications . 487

APPENDIX A Testing on an Actual Device . 511

APPENDIX B Getting Around in Xcode . 533

APPENDIX C Crash Course in Objective-C . 559

APPENDIX D Answers to Exercises . 587

INDEX . 601

ffirs.indd iffirs.indd i 05/12/11 3:01 PM05/12/11 3:01 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ffirs.indd iiffirs.indd ii 05/12/11 3:01 PM05/12/11 3:01 PM

BEGINNING

iOS 5 Application Development

ffirs.indd iiiffirs.indd iii 05/12/11 3:01 PM05/12/11 3:01 PM

ffirs.indd ivffirs.indd iv 05/12/11 3:01 PM05/12/11 3:01 PM

BEGINNING

iOS 5 Application Development

Wei-Meng Lee

John Wiley & Sons, Inc.

ffirs.indd vffirs.indd v 05/12/11 3:01 PM05/12/11 3:01 PM

Beginning iOS 5 Application Development

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-14425-1
ISBN: 978-1-118-22571-4 (ebk)
ISBN: 978-1-118-23584-3 (ebk)
ISBN: 978-1-118-26369-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or
the publisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available
in standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version
of this book that did not include media that is referenced by or accompanies a standard print version, you may request
this media by visiting http://booksupport.wiley.com. For more information about Wiley products, visit us at
www.wiley.com.

Library of Congress Control Number: 2011944672

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 05/12/11 3:01 PM05/12/11 3:01 PM

http://www.wiley.com/go/permissions
http://www.wiley.com
http://www.wiley.com
http://booksupport.wiley.com

Dedicated to Steve Jobs, whose vision changed the

way we use computers and inspires many to follow his

footsteps. Thank you for the inspiration!

ffirs.indd viiffirs.indd vii 05/12/11 3:01 PM05/12/11 3:01 PM

ffirs.indd viiiffirs.indd viii 05/12/11 3:01 PM05/12/11 3:01 PM

ABOUT THE AUTHOR

WEI-MENG LEE is a technologist and founder of Developer Learning Solutions (www
.learn2develop.net), a technology company specializing in hands-on training on
the latest mobile technologies. Wei-Meng has many years of training experience and
his training courses place special emphasis on the learning-by-doing approach. His
hands-on approach to learning programming makes understanding the subject much
easier than reading books, tutorials, and documentation. His name regularly appears in
online and print publications such as DevX.com, MobiForge.com, and CoDe Magazine.

Wei-Meng Lee is frequently invited to speak at technological conferences, and recently participated
in Mobile Connections in the United States and DevTeach/DevMobile in Montreal, Canada.
Contact Wei-Meng at weimenglee@learn2develop.net.

ABOUT THE TECHNICAL EDITOR

TRENT SHUMAY is the founder and Chief Architect at Finger Food Studios, Inc., in the Vancouver,
BC, area. After graduating from the UBC Computer Science program, Trent spent 13 years in the
gaming and interactive entertainment space, where handheld gaming devices ignited his passion
for mobile development. Today, Finger Food Studios focuses on developing media-rich, interactive
mobile and web applications. You can reach Trent directly at trent@fingerfoodstudios.com.

ffirs.indd ixffirs.indd ix 05/12/11 3:01 PM05/12/11 3:01 PM

ffirs.indd xffirs.indd x 05/12/11 3:01 PM05/12/11 3:01 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

EXECUTIVE EDITOR

Robert Elliott

SENIOR PROJECT EDITOR

Ami Frank Sullivan

TECHNICAL EDITOR

Trenton Shumay

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

Luann Rouff

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nancy Carrasco

INDEXER

Robert Swanson

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© -M-I-S-H-A- /iStockPhoto

CREDITS

ffirs.indd xiffirs.indd xi 05/12/11 3:01 PM05/12/11 3:01 PM

ffirs.indd xiiffirs.indd xii 05/12/11 3:01 PM05/12/11 3:01 PM

ACKNOWLEDGMENTS

OVER THE PAST YEAR OR SO, the development landscape of Apple’s iOS has changed greatly.
The successful iOS is now in its fifth iteration, and the Xcode IDE has transitioned to a much
easier-to-use version 4, with a tight integration of Interface Builder. I have received a lot of
feedback from readers of the previous edition of this book, many of whom appreciate the hands-on
approach that it takes. I also have received feedback from readers who are stumped by the changes
that have occurred between Xcode versions 3 and 4; but such confusion epitomizes the rapid pace of
change that all developers experience.

This new edition of the book was revised to cover both new technologies and the various feedback
I have received. I had a thorough relook at the exercises readers were having issues with, to ensure
that they can be easily followed and achieve the effect I intended. I also took this opportunity to
revise all the examples using Xcode 4, which is the IDE included with iOS 5. Of course, this book
covers new iOS 5 features — notably, the new iCloud feature that ships with iOS 5. I have also
added some topics that would interest most iOS developers, such as how to import and export
documents from within your application, programming the various sensors in iOS, and using JSON
web services.

Writing a book is always exciting, but along with the excitement are long hours of hard work,
straining to get things done accurately and on time. I would like to take this opportunity to thank a
number of people who helped to make this book possible.

First, I want to thank my Executive Editor Robert Elliott, who started off as a stranger, but is now
my good friend. Robert is not the usual AE, disappearing after the contract is signed. He has been
involved throughout the entire writing process and is always ready to help. I can’t say enough good
things about Robert, so I will just say thank you, Robert!

Next, a huge thanks to Ami Sullivan, my project editor, who is always a pleasure to work with. Ami
is the force behind the scenes, who makes the book appear on time on shelves in the bookstores!
Thanks, Ami!

I also thank copy editor Luann Rouff and technical editor Trenton Shumay. They have been eagle-
eye editing the book, ensuring that every sentence makes sense — both grammatically as well as
technically. Thanks, Luann and Trent!

Last, but not least, I want to thank my parents, and my wife, Sze Wa, for all the support they have
given me. They have selflessly adjusted their schedules to accommodate my busy schedule when
I was working on this book. My wife, as always, has stayed up with me on numerous nights as I
furiously worked to meet a deadline, and for this I would like to say to her and my parents: “I love
you all!” Finally, to our lovely dog, Ookii, thanks for staying by our side. Now that the book is
done, sorry . . . daddy needs to write another book. . .

ffirs.indd xiiiffirs.indd xiii 05/12/11 3:01 PM05/12/11 3:01 PM

ffirs.indd xivffirs.indd xiv 05/12/11 3:01 PM05/12/11 3:01 PM

CONTENTS

INTRODUCTION xxi

CHAPTER 1: GETTING STARTED WITH IOS 5 PROGRAMMING 1

Obtaining the Tools and SDK 2

Components of Xcode 3

Xcode 3

iOS Simulator 4

Interface Builder 9

Instruments 10

Architecture of the iOS 11

Some Useful Information before You Get Started 13

Versions of iOS 13

Testing on Real Devices 14

Screen Resolutions 14

Summary 15

CHAPTER 2: WRITING YOUR FIRST HELLO WORLD! APPLICATION 17

Getting Started with Xcode 17

Using Interface Builder 20

Writing Some Code 24

Customizing Your Application Icon 26

Displaying Launch Images 28

Summary 33

CHAPTER 3: UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS 35

Outlets and Actions 36

Using Views 40

Using the Alert View 41

Using the Action Sheet 45

Page Control and Image View 46

Using the Web View 55

Adding Views Dynamically Using Code 57

Understanding View Hierarchy 61

Summary 62

ftoc.indd xvftoc.indd xv 05/12/11 3:01 PM05/12/11 3:01 PM

CONTENTS

xvi

CHAPTER 4: EXPLORING THE DIFFERENT VIEW CONTROLLERS 67

The Single View Application Template 68

Application Delegate 71

Controlling Your UI Using View Controllers 74

The Empty Application Template 77

Adding a View Controller and Views Programmatically 81

Animating the Switching of Views 87

The Master-Detail Application Template 89

Displaying Some Items in the Master-Detail Application 98

The Tabbed Application Template 103

Summary 107

CHAPTER 5: ENABLING MULTI-PLATFORM SUPPORT
FOR THE IPHONE AND IPAD 109

Technique 1 — Modifying the Device Target Setting 109

Detecting the Platform Programmatically 114

Technique 2 — Creating Universal Applications 116

Choosing a Porting Technique 120

Summary 120

CHAPTER 6: HANDLING KEYBOARD INPUTS 123

Using the Keyboard 124

Customizing the Type of Inputs 125

Dismissing the Keyboard 127

Automatically Displaying the Keyboard When

the View Window Is Loaded 133

Detecting the Presence of the Keyboard 133

Using the Scroll View 134

Scrolling Views When the Keyboard Appears 138

Summary 145

CHAPTER 7: SUPPORTING SCREEN ROTATIONS 149

Responding to Device Rotations 149

Rotating to a Diff erent Screen Orientation 152

Handling Rotations 153

Programmatically Rotating the Screen 159

Rotating during Runtime 159

Fixing the View Window to a Specifi c Orientation 159

Summary 160

ftoc.indd xviftoc.indd xvi 05/12/11 3:01 PM05/12/11 3:01 PM

CONTENTS

xvii

CHAPTER 8: CREATING AND PERSISTING DATA USING
THE TABLE VIEW 163

Creating a Simple Table View 164

Adding a Header and Footer 169

Adding an Image 169

Displaying the Item Selected 171

Indenting 173

Modifying the Height of Each Row 173

Using the Table View in a Master-Detail Application 173

Displaying Sections 174

Adding Indexing 183

Adding Search Capability 183

Disclosures and Checkmarks 194

Navigating to Another View 195

Summary 199

CHAPTER 9: USING APPLICATION PREFERENCES 201

Creating Application Preferences 202

Programmatically Accessing the Settings Values 209

Loading the Settings Values 214

Resetting the Preferences Settings Values 216

Saving the Settings Values 217

Summary 218

CHAPTER 10: FILE HANDLING 221

Understanding the Application Folders 222

Using the Documents and Library Folders 223

Storing Files in the Temporary Folder 227

Which Folder Should You Use: Documents or tmp? 228

Using Property Lists 228

Copying Bundled Resources 235

Importing and Exporting Files 237

Exporting Documents 239

File Sharing 242

Importing Documents 245

Importing Self-Defi ned Documents 248

Summary 251

ftoc.indd xviiftoc.indd xvii 05/12/11 3:01 PM05/12/11 3:01 PM

CONTENTS

xviii

CHAPTER 11: DATABASE STORAGE USING SQLITE 253

Linking to the SQLite3 Library 254

Creating and Opening a Database 256

Examining the Database Created 258

Creating a Table 258

Inserting Records 259

Bind Variables 260

Retrieving Records 263

Bundling SQLite Databases with Your Application 265

Summary 266

CHAPTER 12: PROGRAMMING ICLOUD 269

Storing and Using Documents in iCloud 270

Enabling iCloud Storage for Your Application 270

Setting Project Entitlements 273

Managing iCloud Documents Using the UIDocument Class 276

Storing Documents on iCloud 278

Storing Key-Value Data in iCloud 289

Summary 292

CHAPTER 13: PERFORMING SIMPLE ANIMATIONS AND
VIDEO PLAYBACK 295

Using the NSTimer Class 295

Animating the Visual Change 302

Transforming Views 302

Translation 303

Rotation 305

Scaling 307

Animating a Series of Images 307

Playing Video on the iPhone 310

Summary 314

CHAPTER 14: ACCESSING BUILT-IN APPLICATIONS 317

Sending E-Mail 317

Invoking Safari 324

Invoking the Phone 324

Invoking SMS 324

ftoc.indd xviiiftoc.indd xviii 05/12/11 3:01 PM05/12/11 3:01 PM

CONTENTS

xix

Accessing the Camera and the Photo Library 327

Accessing the Photo Library 327

Accessing the Camera 332

Summary 335

CHAPTER 15: ACCESSING THE SENSORS 339

Using the Gyroscope and Accelerometer 339

Visualizing the Sensor Data 345

Using the Shake API to Detect Shakes 350

Summary 356

CHAPTER 16: USING WEB SERVICES 359

Basics of Consuming XML Web Services 360

Using SOAP 1.1 361

Using SOAP 1.2 363

Using HTTP POST 364

Consuming a Web Service in Your iOS Application Using SOAP 365

Parsing the XML Response 373

Consuming JSON Web Services 377

Integrating Twitter into Your Application 383

Summary 389

CHAPTER 17: BLUETOOTH PROGRAMMING 393

Using the Game Kit Framework 393

Searching for Peer Devices 394

Sending and Receiving Data 401

Implementing Voice Chatting 404

Summary 412

CHAPTER 18: BONJOUR PROGRAMMING 415

Creating the Application 415

Publishing a Service 417

Browsing for Services 420

Summary 425

CHAPTER 19: PROGRAMMING REMOTE NOTIFICATIONS USING
APPLE PUSH NOTIFICATION SERVICES 427

Using Apple Push Notifi cation Service 428

Generating a Certifi cate Request 428

Generating a Development Certifi cate 429

ftoc.indd xixftoc.indd xix 05/12/11 3:01 PM05/12/11 3:01 PM

CONTENTS

xx

Creating an Application ID 431

Confi guring an App ID for Push Notifi cations 433

Creating a Provisioning Profi le 435

Provisioning a Device 437

Creating the iOS Application 438

Creating the Push Notifi cation Provider 443

Summary 447

CHAPTER 20: DISPLAYING MAPS 449

Displaying Maps and Monitoring Changes Using the Map Kit 449

Getting Location Data 455

Specifying the Hardware Requirement for Location Tracking 460

Displaying Location Using a Map 460

Getting Directional Information 464

Rotating the Map 468

Displaying Annotations 474

Reverse Geocoding 478

Displaying a Disclosure Button 482

Summary 484

CHAPTER 21: PROGRAMMING BACKGROUND APPLICATIONS 487

Understanding Background Execution on the iOS 488

Examining the Diff erent Application States 488

Opting Out of Background Mode 491

Detecting Multitasking Support 492

Tracking Locations in the Background 492

Making Your Location Apps More Energy Effi cient 496

Local Notifi cation 498

Notifying Other Objects Using the NSNotifi cation Class 505

Summary 509

APPENDIX A: TESTING ON AN ACTUAL DEVICE 511

APPENDIX B: GETTING AROUND IN XCODE 533

APPENDIX C: CRASH COURSE IN OBJECTIVE-C 559

APPENDIX D: ANSWERS TO EXERCISES 587

INDEX 601

ftoc.indd xxftoc.indd xx 05/12/11 3:01 PM05/12/11 3:01 PM

INTRODUCTION

APPLE FIRST OFFICIALLY ANNOUNCED the iOS 5 at the Worldwide Developers Conference (WWDC)
in June 2011. After 7 betas and with much anticipation, Apple finally rolled out iOS 5 with the
vastly improved iPhone 4S. With 200 new features added to the iOS, Apple is set to reign as the
king of the mobile platform for the foreseeable future. This means developers also have vast
potential for their applications — if you know how to program for the iOS platform. This book
will show you how.

When I first started learning about iPhone and iPad development, I went through the same journey
that most developers go through: Write a Hello World application, play around with Xcode and
Interface Builder, try to understand what the code is doing, and repeat that process. I was also
overwhelmed by the concept of a View Controller, and wondered why it was needed if I simply
wanted to display a view. My background in developing for Windows Mobile and Android did not
help much, and I had to start working with this concept from scratch.

This book was written to help jump-start beginning iPhone and iPad developers. It covers the
various topics in a linear manner that enables you to progressively learn without being overwhelmed
by the details. I adopt the philosophy that the best way to learn is by doing — hence, the numerous
hands-on “Try It Out” sections in each chapter, which first demonstrate how to build something
and then explain “How It Works.”

Although iPhone and iPad programming is a huge topic, my aim in this book is to get you started
with the fundamentals, help you understand the underlying architecture of the SDK, and appreciate
why things are done in a certain way. It is beyond the scope of any one book to cover everything
under the sun related to iPhone and iPad programming, but I am confident that after reading
this book (and doing the exercises), you will be well equipped to tackle your next iPhone or iPad
programming challenge.

WHO THIS BOOK IS FOR

This book is for the beginning iPhone and iPad developer who wants to start developing
applications using the Apple iOS SDK. To truly benefit from this book, you should have some
background in programming and at least be familiar with object-oriented programming concepts.
If you are totally new to the Objective-C language, you might want to jump straight to Appendix
C, which provides an overview of the language. Alternatively, you can use Appendix C as a quick
reference while you tackle the various chapters, checking out the syntax as you try the exercises.
Depending on your learning style, one of these approaches should work best for you.

While most of the chapters are geared toward developing for the iPhone, the concepts apply to
iPad development as well. In cases where specific features are available only on the iPad, they are
pointed out.

flast.indd xxiflast.indd xxi 05/12/11 3:02 PM05/12/11 3:02 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

INTRODUCTION

xxii

WHAT THIS BOOK COVERS

This book covers the fundamentals of iPhone and iPad programming using the iOS SDK. It is
divided into 21 chapters and four appendices.

Chapter 1: Getting Started with iOS 5 Programming covers the various tools found in the iOS SDK
and explains their uses in iPhone and iPad development.

Chapter 2: Write Your First Hello World! Application gets you started with Xcode and Interface
Builder to build a Hello World application. The focus is on giving you some hands-on practice
getting a project up and running quickly. More details on the various project components are
covered in subsequent chapters.

Chapter 3: Understanding Views, Outlets, and Actions covers the fundamental concepts of iPhone
and iPad programming: outlets and actions. You learn how outlets and actions allow your code
to interact with the visual elements in Interface Builder and why they are an integral part of every
iPhone and iPad application. You will also learn about the various UI widgets known as views that
make up the user interface of your application.

Chapter 4: Exploring the Different View Controllers discusses the various View Controllers
available in the iOS SDK. You will learn how to develop different types of applications — Single
View, Master-Detail, as well as Tabbed applications.

Chapter 5: Enabling Multi-Platform Support for the iPhone and iPad shows how you can port your
iPhone applications to the iPad platform. You will also learn how to create universal applications
that will run on both the iPhone and the iPad.

Chapter 6: Handling Keyboard Inputs shows you how to deal with the virtual keyboard in your
iPhone or iPad. You learn how to hide the keyboard on demand and how to ensure that your views
are not blocked by the keyboard when it is displayed.

Chapter 7: Supporting Screen Rotations demonstrates how you can reorient your application’s UI
when the device is rotated. You learn about the various events that are fired when the device is
rotated, and how to force your application to be displayed in a certain orientation.

Chapter 8: Displaying and Persisting Data Using the Table View explores one of the most
powerful views in the iOS SDK — the Table View. The Table View is commonly used to display
rows of data. In this chapter, you also learn how to implement search capabilities in your
Table View.

 NOTE All the examples discussed in this book were written and tested using
the iOS SDK 5.0. While every eff ort has been made to ensure that the screen
shots are as current as possible, the actual screen that you see may diff er when
the iOS SDK is revised.

flast.indd xxiiflast.indd xxii 05/12/11 3:02 PM05/12/11 3:02 PM

INTRODUCTION

xxiii

Chapter 9: Using Application Preferences discusses the use of application settings to persist application
preferences. Using application settings, you can access preferences related to your application through
the Settings application available on the iPhone and iPad.

Chapter 10: File Handling shows how you can persist your application data by saving the data
to files in your application’s sandbox directory. You also learn how to access the various folders
available in your application sandbox.

Chapter 11: Database Storage Using SQLite covers the use of the embedded SQLite3 database
library to store your data.

Chapter 12: Programming iCloud discusses and demonstrates how to store your documents and
application-specific data on Apple’s new iCloud feature.

Chapter 13: Performing Simple Animations and Video Playback provides an overview of the various
techniques you can use to implement basic animations on the iPhone and iPad. You also learn about
the various affine transformations supported by the iOS SDK. In addition, you learn how to play
back video on the iPhone and iPad.

Chapter 14: Accessing Built-In Applications describes the various ways you can access the iPhone
and iPad’s built-in applications, such as the Photo Library, Contacts, and others. You also learn how
you can invoke built-in applications such as Mail and Safari from within your applications.

Chapter 15: Accessing the Sensors shows how you can access the accelerometer and gyroscope
sensors that are included with every iPhone and iPad. You will also learn how to detect shakes to
your device.

Chapter 16: Using Web Services teaches you how to consume web services from within your iPhone
and iPad application. You will learn the various ways to communicate with four web services —
JSON, SOAP, HTTP GET, and HTTP POST. You will also learn how to parse the XML result
returned by the web service.

Chapter 17: Bluetooth Programming explores the use of the Game Kit framework for Bluetooth
programming. You will learn how to enable two devices to communicate using a Bluetooth
connection, and how to implement voice chatting over a Bluetooth connection.

Chapter 18: Bonjour Programming shows how you can publish and find services on the network
using the Bonjour protocol.

Chapter 19: Programming Remote Notifications Using Apple Push Notification Services
explains how you can implement applications that use push notifications. The APNs enables
your applications to continuously receive status updates from a service provider even though the
application may not be running.

Chapter 20: Displaying Maps demonstrates how to build a location-based services application using
the Map Kit framework. You will also learn how to obtain geographical location data and use it to
display a map.

Chapter 21: Programming Background Applications shows how to build applications that can
continue to run in the background when the user switches to another application. You will also

flast.indd xxiiiflast.indd xxiii 05/12/11 3:02 PM05/12/11 3:02 PM

INTRODUCTION

xxiv

learn how to use the local notifications feature to schedule notifications that will fire at specific time
intervals.

Appendix A: Testing on an Actual Device outlines the steps you need to take to test your application
on a real device.

Appendix B: Getting Around in Xcode provides a quick run-through of the many features in Xcode
and Interface Builder.

Appendix C: Crash Course in Objective-C offers a brief tutorial in Objective-C. Readers who are
new to this language should read this material before getting started.

Appendix D: Answers to Exercises contains the solutions to the end-of-chapter exercises found in
every chapter except Chapter 1.

HOW THIS BOOK IS STRUCTURED

This book breaks down the task of learning iPhone and iPad programming into several smaller
chunks, enabling you to digest each foundational topic before delving into a more advanced topic. In
addition, some chapters cover topics already discussed in a previous chapter. That’s because there is
usually more than one way of doing things in Xcode and Interface Builder, so this approach enables
you to learn the different techniques available for developing iPhone and iPad applications.

If you are a total beginner to iOS programming, start with Chapters 1 and 2. After you are
comfortable with the basics, head to the appendices to read more about the tools and language
you are using. Once you are ready, you can continue with Chapter 3 and gradually move into more
advanced topics.

A useful feature of this book is that all the code samples in each chapter are independent of those
discussed in previous chapters. That gives you the flexibility to dive right into the topics that interest
you and start working on the Try It Out projects.

WHAT YOU NEED TO USE THIS BOOK

Most of the examples in this book run on the iPhone Simulator (which is included with the iOS
SDK). For exercises that access the hardware (such as the accelerometer and gyroscope), you need a
real iPhone or iPad. In general, to get the most out of this book, having a real iPhone or iPad device
is not necessary (although it is definitely required for testing if you plan to deploy your application
on the App Store).

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

flast.indd xxivflast.indd xxiv 05/12/11 3:02 PM05/12/11 3:02 PM

INTRODUCTION

xxv

TRY IT OUT These Are Exercises or Examples for You to Follow

The Try It Out sections, which appear once or more per chapter, provide hands-on exercises that
demonstrate the concept under discussion as you follow the text.

 1. They consist of numbered steps.

 2. Follow the steps with your copy of the project files.

How It Works

After each Try It Out section, these sections explain the code you’ve typed in detail.

As for other conventions in the text:

 ➤ New terms and important words are highlighted in italics when first introduced.

 ➤ Keyboard combinations are treated like this: Control-R.

 ➤ Filenames, URLs, and code within the text are treated like so: persistence.properties.

 ➤ Code is presented in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is of particular importance in the present
context.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

 NOTE Notes, tips, hints, tricks, and asides to the current discussion look
like this.

SOURCE CODE AND ANSWERS APPENDIX

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All the source code used in this
book is available for download at www.wrox.com. When at the site, simply locate the book’s title
(use the Search box or one of the title lists) and click the Download Code link on the book’s detail

flast.indd xxvflast.indd xxv 05/12/11 3:02 PM05/12/11 3:02 PM

http://www.wrox.com

INTRODUCTION

xxvi

page to obtain all the source code for the book. Code that is included on the website is highlighted
by the following icon and/or CodeNote, as shown following the icon:

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a
CodeNote such as this:

Code zip filename available for download at wrox.com

After you download the code, just decompress it with your favorite compression tool. Alternatively,
go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Please note that Appendix D, “Answers to the Exercises,” is available as a PDF for download.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-14425-1.

ERRATA

We make every effort to ensure that there are no errors in the text or the code. However, no one is
perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful for your feedback. By sending in errata,
you may save another reader hours of frustration and at the same time help us provide even
higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page, you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list, including links to each book’s errata, is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the
problem in subsequent editions of the book.

flast.indd xxviflast.indd xxvi 05/12/11 3:02 PM05/12/11 3:02 PM

http://www.wrox.com

INTRODUCTION

xxvii

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to email you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

 4. You will receive an email with information describing how to verify your account and
complete the joining process.

After you join, you can post new messages and respond to messages that other users post. You can
read messages at any time on the web. If you want to have new messages from a particular forum
emailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as for many common questions specific to
P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxviiflast.indd xxvii 05/12/11 3:02 PM05/12/11 3:02 PM

flast.indd xxviiiflast.indd xxviii 05/12/11 3:02 PM05/12/11 3:02 PM

Getting Started with iOS 5
Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to obtain the iOS SDK - Software Development Kit

 ➤ Components included in the iOS SDK

 ➤ Features of the development tools — Xcode, Interface Builder, and

iOS Simulator

 ➤ Capabilities of the iOS Simulator

 ➤ Architecture of iOS

 ➤ Characteristics of the iPhone and iPad

Welcome to the world of iOS programming! That you are now holding this book shows that
you are fascinated with the idea of developing your own iPhone and iPad applications and
want to join the ranks of the tens of thousands of developers whose applications are already
deployed in the App Store.

As the Chinese adage says, “To accomplish your mission, fi rst sharpen your tools.” Successful
programming requires that you fi rst know your tools well. Indeed, this couldn’t be truer for
iOS programming — you need to be familiar with quite a few tools before you can even get
started. Hence, this chapter describes the various relevant tools and information you need to
jump on the iOS development bandwagon.

Without further ado, it’s time to get down to work.

1

c01.indd 1c01.indd 1 05/12/11 1:38 PM05/12/11 1:38 PM

2 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

Before you download and install Xcode, make sure you satisfy the following system requirements:

 ➤ Only Intel Macs are supported, so if you have another processor type (such as the older G4
or G5 Macs), you’re out of luck.

 ➤ Your system is updated with the latest Mac OS X Lion release.

An actual iPhone/iPod touch/iPad is highly recommended, although not strictly necessary. To test
your application, you can use the included iOS Simulator (which enables you to simulate an iPhone
or an iPad). However, to test certain hardware features like the accelerometer and gyroscope, you
need to use a real device.

When Xcode is downloaded, proceed with installing it. Accept a few licensing agreements and then
select the destination folder in which to install the SDK.

If you select the default settings during the installation phase, the various tools will be installed in
the /Developer/Applications folder (see Figure 1-2).

OBTAINING THE TOOLS AND SDK

To develop for iOS, you need to download the iOS SDK. The iOS SDK comes with free Xcode from
the Mac App Store (see Figure 1-1).

FIGURE 1-1

FIGURE 1-2

c01.indd 2c01.indd 2 05/12/11 1:38 PM05/12/11 1:38 PM

Components of Xcode ❘ 3

COMPONENTS OF XCODE

The Xcode package includes a suite of development tools to help you create applications for your
iPhone, iPod touch, and iPad. It includes the following:

 ➤ Xcode IDE — Integrated development environment (IDE) that enables you to manage, edit,
and debug your projects

 ➤ Dashcode — Integrated development environment (IDE) that enables you to develop
web-based iPhone and iPad applications and Dashboard widgets. Dashcode is beyond the
scope of this book.

 ➤ iOS Simulator — Provides a software simulator to simulate an iPhone or an iPad on your
Mac

 ➤ Interface Builder — Visual editor for designing user interfaces for your iPhone and iPad
applications

 ➤ Instruments — Analysis tool to help you both optimize your application and monitor for
memory leaks in real time

The following sections discuss each tool (except Dashcode) in more detail.

Xcode

To launch Xcode, double-click the Xcode icon located in the /Developer/Applications folder (refer to
Figure 1-2). Alternatively, go the quicker route and use Spotlight: Simply type Xcode into the search
box and Xcode should be in the Top Hit position.

Figure 1-3 shows the Xcode Welcome screen.

FIGURE 1-3

c01.indd 3c01.indd 3 05/12/11 1:38 PM05/12/11 1:38 PM

4 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

Using Xcode, you can develop different types of iPhone, iPad, and Mac OS X applications using the
various project templates shown in Figure 1-4.

FIGURE 1-4

For iOS applications, each template gives you the option to select the platform you are targeting —
iPhone, iPad, or Universal (runs on both iPhone and iPad).

The IDE in Xcode provides many tools and features that make your development life much easier.
One such feature is Code Sense, which displays a popup list showing the available classes and
members, such as methods, properties, and so on.

NOTE For a more comprehensive description of some of the most commonly
used features in Xcode, refer to Appendix B.

iOS Simulator

The iOS Simulator, shown in Figure 1-5, is a very useful tool that you can use to test your
application without using your actual iPhone/iPod touch/iPad. The iOS Simulator is located in the
/Developer/Platforms/iPhoneSimulator.platform/Developer/Applications folder. Most of the time,
you don’t need to launch the iOS Simulator directly — running (or debugging) your application
in Xcode automatically brings up the iOS Simulator. Xcode installs the application on the iOS
Simulator automatically.

c01.indd 4c01.indd 4 05/12/11 1:38 PM05/12/11 1:38 PM

Components of Xcode ❘ 5

The iOS Simulator can simulate different versions of the iOS (see Figure 1-6. To support older
versions of the SDK, you need to install the previous versions of the SDKs). This capability is useful
if you need to support older versions of the platform, as well as test and debug errors reported in the
application on specifi c versions of the OS.

THE IOS SIMULATOR IS NOT AN EMULATOR

To understand the difference between a simulator and an emulator, keep in mind
that a simulator tries to mimic the behavior of a real device. In the case of the iOS
Simulator, it simulates the real behavior of an actual iPhone/iPad device. However,
the Simulator itself uses the various libraries installed on the Mac (such as
QuickTime) to perform its rendering so that the effect looks the same as an actual
iPhone. In addition, applications tested on the Simulator are compiled into x86
code, which is the byte-code understood by the Simulator. A real iPhone device,
conversely, uses ARM-based code.

In contrast, an emulator emulates the working of a real device. Applications tested
on an emulator are compiled into the actual byte-code used by the real device. The
emulator executes the application by translating the byte-code into a form that can
be executed by the host computer running the emulator.

To understand the subtle difference between simulation and emulation, imagine you
are trying to convince a child that playing with knives is dangerous. To simulate
this, you pretend to cut yourself with a knife and groan in pain. To emulate this, you
actually cut yourself.

FIGURE 1-5

c01.indd 5c01.indd 5 05/12/11 1:38 PM05/12/11 1:38 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

6 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

In addition, the iOS Simulator can simulate different devices — iPad (see Figure 1-7), iPhone (3G
and 3GS), and iPhone 4 with Retina display (see Figure 1-8).

FIGURE 1-6

FIGURE 1-7 FIGURE 1-8

Features of the iOS Simulator

The iOS Simulator simulates various features of a real iPhone, iPod touch, or iPad device. Features
you can test on the iOS Simulator include the following:

 ➤ Screen rotation — left, right, top, and upside down

c01.indd 6c01.indd 6 05/12/11 1:38 PM05/12/11 1:38 PM

Components of Xcode ❘ 7

 ➤ Support for gestures:

 ➤ Tap

 ➤ Touch and Hold

 ➤ Double-tap

 ➤ Swipe

 ➤ Rotate

 ➤ Drag

 ➤ Pinch

 ➤ Low-memory warning simulations

However, the iOS Simulator, being a software simulator for the real device, does have its limitations.
The following features are not available on the iOS Simulator:

 ➤ Making phone calls

 ➤ Accessing the accelerometer

 ➤ Sending and receiving SMS messages

 ➤ Installing applications from the App Store

 ➤ Camera

 ➤ Microphone

 ➤ Several features of OpenGL ES

NOTE In the latest release of the SDK (5.0), the iOS Simulator enables you to
simulate diff erent locations as well as movements. Chapter 20 discusses this in
more detail.

NOTE The ~ /Library/Application Support/iPhone Simulator/ folder is also known
as <iPhoneUserDomain>.

Note also that the speed of the iOS Simulator is more tightly coupled to the performance of your
Mac than the actual device. Therefore, it is important that you test your application on a real
device, rather than rely exclusively on the iOS Simulator for testing.

Despite the iOS Simulator’s limitations, it is defi nitely a useful tool for testing your applications. That
said, testing your application on a real device is imperative before you deploy it on the App Store.

Uninstalling Applications from the iOS Simulator

The user domain of the iOS fi le system for the iOS Simulator is stored in the ~/Library/
Application Support/iPhone Simulator/ folder.

c01.indd 7c01.indd 7 05/12/11 1:38 PM05/12/11 1:38 PM

8 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

All third-party applications are stored in the <iPhoneUserDomain>/<version_no>/Applications/
folder. When an application is deployed onto the iOS Simulator, an icon is created on the Home
screen and a fi le and a few folders are created within the Applications folder (see Figure 1-9).

FIGURE 1-9

To uninstall (delete) an application, execute the following steps:

 1. Click and hold the icon of the application on the
Home screen until all the icons start wriggling. Note
that all the icons now have an X button displayed on their
top-left corner.

 2. Click the X button next to the icon of the application you want
to uninstall (see Figure 1-10).

 3. An alert window appears asking if you are sure you
want to delete the icon. Click Delete to confi rm the
deletion.

FIGURE 1-10

c01.indd 8c01.indd 8 05/12/11 1:38 PM05/12/11 1:38 PM

Components of Xcode ❘ 9

The easiest way to reset the iOS Simulator to its original state is to select iOS Simulator ➪ Reset
Content and Settings

Interface Builder

Interface Builder is a visual tool that enables you to design the user interfaces for your iPhone/iPad
applications. Using Interface Builder, you drag and drop views onto windows and then connect
the various views with outlets and actions so that they can programmatically interact with
your code.

WARNING When an application is uninstalled, the corresponding fi le and folder
in the Applications folder are deleted automatically.

NOTE Outlets and actions are discussed in more detail in Chapter 3, and
Appendix B discusses Interface Builder in more detail.

Figure 1-11 shows the various windows in Interface Builder.

FIGURE 1-11

c01.indd 9c01.indd 9 05/12/11 1:38 PM05/12/11 1:38 PM

10 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

Instruments

The Instruments application (see Figure 1-12) enables you to dynamically trace and profi le the
performance of your Mac OS X, iPhone, and iPad applications.

FIGURE 1-12

Using Instruments, you can do all of the following:

 ➤ Stress test your applications.

 ➤ Monitor your applications for memory leaks.

 ➤ Gain a deep understanding of the executing behavior of your applications.

 ➤ Track diffi cult-to-reproduce problems in your applications.

NOTE Covering the Instruments application is beyond the scope of this book.
For more information, refer to Apple’s documentation, at http://developer
.apple.com/mac/library/documentation/DeveloperTools/Conceptual/

InstrumentsUserGuide/Introduction/Introduction.html.

c01.indd 10c01.indd 10 05/12/11 1:38 PM05/12/11 1:38 PM

Architecture of the iOS ❘ 11

ARCHITECTURE OF THE IOS

Although this book doesn’t explore the innards of iOS, understanding some of its important
characteristics is useful. Figure 1-13 shows the different abstraction layers that make up the Mac OS
X and iOS (which is used by the iPhone, iPod touch, and iPad).

NOTE The iOS is architecturally very similar to the Mac OS X except that the
topmost layer is Cocoa Touch for the iPhone, rather than the Cocoa Framework.

The bottom layer is the Core OS, which is the foundation of the operating system. It is in charge of
memory management, the fi le system, networking, and other OS tasks, and it interacts directly with
the hardware. The Core OS layer consists of components such as the following:

 ➤ OS X Kernel

 ➤ Mach 3.0

 ➤ BSD

 ➤ Sockets

 ➤ Security

 ➤ Power Management

 ➤ Keychain

 ➤ Certifi cates

 ➤ File System

 ➤ Bonjour

FIGURE 1-13

c01.indd 11c01.indd 11 05/12/11 1:38 PM05/12/11 1:38 PM

12 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

The Core Services layer provides an abstraction over the services provided in the Core OS layer. It
provides fundamental access to iOS services and consists of the following components:

 ➤ Collections

 ➤ Address Book

 ➤ Networking

 ➤ File Access

 ➤ SQLite

 ➤ Core Location

 ➤ Net Services

 ➤ Threading

 ➤ Preferences

 ➤ URL Utilities

The Media layer provides multimedia services that you can use in your iPhone and iPad
applications. It consists of the following components:

 ➤ Core Audio

 ➤ OpenGL

 ➤ Audio Mixing

 ➤ Audio Recording

 ➤ Video Playback

 ➤ JPG, PNG, TIFF

 ➤ PDF

 ➤ Quartz

 ➤ Core Animation

 ➤ OpenGL ES

The Cocoa Touch layer provides an abstraction layer to expose the various libraries for
programming the iPhone and iPad, such as the following:

 ➤ Multi-Touch events

 ➤ Multi-Touch controls

 ➤ Accelerometer

 ➤ View Hierarchy

 ➤ Localization

 ➤ Alerts

 ➤ Web Views

c01.indd 12c01.indd 12 05/12/11 1:38 PM05/12/11 1:38 PM

Some Useful Information before You Get Started ❘ 13

 ➤ People Picker

 ➤ Image Picker

 ➤ Controllers

In iOS programming, all the functionalities in each layer are exposed through various frameworks
that you will use in your project. Subsequent chapters in this book demonstrate how to use these
frameworks in your projects.

NOTE A framework is a software library that provides specifi c functionalities.
Refer to Apple’s documentation at http://developer.apple.com/
iphone/library/documentation/Miscellaneous/Conceptual/

iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html for
a list of frameworks included in the SDK.

SOME USEFUL INFORMATION BEFORE YOU GET STARTED

You now have a good idea of the tools involved in iPhone and iPad application development. Before
you go ahead and take the plunge, the following sections discuss some useful information that can
make your journey more pleasant.

Versions of iOS

At the time of writing, iOS is in its fi fth revision — that is, version 5.0. Its major versions are as
follows:

 ➤ 1.0 — Initial release of the iPhone

 ➤ 1.1 — Additional features and bug fi xes for 1.0

 ➤ 2.0 — Released with iPhone 3G; comes with App Store

 ➤ 2.1 — Additional features and bug fi xes for 2.0

 ➤ 2.2 — Additional features and bug fi xes for 2.1

 ➤ 3.0 — Third major release of the iPhone OS

 ➤ 3.1 — Additional features and bug fi xes for 3.0

 ➤ 3.2 — This version release is for the iPad only.

 ➤ 4.0 — Fourth major release of the iPhone OS. Renamed as iOS. This version is designed for
the new iPhone 4 and it also supports older devices, such as the iPod touch and iPhones.

 ➤ 5.0 — Fifth major release of the iOS. Supports new features like iCloud, iMessage, Twitter
integration, Notifi cation Center, etc.

For a detailed description of the features in each release, see http://en.wikipedia.org/wiki/
IPhone_OS_version_history.

c01.indd 13c01.indd 13 05/12/11 1:38 PM05/12/11 1:38 PM

14 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

The older iPhones (iPhone 3G/3GS) and the iPod touch
have lower resolutions compared to the iPhone 4/4S.
They have a resolution of 480 × 320 pixels, one quarter
of the resolution of the iPhone 4.

When programming for the iPhones, it is important
to note the difference between points and pixels. For
example, the following statement specifi es a frame that
starts from the point (20,10) with a width of 280 points
and a height of 50 points:

 CGRect frame = CGRectMake(20, 10, 280, 50);

On the older iPhones, a point corresponds to a
pixel. Thus, the preceding statement translates directly
to the pixel (20,10), with a width of 280 pixels and a
height of 50 pixels. However, if the statement is executed
within the iPhone 4/4S, a point translates to two pixels.
Thus, the preceding statement translates into the pixel
(40,20), with a width of 560 pixels and a height of
100 pixels. The translation is performed automatically

Testing on Real Devices

One of the most common complaints about developing applications for the iPhone and iPad
is how diffi cult Apple makes it to test a new application on an actual device. Nonetheless, for
security reasons, Apple requires all applications to be signed with a valid certifi cate; and for testing
purposes, a developer certifi cate is required.

To test your applications on a device, you must sign up for the iOS Developer Program and request
that a developer certifi cate be installed onto your device. Appendix A outlines these steps in detail.

Screen Resolutions

The iPhone 4S is a beautiful device with a high-resolution screen. At 3.5 inches (diagonally), the
iPhone screen supports multi-touch operation and allows a pixel resolution of 960 × 640 at 326
ppi (see Figure 1-14). When designing your application, note that because of the status bar, the
actual resolution is generally limited to 920 × 640 pixels. Of course, you can turn off the status bar
programmatically to gain access to the full 960 × 640 resolution.

Also, be mindful that users may rotate the device to display your application in landscape mode.
You need to make provisions to your user interface so that applications can still work properly in
landscape mode.

NOTE Chapter 7 discusses how to handle screen rotations.

FIGURE 1-14

c01.indd 14c01.indd 14 05/12/11 1:38 PM05/12/11 1:38 PM

Summary ❘ 15

by the OS, which is very useful because it enables older applications to run and scale correctly
without modifi cations on the iPhone 4/4S.

The iPad has a pixel resolution of 1,024 × 768 at 132 ppi.

Table 1-1 summarizes the screen resolutions for the various platforms.

TABLE 1-1: Platform Resolutions

PLATFORM

RESOLUTION

(PIXELS)

VISIBLE REAL ESTATE WITHOUT

THE STATUS BAR (PIXELS) —

LANDSCAPE MODE

VISIBLE REAL ESTATE

WITHOUT THE STATUS BAR

(PIXELS) — PORTRAIT MODE

iPhone 4/4S 960 × 640 960 × 600 920 × 640

iPhone

3G/3GS, iPod

touch

480 × 320 480 × 300 460 × 320

iPad 1024 × 768 1024 × 748 1004 × 768

SUMMARY

This chapter offered a quick tour of the available tools used for iPhone and iPad application
development. You had a look at the iOS Simulator, which you will use to test your applications
without using a real device. The Simulator is a very powerful tool that you will use very often in
your iPhone development journey.

You also learned some of the characteristics of the iPhone and iPad, such as screen resolutions, as
well as characteristics of the operating systems. In the next chapter, you will develop your fi rst iOS
application, and soon be on your way to iOS nirvana!

c01.indd 15c01.indd 15 05/12/11 1:38 PM05/12/11 1:38 PM

16 ❘ CHAPTER 1 GETTING STARTED WITH IOS 5 PROGRAMMING

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Obtaining the iOS SDK Download Xcode 4 from the Mac App Store.

iOS Simulator Most of the testing can be done on the iOS Simulator. However, it is

strongly recommended that you have a real device for actual testing.

Limitations of the iOS

Simulator

Access to hardware is generally not supported by the Simulator. For

example, the camera, accelerometer, voice recording, and so on are

not supported.

Frameworks in the

iOS SDK

The iOS SDK provides several frameworks that perform specifi c

functionalities on the iPhone. You program your iOS applications using

all these frameworks.

c01.indd 16c01.indd 16 05/12/11 1:38 PM05/12/11 1:38 PM

Writing Your First Hello World!
Application

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to create a new iPhone project

 ➤ Building your fi rst iPhone application using Xcode

 ➤ Designing the user interface (UI) of your iPhone application with

Interface Builder

 ➤ How to add an icon to your iPhone application

 ➤ How to display launch images for your iPhone application

Now that you have installed the iOS SDK, you are ready to start developing for the iPhone!
Programming books customarily start by demonstrating how to develop a “Hello World!”
application. This approach enables you to use the various tools quickly without getting bogged
down with the details. It also provides you with instant gratification: You see for yourself that
things really work, which can be a morale booster that inspires you to learn more.

GETTING STARTED WITH XCODE

Power up Xcode and you should see the Welcome screen, shown in Figure 2-1.

2

NOTE The easiest way to start Xcode is to type Xcode in Spotlight and then
press the Enter key to launch it.

c02.indd 17c02.indd 17 05/12/11 7:58 PM05/12/11 7:58 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

18 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

To create a new iPhone project, click the Create a new Xcode project button (or choose File ➪ New
➪ New Project). Figure 2-2 shows the different types of projects you can create using Xcode. The
left panel shows the two primary categories — iPhone OS and Mac OS X. The iPhone uses the iOS,
so click the Application item listed under iOS to view the different templates available for developing
your iPhone application.

FIGURE 2-1

FIGURE 2-2

c02.indd 18c02.indd 18 05/12/11 7:58 PM05/12/11 7:58 PM

Getting Started with Xcode ❘ 19

Name the project HelloWorld and provide a company identifier for your application
(you typically use your company’s domain name in reverse order, such as net.learn2develop for my
www.learn2develop.net domain). Name the Class Prefix to be the same as the project name and
select iPhone as the Device Family. Finally, ensure that all the options are unchecked and then click
Next (see Figure 2-3). You will be asked to select a folder in which to save your project. Xcode then
proceeds to create the project for the template you have selected. Figure 2-4 shows the various files
and folders automatically created for your project.

The left panel of Xcode shows the groups in the project. You can expand each group or folder to
reveal the files contained in it. To edit a particular file, select it from the list, and the editor on the
right panel opens the file for editing. If you want a separate window for editing, simply double-click
the file to edit it in a new window.

Although you can create quite a few types of iPhone applications, for this chapter select the Single
View Application template and then click Next.

NOTE Subsequent chapters show you how to develop some of the other types
of iOS applications, such as Tabbed applications and Master-Detail applications.

FIGURE 2-3

c02.indd 19c02.indd 19 05/12/11 7:58 PM05/12/11 7:58 PM

20 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

Using Interface Builder

At this point, the project has no UI. To prove this, simply press Command-R (or select Product ➪
Run), and your application is deployed to the included iPhone Simulator. Figure 2-5 shows the blank
screen displayed on the iPhone Simulator. Note how it looks now, because as you go through the
chapter you will see changes occur based on your actions.

FIGURE 2-4

FIGURE 2-5

c02.indd 20c02.indd 20 05/12/11 7:58 PM05/12/11 7:58 PM

Getting Started with Xcode ❘ 21

Obviously, a blank screen is not very useful. Therefore, it’s time to try adding some views to your
application’s UI. In the list of files in your project, you’ll notice a file with the .xib extension —
HelloWorldViewController.xib. Files with .xib extensions are basically XML files containing
the UI definitions of an application. You can edit .xib files by either modifying their XML content
or, more easily (and more sanely), using Interface Builder.

Interface Builder, integrated into Xcode (prior to Xcode 4, Interface Builder is a separate application
that ships with the iOS SDK), enables you to build the UI of iPhone (and Mac) applications by using
drag and drop.

Select the HelloWorldViewController.xib file to edit it using Interface Builder. Figure 2-6 shows
Interface Builder displaying the content of HelloWorldViewController.xib.

NOTE By default, the iPhone Simulator that is launched shows the image of the
iPhone 4. However, the screen resolution for this simulator is still 320x480 pixels,
simulating the older iPhone 3GS’s screen resolution. If you want to simulate the
Retina display of an iPhone 4 or iPhone 4S, you need to select Hardware ➪
Device ➪ iPhone (Retina).

NOTE Refer to Appendix B for a crash course on Interface Builder if you are not
familiar with it.

FIGURE 2-6

In the Utilities area on the right, go to the Object Library section and scroll down to the Label view
and drag and drop a Label onto the View window (see Figure 2-7).

c02.indd 21c02.indd 21 05/12/11 7:58 PM05/12/11 7:58 PM

22 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

FIGURE 2-7

After the Label is added, select it and go to the Attributes Inspector window (you can view this by
choosing View ➪ Utilities ➪ Show Attributes Inspector). Enter Hello World! in the Text field (see
Figure 2-8). Then, in the Alignment field, click the center alignment button.

FIGURE 2-8

c02.indd 22c02.indd 22 05/12/11 7:58 PM05/12/11 7:58 PM

Getting Started with Xcode ❘ 23

With the Label still selected, click on the “T” icon displayed next to the Font field and select the
Helvetica Custom font (see Figure 2-9). Set the font size to 36.

Resize the Label so that it now looks like Figure 2-10.

Next, from the Library window, drag and drop a Text Field to the View window, followed by a
Round Rect Button. Modify the attribute of the Round Rect Button by entering Click Me! in the
Title field of its Attributes Inspector window. Figure 2-11 shows how the View window looks now.

FIGURE 2-9 FIGURE 2-10

FIGURE 2-11

NOTE Rather than specify the Text or Title property of a view to make the text
display in the view (for example, the Label and the Round Rect Button), you can
simply double-click the view itself and type the text directly. After doing this, you
can rearrange the views and resize them to suit your needs. Interface Builder
provides you with alignment guidelines to help you arrange your controls in a
visually pleasing layout.

c02.indd 23c02.indd 23 05/12/11 7:58 PM05/12/11 7:58 PM

24 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

Run the application again by pressing Command-R. The iPhone Simulator now displays the
modified UI (see Figure 2-12).

Click the Text Field and watch the keyboard automatically appear (see Figure 2-13).

Click the Home button on the iPhone Simulator, and you will see that your application has been installed
on the Simulator. To go back to the application, simply click the HelloWorld icon (see Figure 2-14).

FIGURE 2-12 FIGURE 2-13 FIGURE 2-14

NOTE By default, starting with iOS 4, all applications built using the iOS SDK
support multitasking. Hence, when you press the Home button on your iPhone,
your application is not terminated; it is sent to the background and suspended.
Tapping an application icon resumes the application. Chapter 21 contains more
details about background execution of your iOS applications.

Writing Some Code

By now you should be comfortable enough with Xcode and Interface Builder to write some code.
This section will give you a taste of programming the iPhone.

In the HelloWorldViewController.h file, add a declaration for the btnClicked: action:

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController

-(IBAction) btnClicked:(id) sender;

@end

c02.indd 24c02.indd 24 05/12/11 7:58 PM05/12/11 7:58 PM

Getting Started with Xcode ❘ 25

The bold statement creates an action (commonly known as an event handler) named
btnClicked:. With the action declared, save the file and return to Interface Builder by
clicking the HelloWorldViewController.xib file.

Earlier in this chapter, when you edited the HelloWorldViewController.xib file, you
saw three icons displayed in Interface Builder (see Figure 2-15) These three icons, from
top to bottom, are File’s Owner, First Responder, and View.

Control-click the Round Rect Button in the View window and drag it to the File’s
Owner item (see Figure 2-16). A small popup containing the btnClicked: action
appears. Select the btnClicked: action. Basically, what you are doing here is linking the Round Rect
Button with the action (btnClicked:) so that when the user clicks the button, the action is invoked.

FIGURE 2-15

FIGURE 2-16

In the HelloWorldViewController.m file, add the code that provides the implementation for the
btnClicked: action:

#import “HelloWorldViewController.h”

@implementation HelloWorldViewController

-(IBAction) btnClicked:(id) sender {
 //---display an alert view---
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello World!”
 message:@”iPhone, here I come!”
 delegate:self

c02.indd 25c02.indd 25 05/12/11 7:58 PM05/12/11 7:58 PM

26 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

The preceding code displays an alert containing the sentence “iPhone,
here I come!”

That’s it! Run the application again. This time, when you click the
Round Rect Button, an Alert view displays (see Figure 2-17).

CUSTOMIZING YOUR APPLICATION ICON

As shown earlier, the application installed on your iPhone Simulator uses
a default white image as an icon. You can, however, customize this icon.
When designing icons for your iPhone and iPad applications, bear the
following in mind:

 ➤ Design your icon to be 57� 57 pixels (for iPhone), 114�114 pixels
(for iPhone high resolution), or 72�72 pixels (for iPad). For distribution through the App
Store, you also need to prepare a 512�512 pixel image.

 ➤ Use square corners for your icon image because iPhone automatically rounds them. It also
adds a glossy surface (you can turn off this feature, though).

FIGURE 2-17

NOTE Apple has published a description of the various images that you can
use in your iPhone application. For details, see http://developer.apple.com/
library/ios/#documentation/userexperience/conceptual/mobilehig/

IconsImages/IconsImages.html.

The following Try It Out demonstrates how to add an icon to your application so that the iPhone
will use it instead of the default white image.

TRY IT OUT Adding an Icon to the Application

1. To add an icon to your application, drag and drop an image (named as icon.png in this example)
onto the Supporting Files folder of your project. You will be asked if you want to make a copy of
the image you are dropping. Check this option so that a copy of the image will be stored in your
project folder (see Figure 2-18).

2. Select the HelloWorld-Info.plist item (also located under the Supporting Files folder, the
HelloWorld-Info.plist file is commonly referred to as the info.plist file). Expand the
Icon files array item and add an item to it by clicking the + button displayed next to it. Set its

c02.indd 26c02.indd 26 05/12/11 7:58 PM05/12/11 7:58 PM

Customizing Your Application Icon ❘ 27

FIGURE 2-18

FIGURE 2-19 FIGURE 2-20

value to the name of the icon, icon.png (see Figure 2-19). This specifies the name of the image to
be used as the application icon.

 3. Press Command-R to run the application and test it on the iPhone Simulator. Click the Home
button to return to the main screen of the iPhone. You should see the newly added icon (see
Figure 2-20). Observe that iOS automatically applies a glossy effect to your icon. It also rounds the
four corners of the image.

c02.indd 27c02.indd 27 05/12/11 7:58 PM05/12/11 7:58 PM

28 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

HOW TO TURN OFF THE GLOSSY SURFACE ON YOUR ICON

To turn off the glossy effect applied to your icon, you need to add the
UIPrerenderedIcon key (the friendly name for this key is “Icon already includes
gloss effects”) to the HelloWorld-Info.plist file in your Xcode project and then
set it to YES (see Figure 2-21). For more details on the various keys that you can set
in your HelloWorld-Info.plist file, refer to Apple’s documentation at http://
developer.apple.com/iphone/library/documentation/General/Reference/

InfoPlistKeyReference/Articles/iPhoneOSKeys.html.

FIGURE 2-21

How It Works

Setting an icon for your application is very straightforward — simply specify the icon filename in the Icon
files array item’s first array element and it will appear in your iPhone when you run the application again.

DISPLAYING LAUNCH IMAGES

In order to enhance the user experience of your application, Apple requires your application to
include a launch image. Basically, a launch image is an image of what your application looks like
when it is loaded for the first time. Using a launch image ensures that while your application is
being loaded, the user is not staring at a blank screen. Instead, the launch image is displayed. This
engages the user with your application immediately. When it is fully loaded, the launch image then
disappears, and your application displays its first screen, ready to use.

Creating a launch image is simple — you merely create a file named Default.png and save it in
the application bundle (i.e., in your project, such as the Supporting Files folder). This image
needs to have a resolution of 480�320 pixels (or 960�640 for iPhone’s Retina display). When your

c02.indd 28c02.indd 28 05/12/11 7:58 PM05/12/11 7:58 PM

Displaying Launch Images ❘ 29

application is loaded, the system will automatically display this image and then hide it when the
first View window of your application is ready to be shown. If you want to display different launch
images depending on the resolution of the device, you can do the following:

 ➤ Create an image named Default.png with a resolution of 320�480. This launch image
will be loaded when your application is loaded on an iOS device with a screen resolution of
320�480 (e.g., the iPhone 3GS).

 ➤ Create an image named Default@2x.png with a resolution of 640�960. This launch image
will be loaded when your application is loaded on an iOS device with a screen resolution of
640�960 (e.g., the iPhone 4 or iPhone 4S).

You can create the launch image from scratch using a photo-editing application, or easily capture
one using the Organizer tool that is part of Xcode — all you need to do is view and capture the
image you want to use as the launch image on your iPhone. The following Try It Out describes how
to add a launch image using the Organizer.

TRY IT OUT Adding a Launch Image to the Application

 1. With the iPhone connected to your Mac, launch Xcode and select Window ➪ Organizer.

 2. You should now be able to see the name of the device attached to your Mac. Click the Use for
Development button and then click the Screenshots tab (see Figure 2-22).

FIGURE 2-22

c02.indd 29c02.indd 29 05/12/11 7:58 PM05/12/11 7:58 PM

30 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

 3. View the desired image on your iPhone. In this example, I have deployed the application onto my
iPhone (Appendix A shows you how to deploy an application onto a real iOS device) and then
launched it. I will capture the first View window that appears so that I can use it as a launch
image. Click the New Screenshot button located on the bottom, right corner of the window to
capture the screenshot.

 4. All the captured images are shown in the middle of the Organizer window. Select the image that
you want to use and click the Save As Launch Image . . . button.

 5. You will be prompted to select the project that you want to use for the launch image (see
Figure 2-23). You will also be asked to name the image. If you are capturing an image from
a Retina display device (such as the iPhone 4 or iPhone 4S), name it Default@2x. If not, name it
Default.

 6. The file will be copied to the HelloWorld Xcode project (see Figure 2-24).

FIGURE 2-23

c02.indd 30c02.indd 30 05/12/11 7:58 PM05/12/11 7:58 PM

Displaying Launch Images ❘ 31

 7. Observe that the captured image contains the status bar.
You should erase the status bar using a graphics editor
tool, as the status bar should not be displayed to users
(see Figure 2-25). Interestingly, this area is automatically
hidden by the status bar on the device when it is loaded.

 8. Press Command-R to test the application on the iPhone
Simulator. Notice that the application loads as usual,
but if you try to click the Text Field or Round Rect
Button in the initial couple of seconds, they will not be
responsive, as the actual HelloWorldViewController
View window has not been loaded yet (you are still
seeing the launch image). After a few seconds, the actual
HelloWorldViewController View window is loaded and
you can click the Text Field or Round Rect buttons.

How It Works

When you include an image named Default@2x.png (or
Default.png) in your project, it will be displayed when
your application is first being loaded. This improves the user
experience by creating the impression that your application
loads immediately.

Pay attention to the dimension of the image; it will not be displayed during loading if it is the wrong
size. If your application has only a single launch image (either Default.png or Default@2x.png),
the launch image will be displayed regardless of device screen resolution. If you have multiple launch

FIGURE 2-24

FIGURE 2-25

c02.indd 31c02.indd 31 05/12/11 7:58 PM05/12/11 7:58 PM

32 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

images, then a different launch image will be loaded for different devices. To prove this, add another
image with a resolution of 320x480 (see Figure 2-26) and name it Default.png.

FIGURE 2-26

If you now run the application on the iPhone Simulator, you will notice that the Default.png
will be displayed (see Figure 2-27). If you run it on the iPhone (Retina) Simulator, you will see the
Default@2x.png loaded.

FIGURE 2-27

c02.indd 32c02.indd 32 05/12/11 7:58 PM05/12/11 7:58 PM

Summary ❘ 33

While Apple has explicitly stated that the launch image is meant to improve the user experience of your
application, not to display a “splash screen” for it (like the example just shown), a lot of developers are
making use of this feature to display splash screens for their applications.

SUMMARY

This chapter provided a brief introduction to developing your first iPhone application. You have
created a simple iPhone application, designed its user interface using some of the built-in views,
and then test it on the iPhone Simulator. You have also learned how to write a simple action for
your Button so that it can display a message when the user clicks on it. Finally, you saw how to
assign an image to be used as the icon for your application and how to set a launch image for your
application.

Although you likely still have many questions, the aim of this chapter was to get you started. The
next few chapters dive deeper into the details of iPhone programming, gradually revealing the
secrets of how all those components that seem so mysterious at first work together to create your
application.

EXERCISES

 1. You want to add an icon to an iPhone project in Xcode. What is the size of the image that you

should provide?

 2. What is the easiest way to add a launch image to an iPhone application?

 3. When adding an image to the Supporting Files folder in your Xcode project, why do you need to

check the “Copy items into destination group’s folder (If needed)” option?

Answers to the exercises can be found in Appendix D.

c02.indd 33c02.indd 33 05/12/11 7:58 PM05/12/11 7:58 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

34 ❘ CHAPTER 2 WRITING YOUR FIRST HELLO WORLD! APPLICATION

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Xcode Create your iPhone Application project and write code that

manipulates your application.

Interface Builder Build your iPhone UI using the various views located in the Library.

Adding an application icon Add an image to the project and then specify the image name in

the Icon fi les item of the info.plist fi le.

Adding a launch image Add an image named Default.png or (Default@2x.png) to the

Supporting Files folder of your project.

Creating icons for your

iPhone applications

Icon size is 57�57 pixels and 114�114 pixels (high resolution). For

App Store hosting, the size is 512�512 pixels.

c02.indd 34c02.indd 34 05/12/11 7:58 PM05/12/11 7:58 PM

Understanding Views, Outlets,
and Actions

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to declare and defi ne outlets

 ➤ How to declare and defi ne actions

 ➤ Connecting outlets and actions to the views in your View window

 ➤ How to use the UIAlertView to display an alert view to the user

 ➤ How to use the UIActionSheet to display some options to the user

 ➤ Using the UIPageControl to control paging

 ➤ How to use the UIImageView to display images

 ➤ How to use the UIWebView to display web content in your

application

 ➤ Dynamically adding views to your application during runtime

In the previous chapter, you built a simple Hello World! iPhone application without
understanding much about the underlying details of how things work together. In fact, one of
the greatest hurdles in gaining proficiency with iOS programming is the large number of details
you need to learn before you can get an application up and running. Hence, this chapter starts
with the basics of creating the user interface (UI) of an iPhone application, and describes how
your code connects with the various graphical widgets.

3

c03.indd 35c03.indd 35 05/12/11 7:58 PM05/12/11 7:58 PM

36 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

OUTLETS AND ACTIONS

As you begin to program iOS applications, you need to first understand the concept of outlets and
actions. In iOS programming, you use actions and outlets to connect your code to the various views
in your UI. Think of actions as event handlers in the traditional object-oriented programming
world, and outlets as object references. If you are familiar with traditional programming languages
such as Java or C#, this is a concept that requires some time to get used to — not because it is
difficult, but because it is a different way of doing things. At the end of this section, you will have a
solid understanding of what outlets and actions are in iOS and how to create them, and be on your
way to creating great iOS applications.

TRY IT OUT Creating Outlets and Actions

codefile OutletsAndActions.zip available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone)
project and name it OutletsAndActions. You will also
use the project name as the Class Prefix and ensure that
you have the Use Automatic Reference Counting option
unchecked.

 2. Select the OutletsAndActionsViewController.xib file in
order to edit it using Interface Builder. Populate the View
window with three views: Label, Text Field, and Round
Rect Button. Set the Label with the text “Please enter your
name” by double-clicking on it. Set the Round Rect Button
with the “OK” string (see Figure 3-1).

 3. In Xcode, modify the
OutletsAndActionsViewController.h
file with the following statements shown in bold:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

 4. In the OutletsAndActionsViewController.m file, define the following statements in bold:

FIGURE 3-1

c03.indd 36c03.indd 36 05/12/11 7:58 PM05/12/11 7:58 PM

Outlets and Actions ❘ 37

#import “OutletsAndActionsViewController.h”

@implementation OutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

//---displays an alert view when the button is clicked---
-(IBAction) btnClicked:(id) sender {
 NSString *str =
 [[NSString alloc] initWithFormat:@”Hello, %@”, txtName.text];
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello!”
 message:str
 delegate:self
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];
 [alert show];
 [str release];
 [alert release];
}

- (void)dealloc {
 //---release the outlet---
 [txtName release];
 [super dealloc];
}

 5. In the OutletsAndActionsViewController.xib window, Control-click and drag the File’s Owner
item to the Text Field (see Figure 3-2). A popup will appear; select the outlet named txtName.

 6. Control-click and drag the OK Round Rect Button to the File’s Owner item (see Figure 3-3).
Select the action named btnClicked:.

 7. Right-click the OK Round Rect Button to display its events (see Figure 3-4). Notice that the
Round Rect Button has several events, but one particular event — Touch Up Inside — is now
connected to the action you specified (btnClicked:). Because the Touch Up Inside event is so
commonly used, it is automatically connected to the action when you Control-click and drag it to
the File’s Owner item. To connect other events to the action, simply click the circle displayed next
to each event and then drag it to the File’s Owner item.

FIGURE 3-2 FIGURE 3-3

c03.indd 37c03.indd 37 05/12/11 7:58 PM05/12/11 7:58 PM

38 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

 8. That’s it! Press Command-R to test the application on the iPhone Simulator. Enter a name in the
Text Field and click the OK button. An alert view displays a welcome message (see Figure 3-5).

FIGURE 3-4 FIGURE 3-5

How It Works

As mentioned earlier, you use actions and outlets to connect your code to the various views in your UI.
Actions are represented using the IBAction keyword, whereas outlets use the IBOutlet keyword:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

The IBOutlet identifier is used to prefix variables so that Interface Builder can synchronize the
display and connection of outlets with Xcode. The @property keyword indicates to the compiler
that you want the txtName outlet to be exposed as a property. The nonatomic keyword indicates that
there is no need to ensure that the property is used in a thread-safe manner because it is not used

c03.indd 38c03.indd 38 05/12/11 7:58 PM05/12/11 7:58 PM

Outlets and Actions ❘ 39

in multiple threads. The default behavior is atomic; specifying nonatomic actually improves your
application’s performance.

NOTE The IBOutlet tag can also be added to the @property identifi er. This
syntax is common in the Apple documentation:

@property (nonatomic, retain) IBOutlet UITextField *txtName;

The IBAction identifier is used to synchronize action methods. An action is a method that can handle
events raised by views (for example, when a button is clicked) in the View window. An outlet, on the
other hand, is an object that enables your code to programmatically reference a view on the View
window.

Once your actions and outlets are added to the header (.h) file of the View controller, you need to
connect them to your views in Interface Builder.

When you Control-click and drag the File’s Owner item to the Text Field and select txtName, you
essentially connect the outlet you have created (txtName) with the Text Field on the View window.
In general, to connect outlets you Control-click and drag the File’s Owner item to the view on the
View window.

NOTE For information about using the nonatomic and retain identifi ers, refer
to Appendix C, where you can fi nd an introduction to Objective-C, the language
used for iOS programming. The @synthesize keyword, discussed shortly, is also
explained in more detail there.

CONNECTING OUTLETS AND ACTIONS TO VIEWS

To connect outlets to views, Control-click and drag the File’s Owner item onto the
required view in the View window. Note that you need to ensure that the type of
the outlet is declared correctly; otherwise, you will not be able to connect it to the
view. For example, if you declare txtName as UITextView (another type of view
similar to the Text Field) and try to connect it to a Text Field on the View window,
Interface Builder will not be able to connect it for you.

To connect an action to a view, Control-click and drag a view to the File’s Owner
item. Hence, for the OK Round Rect Button, you Control-click and drag the
button to the File’s Owner item and then select the action named btnClicked:.
Alternatively, you can right-click on a view and drag and drop the event you want
to connect over the File’s Owner item.

c03.indd 39c03.indd 39 05/12/11 7:58 PM05/12/11 7:58 PM

40 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

In the implementation file (.m), you use the @synthesize keyword to indicate to the compiler that it
should create the getter and setter for the specified property:

WARNING Forgetting to add the @synthesize keyword is one of the most
common mistakes that developers make. If you don’t remember to add this
statement, you will encounter a runtime error when the application is executed.
Appendix C covers getter and setter methods in more detail.

#import “OutletsAndActionsViewController.h”

@implementation OutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

//---displays an alert view when the button is clicked---
-(IBAction) btnClicked:(id) sender {
 NSString *str =
 [[NSString alloc] initWithFormat:@”Hello, %@”, txtName.text];
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello!”
 message:str
 delegate:self
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];
 [alert show];
 [str release];
 [alert release];
}

- (void)dealloc {
 //---release the outlet---
 [txtName release];
 [super dealloc];
}

The btnClicked: action simply displays an alert view with a message containing the user’s name. Note
that it has a parameter sender of type id. The sender parameter enables you to programmatically
determine who actually invokes this action. This is useful when you have multiple views connected to
one single action. For such cases, you often need to know which view invokes this method, and the
sender parameter will contain a reference to the calling view.

USING VIEWS

So far, you have seen quite a number of views in action: Round Rect Button, Text Field, and Label.
All these views are quite straightforward, but they provide a good opportunity for learning how to
apply the concepts behind outlets and actions.

c03.indd 40c03.indd 40 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 41

To use more views, you can locate them in the Object
Library window in the Utilities panel (see Figure 3-6).

The Library is broadly divided into the following sections:

 ➤ Objects & Controllers — Contains views that
control other views, such as the View Controller,
Tab Bar Controller, Navigation Controller,
and so on

 ➤ Data Views — Contains views that display data,
such as the Image View, Table View, Data Picker,
Picker View, and so on

 ➤ Controls — Contains views that accept input from
users as well as display values, such as the Label,
Round Rect Button, Text Field, and so on

 ➤ Windows & Bars — Contains views that display
other miscellaneous views, such as View, Search Bar,
Toolbar, and so on

 ➤ Gesture Recognizers — Contains classes that
perform gesture recognition. Gestures include the
tap, the pinch, rotation, and so on.

In the following sections, you learn how to use some
of the views available in the Library. Although it is beyond
the scope of this book to show the use of every view, you
will see a number of views in action throughout the book.
By learning some of the fundamental view concepts in this
chapter, you can use other views later without problems.

Using the Alert View

One of the views not listed in the Library is the UIAlertView. The UIAlertView displays an alert
view to the user and is usually created during runtime. Hence, you have to create it using code.

FIGURE 3-6

NOTE You actually saw the UIAlertView in the previous section. In this section,
you will learn how it actually works.

The UIAlertView is useful for cases in which you have to display a message to the user. In addition,
it can serve as a quick debugging tool when you want to observe the value of a variable during
runtime.

The following Try It Out explores the UIAlertView in more detail.

c03.indd 41c03.indd 41 05/12/11 7:58 PM05/12/11 7:58 PM

42 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

TRY IT OUT Using the Alert View

codefile UsingViews.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it UsingViews. You
will also use the project name as the Class Prefix and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. In the UsingViewsViewController.m file, add the following bold code to the viewDidLoad method:

- (void)viewDidLoad
{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [super viewDidLoad];
}

 3. Press Command-R to test the application on the iPhone Simulator. When the application is
loaded, you see the alert view shown in Figure 3-7. Clicking the OK button dismisses the alert.

 4. In Xcode, modify the otherButtonTitles parameter by setting it with the value shown in bold:

- (void)viewDidLoad
{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, nil];
 [alert show];
 [alert release];
 [super viewDidLoad];
}

 5. In the UsingViewsViewController.h file, add the following line that
appears in bold:

#import <UIKit/UIKit.h>

@interface UsingViewsViewController : UIViewController
<UIAlertViewDelegate>

@end

 6. In the UsingViewsViewController.m file, add the following method:

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex { FIGURE 3-7

c03.indd 42c03.indd 42 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 43

 NSLog(@”%d”, buttonIndex);
}

 7. Press Command-R to test the application on the iPhone Simulator.
Notice that there is now one more button in addition to the
OK button (see Figure 3-8). Clicking either the OK button or the
Option 1 button dismisses the alert.

 8. Back in Xcode, modify the otherButtonTitles parameter by setting
it with the value shown in bold:

- (void)viewDidLoad
{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
 [alert show];
 [alert release];
 [super viewDidLoad];
}

 9. Press Command-R to test the application in the iPhone Simulator
again. Observe the placement of the three buttons (see Figure 3-9).
Clicking any of the buttons dismisses the alert.

 10. Click any one of the buttons — Option 1, Option 2, or OK.

 11. In Xcode, press Command-Shift-C to view the Output window (you
can also select View ➪ Debug Area ➪ Activate Console from the menu). Observe the values
printed. You can rerun the application a number of times, clicking the different buttons to observe
the values printed. The values printed for each button clicked are as follows:

 ➤ OK button — 0

 ➤ Option 1 — 1

 ➤ Option 2 — 2

How It Works

To use UIAlertView, you first instantiate it and initialize it with the various arguments:

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

FIGURE 3-8

FIGURE 3-9

c03.indd 43c03.indd 43 05/12/11 7:58 PM05/12/11 7:58 PM

44 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

The first parameter is the title of the alert view, which you set to “Hello”. The second is the message,
which you set to “This is an alert view”. The third is the delegate, which you need to set to an
object that will handle the events fired by the UIAlertView object. In this case, you set it to self,
which means that the event handler will be implemented in the current class — that is, the View
Controller. The cancelButtonTitle parameter displays a button to dismiss your alert view. Last, the
otherButtonTitles parameter enables you to display additional buttons if needed. If no additional
buttons are needed, simply set this to nil.

To show the alert view modally, use the show method:

 [alert show];

WARNING Note that showing the alert view modally using the show method
does not cause the program to stall execution at this statement. The subsequent
statements after this line continue to execute even though the user may not
have dismissed the alert.

For simple use of the alert view, you don’t really need to handle the events fired by it. Tapping the OK
button (as set in the cancelButtonTitle parameter) simply dismisses the alert view.

If you want more than one button, you need to set the otherButtonTitles parameter, like this:

UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”,
 nil];

Note that you need to end the otherButtonTitles parameter with a nil or a runtime error will occur.

NOTE There is no limit to how many buttons you can display in a UIAlertView,
but I don’t advise using more than two buttons. If you try to use more buttons
than you have screen space for, the buttons will overfl ow the screen, which can
look very messy.

Now that you have more than one button, you need to be able to determine which button the user
pressed — in particular, whether Option 1 or Option 2 was pressed. To do so, you need to handle the
event raised by the UIAlertView class. You do so by ensuring that your View Controller implements
the UIAlertViewDelegate protocol:

@interface UsingViewsViewController : UIViewController
<UIAlertViewDelegate>

@end

c03.indd 44c03.indd 44 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 45

The UIAlertViewDelegate protocol contains several methods associated with the alert view. To know
which button the user tapped, you need to implement the alertView:clickedButtonAtIndex: method:

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {
 NSLog(@”%d”, buttonIndex);
}

The index of the button clicked is passed in via the buttonIndex parameter.

NOTE Refer to Appendix C for a discussion of the concept of protocols in
Objective-C.

Using the Action Sheet

Although the alert view can display multiple buttons, its primary use is still as a mechanism to alert
users when something happens. If you need to display a message to the user with multiple options,
you should use an action sheet, rather than the alert view. An action sheet displays a collection of
buttons from which the user can select one.

To include an action sheet, use the following code snippet:

 UIActionSheet *action =
 [[UIActionSheet alloc] initWithTitle:@”Title of Action Sheet”
 delegate:self
 cancelButtonTitle:@”OK”
 destructiveButtonTitle:@”Delete Message”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
 [action showInView:self.view];
 [action release];

To handle the event fired by the action sheet when one of the buttons is tapped, implement the
UIActionSheetDelegate protocol in your View Controller, like this:

#import <UIKit/UIKit.h>

@interface UsingViewsViewController : UIViewController
<UIActionSheetDelegate>

@end

When a button is tapped, the actionSheet:clickedButtonAtIndex: event will be fired:

- (void) actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex{
 NSLog(@”%d”, buttonIndex);
}

Figure 3-10 shows the action sheet when it is displayed on the iPhone Simulator. Observe that the
action sheet pops up from the bottom of the View window.

c03.indd 45c03.indd 45 05/12/11 7:58 PM05/12/11 7:58 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

46 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

One important aspect of the action sheet is that when it is used on the iPad, you should not display
an action sheet in the viewDidLoad method — doing so causes an exception to be raised during
runtime. Instead, you can display it in, say, an IBAction method.

Figure 3-11 shows the action sheet when displayed on the iPad. Interestingly, on the iPad the OK
button (set by the cancelButtonTitle: parameter) is not displayed.

FIGURE 3-10 FIGURE 3-11

The value (buttonIndex) of each button when clicked is as follows:

 ➤ Delete Message — 0

 ➤ Option 1 — 1

 ➤ Option 2 — 2

 ➤ OK — 3

On the iPad, when the user taps on an area outside of the action
sheet, the action sheet is dismissed and the value of
buttonIndex becomes 3. Interestingly, if you specified nil for the
cancelButtonTitle: part, the value of buttonIndex would be –1
when the action sheet is dismissed.

Page Control and Image View

Near the bottom of the iPhone’s Home screen is a series of dots (see
Figure 3-12). A lighted dot represents the currently selected page. As you
swipe the page to the next page, the next dot lights, and the first one FIGURE 3-12

c03.indd 46c03.indd 46 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 47

dims. In the figure, the dots indicate that the first page is the active page. In the iOS SDK, the series
of dots is represented by the UIPageControl class.

In the following Try It Out, you learn to use the Page Control within your own application to switch
between images displayed in the Image View.

TRY IT OUT Using the Page Control and the Image View

 1. Using the UsingViews project created in the previous section, add five images to the Supporting
Files folder by dragging and dropping them from the Finder. Figure 3-13 shows the five images
added to the project.

 2. Select the UsingViewsViewController.xib file to edit it using Interface Builder.

 3. Drag and drop two Image Views onto the View window (see Figure 3-14). At this point, overlap
them (but not entirely) as shown in the figure.

 4. With the first Image View selected, open the Attributes Inspector window and set the Tag
property to 0. Select the second Image View and set the Tag property to 1 (see Figure 3-15).

 5. Drag and drop the Page Control onto the View window and set its number of pages to 5
(see Figure 3-16). Ensure that you increase the width of the Page Control so that all the dots are
now visible.

FIGURE 3-13

c03.indd 47c03.indd 47 05/12/11 7:58 PM05/12/11 7:58 PM

48 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

 6. Set the Background color of the View window to black so that the dots inside the Page Control
are clearly visible (see Figure 3-17).

 7. In Xcode, declare three outlets two UIImageView objects, and a variable in the
UsingViewsViewController.h file:

#import <UIKit/UIKit.h>

@interface UsingViewsViewController : UIViewController
 <UIAlertViewDelegate, UIActionSheetDelegate>
{
 IBOutlet UIPageControl *pageControl;
 IBOutlet UIImageView *imageView1;
 IBOutlet UIImageView *imageView2;
 UIImageView *tempImageView, *bgImageView;
 int prevPage;
}

@property (nonatomic, retain) UIPageControl *pageControl;
@property (nonatomic, retain) UIImageView *imageView1;
@property (nonatomic, retain) UIImageView *imageView2;

@end

FIGURE 3-14 FIGURE 3-15

 8. In Interface Builder, connect the three outlets to the views on the View window. Figure 3-18
shows the connections made for the imageView1, imageView2, and pageControl outlets.

c03.indd 48c03.indd 48 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 49

FIGURE 3-16

FIGURE 3-17

c03.indd 49c03.indd 49 05/12/11 7:58 PM05/12/11 7:58 PM

50 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

 9. You can now rearrange the Image Views on the View window so that they overlap each other. In
particular, set the size of the Image View to be 320x420 (see Figure 3-19).

FIGURE 3-18

FIGURE 3-19

c03.indd 50c03.indd 50 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 51

 10. In Xcode, add the following statements in bold to the UsingViewsViewController.m file:

#import “UsingViewsViewController.h”

@implementation UsingViewsViewController

@synthesize pageControl;
@synthesize imageView1, imageView2;

- (void)viewDidLoad
{
 //---initialize the first imageview to display an image---
 [imageView1 setImage:[UIImage imageNamed:@”iMac_old.jpeg”]];
 tempImageView = imageView2;

 //---make the first imageview visible and hide the second---
 [imageView1 setHidden:NO];
 [imageView2 setHidden:YES];

 //---add the event handler for the page control---
 [pageControl addTarget:self
 action:@selector(pageTurning:)
 forControlEvents:UIControlEventValueChanged];

 prevPage = 0;

 [super viewDidLoad];
}

//---when the page control’s value is changed---
- (void) pageTurning: (UIPageControl *) pageController {
 //---get the page number you can turning to---
 NSInteger nextPage = [pageController currentPage];
 switch (nextPage) {
 case 0:
 [tempImageView setImage:
 [UIImage imageNamed:@”iMac_old.jpeg”]];
 break;
 case 1:
 [tempImageView setImage:
 [UIImage imageNamed:@”iMac.jpeg”]];
 break;
 case 2:
 [tempImageView setImage:
 [UIImage imageNamed:@”Mac8100.jpeg”]];
 break;
 case 3:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacPlus.jpeg”]];
 break;
 case 4:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacSE.jpeg”]];
 break;

c03.indd 51c03.indd 51 05/12/11 7:58 PM05/12/11 7:58 PM

52 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

 default:
 break;
 }

 //---switch the two imageview views---
 if (tempImageView.tag == 0) { //---imageView1---
 tempImageView = imageView2;
 bgImageView = imageView1;
 }
 else { //---imageView2---
 tempImageView = imageView1;
 bgImageView = imageView2;
 }

 UIViewAnimationOptions transitionOption;

 if (nextPage > prevPage)
 //---if moving from left to right---
 transitionOption = UIViewAnimationOptionTransitionFlipFromLeft;
 else
 //---if moving from right to left---
 transitionOption = UIViewAnimationOptionTransitionFlipFromRight;

 //---animate by flipping the images---
 [UIView transitionWithView:tempImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [tempImageView setHidden:YES];
 }
 completion:NULL];

 [UIView transitionWithView:bgImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [bgImageView setHidden:NO];
 }
 completion:NULL];

 prevPage = nextPage;
}

- (void)dealloc {
 [pageControl release];
 [imageView1 release];
 [imageView2 release];
 [super dealloc];
}

 11. Press Command-R to test the application on the iPhone Simulator. When you tap the Page Control
located at the bottom of the screen, the Image View flips to display the next one. Figure 3-20 shows
the transitioning of two images.

c03.indd 52c03.indd 52 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 53

How It Works

When the View window is first loaded, you get one of the Image Views to display an image and then
hide the other:

 //---initialize the first imageview to display an image---
 [imageView1 setImage:[UIImage imageNamed:@”iMac_old.jpeg”]];
 tempImageView = imageView2;

 //---make the first imageview visible and hide the second---
 [imageView1 setHidden:NO];
 [imageView2 setHidden:YES];

You then wire the Page Control so that when the user taps it, an event is fired and triggers a method. In
this case, the pageTurning: method is called:

 //---add the event handler for the page control---
 [pageControl addTarget:self
 action:@selector(pageTurning:)
 forControlEvents:UIControlEventValueChanged];

In the pageTurning: method, you determine which image you should load based on the value of the
Page Control:

//---when the page control’s value is changed---
- (void) pageTurning: (UIPageControl *) pageController {

 //---get the page number you can turning to---
 NSInteger nextPage = [pageController currentPage];
 switch (nextPage) {

FIGURE 3-20

c03.indd 53c03.indd 53 05/12/11 7:58 PM05/12/11 7:58 PM

54 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

 case 0:
 [tempImageView setImage:
 [UIImage imageNamed:@”iMac_old.jpeg”]];
 break;
 case 1:
 [tempImageView setImage:
 [UIImage imageNamed:@”iMac.jpeg”]];
 break;
 case 2:
 [tempImageView setImage:
 [UIImage imageNamed:@”Mac8100.jpeg”]];
 break;
 case 3:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacPlus.jpeg”]];
 break;
 case 4:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacSE.jpeg”]];
 break;
 default:
 break;
 }
 //...
}

You then switch the two Image Views and animate them by using the various methods in the UIView class:

 //---switch the two imageview views---
 if (tempImageView.tag == 0) { //---imageView1---
 tempImageView = imageView2;
 bgImageView = imageView1;
 }
 else { //---imageView2---
 tempImageView = imageView1;
 bgImageView = imageView2;
 }

 UIViewAnimationOptions transitionOption;

 if (nextPage > prevPage)
 //---if moving from left to right---
 transitionOption = UIViewAnimationOptionTransitionFlipFromLeft;
 else
 //---if moving from right to left---
 transitionOption = UIViewAnimationOptionTransitionFlipFromRight;

 //---animate by flipping the images---
 [UIView transitionWithView:tempImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [tempImageView setHidden:YES];
 }

c03.indd 54c03.indd 54 05/12/11 7:58 PM05/12/11 7:58 PM

Using Views ❘ 55

 completion:NULL];

 [UIView transitionWithView:bgImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [bgImageView setHidden:NO];
 }
 completion:NULL];

 prevPage = nextPage;

Specifically, you apply the flipping transitions to the Image Views using the
transitionWithView:duration:options:animations:completion: method:

 //---animate by flipping the images---
 [UIView transitionWithView:tempImageView
 duration:2.5
 options:transitionOption
 animations:^{
 [tempImageView setHidden:YES];
 }
 completion:NULL];

This method enables you to specify the animation that you want to perform on a specified view
(transitionWithView:), the duration of the animation (duration:), the transition options (options:),
the code that makes the changes to the view (animations:), and the code to execute when the
animation ends. In this example, if the user is flipping the images from left to right, you will flip the
images from left to right, and vice versa.

Using the Web View

To load web pages from within your application, you can embed a web browser in your application
through the use of a Web View (UIWebView). Using the Web View, you can send a request to load
web content, which is very useful if you want to convert an existing web application into a native
application (such as those written using Dashcode). All you need to do is embed all the HTML pages
into your Supporting Files folder in your Xcode project and load the HTML pages into the Web
View during runtime.

NOTE Depending on how complex your web application is, you may have to do
some additional work to port it to a native application if it involves server-side
technologies such as CGI, PHP, or others.

The following Try It Out shows how to use the Web View to load a web page.

c03.indd 55c03.indd 55 05/12/11 7:58 PM05/12/11 7:58 PM

56 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

TRY IT OUT Loading a Web Page Using the Web View

codefile UsingViews2.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it
UsingViews2. You will also use the project name as the Class Prefix and ensure that you have the
Use Automatic Reference Counting option unchecked.

 2. Select the UsingViews2ViewController.xib file to edit it using Interface Builder.

 3. From the Library, add a Web View to the View window (see Figure 3-21). In the Attributes
Inspector window for the Web View, check the Scales Page to Fit property.

 4. In the UsingViews2ViewController.h file, declare an outlet for the Web View:

#import <UIKit/UIKit.h>

@interface UsingViews2ViewController : UIViewController
{
 IBOutlet UIWebView *webView;
}

@property (nonatomic, retain) UIWebView *webView;

@end

 5. In Interface Builder, connect the webView outlet to the Web View.

FIGURE 3-21

c03.indd 56c03.indd 56 05/12/11 7:58 PM05/12/11 7:58 PM

Adding Views Dynamically Using Code ❘ 57

 6. In the UsingViews2ViewController.m file, add the following statements that appear in bold:

#import “UsingViews2ViewController.h”

@implementation UsingViews2ViewController

@synthesize webView;

- (void)viewDidLoad {
 NSURL *url = [NSURL URLWithString:@”http://www.apple.com”];
 NSURLRequest *req = [NSURLRequest requestWithURL:url];
 [webView loadRequest:req];
 [super viewDidLoad];
}

- (void)dealloc {
 [webView release];
 [super dealloc];
}

 7. Press Command-R to test the application on the iPhone Simulator.
You should see the application loading the page from Apple.com (see
Figure 3-22).

How It Works

To load the Web View with a URL, you first instantiate an NSURL object
with a URL via the URLWithString method:

 NSURL *url = [NSURL URLWithString:@”http://www.apple.com”];

You then create an NSURLRequest object by passing the NSURL object to its requestWithURL: method:

 NSURLRequest *req = [NSURLRequest requestWithURL:url];

Finally, you load the Web View with the NSURLRequest object via the loadRequest: method:

 [webView loadRequest:req];

ADDING VIEWS DYNAMICALLY USING CODE

Up to this point, all the UIs of your application have been created visually using Interface Builder.
Although Interface Builder makes it relatively easy to build a UI using drag-and-drop, sometimes
you are better off using code to create it. One such instance is when you need a dynamic UI, such as
for games.

FIGURE 3-22

c03.indd 57c03.indd 57 05/12/11 7:58 PM05/12/11 7:58 PM

58 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

In the following Try It Out, you learn how to create views dynamically from code, which will help
you understand how views are constructed and manipulated.

TRY IT OUT Creating Views from Code

codefile DynamicViews.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it DynamicViews. You
will also use the project name as the Class Prefix and ensure that you have the Use Automatic
Reference Counting option unchecked.

2. In the DynamicViewsViewController.m file, add the following statements that appear in bold:

#import “DynamicViewsViewController.h”

@implementation DynamicViewsViewController

- (void)loadView {
 //---create a UIView object---
 UIView *view =
 [[UIView alloc] initWithFrame:[UIScreen mainScreen].applicationFrame];

 //---set the background color to light gray---
 view.backgroundColor = [UIColor lightGrayColor];

 //---create a Label view---
 CGRect frame = CGRectMake(10, 15, 300, 20);
 UILabel *label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.backgroundColor = [UIColor clearColor];
 label.font = [UIFont fontWithName:@“Verdana“ size:20];
 label.text = @”This is a label”;
 label.tag = 1000;

 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”Click Me, Please!” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;
 [button addTarget:self
 action:@selector(buttonClicked:)

NOTE Interface Builder may be easy to use, but it can be confusing to some
people. Because you often have more than one way of doing things in Interface
Builder, it can create unnecessary complications. I know of developers who
swear by creating their UIs using code.

c03.indd 58c03.indd 58 05/12/11 7:58 PM05/12/11 7:58 PM

Adding Views Dynamically Using Code ❘ 59

 forControlEvents:UIControlEventTouchUpInside];

 [view addSubview:label];
 [view addSubview:button];

 self.view = view;

 [label release];
 [view release];
}

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Action invoked!”
 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

3. Press Command-R to test the application on the iPhone Simulator.
Figure 3-23 shows that the Label and Round Rect Button are displayed
on the View window. Click the button to see an alert view displaying a
message.

How It Works

You implemented the loadView method defined in your View Controller
to programmatically create your views. You should implement this method
only if you are generating your UI during runtime. The method is automatically called when the view
property of your View Controller is called but its current value is nil.

FIGURE 3-23

NOTE Chapter 4 discusses some of the commonly used methods in a View
Controller.

The first view you create is the UIView object, which enables you to use it as a container for more views:

 //---create a UIView object---
 UIView *view =
 [[UIView alloc] initWithFrame:
 [UIScreen mainScreen].applicationFrame];

 //---set the background color to light gray---
 view.backgroundColor = [UIColor lightGrayColor];

c03.indd 59c03.indd 59 05/12/11 7:58 PM05/12/11 7:58 PM

60 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

Next, you create a Label and set it to display a string:

 //---create a Label view---
 CGRect frame = CGRectMake(10, 15, 300, 20);
 UILabel *label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.backgroundColor = [UIColor clearColor];
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;
 label.tag = 1000;

 Notice that you have also set the tag property, which is very useful for enabling you to search for
particular views during runtime.

You also create a Round Rect Button by calling the buttonWithType: method with the
UIButtonTypeRoundedRect constant. This method returns a UIRoundedRectButton object (which is a
subclass of UIButton):

 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:
 UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”Click Me, Please!”
 forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;

You then wire an event handler for its Touch Up Inside event so that when the button is tapped, the
buttonClicked: method is called:

 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

Next, you add the label and button views to the view you created earlier:

 [view addSubview:label];
 [view addSubview:button];

Finally, you assign the view object to the view property of the current View controller:

 self.view = view;

NOTE Within the loadView method, you should not get the value of the view
property (setting it is alright), like this:

 [self.view addSubview:label]; //—-this is not OK—-
 self.view = view; //—-this is OK—-

c03.indd 60c03.indd 60 05/12/11 7:58 PM05/12/11 7:58 PM

Understanding View Hierarchy ❘ 61

Trying to get the value of the view property in this method will result in a circular reference and cause
memory overflow.

UNDERSTANDING VIEW HIERARCHY

As views are created and added, they are added to a tree data structure. Views are displayed in the
order that they are added. To verify this, modify the location of the UIButton object you created
earlier by changing its location to CGRectMake(10, 30, 300, 50), as in
the following:

 //---create a Button view---
 //frame = CGRectMake(10, 70, 300, 50);
 frame = CGRectMake(10, 30, 300, 50);

When you now run the application again, you will notice that the Round
Rect Button overlaps the Label (see Figure 3-24) because the button was
added last:

 [view addSubview:label];
 [view addSubview:button];

To switch the order in which the views are displayed after they have been added, use the exchangeS
ubviewAtIndex:withSubviewAtIndex: method:

 [view addSubview:label];
 [view addSubview:button];
 [view exchangeSubviewAtIndex:1 withSubviewAtIndex:0];

 self.view = view;
 [label release];
 [view release];

The preceding statement in bold swaps the order of the Label and Round
Rect Button. When the application is run again, the Label will now appear
on top of the Round Rect Button (see Figure 3-25).

To learn the order of the various views already added, you can use the following code segment to
print the value of the tag property for each view:

 [view addSubview:label];
 [view addSubview:button];
 [view exchangeSubviewAtIndex:1 withSubviewAtIndex:0];

 for (int i=0; i<[view.subviews count]; ++i) {
 UIView *v = [view.subviews objectAtIndex:i];
 NSLog(@”%d”, v.tag);
 }

FIGURE 3-24

FIGURE 3-25

c03.indd 61c03.indd 61 05/12/11 7:58 PM05/12/11 7:58 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

62 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

If you run the preceding code, you will see the following printed in the Output window:

2011-07-30 00:57:18.461 DynamicViews[2652:ef03] 2000
2011-07-30 00:57:18.463 DynamicViews[2652:ef03] 1000

The following method recursively prints out all the views contained in a UIView object:

-(void) printViews:(UIView *) view {
 if ([view.subviews count] > 0){
 for (int i=0; i<[view.subviews count]; ++i) {
 UIView *v = [view.subviews objectAtIndex:i];
 NSLog(@”View index: %d Tag: %d”,i, v.tag);
 [self printViews:v];
 }
 } else
 return;
}

You can call the preceding method from the viewDidLoad method:

- (void)viewDidLoad
{
 [self printViews:self.view];
 [super viewDidLoad];
}

The preceding code snippet will print out the following output:

2011-07-30 00:57:18.463 DynamicViews[2652:ef03] View index: 0 Tag: 2000
2011-07-30 00:57:18.464 DynamicViews[2652:ef03] View index: 0 Tag: 0
2011-07-30 00:57:18.464 DynamicViews[2652:ef03] View index: 1 Tag: 1000

To remove a view from the current view hierarchy, use the removeFromSuperview method of the
view you want to remove. For example, the following statement removes the label view:

 [label removeFromSuperview];

SUMMARY

This chapter explored the roles played by outlets and actions in an iPhone application. Outlets and
actions are the cornerstone of iOS development, so understanding their use is extremely important.
Throughout this book, you will come across them frequently. You have also seen the use of some of
the commonly used views in the Library.

In the next chapter, you learn about the various types of View controllers supported by the iOS
SDK, and how you can use them to build different types of iPhone and iPad applications.

c03.indd 62c03.indd 62 05/12/11 7:58 PM05/12/11 7:58 PM

Summary ❘ 63

EXERCISES

 1. Declare and defi ne an outlet for a UITextField view using code.

 2. Declare and defi ne an action using code.

 3. When do you use an alert view and when do you use an action sheet?

 4. Create a UIButton from code and wire its Touch Up Inside event to an event handler.

Answers to the exercises can be found in Appendix D.

c03.indd 63c03.indd 63 05/12/11 7:58 PM05/12/11 7:58 PM

64 ❘ CHAPTER 3 UNDERSTANDING VIEWS, OUTLETS, AND ACTIONS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Action An action is a method that can handle events raised by views (for

example, when a button is clicked, etc.) in the View window.

Outlet An outlet allows your code to programmatically reference a view

on the View window.

Adding outlet using code Use the IBOutlet keyword:

IBOutlet UITextField *txtName;

Adding action using code Use the IBAction keyword:

-(IBAction) btnClicked:(id) sender;

Connecting actions To link actions, you commonly drag from the view in the View

window onto the File’s Owner item.

Connection outlets To link outlets, you commonly drag from the File’s Owner item

onto the required view in the View window.

Using the UIAlertView UIAlertView *alert =

[[UIAlertView alloc]

 initWithTitle:@”Hello!”

 message:@”Hello, world!”

 delegate:self

 cancelButtonTitle:@”Done”

 otherButtonTitles:nil];

[alert show];

[alert release];

Handling events fi red by

UIAlertView

Ensure that your View Controller conforms to the

UIAlertViewDelegate protocol.

Using the UIActionSheet UIActionSheet *action =

[[UIActionSheet alloc]

 initWithTitle:@”Title of Action Sheet”

 delegate:self

 cancelButtonTitle:@”OK”

destructiveButtonTitle:@”Delete Message”

 otherButtonTitles:@”Option 1”, @”Option 2”,

 nil];

[action showInView:self.view];

[action release];

Handling events fi red by

UIActionSheet

Ensure that your View Controller conforms to the

UIActionSheetDelegate protocol.

c03.indd 64c03.indd 64 05/12/11 7:58 PM05/12/11 7:58 PM

Summary ❘ 65

TOPIC KEY CONCEPTS

Wiring up the events for the

UIPageControl

[pageControl addTarget:self

 action:@selector(pageTurning:)

 forControlEvents:UIControlEventValueChanged];

Using the UIImageView [imageView1 setImage:

 [UIImage imageNamed:@”iMac_old.jpeg”]];

Using the UIWebView NSURL *url =

[NSURL

 URLWithString:@”http://www.apple.com”];

NSURLRequest *req =

 [NSURLRequest requestWithURL:url];

[webView loadRequest:req];

c03.indd 65c03.indd 65 05/12/11 7:58 PM05/12/11 7:58 PM

c03.indd 66c03.indd 66 05/12/11 7:58 PM05/12/11 7:58 PM

Exploring the Diff erent
View Controllers

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Understanding the structure of a Single View Application project

 ➤ How to create an Empty Application project and manually add a

View controller and a View window to it

 ➤ Creating views dynamically during runtime

 ➤ Wiring up events of views with event handlers via code

 ➤ How to switch to another View window during runtime

 ➤ How to animate the switching of views

 ➤ How to create a Master-Detail application

 ➤ How to create a Tabbed application

So far you’ve dealt only with single-view applications — that is, applications with a single
View controller for controlling the View window. The previous chapters all use the Single View
Application template available in the iOS SDK because it is the simplest way to get started
with iOS programming. When you create a Single View Application project, there is one View
controller (named <Class_Prefix>ViewController by the iOS SDK) by default.

In real-life applications, you often need more than one View controller, with each controlling
a different View windows displaying different information. This chapter explains the various
types of projects you can create for your iPhone and iPad and how each utilizes a different type
of View controller. You will also learn how to create multiple View windows in your application
and then programmatically switch among them during runtime. In addition, you learn how to
animate the switching of View windows using the built-in animation methods available in the
iOS SDK.

4

c04.indd 67c04.indd 67 05/12/11 1:42 PM05/12/11 1:42 PM

68 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

THE SINGLE VIEW APPLICATION TEMPLATE

When you create a Single View Application project using Xcode, you automatically have a single
view in your application. Until now, you have been using it without understanding much about how
it works under the hood. In the following Try It Out, you will dive into the details and unravel all
the magic that makes your application work.

TRY IT OUT Creating a Single View Application Project

codefi le SingleViewBasedApp.zip available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone) project (see Figure 4-1) and click Next.

FIGURE 4-1

 2. Name the project SingleViewBasedApp. Set the Class Prefi x to be SingleViewBasedApp and
ensure that you have the Use Automatic Reference Counting option unchecked. Click Next and
then Create.

c04.indd 68c04.indd 68 05/12/11 1:42 PM05/12/11 1:42 PM

The Single View Application Template ❘ 69

3. Press Command-R to test the application on the iPhone Simulator. The application displays an
empty screen, as shown in Figure 4-2.

How It Works

What you have just created is a Single View Application project. By default, the Single View Application
template includes a single View window, controlled by a View controller class.

First, take a look at the fi les and folders created for your project in Xcode. In particular, note the
folders and fi les listed under the project name (see Figure 4-3).

FIGURE 4-2 FIGURE 4-3

As you can see, many fi les are created for you by default when you create a new project. The iOS SDK
tries to make your life simpler by creating some of the items that you will use most often when you
develop an iOS application. Table 4-1 describes the various fi les created in the project by default.

NOTE The types and number of fi les created vary according to the type of
project you have selected. The Single View Application template is a good
starting point for understanding the various fi les involved.

c04.indd 69c04.indd 69 05/12/11 1:42 PM05/12/11 1:42 PM

70 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

TABLE 4-1: Project Files Created by Default

FILE DESCRIPTION

SingleViewBasedApp.app The application bundle (executable), which

contains the executable as well as the data that

is bundled with the application

SingleViewBasedApp_Prefix.pch Contains the prefi x header for all fi les in the

project. The prefi x header is included by default

in the other fi les in the project.

SingleViewBasedAppAppDelegate.h Header fi le for the application delegate

SingleViewBasedAppAppDelegate.m Implementation fi le for the application delegate

SingleViewBasedAppViewController.h Header fi le for a View controller

SingleViewBasedAppViewController.m Implementation fi le for a View controller

SingleViewBasedAppViewController.xib XIB fi le containing the user interface of a View

window

CoreGraphics.framework C-based as for low-level 2D rendering

Foundation.framework APIs for foundational system services such as

data types, XML ,URL, and so on

UIKit.framework Provides fundamental objects for constructing

and managing your application’s user interface

SingleViewBasedApp-Info.plist A dictionary fi le that contains information about

your project, such as icon, application name,

and more; information is stored in key/value

pairs.

main.m The main fi le that bootstraps your iOS

application

The main.m fi le contains code that bootstraps your application, and you rarely need to modify it:

#import <UIKit/UIKit.h>

#import “SingleViewBasedAppAppDelegate.h”

int main(int argc, char *argv[])
{
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([SingleViewBasedAppAppDelegate class]));
 }
}

c04.indd 70c04.indd 70 05/12/11 1:42 PM05/12/11 1:42 PM

The Single View Application Template ❘ 71

Application Delegate

The SingleViewBasedAppAppDelegate.m fi le contains code that is typically executed after the
application has fi nished loading, or just before it is terminated. For this example, its content is as
follows:

Most of the hard work is done by the UIApplicationMain() function, which loads the
SingleViewBasedAppAppDelegate class to obtain more information about the project. In particular, it
looks at the main XIB fi le you will use for your project.

THE XIB AND NIB EXTENSIONS

iOS application development always includes fi les with the .xib extension
(sometimes also known as NIB fi les), so it is useful to know what these extensions
stand for. The current Mac OS X was built upon an operating system called
NeXTSTEP, from a company known as NeXT (founded by Apple’s cofounder,
Steve Jobs, in 1985). The N in NIB stands for NeXTSTEP. As for .xib, the X
presumably stands for XML because its content is saved as an XML fi le. The IB
stands for Interface Builder, the design tool that enables you to visually construct
the UI for your application.

NOTE When creating your project using Xcode, the fi lename of your application
delegate will always be appended with the string AppDelegate. For example, if
the project name (and Class Prefi x) is SingleViewBasedApp, then the application
delegate will be called SingleViewBasedAppAppDelegate.

#import “SingleViewBasedAppAppDelegate.h”

#import “SingleViewBasedAppViewController.h”

@implementation SingleViewBasedAppAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (void)dealloc
{
 [_window release];
 [_viewController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

c04.indd 71c04.indd 71 05/12/11 1:42 PM05/12/11 1:42 PM

72 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[SingleViewBasedAppViewController alloc]
initWithNibName:@”SingleViewBasedAppViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application
{
 /*
 Sent when the application is about to move from active to inactive state.
This can occur for certain types of temporary interruptions (such as an incoming
phone call or SMS message) or when the user quits the application and it begins
the transition to the background state.
 Use this method to pause ongoing tasks, disable timers, and throttle down
OpenGL ES frame rates. Games should use this method to pause the game.
 */
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 /*
 Use this method to release shared resources, save user data, invalidate
timers, and store enough application state information to restore your application
to its current state in case it is terminated later.
 If your application supports background execution, this method is called
instead of applicationWillTerminate: when the user quits.
 */
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 /*
 Called as part of the transition from the background to the inactive state;
here you can undo many of the changes made on entering the background.
 */
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 /*
 Restart any tasks that were paused (or not yet started) while the application
was inactive. If the application was previously in the background, optionally
refresh the user interface.
 */
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 /*
 Called when the application is about to terminate.
 Save data if appropriate.

c04.indd 72c04.indd 72 05/12/11 1:42 PM05/12/11 1:42 PM

The Single View Application Template ❘ 73

 See also applicationDidEnterBackground:.
 */
}

@end

When the application has fi nished launching, it sends its delegate the
application:DidFinishLaunchingWithOptions: message. In the preceding
case, it creates a UIWindow object based on the current screen size, and then creates
an instance of the SingleViewBasedAppViewController class together with the
SingleViewBasedAppViewController.xib fi le. Once the View controller is instantiated, it is
assigned to the root View controller of the UIWindow object:

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[SingleViewBasedAppViewController alloc]
initWithNibName:@”SingleViewBasedAppViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

The SingleViewBasedAppAppDelegate.h fi le contains the declaration of the members of the
SingleViewBasedAppAppDelegate class:

#import <UIKit/UIKit.h>

@class SingleViewBasedAppViewController;

@interface SingleViewBasedAppAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) SingleViewBasedAppViewController *viewController;

@end

Of particular interest is this line:

@interface SingleViewBasedAppAppDelegate : UIResponder <UIApplicationDelegate>

The <UIApplicationDelegate> statement specifi es that the delegate class should implement the
UIApplicationDelegate protocol. Put simply, it means that the delegate class will handle
events (or messages) defi ned in the UIApplicationDelegate protocol. Examples of events in the
UIApplicationDelegate protocol include the following (you saw some of these implemented in
the SingleViewBasedAppAppDelegate.m fi le.):

 ➤ Application:DidFinishLaunchingWithOptions:

 ➤ applicationWillTerminate:

 ➤ applicationDidDidReceiveMemoryWarning:

 ➤ Other methods that inform you if the application is receding into the background or coming
back into the foreground. You will learn more about these methods in Chapter 21.

c04.indd 73c04.indd 73 05/12/11 1:42 PM05/12/11 1:42 PM

74 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

The application delegate class is also a good place to put your global objects and methods, as they
are accessible from all the other classes in your project.

NOTE Protocols are discussed in more detail in Appendix C.

Controlling Your UI Using View Controllers

In iOS programming, you typically use a View controller to manage a View window, as well as to
perform navigation and memory management. In the Single View Application project template,
Xcode automatically uses a View controller to help you manage your View window. Think of a
View window as a screen (or window) you see on your iOS device.

Earlier in this chapter, you saw that the SingleViewBasedAppAppDelegate.m fi le creates
an instance of the SingleViewBasedAppViewController class together with the
SingleViewBasedAppViewController.xib fi le.

Select the SingleViewBasedAppViewController.xib fi le from Xcode, and you should see three
icons: File’s Owner, First Responder, and View (see Figure 4-4). Select the File’s Owner item and
view the Identity Inspector window (View ➪ Utilities ➪ Show Identity Inspector). Observe that the
Class is set to SingleViewBasedAppViewController. This means that the View window is being
controlled by the SingleViewBasedAppViewController class.

FIGURE 4-4

c04.indd 74c04.indd 74 05/12/11 1:42 PM05/12/11 1:42 PM

The Single View Application Template ❘ 75

You can right-click (or Control-click) the File’s Owner item to view its properties (see Figure 4-5).
Note that the view outlet is connected to the View item.

NOTE When creating your project using Xcode, the fi lename of your View
controller will always be <Class_Prefix>ViewController. For example, if
the project name is SingleViewBasedApp, and you name the class prefi x to
be the same as your project name, then the View Controller will be called
SingleViewBasedAppViewController.

FIGURE 4-5

The View item represents the screen that appears on your application. Double-click View to display it.

The SingleViewBasedAppViewController class is represented by two fi les:
SingleViewBasedAppViewController.h and SingleViewBasedAppViewController.m.
The SingleViewBasedAppViewController class is where you write the code to interact with the
views of your application.

The content of the SingleViewBasedAppViewController.h fi le looks like this:

#import <UIKit/UIKit.h>

@interface SingleViewBasedAppViewController : UIViewController

@end

Note that the SingleViewBasedAppViewController class inherits from the UIViewController
base class, which provides most of the functionality available on a View window.

c04.indd 75c04.indd 75 05/12/11 1:42 PM05/12/11 1:42 PM

76 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

The content of the SingleViewBasedAppViewController.m fi le looks like this:

#import “SingleViewBasedAppViewController.h”

@implementation SingleViewBasedAppViewController

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Release any cached data, images, etc that aren’t in use.
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

@end

c04.indd 76c04.indd 76 05/12/11 1:42 PM05/12/11 1:42 PM

The Empty Application Template ❘ 77

The SingleViewBasedAppViewController.m fi le contains a number of methods commonly used
by most developers. This is where you populate your View controllers with code to make it do
interesting things.

THE EMPTY APPLICATION TEMPLATE

In this section, you discover another type of application template you can create using the iOS SDK:
the Empty Application template. Unlike the Single View Application template, the Empty Application
template does not include a View controller by default. Instead, it provides only the skeleton of an iOS
application — you need to add your own views and their respective View controllers. Therefore, an
Empty Application project presents a good opportunity for you to learn how View controllers work
and appreciate all the work needed to connect the View controllers and XIB fi les. When you understand
how View controllers work, you will be on your way to creating more sophisticated applications.

To put fi rst things fi rst, execute the following Try It Out to create an Empty Application project and
then progressively add a View controller to it.

TRY IT OUT Creating an Empty Application Project

codefi le EmptyApp.zip available for download on Wrox.com

 1. Using Xcode, create an Empty Application (iPhone) project (see Figure 4-6) and name it
EmptyApp. You must also use the project name as the Class Prefi x. Ensure that you have the Use
Automatic Reference Counting option unchecked. Observe the fi les created for this project type
(see Figure 4-7). Apart from the usual supporting fi les, note that there are only two delegate fi les
(EmptyAppAppDelegate.h and EmptyAppAppDelegate.m).

FIGURE 4-6

c04.indd 77c04.indd 77 05/12/11 1:42 PM05/12/11 1:42 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

78 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 2. Press Command-R to test the application. An empty screen is displayed on the iPhone Simulator.
This is because the Empty Application template provides only the skeleton structure for a simple
iOS application — just a window and the application delegate.

 3. Right-click the project name and add a new fi le. In the New File window, click the Cocoa Touch
item and select the UIViewController subclass template (see Figure 4-8). Click Next.

 4. Name the item HelloWorldViewController.m. Ensure that the “With XIB for user interface”
check box is checked (see Figure 4-9). Xcode should now look like Figure 4-10.

FIGURE 4-7 FIGURE 4-8

FIGURE 4-9

c04.indd 78c04.indd 78 05/12/11 1:42 PM05/12/11 1:42 PM

The Empty Application Template ❘ 79

 5. Select the HelloWorldViewController.xib fi le to edit it in Interface Builder.

 6. Set the background color of the View window to Light Gray Color (see Figure 4-11).

FIGURE 4-10

FIGURE 4-11

c04.indd 79c04.indd 79 05/12/11 1:42 PM05/12/11 1:42 PM

80 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 7. Add a Round Rect Button to the View window and label the button as shown in Figure 4-12.

FIGURE 4-12

 8. Back in Xcode, insert the bold lines in the following code into the EmptyAppAppDelegate.h fi le:

#import <UIKit/UIKit.h>

@class HelloWorldViewController;

@interface EmptyAppAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) HelloWorldViewController *viewController;

@end

 9. In the EmptyAppAppDelegate.m fi le, insert the following code that appears in bold:

#import “EmptyAppAppDelegate.h”
#import “HelloWorldViewController.h”

@implementation EmptyAppAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (void)dealloc
{
 [_window release];

c04.indd 80c04.indd 80 05/12/11 1:42 PM05/12/11 1:42 PM

The Empty Application Template ❘ 81

 [_viewController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];

 self.viewController = [[[HelloWorldViewController alloc]
 initWithNibName:@”HelloWorldViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;

 [self.window makeKeyAndVisible];
 return YES;
}

 10. That’s it! Press Command-R to test the application on the iPhone
Simulator. The button should appear on the main screen of the
application as shown in Figure 4-13.

How It Works

When you create an iPhone project using the Empty Application template,
Xcode provides you with only the bare minimum number of items in your
project — some supporting fi les and the application delegate. You need to
add your own View controller(s) and view(s).

In the preceding exercise, you added a View Controller class and
an accompanying XIB fi le to the project. When the application has
fi nished launching, you add the View window represented by the
HelloWorldViewController object to the window so that it is visible:

 self.viewController = [[[HelloWorldViewController alloc]
 initWithNibName:@”HelloWorldViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;

Adding a View Controller and Views Programmatically

Another commonly used technique to create the UI of your application is to programmatically create
the views during runtime without using Interface Builder. This provides a lot of fl exibility, especially
when you are writing games for which the application’s UI is constantly changing.

In the following Try It Out, you learn how to create a View window using an instance of the
UIViewController class and then programmatically add views to it.

FIGURE 4-13

c04.indd 81c04.indd 81 05/12/11 1:42 PM05/12/11 1:42 PM

82 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

TRY IT OUT Adding a View Controller and Views Programmatically

 1. Using the EmptyApp project, right-click the project name in
Xcode and add a new fi le. Select the UIViewController subclass
item and name it SecondViewController. Ensure that the “With
XIB for user interface” check box is unchecked. Xcode should now
look like Figure 4-14.

 2. Add the following bold code to SecondViewController.h:

#import <UIKit/UIKit.h>

@interface SecondViewController : UIViewController
{
 //---create two outlets - label and button---
 UILabel *label;
 UIButton *button;
}

//---expose the outlets as properties---
@property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) UIButton *button;

//---declaring the IBAction---
-(IBAction) buttonClicked: (id) sender;

@end

 3. Add the following bold code to SecondViewController.m:

- (void)viewDidLoad
{
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;
 label.backgroundColor = [UIColor lightGrayColor];

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”OK” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)

FIGURE 4-14

c04.indd 82c04.indd 82 05/12/11 1:42 PM05/12/11 1:42 PM

The Empty Application Template ❘ 83

 forControlEvents:UIControlEventTouchUpInside];

 self.view.backgroundColor = [UIColor lightGrayColor];

 //---add the views to the View window---
 [self.view addSubview:label];
 [self.view addSubview:button];
 [super viewDidLoad];
}

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Action invoked!”
 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (void)dealloc {
 [label release];
 [button release];
 [super dealloc];
}

 4. Add the following bold code to HelloWorldViewController.h:

#import <UIKit/UIKit.h>
#import “SecondViewController.h”

@interface HelloWorldViewController : UIViewController
{
 //---create an instance of the view controller---
 SecondViewController *secondViewController;
}

-(IBAction) btnClicked:(id) sender;

@end

 5. Add the following bold code to HelloWorldViewController.m:

#import “HelloWorldViewController.h”

@implementation HelloWorldViewController

-(IBAction) btnClicked:(id) sender
{
 //---add the view of the view controller to the current View---
 if (secondViewController==nil) {
 secondViewController =
 [[SecondViewController alloc] initWithNibName:@”SecondViewController”

c04.indd 83c04.indd 83 05/12/11 1:42 PM05/12/11 1:42 PM

84 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 bundle:nil];
 }
 [self.view addSubview:secondViewController.view];
}

- (void)dealloc {
 [secondViewController release];
 [super dealloc];
}

 6. Select HelloWorldViewController.xib to edit it in Interface Builder. Control-click the Round
Rect Button and drag it over the File’s Owner item. Select btnClicked:. Right-clicking on the
File’s Owner item will reveal the connections as shown in Figure 4-15.

 7. Press Command-R to test the application on the iPhone Simulator. Clicking the button will reveal
the second View window (see Figure 4-16). Clicking the OK button reveals the alert view.

 8. Back in Xcode, add the following bold code to SecondViewController.m:

-(IBAction) buttonClicked: (id) sender{
 /*
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Action invoked!”
 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

FIGURE 4-15 FIGURE 4-16

c04.indd 84c04.indd 84 05/12/11 1:42 PM05/12/11 1:42 PM

The Empty Application Template ❘ 85

 */
 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];
}

 9. Press Command-R to test the application on the iPhone Simulator again. As usual, clicking the
button will reveal the second View window. Clicking the OK button will now hide the second
View window and show the fi rst View window.

How It Works

In this Try It Out, you created a new View controller and its accompanying XIB fi le. Instead of
populating the View windows with the Label and Round Rect Button in Interface Builder, you have
added them using code, through the viewDidLoad method:

- (void)viewDidLoad
{
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;
 label.backgroundColor = [UIColor lightGrayColor];

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”OK” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

 self.view.backgroundColor = [UIColor lightGrayColor];

 //---add the views to the View window---
 [self.view addSubview:label];
 [self.view addSubview:button];
 [super viewDidLoad];
}

Observe that you also added an action for the Round Rect Button so that when it is clicked, an action
can be performed. To connect an action to a view, you use the addTarget:action:forControlEvents:
method of a view. In this case, it is wired to the buttonClicked: method:

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Action invoked!”

c04.indd 85c04.indd 85 05/12/11 1:42 PM05/12/11 1:42 PM

86 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

In the HelloWorldViewController class, the Round Rect Button is wired to the btnClicked: action:

-(IBAction) btnClicked:(id) sender
{
 //---add the view of the view controller to the current View---
 if (secondViewController==nil) {
 secondViewController =
 [[SecondViewController alloc] initWithNibName:@”SecondViewController”
 bundle:nil];
 }
 [self.view addSubview:secondViewController.view];
}

In this case, when a user clicks this button, you create a new instance of the SecondViewController
class and then add its View window over the current View window. As a result, the
SecondViewController’s View window covers the entire current window, giving the impression that
the current window has transitioned to the next window.

To return to the fi rst View window, you have to hide the current View window using the
removeFromSuperview method of the view object:

 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];

CONTROL EVENTS

Users typically interact with views on a View window. A very good example is
the Round Rect Button, which allows the user to tap on it so that it can perform
an action. In this case, the Round Rect Button needs to support a series of
events (known as Control Events) so that it knows how the user is interacting
with it. For example, if you want to perform an action when the user touches
a button (with the fi nger still touching the button), you need to handle the
UIControlEventTouchDown event. If you want to perform another action when the
fi nger is lifted, you need to handle the UIControlEventTouchUpInside event.

You can use the following list of events for views:

 ➤ UIControlEventTouchDown

 ➤ UIControlEventTouchDownRepeat

 ➤ UIControlEventTouchDragInside

c04.indd 86c04.indd 86 05/12/11 1:42 PM05/12/11 1:42 PM

The Empty Application Template ❘ 87

 ➤ UIControlEventTouchDragOutside

 ➤ UIControlEventTouchDragEnter

 ➤ UIControlEventTouchDragExit

 ➤ UIControlEventTouchUpInside

 ➤ UIControlEventTouchUpOutside

 ➤ UIControlEventTouchCancel

 ➤ UIControlEventValueChanged

 ➤ UIControlEventEditingDidBegin

 ➤ UIControlEventEditingChanged

 ➤ UIControlEventEditingDidEnd

 ➤ UIControlEventEditingDidEndOnExit

 ➤ UIControlEventAllTouchEvents

 ➤ UIControlEventAllEditingEvents

 ➤ UIControlEventApplicationReserved

 ➤ UIControlEventSystemReserved

 ➤ UIControlEventAllEvents

The use of each event is detailed at http://developer.apple.com/library/ios/
#documentation/UIKit/Reference/UIControl_Class/Reference/Reference

.html.

Animating the Switching of Views

The switching of View windows that you have just seen in the previous section happens
instantaneously — the two View windows change immediately without any visual cues. One of the
key selling points of iOS is its animation capabilities. Therefore, for the switching of views, you can
make the display a little more interesting by performing some simple animations, such as fl ipping
one View window to reveal another. The following Try It Out shows you how.

TRY IT OUT Animating View Transitions

1. Using the same project, add the following bold code to the HelloWorldViewController.m fi le:

-(IBAction) btnClicked:(id) sender
{
 //---add the view of the view controller to the current View---
 if (secondViewController==nil) {
 secondViewController =
 [[SecondViewController alloc] initWithNibName:@”SecondViewController”
 bundle:nil];

c04.indd 87c04.indd 87 05/12/11 1:42 PM05/12/11 1:42 PM

88 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 }
 [UIView transitionWithView:self.view
 duration:0.5
 options:UIViewAnimationOptionTransitionFlipFromRight |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 [self.view addSubview:secondViewController.view];
 }
 completion:NULL];
}

 2. In the SecondViewController.m file, add the following code that appears in bold:

-(IBAction) buttonClicked: (id) sender{
 /*
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Action invoked!”
 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 */
 [UIView transitionWithView:self.view.superview
 duration:0.5
 options:UIViewAnimationOptionTransitionFlipFromLeft |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];
 }
 completion:NULL];
}

 3. Press Command-R to test the application on the iPhone Simulator. Click
the buttons on both View windows and notice the direction in which
the two Views fl ip to one another (see Figure 4-17).

How It Works

First, examine the animation that is applied to the
HelloWorldViewController. You perform the animation by calling the
transitionWithView:duration:options:animations: method of
the UIView class to start the animation:

 [UIView transitionWithView:self.view
 duration:0.5

FIGURE 4-17

c04.indd 88c04.indd 88 05/12/11 1:42 PM05/12/11 1:42 PM

The Master-Detail Application Template ❘ 89

 options:UIViewAnimationOptionTransitionFlipFromRight |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 [self.view addSubview:secondViewController.view];
 }
 completion:NULL];

The transitionWithView: label specifi es the view that you are animating. The duration:
label specifi es the duration of the animation, in seconds. Here, you set it to half a second.
The options: method sets the types of animation you want to perform, in particular the
UIViewAnimationOptionTransitionFlipFromRight option fl ips the view object around a vertical
axis from right to left. The animations: label specifi es the block object that contains the changes you
want to make to the specifi ed view.

The animation performed on the SecondViewController is similar to that of the
HelloWorldViewController, except that the view to animate must be set to self.view.superview
(which is actually the HelloWorldViewController):

 [UIView transitionWithView:self.view.superview
 duration:0.5
 options:UIViewAnimationOptionTransitionFlipFromLeft |
 UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionAllowAnimatedContent
 animations:^{
 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];
 }
 completion:NULL];

THE MASTER-DETAIL APPLICATION TEMPLATE

Beginning with the iOS SDK 3.2, a new application template exclusive to the iPad became
available: Split View–based Application. It enables you to create a split-view interface for your iPad
application, which is essentially a master-detail interface. The left side of the screen displays a list
of selectable items, while the right-side displays details about the item selected. In iOS 5, Apple has
merged the Split View-based Application template with the existing Navigation-based Application
template, calling it the Master-Detail Application template. In essence, when your Master-Detail
Universal application is run on the iPhone, it will behave just like a Navigation-based application.
When it is run on the iPad, it will behave like a Split View-based application.

To see how the Master-Detail Application template works, take a look at the following Try It Out.

TRY IT OUT Creating a Master-Detail Application

codefi le MasterDetail.zip available for download at Wrox.com

 1. Using Xcode, select the new Master-Detail Application template (see Figure 4-18). Click Next.

c04.indd 89c04.indd 89 05/12/11 1:42 PM05/12/11 1:42 PM

90 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 2. Name the project MasterDetail and select the Universal device family (see Figure 4-19). Recall
that you also use the project name as the Class Prefi x and must ensure that you have the Use
Automatic Reference Counting option unchecked. Click Next.

FIGURE 4-18

FIGURE 4-19

c04.indd 90c04.indd 90 05/12/11 1:42 PM05/12/11 1:42 PM

The Master-Detail Application Template ❘ 91

 3. Observe the fi les created (see Figure 4-20). Notice that there is one delegate
class (MasterDetailAppDelegate), and two View controller classes
(MasterDetailMasterViewController and MasterDetailDetailViewController), as well as
four XIB fi les (two for iPhone and two for iPad).

 4. Select the iPhone 5.0 Simulator scheme (see Figure 4-21) and press Command-R to debug the
application on the iPhone Simulator.

FIGURE 4-20 FIGURE 4-21

FIGURE 4-22

 5. Figure 4-22 shows the application displaying a table view containing a single item named Detail.
Clicking the Detail item causes the application to navigate to the next Detail window.

c04.indd 91c04.indd 91 05/12/11 1:42 PM05/12/11 1:42 PM

92 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 6. Back in Xcode, select the iPad 5.0 Simulator scheme and press Command-R to debug the
application on the iPad Simulator.

 7. Figure 4-23 shows the iPad Simulator in Portrait mode. Clicking the Master button displays a
PopoverView containing a table view with the Detail item.

 8. Press Command-→ to switch the iPad Simulator to landscape mode. Figure 4-24 shows the
application with two panes: One containing the Master pane and another containing the Detail pane.

FIGURE 4-23 FIGURE 4-24

How It Works

The Master-Detail application is very versatile. When it is run as an iPhone application, it functions as a
Navigation-based application. When it is run as an iPad application, it functions as a Split-View-based
application. To understand how it works, fi rst, note the content of the MasterDetailAppDelegate.h fi le:

#import <UIKit/UIKit.h>

@interface MasterDetailAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) UINavigationController *navigationController;

@property (strong, nonatomic) UISplitViewController *splitViewController;

@end

c04.indd 92c04.indd 92 05/12/11 1:42 PM05/12/11 1:42 PM

The Master-Detail Application Template ❘ 93

Notice that it contains two View controller objects of type
UISplitViewController (splitViewController) and
UINavigationController (navigationController).

The UISplitViewController is a container View controller that contains two View controllers,
allowing you to implement a master-detail interface. The UINavigationController is a controller that
manages the navigation of View controllers.

Next, look at the content of the MasterDetailAppDelegate.m fi le:

#import “MasterDetailAppDelegate.h”

#import “MasterDetailMasterViewController.h”

#import “MasterDetailDetailViewController.h”

@implementation MasterDetailAppDelegate

@synthesize window = _window;
@synthesize navigationController = _navigationController;
@synthesize splitViewController = _splitViewController;

- (void)dealloc
{
 [_window release];
 [_navigationController release];
 [_splitViewController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
UIUserInterfaceIdiomPhone) {
 MasterDetailMasterViewController *masterViewController =
 [[[MasterDetailMasterViewController alloc]
 initWithNibName:@”MasterDetailMasterViewController_iPhone” bundle:nil]
autorelease];
 self.navigationController = [[[UINavigationController alloc]
 initWithRootViewController:masterViewController] autorelease];
 self.window.rootViewController = self.navigationController;
 } else {
 MasterDetailMasterViewController *masterViewController =
 [[[MasterDetailMasterViewController alloc]
 initWithNibName:@”MasterDetailMasterViewController_iPad” bundle:nil]
autorelease];
 UINavigationController *masterNavigationController =
 [[[UINavigationController alloc] initWithRootViewController:masterViewContr
oller] autorelease];

 MasterDetailDetailViewController *detailViewController =
[[[MasterDetailDetailViewController alloc]

c04.indd 93c04.indd 93 05/12/11 1:42 PM05/12/11 1:42 PM

94 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 initWithNibName:@”MasterDetailDetailViewController_iPad” bundle:nil]
autorelease];
 UINavigationController *detailNavigationController =
 [[[UINavigationController alloc] initWithRootViewController:detailViewControl
ler] autorelease];

 self.splitViewController = [[[UISplitViewController alloc] init]
autorelease];
 self.splitViewController.delegate = detailViewController;
 self.splitViewController.viewControllers = [NSArray
 arrayWithObjects:masterNavigationController, detailNavigationController, nil];

 self.window.rootViewController = self.splitViewController;
 }
 [self.window makeKeyAndVisible];
 return YES;
}

Observe that when the application has been loaded, it fi rst checks to see if it is running
as an iPhone application. If it is, it loads navigationController with an instance of the
MasterDetailMasterViewController class, using the MasterDetailMasterViewController_
iPhone.xib fi le:

 MasterDetailMasterViewController *masterViewController =
[[[MasterDetailMasterViewController alloc]
 initWithNibName:@”MasterDetailMasterViewController_iPhone” bundle:nil]
autorelease];
 self.navigationController = [[[UINavigationController alloc]
 initWithRootViewController:masterViewController] autorelease];
 self.window.rootViewController = self.navigationController;

Figure 4-25 summarizes the actions performed.

If it is running as an iPad application, it will do the following:

 ➤ Instantiate masterViewController using the
MasterDetailMasterViewController class, using
the MasterDetailMasterViewController_iPad.xib fi le

 ➤ Load masterNavigationController with
masterViewController

 ➤ Instantiate detailViewController with the
MasterDetailDetailViewController class, using
the MasterDetailDetailViewController_iPad.xib fi le

 ➤ Load detailNavigationController with
detailViewController

 ➤ Load splitViewController with masterViewController
and detailNavigationController

MasterDetailMasterView
Controller_iPhone.xib

masterViewController object

.navigationController property

self.window.rootViewController
property

FIGURE 4-25

c04.indd 94c04.indd 94 05/12/11 1:42 PM05/12/11 1:42 PM

The Master-Detail Application Template ❘ 95

 MasterDetailMasterViewController *masterViewController =
 [[[MasterDetailMasterViewController alloc]
 initWithNibName:@”MasterDetailMasterViewController_iPad” bundle:nil]
autorelease];
 UINavigationController *masterNavigationController =
 [[[UINavigationController alloc]
 initWithRootViewController:masterViewController] autorelease];

 MasterDetailDetailViewController *detailViewController =
[[[MasterDetailDetailViewController alloc] initWithNibName:@”MasterDetailDetailViewCon
troller_iPad” bundle:nil] autorelease];
 UINavigationController *detailNavigationController =
 [[[UINavigationController alloc]
 initWithRootViewController:detailViewController] autorelease];

 self.splitViewController = [[[UISplitViewController alloc] init]
 autorelease];
 self.splitViewController.delegate = detailViewController;
 self.splitViewController.viewControllers = [NSArray
 arrayWithObjects:masterNavigationController, detailNavigationController, nil];

 self.window.rootViewController = self.splitViewController;

Figure 4-26 summarizes the actions performed.

FIGURE 4-26

MasterDetailMasterView
Controller_iPad.xib

masterViewController object

.detailViewController property

self.window.rootViewController
property

MasterDetailDetailView
Controller_iPad.xib

detailViewController object

.detailViewController property

.splitViewController property

c04.indd 95c04.indd 95 05/12/11 1:42 PM05/12/11 1:42 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

96 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

In short, for each View controller (MasterDetailMasterViewController and
MasterDetailDetailViewController), you have two XIB fi les: one for iPhone and one for iPad.

At this point, it would be useful to take a look at each View controller to examine its contents. Here is
the MasterDetailMasterViewController.h fi le:

#import <UIKit/UIKit.h>

@class MasterDetailDetailViewController;

@interface MasterDetailMasterViewController : UITableViewController

@property (strong, nonatomic) MasterDetailDetailViewController *detailViewController;

@end

Notice that this class inherits from the UITableViewController base class, not the UIViewController
class. In a master-detail application, the master usually contains a list of items for selection, hence
this class contains a Table View. The UITableViewController class is a subclass of the
UIViewController class, providing the capability to display a table containing rows of data. (Chapter
8 discusses the Table View in more detail.)

Here is the content of the MasterDetailDetailViewController.h fi le:

#import <UIKit/UIKit.h>

@interface MasterDetailDetailViewController
 : UIViewController <UISplitViewControllerDelegate>

@property (strong, nonatomic) id detailItem;

@property (strong, nonatomic) IBOutlet UILabel *detailDescriptionLabel;

@end

Notice that the MasterDetailDetailViewController class implements the
UISplitViewControllerDelegate protocol, which contains methods to manage changes to visible
View controllers.

Now take a look at the MasterDetailDetailViewController.m fi le:

#import “MasterDetailDetailViewController.h”

@interface MasterDetailDetailViewController ()
@property (strong, nonatomic) UIPopoverController *masterPopoverController;
- (void)configureView;
@end

@implementation MasterDetailDetailViewController

@synthesize detailItem = _detailItem;
@synthesize detailDescriptionLabel = _detailDescriptionLabel;

c04.indd 96c04.indd 96 05/12/11 1:42 PM05/12/11 1:42 PM

The Master-Detail Application Template ❘ 97

@synthesize masterPopoverController = _masterPopoverController;

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem) {
 [_detailItem release];
 _detailItem = [newDetailItem retain];

 // Update the view.
 [self configureView];
 }

 if (self.masterPopoverController != nil) {
 [self.masterPopoverController dismissPopoverAnimated:YES];
 }
}

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text = [self.detailItem description];
 }
}

- (void)splitViewController:(UISplitViewController *)splitController
 willHideViewController:(UIViewController *)viewController
 withBarButtonItem:(UIBarButtonItem *)barButtonItem
 forPopoverController:(UIPopoverController *)popoverController
{
 barButtonItem.title = NSLocalizedString(@”Master”, @”Master”);
 [self.navigationItem setLeftBarButtonItem:barButtonItem animated:YES];
 self.masterPopoverController = popoverController;
}

- (void)splitViewController:(UISplitViewController *)splitController
 willShowViewController:(UIViewController *)viewController
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem
{
 // Called when the view is shown again in the split view, invalidating the
button and popover controller.
 [self.navigationItem setLeftBarButtonItem:nil animated:YES];
 self.masterPopoverController = nil;
}

//...
//...
//...
@end

The setDetailItem method (it is actually also a property) allows outside classes to pass in a value to
this class so that it can display it in the Label through the configureView method.

c04.indd 97c04.indd 97 05/12/11 1:42 PM05/12/11 1:42 PM

98 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

You also need to handle two important events in this View Controller (both are defi ned in the
UISplitViewControllerDelegate protocol):

 ➤ splitViewController:willHideViewController:withBarButtonItem:

forPopover-Controller: — Fired when the iPad switches to portrait mode (where the Popover
View is shown and the TableView is hidden)

 ➤ splitViewController:willShowViewController:invalidatingBarButtonItem: — Fired
when the iPad switches to landscape mode (where the Popover View is hidden and the Table View
is shown)

Displaying Some Items in the Master-Detail Application

Now that you have seen a Master-Detail application in action, it is time to make some changes to it
and see how useful it is. The following Try It Out displays a list of movie names; and when a movie
is selected, the name appears in the details View window.

TRY IT OUT Displaying Some Items

 1. Using the MasterDetail project, add the following bold statements to the
MasterDetailMasterViewController.h fi le:

#import <UIKit/UIKit.h>

@class MasterDetailDetailViewController;

@interface MasterDetailMasterViewController : UITableViewController
{
 NSMutableArray *listOfMovies;
}

@property (strong, nonatomic) MasterDetailDetailViewController *detailViewController;

@end

 2. Add the following bold statements to the MasterDetailMasterViewController.m fi le:

- (void)viewDidLoad
{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];
 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];

c04.indd 98c04.indd 98 05/12/11 1:42 PM05/12/11 1:42 PM

The Master-Detail Application Template ❘ 99

 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];

 //---set the title---
 self.navigationItem.title = NSLocalizedString(@”Movies”, @”Movies”);
 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad)
 {
 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0
 inSection:0] animated:NO scrollPosition:UITableViewScrollPositionMiddle];
 self.detailViewController =
 (MasterDetailDetailViewController *) [[self.splitViewController.viewControllers
 lastObject] topViewController];
 }
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 return [listOfMovies count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
 autorelease];
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 }

 // Configure the cell.
 //cell.textLabel.text = NSLocalizedString(@”Detail”, @”Detail”);
 cell.textLabel.text = [listOfMovies objectAtIndex:indexPath.row];

 return cell;
}

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
 *)indexPath

c04.indd 99c04.indd 99 05/12/11 1:42 PM05/12/11 1:42 PM

100 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 if (!self.detailViewController) {
 self.detailViewController = [[[MasterDetailDetailViewController alloc]
 initWithNibName:@”MasterDetailDetailViewController_iPhone” bundle:nil]
autorelease];
 }
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@”%@”, [listOfMovies objectAtIndex:indexPath.row]];

 [self.navigationController pushViewController:self.detailViewController
 animated:YES];
 }
 else
 {
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@”%@”, [listOfMovies objectAtIndex:indexPath.row]];
 }
}

 3. Press Command-R to test the application on the iPhone Simulator. Figure 4-27 shows the list
of movies names shown in the master View controller. Clicking on a movie name will cause the
application to navigate to the detail View controller.

FIGURE 4-27

 4. Press Command-R to test the application on the iPad Simulator. When the Simulator is in portrait
mode, the application shows a list of movies within the PopoverView (see Figure 4-28). Selecting
a movie displays the movie name on the detail View controller. You can also switch to landscape
mode and select the movies from the TableView (see Figure 4-29).

c04.indd 100c04.indd 100 05/12/11 1:42 PM05/12/11 1:42 PM

The Master-Detail Application Template ❘ 101

How It Works

First, you initialized a mutable array with a list of movie names and set the title of the navigation
controller to Movies:

 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];
 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];
 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];

 //---set the title---
 self.navigationItem.title = NSLocalizedString(@”Movies”, @”Movies”);

FIGURE 4-28 FIGURE 4-29

c04.indd 101c04.indd 101 05/12/11 1:42 PM05/12/11 1:42 PM

102 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

For an iPad application, you need to set the detailViewController property to the last View
Controller stored in the SplitViewController:

 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad)
 {
 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0
 inSection:0] animated:NO scrollPosition:UITableViewScrollPositionMiddle];
 self.detailViewController =
 (MasterDetailDetailViewController *)
 [[self.splitViewController.viewControllers lastObject] topViewController];
 }
}

The value returned by the tableView:numberOfRowsInSection: method sets the number of rows to
be displayed, which in this case is the size of the mutable array:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
 (NSInteger)section
{
 //return 1;
 return [listOfMovies count];
}

The tableView:cellForRowAtIndexPath: method is fi red for each item in the mutable array, thereby
populating the TableView:

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
 autorelease];
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 }

 // Configure the cell.
 //cell.textLabel.text = NSLocalizedString(@”Detail”, @”Detail”);
 cell.textLabel.text = [listOfMovies objectAtIndex:indexPath.row];

 return cell;
}

When an item is selected in the TableView, you pass the movie name selected to the
MasterDetailDetailViewController object via its detailItem property:

c04.indd 102c04.indd 102 05/12/11 1:42 PM05/12/11 1:42 PM

The Tabbed Application Template ❘ 103

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)
 indexPath
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 if (!self.detailViewController) {
 self.detailViewController = [[[MasterDetailDetailViewController alloc]
 initWithNibName:@”MasterDetailDetailViewController_iPhone” bundle:nil]
autorelease];
 }
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@”%@”, [listOfMovies objectAtIndex:
indexPath.row]];

 [self.navigationController pushViewController:self.detailViewController
 animated:YES];
 }
 else
 {
 self.detailViewController.detailItem =
 [NSString stringWithFormat:@”%@”, [listOfMovies objectAtIndex:indexPath.row]];
 }
}

THE TABBED APPLICATION TEMPLATE

So far, you have seen the use of three types of application template provided by the iOS SDK: Single
View Application, Empty Application, and Master-Detail Application. A fourth type of application
template exists: The Tabbed Application template. The following Try It Out uses the Tabbed
Application template to create a project and shows what a Tabbed application looks like. Download
the necessary project fi les as indicated.

TRY IT OUT Creating a Tabbed Application

codefi le TabbedApp.zip available for download at Wrox.com

 1. Using Xcode, select the Tabbed Application project (iPhone) (see Figure 4-30) and click Next.

 2. Name the project TabbedApp (see Figure 4-31), use the project name as the Class Prefi x, and
ensure that you have the Use Automatic Reference Counting option unchecked. Click Next.

c04.indd 103c04.indd 103 05/12/11 1:42 PM05/12/11 1:42 PM

104 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

FIGURE 4-30

FIGURE 4-31

c04.indd 104c04.indd 104 05/12/11 1:42 PM05/12/11 1:42 PM

The Tabbed Application Template ❘ 105

 3. Examine the content of the project (see
Figure 4-32). In addition to the usual application
delegate fi les, it also contains two View
controllers (TabbedAppFirstViewController
and TabbedAppSecondViewController) and two
XIB fi les: TabbedAppFirstViewController.xib and
TabbedAppSecondViewController.xib.

 4. Examine the content of the TabbedAppAppDelegate.h fi le,
which is as follows:

#import <UIKit/UIKit.h>

@interface TabbedAppAppDelegate : UIResponder
<UIApplicationDelegate, UITabBarControllerDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) UITabBarController *tabBarController;

@end

Instead of the usual UIViewController class, you are now using the UITabBarController
class, which inherits from the UIViewController class. A TabBarController is a specialized
UIViewController class that contains a collection of View controllers.

 5. When the application has fi nished loading, it creates two instances of the two View
controllers and then assigns them to the tabBarController property, as evident in the
TabbedAppAppDelegate.m fi le:

#import “TabbedAppAppDelegate.h”

#import “TabbedAppFirstViewController.h”

#import “TabbedAppSecondViewController.h”

@implementation TabbedAppAppDelegate

@synthesize window = _window;
@synthesize tabBarController = _tabBarController;

- (void)dealloc
{
 [_window release];
 [_tabBarController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];

FIGURE 4-32

c04.indd 105c04.indd 105 05/12/11 1:42 PM05/12/11 1:42 PM

106 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 // Override point for customization after application launch.
 UIViewController *viewController1 = [[[TabbedAppFirstViewController alloc]
 initWithNibName:@”TabbedAppFirstViewController” bundle:nil] autorelease];
 UIViewController *viewController2 = [[[TabbedAppSecondViewController alloc]
 initWithNibName:@”TabbedAppSecondViewController” bundle:nil] autorelease];
 self.tabBarController = [[[UITabBarController alloc] init] autorelease];
 self.tabBarController.viewControllers = [NSArray arrayWithObjects:
 viewController1, viewController2, nil];
 self.window.rootViewController = self.tabBarController;
 [self.window makeKeyAndVisible];
 return YES;
}

 6. Press Command-R to run the application
on the iPhone Simulator (see Figure 4-33).
You can now click the Tab Bar Items at the
bottom of the screen to switch between
the two views.

How It Works

Basically, the magic of a Tabbed application
is in the use of the UITabBarController
class. The Tab Bar Controller contains a
collection of View Controllers. In this case,
it has two View controllers. The fi rst View
controller inside the UITabBarController
instance is always displayed when it is added to
the current view:

 self.tabBarController.viewControllers = [NSArray arrayWithObjects:
 viewController1, viewController2, nil];

When the user touches the Tab Bar Items, each corresponding View controller is loaded to display its
View window.

If you look at the content of the TabbedAppFirstViewController.m fi le, you will see that in the
initWithNibName:bundle: method, you create the title and image to be displayed on the Tab Bar:

#import “TabbedAppFirstViewController.h”

@implementation TabbedAppFirstViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 self.title = NSLocalizedString(@”First”, @”First”);
 self.tabBarItem.image = [UIImage imageNamed:@”first”];
 }
 return self;
}

FIGURE 4-33

c04.indd 106c04.indd 106 05/12/11 1:42 PM05/12/11 1:42 PM

Summary ❘ 107

The image in this case is referring to two images in your project: first.png (loaded when the
application is run on a non-retina display device) and first@2x.png (loaded when the application is
run on a retina display device).

SUMMARY

This chapter provided a detailed look at the various application templates provided by the iOS SDK:
Single View Application, Empty Application, Master-Detail Application, and Tabbed Application.
Each one uses a different type of View controller. It is important to have a good understanding
of how the various pieces of an iOS project are put together — knowing that enables you to build
applications with sophisticated user interfaces.

EXERCISES

 1. Write the code snippet that enables you to create a View controller programmatically.

 2. Write the code snippet that creates a view dynamically during runtime.

 3. Write the code snippet that wires an event of a view to an event handler.

 4. In the EmptyApp project created earlier in this chapter, create an action to display an alert view

when the button in the HelloWorldViewController class is pressed.

Answers to the exercises can be found in Appendix D.

c04.indd 107c04.indd 107 05/12/11 1:42 PM05/12/11 1:42 PM

108 ❘ CHAPTER 4 EXPLORING THE DIFFERENT VIEW CONTROLLERS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Types of iPhone/iPad

Applications

Single View application, Empty application, Master-Detail application,

and Tabbed Application

Coding a Label view label = [[UILabel alloc] initWithFrame:frame];
label.textAlignment = UITextAlignmentCenter;
label.font = [UIFont fontWithName:@”Verdana” size:20];
label.text = @”This is a label”;

Coding a Button view frame = CGRectMake(20, 60, 280, 50);
button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
button.frame = frame;
[button setTitle:@”OK” forState:UIControlStateNormal];
button.backgroundColor = [UIColor clearColor];

Wiring up an event to

an event handler

[button addTarget:self
action:@selector(buttonClicked:)
forControlEvents:UIControlEventTouchUpInside]

Switching to another

view

//---instantiate the second view controller---
mySecondViewController = [[MySecondViewController alloc]
initWithNibName:nil
bundle:nil];
//---add the view from the second view controller---
[window addSubview:mySecondViewController.view];

Animating the view

transition

[UIView transitionWithView:self.view
duration:0.5 options:UIViewAnimationOptionTransitionFlipFromRight
animations:^{
[self.view addSubview:secondViewController.view];
 }
completion:NULL];

c04.indd 108c04.indd 108 05/12/11 1:42 PM05/12/11 1:42 PM

Enabling Multi-Platform Support
for the iPhone and iPad

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Modifying a project’s Targeted Device Family setting to support

both the iPhone and the iPad

 ➤ How to programmatically detect the device being run

 ➤ How to create a Universal application

Besides the iPhone and iPod touch, another device using the iOS is the iPad. Out of the box,
the iPad will run your existing iPhone applications using the same screen size that is available
on the iPhone and iPod touch — 320 × 480 pixels. Therefore, your applications will utilize
only a portion of the screen. However, applications running in this default mode do not do
justice to the much bigger screen real estate afforded by the iPad. Clearly, this was merely an
interim size that can be used until developers port their application’s UI to the much bigger
iPad screen. In order to support the different devices, you need to modify your applications so
that they can take advantage of the capabilities of each device type.

Though the iPad is also running the iOS, you should be aware of some subtle differences when
porting your applications over to the new device. This chapter examines two techniques you can
use to port your existing iPhone apps to support both the iPhone and the iPad.

TECHNIQUE 1 — MODIFYING THE DEVICE

TARGET SETTING

The easiest way to ensure that your iPhone application runs as an iPad application (that is, full
screen) is to modify the Targeted Device Family setting in your Xcode project. The following
Try It Out shows you how to achieve this.

5

c05.indd 109c05.indd 109 05/12/11 1:43 PM05/12/11 1:43 PM

110 ❘ CHAPTER 5 ENABLING MULTI-PLATFORM SUPPORT FOR THE IPHONE AND IPAD

TRY IT OUT Modifying the Device Target Setting

codefi le MyiPhoneApp.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it MyiPhoneApp.
(You will also use the project name as the Class Prefi x.) Ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Select the MyiPhoneAppViewController.xib fi le to edit it in Interface Builder.

 3. Populate the View window with the following views (see Figure 5-1):

 ➤ Label (set it to display “Please enter your name”)

 ➤ Text fi eld

 ➤ Round Rect button (set it to display “OK”)

 4. Back in Xcode, press Command-R to test the application on the iPhone Simulator. You should see
the screen shown in Figure 5-2.

 5. At the top-left corner of the Xcode window, select the iPad 5.0 Simulator scheme (see Figure 5-3).

FIGURE 5-1

c05.indd 110c05.indd 110 05/12/11 1:43 PM05/12/11 1:43 PM

Technique 1 — Modifying the Device Target Setting ❘ 111

FIGURE 5-2 FIGURE 5-3

 6. Press Command-R again. This time, the application will be shown running in the iPhone
Simulator (simulating the iPad), running as an iPhone application (see Figure 5-4). This is the
default behavior of iPhone applications running on the iPad.

FIGURE 5-4

c05.indd 111c05.indd 111 05/12/11 1:43 PM05/12/11 1:43 PM

112 ❘ CHAPTER 5 ENABLING MULTI-PLATFORM SUPPORT FOR THE IPHONE AND IPAD

 7. In Xcode, select the MyiPhoneApp project name. In the Summary tab, change the Devices option
to Universal (see Figure 5-5). If you click the Build Settings tab now, you will see that the Targeted
Device Family setting is now set to iPhone/iPad (see Figure 5-6).

FIGURE 5-5

FIGURE 5-6

c05.indd 112c05.indd 112 05/12/11 1:43 PM05/12/11 1:43 PM

Technique 1 — Modifying the Device Target Setting ❘ 113

 8. Press Command-R to test the application on the iPhone Simulator (with the iPad 5.0 Simulator
scheme selected) again. This time, your application will run natively as an iPad application — that
is, full screen (see Figure 5-7).

FIGURE 5-7

How It Works

In this example, you fi rst created an iPhone application that you then tested on the iPhone Simulator,
simulating both the iPhone and the iPad. By default, all iPhone applications run in their original screen
size — 320 x 480 pixels. If you want your iPhone application to run full screen on the iPad, you have to
modify the Targeted Device Family setting in your project.

The Targeted Device Family setting provides three different values: iPhone, iPad, or iPhone/iPad.
Setting it to iPhone/iPad ensures that your application can automatically detect the device on which it is
running, and runs your application full screen.

Notice that the UI of the application is exactly the same as that on the iPhone. It is your responsibility to
re-layout your UI when the application is running on the iPad. One way would be to programmatically

c05.indd 113c05.indd 113 05/12/11 1:43 PM05/12/11 1:43 PM

114 ❘ CHAPTER 5 ENABLING MULTI-PLATFORM SUPPORT FOR THE IPHONE AND IPAD

reposition your views when your application detects that it is running on an iPad. Another way would
be to use the Size Inspector window to set the Autosize property of each view on the View window to
anchor the view to the edges of the screen. The next section describes how to detect the device on which
an application is currently running.

Detecting the Platform Programmatically

In order to re-layout your UI according to the device on which it is running, it is useful to be able
to programmatically detect if your application is running on an iPhone/iPod touch or an iPad. The
following Try It Out shows you how.

TRY IT OUT Detecting the Device

 1. Using the project created in the previous section, add the following statements shown in bold to
the MyiPhoneAppViewController.m fi le:

- (void)viewDidLoad
{
#if (__IPHONE_OS_VERSION_MAX_ALLOWED >= 30200)

 NSString *str;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 str = [NSString stringWithString:@”Running as an iPad application”];
 } else {
 str = [NSString stringWithString:
 @”Running as an iPhone/iPod touch application”];
 }

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Platform”
 message:str
 delegate:nil
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

#endif

 [super viewDidLoad];
}

 2. In Xcode, choose the iPhone 5.0 Simulator scheme and press
Command-R to test the application on the iPhone Simulator. You will
see the message displayed in Figure 5-8.

 3. In Xcode, choose the iPad 5.0 Simulator scheme and press
Command-R to test the application on the iPhone Simulator. You will
see the message displayed in Figure 5-9.

FIGURE 5-8

c05.indd 114c05.indd 114 05/12/11 1:43 PM05/12/11 1:43 PM

Technique 1 — Modifying the Device Target Setting ❘ 115

How It Works

The preceding code includes a conditional compilation directive to indicate that if the application
is compiled against the minimum iOS version of 3.2, then it will include a block of code to
programmatically detect the type of application it is currently running as:

 #if (__IPHONE_OS_VERSION_MAX_ALLOWED >= 30200)

 //---code within this block will be compiled if application is compiled
 // for iPhone OS 3.2 and above---

 #endif

To detect if the application is running on an iPad, you check the result of the UI_USER_INTERFACE_
IDIOM() function. This function returns the interface idiom supported by the current device. If it is an
iPad, then the result of this function will be UIUserInterfaceIdiomPad:

 NSString *str;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 str = [NSString stringWithString:@”Running as an iPad application”];

FIGURE 5-9

c05.indd 115c05.indd 115 05/12/11 1:43 PM05/12/11 1:43 PM

116 ❘ CHAPTER 5 ENABLING MULTI-PLATFORM SUPPORT FOR THE IPHONE AND IPAD

 } else {
 str = [NSString stringWithString:
 @”Running as an iPhone/iPod touch application”];

If the application is running as an iPhone application (that is, not full screen) on the iPad, the UI_USER_
INTERFACE_IDIOM() function will return UIUserInterfaceIdiomPhone.

TECHNIQUE 2 — CREATING UNIVERSAL APPLICATIONS

The previous technique shows how you can modify the Targeted Device Family setting to create a
single application that runs on both the iPhone and the iPad, called a Universal application. The
challenge is adapting the UI of the application for each platform — you have to programmatically
detect the type of device the application is running on and then modify the layout of the UI
dynamically.

Apple recommends that you create a Universal application, one that targets both the iPhone and
the iPad, with separate XIB fi les representing the UI for each platform. The following Try It Out
demonstrates how you can create a Universal application.

TRY IT OUT Creating a Universal Application

codefi le Universal.zip available for download at Wrox.com

 1. Using Xcode, create a Single View Application project and name it MyUniversalApp. Ensure that
you select Universal for the Device Family (see Figure 5-10). You will also use the project name as
the Class Prefi x. Ensure that the Use Automatic Reference Counting option is unchecked.

FIGURE 5-10

c05.indd 116c05.indd 116 05/12/11 1:43 PM05/12/11 1:43 PM

Technique 2 — Creating Universal Applications ❘ 117

 2. Observe that you now have two XIB fi les (see Figure 5-11) in your project.

FIGURE 5-11

 3 Select the MyUniversalAppViewController_iPhone.xib fi le to edit it in Interface Builder. 3.
Add a Label view to the View window and label it as shown in Figure 5-12.

FIGURE 5-12

 4. Select the MyUniversalAppViewController_iPad.xib fi le to edit it in Interface Builder. Add a
Label view to the middle of the View window and label it as shown in Figure 5-13.

c05.indd 117c05.indd 117 05/12/11 1:43 PM05/12/11 1:43 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

118 ❘ CHAPTER 5 ENABLING MULTI-PLATFORM SUPPORT FOR THE IPHONE AND IPAD

FIGURE 5-13

FIGURE 5-14 FIGURE 5-15

 5. Press Command-R to test the application on the iPhone Simulator, fi rst using the iPhone 5.0
Simulator scheme, followed by the iPad 5.0 Simulator scheme. You will see the application running
on the iPhone Simulator as an iPhone app (see Figure 5-14) and as an iPad app (see Figure 5-15).

c05.indd 118c05.indd 118 05/12/11 1:43 PM05/12/11 1:43 PM

Technique 2 — Creating Universal Applications ❘ 119

How It Works

This has been a very straightforward exercise. First, you created a Universal application using
Xcode. When you create a Universal application project, Xcode automatically creates two
XIB fi les for you – one for iPhone and one for iPad. When the application is loaded, it
automatically detects the platform on which it is running. This is evident in the application
delegate:

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
UIUserInterfaceIdiomPhone)
 {
 self.viewController =
 [[[MyUniversalAppViewController alloc]
 initWithNibName:@”MyUniversalAppViewController_iPhone”
 bundle:nil] autorelease];
 } else {
 self.viewController =
 [[[MyUniversalAppViewController alloc]
 initWithNibName:@”MyUniversalAppViewController_iPad”
 bundle:nil] autorelease];
 }
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

If the application is running on the iPhone, the MyUniversalAppViewController will be loaded using
the MyUniversalAppViewController_iPhone.xib fi le. If it is running on the iPad, then the same
View Controller will load the MyUniversalAppViewController_iPad.xib fi le. Note that in this case,
you have two different XIB fi les, and only one View Controller for the two XIB fi les. The important
thing to keep in mind about a Universal application is that you need to create separate XIB fi les for the
different platforms — one for the iPhone and one for the iPad. Once you do that, you can then load
the appropriate XIB fi les during runtime. Using this approach, you have only one executable for your
application.

It is worth pointing out that the MyUniversalApp-Info.plist fi le now has one additional key:
Supported interface orientations (iPad). The project will use this key (see Figure 5-16) to set the
supported interface orientation for the application when it is run as an iPad app.

c05.indd 119c05.indd 119 05/12/11 1:43 PM05/12/11 1:43 PM

120 ❘ CHAPTER 5 ENABLING MULTI-PLATFORM SUPPORT FOR THE IPHONE AND IPAD

FIGURE 5-16

CHOOSING A PORTING TECHNIQUE

Now that you have seen the two techniques for porting your iPhone application to support the iPad,
which technique should you adopt?

If your application does not have many UI changes when running on either the iPhone or the iPad,
using the fi rst technique (modifying the device target setting) is the easiest way to support two
platforms without changing much code, and it uses a single set of XIB fi les. All you need to do is
ensure that when the application runs on the iPad, the UI is rearranged correctly — this can be
done programmatically in your View Controller or set in Interface Builder. Most developers should
benefi t from creating Universal applications. When you have an application that supports two
different platforms, creating a Universal application enables you to have one code base with several
XIB fi les designed specifi cally for the iPhone and the iPad. This technique saves you the trouble of
uploading two different editions of your application to the AppStore. You need to upload just one
version of your application and it will automatically support both platforms.

SUMMARY

In this chapter, you have seen how to port an existing iPhone application to support both the iPhone
and the iPad. In general, the Universal application approach is the recommended one, as it enables
you to maintain just one code base that can target multiple platforms.

c05.indd 120c05.indd 120 05/12/11 1:43 PM05/12/11 1:43 PM

Summary ❘ 121

EXERCISES

 1. What function enables you to determine the device platform on which your application is currently

running?

 2. What are the diff erent values available for the Targeted Device Family setting in your Xcode

project?

Answers to the exercises can be found in Appendix D.

c05.indd 121c05.indd 121 05/12/11 1:43 PM05/12/11 1:43 PM

122 ❘ CHAPTER 5 ENABLING MULTI-PLATFORM SUPPORT FOR THE IPHONE AND IPAD

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Supporting an application

natively on the iPhone

and iPad

Change the Devices item in the Summary tab of your project to

Universal. Alternatively, modify the Targeted Device Family Setting

of the project in Xcode, setting it to iPhone/iPad.

Detecting the device

programmatically

Use the UI_USER_INTERFACE_IDIOM() function.

Creating a Universal

application

Choose the Universal option in the Targeted Device Family setting

when creating your new Xcode project.

c05.indd 122c05.indd 122 05/12/11 1:43 PM05/12/11 1:43 PM

Handling Keyboard Inputs

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to customize the keyboard for diff erent types of inputs

 ➤ How to hide the keyboard when you are done typing

 ➤ Detecting whether a keyboard is visible

 ➤ Using ScrollView to contain other views

 ➤ How to shift views to make way for the keyboard

One of the controversial aspects of the iPhone is the multi-touch keyboard that enables users
to input data into their iPhone. Critics of the iPhone have pointed out its lack of a physical
keyboard for data entry, whereas ardent supporters of virtual keyboards swear by its ease
of use.

What makes the iPhone keyboard so powerful is its intelligence in tracking what you type,
followed by suggestions for the word you are typing, and automatically correcting the
spelling and inserting punctuation for you. In addition, the keyboard knows when to
appear at the right time — it appears when you tap a Text Field or Text View, and it goes
away automatically when you tap a non-input view. You can also input data in different
languages.

For iPhone application programmers, the key concern is how to integrate the keyboard into
the application. How do you make the keyboard go away naturally when it is no longer
needed? And how do you ensure that the view with which the user is currently interacting
is not blocked by the keyboard? In this chapter, you learn various ways to deal with the
keyboard programmatically.

6

c06.indd 123c06.indd 123 05/12/11 1:44 PM05/12/11 1:44 PM

124 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

USING THE KEYBOARD

In iPhone programming, the views most commonly associated with the keyboard are the Text Field
and the Text View. When a Text Field is tapped (or clicked, if you are using the Simulator), the
keyboard is automatically displayed. The data that the user taps on the keyboard is then inserted
into the Text Field. The following Try It Out demonstrates this.

TRY IT OUT Using a Text Field for Inputs

codefi le KeyboardInputs.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it KeyboardInputs.
You will also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Select the KeyboardInputsViewController.xib fi le to edit it using Interface Builder.

 3. Populate the View window with the Label and Text Field views (see Figure 6-1). Set the Label to
display the text “Alphanumeric Input.”

 4. Press Command-R in Xcode to run the application on the iPhone Simulator. When the
application is loaded, the keyboard is initially hidden; and when the user clicks the Text Field,
the keyboard automatically appears (see Figure 6-2).

FIGURE 6-1 FIGURE 6-2

c06.indd 124c06.indd 124 05/12/11 1:44 PM05/12/11 1:44 PM

Customizing the Type of Inputs ❘ 125

How It Works

The beauty of the iPhone user interface is that when the system detects that the current active view
is a Text Field, the keyboard automatically appears; you don’t need to do anything to bring up the
keyboard. Using the keyboard, you can enter alphanumeric data as well as numbers and special
characters (such as symbols). The keyboard in the iPhone also supports characters of languages other
than English, such as Chinese and Hebrew.

CUSTOMIZING THE TYPE OF INPUTS

To learn more about the input behaviors, go to Interface Builder, select the Text Field, and view its
Attributes Inspector window (choose View ➪ Utilities ➪ Show Attributes Inspector). Figure 6-3
shows that window. In particular, pay attention to the section at the bottom that contains items
named Capitalization, Correction, Keyboard, and so on.

FIGURE 6-3

c06.indd 125c06.indd 125 05/12/11 1:44 PM05/12/11 1:44 PM

126 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

This section contains several items you can confi gure to determine how the keyboard handles the
text entered:

 ➤ Capitalization — Enables you to capitalize the words, the sentences, or all the characters of
the data entered via the keyboard.

 ➤ Correction — Enables you to indicate whether you want the keyboard to provide suggestions
for words that are not spelled correctly. You can also choose the Default option, which
defaults to the user’s global text correction settings.

 ➤ Keyboard — Enables you to choose the different types of keyboard for entering different
types of data. Figure 6-4 shows (from left to right) the keyboard confi gured with the
following Keyboard types: Email Address, Phone Pad, and Number Pad.

 ➤ Appearance — Enables you to choose how the keyboard should appear

 ➤ Return Key — Enables you to show different types of Return key in your keyboard (see
Figure 6-5). Figure 6-6 shows the keyboard set with the “Google” key serving as the Return
key (the Return key appears as “Search”). Alternatively, setting the Return key as “Search”
will also show the Return key as “Search.”

FIGURE 6-4

NOTE If the keyboard is confi gured using the Number Pad type, then no period
(“.”) is provided to enter decimal-point numbers. If you need to enable users to
enter a decimal number (such as currency), you should confi gure the keyboard
using the Numbers and Punctuation type.

c06.indd 126c06.indd 126 05/12/11 1:44 PM05/12/11 1:44 PM

Customizing the Type of Inputs ❘ 127

FIGURE 6-5

FIGURE 6-6

 ➤ Auto-Enable Return Key check box — Indicates that if no
input is entered for a fi eld, the Return key will be disabled
(grayed out). It is enabled again if at least one character
is entered.

 ➤ Secure check box — Indicates whether the input will be masked,
or hidden from view (see Figure 6-7). This is usually used for
password input.

Dismissing the Keyboard

You know that the keyboard in the iPhone automatically appears when a
Text Field is selected. What about making it go away when you are done
typing? You have two ways to dismiss the keyboard.

FIGURE 6-7

NOTE On the iPad, you can make the keyboard go away without any
programming eff ort on your part — simply tapping the bottom right key on
the keyboard dismisses it.

c06.indd 127c06.indd 127 05/12/11 1:44 PM05/12/11 1:44 PM

128 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

First, you can dismiss the keyboard by tapping the Return key on the keyboard. This method
requires you to handle the Did End On Exit event of the Text Field that caused the keyboard to
appear. This method is demonstrated in the following Try It Out.

Second, you can dismiss the keyboard when the user taps outside a Text Field. This method, which
requires some additional coding, makes your application much more user-friendly. The subsequent
Try It Out illustrates this method.

TRY IT OUT Dismissing the Keyboard (Technique 1)

 1. Using the KeyboardInputs project, edit the KeyboardInputsViewController.h fi le by adding
the following bold statements:

#import <UIKit/UIKit.h>

@interface KeyboardInputsViewController : UIViewController

-(IBAction) doneEditing:(id) sender;

@end

 2. Select the KeyboardInputsViewController.xib
fi le to edit it in Interface Builder. Right-click the
Text Field in the View window and then click
the circle next to the Did End On Exit event
and drag it to the File’s Owner item. The
doneEditing: action you have just created
should appear. Select it. Figure 6-8 shows the
event connected to the File’s Owner item.

 3. In the KeyboardInputsViewController.m fi le,
provide the implementation for the doneEditing:
action:

#import “KeyboardInputsViewController.h”

@implementation KeyboardInputsViewController

-(IBAction) doneEditing:(id) sender {
 [sender resignFirstResponder];
}

 4. Press Command-R to run the application on the
iPhone Simulator.

FIGURE 6-8

c06.indd 128c06.indd 128 05/12/11 1:44 PM05/12/11 1:44 PM

Customizing the Type of Inputs ❘ 129

5. When the application appears on the iPhone Simulator, tap the Text Field. The keyboard should
appear. Using the keyboard, type some text into the view and click the Return key when you are
done. The keyboard now goes away.

How It Works

What you have just done is connect the Did End On Exit event of the Text Field with the doneEditing:
action you have created. When you are editing the content of a Text Field using the keyboard, clicking the
Return key on the keyboard fi res the Did End On Exit event of the Text Field. In this case, it invokes the
doneEditing: action, which contains the following statement:

 [sender resignFirstResponder];

The sender in this case refers to the Text Field, and resignFirstResponder asks the Text Field to
resign its First-Responder status. Essentially, it means that you do not want to interact with the Text
Field anymore and that the keyboard is no longer needed. Hence, the keyboard should hide itself.

NOTE The First Responder in a view always refers to the current view with
which the user is interacting. In this example, when you click the Text Field, it
becomes the First Responder and activates the keyboard automatically.

An alternative way to hide the keyboard is when the user taps an area outside of the Text
Field. This method is more natural and does not require the user to manually tap the Return
key on the keyboard to hide it. The following Try It Out shows how this method can be
implemented.

TRY IT OUT Dismissing the Keyboard (Technique 2)

1. Using the KeyboardInputs project, select the KeyboardInputsViewController.xib fi le to edit it
using Interface Builder.

 2. Add a Round Rect Button to the View window (see Figure 6-9).

 3. With the Round Rect Button selected, choose Editor ➪ Arrange ➪ Send to Back. This makes the
button appear behind the other views.

 4. Resize the Round Rect Button so that it now covers the entire screen (see Figure 6-10).

 5. In the Attributes Inspector window, set the Type of the Round Rect Button to Custom (see
Figure 6-11).

c06.indd 129c06.indd 129 05/12/11 1:44 PM05/12/11 1:44 PM

130 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

FIGURE 6-10

FIGURE 6-11

FIGURE 6-9

c06.indd 130c06.indd 130 05/12/11 1:44 PM05/12/11 1:44 PM

Customizing the Type of Inputs ❘ 131

6. In Xcode, edit the KeyboardInputsViewController.h fi le by adding the following bold
statements:

#import <UIKit/UIKit.h>

@interface KeyboardInputsViewController : UIViewController
{
 IBOutlet UITextField *textField;
}

@property (nonatomic, retain) UITextField *textField;

-(IBAction) doneEditing:(id) sender;
-(IBAction) bgTouched:(id) sender;

@end

 7. In Interface Builder, Control-click and drag the File’s Owner item onto the Text Field. The
textField outlet should appear. Select it.

 8. Control-click and drag the Round Rect Button view onto the File’s Owner item in the
KeyboardInputsViewController.xib window. Select the bgTouched: action (see Figure 6-12).

FIGURE 6-12

NOTE The Touch Up Inside event of the Round Rect Button is wired to the
bgTouched: action.

c06.indd 131c06.indd 131 05/12/11 1:44 PM05/12/11 1:44 PM

132 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

 9. In the KeyboardInputsViewController.m fi le, add the following statements highlighted in bold:

#import “KeyboardInputsViewController.h”

@implementation KeyboardInputsViewController

@synthesize textField;

-(IBAction) bgTouched:(id) sender {
 [textField resignFirstResponder];
}

-(IBAction) doneEditing:(id) sender {
 [sender resignFirstResponder];
}

-(void) dealloc {
 [textField release];
 [super dealloc];
}

 10. That’s it. Press Command-R in Xcode to deploy the application onto the iPhone Simulator. Then,
try the following:

 ➤ Click the Text Field to bring up the keyboard.

 ➤ When you are done, click the Return key on the keyboard to dismiss it. Alternatively, click
any of the empty spaces outside the Text Field to dismiss the keyboard.

How It Works

In this example, you added a Round Rect Button to cover up all the empty spaces in the View window
of your application. Essentially, the button acts as a net to trap all touches outside of the Text Field on
the View window, so when the user clicks (or taps, on a real device) the screen outside the keyboard
and the Text Field, the Round Rect Button fi res the Touch Up Inside event, which is handled by
the bgTouched: action. In the bgTouched: action, you explicitly asked textField to resign its First-
Responder status, which causes the keyboard to disappear.

The technique used in this example applies even if you have multiple Text Field views on your
view. Suppose you have three Text Field views, with outlets named textField, textField2, and
textField3. In that case, the bgTouched: action would look like this:

-(IBAction) bgTouched:(id) sender {
 [textField resignFirstResponder];
 [textField2 resignFirstResponder];
 [textField3 resignFirstResponder];
}

When the bgTouched: action is invoked, all three TextField views are asked to relinquish their First-
Responder status. Calling the resignFirstResponder method on a view that is currently not the First
Responder is harmless; hence, the preceding statements are safe and will not cause a runtime exception.

c06.indd 132c06.indd 132 05/12/11 1:44 PM05/12/11 1:44 PM

Detecting the Presence of the Keyboard ❘ 133

Automatically Displaying the Keyboard When

the View Window Is Loaded

Sometimes you might want to straightaway set a Text Field as the active view and display the keyboard
without waiting for the user to do so. In such cases, you can use the becomeFirstResponder method
of the view. The following code shows that the Text Field will be the First Responder as soon as the
View window is loaded:

- (void)viewDidLoad {
 [textField becomeFirstResponder];
 [super viewDidLoad];
}

DETECTING THE PRESENCE OF THE KEYBOARD

Up to this point, you have seen the various ways to hide the keyboard after you are done using it.
However, note one problem: When the keyboard appears, it takes up a signifi cant portion of the
screen. If your Text Field is located at the bottom of the screen, it would be covered by the keyboard.
As a programmer, it is your duty to ensure that the view is relocated to a visible portion of the
screen. Surprisingly, this is not taken care of by the SDK; you have to do the hard work yourself.

UNDERSTANDING THE RESPONDER CHAIN

The prior Try It Out is a good example of the responder chain in action. In the
iPhone, events are passed through a series of event handlers known as the responder
chain. As you touch the screen of your iPhone, the iPhone generates events that are
passed up the responder chain. Each object in the responder chain checks whether
it can handle the event. In the preceding example, when the user taps on the Label,
the Label checks whether it can handle the event. Because the Label does not
handle the Touch event, it is passed up the responder chain. The large background
button that you have added is now next in line to examine the event. Because it
handles the Touch Up Inside event, the event is consumed by the button.

In summary, objects higher up in the responder chain examine the event fi rst and
handle it if it is applicable. Any object can then stop the propagation of the event
up the responder chain, or pass the event up the responder chain if it only partially
handles the event.

NOTE The keyboard in the iPhone (3G and 3GS) takes up 216 pixels (432 pixels
for iPhone 4 and iPhone 4S) in height when in portrait mode, and 162 pixels (324
pixels for iPhone 4 and iPhone 4S) when in landscape mode. For the iPad, the
keyboard takes up 264 pixels in height when in portrait mode, and 352 pixels
when in landscape mode.

c06.indd 133c06.indd 133 05/12/11 1:44 PM05/12/11 1:44 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

134 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

First, though, it is important that you understand a few key concepts related to the keyboard:

 ➤ You need to be able to programmatically know when a keyboard is visible or hidden.
To do so, your application needs to register for the UIKeyboardDidShowNotification
and UIKeyboardDidHideNotification notifi cations.

 ➤ You also need to know when and which Text Field is currently being edited so that you can
relocate it to a visible portion of the screen. You can determine this information through the
textFieldDidBeginEditing: method declared in the UITextFieldDelegate protocol.

Confused? Worry not; the following sections make it all clear.

Using the Scroll View

The key to relocating the view that is currently being hidden by the keyboard is to use a Scroll
View to contain all the views on the View window. When a view (such as the Text Field) is hidden
by the keyboard when the user taps on it, you can scroll all the views contained within the Scroll
View upwards so that the view currently responding to the tap is visible. Before you learn how
to do that, however, you need to fi rst understand how the Scroll View works. The following
Try It Out shows you that.

TRY IT OUT Understanding the Scroll View

codefi le Scroller.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it Scroller. You
will also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Select the ScrollerViewController.xib fi le to edit it in Interface Builder.

 3. Populate the View window with a Scroll View (see Figure 6-13).

 4. Add two Round Rect Buttons to the Scroll View (see Figure 6-14).

 5. To add more views to the Scroll View so that the user can view more than what the View window
typically displays at one time, perform the following steps:

 a. Click the Scroll View to select it. If you cannot select it, click on the title bar of the View
window fi rst and then click the Scroll View again.

 b. Shift the Scroll View upwards (see the left of Figure 6-15).

 c. Expand the height of the Scroll View by clicking and dragging the center dot of the Scroll
View downwards. The Scroll View should now look like what is shown on the right in
Figure 6-15.

 6. Add a Text Field to the bottom of the Scroll View (see Figure 6-16).

c06.indd 134c06.indd 134 05/12/11 1:44 PM05/12/11 1:44 PM

Detecting the Presence of the Keyboard ❘ 135

FIGURE 6-13 FIGURE 6-14

FIGURE 6-15

c06.indd 135c06.indd 135 05/12/11 1:44 PM05/12/11 1:44 PM

136 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

 7. Select the Scroll View and view its Size Inspector window (View ➪ Utilities ➪ Show Size Inspector;
see Figure 6-17). Observe that its size is 320 × 713 points (in my case). If you do not see the same
size as what I have, this is a good time to adjust the size so that it is the same as mine. You will
need to use this value in your code, which you do next.

FIGURE 6-17

FIGURE 6-16

c06.indd 136c06.indd 136 05/12/11 1:44 PM05/12/11 1:44 PM

Detecting the Presence of the Keyboard ❘ 137

8. Back in Xcode, add the following code in bold to the ScrollViewController.h fi le:

#import <UIKit/UIKit.h>

@interface ScrollerViewController : UIViewController
{
 IBOutlet UIScrollView *scrollView;
}

@property (nonatomic, retain) UIScrollView *scrollView;

@end

 9. In Interface Builder, Control-click and drag the File’s Owner item over to the Scroll View. Select
scrollView.

 10. Insert the following bold code in the ScrollerViewController.m fi le:

#import “ScrollerViewController.h”

@implementation ScrollerViewController

@synthesize scrollView;

- (void)viewDidLoad {
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 [scrollView setContentSize:CGSizeMake(320, 713)];
 [super viewDidLoad];
}

- (void)dealloc {
 [scrollView release];
 [super dealloc];
}

 11. To test the application on the iPhone Simulator, press Command-R. You can now fl ick the Scroll
View up and down to reveal all the views contained in it (see Figure 6-18)!

NOTE The unit of measurement used in Interface Builder is points. For the
iPhone 3G/3GS, a point corresponds to a pixel. For the iPhone 4 and iPhone 4S,
a point is equal to two pixels. Specifying the size in points enables your application
to work correctly on both the older and newer iPhones. The conversion between
points and pixels is done automatically by the iOS.

c06.indd 137c06.indd 137 05/12/11 1:44 PM05/12/11 1:44 PM

138 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

 12. Tap on the Text Field located at the bottom. The keyboard will automatically appear. However,
observe that the Text Field is now covered by the keyboard (see Figure 6-19). You need to ensure
that the current view is not hidden by the keyboard; the next section shows you how.

FIGURE 6-19FIGURE 6-18

How It Works

This example is pretty straightforward. You use the Scroll View as a container for other views. If you
have more views than what you can display on the screen, you can expand the Scroll View and put all
your views in it. The important point to remember is that you need to set the content size and the frame
size of the Scroll View. The frame size determines the visible area of the Scroll View. The content size sets
the overall size of the Scroll View. As long as the content size is larger than the frame size, the Scroll View
will be scrollable.

Scrolling Views When the Keyboard Appears

Now that you understand how the Scroll View works, the following activity explains how you can
scroll all the views contained within it when the keyboard appears.

c06.indd 138c06.indd 138 05/12/11 1:44 PM05/12/11 1:44 PM

Detecting the Presence of the Keyboard ❘ 139

TRY IT OUT Shifting Views

 1. Using the same project created in the previous section, add a few more Labels and Text Fields to
the bottom of the Scroll View (see Figure 6-20) in Interface Builder.

FIGURE 6-20

 2. In the ScrollerViewController.h fi le, add the following code in bold:

#import <UIKit/UIKit.h>

@interface ScrollerViewController : UIViewController
{
 IBOutlet UIScrollView *scrollView;

 UITextField *currentTextField;
 BOOL keyboardIsShown;
}

@property (nonatomic, retain) UIScrollView *scrollView;

@end

 3. In Interface Builder, right-click each Text Field and connect the delegate outlet to the File’s
Owner item (see Figure 6-21).

c06.indd 139c06.indd 139 05/12/11 1:44 PM05/12/11 1:44 PM

140 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

4. Change the content size of the Scroll View to match its new size:

- (void)viewDidLoad {
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 [scrollView setContentSize:CGSizeMake(320, 1040)];
 [super viewDidLoad];
}

FIGURE 6-21

NOTE Step 3 is important because it enables the various events
(textFieldDidBeginEditing:, textFieldDidEndEditing:, and
textFieldShouldReturn:) to be handled by your View Controller.

NOTE You can confi rm the new content size of the Scroll View by looking at its
Size Inspector window.

c06.indd 140c06.indd 140 05/12/11 1:44 PM05/12/11 1:44 PM

Detecting the Presence of the Keyboard ❘ 141

 5. Add the following methods to the ScrollerViewController.m fi le:

//—-before the View window appears—-
-(void) viewWillAppear:(BOOL)animated {
 //—-registers the notifications for keyboard—-
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidShow:)
 name:UIKeyboardDidShowNotification
 object:self.view.window];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillAppear:animated];
}

//—-when a Text Field begins editing—-
-(void) textFieldDidBeginEditing:(UITextField *)textFieldView {
 currentTextField = textFieldView;
}

//—-when the user taps on the return key on the keyboard—-
-(BOOL) textFieldShouldReturn:(UITextField *) textFieldView {
 [textFieldView resignFirstResponder];
 return NO;
}

//—-when a TextField view is done editing—-
-(void) textFieldDidEndEditing:(UITextField *) textFieldView {
 currentTextField = nil;
}

//—-when the keyboard appears—-
-(void) keyboardDidShow:(NSNotification *) notification {
 if (keyboardIsShown) return;

 NSDictionary* info = [notification userInfo];

 //—-obtain the size of the keyboard—-
 NSValue *aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@”%f”, keyboardRect.size.height);

 //—-resize the scroll view (with keyboard)—-
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height -= keyboardRect.size.height;

c06.indd 141c06.indd 141 05/12/11 1:44 PM05/12/11 1:44 PM

142 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

 scrollView.frame = viewFrame;

 //—-scroll to the current text field—-
 CGRect textFieldRect = [currentTextField frame];
 [scrollView scrollRectToVisible:textFieldRect animated:YES];

 keyboardIsShown = YES;
}

//—-when the keyboard disappears—-
-(void) keyboardDidHide:(NSNotification *) notification {
 NSDictionary* info = [notification userInfo];

 //—-obtain the size of the keyboard—-
 NSValue* aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 //—-resize the scroll view back to the original size
 // (without keyboard)—-
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height += keyboardRect.size.height;
 scrollView.frame = viewFrame;

 keyboardIsShown = NO;
}

//—-before the View window disappear—-
-(void) viewWillDisappear:(BOOL)animated {
 //—-removes the notifications for keyboard—-
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidShowNotification
 object:nil];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillDisappear:animated];
}

 6. Press Command-R to test the application on the iPhone Simulator.
Tap on the various Text Fields and observe the different views
scrolling into position (see Figure 6-22).

How It Works

The fi rst thing you did was connect the delegate outlet of each Text
Field to the File’s Owner item. This step is important, as it ensures
that when any of the Text Fields are tapped, the following three events
will be handled:

FIGURE 6-22

c06.indd 142c06.indd 142 05/12/11 1:44 PM05/12/11 1:44 PM

Detecting the Presence of the Keyboard ❘ 143

 ➤ textFieldDidBeginEditing:

 ➤ textFieldDidEndEditing:

 ➤ textFieldShouldReturn:

Because the Scroll View contained more views than it could display at one time, you needed to change
its content size:

- (void)viewDidLoad {
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 [scrollView setContentSize:CGSizeMake(320, 1040)];
 [super viewDidLoad];
}

Next, before the View window appeared, you registered two notifi cations: UIKeyboardDidShowNotification
and UIKeyboardDidHideNotification. These two notifi cations enable you to know when the keyboard
has either appeared or disappeared. You registered the notifi cations via the viewWillAppear: method:

//—-before the View window appears—-
-(void) viewWillAppear:(BOOL)animated {
 //—-registers the notifications for keyboard—-
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidShow:)
 name:UIKeyboardDidShowNotification
 object:self.view.window];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillAppear:animated];
}

When any of the Text Fields are tapped, the textFieldDidBeginEditing: method will be called:

//—-when a Text Field begins editing—-
-(void) textFieldDidBeginEditing:(UITextField *)textFieldView {
 currentTextField = textFieldView;
}

Here, you saved a copy of the Text Field currently being tapped. When the user taps the Return key on
the keyboard, the textFieldShouldReturn: method will be called:

//—-when the user taps on the return key on the keyboard—-
-(BOOL) textFieldShouldReturn:(UITextField *) textFieldView {
 [textFieldView resignFirstResponder];
 return NO;
}

c06.indd 143c06.indd 143 05/12/11 1:44 PM05/12/11 1:44 PM

144 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

Next, you hid the keyboard by calling the resignFirstResponder method of the Text Field, which
then triggers another event, textFieldDidEndEditing:. Here, you set the currentTextField to nil:

//—-when a TextField view is done editing—-
-(void) textFieldDidEndEditing:(UITextField *) textFieldView {
 currentTextField = nil;
}

When the keyboard appears, it calls the keyboardDidShow: method (which is set via the notifi cation):

//—-when the keyboard appears—-
-(void) keyboardDidShow:(NSNotification *) notification {
 if (keyboardIsShown) return;

 NSDictionary* info = [notification userInfo];

 //—-obtain the size of the keyboard—-
 NSValue *aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@”%f”, keyboardRect.size.height);

 //—-resize the scroll view (with keyboard)—-
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height -= keyboardRect.size.height;
 scrollView.frame = viewFrame;

 //—-scroll to the current text field—-
 CGRect textFieldRect = [currentTextField frame];
 [scrollView scrollRectToVisible:textFieldRect animated:YES];

 keyboardIsShown = YES;
}

This obtains the size of the keyboard — in particular, its height. This is important, as the keyboard has
different heights depending on whether it is in landscape mode or portrait mode. You then resize the
view frame of the Scroll View and scroll the Text Field until it is visible.

What happens when the keyboard is visible and the user taps on another Text Field? In this case,
the keyboardDidShow: method will be called again, but because the keyboardIsShown method is
set to YES, the method immediately exits. If the Text Field that is tapped is partially hidden, it will
automatically be scrolled to a visible region on the View window.

When the keyboard disappears, the keyboardDidHide: method is called:

//—-when the keyboard disappears—-
-(void) keyboardDidHide:(NSNotification *) notification {
 NSDictionary* info = [notification userInfo];

 //—-obtain the size of the keyboard—-
 NSValue* aValue =

c06.indd 144c06.indd 144 05/12/11 1:44 PM05/12/11 1:44 PM

Summary ❘ 145

 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 //—-resize the scroll view back to the original size
 // (without keyboard)—-
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height += keyboardRect.size.height;
 scrollView.frame = viewFrame;

 keyboardIsShown = NO;
}

This restores the size of the view frame of the Scroll View to the one without the keyboard.

Finally, before the View window disappears, you remove the notifi cations that you set earlier:

//—-before the View window disappear—-
-(void) viewWillDisappear:(BOOL)animated {
 //—-removes the notifications for keyboard—-
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidShowNotification
 object:nil];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardDidHideNotification
 object:nil];
 [super viewWillDisappear:animated];
}

SUMMARY

In this chapter, you learned various techniques for dealing with the keyboard in your iPhone
application. In particular, this chapter showed you how to hide the keyboard when you are done
entering data, how to detect the presence or absence of the keyboard, and how to ensure that views
are not blocked by the keyboard.

c06.indd 145c06.indd 145 05/12/11 1:44 PM05/12/11 1:44 PM

146 ❘ CHAPTER 6 HANDLING KEYBOARD INPUTS

EXERCISES

 1. How do you hide the keyboard for a UITextField object?

 2. How do you detect whether the keyboard is visible or not?

 3. How do you get the size of the keyboard?

 4. How do you display more views than the View window can display at any one time?

Answers to the exercises can be found in Appendix D.

c06.indd 146c06.indd 146 05/12/11 1:44 PM05/12/11 1:44 PM

Summary ❘ 147

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Making the keyboard go away Use the resignFirstResponder method on a UITextField

object to resign its First-Responder status.

Displaying the diff erent types

of keyboard displayed

Modify the keyboard type by changing the text input traits of a

UITextField object in the Attributes Inspector window.

Handling the Return key of the

keyboard

Either handle the Did End On Exit event of a UITextField

object or implement the textFieldShouldReturn: method

in your View Controller (remember to ensure that your View

Controller class is the delegate for the UITextField object).

Making a Scroll View scrollable Set its frame size and content size. As long as the content size is

larger than the frame size, the Scroll View is scrollable.

Detecting when the keyboard

appears or hides

Register for two notifi cations: UIKeyboardDidShowNotification

and UIKeyboardDidHideNotification.

Detecting which UITextField

object has started editing

Implement the textFieldDidBeginEditing: method in your

View Controller.

Detecting which UITextField

object has ended editing

Implement the textFieldDidEndEditing: method in your View

Controller.

c06.indd 147c06.indd 147 05/12/11 1:44 PM05/12/11 1:44 PM

c06.indd 148c06.indd 148 05/12/11 1:44 PM05/12/11 1:44 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Supporting Screen Rotations

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to support the four diff erent types of screen orientation

 ➤ Events that are fi red when a device rotates

 ➤ How to reposition the views in a View window when the orientation

of a device changes

 ➤ How to change the screen rotation dynamically during runtime

 ➤ How to fi x the orientation of your application before it is loaded

The Hello World! application in Chapter 2 showed you how your iPhone application supports
viewing in either the portrait or landscape mode. This chapter dives deeper into the topic
of screen orientation. In particular, it demonstrates how to manage the orientation of your
application when the device is rotated. You will also learn how to reposition your views when
the device is rotated so that your application can take advantage of the change in screen
dimensions.

RESPONDING TO DEVICE ROTATIONS

One of the features that modern mobile devices support is the capability to detect the current
orientation — portrait or landscape — of the device. An application can take advantage
of this to re-adjust the device’s screen to maximize use of the new orientation. A good
example is Safari on the iPhone. When you rotate the device to landscape orientation, Safari
automatically rotates its view so that you have a wider screen to view the content of the page
(see Figure 7-1).

The iOS SDK contains several events that you can handle to ensure that your application is
aware of changes in orientation. Check them out in the following Try It Out.

7

c07.indd 149c07.indd 149 05/12/11 1:47 PM05/12/11 1:47 PM

150 ❘ CHAPTER 7 SUPPORTING SCREEN ROTATIONS

FIGURE 7-1

TRY IT OUT Supporting Diff erent Screen Orientations

codefi le ScreenRotations.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it
ScreenRotations. You will also use the project name as the Class Prefi x and ensure that you
have the Use Automatic Reference Counting option unchecked.

 2. Press Command-R to test the application on the iPhone 4 Simulator.

 3. Change the iPhone Simulator orientation by pressing either Command-→ (rotate it to the right)
or Command-← (rotate it to the left) key combination. Observe that the application stays upright
when the Simulator is either in portrait (upright) mode or in landscape mode (see Figure 7-2).
However, if the Simulator is in the portrait upside down mode, the application’s orientation stays
in its previous orientation (before it was rotated).

FIGURE 7-2

c07.indd 150c07.indd 150 05/12/11 1:47 PM05/12/11 1:47 PM

Responding to Device Rotations ❘ 151

How It Works

By default, the iPhone Application project you created using Xcode supports three screen orientations:
portrait and the two landscape modes (landscape left and landscape right). This is evident in the
shouldAutorotateToInterfaceOrientation: method defi ned in the View controller:

(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

The shouldAutorotateToInterfaceOrientation: method is called when the View window is
loaded and whenever orientation of the device changes. This method passes in a single parameter — the
orientation to which the device has been changed. The returning value of this method determines whether
the current orientation is supported. For a particular orientation to be supported, this method must
return YES. In other words, the preceding states that the application should stay upright for all orientation
modes, except when the device is in the portrait upside-down mode (see Figure 7-3).

FIGURE 7-3

NOTE On the iPad, the default behavior of an application supports all
orientations — portrait as well as landscape modes. While you can specify the
specifi c orientations supported by your application, based on the UI guidelines
provided by Apple, iPad applications should support all screen orientations.

c07.indd 151c07.indd 151 05/12/11 1:47 PM05/12/11 1:47 PM

152 ❘ CHAPTER 7 SUPPORTING SCREEN ROTATIONS

To support all orientations, simply return a YES to allow your application to display upright for all
orientations:

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 //return (interfaceOrientation !=
 UIInterfaceOrientationPortraitUpsideDown);
 return YES;
}

NOTE On the iPhone and iPad, screen rotation is automatically handled
by the OS. When the OS detects a change in screen orientation, it fi res the
shouldAutorotateToInterfaceOrientation: event; it is up to the developer to
decide how the application should display in the target orientation.

NOTE To easily diff erentiate between UIInterfaceOrientationLandscapeLeft
and UIInterfaceOrientationLandscapeRight, just remember that
UIInterfaceOrientationLandscapeLeft refers to the Home button positioned
on the left, and UIInterfaceOrientationLandscapeRight refers to the Home
button positioned on the right.

Rotating to a Diff erent Screen Orientation

You have a total of four constants to use for specifying screen orientations:

 ➤ UIInterfaceOrientationPortrait — Displays the screen in portrait mode

 ➤ UIInterfaceOrientationPortraitUpsideDown — Displays the screen in portrait mode but
with the Home button at the top of the screen

 ➤ UIInterfaceOrientationLandscapeLeft — Displays the screen in landscape mode with
the Home button on the left

 ➤ UIInterfaceOrientationLandscapeRight — Displays the screen in landscape mode with
the Home button on the right

If you want your application to support specifi c screen orientations, override the
shouldAutorotateTo-InterfaceOrientation: method and then use the || (logical OR) operator
to specify all the orientations it supports, like this:

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations

c07.indd 152c07.indd 152 05/12/11 1:47 PM05/12/11 1:47 PM

Responding to Device Rotations ❘ 153

 return (interfaceOrientation == UIInterfaceOrientationPortrait ||
 interfaceOrientation == UIInterfaceOrientationLandscapeLeft);
}

The preceding code snippet enables your application to support both the portrait and the landscape
left modes.

Handling Rotations

The View Controller declares several methods that you can implement to handle the rotation of the
screen. The ability to implement these methods is important because it enables you to reposition the
views on the View window, or you can stop media playback while the screen is rotating. You can
implement the following methods:

 ➤ willAnimateFirstHalfOfRotationToInterfaceOrientation:

 ➤ willAnimateSecondHalfOfRotationFromInterfaceOrientation:

 ➤ willRotateToInterfaceOrientation:

 ➤ willAnimateRotationToInterfaceOrientation:

The willAnimateFirstHalfOfRotationToInterfaceOrientation: method is called just before
the rotation of the View window starts, whereas the willAnimateSecondHalfOfRotationFrom
InterfaceOrientation: method is fi red when the rotation is halfway through. In iOS 5, these
two methods have been deprecated in favor of the smoother, single-stage animation using either the
willRotateToInterfaceOrientation: or the willAnimateRotationToInterfaceOrientation:
methods.

The next two sections take a more detailed look at the last two methods.

 willRotateToInterfaceOrientation:

The fi rst two methods mentioned in the previous section are called consecutively — fi rst
willAnimateFirstHalfOfRotationTo-InterfaceOrientation:, followed by
willAnimateSecondHalfOfRotationFromInterface-Orientation. If you don’t need two separate
methods for handling rotation, you can use the simpler willRotateToInterfaceOrientation: method
(recommended in iOS 5).

The willRotateToInterfaceOrientation: method is invoked before the orientation starts.
In contrast to the previous two events, this is a one-stage process. Note that if you implement
this method, the willAnimateFirstHalfOfRotationToInterfaceOrientation: and
willAnimateSecondHalfOfRotationFromInterfaceOrientation: methods will still be called (if
you implemented them).

The method looks like this:

- (void)willRotateToInterfaceOrientation:
(UIInterfaceOrientation) toInterfaceOrientation
 duration:(NSTimeInterval) duration {

}

c07.indd 153c07.indd 153 05/12/11 1:47 PM05/12/11 1:47 PM

154 ❘ CHAPTER 7 SUPPORTING SCREEN ROTATIONS

The toInterfaceOrientation parameter indicates the orientation to which it is changing, and the
duration parameter indicates the duration of the rotation, in seconds.

willAnimateRotationToInterfaceOrientation:

The willAnimateRotationToInterfaceOrientation: event is called before the animation of the
rotation starts.

NOTE If you handle both the willRotateToInterfaceOrientation: and the
willAnimateRotationToInterfaceOrientation: methods, the former will be
called fi rst, followed by the latter.

NOTE If you implement this method, the
willAnimateFirstHalfOfRotationTo-InterfaceOrientation:

and willAnimateSecondHalfOfRotationFrom-InterfaceOrientation:
events will not be called anymore (if you implemented them).

The method looks like this:

- (void)willAnimateRotationToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
 duration:(NSTimeInterval)duration {

}

The interfaceOrientation parameter specifi es the target orientation to which it is rotating.

In the following Try It Out, you will reposition the views on your user interface (UI) when the
device changes orientation.

TRY IT OUT Repositioning Views during Orientation Change

1. Using the project created earlier, select the ScreenRotationsViewController.xib fi le and add a
Round Rect Button to the View window (see Figure 7-4).

c07.indd 154c07.indd 154 05/12/11 1:47 PM05/12/11 1:47 PM

Responding to Device Rotations ❘ 155

 2. Observe its size and positioning by viewing the Size Inspector window. Here, its position is
(20,20) and its size is 233 by 37 points.

 3. Rotate the orientation of the View window from portrait to landscape mode by changing its
Orientation attribute to Landscape in the Attributes Inspector window (see Figure 7-5).

FIGURE 7-4

FIGURE 7-5

c07.indd 155c07.indd 155 05/12/11 1:47 PM05/12/11 1:47 PM

156 ❘ CHAPTER 7 SUPPORTING SCREEN ROTATIONS

 4. Reposition the Round Rect Button by relocating it to the bottom-right corner of the View window
(see Figure 7-6). Also observe and take note of its new position.

FIGURE 7-6

 5. In the ScreenRotationsViewController.h fi le, add the following code shown in bold:

#import <UIKit/UIKit.h>

@interface ScreenRotationsViewController : UIViewController
{
 IBOutlet UIButton *btn;
}

@property (nonatomic, retain) UIButton *btn;

@end

 6. In Interface Builder, connect the outlet you have created by Control-clicking the File’s Owner item
and dragging over to the Round Rect Button. Select btn.

 7. In the ScreenRotationsViewController.m fi le, add the following bold code:

#import “ScreenRotationsViewController.h”

@implementation ScreenRotationsViewController

@synthesize btn;

-(void) positionViews {
 UIInterfaceOrientation destOrientation = self.interfaceOrientation;
 if (destOrientation == UIInterfaceOrientationPortrait ||
 destOrientation == UIInterfaceOrientationPortraitUpsideDown) {
 //—-if rotating to portrait mode—-
 btn.frame = CGRectMake(20, 20, 233, 37);
 } else {

c07.indd 156c07.indd 156 05/12/11 1:47 PM05/12/11 1:47 PM

Responding to Device Rotations ❘ 157

 //—-if rotating to landscape mode—-
 btn.frame = CGRectMake(227, 243, 233, 37);
 }
}

- (void)willRotateToInterfaceOrientation:
(UIInterfaceOrientation) toInterfaceOrientation
 duration:(NSTimeInterval) duration {
 [self positionViews];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 return YES;
}

- (void)viewDidLoad {
 [self positionViews];
 [super viewDidLoad];
}

- (void)dealloc {
 [btn release];
 [super dealloc];
}

 8. Press Command-R in Xcode to deploy the application onto the iPhone Simulator.

 9. Observe that when the iPhone Simulator is in portrait mode, the Round Rect Button is displayed
in the top-left corner; but when you change the orientation to landscape mode, it is repositioned
to the bottom-right corner (see Figure 7-7).

FIGURE 7-7

c07.indd 157c07.indd 157 05/12/11 1:47 PM05/12/11 1:47 PM

158 ❘ CHAPTER 7 SUPPORTING SCREEN ROTATIONS

How It Works

This project illustrated how you can reposition the views on your application when the device changes
orientation. You fi rst created an outlet and connected it to the Round Rect Button on the View window.

When the device is being rotated, the willRotateToInterfaceOrientation: method that you
implemented is called so that you can reposition the Round Rect Button. When this method is called,
you can obtain the destination orientation using the interfaceOrientation property of the current
View window (self), like this:

 UIInterfaceOrientation destOrientation = self.interfaceOrientation;

Using this information, you position the Round Rect Button according to the destination orientation by
altering its frame property via the positionViews method, which you have defi ned:

-(void) positionViews {
 UIInterfaceOrientation destOrientation = self.interfaceOrientation;
 if (destOrientation == UIInterfaceOrientationPortrait ||
 destOrientation == UIInterfaceOrientationPortraitUpsideDown) {
 //—-if rotating to portrait mode—-
 btn.frame = CGRectMake(20, 20, 233, 37);
 } else {
 //—-if rotating to landscape mode—-
 btn.frame = CGRectMake(227, 243, 233, 37);
 }
}

You should also call the positionViews method in the viewDidLoad method so that the Round Rect
Button can be displayed correctly when the View window is loaded:

- (void)viewDidLoad {
 [self positionViews];
 [super viewDidLoad];
}

PROPERTIES FOR DEALING WITH THE POSITIONING OF VIEWS

In the previous example, you used the frame property to change the position of
a view during runtime. The frame property defi nes the rectangle occupied by the
view, with respect to its superview (the view that contains it). Using the frame
property enables you to set the positioning and size of a view. Besides using the
frame property, you can also use the center property, which sets the center of the
view, also with respect to its superview. You usually use the center property when
you are performing some animation and just want to change the position of a view.

c07.indd 158c07.indd 158 05/12/11 1:47 PM05/12/11 1:47 PM

Programmatically Rotating the Screen ❘ 159

PROGRAMMATICALLY ROTATING THE SCREEN

You’ve seen how your application can handle changes in device orientation when the user rotates
the device. Sometimes (such as when you are developing a game), however, you want to force the
application to display in a certain orientation independently of the device’s orientation.

There are two scenarios to consider:

 ➤ Rotating the screen orientation during runtime when your application is running

 ➤ Displaying the screen in a fi xed orientation when the View window has been loaded

Rotating during Runtime

During runtime, you can programmatically rotate the screen by using the setOrientation: method
on an instance of the UIDevice class. Suppose you want to let users change the screen orientation:
They press the Round Rect Button. Using the project created earlier, you can code it as follows (you
need to connect the Touch Up Inside event of the button to this IBAction):

-(IBAction) btnClicked: (id) sender{
 [[UIDevice currentDevice]
 setOrientation:UIInterfaceOrientationLandscapeLeft];
}

The setOrientation: method takes a single parameter specifying the orientation to which you
want to change.

NOTE After you have programmatically switched the orientation of your
application, your application’s rotation can still be changed when the device is
physically rotated. The orientation that it can be changed to is dependent on
what you set in the shouldAutorotateToInterfaceOrientation: method.

Fixing the View Window to a Specifi c Orientation

When a View window is loaded, by default it is always displayed in portrait mode. If your
application requires that you fi x the View window in a particular orientation when it has
been loaded, you can do so by modifying a particular key (Initial Supported interface
orientations) in the info.plist fi le located in the Supporting Files folder of your Xcode
project.

For example, if you want to force your View window to display in the landscape left mode, set the
fi rst array item of the Initial Supported interface orientations key to Landscape (left home
button), as shown in Figure 7-8).

c07.indd 159c07.indd 159 05/12/11 1:47 PM05/12/11 1:47 PM

160 ❘ CHAPTER 7 SUPPORTING SCREEN ROTATIONS

Then, modify the shouldAutorotateToInterfaceOrientation: method as follows:

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationLandscapeLeft);
}

The application will now load in landscape mode and will be fi xed in this orientation even if you
rotate the device.

FIGURE 7-8

NOTE Remember to set the orientation to which you are changing to in the
shouldAutorotateToInterfaceOrientation: method.

SUMMARY

This chapter explained how changes in screen orientation are handled by the various methods in
the View Controller class. Proper handling of screen orientations will make your application more
useable and improve the user experience.

EXERCISES

1. Suppose you want your application to support only the landscape right and landscape left

orientations. How should you modify your code?

2. What is the diff erence between the frame and center property of a view?

Answers to the exercises can be found in Appendix D.

c07.indd 160c07.indd 160 05/12/11 1:47 PM05/12/11 1:47 PM

Summary ❘ 161

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Handling device rotations Implement the willRotateToInterfaceOrientation: and

willAnimateRotationToInterfaceOrientation: methods.

Four orientations supported UIInterfaceOrientationPortrait

UIInterfaceOrientationLandscapeLeft

UIInterfaceOrientationLandscapeRight

UIInterfaceOrientationPortraitUpsideDown

Events fi red when device is

rotated

willAnimateFirstHalfOfRotationToInterfaceOrientation:

Properties for changing the

position of a view

Use the frame property for changing the positioning and size of

a view.

Use the center property for changing the positioning of a view.

c07.indd 161c07.indd 161 05/12/11 1:47 PM05/12/11 1:47 PM

c07.indd 162c07.indd 162 05/12/11 1:47 PM05/12/11 1:47 PM

Creating and Persisting Data
Using the Table View

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Manually adding a Table view to a view, and wiring the data source

and delegate to your View Controller

 ➤ Handling the various Table view events to populate it with items

 ➤ Enabling users to select Table view items

 ➤ Displaying text and images in the rows of the Table view

 ➤ Displaying the items from a property list in a Table view

 ➤ Grouping the items in a Table view into sections

 ➤ Adding indexing to the Table view

 ➤ Adding search capabilities to the Table view

 ➤ Adding disclosures and checkmarks to rows in the Table view

 ➤ Navigating to another View window

One of the most commonly used views in iOS applications is the
Table view. The Table view is used to display lists of items from
which users can select, or users can tap an item to display more
information about it. Figure 8-1 shows a Table view in action in
the Safari application.

The Table view is such an important topic that it deserves a
chapter of its own. Hence, in this chapter, you examine the Table
view in detail, and learn about the various building blocks that
make it such a versatile view.

8

FIGURE 8-1

c08.indd 163c08.indd 163 05/12/11 1:48 PM05/12/11 1:48 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

164 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

CREATING A SIMPLE TABLE VIEW

The best way to understand how to use a Table view in your application is to create a new Single
View Application project and then manually add a Table view to the View window and wire it to
a View Controller. That way, you can understand the various building blocks of the Table view.

Without further ado, use the following Try It Out to create a new project and see how to put a Table
view together!

TRY IT OUT Using a Table View

Codefi le [TableViewExample.zip] available for download at Wrox.com

 1. Create a new Single View Application (iPhone) project and name it TableViewExample. You
will also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Select the TableViewExampleViewController.xib fi le to edit it in Interface Builder.

 3. Drag the Table View from the Object Library and drop it onto the View window (see Figure 8-2).

FIGURE 8-2

c08.indd 164c08.indd 164 05/12/11 1:48 PM05/12/11 1:48 PM

Creating a Simple Table View ❘ 165

 4. Right-click the Table view and connect the dataSource outlet to the File’s Owner item (see
Figure 8-3). Do the same for the delegate outlet.

FIGURE 8-3

 5. In the TableViewExampleViewController.h fi le, add the following statement that appears
in bold:

#import <UIKit/UIKit.h>

@interface TableViewExampleViewController : UIViewController
<UITableViewDataSource>

@end

 6. In the TableViewExampleViewController.m fi le, add the following statements that appear
in bold:

#import “TableViewExampleViewController.h”

@implementation TableViewExampleViewController

NSMutableArray *listOfMovies;

//—--insert individual row into the table view—--
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 //—-try to get a reusable cell—-
 UITableViewCell *cell =

c08.indd 165c08.indd 165 05/12/11 1:48 PM05/12/11 1:48 PM

166 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 //—--create new cell if no reusable cell is available—--
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //—--set the text to display for the cell—--
 NSString *cellValue = [listOfMovies objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;

 return cell;
}

//—--set the number of rows in the table view—--
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [listOfMovies count];
}

- (void)viewDidLoad
{
 //—--initialize the array—--
 listOfMovies = [[NSMutableArray alloc] init];

 //—--add items—--
 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];
 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];
 [super viewDidLoad];
}

 7. Press Command-R to test the application on the iPhone Simulator.
Figure 8-4 shows the Table view displaying a list of movies.

How It Works

You start the application by creating an NSMutableArray object called
listOfMovies containing a list of movie names. The items stored in this
array will be displayed by the Table view. FIGURE 8-4

c08.indd 166c08.indd 166 05/12/11 1:48 PM05/12/11 1:48 PM

Creating a Simple Table View ❘ 167

NOTE The use of an array to contain the items to be displayed by the Table
view is purely for demonstration. Of course, in a real-world scenario, your data
might be stored in a database or accessed from a web service.

- (void)viewDidLoad
{
 //—--initialize the array—--
 listOfMovies = [[NSMutableArray alloc] init];

 //—--add items—--
 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];
 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];
 [super viewDidLoad];
}

To populate the Table view with items, you need to handle several events contained in the
UITableViewDataSource protocol. Hence, you need to ensure that your View Controller conforms
to this protocol:

#import <UIKit/UIKit.h>

@interface TableViewExampleViewController : UIViewController
<UITableViewDataSource>
@end

NOTE Strictly speaking, if you have connected the dataSource outlet to the
File’s Owner item, you don’t need to add the preceding statement. However,
doing both doesn’t hurt anything. There is one advantage to adding the
<UITableViewDataSource> protocol, though — the compiler will warn you if
you forget to implement any mandatory methods in your code, helping to
prevent errors.

c08.indd 167c08.indd 167 05/12/11 1:48 PM05/12/11 1:48 PM

168 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

The UITableViewDataSource protocol contains several events that you can implement to supply data
to the Table view. Two events that you have handled (and they are mandatory in this protocol) in this
example are as follows:

 ➤ tableView:numberOfRowsInSection:

 ➤ tableView:cellForRowAtIndexPath:

The tableView:numberOfRowsInSection: event indicates how many rows you want the Table view to
display. In this case, you set it to the number of items in the listOfMovies array:

//—--set the number of rows in the table view—--
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [listOfMovies count];
}

The tableView:cellForRowAtIndexPath: event inserts a cell in a particular location of the Table
view. This event is fi red once for each row of the Table view that is visible.

One of the parameters contained in the tableView:didSelectRowAtIndexPath: event is of the type
NSIndexPath. The NSIndexPath class represents the path of a specifi c item in a nested array collection.
To determine which row is currently being populated, you simply call the row property of the
NSIndexPath object (indexPath) and then use the row number to reference against the listOfMovies
array. The value is then used to set the text value of the row in the Table view:

//---insert individual row into the table view---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 //---try to get a reusable cell---
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 //---create new cell if no reusable cell is available---
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //—--set the text to display for the cell—--
 NSString *cellValue = [listOfMovies objectAtIndex:indexPath.
 row];
 cell.textLabel.text = cellValue;

 return cell;

Each row in the Table View is represented by a UITableViewCell object. Specifi cally, you use the
dequeueReusableCellWithIdentifier: method of the UITableView class to obtain an instance of

c08.indd 168c08.indd 168 05/12/11 1:48 PM05/12/11 1:48 PM

Creating a Simple Table View ❘ 169

the UITableViewCell class. The dequeueReusableCellWithIdentifier: method returns a reusable
Table view cell object. This is important because if you have a large table (say, with 10,000 rows) and
you create a single UITableViewCell object for each row, you would generate a large performance
and memory hit. In addition, because a Table view displays only a fi xed number of rows at any
one time, reusing the cells that have been scrolled out of view makes sense. This is exactly what the
dequeueReusableCellWithIdentifier: method does. Therefore, for example, if 10 rows are visible
in the Table view, only 10 UITableViewCell objects are ever created — they are always reused when
the user scrolls through the Table view.

As the user fl icks the Table view to review more rows (that are hidden), the
tableView:cellForRowAtIndexPath: event is continually fi red, enabling you to populate
the newly visible rows with data.

NOTE The tableView:cellForRowAtIndexPath: event is not fi red continuously
from start to fi nish. For example, if the Table view has 100 rows to display, the
event is fi red continuously for the fi rst, say, 10 rows that are visible. When
the user scrolls down the Table view, the tableView:cellForRowAtIndexPath:
event is fi red for the next few visible rows.

Adding a Header and Footer

You can display a header and footer for the Table view by simply implementing either of the
following two methods in your View Controller:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section{
 //—-display “Movie List” as the header—-
 return @”Movie List”;
}

- (NSString *)tableView:(UITableView *)tableView
titleForFooterInSection:(NSInteger)section {
 //—-display “by Denzel Washington” as the footer—-
 return @”by Denzel Washington”;
}

If you insert the preceding statements in the
TableViewExampleViewController.m fi le and rerun the application,
you see the header and footer of the Table view, as shown in Figure 8-5.

Adding an Image

In addition to text, you can display an image next to the text of a cell
in a Table view. Suppose you have an image named apple.jpeg in the
Supporting Files folder of your project (see Figure 8-6).

FIGURE 8-5

c08.indd 169c08.indd 169 05/12/11 1:48 PM05/12/11 1:48 PM

170 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

NOTE You can simply drag and drop an image to the Supporting Files folder
of Xcode. When prompted, ensure that you save a copy of the image in your
project.

FIGURE 8-6

To display an image next to the text of a cell, insert the following statements that appear in bold
into the tableView:cellForRowAtIndexPath: method:

//---insert individual row into the table view---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 //---try to get a reusable cell---
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 //---create new cell if no reusable cell is available---
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //---set the text to display for the cell---
 NSString *cellValue = [listOfMovies objectAtIndex:indexPath.row];

c08.indd 170c08.indd 170 05/12/11 1:48 PM05/12/11 1:48 PM

Creating a Simple Table View ❘ 171

 cell.textLabel.text = cellValue;

 //---display an image---
 UIImage *image = [UIImage imageNamed:@“apple.jpeg“];
 cell.imageView.image = image;

 return cell;
}

Press Command-R to test the application. The image is now displayed
next to each row (see Figure 8-7).

Notice that the UITableViewCell object already has the imageView
property. All you need to do is create an instance of the UIImage class
and then load the image from the Supporting Files folder of your project.

Displaying the Item Selected

So far, you have seen how to populate the Table view with
items by ensuring that your View Controller conforms to the
UITableViewDataSource protocol. This protocol takes care of
populating the Table view, but if you want to select the items in a Table
view, you need to conform to another protocol — UITableViewDelegate.

The UITableViewDelegate protocol contains events that enable you to manage selections, edit and
delete rows, and display a header and footer for each section of a Table view.

To use the UITableViewDelegate protocol, modify the TableViewExampleViewController.h fi le
by adding the statement in bold as follows:

#import <UIKit/UIKit.h>

@interface TableViewExampleViewController : UIViewController
<UITableViewDataSource, UITableViewDelegate>

@end

Again, if you have connected the delegate outlet to the File’s Owner item previously (refer to
Figure 8-3), you don’t need to add the preceding statement (UITableViewDelegate). However,
doing both doesn’t hurt.

The following Try It Out shows how you can enable users to make selections in a Table view.

TRY IT OUT Making a Selection in a Table View

 1. Using the same project created earlier, add the following method to the
TableViewExampleViewController.m fi le:

- (void) tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSString *movieSelected = [listOfMovies objectAtIndex:indexPath.row];

FIGURE 8-7

c08.indd 171c08.indd 171 05/12/11 1:48 PM05/12/11 1:48 PM

172 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 NSString *msg = [NSString stringWithFormat:@”You have selected %@”,
 movieSelected];
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Movie selected”
 message:msg
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

2. Press Command-R to test the application on the iPhone
Simulator.

3. Select a row by tapping it. When a row is selected, an Alert view
displays the row you have selected (see Figure 8-8).

How It Works

One of the methods declared in the UITableViewDelegate protocol is
tableView:didSelectRowAtIndexPath:, which is calls when the user
selects a row in the Table view.

As usual, to determine which row has been selected, you simply call the
row property of the NSIndexPath object (indexPath) and then use the row
number to reference against the listOfMovies array:

 NSString *movieSelected = [listOfMovies objectAtIndex:indexPath.row];

After the selected movie is retrieved, you simply display it using the UIAlertView class:

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Movie selected”
 message:msg
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

NOTE The row property of the NSIndexPath class is one of the additions made
by the UIKit framework to enable the identifi cation of rows and sections in a
Table view, so be aware that the original class defi nition of the NSIndexPath
class does not contain the row property.

FIGURE 8-8

c08.indd 172c08.indd 172 05/12/11 1:48 PM05/12/11 1:48 PM

Using the Table View in a Master-Detail Application ❘ 173

Indenting

Another event in the UITableViewDelegate protocol is
tableView:indentationLevelForRowAtIndexPath:. When you
handle this event, it is fi red for every row that is visible on the screen.
To set an indentation for a particular row, simply return an integer
indicating the level of indentation:

- (NSInteger) tableView:(UITableView *)tableView
indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath {
 return [indexPath row] % 2;
}

In the preceding example, the indentation alternates between 0 and 1,
depending on the current row number. Figure 8-9 shows how the Table
view looks if you insert the preceding code in the
TableViewExampleViewController.m fi le.

Modifying the Height of Each Row

Another method defi ned in the UITableViewDelegate protocol is
tableView:heightForRowAtIndexPath:. This method enables you to
modify the height of each row. The following method specifi es that each
row now takes up 70 points (see Figure 8-10):

- (CGFloat) tableView:(UITableView *)tableView
heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return 70;
}

The key advantage of using this method is that you can set the height of
each individual row based on the indexPath parameter.

USING THE TABLE VIEW IN A MASTER-DETAIL

APPLICATION

In the previous sections, you created a Single View Application project,
manually added a Table view to the View window, connected the data
source, and delegated to the File’s Owner item. You then handled all the
relevant events defi ned in the two protocols — UITableViewDelegate and UITableViewDataSource,
so that you could populate the Table view with items and make them selectable.

In real life, the Table view is often used with a Master-Detail (previously known as the Navigation-
based Application) project because users often need to select an item from a Table view and then

FIGURE 8-9

FIGURE 8-10

c08.indd 173c08.indd 173 05/12/11 1:48 PM05/12/11 1:48 PM

174 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

navigate to another window showing details about the item selected. For this reason, the Master-
Detail Application template in the iOS SDK by default uses the UITableView class instead of the
UIView class. This section demonstrates how to use a Table view from within a Master-Detail
Application project.

DISPLAYING SECTIONS

In addition to displaying a series of rows in a Table view, you can group items into sections and
then create a header for the related items in each section. In the following Try It Out, you learn how
to use the Table view from within a Master-Detail Application project and group the items into
sections. At the same time, you learn how to display items stored in a property list, as opposed to
an array.

TRY IT OUT Displaying Sections in a Table View

Codefi le [TableView.zip] available for download at Wrox.com

 1. Using Xcode, create a new project and select the Master-Detail Application project template and
click Next (see Figure 8-11).

FIGURE 8-11

 2. Name the project TableView and click Next and then Finish (see Figure 8-12). Leave the Class
Prefi x empty and ensure that you have the Use Automatic Reference Counting option unchecked.

c08.indd 174c08.indd 174 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 175

FIGURE 8-12

 3. Select the MasterViewController.xib fi le to edit in Interface Builder. This fi le represents the
fi rst View window that will be loaded when your application starts.

 4. Notice that in the MasterViewController.xib window you now have a TableView item instead
of the usual View item (see Figure 8-13).

FIGURE 8-13

c08.indd 175c08.indd 175 05/12/11 1:48 PM05/12/11 1:48 PM

176 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 5. Examine the MasterViewController.h fi le and note that the MasterViewController class now
extends the UITableViewController base class:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
@property (strong, nonatomic) DetailViewController *detailViewController;

@end

 6. Also examine the MasterViewController.m fi le and observe that it includes a number of method
stubs that you can implement. Some of the methods are those you have defi ned in the previous
Try It Out.

 7. Right-click the Supporting Files folder and choose New File. . . .

 8. Select the Resource category (under iOS) on the left of the dialog that appears and select the
Property List template on the right (see Figure 8-14).

FIGURE 8-14

c08.indd 176c08.indd 176 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 177

 9. Name the property list Movies.plist. The property list is now saved in the Supporting Files
folder of your project. Select it and create the list of items, as shown in Figure 8-15.

FIGURE 8-15

 10. In the MasterViewController.h fi le, add the following statements that appear in bold:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
{
 NSDictionary *movieTitles;
 NSArray *years;
}
@property (strong, nonatomic) DetailViewController *detailViewController;

@property (nonatomic, retain) NSDictionary *movieTitles;
@property (nonatomic, retain) NSArray *years;

@end

 11. In the MasterViewController.m fi le, add the following statements that appear in bold:

#import “MasterViewController.h”

#import “DetailViewController.h”

@implementation MasterViewController

c08.indd 177c08.indd 177 05/12/11 1:48 PM05/12/11 1:48 PM

178 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

@synthesize detailViewController = _detailViewController;
@synthesize movieTitles;
@synthesize years;

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@”Movies”
 ofType:@”plist”];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;
 [super viewDidLoad];
}

// Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 //return 1;
 return [self.years count];
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 //---check the current year based on the section index---
 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section ---
 return [movieSection count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView

c08.indd 178c08.indd 178 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 179

 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 // Configure the cell.
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];

 // cell.textLabel.text = NSLocalizedString(@”Detail”, @”Detail”);
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

- (void)dealloc {
 [movieTitles release];
 [years release];
 [super dealloc];
}

 12. Press Command-R to test the application on the iPhone Simulator.
As shown in Figure 8-16, the movies are now grouped into sections
organized by year.

 13. You can also change the style of the Table view by selecting the
TableView item in Interface Builder and then changing the Style
attribute in the Attributes Inspector window to Grouped (see
Figure 8-17).

 14. If you rerun the application, the appearance of the Table view is now different (see
Figure 8-18).

FIGURE 8-16

c08.indd 179c08.indd 179 05/12/11 1:48 PM05/12/11 1:48 PM

180 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

How It Works

This exercise covered quite a number of concepts, and you may need some time to absorb them all.
First, you create a property list in your project. You populate the property list with several key/value
pairs. Essentially, you can visualize the key/value pairs stored in the property list as shown in
Figure 8-19.

FIGURE 8-19

FIGURE 8-17 FIGURE 8-18

c08.indd 180c08.indd 180 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 181

Each key represents a year, and the value for each key represents the movies released in that particular
year. You use the values stored in the property list to display them in the Table view.

Within the MasterViewController class, you create two properties: movieTitles (an NSDictionary
object) and years (an NSArray object).

When the View window is loaded, you fi rst locate the property list and load the list into the
NSDictionary object, followed by retrieving all the years into the NSArray object:

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@”Movies”
 ofType:@”plist”];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;
 [super viewDidLoad];
}

Because the Table view now displays the list of movies in sections with each section representing a
year, you need to tell the Table view how many sections there are. You do so by implementing the
numberOfSectionsInTableView: method:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 //return 1;
 return [self.years count];
}

After the Table view knows how many sections to display, it must also know how many rows to display
in each section. You provide that information by implementing the
tableView:numberOfRowsInSection: method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 //---check the current year based on the section index---

c08.indd 181c08.indd 181 05/12/11 1:48 PM05/12/11 1:48 PM

182 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section ---
 return [movieSection count];
}

To display the movies for each section, you implement the tableView:cellForRowAtIndexPath:
method and extract the relevant movie titles from the NSDictionary object:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

 // Configure the cell.
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];

 // cell.textLabel.text = NSLocalizedString(@”Detail”, @”Detail”);
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

Finally, you implement the tableView:titleForHeaderInSection: method to retrieve the year as the
header for each section:

c08.indd 182c08.indd 182 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 183

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

Adding Indexing

The list of movies is pretty short, so scrolling through the list is not too much of a hassle. However,
imagine a movie list containing 10,000 titles spanning 100 years. In this case, scrolling from the
top of the list to the bottom can take a long time. A useful feature of the Table view is the capability
to display an index on the right side of the view. An example is the A–Z index list available
in your Contacts list. To add an index list to your Table view, you just need to implement the
sectionIndexTitlesForTableView: method and return the array containing the section headers,
which is the years array in this case:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return self.years;
}

NOTE If the Table view’s style is set to Grouped, the index will overlap with the
layout of the Table view.

Figure 8-20 shows the index displayed on the right side of the
Table view.

Adding Search Capability

A common function associated with the Table view is the capability
to search the items contained within it. For example, the Contacts
application provides the search bar at the top for easy searching of
contacts.

The following Try It Out demonstrates how to add search functionality
to the Table view.

FIGURE 8-20

c08.indd 183c08.indd 183 05/12/11 1:48 PM05/12/11 1:48 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

184 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

TRY IT OUT Adding a Search Bar to the Table View

 1. Using the same project created in the previous section, in Interface Builder drag a Search Bar from
the Library and drop it onto the Table view (see Figure 8-21).

FIGURE 8-21

 2. In the MasterViewController.h fi le, add the following statements that appear in bold:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
<UISearchBarDelegate>
{
 NSDictionary *movieTitles;
 NSArray *years;
 IBOutlet UISearchBar *searchBar;
}
@property (strong, nonatomic) DetailViewController *detailViewController;

@property (nonatomic, retain) NSDictionary *movieTitles;
@property (nonatomic, retain) NSArray *years;
@property (nonatomic, retain) UISearchBar *searchBar;

@end

c08.indd 184c08.indd 184 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 185

 3. In Interface Builder, Control-click and drag
the File’s Owner item to the Search Bar and
select searchBar.

 4. Right-click the Search Bar and connect the
delegate to the File’s Owner item (see
Figure 8-22).

 5. In the MasterViewController.m fi le, add the
following statements that appear in bold:

#import “MasterViewController.h”

#import “DetailViewController.h”

@implementation MasterViewController
@synthesize detailViewController = _detailViewController;
@synthesize movieTitles;
@synthesize years;

@synthesize searchBar;

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@”Movies”
 ofType:@”plist”];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;

 //---Search---
 self.tableView.tableHeaderView = searchBar;
 self.searchBar.autocorrectionType = UITextAutocorrectionTypeYes;

 [super viewDidLoad];
}

- (void)dealloc {
 [searchBar release];
 [movieTitles release];
 [years release];
 [super dealloc];
}

FIGURE 8-22

c08.indd 185c08.indd 185 05/12/11 1:48 PM05/12/11 1:48 PM

186 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 6. Press Command-R to test the application on the iPhone Simulator.
Figure 8-23 shows the Search Bar displayed at the top of the
Table view.

 7. Back in Xcode, edit the MasterViewController.h fi le by adding the
following statements that appear in bold:

#import <UIKit/UIKit.h>
@class DetailViewController;
@interface MasterViewController : UITableViewController
<UISearchBarDelegate>
{
 NSDictionary *movieTitles;
 NSArray *years;
 IBOutlet UISearchBar *searchBar;

 BOOL isSearchOn;
 BOOL canSelectRow;
 NSMutableArray *listOfMovies;
 NSMutableArray *searchResult;
}
@property (strong, nonatomic) DetailViewController *detailViewController;
@property (nonatomic, retain) NSDictionary *movieTitles;
@property (nonatomic, retain) NSArray *years;
@property (nonatomic, retain) UISearchBar *searchBar;

- (void) doneSearching:(id)sender;
- (void) searchMoviesTableView;
@end

 8. In the MasterViewController.m fi le, add the following methods:

//---fired when the user taps on the searchbar---
- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
 isSearchOn = YES;
 if (searchBar.text.length>0){
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 } else {
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }

 //---add the Done button at the top---
 self.navigationItem.rightBarButtonItem =
 [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self
 action:@selector(doneSearching:)]
 autorelease];
}

//---done with the searching---
- (void) doneSearching:(id)sender {

FIGURE 8-23

c08.indd 186c08.indd 186 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 187

 isSearchOn = NO;
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 self.navigationItem.rightBarButtonItem = nil;

 //---hides the keyboard---
 [searchBar resignFirstResponder];

 //---refresh the TableView---
 [self.tableView reloadData];
}

//---fired when the user types something into the searchbar---
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {

 //---if there is something to search for---
 if ([searchText length] > 0) {
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 [self searchMoviesTableView];
 }
 else {
 //---nothing to search---
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }
 [self.tableView reloadData];
}

//---performs the searching using the array of movies---
- (void) searchMoviesTableView {
 //---clears the search result---
 [searchResult removeAllObjects];

 for (NSString *str in listOfMovies) {
 NSRange titleResultsRange = [str rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch];
 if (titleResultsRange.length > 0)
 [searchResult addObject:str];
 }
}

//---fired when the user taps the Search button on the keyboard---
- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 [self searchMoviesTableView];
}

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 if (canSelectRow)
 return indexPath;
 else
 return nil;
}

c08.indd 187c08.indd 187 05/12/11 1:48 PM05/12/11 1:48 PM

188 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 9. Modify the following methods in bold in the MasterViewController.m fi le:

- (void)viewDidLoad
{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@”Movies”
 ofType:@”plist”];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;

 //---Search---
 self.tableView.tableHeaderView = searchBar;
 self.searchBar.autocorrectionType = UITextAutocorrectionTypeYes;

 //---copy all the movie titles in the dictionary into
 // the listOfMovies array---
 listOfMovies = [[NSMutableArray alloc] init];
 for (NSString *year in array) { //---get all the years---
 //---get all the movies for a particular year---
 NSArray *movies = [movieTitles objectForKey:year];
 for (NSString *title in movies) {
 [listOfMovies addObject:title];
 }
 }

 //---used for storing the search result---
 searchResult = [[NSMutableArray alloc] init];
 isSearchOn = NO;
 canSelectRow = YES;

 [super viewDidLoad];
}

// Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 //return 1;
 if (isSearchOn)
 return 1;
 else
 return [self.years count];

c08.indd 188c08.indd 188 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 189

}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 //return 1;
 if (isSearchOn) {
 return [searchResult count];
 } else {
 //---check the current year based on the section index---
 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section---
 return [movieSection count];
 }
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

 // Configure the cell.
 if (isSearchOn) {
 NSString *cellValue = [searchResult objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;
 } else {
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];
 // cell.textLabel.text = NSLocalizedString(@”Detail”, @”Detail”);
 }
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {

c08.indd 189c08.indd 189 05/12/11 1:48 PM05/12/11 1:48 PM

190 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 if (isSearchOn)
 return nil;
 else
 return year;
}

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 if (isSearchOn)
 return nil;
 else
 return self.years;
}

- (void)dealloc {
 [listOfMovies release];
 [searchResult release];

 [searchBar release];
 [movieTitles release];
 [years release];
 [super dealloc];

 10. Press Command-R to test the application on the iPhone Simulator.

 11. Tap the Search Bar and the keyboard will appear. Observe the following:

 ➤ When the keyboard appears and the
Search Bar has no text in it, the Table
view contains the original list and
the items are not selectable.

 ➤ As you type, the Table view displays
the movies whose title contains the
characters you are typing, as
demonstrated in Figure 8-24, wherein
“on” was typed into the search bar of
the right-most image and movie titles
containing “on” are now displayed.
You can select a search result
by tapping it. Observe that your
application will navigate to another
View window. You will learn more
about this in the next section.

 ➤ When you tap the Done button, the
keyboard disappears and the original
list appears. FIGURE 8-24

c08.indd 190c08.indd 190 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 191

How It Works

This is quite a bit of work, but it is actually quite easy to follow the details. First, you add an outlet to
connect to the Search Bar:

 IBOutlet UISearchBar *searchBar;

You then defi ne two Boolean variables so that you can track whether the search process is ongoing and
specify whether the user can select the rows in the Table view:

 BOOL isSearchOn;
 BOOL canSelectRow;

You then defi ne two NSMutableArray objects so that you can use one to store the list of movies and
another to temporarily store the result of the search:

 NSMutableArray *listOfMovies;
 NSMutableArray *searchResult;

When the View window is fi rst loaded, you fi rst associate the Search Bar with the Table view and then
copy the entire list of movie titles from the NSDictionary object into the NSMutableArray:

 //---Search---
 self.tableView.tableHeaderView = searchBar;
 self.searchBar.autocorrectionType = UITextAutocorrectionTypeYes;

 //---copy all the movie titles in the dictionary into
 // the listOfMovies array---
 listOfMovies = [[NSMutableArray alloc] init];
 for (NSString *year in array) { //---get all the years---
 //---get all the movies for a particular year---
 NSArray *movies = [movieTitles objectForKey:year];
 for (NSString *title in movies) {
 [listOfMovies addObject:title];
 }
 }

 //---used for storing the search result---
 searchResult = [[NSMutableArray alloc] init];
 isSearchOn = NO;
 canSelectRow = YES;

When the user taps the Search Bar, the searchBarTextDidBeginEditing: event (one of the methods
defi ned in the UISearchBarDelegate protocol) fi res. In this method, you add a Done button to the
top-right corner of the screen. When the Done button is tapped, the doneSearching: method is called
(which you defi ne next):

//---fired when the user taps on the searchbar---
- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
 isSearchOn = YES;

 if (searchBar.text.length>0){

c08.indd 191c08.indd 191 05/12/11 1:48 PM05/12/11 1:48 PM

192 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 } else {
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }

 //---add the Done button at the top---
 self.navigationItem.rightBarButtonItem =
 [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self
 action:@selector(doneSearching:)]
 autorelease];
}

The doneSearching: method makes the Search Bar resign its First Responder status (thereby
hiding the keyboard). At the same time, you reload the Table view by calling the reloadData method
of the Table view. This causes the various events associated with the Table view to be fi red again:

//---done with the searching---
- (void) doneSearching:(id)sender {
 isSearchOn = NO;
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 self.navigationItem.rightBarButtonItem = nil;

 //---hides the keyboard---
 [searchBar resignFirstResponder];

 //---refresh the TableView---
 [self.tableView reloadData];
}

As the user types into the Search Bar, the searchBar:textDidChange: event is fi red for each character
entered. In this case, if the Search Bar has at least one character, the searchMoviesTableView method
(which you defi ne next) is called:

//---fired when the user types something into the searchbar---
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {

 //---if there is something to search for---
 if ([searchText length] > 0) {
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 [self searchMoviesTableView];
 }
 else {
 //---nothing to search---

c08.indd 192c08.indd 192 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 193

 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }
 [self.tableView reloadData];
}

The searchMoviesTableView method performs the searching on the listOfMovies array. You
use the rangeOfString:options: method of the NSString class to perform a case-insensitive search
of each movie title using the specifi ed string. The returned result is an NSRange object, which contains
the location and length of the search string being searched. If the length is more than zero, then a
match has been found, and hence you add it to the searchResult array:

//---performs the searching using the array of movies---
- (void) searchMoviesTableView {
 //---clears the search result---
 [searchResult removeAllObjects];

 for (NSString *str in listOfMovies) {
 NSRange titleResultsRange = [str rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch];
 if (titleResultsRange.length > 0)
 [searchResult addObject:str];
 }
}

When the user taps the Search button (on the keyboard), you make a call to the
searchMoviesTableView method:

//---fired when the user taps the Search button on the keyboard---
- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 [self searchMoviesTableView];
}

You also implement the tableView:willSelectRowAtIndexPath: method to check whether or not
rows are selectable:

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 if (canSelectRow)
 return indexPath;
 else
 return nil;
}

The rest of the methods are straightforward. If the search is currently active (as determined by the
isSearchOn variable), then you display the list of titles contained in the searchResult array. If not,
then you display the entire list of movies.

c08.indd 193c08.indd 193 05/12/11 1:48 PM05/12/11 1:48 PM

194 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

Disclosures and Checkmarks

Because users often select rows in a Table view to view more detailed information, rows in a Table
view often sport images such as an arrow or a checkmark (these images are known as accessories).
There are three types of accessories that you can display:

 ➤ Checkmark

 ➤ Disclosure indicator

 ➤ Detail Disclosure button

To display a disclosure or a checkmark accessory, you use the accessoryType property of the
UITableViewCell object, as shown by default in the tableView:cellForRowAtIndexPath: event:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

 // Configure the cell.
 if (isSearchOn) {
 NSString *cellValue = [searchResult objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;
 } else {
 //—--get the year—--
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //—--get the list of movies for that year—--
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //—--get the particular movie based on that row—--
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];
 // cell.textLabel.text = NSLocalizedString(@”Detail”, @”Detail”);
 }
 return cell;
}

You can use the following constants for the accessoryType property:

 ➤ UITableViewCellAccessoryCheckmark

 ➤ UITableViewCellAccessoryDisclosureIndicator

 ➤ UITableViewCellAccessoryDetailDisclosureButton

c08.indd 194c08.indd 194 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 195

Figure 8-25 shows the Detail Disclosure button and Checkmark accessories.

FIGURE 8-25

Of the three accessory types, only the UITableViewCellAccessoryDetailDisclosureButton can
handle one additional tap event of the user. To handle the additional event when the user taps the
Detail Disclosure button, you need to implement the
tableView:accessoryButtonTappedForRowWithIndexPath: method:

- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath {
 //—-insert code here—-
 // e.g. navigate to another view to display detailed information, etc
}

Figure 8-26 shows the two different events fi red when a user taps
the content of the cell, as well as the Detail Disclosure button.

Commonly, you use the Detail Disclosure button to display
detailed information about the selected row.

Navigating to Another View

One of the features of a Master-Detail Application project is the capability to navigate from one
View window to another. For example, the user can select an item from the Table view and the
application will navigate to another View window showing the details about the item selected.
By default, Xcode creates a second View window so that your application can navigate to it. In
the following Try It Out, you modify the application you have been building so that when the user
selects a movie, the application displays the name of the movie selected in the second View window.

FIGURE 8-26

c08.indd 195c08.indd 195 05/12/11 1:48 PM05/12/11 1:48 PM

196 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

TRY IT OUT Displaying the Movie Selected in a Second View Window

 1. Using the project created in the previous section, note a set of fi les named
DetailViewController.xib, DetailViewController.h, and DetailViewController.m. The
DetailViewController.m fi le contains the following methods:

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem) {
 _detailItem = newDetailItem;

 // Update the view.
 [self configureView];
 }
}

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text = [self.detailItem description];
 }
}

 2. Select the DetailViewController.xib fi le to edit it in Interface Builder. Right-click on the File’s
Owner item to view its connections. Note that the detailDescriptionLabel outlet is connected
to the Label (see Figure 8-27).

FIGURE 8-27

c08.indd 196c08.indd 196 05/12/11 1:48 PM05/12/11 1:48 PM

Displaying Sections ❘ 197

 3. Add the following bold code to the tableView:didSelectRowAtIndexPath: method located in
the MasterViewController.m fi le:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *
)indexPath
{
 NSString *message;
 if (!isSearchOn) {
 NSString *year = [self.years objectAtIndex:[indexPath section]];
 NSArray *movieSection = [self.movieTitles objectForKey:year];
 NSString *movieTitle = [movieSection objectAtIndex:[indexPath row]];
 message = [NSString stringWithFormat:@”You have selected %@”, movieTitle];
 } else {
 if ([searchResult count]==0) return;
 message =
 [NSString stringWithFormat:@”You have selected %@”,
 [searchResult objectAtIndex:indexPath.row]];
 }

 if (!self.detailViewController) {
 self.detailViewController = [[[DetailViewController alloc]
 initWithNibName:@”DetailViewController” bundle:nil] autorelease];
 }

 self.detailViewController.detailItem = message;

 [self.navigationController
 pushViewController:self.detailViewController
 animated:YES];
}

 4. Press Command-R to test the application
on the iPhone Simulator. As shown in
Figure 8-28, when you click on one of the
movies in the Table view, the application
navigates to another View window, showing
the name of the movie selected.

How It Works

In order to enable navigation to another View
window, you need to create an instance of its
corresponding View controller. Fortunately, Xcode
does this for you automatically.

In the DetailViewController class, there
is a property named detailItem (which is
defi ned as follows) as well as a method named
configureView:

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem) {

FIGURE 8-28

c08.indd 197c08.indd 197 05/12/11 1:48 PM05/12/11 1:48 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

198 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 _detailItem = newDetailItem;

 // Update the view.
 [self configureView];
 }
}

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text = [self.detailItem description];
 }
}

You use this property to pass the name of the movie selected. Once this property is set, it will call the
configureView method to update the Label on the View window.

When the user selects an item in the Table view, you fi rst determine the name of the movie (in the
tableView:didSelectRowAtIndexPath: method) selected:

 NSString *message;
 if (!isSearchOn) {
 NSString *year = [self.years objectAtIndex:[indexPath section]];
 NSArray *movieSection = [self.movieTitles objectForKey:year];
 NSString *movieTitle = [movieSection objectAtIndex:[indexPath row]];
 message = [NSString stringWithFormat:@”You have selected %@”, movieTitle];
 } else {
 if ([searchResult count]==0) return;
 message =
 [NSString stringWithFormat:@”You have selected %@”,
 [searchResult objectAtIndex:indexPath.row]];
 }

You then navigate to the DetailViewController class by instantiating a copy of it and then set the
detailItem property to the name of the movie selected:

 if (!self.detailViewController) {
 self.detailViewController = [[[DetailViewController alloc]
 initWithNibName:@”DetailViewController” bundle:nil] autorelease];
 }

 self.detailViewController.detailItem = message;

Finally, to navigate to the new View window, you use the pushViewController: method of the
Navigation Controller:

 [self.navigationController
 pushViewController:self.detailViewController
 animated:YES];

c08.indd 198c08.indd 198 05/12/11 1:48 PM05/12/11 1:48 PM

Summary ❘ 199

SUMMARY

In this chapter, you had a good look at the Table view and learned how to customize it to display
items in various formats. You also learned how to implement search functionality in the Table view,
which is an essential function in real-world applications. In addition, you learned how to move
between View windows in a Navigation-based application.

EXERCISES

 1. Name the two protocols to which your View Controller must conform when using the Table

view in your view. Briefl y describe their uses.

 2. Which method should be implemented if you want to add an index to a Table view?

 3. Name the three disclosure and checkmark accessories that you can use. Which one handles

user taps?

Answers to the exercises can be found in Appendix D.

c08.indd 199c08.indd 199 05/12/11 1:48 PM05/12/11 1:48 PM

200 ❘ CHAPTER 8 CREATING AND PERSISTING DATA USING THE TABLE VIEW

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Adding items to a Table view Handle the various events in the UITableViewDataSource

protocol.

Allowing users to select rows in a

Table view

Handle the various events in the UITableViewDelegate

protocol.

Adding images to rows in a Table

view

Use the image property of the UITableViewCell class

and set it to an instance of the UIImage class containing an

image.

Using a property list with a Table

view

Use the following code snippet to locate the property list:

NSString *path = [[NSBundle mainBundle]

pathForResource:@“Movies”

ofType:@“plist”];

Then use a combination of NSDictionary and NSArray

objects to retrieve the key/value pairs stored in the property

list.

Grouping items in a Table view in

sections

Implement the following methods: numberOfSectionsInTab

leView:tableView:numberOfRowsInSection:tableView:t

itleForHeaderInSection:.

Adding an index to a Table view Implement the sectionIndexTitlesForTableView:

method.

Adding disclosure and checkmark

images to a row in a Table view

Set the accessoryType property of an UITableViewCell

object to one of the following:

* UITableViewCellAccessoryDetailDisclosureButton

* UITableViewCellAccessoryCheckmark

* UITableViewCellAccessoryDisclosureIndicator.

Implementing a search in a Table

view

Use the Search Bar view and handle the various events in the

UISearchBarDelegate protocol.

Navigating to another View window Use the pushViewController: method of the Navigation

Controller.

c08.indd 200c08.indd 200 05/12/11 1:48 PM05/12/11 1:48 PM

Using Application Preferences

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to add application preferences to your application

 ➤ How to programmatically access the Settings values

 ➤ How to reset your application’s preferences settings

If you are a relatively seasoned Mac OS X user, you’re familiar
with the concept of application preferences. Almost every Mac
OS X application has application-specific settings that are used
to configure the application’s appearance and behavior. These
settings are known as the application preferences.

In iOS, applications also have application preferences.
In contrast to Mac OS X applications, however, whose application
preferences are an integral part of the application, iPhone
preferences are centrally managed by an application called Settings
(see Figure 9-1).

The Settings application displays the preferences of system
applications as well as third-party applications. Tapping
any setting displays the details, where you can configure the
preferences of an application.

In this chapter, you learn how to incorporate application
preferences into your application and modify them
programmatically during runtime.

9

FIGURE 9-1

c09.indd 201c09.indd 201 05/12/11 7:43 PM05/12/11 7:43 PM

202 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

CREATING APPLICATION PREFERENCES

Creating application preferences for your iOS application is a relatively straightforward process. It
involves adding a resource called the Settings Bundle to your project, configuring a property list file,
and then deploying your application. When your application is deployed, the application preferences
are automatically created for you in the Settings application.

The following Try It Out shows how to add application preferences to your iPhone application
project in Xcode.

TRY IT OUT Adding Application Preferences

 1. Using Xcode, create a new Single View Application (iPhone) project and name it
ApplicationSettings. You will also use the project name as the Class Prefix. Ensure that you
have unchecked the Use Automatic Reference Counting option.

 2. Right-click the project name in Xcode and add a new file. Click the Resource template category
and select Settings Bundle (see Figure 9-2). Click Next.

FIGURE 9-2

 3. When asked to name the file, use the default name of Settings.bundle and click Save.

 4. The Settings.bundle item should now be part of your project (see Figure 9-3). Expand it and
click the Root.plist item to view its content using the default Property List editor (see Figure 9-4).

c09.indd 202c09.indd 202 05/12/11 7:43 PM05/12/11 7:43 PM

Creating Application Preferences ❘ 203

 5. Press Command-R to test the application on the iPhone Simulator. When the application is
loaded on the Simulator, press the Home key to return to the main screen of the iPhone. Click the
Settings application. You can now see a new Settings entry, ApplicationSettings (see Figure 9-5).
Click the ApplicationSettings entry to see the default settings created for you.

FIGURE 9-3

FIGURE 9-4

c09.indd 203c09.indd 203 05/12/11 7:43 PM05/12/11 7:43 PM

204 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

How It Works

It seems almost magical that without coding a single line, you have incorporated your application
preferences into your application. The magic part is actually the Settings.bundle file that you have
added to your project. It contains two files: Root.plist and Root.strings. The Root.plist file is an
XML file that contains a collection of dictionary objects (key/value pairs). These key/value pairs are
translated into the preferences entries shown in the Settings application.

Take a moment to review the use of the various keys used in the Root.plist file. There are two root-
level keys in the Root.plist file:

 ➤ StringsTable, which contains the name of the strings file associated with this Settings.bundle
file. In this case, it is pointing to Root.strings. This file provides the localized content to display
to the user for each of your preferences.

 ➤ PreferenceSpecifiers, which is of type Array and contains an array of dictionaries, with each
item containing the information for a single preference.

Each preference is represented by an item (known as PreferenceSpecifiers), such as Item 0,
Item 1, Item 2, and so on. Each item has a Type key, which indicates the type of data stored.
Table 9-1 describes the preference specifiers.

TABLE 9-1: List of Preference Specifi ers and Usage

ELEMENT TYPE DESCRIPTION USE FOR

PSTextFieldSpecifier A text fi eld preference.

Displays an optional title

and an editable text fi eld.

Preferences that require the user to

specify a custom string value

FIGURE 9-5

c09.indd 204c09.indd 204 05/12/11 7:43 PM05/12/11 7:43 PM

Creating Application Preferences ❘ 205

ELEMENT TYPE DESCRIPTION USE FOR

PSTitleValueSpecifier A read-only string

preference

Displaying preference values as

formatted strings

PSToggleSwitchSpecifier A toggle switch

preference

Confi guring a preference that can have

only one of two values

PSSliderSpecifier A slider preference Preferences that represent a range of values.

The value for this type is a real number

whose minimum and maximum you specify.

PSMultiValueSpecifier A multivalue preference Preferences that support a set of mutually

exclusive values

PSGroupSpecifier A group item preference Organizing groups of preferences on a

single page

PSChildPaneSpecifier A child pane preference Linking to a new page of preferences

By default, the various items inside the Root.plist file are represented using their user-friendly names,
such as Default Value, Text Field Is Secure, and so on. However, for editing purposes (such as adding
new keys into the file), it is always easier to display the keys in their raw format. To do so, right-click on
another item inside the .plist file and select Show Raw Keys/Values (see Figure 9-6). Doing so makes
the editor toggle between displaying the names in user-friendly format and displaying them in raw form.

FIGURE 9-6

c09.indd 205c09.indd 205 05/12/11 7:43 PM05/12/11 7:43 PM

206 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

Each PreferenceSpecifiers key contains a list of subkeys that you can use. For example, the
PSTextFieldSpecifier key provides Type, Title, Key, DefaultValue, IsSecure, KeyBoardType,
AutocapitalizationType, and AutocorrectionType keys. You then set each key with its appropriate
values.

Examine the Root.plist file in more detail. Note, for example, that Item 2 has four keys under it:
Type, Title, Key, and DefaultValue. The Type key specifies the type of information it is going to
store. In this case, it is a PSToggleSwitchSpecifier, which means it will be represented visually as an
On/Off switch. The Title key specifies the text that will be shown for this item (Item 2). The Key key
is the identifier that uniquely identifies this key so that you can programmatically retrieve the value of
this item in your application. Finally, the DefaultValue key specifies the default value of this item.
In this case, it is checked, indicating that the value is On.

NOTE The key/value pair in the Root.plist fi le is case sensitive, so you
need to be careful when modifying the entries. A single typo can result in a
nonfunctional application.

NOTE For more information on the use of each key, refer to Apple’s “Settings
Application Schema Reference” documentation. The easiest way to locate it is to
do a web search for the title. The full URL is http://developer.apple
.com/library/ios/documentation/PreferenceSettings/Conceptual/

SettingsApplicationSchemaReference/

SettingsApplicationSchemaReference.pdf.

In the next Try It Out, you modify the Root.plist file so that you can use it to store a user’s
credentials. This is very useful when you are writing an application that requires users to log in to
a server. When users access your application for the first time, they supply their login credentials,
such as username and password. Your application can then store the credentials in the application
preferences so that the next time the users access your application, the application can automatically
retrieve the credentials, rather than ask for them.

TRY IT OUT Modifying the Application Preferences

1. In Xcode (using the same project created in the previous section), select the Root.plist file and
remove all four items (Item 0 to Item 3) under the PreferenceSpecifiers key. To do so, select
individual items under the PreferenceSpecifiers key and then press the Delete key (see Figure 9-7).

 2. Modify the entire Root.plist file so that it looks like Figure 9-8. Ensure that the capitalization
of each key and value pair is correct. Pay particular attention to the Type and Value of each item.

c09.indd 206c09.indd 206 05/12/11 7:43 PM05/12/11 7:43 PM

Creating Application Preferences ❘ 207

 3. Save the project and press Command-R to test the application on the iPhone Simulator. Click the
Home button and launch the Settings application again. Select the ApplicationSettings settings
and observe the preferences shown (see Figure 9-9). Clicking the Favorite Color setting will
display a page for choosing your favorite color (see Figure 9-10).

FIGURE 9-7

FIGURE 9-8

c09.indd 207c09.indd 207 05/12/11 7:43 PM05/12/11 7:43 PM

208 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

 4. Make some changes to the settings values and then press the Home button to return to the Home
screen. The changes in the settings are automatically saved to the device. When you return to the
Settings page again, the new values will be displayed.

How It Works

What you have done is basically modify the Root.plist file to store three preferences: Login Name,
Password, and Favorite Color. For the Password field, you use the IsSecure key to indicate that
the value must be masked when displaying it to the user. Of particular interest is the Favorite Color
preference, for which you use the Titles and Values keys to display a list of selectable options and
their corresponding values to store on the iPhone.

The following preference specifiers are used in this example:

 ➤ PSGroupSpecifier — Used to display a group for the settings. In this case, all the settings are
grouped under the Account Information group.

 ➤ PSTextFieldSpecifier — Specifies a text field

 ➤ PSMultiValueSpecifier — Specifies a list of selectable values. The Titles item contains a list
of visible text from which users can select. The Values item is the corresponding value for the text
selected by the user. For example, if a user selects Blue Color as the favorite color, the value Blue
will be stored on the iPhone.

FIGURE 9-9 FIGURE 9-10

c09.indd 208c09.indd 208 05/12/11 7:43 PM05/12/11 7:43 PM

Programmatically Accessing the Settings Values ❘ 209

PROGRAMMATICALLY ACCESSING

THE SETTINGS VALUES

Of course, the preferences settings are of little use if you can’t programmatically access them from
within your application. In the following sections, you modify the application so that you can load
the preferences settings as well as make changes to them programmatically.

First, use the following Try It Out to prepare the UI by connecting the necessary outlets and actions.

TRY IT OUT Preparing the UI

 1. Using the project created in the previous section, select the
ApplicationSettingsViewController.xib file to edit it in Interface Builder.

 2. Populate the View window with the following views (see Figure 9-11):

 ➤ Round Rect Button

 ➤ Label

 ➤ Text Field

 ➤ Picker View

 3. In Xcode, insert the following code that appears in bold into the
ApplicationSettingsViewController.h file:

#import <UIKit/UIKit.h>

@interface ApplicationSettingsViewController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> {
 IBOutlet UITextField *loginName;
 IBOutlet UITextField *password;
 IBOutlet UIPickerView *favoriteColor;
 }

@property (nonatomic, retain) UITextField *loginName;
@property (nonatomic, retain) UITextField *password;
@property (nonatomic, retain) UIPickerView *favoriteColor;

-(IBAction) loadSettings: (id) sender;
-(IBAction) saveSettings: (id) sender;
-(IBAction) doneEditing: (id) sender;

@end

c09.indd 209c09.indd 209 05/12/11 7:43 PM05/12/11 7:43 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

210 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

 4. In Interface Builder, connect the outlets and action to the various views. In the
ApplicationSettingsViewController.xib window, do the following:

 ➤ Control-click and drag the File’s Owner item to the first Text Field and select loginName.

 ➤ Control-click and drag the File’s Owner item to the second Text Field and select password.

 ➤ Control-click and drag the File’s Owner item to the Picker View and select favoriteColor.

 ➤ Control-click and drag the Picker View to the File’s Owner item and select dataSource.

 ➤ Control-click and drag the Picker View to the File’s Owner item and select delegate.

 ➤ Control-click and drag the Load Settings Value button to the File’s Owner item and select
loadSettings:.

 ➤ Control-click and drag the Save Settings Value button to the File’s Owner item and select
saveSettings:.

 ➤ Right-click the Load Settings Value button and connect the Did End on Exit event to the
File’s Owner item. Select doneEditing:.

 ➤ Right-click the Save Settings Value button and connect the Did End on Exit event to the
File’s Owner item. Select doneEditing:.

FIGURE 9-11

c09.indd 210c09.indd 210 05/12/11 7:43 PM05/12/11 7:43 PM

Programmatically Accessing the Settings Values ❘ 211

 5. Right-click the File’s Owner item to verify that all the connections are connected properly (see
Figure 9-12).

FIGURE 9-12

 6. In Xcode, add the following bold code to the ApplicationSettingsViewController.m file:

#import “ApplicationSettingsViewController.h”

@implementation ApplicationSettingsViewController

@synthesize loginName;
@synthesize password;
@synthesize favoriteColor;
NSMutableArray *colors;
NSString *favoriteColorSelected;

-(IBAction) doneEditing:(id) sender {
 [sender resignFirstResponder];
}

- (void)viewDidLoad {
 //---create an array containing the colors values---
 colors = [[NSMutableArray alloc] init];

c09.indd 211c09.indd 211 05/12/11 7:43 PM05/12/11 7:43 PM

212 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

 [colors addObject:@”Red”];
 [colors addObject:@”Green”];
 [colors addObject:@”Blue”];
 [super viewDidLoad];
}

//---number of components in the Picker View---
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)thePickerView {
 return 1;
}

//---number of items(rows) in the Picker View---
- (NSInteger)pickerView:(UIPickerView *)thePickerView
numberOfRowsInComponent:(NSInteger)component {
 return [colors count];
}

//---populating the Picker view---
- (NSString *)pickerView:(UIPickerView *)thePickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [colors objectAtIndex:row];
}

//---the item selected by the user---
- (void)pickerView:(UIPickerView *)thePickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 favoriteColorSelected = [colors objectAtIndex:row];
}

- (void)dealloc {
 [colors release];
 [favoriteColorSelected release];
 [loginName release];
 [password release];
 [favoriteColor release];
 [super dealloc];
}

 7. That’s it! Press Command-R to test the application on the iPhone
Simulator. Figure 9-13 shows the Picker View loaded with the
three colors.

How It Works

So far, all the work that has been done prepares the UI for displaying the values retrieved from the
preferences settings. In particular, you needed to prepare the Picker View to display a list of colors from
which the user can choose.

FIGURE 9-13

c09.indd 212c09.indd 212 05/12/11 7:43 PM05/12/11 7:43 PM

Programmatically Accessing the Settings Values ❘ 213

To load the Picker View with the three colors, you ensure that the
ApplicationSettingsViewController class conforms to the UIPickerViewDataSource and
UIPickerViewDelegate protocols:

@interface ApplicationSettingsViewController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> {

The UIPickerViewDataSource protocol defines the methods to populate the Picker View with items,
while the UIPickerViewDelegate protocol defines the methods to enable users to select an item from
the Picker View.

In the ApplicationSettingsViewController.m file, you first created an NSMutableArray object to
store the list of colors available for selection, in the viewDidLoad method:

- (void)viewDidLoad {
 //---create an array containing the colors values---
 colors = [[NSMutableArray alloc] init];
 [colors addObject:@”Red”];
 [colors addObject:@”Green”];
 [colors addObject:@”Blue”];
 [super viewDidLoad];
}

To set the number of components (columns) in the Picker View, you implemented the
numberOfComponentsInPickerView: method:

//---number of components in the Picker View---
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)thePickerView {
 return 1;
}

To set the number of items (rows) you want to display in the Picker View, you implemented the
pickerView:numberOfRowsInComponent: method:

//---number of items(rows) in the Picker View---
- (NSInteger)pickerView:(UIPickerView *)thePickerView
numberOfRowsInComponent:(NSInteger)component {
 return [colors count];
}

To populate the Picker View with the three colors, you implemented the
pickerView:titleForRow:forComponent: method:

//---populating the Picker view---
- (NSString *)pickerView:(UIPickerView *)thePickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [colors objectAtIndex:row];
}

c09.indd 213c09.indd 213 05/12/11 7:43 PM05/12/11 7:43 PM

214 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

To save the color selected by the user in the Picker View, you implemented the
pickerView:didSelectRow:inComponent: method:

//---the item selected by the user---
- (void)pickerView:(UIPickerView *)thePickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 favoriteColorSelected = [colors objectAtIndex:row];
}

The color selected will now be saved in the favoriteColorSelected object.

Loading the Settings Values

With the user interface of the application ready, it is time to learn how you can programmatically
load the values of the preferences settings and then display them in your application, as described in
the following Try It Out. This display is useful because it gives users a chance to view the values
of the settings without needing to access the Settings application.

TRY IT OUT Loading Settings Values

 1. Using the project created in the previous section, modify the
application:didFinishLaunchingWithOptions: method in
the ApplicationSettingsAppDelegate.m file:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 //--- initialize the settings value first;
 // if not all settings values will be null --
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 if (![defaults objectForKey:@”login_name”])
 [defaults setObject:@”login name” forKey:@”login_name”];
 if (![defaults objectForKey:@”password”])
 [defaults setObject:@”password” forKey:@”password”];
 if (![defaults objectForKey:@”color”])
 [defaults setObject:@”Green” forKey:@”color”];
 [defaults synchronize];

 self.window =
 [[[UIWindow alloc] initWithFrame:
 [[UIScreen mainScreen] bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController =
 [[[ApplicationSettingsViewController alloc]
 initWithNibName:@”ApplicationSettingsViewController”
 bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

c09.indd 214c09.indd 214 05/12/11 7:43 PM05/12/11 7:43 PM

Programmatically Accessing the Settings Values ❘ 215

 2. Insert the following method into the loadSettings: method in the
ApplicationSettingsViewController.m file:

 -(IBAction) loadSettings: (id) sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 loginName.text = [defaults objectForKey:@”login_name”];
 password.text = [defaults objectForKey:@”password”];

 //---find the index of the array for the color saved---
 favoriteColorSelected = [[NSString alloc] initWithString:
 [defaults objectForKey:@”color”]];
 int selIndex = [colors indexOfObject:favoriteColorSelected];

 //---display the saved color in the Picker view---
 [favoriteColor selectRow:selIndex inComponent:0 animated:YES];
}

 3. Press Command-R to test the application on the iPhone Simulator. When the application is
loaded, click the Load Settings Values button. You should see the settings values displayed in the
Text Fields and the Picker View (see Figure 9-14).

FIGURE 9-14

How It Works

To load the values of the preferences settings, you use a class known as NSUserDefaults:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

The preceding statement returns the one instance of the NSUserDefaults class. Think of
NSUserDefaults as a common database that you can use to store your application preferences settings.

c09.indd 215c09.indd 215 05/12/11 7:43 PM05/12/11 7:43 PM

216 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

When your application runs for the first time, you need to set the values of the settings before you can
use them. Hence, the best place to initialize them is in the application delegate.

To retrieve the values of the preferences settings, you use the objectForKey: method to check whether
each setting is null. If it is, the setting has not been initialized yet and hence you need to set it. To
initialize the setting, use the setObject:forKey: method:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 if (![defaults objectForKey:@”login_name”])
 [defaults setObject:@”login name” forKey:@”login_name”];
 if (![defaults objectForKey:@”password”])
 [defaults setObject:@”password” forKey:@”password”];
 if (![defaults objectForKey:@”color”])
 [defaults setObject:@”Green” forKey:@”color”];
 [defaults synchronize];

Note that to immediately save the settings values to the Settings application, you should call the
synchronize method of the NSUserDefaults instance.

To load the settings value, likewise you use the objectForKey: method, specifying the name of the
preference setting you want to retrieve:

-(IBAction) loadSettings: (id) sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 loginName.text = [defaults objectForKey:@”login_name”];
 password.text = [defaults objectForKey:@”password”];

 //---find the index of the array for the color saved---
 favoriteColorSelected = [[NSString alloc] initWithString:
 [defaults objectForKey:@”color”]];
 int selIndex = [colors indexOfObject:favoriteColorSelected];

 //---display the saved color in the Picker view---
 [favoriteColor selectRow:selIndex inComponent:0 animated:YES];
}

Resetting the Preferences Settings Values

Sometimes, you may want to reset the values of the preferences settings of your application. This is
especially true if you have made an error in the Root.plist file and want to reset all the settings.
The easiest way to do this is to remove the application from the device or Simulator. To do so,
simply tap (or click the Simulator) and hold the application’s icon; and when the icons start to
wriggle, tap the X button to remove the application. The preferences settings associated with the
application will also be removed.

Another way to clear the values of the preferences settings is to navigate to the folder containing
your application (on the iPhone Simulator). The applications on the iPhone Simulator are stored in
the following folder: ~/Library/Application Support/iPhone Simulator>/<version_no>/
Applications/ (note that the tilde symbol (~) represents your home directory and not your root
directory). Inside this folder, you need to find the folder containing your application. Within the

c09.indd 216c09.indd 216 05/12/11 7:43 PM05/12/11 7:43 PM

Programmatically Accessing the Settings Values ❘ 217

application folder is a Library/Preferences folder. Delete the file ending with <application_
name>.plist (see Figure 9-15) and your preferences settings will be reset.

FIGURE 9-15

Saving the Settings Values

Now that you have seen how to load the values of preferences settings, the following Try It Out
demonstrates how to save the values back to the preferences settings. This enables users to directly
modify their preferences settings from within your application, instead of using the Settings
application to do so.

TRY IT OUT Saving Settings Values

 1. Using the same project created in the previous section, insert the following method in the
saveSettings: method in the ApplicationSettingsViewController.m file:

-(IBAction) saveSettings: (id) sender {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject:loginName.text forKey:@”login_name”];
 [defaults setObject:password.text forKey:@”password”];
 [defaults setObject:favoriteColorSelected forKey:@”color”];
 [defaults synchronize];

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Settings Value Saved”
 message:@”Settings Saved”
 delegate:nil
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

 2. Press Command-R to test the application on the iPhone Simulator. Make some changes to the
login name, password, and favorite color. When you click the Save Settings Value button, all the

c09.indd 217c09.indd 217 05/12/11 7:43 PM05/12/11 7:43 PM

218 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

changes are made to the device (see Figure 9-16). When you check the Settings application, you
will see the updated settings values (see Figure 9-17).

FIGURE 9-16 FIGURE 9-17

How It Works

To save the values back to the preferences settings, you used the same approach that you used to
retrieve those settings — that is, the NSUserDefaults class:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject:loginName.text forKey:@”login_name”];
 [defaults setObject:password.text forKey:@”password”];
 [defaults setObject:favoriteColorSelected forKey:@”color”];
 [defaults synchronize];

As usual, rather than use the objectForKey: method, you now used the setObject:forKey: method
to save the values.

SUMMARY

This chapter explained how you can make use of the Application Preferences feature of the iPhone
to save your application preferences to the Settings application. This enables you to delegate most
of the mundane tasks of saving and loading an application’s preferences settings to the OS. All you
need to do is use the NSUserDefaults class to programmatically access the preferences settings.

c09.indd 218c09.indd 218 05/12/11 7:43 PM05/12/11 7:43 PM

Summary ❘ 219

EXERCISES

 1. You have learned that you can use the NSUserDefaults class to access the preferences settings

values for your application. What are the methods for retrieving and saving the values?

 2. What are the two ways in which you can remove the preferences settings for an application?

Answers to the exercises can be found in Appendix D.

c09.indd 219c09.indd 219 05/12/11 7:43 PM05/12/11 7:43 PM

220 ❘ CHAPTER 9 USING APPLICATION PREFERENCES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Adding application preferences

to your application

Add a Settings Bundle fi le to your project and modify the

Root.plist fi le.

Loading the value of a preference

setting

NSUserDefaults *defaults =

[NSUserDefaults standardUserDefaults];

loginName.text = [defaults

 objectForKey:@”login_name”];

Resetting preferences settings

values

Remove the entire application either from the Home screen

or via the iPhone Simulator folder on your Mac.

Saving the value of a preference

setting

NSUserDefaults *defaults = [NSUserDefaults

standardUserDefaults];

[defaults setObject:loginName.text

 forKey:@”login_name”];

[defaults synchronize];

c09.indd 220c09.indd 220 05/12/11 7:43 PM05/12/11 7:43 PM

File Handling

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Where your applications are stored in iOS 5

 ➤ The various folders within your Applications folder

 ➤ How to read and write to fi les in the Documents and tmp folders

 ➤ How to use a property to store structured data

 ➤ How to programmatically retrieve values stored in a property list

 ➤ How to modify the values retrieved from a property list and save

the changes to a fi le

 ➤ How to copy bundled resources to the application’s folder during

runtime

 ➤ How to export a document from your application to another

application

 ➤ How to share your application’s Documents folder through iTunes

 ➤ How to allow other applications to import documents into your

application

All the applications you have developed up to this point are pretty straightforward — the
application starts, performs something interesting, and ends. In Chapter 9, you saw how you
can make use of the Application settings feature to save the preferences of your application to
a central location managed by the Settings application. Sometimes, however, you simply need
to save some data to your application’s folder for use later. For example, rather than keep files
you download from a remote server in memory, a more effective and memory-efficient method
is to save them in a file so that you can use them later (even after the application has shut
down and restarted).

10

c10.indd 221c10.indd 221 05/12/11 7:59 PM05/12/11 7:59 PM

222 ❘ CHAPTER 10 FILE HANDLING

Within this folder are five subfolders:

 ➤ Applications

 ➤ Library

 ➤ Media

 ➤ Root

 ➤ tmp

The Applications folder contains all your installed applications (see Figure 10-1). Within it are several
folders with long filenames. These filenames are generated by Xcode to uniquely identify each of your
applications. Each application’s folder holds your application’s executable file (the .app file, which
includes all embedded resources), together with a few other folders, such as Documents, Library, and
tmp. On the iPhone and iPad, all applications run within their own sandboxed environments — that
is, an application can access only the files stored within its own folder; it cannot access the folders of
other applications.

This chapter describes the two available approaches to persisting data in your application so that
you can access it later: saving the data as files or as a property list. You also learn how to bundle
resources such as text files and database files with your application so that when the application is
installed on the user’s device, the resources can be copied onto the local storage of the device and
used from there. In addition, you will learn how to share files between applications.

UNDERSTANDING THE APPLICATION FOLDERS

Your applications are stored in the iOS file system, so you’ll find it useful to understand the folder
structure of the iPhone and iPad.

On the desktop, the contents of the iOS Simulator is stored in the ~/Library/Application Support/
iPhone Simulator>/<version_no>/ folder.

NOTE The ~ (tilde) represents the current user’s directory. Specifi cally, the
preceding directory is equivalent to the following:

/Users/<username>/Library/Application Support/
iPhone Simulator>/<version_no>/

Note that in Lion, the Library folder is now hidden. To view the Library folder, you
can select Go ➪ Go to Folder…, and then enter “~/Library.”

c10.indd 222c10.indd 222 05/12/11 7:59 PM05/12/11 7:59 PM

Understanding the Application Folders ❘ 223

Using the Documents and Library Folders

The Documents folder is where you can store files used by your application, whereas the Library
folder stores the application-specific settings. It also contains snapshots of your application before
its goes into the background so that they can be displayed later when they are returned to the
foreground, giving the impression that your application is springing back to life instantly. The tmp
folder stores temporary data required by your application.

How you do write to these folders? The following Try It Out provides an example of doing just that.
You can download the indicated code files to work through the project.

TRY IT OUT Writing to and Reading from Files

codefile FilesHandling.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it FilesHandling.
You will also use the project name as the Class Prefix and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. In the FilesHandlingViewController.h file, add the following bold statements:

#import <UIKit/UIKit.h>

@interface FilesHandlingViewController : UIViewController

-(NSString *) documentsPath;
-(NSString *) readFromFile:(NSString *) filePath;
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath;

@end

FIGURE 10-1

c10.indd 223c10.indd 223 05/12/11 7:59 PM05/12/11 7:59 PM

224 ❘ CHAPTER 10 FILE HANDLING

 3. In the FilesHandlingViewController.m file, add the following bold statements:

#import “FilesHandlingViewController.h”

@implementation FilesHandlingViewController

//---finds the path to the application’s Documents folder---
-(NSString *) documentsPath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return documentsDir;
}

//---write content into a specified file path---
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:text];
 [array writeToFile:filePath atomically:YES];
 [array release];
}

//---read content from a specified file path---
-(NSString *) readFromFile:(NSString *) filePath {
 //—-check if file exists—-
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array =
 [[NSArray alloc] initWithContentsOfFile: filePath];
 NSString *data =
 [NSString stringWithFormat:@”%@”,
 [array objectAtIndex:0]];
 [array release];
 return data;
 }
 else
 return nil;
}

- (void)viewDidLoad
{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@”data.txt”];

 //---write something to the file---
 [self writeToFile:@”a string of text” withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@”%@”, fileContent);
 [super viewDidLoad];
}

c10.indd 224c10.indd 224 05/12/11 7:59 PM05/12/11 7:59 PM

Understanding the Application Folders ❘ 225

 4. Press Command-R to test the application on the iPhone Simulator.

 5. Go to Finder and navigate to the Documents folder of your application. The data.txt file is now
visible (see Figure 10-2).

 6. When you deploy the application to a real iOS device, the location of the file on the real device is
/var/mobile/Applications/<application_id>/Documents/data.txt.

 7. Double-click the data.txt file to view its contents as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN”
 “http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>
<array>
 <string>a string of text</string>
</array>
</plist>

 8. If you turn on the output window (press Command-Shift-c), you will see that the application
prints a string of text (see Figure 10-3).

FIGURE 10-2

FIGURE 10-3

c10.indd 225c10.indd 225 05/12/11 7:59 PM05/12/11 7:59 PM

226 ❘ CHAPTER 10 FILE HANDLING

How It Works

You first define the documentsPath method, which returns the path to the Documents folder:

//---finds the path to the application’s Documents folder---
-(NSString *) documentsPath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return documentsDir;
}

Basically, you use the NSSearchPathForDirectoriesInDomains() function to create a list of
directory search paths, indicating that you want to look for the Documents folder (using the
NSDocumentDirectory constant). The NSUserDomainMask constant indicates that you want to search
from the application’s home directory, and the YES argument indicates that you want to obtain the full
path of all the directories found.

To obtain the path to the Documents folder, you simply extract the first item of the paths array
(because there is only one Documents folder in an iOS application’s folder). In fact, this block of code is
derived from the Mac OS X API, which might return multiple folders; but in the case of the iOS, there
can only be one Documents folder per application.

You next define the writeToFile:withFileName: method, which creates an NSMutableArray and
adds the text to be written to the file to it:

//---write content into a specified file path---
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:text];
 [array writeToFile:filePath atomically:YES];
 [array release];
}

To persist the contents (a process known as serialization) of the NSMutableArray to a file, you use its
writeToFile:atomically: method. The atomically: parameter indicates that the file should first be
written to a temporary file before it is renamed to the filename specified. This approach guarantees that
the file will never be corrupted, even if the system crashes during the writing process.

To read the contents from a file, you define the readFromFile: method:

//---read content from a specified file path---
-(NSString *) readFromFile:(NSString *) filePath {
 //—-check if file exists—-
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array =
 [[NSArray alloc] initWithContentsOfFile: filePath];
 NSString *data =
 [NSString stringWithFormat:@”%@”,
 [array objectAtIndex:0]];

c10.indd 226c10.indd 226 05/12/11 7:59 PM05/12/11 7:59 PM

Understanding the Application Folders ❘ 227

 [array release];
 return data;
 }
 else
 return nil;
}

You first use an instance of the NSFileManager class to determine whether the specified file exists. If it
does, then you read the content of the file into an NSArray object. In this case, because you know that
the file contains a single line of text, you extract the first element in the array.

With all the methods in place, you are ready to make use of them. When the view is loaded, you
create the pathname for a file that you want to save. You then write a string of text into the file and
immediately read it back and print it in the output window:

- (void)viewDidLoad
{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@”data.txt”];

 //---write something to the file---
 [self writeToFile:@”a string of text” withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@”%@”, fileContent);
 [super viewDidLoad];
}

Storing Files in the Temporary Folder

In addition to storing files in the Documents folder, you can store temporary files in the tmp folder.
Files stored in the tmp folder are not backed up by iTunes, so you need to find a permanent place for the
files you want to keep. To get the path to the tmp folder, you can call the NSTemporaryDirectory()
function, like this:

-(NSString *) tempPath{
 return NSTemporaryDirectory();
}

The following statement returns the path of a file (“data.txt”) to be stored in the tmp folder:

 NSString *fileName =
 [[self tempPath] stringByAppendingPathComponent:@”data.txt”];

c10.indd 227c10.indd 227 05/12/11 7:59 PM05/12/11 7:59 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

228 ❘ CHAPTER 10 FILE HANDLING

Which Folder Should You Use: Documents or tmp?

All the files stored in the Documents folder (as well as the Library folder, with the exception of the
caches folder) of your application are automatically backed up by iTunes when the user connects his
or her device to iTunes. Hence, if your applications store a large number of files in the Documents
folder, it will take a long time to back up the files each time the user connects to iTunes. If all the
applications on the user’s device contain a large number of files in their Documents folder, you
can easily imagine the amount of time needed for iTunes to synchronize your device. As such,
your application should only use the Documents folder sparingly to store files that are absolutely
necessary for the running of your application. For example, in the Documents folder, you can store
databases that are required by your application. For temporary files that you don’t need later (such
as results returned from a web service that you will store somewhere else later, images, etc.), you can
store them in the tmp folder. Files stored in the tmp folder will not be backed up by iTunes, and it is
your responsibility to perform your own housekeeping. Occasionally, iOS may also delete files in the
tmp folder when your application is not running.

USING PROPERTY LISTS

In iOS programming, you can use property lists to store structured data using key/value pairs.
Property lists are stored as XML files and are highly transportable across file systems and networks.
For example, you might want to store a list of App Store application titles in your application.
Because applications in the App Store are organized by category, it would be natural to store this
information using a property list employing the structure shown in the following table:

In Xcode, you can create and add a property list to your project and populate it with items using
the built-in Property List Editor. The property list is deployed together with the application.
Programmatically, you can retrieve the values stored in a property list using the NSDictionary
class. More importantly, if you need to make changes to a property list, you can write the changes
to a file so that you can later refer to the file directly instead of the property list.

In the following Try It Out, you create a property list and populate it with some values. You then
read the values from the property list during runtime, make some changes, and save the modified
values to another property list file in the Documents folder.

CATEGORY TITLES

Games “Animal Park”, “Biology Quiz”, “Calculus Test”

Entertainment “Eye Balls - iBlower”, “iBell”, “iCards Birthday”

Utilities “Battery Monitor”, “iSystemInfo”

NOTE To store application-specifi c settings that users can modify outside your
application, consider using the NSUserDefaults class to store the settings in the
Settings application. Application settings are discussed in Chapter 9.

c10.indd 228c10.indd 228 05/12/11 7:59 PM05/12/11 7:59 PM

Using Property Lists ❘ 229

TRY IT OUT Creating and Modifying a Property List

 1. Using the same project created in the previous section, right-click the project name in Xcode and
choose New File

 2. Select the Resource item on the left of the New File dialog and select the Property List template on
the right of the dialog (see Figure 10-4). Click Next.

FIGURE 10-4

 3. Name the property list Apps.plist.

 4. Populate Apps.plist as shown in Figure 10-5.

FIGURE 10-5

c10.indd 229c10.indd 229 05/12/11 7:59 PM05/12/11 7:59 PM

230 ❘ CHAPTER 10 FILE HANDLING

 5. Add the following bold statements to the viewDidLoad method:

- (void)viewDidLoad
{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@”data.txt”];

 //NSString *fileName =
 //[[self tempPath] stringByAppendingPathComponent:@”data.txt”];
 //NSLog(@”%@”, fileName);

 //---write something to the file---
 [self writeToFile:@”a string of text” withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@”%@”, fileContent);

 //---get the path to the property list file---
 NSString *plistFileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];

 //---if the property list file can be found---
 if ([[NSFileManager defaultManager] fileExistsAtPath:plistFileName]) {

 //---load the content of the property list file into a NSDictionary
 // object---
 NSDictionary *dict =
 [[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];

 //---for each category---
 for (NSString *category in dict) {
 NSLog(@”%@”, category);
 NSLog(@”========”);

 //---return all titles in an array---
 NSArray *titles = [dict valueForKey:category];

 //---print out all the titles in that category---
 for (NSString *title in titles) {
 NSLog(@”%@”, title);
 }
 }
 [dict release];
 }
 else {

c10.indd 230c10.indd 230 05/12/11 7:59 PM05/12/11 7:59 PM

Using Property Lists ❘ 231

 //---load the property list from the Resources folder---
 NSString *pListPath =
 [[NSBundle mainBundle] pathForResource:@”Apps”
 ofType:@”plist”];

 NSDictionary *dict =
 [[NSDictionary alloc] initWithContentsOfFile:pListPath];

 //---make a mutable copy of the dictionary object---
 NSMutableDictionary *copyOfDict = [dict mutableCopy];

 //---get all the different categories---
 NSArray *categoriesArray =
 [[copyOfDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---for each category---
 for (NSString *category in categoriesArray) {
 //---get all the app titles in that category---
 NSArray *titles = [dict valueForKey:category];

 //---make a mutable copy of the array---
 NSMutableArray *mutableTitles = [titles mutableCopy];

 //---add a new title to the category---
 [mutableTitles addObject:@”New App title”];

 //---set the array back to the dictionary object---
 [copyOfDict setObject:mutableTitles forKey:category];
 [mutableTitles release];
 }

 //---write the dictionary to file---
 fileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];
 [copyOfDict writeToFile:fileName atomically:YES];
 [dict release];
 [copyOfDict release];
 }
 [super viewDidLoad];
}

 6. Press Command-R to test the application on the iPhone Simulator.

 7. When you first run the application, it creates a new .plist file in the Documents folder.
Double-click the .plist file to view it using the Property List Editor; you will see a new item
named New App title for each category of applications (see Figure 10-6).

c10.indd 231c10.indd 231 05/12/11 7:59 PM05/12/11 7:59 PM

232 ❘ CHAPTER 10 FILE HANDLING

 8. Run the application a second time. It prints the content of the .plist file in the Documents
folder to the output window (see Figure 10-7), proving the existence of the property list in the
Documents folder.

FIGURE 10-6

FIGURE 10-7

c10.indd 232c10.indd 232 05/12/11 7:59 PM05/12/11 7:59 PM

Using Property Lists ❘ 233

How It Works

The first part of this example shows how you can add a property list file to your application. In the property
list file, you add three keys representing the category of applications in the App Store: Entertainment, Games,
and Utilities. Each category contains a list of application titles.

When the view is loaded, you look for a file named Apps.plist in the Documents folder of your application:

 //---get the path to the property list file---
 NSString *plistFileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];

If the file is found, you load its contents into an NSDictionary object:

 //---if the property list file can be found---
 if ([[NSFileManager defaultManager] fileExistsAtPath:plistFileName]) {

 //---load the content of the property list file into a NSDictionary
 // object---
 NSDictionary *dict =
 [[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];

 //...
 }

Next, you enumerate through all the keys in the dictionary object and print the title of each application
in the output window:

 //---for each category---
 for (NSString *category in dict) {
 NSLog(@”%@”, category);
 NSLog(@”========”);

 //---return all titles in an array---
 NSArray *titles = [dict valueForKey:category];

 //---print out all the titles in that category---
 for (NSString *title in titles) {
 NSLog(@”%@”, title);
 }
 }
 [dict release];

When the application is run for the first time, the Apps.plist file is not available, so you load it from
the Resources folder:

 else {
 //---load the property list from the Resources folder---
 NSString *pListPath =

c10.indd 233c10.indd 233 05/12/11 7:59 PM05/12/11 7:59 PM

234 ❘ CHAPTER 10 FILE HANDLING

 [[NSBundle mainBundle] pathForResource:@”Apps”
 ofType:@”plist”];

 NSDictionary *dict =
 [[NSDictionary alloc] initWithContentsOfFile:pListPath];

 //...
 }

Because you are making changes to the dictionary object, you need to make a mutable copy of it and
assign it to an NSMutableDictionary object:

 //---make a mutable copy of the dictionary object---
 NSMutableDictionary *copyOfDict = [dict mutableCopy];

This step is important because the NSDictionary object is immutable, meaning that after the items
are populated from the property list, you cannot add content to the dictionary object. Using the
mutableCopy method of the NSDictionary class allows you to create a mutable instance of the
dictionary object, which is NSMutableDictionary.

You then retrieve an array containing all the keys in the mutable dictionary object:

 //---get all the different categories---
 NSArray *categoriesArray =
 [[copyOfDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

You use this array to loop through all the keys in the dictionary so that you can add some additional
titles to each category:

 //---for each category---
 for (NSString *category in categoriesArray) {

 }

Note that you cannot enumerate using the NSMutableDictionary object like this:

 for (NSString *category in copyOfDict) {
 //...
 }

That’s because you cannot add items to the NSMutableDictionary object while it is being enumerated.
Therefore, you need to loop using an NSArray object.

When you’re inside the loop, you extract all the titles of the applications in each category and make a
mutable copy of the array containing the titles of the applications:

 //---get all the app titles in that category---
 NSArray *titles = [dict valueForKey:category];

 //---make a mutable copy of the array---
 NSMutableArray *mutableTitles = [titles mutableCopy];

c10.indd 234c10.indd 234 05/12/11 7:59 PM05/12/11 7:59 PM

Copying Bundled Resources ❘ 235

You can now add a new title to the mutable array containing the application titles:

 //---add a new title to the category---
 [mutableTitles addObject:@”New App title”];

After the additional item is added to the mutable array, you set it back to the mutable dictionary object:

 //---set the array back to the dictionary object---
 [copyOfDict setObject:mutableTitles forKey:category];
 [mutableTitles release];

Finally, you write the mutable dictionary object to a file using the writeToFile:atomically: method:

 //---write the dictionary to file---
 fileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];
 [copyOfDict writeToFile:fileName atomically:YES];
 [dict release];
 [copyOfDict release];

COPYING BUNDLED RESOURCES

In the previous section, you learned how to embed a property list file into your application and then
programmatically recreate the property list and save it in the Documents folder during runtime.
While that example showed the various ways to manipulate a property list, in general it is much
easier to simply copy the resource (such as the property list) into the Documents folder directly.

All resources embedded within your application (commonly known as bundled resources) are
read-only. In order to make changes to them, you need to copy them into the application’s folders,
such as the Documents or tmp folders. You can do so by copying the resource when the application
starts. The ideal location to perform this is in the application delegate. Using the preceding example,
you could define the following copyFileInBundleToDocumentsFolder:withExtension: method
in the FilesHandlingAppDelegate.m file:

#import “FilesHandlingAppDelegate.h”

#import “FilesHandlingViewController.h”

@implementation FilesHandlingAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (void) copyFileInBundleToDocumentsFolder:(NSString *) fileName
 withExtension:(NSString *) ext {

 //—-get the path of the Documents folder—-
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths objectAtIndex:0];

 //—-get the path to the file you want to copy in the Documents folder—-

c10.indd 235c10.indd 235 05/12/11 7:59 PM05/12/11 7:59 PM

236 ❘ CHAPTER 10 FILE HANDLING

 NSString *filePath =
 [documentsDirectory
 stringByAppendingPathComponent:
 [NSString stringWithString:fileName]];

 filePath = [filePath stringByAppendingString:@”.”];
 filePath = [filePath stringByAppendingString:ext];

 //—-check if file is already in Documents folder,
 // if not, copy it from the bundle—-
 NSFileManager *fileManager = [NSFileManager defaultManager];
 if (![fileManager fileExistsAtPath:filePath]) {

 //—-get the path of the file in the bundle—-
 NSString *pathToFileInBundle =
 [[NSBundle mainBundle] pathForResource:fileName ofType:ext];

 //—-copy the file in the bundle to the Documents folder—-
 NSError *error = nil;
 bool success =
 [fileManager copyItemAtPath:pathToFileInBundle
 toPath:filePath error:&error];

 if (success) {
 NSLog(@”File copied”);
 }
 else {
 NSLog(@”%@”, [error localizedDescription]);
 }
 }
}

This method simply copies the specified file to the Documents folder if it is not already there.

To copy the property list when the application is starting, call the
copyFileInBundleToDocumentsFolder:withExtension: method in the
application:didFinishLaunchingWithOptions: event:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 //---copy the txt files to the Documents folder---
 [self copyFileInBundleToDocumentsFolder:@”Apps” withExtension:@”plist”];

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[FilesHandlingViewController alloc]
initWithNibName:@”FilesHandlingViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

Doing this ensures that the property list is copied to the Documents folder when the application
runs for the first time.

c10.indd 236c10.indd 236 05/12/11 7:59 PM05/12/11 7:59 PM

Importing and Exporting Files ❘ 237

IMPORTING AND EXPORTING FILES

One of the common tasks that iOS developers have to do is import and export documents from their
iOS application. For example, suppose you are developing a document reader and you want to allow
the user to import documents into your application so that they can be read offline. In addition,
your reader might also support the exporting of documents so that other applications can make use
of them. In this section, you will learn the different techniques you can employ to allow documents
to be imported into or exported from your iOS application.

The following Try It Out creates the project that you will use to learn the various methods to import
and export documents.

TRY IT OUT Creating the Project

 1. Using Xcode, create a new Single View (iPhone) application and name it OfflineReader. You
will also use the project name as the Class Prefix and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Select the OfflineReaderViewController.xib file to open it in Interface Builder and populate it
with a Web View and Round Rect Button (see Figure 10-8):

FIGURE 10-8

 3. In the Attributes Inspector window for the Web View, ensure that you check the Scales Page to
Fit option.

c10.indd 237c10.indd 237 05/12/11 7:59 PM05/12/11 7:59 PM

238 ❘ CHAPTER 10 FILE HANDLING

 4. In the OfflineReaderViewController.xib file, add the following statements in bold:

#import <UIKit/UIKit.h>

@interface OfflineReaderViewController : UIViewController
<UIDocumentInteractionControllerDelegate> {
 IBOutlet UIWebView *webView;
}

-(void)openDocumentIn;
-(void)handleDocumentOpenURL:(NSURL *)url;
-(void)displayAlert:(NSString *) str;
-(void)loadFileFromDocumentsFolder:(NSString *) filename;
-(void)listFilesFromDocumentsFolder;

- (IBAction) btnDisplayFiles;

@end

 5. Back in Interface Builder, connect the outlet
and action to the Web View and Round Rect
Button. Right-clicking on the File’s Owner
item should now reveal the connections, as
shown in Figure 10-9.

 6. Drag and drop two files into the Supporting
Files folder of the project (see Figure 10-10).
In this example, I have a PDF file named
Courses for Sep and Oct 2011.pdf and
an image file named icon.jpg. FIGURE 10-9

FIGURE 10-10

c10.indd 238c10.indd 238 05/12/11 7:59 PM05/12/11 7:59 PM

Importing and Exporting Files ❘ 239

FIGURE 10-11

How It Works

You now have an iPhone project with the icon set. It also has a PDF document in the Supporting Files
folder. In the following sections, you will see how you can export the PDF file to external applications
and allow other applications to import documents into your application.

Exporting Documents

In this section, you will learn how to export a document from your application. For example, in
the Mail application on your iPhone, when you receive a PDF file, you can either tap on the icon
(see Figure 10-12) to view the document within the Mail application or tap and hold the icon.

If you do the latter, an action sheet is displayed (see Figure 10-13). You can tap the “Open in . . .”
button to see a list of applications to which your document can be exported.

 7. In the OfflineReader-Info.plist file, set the first item of the “Icon files” key to
“icon.jpg” (see Figure 10-11).

c10.indd 239c10.indd 239 05/12/11 7:59 PM05/12/11 7:59 PM

240 ❘ CHAPTER 10 FILE HANDLING

The following Try It Out demonstrates how you can export the PDF document in the Supporting
Files folder of your application to an external application.

TRY IT OUT Exporting Documents to External Applications

 1. Using the same project created in the previous section, add the following lines of code in bold to
the OfflineReaderViewController.m file:

#import “OfflineReaderViewController.h”

@implementation OfflineReaderViewController

UIDocumentInteractionController *documentController;

-(void)openDocumentIn {
 NSString * filePath = [[NSBundle mainBundle] pathForResource:
 @”Courses for Sep and Oct 2011” ofType:@”pdf”];
 documentController = [UIDocumentInteractionController
 interactionControllerWithURL:[NSURL fileURLWithPath:filePath]];
 documentController.delegate = self;
 [documentController retain];
 documentController.UTI = @”com.adobe.pdf”;
 [documentController presentOpenInMenuFromRect:CGRectZero
 inView:self.view
 animated:YES];
}

-(void)documentInteractionController:(UIDocumentInteractionController *)controller

FIGURE 10-12 FIGURE 10-13

c10.indd 240c10.indd 240 05/12/11 7:59 PM05/12/11 7:59 PM

Importing and Exporting Files ❘ 241

 willBeginSendingToApplication:(NSString *)application {

}

-(void)documentInteractionController:(UIDocumentInteractionController *)controller
 didEndSendingToApplication:(NSString *)application {

}

-(void)documentInteractionControllerDidDismissOpenInMenu:
(UIDocumentInteractionController *)controller {

}

- (void)viewDidLoad {
 [self openDocumentIn];
 [super viewDidLoad];
}
-(void) dealloc {
 [documentController release];
 [super dealloc];
}

 2. Press Command-R to test the application on a real device (the iOS Simulator won’t work in
this case). When the View window is loaded, you will see an action sheet displaying the list of
applications to which you can export your document (see Figure 10-14).

 3. If you select iBooks, the PDF document will appear in iBooks (see Figure 10-15).

FIGURE 10-14 FIGURE 10-15

c10.indd 241c10.indd 241 05/12/11 7:59 PM05/12/11 7:59 PM

242 ❘ CHAPTER 10 FILE HANDLING

How It Works

The UIDocumentInteractionController class provides in-app support for user interaction with files
in your application. In this example, you use it to export a document to an external application.

You then define a few methods. The openDocumentIn method basically creates the path to point to the
PDF document (that you want to export) and then uses it to feed into the documentController object.
You need to set the UTIs (Uniform Type Identifiers) for the documentController object so that it can
help the system find the appropriate application to open your document. In this case, it is set to com
.adobe.pdf, which represents a PDF document. Other common UTIs are com.apple.quicktime-movie
(QuickTime movies), public.html (HTML documents), and public.jpeg (JPEG files).

The other three methods (documentInteractionController:willBeginSendingToApplication:,

documentInteractionController:didEndSendingToApplication:, and

documentInteractionControllerDidDismissOpenInMenu:) are the methods defined
in the UIDocumentInteractionControllerDelegate protocol. They are fired when the
documentController object is being invoked. For this example, you don’t really need to code anything
within these methods.

Finally, in the viewDidLoad method, you invoke the openDocumentIn method to export the document.

File Sharing

The previous section showed how you can export a document to an external application that can be
chosen by the user. What about the reverse — importing a document into your application? In iOS,
there are two ways to get files into your application:

 ➤ File sharing through iTunes

 ➤ Exchanges between applications (like the one you just saw in the previous section)

The first method presents a very easy and direct way for users to transfer large number of files into
or out of an application. The following Try It Out shows you how.

TRY IT OUT File Sharing through iTunes

 1. Using the same project created in the previous section, add a new key named UIFileSharingEnabled
to the OfflineReader-Info.plist file and set its value to YES (see Figure 10-16).

FIGURE 10-16

c10.indd 242c10.indd 242 05/12/11 7:59 PM05/12/11 7:59 PM

Importing and Exporting Files ❘ 243

2. Press Command-R to redeploy the application onto the real device. Launch iTunes and select the
device name, followed by the Apps tab. Figure 10-17 shows that the OfflineReader application
now appears under the File Sharing section (scroll down to the bottom of the page).

NOTE The UIFileSharingEnabled key is also known as “Application supports
iTunes File Sharing” in the drop-down menu.

FIGURE 10-17

3. To copy a file into the application, simply drag and drop it into the rectangle labeled OfflineReader
Documents. Figure 10-18 shows that I have copied a PDF document into the application. All
copied documents will reside in the Documents folder of your application.

FIGURE 10-18

c10.indd 243c10.indd 243 05/12/11 7:59 PM05/12/11 7:59 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

244 ❘ CHAPTER 10 FILE HANDLING

 4. If you want to extract files from the application’s Documents folder and save them locally to your
computer, select the file(s) and click the “Save to . . .” button.

 5. To confirm that the files are copied into the Documents folder of your application, add the following
code to the OfflineReaderViewController.m file:

-(void) displayAlert:(NSString *) str {
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Alert”
 message:str
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (void)handleDocumentOpenURL:(NSURL *)url {
 NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];
 [webView setUserInteractionEnabled:YES];
 [webView loadRequest:requestObj];
}

-(void)loadFileFromDocumentsFolder:(NSString *) filename {
 //---get the path of the Documents folder---
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:filename];
 NSURL *fileUrl = [NSURL fileURLWithPath:filePath];
 [self handleDocumentOpenURL:fileUrl];
}

-(void)listFilesFromDocumentsFolder {
 //---get the path of the Documents folder---
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];

 NSFileManager *manager = [NSFileManager defaultManager];
 NSArray *fileList =
 [manager contentsOfDirectoryAtPath:
 documentsDirectory error:nil];
 NSMutableString *filesStr =
 [NSMutableString stringWithString:
 @”Files in Documents folder \n”];
 for (NSString *s in fileList){
 [filesStr appendFormat:@”%@ \n”, s];
 }
 [self displayAlert:filesStr];
 [self loadFileFromDocumentsFolder:@”Beginning iOS 4 Application Development.pdf”];

c10.indd 244c10.indd 244 05/12/11 7:59 PM05/12/11 7:59 PM

Importing and Exporting Files ❘ 245

}

- (IBAction) btnDisplayFiles {
 [self listFilesFromDocumentsFolder];
}

 6. Press Command-R to deploy the application
on the device again. Tapping the Display Files
in Documents button will both display the
filename and load the PDF document in
the Web View (see Figure 10-19), proving
that the file was transferred into the
application successfully.

How It Works

The magic for making your application appear
under the File Sharing section of iTunes is the
UIFileSharingEnabled key. Once this key is set
to YES, your application will automatically appear
in iTunes, exposing the Documents folder.

In this example, the displayAlert: method is
simply a helper method to display an alert view
on the screen.

The handleDocumentOpenURL: method takes an
NSURL object and loads the Web View with its content.

The loadFileFromDocumentsFolder: method takes
a filename and converts its path into an NSURL object.
It then calls the handleDocumentOpenURL: method to
display the Web View with the content of the file.

The listFilesFromDocumentsFolder method
displays the names of all files and folders contained
within the Documents folder of the application. Besides that, it is also hardcoded to display the PDF
document named Beginning iOS 4 Application Development.pdf (which was copied earlier).
If the file is loaded successfully on the Web View, this proves that the document is copied correctly
through iTunes.

Importing Documents

The second method of transferring documents into an application is through another application.
Earlier, you saw how a PDF document in your application can be transferred to the iBooks
application for viewing. This time, you will learn how a document can be transferred into your
own application.

FIGURE 10-19

c10.indd 245c10.indd 245 05/12/11 7:59 PM05/12/11 7:59 PM

246 ❘ CHAPTER 10 FILE HANDLING

To begin, the following Try It Out shows you how to modify your application to accept PDF
documents. Essentially, you need to get your application to register with the iOS, informing it that
it is able to accept PDF documents.

TRY IT OUT Importing Documents into Your Application

 1. Using the same project created in the previous section, modify the OfflineReader-Info.plist
file (right-click on any of the items in this file and select Show Raw Keys/Values) by adding a new
CFBundleDocumentTypes key as shown in Figure 10-20.

FIGURE 10-20

 2. Add the following bold statements to the OfflineReaderAppDelegate.m file:

#import “OfflineReaderAppDelegate.h”

#import “OfflineReaderViewController.h”

@implementation OfflineReaderAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

-(BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation {
 if (url != nil && [url isFileURL]) {
 [self.viewController handleDocumentOpenURL:url];
 }
 Return YES;
}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions

c10.indd 246c10.indd 246 05/12/11 7:59 PM05/12/11 7:59 PM

Importing and Exporting Files ❘ 247

{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[OfflineReaderViewController alloc]
 initWithNibName:@”OfflineReaderViewController”
 bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 Return YES;
}

 3. Add the following bold statements to the handleDocumentOpenURL: method:

- (void)handleDocumentOpenURL:(NSURL *)url {
 [self displayAlert:[url absoluteString]];
 NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];
 [webView setUserInteractionEnabled:YES];
 [webView loadRequest:requestObj];
}

 4. Press Command-R to redeploy the application onto the real device. This time, if you go back to
the same e-mail containing the PDF document and tap and hold onto it, you will find that you
have the option to open the document in the OfflineReader application (see Figure 10-21).

 5. When the document is opened in OfflineReader, the path of the document is shown (see Figure 10-22).

FIGURE 10-21 FIGURE 10-22

c10.indd 247c10.indd 247 05/12/11 7:59 PM05/12/11 7:59 PM

248 ❘ CHAPTER 10 FILE HANDLING

How It Works

The CFBundleDocumentTypes key in the OfflineReader-Info.plist file will register that the
application is capable of handling PDF documents with iOS. Note the following:

 ➤ The CFBundleDocumentTypes key is of type Array. It contains an array of dictionaries describing
the types of documents supported by your application.

 ➤ Item 0 is of type Dictionary.

 ➤ The CFBundleTypeName key specifies the abstract name for the specified document type.

 ➤ The LSHandlerRank key specifies whether the application is the Owner (creator of this file type),
Alternate (secondary viewer of this file type), None, or Default.

 ➤ The CFBundleTypeRole key specifies the application’s role with respect to the type: Editor,
Viewer, Shell, or None.

 ➤ The LSItemContentTypes key is of type Array. It contains an array of UTIs specifying the file type.

When a PDF document is passed into the application, the application fires a particular method:
application:openURL:sourceApplication:annotation:. This method must be implemented in
the application delegate:

-(BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation {
 if (url != nil && [url isFileURL]) {
 [self.viewController handleDocumentOpenURL:url];
 }
 return YES;
}

When a document is passed into your application, it is copied into a folder called Inbox, located within
the Documents folder. The url argument contains the path to the document in the Inbox folder. In
the preceding code, once the document is passed in, you call the handleDocumentOpenURL: method
defined in the OfflineReaderViewController class to load the document in the Web View.

Importing Self-Defi ned Documents

The previous section showed how to import well-known document types, such as PDF, into your
application. What if you want to import your own self-defined document types? For example,
suppose you are writing a Sudoku program and want to implement your own file format for saving
the state of a game. In this case, your file might have the .sdk extension, which is used only by your
application. The following Try It Out shows you how to accomplish this.

c10.indd 248c10.indd 248 05/12/11 7:59 PM05/12/11 7:59 PM

Importing and Exporting Files ❘ 249

TRY IT OUT Importing Self-Defi ned Documents into Your Application

 1. Using the same project created in the previous section, add the keys shown in Figure 10-23
to the OfflineReader-Info.plist file:

 2. Press Command-R to test the application on a real device again. This time, if your e-mail contains
a document of extension .sdk, you will see the icon of your application displayed next to the
document name (see Figure 10-24). When you tap on the document name, you will see a list
of options to open your documents with (see Figure 10-25).

FIGURE 10-23

c10.indd 249c10.indd 249 05/12/11 7:59 PM05/12/11 7:59 PM

250 ❘ CHAPTER 10 FILE HANDLING

NOTE For more information on UTI, refer to Apple’s documentation:
“Introduction to Uniform Type Identifi ers Overview.” http://developer.apple
.com/library/ios/#documentation/FileManagement/Conceptual/

understanding_utis/understand_utis_intro/understand_utis_intro.html.

How It Works

Observe that you add another key to the CFBundleDocumentTypes array. You set the
LSItemContentTypes to a unique value, using the reverse domain name of your company and
the type you are defining. Since this is a self-defined content type, you have to define it using the
UTExportedTypeDeclarations key.

Once the self-defined document is copied into your application, you can proceed to perform whatever
actions you want. The document is saved in the Inbox folder, located within the Documents folder.

FIGURE 10-24 FIGURE 10-25

c10.indd 250c10.indd 250 05/12/11 7:59 PM05/12/11 7:59 PM

Summary ❘ 251

SUMMARY

This chapter demonstrated how to write a file to the file system of the iPhone and how to read it
back. In addition, you saw how structured data can be represented using a property list and how
you can programmatically work with a property list using a dictionary object. The next chapter
shows you how to use databases to store more complex data.

EXERCISES

 1. Describe the uses of the various subfolders contained within an application’s folder.

 2. What is the diff erence between the NSDictionary and NSMutableDictionary classes?

 3. Name the paths of the Documents and tmp folders on a real device.

 4. Name the class that provides in-app support for exporting documents from your application.

 5. What key should be set in order to allow fi le sharing support for your application?

 6. What key is used to register a new fi le type with iOS to inform it that your application is capable of

handling it?

Answers to the exercises can be found in Appendix D.

c10.indd 251c10.indd 251 05/12/11 7:59 PM05/12/11 7:59 PM

252 ❘ CHAPTER 10 FILE HANDLING

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Subdirectories in each

of the applications

folders

Documents, Library, and tmp

Getting the path of

the Documents folder

NSArray *paths =

NSSearchPathForDirectoriesInDomains(

 NSDocumentDirectory, NSUserDomainMask, YES);

NSString *documentsDir = [paths objectAtIndex:0];

Getting the path of

the tmp directory

-(NSString *) tempPath{

return NSTemporaryDirectory();

}

Checking whether a

fi le exists

if ([[NSFileManager defaultManager]

fileExistsAtPath:fi lePath]) {

}

Loading a property list

from the Resources

folder

NSString *pListPath =

[[NSBundle mainBundle]

 pathForResource:@”Apps”

 ofType:@”plist”];

Creating a mutable copy

of an NSDictionary

object

NSDictionary *dict =

[[NSDictionary alloc]

 initWithContentsOfFile:plistFileName];

NSMutableDictionary *copyOfDict = [dict mutableCopy];

Using bundled

resources in your

application

Copy the resources into the application’s folders, such as Documents or

tmp. You should copy the resources in the application’s delegate when

the application has just fi nished launching.

Exporting documents

from your application

Use the UIDocumentInteractionController class.

Enabling fi le sharing in

your application

Set the UIFileSharingEnabled key to YES in the .plist fi le of your

project.

Importing documents

into your application

Implement the

application:openURL:sourceApplication:annotation: method

in your application delegate.

Defi ning a fi le type

supported by your

application

Set the CFBundleDocumentTypes key in the .plist fi le.

c10.indd 252c10.indd 252 05/12/11 7:59 PM05/12/11 7:59 PM

Database Storage
Using SQLite

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to use the SQLite3 database in your Xcode project

 ➤ Creating and opening a SQLite3 database

 ➤ How to use the various SQLite3 functions to execute SQL strings

 ➤ How to use bind variables to insert values into a SQL string

 ➤ Bundling a pre-built SQLite database with your application

As you continue on your iOS development journey, you will soon realize that your application
needs a way to save data. For example, you may want to save the text that the user is entering
into a text fi eld, or, in an RSS application, the last item that the user has read.

For simple applications, you can write the data you want to persist to a text fi le. For more
structured data, you can use a property list. For large and complex data, it is more effi cient to
store it using a database. The iOS comes with the SQLite3 database library, which you can use
to store your data. With your data stored in a database, your application can populate a Table
view or store a large amount of data in a structured manner.

NOTE Besides using SQLite for data storage, developers can also use another
framework for storage: Core Data. Core Data is part of the Cocoa API, which
was fi rst introduced in the iPhone SDK 3.0. It is basically a framework for
manipulating data without worrying about the details of storage and retrieval.
A discussion of Core Data is beyond the scope of this book.

This chapter shows you how to use the embedded SQLite3 database library in your applications.

11

c11.indd 253c11.indd 253 05/12/11 1:51 PM05/12/11 1:51 PM

254 ❘ CHAPTER 11 DATABASE STORAGE USING SQLITE

LINKING TO THE SQLITE3 LIBRARY

To use a SQLite3 database in your application, you fi rst need to add the libsqlite3.dylib library
to your Xcode project. The following Try It Out demonstrates how. You will need to download the
code fi les indicated for this exercise and the rest of the Try It Out features in this chapter.

TRY IT OUT Preparing Your Project to Use SQLite3

codefi le Databases.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it Databases. Use
the project name as the Class Prefi x. Ensure that you have the Use Automatic Reference Counting
option unchecked.

 2. Select the project name and then click the Build Phases tab on the right (see Figure 11-1). Click the
“+” button shown in the Link Binary with Libraries section to add the libsqlite3.dylib library
to it. After this, the library will be added to the project (see Figure 11-2).

FIGURE 11-1

FIGURE 11-2

c11.indd 254c11.indd 254 05/12/11 1:51 PM05/12/11 1:51 PM

Linking to the SQLite3 Library ❘ 255

 3. In the DatabasesViewController.h fi le, declare a variable of type sqlite3, as well as a few
methods (see the code in bold). You will defi ne the various methods throughout this chapter.

#import <UIKit/UIKit.h>
#import “sqlite3.h”

@interface DatabasesViewController : UIViewController
{
 sqlite3 *db;
}

-(NSString *) filePath;
-(void) openDB;
-(void) createTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 withField2:(NSString *) field2;
-(void) insertRecordIntoTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 field1Value:(NSString *) field1Value
 andField2:(NSString *) field2
 field2Value:(NSString *) field2Value;
-(void) getAllRowsFromTableNamed: (NSString *) tableName;

@end

 4. In the DatabasesViewController.m fi le, defi ne the filePath method as shown in bold:

#import “DatabasesViewController.h”

@implementation DatabasesViewController

-(NSString *) filePath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:@”database.sql”];
}

How It Works

In order to work with SQLite3, you must link your application to a dynamic library called
libsqlite3.dylib. The libsqlite3.dylib that you selected is an alias to the latest version of the
SQLite3 library. On an actual iPhone device, the libsqlite3.dylib is located in the /usr/lib/
directory.

To use a SQLite database, you need to create an object of type sqlite3:

 sqlite3 *db;

c11.indd 255c11.indd 255 05/12/11 1:51 PM05/12/11 1:51 PM

256 ❘ CHAPTER 11 DATABASE STORAGE USING SQLITE

The filePath method returns the full path to the SQLite database that will be created in the
Documents directory on your iPhone (within your application’s sandbox):

-(NSString *) filePath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:@”database.sql”];

NOTE Chapter 10 discusses the various folders that you can access within your
application’s sandbox.

CREATING AND OPENING A DATABASE

After the necessary library is added to the project, you can open a database for usage. You use the
various C functions included with SQLite3 to create or open a database, as demonstrated in the
following one-step Try It Out.

TRY IT OUT Opening a Database

1. Using the Databases project created previously, defi ne the openDB method in the
DatabasesViewController.m fi le:

-(void) openDB {
 //—-create database—-
 if (sqlite3_open([[self filePath] UTF8String], &db) != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Database failed to open.”);
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [super viewDidLoad];
}

c11.indd 256c11.indd 256 05/12/11 1:51 PM05/12/11 1:51 PM

Creating and Opening a Database ❘ 257

How It Works

The sqlite3_open() C function opens a SQLite database whose fi lename is specifi ed as the fi rst
argument:

[self filePath] UTF8String]

In this case, the fi lename of the database is specifi ed as a C string using the UTF8String method of the
NSString class because the sqlite3_open() C function does not understand an NSString object.

The second argument contains a handle to the sqlite3 object, which in this case is db.

If the database is available, it is opened. If the specifi ed database is not found, a new database is
created. If the database is successfully opened, the function will return a value of 0 (represented using
the SQLITE_OK constant).

The following list from www.sqlite.org/c3ref/c_abort.html shows the result codes returned by the
various SQLite functions:

#define SQLITE_OK 0 /* Successful result */
#define SQLITE_ERROR 1 /* SQL error or missing database */
#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
#define SQLITE_PERM 3 /* Access permission denied */
#define SQLITE_ABORT 4 /* Callback routine requested an abort */
#define SQLITE_BUSY 5 /* The database file is locked */
#define SQLITE_LOCKED 6 /* A table in the database is locked */
#define SQLITE_NOMEM 7 /* A malloc() failed */
#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
#define SQLITE_FULL 13 /* Insertion failed because database is full */
#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
#define SQLITE_EMPTY 16 /* Database is empty */
#define SQLITE_SCHEMA 17 /* The database schema changed */
#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
#define SQLITE_MISMATCH 20 /* Data type mismatch */
#define SQLITE_MISUSE 21 /* Library used incorrectly */
#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
#define SQLITE_AUTH 23 /* Authorization denied */
#define SQLITE_FORMAT 24 /* Auxiliary database format error */
#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
#define SQLITE_NOTADB 26 /* File opened that is not a database file */
#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */

c11.indd 257c11.indd 257 05/12/11 1:51 PM05/12/11 1:51 PM

258 ❘ CHAPTER 11 DATABASE STORAGE USING SQLITE

Examining the Database Created

If the database is created successfully, it can
be found in the Documents folder of your
application’s sandbox on the iPhone Simulator
in the ~/Library/Application Support/
iPhone Simulator/5.0/Applications/<App_ID>/
Documents/ folder (see Figure 11-3).

Creating a Table

After the database is created, you can create a
table to store some data. The following one-step Try It Out demonstrates how to create a table with
two text fi elds. For illustration purposes, create a table named Contacts, with two fi elds called
email and name.

TRY IT OUT Creating a Table

 1. Using the same Databases project, defi ne the createTableNamed:with-Field1:withField2:
method in the DatabasesViewController.m fi le as follows:

-(void) createTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 withField2:(NSString *) field2 {

 char *err;
 NSString *sql = [NSString stringWithFormat:
 @”CREATE TABLE IF NOT EXISTS ‘%@’ (‘%@’ “
 “TEXT PRIMARY KEY, ‘%@’ TEXT);”,
 tableName, field1, field2];

 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Tabled failed to create.”);
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [self createTableNamed:@”Contacts”
 withField1:@”email”
 withField2:@”name”];
 [super viewDidLoad];

How It Works

The createTableNamed:withField1:withField2: method takes three parameters: tableName,
field1, and field2.

FIGURE 11-3

c11.indd 258c11.indd 258 05/12/11 1:51 PM05/12/11 1:51 PM

Creating and Opening a Database ❘ 259

Using these parameters, you fi rst formulate a SQL string and then create a table using the sqlite3_
exec() C function, with the important arguments to this function being the sqlite3 object, the SQL
query string, and a pointer to a variable for error messages. If an error occurs in creating the database,
then you use the NSAssert method to halt the application and close the database connection.

If the operation is successful, a table named Contacts with two fi elds (email and name) is created.

NOTE For a jump start in the SQL language, check out the SQL tutorial at
http://w3schools.com/sql/default.asp.

Inserting Records

After the table is created, you can insert some records into it. The following Try It Out shows you
how to write three rows of records in the table created in the previous section.

TRY IT OUT Inserting Records

1. In the Databases project, defi ne the
insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method
in the DatabasesViewController.m fi le as follows and modify the viewDidLoad method as
shown in bold:

-(void) insertRecordIntoTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 field1Value:(NSString *) field1Value
 andField2:(NSString *) field2
 field2Value:(NSString *) field2Value {

 NSString *sql = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’) “
 “VALUES (‘%@’,’%@’)”, tableName, field1, field2,
 field1Value, field2Value];

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Error updating table.”);
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [self createTableNamed:@”Contacts”
 withField1:@”email”
 withField2:@”name”];

c11.indd 259c11.indd 259 05/12/11 1:51 PM05/12/11 1:51 PM

260 ❘ CHAPTER 11 DATABASE STORAGE USING SQLITE

 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @”user%d@learn2develop.net”,i];

 NSString *name = [[NSString alloc] initWithFormat: @”user %d”,i];
 [self insertRecordIntoTableNamed:@”Contacts”
 withField1:@”email” field1Value:email
 andField2:@”name” field2Value:name];
 [email release];
 [name release];
 }

 [super viewDidLoad];

How It Works

The code in this example is similar to that of the previous one; you formulate a SQL string and use the
sqlite3_exec() C function to insert a record into the database:

 NSString *sql = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’) “
 “VALUES (‘%@’,’%@’)”, tableName, field1, field2,
 field1Value, field2Value];
 //—-the above SQL statement to be typed in a single line—-

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Error updating table.”);
 }

In the viewDidLoad method, you insert three records into the database by calling the
insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method:

 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @”user%d@learn2develop.net”,i];

 NSString *name = [[NSString alloc] initWithFormat: @”user %d”,i];
 [self insertRecordIntoTableNamed:@”Contacts”
 withField1:@”email” field1Value:email
 andField2:@”name” field2Value:name];
 [email release];
 [name release];
 }

Bind Variables

When formulating SQL strings, you often need to insert values into the query string and ensure
that the string is well formulated and contains no invalid characters. In the preceding section,

c11.indd 260c11.indd 260 05/12/11 1:51 PM05/12/11 1:51 PM

Creating and Opening a Database ❘ 261

you saw that in order to insert a row into the database, you had to formulate your SQL statement
like this:

 NSString *sql = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’) “
 “VALUES (‘%@’,’%@’)”, tableName, field1, field2,
 field1Value, field2Value];
 //—-the above SQL statement to be typed in a single line—-

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Error updating table.”);
 }

SQLite supports a feature known as bind variables to help you formulate your SQL string. For
example, the preceding SQL string can be formulated as follows using bind variables:

 NSString *sqlStr = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’) “
 “VALUES (?,?)”, tableName, field1, field2];
 const char *sql = [sqlStr UTF8String];

Here, the ? is a placeholder; you must replace it with the actual value of the query. In the preceding
statement, assuming that tableName is Contacts, field1 is email, and field2 is name, the sql is
now as follows:

INSERT OR REPLACE INTO Contacts (‘email’, ‘name’) VALUES (?,?)

NOTE The ? can be inserted only into the VALUES and WHERE section of the
SQL statement; you cannot insert it into a table name, for example. The following
statement would be invalid:

INSERT OR REPLACE INTO ? (‘email’, ‘name’) VALUES (?,?)

To substitute the values for the ?, create a sqlite3_stmt object and use the sqlite3_prepare_v2()
function to compile the SQL string into a binary form and then insert the placeholder values using
the sqlite3_bind_text() function, like this:

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, sql, -1, &statement, nil) == SQLITE_OK) {
 sqlite3_bind_text(statement, 1, [field1Value UTF8String],
 -1, NULL);
 sqlite3_bind_text(statement, 2, [field2Value UTF8String],
 -1, NULL);

c11.indd 261c11.indd 261 05/12/11 1:51 PM05/12/11 1:51 PM

262 ❘ CHAPTER 11 DATABASE STORAGE USING SQLITE

NOTE To bind integer values, use the sqlite3_bind_int() function.

After the preceding call, the SQL string looks like this:

INSERT OR REPLACE INTO Contacts (‘email’, ‘name’) VALUES
 (‘user0@learn2develop.net’, ‘user0’)

To execute the SQL statement, you use the sqlite3_step() function, followed by the sqlite3_
finalize() function to delete the prepared SQL statement:

 if (sqlite3_step(statement) != SQLITE_DONE)
 NSAssert(0, @”Error updating table.”);
 sqlite3_finalize(statement);

Using bind variables, the
insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method
could now be rewritten as follows:

-(void) insertRecordIntoTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 field1Value:(NSString *) field1Value
 andField2:(NSString *) field2
 field2Value:(NSString *) field2Value {

 NSString *sqlStr = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’) “
 “VALUES (?,?)”, tableName, field1, field2];
 const char *sql = [sqlStr UTF8String];

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, sql, -1, &statement, nil) == SQLITE_OK) {
 sqlite3_bind_text(statement, 1, [field1Value UTF8String],
 -1, NULL);
 sqlite3_bind_text(statement, 2, [field2Value UTF8String],
 -1, NULL);
 }

 if (sqlite3_step(statement) != SQLITE_DONE)
 NSAssert(0, @”Error updating table.”);
 sqlite3_finalize(statement);

NOTE In the “Inserting Records” section, you used the sqlite3_exec() function
to execute SQL statements. In this example, you actually use a combination of the
sqlite3_prepare(), sqlite3_step(), and sqlite3_finalize() functions to
do the same thing. In fact, the sqlite3_exec() function is actually a wrapper for
these three functions. For nonquery SQL statements (such as for creating tables,
inserting rows, and so on), it is always better to use the sqlite3_exec() function.

c11.indd 262c11.indd 262 05/12/11 1:51 PM05/12/11 1:51 PM

Creating and Opening a Database ❘ 263

Retrieving Records

Now that the records have been successfully inserted into the table, it is time to retrieve them. This
is a good way to ensure that they have actually been saved. The following Try It Out shows you how
to retrieve your records.

TRY IT OUT Retrieving Records from a Table

 1. In the Databases project, defi ne the getAllRowsFromTableNamed: method in the
DatabasesViewController.m fi le as follows and modify the viewDidLoad method as shown in bold:

-(void) getAllRowsFromTableNamed: (NSString *) tableName {
 //—-retrieve rows—-
 NSString *qsql = [NSString stringWithFormat:@”SELECT * FROM %@”,
 tableName];

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@”%@ - %@”,
 field1Str, field2Str];
 NSLog(@”%@”, str);

 [field1Str release];
 [field2Str release];
 [str release];
 }

 //—-deletes the compiled statement from memory—-
 sqlite3_finalize(statement);
 }
}

- (void)viewDidLoad
{
 [self openDB];
 [self createTableNamed:@”Contacts”
 withField1:@”email”
 withField2:@”name”];
 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @”user%d@learn2develop.net”,i];

 NSString *name = [[NSString alloc] initWithFormat: @”user %d”,i];
 [self insertRecordIntoTableNamed:@”Contacts”
 withField1:@”email” field1Value:email
 andField2:@”name” field2Value:name];

c11.indd 263c11.indd 263 05/12/11 1:51 PM05/12/11 1:51 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

264 ❘ CHAPTER 11 DATABASE STORAGE USING SQLITE

 [email release];
 [name release];
 }

 [self getAllRowsFromTableNamed:@”Contacts”];
 sqlite3_close(db);
 [super viewDidLoad];
 }

 2. Press Command-R to test the application. In
Xcode, press Command-Shift-C to display
the Output window. When the application
has loaded, the Debugger Console displays
the records (see Figure 11-4), proving
that the rows are indeed in the table.

How It Works

To retrieve the records from the table, you fi rst prepare the SQL statement and then use the sqlite3_
step() function to execute the prepared statement. The sqlite3_step() function returns a value
of 100 (represented by the SQLITE_ROW constant) if another row is ready. In this case, you call the
sqlite3_step() function using a while loop, continuing as long as it returns a SQLITE_ROW:

 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@”%@ - %@”,
 field1Str, field2Str];
 NSLog(@”%@”, str);

 [field1Str release];
 [field2Str release];
 [str release];
 }
 //—-deletes the compiled statement from memory—-
 sqlite3_finalize(statement);
 }

To retrieve the value for the fi rst fi eld in the row, you use the sqlite3_column_text() function by
passing it the sqlite3_stmt object as well as the index of the fi eld you are retrieving. For example, you
use the following to retrieve the fi rst fi eld of the returned row:

 char *field1 = (char *) sqlite3_column_text(statement, 0);

To retrieve an integer column (fi eld), use the sqlite3_column_int() function.

FIGURE 11-4

c11.indd 264c11.indd 264 05/12/11 1:51 PM05/12/11 1:51 PM

Bundling SQLite Databases with Your Application ❘ 265

NOTE If the method you are calling is defi ned below the viewDidLoad, the
compiler will generate a warning.

BUNDLING SQLITE DATABASES WITH YOUR APPLICATION

Although programmatically creating a SQLite database and using it during runtime is very fl exible,
most of the time you just need to create the database fi le during the designing stage of your
development, and bundle the database with
your application so that it can be used during
runtime. Therefore, rather than create the
database fi le using code, you need to create it
in Mac OS X.

Fortunately, you can easily create a SQLite
database fi le in Mac OS X by using the
sqlite3 application in Terminal. Figure 11-5
shows the command that you need to create
a database named mydata.sql, containing a
table named Contacts with two fi elds:
email and name. It also inserts a row into
the table and then retrieves it to verify that it is
inserted properly.

The commands are as follows:

 ➤ sqlite3 mydata.sql

 ➤ CREATE TABLE IF NOT EXISTS Contacts (email TEXT PRIMARY KEY, name TEXT);

 ➤ INSERT INTO Contacts (email, name) VALUES (‘weimenglee@gmail.com’,

‘weimenglee’);

 ➤ SELECT * FROM Contacts;

NOTE Remember to end each command with a semicolon (;). Also, by default,
when you launch Terminal, you are in your home directory. Hence, running the
sqlite3 application will save your database fi le in your home directory.

Even though you could use the sqlite3 application to insert records into the database, it would
be much easier to use a graphical tool to do that. You can use the SQLite Database Browser

FIGURE 11-5

c11.indd 265c11.indd 265 05/12/11 1:51 PM05/12/11 1:51 PM

266 ❘ CHAPTER 11 DATABASE STORAGE USING SQLITE

(see Figure 11-6), which you can download free from http://sourceforge.net/projects/
sqlitebrowser/. Using the SQLite Database Browser, you can perform a wide variety of functions
with the database fi le.

FIGURE 11-6

SUMMARY

This chapter provided a brief introduction to the SQLite3 database used in the iPhone. With
SQLite3, you can now store all your structured data in an effi cient manner and perform complex
aggregations on your data. To learn more about SQLite, visit its offi cial page at www.sqlite.org.

EXERCISES

 1. Explain the diff erence between the sqlite3_exec() function and the three functions sqlite3_

prepare(), sqlite3_step(), and sqlite3_finalize().

 2. How do you obtain a C-style string from an NSString object?

 3. Write the code segment to retrieve a set of rows from a table.

Answers to the exercises can be found in Appendix D.

c11.indd 266c11.indd 266 05/12/11 1:51 PM05/12/11 1:51 PM

Summary ❘ 267

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Using a SQLite3 database

in your application

Add a reference to the libsqlite3.dylib library to your project.

Obtaining a C-style string

from an NSString object

Use the UTF8String method of the NSString class.

Creating and opening a

SQLite3 database

Use the sqlite3_open() C function.

Executing a SQL query Use the sqlite3_exec() C function.

Closing a database

connection

Use the sqlite3_close() C function.

Using bind variables Create a sqlite3_stmt object.

Use the sqlite3_prepare_v2() C function to prepare the statement.

Use the sqlite3_bind_text() (or sqlite3_bind_int(), and

so on) C function to insert the values into the statement.

Use the sqlite3_step() C function to execute the statement.

Use the sqlite3_finalize() C function to delete the statement

from memory.

Retrieving records Use the sqlite3_step() C function to retrieve each individual row.

Retrieving columns from a

row

Use the sqlite3_column_text() (or sqlite3_column_int(), and

so on) C function.

c11.indd 267c11.indd 267 05/12/11 1:51 PM05/12/11 1:51 PM

c11.indd 268c11.indd 268 05/12/11 1:51 PM05/12/11 1:51 PM

Programming iCloud

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to enable iCloud storage for your iOS application

 ➤ How to store documents for your application on iCloud

 ➤ How to store key-value data for your application on iCloud

One of the major new features in iOS 5 is iCloud. Using iCloud, all the information stored on
your devices is stored on remote servers (commonly known as cloud computing) maintained
by Apple. For example, all the contacts on your iPhone can be synced to iCloud. When you
purchase a new iPad, all the contacts on your iPhone can automatically be downloaded from
iCloud wirelessly, saving you all the time of transferring the information (either manually or
through iTunes) to the new device; and when you make changes to a contact on the iPad, the
changes are automatically synced to the iPhone. In addition to syncing content, you can also
use iCloud to automatically download songs, apps, and books that you have purchased on
other iOS devices.

In iOS 5, iCloud is available free to all users. When you sign up for iCloud, you get
5GB of free storage (you can purchase additional storage if you need more). Using this free
storage, you can use iCloud to back up your devices so that in the unfortunate event that you
lose your iPhone (or iPad), you can simply restore all your content onto a new replacement
device.

In this chapter, you will learn how to make use of iCloud to save documents and data in
your application so that they are available to the same application running on all your
other devices.

12

c12.indd 269c12.indd 269 05/12/11 2:02 PM05/12/11 2:02 PM

270 ❘ CHAPTER 12 PROGRAMMING ICLOUD

STORING AND USING DOCUMENTS IN ICLOUD

From an iOS developer’s perspective, iCloud presents two different usage scenarios:

 ➤ Document storage — Saves all your application documents on iCloud so that it accessible to
other devices

 ➤ Key-value data storage — Saves small amounts of application-specifi c data to the application
so that it can be shared with other devices

The fi rst usage involves saving documents in your application on the iCloud. For example, in an
eBook reader application, a user may purchase an eBook (or simply copy a PDF document into
the application’s Documents folder; see Chapter 10). The user would expect the newly purchased
eBook to be available to the same application on another device. Instead of storing the eBook on
your application’s sandbox, your application can make use of iCloud’s document storage to store
the eBook. Documents stored in the iCloud’s document storage are automatically available to your
application on all other devices. This way, all your application’s documents are stored in a central
location and available to all the user’s devices.

The second usage allows you to store application-specifi c data on iCloud. Data that is specifi c to an
application (such as application preferences) can be saved onto iCloud and made visible to the same
application on all your other devices. Using the eBook reader example, the page number of a book
that the reader is currently reading is a perfect example of an application-specifi c data that can be
stored on the iCloud and made available on other devices, with the result being the reader can start
reading a book on one device, turn that device off, and then later start reading the same book at the
same place they left off, on another device.

The following sections describe these two usage scenarios.

Enabling iCloud Storage for Your Application

Even though iCloud is free for iOS 5 users, you need to register for iCloud on your device before you
can use it. To register for iCloud, go to the Settings application on your iOS device, tap the iCloud
item, and follow the instructions on screen.

NOTE The following sections describe how to write an application to make use
of iCloud. Because several steps are involved, I have divided them into individual
sections so that you can understand each part of the process before continuing.

The following Try It Out shows you how to take the fi rst step to enabling iCloud for your
application: creating an iCloud-enabled App ID and provisioning profi le.

TRY IT OUT Creating the App ID and Provisioning Profi le for iCloud

1. Log in to the iOS Provisioning Portal at http://developer.apple.com/devcenter/ios/index
.action to create a new App ID.

c12.indd 270c12.indd 270 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 271

2. On the Manage tab of the App IDs page, create an App ID and give it a description of
DemoiCloudAppID. Select Use Team ID as the Bundle Seed and name the Bundle Identifi er
net.learn2develop.DemoiCloud (see Figure 12-1).

NOTE For more information on how to log in to the iOS Provisioning Portal,
please refer to Appendix A.

FIGURE 12-1

NOTE The Bundle Identifi er must be globally unique; hence be sure to use your
organization’s reverse domain name so that you can minimize the chances that
someone has the same Bundle Identifi er as you. In any case, if there is a confl ict
you will be asked to provide another unique Bundle Identifi er.

3. With the App ID created, you need to enable the App ID for iCloud. Click the Confi gure link
shown on the right of the App ID that you have just created to confi gure it. Check the Enable for
iCloud option, as shown in Figure12-2.

c12.indd 271c12.indd 271 05/12/11 2:02 PM05/12/11 2:02 PM

272 ❘ CHAPTER 12 PROGRAMMING ICLOUD

 4. A pop-up will appear, warning you that all
new provisioning profi les you create using
this App ID will be enabled for iCloud. All
existing profi les that you wish to use for
iCloud must be modifi ed and reinstalled on
your devices again. Click OK to continue (see
Figure 12-3).

 5. You now need to create a new provisioning
profi le to use with this new App ID. On
the Development tab of the Provisioning
page, create a new Profi le named
DemoiCloudProfi le, associate it with this new App ID, and select the devices on which you wish
to test (see Figure 12-4). Click Submit to continue.

FIGURE 12-2

FIGURE 12-3

c12.indd 272c12.indd 272 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 273

6. Once the profi le is created, download and install it onto any devices that you will use to test your
application. For the example in this chapter, you need two iOS devices; the Simulator does not
support iCloud.

FIGURE 12-4

NOTE Refer to Appendix A if you are unsure how to install the provisioning
profi le onto your devices. To test the iCloud feature, you need a real device; the
iOS Simulator will not work.

How It Works

To use iCloud for storage of your documents, you need to have an App ID that is enabled for iCloud.
Note that for the Bundle Identifi er, you need to specify a unique identifi er string (using your reverse-
domain name is recommended); the wildcard character (*) is not allowed. Also, the provisioning
profi les that you will use to deploy your application onto real devices must use this iCloud-enabled App
ID. If you already have existing provisioning profi les created and want to use this iCloud-enabled
App ID, you need to modify these provisioning profi les to use this new App ID, and then download
and install them onto your devices again. The easiest way to get this example to work is to create a new
provisioning profi le.

Setting Project Entitlements

When your application uses iCloud to store documents, folders will be created in iCloud to uniquely
identify the owner. Hence, you need to request specifi c entitlements in your application so that

c12.indd 273c12.indd 273 05/12/11 2:02 PM05/12/11 2:02 PM

274 ❘ CHAPTER 12 PROGRAMMING ICLOUD

iCloud can differentiate your application’s documents from other applications. These entitlements
are tied to the provisioning profi le.

The following Try It Out demonstrates how to request for entitlements in your application in order
to use iCloud for document storage and key-value data.

TRY IT OUT Creating the Project and Setting the Entitlements

codefi le DemoiCloud.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it DemoiCloud.
Use the project name as the Class Prefi x and ensure that you have the Use Automatic Reference
Counting option unchecked.

 2. In the Summary page for the project (see Figure 12-5), scroll down to the Entitlements section.

FIGURE 12-5

 3. Check the Enable Entitlements option and set the values as follows: (shown in Figure 12-5)

 ➤ Entitlements File — DemoiCloud

 ➤ iCloud-Key-Value Store — net.learn2develop.DemoiCloud

 ➤ iCloud Containers — net.learn2develop.DemoiCloud

 ➤ Keychain Access Groups — net.learn2develop.DemoiCloud

c12.indd 274c12.indd 274 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 275

How It Works

You need to set two entitlements in your application if you want to use iCloud.

If you want to use iCloud document storage, you need to request the iCloud Containers entitlement. This is
done by simply setting it to a value of the following format: <TEAM_ID>.<CUSTOM_STRING>. The Team_ID
is the unique ten-character identifi er associated with your developer account (refer to Figure 12-2). Note
that in this example you do not need to enter the TEAM_ID, as it is set for you automatically (more on this
shortly).The CUSTOM_STRING is a string that you set to uniquely identify the iCloud storage container used
by your application. It is recommended that you use the reverse domain name of your organization for
the custom string, just like the Bundle Identifi er used in your App ID. You can set more than one iCloud
Containers entitlement if you want to create multiple containers to be used by multiple applications. The
fi rst iCloud containers entitlement is always the main container used by your application.

If you want to use iCloud key-value data storage, you need to request the iCloud Key-Value Store
entitlement. You only need to set a single value for this entitlement.

In the preceding example, the entitlements are saved in the DemoiCloud.entitlements fi le in the
project. To see its raw content, right-click on the fi le and select Open As ➪ Source Code. Its raw
content looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “
 http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>
<dict>
<key>com.apple.developer.ubiquity-container-identifiers</key>
<array>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
<key>com.apple.developer.ubiquity-kvstore-identifier</key>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
<key>keychain-access-groups</key>
<array>
<string>$(AppIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
</dict>
</plist>

Notice the inclusion of the $(TeamIdentifierPrefix) placeholder (which is shown in bold above).
Hence, you do not need to enter your TEAM_ID earlier when you set the entitlements for your
application.

As mentioned, you can add multiple strings for the iCloud Containers entitlement. For example,
suppose you add a second string to it as shown here:

<key>com.apple.developer.ubiquity-container-identifiers</key>
<array>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud.Free</string>
</array>

c12.indd 275c12.indd 275 05/12/11 2:02 PM05/12/11 2:02 PM

276 ❘ CHAPTER 12 PROGRAMMING ICLOUD

In this case, besides being able to access the documents stored in the container identifi ed by
$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud, your application will also be able to
access the container identifi ed by $(TeamIdentifierPrefix)net.learn2develop.DemoiCloud.Free,
which is created by another separate application.

Managing iCloud Documents Using the UIDocument Class

To manage documents stored in iCloud, Apple recommends you use the UIDocument class. This
class does all the work of reading and writing to fi les stored in iCloud. Using the UIDocument class,
there is no need for you to manage the complexity of resolving confl icts when two devices try to
update the same fi le at the same time. To use the UIDocument class, you need to subclass it and then
implement a few methods.

The following Try It Out shows how to subclass the UIDocument class so that you can use it to
manage your documents in iCloud.

TRY IT OUT Managing iCloud Documents

 1. Using the project created in the previous section, add a new Objective-C class and name it
MyCloudDocument. Make it a subclass of UIDocument (see Figure 12-6).

FIGURE 12-6

c12.indd 276c12.indd 276 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 277

 2. Populate the MyCloudDocument.h fi le as follows:

#import <UIKit/UIKit.h>
@class MyCloudDocument;

@protocol MyCloudDocumentDelegate <NSObject>
- (void)documentContentsDidUpdate:(MyCloudDocument *)document;
@end

@interface MyCloudDocument : UIDocument

@property (assign, nonatomic) id <MyCloudDocumentDelegate> delegate;
@property (copy, nonatomic) NSString *contents;

@end

 3. Populate the MyCloudDocument.m fi le as follows:

#import “MyCloudDocument.h”

@implementation MyCloudDocument

@synthesize delegate = _delegate;
@synthesize contents = _contents;

- (void)dealloc {
 [_contents release];
 [super dealloc];
}

//---create the file at the specified URL and init it with some content---
- (id)initWithFileURL:(NSURL *)url {
 self = [super initWithFileURL:url];
 return self;
}

//---load the content of the document---
- (BOOL)loadFromContents:(id)contents
 ofType:(NSString *)
 typeName error:(NSError **)outError {
 if ([contents length] > 0)
 {
 self.contents =
 [[[NSString alloc] initWithData:contents
 encoding:NSUTF8StringEncoding]
 autorelease];
 } else {
 //---if nothing, set it to empty string---
 self.contents = @””;
 }

 //---if the object implements this delegate, call it---
 if ([_delegate respondsToSelector:
 @selector(documentContentsDidUpdate:)]) {
 //---tell the delegate that the content of the document has changed---
 [self.delegate documentContentsDidUpdate:self];
 }

c12.indd 277c12.indd 277 05/12/11 2:02 PM05/12/11 2:02 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

278 ❘ CHAPTER 12 PROGRAMMING ICLOUD

 return YES;
}

//---save the content of the document---
- (id)contentsForType:(NSString *)typeName
 error:(NSError **)outError {
 return [self.contents dataUsingEncoding:NSUTF8StringEncoding];
}

@end

How It Works

In the preceding example, you defi ned a protocol named MyCloudDocumentDelegate, which contains a
method named documentContentsDidUpdate.

In the class, you implemented the following methods:

 ➤ initWithFileURL: — This method is called when you are creating a new document in iCloud. It
takes a single argument, which is the URL for the fi le to be created.

 ➤ loadFromContents:ofType:error: — This method is called when your application tries to load
the content of the document from iCloud. For this example, the document is a simple text fi le;
therefore, you will only deal with strings by converting the data from NSData to NSString. When
a document is loaded, you also invoke the documentContentsDidUpdate delegate so that the
application knows that it has managed to load the document from iCloud.

 ➤ contentsForType:error: — This method is called when you try to save the fi le to iCloud. Here,
you simply convert the string content of the fi le to the NSData type.

To create documents on iCloud, you need to create instances of subclasses of UIDocument, which in this
case is the MyCloudDocument class. The next Try It Out shows how this is done.

Storing Documents on iCloud

Now that you have seen how to use the UIDocument class, it is time to put everything together and
create an application that stores your documents in iCloud.

The following Try It Out shows how your application can make use of the UIDocument class to save
a document on iCloud, and then access the same document from other iOS devices running the same
application. If you are eager to see how things work fi rst, follow the steps and try it out on two iOS
devices. For those of you who want to understand the details of how this works, jump to the How It
Works section, which dissects the code. After that you can try it out on your devices.

TRY IT OUT Saving Documents on iCloud

 1. Using the project created in the previous section, select the DemoiCloudViewController.xib fi le
to edit it in Interface Builder.

 2. Add the following views to the View window (see also Figure 12-7):

c12.indd 278c12.indd 278 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 279

 ➤ Two Labels (set their text properties to “Enter some text here” and “Files on iCloud”)

 ➤ Text Field

 ➤ Two Round Rect Buttons (set their text properties to “Create fi le on iCloud” and “Save to
fi le on iCloud”)

 ➤ Text View (remember to delete the text displayed inside it)

FIGURE 12-7

 3. In the DemoiCloudViewController.h fi le, add the following lines in bold:

#import <UIKit/UIKit.h>
#import “MyCloudDocument.h”

@interface DemoiCloudViewController : UIViewController
<MyCloudDocumentDelegate>
{
 IBOutlet UITextField *txtContent;
 IBOutlet UITextView *txtFilesOniCloud;

 NSURL *documentiCloudPath;
 MyCloudDocument *myCloudDocument;
 NSMutableArray *documentURLs;
}

@property (nonatomic, retain) UITextField *txtContent;

c12.indd 279c12.indd 279 05/12/11 2:02 PM05/12/11 2:02 PM

280 ❘ CHAPTER 12 PROGRAMMING ICLOUD

@property (nonatomic, retain) UITextView *txtFilesOniCloud;
@property (nonatomic, retain) NSMetadataQuery *query;

-(IBAction) btnSave:(id)sender;
-(IBAction) createFileOniCloud:(id)sender;
-(IBAction) doneEditing:(id)sender;

- (NSURL *)ubiquitousDocumentsURL;
- (void)updateUbiquitousDocuments:(NSNotification *)notification;
- (void) searchFilesOniCloud;
- (void) displayAlert:(NSString *) title withmessage:(NSString *) msg;

@end

 4. Back in Interface Builder, perform the following actions:

 ➤ Control-click the File’s Owner item and drag it over the Text Field. Select txtContent.

 ➤ Control-click the File’s Owner item and drag it over the Text View. Select
txtFilesOniCloud.

 ➤ Control-click the Create File on iCloud button and drag it over the File’s Owner item. Select
createFileOniCloud:.

 ➤ Control-click the Save to fi le on iCloud button and drag it over the File’s Owner item. Select
btnSave:.

 ➤ Right-click on the Text Field and connect the
Did End On Exit item to the File’s Owner
item. Select doneEditing:.

 5. Right-click on the File’s Owner item and
you should see the connections as shown in
Figure 12-8.

 6. In the DemoiCloudViewController.m fi le, add
the following lines in bold:

#import “DemoiCloudViewController.h”

@implementation DemoiCloudViewController

@synthesize txtContent, txtFilesOniCloud;
@synthesize query = _query;

NSString *FILENAME = @”MyFile.txt”;

-(IBAction)doneEditing:(id)sender {
 [sender resignFirstResponder];
}

- (void) displayAlert:(NSString *) title withmessage:(NSString *) msg {
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:title
 message:msg
 delegate:self
 cancelButtonTitle:@”OK”

FIGURE 12-8

c12.indd 280c12.indd 280 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 281

 otherButtonTitles: nil];
 [alert show];
 [alert release];
}

//---get the root URL for the iCloud storage’s Documents folder---
- (NSURL *)ubiquitousDocumentsURL {
 //---use the string that you added earlier when setting the
 // entitlement for the iCloud container---
 return
 [[[NSFileManager defaultManager] URLForUbiquityContainerIdentifier:
 @”6LNSVE9D8J.net.learn2develop.DemoiCloud”]
 URLByAppendingPathComponent:@”Documents”];
}

//---search for files on iCloud---
-(void) searchFilesOniCloud {
 NSURL *ubiquitousDocumentsURL = [self ubiquitousDocumentsURL];
 if (ubiquitousDocumentsURL) {
 NSMetadataQuery *query = [[[NSMetadataQuery alloc] init] autorelease];
 query.predicate = [NSPredicate predicateWithFormat:@”%K like ‘*’”,
 NSMetadataItemFSNameKey];
 query.searchScopes = [NSArray arrayWithObject:
 NSMetadataQueryUbiquitousDocumentsScope];
 [query startQuery];
 self.query = query;
 } else {
 [self displayAlert:@”iCloud”
 withmessage:@”iCloud storage not enabled on this device.
Please enable it and try again.”];
 }
}

//---called when there are changes to the files in iCloud---
- (void)updateUbiquitousDocuments:(NSNotification *)notification {
 [documentURLs removeAllObjects];
 txtFilesOniCloud.text = @””;

 for (NSMetadataItem *item in self.query.results) {
 NSURL *url = [item valueForAttribute:NSMetadataItemURLKey];
 NSLog(@”%@”, [url absoluteString]);

 //---add the URL of the document to the array---
 if (![documentURLs containsObject:(url)]) {
 [documentURLs addObject:url];
 txtFilesOniCloud.text = [txtFilesOniCloud.text
 stringByAppendingFormat:@”%@\n”,[url absoluteString]];
 }
 }
}

//---content of the document from iCloud is retrieved---
- (void)documentContentsDidUpdate:(MyCloudDocument *)document {

c12.indd 281c12.indd 281 05/12/11 2:02 PM05/12/11 2:02 PM

282 ❘ CHAPTER 12 PROGRAMMING ICLOUD

 txtContent.text = document.contents;
}

-(IBAction)createFileOniCloud:(id)sender {
 //---get the path of the Documents folder in iCloud (local)---
 documentiCloudPath = [self ubiquitousDocumentsURL];

 //---create the full pathname for document to sync to iCloud---
 documentiCloudPath = [documentiCloudPath
 URLByAppendingPathComponent:FILENAME];

 //---create the UIDocument document---
 myCloudDocument =
 [[MyCloudDocument alloc] initWithFileURL:documentiCloudPath];
 myCloudDocument.delegate = self;

 //---check if the document already exists on iCloud---
 if ([documentURLs containsObject:(documentiCloudPath)]) {
 [self displayAlert:@”Document exists on iCloud”
 withmessage:@”Document already exists on iCloud. Retrieving
it...”];

 //---open the existing file---
 [myCloudDocument openWithCompletionHandler:^(BOOL success) {}];
 } else {
 [self displayAlert:@”Creating Document on iCloud”
 withmessage:@”Document is currently being created on iCloud.”];
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
 }
}

-(IBAction) btnSave:(id)sender {
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
}

- (void)viewDidLoad {
 //---used for storing the filenames of files in iCloud---
 documentURLs = [[NSMutableArray alloc] init];

 //---register for notifications; used for searching of files on iCloud---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidUpdateNotification
 object:nil];

 //---search for all the files in iCloud---

c12.indd 282c12.indd 282 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 283

 [self searchFilesOniCloud];

 [super viewDidLoad];
}

 7. You are now ready to deploy the application on two iOS devices to see if it works. For illustration
purposes, I have deployed the application onto an iPhone and an iPad.

 8. On the iPhone, fi rst type some text into the Text Field. Then tap on the Create File on iCloud
button to save the fi le on iCloud. Because this is the fi rst time you are saving this fi le onto iCloud,
you will see the alert shown in Figure 12-9.

 9. A little later (about 10-15 seconds typically), the Text View will display the path of the document
(see Figure 12-10). This proves that the fi le has been saved successfully. Note that the path points
to a location on your local device, indicating that the fi le is saved there. The UIDocument subclass
takes care of synchronizing all the documents saved in this folder to iCloud.

 10. On the iPad, the application automatically displays the path of the fi le saved on iCloud (see
Figure 12-11).

FIGURE 12-9 FIGURE 12-10 FIGURE 12-11

 11. Tap on the Create File on iCloud button. Because the fi le already exists on iCloud, you will see the
alert shown in Figure 12-12. Click OK to dismiss the alert.

 12. You will now see the content of the fi le displayed in the Text Field (see Figure 12-13). The content
of the fi le has been fetched from iCloud.

c12.indd 283c12.indd 283 05/12/11 2:02 PM05/12/11 2:02 PM

284 ❘ CHAPTER 12 PROGRAMMING ICLOUD

FIGURE 12-12 FIGURE 12-13

 13. Tap on the Text Field and type some text into it (see Figure 12-14). Tap on the Save to fi le on
iCloud button to save the changes to the fi le on iCloud.

 14. On the iPhone, after a while (typically 10-15 seconds), you will see that the change made on the
iPad is now displayed automatically in the Text Field (see Figure 12-15).

FIGURE 12-14 FIGURE 12-15

c12.indd 284c12.indd 284 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 285

How It Works

To create documents in iCloud, you fi rst create a variable of type MyCloudDocument (which is a subclass
of UIDocument):

 MyCloudDocument *myCloudDocument;

You also create an NSMutableArray object to store all the fi les that are found on iCloud:

 //---used for storing the filenames of files in iCloud---
 documentURLs = [[NSMutableArray alloc] init];

When the application starts, you fi rst register for two notifi cations — one for searching (which you will
see next) and one for getting updates when documents are updated:

 //---register for notifications; used for searching of files on iCloud---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidUpdateNotification
 object:nil];

When new fi les are found on iCloud or when changes are found on fi les on iCloud, the
updateUbiquitousDocuments: method is called.

Then you search for all the fi les on your iCloud directory:

 //---search for all the files in iCloud---
 [self searchFilesOniCloud];

The searchForFilesOniCloud method fi rst calls the ubiquitousDocumentsURL method to obtain the
URL for your iCloud’s Documents folder:

//---search for files on iCloud---
-(void) searchFilesOniCloud {
 NSURL *ubiquitousDocumentsURL = [self ubiquitousDocumentsURL];
 if (ubiquitousDocumentsURL) {
 NSMetadataQuery *query = [[[NSMetadataQuery alloc] init] autorelease];
 query.predicate = [NSPredicate predicateWithFormat:@”%K like ‘*’”,
 NSMetadataItemFSNameKey];
 query.searchScopes = [NSArray arrayWithObject:
 NSMetadataQueryUbiquitousDocumentsScope];
 [query startQuery];
 self.query = query;
 } else {
 [self displayAlert:@”iCloud”
 withmessage:@”iCloud storage not enabled on this device.
Please enable it and try again.”];
 }
}

c12.indd 285c12.indd 285 05/12/11 2:02 PM05/12/11 2:02 PM

286 ❘ CHAPTER 12 PROGRAMMING ICLOUD

The ubiquitousDocumentsURL method calls the URLForUbiquityContainerIdentifier: method of
the NSFileManager object using the string that you added earlier when setting the entitlement for the
iCloud container(note the TEAM ID, which you can obtain from Figure 12-2) of the NSFileManager
object to obtain the user’s iCloud directory. It then appends the Documents folder to this directory and
returns it:

//---get the root URL for the iCloud storage’s Documents folder---
- (NSURL *)ubiquitousDocumentsURL
{
 return
 [[[NSFileManager defaultManager] URLForUbiquityContainerIdentifier:
 @”6LNSVE9D8J.net.learn2develop.DemoiCloud”]
 URLByAppendingPathComponent:@”Documents”];
}

You are free to create additional directories inside the iCloud directory, but Apple recommends that you
create a Documents folder inside it to store the user’s documents. One benefi t of doing so is that the all
the fi les stored inside the Documents folder will be exposed via Settings ➪ iCloud ➪ Storage & Backup
➪ Manage Storage on the user’s device. Users will then be able to delete these fi les directly through the
Settings application.

The path of the iCloud’s Documents folder looks like this: /private/var/mobile/Library/
Mobile Documents/6LNSVE9D8J~net~learn2develop~DemoiCloud/Documents/. Note that this is a path
on your local device. All the fi les that you want to save on iCloud are saved in this directory. The UIDocument
class takes care of moving the documents to iCloud, synchronizing the changes, and so on. If iCloud is not
enabled or the entitlement string supplied is not correct, the URLForUbiquityContainerIdentifier:
method will return nil.

Continuing with the search, you create an NSMetadataQuery object to search for all fi les in the
Documents folder of the iCloud container. You use the NSMetadataQueryUbiquitousDocumentsScope
constant to search for fi les in the Documents folder; if you want to search for fi les elsewhere, you should
use the NSMetadataQueryUbiquitousDataScope constant:

 if (ubiquitousDocumentsURL) {
 NSMetadataQuery *query = [[[NSMetadataQuery alloc] init] autorelease];
 query.predicate = [NSPredicate predicateWithFormat:@”%K like ‘*’”,
 NSMetadataItemFSNameKey];
 query.searchScopes = [NSArray arrayWithObject:
 NSMetadataQueryUbiquitousDataScope];
 [query startQuery];
 self.query = query;
 } else {
 [self displayAlert:@”iCloud”
 withmessage:@”iCloud storage not enabled on this device.
Please enable it and try again.”];
 }

To start the search, you use the startQuery method. When fi les are found on the iCloud container, the
updateUbiquitousDocuments: method is called:

//---called when there are changes to the files in iCloud---
- (void)updateUbiquitousDocuments:(NSNotification *)notification {

c12.indd 286c12.indd 286 05/12/11 2:02 PM05/12/11 2:02 PM

Storing and Using Documents in iCloud ❘ 287

 [documentURLs removeAllObjects];
 txtFilesOniCloud.text = @””;

 for (NSMetadataItem *item in self.query.results) {
 NSURL *url = [item valueForAttribute:NSMetadataItemURLKey];
 NSLog(@”%@”, [url absoluteString]);

 //---add the URL of the document to the array---
 if (![documentURLs containsObject:(url)]) {
 [documentURLs addObject:url];
 txtFilesOniCloud.text = [txtFilesOniCloud.text
 stringByAppendingFormat:@”%@\n”,[url absoluteString]];
 }
 }
}

Here, you simply add the fi le paths of each document found in the search result into the array and then
display the path on the Text View.

To create a document on iCloud, you instantiate the MyCloudDocument class and pass it the full URL of
the document you want to create:

-(IBAction)createFileOniCloud:(id)sender {
 //---get the path of the Documents folder in iCloud (local)---
 documentiCloudPath = [self ubiquitousDocumentsURL];

 //---create the full pathname for document to sync to iCloud---
 documentiCloudPath = [documentiCloudPath
 URLByAppendingPathComponent:FILENAME];

 //---create the UIDocument document---
 myCloudDocument =
 [[MyCloudDocument alloc] initWithFileURL:documentiCloudPath];
 myCloudDocument.delegate = self;

 //---check if the document already exists on iCloud---
 if ([documentURLs containsObject:(documentiCloudPath)]) {
 [self displayAlert:@”Document exists on iCloud”
 withmessage:@”Document already exists on iCloud. Retrieving
it...”];

 //---open the existing file---
 [myCloudDocument openWithCompletionHandler:^(BOOL success) {}];
 } else {
 [self displayAlert:@”Creating Document on iCloud”
 withmessage:@”Document is currently being created on iCloud.”];
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
 }
}

If the document you want to create already exists in the iCloud container, you open it using the
openWithCompletionHandler: method. This method opens and reads the content of the fi le
asynchronously. If the fi le does not exist, you assign its content with the value of the Text File. You

c12.indd 287c12.indd 287 05/12/11 2:02 PM05/12/11 2:02 PM

288 ❘ CHAPTER 12 PROGRAMMING ICLOUD

then call the updateChangeCount: method of the UIDocument to signal that there are changes to your
document so that UIDocument can make the changes to iCloud.

To save changes to a fi le, you simply modify the contents property of the MyCloudDocument instances
and then call the updateChangeCount: method:

-(IBAction) btnSave:(id)sender {
 //---save the content---
 myCloudDocument.contents = txtContent.text;
 [myCloudDocument updateChangeCount:UIDocumentChangeDone];
}

When your document is modifi ed in iCloud, the documentContentsDidUpdate: method is called:

//---content of the document from iCloud is retrieved---
- (void)documentContentsDidUpdate:(MyCloudDocument *)document {
 txtContent.text = document.contents;
}

In this case, you simply display the updated content in the Text Field. To confi rm that the document
is created in iCloud, go to your device and examine the Settings ➪ iCloud ➪ Storage & Backup ➪
Manage Storage page (see Figure 12-16). Tapping on the Documents & Data item will display the fi le
MyFile.txt, which was created by your application. If you want to delete the fi le, you can tap on the
Edit button.

FIGURE 12-16

c12.indd 288c12.indd 288 05/12/11 2:02 PM05/12/11 2:02 PM

Storing Key-Value Data in iCloud ❘ 289

STORING KEY-VALUE DATA IN ICLOUD

In Chapter 9, you learned about the use of the NSUserDefaults class to save user’s preferences data in
the Settings application. You do so via the use of key-value pairs, which can be simple data types like
numbers, strings, arrays, and so on. However, data stored using the NSUserDefaults class is available
only to the application on that particular device; if you have the same application on multiple devices,
these values cannot be shared. Imagine you are writing an eBook reader application that runs on both
the iPhone and iPad platforms. Users may install your application on multiple devices. When they stop
reading at a particular page on their iPhone, they might want to continue from where they left off by
reading it on their iPad later. In this case, there must be a way for the application on both devices to
retrieve the user’s last page number. Of course, you could devise your own server solution whereby
the application can sync the information back to the server, but that would mean you have to write an
additional application (such as JSON web services, or a socket server).

Fortunately, besides saving user documents, you can use iCloud to save small chunks of information
so that the same application running on different devices can share them. It does impose some
restrictions, most of which should not be a major problem for most applications. Using iCloud, you
can save key-value data with the following restrictions:

 ➤ The maximum amount of space in a key-value store is 64KB.

 ➤ The maximum size of a single key is 4KB.

The following Try It Out demonstrates how you can store key-value data on iCloud. It uses the same
project you created in the previous section of this chapter.

TRY IT OUT Using iCloud to Store Key-Value Data

 1. Using the project created in the previous section, add the following lines in bold to the
DemoiCloudViewController.h fi le:

- (void)viewDidLoad {
 //---used for storing the filenames of files in iCloud---
 documentURLs = [[NSMutableArray alloc] init];

 //---register for notifications; used for searching of files on iCloud---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(updateUbiquitousDocuments:)
 name:NSMetadataQueryDidUpdateNotification
 object:nil];

 //---search for all the files in iCloud---
 [self searchFilesOniCloud];

 //---get the ubiquitous key store from iCloud---
 NSUbiquitousKeyValueStore *keyValue =

c12.indd 289c12.indd 289 05/12/11 2:02 PM05/12/11 2:02 PM

290 ❘ CHAPTER 12 PROGRAMMING ICLOUD

 [NSUbiquitousKeyValueStore defaultStore];

 NSString *lastUsed = [keyValue stringForKey:@”lastUsed”];
 if ([lastUsed length]>0) {
 [self displayAlert:@”Last Used”
 withmessage:[NSString stringWithFormat:
 @”Application was last used on: %@”, lastUsed]];
 }

 //---get the current date and time---
 NSDate *currentDateTime = [NSDate date];
 NSDateFormatter *dateFormatter =
 [[[NSDateFormatter alloc] init] autorelease];
 [dateFormatter setDateFormat:@”yyyy-MM-dd HH:mm:ss”];
 NSString *dateInString = [dateFormatter stringFromDate:currentDateTime];

 //---save the current date and time---
 [keyValue setString:dateInString forKey:@”lastUsed”];
 [keyValue synchronize];

 [super viewDidLoad];
}

 2. Deploy the application onto the iPad,
wait a few seconds (e.g., 20 seconds) and
then deploy onto the iPhone. When the
application loads onto the iPhone, you
will see the alert shown in Figure 12-17,
indicating the date and time when the
application was last used.

How It Works

In order to store key-value data on the iCloud, you need to specify the string for the iCloud key-value
Store in your entitlements fi le, which you have done earlier in this chapter. This string is represented by
the com.apple.developer.ubiquity-kvstore-identifier key:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST
1.0//EN” “http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>
<dict>
<key>com.apple.developer.ubiquity-container-identifiers</key>
<array>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
<key>com.apple.developer.ubiquity-kvstore-identifier</key>
<string>$(TeamIdentifierPrefix)net.learn2develop.DemoiCloud</string>
<key>keychain-access-groups</key>
<array>
<string>$(AppIdentifierPrefix)net.learn2develop.DemoiCloud</string>
</array>
</dict>
</plist>

FIGURE 12-17

c12.indd 290c12.indd 290 05/12/11 2:02 PM05/12/11 2:02 PM

Storing Key-Value Data in iCloud ❘ 291

To store key-value data on iCloud, you fi rst need to obtain an instance of the NSUbiquitousKeyValueStore
object:

 //---get the ubiquitous key store from iCloud---
 NSUbiquitousKeyValueStore *keyValue =
 [NSUbiquitousKeyValueStore defaultStore];

To retrieve the string value of a key, you use the stringForKey: method:

 NSString *lastUsed = [keyValue stringForKey:@”lastUsed”];
 if ([lastUsed length]>0) {
 [self displayAlert:@”Last Used”
 withmessage:[NSString stringWithFormat:
 @”Application was last used on: %@”, lastUsed]];
 }

Besides using the stringForKey: method, you can also use the following methods for other data types:

 ➤ arrayForKey:

 ➤ boolForKey:

 ➤ dataForKey:

 ➤ dictionaryForKey:

 ➤ doubleForKey:

 ➤ longLongForKey:

 ➤ objectForKey:

To store string key-value data, use the setString:forKey: method:

 [keyValue setString:dateInString forKey:@”lastUsed”];
 [keyValue synchronize];

To synchronize the changes back to iCloud, use the synchronize method. To store key-value data of
other data types, you can also use the following methods:

 ➤ setArray:forKey:

 ➤ setBool:forKey:

 ➤ setData:forKey:

 ➤ setDictionary:forKey:

 ➤ setDouble:forKey:

 ➤ setLongLong:forKey:

 ➤ setObject:forKey:

 ➤ setString:forKey:

c12.indd 291c12.indd 291 05/12/11 2:02 PM05/12/11 2:02 PM

292 ❘ CHAPTER 12 PROGRAMMING ICLOUD

While the NSUbiquitousKeyValueStore class performs an almost identical service to that of the
NSUserDefaults class, it should not be used as a replacement for it. Try to save all application-specifi c
data to the local device using the NSUserDefaults class fi rst. Only then do you make a copy on iCloud
using the NSUbiquitousKeyValueStore class. This enables your application to always have a copy of
the application’s data regardless of whether the user has network connectivity or whether he or she has
enabled iCloud.

SUMMARY

In this chapter, you had a good look at how you can store your documents and data on iCloud.
Using iCloud, you can automatically synchronize your documents and data across applications
running on multiple devices. Best of all, the iOS SDK provides the UIDocument class, which provides
all the heavy-lifting needed to ensure that documents are synced and updated correctly, thus leaving
you with more time to develop your application.

EXERCISES

 1. Name the method you can use to obtain the path of your iCloud storage container.

 2. What is the advantage of saving your documents in the Documents folder of your iCloud storage

container?.

 3. What is the advantage of storing key-value data on iCloud?

Answers to the exercises can be found in Appendix D.

c12.indd 292c12.indd 292 05/12/11 2:02 PM05/12/11 2:02 PM

Summary ❘ 293

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Two main uses for iCloud Use for document storage and data storage.

Setting entitlements for iCloud Set the iCloud Containers entitlement and the iCloud

Key-Value Store entitlement.

Managing iCloud documents Subclass the UIDocument class.

Methods to implement in subclass

of UIDocument

The three methods are:

initWithFileURL:

loadFromContents:ofType:error:

contentsForType:error:

Create a Documents folder in

iCloud to store your documents

Doing so allows users to manage the fi les directly through

the Settings application.

Storing key-value data on iCloud Use the NSUbiquitousKeyValueStore class.

c12.indd 293c12.indd 293 05/12/11 2:02 PM05/12/11 2:02 PM

c12.indd 294c12.indd 294 05/12/11 2:02 PM05/12/11 2:02 PM

Performing Simple Animations
and Video Playback

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Using the NSTimer class to create timers that call methods at

regular intervals

 ➤ How to perform simple animations using the NSTimer class

 ➤ How to perform an affi ne transformation on an Image View

 ➤ Animating a series of images using an Image View

 ➤ How to play back videos in your iPhone application

Up to this point, the applications you have written have all made use of the standard views
provided by the iOS SDK. As Apple has reiterated, the iPhone is not just for serious work; it is
also a gaming platform.

In this chapter, you have some fun creating something visual. You learn how to perform some
simple animations using a timer object and then perform some transformations on a view.
Although it is beyond the scope of this book to show you how to create animations using
OpenGL ES, this chapter does demonstrate some interesting techniques that you can use to
make your applications come alive. In addition, you will also learn how to play back a video in
your iPhone application.

USING THE NSTIMER CLASS

One of the easiest ways to get started with animation is to use the NSTimer class. The NSTimer
class creates timer objects, which enable you to call a method at a regular time interval. Using
an NSTimer object, you can update the position of an image at regular time intervals, thereby
creating the impression that it is being animated.

13

c13.indd 295c13.indd 295 05/12/11 2:02 PM05/12/11 2:02 PM

296 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

In the following Try It Out, you learn how to display a bouncing ball on the screen using the
NSTimer class. When the ball touches the sides of the screen, it bounces off in the opposite direction.
You also learn how to control the frequency with which the ball animates. Download the code fi les
indicated for this and other Try It Out features within this chapter.

TRY IT OUT Animating a Ball

codefi le Animation.zip is available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it Animation. You
will also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Drag and drop an image named tennisball.jpg to the Supporting Files folder in Xcode.
When the Add dialog appears, check the Copy Item into the Destination Group’s Folder (If
Needed) option so that the image is copied into the project (see Figure 13-1).

FIGURE 13-1

 3. Select the AnimationViewController.xib fi le to edit it in Interface Builder.

 4. Drag and drop an Image View onto the View window and set its Image property to tennisball
.jpg (see Figure 13-2).

Ensure that the size of the Image View accommodates the entire tennis ball image. Later, you will
move the Image View on the screen, so it is important not to fi ll the entire screen with the
Image View.

 5. Select the View (outside the Image View) and change the background color to black (see
Figure 13-3).

c13.indd 296c13.indd 296 05/12/11 2:03 PM05/12/11 2:03 PM

Using the NSTimer Class ❘ 297

FIGURE 13-2

FIGURE 13-3

c13.indd 297c13.indd 297 05/12/11 2:03 PM05/12/11 2:03 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

298 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

 6. Add a Label and a Slider from the Library onto the View window (see the lower-left corner of
Figure 13-4). Set the Current property of the Slider view to 0.01.

FIGURE 13-4

 7. In the AnimationViewController.h fi le, declare the following outlets, fi elds, and actions (shown
in bold):

#import <UIKit/UIKit.h>

@interface AnimationViewController : UIViewController
{
 IBOutlet UIImageView *imageView;
 IBOutlet UISlider *slider;

 CGPoint delta;
 NSTimer *timer;
 float ballRadius;
}

@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) UISlider *slider;

-(IBAction) sliderMoved:(id) sender;

@end

c13.indd 298c13.indd 298 05/12/11 2:03 PM05/12/11 2:03 PM

Using the NSTimer Class ❘ 299

 8. Back in Interface Builder, connect the outlets
and actions as follows (see Figure 13-5 for the
connections after all the outlets and actions are
connected):

 ➤ Control-click and drag the File’s Owner item
to the Image View and select imageView.

 ➤ Control-click and drag the File’s Owner item
to the Slider and select slider.

 ➤ Control-click and drag the Slider to the File’s
Owner item and select sliderMoved:.

 9. Add the following bold statements to the
AnimationViewController.m fi le:

#import “AnimationViewController.h”

@implementation AnimationViewController

@synthesize imageView;
@synthesize slider;

-(void) onTimer {
 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

 if (imageView.center.x > self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y > self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

- (void) viewDidLoad {
 ballRadius = imageView.bounds.size.width / 2;
 [slider setShowValue:YES];
 delta = CGPointMake(12.0,4.0);
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [super viewDidLoad];
}

-(IBAction) sliderMoved:(id) sender {
 [timer invalidate];
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self

FIGURE 13-5

c13.indd 299c13.indd 299 05/12/11 2:03 PM05/12/11 2:03 PM

300 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
}

- (void)dealloc {
 [timer invalidate];
 [imageView release];
 [slider release];
 [super dealloc];
}

10. Press Command-R to test the application on the iPhone Simulator.
The tennis ball should now be animated on the screen (see
Figure 13-6). Vary the speed of the animation by moving the slider —
to the right to slow it down and to the left to speed it up.

How It Works

When the view is loaded, the fi rst thing you do is get the radius of the tennis
ball, which in this case is half the width of the image:

 ballRadius = imageView.bounds.size.width / 2;

This value is used during the animation to check whether the tennis ball has
touched the edges of the screen.

To set the slider to show its value, you used the setShowValue: method:

 [slider setShowValue:YES];

FIGURE 13-6

NOTE The setShowValue: method is undocumented; hence, the compiler
will sound a warning. Be forewarned that using any undocumented methods
may result in your application being rejected when you submit it to Apple for
approval. In general, use undocumented methods only for debugging purposes.

You also initialized the delta variable:

 delta = CGPointMake(12.0,4.0);

The delta variable is used to specify how many pixels the image must move every time the timer fi res.
The preceding code tells it to move 12 points horizontally and 4 points vertically.

You next called the scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: class
method of the NSTimer class to create a new instance of the NSTimer object:

 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self

c13.indd 300c13.indd 300 05/12/11 2:03 PM05/12/11 2:03 PM

Using the NSTimer Class ❘ 301

 selector:
 @selector(onTimer)
 userInfo:nil
 repeats:YES];

The scheduledTimerWithTimeInterval: parameter specifi es the number of seconds between fi rings
of the timer. Here, you set it to the value of the Slider view, which accepts a value from 0.0 to 1.0. For
example, if the slider’s value is 0.5, the timer object will fi re every half-second.

The selector: parameter specifi es the method to call when the timer fi res, and the repeats:
parameter indicates whether the timer object will repeatedly reschedule itself. In this case, when the
timer fi res, it calls the onTimer method, which you defi ned next.

In the onTimer method, you changed the position of the Image View by setting its center property to
a new value. After repositioning, you checked whether the image touched the edges of the screen; if it
has, the value of the delta variable is negated:

-(void) onTimer {
 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);
 if (imageView.center.x >
 self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y >
 self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

When you move the slider, the sliderMoved: method is called. In this method, you fi rst invalidated the
timer object and then created another instance of the NSTimer class:

-(IBAction) sliderMoved:(id) sender {
 [timer invalidate];
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:
 @selector(onTimer)
 userInfo:nil
 repeats:YES];
}

Moving the slider enables you to change the frequency at which the image is animated.

NOTE After an NSTimer object is started, you cannot change its fi ring
interval. The only way to change the interval is to invalidate the current
object and create a new NSTimer object.

c13.indd 301c13.indd 301 05/12/11 2:03 PM05/12/11 2:03 PM

302 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

Animating the Visual Change

You may have noticed that as you move the slider toward the right, the animation slows and
becomes choppy. To make the animation smoother, you can animate the visual changes by using one
of the block-based animation methods. One such block-based animation method is the
animateWithDuration:delay:options:animations:completion: class method of the UIView class:

 [UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);
 }
 completion:nil];

The preceding code performs the specifi ed animations immediately
using the UIViewAnimationOptionCurveLinear (constant speed) and
UIViewAnimationOptionAllowUserInteraction (allows the user to interact with the views while
they are being animated) animation options. This results in a much smoother animation.

TRANSFORMING VIEWS

You can use the NSTimer class to simulate a simple animation by continuously changing the position
of the Image View, but you can also use the transformation techniques supported by the iOS SDK to
achieve the same effect.

Transforms are defi ned in Core Graphics (a C-based API that is based on the Quartz advanced
drawing engine; you use this framework to handle things such as drawings, transformations, image
creation, etc.), and the iOS SDK supports standard affi ne 2D transforms. You can use the iOS SDK
to perform the following affi ne 2D transforms:

 ➤ Translation — Moves the origin of the view by the amount specifi ed using the x and y axes

 ➤ Rotation — Moves the view by the angle specifi ed

 ➤ Scaling — Changes the scale of the view by the x and y factors specifi ed

NOTE An affi ne transformation is a linear transformation that preserves
co-linearity and ratio of distances. This means that all the points lying on a line
initially will remain in a line after the transformation, with the respective distance
ratios between them maintained.

Figure 13-7 shows the effects of the various transformations.

c13.indd 302c13.indd 302 05/12/11 2:03 PM05/12/11 2:03 PM

Transforming Views ❘ 303

Translation

To perform an affi ne transform on a view, simply use its transform property. Recall that in the
previous example, you set the new position of the view through its center property:

 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

FIGURE 13-7

Using 2D transformation, you can use its transform property and set it to a CGAffineTransform
data structure returned by the CGAffineTransformMakeTranslation() function, like this:

//--—add the following bold line in the AnimationViewController.h file—--
#import <UIKit/UIKit.h>

@interface AnimationViewController : UIViewController
{
 IBOutlet UIImageView *imageView;
 IBOutlet UISlider *slider;
 CGPoint delta;
 NSTimer *timer;

c13.indd 303c13.indd 303 05/12/11 2:03 PM05/12/11 2:03 PM

304 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

 float ballRadius;

 //---add this line---
 CGPoint translation;
}

@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) UISlider *slider;

-(IBAction) sliderMoved:(id) sender;

@end

//---add the following bold lines in the AnimationViewController.m file---
- (void)viewDidLoad {
 ballRadius = imageView.bounds.size.width / 2;
 [slider setShowValue:YES];
 delta = CGPointMake(12.0,4.0);

 translation = CGPointMake(0.0,0.0);

 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [super viewDidLoad];
}

-(void) onTimer {
 [UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.transform =
 CGAffineTransformMakeTranslation(translation.x, translation.y);
 }
 completion:nil];

 translation.x += delta.x;
 translation.y += delta.y;

 if (imageView.center.x + translation.x >
 self.view.bounds.size.width - ballRadius ||
 imageView.center.x + translation.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y + translation.y >
 self.view.bounds.size.height - ballRadius ||
 imageView.center.y + translation.y < ballRadius)
 delta.y = -delta.y;
}

c13.indd 304c13.indd 304 05/12/11 2:03 PM05/12/11 2:03 PM

Transforming Views ❘ 305

The CGAffineTransformMakeTranslation() function takes two arguments: the value to move for
the x axis and the value to move for the y axis.

The preceding code achieves the same effect as setting the center property of the Image View.

Rotation

The rotation transformation enables you to rotate a view using the angle you specify. In the
following Try It Out, you modify the code from the previous example so that the tennis ball rotates
as it bounces across the screen.

TRY IT OUT Rotating the Tennis Ball

 1. In the AnimationViewController.h fi le, add the declaration for the angle variable as shown
in bold:

#import <UIKit/UIKit.h>

@interface AnimationViewController : UIViewController
{
 IBOutlet UIImageView *imageView;
 IBOutlet UISlider *slider;
 CGPoint delta;
 NSTimer *timer;
 float ballRadius;

 CGPoint translation;

 //---add this line---
 float angle;
}

@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) UISlider *slider;

-(IBAction) sliderMoved:(id) sender;

@end

 2. In the AnimationViewController.m fi le, add the following bold statements:

- (void)viewDidLoad {

 //—-set the angle to 0—-
 angle = 0;

 ballRadius = imageView.bounds.size.width / 2;
 [slider setShowValue:YES];
 delta = CGPointMake(12.0,4.0);

 translation = CGPointMake(0.0,0.0);

 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value

c13.indd 305c13.indd 305 05/12/11 2:03 PM05/12/11 2:03 PM

306 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [super viewDidLoad];
}

-(void) onTimer {
 [UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.transform = CGAffineTransformMakeRotation(angle);
 }
 completion:nil];

 angle += 0.02;
 if (angle>6.2857) angle = 0;

 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

 if (imageView.center.x > self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y > self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

 3. Press Command-R to test the application. The tennis ball now rotates as it bounces across the
screen.

How It Works

To rotate a view, set its transform property using a CGAffineTransform data structure returned by
the CGAffineTransformMakeRotation() function. The CGAffineTransformMakeRotation() function
takes a single argument, which contains the angle to rotate (in radians). After each rotation, you
increment the angle by 0.02:

 //—-rotation—-
 imageView.transform = CGAffineTransformMakeRotation(angle);
 ...
 angle += 0.02;

A full rotation takes 360 degrees, which works out to be 2PI radians (recall that PI is equal to 22/7,
which is approximately 3.142857). If the angle exceeds 6.2857 (=2*3.142857), you reset angle to 0:

 if (angle>6.2857) angle = 0;

c13.indd 306c13.indd 306 05/12/11 2:03 PM05/12/11 2:03 PM

Animating a Series of Images ❘ 307

Interestingly, you can combine multiple transformations into one, using the CGAffineTransformConcat
function:

[UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 imageView.transform =
 CGAffineTransformConcat(
 CGAffineTransformMakeRotation(angle),
 CGAffineTransformMakeTranslation(
 translation.x, translation.y));
 }
 completion:nil];

The above code snippet applies a rotation and translation transformation to the Image View.

Scaling

To scale views, you use the CGAffineTransformMakeScale() function to return a
CGAffineTransform data structure and set it to the transform property of the view:

 imageView.transform = CGAffineTransformMakeScale(angle,angle);

CGAffineTransformMakeScale()takes two arguments: the factor to
scale for the x axis and the factor to scale for the y axis. For simplicity,
I have used the angle variable for the scale factor for both the
x and y axes.

If you modify the previous Try It Out with the preceding statement, the
tennis ball gets bigger as it bounces on the screen (see Figure 13-8). It
then resets back to its original size and grows again.

ANIMATING A SERIES OF IMAGES

So far, you have seen that you can use an Image View to display a static
image. In addition, you can use it to display a series of images and then
alternate between them.

The following Try It Out shows how this is done using an Image View.
FIGURE 13-8

c13.indd 307c13.indd 307 05/12/11 2:03 PM05/12/11 2:03 PM

308 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

TRY IT OUT Displaying a Series of Images

codefi le Animations2.zip is available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it Animations2.

 2. Add a series of images to the project by dragging and dropping them into the Supporting Files
folder in Xcode. When the Add dialog appears, check the Copy Item into Destination Group’s
Folder (If Needed) option so that each of the images will be copied into the project. Figure 13-9
shows the images added.

FIGURE 13-9

 3. In the Animations2ViewController.m fi le, add the following bold statements:

- (void)viewDidLoad {
 NSArray *images = [NSArray arrayWithObjects:
 [UIImage imageNamed:@”MacSE.jpeg”],
 [UIImage imageNamed:@”imac.jpeg”],
 [UIImage imageNamed:@”MacPlus.jpg”],
 [UIImage imageNamed:@”imac_old.jpeg”],
 [UIImage imageNamed:@”Mac8100.jpeg”],
 nil];

 CGRect frame = CGRectMake(0,0,320,460);
 UIImageView *imageView = [[UIImageView alloc] initWithFrame:frame];
 imageView.animationImages = images;
 imageView.contentMode = UIViewContentModeScaleAspectFit;

 //---seconds to complete one set of animation---
 imageView.animationDuration = 3;

 //---continuous---

c13.indd 308c13.indd 308 05/12/11 2:03 PM05/12/11 2:03 PM

Animating a Series of Images ❘ 309

FIGURE 13-10

 imageView.animationRepeatCount = 0;

 //---start the animation---
 [imageView startAnimating];

 //---add the image view to the View window---
 [self.view addSubview:imageView];

 [imageView release];
 [super viewDidLoad];
}

 4. Press Command-R to view the series of images on the iPhone Simulator. The images are displayed
in the Image View (see Figure 13-10), one at a time.

How It Works

You fi rst created an NSArray object and initialized it with a few UIImage objects:

 NSArray *images = [NSArray arrayWithObjects:
 [UIImage imageNamed:@”MacSE.jpeg”],
 [UIImage imageNamed:@”imac.jpeg”],

c13.indd 309c13.indd 309 05/12/11 2:03 PM05/12/11 2:03 PM

310 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

 [UIImage imageNamed:@”MacPlus.jpg”],
 [UIImage imageNamed:@”imac_old.jpeg”],
 [UIImage imageNamed:@”Mac8100.jpeg”],
 nil];

You then instantiated a UIImageView object:

 CGRect frame = CGRectMake(0,0,320,460);
 UIImageView *imageView = [[UIImageView alloc] initWithFrame:frame];

To get the Image View to display the series of images, you had to set its animationImages property to
the images object. You also set the display mode of the Image View:

 imageView.animationImages = images;
 imageView.contentMode = UIViewContentModeScaleAspectFit;

To control how fast the images are displayed, you set the animationDuration property to a value. This
value indicates the number of seconds it takes the Image View to display one complete set of images.
The animationRepeatCount property enables you to specify how many times you want the animation
to occur. Set it to 0 if you want it to be displayed indefi nitely:

 //---seconds to complete one set of animation---
 imageView.animationDuration = 3;

 //---continuous---
 imageView.animationRepeatCount = 0;

Finally, you started the animation by calling the startAnimating method. You also needed to add the
Image View to the View window by calling the addSubView: method:

 //---start the animation---
 [imageView startAnimating];

 //---add the image view to the View window---
 [self.view addSubview:imageView];

Note that the animation technique described in this section is suitable for a moderate number of
animating objects. For more complex animation, you might want to explore OpenGL ES.

PLAYING VIDEO ON THE IPHONE

Playing videos is one of the most commonly performed tasks on the iPhone. Prior to iOS 4 for the
iPhone, all videos had to be played full-screen. However, starting with iOS 4, this rule has been
relaxed; you can now embed videos within your iPhone applications. This makes it possible for you
to embed more than one video in any View window. This section shows you how to enable video
playback in your iPhone applications.

c13.indd 310c13.indd 310 05/12/11 2:03 PM05/12/11 2:03 PM

Playing Video on the iPhone ❘ 311

TRY IT OUT Enabling Video Playback

codefi le PlayVideo.zip is available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it PlayVideo. You
will also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Drag a sample video into the Supporting Files folder of your Xcode project (see Figure 13-11).

FIGURE 13-11

 3. Double-click on the project name in Xcode and select the PlayVideo target. Select the Build Phases
tab on the right and expand the section Link Binary With Libraries (3 items). Click the “+” button
(see Figure 13-12).

FIGURE 13-12

c13.indd 311c13.indd 311 05/12/11 2:03 PM05/12/11 2:03 PM

312 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

 4. Select MediaPlayer.framework to add it to your project (see Figure 13-13).

FIGURE 13-13

 5. In the PlayVideoViewController.h fi le, code the following in bold:

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

@interface PlayVideoViewController : UIViewController
{
 MPMoviePlayerController *player;
}

@end

 6. In the PlayVideoViewController.m fi le, code the following in bold:

#import “PlayVideoViewController.h”

@implementation PlayVideoViewController

- (void)viewDidLoad {
 NSString *url = [[NSBundle mainBundle] pathForResource:@”Trailer”
 ofType:@”m4v”];

 player = [[MPMoviePlayerController alloc]
 initWithContentURL:[NSURL fileURLWithPath:url]];

 [[NSNotificationCenter defaultCenter]

c13.indd 312c13.indd 312 05/12/11 2:03 PM05/12/11 2:03 PM

Playing Video on the iPhone ❘ 313

 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

 //---set the size of the movie view and then add it to the View window---
 player.view.frame = CGRectMake(10, 10, 300, 300);
 [self.view addSubview:player.view];

 //---play movie---
 [player play];
 [super viewDidLoad];
}

//---called when the movie is done playing---
- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *moviePlayer = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayer];
 [moviePlayer.view removeFromSuperview];
 [player release];
}

 7. To test the application on the iPhone Simulator, press Command-R. Figure 13-14 shows the movie
playing on the iPhone Simulator.

 8. Click the movie and you will be able to display the movie full-screen. Figure 13-15 shows two
different scenes from the same movie; the one on the right is shown in full-screen width.

FIGURE 13-14 FIGURE 13-15

c13.indd 313c13.indd 313 05/12/11 2:03 PM05/12/11 2:03 PM

314 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

How It Works

Basically, you used the MPMoviePlayerController class to control the playback of a video:

 player = [[MPMoviePlayerController alloc]
 initWithContentURL:[NSURL fileURLWithPath:url]];

You then used the NSNotificationCenter class to register a notifi cation so that when the movie is
done playing (i.e., it ends), the movieFinishedCallback: method can be called:

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

To display the movie on the View window, you set the size of the movie, added its view property to the
View window, and then played it:

 //—set the size of the movie view and then add it to the View window—
 player.view.frame = CGRectMake(10, 10, 300, 300);
 [self.view addSubview:player.view];

 //—play movie—
 [player play];

When the movie stops playing, you should unregister the notifi cation, remove the movie, and then
release the player object:

//—called when the movie is done playing—
- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *moviePlayer = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayer];
 [moviePlayer.view removeFromSuperview];
 [player release];
}

The MPMoviePlayerController class can play any movie or audio fi les (both fi xed-length or streamed
content) supported in iOS. Typical fi le extensions supported are: .mov, .mp4, .mpv, and .3GP.

SUMMARY

In this chapter, you have seen the usefulness of the NSTimer class and how it can help you perform
some simple animations. You have also learned about the various affi ne transformations supported
by the iOS SDK. Next, you learned how the Image View enables you to animate a series of images

c13.indd 314c13.indd 314 05/12/11 2:03 PM05/12/11 2:03 PM

Summary ❘ 315

at a regular time interval. Last, but not least, you learned how to play back a video in your iPhone
application.

EXERCISES

 1. Name the three affi ne transformations supported by the iPhone SDK.

 2. How do you pause an NSTimer object and then resume it?

 3. What is the purpose of enclosing your block of code using the

animateWithDuration:delay:options:animations:completion: method of the UIView class,

as shown in the following code snippet?

[UIView animateWithDuration:slider.value
 delay:0.0f
 options:UIViewAnimationOptionAllowUserInteraction |
 UIViewAnimationOptionCurveLinear
 animations:^{
 //---code to effect visual change---
 }
 completion:nil];

 4. Name the class that you can use for video playback.

Answers to the exercises can be found in Appendix D.

c13.indd 315c13.indd 315 05/12/11 2:03 PM05/12/11 2:03 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

316 ❘ CHAPTER 13 PERFORMING SIMPLE ANIMATIONS AND VIDEO PLAYBACK

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Using the NSTimer

object to create timers

Create a timer object that will call the onTimer method every

half-second:

timer = [NSTimer scheduledTimerWithTimeInterval: 0.5

 target:self

 selector:@selector(onTimer)

 userInfo:nil

 repeats:YES];

Stopping the NSTimer

object

[timer invalidate];

Animating visual

changes

[UIView animateWithDuration:slider.value

 animations:^{

 //---code to effect visual change---

}];

Performing affi ne

transformations

Use the transform property of the view.

Translation Use the CGAffineTransformMakeTranslation() function to return

a CGAffineTransform data structure and set it to the transform

property.

Rotation Use the CGAffineTransformMakeRotation() function to return

a CGAffineTransform data structure and set it to the transform

property.

Scaling Use the CGAffineTransformMakeScale() function to return a

CGAffineTransform data structure and set it to the transform

property.

Animating a series of

images using an Image

View

Set the animationImages property to an array containing UIImage

objects.

Set the animationDuration property.

Set the animationRepeatCount property.

Call the startAnimating method.

Playing back a video Use the MPMoviePlayerController class.

c13.indd 316c13.indd 316 05/12/11 2:03 PM05/12/11 2:03 PM

Accessing Built-In Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to send e-mails from within your application

 ➤ Invoking Safari from within your application

 ➤ How to invoke the phone from within your application

 ➤ How to send SMS messages from within your application

 ➤ Accessing the camera and Photo Library

The iPhone comes with a number of built-in applications that make it one of the most popular
mobile devices of all time. Some of these applications are Mail, Phone, Safari, SMS, and
Calendar. These applications perform most of the tasks you would expect from a mobile
phone. As an iPhone developer, you can also programmatically invoke these applications from
within your application using the various APIs provided by the iOS SDK.

In this chapter, you learn how to invoke some of the built-in applications that are bundled
with the iPhone, as well as how to interact with them from within your iPhone application.

SENDING E-MAIL

Sending e-mail is one of the many tasks performed by iPhone users. Sending e-mail on the
iPhone is accomplished using the built-in Mail application, which is a rich HTML mail client
that supports POP3, IMAP, and Exchange e-mail systems, and most web-based e-mail such as
Yahoo! and Gmail.

There are times where you need to allow your user to send an e-mail message in your
iPhone application. A good example is embedding a feedback button in your application
that users can click to send feedback to you directly. You have two ways to send e-mail
programmatically:

14

c14.indd 317c14.indd 317 05/12/11 2:04 PM05/12/11 2:04 PM

318 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

 ➤ Build your own e-mail client and implement all the necessary protocols necessary to
communicate with an e-mail server.

 ➤ Invoke the built-in Mail application and ask it to send the e-mail for you.

Unless you are well versed in network communications and familiar with all the e-mail protocols,
your most logical choice is the second option — invoke the Mail application to do the job. The
following Try It Out shows you how.

TRY IT OUT Sending E-Mail Using the Mail Application

Codefi le [Emails.zip] is available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone) project and name it Emails. You need
to also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Select the EmailsViewController.xib fi le to edit it in Interface Builder. Populate the View
window with the following views (see Figure 14-1):

 ➤ Label

 ➤ TextField

 ➤ TextView (remember to delete the sample text inside the view)

 ➤ Button

FIGURE 14-1

c14.indd 318c14.indd 318 05/12/11 2:05 PM05/12/11 2:05 PM

Sending E-Mail ❘ 319

 3. Insert the following statements in bold into the EmailsViewController.h fi le:

#import <UIKit/UIKit.h>

@interface EmailsViewController : UIViewController
{
 IBOutlet UITextField *to;
 IBOutlet UITextField *subject;
 IBOutlet UITextView *body;
}

@property (nonatomic, retain) UITextField *to;
@property (nonatomic, retain) UITextField *subject;
@property (nonatomic, retain) UITextView *body;

-(IBAction) btnSend: (id) sender;

@end

 4. Back in Interface Builder, Control-click and drag the File’s Owner item to each of the three views
(the two Text Field and oneText View) and select to, subject, and body, respectively.

 5. Control-click and drag the Round Rect Button to the File’s Owner item and select btnSend:.

 6. Insert the following code in bold into the EmailsViewController.m fi le:

#import “EmailsViewController.h”

@implementation EmailsViewController

@synthesize to, subject, body;

- (void) sendEmailTo:(NSString *) toStr
 withSubject:(NSString *) subjectStr
 withBody:(NSString *) bodyStr {

 NSString *emailString =
 [[NSString alloc] initWithFormat:@”mailto:?to=%@&subject=%@&body=%@”,
 [toStr stringByAddingPercentEscapesUsingEncoding: NSASCIIStringEncoding],
 [subjectStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding],
 [bodyStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding]];

 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:emailString]];
 [emailString release];
}

-(IBAction) btnSend: (id) sender{
 [self sendEmailTo:to.text withSubject:subject.text withBody:body.text];
}

- (void)dealloc {
 [to release];
 [subject release];
 [body release];
 [super dealloc];
}

c14.indd 319c14.indd 319 05/12/11 2:05 PM05/12/11 2:05 PM

320 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

 7. Press Command-R to test the application on a real iPhone. Figure 14-2 shows the application in
action. After you have fi lled in the TextFields and TextView with the necessary information, click
the Send button to invoke the Mail application and fi ll it with all the information you have typed
in your application. Clicking the Send button in Mail sends the e-mail.

FIGURE 14-2

How It Works

The magic of invoking the Mail application lies in the string that you create in the
sendEmailTo:withSubject:withBody: method that you have defi ned:

 NSString *emailString =
 [[NSString alloc] initWithFormat:@”mailto:?to=%@&subject=%@&body=%@”,
 [toStr stringByAddingPercentEscapesUsingEncoding: NSASCIIStringEncoding],
 [subjectStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding],
 [bodyStr stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding]];

Basically, this is a URL string with the mailto: protocol indicated. The various parameters,
such as to, subject, and body, are inserted into the string. Note that you use the
stringByAddingPercentEscapesUsingEncoding: method of the NSString class to encode the various
parameters with the correct percent escapes so that the result is a valid URL string.

c14.indd 320c14.indd 320 05/12/11 2:05 PM05/12/11 2:05 PM

Sending E-Mail ❘ 321

To invoke the Mail application, simply call the sharedApplication method to return the singleton
application instance and then use the openURL: method to invoke the Mail application:

 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:emailString]];

The downside of using this approach is that when you tap the Send button, the application is pushed to
the background when the Mail application takes over. When the e-mail is sent, you have to manually
bring the application to the foreground again; otherwise, it will not appear. To compose the e-mail
from within your application and then get the Mail application to send it for you, you can use the
MFMailComposeViewController class. The following Try It Out shows how this can be done.

TRY IT OUT Sending E-Mail without Leaving the Application

1. Using the same project created in the previous Try It Out, add a new Round Rect button to the
EmailViewController.xib fi le (see Figure 14-3).

NOTE Remember that this example works only on a real device. Testing it on
the iPhone Simulator will not work. Appendix A discusses how to prepare your
iPhone for testing.

FIGURE 14-3

c14.indd 321c14.indd 321 05/12/11 2:05 PM05/12/11 2:05 PM

322 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

2. In Xcode, add the MessageUI.framework fi le to your project (see Figure 14-4).

FIGURE 14-4

NOTE If you are not familiar with how to add a framework to your project,
please refer to Appendix B for more details.

3. Add the following statement in bold to the EmailsViewController.h fi le:

#import <UIKit/UIKit.h>
#import <MessageUI/MFMailComposeViewController.h>

@interface EmailsViewController : UIViewController
<MFMailComposeViewControllerDelegate>
{
 IBOutlet UITextField *to;
 IBOutlet UITextField *subject;
 IBOutlet UITextView *body;
}

@property (nonatomic, retain) UITextField *to;
@property (nonatomic, retain) UITextField *subject;
@property (nonatomic, retain) UITextView *body;

-(IBAction) btnSend: (id) sender;
-(IBAction) btnComposeEmail: (id) sender;

@end

4. In Interface Builder, Control-click and drag the Compose E-mail button over the File’s Owner
item. Select btnComposeEmail:.

c14.indd 322c14.indd 322 05/12/11 2:05 PM05/12/11 2:05 PM

Sending E-Mail ❘ 323

 5. Add the following statement in bold to the EmailsViewController.m fi le:

#import “EmailsViewController.h”

@implementation EmailsViewController

@synthesize to, subject, body;

-(IBAction) btnComposeEmail: (id) sender {
 MFMailComposeViewController *picker =
 [[MFMailComposeViewController alloc] init];
 picker.mailComposeDelegate = self;

 [picker setSubject:@”Email subject here”];
 [picker setMessageBody:@”Email body here” isHTML:NO];
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

- (void)mailComposeController:(MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError*)error {
 [controller dismissModalViewControllerAnimated:YES];
}

 6. Press Command-R to test the application on a real iPhone. Like the previous Try It Out, you
will see the Mail application’s compose screen (see Figure 14-5). However, unlike the previous
example, when the e-mail is sent, control is returned to the application.

FIGURE 14-5

c14.indd 323c14.indd 323 05/12/11 2:05 PM05/12/11 2:05 PM

324 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

How It Works

The MFMailComposeViewController class presents the window for composing a message modally and
does not cause the current application to go into the background. This is very useful when you want to
resume with the current application after the e-mail has been sent.

Invoking Safari

If you want to invoke the Safari web browser on your iPhone, you can also make use of a URL
string and then use the openURL: method of the application instance, like this:

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @”http://www.apple.com”]];

The preceding code snippet invokes Safari to open the www.apple.com
page (see Figure 14-6).

Invoking the Phone

To make a phone call using the iPhone’s phone dialer, use the following
URL string:

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @”tel:1234567890”]];

The preceding statement invokes the dialer of the iPhone using the phone
number specifi ed.

FIGURE 14-6

 NOTE The preceding statement works only for the iPhone, not the iPod touch, of
course, because the iPod touch does not have phone capabilities. Also, you would
need to use a real device to test this out; the code does not have an eff ect on the
iPhone Simulator. Appendix A discusses how to prepare your iPhone for testing.

Invoking SMS

You can also use a URL string to send SMS messages using the SMS application:

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @”sms:1234567890”]];

c14.indd 324c14.indd 324 05/12/11 2:05 PM05/12/11 2:05 PM

Sending E-Mail ❘ 325

Just like sending e-mail messages, you can also send SMS messages without leaving your
application. The following Try It Out shows how to do this.

TRY IT OUT Sending SMS Messages without Leaving Your Application

1. Using the previous project, Emails, add the following statements in bold to the
EmailsViewController.h fi le:

#import <UIKit/UIKit.h>
#import <MessageUI/MFMailComposeViewController.h>
#import <MessageUI/MFMessageComposeViewController.h>

@interface EmailsViewController : UIViewController
<MFMailComposeViewControllerDelegate,

 NOTE As noted in the preceding section, this statement works only for the
iPhone, not the iPod touch, because the iPod touch does not have a phone, and
therefore messaging capabilities. Also, you would need to use a real device
to test this out; the code does not have an eff ect on the iPhone Simulator.
Appendix A discusses how to prepare your iPhone for testing.

FIGURE 14-7

The preceding statement invokes the SMS application (see Figure 14-7). Note that the current
application will be sent to the background.

c14.indd 325c14.indd 325 05/12/11 2:05 PM05/12/11 2:05 PM

326 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

 MFMessageComposeViewControllerDelegate> {
 IBOutlet UITextField *to;
 IBOutlet UITextField *subject;
 IBOutlet UITextView *body;
}

@property (nonatomic, retain) UITextField *to;
@property (nonatomic, retain) UITextField *subject;
@property (nonatomic, retain) UITextView *body;

-(IBAction) btnSend: (id) sender;
-(IBAction) btnComposeEmail: (id) sender;
-(IBAction) btnComposeSMS: (id) sender;

@end

 2. Add a Round Rect Button to the View window in the
EmailsViewController.xib fi le (see Figure 14-8).

 3. Add the following statements in bold to the
EmailsViewController.m fi le:

#import “EmailsViewController.h”

@implementation EmailsViewController

@synthesize to, subject, body;

-(IBAction) btnComposeSMS:(id)sender {
 MFMessageComposeViewController *picker =
 [[MFMessageComposeViewController alloc] init];
 picker.messageComposeDelegate = self;

 [picker setBody:@”This message sent from the application.”];
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

- (void)messageComposeViewController:(MFMessageComposeViewController *)controller
 didFinishWithResult:(MessageComposeResult)result {
 [controller dismissModalViewControllerAnimated:YES];
}

 4. In Interface Builder, Control-click and drag the Compose SMS button over the File’s Owner item.
Select btnComposeSMS:.

 5. Press Command-R to test the application on an iPhone device. You will be able to compose your
SMS message. When the message is sent, control is returned to your application.

How It Works

The MFMessageComposeViewController class presents the SMS composer window modally and does
not cause the current application to go into the background. This is very useful when you want to
resume with the current application after the SMS message has been sent.

FIGURE 14-8

c14.indd 326c14.indd 326 05/12/11 2:05 PM05/12/11 2:05 PM

Accessing the Camera and the Photo Library ❘ 327

ACCESSING THE CAMERA AND THE PHOTO LIBRARY

The iPhone 4 (and 4S) (as well as the iPad 2) has a camera (in fact two – one front facing and one
rear facing) that enables users to both take pictures and record videos. These pictures and videos are
saved in the Photos application. As a developer, you have two options to manipulate the camera and
to access the pictures and videos stored in the Photos application:

 ➤ You can invoke the camera to take pictures or record a video.

 ➤ You can invoke the Photos application to allow users to select a picture or video from the
photo albums. You can then use the picture or video selected in your application.

Accessing the Photo Library

Every iOS device includes the Photos application, in which pictures are stored. Using the iOS SDK,
you can use the UIImagePickerController class to programmatically display a UI that enables
users to select pictures from the Photos application. The following Try It Out demonstrates how you
can do that in your application.

TRY IT OUT Accessing the Photos in the Photo Library

Codefi le [PhotoLibrary.zip] is available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone) project and name it PhotoLibrary. You
will also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Select the PhotoLibraryViewController.xib fi le to edit it in Interface Builder.

 3. Populate the View window with the following views (see Figure 14-9):

 ➤ Round Rect Button

 ➤ ImageView

 4. In the Attributes Inspector window for the ImageView view, set the Mode to Aspect Fit (see
Figure 14-10).

INTERCEPTING SMS MESSAGES

One of the most frequently requested features of the iOS SDK is the capability to
intercept incoming SMS messages from within an iPhone application. Unfortunately,
the current version of the SDK does not provide a means to do this.

Likewise, you cannot send SMS messages directly from within your application; the
messages must be sent from the built-in SMS application itself. This requirement
prevents rogue applications from sending SMS messages without the user’s
knowledge.

c14.indd 327c14.indd 327 05/12/11 2:05 PM05/12/11 2:05 PM

328 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

FIGURE 14-9

FIGURE 14-10

 5. In the PhotoLibraryViewController.h fi le, insert the following statements that appear in bold:

#import <UIKit/UIKit.h>

@interface PhotoLibraryViewController : UIViewController
<UINavigationControllerDelegate,

c14.indd 328c14.indd 328 05/12/11 2:05 PM05/12/11 2:05 PM

Accessing the Camera and the Photo Library ❘ 329

 UIImagePickerControllerDelegate>
{
 IBOutlet UIImageView *imageView;
 UIImagePickerController *imagePicker;
}

@property (nonatomic, retain) UIImageView *imageView;

-(IBAction) btnClicked: (id) sender;

@end

 6. Back in Interface Builder, Control-click and drag the File’s Owner item to the ImageView view
and select imageView.

 7. Control-click and drag the Button view to the File’s Owner item and select btnClicked:.

 8. In the PhotoLibraryViewController.m fi le, insert the following statements that appear in bold:

#import “PhotoLibraryViewController.h”

@implementation PhotoLibraryViewController

@synthesize imageView;

- (void)viewDidLoad {
 imagePicker = [[UIImagePickerController alloc] init];
 [super viewDidLoad];
}

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;
 imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 //---show the Image Picker---
 [self presentModalViewController:imagePicker animated:YES];
}

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *image;
 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:
 UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:
 UIImagePickerControllerEditedImage];
 if (image == nil) {
 //---original image selected---
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //---display the image---
 imageView.image = image;

c14.indd 329c14.indd 329 05/12/11 2:05 PM05/12/11 2:05 PM

330 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

 }
 else { //---edited image picked---
 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;
 }
 }
 //---hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 //---user did not select image; hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

- (void)dealloc {
 [imageView release];
 [imagePicker release];
 [super dealloc];
}

 9. Press Command-R to test the application on the iPhone Simulator.

 10. When the application is loaded, tap the Load Photo Library button. The Photo Albums on the
iPhone Simulator appear. Select a particular album (see Figure 14-11), and then select a picture.
The selected picture will then be displayed on the ImageView view (see Figure 14-12).

FIGURE 14-11 FIGURE 14-12

c14.indd 330c14.indd 330 05/12/11 2:05 PM05/12/11 2:05 PM

Accessing the Camera and the Photo Library ❘ 331

 NOTE Because the iPhone Simulator does not contain any built-in photo
albums, you might not be able to test this application on the simulator. Thus, I
suggest you test this on a real device. Appendix A discusses how to test your
application on real devices.

How It Works

Access to the Photo Library is provided by the UIImagePickerController class, which provides
the UI for choosing and taking pictures and videos on your iPhone. All you need to do is create an
instance of this class and provide a delegate that conforms to the UIImagePickerControllerDelegate
protocol. In addition, your delegate must conform to the UINavigationControllerDelegate
protocol because the UIImagePickerController class uses the Navigation Controller to enable
users to select photos from the Photo Library. Therefore, you fi rst needed to specify the protocols in
PhotoLibraryViewController.h:

@interface PhotoLibraryViewController : UIViewController
 <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate>
{

When the Load Library button is clicked, you set the type of picker interface displayed by the
UIImagePickerController class and then display it modally:

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;
 imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;
 //---show the Image Picker---
 [self presentModalViewController:imagePicker animated:YES];
}

Note that if you want the picture to be editable when the user chooses it, you can add the following
statement:

 imagePicker.allowsEditing = YES;

By default, the source type is always UIImagePickerControllerSourceTypePhotoLibrary, but you
can change it to one of the following:

 ➤ UIImagePickerControllerSourceTypeCamera — For taking photos directly with the camera

 ➤ UIImagePickerControllerSourceTypeSavedPhotosAlbum — For directly going to the Photo
Albums application

When a picture has been selected by the user, the
imagePickerController:didFinishPickingMediaWithInfo: event fi res, which you handle by
checking the type of media selected by the user:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *image;

c14.indd 331c14.indd 331 05/12/11 2:05 PM05/12/11 2:05 PM

332 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:
 UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:
 UIImagePickerControllerEditedImage];
 if (image == nil) {
 //---original image selected---
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //---display the image---
 imageView.image = image;
 }
 else { //---edited image picked---
 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;
 }
 }
 //---hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

The type of media selected by the user is encapsulated in the info: parameter. You use the
valueForKey: method to extract the appropriate media type and then typecast it to the respective type:

 mediaUrl = (NSURL *)
 [info valueForKey:UIImagePickerControllerMediaURL];

If the user cancels the selection, the imagePickerControllerDidCancel: event fi res. In this case, you
simply dismiss the Image Picker:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)
 picker {
 //---user did not select image; hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

Accessing the Camera

Besides accessing the Photo Library, you can also access the camera on your iPhone. Although
accessing the hardware is the focus of the next chapter, this section takes a look at how to access the
camera because it is also accomplished using the UIImagePickerController class.

In the following Try It Out, you modify the existing project created in the previous section. There
isn’t much to modify because most of the code you have written still applies.

c14.indd 332c14.indd 332 05/12/11 2:05 PM05/12/11 2:05 PM

Accessing the Camera and the Photo Library ❘ 333

TRY IT OUT Activating the Camera

 1. Using the same project created in the previous section, edit the PhotoLibraryViewController.m
fi le by changing the source type of the Image Picker to camera (see code highlighted in bold):

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;

 //---comment this out---
 /*
 imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 */

 //---invoke the camera---
 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
 NSArray *mediaTypes =
 [NSArray arrayWithObjects:kUTTypeImage, nil];
 imagePicker.mediaTypes = mediaTypes;

 imagePicker.cameraCaptureMode = UIImagePickerControllerCameraCaptureModePhoto;
 imagePicker.allowsEditing = YES;

 //—-show the Image Picker—-
 [self presentModalViewController:imagePicker animated:YES];
}

 2. In the PhotoLibraryViewController.m fi le, defi ne the following two methods:

- (NSString *) filePath: (NSString *) fileName {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:fileName];
}

- (void) saveImage{
 //—--get the data from the ImageView—--
 NSData *imageData =
 [NSData dataWithData:UIImagePNGRepresentation(imageView.image)];

 //—--write the data to file—--
 [imageData writeToFile:[self filePath:@”MyPicture.png”] atomically:YES];
}

 3. Insert the following statements that appear in bold:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *image;
 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:UIImagePickerControllerEditedImage];

c14.indd 333c14.indd 333 05/12/11 2:05 PM05/12/11 2:05 PM

334 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

 if (image == nil) {
 //—--original image selected—--
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //—--display the image---
 imageView.image = image;
 }
 else { //---edited image picked---

 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;
 }
 //---save the image captured---
 [self saveImage];
 }
 //—--hide the Image Picker—--
 [picker dismissModalViewControllerAnimated:YES];
}

 4. Press Command-R to test the application on a real iPhone.

 5. Tap the Load Photo Library button. You can now use your iPhone’s camera to take photos. Once a
photo is taken (see Figure 14-13), the picture is saved to the Documents folder of your application.

FIGURE 14-13

c14.indd 334c14.indd 334 05/12/11 2:05 PM05/12/11 2:05 PM

Summary ❘ 335

How It Works

In this exercise you modifi ed the source type of the Image Picker to camera:

 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;

When the camera takes a picture, the picture is passed back in the
imagePickerController:didFinishPickingMediaWithInfo: method and displayed in the
ImageView view. However, it is your responsibility to manually save the image to a location on the
phone. In this case, you defi ned the filePath: method to save the picture to the Documents folder of
your application:

- (NSString *) filePath: (NSString *) fileName {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:fileName];
}

The saveImage: method extracts the image data on the ImageView view and then calls the filePath:
method to save the data into a fi le named MyPicture.png:

- (void) saveImage{
 //—-get the date from the ImageView—-
 NSData *imageData =
 [NSData dataWithData:UIImagePNGRepresentation(imageView.image)];

 //—-write the date to file—-
 [imageData writeToFile:[self filePath:@”MyPicture.png”] atomically:YES];
}

 NOTE By default on the iPhone 4 and iPhone 4S, the rear camera is
always activated when you use the UIImagePickerController class. If you
want to activate the front camera instead, you can set the cameraDevice
property of the UIImagePickerController class, which can be either of the
following values: UIImagePickerControllerCameraDeviceRear (default) or
UIImagePickerControllerCameraDeviceFront.

Appendix A discusses how to prepare your iPhone for testing.

SUMMARY

In this chapter, you learned how you can easily integrate the various built-in applications into your
own iPhone applications. In particular, you saw how you can invoke the built-in SMS, Mail, Safari,
and Phone simply by using a URL string. In addition, you learned how to send SMS and e-mail

c14.indd 335c14.indd 335 05/12/11 2:05 PM05/12/11 2:05 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

336 ❘ CHAPTER 14 ACCESSING BUILT-IN APPLICATIONS

messages without leaving your application. You also learned about accessing the Photo Library
applications using the classes provided by the iPhone SDK.

EXERCISES

 1. Name the various URL strings for invoking the Safari, Mail, SMS, and Phone applications.

 2. What is the class name for invoking the Image Picker UI in the iPhone?

 3. What is the class name for invoking the Mail Composer UI in the iPhone?

 4. What is the class name for invoking the Message Composer UI in the iPhone?

Answers to the exercises can be found in Appendix D.

c14.indd 336c14.indd 336 05/12/11 2:05 PM05/12/11 2:05 PM

Summary ❘ 337

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Sending e-mail from

within your application

NSString *emailString =

@”mailto:?to=user@email.com&subject=Subject&body=Body”;

[[UIApplication sharedApplication] openURL:[NSURL

URLWithString:emailString]];

Invoking Safari [[UIApplication sharedApplication]

openURL:[NSURL URLWithString: @”http://www.apple.com”]];

Invoking the Phone [[UIApplication sharedApplication]

openURL:[NSURL URLWithString: @”tel:12345678*2”]];

Invoking SMS [[UIApplication sharedApplication]

openURL:[NSURL URLWithString: @”sms:12345678*2”]];

Accessing the Photo

Library

Use the UIImagePickerController class and ensure that your View

Controller conforms to the UINavigationControllerDelegate

protocol.

Invoking the Mail

Composer UI

Use the MFMailComposeViewController class.

Invoking the Message

Composer UI

Use the MFMessageComposeViewController class.

c14.indd 337c14.indd 337 05/12/11 2:05 PM05/12/11 2:05 PM

c14.indd 338c14.indd 338 05/12/11 2:05 PM05/12/11 2:05 PM

Accessing the Sensors

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to obtain the gyroscope data from your iOS device

 ➤ How to obtain accelerometer data from your iOS device

 ➤ How to detect shakes to your device

Beginning with iPhone 4, Apple introduced a new gyroscopic sensor in addition to the original
accelerometer sensor available since the fi rst iPhone. Using the gyroscope, you can measure the
device’s angular acceleration around the x, y, and
z axes. This enables you to accurately measure
the yaw, pitch, and roll of the device. In addition
to the gyroscope, the built-in accelerometer
measures the linear acceleration of the device
along the three axes. With these two sensors,
your application can determine how far, how
fast, and in which direction it is moving in space.

In this chapter, you learn how to access the
gyroscope and accelerometer data and use
the Shake API to detect shakes to your iPhone.

USING THE GYROSCOPE AND

ACCELEROMETER

The gyroscope in an iOS device enables you
to measure the device’s angular acceleration
around the x, y, and z axes. Figure 15-1 shows
how this enables you to accurately measure
the yaw, pitch, and roll of the device.

15

FIGURE 15-1

Pitch Axis

Roll Axis

Yaw Axis

c15.indd 339c15.indd 339 05/12/11 2:06 PM05/12/11 2:06 PM

340 ❘ CHAPTER 15 ACCESSING THE SENSORS

�Y

�Z �X

�Z�X

�Y

FIGURE 15-2

The accelerometer in iOS devices measures the acceleration of the device relative to freefall. A
value of 1 indicates that the device is experiencing 1 g of force exerted on it (1 g of force being
the gravitational pull of the earth, which your device experiences when it is stationary). The
accelerometer measures the acceleration of the device in three different axes: x, y, and z. Figure 15-2
shows the different axes measured by the accelerometer.

Table 15-1 shows example readings of the three axes when the device is in the various positions.
Bear in mind that you won’t see the exact same values as these, because they are always fl uctuating
due to the accelerometer’s sensitivity.

TABLE 15-1: Example Readings of the X, Y, and Z Axes

POSITION X Y Z

Vertical upright position 0.0 �1.0 0.0

Landscape left 1.0 0.0 0.0

Landscape right �1.0 0.0 0.0

c15.indd 340c15.indd 340 05/12/11 2:06 PM05/12/11 2:06 PM

Using the Gyroscope and Accelerometer ❘ 341

POSITION X Y Z

Upside down 0.0 1.0 0.0

Flat up 0.0 0.0 �1.0

Flat down 0.0 0.0 1.0

If the iPhone is held upright and moved to the right quickly, the value of the x-axis will increase
from 0 to a positive value. If it is moved to the left quickly, the value of the x-axis will decrease from
0 to a negative value. If the device is moved upward quickly, the value of the y-axis will increase
from �1.0 to a larger value. If the device is moved downward quickly, the value of the y-axis will
decrease from �1.0 to a smaller value.

If the device is horizontal and then moved downward, the value of the z-axis will decrease from
�1.0 to a smaller number. If it is moved upward, the value of the z-axis will increase from �1.0 to
a bigger number.

NOTE The accelerometer used on the iPhone gives a maximum reading of
about +/� 2.3 g, with a resolution of about 0.018 g.

In the iOS SDK, the device’s accelerometer and gyroscope data are all encapsulated within the
CMMotionManager class. The CMMotionManager class exposes a number of properties containing
the accelerometer data, rotation-rate data, and other device-motion data such as attitude.

The following Try It Out shows you how you can use the CMMotionManager class to access the
gyroscope and accelerometer of an iOS device.

TRY IT OUT Accessing the Gyroscope and Accelerometer Data

codefi le Gyroscope.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project
and name it Gyroscope. Use the project name as the Class Prefi x and
ensure that you have the Use Automatic Reference Counting option
unchecked.

 2. Add the CoreMotion.framework to your project (see Figure 15-3).

 3. In the GyroscopeViewController.h fi le, add the following
statements that appear in bold:

#import <UIKit/UIKit.h>
#import <CoreMotion/CoreMotion.h>

@interface GyroscopeViewController : UIViewController

FIGURE 15-3

c15.indd 341c15.indd 341 05/12/11 2:06 PM05/12/11 2:06 PM

342 ❘ CHAPTER 15 ACCESSING THE SENSORS

{
 IBOutlet UITextField *txtRoll;
 IBOutlet UITextField *txtPitch;
 IBOutlet UITextField *txtYaw;

 IBOutlet UITextField *txtX;
 IBOutlet UITextField *txtY;
 IBOutlet UITextField *txtZ;

 CMMotionManager *mm;
}

@property (nonatomic, retain) UITextField *txtRoll;
@property (nonatomic, retain) UITextField *txtPitch;
@property (nonatomic, retain) UITextField *txtYaw;

@property (nonatomic, retain) UITextField *txtX;
@property (nonatomic, retain) UITextField *txtY;
@property (nonatomic, retain) UITextField *txtZ;

@end

 4. Select the GyroscopeViewController.xib fi le to edit it in Interface Builder.

 5. Add the following views to the View window (see Figure 15-4):

 ➤ Label (name them as Roll, Pitch, Yaw, x, y, and z)

 ➤ TextField

FIGURE 15-4

c15.indd 342c15.indd 342 05/12/11 2:06 PM05/12/11 2:06 PM

Using the Gyroscope and Accelerometer ❘ 343

 6. Connect the respective outlets to the TextField views by control-clicking the File’s Owner item
and dragging each outlet over each TextField.

 7. In the GyroscopeViewController.m fi le, add the following statements that appear in bold:

#import “GyroscopeViewController.h”

@implementation GyroscopeViewController

@synthesize txtRoll;
@synthesize txtPitch;
@synthesize txtYaw;

@synthesize txtX;
@synthesize txtY;
@synthesize txtZ;

- (void)viewDidLoad
{
 mm = [[CMMotionManager alloc] init];
 if (mm.isDeviceMotionAvailable) {
 mm.deviceMotionUpdateInterval = 1.0/60.0;
 [mm startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue]
 withHandler:^(CMDeviceMotion *motion, NSError *error)
 {
 CMAttitude *currentAttitude = motion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@”%f”,roll];
 txtPitch.text = [NSString stringWithFormat:@”%f”,pitch];
 txtYaw.text = [NSString stringWithFormat:@”%f”,yaw];

 CMAcceleration currentAcceleration = motion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@”%f”,currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@”%f”,currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@”%f”,currentAcceleration.z];
 }];
 }
 [super viewDidLoad];
}

-(void) dealloc
{
 [txtRoll release];
 [txtPitch release];
 [txtYaw release];
 [txtX release];
 [txtY release];
 [txtZ release];
 [mm stopDeviceMotionUpdates];
 [super dealloc];
}

c15.indd 343c15.indd 343 05/12/11 2:06 PM05/12/11 2:06 PM

344 ❘ CHAPTER 15 ACCESSING THE SENSORS

 8. Debug the application on a real iPhone device by
pressing Command-R. Figure 15-5 shows a snapshot
of the values on the device as it is moved.

How It Works

As mentioned earlier, you use the CMMotionManager
class to obtain the gyroscope data. Before you
start obtaining the result, you should fi rst check
whether the device supports the gyroscope and
accelerometer sensors:

 mm = [[CMMotionManager alloc] init];
 if (mm.isDeviceMotionAvailable) {
 //...
 }

Because all the iOS devices support the accelerometer,
the preceding check is essentially confi rming whether the
gyroscope is available on the device.

Next, you set the interval in which the motion manager
updates its data through the block handler defi ned in the
startDeviceMotionUpdatesToQueue:withHandler:
method:

 mm.deviceMotionUpdateInterval = 1.0/60.0; //---in seconds---
 [mm startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue]
 withHandler:^(CMDeviceMotion *motion, NSError *error)
 {
 CMAttitude *currentAttitude = motion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@”%f”,roll];
 txtPitch.text = [NSString stringWithFormat:@”%f”,pitch];
 txtYaw.text = [NSString stringWithFormat:@”%f”,yaw];

 CMAcceleration currentAcceleration = motion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@”%f”,currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@”%f”,currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@”%f”,currentAcceleration.z];
 }];

The deviceMotionUpdateInterval property specifi es the interval in seconds — that is, the number of
seconds between updates. In this case, you want the sensor data to be updated 60 times per second.

The block handler passes in a CMDeviceMotion object (motion), which encapsulates the measures of
the attitude and acceleration of a device. The attitude of a device is its orientation relative to a given
frame of reference. Essentially, the attitude object represents the roll, pitch, and yaw of a device. To
obtain the accelerometer data, you use the userAcceleration structure of the CMDeviceMotion object.

FIGURE 15-5

c15.indd 344c15.indd 344 05/12/11 2:06 PM05/12/11 2:06 PM

Visualizing the Sensor Data ❘ 345

Besides using the block handler, you could actually schedule an NSTimer object to read the sensors’
values at regular time intervals. The preceding code could be rewritten as follows:

- (void)onTimer {
 CMAttitude *currentAttitude = mm.deviceMotion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@”%f”,roll];
 txtPitch.text = [NSString stringWithFormat:@”%f”,pitch];
 txtYaw.text = [NSString stringWithFormat:@”%f”,yaw];

 CMAcceleration currentAcceleration = mm.deviceMotion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@”%f”,currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@”%f”,currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@”%f”,currentAcceleration.z];
}

- (void)viewDidLoad
{
 mm = [[CMMotionManager alloc] init];
 if (mm.isDeviceMotionAvailable) {
 [NSTimer scheduledTimerWithTimeInterval:1.0/60.0
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
 [mm startDeviceMotionUpdates];
 }
 [super viewDidLoad];
}

Here, you use the startDeviceMotionUpdates method to start the sensors. The onTimer method will
be fi red 60 times per second, and this is where you read the sensors’ values.

VISUALIZING THE SENSOR DATA

Printing out the raw values of the gyroscope and accelerometer data is not very exciting. Instead, the
following Try It Out shows you how to modify the application so that you can use the gyroscope
data to move a soccer ball on the screen.

TRY IT OUT Visualizing the Gyroscope Data

 1. Using the same project created in the previous section, add the CoreGraphics.framework to the
project (see Figure 15-6).

 2. Add an image of a soccer ball to the Supporting Files folder, as shown in Figure 15-7.

c15.indd 345c15.indd 345 05/12/11 2:06 PM05/12/11 2:06 PM

346 ❘ CHAPTER 15 ACCESSING THE SENSORS

 5. In the GyroscopeViewController.h fi le, add the following code in bold:

#import <UIKit/UIKit.h>
#import <CoreMotion/CoreMotion.h>

@interface GyroscopeViewController : UIViewController

 3. Select the GyroscopeViewController.xib fi le to edit it in Interface Builder.

 4. Add an ImageView to the View window and set its Image attribute to ball.png (see Figure 15-8).

FIGURE 15-6 FIGURE 15-7

FIGURE 15-8

c15.indd 346c15.indd 346 05/12/11 2:06 PM05/12/11 2:06 PM

Visualizing the Sensor Data ❘ 347

{
 IBOutlet UITextField *txtRoll;
 IBOutlet UITextField *txtPitch;
 IBOutlet UITextField *txtYaw;

 IBOutlet UITextField *txtX;
 IBOutlet UITextField *txtY;
 IBOutlet UITextField *txtZ;

 CMMotionManager *mm;

 IBOutlet UIImageView *imageView;
 CGPoint delta;
 CGPoint translation;
 float ballRadius;
}

@property (nonatomic, retain) UITextField *txtRoll;
@property (nonatomic, retain) UITextField *txtPitch;
@property (nonatomic, retain) UITextField *txtYaw;

@property (nonatomic, retain) UITextField *txtX;
@property (nonatomic, retain) UITextField *txtY;
@property (nonatomic, retain) UITextField *txtZ;

@property (nonatomic, retain) UIImageView *imageView;

@end

 6. In Interface Builder, Control-click and drag the File’s Owner item over the Image View. Select
imageView.

 7. In the GyroscopeViewController.m fi le, add the following code in bold:

#import “GyroscopeViewController.h”

@implementation GyroscopeViewController

@synthesize txtRoll;
@synthesize txtPitch;
@synthesize txtYaw;

@synthesize txtX;
@synthesize txtY;
@synthesize txtZ;

@synthesize imageView;

- (void)viewDidLoad
{
 ballRadius = imageView.frame.size.width / 2;
 delta = CGPointMake(12.0,4.0);
 translation = CGPointMake(0.0,0.0);

 mm = [[CMMotionManager alloc] init];

c15.indd 347c15.indd 347 05/12/11 2:06 PM05/12/11 2:06 PM

348 ❘ CHAPTER 15 ACCESSING THE SENSORS

 if (mm.isDeviceMotionAvailable) {
 mm.deviceMotionUpdateInterval = 1.0/60.0;
 [mm startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue]
 withHandler:^(CMDeviceMotion *motion, NSError *error)
 {
 CMAttitude *currentAttitude = motion.attitude;
 float roll = currentAttitude.roll;
 float pitch = currentAttitude.pitch;
 float yaw = currentAttitude.yaw;

 txtRoll.text = [NSString stringWithFormat:@”%f”,roll];
 txtPitch.text = [NSString stringWithFormat:@”%f”,pitch];
 txtYaw.text = [NSString stringWithFormat:@”%f”,yaw];

 CMAcceleration currentAcceleration = motion.userAcceleration;
 txtX.text = [NSString stringWithFormat:@”%f”,currentAcceleration.x];
 txtY.text = [NSString stringWithFormat:@”%f”,currentAcceleration.y];
 txtZ.text = [NSString stringWithFormat:@”%f”,currentAcceleration.z];

 //---animating the ball---
 if (currentAttitude.roll>0)
 delta.x = 2;
 else
 delta.x = -2;
 if (currentAttitude.pitch>0)
 delta.y = 2;
 else
 delta.y = -2;

 [UIView animateWithDuration:0.5
 animations:^
 {
 imageView.transform =
 CGAffineTransformMakeTranslation(
 translation.x, translation.y);
 }];

 translation.x = translation.x + delta.x;
 translation.y = translation.y + delta.y;

 if (imageView.center.x + translation.x > 320 - ballRadius ||
 imageView.center.x + translation.x < ballRadius) {
 translation.x -= delta.x;
 }

 if (imageView.center.y + translation.y > 460 - ballRadius ||
 imageView.center.y + translation.y < ballRadius) {
 translation.y -= delta.y;
 }
 }];
 }
 [super viewDidLoad];
}

-(void) dealloc

c15.indd 348c15.indd 348 05/12/11 2:06 PM05/12/11 2:06 PM

Visualizing the Sensor Data ❘ 349

{
 [txtRoll release];
 [txtPitch release];
 [txtYaw release];
 [txtX release];
 [txtY release];
 [txtZ release];
 [mm stopDeviceMotionUpdates];

 [imageView release];
 [super dealloc];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

 8. Press Command-R to test the application on a real iPhone device. Observe that as you move the
device, the ball moves in the same direction as your hand (see Figure 15-9).

FIGURE 15-9

c15.indd 349c15.indd 349 05/12/11 2:06 PM05/12/11 2:06 PM

350 ❘ CHAPTER 15 ACCESSING THE SENSORS

How It Works

This exercise enables you to visually examine the data reported by the gyroscope. In this case, only
the roll and pitch data are used. The delta variable represents the amount to move, both in the x-axis
and the y-axis.

To move the image, you apply a translation via the Image View’s transform property:

 [UIView animateWithDuration:0.5
 animations:^
 {
 imageView.transform =
 CGAffineTransformMakeTranslation(
 translation.x, translation.y);
 }];

The translation variable keeps track of the current translation so that the image animates smoothly.

You also restricted the View window to only display upright in the portrait mode so that you can see
the ball moving when you rotate the device.

USING THE SHAKE API TO DETECT SHAKES

Beginning with the iPhone OS 3, Apple introduced the Shake API, which helps your application to
detect shakes to the device. In reality, this API comes in the form of three events that you can handle
in your code:

 ➤ motionBegan:

 ➤ motionEnded:

 ➤ motionCancelled:

These three events are defi ned in the UIResponder class, which is the superclass of UIApplication,
UIView, and its subclasses (including UIWindow). The following Try It Out shows you how to detect
shakes to your device using these three events.

TRY IT OUT Using the Shake API

codefi le Shake.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it Shake. You
will also use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

NOTE If you test this on an iPhone4 and fi nd that the update rate of 60Hz
over-drives the UI, causing slow updates and image delays from changes in the
gyroscope, drop the rate to 30hz. It should be more responsive.

c15.indd 350c15.indd 350 05/12/11 2:06 PM05/12/11 2:06 PM

Using the Shake API to Detect Shakes ❘ 351

 2. Select the ShakeViewController.xib fi le to edit it in Interface Builder.

 3. Populate the View window with the following views (the result will look like Figure 15-10):

 ➤ TextField

 ➤ DatePicker

FIGURE 15-10

 4. Insert the following statements that appear in bold into the ShakeViewController.h fi le:

#import <UIKit/UIKit.h>

@interface ShakeViewController : UIViewController
{
 IBOutlet UITextField *textField;
 IBOutlet UIDatePicker *datePicker;
}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UIDatePicker *datePicker;

-(IBAction) doneEditing: (id) sender;
- (void)ResetDatePicker;

@end

 5. In Interface Builder, perform the following actions:

 ➤ Control-click and drag the File’s Owner item to the TextField view and select textField.

 ➤ Control-click and drag the File’s Owner item to the DatePicker view and select datePicker.

c15.indd 351c15.indd 351 05/12/11 2:06 PM05/12/11 2:06 PM

352 ❘ CHAPTER 15 ACCESSING THE SENSORS

 ➤ Right-click the TextField view and connect its Did End on Exit event to the File’s Owner
item. Select doneEditing:.

 6. Insert the following statements that appear in bold in the ShakeViewController.m fi le:

#import “ShakeViewController.h”

@implementation ShakeViewController

@synthesize textField, datePicker;

- (void) viewDidAppear:(BOOL) animated
{
 [self.view becomeFirstResponder];
 [super viewDidAppear:animated];
}

- (IBAction) doneEditing: (id) sender
{
 [sender resignFirstResponder];
}

- (void)motionBegan:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionBegan:”);
 }
 [super motionBegan:motion withEvent:event];
}

- (void)motionEnded:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionEnded:”);
 [self ResetDatePicker];
 }
 [super motionEnded:motion withEvent:event];
}

- (void)motionCancelled:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionCancelled:”);
 }
 [super motionCancelled:motion withEvent:event];
}

- (void)ResetDatePicker {
 [datePicker setDate:[NSDate date]];
}

- (void)dealloc {
 [textField release];
 [datePicker release];
 [super dealloc];
}

c15.indd 352c15.indd 352 05/12/11 2:06 PM05/12/11 2:06 PM

Using the Shake API to Detect Shakes ❘ 353

 8. Insert the following statements in bold in ShakeView.m:

#import “ShakeView.h”

@implementation ShakeView

- (id)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self) {
 // Initialization code
 }
 return self;
}

- (BOOL)canBecomeFirstResponder {
 return YES;
}

/*
// Only override drawRect: if you perform custom drawing.
// An empty implementation adversely affects performance during animation.
- (void)drawRect:(CGRect)rect
{
 // Drawing code
}
*/

@end

 7. Right-click the project name in Xcode and choose New File. . . . Choose the Cocoa Touch Class
item on the left and select the Objective-C class template. Choose the UIView subclass (see
Figure 15-11) and name the fi le ShakeView.m. Click Next.

FIGURE 15-11

c15.indd 353c15.indd 353 05/12/11 2:06 PM05/12/11 2:06 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

354 ❘ CHAPTER 15 ACCESSING THE SENSORS

 9. In Interface Builder, select the View window and view its Identity Inspector window. Set
ShakeView as its class name (see Figure 15-12).

FIGURE 15-12

 10. Press Command-R to test the application on the iPhone Simulator. Open the output window by
pressing Command-Shift-C in Xcode.

 11. With the application in the iPhone Simulator, choose Hardware ➪
Shake Gesture to simulate shaking the device. Note the information
printed in the Debugger Console window:

2011-09-02 13:53:08.142 Shake[2402:707] motionBegan:
2011-09-02 13:53:08.851 Shake[2402:707] motionEnded:

 12. Tap the TextField view to make the keyboard appear, and type some
text into it. Choose Hardware ➪ Shake Gesture to simulate shaking
the device again. Note the values printed in the output window,
and the alert on the screen (see Figure 15-13).

 13. Close the keyboard by clicking the return key on the keyboard.
Simulate shaking the device again and observe the output on the
Debugger Console window.

 14. Set the DatePicker view to any date. Choose Hardware ➪ Shake
Gesture to simulate shaking the device again. Notice that the
DatePicker view resets to the current date. FIGURE 15-13

c15.indd 354c15.indd 354 05/12/11 2:06 PM05/12/11 2:06 PM

Using the Shake API to Detect Shakes ❘ 355

How It Works

Be aware that the three events used for monitoring shakes are fi red only when there is a fi rst responder
in your View. Hence, the fi rst thing you do when your View appears is set it to become the fi rst
responder (in the ShakeViewController.m fi le):

- (void) viewDidAppear:(BOOL)animated
{
 [self.view becomeFirstResponder];
 [super viewDidAppear:animated];
}

However, by default, the View cannot be a fi rst responder, so you need to create a UIView subclass
(ShakeView.m) so that you can override the default canBecomeFirstResponder method to return a YES:

- (BOOL)canBecomeFirstResponder {
 return YES;
}

Doing so allows your View to become a fi rst responder. By default, Interface Builder wires your View
with the UIView base class (with which you need not do anything most of the time). You now need to
tell Interface Builder to use the newly created ShakeView subclass.

Next, you handle the three events in the ShakeViewController.m fi le:

- (void)motionBegan:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionBegan:”);
 }
 [super motionBegan:motion withEvent:event];
}

- (void)motionEnded:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionEnded:”);
 [self ResetDatePicker];
 }
 [super motionEnded:motion withEvent:event];
}

- (void)motionCancelled:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionCancelled:”);
 }
 [super motionCancelled:motion withEvent:event];
}

For each event, you fi rst check that the motion is indeed a shake; then, you print a debugging statement
in the Debugger Console.

c15.indd 355c15.indd 355 05/12/11 2:06 PM05/12/11 2:06 PM

356 ❘ CHAPTER 15 ACCESSING THE SENSORS

The motionBegan: event is fi red when the OS suspects that the device is being shaken. If eventually the
OS determines that the action is not a shake, the motionCancelled: event is fi red. When the OS fi nally
determines that the action is a shake action, the motionEnded: event is fi red.

You also added a ResetDatePicker method to reset the DatePicker to the current date:

- (void)ResetDatePicker {
 [datePicker setDate:[NSDate date]];
}

When the device is shaken, you called the ResetDatePicker method to reset the DatePicker to the
current date:

- (void)motionEnded:(UIEventSubtype) motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionEnded:”);
 [self ResetDatePicker];
 }
 [super motionEnded:motion withEvent:event];
}

SUMMARY

In this chapter, you have seen how to obtain the gyroscope and accelerometer data of your iOS
device. You also saw how to use the Shake API to help you determine whether your device is being
shaken. Combining this knowledge enables you to create very compelling applications (such as
shaking the device to refresh the data displayed in a Table View) .

EXERCISES

 1. Name the class to use to obtain the gyroscope and accelerometer data on your iOS device.

 2. Name the three events in the Shake API in the iOS SDK.

Answers to the exercises can be found in Appendix D.

c15.indd 356c15.indd 356 05/12/11 2:06 PM05/12/11 2:06 PM

Summary ❘ 357

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Accessing the gyroscope and

accelerometer data

Use the CMMotionManager class.

Detecting shakes You can use either the accelerometer data or the

Shake API in the iOS SDK. For the Shake API, handle

the following events: motionBegan:, motionEnded:,

and motionCancelled:.

c15.indd 357c15.indd 357 05/12/11 2:06 PM05/12/11 2:06 PM

c15.indd 358c15.indd 358 05/12/11 2:06 PM05/12/11 2:06 PM

Using Web Services

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Understanding the various ways to consume Web services in your

iPhone applications

 ➤ How to communicate with a Web service using SOAP

 ➤ How to communicate with a Web service using HTTP GET

 ➤ How to communicate with a Web service using HTTP POST

 ➤ How to communicate with a JSON Web service

 ➤ Parsing the result of a Web service call using the NSXMLParser

class

 ➤ How to integrate Twitter into your application

Communicating with the outside world is one of the ways to make your iOS applications
interesting and useful. This is especially true today when so many Web services provide such
useful functionality. However, consuming Web services in an iOS is not for the fainthearted.
Unlike other development tools (such as Microsoft Visual Studio), Xcode does not have
built-in tools that make consuming Web services easy. Everything must be done by hand,
and you need to know how to form the relevant XML messages to send to the Web
services and then parse the returning XML result.

This chapter explains how to communicate with XML Web services from within your iOS
application. Working through the examples in this chapter will give you a solid foundation for

16

c16.indd 359c16.indd 359 05/12/11 4:04 PM05/12/11 4:04 PM

360 ❘ CHAPTER 16 USING WEB SERVICES

consuming other Web services that you will need in your own projects. Besides consuming XML
Web services, you will also learn how to consume a much more efficient type of Web service —
JSON Web services.

In addition, this chapter covers one of the new APIs in iOS 5 — integrating with Twitter. You will
learn how to enable your users to post tweets from within your application.

NOTE For an introduction to XML Web services, check out this link:
www.w3schools.com/webservices/ws_intro.asp.

FIGURE 16-1

BASICS OF CONSUMING XML WEB SERVICES

Before you create an Xcode project to consume a Web service, it is good to examine a real Web
service to see the different ways you can consume it. My favorite example is to use an ASMX XML
Web service created using .NET. For the purposes of this discussion, we’ll look at a Web service
called CurrencyConvertor, which enables you to convert one currency to another.

The CurrencyConvertor Web service is located at http://www.webservicex.net/
currencyconvertor.asmx. If you use Safari to load this URL, you will see that it exposes one Web
method: ConversionRate, as shown in Figure 16-1.

The ConversionRate method returns the result (the exchange rate between two specified currencies)
as an XML string. Clicking the ConversionRate link reveals the page shown in Figure 16-2.

c16.indd 360c16.indd 360 05/12/11 4:04 PM05/12/11 4:04 PM

Basics of Consuming XML Web Services ❘ 361

The important parts are the sections following the Test section shown on the page. They detail the
various ways in which you can consume the Web service: SOAP, and optionally, HTTP GET and
HTTP POST. In the .NET world, accessing the Web service is a pretty straightforward affair —
Visual Studio provides a built-in tool to create a Web proxy service object for the Web service simply
by downloading the WSDL document. For iOS development, you need to get your hands dirty, so
you must understand the underlying mechanics of how to consume a Web service.

Using SOAP 1.1

The most common way to consume a Web service is using SOAP (Simple Object Access Protocol).
When using SOAP, you need to use the POST method to send the following header to the Web
service:

POST /currencyconvertor.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: “http://www.webserviceX.NET/ConversionRate”

FIGURE 16-2

c16.indd 361c16.indd 361 05/12/11 4:04 PM05/12/11 4:04 PM

362 ❘ CHAPTER 16 USING WEB SERVICES

You then send the request packet to the Web service:

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
 <soap:Body>
 <ConversionRate xmlns=”http://www.webserviceX.NET/”>
 <FromCurrency>fromCurrency</FromCurrency>
 <ToCurrency>toCurrency</ToCurrency>
 </ConversionRate>
 </soap:Body>
</soap:Envelope>

The bold italic word in the code is the placeholder where you need to substitute the actual value.
Note a few important things in this example:

 ➤ The URL for the Web service is http://www.webservicex.net/currencyconvertor.asmx.
This is the URL shown in Figure 16-1.

 ➤ The URL for the SOAPAction is http://www.webserviceX.NET/ConversionRate.

 ➤ The Content-Type for the request is text/xml; charset=utf-8.

 ➤ The HTTP method is POST.

 ➤ The SOAP request is as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
 <soap:Body>
 <ConversionRate xmlns=”http://www.webserviceX.NET/”>
 <FromCurrency>currency1</FromCurrency>
 <ToCurrency>currency2</ToCurrency>
 </ConversionRate>
 </soap:Body>
</soap:Envelope>

 ➤ The Content-Length of the SOAP request is the total number of characters in the SOAP request.

 ➤ The Web service will return the following header response followed by the SOAP Response packet:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
 <soap:Body>
 <ConversionRateResponse xmlns=”http://www.webserviceX.NET/”>
 <ConversionRateResult>double</ConversionRateResult>
 </ConversionRateResponse>
 </soap:Body>
</soap:Envelope>

c16.indd 362c16.indd 362 05/12/11 4:04 PM05/12/11 4:04 PM

Basics of Consuming XML Web Services ❘ 363

The result (exchange rate) will be enclosed within the block of XML results (shown in bold above).
You would need to extract it from the XML result.

Using SOAP 1.2

Using SOAP 1.2 is very similar to using SOAP 1.1. The following shows the SOAP request for SOAP 1.2:

POST /currencyconvertor.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>
 <soap12:Body>
 <ConversionRate xmlns=”http://www.webserviceX.NET/”>
 <FromCurrency>fromCurrency</FromCurrency>
 <ToCurrency>toCurrency</ToCurrency>
 </ConversionRate>
 </soap12:Body>
 </soap12:Envelope>

The SOAP response for SOAP 1.2 would be as follows:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>
 <soap12:Body>
 <ConversionRateResponse xmlns=”http://www.webserviceX.NET/”>
 <ConversionRateResult>double</ConversionRateResult>
 </ConversionRateResponse>
 </soap12:Body>
</soap12:Envelope>

The key difference between SOAP 1.1 and 1.2 is that SOAP 1.1 requires the specification of the
SOAP Action in the header, which is not needed in SOAP 1.2.

Using HTTP GET

If you do not want to use SOAP, you can use the simpler HTTP GET method, passing the data required
by the Web service through the query string. Here is the format for sending the request header:

GET /currencyconvertor.asmx/ConversionRate?FromCurrency=string&
ToCurrency=string HTTP/1.1
Host: www.webservicex.net
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

c16.indd 363c16.indd 363 05/12/11 4:04 PM05/12/11 4:04 PM

364 ❘ CHAPTER 16 USING WEB SERVICES

Take note of the following:

 ➤ The URL for the Web service is http://www.webservicex.net/currencyconvertor
.asmx/ConversionRate?FromCurrency=fromCurrency&ToCurrency=toCurrency.

 ➤ The Content-Type for the request is text/xml; charset=utf-8.

 ➤ The Content-Length of the SOAP request is 0, since there is nothing you need to send
separately (everything is sent through the query string in the header).

 ➤ The HTTP method is GET.

The result will be returned in the following packet:

<?xml version=”1.0” encoding=”utf-8”?>
<double xmlns=”http://www.webserviceX.NET/”>double</double>

Using HTTP POST

In addition to using HTTP GET, you can also use HTTP POST. Here is the format for sending the
request header:

POST /currencyconvertor.asmx/ConversionRate HTTP/1.1
Host: www.webservicex.net
Content-Type: application/x-www-form-urlencoded
Content-Length: length

FromCurrency=fromCurrency&ToCurrency=toCurrency

Take note of the following:

 ➤ The URL for the Web service is http://www.webservicex.net/currencyconvertor
.asmx/ConversionRate.

 ➤ The Content-Type for the request is application/x-www-form-urlencoded.

 ➤ The Content-Length of the SOAP request is the length of
FromCurrency=fromCurrency&ToCurrency=toCurrency.

 ➤ The HTTP method is POST.

The result will be returned in the following header and packet:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<double xmlns=”http://www.webserviceX.NET/”>double</double>

c16.indd 364c16.indd 364 05/12/11 4:04 PM05/12/11 4:04 PM

Consuming a Web Service in Your ios Application Using SOAP ❘ 365

CONSUMING A WEB SERVICE IN YOUR iOS APPLICATION

USING SOAP

Now you’re ready to tackle the exciting task of consuming a Web service in your iOS application!
In the following Try It Out, you learn how to communicate with the Web service using the SOAP
method.

TRY IT OUT Consuming Web Services Using SOAP

codefile WebServices.zip available for download at Wrox.com

1. Using Xcode, create a Single View Application (iPhone) project and name it WebServices. Use the
project name as the Class Prefix and ensure that you have the Use Automatic Reference Counting
option unchecked.

2. Select the WebServicesViewController.xib file to edit it in Interface Builder.

CONSUMING WEB SERVICES USING SOAP, HTTP GET, AND HTTP POST

As you can see here, besides using SOAP to communicate with a Web service, two
more methods are available: HTTP GET and HTTP POST. Using HTTP GET
(the simplest), all the information you need to pass to the Web service can be sent
through the query string. For example, you can invoke a Web service through the
query string like this:

www.somewebservice.com/webservice.asmx?key1=value1&key2=value2

However, the query string length is limited (recommended to be less than 256
characters), and is hence not suitable if you need to pass a lot of data to the Web
service.

An alternative to this would be to use the HTTP POST method, which allows more
data to be sent. Using the example just used, instead of passing all the keys and
their values through the URL, you would send them through the HTTP header.
However, HTTP POST has its limitations as well. As with HTTP GET, the data
to be sent must be formatted as key/value pairs, but each key/value pair is limited
in size to 1,024 characters. HTTP POST is also a little more secure than HTTP
GET, because it is more difficult (but not impossible) to modify the values sent in
the header than the query string. The most versatile method is to use the SOAP
method, which allows complex data types to be sent to the Web service through the
SOAP request.

c16.indd 365c16.indd 365 05/12/11 4:04 PM05/12/11 4:04 PM

366 ❘ CHAPTER 16 USING WEB SERVICES

 3. Populate the View window with the views as follows (see also Figure 16-3):

 ➤ Label (name it Enter amount to convert)

 ➤ Text Field

 ➤ Round Rect Button (name it Convert)

 4. In Xcode, edit the WebServicesViewController.h file by adding the following bold statements:

#import <UIKit/UIKit.h>

@interface WebServicesViewController : UIViewController
<NSURLConnectionDelegate>
{
 IBOutlet UITextField *txtAmount;
 NSMutableData *webData;
 NSURLConnection *conn;
 NSString *matchingElement;
}

@property (nonatomic, retain) UITextField *txtAmount;

- (IBAction)buttonClicked:(id)sender;

@end

FIGURE 16-3

c16.indd 366c16.indd 366 05/12/11 4:04 PM05/12/11 4:04 PM

Consuming a Web Service in Your ios Application Using SOAP ❘ 367

 5. In Interface Builder, perform the following actions:

 ➤ Control-click the File’s Owner item and drag it over the TextField. Select txtAmount.

 ➤ Control-click the Round Rect Button and drag it over the File’s Owner item. Select
buttonClicked:.

 6. Right-click the File’s Owner item now and
you should see the connections as shown in
Figure 16-4.

 7. In the WebServicesViewController.m file, add
the following bold statements:

#import “WebServicesViewController.h”

@implementation WebServicesViewController

@synthesize txtAmount;

- (IBAction)buttonClicked:(id)sender {
 //---using SOAP 1.2 here---
 matchingElement = @”ConversionRateResult”;
 NSString *soapMsg = [NSString stringWithFormat:
 @”<?xml version=\”1.0\” encoding=\”utf-8\”?>”
 “<soap12:Envelope xmlns:xsi=\”http://www.w3.org/2001/
XMLSchema-instance\” xmlns:xsd=\”http://www.w3.org/2001/XMLSchema\”
xmlns:soap12=\”http://www.w3.org/2003/05/soap-envelope\”>”
 “<soap12:Body>”
 “<ConversionRate xmlns=\”http://www.webserviceX.NET/\”>”
 “<FromCurrency>%@</FromCurrency>”
 “<ToCurrency>%@</ToCurrency>”
 “</ConversionRate>”
 “</soap12:Body>”
 “</soap12:Envelope>”, @”USD”, @”SGD”];

 //---print the XML to examine---
 NSLog(@”%@”, soapMsg);

 NSURL *url = [NSURL URLWithString: @”http://www.webservicex.net/
currencyconvertor.asmx”];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 NSString *msgLength = [NSString stringWithFormat:@”%d”, [soapMsg length]];

 //---need this only if using SOAP 1.1---
 //[req addValue:@”http://www.webserviceX.NET/ConversionRate” forHTTPHeaderField:@
”SOAPAction”];

 [req addValue:@”text/xml; charset=utf-8” forHTTPHeaderField:@”Content-Type”];
 [req addValue:msgLength forHTTPHeaderField:@”Content-Length”];
 [req setHTTPMethod:@”POST”];
 [req setHTTPBody: [soapMsg dataUsingEncoding:NSUTF8StringEncoding]];

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];

FIGURE 16-4

c16.indd 367c16.indd 367 05/12/11 4:04 PM05/12/11 4:04 PM

368 ❘ CHAPTER 16 USING WEB SERVICES

 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

-(void) connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *) response{
 [webData setLength: 0];
}

-(void) connection:(NSURLConnection *)connection
didReceiveData:(NSData *) data {
 [webData appendData:data];
}

-(void) connection:(NSURLConnection *)connection
 didFailWithError:(NSError *) error {
 [conn release];
 [webData release];
}

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 [conn release];
 NSLog(@”DONE. Received Bytes: %d”, [webData length]);
 NSString *theXML = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 //---prints the XML received---
 NSLog(@”%@”, theXML);
 [theXML release];
}

- (void)dealloc {
 [txtAmount release];
 [super dealloc];
}

 8. Press Command-R to test the application on the iPhone Simulator. Enter a number in the Text
Field, and click the Convert button.

 9. In Xcode, press Shift-Command-C to open the output window. Observe that the following was
sent to the Web service:

<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>
 <soap12:Body>
 <ConversionRate xmlns=”http://www.webserviceX.NET/”>
 <FromCurrency>USD</FromCurrency>
 <ToCurrency>SGD</ToCurrency>
 </ConversionRate>
 </soap12:Body>
</soap12:Envelope>

c16.indd 368c16.indd 368 05/12/11 4:04 PM05/12/11 4:04 PM

Consuming a Web Service in Your ios Application Using SOAP ❘ 369

 10. The Web service responded with the following:

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope
 xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
 <soap:Body>
 <ConversionRateResponse xmlns=”http://www.webserviceX.NET/”>
 <ConversionRateResult>1.205</ConversionRateResult>
 </ConversionRateResponse>
 </soap:Body>
</soap:Envelope>

The response from the Web service indicates that you have managed to communicate with it. The
challenge now is how to parse the XML to extract the relevant result that you want. In this case,
the result you want is encapsulated in the <ConversionRateResult> element. In the next section
you’ll learn how to parse the XML response.

How It Works

Now, spend some time examining what you just did. First, you created the SOAP request packet:

 NSString *soapMsg = [NSString stringWithFormat:
 @”<?xml version=\”1.0\” encoding=\”utf-8\”?>”
 “<soap12:Envelope xmlns:xsi=\”http://www.w3.org/2001/
XMLSchema-instance\” xmlns:xsd=\”http://www.w3.org/2001/XMLSchema\”
xmlns:soap12=\”http://www.w3.org/2003/05/soap-envelope\”>”
 “<soap12:Body>”
 “<ConversionRate xmlns=\”http://www.webserviceX.NET/\”>”
 “<FromCurrency>%@</FromCurrency>”
 “<ToCurrency>%@</ToCurrency>”
 “</ConversionRate>”
 “</soap12:Body>”
 “</soap12:Envelope>”, @”USD”, @”SGD”];

Here, you were hardcoding the two currencies, USD and SGD (Singapore Dollars), to obtain
the exchange rate. Next, you created a URL load request object using an instance of the
NSMutableURLRequest and NSURL objects:

 NSURL *url = [NSURL URLWithString: @”http://www.webservicex.net/
currencyconvertor.asmx”];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
You then populated the request object with the various headers, such as Content-
Type, SOAPAction, and Content-Length. You also set the HTTP method and HTTP body:
[req addValue:@”text/xml; charset=utf-8” forHTTPHeaderField:@”Content-Type”];
 [req addValue:msgLength forHTTPHeaderField:@”Content-Length”];
 [req setHTTPMethod:@”POST”];
 [req setHTTPBody: [soapMsg dataUsingEncoding:NSUTF8StringEncoding]];

c16.indd 369c16.indd 369 05/12/11 4:04 PM05/12/11 4:04 PM

370 ❘ CHAPTER 16 USING WEB SERVICES

To establish the connection with the Web service, you used the NSURLConnection class together with
the request object just created:

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }

The NSURLConnection object proceeded to send the request to the Web service and asynchronously call
the various methods (which you will define next) when responses are received from the Web service.
The data method of the NSMutableData class returns an empty data object. The NSMutableData object
represents a wrapper for byte buffers, which you use to receive incoming data from the Web service.

When data starts streaming in from the Web service, the connection:didReceiveResponse: method
is called, which you implemented here:

-(void) connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *) response{
 [webData setLength: 0];
}

Then, you initialized the length of webData to zero.

As the data progressively comes in from the Web service, the connection:didReceiveData: method is
called. Next, you appended the data received to the webData object:

-(void) connection:(NSURLConnection *)connection
didReceiveData:(NSData *) data {
 [webData appendData:data];
}

If an error occurs during the transmission, the connection:didFailWithError: method is called:

-(void) connection:(NSURLConnection *)connection
 didFailWithError:(NSError *) error {
 [conn release];
 [webData release];
}

It is important that you handle a communication failure gracefully so that the user can try again later.

When the connection has finished and successfully downloaded the response, the
connectionDidFinishLoading: method is called:

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 [conn release];
 NSLog(@”DONE. Received Bytes: %d”, [webData length]);
 NSString *theXML = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 //---prints the XML received---

c16.indd 370c16.indd 370 05/12/11 4:04 PM05/12/11 4:04 PM

Consuming a Web Service in Your ios Application Using SOAP ❘ 371

 NSLog(@”%@”, theXML);
 [theXML release];

Finally, you simply print the XML response received from the Web service to the output window.

Besides using SOAP, you might want to use the simpler HTTP GET or POST method, which
eliminates the need to create lengthy SOAP request packets. The following two Try It Outs show
you how to modify the application to use HTTP GET and HTTP POST.

TRY IT OUT Consuming Web Services Using HTTP GET

 1. Using the same project created in the previous project, modfy the buttonClicked: method as
shown in bold:

- (IBAction)buttonClicked:(id)sender {
 //---using HTTP GET---
 matchingElement = @”double”;
 NSURL *url =
 [NSURL URLWithString:
 [NSString stringWithFormat:
 @”http://www.webservicex.net/currencyconvertor.asmx/ConversionRate?From
Currency=%@&ToCurrency=%@”,@”USD”,@”SGD”]];

 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 NSString *msgLength = @”0”;

 [req addValue:@”text/xml; charset=utf-8” forHTTPHeaderField:@”Content-Type”];
 [req addValue:msgLength forHTTPHeaderField:@”Content-Length”];
 [req setHTTPMethod:@”GET”];

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

 2. Press Command-R to test the application. Click the Convert button and observe the results in the
output window:

2011-08-30 14:00:54.650 WebServices[1029:f203] DONE. Received Bytes: 98
2011-08-30 14:00:54.651 WebServices[1029:f203] <?xml version=”1.0”
 encoding=”utf-8”?>
<double xmlns=”http://www.webserviceX.NET/”>1.205</double>

How It Works

In this exercise, you used the HTTP GET method to connect to the Web service. You formulated
the query string to convert the USD to SGD and send it directly to the Web service. Observe that the
response from the Web service is much simpler than using the SOAP method.

c16.indd 371c16.indd 371 05/12/11 4:04 PM05/12/11 4:04 PM

372 ❘ CHAPTER 16 USING WEB SERVICES

The next Try It Out will show you an alternative to using HTTP GET – HTTP POST. You might
recall that HTTP GET imposes a restriction on the length of your query string. Hence, it is not
suitable if you have a lot of data to send to your Web service. In this case, you could use HTTP
POST.

TRY IT OUT Consuming Web Services Using HTTP POST

 1. Using the same project used in the previous example, modify the buttonClicked: method as
shown in bold:

- (IBAction)buttonClicked:(id)sender {
 //---using HTTP POST---
 matchingElement = @”double”;
 NSString *postStr =
 [NSString stringWithFormat:@”FromCurrency=%@&ToCurrency=%@”,@”USD”,@”SGD”];
 NSURL *url = [NSURL URLWithString:
 @”http://www.webservicex.net/currencyconvertor.asmx/
ConversionRate”];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 NSString *strLength = [NSString stringWithFormat:@”%d”, [postStr length]];

 [req addValue:@”application/x-www-form-urlencoded” forHTTPHeaderField:@”Content-
Type”];
 [req addValue:strLength forHTTPHeaderField:@”Content-Length”];
 [req setHTTPMethod:@”POST”];
 [req setHTTPBody: [postStr dataUsingEncoding:NSUTF8StringEncoding]];

 conn = [[NSURLConnection alloc] initWithRequest:req delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

 2. Press Command-R to test the application. Click the Convert button and observe the results in the
output window:

2011-08-30 14:06:24.688 WebServices[1075:f203] DONE. Received Bytes: 99
2011-08-30 14:06:24.689 WebServices[1075:f203] <?xml version=”1.0”
 encoding=”utf-8”?>
<double xmlns=”http://www.webserviceX.NET/”>1.2055</double>

How It Works

In this exercise, you used the HTTP POST method to communicate with the Web service. Notice that
the request information is sent to the Web service separately from the query string. Like the HTTP
GET method, the response is much simpler than using the SOAP method.

c16.indd 372c16.indd 372 05/12/11 4:04 PM05/12/11 4:04 PM

Parsing the XML Response ❘ 373

PARSING THE XML RESPONSE

In the iOS SDK, you can use the NSXMLParser object to parse an XML response returned by the
Web service. The NSXMLParser class is an implementation of the Simple API for the XML (SAX)
mechanism, which parses an XML document serially.

An NSXMLParser object reads an XML document, scanning it from beginning to end. As it
encounters the various items in the document (such as elements, attributes, comments, and so on),
it notifies its delegates so that appropriate actions can be taken (such as extracting the value of an
element, etc.).

In the following Try It Out, you will parse the XML result returned by the Web service so that you
can obtain the exchange rate of the two currencies you sent to the Web service.

TRY IT OUT Parsing the XML Result Returned by the Web Service

 1. Using the WebServices project created in the previous section, add the following statements to
the WebServicesViewController.h file to parse the response from the Web service:

#import <UIKit/UIKit.h>

@interface WebServicesViewController : UIViewController
<NSXMLParserDelegate, NSURLConnectionDelegate>
{
 IBOutlet UITextField *txtAmount;
 NSMutableData *webData;
 NSString *matchingElement;
 NSURLConnection *conn;
 NSMutableString *soapResults;
 NSXMLParser *xmlParser;
 BOOL elementFound;
}

@property (nonatomic, retain) UITextField *txtAmount;

- (IBAction)buttonClicked:(id)sender;

@end

 2. In the WebServicesViewController.m file, add the following bold statements to the
connectionDidFinishLoading: method:

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 [conn release];
 NSLog(@”DONE. Received Bytes: %d”, [webData length]);
 NSString *theXML = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 //---prints the XML received---
 NSLog(@”%@”, theXML);

c16.indd 373c16.indd 373 05/12/11 4:04 PM05/12/11 4:04 PM

374 ❘ CHAPTER 16 USING WEB SERVICES

 [theXML release];

 if (xmlParser) {
 [xmlParser release];
 }
 xmlParser = [[NSXMLParser alloc] initWithData: webData];
 [xmlParser setDelegate: self];
 [xmlParser setShouldResolveExternalEntities: YES];
 [xmlParser parse];
 [webData release];
}

 3. In the WebServicesViewController.m file, add the following methods:

//---when the start of an element is found---
-(void) parser:(NSXMLParser *) parser
didStartElement:(NSString *) elementName
 namespaceURI:(NSString *) namespaceURI
 qualifiedName:(NSString *) qName
 attributes:(NSDictionary *) attributeDict {

 if ([elementName isEqualToString:matchingElement]) {
 if (!soapResults) {
 soapResults = [[NSMutableString alloc] init];
 }
 elementFound = YES;
 }
}

//---when the text of an element is found---
-(void)parser:(NSXMLParser *) parser foundCharacters:(NSString *)string {
 if (elementFound) {
 [soapResults appendString: string];
 }
}

//---when the end of element is found---
-(void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName {

 if ([elementName isEqualToString:matchingElement]) {
 //---displays the conversion rate---
 NSLog(@”%@”, soapResults);

 float conversionRate = [soapResults floatValue];
 float result = [txtAmount.text floatValue] * conversionRate;

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Result”
 message:[NSString
stringWithFormat:@”Converted Amount is $%.2f”, result]
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

c16.indd 374c16.indd 374 05/12/11 4:04 PM05/12/11 4:04 PM

Parsing the XML Response ❘ 375

 elementFound = FALSE;
 [xmlParser abortParsing];
 }
}

- (void)parserDidEndDocument:(NSXMLParser *)parser {
 if (soapResults) {
 [soapResults release];
 soapResults = nil;
 }
}

- (void) parser:(NSXMLParser *)parser
parseErrorOccurred:(NSError *)parseError {
 if (soapResults) {
 [soapResults release];
 soapResults = nil;
 }
}

- (void)dealloc {
 if (xmlParser) {
 [xmlParser release];
 }
 if (soapResults) {
 [soapResults release];
 }
 [txtAmount release];
 [super dealloc];
}

 4. Test the application on the iPhone Simulator by pressing Command-R.
Enter a number and click the Convert button. The application displays
the result, as shown in Figure 16-5.

How It Works

To parse the XML result, you created an instance of the NSXMLParser class
and then initialized it with the response returned by the Web service. The
NSXMLParser is an implementation of the Simple API for the XML (SAX)
parser. It parses an XML document sequentially, in an event-driven manner.
As the parser encounters the various elements, attributes, and so forth, in
an XML document, it raises events where you can insert your own event
handlers to do your processing.

As the NSXMLParser object encounters the various items in the XML
document, it fires off several methods, which you need to define:

 ➤ parser:didStartElement:namespaceURI:qualifiedName:

attributes: — Fired when the start tag of an element is found:

//---when the start of an element is found---
-(void) parser:(NSXMLParser *) parser
didStartElement:(NSString *) elementName
 namespaceURI:(NSString *) namespaceURI

FIGURE 16-5

c16.indd 375c16.indd 375 05/12/11 4:04 PM05/12/11 4:04 PM

376 ❘ CHAPTER 16 USING WEB SERVICES

 qualifiedName:(NSString *) qName
 attributes:(NSDictionary *) attributeDict {

 if ([elementName isEqualToString:matchingElement]) {
 if (!soapResults) {
 soapResults = [[NSMutableString alloc] init];
 }
 elementFound = YES;
 }
}

Then, you checked whether the tag matched the string saved in the matchingElement string (which
may be ConversionRateResult or double, depending on whether SOAP, HTTP GET, or HTTP POST
is used). If it matched, you set the Boolean variable elementFound to YES.

 ➤ parser:foundCharacters: — Fired when the text of an element is found:

//---when the text of an element is found---
-(void)parser:(NSXMLParser *) parser foundCharacters:(NSString *)string {
 if (elementFound) {
 [soapResults appendString: string];
 }
}

Next, when the correct start tag was found, you extracted the value of the element into the
soapResults object.

 ➤ parser:didEndElement:namespaceURI:qualifiedName: — Fired when the end of an element is
found:

//---when the end of element is found---
-(void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName {

 if ([elementName isEqualToString:matchingElement]) {
 //---displays the conversion rate---
 NSLog(@”%@”, soapResults);

 float conversionRate = [soapResults floatValue];
 float result = [txtAmount.text floatValue] * conversionRate;

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Result”
 message:[NSString
stringWithFormat:@”Converted Amount is $%.2f”, result]
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 elementFound = FALSE;
 [xmlParser abortParsing];
 }
}

c16.indd 376c16.indd 376 05/12/11 4:04 PM05/12/11 4:04 PM

Consuming JSON Web Services ❘ 377

Finally, you simply looked for the closing tag to confirm that the value of the element has been correctly
extracted. You then calculated the converted amount and printed the value using a UIAlertView
object.type=“note”

NOTE The Web service might take a while to return the result. Hence, once you
have clicked on the button, be sure to wait a while for the result.

CONSUMING JSON WEB SERVICES

While most Web services currently in use were developed using XML and SOAP, they are inefficient
for one primary reason: The use of XML makes data transfer expensive and slow (the start and end
tags take up a huge portion of the document). Because the request and response packets use XML, it
takes longer to transmit them, and parsing XML messages on the mobile device takes considerable
effort.

Hence, if you are developing an end-to-end solution today, it is much better to use a non-XML
based solution for the server side. A JSON Web service is one good candidate. JSON is a lightweight
text-based open standard designed for human-readable data interchange. Using JSON, a Web
service returns the result using a JSON string instead of an XML string. The following shows an
example JSON string:

{
 “firstName”: “John”,
 “lastName”: “Smith”,
 “age”: 25,
 “address”:
 {
 “streetAddress”: “21 2nd Street”,
 “city”: “New York”,
 “state”: “NY”,
 “postalCode”: “10021”
 },
 “phoneNumber”:
 [
 {
 “type”: “home”,
 “number”: “212 555-1234”
 },
 {
 “type”: “fax”,
 “number”: “646 555-4567”
 }
]
 }

c16.indd 377c16.indd 377 05/12/11 4:04 PM05/12/11 4:04 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

378 ❘ CHAPTER 16 USING WEB SERVICES

Instead of using angle brackets to enclose data, JSON uses a series of braces, brackets, and colons
to format the data. This formatting makes it very easy to parse the data into arrays and dictionary
objects so that the relevant data can be extracted.

In the following Try It Out, you will learn how to consume a JSON Web service from your iPhone
application.

TRY IT OUT Consuming a JSON Web Service

codefile UsingJSON.zip available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone) project
and name it UsingJSON. Be sure to use the project name as the
Class Prefix and ensure that you have the Use Automatic Reference
Counting option unchecked.

 2. Download the SBJson_v3.0.4.zip package from https://
github.com/stig/json-framework/.

 3. Add a new group in your project and name it SBJson (see
Figure 16-6).

 4. Unzip the downloaded package and drag all the files in the Classes
folder into the newly created SBJson group in your Xcode project.
Ensure that you check the “Copy items into destination group’s
folder (if needed)” option (see Figure 16-7).

FIGURE 16-6

FIGURE 16-7

c16.indd 378c16.indd 378 05/12/11 4:04 PM05/12/11 4:04 PM

Consuming JSON Web Services ❘ 379

 5. Select the UsingJSONViewController.xib file to edit it in Interface Builder.

 6. Populate the View window with the following views (see Figure 16-8):

 ➤ Label (name it Lat and Lng)

 ➤ Text Field

 ➤ Round Rect Button (name it Get Weather)

FIGURE 16-8

 7. Add the following bold code to the UsingJSONViewController.h file:

#import <UIKit/UIKit.h>
#import “SBJson.h”

@interface UsingJSONViewController : UIViewController
<NSURLConnectionDelegate>
{
 IBOutlet UITextField *txtLat;
 IBOutlet UITextField *txtLng;
 NSURLConnection *conn;
 NSMutableData *webData;
}

@property (nonatomic, retain) UITextField *txtLat;
@property (nonatomic, retain) UITextField *txtLng;
-(IBAction) btnGetWeather:(id)sender;

@end

c16.indd 379c16.indd 379 05/12/11 4:04 PM05/12/11 4:04 PM

380 ❘ CHAPTER 16 USING WEB SERVICES

 8. Back in Interface Builder, perform the following actions:

 ➤ Control-click on the File’s Owner item and drag it over the first TextField.
Select txtLat.

 ➤ Control-click on the File’s Owner item and drag it over the first TextField.
Select txtLng.

 ➤ Control-click on the Round Rect Button and drag it over the File’s Owner item. Select
btnGetWeather:.

 9. Right-click on the File’s Owner item and view the

connections (see Figure 16-9).

 10. Add the following bold code to the
UsingJSONViewController.m file:

#import “UsingJSONViewController.h”

@implementation UsingJSONViewController
@synthesize txtLat;
@synthesize txtLng;

-(IBAction) btnGetWeather:(id)sender
{
 NSString *queryURL =
 [NSString stringWithFormat:@”http://ws.geonames.org/findNearByWeatherJSON?
lat=%@&lng=%@”,
 txtLat.text, txtLng.text];
 NSURL *url = [NSURL URLWithString: queryURL];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 conn = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

-(void) connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *) response{
 [webData setLength: 0];
}

-(void) connection:(NSURLConnection *)connection
 didReceiveData:(NSData *) data {
 [webData appendData:data];
}

-(void) connection:(NSURLConnection *)connection
 didFailWithError:(NSError *) error {
 [conn release];

FIGURE 16-9

c16.indd 380c16.indd 380 05/12/11 4:04 PM05/12/11 4:04 PM

Consuming JSON Web Services ❘ 381

 [webData release];
}

-(void) connectionDidFinishLoading:(NSURLConnection *) connection
{
 [conn release];
 NSLog(@”DONE. Received Bytes: %d”, [webData length]);
 NSString *strResult = [[NSString alloc] initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 NSDictionary *result = [strResult JSONValue];
 for (id theKey in result) {
 NSDictionary *detailedItems = [result objectForKey:theKey];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Result”
 message:strResult
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 NSLog(@”Key is %@, Value is %@”, theKey, detailedItems);

 //---print out individual keys and their values---
 for (id detailedKey in detailedItems) {
 id detailedValue = [detailedItems objectForKey:detailedKey];
 NSLog(@”Key is %@, Value is %@”, detailedKey, detailedValue);
 }
 }
 [strResult release];
 [webData release];
}

-(void) dealloc
{
 [txtLat release];
 [txtLng release];
 [super dealloc];
}

 11. Press Command-R to debug the
application on the iPhone Simulator.
Enter the latitude and longitude of a
location (see Figure 16-10) and then click
the Get Weather button. You should
see the result in an alert view.

 12. In Xcode, press Command-Shift-C to view
the output window (see Figure 16-11). FIGURE 16-10

c16.indd 381c16.indd 381 05/12/11 4:04 PM05/12/11 4:04 PM

382 ❘ CHAPTER 16 USING WEB SERVICES

How It Works

To parse JSON strings, you use the json-framework, located at: https://github.com/stig/
json-framework. To use the framework, you need to copy all the class files from this framework into
your project and then import its header file.

The JSON Web service you used in this example enables you to check the weather information of a
location given its latitude and longitude. You call this Web service just as you call a Web service using
the HTTP GET method described earlier:

 NSString *queryURL =
 [NSString stringWithFormat:@”http://ws.geonames.org/findNearByWeatherJSON?lat
=%@&lng=%@”,
 txtLat.text, txtLng.text];
 NSURL *url = [NSURL URLWithString: queryURL];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
 conn = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }

The latitude and longitude are passed in via the query string. When the Web service returns the result
as a JSON string, you convert the JSON string into an NSDictionary object. This can be done by
calling the JSONValue method (which belongs to the json-framework) on the NSString object:

 NSDictionary *result = [strResult JSONValue];

FIGURE 16-11

c16.indd 382c16.indd 382 05/12/11 4:04 PM05/12/11 4:04 PM

Integrating Twitter into Your Application ❘ 383

You then iterate through the dictionary object to find out the individual results in the JSON string:

 for (id theKey in result) {
 NSDictionary *detailedItems = [result objectForKey:theKey];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Result”
 message:strResult
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 NSLog(@”Key is %@, Value is %@”, theKey, detailedItems);

 //---print out individual keys and their values---
 for (id detailedKey in detailedItems) {
 id detailedValue = [detailedItems objectForKey:detailedKey];
 NSLog(@”Key is %@, Value is %@”, detailedKey, detailedValue);
 }
 }

INTEGRATING TWITTER INTO YOUR APPLICATION

In iOS 5, Twitter integration has been built right into the OS. A lot of built-in applications
now support Twitter — Safari, Photos, Camera, YouTube, Maps, etc. In order to tweet directly
from within all these applications, you first need to set up your Twitter account in the Settings
application. Figure 16-12 shows the Twitter item in the Settings application on the iPhone Simulator.
Clicking on the Twitter item allows you to sign in to your existing Twitter account, or create a new
one if you do not already have an account.

FIGURE 16-12

c16.indd 383c16.indd 383 05/12/11 4:04 PM05/12/11 4:04 PM

384 ❘ CHAPTER 16 USING WEB SERVICES

Besides the built-in applications’ support for Twitter, you can also integrate Twitter support in your
own application. The following Try It Out shows you how easy it is to enable users to tweet directly
from your application.

TRY IT OUT Tweeting Directly from Your Application

codefile Twitter.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project
and name it Twitter. Use the project name as the Class Prefix and
ensure that you have the Use Automatic Reference Counting option
unchecked.

 2. Add the Twitter.framework to your project (see Figure 16-13).

 3. Select the TwitterViewController.xib file to edit it in Interface
Builder.

 4. Add the following views to the View window (see Figure 16-14):

 ➤ Label (name it Enter your tweets and URL)

 ➤ Text Field

 ➤ Round Rect Button (name it Tweet!)
FIGURE 16-13

FIGURE 16-14

c16.indd 384c16.indd 384 05/12/11 4:04 PM05/12/11 4:04 PM

Integrating Twitter into Your Application ❘ 385

 5. Add the following bold statements to TwitterViewController.h:

#import <UIKit/UIKit.h>
#import <Twitter/Twitter.h>

@interface TwitterViewController : UIViewController
{
 IBOutlet UITextField *txtText;
 IBOutlet UITextField *txtURL;
}

@property (nonatomic, retain) UITextField *txtText;
@property (nonatomic, retain) UITextField *txtURL;

-(IBAction) btnTweet:(id)sender;
-(void) displayAlert:(NSString *) msg;

@end

 6. Back in Interface Builder, perform the following actions:

 ➤ Control-click the File’s Owner item and drag
it over the first TextField. Select txtText.

 ➤ Control-click the File’s Owner item and
drag it over the second TextField. Select
txtURL.

 ➤ Control-click on the Round Rect Button
and drag it over the File’s Owner item.
Select btnTweet:.

 7. Right-click on the File’s Owner item and note the

connections as shown in Figure 16-15.

 8. Drag and drop an image named apple.jpeg into the Supporting Files folder (see Figure 16-16).

FIGURE 16-15

FIGURE 16-16

c16.indd 385c16.indd 385 05/12/11 4:04 PM05/12/11 4:04 PM

386 ❘ CHAPTER 16 USING WEB SERVICES

 9. Add the following bold statements to TwitterViewController.m:

#import “TwitterViewController.h”

@implementation TwitterViewController
@synthesize txtText;
@synthesize txtURL;

-(IBAction) btnTweet:(id)sender
{
 if ([TWTweetComposeViewController class]) {
 //---twitter available---
 if ([TWTweetComposeViewController canSendTweet]) {
 //---twitter is configured---
 TWTweetComposeViewController *twitter =
 [[TWTweetComposeViewController alloc] init];
 [twitter setInitialText:txtText.text];
 [twitter addURL:[NSURL URLWithString:txtURL.text]];
 [twitter addImage:[UIImage imageNamed:@”apple.jpeg”]];

 [self presentViewController:twitter animated:YES completion:nil];
 twitter.completionHandler = ^(TWTweetComposeViewControllerResult result)
 {
 switch (result)
 {
 case TWTweetComposeViewControllerResultCancelled:
 [self displayAlert:@”Cancelled”];
 break;
 case TWTweetComposeViewControllerResultDone:
 [self displayAlert:@”Done!”];
 break;
 }
 [self dismissViewControllerAnimated:YES completion:NULL];
 };
 [twitter release];
 }
 } else {
 //--twitter is not available---
 [self displayAlert:@”Twitter not available.”];
 }
}

-(void) displayAlert:(NSString *) msg
{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Message”
 message:msg
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

c16.indd 386c16.indd 386 05/12/11 4:04 PM05/12/11 4:04 PM

Integrating Twitter into Your Application ❘ 387

 [alert show];
 [alert release];
}

-(void) dealloc
{
 [txtText release];
 [txtURL release];
 [super dealloc];
}

 10. Press Command-R to debug the application on the iPhone Simulator. Enter some text and an URL

(see Figure 16-17). Then, click the Tweet! button.

 11. You will see the Tweet Composer window showing the text that you have entered (see
Figure 16-18). You can modify the text here before you post the tweet. When you are done,
click the Send button to post the tweet.

FIGURE 16-17 FIGURE 16-18

 12. To verify that the tweet was actually posted successfully, you can use Safari on your Mac to
navigate to http://www.twitter.com to view the tweet posted (see Figure 16-19).

c16.indd 387c16.indd 387 05/12/11 4:04 PM05/12/11 4:04 PM

388 ❘ CHAPTER 16 USING WEB SERVICES

How It Works

To integrate Twitter into your application, you first needed to add the Twitter framework into your
project.

For composing tweets, the Twitter framework provides the TWTweetComposeViewController class,
which presents a modal window for users to enter the content of the tweet. As this class is only
available in iOS 5 or later, it is important that you check for the availability of this class before actually
calling it. You can did so by calling its class method, like this:

 if ([TWTweetComposeViewController class]) {
 //---twitter available---
 //...
 } else {
 //--twitter is not available---
 [self displayAlert:@”Twitter not available.”];
 }

Once the TWTweetComposeViewController class was confirmed to be available, you checked whether
the user has configured his or her Twitter account in the Settings application. This can be confirmed
using the canSendTweet method:

 if ([TWTweetComposeViewController canSendTweet]) {
 //---twitter is configured---
 //...
 }

FIGURE 16-19

c16.indd 388c16.indd 388 05/12/11 4:04 PM05/12/11 4:04 PM

Summary ❘ 389

Once you created an instance of the TWTweetComposeViewController class, you set the initial text of
the tweet, as well as the URL and image:

 TWTweetComposeViewController *twitter =
 [[TWTweetComposeViewController alloc] init];
 [twitter setInitialText:txtText.text];
 [twitter addURL:[NSURL URLWithString:txtURL.text]];
 [twitter addImage:[UIImage imageNamed:@”apple.jpeg”]];

To display the composer window, you used the presentViewController:animated:completion:
method of the current view window:

 [self presentViewController:twitter animated:YES completion:nil];

From there, the user can modify the text of the tweet and post the Tweet by clicking the Send button on
the compose window. You cannot programmatically send the tweet for the user.

To get the result of the compose window, you created a block and set it to the completionHandler
property of the TWTweetComposeViewController object:

 twitter.completionHandler = ^(TWTweetComposeViewControllerResult result)
 {
 switch (result)
 {
 case TWTweetComposeViewControllerResultCancelled:
 [self displayAlert:@”Cancelled”];
 break;
 case TWTweetComposeViewControllerResultDone:
 [self displayAlert:@”Done!”];
 break;
 }
 [self dismissViewControllerAnimated:YES completion:NULL];
 };
 [twitter release];

You can monitor whether the user has cancelled the posting or proceeded to send the posting. After
this, you dismiss the composer window.

SUMMARY

This chapter explored the various ways you can consume a Web service in your iOS applications:
SOAP, HTTP GET, HTTP POST, and JSON. You also learned how to extract data from an XML
document. Finally, you learned how to integrate Twitter into your application using the new API in
iOS 5.

c16.indd 389c16.indd 389 05/12/11 4:04 PM05/12/11 4:04 PM

390 ❘ CHAPTER 16 USING WEB SERVICES

EXERCISES

 1. Name the four ways in which you can consume a Web service in your iOS applications.

 2. Name the three key events you need to handle when using the NSURLConnection class.

 3. Describe the steps with which the NSXMLParser class parses the content of an XML document.

 4. Name the class new in iOS 5 for composing Tweets.

Answers to the exercises can be found in Appendix D.

c16.indd 390c16.indd 390 05/12/11 4:04 PM05/12/11 4:04 PM

Summary ❘ 391

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Ways to consume a Web service SOAP 1.1/1.2, HTTP GET, HTTP POST, and JSON

Formulating a URL request Use the NSMutableURLRequest class.

Establishing a URL connection Use the NSURLConnection class.

Class for storing byte buff ers Use the NSMutableData class.

Events fi red by the NSURLConnection

class

connection:didReceiveResponse:

connection:didReceiveData:

connection:didFailWithError:

connectionDidFinishLoading:

Parsing XML content Use the NSXMLParser class.

Events fi red by the NSXMLParser class *parser:didStartElement:namespaceURI:

qualifiedName:attributes:

*parser:foundCharacters:

*parser:didEndElement:namespaceURI:

qualifiedName:

Parsing JSON strings Use the json-framework and add the classes to your project.

Class for composing Tweets Use the TWTweetComposeViewController class.

c16.indd 391c16.indd 391 05/12/11 4:04 PM05/12/11 4:04 PM

c16.indd 392c16.indd 392 05/12/11 4:04 PM05/12/11 4:04 PM

Bluetooth Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Using the various APIs within the Game Kit framework for Bluetooth

communications

 ➤ How to look for peer Bluetooth devices using the

GKPeerPickerController class

 ➤ Sending and receiving data from a connected device

 ➤ How to implement Bluetooth voice chat

The iPhone and iPad include built-in Bluetooth functionality, enabling them to communicate with
other Bluetooth devices, such as Bluetooth headsets, iPhone, iPod touch, and iPad. This chapter
shows you how to write iPhone and iPad applications that use Bluetooth to communicate with
another device, performing tasks such as sending and receiving text messages, as well as voice
chatting. Daunting as it may sound, Bluetooth programming is actually quite simple using the iOS
SDK. All the Bluetooth functionalities are encapsulated within the Game Kit framework.

17

NOTE To test the concepts covered in this chapter, you need at least one
device: iPad, iPhone (4S, 4, 3G or 3GS), or iPod touch (second generation or
later) running iPhone OS 3.0 or later.

USING THE GAME KIT FRAMEWORK

One of the neat features available in the iOS SDK is the Game Kit framework, which contains
APIs that enable communications over a Bluetooth network. You can use these APIs to
create peer-to-peer games and applications with ease. Unlike other mobile platforms, using
Bluetooth as a communication channel in the iOS is much easier than you might expect.

c17.indd 393c17.indd 393 05/12/11 2:14 PM05/12/11 2:14 PM

394 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

In this section, you will learn how to build a simple application that enables two iOS devices to
communicate with each other.

Searching for Peer Devices

Before any exchanges of data can take place, the fi rst step to Bluetooth communication is for the
devices to locate each other. The following Try It Out shows you how to use the Game Kit framework
to locate your Bluetooth peer.

TRY IT OUT Looking for Peer Devices

codefi le Bluetooth.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project
and name it Bluetooth. You need to use the project name as the
Class Prefi x and ensure that you have the Use Automatic Reference
Counting option unchecked.

 2. Add the GameKit.framework to your project (see Figure 17-1).

 3. Select the BluetoothViewController.xib fi le to edit it in
Interface Builder. As shown in Figure 17-2, add the following
views to the View window:

 ➤ Text Field

 ➤ Round Rect buttons (name them Send, Connect, and
Disconnect)

FIGURE 17-1

FIGURE 17-2

c17.indd 394c17.indd 394 05/12/11 2:14 PM05/12/11 2:14 PM

Using the Game Kit Framework ❘ 395

 4. In the BluetoothViewController.h fi le, add the following statements shown in bold:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface BluetoothViewController : UIViewController
<GKSessionDelegate, GKPeerPickerControllerDelegate>
{
 GKSession *currentSession;
 IBOutlet UITextField *txtMessage;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
}

@property (nonatomic, retain) GKSession *currentSession;
@property (nonatomic, retain) UITextField *txtMessage;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;

-(IBAction) btnSend:(id) sender;
-(IBAction) btnConnect:(id) sender;
-(IBAction) btnDisconnect:(id) sender;

@end

 5. Back in Interface Builder, perform the following actions:

 ➤ Control-click the File’s Owner item and drag and drop it over the Text Field view. Select
txtMessage.

 ➤ Control-click the File’s Owner item and drag and drop it over the Connect button. Select
connect.

 ➤ Control-click the File’s Owner item and
drag and drop it over the Disconnect button.
Select disconnect.

 ➤ Control-click the Send button and drag and
drop it over the File’s Owner item. Select
btnSend:.

 ➤ Control-click the Connect button and drag
and drop it over the File’s Owner item. Select
btnConnect:.

 ➤ Control-click the Disconnect button and drag
and drop it over the File’s Owner item. Select
btnDisconnect:.

 6. Right-click on the File’s Owner item to verify
that all the connections are made correctly (see
Figure 17-3). FIGURE 17-3

c17.indd 395c17.indd 395 05/12/11 2:14 PM05/12/11 2:14 PM

396 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

 7. In the BluetoothViewController.m fi le, add the following statements in bold:

#import “BluetoothViewController.h”

@implementation BluetoothViewController

@synthesize currentSession;
@synthesize txtMessage;
@synthesize connect;
@synthesize disconnect;

GKPeerPickerController *picker;

-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;
 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

- (void)peerPickerController:(GKPeerPickerController *)picker
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *)session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;

 [picker dismiss];
 [picker autorelease];
}

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)picker {
 picker.delegate = nil;
 [picker autorelease];

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 self.currentSession = nil;

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

- (void)session:(GKSession *)session
 peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state) {

c17.indd 396c17.indd 396 05/12/11 2:14 PM05/12/11 2:14 PM

Using the Game Kit Framework ❘ 397

 case GKPeerStateAvailable:
 NSLog(@”State Available”);
 break;
 case GKPeerStateConnecting:
 NSLog(@”State Connecting”);
 break;
 case GKPeerStateUnavailable:
 NSLog(@”State Unavailable”);
 break;
 case GKPeerStateConnected:
 NSLog(@”State Connected”);
 break;
 case GKPeerStateDisconnected:
 NSLog(@”State Disconnected”);
 self.currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 break;
 }
}

- (void)viewDidLoad
{
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 [super viewDidLoad];
}

- (void)dealloc {
 [txtMessage release];
 [currentSession release];
 [super dealloc];
}

8. Press Command-R to run the application on the iPhone Simulator fi rst, followed by on a real
device (iPhone, iPad, or iPod touch).

NOTE When testing your Bluetooth application using the Simulator and a real
device, you need to ensure that both the Mac and the real device are connected
to a wireless network belonging to the same subnet. In addition, the Mac must
be connected using Wi-Fi in order for the Simulator to fi nd the real device.

9. If Bluetooth is not turned on, you will be asked to turn it on. Tap the Connect button on each
device. You will see the standard UI to discover other devices (see Figure 17-4).

10. After a few seconds, both devices should be able to fi nd each other (see Figure 17-5). When testing
on a Simulator and a real device, the Simulator will always be able to locate the real device (not
the reverse). Tap the name of the found device; the application will attempt to connect to it.

11. When another device tries to connect to your device, a popup is displayed, as shown in Figure 17-6.
Tap Accept to connect or tap Decline to decline the connection.

c17.indd 397c17.indd 397 05/12/11 2:14 PM05/12/11 2:14 PM

398 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

FIGURE 17-4

FIGURE 17-6

NOTE To ensure that the application only installs on devices that support
Bluetooth, you should add the UIRequiredDeviceCapabilities key to the
project’s Info.plist fi le and set its value to peer-peer.

How It Works

The GKSession object is used to represent a session between two connected Bluetooth devices. You use it
to send and receive data between the two devices. Hence, you fi rst created a variable of type GKSession:

 GKSession *currentSession;

FIGURE 17-5

c17.indd 398c17.indd 398 05/12/11 2:14 PM05/12/11 2:14 PM

Using the Game Kit Framework ❘ 399

The GKPeerPickerController class provides a standard UI to enable your application to discover and
connect to another Bluetooth device. This is the easiest way to connect to another Bluetooth device.

To discover and connect to another Bluetooth device, you implemented the btnConnect: method as
follows:

-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;
 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

The connectionTypesMask property indicates the types of connections from which the
user can choose. Two types are available: GKPeerPickerConnectionTypeNearby and
GKPeerPickerConnectionTypeOnline. For Bluetooth communication, use the
GKPeerPickerConnectionTypeNearby constant. The GKPeerPickerConnectionTypeOnline constant
indicates an Internet-based connection.

When remote Bluetooth devices are detected and the user has selected and connected to one of them,
the peerPickerController:didConnectPeer:toSession: method is called. It is implemented as
follows:

- (void)peerPickerController:(GKPeerPickerController *)picker
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *)session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;

 [picker dismiss];
 [picker autorelease];
}

The peerID argument allows you to identify the party with whom you are communicating. Your
application can communicate with multiple parties using the peerID as the identifi er.

When the user has connected to the peer Bluetooth device, you save the GKSession object to
the currentSession property. This enables you to use the GKSession object to communicate with the
remote device.

If the user cancels the Bluetooth Picker, the peerPickerControllerDidCancel: method is called.
It’s defi ned as follows:

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)
picker {
 picker.delegate = nil;

c17.indd 399c17.indd 399 05/12/11 2:14 PM05/12/11 2:14 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

400 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

 [picker autorelease];

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

To disconnect from a connected device, use the disconnectFromAllPeers method from the GKSession
object:

-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 self.currentSession = nil;

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

The disconnectFromAllPeers method disconnects your application from all the parties that are
currently connected to you. You can also use the disconnectPeerFromAllPeers: method to selectively
disconnect a specifi c party.

When a device is connected or disconnected, the session:peer:didChangeState: method is called:

- (void)session:(GKSession *)session
 peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state) {
 case GKPeerStateAvailable:
 NSLog(@”State Available”);
 break;
 case GKPeerStateConnecting:
 NSLog(@”State Connecting”);
 break;
 case GKPeerStateUnavailable:
 NSLog(@”State Unavailable”);
 break;
 case GKPeerStateConnected:
 NSLog(@”State Connected”);
 break;
 case GKPeerStateDisconnected:
 NSLog(@”State Disconnected”);
 self.currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 break;
 }
}

Handling this event enables you to determine when a connection is established or ended. For example,
when the connection is established, you might want to immediately start sending data to the other
device.

c17.indd 400c17.indd 400 05/12/11 2:14 PM05/12/11 2:14 PM

Using the Game Kit Framework ❘ 401

Sending and Receiving Data

Once two devices are connected via Bluetooth, you can begin to send data between them. The data
is transmitted using the NSData object (which is actually a bytes buffer), so you are free to defi ne
your own data format to send any types of data (such as images, text fi les, binary fi les, and so on).

The following Try It Out demonstrates how to send a simple text message to another Bluetooth-
connected device.

DISCOVERING EACH OTHER

Why is it that your application can only see another device running the same
application, and not other Bluetooth applications running on the same device?

The reason is simple. When you use the GKPeerPickerController class to
look for other Bluetooth devices, it creates a session ID. Applications will only
be able to see each other if the session IDs are identical. By default, the session
ID is the application’s Bundle Identifi er (you can see this in the Info.plist fi le
in the Xcode project). Hence, if an application is installed on two devices, each
should be able to see the other because they have the same Bundle Identifi er.
By default, the bundle identifi er is set to: <Company_Identifier>.${PRODUCT_
NAME:rfc1034identifier}. Therefore, if two applications have a different
Company Identifi er and Product Name, they won’t be able to see each other.

If you want to customize the session ID by creating your own, just implement the
following method:

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
 sessionForConnectionType:(GKPeerPickerConnectionType)type
 {
 if (!self.currentSession) {
 self.currentSession =
 [[[GKSession alloc] initWithSessionID:@”Session_ID_Here”
 displayName:nil
 sessionMode:GKSessionModePeer]
 autorelease];
 self.currentSession.delegate = self;
 }
 return self.currentSession;
}

In this case, devices can only see each other if their session IDs are the same. The
displayName argument enables you to specify the name of the device that will
be seen by the other party. If you set it to nil, iOS will use the device’s name.

c17.indd 401c17.indd 401 05/12/11 2:14 PM05/12/11 2:14 PM

402 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

TRY IT OUT Sending Text to Another Device

 1. Using the project created in the previous section, add the following statement in bold to the
BluetoothViewController.h fi le:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface BluetoothViewController : UIViewController
<GKSessionDelegate, GKPeerPickerControllerDelegate>
{
 GKSession *currentSession;
 IBOutlet UITextField *txtMessage;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
}

@property (nonatomic, retain) GKSession *currentSession;
@property (nonatomic, retain) UITextField *txtMessage;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;

-(IBAction) btnSend:(id) sender;
-(IBAction) btnConnect:(id) sender;
-(IBAction) btnDisconnect:(id) sender;
-(void) mySendDataToPeers:(NSData *) data;

@end

 2. Add the following methods to the BluetoothViewController.m fi le:

- (void) mySendDataToPeers:(NSData *) data {
 if (currentSession)
 [self.currentSession sendDataToAllPeers:data
 withDataMode:GKSendDataReliable
 error:nil];
}

-(IBAction) btnSend:(id) sender {
 //---convert an NSString object to NSData---
 NSData* data;
 NSString *str = [NSString stringWithString:txtMessage.text];
 data = [str dataUsingEncoding: NSASCIIStringEncoding];
 [self mySendDataToPeers:data];
}

- (void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---convert the NSData to NSString---
 NSString* str;

 str = [[NSString alloc] initWithData:data

c17.indd 402c17.indd 402 05/12/11 2:14 PM05/12/11 2:14 PM

Using the Game Kit Framework ❘ 403

 encoding:NSASCIIStringEncoding];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Data received”
 message:str
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [str release];
}

3. Deploy the application onto two devices (or the Simulator and a real
device). Connect the devices using Bluetooth. Now enter some text
and start sending it to the other device. Data received from another
device is shown in an Alert view (see Figure 17-7).

How It Works

To send data to the connected Bluetooth device, you used the
sendDataToAllPeers:withDataMode: method of the GKSession object.
The data that you send is transmitted via an NSData object.

The mySendDataToAllPeers: method is defi ned as follows:

- (void) mySendDataToPeers:(NSData *) data {
 if (currentSession)
 [self.currentSession sendDataToAllPeers:data
 withDataMode:GKSendDataReliable
 error:nil];
}

In this example, you are sending data to all connected peers using the
sendDataToAllPeers:withDataMode: method. To send data to a particular peer, use the
sendData:toPeers:withDataMode: method.

FIGURE 17-7

NOTE Note the use of the GKSendDataReliable constant. This constant means
that the GKSession object continues to send the data until it is successfully
transmitted or the connection times out. The data is delivered in the order
it is sent. Use this constant when you need to ensure guaranteed delivery.
Conversely, the GKSendDataUnreliable constant indicates that the GKSession
object sends the data once and does not retry if an error occurs. The data sent
can be received out of order by recipients. Use this constant for small packets of
data that must arrive quickly in order to be useful to the recipient.

The btnSend: method enables text entered by the user to be sent to the remote device:

-(IBAction) btnSend:(id) sender {
 //---convert an NSString object to NSData---

c17.indd 403c17.indd 403 05/12/11 2:14 PM05/12/11 2:14 PM

404 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

 NSData* data;
 NSString *str = [NSString stringWithString:txtMessage.text];
 data = [str dataUsingEncoding: NSASCIIStringEncoding];
 [self mySendDataToPeers:data];
}

When data is received from the other device, the receiveData:fromPeer:inSession:context:
method is called:

- (void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---convert the NSData to NSString---
 NSString* str;

 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Data received”
 message:str
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [str release];
}

Here, the received data is in the NSData format. To display it using the UIAlertView class, you convert
it to an NSString object.

Note that for Bluetooth data exchange, the maximum data size is 87KB per block. That is, you can
send no more than 87KB of data every time you call the sendDataToAllPeers:withDataMode:
method. Even so, Apple recommends that you send no more than 1,000 bytes at any time. If you need
to transfer large amounts of data, you need to split them up into multiple blocks and reassemble them
at the destination.

IMPLEMENTING VOICE CHATTING

Another cool feature of the Game Kit framework is its support for voice chat.

The Voice Chat service in the Game Kit enables two devices to establish a voice chat. The voice chat
takes place over either an Internet connection or a Bluetooth connection. This section shows you
how to implement voice chatting over a Bluetooth communication channel.

c17.indd 404c17.indd 404 05/12/11 2:14 PM05/12/11 2:14 PM

Implementing Voice Chatting ❘ 405

TRY IT OUT Enabling Bluetooth Voice Chatting

codefi le BluetoothChat.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it BluetoothChat.
You need to use the project name as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Add the GameKit and AVFoundation frameworks to the Frameworks folder of the project (see
Figure 17-8).

 3. Drag and drop a WAV fi le (see Figure 17-9) onto the Resources folder in Xcode.

FIGURE 17-8 FIGURE 17-9

 4. Select the BluetoothViewController.xib fi le to edit it in Interface Builder.

 5. Populate the View window with three Round Rect Button views (see Figure 17-10). Label them
MUTE, Disconnect, and Connect.

 6. Add the following bold statements to the BluetoothChatViewController.h fi le:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>
#import <AVFoundation/AVFoundation.h>

@interface BluetoothChatViewController : UIViewController
 <GKVoiceChatClient,
 GKPeerPickerControllerDelegate,
 GKSessionDelegate>

c17.indd 405c17.indd 405 05/12/11 2:14 PM05/12/11 2:14 PM

406 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

{
 GKSession *currentSession;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
 GKPeerPickerController *picker;
}

@property (nonatomic, retain) GKSession *currentSession;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;
-(IBAction)btnMute:(id) sender;
-(IBAction)btnUnmute:(id) sender;
-(IBAction)btnConnect:(id) sender;
-(IBAction)btnDisconnect:(id) sender;

@end

FIGURE 17-10

 7. In the BluetoothViewController.xib window, perform the following connections:

 ➤ Control-click the File’s Owner item and drag and drop it over the Connect button. Select
connect.

 ➤ Control-click the File’s Owner item and drag and drop it over the Disconnect button.
Select disconnect.

c17.indd 406c17.indd 406 05/12/11 2:14 PM05/12/11 2:14 PM

Implementing Voice Chatting ❘ 407

 ➤ Control-click the Connect button and drag
and drop it over the File’s Owner item.
Select btnConnect:.

 ➤ Control-click the Disconnect button and
drag and drop it over the File’s Owner
item. Select btnDisconnect:.

 ➤ Right-click the Mute button and connect
the Touch Down event to the File’s Owner
item. Select btnMute:.

 ➤ Right-click the MUTE button and connect
the Touch Up Inside event to the File’s
Owner item. Select btnUnmute:.

 8. To verify that all the connections are made
correctly, right-click the File’s Owner item and
view its connections (see Figure 17-11).

 9. Add the following bold statements to the
BluetoothViewController.m fi le:

#import “BluetoothChatViewController.h”

@implementation BluetoothChatViewController

@synthesize currentSession;
@synthesize connect;
@synthesize disconnect;

NSString *recorderFilePath;
AVAudioPlayer *audioPlayer;

- (void)viewDidLoad
{
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 [super viewDidLoad];
}

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
 sessionForConnectionType:(GKPeerPickerConnectionType)type {
 if (!self.currentSession) {
 self.currentSession =
 [[[GKSession alloc] initWithSessionID:@”Session_ID_Here”
 displayName:nil
 sessionMode:GKSessionModePeer] autorelease];
 self.currentSession.delegate = self;
 }
 return self.currentSession;
}

//---select a nearby Bluetooth device---

FIGURE 17-11

c17.indd 407c17.indd 407 05/12/11 2:14 PM05/12/11 2:14 PM

408 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;
 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

//---disconnect from the other device---
-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---did connect to a peer---
-(void) peerPickerController:(GKPeerPickerController *)pk
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *) session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;
 [picker dismiss];
 [picker autorelease];
}

//---connection was cancelled---
-(void) peerPickerControllerDidCancel:(GKPeerPickerController *)pk {
 picker.delegate = nil;
 [picker autorelease];
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---mute the voice chat---
-(IBAction) btnMute:(id) sender {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;
}

//---unmute the voice chat---
-(IBAction) btnUnmute:(id) sender {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = NO;
}

//---returns a unique ID that identifies the local user---
-(NSString *) participantID {
 return currentSession.peerID;
}

//---sends voice chat configuration data to the other party---
-(void) voiceChatService:(GKVoiceChatService *) voiceChatService

c17.indd 408c17.indd 408 05/12/11 2:14 PM05/12/11 2:14 PM

Implementing Voice Chatting ❘ 409

 sendData:(NSData *) data
 toParticipantID:(NSString *) participantID {
 [currentSession sendData:data
 toPeers:[NSArray arrayWithObject:participantID]
 withDataMode:GKSendDataReliable error:nil];
}

//---session state changed---
-(void) session:(GKSession *)session
 peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state) {
 case GKPeerStateAvailable:
 NSLog(@”State Available”);
 break;
 case GKPeerStateConnecting:
 NSLog(@”State Connecting”);
 break;
 case GKPeerStateUnavailable:
 NSLog(@”State Unavailable”);
 break;
 case GKPeerStateConnected: {
 //---plays an audio file---
 NSString *soundFilePath =
 [[NSBundle mainBundle] pathForResource:@”beep”
 ofType:@”wav”];
 NSURL *fileURL =
 [[NSURL alloc] initFileURLWithPath:soundFilePath];
 AVAudioPlayer *audioPlayer =
 [[[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil] autorelease];
 [fileURL release];
 [audioPlayer play];

 NSError *error;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 if (![audioSession
 setCategory:AVAudioSessionCategoryPlayAndRecord
 error:&error]) {
 NSLog(@”Error setting category: %@”,
 [error localizedDescription]);
 }
 if (![audioSession setActive:YES error:&error]) {
 NSLog(@”Error activating audioSession: %@”,
 [error description]);
 }
 [GKVoiceChatService defaultVoiceChatService].client = self;

 //---initiating the voice chat---
 if (![[GKVoiceChatService defaultVoiceChatService]
 startVoiceChatWithParticipantID:peerID error:&error]) {
 NSLog(@”Error starting startVoiceChatWithParticipantID:%@”,
 [error userInfo]);
 }

c17.indd 409c17.indd 409 05/12/11 2:14 PM05/12/11 2:14 PM

410 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

 } break;
 case GKPeerStateDisconnected: {
 [[GKVoiceChatService defaultVoiceChatService]
 stopVoiceChatWithParticipantID:peerID];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 } break;
 }
}

//---data received from the other party---
-(void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---start the voice chat when initiated by the client---
 [[GKVoiceChatService defaultVoiceChatService]
 receivedData:data fromParticipantID:peer];
}

//---session failed with error---
-(void) session:(GKSession *)session
didFailWithError:(NSError *)error {
 NSLog(@”%@”,[error description]);
}

- (void)dealloc {
 [currentSession release];
 [connect release];
 [disconnect release];
 [super dealloc];
}

 10. To test the application, deploy it onto two devices (or the Simulator and a real device). For the
iPod touch, you need to connect it to an external microphone, as it does not include one. Then
run the application and press the Connect button to use Bluetooth to connect the two devices.
As soon as the two devices are connected, you can start chatting! To temporarily mute the
conversation, press and hold the MUTE button. When it is released, the conversation resumes.
Have fun!

How It Works

When two Bluetooth devices are connected, you fi rst play the beep sound and start the audio session
(via the session:peer:didChangeState: method):

 //---plays an audio file---
 NSString *soundFilePath =
 [[NSBundle mainBundle] pathForResource:@”beep”
 ofType:@”wav”];
 NSURL *fileURL =
 [[NSURL alloc] initFileURLWithPath:soundFilePath];
 AVAudioPlayer *audioPlayer =

c17.indd 410c17.indd 410 05/12/11 2:14 PM05/12/11 2:14 PM

Implementing Voice Chatting ❘ 411

 [[[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil] autorelease];
 [fileURL release];
 [audioPlayer play];

 NSError *error;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 if (![audioSession
 setCategory:AVAudioSessionCategoryPlayAndRecord
 error:&error]) {
 NSLog(@”Error setting category: %@”,
 [error localizedDescription]);
 }
 if (![audioSession setActive:YES error:&error]) {
 NSLog(@”Error activating audioSession: %@”,
 [error description]);
 }
 [GKVoiceChatService defaultVoiceChatService].client = self;

You then retrieve a singleton instance of the GKVoiceChatService class and call its
startVoiceChatWithParticipantID:error: method to start the voice chat:

 //---initiating the voice chat---
 if (![[GKVoiceChatService defaultVoiceChatService]
 startVoiceChatWithParticipantID:peerID error:&error]) {
 NSLog(@”Error starting startVoiceChatWithParticipantID:%@”,
 [error userInfo]);
 }

Notice that you needed to implement the participantID method declared in the GKVoiceChatClient
protocol:

//---returns a unique ID that identifies the local user---
-(NSString *) participantID {
 return currentSession.peerID;
}

This method should return a string that uniquely identifi es the current user. Since you are using
Bluetooth, you used the peerID property of the GKSession object.

Calling the startVoiceChatWithParticipantID:error: method invokes the
voiceChatService:sendData:toParticipantID: method (defi ned in the GKVoiceChatClient
protocol), which makes use of the current Bluetooth session to send the confi guration data to the other
connected device:

//---sends voice chat configuration data to the other party---
-(void) voiceChatService:(GKVoiceChatService *) voiceChatService
 sendData:(NSData *) data
 toParticipantID:(NSString *) participantID {
 [currentSession sendData:data
 toPeers:[NSArray arrayWithObject:participantID]
 withDataMode:GKSendDataReliable error:nil];
}

c17.indd 411c17.indd 411 05/12/11 2:14 PM05/12/11 2:14 PM

412 ❘ CHAPTER 17 BLUETOOTH PROGRAMMING

When it has received the confi guration data, the other device starts the Voice Chat service by calling
the receivedData:fromParticipantID: method (also defi ned in the GKVoiceChatClient protocol):

//---data received from the other party---
-(void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---start the voice chat when initiated by the client---
 [[GKVoiceChatService defaultVoiceChatService]
 receivedData:data fromParticipantID:peer];
}

The GKVoiceChatService uses the confi guration information that was exchanged between the two
devices and creates its own connection to transfer voice data.

You can mute the microphone by setting the microphoneMuted property to YES:

 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;

SUMMARY

This chapter has demonstrated how easy it is to connect two iOS devices using Bluetooth. Using the
concepts shown in this chapter, you can build networked games and other interesting applications
easily. You also saw how the Game Kit framework provides the GKVoiceChatService class, which
makes voice communication between two devices seamless. It is not necessary to understand how
the voices are transported between two devices — all you need to know is how to call the relevant
methods to initialize the chat. However, there is one important thing you should know: Voice
chat works not only over Bluetooth, but over any communication channel. In fact, if you have two
devices connected using TCP/IP, you can stream the voices over the wire.

EXERCISES

 1. What class can you use to locate peer Bluetooth devices?

 2. Name the object that is responsible for managing the session between two connected

Bluetooth devices.

 3. Name the method from the GKVoiceChatService class that you need to call to establish a

voice chat.

 4. Name the two methods defi ned in the GKVoiceChatClient protocol that establish a voice

chat channel.

Answers to the exercises can be found in Appendix D.

c17.indd 412c17.indd 412 05/12/11 2:14 PM05/12/11 2:14 PM

Summary ❘ 413

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Looking for peer

Bluetooth devices

Use the GKPeerPickerController class.

Communicating

between two

Bluetooth devices

Use the GKSession class.

Establishing a

voice chat

Call the startVoiceChatWithParticipantID:error: method from the

GKVoiceChatService class.

On the initiator, call the

voiceChatService:sendData:toParticipantID: method defi ned in

the GKVoiceChatClient protocol.

On the receiver, call the receivedData:fromParticipantID: method

defi ned in the GKVoiceChatClient protocol.

Muting the

microphone

[GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;

c17.indd 413c17.indd 413 05/12/11 2:14 PM05/12/11 2:14 PM

c17.indd 414c17.indd 414 05/12/11 2:14 PM05/12/11 2:14 PM

Bonjour Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to publish a service on the network using the NSNetService

class

 ➤ Discovering services on the network using the

NSNetServiceBrowser class

 ➤ How to resolve the IP addresses of services on the network

Bonjour is Apple’s implementation of the Zeroconf protocol, which enables the automatic
discovery of computers, devices, and services on an IP network. In this chapter, you will learn
how to implement Bonjour on the iOS by using the NSNetService class to publish a service.
You will also use the NSNetServiceBrowser class to discover services that have been published.

CREATING THE APPLICATION

In this section, you create the user interface for the application. You’ll use a Table View to
display the users that you have discovered on the network. As users are discovered, they will
be added to the Table View.

TRY IT OUT Creating the Application’s UI

1. Using Xcode, create a Single View Application (iPhone) project and name it Bonjour. Use
this project name as the Class Prefi x and ensure that you have the Use Automatic Reference
Counting option unchecked.

2. Select the BonjourViewController.xib fi le to edit it in Interface Builder. Populate the
View window with the following views (see Figure 18-1):

 ➤ Label (set its text to Discovered Users and Debug statements)

18

c18.indd 415c18.indd 415 05/12/11 2:15 PM05/12/11 2:15 PM

416 ❘ CHAPTER 18 BONJOUR PROGRAMMING

 3. In the BonjourViewController.h fi le, add the following bold statements:

#import <UIKit/UIKit.h>

@interface BonjourViewController : UIViewController
<UITableViewDelegate, UITableViewDataSource>
{
 IBOutlet UITableView *tbView;
 IBOutlet UITextView *debug;
}

@property (nonatomic, retain) UITableView *tbView;
@property (nonatomic, retain) UITextView *debug;

-(void) resolveIPAddress:(NSNetService *)service;
-(void) browseServices;

@end

 4. In the BonjourViewController.xib window, perform the following connections:

 ➤ Control-click the File’s Owner item and drag and drop it over the TableView. Select tbView.

 ➤ Control-click the File’s Owner item and drag and drop it over the Text View. Select debug.

 ➤ Right-click the Table View and connect the dataSource outlet to the File’s Owner item.

 ➤ Table View

 ➤ Text View

FIGURE 18-1

c18.indd 416c18.indd 416 05/12/11 2:15 PM05/12/11 2:15 PM

Publishing a Service ❘ 417

 ➤ Right-click the Table View and connect the
delegate outlet to the File’s Owner item.

 5. To verify that all the connections are made
correctly, right-click the File’s Owner item and
view its connections (see Figure 18-2).

How It Works

Because you’ll use the Table View to display the list of
users discovered on the network, you need to set the
dataSource and delegate outlets to the File’s Owner
item. The Text View is used to show the various things happening in the background. This is very useful for
debugging your application and understanding what happens as services are discovered on the network.

PUBLISHING A SERVICE

With all the views and outlets wired up, you can publish a service using the NSNetService class.
The following Try It Out shows you how.

TRY IT OUT Publishing a Service on the Network

 1. Using the same project created in the previous section, add the following bold statements to the
BonjourAppDelegate.h fi le:

#import <UIKit/UIKit.h>

@class BonjourViewController;

@interface BonjourAppDelegate : UIResponder
<UIApplicationDelegate, NSNetServiceDelegate>
{
 NSNetService *netService;
}

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) BonjourViewController *viewController;

@end

 2. In the BonjourAppDelegate.m fi le, add the following statements in bold:

#import “BonjourAppDelegate.h”

#import “BonjourViewController.h”

@implementation BonjourAppDelegate

@synthesize window = _window;

FIGURE 18-2

c18.indd 417c18.indd 417 05/12/11 2:15 PM05/12/11 2:15 PM

418 ❘ CHAPTER 18 BONJOUR PROGRAMMING

@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 //---publish the service---
 netService = [[NSNetService alloc]
 initWithDomain:@””
 type:@”_MyService._tcp.”
 name:@”iOS 5 Simulator”
 port:9876];
 netService.delegate = self;
 [netService publish];

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[BonjourViewController alloc] initWithNibName:
 @”BonjourViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

-(void)netService:(NSNetService *)aNetService
 didNotPublish:(NSDictionary *)dict {
 NSLog(@”Service did not publish: %@”, dict);
}

- (void)applicationWillTerminate:(UIApplication *)application {
 //---stop the service when the application is terminated---
 [netService stop];
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 //---stop the service when the application goes into background---
 [netService stop];
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 //---start the service when the application comes into foreground---
 [netService publish];
}

- (void)dealloc {
 [netService release];
 [super dealloc];
}

How It Works

To publish a service on the network, you use the NSNetService class to advertise your presence on the
network:

c18.indd 418c18.indd 418 05/12/11 2:15 PM05/12/11 2:15 PM

Publishing a Service ❘ 419

 //—-use this to publish a service—-
 NSNetService *netService;

Here, you advertised your presence on the network by publishing a network service when your
application has fi nished launching (application:DidFinishLaunchingWithOptions:). You publish a
network service fi rst by instantiating it with several parameters to the NSNetService class:

 //---publish the service---
 netService = [[NSNetService alloc]
 initWithDomain:@””
 type:@”_MyService._tcp.”
 name:@”iOS 5 Simulator”
 port:9876];

The fi rst argument specifi es the domain for the service. You used @“” to denote the default domain. The
second argument indicates the service type and transport layer. In this example, you named the service
MyService and it uses TCP as the protocol. Note that you need to prefi x the service name and protocol
with an underscore (_) and end the protocol with a period (.). The service type will be used by other
applications to locate your service. The third argument specifi es the name of the service — you can either
provide a unique name or use an empty string. The name set here will be visible to other applications that
locate you. Finally, you specify the port number on which the service is published via the fourth argument.

To publish the service, you use the publish method of the NSNetService class:

 netService.delegate = self;
 [netService publish];

You also implemented the netService:didNotPublish: method so that in the event that the service
is not published successfully, you write a message to the Debugger Console window (or perhaps display
an alert to the user):

-(void)netService:(NSNetService *)aNetService
 didNotPublish:(NSDictionary *)dict {
 NSLog(@”Service did not publish: %@”, dict);

When the application exits (applicationWillTerminate:) or goes into background mode
(applicationDidEnterBackground:), you stop publishing the service:

- (void)applicationWillTerminate:(UIApplication *)application {
 //---stop the service when the application is terminated---
 [netService stop];
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 //---stop the service when the application goes into background---
 [netService stop];

When the application returns to the foreground (applicationWillEnterForeground:), you publish
the service again:

- (void)applicationWillEnterForeground:(UIApplication *)application

c18.indd 419c18.indd 419 05/12/11 2:15 PM05/12/11 2:15 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

420 ❘ CHAPTER 18 BONJOUR PROGRAMMING

{
 //---start the service when the application comes into foreground---
 [netService publish];
}

BROWSING FOR SERVICES

Now that you have seen how to publish a service, this section demonstrates how you can browse for
services that have been published on the network. You will use the NSNetServiceBrowser class to
discover services published on the network.

TRY IT OUT Browsing for Services on the Network

 1. Using the Bonjour project from the previous Try it Out, add the following bold statements to the
BonjourViewController.h fi le:

#import <arpa/inet.h>

@interface BonjourViewController : UIViewController
<UITableViewDelegate, UITableViewDataSource,
 NSNetServiceDelegate, NSNetServiceBrowserDelegate>
{
 IBOutlet UITableView *tbView;
 IBOutlet UITextView *debug;
 NSNetServiceBrowser *browser;
 NSMutableArray *services;
}

@property (nonatomic, retain) UITableView *tbView;
@property (nonatomic, retain) UITextView *debug;
@property (nonatomic, retain) NSNetServiceBrowser *browser;
@property (nonatomic, retain) NSMutableArray *services;

-(void) resolveIPAddress:(NSNetService *)service;
-(void) browseServices;

@end

 2. In the BonjourViewController.m fi le, add the following bold statements:

#import “BonjourViewController.h”

@implementation BonjourViewController

@synthesize tbView;
@synthesize debug;

@synthesize browser;
@synthesize services;

-(NSInteger) tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.services count];

c18.indd 420c18.indd 420 05/12/11 2:15 PM05/12/11 2:15 PM

Browsing for Services ❘ 421

}

-(UITableViewCell *) tableView:(UITableView *)tableView cellForRowAtIndexPath:
 (NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 //---display the name of each service---
 cell.textLabel.text = [[self.services objectAtIndex:indexPath.row] name];

 return cell;
}

-(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didFindService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services addObject:aService];
 debug.text = [debug.text stringByAppendingString:
 @”Found service. Resolving address...\n”];
 [self resolveIPAddress:aService];
}

-(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didRemoveService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services removeObject:aService];
 debug.text = [debug.text stringByAppendingFormat:@”Removed: %@\n”,
 [aService hostName]];
 [self.tbView reloadData];
}

-(void) resolveIPAddress:(NSNetService *)service {
 NSNetService *remoteService = service;
 remoteService.delegate = self;
 [remoteService resolveWithTimeout:0];
}

-(void) netServiceDidResolveAddress:(NSNetService *)service {
 NSData *address = nil;
 struct sockaddr_in *socketAddress = nil;
 NSString *ipString = nil;
 int port;

 for (int i=0;i < [[service addresses] count]; i++) {
 address = [[service addresses] objectAtIndex: i];
 socketAddress = (struct sockaddr_in *) [address bytes];
 ipString = [NSString stringWithFormat: @”%s”,
 inet_ntoa(socketAddress->sin_addr)];
 port = socketAddress->sin_port;
 debug.text = [debug.text stringByAppendingFormat:
 @”Resolved: %@-->%@:%hu\n”,
 [service hostName], ipString, port];

c18.indd 421c18.indd 421 05/12/11 2:15 PM05/12/11 2:15 PM

422 ❘ CHAPTER 18 BONJOUR PROGRAMMING

 }
 [self.tbView reloadData];
}

-(void) netService:(NSNetService *)service
 didNotResolve:(NSDictionary *)errorDict {
 debug.text = [debug.text stringByAppendingFormat:
 @”Could not resolve: %@\n”, errorDict];
}

-(void) browseServices {
 self.services = [[NSMutableArray new] autorelease];
 self.browser = [[NSNetServiceBrowser new] autorelease];
 self.browser.delegate = self;
 [self.browser searchForServicesOfType:@”_MyService._tcp.” inDomain:@””];
}

- (void) viewDidLoad
{
 [self browseServices];
 [super viewDidLoad];
}

- (void)dealloc {
 [tbView release];
 [debug release];
 [browser release];
 [services release];
 [super dealloc];
}

 3. That’s it! Deploy the application onto the iPhone Simulator.

 4. In the BonjourAppDelegate.m fi le, change the following in bold:

 //---publish the service---
 netService = [[NSNetService alloc]
 initWithDomain:@””
 type:@”_MyService._tcp.”
 name:@”iOS 5 Device”
 port:9876];
 netService.delegate = self;
 [netService publish];

 5. Deploy the application onto a real iPhone.

 6. When the application is running, it will search for all services
published on the same network. As services are discovered, their
names appear in the Table View. Figure 18-3 shows the Table View
displaying the hostname of the devices it has discovered.

How It Works

There is quite a bit of coding involved here, so let’s take a more detailed
look. FIGURE 18-3

c18.indd 422c18.indd 422 05/12/11 2:15 PM05/12/11 2:15 PM

Browsing for Services ❘ 423

First, you defi ned the browseServices method, which uses the NSNetServiceBrowser class to search
for the service named “_MyService._tcp.” in the default domain:

-(void) browseServices {
 self.services = [[NSMutableArray new] autorelease];
 self.browser = [[NSNetServiceBrowser new] autorelease];
 self.browser.delegate = self;
 [self.browser searchForServicesOfType:@”_MyService._tcp.” inDomain:@””];
}

As services are discovered, the netServiceBrowser:didFindService:moreComing: method is called.
In this method, you add all the discovered services to the services mutable array:

(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didFindService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services addObject:aService];
 debug.text = [debug.text stringByAppendingString:
 @”Found service. Resolving address...\n”];
 [self resolveIPAddress:aService];
}

You also try to resolve the IP address of the discovered service by calling the resolveIPhonedress:
method, which you defi ne.

The resolveIPAddress: method uses the resolveWithTimeout: method of the NSNetService
instance (representing the service that was discovered) to obtain its IP addresses:

(void) resolveIPAddress:(NSNetService *)service {
 NSNetService *remoteService = service;
 remoteService.delegate = self;
 [remoteService resolveWithTimeout:0];
}

If it manages to resolve the IP addresses of the service, the netServiceDidResolveAddress: method is
called. If it does not manage to resolve the IP address, the netService:didNotResolve: method is called.

In the netServiceDidResolveAddress: method, you extracted all the available IP addresses of
the service and displayed them on the Text View. You then try to reload the Table View using the
reloadData method of the UITableView class:

-(void) netServiceDidResolveAddress:(NSNetService *)service {
 NSData *address = nil;
 struct sockaddr_in *socketAddress = nil;
 NSString *ipString = nil;
 int port;

 for (int i=0;i < [[service addresses] count]; i++) {
 address = [[service addresses] objectAtIndex: i];

c18.indd 423c18.indd 423 05/12/11 2:15 PM05/12/11 2:15 PM

424 ❘ CHAPTER 18 BONJOUR PROGRAMMING

 socketAddress = (struct sockaddr_in *) [address bytes];
 ipString = [NSString stringWithFormat: @”%s”,
 inet_ntoa(socketAddress->sin_addr)];
 port = socketAddress->sin_port;
 debug.text = [debug.text stringByAppendingFormat:
 @”Resolved: %@-->%@:%hu\n”,
 [service hostName], ipString, port];
 }
 [self.tbView reloadData];
}

When services are removed from the network, the netServiceBrowser:didRemoveService: method is
called; therefore, in this method you remove the service from the services mutable array:

(void) netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didRemoveService:(NSNetService *)aService moreComing:(BOOL)more {
 [self.services removeObject:aService];
 debug.text = [debug.text stringByAppendingFormat:@”Removed: %@\n”,
 [aService hostName]];
 [self.tbView reloadData];
}
The rest of the code involves loading the Table View with the hostname of the
 services that have been discovered. In particular, you display the host name
 of each service in the Table View:-(NSInteger) tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.services count];
}

-(UITableViewCell *) tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 //---display the name of each service---
 cell.textLabel.text = [[self.services objectAtIndex:indexPath.row] name];

 return cell;
}

c18.indd 424c18.indd 424 05/12/11 2:15 PM05/12/11 2:15 PM

Summary ❘ 425

DOING MORE WITH TCP/IP

With peers on the network discovered, what can you do next? You can use TCP/IP to
connect with your network peers and send messages to them. A discussion of using
TCP/IP for networking is beyond the scope of this book, but interested users can
download a working application from the author’s website — www.learn2develop
.net — that illustrates how to build a chat application using Bonjour (see Figure 18-4).

FIGURE 18-4

SUMMARY

This chapter explained how to publish a service on the network using the NSNetService class and
how to discover services on the local network using the NSNetServiceBrowser class. Once peers are
discovered on the network, you can connect to them and initiate peer-to-peer communication.
A chat application is a good example of a Bonjour application.

EXERCISES

 1. What class can you use to publish a service on the network?

 2. What class can you use to discover services on the network?

 3. Name the method that is called when a service is discovered.

 4. Name the method that is called when a service is removed.

Answers to the exercises can be found in Appendix D.

c18.indd 425c18.indd 425 05/12/11 2:15 PM05/12/11 2:15 PM

426 ❘ CHAPTER 18 BONJOUR PROGRAMMING

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Publishing a service Use the NSNetService class.

Discovering services Use the NSNetServiceBrowser class.

Resolving the IP address of a

service

Use the resolveWithTimeout: method of an

NSNetService object.

Getting the IP addresses of a

service

Use the addresses method of an NSNetService object.

Method that is called when a

service is discovered

netServiceBrowser:didFindService:moreComing:

Method that is called when a

service is removed

netServiceBrowser:didRemoveService:moreComing:

c18.indd 426c18.indd 426 05/12/11 2:15 PM05/12/11 2:15 PM

Programming Remote
Notifi cations Using Apple
Push Notifi cation Services

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to use the Apple Push Notifi cation service

 ➤ Generating a certifi cate request

 ➤ Generating a development certifi cate

 ➤ How to create an App ID

 ➤ How to confi gure an App ID for push notifi cation

 ➤ Creating a provisioning profi le

 ➤ How to provision a device

 ➤ How to deploy an iOS application onto a device

 ➤ Using a push notifi cation provider application

One of the key limitations of iOS is its constraint on running applications in the background,
which means that applications requiring a constant state of connectivity (such as social networking
applications) cannot receive timely updates when the user switches to another application.

To overcome this limitation, Apple uses the Apple Push Notifi cation service (APNs). The
APNs enables your device to remain connected to Apple’s push notifi cation server (PNS).
When you want to send a push notifi cation to an application installed on the users’ devices,
you (the provider) can contact the APNs so that it can deliver a push message to the particular
application installed on the intended device.

In this chapter, you will learn how to use the APNs to push messages to users who have
installed your application.

19

c19.indd 427c19.indd 427 05/12/11 2:17 PM05/12/11 2:17 PM

428 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

USING APPLE PUSH NOTIFICATION SERVICE

When your iOS application uses the Apple Push Notifi cation service, the device remains connected
to the APNs server using an open TCP/IP connection. To send notifi cations to your application
running on iOS devices, you need to write a provider application that communicates with that
server. Your provider application will send messages to the APNs server, which in turn relays the
message to the various devices running your application by pushing the message to these devices
through the TCP/IP connection.

NOTE Chapter 21 discusses the multi-tasking feature of iOS 5. While you have
the capability to run your application in the background, the types of applications
that are allowed to do so are limited. Also, applications running in the background
are not allowed to have any network connectivity. While the steps for using the
APNs are straightforward, you need to be aware of several details in order to
enable messages to be pushed successfully to the devices. In this section, you
learn how to create an iOS application that uses the APNs. The following sections
take you through the steps for APNs programming in more detail.

Generating a Certifi cate Request

The fi rst step to using the APNs is to generate a certifi cate request fi le so that you can request two
development certifi cates — one for code-signing your application (so that it can be deployed on real
devices) and one to be used by your provider to send notifi cations to the APNs server. The following
Try It Out shows you how to generate the certifi cate request.

TRY IT OUT Generating a Certifi cate Request

1. Launch the Keychain Access application (an application in Mac OS X that manages your security
credentials) in your Mac OS X (you can do so by typing Keychain in Spotlight).

2. Select Keychain Access ➪ Certifi cate Assistant ➪ Request a Certifi cate From a Certifi cate
Authority (see Figure 19-1).

FIGURE 19-1

c19.indd 428c19.indd 428 05/12/11 2:17 PM05/12/11 2:17 PM

Using Apple Push Notifi cation Service ❘ 429

 3. Enter the information required, select the Saved to disk option, and click Continue (see Figure 19-2).

 4. Save the certifi cate request using the suggested name and click Save (see Figure 19-3). Click
Continue and then Done in the next two screens.

FIGURE 19-2 FIGURE 19-3

How It Works

This part is straightforward — use the Keychain Access application to generate a certifi cate request so
that you can send it to Apple later to request for certifi cates.

Generating a Development Certifi cate

Once the certifi cate request is generated, you use it to request a development certifi cate from Apple.
The development certifi cate is used for code-signing your application so that you can deploy it on a
real device.

TRY IT OUT Generating a Development Certifi cate

 1. Sign in to the iOS Dev Center at http://developer.apple.com/devcenter/ios/index
.action. Click the iOS Provisioning Portal link on the right side of the page (see Figure 19-4).
The welcome page opens.

c19.indd 429c19.indd 429 05/12/11 2:17 PM05/12/11 2:17 PM

430 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

 2. Click the Certifi cates tab on the left.

 3. Click the Request Certifi cate button in the lower-right corner. Click the Choose File button and
select the certifi cate request fi le that you created in the previous section, and then click Submit.

 4. Your certifi cate is now pending approval. Refresh the page. After a few seconds the certifi cate will
be ready and you can download it (see Figure 19-5).

FIGURE 19-4

FIGURE 19-5

c19.indd 430c19.indd 430 05/12/11 2:18 PM05/12/11 2:18 PM

Using Apple Push Notifi cation Service ❘ 431

How It Works

This Try It Out generated the development certifi cate that you need to code-sign your application so
that it can be deployed to a real iOS device for testing. The certifi cate installed in the Keychain Access
application contains the private and public key pair. It is a good idea to back up the certifi cate at this
juncture so that in the event that you need to shift your development work to another computer, you
can simply restore the certifi cate from the backup. Downloading the certifi cate directly from the iOS
Dev Center and installing the certifi cate to another computer will not work because the certifi cate
downloaded from Apple contains only the public key, not the private key. The private key is stored on
the machine that created the certifi cate request.

Creating an Application ID

Each iOS application that uses the APNs must have a unique application ID that identifi es itself. In
the following Try It Out, you create an App ID for push notifi cation.

TRY IT OUT Creating an App ID for Your Application

 1. In the iOS Provisioning Portal, click the App IDs tab on the left and then click the New App ID
button (see Figure 19-7).

 5. Once the certifi cate is downloaded, double-click it to install it in the Keychain Access application.
Figure 19-6 shows the development certifi cate installed in the Keychain Access application.

FIGURE 19-6

c19.indd 431c19.indd 431 05/12/11 2:18 PM05/12/11 2:18 PM

432 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

2. Enter BegiOS5PushAppID for the Description and select Use Team ID for the Bundle Seed ID.
For the Bundle Identifi er, enter net.learn2develop.BegiOS5PushAppID. When you are done, click
Submit.

FIGURE 19-7

NOTE App IDs are globally unique, even among developers. Therefore, in this
step, rather than enter net.learn2develop.BegiOS5PushAppID for the Bundle
Identifi er, you should enter your own unique Bundle Identifi er. A good
recommendation is to use your reverse domain name, such as com
.yourcompany.MyPushAppID.

3. You should now see the App ID that you have created, together with any you may have previously
created (see Figure 19-8).

FIGURE 19-8

How It Works

For applications using the APNs, you need to specifi cally create an App ID to uniquely identify the
application. The next section demonstrates how to confi gure the new App ID for push notifi cations.

c19.indd 432c19.indd 432 05/12/11 2:18 PM05/12/11 2:18 PM

Using Apple Push Notifi cation Service ❘ 433

Confi guring an App ID for Push Notifi cations

Once an App ID is created, you need to confi gure it for push notifi cations. The following Try It Out
shows you how to do this.

TRY IT OUT Confi guring an App ID for Push Notifi cations

 1. To confi gure an App ID for push notifi cation, click the Confi gure link displayed to the right of the
App ID (refer to Figure 19-8). The Confi gure option (see Figure 19-9) becomes available.

FIGURE 19-9

 2. Check the Enable for Apple Push Notifi cation service option, and click the Confi gure button on
the right of the Development Push SSL Certifi cate.

 3. The Apple Push Notifi cation service SSL Certifi cate Assistant screen opens (see Figure 19-10).
Click Continue.

 4. Click the Choose File button to locate the certifi cate request fi le that you saved earlier, and then
click Generate.

 5. Your SSL certifi cate will now be generated. Click Continue.

 6. Click the Download button to download the SSL certifi cate, and then click Done (see Figure 19-11).

c19.indd 433c19.indd 433 05/12/11 2:18 PM05/12/11 2:18 PM

434 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

FIGURE 19-10

FIGURE 19-11

c19.indd 434c19.indd 434 05/12/11 2:18 PM05/12/11 2:18 PM

Using Apple Push Notifi cation Service ❘ 435

 7. The fi lename for the SSL certifi cate you download is named aps.developer.identity.cer.
Double-click it to install it in the Keychain Access application (see Figure 19-12). The SSL certifi cate
is used by your provider application in order to contact the APNs to send push notifi cations to your
applications.

FIGURE 19-12

How It Works

When the App ID is confi gured for push notifi cations, you need to upload the certifi cate signing
request that you generated earlier to Apple so that you can obtain an SSL certifi cate for your provider
application. Once the SSL certifi cate is downloaded, you install it into your Keychain Access
application. The SSL certifi cate is for your provider application to use so that it can communicate
securely with Apple’s Push Server to send push notifi cations to your application.

Creating a Provisioning Profi le

Next, you create a provisioning profi le so that your application can be installed onto a real iOS
device.

TRY IT OUT Creating a Provisioning Profi le

 1. In the iOS Provisioning Portal, select the Provisioning tab on the left and click the New Profi le
button (see Figure 19-13).

c19.indd 435c19.indd 435 05/12/11 2:18 PM05/12/11 2:18 PM

436 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

3. The provisioning profi le is now pending approval. After a few seconds, it appears (if not, just
refresh the browser). Click the Download button to download the provisioning profi le (see
Figure 19-15).The downloaded provisioning profi le is named MyiOS5DevicesProfile
.mobileprovision.

2. Enter MyiOS5DevicesProfi le as the profi le name, and select BegiOS5PushAppID as the App ID
(see Figure 19-14). Finally, check all the devices that you want to provision (you can register these
devices with the iOS Provisioning Portal through the Devices tab). When you are done, click
Submit.

FIGURE 19-13

NOTE Appendix A describes how to register your devices through the iOS
Provisioning Portal.

FIGURE 19-14

c19.indd 436c19.indd 436 05/12/11 2:18 PM05/12/11 2:18 PM

Using Apple Push Notifi cation Service ❘ 437

How It Works

The provisioning profi le associates one development certifi cate with one or more devices and an App ID
so that you can install your signed iOS application on a real iOS device.

Provisioning a Device

With the provision profi le created, you will now install it onto a real device. Once a device is
provisioned, your signed application will be able to run on your iOS devices.

Any devices on which you want to test your application must be provisioned. If a device is not
provisioned, you will not be able to install your application on it. The following Try It Out shows
you how to provision your iOS device.

TRY IT OUT Provisioning a Device

 1. Connect your iPhone (or iPad) to your Mac. For the example in this chapter , I will use an
iPhone.

 2. Drag and drop the downloaded MyiOS5DevicesProfile.mobileprovision fi le onto the Xcode
icon on the Dock.

 3. Launch the Organizer application from within Xcode and select the device currently connected
to your Mac. You should see the MyiOS5DevicesProfile installed on the device (see
Figure 19-16).

FIGURE 19-15

c19.indd 437c19.indd 437 05/12/11 2:18 PM05/12/11 2:18 PM

438 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

How It Works

Provisioning your iOS device is straight-forward — simply connect your iOS device to the Mac and
then drag and drop the provisioning profi le onto the Xcode. Xcode will then automatically install the
provisioning profi le onto the devices connected to your Mac.

 CREATING THE IOS APPLICATION

Finally, you can write your iOS application to receive push notifi cations. The following Try It Out
shows how you can programmatically receive notifi cations received from the APNs server.

FIGURE 19-16

c19.indd 438c19.indd 438 05/12/11 2:18 PM05/12/11 2:18 PM

 Creating the iOS Application ❘ 439

TRY IT OUT Creating an iOS Application

codefi le ApplePushNotifi cation.zip available for download at Wrox.com

 1. In Xcode, create a new Single View Application (iPhone) project
and name it ApplePushNotifi cation. You will also use the project
name as the Class Prefi x and ensure that you have the Use
Automatic Reference Counting option unchecked.

 2. Drag and drop a WAV fi le (shown as beep.wav in this
example) onto the Supporting Files folder in Xcode (see
Figure 19-17).

 3. Double-click on the project name in Xcode and select the
ApplePushNotifi cation target. Select the Info tab, and set the
Bundle Identifi er to net.learn2develop.BegiOS5PushAppID (see
Figure 19-18). This is the Bundle Identifi er you set when you
created the App ID earlier. As mentioned earlier, you should use
your own unique Bundle Identifi er.

FIGURE 19-17

FIGURE 19-18

 4. Click the Build Settings tab and type Code Signing in the search box. In the Any iOS Device item
(under Debug), select the profi le that matches the Bundle Identifi er, as shown in Figure 19-19.

c19.indd 439c19.indd 439 05/12/11 2:18 PM05/12/11 2:18 PM

440 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

 5. In the ApplePushNotificationAppDelegate.m fi le, type the following bold code:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@”Registering for push notifications...”);
 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound)];

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]]autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[ApplePushNotificationViewController alloc]
 initWithNibName:@”ApplePushNotificationViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)application:(UIApplication *)app
 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
 NSString *str = [NSString
 stringWithFormat:@”Device Token=%@”,deviceToken];
 NSLog(@”%@”,str);
}

- (void)application:(UIApplication *)app
 didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSString *str = [NSString stringWithFormat: @”Error: %@”, err];
 NSLog(@”%@”, str);

FIGURE 19-19

c19.indd 440c19.indd 440 05/12/11 2:18 PM05/12/11 2:18 PM

 Creating the iOS Application ❘ 441

}

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo {
 for (id key in userInfo) {
 NSLog(@”key: %@, value: %@”, key, [userInfo objectForKey:key]);
 }
}

 6. Press Command-R to test the application on a real device. When the application is loaded, you
will be asked to enable Push Notifi cation so that your application can receive notifi cations (see
Figure 19-20). Tap the OK button to turn on notifi cations.

 7. Press Shift-Command-C in Xcode to display the output window. Carefully observe the device
token that is printed (see Figure 19-21). It is formatted as follows: xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx. Record this device token (you might want
to cut and paste it into a text fi le). You will need it later so your provider application can uniquely
identify the devices that will receive push notifi cations.

FIGURE 19-20 FIGURE 19-21

 8. If you click the Settings application on your iPhone, you will notice that you have the
Notifi cations item. Selecting the Notifi cations item displays a list of apps on your device that
use notifi cations. Select ApplePushNotifi cation and you can confi gure how the notifi cations are
displayed (see Figure 19-22).

c19.indd 441c19.indd 441 05/12/11 2:18 PM05/12/11 2:18 PM

442 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

How It Works

To receive push notifi cations, you fi rst confi gured your
application with the App ID that you created earlier. You
then confi gured your application so it is signed with the
correct provisioning profi le associated with your development
certifi cate.

To register your application for push notifi cation, you used
the registerForRemoteNotificationTypes: method of the
UIApplication class:

 NSLog(@”Registering for push notifications...”);
 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound)];

This registers your application for the three types of
notifi cations — alert, badge, and sound.

If the registration is successful, the
application:didRegisterForRemoteNotificationsWithDeviceToken: event is called:

- (void)application:(UIApplication *)app
 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
 NSString *str = [NSString
 stringWithFormat:@”Device Token=%@”,deviceToken];
 NSLog(@”%@”,str);
}

At this juncture, you printed out the device token. In a real application, you should programmatically send
the device token back to the provider application so that it can maintain a list of devices that need to be
sent the notifi cations. In fact, Apple recommends that every time your application starts up, you send the
device token to the provider application to inform the provider that the application is still in use.

If the registration fails, the application:didFailToRegisterForRemoteNotificationsWithError:
event is called:

- (void)application:(UIApplication *)app
 didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSString *str = [NSString stringWithFormat: @”Error: %@”, err];
 NSLog(@”%@”, str);
}

If the application is running when it receives a push notifi cation, the
application:didReceiveRemoteNotification: event is called:

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo {

FIGURE 19-22

c19.indd 442c19.indd 442 05/12/11 2:18 PM05/12/11 2:18 PM

Creating the Push Notifi cation Provider ❘ 443

 for (id key in userInfo) {
 NSLog(@”key: %@, value: %@”, key, [userInfo objectForKey:key]);
 }
}

Here, you can examine the content of the message received. If the application is not running when it
receives a push notifi cation, the user is prompted with an alert (see Figure 19-23).

Clicking the Launch button launches the application and fi res the
application:didReceiveRemoteNotification: event. The next section shows how you can get a
server application to send a notifi cation to your iOS application.

FIGURE 19-23

CREATING THE PUSH NOTIFICATION PROVIDER

A push notifi cation provider is an application written by the application’s developer to send push
notifi cations to the iOS application through the APNs. Here are the basic steps to send push
notifi cations to your applications via the APNs server:

 1. Communicate with the APNs server using the SSL Certifi cate you created earlier.

 2. Construct the payload for the message you want to send.

 3. Send the push notifi cation containing the payload to the APNs.

The APNs is a stream TCP socket that your provider can communicate with using a SSL secured
communication channel. You send the push notifi cation (containing the payload) as a binary stream.
Once you are connected to the APNs, you can send as many push notifi cations as you want within
the duration of the connection.

c19.indd 443c19.indd 443 05/12/11 2:18 PM05/12/11 2:18 PM

444 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

The format of a push notifi cation message looks like Figure 19-24 (taken from Apple’s
documentation).

NOTE Refrain from opening and closing the connections to the APNs for
each push notifi cation that you want to send. Rapid opening and closing of
connections to the APNs will be deemed a denial-of-service (DOS) attack and
may prevent your provider from sending push notifi cations to your applications.

FIGURE 19-24

Command

Token length Payload length

Bytes: 1 2 32 2 34

(big endian) (big endian)

0 0 32 0 34device Token (binary) {“aps”:{“alert”:“You have mail!”}}

The payload is a JSON-formatted string (maximum 256 bytes) carrying the information you want
to send to your application. An example of a payload looks like the following:

{
 “aps”:
 {
 “alert”:”You got a new message!”,
 “badge”:5, “sound”:”beep.wav”
 },
 “acme1”:”bar”,
 “acme2”:42
}

To save yourself the trouble of developing a push notifi cation provider from scratch, you can use the
PushMeBaby application (for Mac OS X) written by Stefan Hafeneger (available at http://stefan
.hafeneger.name/download/PushMeBabySource.zip).

The following Try It Out shows how to modify the PushMeBaby application to send a notifi cation to
your application.

NOTE For more details on APNs, refer to the Apple Push Notifi cation Service

Programming Guide. The full path to this guide is http://developer.apple
.com/library/ios/#documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/Introduction/Introduction.html.

c19.indd 444c19.indd 444 05/12/11 2:18 PM05/12/11 2:18 PM

Creating the Push Notifi cation Provider ❘ 445

TRY IT OUT Modifying the Provider Application

 1. Download the source of the PushMeBaby application and then open it in Xcode.

 2. Drag and drop the aps_developer_identity.cer fi le that you downloaded earlier onto the
Resources folder of the project (see Figure 19-25).

FIGURE 19-25

 3. In the ApplicationDelegate.m fi le, modify the code as shown in bold, replacing the device_
token with the actual device token you obtained earlier:

- (id)init {
 self = [super init];
 if(self != nil) {

 self.deviceToken = @”device_token”;

 self.payload = @”{\”aps\”:{\”alert\”:\”You got a new message!\”,\”badge\”:5,\”
 sound\”:\”beep.wav\”},\”acme1\”:\”bar\”,\”acme2\”:42}”;
 self.certificate = [[NSBundle mainBundle] pathForResource:@”aps_developer_
 identity” ofType:@”cer”];
 }
 return self;
}

c19.indd 445c19.indd 445 05/12/11 2:18 PM05/12/11 2:18 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

446 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

 4. Press Command-R to test the application.
You will be asked to grant access to the
certifi cate. Click Always Allow (see
Figure 19-26).

 5. On the iPhone, ensure that the
ApplePushNotification application is
not running. To send a message to the
device, click the Push button. The server
essentially sends the following message to
the APNs:

{
 “aps”:
 {
 “alert”:”You got a new message!”,
 “badge”:5,
 “sound”:”beep.wav”
 },
 “acme1”:”bar”,
 “acme2”:42
}

 6. If the message is pushed correctly, you will see the notifi cation shown earlier in Figure 19-23.

 7. Debug the ApplePushNotification application by pressing Command-R and send a push
message from the PushMeBaby application; the Debugger Console window will display the
following output:

2011-08-31 13:30:52.077 ApplePushNotification[12160:707] key: aps, value: {
 alert = “You got a new message!”;
 badge = 5;
 sound = “beep.wav”;
}
2011-08-31 13:30:52.079 ApplePushNotification[12160:707] key: acme1, value: bar
2011-08-31 13:30:52.084 ApplePushNotification[12160:707] key: acme2, value: 42

How It Works

Basically, the role of the provider is to send notifi cations to the APNs server for relaying to the devices.
Hence, you are sending a message of the following format:

{
 “aps”:
 {
 “alert”:”You got a new message!”,
 “badge”:5,
 “sound”:”beep.wav”
 },
 “acme1”:”bar”,
 “acme2”:42
}

FIGURE 19-26

c19.indd 446c19.indd 446 05/12/11 2:18 PM05/12/11 2:18 PM

Summary ❘ 447

The beep.wav fi lename indicates to the client to play the beep.wav fi le when the notifi cation is
received. If you specifi ed an audio fi le that cannot be found on the target application (the one receiving
the notifi cation), the application will use the default sound for the alert.

SUMMARY

In this chapter, you have seen the various steps required to build an iOS application that utilizes the
Apple Push Notifi cation service. Take some time to go through the steps to obtain your development
certifi cates and provisioning profi le, for they commonly trip up a developer. Once you get the service
working, however, the effort is well worth it!

EXERCISES

 1. Name the two certifi cates that you need to generate in order to use the Apple Push Notifi cation

service.

 2. Why is it recommended that you back up the development certifi cate in the Keychain Access

application?

 3. Name the method used for registering for push notifi cations.

 4. What is the use of the device token?

 5. Name the event used to obtain the notifi cation pushed to your device.

Answers to the exercises can be found in Appendix D.

c19.indd 447c19.indd 447 05/12/11 2:18 PM05/12/11 2:18 PM

448 ❘ CHAPTER 19 PROGRAMMING REMOTE NOTIFICATIONS USING APPLE PUSH NOTIFICATION SERVICES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Steps to using APNs Generate a certifi cate request.

Generate a development certifi cate.

Create an App ID.

Confi gure the App ID for Push Notifi cation.

Create a provisioning profi le.

Provision a device.

Create the iOS application.

Deploy the application onto a device.

Create the Push Notifi cation Provider application.

Development certifi cate The certifi cate you download from Apple contains only the public key;

the private key is saved in Keychain Access when you generate the

certifi cate request.

It is recommended that you back up the development certifi cate.

Provisioning profi le Specifi es which devices can be allowed to deploy your applications

Registering for push

notifi cation

Use the registerForRemoteNotificationTypes: method of the

UIApplication class.

Obtaining the device

token

Obtainable from the

application:didRegisterForRemoteNotificationsWith

DeviceToken: event

Obtaining the push

notifi cation sent to the

device

Obtainable from the application:didReceiveRemoteNotification:

event

c19.indd 448c19.indd 448 05/12/11 2:18 PM05/12/11 2:18 PM

Displaying Maps

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to display Google Maps using the Map Kit framework

 ➤ Obtaining geographical data using the Core Location framework

 ➤ Obtaining directional data to rotate a map

 ➤ How to add annotations to a map

 ➤ How to perform reverse geocoding to obtain an address

With the advent of mobile devices, users have become accustomed to having access to locale
information at their fi ngertips. In this chapter, you will learn how to use the Map Kit to give
users that information quickly and easily. You will also learn how to obtain the geographical
position of your device using the Core Location Manager, and how to use this information to
create a compelling iOS Location-Based Services application.

DISPLAYING MAPS AND MONITORING CHANGES

USING THE MAP KIT

The iOS SDK ships with the Map Kit framework, a set of libraries that work with the Google
Mobile Maps Service. You can use the Map Kit to display maps within your iOS application,
as well as to display your current location. In fact, you can enable the Map Kit to track your

20

c20.indd 449c20.indd 449 05/12/11 1:36 PM05/12/11 1:36 PM

450 ❘ CHAPTER 20 DISPLAYING MAPS

current location simply by setting a single property, and the Map Kit will then automatically display
your current location as you move.

In the following Try It Out, you will get started with the Map Kit. In particular, you will use the
Map Kit to display your current location on the map.

TRY IT OUT Getting Started with Map Kit

codefi le Maps.zip available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone) project and
name it Maps. You also need to use the project name (Maps) as the
Class Prefi x and ensure that you have the Use Automatic Reference
Counting option unchecked.

 2. Add the MapKit.framework to the Frameworks folder of the
project (see Figure 20-1).

 3. Select the MapsViewController.xib fi le to edit it in Interface
Builder.

 4. Populate the View window with the following views (see
Figure 20-2):

 ➤ Map View

 ➤ Round Rect Button (label it “Show My Location”; be sure to
do this correctly, including capitalization)

 5. In the MapsViewController.h fi le, add the following bold statements:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface MapsViewController : UIViewController
{
 IBOutlet UIButton *btnShowLocation;
 IBOutlet MKMapView *mapView;
}

@property (nonatomic, retain) UIButton *btnShowLocation;
@property (nonatomic, retain) MKMapView *mapView;

-(IBAction) showLocation:(id) sender;
@end

FIGURE 20-1

c20.indd 450c20.indd 450 05/12/11 1:36 PM05/12/11 1:36 PM

Displaying Maps and Monitoring Changes Using the Map Kit ❘ 451

 6. Back in Interface Builder, perform the following actions:

 ➤ Control-click and drag the File’s Owner item and drop it over the Map View. Select mapView.

 ➤ Control-click and drag the File’s Owner item and drop it over the Show My Location button.
Select btnShowLocation.

 ➤ Control-click and drag the Show My Location button and drop it over the File’s Owner item.
Select showLocation:.

 7. In the MapsViewController.m fi le, add the following bold statements:

#import “MapsViewController.h”

@implementation MapsViewController

@synthesize btnShowLocation;
@synthesize mapView;

-(IBAction) showLocation:(id) sender {
 if ([[btnShowLocation titleForState:UIControlStateNormal]
 isEqualToString:@”Show My Location”]) {
 [btnShowLocation setTitle:@”Hide My Location”
 forState:UIControlStateNormal];
 mapView.showsUserLocation = YES;
 } else {
 [btnShowLocation setTitle:@”Show My Location”

FIGURE 20-2

c20.indd 451c20.indd 451 05/12/11 1:36 PM05/12/11 1:36 PM

452 ❘ CHAPTER 20 DISPLAYING MAPS

 forState:UIControlStateNormal];
 mapView.showsUserLocation = NO;
 }
}

- (void)dealloc {
 [mapView release];
 [btnShowLocation release];
 [super dealloc];
}

8. Press Command-R to test the application on the iPhone
Simulator. You should now be able to see the map. Click the
Show My Location button to view your current location and iOS
will ask to use your current location. Click OK and you will see
your current location (see Figure 20-3). You can also zoom in and out
of the map by Option-clicking and then dragging the mouse on the
screen.

FIGURE 20-3

NOTE It may take up to 20 seconds for the map to locate your current location.
In addition, the initial location displayed in the iPhone Simulator is locked on
Apple’s headquarters in Cupertino, CA, not your actual location.

How It Works

To show your current location on the map, you simply set the showsUserLocation property of the
MKMapView object to YES:

 mapView.showsUserLocation = YES;

The map will automatically obtain the device’s location using the Core Location framework (discussed
in the second part of this chapter).

Note that this property merely specifi es whether the user’s location is displayed on the map (represented
as a throbbing blue circle); it does not center the map to display the user’s location. Hence, if you are
viewing the map of another location, your current location indicator may not be visible on the map.

Note that as you Option-click and drag the map to zoom it in or out, it is important to keep track
of the zoom level of the map so that when the user restarts the application, you can display the map
using the previous zoom level.

In the following Try It Out, you keep track of the map zoom level as the user changes it.

c20.indd 452c20.indd 452 05/12/11 1:36 PM05/12/11 1:36 PM

Displaying Maps and Monitoring Changes Using the Map Kit ❘ 453

TRY IT OUT Printing Out the Map’s Zoom Level

 1. Using the Maps project created in the previous section, edit the MapsViewController.h fi le by
adding the following bold statement:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface MapsViewController : UIViewController
<MKMapViewDelegate>
{
 IBOutlet UIButton *btnShowLocation;
 IBOutlet MKMapView *mapView;
}

@property (nonatomic, retain) UIButton *btnShowLocation;
@property (nonatomic, retain) MKMapView *mapView;

-(IBAction) showLocation:(id) sender;

@end

 2. In the MapsViewController.m fi le, add the following bold statements:

#import “MapsViewController.h”

@implementation MapsViewController

@synthesize btnShowLocation;
@synthesize mapView;

- (void)viewDidLoad
{
 //---connect the delegate of the MKMapView object to
 // this view controller programmatically; you can also connect
 // it via Interface Builder---
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [super viewDidLoad];
}

-(void)mapView:(MKMapView *)mv regionWillChangeAnimated:(BOOL)animated {
 //---print out the region span - aka zoom level---
 MKCoordinateRegion region = mapView.region;
 NSLog(@”%f”,region.span.latitudeDelta);
 NSLog(@”%f”,region. span.longitudeDelta);
}

 3. Press Command-R to test the application on the iPhone Simulator. Zoom in and out of the map
and observe the values displayed on the Debugger Console window (see Figure 20-4).

c20.indd 453c20.indd 453 05/12/11 1:36 PM05/12/11 1:36 PM

454 ❘ CHAPTER 20 DISPLAYING MAPS

How It Works

Whenever the zoom level of the map changes, the mapView:regionWillChangeAnimated: event
is fi red. Hence, you implement the event handler for this event if you want to know when a map is
pinched. The mapView:regionWillChangeAnimated: event is defi ned in the MKMapViewDelegate
protocol, so you needed to implement this protocol in the View Controller:

@interface MapsViewController : UIViewController
<MKMapViewDelegate>

The region displayed by the map is defi ned by the region property, which is a structure of type
MKCoordinateRegion:

 //---print out the region span - aka zoom level---
 MKCoordinateRegion region = mapView.region;

The MKCoordinateRegion structure contains a member called center (of type
CLLocationCoordinate2D) and another member called span (of type MKCoordinateSpan).

FIGURE 20-4

c20.indd 454c20.indd 454 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 455

The MKCoordinateSpan structure in turn contains two members: latitudeDelta and
longitudeDelta (both of type CLLocationDegrees, which is a double):

 NSLog(@”%f”,region.span.latitudeDelta);
 NSLog(@”%f”,region.span.longitudeDelta);

Both members defi ne the amount of distance to display for the map:

 ➤ latitudeDelta — One degree of latitude is approximately 111 kilometers (69 miles).

 ➤ longitudeDelta — One degree of longitude spans a distance of approximately 111
kilometers (69 miles) at the equator but shrinks to 0 kilometers at the poles.

Examine the value of these two structures as you zoom in and out of the map — they are a
representation of the map’s zoom level.

GETTING LOCATION DATA

Nowadays, mobile devices are commonly equipped with GPS receivers. Because of the many
satellites orbiting the earth, courtesy of the U.S. government, you can use a GPS receiver to fi nd
your location easily. However, GPS requires a clear sky to work and hence does not always work
indoors or where satellites can’t penetrate (such as a tunnel through a mountain).

Another effective way to locate your position is through cell tower triangulation. When a mobile
phone is switched on, it is constantly in contact with base stations surrounding it. By knowing the
identity of cell towers, it is possible to correlate this information into a physical location through the
use of various databases containing the cell towers’ identities and their exact geographical locations.
Cell tower triangulation has its advantages over GPS because it works indoors, without the need to
obtain information from satellites. However, it is not as precise as GPS because its accuracy depends
on the area you are in. Cell tower triangulation works best in densely populated areas where the cell
towers are closely located.

A third method of locating your position is to rely on Wi-Fi triangulation. Rather than connect
to cell towers, the device connects to a Wi-Fi network and checks the service provider against
databases to determine the location serviced by the provider. Of the three methods described here,
Wi-Fi triangulation is the least accurate.

On iOS devices, Apple provides the Core Location framework to help you determine your physical
location. The beauty of this framework is that it makes use of all three approaches, and whichever
method it uses is totally transparent to the developer. You simply specify the accuracy you need, and
Core Location determines the best way to obtain the results for you.

Sound amazing? It is. The following Try It Out shows you how this is done in code.

c20.indd 455c20.indd 455 05/12/11 1:36 PM05/12/11 1:36 PM

456 ❘ CHAPTER 20 DISPLAYING MAPS

TRY IT OUT Obtaining Location Coordinates

codefi le LBS.zip available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone) project
and name it LBS. You also need to use the project name (LBS)
as the Class Prefi x and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Add the CoreLocation.framework to the Frameworks folder (see
Figure 20-5).

 3. Select the LBSViewController.xib fi le to edit it in Interface
Builder. Populate the View window with the following views (see
Figure 20-6):

 ➤ Label (name them Latitude, Longitude, and Accuracy)

 ➤ Text Field
FIGURE 20-5

FIGURE 20-6

 4. In the LBSViewController.h fi le, add the following statements that appear in bold:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate> {

c20.indd 456c20.indd 456 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 457

 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@end

 5. In Interface Builder, perform the following actions:

 ➤ Control-click and drag the File’s Owner item and drop it over the fi rst Text Field view. Select
latitudeTextField.

 ➤ Control-click and drag the File’s Owner item and drop it over the second Text Field view.
Select longitudeTextField.

 ➤ Control-click and drag the File’s Owner item and drop it over the third Text Field view.
Select accuracyTextField.

 6. In the LBSViewController.m fi le, add the following statements that appear in bold:

#import “LBSViewController.h”

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];
 [super viewDidLoad];
}

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---

c20.indd 457c20.indd 457 05/12/11 1:36 PM05/12/11 1:36 PM

458 ❘ CHAPTER 20 DISPLAYING MAPS

 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];
}

- (void) locationManager:(CLLocationManager *) manager
 didFailWithError:(NSError *) error {
 NSString *msg = [[NSString alloc]
 initWithString:@”Error obtaining location”];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Error”
 message:msg
 delegate:nil
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];
 [alert show];
 [msg release];
 [alert release];
}

- (void)dealloc {
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

 7. Press Command-R to test the application on the iPhone Simulator.
The Simulator will ask for permission to use your current location, so
click OK. Observe the latitude, longitude, and accuracy reported (see
Figure 20-7). The accuracy value indicates the radius of uncertainty
for the location, measured in meters.

How It Works

First, to use the CLLocationManager class, you needed to implement the
CLLocationManagerDelegate protocol in your View Controller:

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate> {

When the View is loaded, you create an instance of the CLLocationManager class:

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;

FIGURE 20-7

c20.indd 458c20.indd 458 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 459

 [lm startUpdatingLocation];
 [super viewDidLoad];
}

You then proceeded to specify the desired accuracy using the desiredAccuracy property. You can use
the following constants to specify the accuracy that you want:

 ➤ kCLLocationAccuracyBestForNavigation

 ➤ kCLLocationAccuracyBest

 ➤ kCLLocationAccuracyNearestTenMeters

 ➤ kCLLocationAccuracyHundredMeters

 ➤ kCLLocationAccuracyKilometer

 ➤ kCLLocationAccuracyThreeKilometers

While you can specify the accuracy that you want, the actual accuracy is not guaranteed. Also, specifying
a location with greater accuracy takes a signifi cant amount of time and your device’s battery power.

The distanceFilter property enables you to specify the distance a device must move laterally before
an update is generated. The unit for this property is in meters, relative to its last position. To be notifi ed
of all movements, use the kCLDistanceFilterNone constant.

Finally, you start the location manager using the startUpdatingLocation method. The user can enable/
disable location services in the Settings application. If the service is not enabled and you proceed with the
location update, the application asks the user if he or she would like to enable the location services. To
stop the location manager, simply use the stopUpdatingLocation method. Remember to do this when
you are done with the location tracking; otherwise, the battery of your device will run down quickly.

To obtain location information, you need to handle two events:

 ➤ locationManager:didUpdateToLocation:fromLocation:

 ➤ locationManager:didFailWithError:

When a new location value is available, the locationManager:didUpdateToLocation:fromLocation:
event is fi red. If the location manager cannot determine the location, it fi res the
locationManager:didFailWithError: event.

When a location value is obtained, you display its latitude and longitude, along with its accuracy, using
the CLLocation object:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@”%f”,

c20.indd 459c20.indd 459 05/12/11 1:36 PM05/12/11 1:36 PM

460 ❘ CHAPTER 20 DISPLAYING MAPS

 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];
}

The horizontalAccuracy property of the CLLocation object specifi es the radius of accuracy, in meters.

Specifying the Hardware Requirement for Location Tracking

While most iOS devices support GPS capabilities, there are still some models that do not support it.
For example, the iPod touch does not have a built-in GPS receiver. Hence, if your application uses
location-based services, it is strongly recommended that you specify the hardware requirements
using the UIRequiredDeviceCapabilities key in the .plist fi le. As shown in Figure 20-8, this key
has two items: gps and location-services. If you only want higher-accuracy location data using
GPS, you just need to add the gps item. If you want to use the GPS as well as cellular and wireless
network triangulation, you need to specify both gps and location-services.

FIGURE 20-8

Setting the key in the .plist fi le ensures that AppStore will only install your application on devices
that satisfy your hardware requirements. For example, if you specify only the gps item, then iPod
touch users will not be able to install your application.

Displaying Location Using a Map

Obtaining the location value of a position is interesting, but it isn’t very useful if you can’t visually
locate it on a map. Hence, the ideal situation would be to use the location information to display

c20.indd 460c20.indd 460 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 461

the location on a map. In the following Try It Out, you will use the Map Kit that you learned how
to use in the fi rst part of this chapter to display the map of the location coordinates returned by the
Core Location framework. You will also learn how to create the map programmatically, instead of
creating it in Interface Builder.

TRY IT OUT Displaying the Location Using a Map

 1. Using the LBS project that you just created, add the MapKit
.framework to the Frameworks folder (see Figure 20-9).

 2. Add the following bold statements to the LBSViewController.h fi le:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@end

 3. In the LBSViewController.m fi le, add the following bold statements:

#import “LBSViewController.h”

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];

FIGURE 20-9

c20.indd 461c20.indd 461 05/12/11 1:36 PM05/12/11 1:36 PM

462 ❘ CHAPTER 20 DISPLAYING MAPS

 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

 [super viewDidLoad];
}

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];
}

- (void)dealloc {
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];

 4. Press Command-R to test the application on the iPhone
Simulator. Observe the map displaying the location reported by the
location manager (see Figure 20-10). The center of the map is
the location reported. FIGURE 20-10

c20.indd 462c20.indd 462 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 463

NOTE If you test the application on an actual iPhone device, you will see that
the map updates itself dynamically when you move about. On the iPhone
Simulator, you can simulate movement by selecting Debug ➪ Location and
choosing the desired location simulation (see Figure 20-11).

FIGURE 20-11

How It Works

To use the Map Kit in your application, you fi rst needed to add the MapKit.framework to your project.

Then, you implemented the MKMapViewDelegate protocol in the View Controller to handle the various
methods associated with the MapView:

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {

c20.indd 463c20.indd 463 05/12/11 1:36 PM05/12/11 1:36 PM

464 ❘ CHAPTER 20 DISPLAYING MAPS

When the view has loaded, you dynamically create an instance of the MKMapView class and set the map
type (hybrid — map and satellite) to display:

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

In this case, you specifi ed the size of the map to display. You set the delegate property to self so that
the View Controller can implement the methods declared in the MKMapViewDelegate protocol.

When the location information is updated, you zoom into the location using the setRegion: method of
the mapView object:

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];

NOTE For more information on the MKMapView class, refer to Apple’s
documentation at http://developer.apple.com/library/ios/
#documentation/MapKit/Reference/MKMapView_Class/MKMapView/

MKMapView.html.

Getting Directional Information

Most iOS devices come with a built-in compass. The following Try It Out shows you how to
programmatically obtain directional information using this feature.

TRY IT OUT Incorporating a Compass

You need a real device (iPhone) to test this application.

1. Using the LBS project, add an image named Compass.gif to the Supporting Files folder of the
project (see Figure 20-12).

2. In Interface Builder, drag and drop an Image View onto the View window and set its Image
attribute to Compass.gif and the View Mode attribute to Aspect Fit in the Attributes Inspector
window. Also, add a Label to the View window (see Figure 20-13).

c20.indd 464c20.indd 464 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 465

 3. In the LBSViewController.h fi le, add the following bold statements:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface LBSViewController : UIViewController

FIGURE 20-12

FIGURE 20-13

c20.indd 465c20.indd 465 05/12/11 1:36 PM05/12/11 1:36 PM

466 ❘ CHAPTER 20 DISPLAYING MAPS

<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;

@end

 4. In Interface Builder, perform the following actions:

 ➤ Control-click and drag the File’s Owner item and drop it over the Image View. Select
compass.

 ➤ Control-click and drag the File’s Owner item and drop it over the Label. Select heading.

 5. In the LBSViewController.m fi le, add the following bold statements:

#import “LBSViewController.h”

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

@synthesize compass;
@synthesize heading;

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@”%.2f degrees”,
 newHeading.magneticHeading];

 //---headings is in degrees---
 double d = newHeading.magneticHeading;

 //---convert degrees to radians---
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);
}

c20.indd 466c20.indd 466 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 467

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];

 //---get the compass readings---
 [lm startUpdatingHeading];

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

 [super viewDidLoad];
}

- (void)dealloc {
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

 6. Add the CoreGraphics.framework to your project
if it is not already added to the project (in the beta
version of the SDK, this framework is not added in
by default).

 7. Press Command-R to test the application on an
actual iPhone. Observe the image as you turn the
device (see Figure 20-14).

How It Works

Getting directional information is similar to getting location data; you use the Core Location
framework. Instead of calling the startUpdatingLocation method of the CLLocationManager object,
you call the startUpdatingHeading method:

 //---get the compass readings---
 [lm startUpdatingHeading];

FIGURE 20-14

c20.indd 467c20.indd 467 05/12/11 1:36 PM05/12/11 1:36 PM

468 ❘ CHAPTER 20 DISPLAYING MAPS

When directional information is available, the locationManager:didUpdateHeading: method will
continually fi re:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@”%.2f degrees”,
 newHeading.magneticHeading];

 //---headings is in degrees---
 double d = newHeading.magneticHeading;

 //---convert degrees to radians---
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);

The magneticHeading property of the CLHeading parameter will contain the readings in degrees, with
0 representing magnetic North. The ImageView is then rotated based on the value of the heading. Note
that you need to convert the degrees into radians for the CGAffineTransformMakeRotation() method.

Rotating the Map

The previous section showed how you can programmatically rotate the image of a compass based
on the directional heading information obtained from the Core Location framework. Using this
concept, you could also rotate the map whenever the direction of your device changes. This is very
useful when you are using the map for navigational purposes. The following Try It Out shows how
you can rotate the map based on your headings.

TRY IT OUT Rotating the Map

 1. Using the LBS project, select the LBSViewController.xib fi le to edit it in Interface Builder.

 2. Drag and drop a View view from the Object Library and set its size and location via its Size
Inspector window as follows (see also Figure 20-15):

 ➤ X: 0

 ➤ Y: 130

 ➤ W: 320

 ➤ H: 330

 3. In the Attributes Inspector window for the View, check the Clip Subviews option (see
Figure 20-16).

c20.indd 468c20.indd 468 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 469

FIGURE 20-15

FIGURE 20-16

c20.indd 469c20.indd 469 05/12/11 1:36 PM05/12/11 1:36 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

470 ❘ CHAPTER 20 DISPLAYING MAPS

 4. In Xcode, add the following bold statements to the LBSViewController.h fi le:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
 IBOutlet UIView *viewForMap;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;
@property (nonatomic, retain) UIView *viewForMap;

@end

 5. In Interface Builder, Control-click and drag the File’s Owner item and drop it over the newly
added View view. Select viewForMap.

 6. Add the following bold statements to the LBSViewController.m fi le:

#import “LBSViewController.h”

@implementation LBSViewController

@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

@synthesize compass;
@synthesize heading;

@synthesize viewForMap;

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;

c20.indd 470c20.indd 470 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 471

 [lm startUpdatingLocation];

 //---get the compass readings---
 [lm startUpdatingHeading];

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(-90, -85, 500,500)];

 //initWithFrame:CGRectMake(0, 130, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;

 // [self.view addSubview:mapView];
 [self.viewForMap addSubview:mapView];

 [super viewDidLoad];
}

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@”%.2f degrees”,
 newHeading.magneticHeading];

 //---headings is in degrees---
 double d = newHeading.magneticHeading;

 //----convert degrees to radians----
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);

 //---rotate the map---
 mapView.transform = CGAffineTransformMakeRotation(-radians);

}

- (void)dealloc {
 [viewForMap release];
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];

 7. Deploy the application to a real iPhone device. Observe that as you rotate the iPhone, the map
rotates as well.

c20.indd 471c20.indd 471 05/12/11 1:36 PM05/12/11 1:36 PM

472 ❘ CHAPTER 20 DISPLAYING MAPS

How It Works

Rotating the map is actually very simple. While you might fi rst assume that the easiest way would be to
apply the transformation to the mapView, doing that rotates not only the map, but the entire rectangle
(see Figure 20-17).

FIGURE 20-17

The trick is to embed the mapView within another View view and rotate it within the View. Hence, you
added another View view (viewForMap) in the View window and set it to Clip Subviews. Essentially, all
the views added to this View will not display beyond its boundary.

Instead of displaying the map in the original size, you needed to set it to a minimum of 459.67 x 459.67
pixels. This is the length of the diagonal of the viewable rectangle of the map. For simplicity, round it
up to 500 x 500 pixels.

The mapView is then added to viewForMap, instead of self.view:

 // [self.view addSubview:mapView];
 [self.viewForMap addSubview:mapView];

c20.indd 472c20.indd 472 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 473

Recall that the initial position of the mapView was (0, 130):

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 130, 320, 340)];

But it must now be changed to (�90, �85):

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(-90, -85, 500,500)];
 //initWithFrame:CGRectMake(0, 130, 320, 340)];

Figure 20-18 shows how the new coordinate of (�90, �85) was derived. Remember that when
you try to add a view to another view, the coordinate specifi ed is always with respect to the view you
are adding to. In this case, the reference point (0,0) is at viewForMap.

FIGURE 20-18

Finally, to rotate the map, you applied the CGAffineTransformMakeRotation() method to the
mapView:

 //---rotate the map---
 mapView.transform = CGAffineTransformMakeRotation(-radians);

c20.indd 473c20.indd 473 05/12/11 1:36 PM05/12/11 1:36 PM

474 ❘ CHAPTER 20 DISPLAYING MAPS

Displaying Annotations

So far, you have used Core Location to report your current location and heading, and then Map Kit
to display a map representing your location. A visual improvement you can make to the project is to
add a pushpin to the map, representing your current location.

In the following Try It Out, you learn how to add annotations to the map in Map Kit. Annotations
enable you to display pushpins on the map, denoting specifi c locations.

TRY IT OUT Displaying a Pushpin

1. Continuing with the LBS project, add a new Objective-C class fi le to the project (see Figure 20-20).

2. Name it MyAnnotation.m. Once it is added, you should see the MyAnnotation.h and
MyAnnotation.m fi les under the project (see Figure 20-21).

NOTE In iOS 5, you can also use the new setUserTrackingMode:animated:
method to automatically display a blue circle on the map showing the location of
the user:

 [mapView setUserTrackingMode:MKUserTrackingModeFollowWithHeading
 animated:YES];

The MKUserTrackingModeFollowWithHeading constant causes the map to move
with the user (see Figure 20-19) as well as rotate automatically based on the
heading information.

FIGURE 20-19

c20.indd 474c20.indd 474 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 475

FIGURE 20-20

 3. Populate the MyAnnotation.h fi le as follows:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface MyAnnotation : NSObject <MKAnnotation> {
 CLLocationCoordinate2D coordinate;
 NSString *title;
 NSString *subtitle;
}

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, readonly, copy) NSString *title;
@property (nonatomic, readonly, copy) NSString *subtitle;

-(id)initWithCoordinate:(CLLocationCoordinate2D) c
 title:(NSString *) t
 subtitle:(NSString *) st;

@end

 4. Populate the MyAnnotation.m fi le as follows:

#import “MyAnnotation.h”

@implementation MyAnnotation

@synthesize coordinate;

FIGURE 20-21

c20.indd 475c20.indd 475 05/12/11 1:36 PM05/12/11 1:36 PM

476 ❘ CHAPTER 20 DISPLAYING MAPS

@synthesize title;
@synthesize subtitle;

- (id)init
{
 CLLocationCoordinate2D location;
 location.latitude = 0;
 location.longitude = 0;
 return [self initWithCoordinate:coordinate
 title:nil
 subtitle:nil];
}

-(id)initWithCoordinate:(CLLocationCoordinate2D) c
 title:(NSString *) t
 subtitle:(NSString *) st {
 self = [super init];
 coordinate = c;
 title = [t retain];
 subtitle = [st retain];
 return self;
}

- (void) dealloc{
 [title release];
 [subtitle release];
 [super dealloc];
}

@end

 5. In the LBSViewController.h fi le, add the following bold statements:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

#import “MyAnnotation.h”

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
 IBOutlet UIView *viewForMap;

 MyAnnotation *annotation;
}

@property (retain, nonatomic) UITextField *accuracyTextField;

c20.indd 476c20.indd 476 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 477

@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;
@property (nonatomic, retain) UIView *viewForMap;

@end

 6. In the LBSViewController.m fi le, add the following bold statements:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];

 //---display an annotation here---
 if (!annotation) {
 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@”You are here”
 subtitle:[NSString
 stringWithFormat:@”Lat: %@. Lng: %@”,
 latitudeTextField.text,
 longitudeTextField.text]];
 [mapView addAnnotation:annotation];

c20.indd 477c20.indd 477 05/12/11 1:36 PM05/12/11 1:36 PM

478 ❘ CHAPTER 20 DISPLAYING MAPS

 }
}

- (void)dealloc {
 [annotation release];
 [viewForMap release];
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

 7. Press Command-R to test the application on the iPhone Simulator.
You’ll see the pushpin inserted into the current position. When you tap
on it, it displays the information in the annotation view as shown in
Figure 20-22.

How It Works

You fi rst created the MyAnnotation class, which inherits from the MKAnnotation base class. Within the
MyAnnotation class, you implemented several properties (including coordinate, which specifi es the
center point of the annotation), in particular:

 ➤ title property — Returns the title to be displayed on the annotation

 ➤ subtitle property — Returns the subtitle to be displayed on the annotation

As you get a location of the device, you display an annotation to represent the current location:

 //---display an annotation here---
 if (!annotation) {
 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@”You are here”
 subtitle:[NSString
 stringWithFormat:@”Lat: %@. Lng: %@”,
 latitudeTextField.text,
 longitudeTextField.text]];
 [mapView addAnnotation:annotation];

To remove the annotation from the map, use the removeAnnotation: method of the MKMapView object.

Reverse Geocoding

While knowing your location coordinates is useful, and displaying your location on the Google Maps is
cool, the capability to know your current address is even cooler! The process of fi nding your address
from a pair of latitude and longitude coordinates is known as reverse geocoding. The following

FIGURE 20-22

c20.indd 478c20.indd 478 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 479

Try It Out shows how to obtain the address of a location given its latitude and longitude. You will do
so via the API exposed by the Core Location framework.

TRY IT OUT Obtaining an Address from Latitude and Longitude

 1. Continuing with the LBS project, add the following bold statements to the LBSViewController.h fi le:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

#import “MyAnnotation.h”

@interface LBSViewController : UIViewController
<CLLocationManagerDelegate, MKMapViewDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
 MKMapView *mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
 IBOutlet UIView *viewForMap;

 MyAnnotation *annotation;
 NSString *location;

 CLGeocoder *geocoder;
}

@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;
@property (nonatomic, retain) UIView *viewForMap;

@end

 2. In the LBSViewController.m fi le, add the following bold statements:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---

c20.indd 479c20.indd 479 05/12/11 1:36 PM05/12/11 1:36 PM

480 ❘ CHAPTER 20 DISPLAYING MAPS

 NSString *lng = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];

 //---display an annotation here---
 if (!annotation) {
 //---perform reverse geocoding---
 [geocoder reverseGeocodeLocation:newLocation
 completionHandler:^(NSArray *placemark, NSError *error){
 for (int i=0; i<=[placemark count] - 1; i++) {
 location =
 [NSString stringWithFormat:@”%@, %@”,
 ((CLPlacemark *) [placemark objectAtIndex:i]).locality,
 ((CLPlacemark *) [placemark objectAtIndex:i]).country];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Your location”
 message:location
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
 }];

 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@”You are here”
 subtitle:[NSString
 stringWithFormat:@”Lat: %f. Lng: %f”,
 newLocation.coordinate.latitude,
 newLocation.coordinate.longitude]];

 [mapView addAnnotation:annotation];
 }

c20.indd 480c20.indd 480 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 481

}

- (void)dealloc {
 [annotation release];
 [viewForMap release];
 [compass release];
 [heading release];
 [mapView release];
 [lm stopUpdatingLocation];
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
 [super dealloc];
}

 3. Press Command-R to test the application on the iPhone Simulator.
Notice that when the address of the location is found, an alert is
displayed (see Figure 20-23).

How It Works

To perform reverse geocoding, you use the CLGeocoder class:

 CLGeocoder *geocoder;

The CLGeocoder class (located in the Core Location framework) is new in iOS 5 and replaces the older
MKReverseGeocoder class (from the Map Kit framework), which has now been deprecated.

When a location is obtained (via the locationManager:didUpdateToLocation:fromLocation:
event), you instantiate the CLGeocoder class by setting it to a location coordinate via the
reverseGeocodeLocation:completionHandler: method:

 //---display an annotation here---
 if (!annotation) {
 //---perform reverse geocoding---
 [geocoder reverseGeocodeLocation:newLocation
 completionHandler:^(NSArray *placemark, NSError *error){
 for (int i=0; i<=[placemark count] - 1; i++) {
 location =
 [NSString stringWithFormat:@”%@, %@”,
 ((CLPlacemark *) [placemark objectAtIndex:i]).locality,
 ((CLPlacemark *) [placemark objectAtIndex:i]).country];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Your location”
 message:location
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
 }];

FIGURE 20-23

c20.indd 481c20.indd 481 05/12/11 1:36 PM05/12/11 1:36 PM

482 ❘ CHAPTER 20 DISPLAYING MAPS

The CLGeocoder class works asynchronously, and will fi re the CLGeocodeCompletionHandler block
when an address has been found. The address(es) found are encapsulated in the placemark array, and
here you simply printed out all the addresses using the alert view.

Displaying a Disclosure Button

When displaying an annotation on the map, it is customary to provide users with the option to
select the annotation so that more details about the location can be shown. For example, the user
may want to know the detailed address of the location, or you can provide routing information for
the selected location. In Map Kit, you can add this option through a detail disclosure button. The
following Try It Out shows how to display the disclosure button in an annotation.

TRY IT OUT Displaying a Disclosure Button

 1. Continuing with the LBS project, add the following methods to the LBSViewController.m fi le:

- (MKAnnotationView *)mapView:(MKMapView *)aMapView
 viewForAnnotation:(id)ann {

 NSString *identifier = @”myPin”;
 MKPinAnnotationView *pin = (MKPinAnnotationView *)
 [aMapView dequeueReusableAnnotationViewWithIdentifier:identifier];
 if (pin == nil) {
 pin = [[[MKPinAnnotationView alloc] initWithAnnotation:ann
 reuseIdentifier:identifier]
 autorelease];
 } else {
 pin.annotation = ann;
 }

 //---display a disclosure button on the right---
 UIButton *myDetailButton =
 [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
 myDetailButton.frame = CGRectMake(0, 0, 23, 23);
 myDetailButton.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 myDetailButton.contentHorizontalAlignment =
 UIControlContentHorizontalAlignmentCenter;

 [myDetailButton addTarget:self
 action:@selector(checkButtonTapped:)
 forControlEvents:UIControlEventTouchUpInside];

 pin.rightCalloutAccessoryView = myDetailButton;
 pin.enabled = YES;
 pin.animatesDrop=TRUE;
 pin.canShowCallout=YES;

 return pin;
}

-(void) checkButtonTapped:(id) sender {

c20.indd 482c20.indd 482 05/12/11 1:36 PM05/12/11 1:36 PM

Getting Location Data ❘ 483

 //---know which button was clicked;
 // useful for multiple pins on the map---
 // UIControl *btnClicked = sender;
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Your Current Location”
 message:location
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

 2. Press Command-R to test the application on the iPhone Simulator.
The annotation view now displays a disclosure button to the right of it
(see Figure 20-24). Clicking the button displays an alert view.

How It Works

What you did was override the mapView:viewForAnnotation: method
(defi ned in the MKMapViewDelegate protocol), which is fi red every time you
add an annotation to the map.

Note the following block of code:

 NSString *identifier = @”myPin”;
 MKPinAnnotationView *pin = (MKPinAnnotationView *)
 [aMapView dequeueReusableAnnotationViewWithIdentifier:identifier];
 if (pin == nil) {
 pin = [[[MKPinAnnotationView alloc] initWithAnnotation:ann
 reuseIdentifier:identifier]
 autorelease];
 } else {
 pin.annotation = ann;
 }

It tries to reuse any annotation objects that are currently not visible on the screen. Imagine you have
10,000 annotations on the map; maintaining MKPinAnnotationView objects in memory is not a
feasible option (too much memory is used). Hence, this code tries to reuse MKPinAnnotationView
objects that are currently not visible on the screen.

The following code block displays a disclosure button next to the annotation:

 //---display a disclosure button on the right---
 UIButton *myDetailButton =
 [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
 myDetailButton.frame = CGRectMake(0, 0, 23, 23);
 myDetailButton.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 myDetailButton.contentHorizontalAlignment =
 UIControlContentHorizontalAlignmentCenter;

 [myDetailButton addTarget:self
 action:@selector(checkButtonTapped:)

FIGURE 20-24

c20.indd 483c20.indd 483 05/12/11 1:36 PM05/12/11 1:36 PM

484 ❘ CHAPTER 20 DISPLAYING MAPS

 forControlEvents:UIControlEventTouchUpInside];

 pin.rightCalloutAccessoryView = myDetailButton;
 pin.enabled = YES;
 pin.animatesDrop=TRUE;
 pin.canShowCallout=YES;

When the disclosure button is clicked, it fi res the checkButtonTapped: method:

-(void) checkButtonTapped:(id) sender {
 //---know which button was clicked;
 // useful for multiple pins on the map---
 // UIControl *btnClicked = sender;
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Your Current Location”
 message:location
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

In this case, you simply displayed an Alert view. You can also display another View window to show
more detailed information.

SUMMARY

This chapter explained how to use the Map Kit framework to display the Google Maps in your
iPhone application. You also saw how to use the Core Location framework to help you obtain your
location information. Combining the Map Kit and the Core Location frameworks enables you to
create very compelling location-based services.

EXERCISES

 1. Name the property of the MKMapView class that enables you to show your current location on the

map.

 2. Name the protocol that you need to implement in order to monitor changes in your map.

 3. Name the method that you need to call to start updating your location.

 4. Name the method that you need to call to start updating your heading.

 5. Name the class responsible for reverse geocoding.

Answers to the exercises can be found in Appendix D.

c20.indd 484c20.indd 484 05/12/11 1:36 PM05/12/11 1:36 PM

Summary ❘ 485

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Framework for displaying

Google Maps

Map Kit

Framework for obtaining

geographical location

Core Location

Class for displaying Google Maps MKMapView

Showing current location

on the map

showsUserLocation

Monitoring changes in the map Implement the MKMapViewDelegate protocol.

Changing the zoom level of the map Set the latitudeDelta and longitudeDelta properties

of the map.

Monitoring changes in location Implement the CLLocationManagerDelegate protocol.

Getting location updates Call the startUpdatingLocation method.

Getting directional updates Call the startUpdatingHeading method.

Rotating the map Embed the MapView in another View and rotate the

MapView.

Displaying annotations Create a class that inherits from the MKAnnotation

base class.

c20.indd 485c20.indd 485 05/12/11 1:36 PM05/12/11 1:36 PM

c20.indd 486c20.indd 486 05/12/11 1:36 PM05/12/11 1:36 PM

Programming Background
Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How background code execution works in your iPhone applications

 ➤ Monitoring application states

 ➤ How to detect and opt out of background execution

 ➤ How to track location information in the background

 ➤ Creating local notifi cations

One of the main features of iOS beginning with version 4 is its support for background
applications. Unlike previous versions of the iPhone OS, iOS 4 (and later) does not
automatically terminate your application when you press the Home button on your device.
Instead, your application is put into a suspended state and all processing is paused. When
you tap on the application icon again, the application resumes from its suspended state and
continues execution. If your application should continue executing in the background, you
need to modify it to inform the OS.

In this chapter, you will examine how background execution works and some of the limitations
placed on your applications. In particular, you will learn how to modify the location application
covered in Chapter 20 so that it will continue working even after the user has switched it to the
background. Last but not least, you will learn about the local notifi cation feature, which was
introduced with iOS 4.

21

c21.indd 487c21.indd 487 05/12/11 1:29 PM05/12/11 1:29 PM

488 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

UNDERSTANDING BACKGROUND EXECUTION ON THE IOS

While iOS supports background code execution, you need to understand several things before you
write your application:

 ➤ In order to support background code execution, all applications must be compiled against the
latest iOS SDK. In other words, if you have downloaded an application from the App Store
that is compiled using an older SDK (prior to 4.0), the application will still terminate when
you press the Home button on your iOS 5 device.

 ➤ Background code execution is limited to three specifi c types of applications:

 ➤ Audio — Playing music in the background

 ➤ Location — Getting location data in the background

 ➤ Voice Over IP (VOIP) — Making phone calls through an Internet connection

 ➤ If an application does not meet any of the preceding three criteria, it will be suspended when
the Home button is pressed.

 ➤ When an application switches to the background (regardless of whether it is allowed to
execute in the background or not), you should always disconnect all network connections
(with the exception of VOIP applications). Applications that have active network connections
are automatically terminated by the OS when they enter background mode. For example, if
your location-based application is transmitting location data to a remote server, you should
disable the transmission when the application is switched to the background. While you
can continue receiving location data, transmitting it over a network is prohibited when the
application is in the background. In this scenario, you might want to log the location data to
a database and resend it to the remote server when the application is in the foreground again.

Programming multitasking iOS applications can be a very complex task. The following sections
touch on some of the basics to get you started quickly.

Examining the Diff erent Application States

The iOS includes events that you can handle in your application delegate so that you can monitor
your application’s current state. The following Try It Out shows the various states that an
application goes through.

TRY IT OUT Handling Application Event States

codefi le States.zip available for download at Wrox.com

 1. Using Xcode, create a Single View Application (iPhone) project and name it States. You will also
use the project name as the Class Prefi x and ensure that you have the Use Automatic Reference
Counting option unchecked.

 2. Add the following bold code to the StatesAppDelegate.m fi le:

c21.indd 488c21.indd 488 05/12/11 1:29 PM05/12/11 1:29 PM

Understanding Background Execution on the iOS ❘ 489

#import “StatesAppDelegate.h”

#import “StatesViewController.h”

@implementation StatesAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@”application:didFinishLaunchingWithOptions:”);
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[StatesViewController alloc]
 initWithNibName:@”StatesViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application
{
 NSLog(@”applicationWillResignActive:”);
 /*
 Sent when the application is about to move from active to inactive state.
This can occur for certain types of temporary interruptions (such as an
incoming phone call or SMS message) or when the user quits the application and
it begins the transition to the background state.
 Use this method to pause ongoing tasks, disable timers, and throttle down
OpenGL ES frame rates. Games should use this method to pause the game.
 */
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 NSLog(@”applicationDidEnterBackground:”);
 /*
 Use this method to release shared resources, save user data, invalidate
 timers, and store enough application state information to restore your
application to its current state in case it is terminated later.
 If your application supports background execution, this method is called
 instead of applicationWillTerminate: when the user quits.
 */
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 NSLog(@”applicationWillEnterForeground:”);
 /*
 Called as part of the transition from the background to the inactive state;
here you can undo many of the changes made on entering the background.
 */

c21.indd 489c21.indd 489 05/12/11 1:29 PM05/12/11 1:29 PM

490 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 NSLog(@”applicationDidBecomeActive:”);
 /*
 Restart any tasks that were paused (or not yet started) while the
application was inactive. If the application was previously in the background,
optionally refresh the user interface.
 */
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 NSLog(@”applicationWillTerminate:”);
 /*
 Called when the application is about to terminate.
 Save data if appropriate.
 See also applicationDidEnterBackground:.
 */
}

@end

 3. In Xcode, press Command-Shift-C to display
the output window.

 4. Press Command-R to test the application on
the iPhone Simulator.

 5. Observe the output in the output window (see
Figure 21-1).

 6. On the iPhone Simulator, press the Home button to send the application to the background. Note
the output in the output window again:

2011-08-16 19:38:04.253 States[2851:ef03] application:didFinishLaunchingWithOptions:
2011-08-16 19:38:04.257 States[2851:ef03] applicationDidBecomeActive:
2011-08-16 19:41:14.035 States[2851:ef03] applicationWillResignActive:
2011-08-16 19:41:14.036 States[2851:ef03] applicationDidEnterBackground:

 7. In the Home screen of the iPhone Simulator, click the application icon to start the application
again. Note the output in the output window:

2011-08-16 19:38:04.253 States[2851:ef03] application:didFinishLaunchingWithOptions:
2011-08-16 19:38:04.257 States[2851:ef03] applicationDidBecomeActive:
2011-08-16 19:41:14.035 States[2851:ef03] applicationWillResignActive:
2011-08-16 19:41:14.036 States[2851:ef03] applicationDidEnterBackground:
2011-08-16 19:42:11.173 States[2851:ef03] applicationWillEnterForeground:
2011-08-16 19:42:11.174 States[2851:ef03] applicationDidBecomeActive:

FIGURE 21-1

c21.indd 490c21.indd 490 05/12/11 1:29 PM05/12/11 1:29 PM

Understanding Background Execution on the iOS ❘ 491

How It Works

This exercise demonstrates the various states that an application goes through when it is loaded and
when it goes into background mode.

In general, you should save your application state in the applicationDidEnterBackground: event
when the application goes into the background. When an application goes into the background,
execution of the application is suspended.

When the application returns to the foreground, you should restore its state in the
applicationDidBecomeActive: event.

Opting Out of Background Mode

Although the default behavior of all applications compiled using the iOS SDK is to support
background mode, you can override this behavior by adding an entry to your application’s Info
.plist fi le. The following Try It Out demonstrates how.

TRY IT OUT Disabling Background Mode

 1. Using the same project created in the previous section, select the States-info.plist fi le,
right-click on any of the keys and select Show Raw Keys/Values. Then, add a new key to the
fi le and label the key UIApplicationExitsOnSuspend (see Figure 21-2).

FIGURE 21-2

 2. Set the value of this key to YES.

 3. Press Command-R to test the application on the
iPhone Simulator again. When the application
has been loaded onto the Simulator, press the
Home button. Note the output, as shown in
Figure 21-3. FIGURE 21-3

c21.indd 491c21.indd 491 05/12/11 1:29 PM05/12/11 1:29 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

492 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

How It Works

This example demonstrates how to disable the background mode for your application. By enabling
the UIApplicationExitsOnSuspend key in your application, the iOS automatically terminates your
application when the Home button is pressed.

Detecting Multitasking Support

Because not all devices running the iOS support background applications, it is important that your
applications have a way to detect this.

You can enable this via the following code snippet:

- (void)viewDidLoad
{
 UIDevice *device = [UIDevice currentDevice];
 bool backgroundSupported = NO;

 if ([device respondsToSelector:@selector(isMultitaskingSupported)])
 backgroundSupported = device.multitaskingSupported;

 if (backgroundSupported)
 NSLog(@”Supports multitasking”);
 else {
 NSLog(@”Does not support multitasking”);
 }
 [super viewDidLoad];
}

Tracking Locations in the Background

You have seen how an application behaves when it is suspended and how to disable multitasking for
an application. This section looks at an example that demonstrates how an application can continue
to run even when it is in the background.

One of the three types of applications permitted to run in the background is the location-based
services application. In Chapter 20, you learn how to use the Core Location framework to obtain
geographical data. The limitation with the example shown in that chapter is that as soon as the
application goes into the background, your application can no longer receive location updates.

The following Try It Out demonstrates how to enable the application to continue receiving location
updates even as it goes into the background.

TRY IT OUT Tracking Locations in the Background

 1. Using the LBS project created in Chapter 20, select the LBS-Info.plist fi le and add a new key to it.

 2. Right-click on any of the keys and select Show Raw Keys/Values. Add the key named
UIBackgroundModes (see Figure 21-4).

c21.indd 492c21.indd 492 05/12/11 1:29 PM05/12/11 1:29 PM

Understanding Background Execution on the iOS ❘ 493

 3. Expand the key and set its fi rst value to location (see Figure 21-5).

FIGURE 21-4

FIGURE 21-5

 4. In the LBSAppDelegate.m fi le, add the following bold statements:

#import “LBSAppDelegate.h”

#import “LBSViewController.h”

@implementation LBSAppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application

c21.indd 493c21.indd 493 05/12/11 1:29 PM05/12/11 1:29 PM

494 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@”application:didFinishLaunchingWithOptions:”);
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[LBSViewController alloc]
 initWithNibName:@”LBSViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application
{
 NSLog(@”applicationWillResignActive:”);
 /*
 Sent when the application is about to move from active to inactive state.
This can occur for certain types of temporary interruptions (such as an
incoming phone call or SMS message) or when the user quits the application and
it begins the transition to the background state.
 Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL
ES frame rates. Games should use this method to pause the game.

 */
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 NSLog(@”applicationDidEnterBackground:”);
 /*
 Use this method to release shared resources, save user data, invalidate
timers, and store enough application state information to restore your
application to its current state in case it is terminated later.
 If your application supports background execution, this method is called
 instead of applicationWillTerminate: when the user quits.
 */
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 NSLog(@”applicationWillEnterForeground:”);
 /*
 Called as part of the transition from the background to the inactive state;
here you can undo many of the changes made on entering the background.
 */
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 NSLog(@”applicationDidBecomeActive:”);
 /*
 Restart any tasks that were paused (or not yet started) while the
application was inactive. If the application was previously in the background,

c21.indd 494c21.indd 494 05/12/11 1:29 PM05/12/11 1:29 PM

Understanding Background Execution on the iOS ❘ 495

optionally refresh the user interface.
 */
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 NSLog(@”applicationWillTerminate:”);
 /*
 Called when the application is about to terminate.
 Save data if appropriate.
 See also applicationDidEnterBackground:.
 */
}

@end

 5. In the LBSViewController.m fi le, add the following bold statements:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //...
 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 //---print out the lat and long---
 NSLog(@”%@|%@”,latitudeTextField.text, longitudeTextField.text);

 [acc release];
 [lat release];
 [lng release];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;

 //...
}

 6. Press Command-R to test the application on the iPhone Simulator. When the application
has fi nished loading on the Simulator, press the Home button to send the application to the
background. Select Debug ➪ Location ➪ Freeway Drive. Observe the output shown in the output
window (press Command-Shift-C in Xcode):

2011-08-16 20:10:02.311 LBS[3322:11903]
 application:didFinishLaunchingWithOptions:
2011-08-16 20:10:02.327 LBS[3322:11903] applicationDidBecomeActive:
2011-08-16 20:10:06.868 LBS[3322:11903] applicationWillResignActive:

c21.indd 495c21.indd 495 05/12/11 1:29 PM05/12/11 1:29 PM

496 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

2011-08-16 20:10:06.869 LBS[3322:11903] applicationDidEnterBackground:
2011-08-16 20:10:12.655 LBS[3322:11903] 37.335275|-122.032547
2011-08-16 20:10:13.661 LBS[3322:11903] 37.335256|-122.032548
2011-08-16 20:10:14.655 LBS[3322:11903] 37.335236|-122.032549
2011-08-16 20:10:15.654 LBS[3322:11903] 37.335215|-122.032549
2011-08-16 20:10:16.655 LBS[3322:11903] 37.335196|-122.032550
2011-08-16 20:10:17.653 LBS[3322:11903] 37.335175|-122.032551
2011-08-16 20:10:18.650 LBS[3322:11903] 37.335151|-122.032553
2011-08-16 20:10:19.651 LBS[3322:11903] 37.335121|-122.032562
2011-08-16 20:10:20.683 LBS[3322:11903] 37.335072|-122.032604

How It Works

In order to enable your application to continue receiving location data even when it goes into the
background, you need to set the UIBackgroundModes key in the Info.plist fi le to location. The
UIBackgroundModes key is an array, and it can contain one or more of the following values:

 ➤ location

 ➤ audio

 ➤ voip

Note that no change to your code is required in order to enable your application to run in the
background — you need only set the UIBackgroundModes key. The output shown in the window proves
that even though the application has gone into the background, it continues to receive location data:

2011-08-16 20:10:06.868 LBS[3322:11903] applicationWillResignActive:
2011-08-16 20:10:06.869 LBS[3322:11903] applicationDidEnterBackground:
2011-08-16 20:10:12.655 LBS[3322:11903] 37.335275|-122.032547
2011-08-16 20:10:13.661 LBS[3322:11903] 37.335256|-122.032548
2011-08-16 20:10:14.655 LBS[3322:11903] 37.335236|-122.032549

Making Your Location Apps More Energy Effi cient

The project that you modifi ed in the previous section enables you to continuously track your
location even though the application may be running in the background. While some scenarios
require you to track all location changes, many do not. For example, your application may just need
to track a point every few hundred meters. In this case, it is important to prevent the application
from continuously tracking every single point, as this takes a heavy toll on the battery.

Instead of using the startUpdatingLocation method of the CLLocationManager class to receive
location updates, you can use the startMonitoringSignificantLocationChanges method,
like this:

- (void)viewDidLoad
{
 lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;

 //lm.distanceFilter = kCLDistanceFilterNone;

c21.indd 496c21.indd 496 05/12/11 1:29 PM05/12/11 1:29 PM

Understanding Background Execution on the iOS ❘ 497

 //[lm startUpdatingLocation];

 [lm startMonitoringSignificantLocationChanges];

 //---get the compass readings---
 [lm startUpdatingHeading];

 //...
 [super viewDidLoad];
}

The startMonitoringSignificantLocationChanges method reports location data only when the
device has moved a signifi cant distance. Specifi cally, it reports location data only when it detects
that the device has switched to another cell tower. This method works only with iPhones (and only
iPhone 3GS, iPhone 4, and iPhone 4S; the older iPhone 3G does not support this feature). If you use
this method to track location, the distanceFilter property is not needed. When a location update
is received, it calls the same locationManager:didUpdateToLocation:fromLocation: method to
report location data.

Using the startMonitoringSignificantLocationChanges method greatly reduces the power
consumption of your device, as it does not use the power-intensive GPS radio. Note also that if you
use this feature, there is no need to have the UIBackgroundModes key in the Info.plist fi le — the
OS automatically wakes your application up from suspended mode to receive the location data.

If your application is terminated when a new location update event is received, it will automatically
relaunch your application. To determine whether the application is restarted due to a change in
location, you can check for the UIApplicationLaunchOptionsLocationKey key in the application’s
delegate’s application:didFinishLaunchingWithOptions: event, like this:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSLog(@”application:didFinishLaunchingWithOptions:”);

 //---if application is restarted due to changes in location---
 if ([launchOptions
 objectForKey:UIApplicationLaunchOptionsLocationKey]) {

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”LBS app restarted”
 message:@”App restarted due to changes in location.”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];
 }

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]] autorelease];

c21.indd 497c21.indd 497 05/12/11 1:29 PM05/12/11 1:29 PM

498 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

 // Override point for customization after application launch.
 self.viewController = [[[LBSViewController alloc]
initWithNibName:@”LBSViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

Once the application is restarted, you should create another instance of the CLLocationManager
class and start the monitoring again.

To stop monitoring for location changes, use the stopMonitoringSignificantLocationChanges
method:

 [lm stopMonitoringSignificantLocationChanges];

Note that you need to test the preceding using a real device as it has no effect on the iPhone
Simulator.

LOCAL NOTIFICATION

In Chapter 19, you learn about the Apple Push Notifi cation service (APNs), which enables an
application to receive notifi cations even if it is no longer running on the device. Using the APNs, the
provider of an application can continuously keep the user updated, by pushing messages directly to
the user through Apple’s Push server.

In addition to the APNs, the iPhone also supports another notifi cation framework, local
notifi cations. While the notifi cations for APNs are sent by the application provider, local
notifi cations are scheduled by the application and delivered by the iOS on the same device. For
example, suppose you are writing a to-do list application. At a specifi c time, your application will
display notifi cations to the user, reminding them of some future tasks. This scenario is a perfect
example of the use of local notifi cations. Another good use of a local notifi cation is that of a
location application. The user may be running your application in the background, and when the
application detects that the user is in the vicinity of a certain location, it can display a notifi cation.

The following example illustrates the building blocks that you need to have in place in order to
create an application that uses local notifi cations.

TRY IT OUT Creating Local Notifi cations

codefi le LocalNotifi cation.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it
LocalNotifi cation. You need to use the project name (LocalNotifi cation) as the Class Prefi x and
ensure that you have the Use Automatic Reference Counting option unchecked.

 2. Select the LocalNotificationViewController.xib fi le to edit it in Interface Builder.

 3. Populate the View window with the following views (see Figure 21-6):

c21.indd 498c21.indd 498 05/12/11 1:29 PM05/12/11 1:29 PM

Local Notifi cation ❘ 499

 ➤ Label (name it Enter notifi cation message)

 ➤ Text Field

 ➤ Two Round Rect Button (name them Set and Cancel all notifi cations)

FIGURE 21-6

 4. In the LocalNotificationViewController.h fi le, add the following bold statements:

#import <UIKit/UIKit.h>

@interface LocalNotificationViewController : UIViewController
{
 IBOutlet UITextField *message;
}

@property (nonatomic, retain) UITextField *message;

-(IBAction) btnSet:(id) sender;
-(IBAction) btnCancelAll:(id) sender;
@end

 5. Back in Interface Builder, perform the following actions:

 ➤ Control-click the File’s Owner item and drag and drop it over the Text Field. Select message.

 ➤ Control-click the Set button and drag and drop it over the File’s Owner item. Select btnSet:.

c21.indd 499c21.indd 499 05/12/11 1:29 PM05/12/11 1:29 PM

500 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

 ➤ Control-click the Cancel All Notifi cations button and drag and drop it over the File’s Owner
item. Select btnCancelAll:.

 6. In the LocalNotificationViewController.m fi le, add the following bold statements:

#import “LocalNotificationViewController.h”

@implementation LocalNotificationViewController

@synthesize message;

-(IBAction) btnSet:(id) sender {
 UILocalNotification *localNotification =
 [[UILocalNotification alloc] init];

 //---set the notification to go off in 10 seconds time---
 localNotification.fireDate =
 [[NSDate alloc] initWithTimeIntervalSinceNow:10];

 //---the message to display for the alert---
 localNotification.alertBody = message.text;

 localNotification.applicationIconBadgeNumber = 1;

 //---uses the default sound---
 localNotification.soundName = UILocalNotificationDefaultSoundName;

 //---title for the button to display---
 localNotification.alertAction = @”View Details”;

 //---schedule the notification---
 [[UIApplication sharedApplication]
 scheduleLocalNotification:localNotification];

 [localNotification release];
}

-(IBAction) btnCancelAll:(id) sender {
 //---cancel all notifications---
 [[UIApplication sharedApplication] cancelAllLocalNotifications];
}

- (void)dealloc {
 [message release];
 [super dealloc];
}

 7. In the LocalNotificationAppDelegate.m fi le, add the following bold statements:

#import “LocalNotificationAppDelegate.h”

#import “LocalNotificationViewController.h”

@implementation LocalNotificationAppDelegate

@synthesize window = _window;

c21.indd 500c21.indd 500 05/12/11 1:29 PM05/12/11 1:29 PM

Local Notifi cation ❘ 501

@synthesize viewController = _viewController;

- (void) application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside application:didReceiveLocalNotification:”
 message:notification.alertBody
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

 UILocalNotification *localNotification =
 [launchOptions objectForKey:
 UIApplicationLaunchOptionsLocalNotificationKey];

 if (localNotification) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside application:didFinishLaunchingWithOptions:”
 message:localNotification.alertBody
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[LocalNotificationViewController alloc]
 initWithNibName:@”LocalNotificationViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

 8. Press Command-R to test the application on the iPhone Simulator.

 9. Enter the message Time’s up! and click the Set button to set the local notifi cation to fi re in ten
seconds (see Figure 21-7). Exit the application immediately by pressing the Home button. The
application will go into the background.

 10. Ten seconds later, the notifi cation will appear (see Figure 21-8). If you click the View Details
button, the application will return to the foreground. The alert view (see Figure 21-09) shows that
the application:didReceiveLocalNotification: event in the application delegate was fi red.

c21.indd 501c21.indd 501 05/12/11 1:29 PM05/12/11 1:29 PM

502 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

 11. Stop the project in Xcode and then go to the iPhone Simulator and
launch the project directly by clicking on the icon. Enter a notifi cation
message again and click the Set button again. This time, press the
Home button to exit the application and then double-click the Home
button and terminate the application so that it does not run in the
background anymore.

 12. Ten seconds later, the notifi cation will appear again. If you click the
View Details button, the application will return to the foreground.
This time, the alert view shows that the
application:didFinishLaunchingWithOptions: event in the
application delegate was fi red instead (see Figure 21-10).

How It Works

Creating a local notifi cation using the UILocalNotification class is very
straightforward:

 UILocalNotification *localNotification =
 [[UILocalNotification alloc] init];

Once you have obtained an instance of the UILocalNotification class, you need to confi gure the
object with various information, such as the amount of time after which the notifi cation will fi re,
the message to display, the badge number to display for your application icon, the sound to play, as well
as the caption of the button to display:

 //---set the notification to go off in 10 seconds time---
 localNotification.fireDate =

FIGURE 21-7 FIGURE 21-8 FIGURE 21-9

FIGURE 21-10

c21.indd 502c21.indd 502 05/12/11 1:29 PM05/12/11 1:29 PM

Local Notifi cation ❘ 503

 [[NSDate alloc] initWithTimeIntervalSinceNow:10];

 //---the message to display for the alert---
 localNotification.alertBody = message.text;

 localNotification.applicationIconBadgeNumber = 1;

 //---uses the default sound---
 localNotification.soundName = UILocalNotificationDefaultSoundName;

 //---title for the button to display---
 localNotification.alertAction = @”View Details”;

In the preceding code, you use the fireDate property to set the local
notifi cation to fi re in ten seconds. The alertBody property sets the
message to display. The applicationIconBadgeNumber property
displays a badge number next to the application’s icon (this badge
number is displayed when the local notifi cation fi res). The soundName
property enables you to specify the fi lename of a sound resource that
is bundled with your application. If you want to play the system’s
default sound, use the UILocalNotificationDefaultSoundName
constant. Finally, the alertAction property enables you to set the
button caption of the notifi cation (see Figure 21-11).

To schedule a future local notifi cation, use the scheduleLocalNotification: method of the
UIApplication class:

 //---schedule the notification---
 [[UIApplication sharedApplication]
 scheduleLocalNotification:localNotification];

If you want to display the notifi cation instantly, use the presentLocalNotificationNow: method
instead:

 //---display the notification now---
 [[UIApplication sharedApplication]
 presentLocalNotificationNow:localNotification];

This is very useful for cases in which your application is executing in the background and you want to
display a notifi cation to draw the user’s attention.

When the notifi cation is displayed (it will be displayed only if the application is not in the foreground),
the user has two options: Close the notifi cation or view the application that generated the notifi cation.
When the user views the notifi cation, the application:didReceiveLocalNotification: method in
the application’s delegate is called:

- (void) application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside
 application:didReceiveLocalNotification:”
 message:notification.alertBody

FIGURE 21-11

c21.indd 503c21.indd 503 05/12/11 1:29 PM05/12/11 1:29 PM

504 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];
}

Here, you can simply print out the details of the notifi cation through the notification parameter.

Note that the application:didReceiveLocalNotification: method is also called when the
application is running and the local notifi cation is fi red. In this case, the local notifi cation will not appear.

If the application is not running when the local notifi cation occurs, viewing the application will invoke
the application:didFinishLaunchingWithOptions: method instead:

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

 UILocalNotification *localNotification =
 [launchOptions objectForKey:
 UIApplicationLaunchOptionsLocalNotificationKey];

 if (localNotification) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside application:didFinishLaunchingWithOptions:”
 message:localNotification.alertBody
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]] autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[LocalNotificationViewController alloc]
 initWithNibName:@”LocalNotificationViewController” bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

To obtain more information about the notifi cation, use the launchOptions parameter, by querying the
details using the UIApplicationLaunchOptionsLocalNotificationKey constant.

To cancel all scheduled notifi cations, you can call the cancelAllLocalNotifications method of the
UIApplication class:

 //---cancel all notifications---
 [[UIApplication sharedApplication] cancelAllLocalNotifications];

c21.indd 504c21.indd 504 05/12/11 1:29 PM05/12/11 1:29 PM

Notifying Other Objects Using the NSNotifi cation Class ❘ 505

NOTIFYING OTHER OBJECTS USING THE

NSNOTIFICATION CLASS

In this book, you have seen that all the delegate methods of objects are defi ned in the same class
as the object. For example, one common class that you have seen is the UIAlertView class. When
you have more than one button displayed in a UIAlertView object, you need to implement the
alertView:clickedButtonAtIndex: method to handle the clicking of the buttons. This method
can be defi ned with the same class it is used in (for example, in a View Controller class), or it can be
declared separately in another class. However, if the method is defi ned in another class, how would
you notify the View Controller when a button is clicked? This is the challenge: How do different
classes communicate with one another? The following Try It Out shows you one way to do this
using the NSNotification class.

TRY IT OUT Using Notifi cations

codefi le Notifi cations.zip available for download at Wrox.com

 1. Using Xcode, create a new Single View Application (iPhone) project and name it Notifi cations.
You need to set the class prefi x to the project name and ensure that you have the Use Automatic
Reference Counting option unchecked.

 2. Add a new Objective-C Class fi le to the project and name it AlertViewDelegates.m.

 3. Add the following lines in bold to the AlertViewDelegates.h fi le:

#import <Foundation/Foundation.h>

@interface AlertViewDelegates : NSObject
<UIAlertViewDelegate>

@end

 4. Add the following lines in bold to the AlertViewDelegates.m fi le:

#import “AlertViewDelegates.h”

@implementation AlertViewDelegates

- (id)init
{
 self = [super init];
 if (self) {
 // Initialization code here.
 }

 return self;
}

- (void) alertView:(UIAlertView *)alertView

c21.indd 505c21.indd 505 05/12/11 1:29 PM05/12/11 1:29 PM

506 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog(@”Button %d was clicked.”, buttonIndex);
 NSDictionary *dict =
 [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSString stringWithFormat:@”%d”, buttonIndex],
 @”buttonIndex”, nil];

 //---send a notification to whoever is listening to tell
 // them that the user response has been handled---
 NSNotification *notification =
 [NSNotification notificationWithName:@”UserResponded”
 object:nil
 userInfo:dict] ;
 [[NSNotificationCenter defaultCenter] postNotification:notification];
 [dict release];
}

@end

 5. Add the following lines in bold to the NotificationsViewController.h fi le:

#import <UIKit/UIKit.h>
#import “AlertViewDelegates.h”

@interface NotificationsViewController : UIViewController
{
 AlertViewDelegates *del;
}

@end

 6. Add the following lines in bold to the NotificationsViewController.m fi le:

#import “NotificationsViewController.h”

@implementation NotificationsViewController

- (void)viewDidLoad
{
 del = [[AlertViewDelegates alloc] init];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Hello World”
 message:@”Hello, Objective-C”
 delegate:del
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Cancel”, nil];
 [alert show];
 [alert release];

 //---notification to listen for the completion of user’s response---
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(processNotification:)
 name:@”UserResponded”
 object:nil];

c21.indd 506c21.indd 506 05/12/11 1:29 PM05/12/11 1:29 PM

Notifying Other Objects Using the NSNotifi cation Class ❘ 507

 [super viewDidLoad];
}

//---called when there is a notification; a callback function---
-(void) processNotification:(NSNotification *) notification {
 NSDictionary *dict = [notification userInfo];
 NSLog(@”In processNotification:, Button clicked: %@”, [dict
 objectForKey:@”buttonIndex”])
}

-(void) dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [del release];
}

 7. Press Command-R to run the application. Click either the OK button or the Cancel button (see
Figure 21-12).

 8. Observe the output in the output window, as shown in Figure 21-13.

FIGURE 21-12 FIGURE 21-13

How It Works

You fi rst create a class called AlertViewDelegates to contain all the methods that are related to the
UIAlertView class. In particular, you implement the alertView:clickedButtonAtIndex: method:

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog(@”Button %d was clicked.”, buttonIndex);
 NSDictionary *dict =

c21.indd 507c21.indd 507 05/12/11 1:29 PM05/12/11 1:29 PM

508 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

 [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSString stringWithFormat:@”%d”, buttonIndex],
 @”buttonIndex”, nil];

 //---send a notification to whoever is listening to tell
 // them that the user response has been handled---
 NSNotification *notification =
 [NSNotification notificationWithName:@”UserResponded”
 object:nil
 userInfo:dict] ;
 [[NSNotificationCenter defaultCenter] postNotification:notification];
 [dict release];
}

Within this method, you create an NSDictionary object and use it to store the index of the button that
was clicked. You then create a notifi cation using the NSNotification class, and assign the dictionary
object to this notifi cation object. Essentially, you are broadcasting a notifi cation to other objects
listening for this notifi cation, named UserResponded.

In the View Controller, you instantiate the AlertViewDelegates class and pass it as the delegate of the
UIAlertView object:

 del = [[AlertViewDelegates alloc] init];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Hello World”
 message:@”Hello, Objective-C”
 delegate:del
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Cancel”, nil];
 [alert show];
 [alert release];

You then listen for a notifi cation named UserResponded:

 //---notification to listen for the completion of user’s response---
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(processNotification:)
 name:@”UserResponded”
 object:nil];

When a notifi cation is received, the processNotification: method will be called:

//---called when there is a notification; a callback function---
-(void) processNotification:(NSNotification *) notification {
 NSDictionary *dict = [notification userInfo];
 NSLog(@”In processNotification:, Button clicked: %@”, [dict
 objectForKey:@”buttonIndex”]);
}

Here, you extract the NSDictionary object that is attached to the notifi cation and print out the value
of the button index.

c21.indd 508c21.indd 508 05/12/11 1:29 PM05/12/11 1:29 PM

Summary ❘ 509

Finally, in the dealloc method of your view controller, remember to stop listening for the notifi cation:

-(void) dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [del release];
}

SUMMARY

In this chapter, you have seen how background execution works and how you can utilize it to make
your applications more useful. You have also seen the other types of notifi cations that you can
utilize in your applications — scheduling local notifi cations though the operating system, and using
the NSNotification class for notifying objects within your application.

Combining all the different concepts discussed in this chapter will enable you to write compelling
iOS applications.

EXERCISES

 1. Name the three types of applications that are allowed to execute in the background.

 2. Which devices support multitasking?

 3. For the CLLocationManager class, when should you use the startUpdatingLocation and

startMonitoringSignificantLocationChanges methods? Why?

 4. What is the diff erence between Apple Push Notifi cation service and local notifi cations?

Answers to the exercises can be found in Appendix D.

c21.indd 509c21.indd 509 05/12/11 1:29 PM05/12/11 1:29 PM

510 ❘ CHAPTER 21 PROGRAMMING BACKGROUND APPLICATIONS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Opting out of background

execution

Use the UIApplicationExitsOnSuspend key.

Tracking locations in the

background

Use the UIBackgroundModes key.

Monitoring signifi cant location

changes

Use the startMonitoringSignificantLocationChanges

method.

Creating local notifi cations Use the UILocalNotification class.

Scheduling a local notifi cation [[UIApplication sharedApplication] scheduleLocalNo

tification:localNotification];

Presenting a local notifi cation [[UIApplication sharedApplication] presentLocalNo

tificationNow:localNotification];

Notifying other objects when

an event occurs

Use the NSNotification and NSNotificationCenter

classes.

c21.indd 510c21.indd 510 05/12/11 1:29 PM05/12/11 1:29 PM

Testing on an Actual Device

Although the iOS Simulator is a very handy tool that enables you to test your iPhone/iPad
applications without needing an actual device, nothing beats testing on a real device.
This is especially true when you are ready to roll out your application to the world — you
must ensure that it works correctly on real devices. In addition, if your application requires
access to hardware features on an iPhone, iPod touch, or iPad, such as the accelerometer,
gyroscope, and GPS, you need to test it on a real device — the iPhone Simulator is simply
not adequate.

This appendix walks through the steps you need to take to test your applications on a real
device, be it the iPhone, iPod touch, or iPad. In addition, you will also learn how to prepare
your application for submission to the App Store, as well as how to distribute your application
using the Ad Hoc distribution method.

SIGNING UP FOR THE IOS DEVELOPER PROGRAM

The fi rst step toward testing your application on a real device is to sign up for the iOS
Developer Program at http://developer.apple.com/programs/ios/. Two programs are
available: Standard (Individual) and Enterprise. For most developers who want to release
applications on the App Store, the Standard program, which costs $99, is suffi cient. Check
out http://developer.apple.com/programs/start/standard/ to learn more about the
differences between the Standard and Enterprise programs.

If you just want to test your application on your actual iPhone/iPod touch, sign up for the
Standard program.

A

bapp01.indd 511bapp01.indd 511 05/12/11 2:24 PM05/12/11 2:24 PM

512 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

OBTAINING THE UDID OF YOUR DEVICE

To test your application on your device, you need to prepare your Mac and your device. The
following sections walk you through the necessary steps, from obtaining your certifi cate to
deploying your application onto the device.

First, you need to obtain the 40-character identifi er that uniquely identifi es your device. This identifi er
is known as the UDID — Unique Device Identifi er. Every device sold by Apple has a unique UDID.
To do so, connect your device to your Mac and start Xcode. Choose Window ➪ Organizer to launch
the Organizer application. Figure A-1 shows the Organizer application displaying the identifi er of my
iPad. Copy the identifi er and save it somewhere; you will need it later.

FIGURE A-1

If you are connecting your device to the Organizer for the fi rst time, click the Use for Development
button so that Organizer can prepare it for deployment. Essentially, you will be prompted to enter
your credentials for login to the iPhone Dev Center (see Figure A-2). Once you have entered your
username and password, Organizer will automatically register your device’s UDID with the iOS
Provisioning Portal.

If for some reason you are not prompted to enter your credentials, you can also manually register
your device’s UDID by right-clicking on the device name (see Figure A-3) and selecting Add Device
to Provisioning Portal.

bapp01.indd 512bapp01.indd 512 05/12/11 2:25 PM05/12/11 2:25 PM

Obtaining the UDID of Your Device ❘ 513

FIGURE A-2

FIGURE A-3

bapp01.indd 513bapp01.indd 513 05/12/11 2:25 PM05/12/11 2:25 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

514 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

LOGGING IN TO THE IOS PROVISIONING PORTAL

Once you have signed up for the iOS Developer Program, you can log in to the iOS Dev Center
website located at http://developer.apple.com/devcenter/ios/index.action. Figure A-4
shows the page displayed after you have logged in to the iOS Dev Center.

On the right side of the page is a section named iOS Developer Program. The fi rst item listed under
this section is iOS Provisioning Portal. This portal contains all the details about preparing your
Mac and devices for testing and deployment. Click the iOS Provisioning Portal item to display the
window shown in Figure A-5.

The pane on the left contains several links to pages where you can submit various information
required to prepare your Mac and devices for testing. The center pane contains the welcome
message and a Launch Assistant button. If you are using this page for the fi rst time, the Launch
Assistant provides an easy-to-follow series of guided instructions for testing your applications
on your devices. However, to help you better understand the details of the process, the following
sections describe each step by walking through the various links displayed on the left side of
the page.

FIGURE A-4

bapp01.indd 514bapp01.indd 514 05/12/11 2:25 PM05/12/11 2:25 PM

Generating a Certifi cate ❘ 515

GENERATING A CERTIFICATE

The fi rst step toward testing your application on a real device is to obtain a digital certifi cate from
Apple so that Xcode can use it to code-sign your application. Any applications that are run on your
devices must be code-signed. For testing purposes, you need a development certifi cate. Once you are
ready to distribute your application (such as through the App Store), you then need a distribution
certifi cate (discussed later in this Appendix).

To request a development certifi cate from Apple, you must generate a certifi cate signing request
(CSR). You can do this using the Keychain Access application located in the Applications/Utilities/
folder on your Mac.

In the Keychain Access application, choose Keychain Access ➪ Certifi cate Assistant, and select
Request a Certifi cate From a Certifi cate Authority (see Figure A-6).

FIGURE A-5

FIGURE A-6

bapp01.indd 515bapp01.indd 515 05/12/11 2:25 PM05/12/11 2:25 PM

516 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

In the Certifi cate Assistant dialog (see Figure A-7), enter your email address and name, check the
Saved to disk option, and click Continue.

You will be asked to save the request to a fi le. Use the default name suggested and click Save (see
Figure A-8).

FIGURE A-7 FIGURE A-8

On the iOS Provisioning Portal page, click the Certifi cates item displayed on the left (see Figure A-9).
Four tabs are displayed on the right side of the page: Development, Distribution, History, and How To.

In the Development tab, click the Request Certifi cate button to request a development certifi cate
from Apple. A detailed list of instructions will appear, telling you to generate a certifi cate request using
the Keychain Access application (see Figure A-10). As you have already performed this step earlier in
this Appendix, click the Choose fi le button to upload the certifi cate request fi le to Apple. After the fi le
is selected, click Submit to send it to Apple.

FIGURE A-9

bapp01.indd 516bapp01.indd 516 05/12/11 2:25 PM05/12/11 2:25 PM

Generating a Certifi cate ❘ 517

The development certifi cate will now have a status of Pending Issuance. Simply refresh the page or
click the Development tab once more and your development certifi cate should now be ready (see
Figure A-11).

FIGURE A-10

FIGURE A-11

bapp01.indd 517bapp01.indd 517 05/12/11 2:25 PM05/12/11 2:25 PM

518 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

Click the Download button to download the development certifi cate. When it is downloaded to your
Mac, double-click the developer_identity.cer fi le. When prompted, click OK. The certifi cate
will now be installed in the Keychain Access application, which you can verify (see Figure A-12).

FIGURE A-12

REGISTERING YOUR DEVICES

The next step is to register your devices with the iOS Provisioning Portal so that you can later
associate them with the provisioning profi les (more on this shortly). As mentioned in the beginning of
this appendix, when you connect your device to Organizer for the fi rst time, Organizer will attempt
to register your device with the iOS Provisioning Portal automatically. However, if you skipped that
step, or you want to register additional devices manually, you need to register them manually.

Back on the iOS Provisioning Portal page, click the Devices item displayed on the left side of the
page (see Figure A-13). On the right you will see options to both add devices and upload a list of
devices to register.

FIGURE A-13

bapp01.indd 518bapp01.indd 518 05/12/11 2:25 PM05/12/11 2:25 PM

Creating an Application ID ❘ 519

Click the Add Devices button to register one or more devices. Give your device a name and enter its
Device ID (see Figure A-14). Recall that you obtained the Device ID (UDID) of your device earlier,
in the “Obtaining the UDID of Your Device” section. To register additional devices, click the
plus (+) button. Then click Submit.

NOTE For the Standard Program, you can register up to 100 devices for testing.
All added devices count toward your 100-device limit, whether you use them or
not. In other words, if you register fi ve devices and then lose them in the bar,
you can register only 95 more devices — the slots taken up by the other fi ve
devices cannot be recovered. You can reset the list only when you renew your
membership annually.

CREATING AN APPLICATION ID

The next step of the process is to create an Application ID (App ID) that you use to identify your
application. An App ID is a series of characters used to uniquely identify an application
(or applications) on your iOS device. An App ID is represented in the following format: <Bundle
Seed ID>.<Bundle Identifi er>.

On the iOS Provisioning Portal page, click the App IDs item on the left (see Figure A-15). Click the
New App ID button to create a new App ID. On a new page, you enter the details for the App ID
(see Figure A-16).

FIGURE A-14

bapp01.indd 519bapp01.indd 519 05/12/11 2:25 PM05/12/11 2:25 PM

520 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

Enter a description for the App ID you are creating. For this example, it is MyiOS5AppID. This name
will be used to identify your App ID. Leave the Bundle Seed ID option as Use the Team ID. For the
Bundle Identifi er, you have two options:

FIGURE A-16

FIGURE A-15

bapp01.indd 520bapp01.indd 520 05/12/11 2:25 PM05/12/11 2:25 PM

Creating a Provisioning Profi le ❘ 521

 ➤ Give it a unique identifi er, e.g., com.yourcompany.appname

 ➤ Use a wildcard character (*) as the trailing character, e.g., com.yourcompany.*, or simply use *

Using the wildcard character enables you to use a single App ID for all your applications, whereas
if you use a unique identifi er for the Bundle Identifi er, you will need a unique App ID for each
application.

In general, it is easier to use the wildcard character, as you can use one App ID for all your
applications. Here, I used the * for the Bundle Identifi er. When you compile your application, this
wildcard will be substituted with the Bundle Identifi er specifi ed in the info.plist fi le in your Xcode.

CREATING A PROVISIONING PROFILE

In order for your application to be able to execute on a device, the device must be provisioned with a
fi le known as a provisioning profi le. A provisioning profi le contains one or more device IDs, and it
must be installed on all the devices to which you want to deploy your applications.

On the iOS Provisioning Portal page, click the Provisioning item displayed on the left (see Figure A-17).
Click the New Profi le button to create a new provisioning profi le.

FIGURE A-17

Under the Development tab, shown in Figure A-18, provide a name for your provisioning profi le,
check the certifi cate name, select the App ID created in the previous section, and then check all the
device names that you want to test on. Click Submit.

The provisioning profi le that you have created will now be pending issuance, as shown in the Status
fi eld in Figure A-19.

Refresh the page or click the Development tab again and the provisioning profi le should now be
ready for download (see Figure A-20). Download the generated provisioning profi le onto your Mac
by clicking the Download button.

bapp01.indd 521bapp01.indd 521 05/12/11 2:25 PM05/12/11 2:25 PM

522 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

FIGURE A-19

FIGURE A-20

FIGURE A-18

bapp01.indd 522bapp01.indd 522 05/12/11 2:25 PM05/12/11 2:25 PM

Creating a Provisioning Profi le ❘ 523

Drag and drop the downloaded provisioning
profi le onto the Xcode icon that is on the Dock (see Figure
A-21). Alternatively, double-click the provisioning profi le.

This installs the provisioning profi le onto the Organizer
application (part of Xcode). It also installs the
provisioning profi le onto your connected iPhone, iPod
touch, or iPad device. To verify that the provisioning
profi le is indeed installed on your device, select the device
that is currently connected to your Mac and view the
Provisioning Profi les item (see Figure A-22).

FIGURE A-21

FIGURE A-22

You are now almost ready to deploy your iPhone application onto your iPhone, iPod touch, or iPad.
In Xcode, select the project name. Then, in the Build Settings page, go to the Code Signing Identity
section. Under the Debug/Any iOS SDK key, select the GeneraliOS5DeviceProfile profi le that you
have just installed (see Figure A-23). Select the device to deploy to and then press Command-R.

The application should now be deployed onto the device.

NOTE If you don’t see the provisioning profi le, simply disconnect your device and
connect again. If, after reconnecting the device, the provisioning profi le is not there,
click the plus (+) button to manually add the provisioning profi le to your device.

bapp01.indd 523bapp01.indd 523 05/12/11 2:25 PM05/12/11 2:25 PM

524 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

UNDERSTANDING APPLICATION ID AND THE WILDCARD

Earlier, you learned that you can use the wildcard character for your App ID. If you don’t want to
use the wildcard character, you need to perform the following additional step.

Figure A-24 assumes that you have an App ID called MyHelloWorldAppID. Observe that its Bundle
Identifi er is net.learn2develop.MyHelloWorld, instead of the wildcard (*).

In Figure A-25, the provisioning profi le HelloWorldAppProfile is associated with this App ID.

FIGURE A-23

FIGURE A-24

bapp01.indd 524bapp01.indd 524 05/12/11 2:25 PM05/12/11 2:25 PM

Understanding Application ID and the Wildcard ❘ 525

If you were to install the HelloWorldAppProfile provisioning profi le onto your device, you
would have to modify the Bundle Identifi er in your Xcode project to match the Bundle Identifi er
(net.learn2 develop.MyHelloWorld) specifi ed in the MyHelloWorldAppID App ID. To do
so, select the project name in Xcode and click the Info tab. Set the Bundle Identifi er key to
net.learn2develop.MyHelloWorld (see Figure A-26). This value must match the value that
you have specifi ed in your App ID.

FIGURE A-25

FIGURE A-26

bapp01.indd 525bapp01.indd 525 05/12/11 2:25 PM05/12/11 2:25 PM

526 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

In the Build Settings tab, under the Code Signing Identity section, select the HelloWorldAppProfile
profi le (see Figure A-27).

FIGURE A-27

You will now be able to deploy your application using this provisioning profi le. In short, the Bundle
Identifi er in your project must match the one that you have specifi ed in your App ID.

PREPARING FOR APP STORE SUBMISSION

Preparing for submission to the App Store is very similar to preparing your application for testing
on your device. Instead of using a development certifi cate, you use a distribution certifi cate. Also,
instead of using a development provisioning profi le, you use a distribution provisioning profi le.

To create a distribution certifi cate, repeat the same process outlined earlier for creating the
development certifi cate. The distribution certifi cate is created in the Distribution tab (see Figure A-28).

FIGURE A-28

bapp01.indd 526bapp01.indd 526 05/12/11 2:25 PM05/12/11 2:25 PM

Preparing for App Store Submission ❘ 527

For the distribution provisioning profi le, select Provisioning from the panel on the left, and then click
the Distribution tab (see Figure A-29). Click the New Profi le button to create a new distribution
provisioning profi le.

FIGURE A-29

You need to select the distribution method. In this case, select App Store, as shown in Figure A-30.
(You would select Ad Hoc for ad hoc distribution, discussed in the next section), name the distribution
provisioning profi le, and select the App ID. Note that there is no need to select the devices because the
application will be hosted on the App Store and available to all users (you need to select the devices if you
choose the Ad Hoc distribution method). Here, the profi le name is called DLSDistributionProfile.

FIGURE A-30

Once the distribution provisioning profi le is created, download it and install it in Xcode.

To prepare your application for submission, follow these steps:

 1. Go to Xcode and set the Release/Any iOS SDK key to the DLSDistributionProfile
profi le (see Figure A-31).

 2. In Xcode, select the Edit Scheme… item as shown in Figure A-32.

 3. Select the Archive scheme and make sure you select the iOS Device destination (see Figure A-33).
Click OK.

bapp01.indd 527bapp01.indd 527 05/12/11 2:25 PM05/12/11 2:25 PM

528 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

FIGURE A-31

FIGURE A-32

FIGURE A-33

bapp01.indd 528bapp01.indd 528 05/12/11 2:25 PM05/12/11 2:25 PM

Preparing for App Store Submission ❘ 529

 4. Select Product ➪ Archive (see Figure A-34).

FIGURE A-34

FIGURE A-35

The Organizer will now appear (see Figure A-35), and the HelloWorld executable is created. In this
page, you can validate your application against the App Store, share the executable as an .ipa fi le,
and submit the application to the App Store. Before you can validate or submit your application to
the App Store, however, you need to create an entry in iTunes Connect. Once that is done, you can
come back to the page and validate and then submit your application.

For submission to the App Store, you use the iTunes Connect page shown earlier on the right side of
the iOS Dev Center (refer to Figure A-4).

bapp01.indd 529bapp01.indd 529 05/12/11 2:25 PM05/12/11 2:25 PM

530 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

Inside iTunes Connect, you can fi nd detailed instructions for submitting your application to the App
Store (see Figure A-36). Click the Manage Your Applications link to create an entry for the application
you are submitting and follow the steps. Once that is done, you can validate and submit your
application to the App Store.

FIGURE A-36

USING AD HOC DISTRIBUTION

While distributing your application through the App Store enables you to distribute it to anyone
with access to the App Store, you might want to limit the distribution of your application to a
particular group of users. For example, you may be developing an application for your company’s

bapp01.indd 530bapp01.indd 530 05/12/11 2:25 PM05/12/11 2:25 PM

Using Ad Hoc Distribution ❘ 531

in-house use, in which case only the employees should install it. In such a case, you can use the Ad
Hoc distribution method to distribute your application.

To use Ad Hoc distribution, execute the following steps:

 1. You need to create an Ad Hoc distribution provisioning profi le, as described in the previous
section. The Ad Hoc distribution provisioning profi le must contain the UDIDs of all the
devices on which you want to install your application. Depending on the membership that
you have enrolled in, there is a limit on how many devices you can install on (a maximum
of 100 for the standard program).

 2. Set the Release/Any iOS SDK key in your project to the Ad Hoc distribution provisioning
profi le.

 3. Export the application as an .ipa fi le by clicking the Share button in Organizer (refer to
Figure A-35).

 4. Select the Identity of the .ipa fi le to the Ad Hoc distribution provisioning profi le (see
Figure A-37).

FIGURE A-37

bapp01.indd 531bapp01.indd 531 05/12/11 2:25 PM05/12/11 2:25 PM

532 ❘ APPENDIX A TESTING ON AN ACTUAL DEVICE

 5. Once the .ipa fi le is created, drag and drop it together with the Ad Hoc distribution
provisioning profi le onto the Library section in iTunes (see Figure A-38).

 6. In iTunes, connect your iOS device. Under the Apps tab, check the Sync Apps check box (see
Figure A-39). Ensure that the application you are deploying is also checked.

 7. That’s it! Click the Sync button and the application will be installed on the device.

FIGURE A-38

FIGURE A-39

bapp01.indd 532bapp01.indd 532 05/12/11 2:25 PM05/12/11 2:25 PM

Getting Around in Xcode

Xcode is the integrated development environment (IDE) that Apple uses for developing
Mac OS X, iPhone, and iPad applications. It is a suite of applications that includes a set of
compilers, documentation, and Interface Builder.

Using Xcode, you can build your iPhone and iPad applications from the comfort of an
intelligent text editor, coupled with many different tools to help debug your applications. If
you are new to Xcode, this appendix can serve as a useful guide to get you started quickly.

At the time of writing, the version of Xcode available is version 4.2. It is available as a free
download from the Mac App Store.

LAUNCHING XCODE

The easiest way to launch Xcode is to type Xcode in the textbox of Spotlight. Alternatively,
you can launch Xcode by navigating to the Developer/Applications/ folder and double-clicking
the Xcode icon.

B

NOTE For convenience, you can also drag the Xcode icon to the Dock so that in
the future you can launch it directly from there.

Project Types Supported

Xcode supports the building of iPhone, iPad, and Mac OS X applications. When you create a
new project in Xcode (which you do by choosing File ➪ New ➪ New Project . . .), the dialog
shown in Figure B-1 appears.

bapp02.indd 533bapp02.indd 533 05/12/11 2:32 PM05/12/11 2:32 PM

534 ❘ APPENDIX B GETTING AROUND IN XCODE

As shown on the left, you can create two main project types: iOS and Mac OS X. Under the iOS
category are the Application, Framework & Library, and Other items.

FIGURE B-1

If you select the Application item, you will see all the different project types you can create:

 ➤ Master-Detail Application

 ➤ OpenGL Game

 ➤ Page-Based Application

 ➤ Single View Application

 ➤ Tabbed Application

 ➤ Utility Application

 ➤ Empty Application

Depending on the project type you select, you have the option to use either Core Data for storage, or
Storyboard for transitioning of View windows.

NOTE Core Data is part of the Cocoa API that was fi rst introduced with the
iPhone SDK 3.0. It is basically a framework for manipulating data without worrying
about the details of storage and retrieval. Storyboard is a new feature in iOS 5
that helps you to manage the transitioning of View Controllers in your application.
A discussion of Core Data and Storyboard is beyond the scope of this book.

bapp02.indd 534bapp02.indd 534 05/12/11 2:32 PM05/12/11 2:32 PM

Launching Xcode ❘ 535

Select the project type you want to create and click the Next button. You will see the options for
your project, as shown in Figure B-2.

FIGURE B-2

You will be asked to fi ll in several pieces of information for your project:

 ➤ Product Name — Name of your project

 ➤ Company Identifi er — Use the reverse domain name of your organization for this.

 ➤ Bundle Identifi er — Concatenation of the product name and company identifi er

 ➤ Class Prefi x — Name to be used to prefi x all your project fi lenames. For example, if you set
this to be the same as the product name, then all the fi les in your project will be prefi xed with
this name.

 ➤ Device Family — Select either iPhone, iPad, or Universal.

 ➤ Additional options — You can also enable the features for Storyboard, Automatic Reference
Counting (ARC), and Unit Tests for your project.

NOTE All the projects in this book are created with ARC turned off .

bapp02.indd 535bapp02.indd 535 05/12/11 2:32 PM05/12/11 2:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

536 ❘ APPENDIX B GETTING AROUND IN XCODE

When the project is created, Xcode displays all the fi les that make up the project (see Figure B-3).

FIGURE B-3

To edit a code fi le, click the fi lename of a fi le to open the appropriate editor. For example, if you click
an .h or .m fi le, the code editor in which you can edit your source code is displayed (see Figure B-4).

Click a .plist fi le, and the XML Property List editor launches (see Figure B-5).

FIGURE B-4

bapp02.indd 536bapp02.indd 536 05/12/11 2:32 PM05/12/11 2:32 PM

Launching Xcode ❘ 537

Adding Frameworks

In iOS programming, you often need to add frameworks to your project in order to make
use of certain functionalities in your application. Frameworks are basically class libraries providing
specifi c functionalities. For example, if you need to play video within your application, you need
to add the MediaPlayer framework to your project before you can use the specifi c classes for media
playback.

To add a framework to your project, execute the following steps:

 1. Double-click the project name in Xcode.

 2. Select the Build Phases tab and click the “+” button displayed under the Link Binary With
Libraries section (see Figure B-6).

 3. Select the framework you need to use (see Figure B-7) to add it to the project and
click Add.

FIGURE B-5

bapp02.indd 537bapp02.indd 537 05/12/11 2:32 PM05/12/11 2:32 PM

538 ❘ APPENDIX B GETTING AROUND IN XCODE

FIGURE B-6

FIGURE B-7

The framework will now be added to the project. It is good practice to move the framework that you
have just added into the Frameworks folder.

Code Sense

One of the most common features of a modern IDE is code completion, whereby the IDE automatically
tries to complete the statement you are typing based on the current context. In Xcode, the code-
completion feature is known as Code Sense. For example, if you type the letters uial in a method,

bapp02.indd 538bapp02.indd 538 05/12/11 2:32 PM05/12/11 2:32 PM

Debugging Your Applications ❘ 539

such as the viewDidLoad() method, Code Sense
automatically suggests the UIAlertView class,
as shown in Figure B-8 (note that the suggested
characters are displayed in gray). In addition, it
displays a popup containing a list of matching
method names.

To accept the suggested word, simply press the
Tab or Enter key, or Ctrl-/.

You can also invoke the Code Sense feature
by pressing the Esc key. Xcode automatically
recognizes the code you are typing and inserts the relevant parameters’ placeholders. For example,
if you invoke the methods of an object, Xcode inserts the placeholders of the various parameters.
Figure B-9 shows an example of the placeholders inserted for the UIAlertView object after you type
“i.” To accept the placeholders for the various parameters, press the Tab key (you can also press
the Enter key, or Ctrl-/). Press Ctrl-/ to move to each parameter placeholder, and then enter a value.
Alternatively, click each placeholder and type over it.

FIGURE B-8

FIGURE B-9

Running the Application

To execute an application, you fi rst select the scheme
to use. You also choose whether you want to test it
on a real device or use the included iOS Simulator.
You do so by selecting from the Scheme list (see
Figure B-10).

To run the application, press Command-R, and
Xcode builds and deploys the application onto the
selected device or Simulator.

DEBUGGING YOUR APPLICATIONS

Debugging your iOS applications is an essential part of your development effort. Xcode includes
debugger utilities that help you trace and examine your code as you execute your application.
The following sections describe some of the tips and tricks that you can employ when developing
your iOS applications.

FIGURE B-10

bapp02.indd 539bapp02.indd 539 05/12/11 2:32 PM05/12/11 2:32 PM

540 ❘ APPENDIX B GETTING AROUND IN XCODE

Errors

When you try to run your application, Xcode fi rst tries to build the project before it can deploy the
application onto the real device or Simulator. Any syntax errors that Xcode detects are immediately
highlighted with the exclamation icons. Figure B-11 shows an Xcode-highlighted syntax error.
The error within the code block is the missing brace symbol ([) for the [[UIAlertView alloc]
statement.

FIGURE B-11

FIGURE B-12

Warnings

Because Objective-C is a case-sensitive language, a mistake often made by beginners is mixing up
the capitalization for some of the method names. Consider the block of code shown in Figure B-13.

Can you spot the error? Syntactically, the statement is correct. However, one of the parameters
appears with the wrong case: initwithTitle: was misspelled — it should be initWithTitle:
(note the capital “W”). When you compile the program, Xcode will not fl ag this code as an error;
instead, it issues a warning message (as shown in the fi gure).

FIGURE B-13

You can also click the error icon to view the error and let Xcode suggest a fi x (see Figure B-12).

bapp02.indd 540bapp02.indd 540 05/12/11 2:32 PM05/12/11 2:32 PM

Debugging Your Applications ❘ 541

Pay special attention to a warning message in Xcode, and verify that the method name is spelled
correctly, including case. Failing to do so may result in a runtime exception.

When a runtime exception occurs, the best way to troubleshoot the error is to open the output
window by pressing Shift-Command-C. The output window displays all the debugging information
that is printed when Xcode debugs your application. This window usually contains the clue that
helps you determine exactly what went wrong behind the scenes. Figure B-14 shows the content
of the Debugger Console window when an exception occurs. To determine the cause of the crash,
scroll to the bottom of the window and look for the section displayed in bold. In this case, note the
reason stated — the problem is with the UIAlertView object.

FIGURE B-14

Setting Breakpoints

Setting breakpoints in your code is
helpful when debugging your application.
Breakpoints enable you to execute your
code line-by-line and examine the values of
variables so you can check that they perform
as expected.

In Xcode, you set a breakpoint by clicking the left column of the code editor — a breakpoint arrow
will appear (see Figure B-15).

FIGURE B-15

bapp02.indd 541bapp02.indd 541 05/12/11 2:32 PM05/12/11 2:32 PM

542 ❘ APPENDIX B GETTING AROUND IN XCODE

After you have set breakpoints in your application, press Command-R (just as you would to run
your application) to debug it. The code will stop at your breakpoints.

When the application reaches the breakpoint you have set, Xcode indicates the current line of
execution with a green arrow (see Figure B-16).

NOTE You can toggle the state of a breakpoint by clicking it to enable or disable
it. Breakpoints displayed in dark blue are enabled; those displayed in light blue
are disabled. To remove a breakpoint, click on it and drag it out of its resting
place. It will vanish in a puff of smoke.

FIGURE B-16

At this juncture, you can do several things:

 ➤ Step Over (F6) — Execute all the statements in a function or method and continue to the
next statement.

 ➤ Step Into (F7) — Step into the statements in a function/method.

 ➤ Step Out (F8) — Finish executing all the statements in a function or method and continue to
the next statement after the function call.

If you want to resume the execution of your application, press Option-Command-Y.

Using NSLog

In addition to setting breakpoints to trace the fl ow of your application, you can use the NSLog() macro
to print debugging messages to the output window. Figure B-17 shows the output in the Output window
(press Shift-Command-C to display it) when there is a change in orientation of the device/Simulator.

FIGURE B-17

bapp02.indd 542bapp02.indd 542 05/12/11 2:32 PM05/12/11 2:32 PM

Debugging Your Applications ❘ 543

Analyzing Your Code

A very useful feature of Xcode is its ability to analyze your code for potential memory leaks and
logic faults. Beginning with Xcode 3.2, Apple has integrated the Clang Static Analyzer directly into
Xcode. To use the Analyzer, press Option-Command-B. Figure B-18 (top) shows that Analyzer has
detected a potential memory leak in the UIAlertView statement.

FIGURE B-18

Clicking on the blue arrow reveals the source of the potential leak. In this case, I have forgotten to
release the alert object.

Documentation

During the course of your development, you often need to check the various methods, classes, and
objects used in the iOS SDK. The best way to check them out is to refer to the documentation.
Xcode enables you to quickly and easily browse the defi nitions of classes, properties, and methods.

bapp02.indd 543bapp02.indd 543 05/12/11 2:32 PM05/12/11 2:32 PM

544 ❘ APPENDIX B GETTING AROUND IN XCODE

To view the help documentation for an item, simply press the Option key. The cursor changes to
cross-hairs. Double-click the item you want to check out, and a small window showing a summary
of the selected item appears (see Figure B-19).

FIGURE B-19

FIGURE B-20

Clicking the book icon (on the top-right corner of the help dialog) displays the full Developer
Documentation window (see Figure B-20).

bapp02.indd 544bapp02.indd 544 05/12/11 2:32 PM05/12/11 2:32 PM

.xib Window ❘ 545

INTERFACE BUILDER

Interface Builder is one of the tools included with the iOS SDK. It is a visual design aid that you can
use to build the user interface of your iOS applications. Although it is not strictly required for the
development of your iOS applications, Interface Builder plays an integral role in learning about iOS
application development. This section covers some of the important features of Interface Builder.

.XIB WINDOW

In Xcode 4, Apple has integrated Interface Builder right into the Xcode IDE. You no longer need to
launch Interface Builder as a separate application. To use Interface Builder, simply select any of the
.xib fi les in your Xcode project. For example, if you have created a Single View Application project,
there will be one .xib fi le in the project. Selecting it automatically launches Interface Builder.

When Interface Builder is launched, you should see something like Figure B-21.

FIGURE B-21

Within this window are several items; and depending on what you have selected, you should see
some of the following:

 ➤ File’s Owner

 ➤ First Responder

 ➤ View, Table View, etc.

bapp02.indd 545bapp02.indd 545 05/12/11 2:32 PM05/12/11 2:32 PM

546 ❘ APPENDIX B GETTING AROUND IN XCODE

By default, the three items are displayed in icon mode; but you can also switch to display in document
outline mode, where you can view some of the items in more detail. For example, Figure B-22 shows
that when viewed in document outline mode, the View item displays a hierarchy of views contained
within the View window.

FIGURE B-22

DESIGNING THE VIEW

To design the user interface of your application, you typically select the .xib fi le to edit it using
Interface Builder. To populate your View window with views, you drag and drop objects listed in
the Library window (see the “Library” section for more information on the Library window).
Figure B-23 shows some views being dropped and positioned onto the View window.

As you position a view on the View window, gridlines appear to guide you (see Figure B-24).

bapp02.indd 546bapp02.indd 546 05/12/11 2:32 PM05/12/11 2:32 PM

Designing the View ❘ 547

FIGURE B-23

FIGURE B-24

bapp02.indd 547bapp02.indd 547 05/12/11 2:32 PM05/12/11 2:32 PM

548 ❘ APPENDIX B GETTING AROUND IN XCODE

INTERFACE BUILDER KEYBOARD SHORTCUTS

As you add more views to the View window, you will begin to realize that you are
spending a lot of time fi guring out their actual sizes and locations with respect to
other views. Here are two tips to make your life easier:

 ➤ To make a copy of a view on the View window, simply Option-click and drag
a view.

 ➤ If a view is currently selected, pressing the Option key and then moving
the mouse over the view displays that view’s size information (see the left of
Figure B-25). If you move the mouse over another view, it displays the distance
between the two (see the right of Figure B-25).

FIGURE B-25

INSPECTOR WINDOW

To customize the various attributes and properties of views, Interface Builder provides an Inspector
window that is divided into four different windows:

 ➤ Attributes Inspector

 ➤ Connections Inspector

 ➤ Size Inspector

 ➤ Identity Inspector

You can invoke the Inspector window by choosing View ➪ Utilities ➪ Show <utility> Inspector.

The following sections discuss each of the Inspector windows in more detail.

bapp02.indd 548bapp02.indd 548 05/12/11 2:32 PM05/12/11 2:32 PM

Inspector Window ❘ 549

Attributes Inspector Window

The Attributes Inspector window (see Figure B-26) is where you confi gure the attributes of views
in Interface Builder. The window content is dynamic and varies according to what is selected in the
View window.

To open the Attributes Inspector window, choose View ➪ Utilities ➪ Show Attributes Inspector.

Connections Inspector Window

The Connections Inspector window (see Figure B-27) is where you connect the outlets and actions
of your views to the View Controller in Interface Builder. Its content is dynamic and varies
according to what is selected in the View window.

FIGURE B-26 FIGURE B-27

bapp02.indd 549bapp02.indd 549 05/12/11 2:32 PM05/12/11 2:32 PM

550 ❘ APPENDIX B GETTING AROUND IN XCODE

To open the Connections Inspector window, choose View ➪ Utilities ➪ Show Connections
Inspector.

Size Inspector Window

The Size Inspector window (see Figure B-28) is where you confi gure the size and positioning of
views in Interface Builder.

Open it by selecting View ➪ Utilities ➪ Show Size Inspector.

Identity Inspector Window

The Identity Inspector window (see Figure B-29) is where you confi gure the various properties of
your selected view, such as the class controlling it.

FIGURE B-28 FIGURE B-29

Open the Identity Inspector window by choosing View ➪ Utilities ➪ Show Identity Inspector.

bapp02.indd 550bapp02.indd 550 05/12/11 2:32 PM05/12/11 2:32 PM

Outlets and Actions ❘ 551

LIBRARY

The Library (View ➪ Utilities ➪ Show Object Library) contains a set of views that you can use to
build the user interface of your iOS application. Figure B-30 shows the Library’s set of views in two
different perspectives — List view and Icon view.

FIGURE B-30

OUTLETS AND ACTIONS

Outlets and actions are fundamental mechanisms in iOS programming through which your
code can connect to the views in your user interface (UI). When you use outlets, your code can
programmatically reference the views on your UI, with actions serving as event handlers that handle
the different events fi red by the various views.

bapp02.indd 551bapp02.indd 551 05/12/11 2:32 PM05/12/11 2:32 PM

552 ❘ APPENDIX B GETTING AROUND IN XCODE

Although you can write code to connect actions and outlets, Interface Builder simplifi es the process
by enabling you to use the drag-and-drop technique.

Creating Outlets and Actions

In Xcode 4, Interface Builder further simplifi es the creation of outlets and actions. To create an
action in Interface Builder, fi rst click the Assistant Editor button to open another code editor pane
next to the XIB fi le (see Figure B-31). In the new editor, select the .h fi le of the View Controller
representing the XIB fi le.

Control-click the Round Rect Button and drag it onto the .h fi le as shown in Figure B-32.

FIGURE B-31

FIGURE B-32

bapp02.indd 552bapp02.indd 552 05/12/11 2:32 PM05/12/11 2:32 PM

Outlets and Actions ❘ 553

You will be prompted to create either an outlet or an action. In this case, create an action as shown
in Figure B-33 and then click the Connect button.

FIGURE B-33

Xcode will automatically create the declaration for the action in the .h fi le:

#import <UIKit/UIKit.h>

@interface MyKillerAppViewController : UIViewController
- (IBAction)btnClicked:(id)sender;

@end

Xcode will also create the method stub in the .m fi le:

- (IBAction)btnClicked:(id)sender {
}

To create an outlet, Control-click the TextField (as shown in Figure B-34) and drag it over the .h fi le.

FIGURE B-34

bapp02.indd 553bapp02.indd 553 05/12/11 2:32 PM05/12/11 2:32 PM

554 ❘ APPENDIX B GETTING AROUND IN XCODE

Create the outlet as shown in Figure B-35 and then click the Connect button.

FIGURE B-35

The outlet will now be created in the .h fi le:

#import <UIKit/UIKit.h>

@interface MyKillerAppViewController : UIViewController
- (IBAction)btnClicked:(id)sender;

@property (retain, nonatomic) IBOutlet UITextField *txtName;

@end

In the .m fi le, Xcode will automatically add the
@synthesize and release statements:

#import “MyKillerAppViewController.h”

@implementation MyKillerAppViewController
@synthesize txtName;

- (void)dealloc {
 [txtName release];
 [super dealloc];
}

Best of all, if you right-click on the File’s Owner
item, you will see that both the outlet and the action
are connected automatically (see Figure B-36).

As you gain more experience with Xcode, you may
fi nd that it is much simpler to defi ne the outlets
and actions directly in the .h fi les of your View
Controllers. The next section shows you how.

Manually Creating and Connecting Outlets and Actions

The previous section showed how Interface Builder can help create actions and outlets for you
automatically. However, you may wish to defi ne the actions and outlets yourself and then link them

FIGURE B-36

bapp02.indd 554bapp02.indd 554 05/12/11 2:32 PM05/12/11 2:32 PM

Outlets and Actions ❘ 555

up manually instead. The following sections discuss the two options you have for connecting the
actions and outlets to the views.

It is assumed that you have already defi ned the outlet and action in the View Controller as follows:

#import <UIKit/UIKit.h>

@interface MyKillerAppViewController : UIViewController

- (IBAction)btnClicked:(id)sender;

@property (retain, nonatomic) IBOutlet UITextField *txtName;

@end

Method 1

To connect an outlet, Control-click and drag the File’s Owner item to the view to which you want to
connect (see Figure B-37).

When you release the mouse button, a list appears where you can select the correct outlet. When
defi ning your outlets, remember that you can specify the type of view to which your outlet is
referring. When you release the mouse button, Interface Builder lists only the outlets that match
the type of view you have selected. For example, if you defi ned myOutlet1 as UIButton and you
Control-click and drag the File’s Owner item to a TextField on the View window, myOutlet1 does
not appear in the list of outlets.

To connect an action, Control-click and drag the view to the File’s Owner item in the .xib window
(see Figure B-38).

FIGURE B-37 FIGURE B-38

bapp02.indd 555bapp02.indd 555 05/12/11 2:32 PM05/12/11 2:32 PM

556 ❘ APPENDIX B GETTING AROUND IN XCODE

To connect an action, you can connect the relevant action with the views to which you want to
connect (see Figure B-41). When you release the mouse button, the list of available events appears,
and you can select the one you want.

When you release the mouse button, a list appears from
which you can select the correct action.

When you have connected the outlets and actions, a
good practice is to view all the connections in the File’s
Owner item by right-clicking it. Figure B-39 shows that
the File’s Owner item is connected to the Text Field
view through the txtName outlet, and the Round Rect
Button’s Touch Up Inside event is connected to the
btnClicked: action.

How does the Button know that it is the
Touch Up Inside event (and not other events) that should be connected to the btnClicked: action
when you Control-click and drag the Button to the File’s Owner item? The Touch Up Inside event is
such a commonly used event that it is the default event selected when you perform a Control-click
and drag action. What if you want to connect an event other than the default event? The next
method shows you how.

Method 2

An alternative method for connecting an outlet is to right-click the File’s Owner item and connect
the outlet to the view directly (see Figure B-40).

FIGURE B-39

FIGURE B-40

bapp02.indd 556bapp02.indd 556 05/12/11 2:32 PM05/12/11 2:32 PM

Outlets and Actions ❘ 557

FIGURE B-41

Alternatively, you can right-click the view in question and connect the relevant events to the File’s
Owner item (see Figure B-42). When you release the mouse button, a list of your declared actions
appears. Select the action to which you want to connect.

FIGURE B-42

bapp02.indd 557bapp02.indd 557 05/12/11 2:32 PM05/12/11 2:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

558 ❘ APPENDIX B GETTING AROUND IN XCODE

As mentioned earlier, it is always good to right-click the File’s Owner item after all the connections
are made. One very common mistake that developers tend to make is changing the name of the
actions or outlets after the connections are made. For example, suppose you now change the original
outlet name from txtName to myTextField:

 IBOutlet UITextField *myTextField;

Now, if you right-click the File’s Owner item in Interface Builder, you will see a yellow triangle
icon displayed on the right of the original connection (see Figure B-43). All broken connections in
Interface Builder have the yellow triangle icon. To remedy this, click the “x” button to remove the
connection and connect the appropriate outlet/action again.

FIGURE B-43

bapp02.indd 558bapp02.indd 558 05/12/11 2:32 PM05/12/11 2:32 PM

Crash Course in Objective-C

Objective-C is an object-oriented programming language used by Apple primarily for programming
Mac OS X and iOS applications. It is an extension to the standard ANSI C language and
hence it should be an easy language to pick up if you are already familiar with the C
programming language. This appendix assumes that you already have some background
in C programming and focuses on the object-oriented aspects of
the language. If you are coming from a Java or .NET background,
many of the concepts should be familiar to you; you just have
to understand the syntax of Objective-C and, in particular, pay
attention to the section on memory management.

Objective-C source code fi les are contained in two types of fi les:

 ➤ .h — header fi les

 ➤ .m — implementation fi les

For the discussions that follow, assume that you have created
a Single View Application project using Xcode named
LearningObjC and added an empty NSObject class named
SomeClass to your project (see Figure C-1).

DIRECTIVES

If you observe the content of the SomeClass.h fi le, you will notice that at the top of the fi le is
an #import statement:

#import <Foundation/Foundation.h>

@interface SomeClass : NSObject {

}

@end

C

FIGURE C-1

bapp03.indd 559bapp03.indd 559 05/12/11 2:33 PM05/12/11 2:33 PM

560 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

In a typical View Controller class, the class inherits from the UIViewController class, such as in
the following:

@interface HelloWorldViewController : UIViewController {

}

The #import statement is known as a preprocessor directive. In C and C++, you use the #include
preprocessor directive to include a fi le’s content with the current source. In Objective-C, you use
the #import statement to do the same, except that the compiler ensures that the fi le is included at
most only once. To import a header fi le from one of the frameworks, you specify the header fi lename
using angle brackets (<>) in the #import statement. To import a header fi le from within your
project, you use the “ and ” characters, as in the case of the SomeClass.m fi le:

#import “SomeClass.h”

@implementation SomeClass

@end

CLASSES

In Objective-C, you will spend a lot of time dealing with classes and objects. Hence, it is important
to understand how classes are declared and defi ned in Objective-C.

@interface

To declare a class, you use the @interface compiler directive, like this:

@interface SomeClass : NSObject {

}

This is done in the header fi le (.h), and the class declaration contains no implementation. The
preceding code declares a class named SomeClass, and this class inherits from the base class
named NSObject.

NOTE While you typically put your code declaration in an .h fi le, you can also
put it inside an .m if need be. This is usually done for small projects.

NOTE NSObject is the root class of most Objective-C classes. It defi nes the
basic interface of a class and contains methods common to all classes that
inherit from it. NSObject also provides the standard memory management and
initialization framework used by most objects in Objective-C, as well as refl ection
and type operations.

bapp03.indd 560bapp03.indd 560 05/12/11 2:33 PM05/12/11 2:33 PM

Classes ❘ 561

@implementation

To implement a class declared in the header fi le, you use the @implementation compiler directive,
like this:

#import “SomeClass.h”

@implementation SomeClass

@end

This is done in a separate fi le from the header fi le. In Objective-C, you defi ne your class in an .m fi le.
Note that the class defi nition ends with the @end compiler directive.

NOTE As mentioned earlier, you can also put your declaration inside an .m
fi le. Hence, in your .m fi le you would then have both the @interface and @
implementation directives.

@class

If your class references another class defi ned in another fi le, you need to import the header fi le of
that fi le before you can use it. Consider the following example which defi nes two classes: SomeClass
and AnotherClass. If you are using an instance of AnotherClass from within SomeClass, you need
to import the AnotherClass.h fi le, as in the following code snippet:

//---SomeClass.h---
#import <Foundation/Foundation.h>
#import “AnotherClass.h”

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
}

@end

//---AnotherClass.h---
#import <Foundation/Foundation.h>

@interface AnotherClass : NSObject {

}

@end

However, if within AnotherClass you want to create an instance of SomeClass, you will not be
able to simply import SomeClass.h in AnotherClass, like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>

bapp03.indd 561bapp03.indd 561 05/12/11 2:33 PM05/12/11 2:33 PM

562 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

#import “AnotherClass.h”

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
}

@end

//---AnotherClass.h---
#import <Foundation/Foundation.h>
#import “SomeClass.h” //---cannot simply import here---

@interface AnotherClass : NSObject {
 SomeClass *someClass; //---using an instance of SomeClass---
}

@end

Doing so results in circular inclusion. To prevent that, Objective-C uses the @class compiler directive
as a forward declaration to inform the compiler that the class you specifi ed is a valid class. You usually
use the @class compiler directive in the header fi le; and in the implementation fi le, you can use the
@import compiler directive to tell the compiler more about the content of the class you are using.

Using the @class compiler directive, the program now looks like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
}

@end

//---AnotherClass.h---
#import <Foundation/Foundation.h>

@class SomeClass; //---forward declaration---

@interface AnotherClass : NSObject {
 SomeClass *someClass; //---using an instance of SomeClass---
}

@end

bapp03.indd 562bapp03.indd 562 05/12/11 2:33 PM05/12/11 2:33 PM

Classes ❘ 563

Class Instantiation

To create an instance of a class, you typically use the alloc keyword (more on this in the
“Memory Management” section) to allocate memory for the object and then return it to a variable
of the class type:

 SomeClass *someClass = [SomeClass alloc];

In Objective-C, you need to prefi x an object name with the * character when you declare an object.
If you are declaring a variable of primitive type (such as float, int, CGRect, NSInteger, and so
on), the * character is not required. Here are some examples:

 CGRect frame; //—-CGRect is a structure—-
 int number; //—-int is a primitive type—-
 NSString *str; //—-NSString is a class

Besides specifying the returning class type, you can also use the id type, like this:

 id someClass = [SomeClass alloc];
 id str;

The id type means that the variable can refer to any type of object; hence, the * is implicitly implied.

Fields

Fields are the data members of objects. For example, the following code shows that SomeClass has
three fi elds — anotherClass, rate, and name:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

@end

NOTE Another notable reason to use forward declaration where possible
is that it reduces your compile times because the compiler does not need to
traverse as many included header fi les and their includes, and so on.

bapp03.indd 563bapp03.indd 563 05/12/11 2:33 PM05/12/11 2:33 PM

564 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

Access Privileges

By default, the access privilege of all fi elds is @protected. However, the access privilege can also be
@public or @private. The following list describes the various access privileges:

 ➤ @private — Visible only to the class that declares it

 ➤ @public — Visible to all classes

 ➤ @protected — Visible to the class that declares it and inheriting classes

Using the example shown in the previous section, if you now try to access the fi elds in SomeClass
from another class, such as a View Controller, you will not be able to see them:

 SomeClass *someClass = [SomeClass alloc];
 someClass->rate = 5; //---rate is declared protected---
 someClass->name = @”Wei-Meng Lee”; //---name is declared protected---

NOTE Note that to access the fi elds in a class directly, you use the -> operator.

To make the rate and name visible outside the class, modify the SomeClass.h fi le by adding the
@public compiler directive:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;

@public
 float rate;

@public
 NSString *name;
}

@end

The following two statements would now be valid:

 someClass->rate = 5; //—-rate is now declared public—-
 someClass->name = @”Wei-Meng Lee”; //—-name is now declared public—-

Although you can access the fi elds directly, doing so goes against the design principles of
object-oriented programming’s rule of encapsulation. A better way is to encapsulate the two fi elds
you want to expose in properties. Refer to the “Properties” section later in this appendix.

bapp03.indd 564bapp03.indd 564 05/12/11 2:33 PM05/12/11 2:33 PM

Classes ❘ 565

Methods

Methods are functions that are defi ned in a class. Objective-C supports two types of methods —
instance methods and class methods.

Instance methods can be called only using an instance of the class; and they are prefi xed with the
minus sign (-) character.

Class methods can be invoked directly using the class name and do not need an instance of the class
in order to work. Class methods are prefi xed with the plus sign (+) character.

NOTE In some programming languages, such as C# and Java, class methods
are commonly known as static methods.

The following code sample shows SomeClass with three instance methods and one class method
declared:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

@end

The following shows the implementation of the methods that were declared in the header fi le:

#import “SomeClass.h”

@implementation SomeClass

-(void) doSomething {
 //---implementation here---

bapp03.indd 565bapp03.indd 565 05/12/11 2:33 PM05/12/11 2:33 PM

566 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

}

-(void) doSomething:(NSString *) str {
 //---implementation here---
}

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
 //---implementation here---
}

+(void) alsoDoSomething {
 //---implementation here---
}

@end

To invoke the three instance methods, you fi rst need to create an instance of the class and then call
them using the instance created:

 SomeClass *someClass = [SomeClass alloc];
 [someClass doSomething];
 [someClass doSomething:@”some text”];
 [someClass doSomething:@”some text” withAnotherPara:9.0f];

Class methods can be called directly using the class name, as the following shows:

 [SomeClass alsoDoSomething];

In general, you create instance methods when you need to perform some actions that are related to
the particular instance of the class (that is, the object). For example, suppose you defi ned a class that
represents the information of an employee. You may expose an instance method that enables you
to calculate the overtime wage of an employee. In this case, you use an instance method because the
calculation involves data specifi c to a particular employee object.

Class methods, on the other hand, are commonly used for defi ning helper methods. For example, you
might have a class method called GetOvertimeRate: that returns the rate for working overtime. In a
scenario in which all employees get the same rate for working overtime (assuming this is the case for
your company), there is no need to create instance methods, and thus a class method will suffi ce.

The next section shows how to call methods with a varying number of parameters.

Message Sending (Calling Methods)

In Objective-C, you use the following syntax to call a method:

[object method];

Strictly speaking, in Objective-C you do not call a method; rather, you send a message to an object.
The message to be passed to an object is resolved during runtime and is not enforced at compile
time. This is why the compiler does not stop you from running your program even though you may
have misspelled the method name. It does warn you that the target object may not respond to your
message, though, because the target object will simply ignore the message (and in most situations
result in a runtime exception).

bapp03.indd 566bapp03.indd 566 05/12/11 2:33 PM05/12/11 2:33 PM

Classes ❘ 567

Using the example from the previous section, the doSomething method has no parameter:

-(void) doSomething {
 //---implementation here---
}

Therefore, you can call it like this:

 [someClass doSomething];

If a method has one or more inputs, you call it using the following syntax:

[object method:input1]; //---one input---
[object method:input1 andSecondInput:input2]; //---two inputs---

The interesting thing about Objective-C is the way you call a method with multiple inputs. Using
the earlier example:

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
 //---implementation here---
}

The name of the preceding method is doSomething:withAnotherPara:. The fi rst part of the
method name, doSomething:, is called the label, and so is the second. Therefore, a method name
in Objective-C is made up of one or more labels. Strictly speaking, the labels are optional. For
example, the preceding method could be rewritten as follows:

-(void) :(NSString *) str :(float) value {
 //---implementation here---
}

To call the preceding method, I can use the following statement:

 [someClass :@”some text” :9.0f];

This works because in Objective-C, arguments are passed according to positions. While this
compiles, it is not recommended, because it makes your method ambiguous.

It is important to note the names of methods and to differentiate those with parameters from
those without them. For example, doSomething refers to a method with no parameter, whereas
doSomething: refers to a method with one parameter, and doSomething:withAnotherPara:
refers to a method with two parameters. The presence or absence of colons in a method name
dictates which method is invoked during runtime. This is important when passing method names as
arguments, particularly when using the @selector notation (discussed in the “Selectors” section) to
pass them to a delegate or notifi cation event.

NOTE For ease of understanding, I use the more conventional phrasing of
“calling a method” to refer to Objective-C’s message-sending mechanism.

bapp03.indd 567bapp03.indd 567 05/12/11 2:33 PM05/12/11 2:33 PM

568 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

Method calls can also be nested, as the following example shows:

 NSString *str = [[NSString alloc] initWithString:@”Hello World”];

Here, you fi rst call the alloc class method of the NSString class and then call the initWithString:
method of the returning result from the alloc method, which is of type id, a generic C type that
Objective-C uses for an arbitrary object.

In general, you should not nest more than three levels because anything more than that makes the
code diffi cult to read.

Properties

Properties enable you to expose the fi elds in your class so that you can control how values are set or
returned. In the earlier example (in the “Access Privileges” section), you saw that you can directly
access the fi elds of a class using the -> operator. However, this is not the ideal way; ideally, you
should expose your fi elds as properties.

Prior to Objective-C 2.0, programmers had to declare methods to make the fi elds accessible to other
classes, like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

//---expose the rate field---
-(float) rate; //---get the value of rate---
-(void) setRate:(float) value; //---set the value of rate---

//---expose the name field---
-(NSString *) name; //---get the value of name---
-(void) setName:(NSString *) value; //---set the value of name---

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

@end

bapp03.indd 568bapp03.indd 568 05/12/11 2:33 PM05/12/11 2:33 PM

Classes ❘ 569

These methods are known as getters and setters (or sometimes better known as accessors and
mutators). The implementation of these methods may look like this:

#import “SomeClass.h”

@implementation SomeClass

-(float) rate {
 return rate;
}

-(void) setRate:(float) value {
 rate = value;
}

-(NSString *) name {
 return name;
}

-(void) setName:(NSString *) value {
 [value retain];
 [name release];
 name = value;
}

-(void) doSomething {
 //---implementation here---
}

-(void) doSomething:(NSString *) str {
 //---implementation here---
 NSLog(str);
}

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
 //---implementation here---
}

+(void) alsoDoSomething {
 //---implementation here---
}

@end

To set the value of these properties, you need to call the methods prefi xed with the set keyword:

 SomeClass *sc = [[SomeClass alloc] init];
 [sc setRate:5.0f];
 [sc setName:@”Wei-Meng Lee”];

Alternatively, you can use the dot notation introduced in Objective-C 2.0:

 SomeClass *sc = [[SomeClass alloc] init];
 sc.rate = 5.0f;
 sc.name = @”Wei-Meng Lee”;

bapp03.indd 569bapp03.indd 569 05/12/11 2:33 PM05/12/11 2:33 PM

570 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

To obtain the values of properties, you can either call the methods directly or use the dot notation in
Objective-C 2.0:

 NSLog([sc name]); //—-call the method—-
 NSLog(sc.name); //—-dot notation

To make a property read-only, simply remove the method prefi xed with the set keyword.

Notice that within the setName: method, you have various statements using the retain and
release keywords. These keywords relate to memory management in Objective-C; you learn more
about them in the “Memory Management” section, later in this appendix.

In Objective-C 2.0, you don’t need to defi ne getters and setters in order to expose fi elds as properties.
You can do so via the @property and @synthesize compiler directives. Using the same example,
you can use the @property directive to expose the rate and name fi elds as properties, like this:

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {
 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

@property float rate;
@property (retain, nonatomic) NSString *name;

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

@end

The fi rst @property statement defi nes rate as a property. The second statement defi nes name
as a property as well, but it also specifi es the behavior of this property. In this case, it indicates
the behavior as retain and nonatomic, which you learn more about in the section on memory
management later in this appendix. In particular, nonatomic means that the property is not accessed
in a thread-safe manner. This is OK if you are not writing multi-threaded applications. Most of the
time, you will use the retain and nonatomic combination when declaring properties. The fi rst
property does not need the retain keyword, as it is a primitive type and not an object.

In the implementation fi le, rather than defi ne the getter and setter methods, you can simply use the
@synthesize keyword to get the compiler to automatically generate the getters and setters for you:

bapp03.indd 570bapp03.indd 570 05/12/11 2:33 PM05/12/11 2:33 PM

Classes ❘ 571

#import “SomeClass.h”

@implementation SomeClass

@synthesize rate, name;

As shown, you can combine several properties using a single @synthesize keyword. However, you
can also separate them into individual statements:

@synthesize rate;
@synthesize name;

You can now use your properties as usual:

 //---setting using setRate---
 [sc setRate:5.0f];
 [sc setName:@”Wei-Meng Lee”];

 //---setting using dot notation---
 sc.rate = 5;
 sc.name = @”Wei-Meng Lee”;

 //---getting---
 NSLog([sc name]); //---using the name method---
 NSLog(sc.name); //---dot notation---

To make a property read-only, use the readonly keyword. The following statement makes the name
property read-only:

@property (retain, nonatomic, readonly) NSString *name;

Initializers

When you create an instance of a class, you often initialize it at the same time. For example, in the
earlier example (in the “Class Instantiation” section), you had this statement:

 SomeClass *sc = [[SomeClass alloc] init];

The alloc keyword allocates memory for the object; and when an object is returned, the init method
is called on the object to initialize the object. Recall that in SomeClass, you do not defi ne a method
named init. So where does the init method come from? It is actually defi ned in the NSObject class,
which is the base class of most classes in Objective-C. The init method is known as an initializer.

If you want to create additional initializers, you can defi ne methods that begin with the init word
(use of the init prefi x is more of a norm than a hard-and-fast rule):

//---SomeClass.h---
#import <Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interface SomeClass : NSObject {

bapp03.indd 571bapp03.indd 571 05/12/11 2:33 PM05/12/11 2:33 PM

572 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

 //---an object from AnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

@property float rate;
@property (retain, nonatomic) NSString *name;

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

-(id)initWithName:(NSString *) n;
-(id)initWithName:(NSString *) n andRate:(float) r;

@end

The preceding example contains two additional initializers: initWithName: and
initWithName:andRate:. You can provide the implementations for the two initializers as follows:

#import “SomeClass.h”

@implementation SomeClass

@synthesize rate, name;

- (id)initWithName:(NSString *) n {
 return [self initWithName:n andRate:0.0f];
}

- (id)initWithName:(NSString *) n andRate:(float) r {
 if (self = [super init]) {
 self.name = n;
 self.rate = r;
 }
 return self;
}

//...
//...

Note that in the initWithName:andRate: initializer implementation, you fi rst call the init
initializer of the super (base) class so that its base class is properly initialized, which is necessary
before you can initialize the current class:

- (id)initWithName:(NSString *) n andRate:(float) r {
 if (self = [super init]) {
 self.name = n;

bapp03.indd 572bapp03.indd 572 05/12/11 2:33 PM05/12/11 2:33 PM

Memory Management ❘ 573

 self.rate = r;
 }
 return self;
}

The rule for defi ning an initializer is simple: If a class is initialized properly, it should return a
reference to self (hence the id type). If it fails, it should return nil.

For the initWithName: initializer implementation, notice that it calls the initWithName:andRate:
initializer:

- (id)initWithName:(NSString *) n {
 return [self initWithName:n andRate:0.0f];
}

In general, if you have multiple initializers, each with different parameters, you should chain them
by ensuring that they all call a single initializer that performs the call to the super class’s init
initializer. In Objective-C, the initializer that performs the call to the super class’s init initializer is
called the designated initializer.

To use the initializers, you can now call them at the time of instantiation:

 SomeClass *sc1 = [[SomeClass alloc] initWithName:@”Wei-Meng Lee”
 andRate:35];
 SomeClass *sc2 = [[SomeClass alloc] initWithName:@”Wei-Meng Lee”];

MEMORY MANAGEMENT

Memory management in Objective-C programming (especially for iOS) is a very important topic that
every iOS developer needs to be aware of. Like all other popular languages, Objective-C supports
garbage collection, which helps to remove unused objects when they go out of scope and hence releases
memory that can be reused. However, because of the severe overhead involved in implementing
garbage collection, the iOS does not support garbage collection. This leaves you, the developer, to
manually allocate and de-allocate the memory of objects when they are no longer needed.

This section discusses the various aspects of memory management on the iOS.

Reference Counting

To help you allocate and de-allocate memory for objects, the iOS uses a scheme known as reference
counting to keep track of objects to determine whether they are still needed or can be disposed of.
Reference counting basically uses a counter for each object; and as each object is created, the count

NOTE As a general guideline, the designated initializer should be the one with
the greatest number of parameters.

bapp03.indd 573bapp03.indd 573 05/12/11 2:33 PM05/12/11 2:33 PM

574 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

increases by 1. When an object is released, the count decreases by 1. When the count reaches 0, the
memory associated with the object is reclaimed by the OS.

In Objective-C, a few important keywords are associated with memory management. The following
sections take a look at each of them.

NEW FEATURE: AUTOMATIC REFERENCE COUNTING

In iOS 5, Objective-C now supports a new feature known as Automatic Reference
Counting (ARC). Instead of needing you to keep track of each object’s ownership,
ARC enables the compiler to examine your code and automatically insert
statements to release the objects at compile time. Using ARC:

 ➤ You no longer need to use the retain, release, autorelease keywords,
and the dealloc method.

 ➤ You cannot use the NSAutoreleasePool object.

While ARC makes it easier for you to write applications without worrying about
object memory management, a lot of third-party libraries still need to manually
release objects. For this book, all the projects are created with ARC turned off.
Moreover, it is important for you to understand the basics of how Objective-C
manages the memory.

alloc

The alloc keyword allocates memory for an object that you are creating. You have seen it in almost
all the exercises in this book. An example is as follows:

 NSString *str = [[NSString alloc] initWithString:@”Hello”];

Here, you are creating an NSString object and instantiating it with a default string. When the
object is created, the reference count of that object is 1. Because you are the one creating it, the object
belongs to you, and it is your responsibility to release the memory when you are done with it.

So how do you know when an object is owned, and by whom? Consider the following example:

 NSString *str = [[NSString alloc] initWithString:@”Hello”];
 NSString *str2 = str;

In this example, you use the alloc keyword for str, so you own str. Therefore, you need to release
it when it’s no longer needed. However, str2 is simply pointing to str, so you do not own str2,
meaning you need not release str2 when you are done using it.

 NOTE See the “release” section for information on how to release an object.

bapp03.indd 574bapp03.indd 574 05/12/11 2:33 PM05/12/11 2:33 PM

Memory Management ❘ 575

new

Besides using the alloc keyword to allocate memory for an object, you can also use the new
keyword, like this:

 NSString *str = [NSString new];

The new keyword is functionally equivalent to

 NSString *str = [[NSString alloc] init];

As with the alloc keyword, using the new keyword makes you the owner of the object, so you need
to release it when you are done with it.

retain

The retain keyword increases the reference count of an object by 1. Consider a previous example:

 NSString *str = [[NSString alloc] initWithString:@”Hello”];
 NSString *str2 = str;

Here, you do not own str2 because you do not use the alloc keyword on the object. When str is
released, the str2 will no longer be valid.

To ensure that str2 is available even if str is released, you need to use the retain keyword:

 NSString *str = [[NSString alloc] initWithString:@”Hello”];
 NSString *str2 = str;
 [str2 retain]; //---str2 now also “owns” the object---
 [str release]; //---str can now be released safely---

In the preceding case, the reference count for str is now 2. When you release str, str2 will still be
valid. When you are done with str2, you need to release it manually, like this:

 [str2 release]; //---str2 can now be released when you are done with it---

release

When you are done with an object, you need to manually release it by using the release keyword:

 NSString *str = [[NSString alloc] initWithString:@”Hello”];

 //...do what you want with the object...

 [str release];

NOTE As a general rule, if you own an object (using alloc or retain), you need to
release it.

bapp03.indd 575bapp03.indd 575 05/12/11 2:33 PM05/12/11 2:33 PM

576 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

When you use the release keyword on an object, it causes the reference count of that object to
decrease by 1. When the reference count reaches 0, the memory used by the object is released.

One important aspect to keep in mind when using the release keyword is that you cannot release
an object that is not owned by you. For example, consider the example used in the previous section:

 NSString *str = [[NSString alloc] initWithString:@”Hello”];
 NSString *str2 = str;
 [str release];
 [str2 release]; //---this is not OK as you do not own str2---

Attempting to release str2 will result in a runtime error because you cannot release an object not
owned by you. However, if you use the retain keyword to gain ownership of an object, you do
need to use the release keyword:

 NSString *str = [[NSString alloc] initWithString:@”Hello”];
 NSString *str2 = str;
 [str2 retain];
 [str release];
 [str2 release]; //---this is now OK as you now own str2---

Recall that earlier, in the section on properties, you defi ned the setName: method, where you set the
value of the name fi eld:

-(void) setName:(NSString *) value {
 [value retain];
 [name release];
 name = value;
}

Notice that you fi rst had to retain the value object, followed by releasing the name object and then
fi nally assigning the value object to name. Why do you need to do that as opposed to the following?

-(void) setName:(NSString *) value {
 name = value;
}

If you were using garbage collection, the preceding statement would be valid. However, because
iOS does not support garbage collection, the preceding statement will cause the original object
referenced by the name object to be lost, thereby causing a memory leak. To prevent that leak, you
fi rst retain the value object to indicate that you wish to gain ownership of it; then you release the
original object referenced by name. Finally, assign value to name:

 [value retain];
 [name release];
 name = value;

Convenience Method and Autorelease

So far, you learned that all objects created using the alloc or new keywords are owned by you.
Consider the following case:

 NSString *str = [NSString stringWithFormat:@”%d”, 4];

bapp03.indd 576bapp03.indd 576 05/12/11 2:33 PM05/12/11 2:33 PM

Memory Management ❘ 577

In this statement, do you own the str object? The answer is no, you don’t, because the object is
created using one of the convenience methods — static methods that are used for allocating and
initializing objects directly. In the preceding case, you create an object but you do not own it.
Because you do not own it, you cannot release it manually. In fact, objects created using this method
are known as autorelease objects. All autorelease objects are temporary objects and are added to an
autorelease pool. When the current method exits, all the objects contained within it are released.
Autorelease objects are useful for cases in which you simply want to use some temporary variables
and do not want to burden yourself with allocations and de-allocations.

The key difference between an object created using the alloc (or new) keyword and one created
using a convenience method is that of ownership, as the following example shows:

 NSString *str1 = [[NSString alloc] initWithFormat:@”%d”, 4];
 [str1 release]; //—-this is ok because you own str1—-

 NSString *str2 = [NSString stringWithFormat:@”%d”, 4];
 [str2 release]; //—-this is not ok because you don’t own str2—-
 //—-str2 will be removed automatically when the autorelease
 // pool is activated—-

UNDERSTANDING REFERENCE COUNTING USING AN ANALOGY

When you think of memory management using reference counting, it is always
good to use a real-life analogy to put things into perspective.

Imagine a room in the library that you can reserve for studying purposes. Initially,
the room is empty and hence the lights are off. When you reserve the room, the
librarian increases a counter to indicate the number of persons using the room.
This is similar to creating an object using the alloc keyword.

When you leave the room, the librarian decreases the counter; and when the counter
is 0, this means that the room is no longer being used and the lights can thus be
switched off. This is similar to using the release keyword to release an object.

There may be times when you have booked the room and are the only person in it
(hence, the counter is 1) until a friend of yours comes along. He may simply visit you
and therefore not register with the librarian. Hence, the counter does not increase.
Because he is just visiting you and hasn’t booked the room, he has no rights to decide
whether the lights should be switched off. This is similar to assigning an object to
another variable without using the alloc keyword. In this case, if you leave the
room (release), the lights will be switched off and your friend will have to leave.

Consider another situation in which you are using the room and another person
also booked the room and shares it with you. In this case, the counter is now 2. If
you leave the room, the counter goes down to 1, but the lights are still on because
another person is in the room. This is similar to creating an object and assigning it
to another variable that uses the retain keyword. In such a situation, the object is
released only when both objects release it.

bapp03.indd 577bapp03.indd 577 05/12/11 2:33 PM05/12/11 2:33 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

578 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

If you want to take ownership of an object when using a convenience method, you can do so using
the retain keyword:

 NSString *str2 = [[NSString stringWithFormat:@”%d”, 4] retain];

To release the object, you can use either the autorelease or the release keyword. You learned
earlier that the release keyword immediately decreases the reference count by 1 and that the
object is immediately de-allocated from memory when the reference count reaches 0. In contrast,
the autorelease keyword promises to decrease the reference count by 1 but not immediately —
sometime later. It is like saying, “Well, I still need the object now, but later I can let it go.” The
following code makes it clear:

 NSString *str = [[NSString stringWithFormat:@”%d”, 4] retain];
 [str autorelease]; //---you don’t own it anymore; still available---
 NSlog(str); //---still accessible for now---

NOTE After you have autoreleased an object, do not release it anymore.

Note that the statement

 NSString *str2 = [NSString stringWithFormat:@”%d”, 4];

has the same effect as

 NSString *str2 = @”4”;

Although autorelease objects seem to make your life simple by automatically releasing objects that
are no longer needed, you have to be careful when using them. Consider the following example:

 for (int i=0; i<=99999; i++){
 NSString *str = [NSString stringWithFormat:@”%d”, i];
 //...
 //...
 }

Here, you are creating an NSString object for each iteration of the loop. Because the objects are not
released until the function exits, you may well run out of memory. One way to solve this dilemma is
to use an autorelease pool, as discussed in the next section.

REFERENCE COUNTING: THE ANALOGY CONTINUES

Continuing with the analogy of the reserved room in the library, imagine that you are
about to sign out with the librarian when you realize that you have left your books in
the room. You tell the librarian that you are done with the room and want to sign out
now, but because you left your books in the room, you tell the librarian not to switch
off the lights yet so that you can go back to get them. Later, the librarian can switch off
the lights at his or her own choosing. This is the behavior of autoreleased objects.

bapp03.indd 578bapp03.indd 578 05/12/11 2:33 PM05/12/11 2:33 PM

Memory Management ❘ 579

Autorelease Pools

All autorelease objects are temporary objects and are added to an autorelease pool. When the
objects are no longer needed, all the objects contained within it are released. However, sometimes
you want to control how the autorelease pool is emptied, rather than wait for it to be called by the
OS. To do so, you can create an instance of the NSAutoreleasePool class, like this:

 for (int i=0; i<=99999; i++){
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSString *str1 = [NSString stringWithFormat:@”%d”, i];
 NSString *str2 = [NSString stringWithFormat:@”%d”, i];
 NSString *str3 = [NSString stringWithFormat:@”%d”, i];
 //...
 //...
 [pool release];
 }

In this example, for each iteration of the loop, an NSAutoreleasePool object is created, and all the
autorelease objects created within the loop — str1, str2, and str3 — go into it. At the end of each
iteration, the NSAutoreleasePool object is released so that all the objects contained within it are
automatically released. This ensures that you have at most three autorelease objects in memory at
any one time.

dealloc

You have learned that by using the alloc or new keyword, you own the object that you have
created. You have also seen how to release the objects you own using the release or autorelease
keyword. When is a good time for you to release them?

As a rule of thumb, you should release the objects as soon as you are done with them. Therefore, if
you created an object in a method, you should release it before you exit the method. For properties,
recall that you can use the @property compiler directive together with the retain keyword:

@property (retain, nonatomic) NSString *name;

Because the values of the property will be retained, it is important that you free it before you exit the
application. A good place to do so is in the dealloc method of a class (such as a View Controller):

-(void) dealloc {
 [self.name release]; //---release the name property---
 [super dealloc];
}

The dealloc method of a class is fi red whenever the reference count of its object reaches 0.
Consider the following example:

 SomeClass *sc1 = [[SomeClass alloc] initWithName:@”Wei-Meng Lee”
 andRate:35];
 //...do something here…
 [sc1 release]; //---reference count goes to 0; dealloc will be called---

bapp03.indd 579bapp03.indd 579 05/12/11 2:33 PM05/12/11 2:33 PM

580 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

The preceding example shows that when the reference count of sc1 reaches 0 (when the release
statement is called), the dealloc method defi ned within the class will be called. If you don’t defi ne
this method in the class, its implementation in the base class will be called.

Memory Management Tips

Memory management is a tricky issue in iOS programming. Although there are tools you can use
to test for memory leaks, this section presents some simple things you can do to detect memory
problems that might affect your application.

First, ensure that you implement the didReceiveMemoryWarning method in your View controller:

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn’t have a superview.
 [super didReceiveMemoryWarning];
 //---insert code here to free unused objects---
 // Release any cached data, images, etc that aren’t in use.
}

The didReceiveMemoryWarning method will be called whenever your iOS device runs out of memory.
You should insert code in this method so that you can free resources/objects that you don’t need.

In addition, you should also handle the applicationDidReceiveMemoryWarning: method in your
application delegate:

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application {
 /*
 Free up as much memory as possible by purging cached
 data objects that can be recreated (or reloaded from
 disk) later.
 */
 //---insert code here to free unused objects---
}

In this method, you should stop all memory-intensive activities, such as audio and video playback.
You should also remove all images cached in memory.

When dealing with arrays, remember to retain item(s) retrieved from an array:

 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:@”Item 1”];
 [array addObject:@”Item 2”];
 [array addObject:@”Item 3”];

 //---this is not safe as the object can be removed anytime---
 //NSString *item = [array objectAtIndex:1];

 //---do this instead---
 NSString *item = [[array objectAtIndex:1] retain];
 [array removeObjectAtIndex:1];

 NSLog(@”item is %@”, item);

 [item release];
 [array release];

bapp03.indd 580bapp03.indd 580 05/12/11 2:33 PM05/12/11 2:33 PM

Protocols ❘ 581

When returning an alloc’ed object, remember to autorelease it:

-(NSString *) fullName {
 NSString *str = [[NSString alloc] initWithFormat:@”%@ %@”,
 firstName, lastName];
 //---remember to release str; else it will leak memory---
 [str autorelease];
 return str;
}

When setting an alloc’ed object to a property with a retain or copy, remember to autorelease it:

-(id) initWithFirstName:(NSString *) fName
 andLastName:(NSString *) lName
 andEmail:(NSString *) emailAddress {
 self = [super init];
 if (self) {
 self.firstName = fName;
 self.lastName = lName;

 if ([emailAddress length]==0) {
 //---this will result in a memory leak---
 // self.email = [[NSString alloc]
 // initWithString:@”No email set”];

 //---do this instead---
 self.email =
 [[[NSString alloc] initWithString:@”No email set”]
 autorelease];
 } else {
 self.email = emailAddress;
 }
 }
 return self;
}

PROTOCOLS

In Objective-C, a protocol declares a programmatic interface that any class can choose to
implement. A protocol declares a set of methods, and an adopting class may choose to implement
one or more of its declared methods. The class that defi nes the protocol is expected to call the
methods in the protocols that are implemented by the adopting class.

The easiest way to understand protocols is to examine the UIAlertView class. As you have
experienced in the various chapters in this book, you can simply use the UIAlertView class by
creating an instance of it and then calling its show method:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];

bapp03.indd 581bapp03.indd 581 05/12/11 2:33 PM05/12/11 2:33 PM

582 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

The preceding code displays an alert view with one button — OK. Tapping the OK button
automatically dismisses the alert view. If you want to display additional buttons, you can set the
otherButtonTitles: parameter like this:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
 [alert show];

The alert view now displays three buttons — OK, Option 1, and Option 2. How do you know
which button was tapped by the user? You can determine that by handling the relevant method(s)
that will be fi red by the alert view when the buttons are clicked. This set of methods is defi ned by
the UIAlertViewDelegate protocol, which defi nes the following methods:

 ➤ alertView:clickedButtonAtIndex:

 ➤ willPresentAlertView:

 ➤ didPresentAlertView:

 ➤ alertView:willDismissWithButtonIndex:

 ➤ alertView:didDismissWithButtonIndex:

 ➤ alertViewCancel:

If you want to implement any of the methods in the UIAlertViewDelegate protocol, you need to
ensure that your class, in this case the View Controller, conforms to this protocol. A class conforms
to a protocol using angle brackets (<>), like this:

@interface ObjCTestViewController : UIViewController
 <UIAlertViewDelegate> { //---this class conforms to the
 // UIAlertViewDelegate protocol---

}

@end

After the class conforms to a protocol, you can implement the method in your class:

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog([NSString stringWithFormat:@”%d”, buttonIndex]);

}

NOTE To conform to more than one delegate, separate the protocols with
commas, such as <UIAlertViewDelegate, UITableViewDataSource>.

bapp03.indd 582bapp03.indd 582 05/12/11 2:33 PM05/12/11 2:33 PM

Protocols ❘ 583

Delegate

In Objective-C, a delegate is just an object that has been assigned by another object as the object
responsible for handling events. Consider the case of the UIAlertView example shown previously:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
 [alert show];

The initializer of the UIAlertView class includes a parameter called the delegate. Setting this
parameter to self means that the current object is responsible for handling all the events fi red by
this instance of the UIAlertView class. If you don’t need to handle events fi red by this instance, you
can simply set it to nil:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:nil
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
 [alert show];

If you have multiple buttons on the alert view and want to know which button was tapped, you need
to handle the method declared in the UIAlertViewDelegate protocol. You can either implement the
method in the same class in which the UIAlertView class was instantiated (as shown in the previous
section), or create a new class to implement the method, like this:

//---SomeClass.m---
@implementation SomeClass

- (void) alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 NSLog([NSString stringWithFormat:@”%d”, buttonIndex]);

}
@end

To ensure that the alert view knows where to look for the method, create an instance of SomeClass
and then set it as the delegate:

SomeClass *myDelegate = [[SomeClass alloc] init];

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:myDelegate;
 cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
[alert show];

bapp03.indd 583bapp03.indd 583 05/12/11 2:33 PM05/12/11 2:33 PM

584 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

SELECTORS

In Objective-C, a selector refers to the name used to select a method to execute for an object. It is
used to identify a method. You have seen the use of a selector in some of the chapters in this book.
Here is one of them:

 //---create a Button view---
 CGRect frame = CGRectMake(10, 50, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”Click Me, Please!”
 forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

The preceding code shows that you are dynamically creating a UIButton object. In order to handle
the event (for example, the Touch Up Inside event) raised by the button, you need to call the
addTarget:action:forControlEvents: method of the UIButton class:

 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

The action: parameter takes an argument of type SEL (selector). In the preceding code, you pass in the
name of the method that you have defi ned — buttonClicked: — which is defi ned within the class:

-(IBAction) buttonClicked: (id) sender {
 //...
}

Alternatively, you can create an object of type SEL and then instantiate it by using the
NSSelectorFromString function (which takes a string containing the method name):

 NSString *nameOfMethod = @”buttonClicked:”;
 SEL methodName = NSSelectorFromString(nameOfMethod);

The call to the addTarget:action:forControlEvents: method now looks like this:

 [button addTarget:self
 action:methodName
 forControlEvents:UIControlEventTouchUpInside];

NOTE When naming a selector, be sure to specify the full name of the method.
For example, if a method name has one or more parameters, you need to add a
“:” in the sector, such as the following:

 NSString *nameOfMethod = @”someMethod:withPara1:andPara2:”;

bapp03.indd 584bapp03.indd 584 05/12/11 2:33 PM05/12/11 2:33 PM

Categories ❘ 585

CATEGORIES

A category in Objective-C enables you to add methods to an existing class without the need to
subclass it. You can also use a category to override the implementation of an existing class.

NOTE Because Objective-C is an extension of C, it is common to see C
functions interspersed throughout your Objective-C application. C functions use
parentheses () to pass in arguments for parameters.

NOTE In some languages (such as C#), a category is known as an extension
method.

For example, imagine you want to test whether a string contains a valid e-mail address. You can
add an isEmail method to the NSString class so that you can call the isEmail method on any
NSString instance, like this:

 NSString *email = @”weimenglee@gmail.com”;
 if ([email isEmail]) {
 //...
 }

To do so, simply create a new class fi le and code it as follows:

//---Utils.h---
#import <Foundation/Foundation.h>

//---NSString is the class you are extending---
@interface NSString (Utilities)

//---the method you are adding to the NSString class---
-(BOOL) isEmail;

@end

Basically, it looks the same as declaring a new class except that it does not inherit from any other
class. The stringUtils is a name that identifi es the category you are adding, and you can use any
name you want.

Next, you need to implement the method(s) you are adding:

//---Utils.m---
#import “Utils.h”

@implementation NSString (Utilities)

- (BOOL) isEmail {

bapp03.indd 585bapp03.indd 585 05/12/11 2:33 PM05/12/11 2:33 PM

586 ❘ APPENDIX C CRASH COURSE IN OBJECTIVE-C

 NSString *emailRegEx =
 @”(?:[a-z0-9!#$%\\&‘*+/=?\\^_`{|}~-]+(?:\\.[a-z0-9!#$%\\&‘*+/=?\\^_`{|}”
 @”~-]+)*|\“(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\”
 @”x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\“)@(?:(?:[a-z0-9](?:[a-”
 @”z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5”
 @”]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-”
 @”9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21”
 @”-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])”;

 NSPredicate *regExPredicate = [NSPredicate
 predicateWithFormat:@”SELF MATCHES %@”,
 emailRegEx];

 return [regExPredicate evaluateWithObject:self];
}

@end

NOTE The code for validating an e-mail address using a regular expression is
adapted from http://cocoawithlove.com/2009/06/
verifying-that-string-is-email-address.html.

You can then test for the validity of an e-mail address using the newly added method:

 NSString *email = @”weimenglee@gmail.com”;
 if ([email isEmail])
 NSLog(@”Valid email”);
 else
 NSLog(@”Invalid email”);

bapp03.indd 586bapp03.indd 586 05/12/11 2:33 PM05/12/11 2:33 PM

Answers to Exercises

This appendix provides the solutions for the end-of-chapter exercises located in Chapters 2–21
(there are no exercises in Chapter 1).

CHAPTER 2 EXERCISE SOLUTIONS

Answer to Question 1

The minimum image size you should design is 57 � 57 pixels (or 114 � 114 pixels for high
resolution). It is OK to design a larger image because the iPhone automatically resizes it for
you. In general, try to design a larger image because doing so prepares your application for the
newer devices that Apple may roll out.

Answer to Question 2

The easiest way to add a launch image is to add an image named Default.png to your
Xcode project. This image must be sized 480 � 320 pixels (or 960 � 640 pixels for high
resolution).

Answer to Question 3

This ensures that the image is always copied into the project folder. If not, Xcode only makes a
reference to the image; it is not physically in the project folder.

D

bapp04.indd 587bapp04.indd 587 05/12/11 2:34 PM05/12/11 2:34 PM

588 ❘ APPENDIX D ANSWERS TO EXERCISES

CHAPTER 3 EXERCISE SOLUTIONS

Answer to Question 1

In the .h fi le:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

@end

In the .m fi le:

#import “OutletsAndActionsViewController.h”

@implementation OutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

- (void)dealloc {
 //---release the outlet---
 [txtName release];
 [super dealloc];
}

Answer to Question 2

In the .h fi le:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController
{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

bapp04.indd 588bapp04.indd 588 05/12/11 2:35 PM05/12/11 2:35 PM

Chapter 4 Exercise Solutions ❘ 589

In the .m fi le:

@implementation OutletsAndActionsViewController

-(IBAction) btnClicked:(id) sender {
 //---action implementation here---
}

Answer to Question 3

Use the alert view when you simply want to notify the user when something happens. Use an action
sheet when the user needs to make a selection, usually from a set of options.

Answer to Question 4

 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”Click Me, Please!” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

CHAPTER 4 EXERCISE SOLUTIONS

Answer to Question 1

mySecondViewController = [[MySecondViewController alloc]
 initWithNibName:@”MySecondViewController”
 bundle:nil];

Answer to Question 2

- (void)viewDidLoad {
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[[UILabel alloc] initWithFrame:frame] autorelease];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];

bapp04.indd 589bapp04.indd 589 05/12/11 2:35 PM05/12/11 2:35 PM

590 ❘ APPENDIX D ANSWERS TO EXERCISES

 button.frame = frame;
 [button setTitle:@”OK” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the views to the View window---
 [self.view addSubview:label];
 [self.view addSubview:button];
 [super viewDidLoad];
}

Answer to Question 3

 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

 ...
 ...

-(IBAction) buttonClicked: (id) sender{
 //—-add implementation here—-
}

Answer to Question 4

In the HelloWorldViewController.m fi le, add the following code:

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Button Clicked!”
 message:@”Button was clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

CHAPTER 5 EXERCISE SOLUTIONS

Answer to Question 1

To detect the platform on which your application is running, use the UI_USER_INTERFACE_IDIOM()
function.

Answer to Question 2

The different values for the Targeted Device Family setting are iPhone, iPad, and iPhone/iPad.

bapp04.indd 590bapp04.indd 590 05/12/11 2:35 PM05/12/11 2:35 PM

Chapter 7 Exercise Solutions ❘ 591

CHAPTER 6 EXERCISE SOLUTIONS

Answer to Question 1

First, handle the Did End on Exit event (or implement the textFieldShouldReturn: method in
the View Controller). Then call the resignFirstResponder method of the UITextField outlet to
release its fi rst-responder status.

Answer to Question 2

Register for the notifi cations UIKeyboardDidShowNotification and
UIKeyboardDidHideNotification.

Answer to Question 3

 NSDictionary* info = [notification userInfo];

 //---obtain the size of the keyboard---
 NSValue *aValue = [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@”%f”, keyboardRect.size.height);

Answer to Question 4

Use the UIScrollView to contain views so that the user can scroll through them. Then, set the new
size of the scroll view:

- (void)viewDidLoad {
 //---set this to the screen size---
 scrollView.frame = CGRectMake(0, 0, 320, 460);

 //---set this to the final size of the scroll view---
 [scrollView setContentSize:CGSizeMake(320, 713)];

 [super viewDidLoad];
}

CHAPTER 7 EXERCISE SOLUTIONS

Answer to Question 1

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation ==
 UIInterfaceOrientationLandscapeRight ||
 interfaceOrientation ==
 UIInterfaceOrientationLandscapeLeft);
}

bapp04.indd 591bapp04.indd 591 05/12/11 2:35 PM05/12/11 2:35 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

592 ❘ APPENDIX D ANSWERS TO EXERCISES

Answer to Question 2

The frame property defi nes the rectangle occupied by the view, with respect to its superview
(the view that contains it). Using the frame property enables you to set the positioning and size of a
view. Besides using the frame property, you can also use the center property, which sets the center
of the view, also with respect to its superview. You usually use the center property when you are
performing some animation and just want to change the position of a view.

CHAPTER 8 EXERCISE SOLUTIONS

Answer to Question 1

The two protocols are UITableViewDataSource and UITableViewDelegate.

The UITableViewDataSource protocol contains events that you can implement to populate the
Table view with the various items.

The UITableViewDelegate protocol contains events that you can implement to handle the selection
of rows in a Table view.

Answer to Question 2

To add an index list to your Table view, you need to implement the
sectionIndexTitlesForTableView: method.

Answer to Question 3

The three disclosure and checkmark accessories are as follows:

 ➤ UITableViewCellAccessoryDetailDisclosureButton

 ➤ UITableViewCellAccessoryCheckmark

 ➤ UITableViewCellAccessoryDisclosureIndicator

The UITableViewCellAccessoryDetailDisclosureButton image handles a user’s tap event. The
event name is tableView:accessoryButtonTappedForRowWithIndexPath:.

CHAPTER 9 EXERCISE SOLUTIONS

Answer to Question 1

To retrieve the values for preferences settings, you use the objectForKey: method. To save the
values for preferences settings, you use the setObject:forKey: method.

Answer to Question 2

You can either remove the application from the device or Simulator, or you can remove the fi le
ending with application_name.plist in the application folder within the Simulator.

bapp04.indd 592bapp04.indd 592 05/12/11 2:35 PM05/12/11 2:35 PM

Chapter 11 Exercise Solutions ❘ 593

CHAPTER 10 EXERCISE SOLUTIONS

Answer to Question 1

The three folders are Documents, Library, and tmp. Developers can use the Documents folder to
store application-related data. Files saved in the Documents folder are backed up by iTunes. The
Library folder stores application-specifi c settings, such as those used by the NSUserDefaults class,
as well as snapshots of the application’s screen. The tmp folder can be used to store temporary data
that will not be backed up by iTunes.

Answer to Question 2

The NSDictionary class creates a dictionary object whose items are immutable; that is, after it is
populated, you can no longer add items to it. The NSMutableDictionary class, conversely, creates a
mutable dictionary object that allows items to be added to it after it is loaded.

Answer to Question 3

Location of the Documents folder on a real device:

/private/var/mobile/Applications/<application_id>/Documents/

Location of the tmp folder on a real device:

/private/var/mobile/Applications/<application_id>/tmp/

Answer to Question 4

The class is UIDocumentInteractionController.

Answer to Question 5

The key is UIFileSharingEnabled.

Answer to Question 6

The key is CFBundleDocumentTypes.

CHAPTER 11 EXERCISE SOLUTIONS

Answer to Question 1

The sqlite3_exec() function is actually a wrapper for the three functions sqlite3_prepare();
sqlite3_step(); and sqlite3_finalize(). For nonquery SQL statements (such as for creating
tables, inserting rows, and so on), it is always better to use the sqlite3_exec() function.

bapp04.indd 593bapp04.indd 593 05/12/11 2:35 PM05/12/11 2:35 PM

594 ❘ APPENDIX D ANSWERS TO EXERCISES

Answer to Question 2

To obtain a C-style string from an NSString object, use the UTF8String method from the NSString
class.

Answer to Question 3

-(void) getAllRowsFromTableNamed: (NSString *) tableName {
 //---retrieve rows---
 NSString *qsql = [NSString stringWithFormat:@”SELECT * FROM %@”,
 tableName];

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@”%@ - %@”,
 field1Str, field2Str];
 NSLog(@”%@”, str);

 [field1Str release];
 [field2Str release];
 [str release];
 }

 //---deletes the compiled statement from memory---
 sqlite3_finalize(statement);
 }
}

CHAPTER 12 EXERCISE SOLUTIONS

Answer to Question 1

The method is URLForUbiquityContainerIdentifier:.

Answer to Question 2

The advantage is that all the fi les stored in the Documents folder are exposed in the Settings ➪
iCloud ➪ Storage & Backup ➪ Manage Storage page. You can manage the fi les directly using
this page.

bapp04.indd 594bapp04.indd 594 05/12/11 2:35 PM05/12/11 2:35 PM

Chapter 14 Exercise Solutions ❘ 595

Answer to Question 3

Storing key-value data on iCloud ensures that application-specifi c data can be accessed by the
application running on different devices. This enables users to enjoy a consistent, synchronized
experience no matter where they access your application.

CHAPTER 13 EXERCISE SOLUTIONS

Answer to Question 1

The three affi ne transformations are translation, rotation, and scaling.

Answer to Question 2

The only way to pause the NSTimer object is to call its invalidate method. To resume it, you have to
create a new NSTimer object.

Answer to Question 3

The animatingWithDuration:animations: method of the UIView class enables you to enclose a
block of code that causes visual changes to your views, such that the changes in visual appearance
will be animated, and not appear choppily.

Answer to Question 4

You can play a video using the MPMoviePlayerController class.

CHAPTER 14 EXERCISE SOLUTIONS

Answer to Question 1

For invoking Safari:

@”http://www.apple.com”

For invoking Mail:

@”mailto:?to=weimenglee@gmail.com&subject=Hello&body=Content of email”

For invoking SMS:

@”sms:96924065”

For invoking Phone:

@”tel:1234567890”

bapp04.indd 595bapp04.indd 595 05/12/11 2:35 PM05/12/11 2:35 PM

596 ❘ APPENDIX D ANSWERS TO EXERCISES

Answer to Question 2

The class name is UIImagePickerController.

Answer to Question 3

The class name is MFMailComposeViewController.

Answer to Question 4

The class name is MFMessageComposeViewController.

CHAPTER 15 EXERCISE SOLUTIONS

Answer to Question 1

The class is CMMotionManager.

Answer to Question 2

The three events are as follows:

 ➤ motionBegan:

 ➤ motionEnded:

 ➤ motionCancelled:

CHAPTER 16 EXERCISE SOLUTIONS

Answer to Question 1

The four ways are SOAP 1.1/1.2, HTTP GET, HTTP POST, and JSON.

Answer to Question 2

The three key events are as follows:

 ➤ connection:didReceiveResponse:

 ➤ connection:didReceiveData:

 ➤ connectionDidFinishLoading:

bapp04.indd 596bapp04.indd 596 05/12/11 2:35 PM05/12/11 2:35 PM

Chapter 18 Exercise Solutions ❘ 597

Answer to Question 3

The NSXmlParser class fi res off the following events as it parses the content of an XML document:

 ➤ parser:didStartElement:namespaceURI:qualifiedName:attributes:

 ➤ parser:foundCharacters:

 ➤ parser:didEndElement:namespaceURI:qualifiedName:

Answer to Question 4

The class is TWTweetComposeViewController.

CHAPTER 17 EXERCISE SOLUTIONS

Answer to Question 1

The class is GKPeerPickerController.

Answer to Question 2

The class is GKSession.

Answer to Question 3

Call the startVoiceChatWithParticipantID:error: method from the GKVoiceChatService class.

Answer to Question 4

On the initiator, call the voiceChatService:sendData:toParticipantID: method defi ned in the
GKVoiceChatClient protocol.

On the receiver, call the receivedData:fromParticipantID: method defi ned in the
GKVoiceChatClient protocol.

CHAPTER 18 EXERCISE SOLUTIONS

Answer to Question 1

The class is NSNetService.

Answer to Question 2

The class is NSNetServiceBrowser.

bapp04.indd 597bapp04.indd 597 05/12/11 2:35 PM05/12/11 2:35 PM

598 ❘ APPENDIX D ANSWERS TO EXERCISES

Answer to Question 3

The method name is netServiceBrowser:didFindService:moreComing:.

Answer to Question 4

The method name is netServiceBrowser:didRemoveService:moreComing:.

CHAPTER 19 EXERCISE SOLUTIONS

Answer to Question 1

The two certifi cates are the development certifi cate and the SSL certifi cate for the provider
application.

Answer to Question 2

This ensures that you have the private and public key pair of the certifi cate.

Answer to Question 3

The method is registerForRemoteNotificationTypes:.

Answer to Question 4

The device token is used to uniquely identify the device of the recipient of the push notifi cation, and
is needed by the APNs server.

Answer to Question 5

The event is application:didReceiveRemoteNotification:.

CHAPTER 20 EXERCISE SOLUTIONS

Answer to Question 1

The property is showsUserLocation.

Answer to Question 2

The protocol is MKMapViewDelegate.

Answer to Question 3

The method is startUpdatingLocation.

bapp04.indd 598bapp04.indd 598 05/12/11 2:35 PM05/12/11 2:35 PM

Chapter 21 Exercise Solutions ❘ 599

Answer to Question 4

The method is startUpdatingHeading.

Answer to Question 5

The class is CLGeocoder.

CHAPTER 21 EXERCISE SOLUTIONS

Answer to Question 1

The three types of applications are audio, location, and VOIP.

Answer to Question 2

At the time of writing, multi-tasking is supported only on iPod touch (third generation), iPhone
3GS, and iPhone 4.

Answer to Question 3

You use the startUpdatingLocation method to keep track of changes in location coordinates
(using a combination of GPS, cell tower triangulation, and WiFi triangulation), while the
startMonitoringSignificantLocationChanges method monitors for signifi cant location changes
(using cell tower triangulation) and notifi es you only when the cell tower changes.

Answer to Question 4

Apple Push Notifi cation service is a mobile service provided by Apple. It uses push technology to
forward notifi cation messages to the iPhone/iPod touch/iPad through a constantly connected IP
connection. To use this service, an application provider must send a message to Apple’s server,
which in turn sends a notifi cation to the application on the user’s device.

Local notifi cation, conversely, is a messaging service that can be used locally on the device.
Applications running on an iPhone/iPod touch/iPad can schedule notifi cations to be fi red at a
scheduled time.

bapp04.indd 599bapp04.indd 599 05/12/11 2:35 PM05/12/11 2:35 PM

bapp04.indd 600bapp04.indd 600 05/12/11 2:35 PM05/12/11 2:35 PM

601

INDEX

Symbols

@””, default domain, 419
. (period)

keyboard, 126
protocol, 419

; (semicolon), SQLite3, 265
<> (angle brackets)

header fi les, 560
protocols, 582

* (asterisk)
App ID, 524–526
Bundle Identifi er, 273, 524
Objective-C, 563

- (minus sign), instance methods, 565
() (parentheses), C functions, 585
|| (pipe sign/double), OR operator, 152
+ (plus sign), provisioning profi le, 523
? (question mark), SQL statements, 261
~ (tilde), current user’s directory, 222
_ (underscore), service name, 419

A

accelerometer, 339–345
iPhone, 341

access privileges, Objective-C, 564
accessories, 194–195
accessors, 569
accessory, 194
accessoryType, 194
actions, 36–40

File’s Owner, 554
IBAction, 38, 39
Interface Builder, 9
iPhone Simulator, 38

methods, 39
Round Rect Button, 86
sender, 40
views, 39, 85
Xcode, 551–558

action:, 584
action sheet. See UIActionSheet
actionSheet:clickedButtonAtIndex:, 45
ad hoc distribution, 527, 530–532

UDID, 531
Add Device to Provisioning Portal, 512
Add Devices, 519
address, from latitude and longitude, 479–482
addSubView:, 310
addTarget:action:forControlEvents:, 85
affi ne transformations, 302
Alert view, 484
alertAction, 503
alertBody, 503
alertViewCancel:, 582
alertView:clickedButtonAtIndex:,

507–508, 582
UIAlertView, 505
UIAlertViewDelegate, 44

AlertViewDelegates, 507, 508
AlertViewDelegates.h, 505
AlertViewDelegates.m, 505–506
alertView:willDismissWithButton

Index:, 582
Alignment, 22
alloc, 563, 574
Analyzer, 543
animateWithDuration:delay:options:

animations:completion:, 302
animatingWithDuration:

animations:, 595

bindex.indd 601bindex.indd 601 05/12/11 2:36 PM05/12/11 2:36 PM

602

animation – ApplicationSettings

animation
iPhone Simulator, 300, 309
NSTimer, 295–310
rotation, 305–307
scaling, 307
series of images, 307–310
translation, 303–305
UIImageView, 296
View window, 87–89

HelloWorldViewController, 88
iPhone Simulator, 88

visual changes, 302
animationImages, 310
AnimationViewController.h, 298, 305
AnimationViewController.m, 299–300, 305–306
AnimationViewController.xib, 296
annotations, maps, 474–478

iPhone Simulator, 478
subtitle, 478
title, 478

APNs. See Apple Push Notifi cations
.app, 222
App ID

* (asterisk), 524–526
APNs, 431–435
Bundle Identifi er, 432, 439, 520–521
development certifi cates, 437
iCloud, 270–273
iOS Provisioning Portal, 431–432, 519
testing, 519–521

App Store, 526–530
AppDelegate, 71
Appearance, keyboard, 126
appicationWillEnterForeground:, 419
Apple Push Notifi cations (APNs), 427–448, 598, 599

App ID, 431–435
applications, 438–443
CSR, 428–429
Debugger Console, 446
development certifi cates, 429–431
DOS, 444
JSON, 444
local notifi cations, 498–504
multitasking, 428
provider applications, 428
provisioning profi le, 435–437
push notifi cation providers, 443–447

SSL certifi cate, 433–435, 443
TCP, 443
TCP/IP, 428

ApplePushNotification, 446
ApplePushNotificationAppDelegate.m,

440–441
applications. See also background applications;

built-in applications; Universal applications
APNs, 438–443
event states, 488–491
folders, fi le handling, 222–228
icons

customization, 26–28
glossy surface, 28
Hello World!, 26–28
iPhone Simulator, 26

preferences, 201–220
adding, 202–208
iPhone Simulator, 203, 207, 212
settings values, 209–218
Single View Application template

(iPhone), 202
provider, 428

Application :DidFinishLaunching

WithOptions:, 73
ApplicationDelegate.m, 445
applicationDidBecomeActive:, 491
applicationDidDidReceiveMemory

Warning:, 73
applicationDidEnterBackground:, 419, 491
application:didFailToRegisterForRemote

NotificationsWithError:, 442
application:DidFinishLaunching

WithOptions:, 73
application:didFinishLaunching

WithOptions:, 497, 504
ApplicationSettingsAppDelegate.m, 214

application:DidReceiveLocal

Notification:, 501
application:didReceiveLocalNotificat

ion:, 503–504
application:didReceiveRemoteNotificat

ion:, 442–443, 598
application:didRegisterForRemoteNotific

ationsWithDeviceToken:, 442
applicationIconBadgeNumber, 503
ApplicationSettings, 202

bindex.indd 602bindex.indd 602 05/12/11 2:36 PM05/12/11 2:36 PM

603

ApplicationSettingsAppDelegate.m – btnClicked

ApplicationSettingsAppDelegate.m, 214
ApplicationSettingsViewController.m

loadSettings:, 214
saveSettings:, 217

ApplicationSettingsViewController.xib,
209–210

applicationWillTerminate:, 73, 419
Apps.plist, 233
aps_developer_identity.cer, 445
ARC. See Automatic Reference Counting
architecture, 11–13
Array

CFBundleDocumentTypes, 248
LSItemContentTypes, 248
PreferenceSpecifiers, 204

arrays, Table view, 167
arrayForKey:, 291
ASMX, 360
Aspect Fit, 464
atomic, 39
atomically:, 226
attitude, 344
Attributes Inspector

Aspect Fit, 464
Interface Builder, 23, 549
map rotation, 468
Round Rect Button, 129
Table view, 179
Text Field, 125

audio, 599
background applications, 488

audio, 496
Auto-Enable Return Key, 127
Automatic Reference Counting (ARC), 535, 574.

See also Use Automatic Reference Counting
autorelease, 576–578
autorelease pools, 579
Autosize, 114
AVFoundation, 405

B

background applications, 487–510
audio, 488
event states, 488–491
iPhone Simulator, 490, 491, 495

local notifi cations, 498–504
location data, 488, 492–498
multitasking, 492
NSNotification, 505–509
opting out, 491–496
VOIP, 488

becomeFirstResonder, 133
beep.wav, 447
bgTouched:

KeyboardInputsViewController.xib, 130
textField, 132

bind variables, 260–262
Bluetooth, 393–413

connectionTypeMask, 399
Game Kit, 393–412

peer devices, 394–401
sending and receiving data, 401–404
Voice Chat, 404–412

GKPeerPickerController, 399
GKSession, 398–400
Interface Builder, 395
iPhone Simulator, 397, 403
NSString, 404
session ID, 401
UIAlertView, 404

BluetoothChatViewController.h, 405–406
BluetoothViewController.h, 395, 402
BluetoothViewController.m, 396–397,

402–403, 407–410
BluetoothViewController.xib, 394, 405,

406–407
body, 320
Bonjour, 415–426

browsing for services, 420–425
Debugger Console, 419
iPhone Simulator, 422
Table view, 417, 422

BonjourAppDelegate.h, 417
BonjourAppDelegate.m, 417–418, 422
BonjourViewController.h, 416, 420
BonjourViewController.m, 420–422
BonjourViewController.xib, 415, 416–417
boolForKey:, 291
breakpoints, 541–542
browseServices, 423
btnCancelAll:, 500
btnClicked:, 24–25, 84

bindex.indd 603bindex.indd 603 05/12/11 2:36 PM05/12/11 2:36 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

604

btnClicked – class methods

btnClicked (continued)
File’s Owner, 39
id, 40
Round Rect Button, 86
Touch Up Inside, 37

btnComposeEmail:, 322
btnConnect:, 407
btnDisconnect:, 395, 407
btnMute:, 407
btnSend:, 395, 403
btnSet:, 499
btnShowLocation, 451
btnUnmute:, 407
Build Phases, 537
Build Settings, 439, 526
built-in applications, 317–336

camera, 327–335
e-mail, 317–327
Photo Library, 327–335

Bundle Identifi er, 271, 273
App ID, 432, 439, 520–521

Bundle Seed ID, 432
bundled resources, 235–236
Button, 318
button, 60
buttons. See also specifi c buttons

UIActionSheet, 45
UIAlertView, 44

buttonClicked:

addTarget:action:forControlEvents:, 85
Touch Up Inside, 60
Web services, 371, 372

buttonIndex, 44
iPad, 46

buttonWithType:, 60
byte buffers, 370

C

C functions, 585
caches, 228
camera

activating, 332–335
built-in applications, 327–335
Documents folder, 334
iPhone Simulator, 330

Cancel All Notifi cations, 500
cancelAllLocalNotifications, 504
cancelButtonTitle:

iPad, 46
UIAlertView, 44

canSendTweet, 388
Capitalization, 125–126
categories, Objective-C, 585–586
cell tower triangulation, 455
center, 158
Certifi cate Assistant, 515–516
certifi cate signing requests (CSR), 515

APNs, 428–429
Certifi cates, iOS Provisioning Portal, 516
CFAffineTransform, 306
CFAffineTransformMakeRotation(), 473
CFBundleDocumentTypes, 248, 250, 593
CFBundleTypeName, 248
CFBundleTypeRole, 248
CGAffineTransform, 303, 307
CGAffineTransformConcat, 307
CGAffineTransformMakeRotation(), 306
CGAffineTransformMakeScale(), 307
CGAffineTransformMake

Translation(), 305
CGAffinteTransformationMake

Rotation(), 468
CGRectMake(), 61
checkButtonTapped:, 484
checkmarks, 194–195
cKLLocationAccuracyBest, 459
cKLLocationAccuracyNearestTenMeters, 459
@class, 561–563
classes, Objective-C, 560–573

access privileges, 564
@class, 561–563
class instances, 563
directives, 559–560
fi elds, 563
@implementation, 561
initializers, 571–573
@interface, 560
methods, 565–566
method calling, 566–568
properties, 568–571

class instances, Objective-C, 563
class methods, 565

bindex.indd 604bindex.indd 604 05/12/11 2:37 PM05/12/11 2:37 PM

605

Class Prefi x – DatabasesViewController.m

Class Prefi x, 18
UIAlertView, 42
Use Automatic Reference Counting, 58, 77,

90, 103, 110, 116, 150, 164, 174, 274, 488
CLGeocodeCompletionHandler, 482
CLGeocoder, 481, 482, 599
CLHeading, 468
Clip Subviews, 468
CLLocation, 459–460
CLLocationCordinate2D, 454
CLLocationDegrees, 455
CLLocationManager, 458, 498

startUpdatingLocation, 467, 496
CLLocationManagerDelegate, 458
CMDeviceMotion, 344
CMMotionManager, 344, 596
Cocoa Touch, 11, 12

Empty Application template, 78
code completion, 538–539
Code Sense, 538–539
Code Signing Identity, 526
compass, 466
Compass.gif, 464
completionHandler, 389
Compose SMS, 326
configureView, 197–198

Label, 198
setDetailItem, 97

Connect button, File’s Owner, 395, 406
connection:didFailWithError:, 370
connectionDidFinishLoading:, 596

Web services, 370
connection:didReceiveData:, 596

Web services, 370
connection:didReceiveResponse:, 596
Connections Inspector, 549–550
connectionTypeMask, 399
containers, 59
Content-Length, 362
contentsForType:error:, 278
Content-Type, 362
Control Events, 86–87
Controls, 41
convenience methods, 576–578
ConversionRate, 360–361
<ConversionRateResult>, 369

coordinate, 478
copyFileInBundleToDocumentsFolder:

withExtension:, 235–236
Core Data, 253

View controllers, 534
Core Graphics, 302
Core Location, 452

directional information, 467
map annotations, 474

Core OS, 11
Core Services, 12
CoreGraphics.framework, 70, 345
CoreMotion.framework, 341
Correction, keyboard, 125–126
createFileOniCloud, 280
createTableNamed:with-Field:with

Field2:, 258
CSR. See certifi cate signing requests
Currency Converter, 360–361
currentSession, 399
currentTextField, 144
customization

application icon, 26–28
keyboard, 125–133

<CUSTOM_STRING>, 275

D

Dashcode, 3
data, 370
Data Views, 41
databases

bind variables, 260–262
bundling with applications, 265–266
creating and opening, 256–265
inserting records, 259–260
iPhone Simulator, 258
retrieving records, 263–265
SQLite3, 253–267
tables, 258–259

DatabasesViewController.h, 255
DatabasesViewController.m

createTableNamed:with-

Field:withField2:, 258
filePath, 255
getAllRowsFromTableNamed:, 263

bindex.indd 605bindex.indd 605 05/12/11 2:37 PM05/12/11 2:37 PM

606

DatabasesViewController.m – DynamicViewsViewController.m

DatabasesViewController.m (continued)
insertRecordIntoTableNamed:

withField:fieldValue:andField2:

field2Value:, 259–260
openDB, 256

dataForKey:, 291
dataSource

File’s Owner, 164, 167, 210, 417
Table view, 164

DatePicker, 354
dealloc, 509, 579–580
Debugger Console, 264

APNs, 446
Bonjour, 419
maps, 453
Shake API, 355

debugging, Xcode, 539–544
default domain, 419
Default@2x.png, 29–32
Default.png, 28–32
delegate

File’s Owner, 139, 142, 164, 171, 185, 417
Table view, 164
UIAlertView, 583

delegates, Objective-C, 583
delta, 300, 350
denial-of-service (DOS), 444
dequeueReusableCellWithIdentifier:,

168–169
designated initializers, 573
desiredAccuracy, 459
Detail Disclosure button, 194–195
detailItem

DetailViewController, 197–198
MasterDetailDetailView

Controller, 102
detailNavigationController, 94
DetailViewController, 197–198
detailViewController

detailNavigationController, 94
iPad, 102
MasterDetailDetailViewController, 94

developer_identity.cer, 517
development certifi cates

APNs, 429–431
App ID, 437
Keychain Access, 431

Pending Issuance, 517
testing, 515–518

Development Push SSL Certifi cate, 433
Device Family, 18
device registration, 518–519
deviceMotionUpdateInterval, 344
dictionaryForKey:, 291
Did End On Exit, 128, 129, 591
didPresentAlertView:, 582
didReceiveMemoryWarning, 580
directional information

Core Location, 467
Interface Builder, 464
maps, 464–468
View window, 464

directives, Objective-C, 559–560
disclosures, Table view, 194–195
disclosure button, maps, 482–484
Disconnect button, 395, 406
disconnectFromAllPeers:, 400
Display Files in Documents button, 245
displayAlert:, 245
displayName, 401
distanceFilter, 459, 497
distribution certifi cate, 515, 526–530
distribution provisioning profi le, 526–530
DLSDistributionProfile, 527
document storage, iCloud, 270–273
documentation, Xcode, 543–544
documentContentsDidUpdate, 278
documentController, 242
Documents folder, 223–227, 593, 594

camera, 334
iCloud, 286
NSMetadataQuery, 286

documentsPath, 226
doneEditing:, 128, 210

Did End On Exit, 129
iCloud, 280
Shake API, 352

doneSearching:, 191–192
DOS. See denial-of-service
doSomething, 567
doSomething:withAnotherPara:, 567
doubleForKey:, 291
DynamicViews, 58
DynamicViewsViewController.m, 58

bindex.indd 606bindex.indd 606 05/12/11 2:37 PM05/12/11 2:37 PM

607

Edit Scheme – GeneraliOSDeviceProfi le

E

Edit Scheme, 526
Editor, 248
e-mail, 317–327, 595
EmailsViewController.h, 319, 322,

325–326
EmailsViewController.m, 319, 323
EmailsViewController.xib

Interface Builder, 318
Round Rect Button, 326

EmailViewController.xib, 321
Empty Application template, 77–89

Cocoa Touch, 78
iPhone Simulator, 78
View controllers, 77

Empty Application template (iPhone), 77
EmptyAppAppDelegate.h, 77, 80
EmptyAppAppDelegate.m, 77, 80–81
emulators, 5
Enable Entitlements, 274
entitlements

iCloud, 273–276
provisioning profi le, 274

errors, Xcode, 540
events, responder chain, 133
event handlers, 25

iPhone, 133
Table view, 167

exchangeSubviewAtIndex:withSubview

AtIndex:, 61
export, 239–242

F

Favorite Color, 207–208
favoriteColor, 210
fi elds, Objective-C, 563
fi le handling, 221–252

application folders, 222–228
bundled resources, 235–236
export, 239–242
import, 245–250
property lists, 228–235
sharing fi les, 242–245

filePath, 255

File’s Owner
actions, 554
btnClicked:, 39
Connect button, 395, 406
dataSource, 164, 167, 210, 417
delegate, 139, 142, 164, 171, 185, 417
Disconnect button, 395, 406
ImageView, 329
Interface Builder, 25, 37, 130, 156, 499, 545
Label, 466
Map View, 451
outlets, 554
Round Rect Button, 84, 130, 319, 367
Show My Location, 451
Text Field, 142, 367, 380
txtName, 39
View window, 39

FilesHandling, 223
FilesHandlingAppDelegate.m, 235–236
FilesHandlingViewController.h, 223
FilesHandlingViewController.m, 224
fireDate, 503
First Responder

Interface Builder, 25, 545
Text Field, 129

first.png, 107
footers, Table view, 169
forward declaration, 562–563
Foundation.framework, 70
frame, 158, 592
frameworks, 13. See also specifi c frameworks

header fi les, 560
JSON Web services, 381
Twitter, 388
Xcode, 537–538

G

Game Kit
Bluetooth, 393–412
iOS SDK, 393
peer devices, 394–401
sending and receiving data, 401–404
Voice Chat, 404–412

GameKit.framework, 394
GeneraliOSDeviceProfile, 523

bindex.indd 607bindex.indd 607 05/12/11 2:37 PM05/12/11 2:37 PM

608

gestures – id

gestures, 8
Gesture Recognizers, 41
getAllRowsFromTableNamed:, 263
getters, 569
GKPeerPickerConnectionTypeOnline, 399
GKPeerPickerController, 401, 597

Bluetooth, 399
GKSendDataReliable, 403
GKSession

Bluetooth, 398–400
GKSendDataReliable, 403
sendDataToAllPeers:withDataMode:, 403

GKVoiceChatClient, 411, 412, 597
GKVoiceChatService, 411, 412, 597
Google Mobile Apps Service, 449
GPS, 455, 460
gps, 460
Grouped, 179, 183
gyroscope, 339–345

iPhone, 349–350
GyroscopeViewController, 342
GyroscopeViewController.h, 346–347
GyroscopeViewController.m, 343, 347–349
GyroscopeViewController.xib, 346

H

.h, 588
@interface, 560

Hafeneger, Stefan, 444
handleDocumentOpenURL:, 245, 247
hardware, location data, 460
headers

HTTP POST, 364
SOAP, 363
Table view, 169, 182–183

header fi les
frameworks, 560
@interface, 560
methods, 565–566

heading, 466
Hello World!, 17–34

application icon, 26–28
Interface Builder, 20–24
launch images, 28–33
Xcode, 17–20

HelloWorld-Info.plist, 26, 28
HelloWorldViewController, 88
HelloWorldViewController.m, 25, 590
HelloWorldViewController.xib, 21, 25,

78–79, 84
Interface Builder, 79

Home
iPhone, 24, 27, 46
iPhone Simulator, 490
screen rotation, 152

HTML, 55
HTTP GET, 596

SOAP, 363, 365, 371
Web services, 371–372

HTTP POST, 596
headers, 364
SOAP, 364, 365, 371
Web services, 372

I

IBAction

actions, 38, 39
Touch Up Inside, 159
UIActionSheet, 46

IBOutlet

outlets, 38
@property, 39

iCloud, 269–293
App ID, 270–273
document storage, 270–273
Documents folder, 286
entitlements, 273–276
Interface Builder, 280
iPad, 283
iPhone, 284
key-value data storage, 270, 275, 289–292
NSFileManager, 286
NSUserDefaults, 289
saving documents, 278–288
synchronize, 291
UIDocument, 276–278

icon.png, 27
icons, 26–28
id, 563, 573

btnClicked:, 40

bindex.indd 608bindex.indd 608 05/12/11 2:37 PM05/12/11 2:37 PM

609

IDE – Interface Builder

IDE. See integrated development environment
Identity Inspector, 550
images

animation, 307–310
Hello World!, 28–33
iPhone, 26
Supporting Files folder, 170
Table view, 169–171
tableView:cellForRowAtIndexPath:, 170
Xcode, 587

Image View. See UIImageView
imagePickerControllerDidCancel:, 332
imagePickerController:didFinishPickingM

ediaWithInfo:, 331
images, 310
ImageView, 327, 329, 335
imageView, 171
@implementation, 561
import, 245–250, 248–250
#import, 559–560
#include, 560
indenting, Table view, 173
indexing, Table view, 183
info:, 332
Info.plist

UIBackgroundModes, 496, 497
UIRequiredDeviceCapabilities, 398

info.plist, 26
Supporting Files folder, 159

init, 572
Initial Supported interface

orientation, 159
initializers, 571–573
initWithFileURL, 278
initWithName:andRate:, 572
initWithNibName:bundle:, 106
insertRecordIntoTableNamed:with

Field:fieldValue:andField2:field2Va

lue:, 259–260
Inspector window, Interface Builder,

548–550
instance methods, 565
Instruments, Xcode, 3, 10
integrated development environment (IDE),

Xcode, 3, 545
@interface, 560

Interface Builder
actions, 9
Alignment, 22
AnimationViewController.xib, 296
ApplicationSettingsViewController

.xib, 209–210
Attributes Inspector, 23, 549
Bluetooth, 395
Compose SMS, 326
Connections Inspector, 549–550
directional information, 464
EmailsViewController.xib, 318
File’s Owner, 25, 37, 130, 156, 499, 545
First Responder, 25, 545
Hello World!, 20–24
HelloWorldViewController.xib, 79, 84
iCloud, 280
Identity Inspector, 550
Inspector window, 548–550
keyboard shortcuts, 548
KeyboardInputsViewController.xib, 128
Label, 21–23, 36, 85
Library, 551
local notifi cations, 499–500
location data, 457
Map Kit, 451
map rotation, 469
MasterViewController.xib, 175
MyiPhoneAppViewController.xib, 110
MyUniversalAppViewController_iPad

.xib, 117
MyUniversalAppViewController_

iPhone.xib, 117
outlets, 9
OutletsAndActionsViewController

.xib, 36
points, 137
Round Rect Button, 23, 25, 36, 85
scrollView, 137
Search Bar, 184
Shake API, 351–352
Size Inspector, 550
TableView, 179
TableViewExampleViewController

.xib, 164
Text Field, 23–24, 36, 125, 139

bindex.indd 609bindex.indd 609 05/12/11 2:37 PM05/12/11 2:37 PM

610

Interface Builder – iPhone

Interface Builder (continued)
UIView, 355
UsingViews2ViewController.xib, 56
UsingViewsViewController.xib, 47
Utilities, 21
View window, 25, 50, 545–548
WebServicesViewController.xib, 365
webView, 56
Xcode, 3, 9, 21, 545–550
.xib, 545–546
XML, 21

iOS Dev Center, 429
iOS Developer Program, 514
iTunes Connect, 529–530

iOS Developer Program, 511, 514
iOS Provisioning Portal, 429, 435–437

App ID, 431–432, 519
Certifi cates, 516
logging in, 514–515
New Profi le, 521
Organizer, 518
testing, 514–515

iOS SDK, 2
Game Kit, 393
iOS Simulator, 5
Map Kit, 449
NSXMLParser, 373
screen rotation, 149
Single View Application template, 67
UIPageControl, 46
View window, 67

iOS Simulator, 3, 4–9
IP address, 423
.ipa, 531–532
iPad

camera, 327–335
detailViewController, 102
iCloud, 283
keyboard, 123–147

dismissing, 127–133
landscape mode, 98
Master-Detail Application template,

94–95
multi-platform support, 109–122
MyUniversalAppViewController, 119
Photo Library, 327–335
provisioning profi le, 523
screen rotation, 151–152

Split View-based Application template, 89
Targeted Device Family, 109–114
UIActionSheet, 46
UIUserInterfaceIdiomPad:, 115
Xcode, 533
.xib, 96

iPad Simulator
portrait mode, 92, 100
TableView, 102
Targeted Device Family, 110–111
Universal applications, 118
Xcode, 92, 114

iPhone
accelerometer, 341
ApplePushNotification, 446
camera, 327–335
e-mail, 317–327
event handlers, 133
gyroscope, 349–350
Home, 24, 27, 46
iCloud, 284
images, 26
keyboard, 123–147

dismissing, 127–133
landscape mode, 133
map rotation, 471
Master-Detail Application template, 92
multi-platform support, 109–122
multitasking, 599
MyUniversalAppViewController, 119
phone dialer, 324
Photo Library, 327–335
pixels, 133, 137
portrait mode, 133
provisioning profi le, 523
responder chain, 133
Retina, 21
Safari, 149–150, 324
screen resolution, 21
screen rotation, 149–152
Scroll View, 134–145
SMS, 324–325
Targeted Device Family, 109–114
Text Field, 124–125
UIUserInterfaceIdiomPhone, 116
video playback, 310–314
Xcode, 533
.xib, 96

bindex.indd 610bindex.indd 610 05/12/11 2:37 PM05/12/11 2:37 PM

611

iPhone Simulator – keyboardDidHide

iPhone Simulator, 38
address location, 481
animation, 300, 309
applications

icons, 26
preferences, 203, 207, 212

background applications, 490, 491, 495
Bluetooth, 397, 403
Bonjour, 422
camera, 330
databases, 258
Documents folder, 225
Empty Application template, 78
Home, 490
JSON Web services, 381
keyboard, 124

dismissing, 128
local notifi cations, 501
location data, 458, 462–463, 495
map annotation, 478
map disclosure button, 483
Map Kit, 452
Master-Detail Application template, 91, 100
Photo Library, 331
Round Rect Button, 157
screen resolution, 157
screen rotation, 150
Scroll View, 137, 142
Search Bar, 186
Shake API, 454
Single View Application template, 69
Tabbed Application template, 106
Table view, 166, 179, 186, 197
Targeted Device Family, 110–111
Twitter, 387
UIActionSheet, 45
UIAlertView, 42, 43
UIPageControl, 52
UIWebView, 57
Universal applications, 118
video playback, 313
View controllers, 84
View window animation, 88
Web services, 368, 375
Xcode, 114, 124, 157

iPod Touch
multitasking, 599

provisioning profi le, 523
Voice Chat, 410

.ips, 529
isEmail:, 585
isSearchOn, 193
IsSecure, 208
iTunes Connect, 529–530

J

JSON, 596
APNs, 444
Web services, 289, 360, 377–383

frameworks, 381
iPhone Simulator, 381
NSDictionary, 382
Xcode, 378

JSONValue, 382

K

kCLDistanceFilterNone, 459
kCLLocationAccuracyBestFor

Navigation, 459
kCLLocationAccuracyHundredMeters, 459
kCLLocationAccuracyKilometer, 459
kCLLocationAccuracyThreeKilometers, 459
Keyboard, 125–126
keyboard, 123–147

automatically displaying, 133
customization, 125–133
detecting presence, 133–145
dismissing, 127–133
Interface Builder shortcuts, 548
iPhone Simulator, 124

dismissing, 128
landscape mode, 144
Number Pad, 126
portrait mode, 144
Scroll View, 134–145
Search Bar, 190
Shake API, 354
size, 144
Text Field, 124–125

dismissing, 128, 129
View window, 133

keyboardDidHide:, 144–145

bindex.indd 611bindex.indd 611 05/12/11 2:37 PM05/12/11 2:37 PM

612

keyboardDidShow – longitudeDelta

keyboardDidShow:, 144
KeyboardInputs, 129
KeyboardInputsViewController.h, 130
KeyboardInputsViewController.m, 128, 131
KeyboardInputsViewController.xib

bgTouched:, 130
Interface Builder, 128
KeyboardInputs, 129

keyboardIsShown:, 144
Keychain Access, 428–429

Certifi cate Assistant, 515–516
development certifi cates, 431
SSL certifi cate, 435

key-value data storage, 595
iCloud, 270, 275, 289–292

key/value pairs
property lists, 180–181, 228
Root.plist, 206

L

Label
File’s Owner, 466
Interface Builder, 21–23, 36, 85
Round Rect Button, 61
setDetailItem, 97
View window, 85, 117, 124
views, 60

Label

configureView, 198
EmailsViewController.xib, 318

label, 60
landscape mode

iPad, 98
iPhone, 133
keyboard, 144

latitude, 479–482
latitudeDelta, 455
launch images, Hello World!, 28–33
launchOptions, 504
LBSAppDelegate.m, 493–495
LBSViewController.h, 456–457, 461, 465–466,

476–477, 479
Xcode, 469

LBSViewController.m, 457–458, 461–462,
466–467, 477–483 , 495

LBSViewController.xib, 468
Library folder, 223–227, 593

Interface Builder, 23, 551
libsqlite3.dylib, 254–256
Link Binary With Libraries, 537
listFilesFromDocumentsFolder, 245
listOfMovies, 168

NSMutableArray, 166
loadFileFromDocumentsFolder:, 245
loadFromContents:ofType:error:, 278
loadRequest:, 57
loadSettings:, 214
loadView

view, 60
View controllers, 59

local notifi cations, 599
APNs, 498–504
Interface Builder, 499–500
iPhone Simulator, 501

LocalNotification, 498
LocalNotificationAppDelegate.m, 500–501
LocalNotificationViewController.m, 500
LocalNotificationViewController.xib, 498
location, 493, 496
location data, 599

background applications, 488, 492–498
cell tower triangulation, 455
desiredAccuracy, 459
energy effi ciency, 496–498
GPS, 455
hardware, 460
Interface Builder, 457
iPhone Simulator, 458, 462–463, 495
maps, 455–484

displaying, 460–464
Wi-Fi triangulation, 455

locationManager:didFaileWithError:, 459
locationManager:didUpdateHeading:, 468
locationManager:didUpdateToLocation:fro

mLocation:, 459, 481, 497
LocationNotifcationViewController.h, 499
location-services, 460
logic faults, 543
loginName, 210
longitude, 479–482
longitudeDelta, 455

bindex.indd 612bindex.indd 612 05/12/11 2:37 PM05/12/11 2:37 PM

613

longLongForKey – matchingElement

longLongForKey:, 291
low-memory warning, iOS Simulator, 8
LSHandlerRank, 248
LSItemContentTypes, 250

Array, 248

M

.m, 588–589
@interface, 560
@synthesize, 40

magneticHeading, 468
mailto:, 320
main.m, 70
Manage Your Applications, 530
maps, 449–486

annotations, 474–478
iPhone Simulator, 478
subtitle, 478
title, 478

Debugger Console, 453
directional information, 464–468
disclosure button, 482–484
location data, 455–484

displaying, 460–464
Map Kit, 449–455
pixels, 472
reverse geocoding, 478–482
rotation, 468–474

Attributes Inspector, 468
Interface Builder, 469
iPhone, 471

zoom, 452–455
Map Kit, 449–455

Google Mobile Apps Service, 449
Interface Builder, 451
iOS SDK, 449
iPhone Simulator, 452
map annotations, 474

Map View, 451
MapKit.framework, 450, 461, 463
MapsViewController.h, 450, 453
MapsViewController.m, 451–452, 453
MapsViewController.xib, 450
mapView, 451, 464, 472

CFAffineTransformMakeRotation(), 473

mapView:regionWillChangeAnimated:, 454
mapView:viewForAnnotation:, 483
MasterDetail, 90
Master-Detail Application template, 89–103

iPad, 94–95
iPhone, 92
iPhone Simulator, 91, 100
Table view, 173–198

indexing, 183
sections, 174–183
View window, 195–198

UITableView, 174
UITableViewController, 96
View controllers, 91
Xcode, 89, 174
.xib, 91, 96

MasterDetailAppDelegate, 91
MasterDetailAppDelegate.h, 92
MasterDetailAppDelegate.m, 93–94
MasterDetailDetailViewController, 91

detailItem, 102
detailViewController, 94
TableView, 102

MasterDetailDetailViewController_iPad

.xib, 94
MasterDetailDetailViewController.m,

96–97
MasterDetailMasterViewController, 94
MasterDetailMasterViewController.h, 98
MasterDetailMasterViewController_

iPhone.xib, 94
MasterDetailMasterViewController.m,

98–100
MasterDetailViewController, 91
MasterDetailViewController.h, 96
masterNavigationController, 94
MasterViewController

movieTitles, 181
UITableViewController, 176

masterViewController, 94
MasterViewController.h, 177, 186
MasterViewController.m, 177–179

methods, 176
Search Bar, 185, 186–190

MasterViewController.xib, 175
matchingElement, 376

bindex.indd 613bindex.indd 613 05/12/11 2:37 PM05/12/11 2:37 PM

614

Media layer – NSArray

Media layer, 12
MediaPlayer.framework, 312
memory leaks, 543, 580
memory management, Objective-C, 573–581
message, 499
MessageUI, 322
methods

actions, 39
MasterViewController.m, 176
Objective-C, 565–566
selectors, 584
UIPageControl, 53
UISplitViewControllerDelegate, 96

method calling, Objective-C, 566–568
MFMailComposeViewController, 321,

324, 596
MFMessageComposeViewController, 326, 596
MKCoordinateRegion, 454
MKCoordinateSpan, 454–455
MKMapView, 464

showUserLocation, 452
MKMapViewDelegate, 464, 483, 598

mapView:regionWillChange

Animated:, 454
View controllers, 463

MKPinAnnotationView, 484
MKUserTrackingModelFollowWith

Heading, 474
motion, 344
motionBegan:, 350, 356, 596
motionCancelled:, 350, 356, 596
motionEnded:, 350, 356, 596
movieFinishedCallback:, 314
movieTitles, 181
MPMoviePlayerController, 314, 595
multi-platform support, 109–122

programmatic detection, 114–116
Targeted Device Family, 109–114
Universal applications, 116–120

multitasking, 24
APNs, 428
background applications, 492
iPhone, 599
iPod Touch, 599

mutableCopy, 234
mutators, 569
MyAnnotation, 478

MyAnnotation.h, 474–475
MyAnnotation.m, 474, 475–476
MyCloudDocument, 287

UIDocument, 285
MyCloudDocumentDelegate, 278
MyCloudDocument.h, 277
MyCloudDocument.m, 277–278
MyFile.txt, 288
MyiPhoneAppViewController.m, 114
MyiPhoneAppViewController.xib, 110
MyService, 419
MyUniversalApp-Info.plist, 119
MyUniversalAppViewController, 119
MyUniversalAppViewController_iPad.xib,

117, 119
MyUniversalAppViewController_iPhone

.xib, 117, 119

N

Navigation-based Application template. See
Master-Detail Application template

navigationController, 93
MasterDetailMasterViewController, 94

.NET, 360
netServiceBrowser:didFindService:moreCo

ming:, 423, 598
netServiceBrowser:didRemoveService:, 424
netService:didNotPublish, 419
netService:didNotResolve:, 423
netServiceDidResolveAddress:, 423
new, 575
New App ID, 431
New App title, 231
New Profi le, 435

iOS Provisioning Portal, 521
NIB fi les, 71
nil

currentTextField, 144
otherButtonTitles, 44

nonatomic, 38–39, 570
notification, 504
Notifications, 505
NotificationsViewController.h, 506
NotificationsViewController.m, 506–507
NSArray, 181

UIImage, 309–310

bindex.indd 614bindex.indd 614 05/12/11 2:37 PM05/12/11 2:37 PM

615

NSAutoreleasePool – Objects & Controllers

NSAutoreleasePool, 579
NSDictionary, 181, 593

JSON Web services, 382
mutableCopy, 234
NSNotification, 508
property lists, 228
Search Bar, 191
tableView:cellForRowAtIndexPath:, 182

NSDocumentDirectory, 226
NSFileManager, 286
NSIndexPath

row, 172
tableView:didSelectRowAtIndexPath:,

168
NSLog(), 542
NSMetadataQuery, 286
NSMutableArray

listOfMovies, 166
Search Bar, 191
writeToFile:atomically:, 226

NSMutableData, 370
NSMutableDictionary, 234, 593
NSNetService, 417, 418–419, 597

publish, 419
NSNetServiceBrowser, 420–425, 597

browseServices, 423
NSNotification, 505–509

NSDictionary, 508
View controllers, 508

NSNotificationCenter, 314
NSObject, 560
NSRange, 193
NSSearchPathForDirectoriesInDomains(),

226
NSSelectorFromString, 584
NSService, 423
NSString, 594

Bluetooth, 404
JSONValue, 382
rangeOfString:options:, 193
sqlite3_open(), 257
stringByAddingPercentEscapes

UsingEncoding:, 320
UIAlertView, 404

NSTemporaryFolder(), 227
NSTimer, 595

animation, 295–310
fi ring interval, 301
sensors, 345
transformations, 302–307

NSUbiquitousKeyValueStore, 292
NSURLConnection, 370
NSURLRequest, 57
NSUserDefaults, 214, 228, 593

iCloud, 289
NSUbiquitousKeyValueStore, 292

NSXMLParser, 375
iOS SDK, 373

NSXmlParser, 597
Number Pad, 126
numberOfComponentsInPickerView:, 213
numberOfSectionsInTableView:, 181

O

objects
outlets, 39
responder chain, 133

Object Library
Table view, 164
Utilities, 41
views, 41

objectForKey:, 216, 291, 592
Objective-C, 559–586

categories, 585–586
classes, 560–573

access privileges, 564
@class, 561–563
class instances, 563
directives, 559–560
fi elds, 563
@implementation, 561
initializers, 571–573
@interface, 560
method calling, 566–568
methods, 565–566
properties, 568–571

delegates, 583
memory management, 573–581
protocols, 581–583
selectors, 584–585

Objects & Controllers, 41

bindex.indd 615bindex.indd 615 05/12/11 2:37 PM05/12/11 2:37 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

616

Offl ineReaderAppDelegate.m – properties, Objective-C

OfflineReaderAppDelegate.m, 246–247
OfflineReader-Info.plist, 246, 249

CFBundleDocumentTypes, 248
OfflineReaderViewController.m, 240–241,

244–245
onTimer, 345

UIImageView, 301
openDB, DatabasesViewController.m, 256
openDocumentIn, 242
openURL:, 321
openWithCompletionHandler:, 287
OR, 152
Organizer, 512

iOS Provisioning Portal, 518
Xcode, 521

otherButtonTitles:, 43, 582
nil, 44
UIAlertView, 44
Xcode, 42

outlets, 36–40
File’s Owner, 554
IBOutlet, 38
Interface Builder, 9
iPhone Simulator, 38
objects, 39
Search Bar, 191
Table view, 164
View window, 39
views, 39
Xcode, 551–558

OutletsAndActionsViewController.h, 36
OutletsAndActionsViewController.xib, 36

P

Page Control. See UIPageControl
pageTurning:, 53–54
parser:didEndElement:namespaceURI:quali

fiedName:, 597
parser:didStartElement:namespaceURI:qua

lifiedName:attributes:, 597
parser:foundCharacters:, 597
parsing, Web services XML, 373–377
particpantID, 411
password, 210
peer devices, 394–401

peerID, 399
peerPickerControllerDidCancel:, 399
peerPickerController:didConnectPeer:toS

ession:, 399
Pending Issuance, 517
phone dialer, 324, 595
Photo Library

built-in applications, 327–335
iPhone Simulator, 331
UIImagePickerController, 331

PhotoLibraryViewController.h, 328–329
PhotoLibraryViewController.m, 329–330, 333
Picker view, 210, 213
pickerView:didSelectRow:inComponent:, 214
pickerView:titleForRow:forComponent:, 213
pixels, 14–15

iPhone, 133, 137
maps, 472
screen resolution, 587

placemark, 482
platforms. See also multi-platform support

screen resolutions, 15
UI_USER_INTERFACE_IDIOM(), 590

PlayVideo, 311
PlayVideoViewController.h, 312
PlayVideoViewController.m, 312–313
.plist, 231–232

UIRequiredDeviceCapabilities, 460
points, 14

Interface Builder, 137
PopoverView, 100
Populate the View window, 36
portrait mode

iPad Simulator, 92, 100
iPhone, 133
keyboard, 144

positionViews, 158
PreferenceSpecifiers, 204
preprocessor directive, 560
presentViewController:animated:complet

ion, 389
@private, 564
private keys, 431, 598
processNotification:, 508
project folders, 587
properties, Objective-C, 568–571

bindex.indd 616bindex.indd 616 05/12/11 2:37 PM05/12/11 2:37 PM

617

@property – Round Rect Button

@property, 570
IBOutlet, 39
txtName, 38

property lists
fi le handling, 228–235
key/value pairs, 180–181, 228
NSDictionary, 228
Root.plist, 202
Xcode, 228

Property List Editor, 231
Property List template, 176
@protected, 564
protocols, 419

Objective-C, 581–583
provider applications, 428
provisioning profi le, 273. See also iOS

Provisioning Portal
APNs, 435–437
entitlements, 274
testing, 521–524

PSChildPaneSpecifier, 205
PSGroupSpecifier, 205, 208
PSMultiValueSpecifier, 205, 208
PSTextFieldSpecifier, 204, 208
PSTitleValueSpecifier, 205
PSToggleSwitchSpecifier, 205
@public, 564
public keys, 431, 598
publish, 419
push notifi cations. See Apple Push Notifi cations
push notifi cation providers, 443–447
PushMeBaby, 444–447

Q

Quartz, 302

R

rangeOfString:options:, 193
readFromFile:, 226–227
readonly, 571
receiveData:fromPeer:inSession:cont

ext:, 404
receivedData:fromParticpantID:, 412, 597

reference counting, 573–581
registerForRemoteNotificationTypes:, 598

UIApplication, 442
regular expressions, 586
release, 575–576
Release/Any iOS SDK, 527, 531
reloadData

Table view, 192
UITableView, 423

remote notifi cations. See Apple Push Notifi cations
removeFromSuperview, 86
repeats:, 301
Request Certifi cate, 430
ResetDatePicker, 356
resignFirstResponder, 129, 591

runtime exception, 132
Text Field, 144

resolveIPAddress:, 423
resolveIPhonedress:, 423
resolveWithTimeout:, 423
Resources folder, 233–234
responder chain, 133
retain, 39, 570, 575
Retina, 21
Return Key, 126
reverse geocoding, 478–482
reverseGeocodeLocation:completionHand

ler:, 481
Root.plist

key/value pairs, 206
property list, 202
Type, 206
Value, 206
XML, 204

rotation, 595. See also screen rotation
animation, 305–307
maps, 468–474

Attributes Inspector, 468
Interface Builder, 469
iPhone, 471

Round Rect Button
actions, 86
Attributes Inspector, 129
btnClicked:, 86
buttonWithType:, 60
EmailsViewController.xib, 326

bindex.indd 617bindex.indd 617 05/12/11 2:37 PM05/12/11 2:37 PM

618

Round Rect Button – SecondViewController.h

Round Rect Button (continued)
EmailViewController.xib, 321
File’s Owner, 84, 130, 319, 367
frame, 158
Interface Builder, 23, 25, 36, 85
iPhone Simulator, 157
keyboard dismissing, 129
Label, 61
Touch Up Inside, 130
View window, 80, 85, 129, 156, 158, 405
viewDidLoad, 158

row

NSIndexPat, 168
NSIndexPath, 172

runtime
error, @synthesize, 40
exception

method calling, 566
resignFirstResponder, 132

screen rotation, 159

S

Safari, 595
iPhone, 149–150, 324
Twitter, 387

saveSettings:, 210
ApplicationSettingsViewController.m,

217
SAX. See Simple API for XML
scaling, 595

animation, 307
scheduledTimerWithTimeInterval:, 301
scheduledTimerWithTimeinterval:target:s

elector:userInfo:repeats:, 300
scheduleLocalNotification:,

UIApplication, 503
screen resolution, 14–15

iPhone 4, 21
iPhone Simulator, 157
launch images, 28–29
pixels, 587
platforms, 15
View window, 159–160

screen rotation, 149–161
Home, 152

iOS SDK, 149
iOS Simulator, 7
iPad, 151–152
iPhone, 149–152
iPhone Simulator, 150
programmatically, 159–160
runtime, 159
View controllers, 153
views, 158

ScreenRotationsViewController.h, 156
ScreenRotationsViewController.m, 156–157
Scroll View

content size, 140
iPhone Simulator, 137, 142
keyboard, 134–145
Size Inspector, 136
Text Field, 134, 138
View window, 134

ScrollerViewController.m, 137, 141–142
scrollView, 137
ScrollViewController.h, 137
ScrollViewController.xib, 134
SDK. See iOS SDK
.sdk, 249
Search Bar

Interface Builder, 184
iPhone Simulator, 186
keyboard, 190
MasterViewController.m, 186–190
NSDictionary, 191
NSMutableArray, 191
outlets, 191
Table view, 183–193
tableView:willSelectRowAtIndexPath:,

193
View window, 191

searchBar, 185
searchBarTextDidBeginEditing:, 191
searchBar:textDidChange:, 192
searchFilesOniCloud, 285
searchMoviesTableView, 192–193
searchResult, 193
SecondViewController

self.view.superview, 89
View, 86

SecondViewController.h, 82

bindex.indd 618bindex.indd 618 05/12/11 2:37 PM05/12/11 2:37 PM

619

SecondViewController.m – SingleViewBasedAppAppDelegate

SecondViewController.m, 82–83, 88
Xcode, 84–85

sectionIndexTitlesForTableView:, 183, 592
Secure, keyboard, 127
SEL, 584
@selector, 567
selector:, 301
selectors, 584–585
self, 573

UIAlertView, 44
self-defi ned documents, 248–250
self.view, 472
self.view.superview, 89
sendDataToAllPeers:withDataMode:, 403
sendEmailTo:withSubject:withBody:, 320
sender

actions, 40
Text Field, 129

sensors, 339–357
accelerometer, 339–345
gyroscope, 339–345
NSTimer, 345
Shake API, 350–356
visualizing data, 345–350

serialization, 226
service name, 419
session ID, 401
session:peer:didChangeState:, 400, 410
setArray:forKey:, 291
setBool:forKey:, 291
setData:forKey:, 291
setDetailItem, 97
setDictionary:forKey:, 291
setDouble:forKey:, 291
setLongLong:forKey:, 291
setObject:forKey:, 216, 291, 592
setOrientation:, 159
setRegion:, 464
setShowValue:, 300
setString:forKey:, 291
setters, 569
Settings.bundle, 202, 204
setUserTrackingMode:animated:, 474
Shake API, 350–356

DatePicker, 354
Debugger Console, 355

iPhone Simulator, 454
keyboard, 354
Text Field, 354
UIView, 355

ShakeViewController.h, 351
ShakeViewController.m, 352, 355
ShakeViewController.xib, 351
ShakeView.m, 353, 355
sharedApplication, 321
sharing fi les, 242–245
Shell, 248
shouldAutorotateToInterfaceOrientation:,

151, 152, 159, 160
show, 44, 581–582
Show My Location, 451
Show Raw Keys/Values, 492
showLocation:, 451
showsUserLocation, 452, 598
Simple API for XML (SAX), 373, 375
Simple Object Access Protocol (SOAP), 596

headers, 363
HTTP GET, 363, 365, 371
HTTP POST, 364, 365, 371
version 1.1, 361–363
version 1.2, 363–364
Web services, 361–372

Simulator. See iOS Simulator; iPad Simulator;
iPhone Simulator

Single View Application template, 68–77
iOS SDK, 67
iPhone Simulator, 69
Table view, 164
Universal applications, 116
View, 69
View controllers, 67
Xcode, 116

Single View Application template (iPhone)
application preferences, 202
Xcode, 36, 42, 58, 68, 110, 134, 150, 202,

223, 274, 296, 405, 439, 450, 488, 498
SingleViewAppViewController.xib, 74
SingleViewBasedApp, 68
SingleViewBasedApp.app, 70
SingleViewBasedAppAppDelegate

SingleViewBasedAppAppDelegate.h, 73
UIApplicationMain(), 71

bindex.indd 619bindex.indd 619 05/12/11 2:37 PM05/12/11 2:37 PM

620

SingleViewBasedAppAppDelegate.h – Sync

SingleViewBasedAppAppDelegate.h, 73
SingleViewBasedAppAppDelegate.m,

70, 71–74
SingleViewBasedAppDelegate.h, 70
SingleViewBasedApp-Info.plist, 70
SingleViewBasedApp_Prefix.pch, 70
SingleViewBasedAppViewController

SingleViewBasedAppViewController

.xib, 73
UIViewController, 75
View, 74

SingleViewBasedAppViewController.h, 75
SingleViewBasedAppViewController.m, 70,

75, 76–77
SingleViewBasedAppViewController.xib, 70

SingleViewBasedAppView

Controller, 73
Size Inspector

Autosize, 114
Interface Builder, 550
Scroll View, 136

sliderMoved:, 301
SMS, 595

iPhone, 324–325
SOAP. See Simple Object Access Protocol
SOAPAction, 362
soapResults, 376
Split View-based Application template, 89
SplitViewController, 102
splitViewController, 93, 94
splitViewController:willShow

ViewController:invalidatingBar

ButtonItem, 98
SQL statements, 261
SQLite3

bind variables, 260–262
bundling with applications,

265–266
creating and opening, 256–265
databases, 253–267
inserting records, 259–260
iPhone Simulator, 258
libsqlite3.dylib, 254–256
retrieving records, 263–265
tables, 258–259

sqlite3, 255

sqlite3_bind_int(), 262
sqlite3_column_text(), 264
sqlite3_exec(), 262, 593
sqlite3_finalize(), 262, 593
sqlite3_open(), 257
sqlite3_prepare(), 593
sqlite3_step(), 262, 593

while, 264
sqlite3_stmt, 264
SQLITE_ROW, 264
SSL certifi cate, 598

APNs, 433–435, 443
Keychain Access, 435

startAnimating, 310
startDeviceMotionUpdates, 345
startDeviceMotionUpdatesToQueue:withHan

dler:, 344
startMonitoringSignificant

LocationChanges, 496–497, 497
startQuery, 286
startUpdatingHeading, 467, 599
startUpdatingLocation, 459, 598

CLLocationManager, 467, 496
startVoiceChatWithParticipantID:error:,

411, 597
StatesAppDelegate.m, 488
static methods, 565
Step Into, 542
Step Out, 542
Step Over, 542
stringByAddingPercent

EscapesUsingEncoding:, 320
stringForKey:, 291
StringsTable, 204
stringUtils, 585
Style, 179
subject, 320
subtitle, 478
super, 572
Supporting Files folder, 28

Compass.gif, 464
HTML, 55
images, 170
info.plist, 159
Xcode, 55, 170, 308

Sync, 532

bindex.indd 620bindex.indd 620 05/12/11 2:37 PM05/12/11 2:37 PM

621

synchronize – temporary folders

synchronize, 291
@synthesize, 39, 570–571, 571

.m, 40
runtime error, 40

T

Tab Bar Controller, 106
Tab Bar Items, 106
tabBarController, 105–106
Tabbed Application template, 103–107

iPhone Simulator, 106
View controllers, 105
Xcode, 103
.xib, 105

TabbedAppAppDelegate.m, 105–106
TabbedAppFirstViewController, 105
TabbedAppFirstViewController.m, 106
TabbedAppFirstViewController.xib, 105
TabbedAppSecondViewController, 105
TabbedAppSecondViewController.xib, 105
tables, databases, 258–259
Table view, 163–200

arrays, 167
Attributes Inspector, 179
Bonjour, 417, 422
checkmarks, 194–195
dataSource, 164
delegate, 164
Detail Disclosure button, 194–195
disclosures, 194–195
event handlers, 167
footers, 169
headers, 169, 182–183
images, 169–171
indenting, 173
iPhone Simulator, 166, 179, 186, 197
making selections, 171–172
Master-Detail Application template,

173–198
indexing, 183
sections, 174–183
View window, 195–198

Object Library, 164
outlets, 164
reloadData, 192

row height, 173
Search Bar, 183–193
Single View Application template, 164
View controllers, 167

TableView

Interface Builder, 179
iPad Simulator, 100, 102
MasterDetailDetailView

Controller, 102
MasterViewController.xib, 175

tableView:cellForRowAtIndexPath:,
102, 168, 169

images, 170
NSDictionary, 182

tableView:didSelectRowAtIndexPath:

NSIndexPath, 168
UITableViewDelegate, 172

TableViewExample, 164
TableViewExampleViewController.h,

165, 171
TableViewExampleViewController.m,

165–166, 169
TableViewExampleViewController.xib, 164
tableView:indentationLevelForRowAtIndex

Path:, 173
tableView:numberOfRowsInSection:, 102,

168, 181–182
tableView:titleForHeaderInSection:,

182–183
tableView:willSelectRowAtIndex

Path:, 193
tag, 60
Targeted Device Family, 590

iPad, 109–114
iPad Simulator, 110–111
iPhone, 109–114
iPhone Simulator, 110–111
View window, 110
Xcode, 109–114

TCP, 443
TCP, 419
TCP/IP, 425

APNs, 428
<TEAM_ID>, 275
$(TeamIdentifierPrefix), 275
temporary folders, 227

bindex.indd 621bindex.indd 621 05/12/11 2:37 PM05/12/11 2:37 PM

622

testing – UIAlertView

testing, 14, 511–532. See also iOS Simulator;
iPhone Simulator

App ID, 519–521
development certifi cates, 515–518
device registration, 518–519
iOS Provisioning Portal, 514–515
provisioning profi le, 521–524

Text, 23
Text Field

Attributes Inspector, 125
Did End On Exit, 129
File’s Owner, 142, 367, 380
First Responder, 129
Interface Builder, 23–24, 36, 125, 139
iPhone, 124–125
keyboard, 124–125

dismissing, 128, 129
resignFirstResponder, 144
Scroll View, 134, 138
sender, 129
Shake API, 354
textFieldDidBeginEditing:, 143
textFieldDidEndEditing:, 144
textFieldShouldReturn:, 143
txtMessage, 395
View window, 144

TextField, 318
textField, 132
textFieldDidBeginEditing:, 140, 143
textFieldDidEndEditing:, 140, 143, 144
textFieldShouldReturn:, 140, 143, 591
TextView, 318
Title, 23
title, 478
Titles, 208
Touch Up Inside, 584

btnClicked:, 37
buttonClicked:, 60
IBAction, 159
Round Rect Button, 130

transformations, 595
NSTimer, 302–307

transitionWithView:duration:options:ani

mations:, 88
transitionWithView:duration:options:ani

mations:completion:, 55

translation, 595
animation, 303–305

Tweet Composer, 387
Twitter

frameworks, 388
iPhone Simulator, 387
Safari, 387
Web services, 383–389

TwitterViewController.h, 385
TwitterViewController.m, 386–387
TwitterViewController.xib, 384
TWTweetComposeViewController, 388–389,

597
txtContent, 280
txtFilesOniCloud, 280
txtLat, 380
txtLng, 380
txtMessage, 395
txtName

File’s Owner, 39
@property, 38
UITextView, 39

Type, 206
Type tableView:cellForRowAtIndexPath:,

194

U

ubiquitousDocumentsURL, 286
UDID. See Unique Device Identifi er
UIActionSheet, 45–46, 589

IBAction, 46
iPad, 46
iPhone Simulator, 45
View window, 45
viewDidLoad, 46

UIActionSheetDelegate, 45
uial, 538–539
UIAlertView, 41–45, 172

alertView:clickedButtonAtIndex:, 505
AlertViewDelegates, 507, 508
Bluetooth, 404
buttons, 44
cancelButtonTitle:, 44
Class Prefi x, 42
Code Sense, 539

bindex.indd 622bindex.indd 622 05/12/11 2:37 PM05/12/11 2:37 PM

623

UIAlertViewDelegate – UITableView

delegate, 583
iPhone Simulator, 42, 43
NSString, 404
otherButtonTitles, 44
self, 44
show, 44, 581–582
Use Automatic Reference Counting, 42
Web services, 377

UIAlertViewDelegate, 582, 583
alertView:clickedButtonAtIndex:, 44
View controllers, 44

UIApplication, 350
cancelAllLocalNotifications, 504
registerForRemoteNotificationTypes:,

442
scheduleLocalNotification:, 503

UIApplicationDelegate, 73
UIApplicationExistsOnSuspend, 492
UIApplicationLaunchOptionsLocationKey,

497, 504
UIApplicationMain(), 71
UIBackgroundModes, 492

Info.plist, 496, 497
UIButton

CGRectMake(), 61
UIRoundedRectButton, 60

UIButtonTypeRoundedRect, 60
UIControlEvenTouchUpInside, 86–87
UIControlEventTouchDown, 86–87
UIDevice, 159
UIDocument

iCloud, 276–278
MyCloudDocument, 285
updateChangeCount:, 288

UIDocumentInteractionController,
242, 593

UIFileSharingEnabled, 243, 245, 593
UIImage, 309–310
UIImagePickerController, 596

Photo Library, 331
UIImagePickerControllerSourceType

Camera, 331
UIImagePickerControllerSourcetype

PhotoLibrary, 331
UIImagePickerControllerSource

TypeSavedPhotosAlbum, 331
UIImageView, 310

animation, 296
onTimer, 301
transitionWithView:duration:options

:animations:completion:, 55
UIView, 54–55
View, 47, 50, 53
Xcode, 48

UIInterfaceOrientationLandscapeLeft, 152
UIInterfaceOrientationLandscape

Right, 152
UIInterfaceOrientationPortrait, 152
UIInterfaceOrientationPortrait

UpsideDown, 152
UIKeyboardDidHideNotification, 591

View window, 143
UiKeyboardDidHideNotification, 134
UIKeyboardDidShowNotification, 134, 591

View window, 143
UIKit, 172
UIKit.framework, 70
UILocalNotification, 502
UILocalNotificationDefaultSoundName, 503
UINavigationController, 93
UINavigationControllerDelegate, 331
UIPageControl, 46–55

iOS SDK, 46
iPhone Simulator, 52
methods, 53
pageTurning:, 53–54
View window, 47

UIPrerenderedIcon, 28
UIRequiredDeviceCapabilities

Info.plist, 398
.plist, 460

UIResponder, 350
UIRoundedRectButton, 60
UIScrollView, 591
UISearchBarDelegate, 191
UISplitViewController, 93
UISplitViewControllerDelegate, 98

methods, 96
UITabBarController, 106
UITableView

dequeueReusableCellWithIdentifier:,
168–169

Master-Detail Application template, 174
reloadData, 423

bindex.indd 623bindex.indd 623 05/12/11 2:37 PM05/12/11 2:37 PM

624

UITableViewCell – VALUES

UITableViewCell, 168
accessoryType, 194
imageView, 171

UITableViewCellAccessoryCheckmark,
194, 592

UITableViewCellAccessoryDetail

DisclosureButton, 194, 592
UITableViewCellAccessoryDisclosure

Indicator, 194, 592
UITableViewController

Master-Detail Application template, 96
MasterViewController, 176

UITableViewDataSource, 167–168, 592
View controllers, 171

UITableViewDelegate, 592
tableView:didSelectRowAtIndex

Path:, 172
TableViewExampleViewController.h, 171
tableView:indentationLevelForRowAtI

ndexPath:, 173
View:heightForRowAtIndexPath:, 173

UITextField, 591
UITextView, 39
UI_USER_INTERFACE_IDIOM(), 115–116

platforms, 590
UIUserInterfaceIdiomPad:, 115
UIUserInterfaceIdiomPhone, 116
UIView, 350, 595

animateWithDuration:delay:options:a

nimations:completion:, 302
containers, 59
Interface Builder, 355
Shake API, 355
transitionWithView:duration:options

:animations:, 88
UIImageView, 54–55

UIViewAnimationOptionTransition

FlipFromRight, 89
UIViewController, 560

SingleViewBasedAppViewController, 75
UIWebView, 55–57

fi le sharing, 245
iPhone Simulator, 57
NSURLRequest, 57
Xcode, 56

UIWindow, 73
Uniform Type Identifi ers (UTIs), 242, 248, 250

uninstalling applications, 8–9
Unique Device Identifi er (UDID), 512–513, 519

ad hoc distribution, 531
uniquitousDocumentsURL, 285
Universal, 90
Universal applications

iPad Simulator, 118
iPhone Simulator, 118
multi-platform support, 116–120
Single View Application template, 116
Xcode, 119
.xib, 116, 119

updateChangeCount:, 288
updateUbiquitousDocuments:, 285

startQuery, 286
URLForUbiquityContainerIdentifier:, 594

ubiquitousDocumentsURL, 286
Use Automatic Reference Counting, 36

Class Prefi x, 58, 77, 90, 103, 110, 116, 150,
164, 174, 274, 488

UIAlertView, 42
userAcceleration, 344
UserResponded, 508
UsingJSONViewController.h, 379
UsingJSONViewController.m, 380–381
UsingJSONViewController.xib, 379
UsingViews, 47
UsingViews2ViewController.h, 56
UsingViews2ViewController.m, 57
UsingViews2ViewController.xib, 56
UsingViewsViewController.h, 42
UsingViewsViewController.m

viewDidLoad, 42
Xcode, 51

UsingViewsViewController.xib, 47
UTExportedTypeDeclarations, 250
UTF8String, 257, 594
Utilities

Interface Builder, 21
Object Library, 41

UTIs. See Uniform Type Identifi ers

V

Value, 206
valueForKey:, 332
VALUES, 261

bindex.indd 624bindex.indd 624 05/12/11 2:37 PM05/12/11 2:37 PM

625

Values – View:heightForRowAtIndexPath

Values, 208
versions, 13
video playback

iPhone, 310–314
iPhone Simulator, 313
View window, 310

View
SecondViewController, 86
Single View Application template, 69
SingleViewBasedAppViewController, 74
UIImageView, 47, 50, 53
View controllers, 74

View

UIActionSheet, 45
view, 75

view

button, 60
label, 60
loadView, 60
removeFromSuperview, 86
View, 75
View controllers, 60

views, 40–57
actions, 39, 85
adding with code, 57–61, 81–86
hierarchy, 61–62
Label, 60
Object Library, 41
outlets, 39
screen rotation, 158
View window, 86

View controllers, 67–108. See also specifi c View
controllers

adding with code, 81–86
CLLocationManagerDelegate, 458
controlling UI, 74–77
Core Data, 534
Empty Application template, 77
iPhone Simulator, 84
loadView, 59
Master-Detail Application template, 91
MKMapViewDelegate, 463
NSNotification, 508
screen rotation, 153
shouldAutorotateToInterface

orientation:, 151
Single View Application template, 67

SplitViewController, 102
Tab Bar Items, 106
Tabbed Application template, 105
Table view, 167
UIActionSheetDelegate, 45
UIAlertViewDelegate, 44
UITableViewDataSource, 171
View, 74
view, 60
.xib, 77, 85, 119

View Details, 501, 502
View window

animation, 87–89
HelloWorldViewController, 88
iPhone Simulator, 88

directional information, 464
exporting fi les, 241
File’s Owner, 39
Interface Builder, 25, 50, 545–548
iOS SDK, 67
keyboard, 133
Label, 85, 117, 124
outlets, 39
Round Rect Button, 80, 85, 129,

156, 158, 405
screen resolution, 159–160
Scroll View, 134
Search Bar, 191
shouldAutorotateToInter

faceorientation:, 151
Table view, 195–198
Targeted Device Family, 110
Text Field, 144
UIKeyboardDidHideNotification, 143
UIKeyboardDidShowNotification, 143
UIPageControl, 47
video playback, 310
views, 86
Web services, 366

viewDidLoad, 85, 230, 263, 265
Round Rect Button, 158
UIActionSheet, 46
UsingViewsViewController.m, 42

viewDidLoad(), 539
Viewer, 248
viewForMap, 469, 472
View:heightForRowAtIndexPath:, 173

bindex.indd 625bindex.indd 625 05/12/11 2:37 PM05/12/11 2:37 PM

626

viewWillAppear – Xcode

viewWillAppear:, 143
Voice Chat

Game Kit, 404–412
iPod Touch, 410

Voice Over IP (VOIP), 599
background applications, 488

voiceChatService:sendData:toParticpan

tID:, 411, 597
VOIP. See Voice Over IP
voip, 496

W

warnings
iOS Simulator memory warning, 8
Xcode, 540–541

WAV fi les, 439
Web services

buttonClicked:, 371, 372
connection:didFailWithError:, 370
connectionDidFinishLoading:, 370
connection:didRecieveData:, 370
HTTP GET, 371–372
HTTP POST, 372
iPhone Simulator, 368, 375
JSON, 289, 360, 377–383

frameworks, 381
iPhone Simulator, 381
NSDictionary, 382
Xcode, 378

NSURLConnection, 370
SOAP, 361–372
Twitter, 383–389
UIAlertView, 377
View window, 366
Xcode, 360
XML, 359–391

parsing, 373–377
Web View. See UIWebView
WebServicesViewController.h, 373

Xcode, 366
WebServicesViewController.m, 367–368,

373–375
WebServicesViewController.xib, 365
webView, 56
WHERE, 261

while, 264
Wi-Fi triangulation, 455
willAnimateFirstHalfOfRotationToInter

faceOrientation:, 153
willAnimateRotationToInterface

Orientation:, 153, 154
willAnimateSecondHalfOfRotationFrom

InterfaceOrientation:, 153
willPresentAlertView:, 582
willRotateToInterfaceOrientation:,

153–154
Windows & Bars, 41
wrappers, 370
writeToFile:atomically:, 226
writeToFile:withFileName:, 226

X

Xcode, 3–19, 21, 533–558
actions, 551–558
Analyzer, 543
AppDelegate, 71
breakpoints, 541–542
Code Sense, 538–539
Dashcode, 3
debugging, 539–544
documentation, 543–544
Edit Scheme, 526
Empty Application template (iPhone), 77
EmptyAppAppDelegate.h, 80
errors, 540
frameworks, 537–538
Hello World!, 17–20
IDE, 3, 545
images, 587
Instruments, 3, 10
Interface Builder, 3, 9, 21, 545–550
iOS Simulator, 3, 4–9
iPad Simulator, 92, 114
iPhone Simulator, 114, 124, 157
JSON Web services, 378
KeyboardInputsViewController.h, 130
launching, 533–539
LBSViewController.h, 469
Master-Detail Application template, 89, 174
MasterViewController.h, 186

bindex.indd 626bindex.indd 626 05/12/11 2:37 PM05/12/11 2:37 PM

627

.xib – zoom, maps

MessageUI, 322
NSLog(), 542
Organizer, 521
otherButtonTitles, 42
outlets, 551–558
OutletsAndActionsView

Controller.h, 36
property lists, 228
SecondViewController.m, 84–85
Single View Application template, 116
Single View Application template (iPhone),

36, 42, 58, 68, 110, 134, 150, 202, 223,
274, 296, 405, 439, 450, 488, 498

SingleViewAppViewController.xib, 74
starting, 18
supported project types, 533–537
Supporting Files folder, 55, 170, 308
Tabbed Application template, 103
Targeted Device Family, 109–114
UDID, 512
UIImageView, 48
UIWebView, 56
Universal applications, 119
UsingViewsViewController.m, 51

warnings, 540–541
Web services, 360
WebServicesViewController.h, 366
.xib, 119

.xib, 21, 71
GyroscopeViewController, 342
Interface Builder, 545–546
iPad, 96
iPhone, 96
Master-Detail Application template,

91, 96
Tabbed Application template, 105
Universal applications, 116, 119
View controllers, 77, 85, 119
Xcode, 119

XML, 21
Root.plist, 204
Web services, 359–391

parsing, 373–377
XML Property List editor, 536

Z

zoom, maps, 452–455

bindex.indd 627bindex.indd 627 05/12/11 2:37 PM05/12/11 2:37 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox28 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

with this 15 d

badvert.indd 628badvert.indd 628 05/12/11 8:11 PM05/12/11 8:11 PM

http://www.safaribooksonline.com/wrox28

Related Wrox Books
Beginning Android Application Development
ISBN: 978-1-118-01711-1
This full-color guide offers you a hands-on introduction to creating Android applications for the latest mobile devices. Each lesson is
accompanied with real-world examples to drive home the content. Beginning with an overview of core Android features and tools, you’ll
move at a steady pace while learning everything you need to know to successfully develop your own Android applications.

Beginning iOS Application Development with HTML and JavaScript
ISBN: 978-1-118-15900-2
Are you already proficient in HTML, CSS, JavaScript, and Ajax and eager to create apps that can be rapidly deployed across mobile devices?
Then this is the book for you. You’ll learn to use what you already know to quickly apply your existing skills to the mobile platform so you
can start developing apps for the iPhone, iPod touch, and iPad today. The book explains how to work with core technologies, enable and
optimize websites for the iPhone and iPad, style with CSS, program the interface, and, ultimately, submit your apps to the App Store.

Beginning iOS Game Development
ISBN: 978-1-118-10732-4
This accessible guide is ideal for getting started developing games for the iPhone and iPad. It presents the iOS system architecture, gives
you the step-by-step of game development, and introduces the languages used to develop games. From the basic building blocks to
including drawing, responding to user interaction, animation, and sound, this book provides a one-stop-shop for getting your game up
and running.

Beginning Windows Phone 7 Application Development:
Building Windows Phone Applications Using Silverlight and XNA
ISBN: 978-0-470-91233-1
This book offers a foundation for using the tools required for Windows Phone 7 development, including Visual Studio 2010 Express
Edition, the Windows Phone 7 Series SDK, and Silverlight. Experienced authors provide you with detailed coverage on developing
accordingly for an application’s lifetime, accessing cloud services, and developing notification services.

Professional Flash Mobile Development: Creating Android and iPhone Applications
ISBN: 978-0-470-62007-6
This Wrox guide shows Flash and ActionScript developers how to create native applications for Android and iPhone mobile devices using
Flash and Flash Builder. Packed with practical examples, it shows how to build a variety of apps and integrate them with core mobile
services such as Accelerometer, GPS, Photo Library, and more.

Professional iPhone and iPad Application Development
ISBN: 978-0-470-87819-4
Packed with over twenty complete standalone applications that are designed to be recreated, rebuilt, and reused by the professional
developer, this resource presents step-by-step guidance for creating superior apps for the iPhone and iPad. You’ll explore the many
developer tools and learn how to use them and you’ll also discover how to apply the techniques learned to real-world situations.

Professional iPhone and iPad Database Application Programming
ISBN: 978-0-470-63617-6
Award-winning developer Patrick Alessi walks you through the flow of data in an enterprise application. This includes in-depth coverage
of displaying and manipulating data, creating and managing data using core data, and integrating your applications using Web Services.
This book also covers extracting data from databases such as Oracle, MySQL, or SQL Server.

The Art of the App Store: The Business of Apple Development
ISBN: 978-0-470-95278-8
This invaluable book offers a non-technical look at all aspects of the iPhone application development landscape and gets to the core
of what makes a popular—and profitable—application. From knowing your customer to launching a successful app, and everything in
between, this must-have guide navigates such topics as developing a concept, analyzing the competition, considerations before the
launch, marketing, building a community, and maintaining market share.

Related Wrox Books
Beginning Android Application Development
ISBN: 978-1-118-01711-1
This full-color guide offers you a hands-on introduction to creating Android applications for the latest mobile devices. Each lesson is
accompanied with real-world examples to drive home the content. Beginning with an overview of core Android features and tools, you’ll
move at a steady pace while learning everything you need to know to successfully develop your own Android applications.

Beginning iOS Application Development with HTML and JavaScript
ISBN: 978-1-118-15900-2
Are you already proficient in HTML, CSS, JavaScript, and Ajax and eager to create apps that can be rapidly deployed across mobile devices?
Then this is the book for you. You’ll learn to use what you already know to quickly apply your existing skills to the mobile platform so you
can start developing apps for the iPhone, iPod touch, and iPad today. The book explains how to work with core technologies, enable and
optimize websites for the iPhone and iPad, style with CSS, program the interface, and, ultimately, submit your apps to the App Store.

Beginning iOS Game Development
ISBN: 978-1-118-10732-4
This accessible guide is ideal for getting started developing games for the iPhone and iPad. It presents the iOS system architecture, gives
you the step-by-step of game development, and introduces the languages used to develop games. From the basic building blocks to
including drawing, responding to user interaction, animation, and sound, this book provides a one-stop-shop for getting your game up
and running.

Beginning Windows Phone 7 Application Development:
Building Windows Phone Applications Using Silverlight and XNA
ISBN: 978-0-470-91233-1
This book offers a foundation for using the tools required for Windows Phone 7 development, including Visual Studio 2010 Express
Edition, the Windows Phone 7 Series SDK, and Silverlight. Experienced authors provide you with detailed coverage on developing
accordingly for an application’s lifetime, accessing cloud services, and developing notification services.

Professional Flash Mobile Development: Creating Android and iPhone Applications
ISBN: 978-0-470-62007-6
This Wrox guide shows Flash and ActionScript developers how to create native applications for Android and iPhone mobile devices using
Flash and Flash Builder. Packed with practical examples, it shows how to build a variety of apps and integrate them with core mobile
services such as Accelerometer, GPS, Photo Library, and more.

Professional iPhone and iPad Application Development
ISBN: 978-0-470-87819-4
Packed with over twenty complete standalone applications that are designed to be recreated, rebuilt, and reused by the professional
developer, this resource presents step-by-step guidance for creating superior apps for the iPhone and iPad. You’ll explore the many
developer tools and learn how to use them and you’ll also discover how to apply the techniques learned to real-world situations.

Professional iPhone and iPad Database Application Programming
ISBN: 978-0-470-63617-6
Award-winning developer Patrick Alessi walks you through the flow of data in an enterprise application. This includes in-depth coverage
of displaying and manipulating data, creating and managing data using core data, and integrating your applications using Web Services.
This book also covers extracting data from databases such as Oracle, MySQL, or SQL Server.

The Art of the App Store: The Business of Apple Development
ISBN: 978-0-470-95278-8
This invaluable book offers a non-technical look at all aspects of the iPhone application development landscape and gets to the core
of what makes a popular—and profitable—application. From knowing your customer to launching a successful app, and everything in
between, this must-have guide navigates such topics as developing a concept, analyzing the competition, considerations before the
launch, marketing, building a community, and maintaining market share.

	Beginning: iOS 5 Application Development
	Contents
	Introduction
	Chapter 1: Getting Started with iOS 5 Programming
	Obtaining the Tools and SDK
	Components of Xcode
	Xcode
	iOS Simulator
	Interface Builder
	Instruments

	Architecture of the iOS
	Some Useful Information before You Get Started
	Versions of iOS
	Testing on Real Devices
	Screen Resolutions

	Summary

	Chapter 2: Writing Your First Hello World! Application
	Getting Started with Xcode
	Using Interface Builder
	Writing Some Code

	Customizing Your Application Icon
	Displaying Launch Images
	Summary

	Chapter 3: Understanding Views, Outlets, and Actions
	Outlets and Actions
	Using Views
	Using the Alert View
	Using the Action Sheet
	Page Control and Image View
	Using the Web View

	Adding Views Dynamically Using Code
	Understanding View Hierarchy
	Summary

	Chapter 4: Exploring the Different View Controllers
	The Single View Application Template
	Application Delegate
	Controlling Your UI Using View Controllers

	The Empty Application Template
	Adding a View Controller and Views Programmatically
	Animating the Switching of Views

	The Master-Detail Application Template
	Displaying Some Items in the Master-Detail Application

	The Tabbed Application Template
	Summary

	Chapter 5: Enabling Multi-Platform Support for the iPhone and iPad
	Technique 1 — Modifying the Device Target Setting
	Detecting the Platform Programmatically

	Technique 2 — Creating Universal Applications
	Choosing a Porting Technique
	Summary

	Chapter 6: Handling Keyboard Inputs
	Using the Keyboard
	Customizing the Type of Inputs
	Dismissing the Keyboard
	Automatically Displaying the Keyboard When the View Window Is Loaded

	Detecting the Presence of the Keyboard
	Using the Scroll View
	Scrolling Views When the Keyboard Appears

	Summary

	Chapter 7: Supporting Screen Rotations
	Responding to Device Rotations
	Rotating to a Different Screen Orientation
	Handling Rotations

	Programmatically Rotating the Screen
	Rotating during Runtime
	Fixing the View Window to a Specific Orientation

	Summary

	Chapter 8: Creating and Persisting Data Using the Table View
	Creating a Simple Table View
	Adding a Header and Footer
	Adding an Image
	Displaying the Item Selected
	Indenting
	Modifying the Height of Each Row

	Using the Table View in a Master-Detail Application
	Displaying Sections
	Adding Indexing
	Adding Search Capability
	Disclosures and Checkmarks
	Navigating to Another View

	Summary

	Chapter 9: Using Application Preferences
	Creating Application Preferences
	Programmatically Accessing the Settings Values
	Loading the Settings Values
	Resetting the Preferences Settings Values
	Saving the Settings Values

	Summary

	Chapter 10: File Handling
	Understanding the Application Folders
	Using the Documents and Library Folders
	Storing Files in the Temporary Folder
	Which Folder Should You Use: Documents or tmp?

	Using Property Lists
	Copying Bundled Resources
	Importing and Exporting Files
	Exporting Documents
	File Sharing
	Importing Documents
	Importing Self-Defined Documents

	Summary

	Chapter 11: Database Storage Using SQLite
	Linking to the SQLite3 Library
	Creating and Opening a Database
	Examining the Database Created
	Creating a Table
	Inserting Records
	Bind Variables
	Retrieving Records

	Bundling SQLite Databases with Your Application
	Summary

	Chapter 12: Programming iCloud
	Storing and Using Documents in iCloud
	Enabling iCloud Storage for Your Application
	Setting Project Entitlements
	Managing iCloud Documents Using the UIDocument Class
	Storing Documents on iCloud

	Storing Key-Value Data in iCloud
	Summary

	Chapter 13: Performing Simple Animations and Video Playback
	Using the NSTimer Class
	Animating the Visual Change

	Transforming Views
	Translation
	Rotation
	Scaling

	Animating a Series of Images
	Playing Video on the iPhone
	Summary

	Chapter 14: Accessing Built-in Applications
	Sending E-Mail
	Invoking Safari
	Invoking the Phone
	Invoking SMS

	Accessing the Camera and the Photo Library
	Accessing the Photo Library
	Accessing the Camera

	Summary

	Chapter 15: Accessing the Sensors
	Using the Gyroscope and Accelerometer
	Visualizing the Sensor Data
	Using the Shake API to Detect Shakes
	Summary

	Chapter 16: Using Web Services
	Basics of Consuming XML Web Services
	Using SOAP 1.1
	Using SOAP 1.2
	Using HTTP POST

	Consuming a Web Service in Your iOS Application Using SOAP
	Parsing the XML Response
	Consuming JSON Web Services
	Integrating Twitter into Your Application
	Summary

	Chapter 17: Bluetooth Programming
	Using the Game Kit Framework
	Searching for Peer Devices
	Sending and Receiving Data

	Implementing Voice Chatting
	Summary

	Chapter 18: Bonjour Programming
	Creating the Application
	Publishing a Service
	Browsing for Services
	Summary

	Chapter 19: Programming Remote Notifications Using Apple Push Notification Services
	Using Apple Push Notification Service
	Generating a Certificate Request
	Generating a Development Certificate
	Creating an Application ID
	Configuring an App ID for Push Notifications
	Creating a Provisioning Profile
	Provisioning a Device

	Creating the iOS Application
	Creating the Push Notification Provider
	Summary

	Chapter 20: Displaying Maps
	Displaying Maps and Monitoring Changes Using the Map Kit
	Getting Location Data
	Specifying the Hardware Requirement for Location Tracking
	Displaying Location Using a Map
	Getting Directional Information
	Rotating the Map
	Displaying Annotations
	Reverse Geocoding
	Displaying a Disclosure Button

	Summary

	Chapter 21: Programming Background Applications
	Understanding Background Execution on the iOS
	Examining the Different Application States
	Opting Out of Background Mode
	Detecting Multitasking Support
	Tracking Locations in the Background
	Making Your Location Apps More Energy Efficient

	Local Notification
	Notifying Other Objects Using the NSNotification Class
	Summary

	Appendix A: Testing on an Actual Device
	Appendix B: Getting Around in Xcode
	Appendix C: Crash Course in Objective-C
	Appendix D: Answers to Exercises
	Index
	Advertisements

